
Maclisp Extensions

July 1981

Alan Bawden
Glenn S. Burke

Carl W. Hoffman

This report describes research done at the Laboratory for Computer Science of the Massachusetts
Institute of Technology. Support for this research was. provided in part by N~tional Institutes of
Hea1th grant number I POI LM 03374-03 from the National Library of Medicine, the Advanced
Research Projects Agency of the Department of Defense under Office of Naval Research Contract
numbers N00014-75-C-0661 and N00014-77-C-0641, the National Aeronautics and Space
Administration under grant NSG 1323, the U. S. Department of Energy under grant ET-~8-C-02-
4687, and the U. S. Air Force under grant F49620-79-:C-020.

. .

CAMBRIIXJE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY 'FOR COMPUTER SCIENCE

MASSACHUSfrI1'S 02139

Abstract

This document describes a common subset of selccted facilities available in Maclisp 'and its
derivatives: PDp·I0 and Multics Mac1isp, Lisp Machine Lisp (Zetalisp), and NIL. The object of
this document is to aid people in writing code which can run compatibly in more than one of
these environments.

Acknowledgements

Much of the documentation presented here is drawn from pre-existing sources and modified to
be presentable in this context The documentation on sharpsign is derived from that written by
Richard S. Lamson as a Multics online help segment. The descriptions of backquotc and defstruct
are derived from existing online documentation. The documentation on fonnat shares some
portions with the Lisp Machine Manual; text has been exchanged in both directions. The
description of defmacro also draws ~vily on the existing documentation in the Lisp Machine
Manual. The Lisp Machine Manual is authored by Daniel Weinreb and David Moon, and the
fonnat documentation therein was contributed to greatly by Guy Steele; they have all thus
indirectly contributed a great deal to this paper, as have innumerable others who aided in the
preparation of the Lisp Machine Manual.

We would like to thank Joel Moses for providing the motivation to bring Lisp up·to·date on
Multics, and Peter Szolovits, under whose auspices this document was produced.

Note

Any comments, suggestions, or' criticisms will be welcomed. Please send Arpa network mail
to MACLISp·EXTENSIONS@MIT-ML.

Those not on the Arpanet may send U.S .. mail to

Glenn S. Burke
Laboratory for Computer Science
545 Technology Square
Cambridge, Mass. 02139

$) Copyright by the Massachusetts Institute of Technology; Camhridge, Mas~. 02139
All rights reserved.

.f:

'.

Maclisp Extensions Table of Contents

Table of Contents

1. Introduction . •
1.1 Compatibility
l.2 Conventions •

2. Backquote

3. Sharpsign. . •

1
1

· 1

• • • • . • • • • • • • 2

• • • • • • • • • • • • • . • • • • • • • S

4. Extended Defun • • • • • til • .. 8

S. Defmacro. . . . ·
6. Other Definition Facilities.

7. Setf. . . · · 0 . . · · · · . . · ·
8. New Functions and Special Forms · · • • 0
8.1 Bit Hacking · · · .. · 8.1.1 Boolean Operations · · · · . . I · · · · 8.1.2 Byte Manipulation.
8.1.3 Testing · 8.2 Predicates ·

8.3 Lists . . · . · 8.4 Variables. · . · . · · · · . . . 8.5 Flow of Control
8.5.1 Conditionals. · · · · . . · • · 8.5.2 Selection · · · I · . . . I · · · I · .
8.5.3 Iteration. · I · · · . . · 8.5.4 Non-Local Exits. · · I

8.6 Miscellaneous
.

9. Dcfstruct. · . · I I · . .
9.1 Introduction . ·
9.2 A Simple Example. ·
9.3 Syntax of defstruct · · · · ·
9.4 Options to defstruct . I

9.4.1 type. · I · · .
9.4.2 constructor · I I

• I • · · · ·
9.4.3 alterant . · . · I · · · · 9.4.4 default-pointer · · . . ·
9A·5 conc .. namc. I • ·
9.4.6 include I · · · ·
9.4.7 named.
9.4.8 make-array · · · · .
9.4.9 sfa-function
9.4.10 sfa-name. · . ·
9.4.11 external-ptr. · . I

9.4.12 size-symbol.
9.4.13 size-macro .
9.4.14 initial-offset · · · . .

· '.
" 10

013

· · · · · · · · · . · · · · · · · . . · .15

.17

· · · · .17

· · 0·17

· · · · I .18

· · · · · · · · · · · .18

· · · · · · · · · · · · · · .18

· · · · · .19

· · · · .20

· · · · · .21
I · · I .21
I · · · .22

· · . · · .23

· · · I · I I · · .24

• · · · .. · · 125

" I I I · · .26

· '\ . · · · .26

· · . · · · · · · I. .26

· · · · · .27
.28

· · ... · .28
I · I · .30

· I · I ~ · · .31

· · · . I · .32
.33

· · · · · .33
.35

I · · · · · · . · · .35

· · · · · · · · · .35

· · · .36

· · · · · · · · , .36
.36

· · · .36
.36

21-JUL-Sl

Table of Contents

9.4.15 'but-first. • • • ••
9.4.16 callable-accessors •
9.4.17 eval-when. ...•
9.4.18 property . . • . • • • ' ••
9.4.19 A Type Used As An option ••
9.4.20 Other Options . •

9.5 Byte Fields . '.' . . • '. . • . .
9.6 About Autoloading .• : ... '.'
9.7 The defstruct-description Structure
9.8 Extensions to defstruct

9.8.1 A Simple Example•..
9.8.2 Syntax of defstruct-define-type.
9.8.3 Options to defstruct-define-type

9.8.3.1 cons. . • . .
9.8.3.2 ref
9.8.3.3 overhead.
9.8.3.4 named . .
9.8.3.5 keywords.
9.8.3.6 defstruct

10. Formal . . ~ . .
10.1 The Operators.
10.2 Other Entries .
10.3 Defining your own. •
10.4 Format and Strings.

. . , .

11. System Differences. . • '.
1l.1 PDP-IO •

11.1.1 Where To Find It.
11.1.2 Things To Watch Out For.
11.1.3 Further Documentation ..

11.2 Multics
11.2.1 Where To Find It.
11.2.2 Things To Watch Out For.
11.2.3 Further Documentation ..

11.3 Lisp Machine•
. . .

11.4 Hints On Writing Transportable Code.
11.4.1 Conditionalization
11.4.2 Odds and Ends.

Index

ii

• .* •

Maclisp Extensions

. . .~ .

37
37
37
38
38
38
38
40
41
42
42
43
43
43
44
45
45
45
45

47
48
54
54
57

• • • • • • 58
58
58
59
59
59
59
60
62
62
62
62
63

65

21-JUL-Sl

I Introduction

1. Introduction

1.1 Compatibility

This manual is about compatibility between the PDP-10 and Multics dialects of Maclisp, and
the Maclisp derivative Lisps, Lisp Machine Lisp, and NIL.

Believe it or not, it really is possible to write code that runs in all. of" these Lisp dialects. It
is not always a completely painless thing to do, but with a little bit of care it is possible to write
reasonable code that runs in many places, and that doesn't offend everyone who tries to read it.

The biggest stumbling block to writing code that runs in a Lisp dialect other than the one
you are most familiar with is the fact each of these Lisps has grown a different set of additional
features since the original Maclisp Reference. Manual was written in 1974. How are you supposed
to be able to restrain yourself from using all the winning new . features that the implementorsof
your dialect have given you?

Well, unfortunately, you are going to have to avoid some of them. After all, some are
probably impossible to implement everywhere. On the other hand, some of them are so useful
that they have already migrated to all of the places you are planning to move your code. Those
arc the features that are documented in this manual.

1.2 Conventions

The symbol "=>" will be used to indicate evaluation in examples. "Thus, when you see "foo
=> nil", this means the same thing as "the result of evaluating foo is (or would have been) nil".

The symbol "==>" will be used to indicate macro expansion in examples. Thus, when you
see "(foo bar) ==> (aref bar 0)", this means the same thing as "the result of macro-expanding
(foo bar) is (or would have been) (aref bar 0)".

Most numbers shown are in octal (base eight). Numbers followed by a 4ecimal point are in
decimal (base ten). Despite growing sentiment in favor of decimal as the default base for Lisp
reading. it is still the case that most of the Lisps we are concerned with read numbers in octal by
default; the sole exception at this time is NIL.

Symbols are consistently wiitt~n in lower case. This is ·because on Multics, most symbols have
lowercase printnames, and case . translation is not done by default on input In the other
implementations, where most symbols have uppercase printnames, lowercase characters are
translated to uppercase on input, so a symbol ly/?ed in lowercase will always be read correctly
everywhere.

Ml.:MACDOC:INTRO 7 21-JUL-81

BaCkquote 2 Maclisp Extensions

2. Backquote
The backquote facility defines two reader macro characters. backquote ("''', ascii 140) and

comma (",", ascii 54). These two macro characters can be used together to abbreviate large
compositions of functions like cons, list, list· (page 19) and append. It is typically used to
specify templates for building code or other list structure, and often finds application in the
construction of Lisp macros.

Backquote· has a syntax similar to that of quote ("''', ascii 47). A backquote is followed by a
single fonll. If the fonn does not contain any use of the comma macro character, then the fonn
will simply be quoted. For example:

• (a be) = (quote (a be» == ' (a be)

The comma macro character may only be used within a form following a backquote. Comma also
has a syntax like that of quote. The comma is followed by a form, and that form is evaluated
even though it is inside the backquote. For example:

'(.a b c) = (cons a (quote (b ~»)
== (cons a '(b c»

'(a ,b c) == (list- (quote a) b (quote (e»)
• (list- 'a b '(c»

'(a b ,e) • (list (quote a) (quote b) e)
• (list 'a 'b c)

• (a • ,rest) = (cons (quote a) rest)
= (cons 'a rest)

In other words, all the components of the backquoted expression are quoted, except those
preceeded by a comma. Thus. one could .write the common macro push using backquote by
proceeding from the standard definition

to

(dafun push macro (form)
(list 'satq (caddr form)

(list 'cons (cadr form) (caddr form»»

(defun push macro (form)
'(setq ,(caddr form) (cons .(cadr form) .(caddr form»»

Note how the code to build the macro's output code begins to look more like the output code
itse1f.]n fact, with a use of let, we can go all the way to

(defun push macro (form)
(let «(datum (cadr form»

(l~st (caddr form»)
'(setq ,list (cons ,datum ,list»»

and produce very legible code. An even bcttcr mct~()d for defining macros is defmacro (ch"pter
5. page 10). .

f\,11.:MACDOC;IlACKQU 16 21-JUL-81

Maclisp Extensions 3 Backquote

Batkquotc expands into forms that call cons. list, list· or whatcvcr ·othcr functions it deems
appropriate for the task of constructing a form that looks like the one following the backquote,
but with the values of the fOrIns following the commas substituted in.

Sincc backquotc's contract is specified not in terms of thc code that it expands into, but
rather in terms of what that code produces whcn evaluated, assumptions should not be made
about what the code might look like. The backquote expansions shown in this section are only
possible expansions; it is not guarantced that this is the way they will expand in any particular
implementation.

If a comma inside a backquote form is followed by an "at" sign ("@", ascii 100). then the
form following the .. ,@" should return a list (On Multics. since the default line kill character is
@, the user may need to type \@ in order to get lisp to read a @.) Backquote arranges that
the elements of that list will be substituted into the resulting list structure. Frequendy this
involves generating a call to the function append. For example:

'(,8abc) = (append a (quote (b c»)
• (append a '(b e»

• (a ,8b c) = (cons (quote a) (append b (quote (e»»
• (cons 'a (append b '(c»)

'(a b ,@e) = (list. (quote a) (quote b) c)
= (1 i st.· 'a 'b c)

Similar to following the comma by an atsign is following the comma by a dot (".". ascii 56). The
dot is a declaration to backquote tclling it that the list returned by the form following the "'0" is
expendable. This allows backquotc to produce code that calls functions like ncone that rplac the
list.

Backquote examines the forms following the commas to see if it. can simplify the resulting
code. For example:

'(a b . ,(cons x y» = (list. (quote a)(qu~te b) x y)
• (list. 'a 'b x y)

'(a 3 ,b c ,17) = (11st. (quote a) 3 b (quote (c 17»)
= (list. 'a 3 b '(c 17»

'(a ,Ib ,@011) • (cons (quote a) b)
• (cons' a b)

t(~ ,.b ,8(nconc c ~» = (cons (quote a) (nconc bed»
= (cons 'a (nconc bed»

These examples should convince the user that he really cannot depend on what the code that
backquote expands into will look like. A simple-minded backquote might expand (,@a ,@nil)
into (append a 'nil). hut this cannot be used as a reliable way to copy a list since a sophisticated

. ba<:kquote can optimize the copying away. .

ML:MACI)OC:BACK()U 16 21-JUI.~81

Backquote 4 Maclisp Extensions

It ic; sometimes useful to 'nest one use of backquote within another., This might happen when
the user is writing some' code that will cons up some more code that will in turn cons up yet
more code. The usual example is in writing macro defining macros. When this becomes necessary
it is sometimes difficult to detennine exactly how to use comma to cause evaluation to happen at
the correct times. The following example exhibits all the useful combinations:

"(a ,b ,'te ,',d)
= (list 'list. "a 'b e (list 'quote (list d»)

When evaluated once this yields:

(list. 'a b <c-at-time-l> '«d-at-time-l»)

\Yhich when evaluated yields:

(a <b-at-time-2> «c-at-time-l>-at-time-2> <d-at-time-l»

Thus "" means never evaluate, "," means evaluate only the second time. " ,," means evaluate both
times, and ".'," means evaluate only the first time.

MI.:f\·1I\CDOC:BAC,KQU 16 21-JUI.-H I

Maclisp Ex tensions s Sharpsign

3~ Sharpsign
The Lisp reader's syntax can be extended with abbreviations introduced by sharp sign (" # ",

ascii 43). These take the general form of a sharp sign, a second character which identifies the '.
syntax, and following arguments. Certain abbreviations allow a decimal number or certain special';
"modifier" characters between the sharp sign and the second character. (On Multics, since the
default .erase character is #, it may be necessary to type \ # in order to get lisp to read a # ..)

List of # macro abbreviations:

Ichar
reads in as the number which is the character code for the character char. For
example, # la is .equivalent to 141 but clearer in its intent. This is the r~ommended
way to include character constants in your code. Note that the slash causes this
construct to be parsed correctly by the Emacs and Zwei editors.

As in strings, upper and lower-case letters are distinguished after # I. Any character
works after # I, even those that are normally special . to read, such as parentheses.
Even non-printing characters may be used, although for them # \ is preferred.

\ name
reads in as the number which is the character code for the non-printing character
symbolized by name. A large number of character names are recognized; these are
documented below. Th~ abbreviations cr for return and sp for space are accepted
and generally preferred, since these. characters are used so frequently. The rules for
reading name are the same as those for symbo~s; the name must be tenninated by a
delimiter such as a space, a carriage return. or a parenthesis.

ACMr

'form

generates Control-char. Thus # Achar always generates the character returned by tyi if
the user holds down the control key and types char.

is an abbreviation for (function form). form is the printed preprcscntation of any
object. This abbrevi~tion can be remembered by analogy with the ' macro-character,
since the function and quote special forms are somewhat analogous ..

#,jonn
evaluates fonn (the printed representation of a Lisp form) at read time, unless the
compiler is doing the reading, in which case it is arranged that foml wi.1l be evaluated
when the compiled output file is loaded. This is a way, for example,to include in
your code complex list-structure constants which cannot be written with Quote. Note
that the reader does not put quote around the result of the cvaluation. You must do
this yourself jf you want it, typicatly by using the ' macro-character. An example of a

. case where you do n'ot want quote around it is when this object is an element of a
constant list

#·fonn
evaluates [onll (the printcd representation of a lisp form) at read timc, regardless of
who is doing thc rcading. rl11is ahhrevialion would he lIsed to' supply constant
paral11('tcrs to the compiler. For example, a prugram might contain #. PI, ruther
than 3.14159.

ML:MACDOC:SHARPM 22 21-JUL-81

Sharpsign 6 Maclisp Extensions

:It o number
reads number in OCtal regardless of the setting of ibase.

tadixR number
reads number in radix radix .regardless of the setting of ibase. radix must consist of
only digits, and it is read in decimal.

For example,: #3Rl02 is another way of writing 11. and #11R32 is another ~ay of
writing 35. In Maclisp, supradecimal bases may be used if number is preceded by +
or -; (status +) is temporarily modified to make this work.

+feature
. This abbreviation provides a read-time conditionalization facility. It is used as·

+ feature fonn. If feature is a symbol, then this is read as fonn if (status feature·
foature) is true. If (status feature feature) is nil, then this is read as whitespace .

. Alternately, feature may be a boolean expression composed of and, or, and not
operators and symools representing items which may appear on the (status features)
list (or lispm amber) represents evaluation of the predicate (or (status feature
lispm) (status feature amber» in the read-time environment.

For example, # + lis pm fonn makes fonn exist if being read by the Lisp machine.
+ (or lispm nil) fonn will make fonn exist on either the Lisp machine or in NIL.
Note that items may be added to the (status features) list by means of (sstatus
feature feature), thus allowing the user to selectively interpret or compile pieces of
code by parameterizing this list The most common features checked for using # +
are: lis pm (present on Lisp Machines), Maclisp, NIL, Multics, ITS, TOPS-20 and
PDP10.

See also section 11.4.1, page 62 for a more general discussion of conditionalization.

-featurefonn
is equivalent to # + (not !eature) form.

#Mform
is equivalent to # + Maclisp fonn.

#Qform
is equivalent to # + lispm form.

Nform
is equivalent to # ... NIL form.

MI.:M:\CDOC;SIt.t\1~P~1 20 21·JlJl.-81

Mac1isp Extensions 7 Sharpsign

,; .
The following are the recognized special character names, with their synonyms: These names can
be used after a "#\" to get. the character code for that character ..

backspace bs
tab
newline
linefeed 1f
return
formfeed
altmode

. space
vt
null
help
delete

cr
ff
a1t
sp

rubout

form

Certain of these character groupings may overlap in some implementations. For example, on
Multics, help is simply the ? character. newline will generally be equivalent· to either return or
linefeed, as appropriate for the host operating system.

MI.:MI\C(}()C:SII'\RPM 20 21-JUL-XI

Extended Defun 8 Maclisp Extensions

4. 'Extended Defuo
defun Special Form

defun is the usual way of defining functions. It still works the way it always has; but
several improvements have been added over the years.

A defun form looks like:

(defun name lambda-list
body •••)

As in the' pas~ name can be a' symbol which is to be defined as a function. Alternatively,
name can be a list of the form (symbol property). This arranges to give symbol a property
property of the function, rather than defining some symbol to be that function. In other words,
after a defun like

(defun (foo bar) (x)
(cons x x»

it would be the case that

(funcall (get 'foo 'bar) 34) -> (34 • 34)

In the simplest case lambda-list is a list of variables to bind to the arguments to the function;
this is as it has always been. In addition, the keywords &optional, &rest and &aux are allowed
to appear there. (Thus these are no longer valid variable names, but nobody seems to have been
inconvienced by this.) Their meanings are as follows:

&optional All of the variables following the &optional keyword (and up to the next &
keyword) are optional. Thus a lambda-list of the fonn

(a b &optional c d)

means that the function may be passed from two to four arguments. a and bare
called required arguments, c and d are called optional' arguments (not surprisingly).
If an optional argument is not passed in by the· caller, then the corresponding
variable will be bound to nil. If some other default value is desired, then that
value may be specified as follows:

(a b &optional (c 'default) (d b»

This will bind c to the symbol default if the function is passed only two
argumentS. If the function is passed less than four, then d will be bound to the
second argument. This is because the variables are bound in sequence, so their

. default values may refer to the values of variables already bound.

It is also possible to find out whether an optional variable was supplied. The bvl

(a b &optional (c 'default c-p»

wilt bind the variahle c-p to t if the function was passed three arguments (i.e .. an
argument was supplied for c). nil jf it was passed only two.

MI.:MACDOC;DEFUN 8 21-JUL-81

Maclisp Extensions 9 Extended Defun

& rest This keyword must be followed by exactly one variable called the rest variable~
&rest must also appear after any required or opti<;mal variables. The rest variable
will be bound to a list of the remaining arguments that were passed to the.
function. For .example:

(a b &rest c)

is the lambda-list to use for a function that accepts two or more arguments. The
variable:·c will be bound to a list of the arguments from the third one on.

(a b &optional (c 0) &rest d)

would specify that the function takes two are more arguments. If called on
exactly two arguments. c will be bound toO and d will be bound to nil. If
called on three or more arguments, C will be bound to the third argument and d
will be bound to a list of the fourth through last argument.

In the Lisp Machine implementation. the rest variable will be bound to a sta~k
allocated list that is only valid during the invocation of that function. This means
that the function should not incorporate this list into any permanent data-structure;
it should use a copy of thc list instead.

In NIL, the rest variable will be bound to a vector which may be stack allocated.
&restl instead of &rest selects a list Unfortunately, &restl is only recognized in
PDP-IO Maclisp and NIL.

&aux Following the keyword &aux are some more variables called auxiliary variables.
&aux must follow all required and optional variables and the rest variable if it is
given. Auxiliary variables do not correspond to arguments to the function at all,
they are Simply local variables that are bound scqucntually after the argument
variables. For example:

(1 &optional (a t) &aux (len (length 1» tern)

is the lambda-list of a onc or two argument function. b will bc bound to t if the
second argument. is not given, then len will be bound to the length of the list
that was the first argument, and tem will be bound to nil (presumably for use
later on.)

In Maclisp, functions with optional or rest variables will bc' implemented using the lexpr
mechanism. In these implementations it may be necessary to declare these functions as ·l<!xprs in
order to assure proper compilation. .

The syntax

(defun name macro (form)
...)

is still understood as a way to define a macro, but the new macro defining macro defmacro is
now the prcfc~cd way to do so. defmacro is. documented in chapter 5, page 10.

t\fl.:MACDOC:DFFUN 8 21-JUL-8l

Defmacro 10 Maclisp Extensions

5. Defmacro
defmacro Alacro

defmacro is a macr~defining macro which allows one to define macros in a more natural
or functional way.

If we want to define the first macro such that (first x) is equivalent to (car x)t we could·
do

(dafun first macro (x)
(list tcar (cadr x»)

ort using backquote (page 2)t

(dafun first macro (x)
'(car .(cadr x»)

Just as backquote makes constructing list structure less cumbersome, defmacro anows us to
. access the "arguments" to a macro in a much cleaner manner. The first mac~o looks like

(defmacro first (1)
'(car ,1»

when defined with defmacro.

In general, the argument list to a macro defined with defmacro is a pattern to be matched
against the body of the macro call. The symbols in the pattern will be bound to the
corresponding components. and then the body of the macro evaluated. the same as is done for an
ordinary macro. That is, for the macro call (first (get 'frob 'elements)). the pattenl (I) is
matched against «get 'frob 'elements)), and I gets bound to the form (get 'frob 'elements).

The macro push, which is defined on page 2 as

(defun push macro (form)
(let «datum (cadr form»

(list (caddr form»)
'(setq ,list (cons ,datum ,list»»

could be defined with defmacro by

(defmacro push (datum lis()
'(setq ,list (cons ,datum ,list»)

Macros. and thus defmacro. are' useful for defining fonnswhich provide syntax for some
kind of control stnlcture. For example. someone might want a limited iteration construct which
increments a variable by one until it exceeds a limit (like the FOR statement of the BAS1C
language). One might want it to look like

(for al 100 (print a) (print (. a a»)

Tb get this, one could write a macro to tr~mslatc it intu

MI.: MACDOC~DEFMAC 22 21~JUI.-81

Maclisp Extensions 11

(do a 1 (1+ a) (> a 100) (print a) (print (- a ail)

A macro to do this could be ·defined with

(defun for macro .(x)
'(do ,(cadr x) .(caddr x) (1+ ,lcadr x»

(> .(cadr x) .(cadddr x»
.@(cdd~dr x»)

Alternatively. for could be defined with defmacro:

(defmacro for (var lower upper . body)
'(do ,var • lower (1+ .var) (> ,var ,upper)

• @body)) .

Definacro

If a pattern is not sufficient, or if a more function-like interface is desired, the argument list
to defmacro may contain certain &-keywords. These are analogous to the a-keywords accepted
by defun (see page 8). In this case. the argument list should not have a dotted end (like the for
example), although the components may themselves be patterns.

&optional denotes the start of optional "arguments" to the macro. ·Each following parameter
is then of the fonn variable, (variable), (variable dejilult). or (variable default present-pl. default
is a fonn to be evaluated to provide a value of no corresponding "argument" 'is present in the
call. present-p is a variable; it will be bound to nil if no argument is present. t otherwise. For
example.

(defmacro print-in-radix (x &optional (radix 10.) (-nopo;nt? t»
'(let «base ,radix) (.nopo;nt ,-nopoint?»

(print ,x»)

If variable is a pattern. then the first fonn is disallowed byecause it is syntactically ambiguous.
The pattern must be enclosed in a singleton list Note: in some implementations, if variable is a
pattern, default may. be evaluatea more than once.

&rest says that the following item should be matched against the rest of the call. That is. the
argument list (&rest items) is equivalent to the argument 'list items, and the argument list for for.
(var lower upper. body). could have been written as (var lower upper &rest body). & rest
may be easier to read than a dotted list. and it allows one to use &aux.

&aux has nothing to do with pattern matching. It should come at the end of the pattern
(which thus cannot be a dotted list), and may be followed by one or more variable binding
specifications,. of the fonn variable or (variable value). The variable will be bound to the specified
value, or nil.

&body . is identical to &rest, and in certain implementations may leave some information·
around for other programs to use to decide on how that form should be indented. The for macro
should be defined with &body in preference to &rest.

The &optional variable bindings are performed sequcntually. Thus something like

(defmacro foo (a &optional (b a)) ...)

will definc a macro that when c(ll1ed with only one argument will hind both a and b to that
argument. \\'hcn called with two arguments a will be hound to the first argument. and b will he

~1I.:rv11\('I)OC:I >1·:Ft\1 AC 22 2 L·J1I1.·81

Defmacro 12

bound to the second

The macro dolist (page 23) is defined such that

(do 1; s t (var list) form-1 fonn-2 ••.)

Maclisp Extensions

steps var over the clements of list, evaluating all of the form-i each time (sort of like mapc). It
could be defined w~th def.macro by .

(defmacro dolist «var list) &body forms
&aux (list-var (gensym»)

'(do «,list-var ,list (cdr, 1ist-var»
(.var»

«null ,1ist-var».
(setq ,var (car ,list-var»

. ,@forms»

MI.:~·1"C()OC;DEFT\·I"C 22 21-JUL-81

MacIisp Extensions 13 Other Definition Facilities

6.' Other Definition Facilities
detvar variable [inil] [documentation] Special Form

defvar is the recommended way to declare the use of a global variable in a program.
The fonn

(defvar variable init)

placed at top level in a file is roughly equivalent.to .

(dec 1 are (spec; a 1 variable»
(or (boundp 'variable)

(set q variable init»

If the init fo~ is not given, then defvar does not try to initialize the value of the
variable, it only declares it to be. special.

documentation is ignored in most implementations, although it is a good idea to supply it
for the benifit of those implementations that make use of il It should be a "string" (see
page 63).

detconst variable [init] [documentation] Special Form
defconst is similar to defvar expect that if init is given, then variable is always set to
have that value, regardless of whether it is already bound. The idea is that defvar
declares a global variable, whose value is initialized to something but will then be
changed during the running of the program. On the other hand, defconst declares a
constant, whose value will never be changed by the program, only by changes to the
program. defconst always sets variable to the specified value so that if you change your
mind about what the constant value should be, and then you evaluate the defconst fonn
again, variable will get set to the new value.

eva l-when times-list forms... Special Form
eval-when is used to specify precisely what is to happen to the containing forms. An
eval-when fonn must appear at top level in a file. times-Ii~t can contain any combination
of the symbols eval, compile and load.

If eval is in limes-list, then when the interpreter evaluates the eval-when form each of
the forms will be evaluated. If eval is not present, then the forms will be ignored in the
interpreter. lbe return. value is not guaranteed to be anything in particular.

If compile is in times-list, then when the compiler comes across the eval-when format
compile-time, it will evaluate each of the forms right then and' there.

If load is in times-list, then when the com'pHer comes across the eval-when form in the
file, it will cOlltinue process the fonns as if they appeared at top level in the file. Thus
the result of compiling the forms will be placed into the compiler output file so that they
may be loaded later.

Examples:

ML:MACDOC;DEFEXT 11 21 .. JlIL-81

Other Definition Facilities 14

(eval-when Ceval compile)
(setsynt~x /" 'macro 'hack~strings)

(defun hack-strings ()
...))

Maclisp Extensions

This will fool with the syntax of doublequote at run-time and compile-time (presumably to
allow the rest of the file to be read in properly), but when the file is compiled and
loaded thesyn~ of doublequote will be unchanged, and the function hack -strings will
not be defined.

(eval-when(eval)
(defun foo (f~ob)

(and (atom frob), (barf»
(car frob») .

Ceval-when (compile)
(def~n foo macro (x)

(list 'car (cadr x»»

This wi11 define foo as a paranoid error checking function' when the program is being run
interpreted, but will arrange to define foo as a macro at compile-time so that it wiD
compile just like car. When the compiled file is loaded faa will not be defined at all.

(eval-when (eval compile load)
(defprop frobulate frobulate-macro macro)
(defun frobu1ate-macro (x)

...))
This is a way to define a macro by hand in Maclisp to be present whenever the file is
being run or compiled.

~tI .:MACI }OC;i)EFEXT 12 21-JUL·81

Maclisp Extensions IS Setf

7 .. Setf
setf. Macro

setf provides a general mechanism for modifying the components of arbitrary Lisp objects.
A setf form looks like:

(set f reference form)

The setf form expands into code to evaluate form and then modify some Lisp object such
that the form reference would evaluate to the same thing. For example:

(setf (car x) 4.7) ==> (rp1aca x 47)
(setf (cadr. x) nil) ==> (rplaca (cdr x) nil)
(setf (get a 'zip) 'fool ==> (putprop a 'foo 'zip)
(setf (arrayca11 tal) t) ==> (store (arrayca11 t a 1) t)
(setf (symeval fool bar) ==> (set foo bar)
(setf foo bar) ==>- (setq foo bar)

The order in which foml and any forms found in reference are evaluated is not guaranteed
in any but the PDP-IO Maclisp and NIL implementations of setf. Neither is the value
returned by the code setf expands into guaranteed in any way.

setf also knowns how to perform macro expansions of any reference 'it doesn't recognize.
So if first is a macro defined to expand as

(first fool --> (car faa)

then

(setf (first fool t) •• > (rplaca foo t)

self's ability to expand macro forms makes it indispensable when using the defstruct macro
(page 26).

Several other common macros are defined to expand into code that includes a setf form. All
these other macros share the' property with setf that in some implementations they are liable to
evaluate their various sub-forms in an order other than the one they -were written in. In some
cases you even run the risk of having some sub-form evaluated more that once.

push
push is defined to expand roughly as follows:

(pus h frob reference)

= = > (s e t f reference (c 0 n s frob reference»

Macro

The· qualifications about order of evaluation given for setf apply to push also;
additi()nally. only the PDP-IO and NIL implementations guarantee that fOlms in reference
will not be evaluated .multiple times.

MI.:MACDOC;SFTF 12 21-JUL-Sl

Setf

pop

16

pop is defined to exp~d roughly as follows:

(pop reference)

==> (prog 1 (car reference)
(set f reference (c d r reference»)

. (prog1 is explained on page 25.)

. Maclisp Extensions

Macro

The qualifications given for push about order of evaluation and multiple evaluation apply
to pop also.

I\fI.:MAC()OC:SJ~rF 12

Maclisp Extensions 17 New Functions and Special Forms

8 .. New Functions and Special Forms
This chapter documents a number of new functions and special forms that have been added.

to the Mac1isp language. .

Although many of the functions documented here are shown shown as being functions, there
is no guarantee that any particular Lisp actually implements them that way t ~ather than as macros.

8.1 Bit Hacking

All of the functions in this section operate on integers of any size in Lisp Machine Lisp, but
only on fixnums elsewhere. Remember that all the integers shown here are in octal.

8. 1. t Boolean Operations

The following functions could be (and often are) implemented in tenns of the boola function.
Their use tends to produce less obscure code.

logand &rest args
Returns the bit-wise logical and of its arguments. At least two arguments are required.
Examples:

(logand 3456 707)
(logand 3456 -100)

logior &rest args

-> 406
=> 3400

Returns the bit-wise logical inclusive or or its arguments. At least two arguments are
required.
Example:

(logior 4002 67) -> 4067

10gxor &rest args
Returns the bit-wise logical exclusive or of its arguments. At least two arguments are
required.
Example:

(logxor 2531 7777) a>. 6246

10gnot number
Rciurns the logical complement of number. This is the same as logxo~'ing number with
-1.
Example:

. (lognot 3456) => -3457

MI.:MAcnOC;NEWFUN 57 21-JUI.-81

Predicates 18 Maclisp Ext-ensions

8.1.2" Byte Manipulation

Seyeral functions are provided for dealing with an arbitrary-width field of contiguous bits
appearing anywhere in an integ.er (in Maclisp, this is restricted to a fixnum). Such a contiugous
set of bits is called a byte. Note that the tenn byte is not being used to mean eight bits,· but
rather any number of bits within an integer. These functions use numbers called byte specifiers to
designate. a specific byte position within any word. Byte specifiers are fixnums whose two lowest
octal digits represent the .:size of the byte, and whose higher octal digits represent the position of
the . byte within a number, counting from the right in bits. A position of zero means that the
byte is at the right end of the number. For example, the byte-specifier 0010 (i.e., 10 octal)
refers to the lowest eight bits of a word, and the byte-specifier 1010 refers to the next eight bits.
These byte-specifiers· will be stylized below as ppss. lbe maximum reasonable values of pp and ss'
are dictated by the Lisp implementation, except of course ss may not "overflow" into the pp field,
so may not exceed 77 (octal). .

ldb ppss num
Returns the byte of num specified with the byte-specifier Ppss.. as described above.
Example:

(ldb 03~6 4567) => 56

dpb byte ppss num
Returns a. new number made by replaci~g the ppss byte of nu,;, with byte.

8.1.3 Testing

bit-tast x y
Returns t if any of the bits in x and y intersect: that is .. if their logand is not zero. bit
test could be (and sometimes is) defined as a macro such that

(bit-test x y) ==> (not (zerop (logand x y»)

8.2 Predicates

tixnump x
Returns t if x is a fixnum. This corresponds to a typep of ftxnum.
Examples:

(fixnump 1)· -> t
(fixnump (expt 259. 259» => nil

flonump x
Returns t if x is a flonum. This corresponds to a typepof flonum.
Examp1e.s:

(flonump 3.14) => t
(flonump 17) => riil

Note that this is the same as floatp in most Lisps, which have only one type of ft~lting·
point representation. In l.isp Machine l.isp however, there "re some kinds of floating

f\11.:~1!\CI >OC:NE\VFUN 57 21-JlIL-81

Mac1isp Extensions 19 Lists

point numbers that are not of type flonum. flonump will return "'nil for these objects. It
is probably the case that code that is trying to be co~patible should use floatp in
preference to either flonump or (eq (typep x) 'flonum).

arrayp x
Returns t if x is an array. Note that some Lisps implement certain kinds of objects as
arrays; for example, PDP-IO Maclisp file, objects are arrays, and Lisp Machine Lisp
utilizes arrays for !"most structures defined with defstruct (page 26).

Ivenp integer
Returns t if integer is even, nil otherwise. This complements the oddp function which
Lisp provides.

<. &rest args
< = requires at least two arguments~ If any argument is greater than the next argument,
it returns nil, otherwise it returns l In Maclisp, args should consist" of either all fixnums
or all ftonums.

>- &rest args

Similar to < = .

fboundp symbol
fboundp returns nil if the symbol symbol in not defined as a function or special fonn. It
returns something non-nil if symbol is defined The exact nature of the non-nil object
varies from implementation to implementation. '

It is not defined what fboundp rerurns if symbol has an autOload property and is
otherwise undefined.

8.3 Lists

l1st* &rest args
list· creates what some people ca~l a "dotted list".

(list. 'foo 'bar 'baz)
(list. 'foo 'bar)
(list. 'fool

=> (foo bar . baz)
=> (foo . bar)
=> foo

list· makes certain unwieldy compositions of the cons function somewhat easier to tYPe:'

(list. 1 2 3 4)

is the same as

(cons 1 (cons 2 (cons 3 4»)

make -11 s t length
make-iist creates a list of nils of length length. Example:

(make-list 3) => (nil nil nil)

MI.:MACDOC:NEWFUN 57 21-JUL-81

Variables 20 Maclisp Extensions

nth 'n list
(nth n list) returns th~ n'th element of list, where the zeroth element is the car of the
list If n is larger than the length of the list, nth returns nil. Examples:

(nth 2 '(zero one two three» => two
(nth 0 '(a b c» => a

nthcdr n list
(nthcdr n lis/) edrs lisl n times, and returns the result If n is larger than the length of
the list then nil is returned. Examples:

,(nthcdr 3 '(q w e r t y» -> (r t y)
(nthcdr 0 '(e tao i n r» => (e tao i n r)

Note that

(nth n /)

is the same as

(car (nthcdr n I)

8.4 Variabl~

1.t

(1 at (va,..1 val-I) (va1'"2 val-2) •••)
/orm-/
fonn-2
...)

Special Form

binds va,..} to the value of val-/, va,..2 to the value of val-2 etc.,· and evaluates each of
the fonn-i in that binding environment That is, it is equivalent to

((1 ambda (va,..} va,..2 •••)
fom,-} fonn-2 .••)

val-} val-2 .•.)

but displays the values in close proximity to the variables.

Note that similar to do, a declaration is allowed as the first form in a let body.

18t. Special Form
let- has a syntax identical to that of let but binds the variables in sequence rath.er than
in patanel. Thus,

is like

(let. «8 (foo» (b (bar 8»)
(computate a b»

MI.:rvIACIlOC;NE\VFUN 57 21-JUI.-81

Maclisp Extensions

« lambda (a)
((1 amb d a (b)

(computate a b»
(bar a»)

(foo»

21 Flow of Control

p.atq . Special Fonn
psetq is similar to setq. In the multi-variable case however, the variables are set "in
parallel" rather than sequentua11y; first all the forms are evaluated. and then the symbolS
are set to the resulting values. ·For example:

(setq a 1) .
(setq b 2) .
(psetq a b b a)
a => 2
b -> 1

8.5 Flow of Control

. 8.5.1 Conditionals

it predicate-form then-form [else-form] Special Fonn
if is a convenient abbreviation for a simple cond which does a binary branch. predicate
fom, is evaluated. and if the result is non-nil. then then-form is evaluated and that result
returned. otherwise else-fonn is evaluated and that result returned. If no else-form is
specified and predicate-form evaluates to nil, then nil is returned. if can (and usually is)
defined as a macro such that

(; f pred then else)
:I: => (cond (pred then) (t else»

and

(; f pred then)
==> (cond (pred then) (t nil»

or
==> (and pred then)

If there are more than three subforms, if assumes that more than one otherwise fonn was
intended; they will be treated as an implicit progn. For example,

(if P c el e2 e3)
==> (cond (p c) (t el e2 ell)

There. is disagreement as to whether this constitutes good programlning style, . so it is
possible that this last variant may be disallowed.

~1L:Mi\('I)OC:NE\VFUN 57 21-JUL-81

Flow of Control 22 Maclisp Extensions

8.5.2 Selection

sa 1 actq key-form clauses... Special Form
selectq is a conditional which chooses one of its clauses to execute by comparing the
value of a form against various constants. Its form is as follows:

(se'l ectq key-form
(test consequent-forms. ..)
(test consequent-!orms. .•)
...)

The first thing selectq does is to evaluate key-form; call the resulting value key. Then
selectq 'considers each of the' clauses in turn. If key matches the clauses test, the
consequents of this clause are evaluated, and selectq returns the value of the last
consequent If there are no matches, selectq returns nil.

A test may be any of

a symbol or integer The symbol or integer' is compared with key. Symbols are
compared using eq; integers are compared on the same basis that
equal uses-cqual types and equal va1ues. Note that t ilnd
otherwise are exceptions here.

a list The list should contain only symbols and integers, which are'
compared as above.

t or otherwise The symbols t and otherwise are special keywords which match
anything. Either of these may thus be used to signify a "default"
clause, which to be useful, should be the last clause of the selectq.

Examples:

(defun count-them (n)
(se1ectq n

(0 'none)
(1 'one)
(2 'two)
«3 4) 'a-few)
(t 'many»)

(count-them 2) => two
(count-them 3) => a-few .
(count-them 7) => many

(se1ectq 'one
(1 ; nteger-one)

. (one 'symbol-one)
(t 'something-else»

=> symbol-one

If the keys being tested against and the value of key-foml arc all of the 5ame type. caseq
should be used. as it may produce more efficient code depending on the implementation.
This is true in PI)1'-10 Madisp, which has no primitivc predicate, lhat itllpkmcnh 'the
type (')f comparistltl that selectq lIses. ' In Lisp Machine I -isp and MlIltics t\1acliSp lhere
should be no dilrcrence unless hignutns arc used. Presently, hignutns dl) not work

~1L:MACI)OC~NE\VFUN 57 21-JlIl.-XI

Maclisp Extensions 23 Row of Control

anyway, but this is expected to be fixed

caseq key-fonn clauses... . Special Fonn
caseq is the same as selectq except that it requires all of the keys being compared to b~
of the same type. It is also an error for the value of key-fonn to be ofa different type
than the keys in the clauses.

Currently, in aU but the PDP-IO implementation, caseq is implemented in terms of
selectq so does not provide this consistency checking, any qualifications given for selectq
apply to caseq. .

In PDP-lO Maclisp, caseq·does not accept the otherwise keyword: 'it is necessary for t
to be used. It also does not accept bignums: .

8.5.3 Iteration

do11at Special Fonn
dolist is like a cross between mapc and do.

(do 1 is t (var list), body •.•)

evaluates the forms of body for each element of list, with var bound to the successive
elements. body is treated as a prog or do body, so it may contain prog tags, and calls
to return, which will return from the dolist.

dotimes Special Fonn

loop

dotirr.es performs integer stepping, and is otherwise similar to dolist.

(dot i me s (var count) body ..•)

evaluates body count times; var takes on values starting with zero. and stops before
reaching count. For example,

(dotimes (1 (ll'm n» (frob i»

is equivalent to

{do «(i 0 (1+ i»
(count (// m n»)

«(not « i count»)
(frob i»

except that the name count is not used

dotimes is similar to dolist in that the body is treated as if it were a prog or do body.

Afaero
dolist and dotimes are convenient fhr simple cases, . where the extra syntax necessitated by
mapc or do is an annoyance. For complicated cases, the loop macro m lY be desirable.
It provides for the stepping of multiple variables. either in sequence or in parallel, and
methods for performing \'ariolls sorts of accullIulations, slI<.:h as collecting a Jist, slimming.
and counting; more than one such accumulation to be pcrfoJ1ncd. and they need not ·be
"ccumulated "in sync" with the iteration. For ex'lmple.

MI.:~1;\CI)OC:NF\VFUN 57 21-JUL-81

Flow of Control 24 Maclisp Extensions

(loop for x in 1 as y • (f x) collect (cons, x y)}

'produces a result like .

(do «.list.·l (cdr .11st.» (x) (Y) (.result.»
«null *list*) (nreverse *result*» ,

(setq x (car *11st*.»
(set q ,Y (f x»
(setq~*result* (cons (cons x y) *result.»}

does. loop is extremely complicated so is not documented here; full documentation may
be found in MIT Laboratory for Computer Science Technical Memo 169 (January 1981).

8.5.4 Non-Local Exits

·catch tag form Special Form
The ·catch special form is used with ·throw to perfonn non-local exits. tag is evaluated,
and then form is evaluated. If during the evaluation of form a (·throw tag value) is
done, then the ·catch returns value.

• th row tag value
Evaluation of (·throw tag value) causes a pending ·catch of lag to return value.

·catch and ·throw are slightly more general versions of the standard Mac1isp catch and
throw special forms. They are more general in that the tags given to them are evaluated, and
thus need not be written into the code, but can be passed in. Additionally, the difference in
argument ordering can make for more readable code, viz

(.catch 'exit
moby-big-hai ry-compuation
that-is-conlinued-ove~

many-lines)

Lisp Machine Lisp, PDP-I0 Mac1isp, and NIL support ·catch and ~throw as the basic catching
and throwing primitives; catch and throw are implemented as macros in terms of them. Multics
Mac1isp implements *catch and *throw, as macros in tenns of the existing catch and throw
special forms; thus it is impossible for ·catch and ·throw on Multics to accept anything but a
quoted atom for the tag.

It is advisable for *catch and ·throw to be used in preference to catch and throw: at some
future time it is anticipated that catch and throw wilt be changed to be equivalent to ·catch and
*throw. The names ·catch arid ·throw are expected to remain valid indefinitely.

unwind-protect form cleanup-fonns... Special Form
unwind-protect evaluates Jonn and returns that result as its value. When control returns
from the unwind-protect for any reason, whether it be a nonnal return, or a non-local
exit causes by a *throw or an error. the cleanup-forms will be evaluated. unwind-protect
can thus he used for "binding" something which is not re<tHy hindablc as a variable. or
for performing some necessary dean lip action, such as closing a file.
Examp1c:

MI.:MAcnOC:NE\VFUN 57 21-JUI.-81

Maclisp Extensions 2S

(unwind-protect
{progn (turn-on-water-faucet)

'(compute-under-running-water»
(turn-off-water-faucet»

8.6 Miscellaneous

Miscellaneous

progl first fonns... , SpecialFonn
prog1 is similar to prog2, only without the first argument. All of the argument to prog1
are evaluated just as they would be for progn, however, the value returned by prog1 will
be the value of the first fomi rather than the last For example:

(rplaca x (progl (cdr x) {rplacd x (.car x»»

can be used to exchange the car and the cdr of a cons.

lexpr-funca 11 function &rest args
lexpr-funcall is a cross beween funeall and apply. (lexpr-funeall function arg-l arg-2 ...
arg-n list) calls the function function on arg-l through arg-n followed by the elements of
list, for example

(lexpr-funca11 'list 'a 'b '(c d» => (a bed)
(lexpr-funcall 'plus 3 4 '(2 10» => 12

Note that two argument lexpr-funcall is the same as apply, and that lexpr-funeall with
a list argument of nil is essentially funeaU.

without-interrupts forms... Special Fom;
This provides a convenient way of executing some code uninterruptibly. forms are
evaluated as with progn and the value of the last fonn is returned. It is guaranteed that
the evaluation will be performed as an atomic operation.

terror condition-name fonnat-.slring &rest fonnat-args
ferror provides a mechanism for signalling errors using format (page 47) to generate the
error message.condilion-name is used to specify the type of condition which is to be
signaled; no mechanism for this exists in Maclisp. However, condition-name may be nil,
in which case an uncorrectable error occurs-nil is therefore the only value of condition
name guaranteed to work everywhere.
Example:

(ferror nil "%%% Compiler error - call -S %%%"
(get 'compiler' 'ma~ntainer»

t\tl.: ~ 1i\Ci)()C; N I:,\\' l:lIN 57

-
Defstruct 26 Mac1isp Extensions

9. Defstruct

9.1 Introduction

The features of defstruct differ slightly from one Lisp implementation to another. However,
defstruct makes it fairly easy to write compatible code if the user doesn't try to exercise any of
the more esoteric feature~" of his particular ~isp implementation. The differences will "be pointed
out as they occur.

One difference that we must deal with immediately is the Question of packages. defstruct
makes" use of .a large number of keywords, and on the Lisp Machine those keywords are all
interned on the keyword package. However. for the purposes of compatibility. the Lisp Machine
defstruct will allow the keywords to appear in any package. The Lisp Machine programme"r is
discouraged- from writing keywords without colons, unless the code is to be transported to another
Lisp implementation. Classes of symbols that defstruct treats as keywords will be noted as they
occur.

Other package related issues will be dealt with later.

9.2 A Simple Example

defstruct Alacro
defstruct is a macro defining macro. The best way to explain how it works is to show a
sample call to defstruct, and then to show what macros are defined and what each of
them does.

Sample call to defstruct:

(defstruct (elephant (type list»
color
(size 17.)
(name (gensym»)

This form expands into a whole rat's nest of stuff, but the effect is to define five macros: color,
size, name, make-elephant and alter-elephant. Notc that there were no symbols make
elephant or alter-elephant in the original fonn, they were created by defstruct. The definitions
of color, size and name are easy, they expand as follows:

(color x)
(size x)
(name x)

==> (car x)
==> (cadr x)
==> (caddr x)

You can see that defstruct has d~cided to implement an elephant as a list of three things: its
color, its size and its name. The expansion of make-elephant is somewhat harder to cxp"!ain.
let's look at a few cases:

~-n.:MAC1>OC;DEFSTR S8 21-JUL-81

Maclisp· Extensions 27

(make-elephant)
(make-elephant ~olor 'pink)
(make-elephant name 'fred size 100)

Syntax of defstruct

==> (list nil 17. (gensym»
==> (list 'pink 17. (gensym»
==> (list nil 100 'fred)

As you can see, make-elephant takes a "setq-style" list of part names and forms, and
expands into a call to list that constructs such an elephant. Note that the unspecified parts get
defaulted to pieces of code specified in the original call to defstruct. Note also that the order of
the setq-style arguments is ignored in constructing the call to list. (In the example, 100 is
evaluated before 'fred even though 'fred came first in the make -elephant form.) Care should
thus be taken in using code with side effects within the scope of a make-elephant. Finally, take
note of the fact that the (gensym). is evaluated every lime a new elephant is created (unless you
override it). . •

The explanation of what alter-elephant does is delayed until section 9.4.3, page 31.

So now you know how to construct a new elephant and how to examine the parts of an
elephant, but how do you change the parts of an already existing elephant? The answer is to use
the setf macro (chapter 7, page 15).

(setf (name x) 'bill)

which is what you want.

==> (rplaca (cddr x) 'bill)

And that is just about all there is to defstruct; you now know enough to use it in your code,
but if you want to know about all its interesting features. then read on.

9.3 Syntax of derstruct

The general fonn of a defstruct fonn is:

(defs truct (name option-] option-2
slol-description-]
slot-description-2

slot-description-m)

option-n)

name must be a symbol, it is used in constructing names (such as "make-elephant") and it is
given a defstruct-description property of a structure that describes the stnlcture completely~

Each option-i is either the atomic name of an option, or a list of the form (option-name arg .
rest). Some options have defaults for arg; some will complain if they are present without an
argument: some options complain if they are present with an argument. lbc interpretation of rest
is up to the option in question, but usually it is expected to be nil.

Each slol-descriptio/l-} is either the atomic name of a slot in the structure, c)r a list of the
form (slot-name ill it-code), or a list of b} te ficld specifications. illil-cot/e is used by constmctor
macros (such as make- elephant), to initialii'c slots not specified in the call to the constructor. If

. the iI/iI-rode is not spccilkd, then the slot is initialized to whatever is most con\~nicllt. (In the
elephant example, siilce the structure was a list, nil was used. If the structure had been a
fixnum array, such s)ot~ would be filled with leros.)

~11.: f\,1ACI)OC: I 11·:t·'S'I'R 58 21-JUL~81

Options to defstruct 28 Mactisp Extensions

A byte field specification looks like: (field-name ppss) or (field-name ppss ,'nit-code). Note that
since .a byte field specificatio~ is always a list, a list of byte field specifications can never be
confused with, the other cases of a slot· description. The byte field feature of defstruct is
explained in detail in section 9.5, page 38.

9.4 Options to derstruct

The following sections document each of the options defstruct understands in detail.

On the Lisp Machine, all these defstruct options are interned on the keyword package.

9~4.1 type

The type option specifies what kind of lisp object defstruct is going to use to implement your
structure, and how that implementation is going to be carried out. The type option is illegal
without an . argument. If the type option is not specified, then defstruct will choose an
appropriate default (hunks on PDP-lOs, arrays on Lisp Machines and lists on Multics). It is
possible for the user to teach defstruct new ways to implement structures, the interested reader is
referred to section 9.8, page 42, for more infonnation. Many useful types have already been
defined for the user. A table of these "built in" types follows: (On the Lisp Machine all
defstruct types are interned on the keyword package.)

list

named-list

tree

'" Ilst*".

array.

All implementations
Uses a list This is the default on Multics.

All implementations
Like list, except the car of each instance of this structure will be the name
symbol of the structure. This is the only "named" structure type defined on
Multics. (See the named option documented in section 9.4.7. page 35.)

. All implementations
Creates a binary tree out of conses with the slots as leaves. The theory is to
reduce car-cdring to a minimum. The include option (section 9.4.6, page 33) does
not work with structures of this type.

All implementations
Similar to list, but the lasi slot in the structure will be placed in the cdr of the
final cons of the list Some people call objects of this type "dotted lists". The
include option (section 9.4.6, page 33) docs not work with slnlctures of this type.

All implementations
Uses an array object (nol a symbol with an array property). rlbis is the default on
Lisp Machines. Lisp Machine users may want to see the make-array option
documented in section 9.4.8, page 35.

MI-:~''\CI)OC;J)f'}SlR SR 21-JUI.-81

Maclisp Extensions 29 Options to defstrUct

fixnum-array All implementations
Like array, except it uses a fixnum array and thus your structure can onty contain
fixnums. On l-isp Machines defstruct uses an art-32b type array for this type.

flanum-array All implementations
Analogous to fixnum-array. On Lisp Machines defstruct uses an art-float type
array for this type.

un-gc-array PDP-I0 only
Uses a nil type array instead of a t type. Note that this type does not exist on
Lisp Machines or Multics, because un-garbage-collected arrays do not work . in
those implementations.

hunk PDP-/O only
Uses a hunk. This is the default on PDP-lOs.

named-hunk PDP- 10 only
Like hunk, except the car of each instance of this structure. will be. the name
symbol of the structure. This can be used with the (status usrhunk) feature· of
PDP-I0 Maclisp to give the user Lisp Machine-like named structures. (See the
named option documented in section 9.4.7, page 35.)

sfa PDP-IO only
Uses an SF A. The constructor macros for this type accept the keywords sfa
function and sfa-name. Their arguments (evaluated, of course) are used,
respectively, as the function and the printed representation of the SFA. See also
the sfa-function (section 9.4.9, page 35) and sfa-name (section 9.4.10, page 36)
options.

named-array Lisp Machine only
Uses an array with the named structure bit set and stores the name symbol of the
structure in the firs~ element (See the make-array option documented in section
9.4.8, page 35.)

array-leader Lisp Machine only
Uses an array with a leader. (See the make-array option documented in section
9.4.8, page 35.)

named-array-Ieader' Lisp Machine only

fixnum

Uses an array with ~ leader, sets the named structure bit, and stores the name
symbol in clement 1 of the leader. (See the make-array option documented in
section 9.4.8, page 35.)

AIJ implementations
This type allows one to usc the byte field feature of defstruct to deal symboUcal1y
with fixnums that aren't actually stored in any structure at all. Essential1y, a

. structure of type fixnum has exactly one slot. This al10ws tl1e operation of
retrieving the COlllents of that slot tll be optimized away into the identity
oper(llion. See section 9.5. p"ge 38 fur more informmion about bytl ! fields.

MI.:MACI)OC:I)FFSTR 58 21-JUI.-Sl

Options to defstruct 30 Maclisp Extensions

external Multicsonly
Uses an array of type external (only Multics Lisp has ·these). Constructor macros
for structures of this kind take thc external-ptr keyword to teU them. wh¢rc the
array is to be· allocated. (See section 9.4.2, pagc 30, for an explanation of
constructor macro keywords.) See also the external-ptr option dcscribed in section
9.4.l1, page 36.

9.4.2 constructor

The constructor option specifies the name to be given to the constructor macro. Without an
argumen4 or if the option is not presen4 thc name defaults to the concatenation of "make-" with
the name of thc structure. If the option is given with an argument of nil, then no constructor is
defincd. Otherwise thc argumcnt is the name of the constructor to dcfine. Normally the syntax
of the constructor defstruet defines is:

(constructor-name
keyword-l code-l
keyword-2 code-2

keyword-n code-n)

Each keyword-i must be the name of a slot in the structure (nof necessarily the name of an
aCcessor macro; see the cone-name option,' section 9.4.5, page 33), or one of the special
keywords allowed for thc particular type of structurc being constructed. For each keyword that is
the name of a slot, the constructor expands into code to make an instance of the stnlcture using
code-; to initialize slot keyword-i. Unspecified slots default to the forms given in the original
defstruct form, or, if none was given there, to some convenient value such as nil or O.

For keywords that are not names of slots, the use of the corresponding code varies.· Usually
it controls some aspect of the instance being constructed that is not otherwise constrained. See,
for example,the make-array option (section 9.4.8, page 35), the sfa -function option (section.
9.4.9, page 35, or the external-ptr option (s~ction 9.4.l1, page 36).

On the Lisp Machine all such constructor macro keywords (those that are not the names of
slots) are interned on the keyword package.

If the constructor option is given as (constructor name arglisl), then instead of making a
keyword driven constructor, defstruct defines a "function stylc" constructor. The argUst is used
to describe what the arguments to the constructor will be. In the simplest case something like.
(constructor make-foo (a b e» defines make-foo to be a three argument constructor macro
whose argume:'1ts are used to initialize the slo~s named a, band c.

In addition, the keywords &optional, &rest and &aux arc recognized in the argument list
They work in the way you might expect. but there arc a few fine points worthy of explanation:

(constructor make-foo
(a &optional b (c 'sea) &rest d &aux e (f 'eff»)

'1l1is ddines make-foo to be (I (,oJl~rru{'lor of' utlC or more etrglHlIl'nls. The tir~r argllmcnt is used
to initbHzc thc a slot. The second argumcnt is lIsed to initialize the b slol. I f there isn't any
second argument, tlWIl the default valuc gi"en in thc hodyof the defstruct (if given) is llsed

tvll.: r"I.\CI)OC:I >FFSTR 58 21-JUI,-8J

Maclisp Extensions 31 Options to defstruct

instead. The third argument is used to initialize the c slot. If there isn't. any third argument,
ulen the symbol sea is used instead. The arguments from the fourth one on are collected into a
list and used to initialize the' d slot. If there are three or less arguments, then nil IS placed in the
d slot. The e slot is flot initialized. It's value will be something convenient like nil or O. And
finally the f slot is initialized to contain the symbol eft.

The band e cases were carefully chosen to allow the user to specify all possible behaviors.
Note that the &aux "variables" can be used to completely override the default initializations given
in the body.

Since there is so much freedom in defining constructors this way, it would be 'cruel to only
allow the constructor option to be, given once. So, by special dispensation, you are allowed to
give the constructor option more than once, so that you can define several different constructo~
each with a different syntax. (. .

Note that even these "function style" constructors do not guarantee that their arguments will
be· evaluated in the order that you wrote them.

9.4.3 alterant

The alterant option defines a macro that can be used to change the value of several slots in a
structure together. Without an argument. or if the option is not prescnt. the name of the alterant
macro defaults to the concatenation of "alter-" with the name of the structure. If the option, is
given with an argument of nil, then no alterant is defined. Otherwise the argument is the name
of the alterant to define. The syntax of the alterant macro defstruct defines is:

(alterant-name code
slot-name-l code-l
slot-name-2 code-2

slot-name-n code-n)

code should evaluate to an instance of the structure. eachcode-i is evaluated and the result is
made to be the value of slot s/ol-name-i of that structure. The slots arc all· altered in parallel
after all code has been evaluated. (Thus you can use an alterant macro to exchange the contents
to two slots.)
Example:

(defstruct (lisp-hacker (type list)
conc-name
default-pointer
alterant)

(favorite-macro-package nil)
(unhappy? t)
(number-of-friends 0»

(setq lisp-hacker (make-lisp-hacker»

. Now we can pcrfbnn a transfonnation:

~11.: M,\CDOC;DFFSTR 58 21-JUI.-81

Options to defstruct 32

(alter-lisp-hacker lisp-hacker
favorite~macro-package 'defstruct
number-of-friends 23.
unhappy? ni 1)

--> «lambda (G0009)
«lam~da (GOOI1 G0010)

(setf (car G0009) 'defstruct)
(setf (caddr G0009) GOOI1)
(setf (cadr G0009) GOOtO»

23.
n11»

lisp-hacker)

Maclisp Extensions

" "Although it appears from this example that .your fonns wiD be evaluated in the order in
which you wrote them, this is not guaranteed.

Alterant macros are particularly good at simultaneously modifying several byte fields that are
allocated from the same word. They produce better code than you can by simply writing
consecutive setfs. They also produce better code when modifying several slots of a structure that
uses the but-first option (section 9.4.15, page 37).

9.4.4 default-pointer

Normally the accessors are defined to be macros of exactly one argument (Ibey check!) But"
if the default-pointer option is prescnt then they will accept zero or onc argument. When used
with onc argument. they behave as before. but given no arguments. they expand as if they had
been called on the argument to the default-pointer option. An example is probably called for:

(defstruct (room (type tree1
(default-pOinter •• current-room •• »

(room-name 'y2)
(room-contants-list nil»

Now the accessors expand as follows:

(room-name x)
(room-name)

•• > (car x)
==> (car •• current-room ••)

If no argument is given to the default-pointer option, then the name of the structure "is used
as the "default pointer". default - pointer is most often used in this fashion.

l\11 .:Mi\CD0C;DEFSTR 58 . 21-J UI.-81

Mac1isp Extensions 33 Options to defstruct

9.4:5 conc-name

Frequently all the accessor macros of a structure will want to have names that begin the same
way; usually with the· name of the structure followed by a dash. The cone-name option allows
the user to specify this prefix. Its argument should be a symbol whose print name will be
concatenated onto the front of the slot names when forming the accessor macro names. If the
argument is not given, then the name of the structure followed by a dash is used. If the conc
name option is not preSent, then no prefix is used. An example illustrates a common use of the
cone-name option along with the default-pointer option:

(defstruct (location default-pointer
.conc-name)

(x 0)
(y 0)
(z 0»

Now if you say

(setq location (make-location x 1 y 34 z 5»

it will be the case that

(locatfon-y)

will return 34. Note well that the name of the slot (tty") and the name of the accessor macro for
that slot ("location-y") are different. .

9.4.6 include

The include option inserts the definition of its argument at the head of the new structure's
definition. In other words, the first slots of the new structure are equivalent to (Le. have the
same names as, have the same inits as, etc.) the slots of the argument to the include option.
The argument to the include option must be the name of a previously defined structure of the
same type as the new one. If no type is specified in the new structure, then it is defaulted to
that of the included one. It is an error for the include option to be present without an
argument. Note that include does not work on certain types of structures (e.g. structure~ of type
tree or list·). Note also ·that the conc-name, default-pointer, but-first and callable~

accessors options only apply to the accessors defined in the current defstruct; no new accessors
are defined for the included slots.

~II :~L\CI)O(':J)I'TSlR SX 21·JlJL~81

, Options to defstruct

An example:

(defstruct (person (type ~1st)
conc-name)

name
age
sex)

34

(defstruct (s~aceman (include person)
default-pointer)

helmet-size
(favorite-beverage 'tang»

Now we can make a spaceman like this:

"(setq spaceman (make-spaceman name "buzz
age 45.
sex t
helmet-size 17.5»

To find out interesting things about spacemen:

(helmet-size)
(person-name spaceman)
(favorite-beverage x)

==> (cadddr spaceman)
==> (car spaceman)
==> (car (cddddr x»

Maclisp Extensions

As you can see the accessors defined for the person structure have names that start with
"person-" and they only take one argument The names of the accessors for the last two slots or
the spaceman structure are the same as the slot names, but they allow their argument to be
omitted. The accessors for the first three slots of the . spaceman stmcture are the same as the
accessors for the person structure.

Often, when one structure includes another, the default initial values supplied by the included
. structure will be undesirable. These default . initial values can be modified at the time of inclusion
by giving the include option as:

(include name new-init-} •.. new-inil-n)

Each new-inil-; is either the name of an included slot or of the form (included-slot-name new-inil).
If it is just a slot name, then in the new structure (the one doing the including) that slot wiD
have no initial value. If a new initial value is given, then that code replaces the old initial value
code for that slot in the new structure. lbe included structure is unmodified.

MI.: ~ll\Ci)()c:f)FFSTR 58 n -JUI.·g,

Mac1isp Extensions 35 Options to defstruct

9.4.7 named

This option tells defstruct that you desire your structure to be a "named structure". On
PDP-lOs this means you want your structure implemented with a named-hunk or named-list
On a Lisp Machine this indicates that you desire either a named-array or a named-array
leader or a named-list. On Multics this indicates that you desire a named-list. defstruct bases
its decision as to what named type to use on whatever value you did or ~idn't give to th~ type
option.

I t is an error to use this option with ~ argument

9.4.8 make-array

A vailable only on Lisp Machines, this option allows the user to control those aspects of the .
array used to implement the structure that are not otherwise constrained by defstruct (such as the
area it is to be allocated in).

The argument to the mako·-array option should he a list of alternating keyword symbols to
the Lisp Machine make-array function (see the Lisp Machine manual), and fonns whose values
are to be the arguments to those keywords. For example, (make-array (:type 'art-4b)) would
request that the type of the array be art-4b. Note that Ole keyword symbols are not evaluated.'

Constructor macros for structures implemented as arrays all allow the keyword make-array to
be supplied. Its argument is of the same form as the make-array option, and attributes specified
there (in the constructor form) will override those given in the defstruct form.

Since it is sometimes necessary to be able to specify the dimensions of the array that
defstruct is going to constnlct (for structures of type array-leader for example). tile make-array
option or constructor keyword accepts the add.itional keywords :Iength and :dimens!ion (they mean
the same thing). The argument 10 this pseudo make-array keyword will be supplied as the first
argument to the make-array function when the constructor is expanded.

defstruct chooses appropriate defaults for those attributes not specified in- the defstruct fonn
or in the constructor fonn t and defstruct overrides any' specified attributes that it has to.

9.4.9 sfa-function

A vailable only on PDP-lOs, this option allows the user to specify the function that will be
used in structures of type sfa. Its argument should be a piece of code that (!valuates to . the
desired function. Constructor macros for this type of structure will take sfa ·-function as a
keyword whose argument is also the code to evaluate to get the function, overriding any supplied
in the original defstruct fonn.

If sfa-function is not prescnt anYWhere, then ~e constructor will use the nmile-symbol of the
structure as the function.

~11.: ~L\CI)OC:DErSlR 58

Options to defstruct 36 Mac1isp Extensions

9.4.10 sfa-name

Available only on PDP-lOs: this option allows the user to specify the object that will be· used
in the printed representation of. structures of type sfa. Its argument should be a piece· of code
that evaluates to that object. Constructor macros for this type of structure will take sfa -name as
a keyword whose argument is also the code to evaluate to get the object to use, overriding any
supplied in the original defstruct form.

If sfa -name is not present anywhere, then the constructor will use the name-symbol of the
structure as the function.

9.4.11 external-ptr

A vailable only on Multics, this option is used with structures of type external. Its argument
should be a piece of code that evaluates to a fixnurri "packed pointer" pointing to the first word
of the external array the defstruct is to construct Constructor macros for this type of structure
will take external-ptr as a keyword whose argument overrides any supplied in the original
defstruct fonn.

If external-ptr is not present anywhere, then the constructor signals an error when it
expands.

9.4.12 size-symbol

The size -symbol option allows a user to specify a symbol whose value will be the "size" or
the structure. The exact meaning of this varies, but in general this number is the one you would
need to know if you were going to allocate one of these structures yourself. The symbol will
have this value both at compile time and at run time. If this option is present without an
argument, then the name of the structure is concatenated with "-size" to produce the symbol. .

9.4.13 size-macro

Similar to size-symbol. A macro of no arguments is defined that expands into the size· or
the structure. The name of this macro defaults as with size-symbol.

9.4.14 initial-offset

This option allows you to teU defstruct to skip over a certain number of slots before it starts
allocating the. slots described in the body.)bis option requires an argument, which must be a
fixllum, which is the number of slots you want defstruct to skip. To make use of this option
requires th~lt you have some t:1miliarity with how defstruct is implementing you structure,
otherwise you will be unable to make use of the slots that defstruct has left unused.

M(.:MACDOC:DEFSTR 58 21-JU1.-81

Maclisp Extensions 31

9.4.15 but-first·

This option is best explained by example:

(defstruct (head '(type list)
(dafault-pointer person)
(but-first pers~n-head»

nose
mouth
eyes)

So now the accessors expand like this:

(nose x)
(nose)

==> (car (person-head x»
==> (car (person-head person»

Options to defstiuct

The theory is that but-first's argument will likely be an accessor from some other structure,
and it is never expected that this structure will be found outside of that slot of that other
structure. (In the example I had in mind that there was a person structure which had a slot
accessed by person-head.) It is an error for the but-first option to be. used without an
argument

9.4.16 callable-accessors

This option controls whether the accessors defined by defstruct will work as "functional
arguments". (As the first argument to mapcar. for example.) On the Lisp Machine accessors are
callable by default, but on PDP-lOs it is expensive to make this work, so they arc only callable i(
you ask for it. (Currently on Multics the feature doesn't work at alL.) The argument to this
option is nil to indicate that the·· feature should be turned off, and t to turn the 'feature on. If
the option is present with no argument. then the feature is turned on.

9.4.17 eval·when

Nonnally the macros defined by defstruct are defined at eval-time, compile-time and at load
time. This option allows the user to control this behavior. (eval-when (eval compile)), for
example, will cause the macros to be defined only when the code is running interpreted and
inside the compiler, no trace of defstruct will be found when running compiled code.

Using the eval-when option is preferable to wrapping an eval-when around a defstruct
fonn, since nested eval-whens· can interact in unexpected ways.

ML:~lACI)OC~J)EFSTR 58 21-JUI.-81

Byte Fields 38 Maclisp ExtensiQns

9.4.18' property

For each structure defined 'by defstruct, a property list is maintained for the recording of
arbitrary properties about that structure.

The property option can be used to give a· defstruct an arbitrary property. (property
property-name value) gives the defstruct a property-mime property of value. Neither argument is
evaluated. To access the property list, the user will have to look inside the defstruct-aescription
structure himself, he is referred to section 9.7, page 41, for more information.

9.4.19 A Type Used As An Option.

In addition to the options listed above, any currently defined type (a legal argument to the
type option) can be used as a option. This is mostly for compatibility with the old Lisp Machine
defstruct. It allows you to say just type when you should be saying (type type). Use of this
feature in new code is discouraged. It is an error to give an argument to a type used as an
option in this manner.

9.4.20 Other Options

Finally, if an option isn't found among those listed above, defstruct checks the property list
of the name of the option to see if it. has a non-nun defstruct-option property. If is does have
such a property, then if the option was of the form (option-name value), it. is treated just like
(property option-name value). That is, the defstruct is given an option-flame property of value.
It is an error to use such an option without a value.

This provides a primitive way for the user to define his own options to defstruct. Several of
the options listed above arc actually implemented using this mechanism.

9.5 Byte Fields

On Multics, the byte field feature will not work unless the user has arranged to define the
functions Idb and dpb (section 8.1.2. page 18). They are not yet present in the default
environment, but they are available as part of the extension library (section 11.2, page 59).

The byte field feature of defstruct allows the user to specify that several slots of his structure
are bytes in a fixed point number stored in one element of the structure. For example. suppose
we had the followirig structure:

(defstruct {phone-book-entry (type list»
name
address
(area-code 617.)
exchange
line-number)

This will \\'(~rk just fine. Except you notice that an area -code ,md an exchange are both always
less than 1000.. and so both can ca~ily fit in 10. bits. and the line-number is always tess lhan
10000. and clIn 'thus fit in 14. bits. Thus you can pack all three parts of a phone number in 34,

~fL:f\1.t\(,I>()C:I)FJ·STR 58 21-JUL-81

M~lisp Extensions 39 Byte Fields

" !

bits. If you have a lisp with 36. bit fixnums. then you should be able to put the entire phone
number in one fixnum in a structure. defstruct allows you to do this as follows:

(defstruct (phone-book-entry (type list»
name
address
«(area-code 3012" 617.)
(exchange: 1612)
(line-number 0016»)

The magic numbers 3012. 1612 and 0016 are byte specifiers suitable for use with the functions
Idb and dpb (page 18). Things will expand as follows:

(area-code pbe)
(exchange pbe)

~=> (ldb 3012 (caddr pbe»
==> (ldb 1612 (caddr pbe»

(make-phone-book-entry
name 'IFred Derfl
address '1259 Octal St.,
exchange ex
line-number 7788.)

==> (list 'IFred Derfl '1259 Octal St.1 (dpb ex 1612 115100017154» "

(a1ter-phone-bOgk-ent~y pbe

==> «lambda (G0003)

exchange ex
line-number In).

(setf (caddr G0003)
(dpb ex 1612 (dpb 1n 0016 (caddr G0003»»)

pbe)

defstruct tries to be maximally clever about constructing and" altering structures "",lith byte "
fields.

The byte specifiers are actually pieces of code that are expected to ·evaluate to byte specifiers,
but defstruct will try and understand fixnums if you supply them. (In the make-phone-book
example. defstruct was able to make use of its knowledge of the line-number and area -code.
byte specifiers to assemble the constant number 115100017154 and produce code to just deposit
in the exchange.) .

A nil in the place of the byte specifier code means to define an accessor for the· entire word.
So we could say:

~1I.:M;\CJ)OC:I.lFFSTR S8 21-JUI.-81

About Autoloading 40

(defstruct (phone-book-entry (type list»
name
address

.«phone-number nil)
(area-code 3012 617.)
(ex c h a.n 9 e 1612)
(line~number 0016»)

to enable us to do things like:

(setf (phone-number pbel) (phone-number pbe2»

to cause two entries to have the same phone numbers.

Maclisp Extensions

We could also have said just: «phone-number) ...) in that last defstruct, but the feature of
nil byte 'specifiers allows you to supply initial values for ·the entire slot by saying: «name nil init)
...).

Constructor macros initialize words divided into byte fields as if they were deposited in the
following order:

1) Initializations for the entire word given in the defstruct form .

. 2) Initializations for the byte fields given in the defstruct form.·

3) Initializations for the entire word given in the constructor macro form.

4) Initializations for the byte fields given in the constructor macro fonn.

Alterant macros operate in a similar manner. That is~ as if the entire word was modified first,i
and then the byte fields were deposited. Results will be unpredictable in constructing and altering
if byte fields that overlap are given.

9.6 About Autoloading

This section only applies to PDP-I0 and Multics Lisp.

If you look at the property lists of the macros defined by defstruct, you wilJ find that they
are all have macro properties of one of fOllr functions; dofstruct -expand - ref -macro. defstruct
expand - cons - macro, defstruct - expand -alter - macro and defstruct -expand -size - macro.
These functions figure out how to expand the macro by examining the property Hst of the car of
the form they are asked to expand. defstruct-expand-ref-macro, for example, looks for a
defstruct-slot.property, which should be a cons of the form (s!mcture-name. slot-name).'

Since the defstruct form only expands into putprops of the desired functions (instead of
actually constructing a full-fledged definition), loading a compiled file containing adefstruct
merely adds a few properties to some symbols. '111e run time environment is not needlessly
cluttered with unwanted list structure or subr objects; If the llser thinks he may wish to lise any
of thc macros defined by defstruct aftcr compiling his file. he need only give U1C four expanding
functions miloloCld properties of the name of the me containing defstruct itself.

ML:~'I;\CnOC;J)J-:FSTR 58 21-Jlll.~8t

Maclisp Extensions 41 The defstruct-description Structure

For purposes of using defstruct interpreted, the two symbols defstruct and defstruct
define-type should be given similar autoload properties. Thus six symbols with autol9ad
propcrties suffice to make defstr~ct appear loaded at .all times.

9.7 The defstruct-description Structure

This section discusses the internal structures used by defstruct that might be useful to
programs that want to interface to defstruct nicely. The infonnation in this section is also
necessary for anyone who is thinking of defining his own structure types (section 9.8, page 42).
Lisp Machine programmers will find ~at the symbols found only in this section are all interned

, in the "systems-internals" package.

Whenever the user defines a new structure using defstruct, defstruct creates an instance of
thc defstruct -description structure. This structure can be found as the defstruct -description
property of the name of the structure; it contains such useful information as the name of the

. structure, the number of slots in the structure, etc.

lbe defstruct-description structure is defined something like this: (This is a bowdlerized
version of the real thing, I have left out a lot of things you don't need to know unless you are
actually reading the code.)

(defstruct (defstruct-description
(default-pointer description)
(conc-name·defstruct-description-»

name
size
property-alist
slot-alist)

The name slot contains the' symbol supplied by the user to be the name of his structure,
something like spaceship or phone-book-entry.

lbe size slot contains the total number of slots in. an instance of this kind of structure. This
is lIot the same number as that obtained from the Size-symbol or size-macro options to
defstruct. A named structure, for example, usually uses up an extra location to store the name
of the structure, so the size-macro option will get a number one larger than that stored in the
defstruct description.

The property-alist slot contains an alist with pairs of the form (property-name. property)
containing properties placed there by the property option to defstruct or by property names used
as options to defstruct (see section 9.4.18, page 38, and section 9.4.20, page 38).

The slot-alist slot contains an alist of pairs of the fonn (slot-name. slol-description). A slot
dt'Scriplion is an ins~1nce of the defstruct-slot-description structure. The defstruct-slot
description structurc is dcfincdsomclhing like this: (another bowdlerized defstruct)

'f1.:~f'\CJ)OC:J)ITSTR 58 . 21-JUf.-81

Extensions to defstruct 42

(defstruct {defstruct-slot-description
(default-pointer slot-description)
(cone-name defstruct-slot-description-»

number
ppss
init-code
ref-ma~ro-na.me)

Mac1isp Extensions

The number slot contains the number of the location of this slot in an instance of the
structure. Locations are numbered starting with 0, and continuing up to one less than the size of
the structurc. The actual location of the slot is detennined by the reference consingcode
associated with the type of the structure. See section 9.8, page 42.

The ppss slot contains the byte specifier code for this slot if this slot, is a byte field of its
location. If this slot is the entire location, thcn the ppss slot contains nil.

The init-code slot con'tains the initialization code supplied for this slot by the user in his'
defstruct fonn. If there is no initialization code for this slot then the init-code slot contains the
symbol %%defstruct-empty%%.

The ref-macro-name slot contains the symbol that is defined as a macro that expands into.
reference to this slot.

9.8 Extensions to derstruct

defstruct-def1ne-type Macrf
The macro defstruct -define-type can be used to teach defstruct about new types it can
use to implement structures.

9.S.1 A Simple Example

Let us start by examining a sample call 'to defstruct-define-type. This is how the list type'
of structure might have been defined:

(defstruct-define-type list
(cons (initialization-list description keyword-options) list

(cons 'list initialization-list»
(ref (slot-number description argument)

(list 'nth' slot-number argument»)

This is the minimal example. We have provided defstruct with two pieces of code. one fot
consing up fonns to construct instances of the structure, the other to cons up fonns to' reference,
varioils clements of the structure.

From the example we can see that the constructor consing code is going to be, nm in :In
el·lviron.rll<,'1ll \'vIH.'l'c tlK' v~lriahk initiuliz~tion -list is hound to it list which is the init iali/ations to
the slots of the structure, arranged in order. The variahle description will he hound to the
defstruct-description structure for the structure we are consing a constructor for. (See section
9.7. pagr 41.) The hinding of thl' variable keyword-options will be described later. Also the

MI ,:MACI)OC;I.lITSTR 58 21-JUI.-81

Maclisp Extensions 43 Extensions to defstruct

s)mbol list appears after the argument list, this conveys some infOImation' to defstruct about how
the constructor consing code wants to get called. ,-

The reference consing code, gets run with the variable slot-number bound to the number of
the slot that is to be referenced and the variable argument bound to the code that appeared as
tl!e argument to the accessor macro. The variable description is again bound to the appropriate
instance of the defstruct-description structure. .

lbis simple example probably tells you enough to be able to go ahead and implement other
structure types, but more details follow.

9.8.2 Syntax of defstruct-define-type

The syntax of defstruct-define-type is

(defstruct-define-type ~pe
option-]

option-n)

where each option-i is either the symbolic name of an option or a list of the form (option-;.
rest). (Actu'll1y option-i is the same as (option-i).) Different options interpret rest in different
ways.

The symbol type is given a defstruct-type-description property of a structure that describes
the type completely. .

9.8.3 Options to defstruct-dcfine-type

This section is a catalog of a11 the options currently known about by defstruct-define-type.

9.8.3.1 cons

'lbe cons option to defstruct-define-type is how the user supplies defslruct with the
necessary code that it needs to cons up a form that will construct an instance of a structure. of
this type.

The cons option has the syntax:

(cons (inits description keywords) kind
body)

bod)' is some code· that should construct and return a piece of code that wilt construct.
initialize and return an instance of a stmcture of this type.

The symhol inilS will he bound to the code that the constructor conser should lise to initialize
lhe slots of the structure. The exact form of this argument is ul'tcrmined hy the symhol killd.
There are clIrrcmly two kinds of initialization. Therc is the -list kind. where illils is bound to a
list of initialil.ations. in the Cllrrect order. with nils in uninitialilcd slots. And there is the alist

~1I.:MACDOC;DI·TSTR S8 21-JUL·81

Extensions to defstruct 44 Maclisp Extensions

kind,' where inits is bound to an alist with pairs of the form (slot-number " init-code).

The symbol description win be bound to the instance of the defstruct -description structure
(section 9.7, page 41) that defstruct maintains for this particular structure. This is so that the
constructor conser can find out such things as the total size of the structure . it is supposed to
create.

The symbol keywords will be bound to a alist with pairS of the foml (keyword. value~
where each keyword was a keyword supplied to the constructor macro that wasn't the name of I
slot, and value was the "code" that followed the keyword. (See section 9.8.3.5, page 45, and
section 9.4.2, page 30.)

It is an error not to supply the cons option to defstruct-define-type.

9.8.3.2 ref

The ref option to defstruct-define-type is how the user supplies defstruct with the neccssaIJ
code that it needs to cons up a fonn that will reference an instance of a structure of this type.

The ref option has the 'syntax:

(ref (number description arg-J ••• arg-n)
body)

body is some code that should construct and return a piece of code that will reference au
instance of a structure of this type.

The . symbol number wilJ be bound to the location of the slot that the is to be referenced
This is the same number that is found in the number slot of the defstruct-slot-description
structure (section 9.7, page 41).

The symbol description will be bound to the instance of the def~truct-description structure
that defstruct maintains for this particular structure.

The symbols arg-i are bound to the fonns supplied to the accessor as arguments. Normally
there should be only one of these. The last argument is the one that will be defaulted by the
default-pointer option (section 9.4.4. page 32). defstruct will check that the user has supplied
exactly n arguments to the accessor macro before calling the reference consing code.

It is an error not to supply the ref option to defstruct-define-type.

t\11 ;:MACI1OC:l>EFSTR 58 21-JUJ.-81

Maclisp Extensions 4S Extensions to defstruct

9.8J.3 overhead

The overhead option to'defstruct-define-type is how the user declares to defslruct that the
implementation of this particular type of structure "uses up" some number of slots locations in the
object actually constructed. This option is used by various "named" types of structures that store
the name of the structure in one location.

The syntax of overhead is:

(overhead n)

where n is a fixnum that says how many locations of overhead this type needs.

This number is only used by the size-macro and size-symbol options to defstruct. (See
section 9.4.13, page 36,and section 9.4.12, page 36.)

9.8.3.4 named

The named option to defstruct-define-type controls the use of the named option to
defstruct. With no' argument the named option means that this type is an acceptable "named
structure". With an argument, as in (named type-name), the symbol type-name should be that
name of some other structure type that defstruct should use if someone asks for the named
version of this type. (For example, in the definition of the list type the named option is used
like this: (named named-list).)

9.8.3.5 keywords

The keywords option to defstruct-define-type allows the user to define constructor keywords
(section 9.4.2, page 30) for this type of structure. (For example the make-array constructor
keyword for structures of type array on Lisp Machines.) The syntax is: .

(keywords keyword-! •.. keyword-n)

where each keyword-; is a symbol that the constructor conser expects to find in the keywords alist
(section 9.8.3.1. page 43).

9.8.3.6 defslruct

The defstruct option to defstruct-define-type allows the user to run some code and return
some fonns as part' of the expansion of the defstruct macro.

The defstruct option has the ·syntax:

(defstruct (description)
body)

hody is a piece of code that will he run whenever defstruct is expanding a defstruct fonn
tJl.It ddlnes a structure of lhis type. 'I 'he symbol dcs('ript;ol1\\:iIl be hound to the insl1l1lcc of the
defstruct -doscription structure that defstruct maintains (lfthis particular str~cturc.

\11 : M,\C()()C;1>1·:rSlR SX 21-JlIL-81

Extensions to defstruct 46 ~fac1isp Extensiom

Th'e value returned by the defstruct option should be a list of fonns to be included with.:
those that the defstruct expands into. Thus, if you only want to. run some code . at defstruct'
expand time, and you don't ~ant to actually output any additional code, then you should be'
careful to return nil from the code in this option.

MI.:MAcnOC:DFFSTR 58

Maclisp Extensions 47 Fonnat

10. Format
for.at destination control~strillg (any-number-of args)

format is used to produce formatted output. format outputs the characters of contro/
SIring, except that tilde (" ") introduces a directive. The character after the tilde,
possibly preceded by arguments and modifiers, specifies what kind of formatting is desired.
Some directives use an element of args to create their output.

The output is sent to destination. If destination is nil, a string is created which contains the
output (sec section 10.4 on format and strings, page 57). If destination is t, the output is sent to
the "default output destination", which in Maclisp is the output filespec nil-the terminal'
(controlled by the variable AW) and outfiles (controlled by Ar). With those exceptions, destination

. maybe any legitimate output file specification.

A directive consists of a tilde, optional decimal numeric parameters separated by commas,
optional colon (":") and atsign ("@") modifiers, and a single character indicating what kind of
. directive this is. The alphabetic case of the character is ignored. Examples of control strings:

tf-3,4:@s"
This is an S directive with no parameters.
This is an S directive with two parameters, 3 and 4,

and both the colon and atsign flags.

format includes some extremely· complicated and specialized features. It is not necessary to
understand all or even most of its features to use format efficiently. The beginner should skip
·over anything in the following documentation that is not immediately useful or clear. 1be more
sophisticated features are there for the convenience of programs with complicated formatting
rCQuirements.

Sometimes a numeric parameter is used to specify a character, for instance the padding'
character in a right- or left-justifying operation. In this case a single quote (') followed by the' ..

. desired character may be used as· a numeric argument. For example. you can use

" 5, 'Od"

to print a decimal number in five columns with leading zeros (the first two para~eters to -Dare
the number of columns and the padding character).

In place of a numeric parameter to a directive, you can put the letter v. which takes an
argument from args as a parameter to the directive. Nonnally this should be a number but it
docsn't really have to be. This feature allows variable column-widths and the like. Also, you can
usc· the character # in place of a parameter; it represents the number of arguments remaining to
be processed.

It is possible to have a directive name of more than one character. 'Ibe name need simply be
cnclosed in backslashes ("\ It); for example,

(format t "-\now\" (status daytime»

Asalways, case is ignored here. There is no way to quote" backslash in such II construct No
multi-character opcratms come with format.

MI.:FOI~MAT~rORM;\T PROI.DG 21-JUL;.81

The Operators 48 Maclisp Extensions

Note that the characters @, #, and \ which are used by format are special to the default
Multics input processor, and t:nay need to be quoted accordingly when typed in (normally, with
\).

Once upon a time, various strange and wonderful interpretations were made on control-string
when it was neither a string nor a symbol. Some of these are still supported for compatibility
with existing code (if any) which uses them; new code, however, should only use a string or
symbol for control-string. ,:

This document describes an implementation of format which is currently in use in Maclisp
(both PDP-IO and Multics), and is intended to be transported to NIL. It thus is oriented towards
the Maclisp dialect of Lisp. The behaviour of format operators should be fairly consistent across
Lisp. dialects; entries documented here other than format, however, exist only in, the Maclisp
implcmc.ntation at this time, although they could be added to other format implcmentations
without difficulty.

10.1 The Operators

Here are the operators.

-A arg, any Lisp object, is printed without slashification (like prine).nA inserts spaces
on the right, if necessary,. to make the column width at least n.
-mincol,colinc,minpadpadcharA is the full form of -A, which allows aleborate control
of the padding. The string is padded on the right with at least minpadcopies of
padehar; padding characters are then inserted coline characters at a time until the total
width is at least milleol. The defaults are 0 for mincol and minpad, 1 for coline, and
space for padchar. The atsign modifier causes the output to be right-justified in the
field instead of left-justified. (The same algorithm for calculating how many pad
characters to output is used.) The colon modifier causes an arg of nil to be output as
O·

-s rJbis is identical to -A except that it uses prin1 instead of princ.

-0 Decimal integer output. arg is printed as a decimal integer. -n,m,oD uses a column
width of fl, padding on the left with pad-characterm (default of space), using the
character ° (default comma)' to separate groups of three digits. Thcse commas are
only inserted if the : modifier is present. Additionally, if the @ modifier is prescn~

then the sign character will be output unconditionally: normally it is only output if
the integer is negative. If arg is not an integer,then it is output (using prine) right·
justified in a field n wide, using a pad-character, of m, with base decimal and
*nopoint bound to' t.

-0 O~tal integer output. Just like -,?
-P ,If arg is not 1, a lower-case "stt is printed. (ltplt is for "plural".) -:P does the same

thing. after backing up an argument (like tt_: ... , below); it prinlc; a lower-case s if
the las/ argument was not l. -@P prints tty" if the argument is 1, or nies" if it is
not. . -:@P docs the same thing, but backs lip first.
Example:

(for mat n; 1 tt D Ki t t : @P" 3) = > "3 K; ttl e s ..

~/11.:FOIH\'1"T:FORM"T PROf .00 21-JlJl.·81

Maclisp Extensions 49 The Operators

-* -* ignores one argo -n* ignores the next n arguments .. n may be .negative. -:
backs up one arg; - n:· backs up n args .

... nG "Goes to" the nth argument. -OG goes back to the first argument in args.
Directives after a '-nG will take sequential arguments after the one gone to. Note
that this command, and -*, only affect the "local" args, if "control" is within
something like -{ ..

-% Outputs a newline. - n % outputs n newlines. No argument is used.

-& The fresh-line operation is performed on the output stream. -n& outputs n-1'
newlines after the fresh-line. The fresh -line operation says to do a terpri unless the
cursor is at the start of the line. This operation will virtually always succeed in
Mac1isp, ·since all Mac1isp file arrays know their charpos. Implemented by format
fresh -line, page 56.

-x Outputs a space. -nX outputs n spaces. No argument is used.

Outputs a tilde. n - . outputs n tildes. No argument is used.

-newline
Tilde immediately followed by a carriage return ignores the carriage return and any
whitespace at the beginning of the next line. With a :, the whitespace is left in place.
With an @, the carriage return is left in place. This directive is typically used when
a format control string is too long to fit nicely into one line of the program:

(format the-output-stre~m "-&!his is a reasonably -
long string-%")
I

which is equivalent to formating the string

"-&This is a reasonably long string-%"

-I Outputs a fonnfeed. - n 1 outputs n fonnfeeds. No argument is used. This· is
implemented by format-formfeed, page 56 .

.... T Spaces over to a gi~en column. The full form is -destination ,incrementT, which will
output sufficient spaces to move the cursor to column' destination. If the cursor is
already past column destination, it will output spaces to move it to column
destination + increment. k, for the smallest integer value k possible. increment defaults
to 1. This is implemented by the format-tab-to function, page 56.

-0 -0 uses one argument, and applies it as a function to params. It could thus be used
to, for example, get a specific printing function interfaced to format without defining
a specific operator for that operation, as in

(format t tI &; The fro~ vQ is not known %"
frob 'frob-printer)

The printing function should obey the conventions described in section 10.3, page 54.
Note that the function to -Q fonows the arguments it will get. because they arc
passed in as format parameters which get collected before the operator's argument.

-[-[,\frO -;.\'lrl-; ... -;SII'1l-] is " set of alternative control strings. The alternatives (called
elawes) arc separated by -; and the construct is terminated by "']. For example,
"-[Siamese -;Manx -;Persian ;Tortoise-Shell ;Tiger -;Yu-Hsiang -]kitty".
The ar},!lh alternative is selected; 0 selects the first. If a numeric parameter is given

MI:FORMA'i':FORMATOPS 21-JUI.-81

The Operators so Maclisp Extensions

(i.e. -n[). then the parameter is used instead of an argument (this is useful only if·
the parameter is "# '~). If arg is out of range no alternative is selected. After the
selected alternative has been processed, the control string continues after the -] .

.... [stnJ-;slrl-; ... -;slrn-:;default-] has a default case. If the last ; used to separate
clauses is instead -:;, then the last clause is an "else" clause, which is perfonned if
no other clause is selected. For example, "-[Siamese ;Manx ;Persian
-;Tortoise-Shell~' -;Tiger -;Yu-Hsiang -:;Unknown -] kitty".

-[-tagOO,tagOI, ... ;stnJ-tagIO, ... ;strl ... -] allows the clauses to have explicit tags. The
parameters to each ; are numeric tags for the clause which follows it. That clause is
processed which has a tag matching the argument. If -:al ,a2 ,hi ,b2 , ... ; is used, then
the following clause is tagged not by single values but by ranges of values al through
a2 (inclusive), bl through b2, etc. -:; with no parameters may be used at the end

. to denote a default clause. For example, "-[-' + ,'-,'.,'/ /;operator -'A,'Z,'a,'z;letter
-'O,'9;digit :;other]".

-:[fizlse-;true-] selects the false control string if arg is nil, and selects the true
control string otherwise.

-@[/rue-] tests the argument. If it is not nil, then the argument is not used up,
but is the next one to be processed, and the one clause is processed. If it is nil, then
the argument is used up, and the clause is not processed.

(setq prinlevel nil prinlength 5)
(format nil "~@[PRINlEVEl=-D-]-@[PRINlENGTH=-D]"

prinlevel prinlength)
=> "PRINLENGTH=6"

-R If there is no parameter, then arg is printed' as a cardinal English number, e.g. four.
With the colon modifier. arg is printed as an ordinal number, e.g. fourth. With the
atsign modifier. arg is printed as a Roman numeral, e.g. IV. With both atsign and
colon, arg is printed as an old Roman numeral, e.g. 1111. .

If there is a paramcter. then it is the radix in which to print the numbcr. The flags
and any remaining par3ITlcters are used as for the -D directive. Indeed, -0 is the
same as -10R. lbe full form here is therefore -radix,ntincol,padchar,commacharR.

-C arg is 'coerced to a character code. With no modifiers, -C simply outputs this
character, @C outputs the character so it can be read in again using the # re.lder
macro: if there is a named character for it, that will be usetl, for example
" # \Return"; if not. it will be output like "# / A". -:C outputs the character in
humap-readable fonn. as in "Return", "Meta-A", -:@C is like -:C. and
additionally might (if warranted and if it is known now) parenthetically state how the
charact~r may be typed on the user's keyboard,

To find the n<lme of a character.C looks in two places. The first is the vahJ/! of
the symbol which is the vallie of format:· / # -var, which is initialized to he the
variahlc which the # reader macro lIses, It is not necessary for the vahl(of
format:- / II -var to he hound. the S\.'{' 01 l(1 place is ·format··ch~ames: this is IJs~d
primarily to handle non-printing characters. in case the # reader macro is not Imdeo.
Both of these ,lrc a-lists, of the f0l111 «(lIl1me. ('ode) (11II11Ie. codd ...).

MI.:I:OR~·lA'r;F()R f\1/\'r OilS 21-JlI:.-81

Maclisp Extensions 51 The Operators

. The Mac1isp/NIL format has no mechanism for telling how a particular character
needs to be typ~d on a keyboard. but it does provide a hook for one. If the value of
format*top-char-printer is not nil. then it will be called as a function on two
arguments: the character code, and the character name. If there were bucky-bits
present, then they will have been stripped off unless there was 'a defined name for the
character with the bits present. 1be function should do nothing in nonnal cases, but
if it does it should' output two spaces~ and then the how-to-type-it-in, description in
parentheses.: See section 10.3. page 54 for infonnation on how to do output within
format.

-(- mincol,colinc ,minpad,padchar(text-) justifies text within a field mincol wide'. text.
may be divided up into. segments with -;-the spacing is evenly divided between the
text segments. W,ith no modifiers, the leftmost text segment is left justified in the
field, and the rightmost text scgmcnt right justified; if there is only one, as a special
case. it is right justified. The colon modifier causes spacing to be introduced before
the first text scgment; the atsign modifier causes spacing to be added after the last
millpad, default D, is the minimum number of padchar (default space) padding
characters to be output betwcen each segment. If the total width needed to satisfy
these constraints is greater than mincol. then mincol is adjusted upwards in coline
increments. colinc defaults to 1. For example,

(format nil "-10<foo-;bar->") => "faa bar"
(format nil "-10:<foo-;bar->") => It foo bar"
(format nil ~-10:@<foo-;bar->") => " foo bar It·

(format nil tI-10<foobar->") => " foobartl
(format nil tI-10:@<foobar->tI) => " foobar "
(format nil "$-10",'.<-3f->tI 2.59023) => "$ •••••• 2.59 .. ,

If -,.. is used within a -(construc~ then only the clauses which were completely'
processed are used. For example,

(format nil "-15<-5-;-""-5-;-""-5->" ,'foo)
=> " FDD"

(format n i,l tI-15<-5-;-""-5-;-""-5->" "faa 'bar}
=> "FDD BAR"

(format nil "-15<-5-;-;.-5-;-""-5->" 'faa 'bar 'baz)
=> "FDD BAR BAZ"

If the first clause of a -(is terminated with :; instead of -;, then it is used in a
spccial.way. All of the clauses are processed (subjcct to _"", of course), but the first
one is omittcd in performing the spacing and padding. Whcn the padded result has

,been detcrmined, then if it will fit on the currcnt linc of output, it is output, and the
text for the first clause is di~cardcd. If, however, the padded text will not fit on the
current line, then thc tcxt for the first clausc is output before the padded text. The
first clause ought to contain a carriagc return. The first clause is always processed,
and so any arguments it refers to will be uscd; the decision is whether to usc the
resulting piece of text, not whether to proccss the first clause. If the -:; has a
nUllleric parameter II, thcn the paddcd text mllst fll un the (;urrent line with·"
character positions to spare to avoid outputting the first clausc's text. For example,
thc control string

MI :FORMAl;FOI{M;\TOPS 21-JUL-81

The Operators 52 Maclisp Extensions

"-Q(.. -{-<-Q(.. -1·· -S->-"' -} -Q(" Jb" 10"., •• Jb

can be used to print a list of items separated by commas, without breaking items over
line boundaries. an9 beginning each line with n;; n. The argument 1 in 1:; accounts
for the width of the comma which will follow the justified item if it is not· the last
element in the list, or the period if it . is. - If :; has a second numeric parameter,
then it is used as the width of the line, thus overriding the natural line width of the
output stream. To make the preceding example use a line width of 50. one would
write

tt_%;; _{_<_%;; -1.50:; -S->-..... -} .-%"

Note that the segments -< breaks the outpu~ up into are computed "out of context~
(that is, they are first recursively formatted into strings). Thus. it is not a good idea
for any of the segments to contain relative-positioning commands (such as' - T and
.... &). or any line breaks. If -:; is used to produce a prefix string, it also should not
use relative-positioning commands. .

~{str -}
This is an iteration construct The argument. should be a list, which is used as a set
of arguments as if for a recursive call to format. The string SIr is used repeatedly as
the control string. Each iteration can absorb as many elements of the list as it likes.
If before any iteration step the list is empty. then the iteration is terminated. Also, if
a numeric parameter n is given, then there will be at most n repetitions of processing
of sir.

-:{str-} is similar. but the argument should be a list of sublists. At each repetition
step one sub list is used as the set of argmnents for processing sIr; on the next
repetition a new sublist is used, whether or not all of the last sublist had been
processed.

-@{slr } is similar to -{sir }, but instead of using one argument which is a list:
all the remaining arguments are ~sed as the list of arguments for the iteration .

.... :@{slr-} combines the features of -:{sir-} and -@{Slr-}. An the remaininl~
arguments are used. and each one must be a list. On each iteration one argument is
used as a list of arguments.

Terminating the repetition construct with -:} instead of -} forces sIr to be processed
at least once even if the initial list of arguments is null (however, it will not override
an explicit numeric parameter of zero).

If sIr is nun. then an argument is used as sIr. It must be a string. and precedes an,
arguments processed by the iteration. As an example, the fol1owing are equivalent:

(apply (function format) (list. stream string args»
(format stream "-1{-:}" string args)

This will lI"iC string as a formatting string. Thc -1 { says it wi11 he pn}(.'cssed at mnf
once. and the -:} says it \~lI he processed at teas[oncc. 'l'hercfhrc it is procc~~c4
exactly once, using args as the arguments.

M I: FOI{ M AT; FOR M AT OPS 21-.1 UJ.·81

Maclisp Extensions S3 The Operators

-} Terminates a -{. It is undefined elsewhere.

_A This is an escape construct If there are no more arguments remammg to' be
processed, then the immediately enclosing -{ or -< construct is terminated. (In the
latter case, the -< fonnatting is performed, but no more' clauses are processed before
doing the justification. The - A should appear only at the beginning of a -< clause,
because it aborts the entire clause. It may appear anywhere in a. -{ construct) If
there is ~o such enclosing construct, then the entire formatting. operation is
terminated.

If a numeric parameter is given, then termination occurs if the parameter is zero.
(Hence _" is the same as - # ".) If two parameters are given, termination occurs if
they are equal. If three are given, termination occurs if the second is between the.
other two in ascending order.

If _" is used within a :{ construct, then it merely tenninates the current iteration
step (because in the standard case it tests for remaining arguments of the current step
only); the next iteration step commences immediately. To terminate the . entire
iteration process, use -:"'.

-F outputs arg in free-format floating-point. -n F outputs arg showing at most n digits .
.... fl:F will show exactly n digits. No other variations are guaranteed at this time;
neither is the exact interpretation of n. It is reasonable to use this, however, when
one desires to print a ftonum without showing lots of insignificant trailing digits; for
example,

(format nil " 6f" 259.258995) => "259.259"

-E Outputs arg in exponential notation; e.g., "2.5925ge + 2". nE interprets n the same
as -F. No other parameters or flags are guaranteed at this time.

-$ (That's a dollar sign.) -rdigJdigJield,padchar$ prints arg, a ftonum, with exactly rdig
digits after the decinial point (default is 2), at least Idig digits preceding the decimal
point (default is 1), right justified in a field field columns long, padded out with
padehar. The colon modifier says that we should cause the sign character to be left
justified in the field. The atsign modifier says that we should always output the sign
character. The [dig allows one to specify a portion of the number which docs not get
zero suppressed.

-\ This is not reatly an operator. If one desires to use a mutti-charactcrlormat operator,
it may be placed within backslashes. as in - \now\ for the now operator. See page
47.

MI.:I:()R~IAr:I:OI{~l'\T OPS 21-JUL-81

Other Entries 54 Maclisp Extensions

10.2 'Other Entries

?format destination control-string (Any-number-offrobs)
This is equivalent to format except that destination is interpreted like the second argument
to print-nil means "the default", and t means "the terminal". This only exists in
Maclisp at the moment.

10.3 Defining your own

def1ne-forinat-op Macro
This may be used· in two formats:

(defi ne-format-op operator varlist body-forms. .•)

and

(def; ne-format-op operator jixnum-character-code)

The operator may be the fixnum code for a character, or a symbol with the same print
name as the operator. Whichever, it is canonicalized (into upper case) and will be
interned into the same obarray/package which format resides in. For example, the format
operator for tilde could be defined as

(define-format-op 1- #1-)

where" # 1-" represents the fixnum character code for tilde.
For the first format, the type of operator is determined by decoding varlist, which may
have one of the following fonnats:

(params-var)
An operator of exactly zero arguments; paramSwvar will get bound to the
parameters list

.(params-var arg-var)
An . operator of exactly one argument; params-var will get bound to the
parameters list, and arg-var to the argument.

(params-var . args-vary .
An operator of a variable number of args; params-var will get bound to the
parameters list, and args-var to the remaining arguments to format (or to the
recursive -{ arguments). The operator should return as its value some sublist
of args-var, so that format knows how many were used.

A definition for the appropriate function is produced with a bvl derived from the variables
in varUst and a body of body-forms. (The argument ordering in the function produced is
compatible with that on the Lisp Machine, which is arg-var (if any) first, and then
partlllis-var.)

$tandard-output Variable
Output from format operators should be sent to the stream which is the value of
standard-output. In the Multics implclllcntatinn of format. this \'atue may somctim('~ he
an ohject which is not suitable for being. fed to standard l.isp output fU.Ill"lil l ns (c.g.,
princ)~ format has lkfinitiolls of various Olltput functions \\ hich handle this case prOI){:rly.
and may be lIsed '(lr defining opNalors which will work compatibly in. ~·1l1llics Maclisp.

MI.: 1:0 I{ M /\ 'I'; FO R M A I' I'll I H)Oe 21-JUL-Hl

Maclisp Extensions ss Defining your own

They are documented below. Note that because of the way format interprets its
destination, it is not necessarily safe to recursively call formed on the value of standard
output in PDP-IO Maclisp. It is safe, however, to use ?format (page 54) instead, or to
call format with a destination of the symbol format.

Mac1isp format will also accept a drs/ina/ion of format to mean "use the format destination
already in cflcct". This is primarily for the benefit of Multics Mac1isp, since there the value of
standard-output cannot: be passed around as a stream. The format operator now, which prints
the current time, could be defined as

(define-format-op now (params)
params ; unused
(let {{now (status daytime»)

(format 'format "-2,'00:-2.'00:-2.'00"
(car now) (cadr now) (caddr now»»

with the result that

(format nil "The current time is -\now\.")

could produce the string

"The current time is 02:59:00."

format: co 1 on-f1 ag Variable
format: ats 1 gn-f1 ag Variable

These tell whether or not we have seen a colon or atsign respectively while parsing the
parameters to a format operator. They arc only bound in the toplevel call to format, so
are only really valid when the format operator is first called; if the operator does more'
parameter parsing (like -[docs) their values should be saved if they will be needed.

These variables used to be named just colon-flag and atsign-flag. In the interest of
transporting format code to Lisp implementations with packages, their names have been
changed. Thus, in either implementation one references them with the "format:" at the
front of the name, which in Maclisp is just part of the print-name.

The params are passed in as a list. This list, however. is temporary storage only. If it is
going to be passed back. it must be copied. In Mac lisp and NIL, it is an ordinary list which, in
PDP-IO Mac1isp. will be reclai.~ed after the operator has run. . On the Lisp Machine, it will be a
list-pointer into an art-Q-list array, possibly in a temporary area. Thus, although it is safe to
save values in this list with rplaca, one should not ever use rplaed on it, either explicitly or
implicitly (by use of ncone or nreverse).

Conceptually,format operates by perfonning Otltput to some stream. In practice. this is what
occurs inmost implementations; in Maclisp, there are a few special SFAs llsed by format. This
may not be possible in all implementations, however. To get around' tllis. format has a·
mechanism for allowing tlle output to go to a pseudo-stream, and supplies a set of functions
which will interact with these when they arc used.

~ 11.: I :0 R f\ 1 AT: 1-'0 R f\ 1 AT I D FFS . 21-JUJ.-81

Defining your own 56 Maclisp Extensions

forma t- tyo character
tyos character to the format output destination ..

format-pr1 nc object
princs object to the format output destination.

format-prin1 o~ect
prin1s frob to the~'format output destination.

forma t -1 cpr inc string capitalize?
This outputs string, which must be a string or symbol, to the format output destination
in lower-case. If capitalize? is not nil, then the first character is converted to upper case
rather than lower.

format-terpr1-
Does a terpri to the format output destination.

format-charpos
format-1ine1

Return the charpos and linel of the format output destination. Since in the Maclisp
implementation mUltiple output destinations may be implicitly in use (via outfiles, for
instance) this attempts to choose a representative one. The terminal is preferred if it is
involved.

format~fresh-11na
This performs the fresh -line operation to the default format destination. In PDP-lO
Mac1isp, this first will try the fresh -line operation if the destination is an SF A and
supports it. Otherwise, if the destination is a terminal or an SF A which supports
cursorpos, it will try (cursorpos 'a). Otherwise, it will do a terpri if the charpos is
not O. In the. Mac1isp implementation, where multiple output destinations may be
implicitly involved (via outfiles, .for instance), this handles each such destination
separately.

format-tab-to (fixnum destination) (Optional increment?)
TIlis implements - T to the current format destination (q.v.). In PDP-IO Mac1isp, this
operation on an SFA will use the tab-to operation if it supported, passing in arguments
of destination and increment (as a dotted pair); otherwise, charpos will be used to
compute the number of spaces to be output. If charpos is not supported, two spaces will
be output.

format-formfeed
Performs a formfeed on the format output destination. In Multics Mac1isp, .this will
normally jllst tyo the character code for a form feed. In PDP-10 Mac1isp, this will usc the
formfeed operation if the destination is an SFA and supports it, otherwise it witlclo a
(cursorpos 'e) jf the destination is a TTY file array (or an SFA) and supports it,
otherwise it simply outputs the character code for a form feed .

. : ML:FORMAT:FORMAT IDEFS 21-JUI.-81

Maclisp Extensions 57 Format and Strings

format-flatc Macro

(format-fl ate fonnl fonn2 ... fonnn)

The fonns are evaluated in an environment similar to that used inside of format: the
various format output-performing routines such as format-tyo and format-prine may be
used to "perform output". In all but lhe Multics Muclisp implementation, standard-
"output will be a stream which simply counts the characters output-it will only support
the tyo operation.

10.4 Format and Strings

In the PDP-IO Mac1isp implementation, format has provision for using a user supplied string
implementation. Nonnal1y, format expects to use symbols. However, if (fboundp 'stringp) is
tru"e, then format will use the stringp predicate to see if its argument is a string. If that is the
case, then the function string-length will be used to find the size of the string, and char-n will
be used to fetch characters out of the string. Both of these routines should have been declared
fixnum when compiled (Le., be ncallable). Internally, tests are ordered such that string-ness is
independent on atomic-ness. In addition, the character routine may be . used to canonicalize
something to a character code.

The Multics implementation is similar to the PDP-IO Mac1isp implementation, but uses
different routines: stringlength to get the size of lhe string (or symbol), and getcharn to fetch a
character out of the string. The eha"racter routine is not used.

*format-str i ng-generator Variable
This variable, which exists only in the Maciisp implementation of format, should have as
its value a function to convert a list of characters to a "string" to be returned by format.
In the PDP-IO implementation, this defaults to maknam, but may be modified . if "
"strings" are being supported. In the Multics implementation, it is a function which does "

(get_pname (maknam character-list)

and may be modified," if desired, to something more· efficient. In the PDP-IO
implementation, the list of characters should neither be modified nor returned to free
storage, as it will be reclaimed.

The PDP-IO Mac1isp hack of returning an uninterned "symbol which has itself as its value
and a + internal-string-marker property is not handled here; it is done by the outer call
to format itsclC and only if the returned "string" is a symbol and the value of *format
string-generator is maknam. This is done so as to not add unnecessary overhead to
internal uses of "strings" by format.

The name of this variable differs from that of other user-accessible format variables for
historical reasons: it will not be changed, because it only exists in Maclisp.

ML: I:OI·! ~1 AT: I 'Ol{ ['"It\'!' IJ)FFS 21-JUL-Sl

System Differences 58 Maclisp Extensions

11 .. System Differences
This chapter describes differences you may encounter in using these~ tools in each of the

various Lisp dialects in which, they have been implemented. One section is devoted to each
implementation, and a final section deals with transporting code between them. The system
specific sections are broken into parallel subsections.

Since not all of the tools documented herein will be a part of the default Lisp environment,
the first subsection simply describes how to make them available. This will in general involve
placing a form at the head of a source file to establish the appropriate read-time and compile-time
environment.

. The next subsection lists a number of things to watch out for in using a particular
implementation or in writing transportable code.. It deals with miscellimeous incompatibilities
related to these tools and to the Lisp implementations irt general. Some options which are specific
only to a single implementation are documented here.

The final subsection contains references to other sources of documentation, including that
which is available online.

11.1 PDP-I0

PDP-IO Maclisp is currently in a state of flux with regard to how these tools are provided and
exactly where they are located. Some are present in the default environment while others must be
requested explicitly. Check the online documentation for the current status.

11.1.1 Where To Find It

Thesharpsign and backquote reader macros are present in the default environment. loop and
format have autoload properties. Many of the functions and special forms described in chapter 8
are present natively or are autoloaded from. ((LIS P) MLMAC) (for MJcLisp MACros). The rest
may be loaded from «(LISP) UMLMAC) (for User MacLisp MACros). ejefstruct may be loaded
from « LISP) STRUCT).

To use the bit -test, dolist, and dotimes macros, place the foHowing fonn at the head of the .
source file.

(eval-when(eval compile) (load '«lisp) umlmac»)

to use defstruct, include the following fonn.

(eval-when (eval compile) (load '«lisp) ~truct»))

This will cause defstruct to be present during the interpretation or compilation of a file. To use
defstruct during debugging of the compilcd filc, see section 9.6, page 40.

MI.: MACI)QC;DI FFS46 21-JUI.-81

,~aclisp Extensions S9 Multics

11.t:~ Things To Watch Out For

defun&-ch9ck -args Variable. ' . ,
The "extended defun" facility (page 8) pro.vides little or no argument count checking for
functions by default. By setting this variable· to t. the function being defined will contain
additional code w.hich will provide a more meaningful error message when the' function is
called with the incorrect number of arguments.

A feature is provided whereby sequences of characters surrounded by· balance,d double-quotes
are read as un-interned symbols which arc bound to th'cmselves. This provides partial,
compatibility with newer Lisps that have strings. lbey are primarily useful as arguments. to prine,
load, and format, and. are not intended to be used as first-class data objeCts as on those systems
which support them natively.

11.1.3 Further Documentation

For the latest changes to this implementation •. see the file .INFO. :LISP RECENT on any ITS
system. Earlier editions of this file are archived in .INFO. :LISP NEWS. The file .INFO. ;LISP
FORMAT contains a chart of the format operators suitable for printing on an ascii consol~. The'·
files . INFO. ; LISP LOOP and LIB09C: STRUCT > contain the Bolio source for the toopmemo
and the defstruct portion of this memo. Perhaps someday these will be replaced by something·
fonnatted for a console.

11.2 Multics

The Multics implementation is also changing. As of this writing, only some of the extensions
described in this document are available from the standard 1ibrari~s, but we expect the remainder
to be installed in the near future. Check the online documentation for the current status.

11.2.1 Where To Find It

Only a few of the improvements to Multics Maclisp since 1974 are now a part of the default
environment. Primarily, these are the special forms which need to be primitively understood by
the compiler, such as eval-when and unwind -protect and certain simple functions such as list·.
The special forms let and let· are also in the default environment. Thebther tools documented
here may be accessed by the Multics Lisp special form %include. This forril causes a text' file to
be inserted inline during the interpretation or compilation of a file. The fonn:

(%include library)

can be placed at the front of any file of Lisp code that wants to utilize an of the features
documented here. This form will arrange for the correct cval-time, compile-time and run-time
environments to be present whenever the file is being processed in any way. To arrange for this

. extended environment to be present whenever the lisp interpreter is being used, this fonn may be
placed in the. file start_up. 1; sp in the user's home directory.

MI.:~1/\CI)OC:I)II:I:S 46 21-JUI.-Kl.

Multics 60 Maclisp Extensions

Since the %include fonn is unique to the Multics implementation, a variant on the following may
be used to allow the file to also read into other Lisps:

(eval-when (eval compile) (or (status feature Multics) (read»)
(%include library)

Those Multics Lisp users who wish to be n:t0re selective about the facilities they use may instead
use the form

(% inc 1 u d e module) .

where module is one of .backquote, sharpsign, defun, defmacro, defstruct, setf, format,' or
loop. Selective loading of packages may be desired to prevent name or syntax clashes or to speed
compilation. Note that some packages will load others as needed. For instance, defstruct will
load setf.

%include uses the translator search list to find the file to be included. To see the full
pathname of the file which is found, type

where_search_paths translator backquote.incl.l1sp

The actual object segments are bound together as bound_l i sp_l i brary __

where bound_lisp_library_

will find the full pathname of this segment

The modules listed above may be broken into three categories: read-time. (backquote,
sharpsign), compile-time (defun, defmacro, setf, defstruct, loop), and run-time (format).

The behavior of the include file for each module depends upon its type. For read-time and
compile-time files, the include file will load the file at eval-time or compile-time, but will not add
any fomls to the object segment. For run-time files, the include file will place a form in the
object segment which will load the desired module, either directly or via an autoload property. It
will also provide the appropriate function declarations for the compiler.

To use an eval-time or compile-time module at run-time, you can type (%include module) to
the interpreter or place this form in a file to be read into the interpreter, such as the
"start_up.l i sp file. Alternately, you can load the object segment directly, as in (load
")exl)object)lisp_backquote_ "), but this is not recommended since it requires specifying an
absolute path name.

~1.2.2 Things To Watch Out For

The characters sharpsign (" # ") and atsign ("@") are default erase and kill characters on .
Multics. If these characters are being used for input editing, you wi11 have to type "\ #" or
"\@" to enter them. Likewise, remember lhat to directly enter a backslash, two must be typed.

Most other Lisp readcrs translate lowercase characters to uppercase characters in symbol
names. 'lllC Multics implclllclllalion docs not do this case translation hy dcntllit. This fonn will
modiry the readtabJc to C()fI"cctly read files which arC' wrinen in uppcrcase:

" ML:MACDOC:DIFFS 46 21-JUL-81

Maclisp Extensions 61 ·Multies

(do «i #/a (1+ i»)
(,(> i #/z» .
(setsyntax (: i #040)

(boola 7 (apply 'status (list 'syntax i» #0500)
i))

The syntax used for reading strings is also different from that used elsewhere. In other Lisps,
the I character will quote the next character, so I" will insert a double quote character into a
string. In Multics Lisp. the I character loses its special meaning and. is interpreted as 'an ordinary.
alphabetic. To insert a double quote character into a string, the character is typed twice,
following the Multics system convention. This incompatibility arose since the implementation of
strings in Multics Lisp predated their implementation elsewhere.

While no installed facility is available at the moment for resolving these syntax differences,'
. the authors have a private reader which is compatible with the PDP-IO case and string syntax.
Contact one of them for more information.

When the Multics Lisp compiler needs to generate an anonymous function, it creates a
symbol to put the definition on. This will occur whenever a function is passed as an argument
using (function (lambda ... », or when using (defun (name prop) ...), for example.
Unfortunately, you get the same names every time you run the compiler. Doing .

{decl are (genprefi x unique-name»

will fix this problem; the compiler will then use unique-name as a basis for its gcnerated names.
For example, the loop module does

(declare (genprefix loop-itaration/l-»

so that the compiler will generate names loop - iteration/l-1, loop - iteration 11-2, etc.

error works incompatibly. The second argument is output fonowing the first, rather than
before, as is done elsewhere. It is recommended that you use ferror instead, or define your own
error signalling primitive. This is often a good thing to do anyway.

The default setting of the *rset switch is nil. You may find it hclpful to tum it on in your
start_up.lisp.

If you find a symbol which has become mysteriously unbound, chances are that you have
taken the car of a symbol or bignum someplace. The object returned by such an operation is the
special marker stored in unbound value cells.

The recently written Multics command di sp 1 ay_l i sp_object_segment (short name
d los) may be used to examine the contents of compiled Lisp object segments. It. is quite useful
in verifying the proper execution of complex macros and compile-time facilities.

MI.:~v1ACI joe:1)IFFS .1{,

UspMachine 62 Maclisp Extensions

11.2.3 Further Documentation

Online Lisp documentation resides in the directories >exl>info and >doc>info. The info
segment 1 i sp. chang~s. info describes the latest changes -to the Multics implementation.
lisp_manual_update.info describes earlier changes. A collection of segments
1 i sp_module. info, where _ module is as above, repeat the documentation contained in this
manual. Finally, the segment display_lisp_object_segment.info describes the
d i sp 1 ay_l i sp_object"-segrnent command.

These segments may be perused by means of the he 1 p command. For instance, type
"he 1 p 1 i sp. changes" to view the first of these segments.

11.3 Lisp Machine

On the Lisp Machine, everything described in this document is a part of the default
environment. No changes need be made to source files.

Further documentation may be found by consulting the Lisp Machine Manual, the LMMAN
directory on the A I machine, and finally the source code itself. The Zmacs command Meta
period will prompt for a function or variable name and read the source file in which it is defined_
into a buffer.

11.4 Hints On Writing Transportable Code

This section contains some hard-knocks knowledge gathered by the -authors over many tea
filled nights of grief. While we have . done our best to distill some coherent advice from our
experience, there are no easy answers. This is at times a black -art.

No doubt there are techniques (and pitfalls!) which we have overlooked. If you have
something which could be added to this section, the authors would like to hear from you.

11.4.1 Conditionalization

Ultimately, despite everyone's best efforts, you are likely to find that your code must be
condition ali zed in some manner. In this eventuality there are a couple of things to be aware ot:

The sharpsign reader macro (chapter 3, page 5) is a very handy tool for conditionalizing code
for different sites. However, its indiscriminant use can result in highly unreadable code.
Frequently, when it seems that conditionalizations are going to need to be sprinkled throughout a
piece of code, it _ is possible to identify a common pattern between them, and replace them with
an appropriately defined macro. This macro wil1 have a definition that wi11 be conditionatized for
e~ch site that the code runs, and will serve to localize the ugly implementation dependent delails.
Sometimes this operation actually improves the readability of the code, since it forces the
programmer to give a name to a pattern present in many places.

As an example. the foJlowing macro provides a system-independent way of determining the _
screen size of a console stream.

fvfl.:MACDOC;DIFFS 46 21-JUJ...-81

Maclisp Extensions 63 Hints On Writing Transportable Code

(defmaero se~een-size (stream)
#+ITS '(status ttysize ,stream)
N+Lispm' '{multlple:value-bind (width hei'ght)

(funeall ,stream ':size-in-characters)
(cons height width»

II-(or ITS Lispm) 1'(80 .. 24.»

Another problem with using any of the conditionalization features of the sharpsign reader
macro is the faet that although something like

#+NIL fonn

does cause the fonn fonn to be ignored in Lisps that aren't of the NIL variety, it is nevertheless
necessary that fonn be readable in those other Lisps. In other words, if fonn contains the use of
a reader syntax that is ollly supported in NIL, then it won't work to conditionalize fonn in this
manner, because other Lisps are going to have to parse it.

Currently, a frequent cause of such problems is the use of a special cparacter name after # \ .
that isn't universally understood.

In some situations, large portions of a program will need to be written differently from system
. to system. Often such portions will deal with issues of operating system interface, such as console
or file if o. In such cases, it is best to define a common interface to this portion,. so that this
code may be factored out into separate files. .

11.4.2 Odds and Ends

A void directly inserting into your code constants which are specific to the byte, word, or
pointer size of a machine. For instance, use (rot 1 -1) instead of 1_43 to reference the most
negative fixnum on a PDP-IO. Similarly, use (Ish -1 -1) for the most positive' fixnum and
(haulong (rot 1 -1» for the number of bits in a fixnum.

There is only one reliable way to define a function that ignores one or more of its arguments
without complaint from the compiler:

(dafun ignore-seeond-arg (first second third)
second' ; ignored
(list first third»

Other conventions do not work universally.

Not all Lisps have strings. However, in most, text surrounded by doublequotes will read in
as some kind of object which will print out again in a readable fonnat. This object is suitable for

. passing to nmctions such as prine and format, but cannot be univcI'S<111y' guarantecd to behave
reasonably with functions such as equal. .

In Mac1isp, the default syntax of the colon character is alphabetic. but it has special meaning
on the Lisp Machine. Don't use it in the name of a symholunlcss you know what you are
doing.

ML:MACD()C~I)IFFS 46 21-JUL-81

Hints On Writing Transportable Code 64 Mac1isp,Extensions

If colons are being used only for denoting keywords, then it is useful to give colon the syntax
of whitespace outside the Lisp Machine. This can be accomplished wi,th this Maclisp form:

, ..
(setsyntax '1:1 'I 1 nil)

Don't leave control-V's (circle-plus on the Lisp Machine) lying around randomly, like invalret
strings. They have special syntactic meaning on the Lisp Machine.

All PDP-IO Maclisp compiled output (tlFASL") files use the same format. It is therefore
possible to transport the compiled file between PDP-lOs (e.g., from an ITS to a TOPS-20). if the
code contained therein is not conditionalized on those differences. The source code for loop, for
example, does not contain any # + 'or # - conditionaIizations which distinguish between any
PDP-IO implementations; the F AS L file for loop used on TOPS-20 and TOPS-IO sites is the same
one used on ITS.

tyfl.:MACDOC;DIFFS'46 21-JUI.-81

Maclisp Extensions

*catch Special Form . ..•
*fonnat-string-generator Variable
*rset Variable. • • • • . • • . . • • •
*throw FUllction.
< = Function . . •
> = Function . .
?fonnat Function
arrayp Function.
bit-test Function .
case translation .
caseq Special Form
char-n Function. .
character Function
defconst Special Form. . .
define-format-op Macro.
defmacro Alacro
defstruct Alacro

. defstnlct-define-type Macro •
defun Special Form •
defun&-check-args Variable.
defvar Special Form .. • •
dolist Special Form . .
dotimes SpecialForm .
dpb Function
error Function
eval- when Special Form.
evenp FUllction . .
fboundp . Function.
ferror Funclion . .
fixnump Function••....•
flonump Function.
fonnat Function. .
format-charpos Function .
format-flate Macro
fonnat- formf~cd Function
fonnat- fresh -line Function •.
fonnat -1cprine Function. •
format-linei Function.

, format-prinl Function .
format-prine function .
format-tab-to Function.
fonnat-tcrpri FUll c lio;l .

. fonnat-tyo FunClioll ..
format:*/ # -var Variable.
format:*lop-ehar-prinlcr Variable
fonnat:atsign - flag Variable. . . .

6S

Index

.' .

· . . .
· . ., .

.'. . , .

· . ~
.

· . .'.

. . .
. . .0 . .

In4ex:

.24
· ... 57

.61

.24

.19

.19

.54

.19

.18

.60

.23
• ... 57

.57

.13

.54

.10

.26
· .42
· .. 8

.59

.13

.23
· 23

.18

.'61

.13

.19
· .19

· . 25,61
.18

. .. 18
· .47

.56

.57

.56

.56

.56
· . .56
~56
.·56
.56
.56
.56
.50

.... 51
.55

21-JUL-81

Index

format: colon - flag Variable. • •
genprefix Compiler Dec/aration ,.
if Special Form ...
ldb FUllction. . .
let Special Form ~
let'" Special Form • ,.
lexpr- funcall Function.
list* Function ..
logand Function ..
logior Function
lognot Function •

. logxor Function • •
loop j\f acro ...
make-list Function •
nth Function.•
nthcdr Function •
package prefix ..
packages
pop flit acro. . . •
progl Special Form
psctq Special.Form ..
push Macro
selectq Special Form.
setf Macro•
standard -output Variable •
string -length Function.
stringp Function. . . . • •
strings.

'. .

unwind-protect Special Form •
without-interrupts Special Form •

66

. . '. .

. . . 0. .

Maclisp Extensions

. . .

SS
61
21
18
20
20
2S
19
17
17
17
17
23
19
20
20
63

.. 26,28,30,41,55
16
25
21
15

. 22
15
54
57
57

. 59,61,63
24
2S

~1-JUL-81

	0001
	0002
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66

