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Abstract

We study how a mobile robot can piecemeal learn an unknown environment. The
robot's goal is to learn a complete map of its environment, while satisfying the con-
straint that it must return every so often to its starting position s (for refueling, say).
The environment is modelled as an arbitrary, undirected graph, which is initially un-
known to the robot. We assume that the robot can distinguish vertices and edges
which it has already explored. We present a surprisingly e�cient algorithm for piece-
meal learning an unknown undirected graph G = (V;E) in which the robot explores
every vertex and edge in G by traversing at most O(E + V 1+o(1)) edges. This nearly
linear algorithm improves on the best previous algorithm, in which the robot traverses
at most O(E + V 2) edges.

We also address the related problem of searching a graph for a particular distin-
guished location or treasure. If this treasure is likely to be near s, then the robot
should explore in a breadth-�rst manner. We show how the robot can explore while
never being much further than � away from s, where � is the shortest path distance
from s of the unvisited vertex nearest to s. We show that if the robot is never more
than � away from s (as in traditional BFS), then there are graphs for which the robot
traverses 
(E2) edges. In the algorithm we give, the robot traverses O(E + V 1+o(1))
edges, and maintains the following property: if � is the distance from s to the unvisited
vertex nearest to s, then the robot is never further than � + o(�) away from s.
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1 Introduction

Environment learning and algorithmic motion planning for robots have recently become ac-
tive research areas. The goal is to �nd e�cient algorithms for a robot to learn about or
navigate in its environment. Such algorithms are now useful in practice: there are working
meal delivery robots in hospitals [15], and vehicles that navigate autonomously on high-
ways [4]. More formal theoretical approaches to these problems have also been studied
extensively (e.g., [20, 10, 22, 5]).

We study the problem of piecemeal learning of an unknown environment [8]. The robot's
goal is to learn a complete map of its environment while satisfying the piecemeal constraint
that learning must be done a \piece at a time," with the robot returning to the starting
point s after each learning phase. Why might mobile robot exploration be done piecemeal?
Robots may explore environments that are too risky or costly for humans: the inside of a
volcano (e.g., CMU's Dante II robot) or the surface of Mars. Or, the robot's hardware may
be too expensive or fragile to stay long in dangerous conditions. Thus, it may be best to
organize the learning into phases, allowing the robot to return to s before it breaks down
or runs out of power. At the start position s, the robot can cool o�, recharge, or drop o�
samples collected.

Approaches to modelling a robot's environment come from graph theory, computational
geometry, on-line algorithms, and the theory of �nite automata. The model used here
was introduced by Betke, Rivest, and Singh [8]. The robot's task is to learn an unknown
environment modeled as an undirected graph G = (V;E) in a piecemealmanner. The robot's
e�ciency (or running time) is measured in terms of the number of edges traversed. The main
di�culty in our work lies in designing e�cient, but analyzable, robot exploration algorithms.
We give an almost linear time algorithm: it achieves O(E+V 1+o(1)) running time. The most
e�cient previously known algorithm has O(E + V 2) running time. We also give a simpler
but less e�cient algorithm that runs in O(E + V 1:5) time.

A robot can explore grid-graphs with rectangular obstacles in a piecemeal manner in
linear time, if the robot is given a bound on the number of edges it may traverse in each
learning phase (Betke, Rivest, and Singh [8]). We extend these results to show that the
robot can learn any undirected graph piecemeal in almost linear time. It is open whether
arbitrary, undirected graphs can be learned piecemeal in linear time.

The piecemeal constraint is most naturally satis�ed by requiring the robot to explore in
a near breadth-�rst manner, so that it is never much further away from s than necessary
to visit any unexplored vertex. In this manner, returns to s are e�cient. Breadth-�rst
search (BFS) on unknown graphs is also an important problem in its own right, with many
applications. We consider one such application, treasure hunting, where the goal is to �nd
a treasure (or a lost child, or a particular landmark) that is believed to be near s. If the
robot knows that the treasure is close to its goal location, it should explore in a breadth-�rst
manner from its current position.

BFS is a classic technique for searching graphs [19, 18, 11]. However, standard BFS is
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e�cient only when the robot can e�ciently switch or \teleport" from expanding one vertex to
expanding another. In contrast, our model assumes a more natural scenario where the robot
must physically move from one vertex to the next. We change the classical BFS model to a
more di�cult teleport-free exploration model, and give e�cient approximate BFS algorithms:
algorithms that satisfy the \approximate BFS constraint" (the robot does not move much
further away from s than the distance from s to the unvisited vertex nearest to s). Our
�rst teleport-free BFS algorithms never visit a vertex more than twice as far from s as
the nearest unvisited vertex is from s. Our �nal teleport-free BFS algorithm satis�es the
stronger condition that if the closest unvisited vertex to s is distance � away, the robot is
never more than � + o(�) away from s. For the treasure hunting problem, if the treasure is
at a vertex that has shortest path distance �T away from s, then the robot traverses at most
O(E + V 1+o(1)) edges, where E and V are the number of edges and vertices within radius
� = �T + o(�T ) from s. In contrast, we give a simple example to show that if the robot
exactly satis�es the traditional BFS constraint (i.e., it cannot move further away from s
than the unvisited vertex nearest to s), then it may traverse up to O(E2) edges. Our �nal
treasure hunting algorithm is also a solution to the piecemeal learning problem, but it is
more complicated than our fastest piecemeal learning algorithm.

Previous work

Papadimitriou and Yanakakis [20] developed one of the �rst models for exploring unknown
environments. They show how to �nd a shortest path in an unknown, undirected graph.
Deng and Papadimitriou [13] and Betke [6] address the problem of learning an unknown di-
rected graph. Bender and Slonim [5] show how two cooperating robots can learn a directed
graph. Rivest and Schapire [22] model the robot's unknown environment by a determin-
istic �nite automaton. They describe algorithms that e�ciently infer the structure of the
automaton through experimentation. Deng, Kameda, and Papadimitriou [12] consider the
how to learn the interior of a two-dimensional room. Blum, Raghavan, and Schieber [10]
consider a robot navigating in an unknown two-dimensional geometric terrain with convex
obstacles. Bar-Eli, Berman, Fiat, and Yan [3] give an e�cient algorithm for reaching the
center of a two-dimensional room with obstacles. Betke [7] and Kleinberg [17] address the
problem of localizing a mobile robot in its environment. Blum and Chalasani [9] consider
the problem of �nding a \k-trip" shortest path in the environment. There are many other
related papers in the literature [16, 14]. Rao, Kareti, Shi, and Iyengar [21] give a survey of
work on \robot navigation in unknown terrains."

Our techniques are inspired by the work of Awerbuch and Gallager [1, 2]. We observe
that our learning model bears some similarity to the asynchronous distributed model. This
similarity is surprising and has not been explored in the past.
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2 Model and statement of main results

We model the robot's environment as a �nite undirected graph G = (V;E) with a distin-
guished start vertex s. The graph is initially unknown to the robot. Each vertex in the graph
represents an accessible location, and each edge represents a connection between adjacent
locations. During each step of exploration, the robot moves from its current location to an
adjacent location; it is not allowed to \teleport" from one vertex to another distant vertex.
The robot can recognize previously visited vertices. The robot can distinguish the edges
incident to its current vertex and it knows which edges it has traversed already, but it has
no vision or long-range sensors. The robot incurs a cost only for traversing an edge; thinking
and path planning (computation) are free.

We consider two closely related constraints on the exploration: the \piecemeal constraint"
to model learning unknown environments in phases, and the \approximate BFS constraint"
to model exploring an unknown graph in order to �nd a treasure.

2.1 Piecemeal Learning

The robot's goal in piecemeal learning is to explore its entire (unknown) environment, while
satisfying the piecemeal constraint that it must return every so often to its starting point. To
assure that the learner can reach any vertex in the graph, do some exploration, and then get
back to the start vertex, we assume the robot may traverse (2+�)R edges in one exploration
phase, where � > 0 is some constant and R is the radius of the graph (the maximum of all
shortest path distances between s and any vertex in G).

We say an exploration e�ciently interruptible if the robot always knows a path of explored
edges of length at most R back to s.

Theorem 1 An e�ciently interruptible algorithm for exploring an unknown graph G =
(V;E) with n vertices and m edges that takes time T (n;m) can be transformed into a piece-
meal learning algorithm that takes time O(T (n;m)).

The proof of this theorem is similar to one shown by Betke, Rivest, and Singh in a
previous paper [8].

All the algorithms we present in this paper are e�ciently interruptible, and thus give
e�cient piecemeal learning algorithms for undirected graphs. Our main theorem is:

Theorem 2 Piecemeal learning of a general undirected graph G = (V;E) can be done in
time O(E + V 1+o(1)).

Proof sketch: In the Recursive Strip-Algorithm, given in Section 5, the robot always
knows a path from its current location back to the source vertex of length at most the radius
of the graph. We discuss the running time of this algorithm in Section 5. The bound is

O(E + V 2O(
p

logV log logV )). By Theorem 1, this algorithm can be interrupted e�ciently to
give a piecemeal learning algorithm. 2
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2.2 Treasure Hunting

If the robot's goal is to explore an unknown environment in order to �nd a treasure that is
believed to be the near s, then the robot should explore in a breadth-�rst manner.

In traditional BFS, the robot may not move further away from the source than the
unvisited vertex nearest to the source. At any given time in the algorithm, let � denote
the (shortest-path) distance from s to the vertex the robot is visiting, and let � denote the
(shortest-path) distance from s to the vertex nearest to s that is as yet unvisited. With
traditional breadth-�rst search we have � � � (actually � = �) at all times. With teleport-
free exploration, it is generally impossible to maintain � � � without a great loss of e�ciency:

Lemma 1 A robot which maintains � � � (such as a traditional BFS) may traverse 
(E2)
edges.

Proof: Consider a graph with vertices f�n;�n+1; : : : ;�1; 0; 1; 2; : : : ; n�1; ng, where s = 0
and edges connect consecutive integers. To achieve � � �, a teleport-free BFS algorithm
would run in quadratic time, traveling back and forth from 1 to �1 to �2 to 2 to 3 : : : . 2

Given this lower bound, we solve the treasure hunting problem e�ciently while maintain-
ing the \approximate BFS constraint." Our initial algorithms Strip-Explore, Iterative-
Strip, andRecursive-Strip, described in Sections 3, 4, and 5, maintain � � 2�: the robot
is never more than twice as far from s as is the nearest unvisited vertex. Our �nal algo-
rithm Treasure-Search, given in Section 6, satis�es the stronger condition � = �+ o(�).
Note that this algorithm is also e�ciently interruptible and thus can also be used to solve
the piecemeal learning problem; however, it is more complicated. Our main theorem about
treasure hunting is:

Theorem 3 Given an unknown graph with a treasure at distance �T from s, a robot can
�nd the treasure while getting at most distance � = �T + o(�T ) away from the source vertex,
with an algorithm of running time O(E + V 1+o(1)), where E and V are the total number of
distinct edges and vertices within radius � from the source.

Proof sketch: The algorithm Treasure-Search given in Section 6 satis�es the theorem.
We discuss the properties of this algorithm in Section 6. 2

3 An exploration algorithm: Strip-Explore

This section describes an e�ciently interruptible algorithm for undirected graphs with run-
ning time O(E + V 1:5). It is based on breadth-�rst search.

A layer in a BFS tree consists of vertices that have the same shortest path distance to
the start vertex. A frontier vertex is a vertex that is incident to unexplored edges. A frontier
vertex is expanded when the robot has traversed all the unexplored edges incident to it.
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The traditional BFS algorithm expands frontier vertices layer by layer. In the teleport-
free model, this algorithm runs in time O(E + rV ), since expanding all the vertices takes
time O(E), and visiting all the frontier vertices on layer i can be performed with a depth-
�rst search of layers 1 : : : i in time O(V ), and there are at most r layers. The procedure
Local-BFS describes a version of the traditional BFS procedure that has been modi�ed for
our teleport-free BFS model in two respects. First, the robot does not relocate to frontier
vertices that have no unexplored edges. Second, it only explores vertices within a given
distance-bound L of the given source vertex s. (The �rst modi�cation, while seemingly
straightforward, is essential for our analysis of our more complex algorithms that use Local-
BFS as a subroutine at various source vertices). A procedure call of the form Local-

BFS(s; r), where s is the source vertex of the graph and r is its radius, would cause the
robot to explore the entire graph.

Awerbuch and Gallager [1, 2] give a distributed BFS algorithm which partitions the
network in strips, where each strip is a group of L consecutive layers. (Here L is a parameter
to be chosen.) All vertices in strip i � 1 are expanded before any vertices in strip i are
expanded. Their algorithms use as a subroutine breadth-�rst type searches with distance L.

Local-BFS(s; L)
1 for i = 0 to L� 1 do
2 let current-verts = all vertices at distance i from s
3 for each u 2 current-verts do
4 if u has any incident unexplored edges
5 then

6 Relocate to u

7 Traverse each unexplored edge incident to u
8 relocate to s

Our algorithm, Strip-Explore, uses the idea of search in strips in a new way. See
Figure 1. The robot explores the graph in strips of width L. First the robot does Local-
BFS(s; L) to explore the �rst strip. It then explores the second strip as follows. Suppose
there are k frontier vertices v1; v2; : : : ; vk in layer L; each such vertex is a source vertex for
exploring the second strip. A naive way for exploring the second strip is for the robot for
each i, to relocate to vi, and then �nd all vertices that are within distance L of vi by doing a
BFS of distance-bound L from vi within the second strip. The robot thus traverses a forest
of k BFS trees of depth L, completely exploring the second strip. The robot then has a map
of the BFS tree of depth L for the �rst strip and a map of the BFS forest for the second strip,
enabling it to create a BFS tree of depth 2L for the �rst two strips. The robot continues,
strip by strip, until the entire graph is explored.

The naive algorithm described above is ine�cient, due to the to overlap between the trees
in the forest at a given level, causing portions of each strip to be repeatedly re-explored.

The Strip-Explore presented below solves this problem by using the Local-BFS
procedure as the basic subroutine, instead of using a naive BFS. (See Figure 2.) Using this
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algorithm, the explorer searches in a breadth-�rst manner, but ignores previously explored
territory. The only time the robot traverses edges which have been previously explored is
when moving to a frontier vertex it is about to expand. This results in retraversal of some
edges in previously explored territory, but not as many as in the naive algorithm.

Strip-Explore(s; L; r)
1 numstrips = dr=Le
2 sources = fsg
3 for i = 1 to numstrips do
4 for each u 2 sources do
5 Relocate to u

6 Local-BFS(u; L)
7 sources = all frontier vertices

global BFS treeS

source
vertices

strip of depth L

forest of
BFS trees

frontier 
vertices

depth r

Figure 1: The Strip-Explore. In the naive algorithm, the shaded areas are retraversed com-

pletely. In the strip algorithm, the shaded areas are passed through more than once only if necessary

to get to frontier vertices.

a

b

c

d
e

2
s

s1

f
g

Figure 2. Contrasting BFS and Local-BFS: Consider doing a BFS of depth

5 from s1, followed by a BFS of depth 5 from s2. (The depth of the strip is

L = 5.) The BFS from s2 revisits vertices a; b; c; d; e. On the other hand, if

the BFS from s1 is followed by a Local-BFS from s2, then it only revisits

d; c; e. After collision edge (f; d) is found, vertex e is a frontier vertex that

needs to be expanded.

Theorem 4 Strip-Explore runs in time O(E + V 1:5).

Proof: First we count edge traversals for relocating between source vertices for a given strip.
For these relocations, the robot can mentally construct a tree in the known graph connecting
these vertices, and then move between source vertices by doing a depth-�rst traversal of this
tree. Thus the number of edge traversals due to relocations between source vertices for this
strip is at most 2V . Since there are dr=Le strips, the total number of edge traversals due to
relocations between source vertices is at most 2rV=L + 2r.

Now we count edge traversals for repeatedly executing the Local-BFS algorithm. First
for the robot to expand all vertices and explore all edges it traverses 2E edges. Next, each
time line 8 of procedure Local-BFS is called, at most L edges are traversed. To account for
relocations in line 6 of procedure Local-BFS, we use the following scheme for \charging"
edge traversals. Say the robot is within a call of the Local-BFS algorithm. It has just
expanded a vertex u and will now relocate to a vertex v to expand it. Vertex v is charged
for the edges traversed to relocate from u to v. (We are only considering relocations within
the same call of the Local-BFS algorithm; relocations between calls of the Local-BFS
algorithm were considered above.) Source vertices are not charged anything. Moreover, the
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robot can always relocate from u to v by going from u to the source vertex of the current local
BFS, and then to v, traversing at most 2L edges. Thus, each vertex is charged at most 2L
when it is expanded. Local-BFS never relocates to a vertex v unless it can expand vertex
v (i.e., unless v is adjacent to unexplored edges). Thus, all relocations are charged to the
expansion of some vertex, and the total number of edge traversals due to relocation is at
most 2LV .

Thus the total number of edge traversals is at most 2rV=L + 2r + 3LV + 2E, which is
O(rV=L + r + LV ). When L is chosen to be

p
r, this gives O(E + V 1:5) edge traversals. 2

It is easy to show for Strip-Explore, and the generalizations of it given in later sections,
that � � 2� at all times; the worst case is when the treasure is at the beginning of the second
strip.

4 Iterative strip algorithm

In this section, we describe Iterative-Strip, an algorithm similar to the Strip-BFS

algorithm. It is an e�ciently interruptible algorithm for undirected graphs inspired by
Awerbuch and Gallager's [1] distributed iterative BFS algorithm. Although its running time
of O((V 1:5 + E) log V ) is worse than the running time of Strip-BFS, its recursive version
(described in the next section) is more e�cient than Strip-BFS. (It is not clear how to
recursively implement Strip-BFS as e�ciently, because the search trees in a strip are not
disjoint.)

Following the Iterative-Strip, the robot grows a global BFS tree with root s strip by
strip, similar to Strip-BFS. Unlike Strip-BFS, each strip is processed several times before
it has correctly deepened the BFS tree by

p
r. We next explain the algorithm's behavior

on a typical strip by describing how a strip is processed for the �rst time, and then for the
remaining iterations.

global BFS treeS

s

c

active
frontier 
verticess

s 1

2

3

s 4

depth D

c1

2

e
1

e2

current strip

Figure 3: The iterative strip algorithm after the �rst iteration on the fourth strip. Two connected

components c1; c2 have been explored. The collision edges e1 and e2 connect the �rst three ap-

proximate BFS trees. The dashed line shows how source vertices s1; s2; s3 connect within the strip.

There are three active frontier vertices with depth less than D +
p
r.

7



In the �rst iteration, a strip is explored much as in the Strip-BFS. The robot explores
a tree of depth

p
r from each source vertex, by exploring in breadth-�rst manner from each

source vertex, without re-exploring previous trees. Whenever the robot �nds a collision edge
connecting the current tree to another tree in the same strip, it does not penetrate into the
other tree. Unlike Strip-BFS, the robot does not traverse explored edges to get to the active
frontier vertices on other trees. Therefore, after the �rst iteration, the trees explored are
approximate BFS trees, which may have frontier vertices with depth less than

p
r from some

source vertex. These vertices become active frontier vertices for the next iteration. Thus,
the current strip may not yet extend the global BFS tree by depth

p
r, so more iterations

are needed until all frontier vertices are inactive and the global BFS tree is extended by
depth

p
r (see Figure 3).

In the second iteration (see Figure 4), the robot uses the property that two trees connected
by a collision edge form a connected component within the strip. (The graph to be explored is
connected, and thus forms one connected component; but we refer to connected components
of the explored portion of the graph contained within the strip.) The robot does not have
to traverse any edges outside of the current strip to relocate between these active frontier
vertices in the same connected component. In the second and later iterations, the robot
works on one connected component at a time.

global BFS treeS

s

s

s 1

2

3

s 4

depth D

e
1

e2

depth D + r

finished strip

new
strip

Figure 4: The iterative strip algorithm after the second iteration. Now the circled vertices which

were active frontier vertices at the beginning of the iteration are expanded. One of the expansions

resulted in a collision edge. Now the strip consists of only one connected component (shaded area).

There are six frontier vertices which become source vertices of the next strip. All frontier vertices

have depth D +
p
r.

The robot explores active frontier vertices in one connected component as follows. He
computes (mentally) a spanning tree of the vertices in the current strip. This spanning tree
lies within the strip. Let d be the least depth of any active frontier vertex in the component
from a source vertex. He visits the vertices in the strip in an order determined by a DFS of
the spanning tree. As it visits active frontier vertices of depth d, it expands them. He then
recomputes the spanning tree (since the component may now have new vertices) and again
traverses the tree, expanding vertices of the appropriate next depth d0. Traversing a collision
edge does not add the new vertex to the tree, since this vertex has been explored before.
This process continues (at most

p
r times) until no active frontier vertex in the connected
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Iterative-Strip(s,r)
1 for i = 1 to

p
r do

2 for each source vertex u in strip i do

3 Relocate to u
4 BFS from u to depth

p
r, but do not enter previously explored territory

5 while there are any active connected components iterate
6 for each active connected component c do
7 repeat

8 let v1; v2; v3; : : : be active frontier vertices exclusively in c
with smallest depth among active frontier vertices in c

9 relocate to each of v1; v2; v3; : : :, and expand
10 until no more active frontier vertices exclusively in c

11 determine new and active connected components

component has distance less than
p
r from some source vertex in the component.

The robot processes each connected component in turn, as described above. Then the
next iteration starts in which it combines the components now connected by new collision
edges and explores the new active frontier vertices in those components. Lemma 2 states
that at most log V iterations cause all frontier vertices to not be active any more; then the
only active frontier vertices are the new sources of the next strip.

Lemma 2 At most log V iterations per strip are needed to explore a strip and extend the
global BFS tree by depth

p
r.

Theorem 5 Iterative-Strip runs in time O((E + V 1:5) log V ).

Proof sketches are included in the Appendix. 2

5 The recursive strip algorithm

In this section, we give an e�ciently interruptible algorithm Recursive-Strip, which gives
a piecemeal learning algorithm which traverses at most O(E + V 1+o(1)) edges. Recursive-
Strip is the recursive version of Iterative-Strip; it provides a recursive structure which
coordinates the exploration of strips, of approximate BFS trees, and of connected components
in a di�erent manner. The robot still, however, builds a (global) BFS tree from start vertex
s strip by strip. The robot expands vertices at the bottom level of recursion.

In this algorithm, the depth of each strip depends on the level of recursion (see Figure 5).
If there are k levels of recursion, then the algorithm starts at the top level by splitting the
search of G into V=dk�1 strips of depth dk�1. Each of these is split into dk�1=dk�2 searches
of strips of depth dk�2, etc. We have V = dk > dk�1 > : : : > d1 > d0 = 1.
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Recursive-Strip(sources, depth,T)
1 if depth = 1
2 then let v1; v2; : : : ; vk be the depth-�rst ordering of sources in spanning tree of sources
3 for i = 1 to k do

4 relocate to vi
5 if vi has adjacent unexplored edges then traverse vi's incident edges
6 T = T [ fnewly discovered verticesg
7 return

8 else determine next depth
9 number-of-strips  depth/next-depth
10 for i = 1 to number-of-strips do
11 determine set of source vertices
12 for j = 1 to number-of-iterations do
13 partition vertices in T into maximal sets T1; T2; : : : ; Tk such that

vertices in each Tc are known to be connected within strip i

14 for each Tc in suitable order do
15 let Sc be the source vertices in Tc

16 Relocate to some source s 2 Sc

17 Recursive-Strip(Sc, next-depth, Tc)
18 T = T [ Tc

19 Relocate to some s 2 sources
20 return

global BFS treeS

strip of depth L

depth r

s1

s2

s3

depth L’

unexplored
territory

Figure 5: The recursive strip algorithm processing an approximate BFS tree from source vertex s2
to depth dk�1 = L. Recursive calls within the tree are of depth dk�2 = L0.
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Each recursive call of the algorithm is passed a set of source vertices sources, the depth
to which it must search, and a set T of all vertices in the strip already known to be less
than distance depth from one of the sources. The algorithm traverses all edges and visits
all vertices within distance depth of the sources that have not yet been processed by other
recursive calls at this level. Recursive-Strip(fsg; r; fsg) is called to explore the entire
graph.

At recursion level i, the algorithm divides the search into strips and processes each strip in
turn, as follows. Suppose the strip has l source vertices v1; : : : ; vl. The strip is processed in at
most log l = O(log V ) iterations. In each iteration, the algorithm partitions T into maximal
sets T1; T2; : : : ; Tk such that each set known to be connected within the strip. Let Sc denote
the source vertices in Tc. A DFS of the spanning tree of the vertices T gives an order for the
source vertices in S1; S2; : : : ; Sk; this spanning tree is used for e�cient relocations between
these source vertices. Note that all source vertices are known to be connected through the
spanning tree of the vertices in T , but they might not be connected within the substrips.
Since relocations between the vertices in Sc in the next level of recursion use a spanning tree
of Tc, for e�ciency the vertices of Tc must be connected within the strip. After partitioning
the vertices into connected components within the strip, for each connected component Tc,
the algorithm relocates (along a spanning tree) to some arbitrary source vertex in Sc. It then
calls the algorithm recursively with Sc, the depth of the strip, and the vertices Tc which are
connected to the sources Sc within the strip.

The remaining iterations in the strip combine the connected components until the strip
is �nished. Then the algorithm continues with the next strip in the same level of recursion,
or, if it �nished the last strip, it relocates to its starting position and returns to the next
higher level of recursion.

Theorem 6 Recursive-Strip runs in time O(E + V 1+o(1)).

A proof sketch included in the Appendix. 2

6 Searching a graph for a treasure

We now consider the problem of searching for a treasure in a potentially in�nite graph
G = (V;E). We give the procedure Treasure-Search, which uses the Recursive-Strip
algorithm as a subroutine. If the treasure is at a location which is distance �T away from
the source vertex, this algorithm maintains the condition that the robot is never further
from the source than �, where � � �T + o(�T ). Procedure Treasure-Search traverses
O(E + V 1+o(1)) edges, where E and V are the total number of distinct edges and vertices
within radius � from the source.

The robot searches the graph for the treasure in phases. In each phase i, the robot calls
Recursive-Strip to search a strip in the graph. The size of the strips changes over time.
The change depends on �1; �2; �3; : : :, where �i = 1=

p
i. Initially, the robot explores the graph

out to distance r1 = 1+ �1. Next, the robot extends his search by a factor of 1+ �2. That is,
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the size of the next strip is (1 + �1)(1 + �2)� (1 + �1), and the robot now knows the graph
out to distance r2 = (1 + �1)(1 + �2). After extending the next strip, the robot knows the
graph out to distance r3 = (1 + �1)(1 + �2)(1 + �3), and so on.

Treasure-Search(s)
1 i = 0
2 r0 = 1
3 Do until treasure is found:
4 i = i+ 1

5 �i = 1=
p
i

6 ri = ri�1 � (1 + �i)
7 let S be set of source vertices distance ri�1 away from s

8 Recursive-Strip(S; ri � ri�1; S)

The correctness of this procedure can be shown by the following lemmas, which can be
used to prove Theorem 3.

Lemma 3 The number of phases of procedure Treasure-Search is at least log �T and at
most ln2 �T .

Proof sketch: The number of phases is at least j where (1 + �1)j � �T . The number of
phases is at most m where (1+ �m)m � �T . We can show the lemma using these inequalities.

Lemma 4 The robot is never further than �T + �T=
p
log �T away from the source.

Proof sketch: Let � be the furthest distance the robot gets from the source vertex. In
the Treasure-Search algorithm, the most that � and �T di�er is �T�max, where max is
the number of phases that need to be explored to get out to depth �T . Lemma 3 shows that
the total number of strips explored is at least log �T . Thus, �max is at most 1=

p
log �T , and

� � �T + �T=
p
log �T = �T + o(�T ): 2

7 Open problems

We have presented an e�cient O(E + V 1+o(1)) algorithm for piecemeal learning of arbitrary,
undirected graphs. The only lower bound known for this problem is the trivial linear bound

(E + V ). It is open whether there is a linear-time algorithm for piecemeal learning of
general graphs.

We have also given an algorithm for the application of treasure hunting on potentially
in�nite graphs that runs in time nearly linear in E and V , where E and V are the number of
distinct edges and vertices within radius � from the start vertex. Is it possible (we conjecture
not) to �nd a treasure in time nearly linear in the number of those vertices and edges whose
distance to the source is less than or equal to that of the treasure?

12



Appendix

We include in this Appendix some proof sketches of the theorems in the paper.

Lemma 2 At most log V iterations per strip are needed to explore a strip and extend the
global BFS tree by depth

p
r.

Proof sketch: If there are initially l source vertices, then after the �rst iteration there
are at most l connected components. If a component does not collide with another active
component, then it will have no active frontier vertices for the next iteration. Thus, each
iteration halves the number of components with active frontier vertices. After at most log V
iterations there is no connected component with active frontier vertices left. The robot then
has a complete map of the current strip and of the global BFS tree built in previous strips,
so he can combine this information and extend the global BFS tree by depth

p
r. 2

Theorem 5 Iterative-Strip-BFS runs in time O((E + V 1:5) log V ).

Proof sketch: We �rst count the number of edge traversals per strip. Let Vi and Ei be the
number of vertices and edges explored in strip i. For each component, vertices of distance t
from some source vertex are expanded by computing a spanning tree of the component,
doing a DFS of the spanning tree, and expanding all vertices of distance t from some source
vertex (lines 8; 9). At each iteration (line 6), components are disjoint, so relocating to all
vertices in the strip of distance exactly t takes at most O(Vi) edge traversals. Thus, in one
iteration, relocating to all vertices in the strip within distance

p
r takes at mostO(

p
rVi) edge

traversals. Moreover, note that in order for the robot to expand each vertex, he traverses
at most O(Ei) edges. Thus, the total number of edge traversals for strip i is O(Ei +

p
rVi).

Combining this with Lemma 2, and noting that r � V , proves the lemma. 2

Theorem 6 Recursive-Strip-BFS runs in time O(E + V 1+o(1)).

Proof sketch: First we observe that each vertex is expanded at most once, so there are at
most O(E + V ) edge traversals due to exploration at line 5 in the bottom level of recursion.

We now count the edge traversals for relocations. For a particular level-i call ofRecursive-
Strip-BFS, let Ci denote the number of edge traversals due to relocations, and let Ei denote
the number of distinct edges that are traversed due to relocation. Let Vi denote the number
of vertices incident to these edges and whose incident edges are all known at the end of this
call. Let �i be a uniform upper bound on Ci=Vi. Thus, if the depth of recursion is k then
the total number of edge traversals is bounded by O(V �k).

Consider a level-i call. First we count the number of edge traversals for relocation between
source vertices. Since all the source vertices in the call are connected by a tree of size
O(Vi), relocating to all source vertices at the start of one strip takes O(Vi) edge traversals.
With di=di�1 strips and log V iterations per strip, there are Vi log V

di
di�1

edge traversals for

relocations between source vertices.

We now count traversals for recursive calls within the call. Note that our algorithm avoids
re-exploring previously explored edges. Thus, for a level-i call, when working on a particular
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strip l, for each iteration within this strip, the sets of vertices whose edges are explored in
each recursive call are disjoint. Suppose that, in this strip, in one iteration the procedure
makes k recursive calls, each at level i� 1. Then let C(j)

i�1, 1 � j � k, denote the number of

edge traversals due to relocations resulting from the j-th recursive call, and let V
(j)
i�1 denote

the number of vertices adjacent to these edges. Furthermore, let Vl;i denote the number of
vertices which are in strip l of this procedure call at recursion level i. Then we would like �rst
to calculate

Pk
j=1 C

(j)
i�1, which is the number of edge traversals due to relocation in recursive

calls in one iteration within this strip. This is at most
Pk

j=1 �i�1V
(j)
i�1 = �i�1

Pk
j=1 V

(j)
i�1. Since

the recursive calls are disjoint,
Pk

j=1 V
(j)
i�1 = Vl;i, and thus the number of edge traversals due

to relocations in recursive calls in one iteration within this strip is at most �i�1Vl;i. Finally,
since there are log V iterations in each strip, and all strips are disjoint from each other, the
number of edge traversals due to recursive calls is at most �i�1Vi log V .

Finally, note that we relocate once at the end of each procedure call of Recursive-
Strip-BFS (see line 19). This results in at most Vi edge traversals.

Thus, the number of edge traversals due to relocation is described by the recurrence
Ci � Vi log V

di
di�1

+ �i�1Vi log V + Vi. Normalizing, we get the following recurrence:

�i =

 
di
di�1

+ �i�1

!
log V +O(1)

Solving the recurrence for �k gives:

�k � log V

 
dk
dk�1

!
+ log2 V

 
dk�1
dk�2

!
+ : : :+ logk V

 
d1
d0

!
+ logk V c0 +

k�1X
i=0

logi V

� log V

 
dk
dk�1

!
+ log2 V

 
dk�1
dk�2

!
+ : : :+ logk V

 
d1
d0

!
+O(logk V )

We note that �0 = O(1), since at the bottom level, if there are V 0 vertices expanded, then the
number of edge traversals due to relocation is O(V 0). Furthermore, notice that the product
of the k terms in the recurrence is dk(log V )(k+1)k=2 = V (log V )(k+1)k=2 (in the worst case),
and that the sum of these terms is minimized by setting each of theses terms to the k-th root
of the product. (Note that this also speci�es how to calculate depth di�1 from depth di.)

Minimizing, we get: �k � kr1=k(log V )(k+1)=2+O(logk V ). Choosing k =
�

2 logV
log logV

�1=2
gives us

�k = 2O(
p

logV log logV ), and thus Ck is at most V 2O(
p

logV log logV ), which is V 1+o(1). Adding
the edge traversals for relocation to the edge traversals for exploration gives us O(E+V 1+o(1))
edge traversals total. 2
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