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ABSTRACT

The technical developments in computer networks in recent years have spawned
the possibility of merging di�erent services into a single Integrated Service Packet
Network (ISPN). The types of service quality required by each of the individual
services in an ISPN often di�er greatly. Thus, the packet scheduling algorithms used
in such networks must be 
exible enough to allocate the available link shares according
to the service quality requirements of the di�erent services.

In this thesis we propose an e�cient implementation of a link sharing algorithm
for an Integrated Services Packet Switch (ISPS). The sharing algorithm guarantees to
each customer a percentage of the link share no less than the portion of the bandwidth
he owns. A customer can split its link share among di�erent services whose link shares
may in turn be split among child-services. The link sharing is hierarchical; each service
gets its link share from that of its parent service.

Because of the complex nature of the link sharing the algorithm provides, the run
time of its implementation can be large. However, in order to bene�t from the fast
links of networks like ATM, it is desirable to have reasonably short packet processing
delays. The implementation presented here maps the hierarchical sharing into an
equivalent single level sharing which resulted in a speed up of the packet processing
executor by a factor of 10.

Thesis Supervisor: Dr. David D. Clark
Title: Senior Research Scientist, MIT
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Chapter 1

Introduction

The objective of this thesis is the optimization of an implementation of a packet

scheduling algorithm for shared services in an Integrated Service Packet Switch (ISPS).

The algorithm is based on an paper by D. Clark, S. Shenker, L. Zhang ([1]). The

integrated service packet switch algorithm was originally implemented by D.D. Clark.

Unfortunately there was a problem in the original implementation. It implemented

the algorithm correctly, but it turns out that its running time was undesirably large.

Thus, the goal of this work is to modify the implementation of the algorithm so as to

bring its time complexity as low as possible.

1.1 Background

The algorithm accepts service requests according to the present load of the network

and the service requirements it has promised to the already accepted services. See

reference [2] for more details on the admission control algorithm. The nature of the

promise made to a service depends on the type of the service. There are three type of

services: Guaranteed, Predicted and Shared. In this paper we will focus our attention

on the shared services.

As the name suggests, the shared services share the link bandwidth according
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to the arbitrary portion of the bandwidth that each one owns. As in every sharing

environment, fairness needs to be addressed here. The sharing is considered fair if

the amount of bandwidth owned by any service is available to it regardless of the

behavior of other services in the network. To insure fairness, packets are scheduled

using a Weighted Fair Queuing (WFQ) scheme, where the weights are the link shares.

In the next paragraphs we will justify the choice of WFQ for the queueing discipline

and then present its basic mechanism.

Queueing algorithms can be thought of as mechanisms that allocate three quanti-

ties: bandwidth (which packets get transmitted), promptness (when will these packets

leave) and bu�er space (which packets get dropped) ([5]). The most currently used

queueing discipline is �rst-in-�rst-out (FIFO). In FIFO queueing, the rate at which

a source sends packets relative to the other sources in the network essentially deter-

mines the amounts of the three quantities allocated to it. Since packets are being

serviced in their order of arrival, the faster a source generate packets the more likely

its packets will arrive �rst at a gateway, thus its packets will be serviced more often.

This implies that the service quality that a session gets from the network is partly

dictated by the behavior of its source. Thus, FIFO is not adequate for fairness in

the sense that it does not guarantee service quality to a particular service; a more

e�ective queueing mechanism is needed.

Following a similar line of reasoning, Nagle [10,11] proposed a fair queueing (FQ)

algorithm in which separate queues were maintained for packets from each source. The

queues are serviced in round-robin manner. His algorithm was e�ective in providing

fairness in terms of the number of packets serviced for each session. If a source

attempts to get over by sending packets at a faster rate, it will simply over
ow its

queue and hence su�er packet drop but won't get more packets sent than other sources

in the network. However, because packets can be of varying length, round-robin does

not guarantee fair share of the bandwidth. In FQ, sessions with long packets will be

allocated a greater portion of the bandwidth. Furthermore, even with �xed packet
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length, round-robin is not 
exible since it attempts to treat each session or packet

equally. In integrated services networks, since the di�erent services have di�erent

requirements, one needs a mechanism that can treat the di�erent services in di�erent

ways. Thus, in integrated networks a more attractive queueing discipline is needed.

Weighted Fair Queue (WFQ), presented by Parekh and Gallager in [8], which also

works for non uniformly weighted shares, provides fairness in the allocation of the

bandwidth. Here a weight can be thought as the percentage of a link bandwidth

allocated to a given service.

We now present the mechanism of WFQ. Assume, for simplicity, that there are

two sessions S1 and S2 and we want to allocate 3
4
of the link bandwidth to S1 and

the remaining 1
4
to S2. Furthermore, each session has a packet to send whenever it is

time to send one. A simple way of implementing the sharing is to �ll each frame with

the following sequence of bits below (sim is the mth bit of session i). Here a frame is

de�ned as a string of bits composed of control bits (header) and data bits obtained

from the packets. In other words a frame is just a packet formed of bits from the

di�erent packets to service.

frame0z }| {
Hs

1
1s

1
2s

1
3s

2
1 � � � s

1
3n�2s

1
3n�1s

1
3ns

2
n

frame1z }| {
Hs

1
3n+1s

1
3n+2s

1
3n+3s

2
n+1 � � � s

1
6n�2s

1
6n�1s

1
6ns

2
2n � � �

frameiz }| {
Hs

1
i3n+1s

1
i3n+2s

1
i3n+3s

2
in+1 � � �| {z }

seq�of�bits�sent

where H is the header of the frame, and 4n is the length of every frame.

Once the right length of the frame is chosen, the implementation is fairly straight

forward. However, this model is not very realistic. The processing overheads resulting

from the �lling of the di�erent frames is too large. For example, the CRC of the new

frames will need to be computed. An alternative approach is to attain the same

goals without the processing overhead mentioned above. This can be accomplished

by keeping weighted counters (C1(t) and C2(t) respectively for S1 and S2 at time t)

of the number of bits serviced for each of the sessions. The counters are initially zero.

Every time that a packet is serviced the di�erent counters are updated as follow:
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C1(t(1;n)) = C1(t(1;(n�1))) +
4

3
L(1;n)

where L(1;n) is the length of the nth packet of session 1 to be serviced and C1(t(1;n)) is the

value of the counter at time t(1;n); when the nth packet of session 1 �nished service.

C2(t(2;n)) = C2(t(2;(n�1))) + 4L(2;n)

where L(2;n) is the length of the nth packet of session 2 to be serviced and C2(t(2;n)) is the

value of the counter at time t(2;n); when the nth packet of session 2 �nished service.

Whenever it is time to service a packet, the �rst packet of the session with the

smallest counter is chosen and then its counter is updated as described above. One

draw back with this approach is that it does not cope with the situation where a

session may remain inactive1 for some period of time in which case its counter will

lag way begin the counter of the other session. Thus, the inactive session will be

credited for the time it was inactive, we don't want that. We resolve this problem by

replacing the weighted counter with a new parameters Fix, for each sessions x. Now

we de�ne Fi which is slightly di�erent from the weighted counter. When updating

Fi, if it is smaller than the real time (now), it is �rst set to now before it gets

incremented. Thus, if Fi lags behind because the session remained inactive for some

time, the session won't be credited for the inactive period. We update Fi as follows:

Fix(t(x;n)) = max(Fix(t((x;n�1))); now) +
L(x;n)

(rx)v

where Fix(t(x;n)) is the value of the Fix at time t(x;n); when the nth packet of session x �nished

service, L(x;n) is the length of the nth packet of session x to be serviced, rx is the percentage of the

total bandwidth allocated to session x and v is the link speed.

1an active (inactive) service is just one that does (not) have packets to send.
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WFQ algorithms have been studied in di�erent papers ([5],[8]). Parekh and Gallager

([8]) showed that WFQ is an e�cient way to guarantee service quality. More analytical

discussion on Weighted Fair Queue can be found in references [1] and [5]. Using

WFQ, a given customer that purchases r% of the link bandwidth can be guaranteed

an e�ective throughput rate no less than (rv)=(
P
ri) where v is the link speed and the

ri's are the percentages of the bandwidth allocated to the currently active services.

1.2 Organization of this thesis

In chapter 2 the properties of the sharing and how the original implementation, the

old scheme, achieved them are discussed. The reasons for the large processing delay

of the old scheme is also discussed in this chapter. We present the new scheme which

overcomes the large processing delay in chapter 3. We also examine in this chapter

the two di�erent methods used by the new scheme to distinguish between active and

inactive nodes. The �rst method is not very realistic, its merit of being presented in

this thesis is merely to give a better insight of the e�ectiveness of the second method.

A Series of simulations are conducted in chapter 4 to verify the e�ectiveness of the

second method. Chapter 5 concludes the thesis with a brief summary of the results

of this work, some implementation issues and future work points that could enhance

the new implementation in the presence of priority services.
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Chapter 2

The Problem

2.1 Sharing in ISPS

In the Integrated Service Packet Network architecture we allow a customer to divide

its service into several sub-services1. We de�ne a service class as a service that has

derivative services. In Figure 2.1.1, a service class is simply a non-leaf service node.

In �gure 2.1.1, every node other than nodes labeled svc7 through svc16 is a service

class. Thus, a customer can divide its share of the link according to the needs of its

sub-services; s1; s2; : : : ; sn and each of the si may be recursively split into lower level

sub-services, si1; si2; : : : ; sij, for some j.

1a sub-service is a service that derived from another service, in Fig 2.1.1, a sub-service is a

non-root node.
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Figure 2.1.1: Sharing in ISPS

For example, in �gure 2.1.1, service1 (svc1) distributed its link share (70%) to svc3

(49%) and svc4 (21%). Service 4 (svc4) in turn splits its share between svc9 (12.6%),

svc10 (6.3%) and svc11 (2.1%). Thus, the architecture provides to customers a mech-

anism to prioritize their di�erent services. For example, one may choose to allocate

80% of his link share to video services and just 20% to data services. Typically the

leaf node services in �gure 2.1.1 are the only real services(tra�c), the inner node ser-

vices (svc1, svc2,: : : ,svc6) are simply classes of services. For example svc3 is a service

class composed of svc7 and svc8, and svc1 is a service class composed of service class

svc3 and service class svc4.

Properties of the Sharing

Through the sharing in ISPS, we are trying to achieve two major goals. We consider

the sharing to be fair if the two major goals described below are met.

First, we want the sharing to be such that the link share allocated to any service

is available to it at all the time, hence available to all its sub-services. For example

in �gure 2.1.1, we want the 21% of the total bandwidth to be available to svc4 at all

time, hence available to svc9, svc10 and svc11.
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Second, we want the ratio between the bandwidth shares of any two sub-services

of the same parent service to be constant at all time. For example in �gure 2.1.1,

if every service other than svc10 has tra�c to send we want the bandwidth share of

svc10 shifted to svc9 and svc11. Further more the ratio between the new bandwidth

shares of svc9 and svc11 after the shift should be equal to the ratio of their original

shares (12:6
2:1
� 6). The way to accomplish that, in our example, is to shift 6

7
and 1

7
of

svc10's share respectively to svc9 and svc11. Thus, the new shares of svc9 and svc11

become respectively 18% (=12:6+ 6
7
6:3%) and 3% (=2:1+ 1

7
6:3%), and the new ratio

is still 6 (=18
3
). The motivation behind keeping the ratio constant is consistency. If

for example, a customer decides to split its bandwidth share into two services; A :

80% and B : 20%, then it is clear that the customer desires service A to be four times

better serviced than service B. Thus, when the same customer acquire x% extra of

the total bandwidth it must be the case that 4
5
x% should go to A and 1

5
x% to B.

We summarize the two fundamental goals of the sharing mentioned above as

follows.

� i) At any active period of the link (when there are packets to transmit), each

active customer is guaranteed a share of the link no less than the portion of the

link bandwidth it owns.

� ii) For any sub-service, the amount of link resource at its disposal that it is not

using is distributed to all its sibling sub-services that need more link usage than

the amount they are entitled to. This distribution is done proportionally to the

rates of the sub-services.

In other words when a service (node in �g 2.1.2) s of share x is not fully using its

share, then the unused portion of x is distributed to the other active services (nodes)

that have the same parent as s proportionally to their rates.

The WFQ packet scheduling mechanism presented in the previous chapter is too

simplistic to su�ce for the achievement of the two major goals of the sharing in

17



ISPS. Any algorithm that will accomplish these two goals will have to both deal with

the di�erent levels of the sharing hierarchy and the states (active or inactive) of the

di�erent services. This is because every time that a service becomes newly inactive or

active, the current link shares of all its siblings (of the same parent service) services

will have to be updated. We will present two di�erent schemes in the next section

and in section 3.2 that achieve the two criteria of the sharing.

Both schemes use a tree structure for the packet scheduling. The tree is an

abstraction of the service sharing. For example the tree in �gure 2.1.2 corresponds

to the sharing presented in �gure 2.1.1.

100%

70% 30%

70% 30% 80% 20%

70 30 60 30 10 60 30 10 80 20
34% 15% 13% 2.1% 14.4%6.3% 7.2% 2.4% 1.2%

%% %%%% %%%%

total bandwidth

1 2

3 4 5 6

7 8 9 10 11 12 14 15 1613

70% 30%

49% 21% 24% 6%

100%

4.8%

wfq wfq

wfqwfq wfqwfq

wfqwfq wfqwfq wfq wfq wfq wfqwfq wfq

pkt −>

Figure 2.1.2: Tree structure

Each service is associated with a node in the tree. The tree supports three types

of nodes: weighted fair queue(wfq), priority, and root. Priority nodes are presently

implemented, but for clarity we will ignore them as much as possible. The root node

has the full bandwidth of the link which is distributed among the remaining nodes.

Each node other than the root, gets its share of the bandwidth from that of its parent.

That is the total share of a tree node is equal to the sum of its children's. Root and

wfq nodes have child node type wfq (service) or pkt (packets). The leaf wfq nodes

are the only wfq nodes that can have a child type pkt. They also correspond to leaf
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nodes in the corresponding sharing tree. The tree nodes of child type wfq correspond

to service classes in the sharing hierarchy.

2.2 The Old Scheme

In the original version of the implementation, the varying link shares of the services

are captured by a Hierarchical Weighted Fair Queuing (HWFQ) mechanism which

consists of nested WFQ mechanisms at each level of the tree; a WFQ of WFQ's. In

this implementation every tree node of child type wfq had a child queue that linked

all its active child nodes. An inner node is active if at least one of its child node is

active, and inactive if all its child nodes are inactive. A leaf node is inactive (active)

if its packet queue is (not) empty. At each level of the tree, the wfq nodes of the same

parent are sorted in ascending order of their Fi's (�nish time). The �nish time (Fi)

of a node of child type pkt is the same as de�ned in the previous chapter:

Fix(t(x;n)) = max(Fix(t((x;n�1))); now) +
L(x;n)

(rx)v
(2:1)

It is the latest time the node's �rst packet must �nish service. And the Fi of each wfq

node of child type wfq (inner node) is computed using the length of the �rst packet of

the �rst leaf node below the inner node for L(x;n) in (2:1). The �rst leaf node below

an inner node is the leaf node reached by walking the tree up-down starting from

the inner node and moving recursively from a node to the node at the head of its

child queue until a leaf node is reached. Note that the wfq nodes are sorted into their

parent's child queue in ascending order of their Fi's. Hence, the Fi of the �rst on the

queue will be minimal, and the �rst leaf node below an inner node will be the leaf

node with the smallest Fi among the leaf nodes below the inner node.

When a switch receives a packet p from a service svc it appends the packet to the

associated node's packet queue. If the node's packet queue is empty, the node's Fi

is computed using the length of the packet in (2:1) and the node is sorted into its

parent's child queue. If after the sorting the node happens to be at the �rst position,
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its parent's Fi will be updated using the length of this new packet in (2:1). The

process is recursively carried over along the tree hierarchy as long as the node at the

head of the ancestor's child queue changes after the sorting.

Whenever the switch is ready to send a packet, it walks the tree top-down (from

root to leaf) choosing at each level the �rst node of the child queues. Each time that

a node is chosen, it is taken o� its parent's child queue. The walk continues until a

leaf node is reached, in which case the �rst packet of the leaf node is sent. In this

implementation it is always guaranteed that this leaf node will have a packet on its

queue. If the node still has packets, its Fi is computed with the length of its next

packet and the node is resorted into its parent's packet queue according to its newly

computed Fi. To conclude the sending, the switch walks the tree in reverse order

updating each ancestor's Fi with the length of the �rst packet of its �rst leaf node.

After each Fi update the corresponding ancestor is sorted into its parent's child

queue. Enqueuing a packet and dequeuing a packet are handled by two routines;

respectively Tree enq and Tree deq.

Even though this implementation guarantees fairness in the sense of the de�nition

given at the beginning of section 2.1.1, one disadvantage of this scheme is that the

di�erent child queues must be updated dynamically as their nodes transit from an

inactive state to an active one. Recall that the child queues only contain active nodes.

Another disadvantage with this scheme is that every time that a packet departs

from a node, the Tree deque routine has to make sure that all the ancestors are

resorted correctly into their parent's child queues. At each instance that a packet

departs from a node, the node needs to be taken o� its parent's child queue. If the

node still has packets, it needs to be sorted according to its new Fi into its parent's

child queue. The process has to be carried over as far as up to the root node.

Thus, if the tree is large, the switch will spend a relatively large amount of its

time updating the child queues of the di�erent nodes even though the link may be

ready to accept another packet. Hence, to take advantage of the link speed, the faster

20



the link is the less time the switch has to resort the child queues. For example, if

the link can transmit say 100 packets per second at maximum, then the switch only

needs to be fast enough to execute the necessary operations after a packet dequeue

within 10msec. However if the link can transmit say 10,000 per second, then the

switch must be fast enough to execute the necessary operations after packet dequeue

within 0:1msec. This may not be an issue in the case of a slow network. However, the

increasing widespread use of fast networks makes the need for optimization obvious.
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Chapter 3

The Solution

3.1 Some Observations

Before optimizing, one needs, a priori, to locate the routines in which the code per-

forms worst. This led us to an instruction count that helped pin point parts of the

code that one would like to see modi�ed so as to reduce the time complexity of the

software package. The result of the instructions count con�rmed that Tree enq and

Tree deq contributed most to the run time.

Hence, a �rst step toward solving the problem was to modify the routines that

manage the enqueue and dequeue of packets namely Tree enque and Tree deque. The

main problem with these routines is that they had to update the Fi's and the child

queues of the inner wfq nodes whenever the Fi of a leaf node changes. After several

modi�cations of the original implementation, we came to the conclusion that the

only way we can meet our optimization goal is to break the implementation into two

independent components using some heuristics.
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3.2 The New Scheme

One way to speed up the software is to avoid re-sorting the di�erent child queues every

time that a packet departs. That is the purpose of the new scheme. The new scheme

uses the same tree structure as the old scheme but uses it in a di�erent way. In this

scheme Tree enque and Tree deque won't have to sort beyond the �rst wfq node. This

is accomplished by mapping the hierarchical weighted fair queue mechanism (HWFQ)

into an equivalent 
at weighted fair queue mechanism in which the changing weights

are computed periodically. The tree is used just to update the rates.

� First we need to de�ne few new parameters.

Instead of associating a node with a rate that represent its percentage of its

parent node's share, we associate a node with two rates: rate and cur rate.

rate is the predetermined e�ective share of the total link bandwidth that is

allocated to a node, For example the e�ective rate of svc10 (in �gure 2.1.2) is

6.3% (= :70 � :30 � :30). cur rate is the current e�ective share of the total

bandwidth, it changes with time as some other services of the parent service

become newly inactive or active.

As in the old scheme, each leaf node keeps a Fi parameter which is computed

the same way as in the old scheme.

A sorted low level queue (llq), that links the active leaf level wfq nodes is main-

tained. The sorting of the llq queue will be performed by a special purpose

tra�c scheduler chip by J. Chao ([9]) which will operate in parallel.

3.2.1 Receiving a Packet

Whenever a packet arrives at a node, it is appended at the end of its packet queue. If

the packet queue was empty the Fi of the node is computed using the length of the

newly arrived packet, and the node is sorted into the low level queue, llq, according

to Fi.
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� Tree enq(pkt,node)

1. if NOT empty(node(PQ1)) then

(a) append pkt into node's packet queue.

2. else

(a) append pkt into node's packet queue.

(b) node!Fi= max(node! Fi; now) + pkt!len

(node!cur rate)�LINK SPEED

(c) pass(node) to the scheduler chip for sorting into llq according to Fi

3. return;

This code requires at most 55 instructions with priority nodes and 47 without priority

nodes independently of the size of the tree.

3.2.2 Sending a Packet

To send a packet, the node at the head of the (llq) queue, if not nil, is chosen. Once

the node is chosen, the packet at the head of its packets queue is sent. Once the

packet is sent the new Fi is computed using the length of the next packet to go and

the node resorted into the llq queue.

� Tree deq()

1. if not null(llq) then

(a) temp= llq.head;

(b) pkt to send= temp!�rst2;

(c) temp!�rst= pkt to send!next3;

1PQ is the packet queue of the node.

2�rst is the packet at the head of the node's packet queue.
3next is the next structure in the list. In a packet queue it's the next packet in the queue and

it's the next node in a queue of nodes.
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(d) send(pkt to send);

(e) llq.head= temp!next;

(f) if (temp!�rst) then

i. temp!Fi= temp!Fi+ temp!first!len

(temp!cur rate)�LINK SPEED

ii. pass(temp) to the scheduler chip for sorting into llq according to

Fi;

2. return;

The code above will execute at most 70 instructions with priority nodes and 31

without priority nodes independently of the size of the tree.

3.2.3 Updating the rates

Beside Tree enque and Tree deque, there is now a new routine, Update rate. Up-

date rate periodically updates the current shares (cur rate) of the active services by

allocating the current shares of the newly inactive services to their active siblings

proportionally to their rates. The Update rate routine achieves this by recomputing

the cur rates of the active nodes. It does so by going through the tree structure top

down and at each node p it assigns to each of its active children i, ricur ratepP
j2A(p)

rj
, where

A(p) is the set of the children of p that are active and ri is the e�ective rate of node i.

This implies the need to keeps track of who is active and who is not. In section 3.3.1

we will present a �rst method of detecting the state of a node. As we will see this

method has some fundamental limitations. In section 3.3.2 we will present a more

realistic method; the second method. The state changes of the nodes are captured in

Update rate by two routines; Mark active and Mark inactive, we present their pseudo

codes below. Mark active detects the low level wfq nodes that just change state and

mark them with their new state. It makes sure that all ancesters of a node that just

became active are marked active. Mark inactive makes sure that any node that has

all its child nodes inactive is marked inactive.

26



� Update rate(isps,tree)

1. If (tree=ROOT) then

(a) call Mark active nodes

(b) call Mark inactive nodes

(c) If (no new active and no new inactive) then

i. return;

2. for (every active child node n of tree) do

(a) i++

(b) ar[i]= n

(c) sum rate=+ n!rate

3. for (every active child n of tree) do

(a) n! cur rate = n!rate
sum rate

� tree! cur rate

4. If (tree is of child type WFQ) then

(a) for (every child child node of tree) do

i. Update rate(isps, child node)

5. return;

Notice that Update rate leaves the cur rate of the newly inactive nodes unchanged.

Thus, the next time that an inactive node will become active the value of its cur rate

from the last update period it was active will be used to compute its Fi.

� Mark active(isps)

1. for (every node, n, in potential state change q) /* potential state change q

is the queue of the nodes that may change state */

(a) If (n just became active) then

i. n! active = 1
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ii. If(NOT(n! counted in sum active)) then

A. n! parent! sum rate = +n! rate

B. n! counted in sum active = 1

iii. for(every inactive ancester, an, of n)

A. an! active = 1

B. If(NOT(an! counted in sum active)) then

C. an! parent! sum rate = +n! rate

D. an! counted in sum active = 1

iv. If (n's pkt queue NOT empty)

A. take n o� potential state change q

(b) else

(c) put n in ar; the array of newly inactive nodes

(d) n! active = 0

(e) If(n! counted in sum active) then

i. n! parent! sum rate = �n! rate

ii. n! counted in sum active = 0

(f) take n o� potential state change q

2. return

� Mark inactive(ar, ar len) /* ar is the arrray of newly inactive nodes */

1. if (empty(ar)) then

return

2. for every node, n, in ar

(a) If (all siblings of n are inactive n's parent active) then /* the test of

parent's activity is to avoid putting it twice in the next level ar */
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i. put n's parent in next level ar /* next level ar is ar for the next

level of the tree */

ii. n! parent! active = 0

iii. If(n! parent! counted in sum active) then

A. n! parent! parent! sum rate = �n! parent! rate

B. n! parent! counted in sum active = 0

3. If (NOT empty(next level ar))

(a) Mark insactive (next level ar, next level ar len)

4. return

Given a tree of n nodes with a total of p wfq leaf nodes, a an average number of

children per node and update interval T equal to u packet-times, Update rate will

execute 68n� 65p+11+ (11+18a+7loga(u))u+(5+37a)loga(
u
2
) instructions. This

includes an average of 6+11u+7uloga(u) instructions from Mark active and average

of 5 + 18ua + (5 + 37a)loga(
u
2
) instructions from Mark inactive. Mark active �nds

the nodes that just changed state in the queue of wfq nodes that may change state.

The nodes in this queue are those nodes that experienced a packet arrival following

an empty packet queue or whose packet queue became empty within the last update

interval. Because the maximum numbers of packet departures and arrivals within one

update interval are both u, this queue will be at most 2u nodes long. Given a full

5-nary tree of depth 5 and a 10 packet-times update interval, the code for Update rate

will execute 63; 543 instructions.

In the computation of these averages we used the average numbers of time the

di�erent blocks of code will be executed whenever it was possible to reasonably assess

these average numbers, otherwise the worst cases were used. Thus, one can expect

to get the average number of instructions executed in Mark active and Mark inactive

in real life to be better than the average instruction counts presented here.
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Even though Tree enque and Tree deque no longer have to sort the child queues,

they still have to sort a leaf nodes into the llq queue whenever their Fi's change.

However, because of the modularity of the new implementation, we are able to perform

the sorting into llq with the tra�c scheduler chip in parallel.

Thus, the time required to decide on the packet to send and the time required

to enqueue a packet are now signi�cantly reduced. The pseudo codes of Tree enque

and Tree deque sketched above are presently implemented in the C programming

language. Their assembler code listings resulted in a signi�cant reduction of the

number of instructions executed by each of the two routines. For a full 5-nary tree

con�guration the run time of Tree enque now requires the execution of at most 46

machine instructions (with priority nodes and 38 without) as opposed to 679 for the

same tree con�guration in the original implementation. For the same tree, Tree deque

requires at most 70 machine instructions (with priority and 31 without) compared to

875 in the original implementation. Hence, assuming a 1-Mips processor, not only that

the switch can decide on the next packet to send or perform the required operations

to enqueue a packet within 125 �sec, but it now can both send and enqueue a packet

within 125 �sec.

3.3 Validity of the solution for the continuous

case

The following tree con�guration (see �g 3.3.1) was simulated and the results in the

table (�g 3.3.2) were observed. In this simulation there were eleven services with

deterministic tra�c sources of packets generation rate � =.00052 packets=�sec. All

packets have 1600 bits length and the bottleneck link speed between the sources and

the ISPS component is 10; 000Kbits=sec. The out going bottleneck link from the ISPS

component is 300Kbits=sec. Notice that � (= 1600bits � :52K=sec = 8320Kbits=sec)
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is big enough that any service can saturate the link alone. All sources generate packets

continuously at the rate speci�ed above.

100%

70% 30%

70% 30% 80% 20%

70 30 60 30 10 60 30 10

70 30

80 20
34% 15% 13% 2.1% 14.4%6.3% 7.2% 2.4%

3.4% 1.4%

1.2%
%% %%%% %%%%

%%

total bandwidth

1 2

3 4 5 6

7 8 9 10 11 12 14 15 16
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13

70% 30%

49% 21% 24% 6%

100%

svc1 svc2 svc3 svc4 svc5 svc6 svc7 svc8

svc9 svc10

svc11

Figure 3.3.1: Con�guration of the simulation

The number inside every wfq node represents its bandwidth rate with respect to its

parent's. The numbers (in bold face) below the nodes represent their rates relative

to the total bandwidth (e�ective rate), they correspond to the promised rates in �g

3.3.2. Each service svci is associated with the i
th leaf node counting from left to right.

For example svc1 is associated with the node7 whose rate is 34%.

In this simulation below all eleven sources were continuously sending packets.

  Services

Promised
Rate

Observed
Rate

svc1 svc2 svc3 svc4 svc5 svc6 svc7 svc8 svc9 svc10 svc11

 

 

34% 15%  13% 6.3%  2.1%  14.4% 7.2% 2.4% 3.4%  1.4% 1.2%

34.01% 14.78% 6.3% 2.07% 14.17% 7.09% 2.36% 3.33%  1.42%  1.21%12.46%

Figure 3.3.2: Table of results for continuous sources
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The table shows that the promised rates (the rates that the nodes are entitled to)

are indeed the same as the the observed ones (the rates that the di�erent services

actually received). Even though the packet generation rates of the di�erent sources

is the same in this simulation, the table above would still be the same otherwise

as long as the packet generation rate of every source is large enough to use up the

link share its service. Using the same parameters, we obtained similar results for an

identical simulation with poisson sources. Every simulation we present in this thesis

is performed for both the cases where the sources are deterministic and poisson. For

the most part we will present one case as long as the results of the two cases are

similar.

The simulation results above con�rm the correctness of the new implementation in

the case where each service is continuously sending enough packets to use up its share

of the link. We will therefore focus the rest of the discussion of the validity of the new

scheme to the case where some services may not be generating enough packets to �ll

up their link shares. That is when some services may become alternatively active and

inactive over the course of time. In the next two sections we present the two di�erent

methods of determining the state (active or inactive) of a service.

3.3.1 The First Method

The initial implementation of the new scheme followed this method. It is very simple,

but has some problems as we will see. The �rst method distinguishes active and

inactive nodes as follow: At the end of each rate update all low level wfq nodes are

marked inactive, and within this time period every time that a given number np of

packets arrive at a node, the node is marked active. np is presently equal to one.

Thus, we need to add the code below at the top level of Tree enq. The code marks a

node active whenever it receives its �rst packet.

� if NOT(node!active) then
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1. num new active++; /* if the node just became active put it in */

2. array new active[num new active]= node; /* the array of newly */

3. node!active=1; /* active nodes. */

If the minimum number of packet arrivals, np, required within the interval time

T for a node to be active is not chosen properly, property (ii) of the algorithm may

not be preserved by the implementation. For example, the rate corresponding to the

total bandwidth shares of the services, si's, associated with a node i may be rmax,

but these services may only generate packets at a rate rt < rmax during T . If rt is

such that the number of packet arrivals at i during T is greater or equal to np then at

the next rate update, Update rate will distribute the shares the way as it would if the

si's were generating packets at rmax. In this case the unused share (rmax� rt) will be

shared equally by all other active services. This problem can be solved by minimizing

the update interval time T so that the services transmitting below their rates will be

alternatively marked inactive and active (inactive most of the time). Thus, in the

long run their siblings will be allocated in Update rate approximately the exact unused

rates that should go to them. However, a very small T may not be very attractive.

The smaller T is the greater the likelihood of the existence of a node with a packet

inter-arrival greater than T . Such a node will tend to be marked inactive most of the

time even though it may still have packets in queue for transmission. Thus, its parent

service will be serviced with favor because having packets for transmission, the node

is using its share while its share is reallocated to its siblings because it was mistakenly

considered inactive. Thus, its parent service will enjoy the node's associated share

twice. The next simulations results based on di�erent values of T will give a better

insight of this problem.

We simulated the same tree con�guration in �g 3.3.1 except that this time the

source associated with the leaf node of rate 15% (svc2) was generating packets as

follows: It alternately sends packets at a rate � =.0000284 pkts=�sec which is just
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enough to feel svc2's bandwidth share during a time period equal to 10,000 �sec

simulator time and then stop sending for a period equal to 50,000 �sec.

With this new con�guration, the update period T was set to 10,000 �sec. Since

the incoming bottleneck link speed is 10; 000Kbits=sec, a packet will arrive at a node

every 160�sec. Hence during each period T 62 (=10,000/160) packets will arrive at

the nodes. And since 62 > 11 and the sources have an identical packet generation

rates, within T each of the eleven sources will have a packet that will arrive at the

node associated with its service. Therefore the inactive sources are the only ones

that may be marked inactive during an update. The rate table in �gure 3.3.1.1 was

observed.

  Services

Promised
Rate

Observed
Rate

svc1 svc2 svc3 svc4 svc5 svc6 svc7 svc8 svc9 svc10 svc11

 

 

34% 15%  13% 6.3%  2.1%  14.4% 7.2% 2.4% 3.4%  1.4% 1.2%

12.9%42% 11.13% 5.2% 1.82% 13% 6.33% 2.1%  3% 1.2% 1%

Figure 3.3.1.1: Table of results with one non continuous source, T = 10; 000�sec

Beside the columns corresponding to svc1 and svc2 we almost have the same table as

before. The rate of svc1 changed from 34:01% to 42% and that of svc2 changed from

14:78% to 13%. This is approximately what was expected. The unused portion of

svc2 went to its sibling svc1. The total rate received by svc1 and svc2 is 55% instead

of 49%. The extra 5% can be explained by the fact that svc2 may have been taken to

be inactive during the �rst update intervals that it becomes active. This result gives

a hint to the potential problems with this method.

Limitations of the �rst method

The results presented here showed that the new implementation achieved a good

approximation for appropriate values of T . However, the limitations of this method

is in choosing the right value of T .
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On one hand if T is too small compared to the packet inter-arrivals (as in �gure

3.3.1.2) all services tend to have an equal share of the link. In �gure 3.3.1.2 we repeat

the same simulation as in �gure 3.3.1.1 with a very small T . T equals to 200�sec,

160�sec < T < 320�sec, hence exactly one packet can arrive and its recipient will be

the single active node during the update period. Thus, this node will be allocated

100% of the bandwidth, i.e every node that has a packet will be allocated the total

bandwidth.

  Services

Promised
Rate

Observed
Rate

svc1 svc2 svc3 svc4 svc5 svc6 svc7 svc8 svc9 svc10 svc11

 

 

34% 15%  13% 6.3%  2.1%  14.4% 7.2% 2.4% 3.4%  1.4% 1.2%

9.32% 8.82% 9.01% 9.27% 8.92% 8.91% 9.4% 9.5% 9.3%9.81% 7.8%

Figure 3.3.1.2: Table of results with one non continuous source, T = 200�sec

We see from the table that all services share equally the link bandwidth.

On the other hand if T is too large the very short inactive period of a service

won't be detected. The most limiting factor that makes this method unrealistic is

that the magnitude of T is relative to the packet inter-arrival time of each source.

Regardless of the constant chosen for T , there may always be a source with ON and

OFF periods such that any two adjacent ON and OFF periods are included in a single

update interval. Such source will be often considered continuously active even though

it is not. Hence, given a value of T the performance of this method depends very much

on the lengths of the ON and OFF periods of each source. To get a better insight

of this phenomena, we repeated the same simulation con�guration of �gure 3.3.1.1.

This time, using the same packet generation rate, svc2 generates packets in the ON

and OFF pattern described in �gure 3.3.1.3.a. It periodically generates packets for

1,000�sec and stop sending for a time interval equal to 5,000�sec. Figure 3.3.1.3.b is

the ON and OFF pattern with which the same service, svc2, was generating packets

in the previous simulation in �gure 3.3.1.1.
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Figure 3.3.1.3: Two di�erent ON-OFF paterns.

The ratio r between the ON and OFF periods is the same in both patterns, r =

1;000
5;000

= 10;000
50;000

. The update interval T = 10; 000 is also the same in both cases. Hence,

the same unused portion of svc2's share should be allocated to svc1 in the new ON

and OFF patern ( �gure 3.3.1.3.a). However, because T is greater than the sum of one

ON period and one OFF period (6,000=1,000+5,000), svc2 will be perceived as active

in every update period. Thus the unused share of svc2 won't be transferred to svc1.

This shows that the correctness of the implementation depends on the magnitudes of

the ON and OFF intervals, which change with time, relative to the value of T which

is a constant.

Since this algorithm guarantees fair sharing (in a sense; a regulator) of the link

to all services, the correctness of its implementation can not depend on the behavior

of the dynamically changing tra�c characteristics (ON and OFF intervals) of the

services. These concluding remarks about the �rst method motivate the need for

an alternative method of coping with the ON and OFF sources. The next section

presents the second method in which the concept of active and inactive states are
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rede�ned. This second method does not have the limitations presented above.

3.3.2 The Second Method

Instead of looking at the number of packets that arrived at a node during an update

interval, a better way for detecting an active or inactive node is to compare its Fi

to now; the real time. That is how the second method that we now present detects

active and inactive nodes. A node is marked active if its Fi is greater or equal to

now and inactive otherwise.

Recall that Fi measures the �nish time of the packet at the head of the node,

hence a leaf node that has at least one packet in its packet queue must have a Fi

greater than now.

Fix(t(x;n)) = max(Fix(t((x;n�1))); now) +
L(x;n)

(rx)v

And since Fi is updated only when a packet leaves a node and there is another packet

in the node's packet queue, a node's Fi will remain non-incremented for the entire

period that the node remained without a packet to send (inactive). Thus, eventually

Fi will become less than now unless a new packet arrives at the node before its last

packet �nishes transmission.

In this new method, regardless of the value chosen for T , only those nodes whose

Fi's are less than now will be marked inactive during the rate update. As in the

previous method a large T will cause small inactive periods to go undetected, hence

will cause less accurate results. However, we will see in section 4.3 that results for

large values of T are very good approximations to the correct results.

Advantages of the Second Method

The advantage of this method over the �rst one is that the smaller the update interval,

T , is the more accurate the results obtained are. For example, in the previous method

if T is such that at most one packet arrival can occur within the time interval T the
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di�erent nodes will tend to enjoy an equal share of the bandwidth (as simulated in

�gure 3.3.1.2). To illustrate the advantages of this method over the previous one we

performed the series of simulations that we present below.

We repeated the simulations performed in �gure 3.3.1.1 (T = 10; 000�sec) and in

�gure 3.3.1.2 (T = 200�sec) with the second method.

In the case where T = 10; 000�sec we obtained similar results in both methods.

However, the results were very di�erent for T = 200�sec. In the next �gure we display

the rate table for T = 200�sec (very small). As expected, the results are much better

in the second method. The results collected here are also better than those collected

in �gure 3.3.1.1 where T=10; 000�sec.

  Services

Promised
Rate

Observed
Rate

svc1 svc2 svc3 svc4 svc5 svc6 svc7 svc8 svc9 svc10 svc11

 

 

34% 15%  13% 6.3%  2.1%  14.4% 7.2% 2.4% 3.4%  1.4% 1.2%

1.82% 13.6% 6.33 2.1% 3% 1.2% 1%12.3%12.4 6.1%38%

Figure 3.3.2.1: Table of results with one non continuous source, T = 200�sec

However, one should bare in mind that the 200�sec value chosen for T is not

realistic. The primary goal of this work is to minimize the computation necessary

for the packet scheduling, hence the frequency at which the rates are updated. The

200�sec was chosen just for the purpose of comparing the two methods for very small

values of T . Ideally we want T to be in the order of ten packets transmission time.
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Chapter 4

Simulations over the Second

Method

The simulations of the second method presented in the previous chapter were primar-

ily done to compare it to the �rst method. Having shown the advantages of the second

method over the �rst one we will, in this chapter, investigate the performance of the

second method in greater details. Here we will �rst look at the behavior of the sharing

over small time intervals. The results presented in the previous chapters presented

the di�erent services' average bandwidth shares which were computed over the entire

length of the simulation. It is of sspecial interest to look at the behavior of the sharing

over small time intervals. For example, it is crucial to an interactive video service to

be guaranteed its link share at all points in time. Furthermore, we need to examine

the interdependence between the shares of the di�erent services over very short in-

tervals. That is, we need to see how the reallocation of a share to some services will

a�ect the shares of the others. Second we will present what happens with very small

inactive periods. And �nally we will look at the performance of the implementation

for values of T that are in the magnitude of 10 packet-departures-times.
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4.1 Results over Small Update Intervals

For the purpose of exposing some issues that the previous simulation con�guration did

not expose, we make small changes to the con�guration. The resulting con�guration

is the same as the previous one except that the source associated with svc1 has ON

and OFF periods respectively equal to 100; 000�sec and 10sec, and generates packets

during its active period at the rate of 64:3469�10�6pkt=�sec which is just enough to

�ll its link share. The source associated with svc2 now generate packets continuously

at a rate of 28:38792 � 10�6pkt=�sec which is just enough to use up its link share.

The update interval T is 0�sec. We chose 0�sec not to be distracted in our analysis

by the e�ects of large update intervals. We will examine these e�ects in section 4.3.

We present in the table below the shares received by the di�erent services over the

total length of the simulation and in the following graphs we present the shares of

each individual service over short time intervals of 100 packet-departure-times.

sim snap94:04:20@18:10

  Services

Promised
Rate

Observed
Rate

svc1 svc2 svc3 svc4 svc5 svc6 svc7 svc8 svc9 svc10 svc11

 

 

34% 15%  13% 6.3%  2.1%  14.4% 7.2% 2.4% 3.4%  1.4% 1.2%

.44% 15.1% 30.3% 16% 5.7% 15.6% 7.8% 3.6% 1.5% 1.29%2.58%

Figure 4.1.1: Table of average shares of the di�erent services, T = 0�sec

We note however that the sum of the shares of services 1,2,3,4 and 5 is 67:54% instead

of 70%. The missing 2:46% is shared among the others services. We will investigate

this phenomena in greater details in section 4.2.
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sumsvc12345 sim snap94:04:20@18:10.ps
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o Figure 4.1.2: Sum of services 1,2,3,4 and 5 share over time. It 
uctuates between 66% and 70%.

Even though svc1 and svc2 have inactive periods, we see from this curve that the share

of node1 which is the sum of services 1,2,3,4 and 5 stays constant around 67:54%.

67:54% is the average of the share of node1 computed over the total length of the

simulation. Thus, the implementation keeps the share allocated to node1 no less than

its share, hence achieves criteria i) of the sharing for svc1 (associated with node1).

Criteria i) of the sharing requires that each active service be guaranteed a share of

the link no less than the percentage of the link it owns. We show that criteria i) is

also satis�ed for all services by presenting the shares of each individual service in the

next graphs.
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svc1 sim snap94:04:20@18:10.ps
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Figure 4.1.3: svc1 share over time; originally 34%.

Given an outgoing bottleneck link speed of :300bit=�sec, 100 packet-departure-times

equal 533; 333�sec.

100�1600bits
:300bits=�sec

= 533; 333�sec

Since svc1 can generate exactly 8 packets during one active period of 100; 000�sec

and its share is 34% (34 in a sample of 100), all 8 packets will be sent within the next

100 packets sent. That show that svc1's share is available to it whenever it becomes

active.

svc2 sim snap94:04:20@18:10.ps
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Figure 4.1.4: svc2 share over time; originally 15%.
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Within 100 packet departures svc2's source generates 16 packets (=28:38792�10�6pkt=�sec�

533; 333�sec). With a 15% share of the total bandwidth, svc2 can only send 15 pack-

ets within 100 packet departures. During svc1's inactive period svc2 can have up to

49 (= 15+ 34 (from svc1's share)) packets sent in 100 packet departures using svc1's

share. Because svc2 has only 16 packets to send in every 100 packet departures it

will get all its 16 packets sent during the 100 packet departures. Since svc2 generates

packets at a rate slower than its rate of service when svc1 is inactive, there will be

periods when svc2 will go inactive. The inactivity of svc2 which is caused by the in-

activity of svc1 will causes in turn together with the inactivity of svc1 the 
uctuation

in the shares of services 3,4 and 5 as we will see.

We see in the next three graphs that the unused shares of services 1 and 2 are

redistributed to services 3,4 and 5. We also see that the redistribution of the shares

conserves the ratios between the di�erent shares. Thus, criteria ii) of the sharing is

continuously met. Criteria ii) requires that the ratio between the shares of any two

services of the same parent to be always constant. The 
uctuations in these curves

are due to the extra shares that their corresponding services receive periodically when

node1 is inactive.

svc3 sim snap94:04:20@18:10.ps
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Figure 4.1.5: svc3 share over time; originally 13%.
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svc3's share 
uctuates around 30%. The ratio between the share of svc3 and that

of svc4 is 30
17:5

= 1:7 which is approximately equal to the ratio between the original

shares of the two services (2 � 13
6:3
). The minimum value of the curve is 23 which is

greater than the original share; 13.

svc4 sim snap94:04:20@18:10.ps
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Figure 4.1.6: svc4 share over time; originally 6:3%.

svc4's share 
uctuates around 17:5%. The ratio between the share of svc4 and that

of svc5 is 2:9 (= 17:5
6
) which is approximately equal to the ratio between the original

shares of the two services (3 = 6:3
2:1
). The minimum value of the curve is 10 which is

greater than the original share; 6:3%.
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svc5 sim snap94:04:20@18:10.ps
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Figure 4.1.7: svc5 share over time; originally 2:1%.

svc5's share 
uctuate around 5%. The ratio between the share of svc1 and that of

svc5 is 30
6
= 6 which is approximately equal to the ratio between the original share

of the two services (6:2 = 13
2:1
). The minimum value of the curve is 3 which is greater

than the original share (2:1%).

Because of the inactivity of node31 (svc1 and svc2) all three preceding curves have

minimum values that are greater than the original share of the corresponding services.

The next six graphs of the remaining services; svc6, svc7, svc8, svc9, svc10 and

svc11, have a much smaller range of 
uctuation. For example svc6's graph takes

its values between 14 and 16. Since these services don't have siblings with inactive

periods, one might have excepted these graphs to be horizontal lines. The graphs

are not horizontal because the WFQ model being used in the scheduling is done

on packet basis, it is not the 
ow model. Furthermore we plotted the number of

packet departures against the time axis, therefore the graphs of services with shares

of rational value x will tend to take values from fbxc, dxe g. For example, svc6 which

own 14:4% of the link share has its graph take its values between 14 and 16.

1node3 is the parent node of svc1 and svc2 in �gure 3.3.1. It is inactive if svc1 and svc2 are both

inactive and its share is the sum of the shares of svc1 and svc2..
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svc6 sim snap94:04:20@18:10.ps
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Figure 4.1.8: svc6 share over time; originally 14:4%.

svc6's share is almost constant around 14:4%; its share.
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Figure 4.1.9: svc7 share over time; originally 7:2%.

svc7's share is almost constant around 7:2%; its share.
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svc8 sim snap94:04:20@18:10.ps
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Figure 4.1.10: svc8 share over time; originally 2:4%.

svc8's share is almost constant around 2:4%.
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Figure 4.1.11: svc9 share over time; originally 3:4%.

svc9's share is almost constant around 3:4%.
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svc10 sim snap94:04:20@18:10.ps

15

10

5

0
1100010000900080007000600050004000300020001000

Figure 4.1.12: svc10 share over time; originally 1:4%.

svc10's share is almost constant around 1:4%.

svc11 sim snap94:04:20@18:10.ps
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Figure 4.1.13: svc11 share over time; originally 1:2%.

svc11's share is almost constant around 1:2%.

48



4.2 What happens when the inactive periods are

very small

In the previous section, we mentioned the fact that sum of the shares of services svc1,

svc2, svc3, svc4, and svc5 (node12) was 67:54%. This is due to the small periods

during which svc1 and svc2 are simultaneously inactive. Even though the sum of

their shares is immediately (T = 0�sec) reallocated to services svc1, svc2 and svc3,

any of these services will get the chance to use the extra share from svc1 and svc2

only if its Fi gets updated before the period during which svc1 and svc2 are inactive

terminates. Thus, although svc3, svc4 and svc5 each continuously have packets to

send they won't get to use the extra share if they don't get a packet departure (that

is when the new share will be used to compute the new Fi) within the inactive period

of svc1 and svc2.

To illustrate this phenomena we sampled in �gure 4.2.1 the packets departures of

services svc3, svc4 and svc5 during the periods that svc1 and svc2 are both inactive.

The data in this �gure is based on the simulation con�guration of the previous section.

xplot sim snap94:01:17@17:50.ps
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2node1 is the parent node of node1 and node4 in �gure 3.3.1 and its share is the sum of the shares

of svc1, svc2, scv3, svc4 and svc5. node4 is the parent node of svc3, svc4 and svc5 and its share is

the sum of their shares.
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Figure 4.2.1: Number of pkt departures from svc3, svc4 and svc5 within the periods that svc1 and

svc2 are both inactive. svc2 generates packets at a rate just enough to �ll up its link share. The

intervals at which the curve takes the value 0 correspond to the inactive periods of both svc1 and

svc2. The horizontal axis is in ticks (1tick = 10�sec). The length of an inactive period is about

25; 000�sec and that of an active one about 10; 000�sec. The vertical lines of height 800 inside the

inactive interval mark a packet departure from svc3, those of height 1600 and 2400 respectively mark

packet departures from svc4 and svc5.

We see that svc4 does not have packet departures in some inactive periods of svc1

and svc2, and svc5 does not have packet departures during many inactive periods of

svc1 and svc2. Thus, a good part of the extra share allocated to svc4 and svc5 will

be equally shared by all active services in the system. We investigate this phenomena

further by repeating the same simulation in the next two cases.

In the �rst case we reduced svc2's packet generation rate to 7:09698�10�6pkt=�sec

(= 1
4
� 28:38792� 10�6pkt=�sec) which is just enough to �ll one quarter of its link

share. Even though svc2 has less packets to send, the overall fraction of packets of

node1 (svc1, svc2, svc3, svc4, svc5) serviced has improved to 68:7%. The improvement

is due, as shown in the �gure below, to the wider inactive time intervals of svc1 and

svc2. As the intervals get wider more packet departures from the siblings of svc1 and

svc2 occur within the intervals. Thus services; svc3, svc4 and svc5 get the chance to

use the extra share more often.
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Figure 4.2.2: Number of pkt departures from svc3, svc4 and svc5 within the periods that svc1

and svc2 are both inactive. svc2 generates packets at a rate just enough to �ll up one quarter of

its link share. The intervals at which the curve takes the value 0 correspond to the inactive periods

of both svc1 and svc2. The horizontal axis is in ticks (1tick = 10�sec). The length of an inactive

period is about 120; 000�sec and that of an active one about 10; 000�sec. The vertical lines of height

800 inside the inactive interval mark a packet departure from svc3, those of height 1600 and 2400

respectively mark packet departures from svc4 and svc5.

In the second case (�gure 4.2.3), svc2 generated packets at a rate of 3:54849 �

10�6pkt=�sec which just �lls up one 1
8
of its link share. As expected from the previous

argument, the total share observed for node1 improved to 69:5% which is a good

approximation to 70%, the target value.

xplot sim snap94:01:31@17:19.ps
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Figure 4.2.3: Number of pkt departures from svc3, svc4 and svc5 within the periods that svc1 and

svc2 are both inactive. svc2 generates packets at a rate just enough to �ll up one eighth of its link

share. We note that the total number of packet departures of svc3, svc4 and svc5 in each inactive

interval has increased considerably. The length of an inactive period is about 275; 000�sec and that

of an active one about 10; 000�sec.

We conclude the discussion regarding small inactive intervals with two remarks.
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The �rst remark is that packets generation in real networks are pretty much

like poisson processes and the e�ect of small inactive periods is less important if

the packets generation of the di�erent services are poisson. Because of the uniform

distribution 1st order packet inter-generation of poisson sources the length of the

simultaneous inactive periods of svc1 and svc2 are more randomly distributed than

in the deterministic case. For example, in a similar simulation to that of �gure 4.2.1

with poisson sources node1 received 68:2% as oppose to 67:54% in �gure 4.2.1.

The second remark is that the e�ect of small inactive periods is even less noticeable

if the packet sizes are small. Given a interval t and the same outgoing link speed,

there will be more packet departures within t if the packets sizes are small than when

they are big. Hence the siblings of an inactive service will get to use the extra share

from the service more often. It then follows for the same reason that the e�ect of

small inactive periods will be less noticeable in faster networks. That makes this

implementation even more suitable for high speed networks.

4.3 10 pkts-times Update Interval

As already mentioned, the primary goal of the new scheme is to reduce the compu-

tation overhead per packet that the old scheme su�ered from. For the purpose of

analyzing some speci�c details of the implementation without being distracted by the

e�ect of large update intervals we used small values (0�10; 000�sec) for T in the pre-

ceding simulations. In this section we formally present the results of the simulations

for T = 53; 333�sec which is equal to 10 packet-departure-times.

53;333�sec�300Kbits=sec
1600bits

= 10pkts

The simulated con�guration is identical to that of section 4.1 (svc2 was generating

packets at a rate that just �lls up its link share). We chose to use this con�guration

instead of the ones in the previous section because we already have detailed graphs

in section 4.1 that we can compare the results for T = 53; 333�sec against.
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Figure 4.3.1: Average shares of the di�erent share, T = 53; 333�sec

We present the next three graphs to show that the shares over time of the indi-

vidual services are approximately the same as those of section 4.1.

svc1.2.3.4.5 sim snap94:04:23@02:18.ps
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Figure 4.3.2: svc1, svc2, svc3, svc4 and svc5 shares over time; T = 53; 333�sec. The top curve

corresponds to svc3. The two curves that take their values in the vicinity of 15 correspond to svc2
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and svc4; the one that looks like a horizontal corresponds to svc2. The bottom curve with average

value 4:3 corresponds to svc5 and the very bottom one corresponds svc1.

svc6.7.8.11 sim snap94:04:23@02:18.ps
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Figure 4.3.3: services 6, 7, 8 and 11 shares over time; T = 53; 333�sec. The top curve corresponds

to svc6, the one that has values in the vicinity of 8 corresponds to svc7. svc8 corresponds to the

curve with average value 2:7. The very bottom curve corresponds to svc11.

svc9.10 sim snap94:04:23@02:18.ps
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Figure 4.3.4: services 9 and 10 shares over time; T = 53; 333�sec. The upper curve corresponds

to svc9 and the bottom one corresponds to svc10.
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Comparing the curves displayed in the previous three graphs to their correspon-

dents in section 4.1 we see that the sharing behaved the same way as in section 4.1

expect that node1 lost 2:4% ( (67:54�65:9)
67:54

) of the share it received in the simulation of

section 4.1 where T = 0�sec.

This loss is due to two facts:

1. ) The update interval is larger than one active period or one inactive period of

svc1 and svc2 (node3).

2. ) An inactive period; 25; 000�sec, of node3 is larger than one active period of

node3; 10; 000�sec (from �gure 4.2.1).

Given 1) an active or inactive period of node3 can occur without being detected at

update time. If an inactive period is undetected at update, node1 will be given less

share than it owns (loss) because the unused share of node3 from its inactive period

won't be reallocated to node4. And if an active period is undetected at update,

node1 will be given more share than it owns (gain) because the share of node3 will

be allocated twice to node1; once through node1 and a second time through node4.

Thus, given 2) the average will result to a loss for node1 which explain the 2:4%

loss. If the sizes of the active and inactive periods in 2) are interchanged the average

results in a 2:4% gain for node1. However, in a real network typically when 1) applies

the loss will tend to average out to zero because of the randomness of the lengths of

both active and inactive periods. As a result of the randomness active periods will

be alternatively smaller (loss) and larger (gain) than active periods.
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Chapter 5

Conclusions

5.1 A Good Approximation

When optimizing, one has to identify a desired upper bound of the optimization vari-

able (eg: instructions count). If this bound is not attainable while being completely

faithful to the algorithm, one would have to decide on a tolerance level below which

the implementation is allowed to deviate from the speci�cation and still be correct.

Following this engineering principal, we found a neat compromise between time con-

straint and correctness. While maintaining the correctness, we were able to speed up

the packet processing time in the sense that the steps that were needed to be taken

in the original code at packet arrival and packet departure were broken into di�erent

components that could approximate the original scheme while running in parallel.

The parallelism resulted in a cost increase in hardware. However the parallelism

also resulted in a speedup of the packet scheduling process which in turn resulted in a

greater processing capacity. The processing time of a packet enqueue is now reduced

from 679 to 55 instructions yielding an improvement by the factor of 14:7. The time

required to process a packet dequeue reduced from 875 to 70 instructions yielding an

improvement factor of 12:5. Thus, the resulting capacity is multiplied by a factor of

13.
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We showed through di�erent simulations that although the rates are now being

updated periodically, the new implementation achieved good results for reasonably

large update interval. We got very good approximations to the original implementa-

tion for update intervals in the magnitude of 10 packet-times.

5.2 A Remark about the Bu�er Size

Through the course of this work the bu�er size seemed irrelevant to the performance

of the algorithm. Nevertheless, in this section we present a short remark about the

bu�er size.

In our implementation the bu�er is shared among the services on a need basis.

When the bu�er over
ows the packet drop policy being presently used is to drop the

last packet of the service with the longest packet queue. If the bu�er size is very small

the WFQ mechanism used in the packet scheduling will perform poorly. To illustrate

what might happen assume it is the case that the bu�er size and the number of

services are such that the length of the packet queue to drop a packet from is always

1. A trivial scenario in which such case occurs is when the number of simultaneous

active services is n and the bu�er size is less than n packets. Now assume that there

is an active service, svc, whose source is generating packets at a rate that exactly �lls

its link share. In addition assume that svc's packets arrive at the bu�er one shortly

before the previous one get to leave the bu�er. In this speci�c case svc will experience

packet drops even though it should not have because its source is generating packets

according to its link share. Therefore, svc will receives less than its link share.

The phenomena discussed in the previous paragraph can be avoided in two ways:

One solution is to have a bu�er size such that any active service is guaranteed at

least two packets of bu�er space. Guaranteeing each service with a bu�er space of 2

packets ensures that each service will always have at least one packet in the bu�er

ready to be sent as long as the service generates enough packets. The guarantee is
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*=68n� 65p+ 11 + (11 + 18a+ 7loga(u))u+ (5 + 37a)loga(
u
2
)

where n is the total number of nodes in the tree, p is the number of wfq leaf nodes, a is the average

number of children per node and u is the number of packet-times per update interval.

Note that Update rate is independent of the number of priority nodes. It depends

only on the number of wfq nodes.
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This table is based on packet lengths of 200 bytes.

To use our implementation, one must take into account the table above and that

the bu�er size should be large enough as discussed in section 5.2 .
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5.4 Future work

The implementation of the sharing presented in this thesis also works with priority

nodes as long they have pkt child type and parent nodes of type wfq. In this imple-

mentation, the Fi of a wfq node of child type priority is computed using its current

rate as usual and the length of the packet at the head of the packet queue (the �rst

packet) of its active child node with the highest priority. We refer to such a priority

node as the current priority (cur pri) of the wfq node.

When a child node, x, with a priority greater than that of its parent node's current

priority becomes newly active, the parent's cur pri needs to be updated. The parent's

cur pri is set to x. Also the parent's Fi which was computed with the length of the

�rst packet of the parent's former cur pri needs to be updated. The newly arrived

packet at x, now the cur pri, may be of di�erent size than that of the �rst packet of

the former cur pri. Thus, the parent's Fi is updated as follows:

parent! Fi = + �(p1!len)+(p2!len)
(parent!cur rate)�LINK SPEED

(5:1)

Where p2 and p1 are respectively the �rst packets of x and the former cur pri of parent; the parent

node.

The reasons behind the update in (5.1) is to �rst take into account the di�erence in

length of p1 and p2 and second to consider the time (value of now) when p1 was last

used in the formula below ((5:2)) to be the arrival time of p2 at x. To illustrate the

second reason behind updating according to (5.1), suppose that instead of updating

the parent's Fi using (5.1) when p2 arrives at x we update Fi as follows: First

decrement the parent's Fi by p1!length
parent!cur rate�LINK SPEED

and apply (5.2) with p = p2.

If max(parent ! Fi; now) happens to be now when (5.2) is applied then the length

of time the parent node, par, spent waiting in llq while p1 was its �rst packet to be

sent won't be taken into account in its new Fi.

parent! Fi = max(parent! Fi; now) + p!len
(parent!cur rate)�LINK SPEED

(5:2)

This equation is the same as equation (2.1), the usual formula used to compute the Fi's, written in
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a di�erent form.

Notice that it may be the case that the value of par's cur rate used in (5.1) (current

value) may not be the same (old value) when par's Fi was computed using the length

of p1 for the �rst time. This case may occur when the active states of the par's

siblings have changed between the two Fi updates (when p1 becomes the 1st packet

of the former cur pri and when p2 arrived at x). Even though updating according

to (5.1) takes into account the di�erence in packet sizes and the arrival time of p1 it

does not take into account the fact that the value of par's cur rate may not be the

same in both updates. Thus, it is not clear what the e�ects of the update in (5.1)

would be to the over all performance of the implementation.

It would be of interest to conduct simulations that would give an insight to the

e�ects of (5.1) if any. A �x to (5.1), if need be, could be the use of the value of cur rate

from the �rst Fi update in the decrement in (5.1) instead. In this new version of (5.1)

it is still unclear the usage of which of the two values of cur rate in the increment

in (5.1) will best serve the fairness of the sharing. Should we always use the current

value of cur rate, use the current value only when it is greater (smaller) than the old

value, or always use the old value?

Always using the current value of cur rate will not take into account the extra share

from the siblings of par that were inactive during the �rst update. Using the current

value of cur rate only when it is greater (smaller) than the old value will introduce

a bias of the sharing in favor of (against) the wfq nodes of child type priority. Even

though always using the old value may seem to be the alternative of choice, it is not

evident that it is best to continue to use the old value even when the current value is

greater because some siblings of par just became inactive. These are issues that we

would like to investigate in the future.
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Appendix A

Source Codes

We present here the C programming language source codes of the main routines of

the implementations. The header �le of the tree data structure is in appendix A.1. In

appendix A.2 is described a new routine; Tree add which just creates the tree node

structure and initializes it. The source listings of Tree enq, Tree deque, Update rate,

Mark active and Mark inactive are respectively in appendices A.3, A.4, A.5, A.6, and

A.7.

A.1 The Tree Data Structure

#define ROOT 0

#define WFQ 1

#define PRIORITY 2

#define PKTBUF 3

#define BEEN_ACTIVE 1

#define BEEN_INACTIVE 0

typedef struct tree{

struct tree *next; /* parent child Queue */

int type; /* Root, WFQ, Priority */

int child_type; /* WFQ, Priority, Pkt */

PQ pQ; /* if child = PKT, pkt queue */
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struct tree *parent;/* Ptr to the parent node */

int w; /* If WFQ, share of link */

float rate; /* how many rounds to send a bit*/

unsigned long Fi; /* finish of active last packet */

unsigned lng; /* Len of first packet below it*/

int pri; /* If priority, the priority */

struct tree *dropQ; /* pkt dropping queue */

int npkt; /* if child = PKT, pkt count */

struct tree *tQ; /* A link to the child nodes. */

struct tree *prev; /* pointers to neighbors in llq*/

struct tree *nxt; /* for the q of potential change*/

struct tree *after; /* state nodes. */

int in_statechangeq; /* flag to tell if in the q of */

struct tree *cur_pri; /* potential state change.*/

short int active; /* tells if active or not. */

float cur_rate;

float sum_active_rate; /* sum rate of active children*/

short int counted_in_sum_active_rate; /*it is only */

/* needed for nodes of child_type WFQ */

} Tree;

A.2 Tree add

The routine below create and initialize a tree node structure.

Tree_add(isps, type, child_type,trep,w)

int type, child_type;

Tree *trep;

int w;

{

Tree *tree, *ntree, *prev;

tree = (Tree *) Mem_alloc(isps->isps_mem, TREE,

sizeof(Tree));

if (tree) {

tree->nflw = 0;

tree->npkt = 0;

tree->type = type;
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tree->child_type = child_type;

tree->parent = trep;

if(type == ROOT){tree->rate = 1;tree->sum_active_rate=0;

tree->w=1;tree->cur_rate=1;

tree->Fi=0;

tree->active= 1;

}

if (type == WFQ) {

tree->w = w;

tree->rate =tree->cur_rate= (float)w/100;

tree->sum_active_rate=0;

tree->counted_in_sum_active_rate=0;

tree->in_statechangeq=0;

for(ntree=trep; (ntree->type!=ROOT);

ntree=ntree->parent){

tree->cur_rate =(float)(ntree->rate *

tree->cur_rate);

}

tree->F_real = Time_now();

}

if (type == PRIORITY) {

tree->pri = w;

}

tree->num_child = 0;

tree->tQ = (Tree *) 0;

tree->next = (Tree *) 0;

tree->pQ.first = tree->pQ.last = (Pkt *) 0;

tree->dropQ = (Tree *) 0;

tree->next_go = (Tree *) 0;

tree->prev = (Tree *) 0;

tree->nxt = (Tree *) 0;

if (type == PRIORITY) {

prev = trep->tQ;

if (!prev) {trep->tQ = tree; tree->nxt =tree->nxt=

(Tree *) 0;}

else

{if (prev->pri > tree->pri) {trep->tQ = tree,

tree->nxt = prev;}

else {

for(ntree = prev;

ntree && ntree->pri < tree->pri;

ntree = ntree->nxt) prev = ntree;
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prev->nxt = tree;

prev->nxt = tree;

trep->nxt = ntree;

trep->nxt = ntree;

}

}

}

if(type == WFQ){

tree->next= trep->tQ;

trep->tQ= tree;

tree->active= BEEN_INACTIVE;

tree->active_last_interval= FALSE;

}

if (child_type == PKTBUF)

{ tree->dropQ = isps->dropQ; isps->dropQ = tree;}

if ( (type==WFQ) && ((child_type == PKTBUF) ||

(child_type == PRIORITY)) ){

if(!isps->isps_low_level_q){

isps->isps_low_level_q= isps->isps_low_level_q_last

= tree;

}else{

isps->isps_low_level_q_last= tree;

tree->low_level_next= (Tree *) 0;

}

}

}

return(tree);

}

A.3 Tree enq

void

Tree_enque(isps,pkt,tree)

Isps *isps;

Pkt *pkt;

Tree *tree;

{

Tree *trep,*ntree,*prev_tree;
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if(!tree->npkt){

tree->pQ.last= tree->pQ.first = pkt;

pkt->next = (Pkt *) 0;

}else{

tree->pQ.last->next= pkt;

tree->pQ.last= pkt;

tree->npkt++;

tree->parent->npkt++;

return;

}

if (tree->type==PRIORITY){

trep= tree->parent;

if(!trep->cur_pri){

if(!trep->in_statechangeq){

trep->in_statechangeq= 1;

if(!(isps->statechangefirst)){

isps->statechangefirst= trep;

isps->statechangelast= trep;

trep->after= (Tree *) 0;

}else{

isps->statechangelast->after= trep;

isps->statechangelast= trep;

trep->after= (Tree *) 0;

}

}

trep->cur_pri= tree;

dt= pkt->dt= max(trep->Fi, ev_now()) +

(pkt->pkt_len/(trep->cur_rate*LINK_SPEED));

trep->Fi= dt;

if ((trep->type==ROOT)){

isps->isps_wfq_q= trep;

tree->npkt++;

return;

}

prev_tree= isps->isps_wfq_q;

if(!prev_tree){

isps->isps_wfq_q= trep;

trep->prev= (Tree *) 0;

trep->nxt= (Tree *) 0;

}else{

if(prev_tree->Fi>dt){

isps->isps_wfq_q= trep;
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trep->prev= (Tree *) 0;

trep->nxt= prev_tree;

prev_tree->prev= trep;

}else{

for(ntree=isps->isps_wfq_q; (ntree &&

(ntree->Fi <= dt))

; ntree=ntree->nxt)

prev_tree= ntree;

prev_tree->nxt= trep;

trep->prev= prev_tree;

trep->nxt= ntree;

if(ntree){

ntree->prev= trep;

}

}

}

}else{

if(trep->cur_pri->pri > tree->pri){

trep->Fi += ((pkt->pkt_len -

trep->cur_pri->pQ.first->pkt_len)/

(trep->cur_rate*LINK_SPEED));

dt= trep->Fi;

trep->cur_pri= tree;

if(trep->prev){

trep->prev->nxt= trep->nxt;

}else{

isps->isps_wfq_q = trep->nxt;

}

if(trep->nxt){

trep->nxt->prev = trep->prev;

}

prev_tree= isps->isps_wfq_q;

if(!prev_tree){

isps->isps_wfq_q= trep;

}else{

if(prev_tree->Fi >dt){

isps->isps_wfq_q = trep;

trep->prev= (Tree *) 0;

trep->nxt= prev_tree;

prev_tree->prev= trep;

}else{

for(ntree= isps->isps_wfq_q; (ntree &&
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(ntree->Fi <= dt));

ntree= ntree->nxt)

prev_tree= ntree;

prev_tree->nxt= trep;

trep->prev= prev_tree;

trep->nxt= ntree;

if(ntree){

ntree->prev = trep;

}

}

}

}

}

}else{

if(!tree->in_statechangeq){

tree->in_statechangeq=1;

if(!(isps->statechangefirst)){

isps->statechangefirst= tree;

isps->statechangelast= tree;

tree->after= (Tree *) 0;

}else{

isps->statechangelast->after= tree;

isps->statechangelast= tree;

tree->after= (Tree *) 0;

}

}

dt= pkt->dt= max(tree->Fi, ev_now()) + (pkt->pkt_len/

(tree->cur_rate*LINK_SPEED));

tree->Fi= dt;

prev_tree= isps->isps_wfq_q;

if(!prev_tree){

isps->isps_wfq_q= tree;

tree->prev= (Tree *) 0;

tree->nxt= (Tree *) 0;

}else{

if(prev_tree->Fi >dt){

isps->isps_wfq_q= tree;

tree->prev = (Tree *) 0;

tree->nxt= prev_tree;

prev_tree->prev= tree;

}else{

for(ntree= isps->isps_wfq_q; (ntree && (ntree->Fi
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<= dt));

ntree= ntree->nxt)

prev_tree= ntree;

prev_tree->nxt= tree;

tree->prev= prev_tree;

tree->nxt= ntree;

if(ntree){

ntree->prev = tree;

}

}

}

}

tree->npkt++;

tree->parent->npkt++;

return;

}

A.4 Tree deque

Pkt *

Tree_deque(isps)

Isps *isps;

{

Tree *ntree, *tree_or_trep, *next_pri, *prev_tree,

*pri_tree=(Tree *) 0;

Pkt *pkt, *newpkt;

double dt;

int k;

Tree *node;

tree_or_trep= isps->isps_wfq_q;

if(!tree_or_trep){

return((Pkt *) 0);

}

isps->isps_wfq_q= tree_or_trep->nxt;

if(isps->isps_wfq_q){

isps->isps_wfq_q->prev= (Tree *) 0;

}
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if(tree_or_trep->child_type==PRIORITY){

pri_tree= tree_or_trep->cur_pri;

pkt= pri_tree->pQ.first;

newpkt = pkt->next;

pri_tree->pQ.first= newpkt;

pri_tree->npkt--;

tree_or_trep->npkt--;

pkt->dp_time= ev_now();

if(!pri_tree->npkt){

for(next_pri=pri_tree->nxt; (next_pri &&

!next_pri->npkt);

next_pri= next_pri->nxt);

if(next_pri){

tree_or_trep->cur_pri= next_pri;

newpkt= next_pri->pQ.first;

}else{

tree_or_trep->cur_pri= (Tree *) 0;

if(!tree_or_trep->in_statechangeq){

tree_or_trep->in_statechangeq=1;

if(!(isps->statechangefirst)){

isps->statechangefirst= tree_or_trep;

isps->statechangelast= tree_or_trep;

tree_or_trep->after= (Tree *) 0;

}else{

isps->statechangelast->after= tree_or_trep;

isps->statechangelast= tree_or_trep;

tree_or_trep->after= (Tree *) 0;

}

}

return(pkt);

}

}

tree_or_trep->Fi= newpkt->dt= tree_or_trep->Fi +

(newpkt->pkt_len/(tree_or_trep->cur_rate*LINK_SPEED));

if(!isps->isps_wfq_q){

isps->isps_wfq_q = tree_or_trep;

tree_or_trep->nxt= (Tree *) 0;

}else{

prev_tree = isps->isps_wfq_q;

dt= tree_or_trep->Fi;

if(prev_tree->Fi >= dt){

isps->isps_wfq_q = tree_or_trep;
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tree_or_trep->nxt= prev_tree;

prev_tree->prev= tree_or_trep;

}else{

for(ntree= prev_tree; (ntree && (ntree->Fi < dt));

ntree=ntree->nxt)

prev_tree= ntree;

prev_tree->nxt= tree_or_trep;

tree_or_trep->prev= prev_tree;

tree_or_trep->nxt= ntree;

if(ntree){

ntree->prev= tree_or_trep;

}

}

}

}else{

pkt= tree_or_trep->pQ.first;

tree_or_trep->npkt--;

tree_or_trep->parent->npkt--;

tree_or_trep->pQ.first= pkt->next;

newpkt= pkt->next;

pkt->dp_time= ev_now();

if(newpkt){

tree_or_trep->Fi= newpkt->dt= tree_or_trep->Fi +

(newpkt->pkt_len/(tree_or_trep->cur_rate*

LINK_SPEED));

}else{

if(!tree_or_trep->in_statechangeq){

tree_or_trep->in_statechangeq=1;

if(!(isps->statechangefirst)){

isps->statechangefirst= tree_or_trep;

isps->statechangelast= tree_or_trep;

tree_or_trep->after= (Tree *) 0;

}else{

isps->statechangelast->after= tree_or_trep;

isps->statechangelast= tree_or_trep;

tree_or_trep->after= (Tree *) 0;

}

}

return(pkt);

}

if(!isps->isps_wfq_q){

isps->isps_wfq_q= tree_or_trep;
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tree_or_trep->nxt= (Tree *) 0;

}else{

prev_tree= isps->isps_wfq_q;

dt= tree_or_trep->Fi;

if(prev_tree->Fi>dt){

isps->isps_wfq_q= tree_or_trep;

prev_tree->prev= tree_or_trep;

}else{

for(ntree = isps->isps_wfq_q; (ntree &&

(ntree->Fi <= dt));

ntree=ntree->nxt)

prev_tree= ntree;

prev_tree->nxt= tree_or_trep;

tree_or_trep->prev= prev_tree;

tree_or_trep->nxt= ntree;

if(ntree){

ntree->prev= tree_or_trep;

}

}

}

}

return(pkt);

}

A.5 Update rate

void

Update_rate(isps,tree)

Tree *tree;

Isps *isps;

{

Tree *ntree, *ar[20];

int k,i=-1;

double sum_active_rate=0;

static int active_flag=0, inactive_flag=0;

if(tree->type== ROOT){

isps->numbernewinactive= -1;

active_flag= Mark_active_nodes(isps);
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inactive_flag= Mark_inactive_nodes(isps->ar_newinactive,

isps->numbernewinactive);

if (!( inactive_flag || active_flag)) {

return;

}

}

for(ntree= tree->tQ; (ntree && (ntree->active==

BEEN_ACTIVE)); ntree=

ntree->next){

ntree->cur_rate= (double)( (ntree->rate/

tree->sum_active_rate)*

tree->cur_rate);

}

if(tree->child_type==WFQ){

for(ntree=tree->tQ; ntree; ntree= ntree->next){

Update_rate(isps,ntree);

}

}

return;

}

A.6 Mark active

int

Mark_active_nodes(isps)

Isps *isps;

{

Tree *tree, *ntree, *prev;

short int returnvalue=0;

if( isps->isps_low_level_q->type==ROOT ){return (0);}

prev=isps->statechangefirst;

for(tree=isps->statechangefirst;tree;tree=tree->after){

if(tree->Fi >= ev_now()){

if (tree->active==BEEN_INACTIVE){

tree->active= BEEN_ACTIVE;

if(!tree->counted_in_sum_active_rate){

tree->parent->sum_active_rate += tree->rate;
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tree->counted_in_sum_active_rate=1;

}

returnvalue++;

for(ntree= tree->parent; (ntree->active==

BEEN_INACTIVE); ntree=

ntree->parent){

ntree->active= BEEN_ACTIVE;

if(!ntree->counted_in_sum_active_rate){

ntree->parent->sum_active_rate += ntree->rate;

ntree->counted_in_sum_active_rate=1;

}

}

if(tree->npkt){

if(tree==isps->statechangefirst){

tree->in_statechangeq=0;

isps->statechangefirst= tree->after;

}else{

tree->in_statechangeq=0;

prev->after= tree->after;

if(isps->statechangelast==tree){

isps->statechangelast=prev;

}

}

}

}

}else{

isps->numbernewinactive++;

isps->ar_newinactive[isps->numbernewinactive]=tree;

tree->active= BEEN_INACTIVE;

if(ntree->counted_in_sum_active_rate){

tree->parent->sum_active_rate -= tree->rate;

tree->counted_in_sum_active_rate=0;

}

if(tree==isps->statechangefirst){

tree->in_statechangeq=0;

isps->statechangefirst= tree->after;

}else{

tree->in_statechangeq=0;

prev->after= tree->after;

if(isps->statechangelast==tree){

isps->statechangelast= prev;

}
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}

}

prev=tree;

}

return(returnvalue);

}

A.7 Mark inactive

int

Mark_inactive_nodes(ar,ar_len)

Tree **ar;

int ar_len;

{

Tree *tree,*ntree;

Tree *next_level_ar[20];

int i,next_level_ar_len= -1;

if( (ar_len<0) || ((ar[0])->type==ROOT) ) {return (0);}

for(i=0; i<=ar_len; i++){

tree= ar[i];

for(ntree=tree->parent->tQ; (ntree && (ntree->active==

BEEN_INACTIVE));

ntree=ntree->next);

if(!ntree){

if((tree->parent->active == BEEN_ACTIVE)&&

(tree->parent->type !=ROOT)){

next_level_ar_len++;

next_level_ar[next_level_ar_len]= tree->parent;

tree->parent->active = BEEN_INACTIVE;

}

}

}

if(next_level_ar_len >-1){

Mark_inactive_nodes(next_level_ar,next_level_ar_len);

}

return(1);

}
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