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Abstract

We introduce the notion of oblivious data structure, motivated by the use of data
structures in cryptography. Informally, an oblivious data structure yields no knowledge
about the sequence of operations that have been applied to it other than the �nal result
of the operations. In particular we de�ne oblivious 2-3 trees and update algorithms to
insert and delete sequences of contiguous leaves, in such a way that the only information
conveyed by an oblivious 2-3 tree is the set of values stored at its leaves. This property
is achieved through the use of randomization by the update algorithms.

We use oblivious 2-3 trees to solve the open problem of \private" incremental digital
signatures raised by Bellare, Goldreich and Goldwasser (1995). A digital signature
system is incremental if a document for which a digital signature has been produced
can be edited and its digital signature can be e�ciently updated to reect the changes
in the document. An incremental signature system is private if the digital signature
produced by the system for the �nal version of a document that has undergone a
sequence of edit operations, does not yield any information on intermediate versions of
the document.

Keywords: Oblivious Data Structures, 2-3 Trees, Incremental Cryptography, Dig-
ital Signatures
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1 Introduction

The idea of incremental cryptography, as outlined in [1], is to take advantage of the
knowledge of the result of applying a cryptographic transformation to a document D,
to compute the cryptographic transformation of a di�erent but related document D0

quicker than performing it from scratch.
In particular, [1] proposes a digital signature method for which the signature al-

gorithm is incremental. Namely, the cost of updating a signature when the document
is modi�ed by a basic edit operation (e.g. the insertion or deletion of a sequence of
blocks of text), is polynomial in a security parameter s (which is logarithmic in the
size of the document), rather than proportional to the size of the entire document.

We shall call the digital signature of [1] a tree signature as it works essentially as
follows. The blocks of a document are stored at the leaves of a tree. Each internal node
contains a (standard) digital signature of its children. For each basic edit operation
(insertion or deletion of a sequence of blocks), the signature of the document can be
updated with changes that are local to a path from the root to the leaf just inserted
or deleted. So, the cost of updating the tree signature of the document is proportional
to the height of the tree. The height of the tree is kept logarithmic in the number of
leaves through the use of 2-3 tree [5].

From the security point of view, the tree signing algorithm achieves tamper proof
security (see section 4 for more details). An open problem remains: the privacy of
signatures.

1.1 The Privacy Problem

The application that we have in mind is a text editor that maintains in the background
signed copies of the documents being written using an incremental signing algorithm.
The advantage of using such an editor is that when your document is �nished, a digital
signature of it is immediately available.

The signature of each version of a document is obtained as a function of a previous
version of the same document and the previous version's signature. Some information
on the way the document has been obtained as a sequence of edit operations, can be
computed from the signature of the �nal document obtained by the incremental signa-
ture algorithm. Even though there is no secrecy about the �nal document, it may be
undesirable for the signature to reveal information about intermediate documents that
led to the �nal one. For example, suppose you are drafting a sensitive and important
letter using the above mentioned text editor with incremental signature generation.
When the �nal letter is complete, you certainly don't want the intermediate versions
to be revealed through the signature.

In this paper we solve this problem. We do this by introducing oblivious 2-3 trees,
an implementation of 2-3 trees [5] in which the operations are de�ned as probabilistic
algorithms and satisfy the intuitive property of hiding the sequence of operations that
has been applied to a tree.
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1.2 Oblivious 2-3 tree

Our solution to the privacy problem consists of the de�nition of new insert and delete
operations for 2-3 trees with the remarkable property that the topology of the tree ob-
tained by applying any sequence of operations yields no information on the particular
sequence of operations used1. We call this property obliviousness, and the resulting
data structure oblivious 2-3 tree. Insert and delete are de�ned as randomized algo-
rithms: when a leaf is inserted or deleted, we make local changes to the topology of
the tree based on the outcomes of a sequence of coin tosses. Essentially, we toss a coin
for each internal node to decide its degree. The crucial point is that when the tree
undergoes a local modi�cation, we need to toss again the coins only for a small num-
ber of nodes, in the neighborhood of a leaf-to-root path. Nevertheless, we can prove
that the probability distribution on 2-3 trees induced by a sequence of operations, is
independent from the sequence of operations used.

This data structure solves the private signature problem introduced in [1].
Perhaps, more interestingly, oblivious 2-3 trees o�er advantages over other deter-

ministic and probabilistic data structures, even from a purely algorithmic point of
view.

Algorithmic improvements to standard 2-3 tree: The expected height of an
oblivious 2-3 tree is log2:5 n, slightly improving the log2 n bound o�ered by deterministic
2-3 trees.

As far as the running time is concerned, we prove that the insert and delete op-
erations have O(logn) cost. The probabilistic analysis of our operations on 2-3 trees
is made only with respect to the coin tosses of the operation being executed, without
any assumption on the input tree, the global sequence of operations or the coin tosses
made during the execution of operations in the past. This is in contrast with the use
of randomization that is made in most probabilistic data structure (see section 1.3).
Even in this \worst case" probabilistic analysis, we prove that the expected running
time of the algorithms is O(logn), with negligible probability to deviate from the ex-
pected value. Therefore the running times of the operations on oblivious 2-3 trees can
be bounded independently of each other.

Applications in distributed environments: Bounding the running time of
the operations independently of each other, is of fundamental importance in certain
applications. Consider a distributed environment in which the same data structure is
accessed by several users. It is conceivable that each user, although willing to accept
a probabilistic estimate on the cost of the operations he performs, wants the expected
running time to be small with respect only to its own coin tosses. The possibility of the
running time cost of the operations performed by one user being strongly inuenced
by those made by another one is undesirable. With our data structure the possibility
of a user being slowed down by the malicious behavior of another user accessing the
same data structure, is not present.

1This is certainly not true for the usual insert and delete operations on 2-3 tree: for example, if a tree
is built by inserting all leaves in order from left to right, all internal nodes (exception made for those along
the rightmost path of the tree) will have degree two.
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1.3 Related work on Randomized Data Structures

The idea of using randomization in performing tree operations has apparently appeared
in the data structure literature before (see [4] and [3]) in order to improve on the
algorithmic aspects of the tree operations.

Both randomized search trees ([4]) and skip lists ([3]) achieve O(logn) expected
running time for insert and delete operations. It is interesting how in these data struc-
tures obliviousness (although not even de�ned) is achieved and used for the purpose
of analyzing the running time of the algorithms.

In randomized search trees and skip lists, the cost of an insert or delete operation
essentially depends on the balance of the data structure. Randomization is used to keep
the data structure balanced with high probability. The balance of the data structure is
independent from the sequence of operations being applied, and in this sense the data
structure is oblivious. This property is used to prove that the expected running time
for single operation is O(logn).

However, the expected running time behavior of randomized search trees and skip
lists is di�erent from the one exhibited by our oblivious 2-3 trees. The running time
of the operations on randomized search trees and skip lists depends not only on the
coin tosses that are made during the operation being analyzed, but also on those made
during the previous insertion and deletion operations. The expectation is computed
with respect to all coin tosses made since the creation of the data structure.

Thus a malicious user can cause the data structure to become unbalanced and
perform poorly, if the sequence of operations he executes on the data structure is
not independent from the coin tossed during the execution of the previous operations.
Notice that oblivious 2-3 trees are not subject to this weakness because they have worst
case (over the inputs) O(logn) expected running time.

We illustrate the \malicious user" problem on randomized search trees. This data
structure is de�ned in [4] as a rooted binary tree whose nodes have associated a key
and a priority such that the nodes form a search tree with respect to their keys, and
a heap with respect to their priorities. Priorities are chosen at random, so that the
tree is kept balanced with high probability. In [4] it is pointed out that in order to
maintain the tree probabilistically balanced, the priorities of the nodes must be kept
hidden from the \user". In a distributed environment in which some users can be
malicious (as it is often the case in cryptographic applications), this is far from being
a realistic assumption because the priorities of the nodes can be detected by analyzing
the running time of the access operations. Note that a malicious user do not even need
to bias its own coin tosses: knowing their outcomes is enough to create a very \non-
random" and unbalanced tree by a polynomial number of updates. Similar remarks
apply to skip lists.

In conclusion, oblivious 2-3 tree is the �rst data structure that achieves oblivious-
ness, not as a tool to prove other properties, but as an important property itself. Even
from a purely algorithmic point of view, oblivious 2-3 tree achieves better performance
than other data structures achieving obliviousness as a side e�ect proposed in the lit-
erature, as oblivious 2-3 tree exhibits worst case (over the inputs) O(logn) expected
running time.
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1.4 Outline

The rest of the paper is organized as follows. In section 2 we give some basic de�nitions.
In section 3 oblivious 2-3 trees are de�ned and analyzed. In section 4 we show how
oblivious 2-3 trees solve the privacy problem for incremental signature. Section 5
concludes with some remarks on the general notion of oblivious data structure.

2 Notation and Terminology

A 2-3 tree is a rooted tree in which all internal nodes have either two or three children
and all leaves are at the same level. The leaves of a 2-3 tree store values taken from a
totally ordered set of keys K. The keys stored at the leaves of a 2-3 tree are all distinct
and appear in increasing order when the leaves are visited from left to right.

In the representation of 2-3 trees that we will use, the nodes at each level of a tree
are organized in linked lists to allow an easy traversal of the levels. Each internal node
n has the following �elds:

� a key n:key storing the minimum key of the subtree rooted at n,

� an integer n:deg 2 f2; 3g storing the degree of node n,

� a pointer n:child to the �rst child of n,

� a pointer n:next to the next node at the same level.

A new node with n:deg = d, n:child = c and n:next = n is created by the operation
new-node(d; c; n). The value of �eld n:key needs not to be speci�ed explicitly because
n:key = (n:child):key. We assume that each time the pointer n:child is changed,
also the �eld n:key is suitably modi�ed. The ith successor of a node n is de�ned by
n[0] = n, n[i + 1] = (n:next)[i]. For all internal nodes n such that n:next 6= NIL we
have n:child[n:deg] = n:next:child.

A 2-3 forest is an ordered list of 2-3 trees all having the same height. IfN is a pointer
to a node in a 2-3 tree, N can be thought as pointing to a node, pointing to a 2-3 tree
(the subtree rooted atN), pointing to a list of nodes ([N [0]; N [1];N [2]; : : :]) or pointing
to a forest (the list of trees rooted atN [0],N [1],: : :). All these di�erent sets of nodes are
denoted by Node(N), Tree(N), List(N) and Forest(N) respectively. length(N) denotes
the length of List(N): length(NIL) = 0, otherwise length(N) = 1 + length(N:next).

3 Oblivious 2-3 tree

In this section we de�ne a set of update algorithms for 2-3 trees that are both e�cient
and oblivious, as de�ned below. The operations we consider are insertion and deletion
of a key. The algorithms implementing the operations, Insert(k,T) and Delete(k,T),
are probabilistic and have expected running time O(logn) where the expectation is
taken on the internal coin tosses of the algorithm only, and not on the possible values
of k and T .

De�nition 1 Let O be a set of operations that act over 2-3 trees, and S be a set
of algorithms implementing them. The set of algorithms S is oblivious i� for any
two sequences of operations p1 : : : pn and q1 : : : qm the following is true. If p1 : : : pn
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BuildLevel(L):
if length(L) = 1 then return L
if length(L) = 2 then return new-node0(2; L[0];NIL)
if length(L) = 3 then return new-node0(3; L[0];NIL)
if length(L) = 4 then

return new-node0(2; L[0]; new-node0(2; L[2];NIL))
if length(L) � 5 then

toss a coin d 2R f2; 3g
return new-node(d; L[0];BuildLevel(L[d]))

Figure 1: The BuildLevel Algorithm

and q1 : : : qm generate trees storing the same set of leaves L, then the execution of
the sequence of algorithms in S implementing p1 : : : pn and the execution of those im-
plementing q1 : : : qm de�ne identical probability distributions over 2-3 trees with leaves
L.

In our case, the operations are the insertion and deletion of a key. The corresponding
algorithms, Insert(k,T) andDelete(k,T), are de�ned and proved oblivious in sections
3.2 and 3.3. The running time is analyzed in section 3.4. We will prove obliviousness
by de�ning, for any set of keys L, a probability distribution �L over the set of trees
with leaves L. We then show that for any key k the probability distribution over the
trees with leaves L [ fkg given by Insert(k; �L) coincides with �L[fkg. Analogously,
the probability distribution over the trees with leaves Lnfkg de�ned by Delete(k; �L)
is �Lnfkg.

It follows that if a tree is built up using exclusively the two algorithms Insert(k,T)
and Delete(k,T), the probability distribution de�ned by the �nal output of the algo-
rithms executed, yield no information on the sequence of operations performed, other
than the �nal set of leaves.

3.1 The probability distribution

The probability distribution �L over the set of trees with leaves L, is de�ned by an
algorithm BuildTree(L) that given an ordered list of leaves L returns a 2-3 tree with
leaves L. The algorithm is probabilistic and induces a family of probability distributions

�L(T ) = Pr[BuildTree(L) = T ]:

We add to internal nodes a new �eld n:random storing a single bit. n:random is
set to 1 i� the degree of node n has been randomly chosen between 2 and 3 by a coin
ip. Unless otherwise stated the �eld n:random is always set to 1. A new internal node
with �eld random set to 0 is created by the operation new-node0(deg; child; next).

The tree is built up level by level using the subroutine BuildLevel shown in �gure
1. The list of nodes at level i is obtained traversing the list of nodes at level i+ 1 and
grouping them in groups of either two or three elements. The nodes in each group
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BuildTree(L):
if L is unordered then sort L
while length(L) > 1 do

L BuildLevel(L)
return (L)

Figure 2: The BuildTree Algorithm

become the children of a node n in the upper level. The degree of n is the size of the
associated group of nodes at level i+ 1, and is chosen uniformly at random between 2
and 3, provided that level i+1 contains at least 5 nodes. If we are left with two, three
or four nodes at level i+ 1, there is only one way to group them in contiguous subsets
of size two and three. So, in this case no randomization is involved in the construction
of level i and the �eld random of node n is set to 0. Notice that if n:random = 0 then
n is one of the last two nodes of its level.

The subroutine BuildLevel(N) takes as input a pointer N to a 2-3 forest. If N
points to a forest with n trees, BuildLevel(N) return a forest of at most n=2 trees.
The algorithm BuildTree, shown in �gure 2, takes a list of leaves L and returns a
2-3 tree with leaves L. This is accomplished by repeatedly calling BuildLevel until
L is reduced to a single tree.

3.2 Insert

We want to de�ne an insertion algorithm Insert(k; T ) such that the probability distri-
bution over the trees with leaves L [ fkg de�ned by Insert(k; �L) is equal to �L[fkg.

We �rst de�ne a subroutine Ins(k;N) which takes as input a key k to be inserted,
and a pointer N to a 2-3 forest. The inputs to Ins(k;N) must satisfy the condition
N:key � k.

Ins(k;N) inserts the key k in the forest pointed to by N and returns a key k0.
Ins(k;N) visits and possibly modi�es the nodes of an initial sublist of List(N). The
execution of Ins(k;N) may result in the insertion of a new node in List(N). The key
of the last visited node is returned: if Ins(k;N) returns the key k0, then all nodes in
List(N) after the call with key greater than k0 are guaranteed to be as they were before
the execution of Ins(k;N).

ALGORITHM Ins(k,N):

1. If N points to a leaf node, then insert the new key k in the ordered list pointed
to by N and terminate with return value k.

2. Advance the pointer N (N  N:next) until either N:random = 0 or (N:next)
has key greater than k.

3. Initialize a pointer M to the �rst child of N (M  N:child).

4. Call recursively Ins(k;M) and store the returned value in k0.
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Insert(k,T):
f T:next = NIL and T:key = �1 g

call Ins(k; T )
if (T:next = NIL) then return (T )
otherwise return (new-node(0; T;NIL))

Figure 3: The Insert Algorithm

5. If no coin has been tossed for the node pointed to by N (N:random = 0), then
run the algorithm BuildLevel onM . Replace the list of nodes pointed to by N
with the result of BuildLevel(M) and terminate with return value +1.

6. If the key of M is greater then k0 do

(a) If the �rst child of N is M terminate with return value N:key.

(b) Toss a coin d 2R f2; 3g.

(c) If the �rst child of N is M [d] then insert, immediately before N , a new
internal node of degree d and with �rst child M . Terminate with return
value N:key.

(d) otherwise, set the degree of N to d and go on.

7. Set N:child to M . Advance M of N:deg positions (M  M [N:deg]). Advance
N of one position (N  N:next) and go back to step 5.

The Insert(k; T ) algorithm, shown in �gure 3, calls Ins(k; T ) as a subroutine. T
is assumed to point to a tree, that is T:next = NIL. To ensure that T:key < k, we
assume that the tree contains a leaf with key �1. If the execution of Ins(k; T ) results
in the insertion of a new node at level 0, then a new root node with children T and
T:next is created.

A proof of the correctness of the algorithm is implicit in the proof of obliviousness.

Proposition 1 For any set of leaves L and for any leaf k, the following equality holds
between probability distributions:

Insert(k; �L)) = �L[fkg

where �L is the probability distribution, over 2-3 trees storing the set of leaves L,
generated by BuildTree(L).

The proof of the above Proposition is based on the following Lemma. Let Insk(F )
the probability distribution over 2-3 forests resulting from the execution of Ins(k; F ).

Lemma 1 For any 2-3 forest F with more than one tree and for any key k,

BuildLevel(Insk(F )) = Insk(BuildLevel(F ))

is an equality between probability distributions over 2-3 forests.
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Proof: (Sketch) Consider an execution of Ins(k;N) with N pointing to the result of
running BuildLevel(F ). Clearly N does not point to a list of leaves, so Step 1 is
skipped. Now observe that the execution of Step 2 only a�ects the running time of the
Algorithm. Therefore, we can assume that Step 2 is not executed and the pointer M
is initialized to the �rst node of F .

So, the call to Ins(k;M) at step 4 generates a 2-3 forest with probability distribution
Insk(F ). The proof proceeds by computational induction, showing that the execution
of Steps 5-7 is equivalent to the assignment N := BuildLevel(M). 2

The proof of Proposition 1 easily follows from Lemma 1.

3.3 Delete

The delete algorithm is de�ned along the same lines as Insert. First a routine to
delete a key from a 2-3 forest is de�ned.

ALGORITHM Del(k,N):

1. If N points to a leaf node, then delete the new key k in the ordered list pointed
to by N and terminate with return value k.

2. Advance the pointer N (N  N:next) until either N:next:random equals 0 or
N:next:key � k.

3. Initialize a pointer M to the �rst child of N (M  N:child).

4. Call recursively Del(k;M) and store the returned value in k0.

5. If N:next:random = 0, then run the algorithm BuildLevel on M . Replace the
list of nodes pointed to by N with the result returned by BuildLevel(M) and
terminate with return value +1.

6. If the key of M is greater then k0 do

(a) If the �rst child of N is M terminate with return value N:key.

(b) Toss a coin d 2R f2; 3g.

(c) If the �rst child of N:next:next is M [d] then set N:child =M and N:deg = d.
Remove the node N:next and return (N:key).

(d) otherwise, set the degree of N to d and go on.

7. Set N:child toM . Advance M of N:deg positions (M  M [N:deg]). Advance N
of one position (N  N:next) and go back to step 5.

The Delete(k; T ) Algorithm is shown in �gure 4. It is assumed that T points to
a single tree (T:next = NIL) and the minimum key in T is strictly smaller than k. As
before, this last condition is ensured by having a leaf in the tree with key �1.

The proof of correctness and obliviousness is analogous to that for the Insert

algorithm.

Proposition 2 For any set of leaves L and for any leaf k, the following equality holds
between probability distributions: Delete(k; �L)) = �Lnfkg.
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Delete(k,T):
f T:next = NIL and T:key = �1 g

call Del(k; T )
if (T:child:next = NIL) then return (T:child)
otherwise return (T )

Figure 4: The Delete Algorithm

3.4 Running time Analysis

In this section we prove that the expected running time of Insert(k; T ) is O(h) where
h is the height of the tree T . Since the leaves in a 2-3 tree are all at the same level,
this implies a O(logn) bound, where n is the number of leaves of T . The analysis of
the Delete algorithm is analogous and yields similar results.

Consider an execution of Algorithm Insert(k; T ). The running time is proportional
to the number of nodes visited. We will give an estimate to this number. The Ins(k;N)
procedure is called h times, once for each level of the tree T . Each call to Ins visits a
sequence of contiguous nodes, all at the same level. Let li the number of nodes visited
at level i and consider the corresponding call to Ins(k;N).

It is easily seen that the number of nodes visited during the execution of step 2 (or
step 1 if N is a leaf) is at most 4.

After that,M is initialized to the �rst child ofN and Ins(k;M) is called. Ins(k;M)
visits li+1 nodes at level i + 1 and returns the key k0 of the last visited node. A new
node is visited at level i for each iteration of steps 5-7. Notice that at step 7 the pointer
M is advanced of at least two positions. So, after at most (li+1=2 + 1) iterations M
points to a node with key greater than k0.

For all subsequent iterations of steps 5-7 the execution of Ins(k;N) terminates
within two iterations with probability at least 1=4: if N:child = M we stop immedi-
ately; if N:child = M [2] or N:child = M [1] and N:deg = 2 we stop in one iteration
with probability 1=2 (when d = 2 and d = 3 respectively); �nally, if N:child = M [1]
and N:deg = 3, the sequence of coin tosses d = 2, d = 3 make us stop in two more
iterations with probability 1=4.

Therefore the number of nodes visited at level i can be bounded by

li � 4 +
1

2
li+1 + 1 + 2Xi

where Xi is a random variable with geometric distribution of parameter 1=4. The total
running time is given by

Time =
hX

i=1

li �
hX

i=1

(5 +
li+1
2

+ 2Xi)

Subtracting Time=2 from both sides and multiplying by 2 we get the upper bound
Time � 10h+ 4X , where X =

Ph

i=1Xi is the sum of h independent random variables,
all with geometric distribution of parameter 1=4. In particular, we have E[X ] = 4h.
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Proposition 3 The expected running time of algorithm Insert(k; T ) and algorithm
Delete(k; T ) is O(h), where h is the height of the tree T . Moreover, the probability
for the running time to deviate from its expected value by more than � is exponentially
decreasing both in � and in h.

4 Incremental Signatures

In this section we de�ne in more detail the private signature problem and show how
our data structure solves it.

De�nition 2 A signature scheme is speci�ed by a triple (G;S;V) of probabilistic poly-
nomial time algorithms.

� Algorithm G is called the key generator. G takes as input a security parameter 1s

(i.e. s expressed in unary) and outputs a pair (KS; KV ) of keys called the secret
key and the veri�cation key.

� Algorithm S is called the signature algorithm. It takes as input a secret key KS

and a message m and outputs a string S(KS; m) called digital signature of m
under key KS.

� Algorithm V is called the veri�cation algorithm. It takes as input the veri�cation
key KV , a message m and a string �, and tests whether � is a valid signature for
message m (i.e. V(KV ; m; �) = 1 i� � is a possible output of S(KS ; m)).

LetM be a set of text modi�cation operations (e.g. M = finsert(b; i); delete(i)g,
where insert(b; i) is the operation of inserting a new block b at position i of a text
and delete(i) is the operation of deleting the ith block). If p1 : : : pn is a sequence
of such operations, p1 : : :pn[D] denotes the result of applying the operations p1 : : : pn
sequentially to the initial document D.

De�nition 3 Let (G;S;V) be a signature scheme, and let M be a set of text modi�-
cation operations. An M-incremental signature system for (G;S;V) is an interactive
machine I operating as follows.

� I is initialized with a pair of keys (KS ; KV ), obtained by running G(1s).

� In response to a create(D) command, with parameter an initial document D, I
returns two strings � and �. � is called document identi�er and can be used to
later refer to the document. � is the current signature of document � and it can
be used to issue edit commands to I.

� In response to a edit(�; �; p) command, with parameters a document identi�er
�, the current signature � of document � and a text modi�cation operation p,
I updates the current signature � to reect the application of operation p and
returns the new current signature �0 of document �.

Furthermore, for any sequence of operations p1 : : :pn, if I receives the sequence of
commands create(D); edit(�; �0; p1); : : : ; edit(�; �n�1; pn) (possibly interspersed with
other commands not referring to document �) where (�; �0) is the value returned by I
in response to the request create(D) and for all i = 1; : : : ; n; �i is the value returned
by I in response to the request edit(�; �i�1; pi), then �n is a valid signature of the
document p1 : : : pn[D], i.e. V(KV ; p1 : : : pn[D]; �n) = 1.
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In practice, the signature � is not passed to and returned from the commands issued
to I. Rather, � resides in some form of memory support and is modi�ed in place by
I. We made � an explicit parameter to the commands to emphasize that � resides
externally to I and a malicious user could alter the incrementable signature � before
issuing a command to I in the attempt of breaking the system.

We consider a user A interacting with I to have requested a signature of doc-
ument D i� A issued to I a sequence of commands create(D0), edit(�; �0; p1),
: : : , edit(�; �n�1; pn), (possibly interspersed with other commands not referring to
document �) such that � is the document identi�er returned by create(D0) and
D = p1 : : :pn[D0].

We say that A produces a forgery i� A, after interacting with I, outputs a valid
signature for a document D whose signature has not been requested by A during the
interaction with I.

The de�nition of tamper proof security follows.

De�nition 4 An incremental signature system I is tamper proof secure i� for any
probabilistic polynomial time algorithm A which may interact with I, the probability
that A produce a forgery is negligible with respect to s, i.e. it is less than 1=p(s) for
any polynomial p and for all s large enough. The probability is computed with respect
to the coin tosses of algorithm A and those of the system I (which include the coin
tosses used by the key generator G to produce the initialization keys (KS; KV )).

De�nition 5 An incremental signature system I is private i� for all possible pairs
of keys (KS; KV ) obtained by running G(1s), for any initial document D and for any
sequence of text modi�cation operations p1; : : : ; pn the following is true.

If I is initialized with the keys (KS; KV ), the probability distribution on signa-
tures � obtained by issuing the sequence of commands create(D) (with answer (�; �)),
edit(�; p1; �0) (with answer �1), : : : , edit(�; pn; �n�1) (with answer �) (possibly in-
terspersed with other commands not referring to document �), is identical to the prob-
ability distribution de�ned by S(KS; p1 : : :pn[D]), i.e. running the signature algorithm
directly on the �nal document.

Slightly di�erent, but equivalent, de�nitions are given in [1] where it is also de�ned
an incremental signature system, called the tree scheme, that uses 2-3 tree to implement
all edit operations in logarithmic time. The tree scheme is built on top of a standard
(non-incremental) signature scheme (G; S; V ) and achieves tamper proof security under
the assumption that (G; S; V ) is secure under chosen message attack.

We now show how to de�ne a similar system using oblivious 2-3 trees, meeting the
additional requirement of privacy of signatures. Our de�nition is essentially the same
as in [1], with ordinary 2-3 trees replaced by oblivious ones.

Let (G; S; V ) be an ordinary signature scheme. We de�ne a new signature scheme
(G;S;V) on top of (G; S; V ). The key generator G is G itself. The algorithms S and V
use S and V as subroutines with the keys generated by G, and are de�ned as follows.

Algorithm S on input key KS and document D, produces a 2-3 tree. Each node
n of the tree contains an authentication tag n:tag and an integer n:size storing the
number of leaves in the subtree rooted at n. (To avoid ambiguities, we will use the
term \tag-tree" to refer to the signatures produced by S, while the term \signature"
will always refer to an ordinary signature produced by S.) The leaves of the tag-tree
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produced by S correspond to the blocks of document D. The �eld n:size equals one if
n is a leaf, otherwise it is computed as the sum of the sizes of the children of n (n:size =Pn:deg�1

i=0 n:child[i]:size). The authentication tag is computed as follows. If n is the ith
leaf of the tree, then n:tag = S(KS; D[i]) where D[i] is the ith block of the document.
If n is an internal node then n:tag = S(KS; (n:child[0]; : : : ; n:child[n:deg� 1]; n:size)).
If n is the root, then n:tag = S(KS; (n:child[0]; : : : ; n:child[n:deg� 1]; n:size; root)),
where root is a special symbol used to distinguish the tag-tree of a whole document
from a subtree associated to part of a document. The topology of the tree is de�ned
using the procedure BuildTree de�ned in section 3.

The veri�cation algorithm V works in the obvious way. It takes as input key KV ,
document D and a tag-tree �, and uses V to check that all tags of the nodes in � are
valid signatures of the appropriate strings, as de�ned by S.

We can now de�ne an incremental signature system I for (G;S;V). The system
I is initialized with a pair of keys (KS; KV ) obtained by running G, and operates as
follows.

� In response to a create(D) command, I generates a fresh document identi�er �,
associates with it an internal register R�, computes the tag-tree � = S(KS ; D),
initializes R� to the contents of the tag �eld of the root of �, and returns the pair
(�; �).

� In response to an edit(�; �; insert(b; i)) command, I checks that the value in
the register R� is equal to the tag �eld of the root of �. If so, I inserts a leaf
with tag equal to S(KS; b) in the tag-tree � at position i using the oblivious
2-3 tree insertion algorithm modi�ed as follows. The �elds size of the nodes
are used to locate where the new leaf must be inserted. Each time a new node
n is accessed, a partial validity check is performed. The validity of node n is
checked by running the veri�cation algorithm V with parameters KV , n:tag and
the appropriate string as de�ned by S. The �eld n:size is also checked to be
equal to

Pn:deg�1
i=0 n:child[i]:size. Any time a node is modi�ed, the �elds size and

tag are recomputed.

Then, the register R� is updated to contain the new tag of the root of �.

� edit(�; �; delete(i)) commands are treated analogously.

The above system meets all three requirements of being tamper proof secure, e�-
cient and private.

Theorem 1 If the signature scheme (G; S; V ) is secure under chosen message attack,
then the incremental signature scheme I described above is tamper proof secure.

The proof of this theorem is essentially the same as that in [1].

Theorem 2 All edit operations are performed by I in time logarithmic in the length
of the document being signed.

Proof: The running time of a document modi�cation operation is proportional to the
running time of the corresponding insert or delete tree operation. The theorem follows
from proposition 3. 2
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Theorem 3 The incremental signature system I achieves privacy.

Proof: It follows immediately from the obliviousness of the tree operations used and
from the fact that all calls to algorithm S are made with independent coin tosses. 2

5 Discussion

We have de�ned e�cient algorithms to insert and delete nodes in 2-3 trees, satisfying
the property that if two sequences of operations produce trees that have the same set of
leaves, than the execution of the algorithms corresponding to the two sequences of op-
erations produce identical probability distributions over 2-3 trees. We call the resulting
data structure oblivious 2-3 tree (supporting insertion and deletion operations).

An e�cient incremental digital signature system is de�ned based on oblivious 2-3
tree. The incremental signature system achieves tamper proof security and privacy,
thus solving an open problem raised in in [1].

Oblivious algorithms for other tree operations, such as split and merge of 2-3 trees,
can be de�ned following essentially the same ideas used in the de�nition of oblivious
insert and delete. An incremental signature system which support cut and paste text
modi�cation operations can be easily de�ned using oblivious split and merge of 2-3
trees, essentially in the same way we did here for insert and delete operations.

It is clear that the de�nition of obliviousness for 2-3 tree, can be generalized to
arbitrary data structures.

De�nition 6 Consider two data structures (A;�A) and (B;�B) implementing the
same set of operations �. The operations fA in �A are deterministic algorithms. The
operations fB in �B are probabilistic algorithms.

Let � be a function from B to A such that for all operation f 2 � of arity n, and for
any n-tuple B 2 Bn, we have �(fB(B)) = fA(�(B)), where fB(B) denotes any possible
output of fB on input B.

We say that (B;�B) is an oblivious implementation of (A;�A) with respect to  ,
if  is a probabilistic algorithm such that for all a 2 A, �( (a)) = fag, and for all
operation f 2 � of arity n, and for any n-tuple A 2 An,  (fA(A)) and fB( (A))
de�ne identical probability distributions on ��1(fA(A)).

For example oblivious 2-3 trees are an oblivious implementation of the associated
sets of leaves, where the probabilistic function  is given by BuildTree.

We believe that the applicability of the notion of oblivious data structure extends far
beyond the particular problem solved here (privacy of incrementally generated digital
signatures), in particular to the area of cryptography and cryptographic protocols.
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