- O

Massachusetts = - Project MAC - .
Institute St Progress-Report VIii
of Technology i July 1970 to

o S ' July 1971

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va. 22151

The work reported here was carried out within Project MAC, an
M.I.T. interdepartmental laboratory. Support was provided by:

The Advanced Research Projects Agency of the
Department of Defense, under Office of Naval
Research Contracts N00014-70-A-0362-0001,
-0002, and Defense Supply Service Contract
DAHC15 69 C-0347;

The Office of Naval Research under Contract
N00014-69-A-0276-0002;

The National Aeronautics and Space Adminis-
tration under Contracts NGR 22-009-393 and
NAS 12-2093;

The National Science Foundation, under
Contracts GJ-432 and GJ-1049.

The support for some of this work came from the M.I.T. Depart-
ments and laboratories that participate in Project MAC and
whose research programs are, in turn, sponsored by Government
and private agencies.

Reproduction of this report, in whole or in part, is permitted
for any purpose of the United States Government. Distribution
of this document is unlimited.

The cover and above pictures show displays of the
states of a three-dimensional cellular automaton.

(A cellular automaton is a type of parallel pro-
cessing computer compused of an array of identical,
simple processing units called cells.) 1In these
simulations of an array of three-state cells, state
2 is represented by an incomplete triangle, state 1
by a 1 and state 0 by the absence of a symbol. Such
generalized tessellation automata have been studied
at Project MAC and are described on page 9.

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classilication of title, body of abetraci and indexing annotetion muet be entered when the overall report ie claesilied)

1. ORIGINATING ACTIVITY (Cororate author) 20. REPORT SECURITY CLASSIFICATION
Massachusetts Institute of Technology UNCLASSIFIED
roject MAC 2b. GRcuP

None

3. REPORT TITLE

Project MAC Progress Report VIII July 1970 to July 1971

4. DESCRIPTIVE NOTES (Type of report and inciualve detes)

[Ahnual Progress

S. AUTHORIS) (Laet name, liret name, initiai)

Collection of reports from Project MAC participants
Profs. J. C. R. Licklider and Edward Fredkin

6. REPORT OATE 7e. TOTAL NO. OF PAGES 7b. NO. OF REFS

1 July 1971 235 (In Text)

8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

N00014-70-A-0362-0001, -0002; DAHC 69
C-0347; N00014-69-A-0276-0002; NGR 22- MAC Progress Report VIIL
009~-393 and NAS 12-2093; GJ-432 and 9b. OTHER REPORT NO(S) (Any other numbers that may be
GJ_ 1 0 4 9 aseigned thie report)

10. AVAILABILITY/LIMITATION NOTICES

This document has been approved for public release and sale; its distri-
bution is unlimited.

12, SPONSORING MIiLITARY ACTIVITY

| None Advanced Research Projects Agency
3D-200 Pentagon

Washington, D.C. 20301

11, SUPPLEMENTARY NOTES

: »
Ad13. AesTRaCT

The broad goal of Project MAC is experimental investigation of new ways
in which on-line use of computers can aid people in their individual work
whether research, engineering design, management, or education.

This is the eighth annual Progress Report summarizing the research carrie
out under the sponsorship of Project MAC. Details of this research may
be found in the publications listed at the end of each section and in

Appendix A.

4 X§Y; wonos gellulﬁr Automata Education \

n—-Line Computers ime-Sharing Dynamic Modeling
Multiple-Access Computers Information Systems Programming Languages
Real-Time Computers Artificial Intelligence Computation Structures
Computer Networks Machine-Aided Cognition Automata Theory
Interactive Management Graphics Implicit Computation

DD .3 1473 (M.LT.) UNCLASSIFIED

Security Classification

R PO A st R OGS S v

R —— - s

/ i
. ¥
¥ i
7' ARTIFICIAL INTELLIGENCE'
AUTOMATA ' THEORY
=)
" CELLULAR AUTOMATA'
PROJECT MAC T, oy
PROGRESS REPORT VIII ey
JULY 1970 to ‘
JULY 1971 * COMPUTATION STRUCTURES

-

- - ’

COMPUTER SYSTEMS RESEARCH ’

e —

DYNAMIC MODELING, GRAPHICS AND NETWORKS

-

EDUCATION

¢ IMPLICIT COMPUTATIO&;_

-y

- INTERACTIVE MANAGEMENT SYSTEMS *

> MATHLAB |

t

| PROGRAMMING LANGUAGES

.

ST

TABLE OF CONTENTS

PERSONNEL ' iv
PREFACE Xi
I ARTIFICIAL INTELLIGENCE 129
A. Vision and Description 130
B. Appearance and Illusion 137
C. Analysis of Visual Scenes 148
D. Description and Learning 156
E. Knowledge and Generality 186
S
IT AUTOMATA THEORY 1l
A. Abstract Complexity Theory 3
B. Algorithms 4
C. Polynomial Evaluation 4
D. Sorting 4
E. Papers 5
III CELLULAR AUTOMATA 7
IV COMPUTATION STRUCTURES 11
A. Introduction 13
B. Petri Nets 13
1. State Machines 14
2. Marked Grapas 16
3. Free Choice Nets 16
4. Simple Petri Nets 19
5. General Petri Nets 19
C. Asynchronous cpeed-Independent Circuits 23
D. Base Language 26
E. Program Graphs 32
F. Translation of Block-Structured
Languages 44
G. Cycles in Structures 46
H. Computers and People 52
\Y COMPUTER SYSTEMS RESEARCH GROUP 57
A. Introduction 59
B. Dynamic Reconfiguration 59
c. 1I/0 Programming Language 60
D. Automatically Managed Multilevel Memory 60
E. Protection of Programs and Data 62
F. System Programming Language 62
G. Message Handling 64
H. Graphics Support 64
I. Other Activities 65
i
2 ik -

VI

VII

VIII

IX

TABLE OF CONTENTS (continued)

J. Acceptance of Multics
K. ARPA Network Status
1. Design Issues
2. Implementation
3. Experiments

DYNAMIC MODELING, COMPUTER GRAPHICS AND
COMPUTER NETWORKS
A. Introduction
B. Dynamic Modeling
1. Mediation and Intervention

2. The Library of Subroutines
3. The Library of Documents
4. An Extension of the LISP Language
5. Lexicontext
C. Computer Graphics
1. "Picture Framing"
2. Polyvision
3. Graphical Debugging
4. Elucidations
5. Visual Statistical Analysis
6. Imlac Displays
D. Computer Networks
l. Network Control Program
2. The Network at the End of the Year
EDUCATION

IMPLICIT COMPUTATION

A. Introduction

B. Exact-Inexact Machines and Approaches
C. Pressure-Flow Machines

D. Fundamental Work

INTERACTIVE MANAGEMENT SYSTEMS,
Introduction ‘

Set-Theoretic Data-Manipulation System

Management Information Systems

Studies of Access Control and Privacy

. Modeling of Organizations

SIMPL Project

HE OO

ii

66
67
67
68
69

73
75
76
76
78
79
80
81

82
82
83
83
84
84
85

85
85
86

89

93
95
96
98
99

103
105
105
106
107
107
109

g

R <. e

TABLE OF CONTENTS (continued)

X MATHALB

XI PROGRAMMING LANGUAGES

A.
B.
C.
D.
E.
F.
G.
H.
I.
J.
K.

APPENDIX
L3

Introduction

Canonic Systems

Power of Canonic Systems

Canonic Systems and Recursive Sets
Generalized Translator

Canonic Reduction Generator
Undecidability of Programming Languages
Measure Function of Programming Languages
Programming Systems Environment
Community Activities

Teaching

A
Project MAC Publications

iii

111

117
119
119
119
120
120
122
122
123
123
124
124

223
223

PROJECT MAC PERSONNEIL

JULY 1970 to JULY 1971

Administration
Prof. J. C. R. Licklider Director (to June 1971)
Prof. E. Fredkin Director
Prof. M. M. Jones Assistant Director (to June 1971)
D. C. Scanlon Administrative Officer
D. E. Burmaster Assistant Director for Student

Activities (to June 1971) and
Business Manager (to December

1970)
G. B. Walker Business Manager
P. Brandler Assistant Business Manager

(to September 1970)

R. J. Harman Assistant to the Director

M. S. Draper Administrative Assistant (to
June 1971)

M. K. Hadley Librarian (to December 1970)

B. H. Kohl Librarian

Academic Staff

Prof. F. J. Corbato’ Prof. J. C. R. Licklider
Prof. J. B. Dennis Prof. C. L. Liu

Prof. M. L. Dertouzos Prof. W. A. Martin

Prof. J. J. Donovan Prof. A. Meyer

Prof. A. Evans, Jr. Prof. J. Moses

Prof. R. M. Fano Prof. N. P. Negroponte
Prof. R. R. Fenichel Prof. S. S. Patil

Prof. E. Fredkin Prof. J. H. Saltzer
Prof. G. A. Gorry, Jr. Prof. J. F. Shapiro
Prof. F. C. Hennie, III Prof. J. Weizenbaum

Prof. M. M. Jones

Sl

b
Ek

T AN P 514D o TR Tl RN S T mf b o R o

Instructors, Research Associates, Research Assistants, and Others

R. G. Abramson F. E. Guertin W. C. Michels
V. Altman M. Hack P. L. Miller

D. Asthana M. Hammer R. N, Moll

A. Bagchi J. F. Haverty A. R. Monroe-Davies
R. Barquin I. T. Hawryszkiewycz M. L. Morgenstern
R. D. Bressler P. G. Hebalkar S. Murthy

D. Brown D. A. Henderson, Jr. B. G. Ong

G. G. Bruere-Dawson G. Holt H. F. Okrent

R. H. Bryan P. M. Hutchins P. Olson

R. Bryant J. Johnson R. C. Owens,

I. R. Campbell-Grant R. Johnston G. Pfister

D. D. Clark M. E. Kaliski K. T. Pogran

J. Coffman J. Kaplan D. H. Porges

J. D. DeTreville D. J. Kfoury C. Ramchandani
M. W. Dixon P. A. King L. J. Rotenberg
G. T. Dixon W. J. Klos J. E. Rumbaugh
R. S. Eanes D. Konig R. R. Schell

R. Earle B. Lester M. D. Schroeder
M. Edelberg J. P. Linderman J. I. Seiferas
R. J. Fateman M. P. Lum A. Sekino

R. J. Fleischer N. A. Lynch W. G. Shaw

J. Fosseen C. W. Lynn D. G. Sitler

P. J. Fox S. E. Madnick J. R. Sloan

F. Furtek R. Mandl B. J. Smith

R. C. Goldstein F. Manning J. R. Stinger
A. Gonzales M. J. Marcus R. H. Thomas

L. I. Goodman S. P. Mason H. M. Toong

I. G. Greif D. T. McDonald L. E. Travis

vi

c r» w w

o)

Instructors, Research Associates, Research Assistanis,
and Others (cont.)

J. Vilfan P. S. Wang T. A. Welch

M. Vogt S. A. Ward C. Ying

C. Walker A. S. Weinberg D. Yun

Undergraduate Students

F. Bauer R. M. Elkin N. V. Kohn

J. Baum R. Frankston D. M. Krackhardt

B. Bishop R. A. Freedman P. B. Kurnik

M. Berman D. E. Geer R. S. Lamson

H. Black M. R. Genesereth P. J. Leach

G. Bras R. S. Goldhor P. D. Lebling

A. Brenfleck P. A. Green C. K. Leung

Bricklin R. A. Guida J. C. Lind

Brodie P. H. Guldberg M. Liu

L. Brooks R. H. Gumpertz W. S. Mark

S. Broos J. H. Harris J. R. McCauley
. M. Brown C. A. Hatvany D. Misunas

H. Brown B. Hubbard S. Morrow

Carlson P. W. Hughett S. G. Morton

Y. Chan W. F. Hui W. Y. Ng

J. Chang J. E. Jagodnik P. A. Pangaro

M. Christie E. Kant G. Pavel

S. Cohen P. A. Karger R. Pincus

R. Cone R. M. Katz R. L. Prakken

G. Curley C. A. Kessel J. Quimby

E. Cutler H. J. Kim D. P. Reed

K. Daniels R. N. King J. L. Reuss

Davis E. Kohn K. Rhoades

vii
e

J.

L.

N.

Undergraduate Students (cont.)

Rondio

C. Rosen
L. Rosenberg
M. Rubin
D. Ryan
Saunders

J. Siegel

J. Ablowitz
J. Bailin

R. Banks

K. Bhushan
R. S. Bingham
Brandler

L. Brown

E. Burmaster
Byer

H. Campbell
0. Capps

A. Cohen

G. Cressey
C. Daley

D. Dunten

c. Englaﬁd
J. Feiexrilag

A. Friel

R.

N.

A.

J.

P. Silberstein
Singer

M. Solish
Stern

M. Stoney

M. Strayhorn

D. Tavares

DSR Staff

W. Galley

L. Gardner

C. Garman

P. Goldberg
P. Golden

M. Gunkel

J. Harman

P. Jarvis, III
K. Kanodia

H. Kohl

Lenot

F. Mabee

J. Martin

M. Metcalfe
W. Meyer, Jr.
C. Michener
I. Morris

E. Niles

viii

W.

E.

H.

L.

H. Thrasher

Tsiang

Tucker

E. wWidman

J.

Zak

E. Zippel

C.

Padlipsky
Peltan
Plummer
Reeve
Rothschild

Scanlon

Schroeppel

P.

J.

J.

Skinner
Spier

Strnad

Taggart

C.

Thurber, Jr.

Vezza

Voydock
Walker
Weaver
Webber

Wells

] S gy~

Support Staff
M. C. Amyot A. M. Garrity J. E. Pinella
M. E. Baker R. E. Golden, III R. Pinsley
V. M. Berardinelli D. Goldthrope R. Queens
M. A. Bizot M. J. Grano E. M. Roderick
M. F. Brescia M. K. Hadley A. Rubin
O. D. Carey J. A. Haley T. H, Seymore
L. S. Cavallaro L. J. Haron K. K. Simpson
N. Chen A, J. Hicks A. H, Speare
M. T. Cheney R. F. Hill J. Stavrinos
S. J. Cohn M. A. Hoer M. K. Stephens
M. J. Connell D. L. Jones J. E. Tamayo
J. Considine D. Kontrimus A. G. Testa
S. Daise E. T. Moore E. B. Ulman
L. K. Denison B. A. Morneault M. W. Webber
C. P. Doyle E. F. Nangle L. E. Yaple
C. Falls L. G. Pantalone F. L. Yost
L. L. Gammell K. W. Pierce K. Young

Guests

H. Adler P. Eisenberg Prof. A. Fleisher

Prof. J. Berger Prof. J. I. Elkind Prof. G. Iazeolla

ix

184 T s e e E e =

e—— TR RPN AP,

ADMINISTRATION

Academic Staff

Prof. J. C. R. Licklider Director (to June 1971)
Prof. E. Fredkin Director
Prof. M. M. Jones Assistant Director (to June 1971)

Administrative Staff

D. C. Scanlon Administrative Officer

D. E. Burmaster Assistant Director for Student
Activities (to June 1971) and
Business Manager (to December

1970)
G. B. Walker Bustiness Manager
P. Brandler Assistant Business Manager (to
September 1970) 7
R. J. Harman Assistant to the Director
M. S. Draper Administrative Assistant (to
June 1971)
M. K. Hadley Librarian (to December 1970)
B. H. Kohl Librarian

Research Staff

P. M. Gunkel

Research Assistant

F. Manning

Support Staff

M. C. Amyot E. T. Moore

L. S. Cavallaro L. G. Patanlone
M. J. Connell K. W. Pierce

J. Considine R. Pinsley

L. K. Denison E. M. Roderick
L. L. Gammell K. K. Simpson
J. E. Goss A. H. Speare

N. P. Greeley J. Stavrinos

D. Kontrimus E. B. Ulman

Xi

P | e B 5 o By s

PREFACE

Project MAC was begun as an interdepartmental laboratory at the
Massachusetts Institute of Technology in early 1963. The initial
research and development goals were concerned with Multiple- 3
Access Computer systems, Machine-Aided Cognition, and, in 1
general, the interaction between Men And Computers. The name ;
"MAC" is an acronym for each of these goals. 4

In the year ending June, 1971, there were 320 persons associated
with MAC. They included: 21 faculty members mainly from the
Departments of Electrical Engineering and Mathematics and from
the Alfred P. Sioan School of Management; 105 staff members

(DSR staff and Support Staff), 182 students (Undergraduvate

and Graduate) and 12 Guests.

Early in its history, MAC conducted extensive experimentation
with and development of the Compatible Time-Sharing System
(cTSsS), an early large-scale, multiple-access computer system.
More recently we have continued our research on the MULTICS
system, which came into operation 2 years ago. MULTICS is a
conceptually advanced multiple-access system that is capable

of straightforward and smooth expansion into an extremely large
and capable facility.

The second of MAC's original objectives, machine-aided cognition,
has recently made very significant progress. We feel that
recent MAC/AI research represents an enormous conceptual

advance. In December, 1970 the Artificial Intelligence group
pecame an independent MIT laboratory; Professors Marvin Minsky

and Seymour Papert are Co-directors. Important and useful L
collaboration between MAC and the AI Laboratory is continuing.

In May, 1971, Professor J. C. R. Licklider stepped-down from

the Directorship of MAC to devote full time to his own research
specialties - Dynamic Modeling, Computer Graphics, and Computer
Networks ~ and Professor Edward Fredkin assumed the Directorship.
Miss Dorothea Scanlon continued as Administrative Officer, and
Mr. Gary Walker remained as Business Manager.

In anticipation of a major research thrust in a new direction,
MAC has consolidated and strengthened various groups.
Educational Applications; MacAIMS; Programming Linguistics/
Extensible Languages; and Programming Linguistics/ Formal
Systems have been terminated as separate groups. A policy of
more decentralized control by the group leaders has been
instituted.

Although the specific goals of MAC for the next few years

are now the subject of much thought and discussion, an emerging
consensus seems to be that we are interested in the problems of
imbedding knowledge in the computer and in enabling that
knowledgeable system to play a key role in generating programs
and other forms of solutions to problems. We feel that, armed
with knowledge, a system will be able to better communicate
with its users. We give this field the name "Automatic

xiii

Programming".

This progress report outlines the research carried out in the
year ending June, 1971. The report is subdivided into 11
sections corresponding to the research groups in Project MAC.
The technical reports and memoranda of Project MAC are listed
in Appendix A, and references to the exXternal publications
resulting from the research appear in the bibliographies at
the end of each section.

During the past year, the core program of Project MAC and the
Artificial Intelligence Group were supported, as heretofore, by
the Information Processing Techniques Directorate of the
Advanced Research Projects Agency (ARPA). Individual projects
were funded by several other agencies: research in extensible
languages, National Aeronautics and Space Administration;
interactive problem-solving and decision-making, Office of Naval
Research; dynamic modeling, Behavioral Sciences Directorate of
ARPA; programming generality, National Science Foundation.

Edward Fredkin

Cambridge, Massachusetts

Xiv

AUTOMATA THEORY

Prof. F. C. Hennie, III

Academic Staff

Prof. C. L. Liu
Prof. A. Meyer

Instructors, Research Assoclates, Research Assistants and Others

A. Bagchi N. A. Lynch

D. Brown R. Mandl

G. G. Bruere-Dawson R. N. Moll

M. ZEdelberg B. G. Ong

M. M. Hammer B. J. Smith

P. M. Hutchins B. J. Vilfan

D. J. Kfoury C. Ying
Support Staff

M. E. Baker

V. M. Berardinelli

S. J. Cohn

II. AUTOMATA THEORY

Abstract complexity theory, which has been a central topic of
research in the Automata Theory Group in the past, has become a

with contributions from nearly three dozen authors in the U.s.
and the Soviet Union. As reported belcw, some further work in
this area was carried out during this last year, and two doc-
toral theses are still in progress. However, the basic phenom-
ena associated with the classification of computations according
to their time and space requirements are now rather well under-
stood, and further refinements in the abstract theory are likely
to be of diminishing interest to the computer scientist. Major
interest within the group has now shifted toward combinatorial
and statistical analyses of a variety of algorithms commonly
arising in computation. The goals of work in this area are to
develop methods for designing good algorithms for problems of
practical interest, and to devise techniques for verifying the
optimality of algorithms. The work described below on matrix
multiplication, polynomial evaluation, and sorting represents
the beginnings of this more practical approach to the study of
algorithms.

A. Abstract Complexity Theory

One of the basic theorems about computable functions is that,
for every computable function t, there exists a zero-one valued
computable function ¢ that takes more than time t to evaluate.
More precisely, any program that evaluates c requires at least
t(x) steps to compute c(x) for all but finitely many values of
Xt

In order to appreciate the significance of such a theorem, one
needs additional information (not provided by the usual proof)
about how many values of the function ¢ are easy to compute,

It might be the case that the functions that are difficult from
the point of view of complexity theory -- i.e., functions that
are time-consuming to cempute on the average -- are actually
easy for all small arguments, say all arguments less than 10100,
In fact, any zero-one valued function can be computed rapidly
for any given finite set of arguments by simply storing the
pertinent values of the function in a table. A genuinely com-
plex function should have the property that any program that
computes it can run rapidly on only as many inputs as can

be stored in a table whose size equals that of the program.
Such functions are constructed and studied in a paper by

Prof. A. Meyer (jointly with E. M. McCreight) .

Properties of program size are considered in several further
papers written this year. One of th.: motivations for the study
of program size has been to provide a quantitative understanding
of the relative convenience of different programming languages
by comparing the sizes of the programs needed to implement the
same computation in different languages. A fairly general
theorem recently proved by Prof. Meyer shows that a slight in-
crease in the set of instructions of certain kinds of program-
ming languages can lead to enormous economies in program size.

A related study of formal grammars by Meyer (jointly with Prof.

PRECEGING FASE BLANK

AUTOMATA THEORY

M. J. Fischer) derives quantitative bounds on the improvement

in simplicity of definition that can be achieved by using pow-
erful grammars such as context-sensitive or context-free gram-
mars to define simple sets such as reqular or even finite sets.

B. Algorithms on Graphs

The results on matrix multiplication and transitive closure of
graphs mentioned in last year's report have been strengthened.
Robert Mandl has shown that the time required to find the tran-
sitive closure of a directed n-node graph is within a constant

algebraic methods for multiplying real matrices can be modi -
fied to apply to Boolean matrices, this result yields the best
transitive closure algorithm known to date.

Our hope that a graph-theoretic approach to Boolean matrix
multiplication might enable us to generalize fast matrix mul-

tiplication techniques has not yet been fulfilled, but we
continue to believe that this approach is promising.

C. Polynomial Evaluation

The evaluation of rational functions by sequences of algebraic
operations represents one of the few areas where techniques
have been developed for establishing the optimality of algo-
rithms. Larry Stockmeyer, together with Professors Fischer,
Meyer and M. S. Paterson, has derived a lower bound of;ﬂn on
the number of multiplications required to evaluate any degree
n polynomial with rational coefficients, and has shown that
this lower bound is nearly achievable.

D. Sorting

B. J. Smith has been investigating sorting networks composed
of two-input, two-output comparators. Since each comparator
can be modeled as a three-state finite-state machine, the
sorting network as a whole can also be viewed as a finite-
state machine. When implemented in hardware, such networks
can be used as high-speed sorters Or message-switching de-
vices. Alternatively, a sorting network can be realized by

a computer program that is naturally suited to parallel evalu-
ation.

Smith has been studying the minimum number of comparators re-
quired to construct an n-input, n-output sorting network. He
has discovered that a network of comparators actually sorts if
and only if the network has

n
> il S(n,1i)
i=0

States that are reachable from the starting state, where

S(n,i) is & Stirling number of the second kind. Furthermore,
he has determined that no two distinct reachable states in the
network are equivalent. These results suggest that a knowledge

- »o“ﬁdm:x_

AUTOMATA THEORY |

of the number of internal network configurations that cannot
result from any network input may yield bounds on the number
of states "wasted" in building a network and in this way yield
bounds on the number of comparators required.

E. PaEers

During the year, several members of the group have prepared
papers for forthcoming meetings and journals.

For the Twelfth Annual Switching and Automata Theory Symposium
(October 1971):

1) Fischer, M. J. and A. R. Meyer, "Boolean Matrix Multi-
plication and Transitive Closure".

2) Meyer, A. R. and M. J. Fischer, "Economy of Description
by Automata, Grammars, and Formal Systems".

For the International Symposium on the Theory of Machines and
Computations (August 1971):

Meyer, A. R. and E. M. McCreight, "Computationally Com-
plex and Pseudo-Random Zero-One Valued Functions".

Accepted by the Journal of Symbolic Logic:

Meyer, A. R. and P, C. Fischer, "Computational Speed-Up
by Effective Operators".

Accepted by Zeit. f. Math. Log. und Grund. der Math.:

Meyex, A. R, and D. M. Ritchie, "A Classification of the
Recursive Functions".

Publication 1970-1971

Ying, C. and A. K. Susskind, *"Building Blocks and Synthesis
Techniques for the Realization of M-ary Combinational Switch-
ing Functions", Proceedings of Symposium on Theory and Appli-
cations of Multiple-Valued Logic Design, State University of
New York at Buffalo, May 1971.

* Non-MAC author.

RN (UGS W A A N SR A TR e N - -

CELLULAR AUTOMATA

Prof. E. Fredkin

DSR Staff
E. R. Banks

Undergraduate Students

W. S. Mark

PRECEDING PASE BLAMK

DA X S S L5 e

III. CELLULAR AUTOMATA

A Ph.D. thesis by Roger Banks describes an investigation of a
class of parallel processing computers called Cellular Automa- .
ta. A cellular automaton consists of an array of simple, iden-
tical finite-state machines called cells. Each cell communica- !
tes with only its immediately surrounding cells.

The chief results of the thesis include showing that a two-
dimensional array of two-state cells, each of which communicates
with its four-edge neighbors, can perform any (computable) com-
putation, i.e., it can simulate a universal Turing machine.

A configuration is a specification of the states of all the
cells in some area of the iterative array. Another result
described in the thesis, is the existence of a self-reproducing
configuration in an array of four-state cells with each cell
communicating with its four-edge neighbors. This was a reduc-
tion of four states from the previously known eight-state case.

Further work by Banks and more recently by William Mark has
concerned the development of a programming system for the
simulation and display of very general cellular automata in
one, two and three dimensions with various neighborhoods,
transition rules, numbers of states, etc.

Publication 1970-1971

Banks, Edwin R., "Information Processing and Transmission in
Cellular Automata", Ph.D. Thesis, Dept. of Mechanical Engineer-
ing, January 1971, also MAC TR-81, AD 717-951.

PRECEDING PAGE BLANK

e N Iy LI I ey S— e i e = PRI NG PRI g T T IR T

COMPUTATION STRUCTURES

Prof. J. B. Dennis

Academic Staff

Prof. R. M. Fano Prof. S. S. Patil

Instructors, Research Associates, Research Assistants and Others

I. R. Campbell-Grant B. Lester

J. Coffman J. P. Linderman
J. Fosseen M. J. Marcus

P. J. Fox C. Ramchandani

F. Furtek L. J. Rotenberg
I. G. Grief J. E. Rumbaugh

M. Hack D. G.Sitler

I. T. Hawryszkiewycz W. C. Walker

P. G. Hebalkar
Undergraduate Students

H. J. Kim
DSR Staff

W. W. Plummer

Support Staff

B. A. Morneault A. Rubin

- PRECEGING PAGE BLANK |

Ll

e e s e RSO
A e - .

IV. COMPUTATION STRUCTURES

A. Introduction

The Computation Structures Group is concerned with the study
and analysis of fundamental issues arising in the design and
construction of general-purpose computer systems. The re-
search enccmpasscs hardware and software aspects of computer
systems, and much of the work has contributed toward establish-
ing a common conceptual basis for both aspects. The accom-
pPlishments of the past year are pPrincipally in two areas:

One is the theoretical study of Petri nets as a model for
asynchronous systems of interacting parts, and the realization
of Petri nets in the form of speed-independent modular switch-
ing systems. The goal of this work is to build a sound theory
to serve as the basis of a new methodology for the design of
asynchrorous digital systems. The second area is the evolu-
tion of a base program language. This effort is expected to
lead to a practical formal definition scheme for source pro-
gramming languages and will provide a sound basis for the
functional design of advanced computer systems.

B. Petri Nets

As reported last year, we have found Petri nets to be an ele-
gant formalism for representation of concurrencCy in processes
and for studying asynchronous systems. Petri nets stand out
in relation to other schemes because of the preciseness and
ease with which they can express parallel acitions, resolution
of conflicts, and interaction among processes. Moreover, they
have the simple structure that .s essential for analytic
study. Simple as they are in their structure, study of the
general class of Petri nets is difficult because of the var-
iety of situations they can represent. A study of subclasses
of Petri nets which represent simpler situations is a necessary
step toward understanding the general class of Petri nets, and
such study has been an important objective of the group in the
past year. We have identified several subclasses of interest
and have found useful results about them. Before discussing
these results, we present a brief introduction to Petri nets
and the subclasses of interest.

A Petri net [1,2] is a directed graph which can have two types
of nodes, namely transitions and places, where the directed
arcs can connect only transitions to places and places to trans-
itions (Fig. 1l.). 1In drawing the graph, places are represented
by circles and the transitions by bars. The places from which
arcs are incident on a transition are called input places of
the transition, terminate are called the output places of the
transition. Each place can have markers (sometimes called
tokens) in them. A transition having markers in all of its
input places is said to be enabled. Only enabled transitions
can fire; in the act of firing, the transition picks one

marker from each of its input places and puts a marker in each
of its output places. The marking distribution in the net
changes as transitions fire, and each new marhing distribution
makes firing of other transitions possible. With regard to

the firing of transitions, an important situation is when

PRECEDING PAGE BLANK

13

P =

COMPUTATION STRUCTURES

JENG

N

r .
. g

FIG.1. A PETRI NET.

transitions share some input places. When two transitions
which have a common input place are both enabled but the
common input place has only one marker, the transitions are
said to be in conflict because the firing of any one of the
transitions disables the other. A net is said to be safe if
no plece in it will ever have more than one marker at a time.
A net is said to be live if at no time in the operation of the
net will any transition be ruled out as a transition that may
fire some time in the future. Conflict, safety, and liveness
in a net depend on the initial marking distribution. There
are, however, some structural restrictions which can guarantee
some of these properties. By structural restrictions, we mean
restrictions with regard to the arrangements of transitions
and places such as the restriction that transitions not have
input places in common. The restrictions we use below to
define subclasses of Petri nets are purely syntactic as they
define local constraints on the arrangements of transitions
and places. The subclasses are:

1) State Machines (SM)
2) Marked Graphs (MG)
3) Free Choice Petri Nets (FC)
4) Simple Petri Nets (SN)

The restrictions that define these subclasses are given below.
The Petri nets without any restrictions will be referred to
as general Petri nets to emphasize this fact. The following
text should be read together with Figures 2 and 3. Figure 2
shows what kind of local configurations of transition and
Places are permitted for each subclass of nets.

l. State Machines (SM) -- A state machine is a Petri net in
which every transition has exactly one input place and exactly

14

TITRrTewR

&y

——

L

COMPUTATION STRUCTURES

LOCAL CONFIGURATIONS

STATE MACHINES

EVERY TRANSITION HAS
EXACTLY ONE INPUT PLACE
AND EXACTLY ONE
OUTPUT PLACE

f PERMITTED

NOT PERMITTED

MARKED GRAPHS

EVERY PLACE HAS
EXACTLY ONE INPUT
PLACE AND EXACTLY ONE
OUTPUT PLACE

<

FREE CHOICE NETS

EVERY ARC FROM APLACE
TO ATRANSITION IS EITHER
THE ONLY OUTPUT OF THE

PLACE OR THE ONLY INPUT
TO THE TRANSITION

o LAY | AY

SIMPLE NETS

EVERY TRANSITION HAS
AT MOST ONE SHARED
INPUT PLACE

PETRI NETS

NO SUCH
RESTRICTION

9,
W
F9¢

FIG. 2.

THE SUBCLASSES OF PETRI

15

NETS.

COMPUTATION STRUCTURES

one output place. The state machines being discussed here are
identical to the state machines of automata theory in their
structure, (Fig. 4).

2. Marked Graphs (MG) -- A marked graph is a Petri net in
which every place has exactly one input transition and exactly
one output transition. Thus the restriction in this case is
similar to the one for state machines but it applies to places
instead of transitions. State machines have been studied ex-
tensively but the recognition of marked graphs and the study
of their properties is recent. Genrich [3] started the study
of marked graphs and his ideas led to a detailed study by

Holt and Commoner [4]. The mathematics relating to marked
graphs is fairly well understood now through these studies.

In our previous report we showed a direct relationship between
the elementary asynchronous modular control structures devel-
oped by us and the marked graphs. The study provided a simple
way for obti.ning hardware structures that mimic marked graphs,
and also a m=thod for determining if a control structure is
free of any hangups. This year the study has been carried
further to include a broader class of nets called free choice
nets. The free choice nets and results relating to them are
described below.

3. Free Choice Nets -- A Petri net in which every arc from a
place to a transition is either the only output of the place
or the only input to the transition is said to be a free choice
Petri net. This condition on Petri nets is the same as re-
quiring that when an input place is shared by some transitions,
those transitions have no input places other than the one
which is common to them. Thus when a marker arrives in the
shared place, all of the transitions which share that place

are enabled, and one of them may be freely chosen to fire.

When the movement of a marker is regarded as flow of control,
the situation just described represents a free choice with
regard to where control flows from the shared place -- thus

the name free choice nets. Free choice nets include both the
state machines and the marked graphs.

A free choice Petri net can be used to represent the flow of
control in a program as shown in Fig. 5. Ir this figure, the
shared place x together with transitions T and F represent a
decision element -- the if statement in the program. The
direction in which control flows from place X is not arbitrary
-- it conforms to the outcome of evaluating the predicate
associated with the if statement. To the net considered alone
the decision about the direction of flow is external to it be-
cause it is based on information outside the net; the infor-
mation flows into the net by way of the interpretation which
associates a certain if statement with the free choice trans-
itions in the net. 1In the study of Petri nets and also in the
studv of cocmputation schemata, it is important to distinguish
what information is a part of the net and wlat is external to
it.

Some important results about free choice nets have been found
recently by Commoner of Applied Data Research and Hack of the

16

FIG. 3.

COMPUTATION STRUCTURES

FC

PN

THE INCLUSION RELATIONSHIP AMONG
THE SUBCLASSES OF PETR! NETS.

STATE MACHINE AS A STATE MACHINE AS A

PETR! NET

s /B S e A O LSO i == R e

STATE DIAGRAM

FIG.4. STATE MACHINES,

17

T —— i

COMPUTATION STRUCTURES [

CHAS G E AT HER

BEGIN

a: FORK

nNe—n+i B: m=— mxi

y:JOIN JOIN y

i -— -]

IF i>1 THEN GOTO q

EN

FIG. 5. FLOW OF CONTROL IN A PROGRAM. 3/

18

COMPUTATIUN STRUCTURES

Computation Structures Group. Commoner has found necessary and
sufficient conditions for liveness and safety of a free choice 1
net, and Hack has found conditions for the existence of a live
and safe marking for a net. A live net is one in which the
activity can continue indefinitely without any hangup. Hangup
is a condition in which a part of the net enters into a state

of inactivity from which it cannot recover. In our common
experience a hangup for a machine is an unfortunate state in
which its activity subsides and it fails to respond to stimu-
lation because of some hopeless jam inside it. Safety on the
other hand means that no more than one token will be in any
place at any time. This is important where the places repre-
sent objects that cannot hold more than one of the things
represented by the tokens. When places represent registers

in a digital computer, safety means that a new piece of data
will not be placed in a register until the previous one has

been used up. In that way mixup of data can be avoided. Hack's
work thus provides a way to determine if an uninterpreted
parallel program which can be expressed as a flow diagram has

a starting condition for which it will continue to operate
without any hangups or mixups.

cenw

4. Simple Petri Nets -- A Petri net in which no more than one
input place of any transition is a shared input place is called
a simple Petri net; a transition in a simple Petri net may
have any number of input places but at most one of those places
may be an input place of some other transition. The class of
simple Petri nets properly contains the free choice nets.

There are cituations which can be represented by simple Petri
nets but not by ftree choice nets. Figure 6 shows such a situa-
tion which arises in representing flow of control in coordin-
atirg processes. An important aspect of simple nets is that
they are able to represent interprocess coordination such as
implemented by Dijkstra's semaphore primitives. A study of
simple Petri nets has led to an understanding of the limita-
tion and capabilities of the semaphore primitives. Details

of this study are presented in the next section.

5. General Petri Nets -- The class of Petri nets without any
of the restrictions is called general Petri nets. There are
many Petri nets in the class of general Petri nets for which
there are no equivalent nets in the subclasses defined. 1In
Particular, a Petri net which cannot be transformed into a
Simple net arises in the study discussed below.

Recent work by Patil [5] has shown some interesting facts
about the semaphore primitives of Dijkstra [6] by establish-
ing a correspondence between the flow of control in inter-
acting processes and Petri nets. 1In Fig. 6, three processes
coordinate their activities with the help of semaphores.

The Petri net for each individual p.rocess is obtained by
representing each instruction by-a transition, connecting
these transitions into a chain by means of places to indicate
the flow of control in that process, and placing a token

in the input place of a transition to indicate the present
site of control. The Petri net for a collection of inter-
acting processes is obtained by interconnecting the nets

19

COMPUTATION STRUCTURES

PROCESS
P Py P3
| x=— x4+ x 5 u=—uxu 9 P[Sy.]
2 P[sy] 6 P[s,] 10 z= z+y
3 yex 7 y-—u I v [sy]
4 VvI[s,] 8 Vv [Sy] GOTO 9
GOTO | GOTO 5 INITIALLY SEMAPHORE
Syl AND S,i=0
a)

b)

FIG.6. FLOW OF CONTROL IN PROCESSES AND THE
CORRESPONDING SIMPLE PETRI NET.

20

_ﬂ; e *—W "

SR i vy - ’ o . A~ ——h =

COMPUTATION STRUCTURES

for individual Processes by means of places which repre-

sent the semaphores: a transition that represents an instruc-
tion P[S] is provided an input from the blace that represents
semaphore variable S, and each transition that represents an
instruction V([S] feeds into the place representing the sema-

corresponding to the fact that the control in a process can

The above method of obtaining Petri nets for flow of control
applies only to processes which do not have conditional state-
ments. The Petri nets for such processes completely describe
the flow of control. Moreover, these nets are simple Petri
nets because the only transitions which can have any shared
input places are the ones which correspond to the P[] instruc-
tions and each of these transitions has only one shared input
place.

If there are any conditional instructions, they would have to
be represented by two transitions, one for the outcome true

and the other false, and these transitions would share the
input place so that for any particular execution of the con-~
ditional instruction, only one of the transitions would fire.
Which of the two transitions fires depends on the value of the
Predicate associated with the conditional instruction. Since
this information is external to the net, the net only partially
describes the flow of control in this case.

cribing their interaction, but our study has uncovered the
surprising fact that the semaphore primitives are inadequate
for this purpose. This fact is brought out by a study of a
problem called the 2-out-of-3 problem which is discussed be-
low.

The 2-out-of-3 problem can be explained in the framework of a
message decoder. When viewed as a hardware device, the de-
coder has three input wires colored red, yellow and green, and
three output wires called X, Y and Z. There are three diff-
erent messages which can be sent to the decoder. Message X
consists of signals on the red and yellow wires; message Y
consists of signals on the red and green wires; and message 32
consists of signals on the yellow and green wires. The decoder
can be thought to have three processes inside it, one for each
meéssage. Process X waits for message X and responds on out-
put wire X; the other processes are defined similarly. We

21

COMPUTATION STRUCTURES

s

oo

FIG.7. THE 2-OUT-OF-3 NET.

22

T DAY oo

COMPUTATION STRUCTURES

signal is accepted by decrementing the semaphore count by 1.
The question is: Can the three processes which decode the
messages be so coordinated by semaphore primitives that the
decoder functions correctly? Since each individual process
just waits for the associated message to arrive, we insist
that the processes not use any conditional instructions.
Therefore, instead of asking the question in the form above,
we ask: Is there any finite collection of processes not using
conditional instructions that can specify the operation of the
decoder with the help of the semaphore primitives? The answer
to this question is negative.

The reason for the negative answer is that the decoder repre-
sents a net called 2-out-of-3 net, which is not a simple Petri
net, and it has been possible to show that this net cannot be
transformed into an equivalent simple Petri net [5]. Thus it
is clear that the semaphore primitives need the help of condi-
tional statements to carry out coordination among processes,
(Fig. 7.). It should be recalled that the very purpose of
introducing the semaphore primitives was to obtain a more
direct means for coordinating processes and to do away with
sneaky use of conditional statements to perform cocrdination.
With the aid of conditional statements one can implement
coordination of processes by such simple-minded schemes as
repeated testing of a variable until it becomes,say, 1. Such
schemes can implement coordination, but the implementation is
very wasteful of computer resource because there is no limit
to the number of times the variable may have to be checked.
‘The semaphore primitives rectify this defect, but they are not
able to implement all coordinations by themselves. Thus the
question is, whether together with conditional statements they
can express all conceivable coordinations without paying the
price of unbounded computation. The study has shown that the
answer to this question is affirmative. i

At the root of the shortcomings of the semaphore primitives is
the fact that a P[] instruction operates on only one semaphore.
Unfortunately, a generalized instruction such as P[S1,...,Sk],
which simultaneously operates on semaphores S1s «++, Sk, cannot
be always expanded into a sequence of instructions Plshl ; saan
P[Skl. But the generalized instruction can be expanded in

terms of P[S;, S2] instructions each of which ouperates on two

semaphores. Even though P[S,, S,] is adequate, one may wish
to allow more arguments in i%Str ctions for the sake of effi-

ciency.

C. Asyrchronous Speed-Independent Circuits

A digital system is often built as two interconnected parts --
a data flow structure containing registers, functional opera-
tors and data paths, and a control structure that generates
signals that initiate actions by operators in the data flow
structure. :

In synchronous systems the operators may begin action only at
certain time instants determined by a central generator of

23

W T P ———

COMPUTATION STRUCTURES

clock signals. The design of the control structure involves
choosing the appropriate number and duration of clock intervals,
and realizing a switching circuit that routes the clock signals
to operators as required to implement the system's function.

In an asynchronous control structure,each operator in the data
flow structure sends an acknowledge signal to the control
structure to indicate that action by the operator has been
completed. The acknowledge signals from operators are used
directly in the control structure to initiate action by oper-~
ators that become eligible for execution. In this way, initia-
tion of an operator is delayed only until completion of those
actions upon which correct functioning of the operator de-
pends. No special generator of timing signals is used, the
timing of system operation being determined by the durations
of actions by the operators.

If the control structure of an asynchronous system will func-~
tion correctly regardless of delays in its componerits and
their interconnecting wires, the control structure is called
a speed-~independent circuit.

A system described by a logic diagram for a synchronous reali-
zation of it is both overspecified and underspecified. The
particular choice of clock instants is irrelevant to the func-
tion performed by the system, but is essential for the diagram
to have any meaning. vYet understandings between the specifier
and implementer about timing of actions are necessary for
unambiguous interpretation of the description. These under-
standings are not usually represented in a logic diagram.

That a synchronous system is overspecified makes understanding
or altering its function difficult; that it is underspecified
makes design verification impossible in the absence of over-
simplifying assumptions. The description of a system as a
speed-indepedent circuit does not suffer these problems. Two
parts of a speed-independent circuit are interconnected if,
and only if, some action by one part is dependent on comple-
tion of some action by the other.

This reasoning shows that speed-independent implementation of
digital systems is of particular interest when one desires
assurance that a paper design will yield a correctly function-
ing system when translated into hardware. Speed-independent
implementation is also attractive where a system is built from
several interacting parts (there are no clocks in the subsys~
tems to be synchronized), or where a system has much concurrent
activity (which could only be slowed up by synchronizing action
to common clock signals). Computer systems developed in the
future are likely to have all of these characteristics.

The group has been studying schemes for representing systems

so that conversion of the description into a speed~independent
realization may be accomplished by a mechanical procedure

with a quarantee that the resulting hardware will function
correctly according to the description. In this way, the
onerous task of debugging the hardware (as opposed to debugging
the system description) would be largely eliminated. 1In

24

COMPUTATION STRUCTURES

particular the faults that appear in hardware systems because
of misunderstandings about the timing of signals would be
avoided.

We are considering two classes of speed-independent circuits
based on two assumptions regarding the origin of delays which
must not affect correctness of system operation. Both classes
of circuits are interconnections of primitive modules which
may be individual gates or specific circuits realized in turn
by the interconnection of simpler modules or gates.

In a type 1 circuit we assume that all interconnecting wires
are sources of arbitrary delays. Thus a signal sent out by
one module to two others may reach one module arbitrarily
earlier than the other. 1In a type 2 circuit we assume that the
output of a module may be delayed arbitrarily, but when an
output of a module changes, the change is observed immediately
by all modules to which the output is connected. The type 2
assumption is less restrictive, and is appropriate for cir-
cuits in which delays on interconnecting leads are negli-
gible compared to delays within gates. This is normally the
case within a semiconductor chip, for example. The more
general type 1 assumption is appropriate for interconnections
between standard parts where the designer does not know the
mechanical arrangement of the parts.

A principal goal of our work is to find a finite set of prac-
tical modules with which it is possible to implement any
digital system as a type 1 speed-independent circuit. In
last year's report we described a collection of control
modules adequate to implement any marked graph as a type 1
circuit. The complete set of control modules are also ade-
quate for implementing free choice and simple Petri nets in
the form of type 1 speed-independent circuits, and are con-
venient for defining control structures for complex digital
systems.

The C-element of Muller [7] is a very important gate type for
the construction of control modules. We have shown that the
C-element cannot be implemented as a type 1 interconnection
of AND, OR and NOT gates. 1In fact, there is very little

that can be done by a type 1 speed-independent circuit using
only AND, OR and NOT gates. These results are inciuded in a
paper by Dennis and Patil [8). Since several basic control
modules have type 1 realizations using NOT gates and C-elements,
these results emphasize the importance of the C-element as a
fundamental gate type for speed-independent circuits. More
recently, Fred Furtek has defined a complete set of basic
modules for the realization of general Petri nets as type 1
speed-independent circuits.

Our success in applying speed-independent design to control
Sstructures for digital systems has led us to investigate the
applicability of the concept to complete Jigital systems. As
an experiment: Dennis and Plummer developed a design for a fast
counter that could be sampled repeatedly without interfering
with continuation of counting. The design is a type 1

25

COMPUTATION STRUCTURES

interconnection of as many identical stages as desired, each
stage being a type 2 circuit using OR-gates, NOT-gates and C-
elements. Commands to 'count' or to 'sample’' flow through the
stages of the counter from the least significant end changing
or reading the bit held by each stage. In this way the speed
of the counter is independent of the number of stages. The
details of the design have been reported [8]. Bill Plummer de-
signed and constructed an arbiter module to resolve conflicts
between 'count' and 'sample' commands, and has prepared a
paper on his work [9].

D. Base Language

The Group is working toward the definition of a common base
language that could serve as a target representation for pro-
cedures translated from a variety of practical source languages,
for example, FORTRAN, ALGOL and LISP. By specifying a formal
interprete: for the base language and giving a precise des-
cription of the translation of source programs into base lan-
guage programs, we would have a complete scheme for the formal
definition of the semantics of programming languages in terms
of a common set of semantic notions (those of the base lan-

guage) .

The motivation for this work is the design of computer systems
in which the creation of correct programs is as convenient and
easy as possible. A major factor in the convenient synthesis
of programs is the ability to build large programs by combin-
ing simpler procedures or program modules, written independent-
ly, and perhaps by different individuals using different source
languages. This ability of a computer system to support
modular programming is called programming generality [10,11].
Programming generality requires the communication of data among
independently specified procedures,and thus that the semantics
of the languages in which these procedures are expressed must
be defined in terms of a common collection of data types and a
common concept of data structure.

We have observed that the achievement of programming generality
is very difficult in conventional computer systems, primarily
because of the variety of data reference and access methods
that must be used for the implementation of large programs

with acceptable efficiency. For example, data structures that
vary in size and form during a computation are given different
representations from those that are static; data that reside
in different storage media are accessed by different means of
reference; clashes of identifiers appearing in different
blocks or procedures are prevented by design in some source
languages, but similar consideration has not been given to the
naming and referencing of cataloged files and procedures in the
operating environment of programs. These limitations, on the
degree of generality possible in computer systems of convention-
al architecture have led us to study new concepts of computer
System organization through which these limitations on pro-
gramming generality might be overcome.

In this effort, we are working at the same time cn developing

26

COMPUTATION STRUCTURES

the base language and on developing concepts of computer arch-
itecture suited to the execution of computations specified by
base language programs. Thus our work on the base language is
strongly influenced by hardware concepts derived from the re-
quirements of programming generality [10].

We have chosen trees with shared substructures as our univer-
sal representation for information structures because we have
found attractive hardware realizations of memory systems for
tree-structured data. Jeffery Gertz [12] has considered how
such a memory system might be designed as a hierarchy of asso-
ciative memories. Also, the base language is intended to re-
present the concurrency of parts of computations in a way that
permits their execution in parallel. One reason for emphasizing
concurrency is that it is essential to the description of cer-
tain computations; for example, when a response is required to
whichever one of several independent events ig first to occur.
Furthermore, we believe that exploiting the potential con-
currency in programs will be important in realizing efficient
computer systems that offer programming generality. This is
because concurrent execution of program parts increases the
utilization of processing hardware by providing many activities
that can be carried forward while other activities are blocked,
pending retrieval of information from slower parts of the com-
puter system memory.

When the meaning of algorithms, expressed in some programming
language, has been specified in precise terms, we say that a
formal semantics for the language has been given. A formal
semantics for a programming language generally takes the form
of two sets of rules; one set being a translator, and the
second set being an interpreter. The translator specifies a
transformation of any well-formed program expressed in the

gram expressed in a second language -- the abstract language

of the definition. The interpreter eéxpresses the meaning of
programs in the abstract language by giving explicit directions
for carrying out the computation specified by any well-formed
abstract program.

It would be possible to specify the formal semantics of a pro-
gramming language by giving an interpreter for the concrete
programs of the source language; the translator is then the
identity transformation. Yet the inclusion of a translator in
the definition scheme has important advantages. For one, the
phrase structure of a programming language,viewed as a set of
strings on some alphabet,usually does not correspond well with
the semantic structure of programs. Thus, it is desirable to
give the semantic rules of interpretation for a representa-
tion of the program that more naturally represents its seman-
tic structure. Furthermore, lmany constructs present in source
languages are provided for convenience rather than as funda-
mental linguistic features. By arranging the translator to re-
place occurrences of these constructs with more basic con-
structs, a simpler abstract language is possible, and its inter-
preter can be made more readily understandable and, therefore,
more useful as a tool for the design and specification of

27

oL F N S e e Y

COMPUTATION STRUCTURES

computer languages and systems.

Our thoughts on the definition of programming languages in
terms of a base language are closely related to the formal
methods developed ac the IBM Vienna Labcratory [13] and which
derive from the ideas of McCarthy [14] and Landin [15].

For the formal semantics of programming languages, a general
model is required for the data on which programs act. We re-
gard data as consisting of elementary objects, and compound
objects formed by combining elementary objects into data
structures. Elementary objects are data items whose structure
in terms of simpler objects is not relevant to the description
of algorithms. For the purposes of this discussion, the class
E of elementary objects is

E=2zURUW
where
Z = the class of integers
R = a set of representations for real numbers
W = the set of all strings on some alphabet

Data structures are often represented by directed graphs in
which elementary objects are associated with nodes, and each
arc is labelled by a member of a set S of selectors. We will
use integers and strings as selectors:

s=zUW

In the class of objects used by the Vienna group, the graphs
are restricted to be trees, and elementary objects are asso-
ciated only with leaf nodes. We have used a less restricted
class so an object may have distinct component objects that
share some third object as a common component.

Let E be a class of elementary objects, and let S be

a class of selectors. An object 1s a directed acyclic
graph having a single root node from which all other
nodes may be reached over directed paths. Each arc is
labelled with one selector in S, and an elementary
object in E may be associated with each leaf node.

An example of an object is shown in Fig. 8. Leaf nodes having
associated elementary objects are represented by circles with
the element of E written inside: Iutegers are represented by
numerals, strings are enclosed in single quotes, and reals

have decimal points. Other nodes are represented by solid
dots, with a horizontal bar if there is more than one emanating
arc.

The node of an object reached by traversing an arc emanating
from its root node is itself the root node of an object called
a component of the original object. The component object con-
sists of all nodes and arcs that can be reached by directed
paths from its root node.

28

e

e

} i o
L e

COMPUTATION STRUCTURES

e W

FIG, 8.

29

Rl s ST R AT e A A SR e MR I e - e T G AR

COMPUTATION STRUCTURES

Some of us prefer to generalize this class of objects in two
ways:

1) by permitting data values to be associated with any
node of the graph of a structure

and
2) by permitting the graph to contain directed cycles.

Whether to permit cycles in the structured data objects of the
base language is an important unresolved issue. Some consider-
ations bearing on this matter are discussed in a later para-
graph of this report.

Figure 9 shows how source languages would be defined in terms
of a common base language. Concrete programs in source languages
(L1 and L2 in the Figure) are defined by translators into
abstract programs of the base language. For this to be
effectively possible, the structure of abstract programs can-
not reflect the peculiarities of any particular source lan-
guage, but must provide a set of fundamental linguistic con-
structs in terms of which the features of these source lan-
guages may be realized. The translators themselves should be
specified in terms of the base language, probably by means of
a specialized source language. Formally, abstract programs in
the base language, and states of interpreter are elements of
the class of objects defined above.

The structure of states of the interpreter for the base lan-
guage is shown in Fig. 10. Since we regard the interpreter for
the base language as a complete specification for the func-
tional operation of a computer system, a state of the interpre-
ter represents the totality of programs, data, and control
information present in the computer system. The universe is

an object that represents all information present in the com-
puter system when the system is idle, that is, when no compu-
tation is in progress. The universe has data structures and
procedure structures as constituent objects. Any object is a
legitimate data structure; for example, a data structure may
have components that are procedure structures. A procedure
structure is an object that represents a procedure expressed

in the base language. It has components which are instructions
of the base language, data structures, or other procedure struc-
tures. So that multiple activations of procedures may be ac-
commodated, a procedure structure remains unaltered during its
interpretation.

The local structure of an interpreter state contains a local
structure for each current activation of each base language
procedure. Each local structure has as components, the local
structures of all procedure activations initiated within it.
Thus the hierarchy of local structures represents the dynamic
relationship of procedure activations.

The control component of an interpreter state is an unordered
set of sites of activity. A typical site of activity is

30

COMPUTATION STRUCTURES

ABSTRACT PROGRAMS
ONCRETE PROGRAMS
¢ IN LI IN BASE LANGUAGE

TRANS _ATOR
FOR L |

~.,

CONCRETE PROGRAMS
IN L2

STATES
INTERPRETER

TRANSLATOR
FOR L2

FIG. 9.

I]
'UNIVERSE' 'LOCAL STRUCTURE' 'CONTROL'

e— -

: \ " SITES OF
= \
,__I_\ | i ACTIVITY
DATA
STRUCTURE

; INSTRUCTION \

PROCEDYRE LOCAL
STRUCTURE P STRUCTURE L

,
|
r
\.

FI1G. 10.

31

COMPUTATION STRUCTURES

represented in the figure by an asterisk at an instruction of
procedure P and an arrow to the local structure I for some
activation of P. Since several activations of a procedure may
exist concurrently, there may be two or more sites of activity
involving the same instruction of some procedure, but designat-
ing different local structures. Also, within one activation

of a procedure, several instructions may be active concurrently;
thus asterisks on different instructions of a procedure may

have arrows to the same local structure.

Each state transition of the interpreter executes one instruc-
tion for some procedure activation, at a site of activity
selected arbitrarily from the control of the current state.
Thus the interpreter is a nondeterministic transition system.
In the state resulting from a transition, the chosen site of
activity is replaced by zero or more new sites of activity
according to the sequencing rules of the base language.

Interpretation of a procedure involves two objects, the proce-
dure structure P and an argument structure A. The argument
structure is formed by the calling procedure activation and
contains, as component objects, all information (other than P)
required by the activation of P. In particular, the actual
parameters of the procedure activation are components of A.
In this view of procedure execution, no meaning is given to
nonlocal references occurring within a procedure structure.
Thus no side effects of procedure executions are possible. Un-
less procedure P modifies part of its own procedure structure,
it defines an algebraic operation on the class of all objects.

A subject of major importance to us is the representation of
concurrent activities in the base language. Consideration of
concurrency brings in the issue of nondeterminacy -- the possi-
bility that computed results will depend on the relative tim-
ing with which the concurrent. activities are carried forward.
The ability of a computer user to direct the system to carry
out computations with a guarantee of determinacy is very im-
portant. Most programs are intended to implement a functional
dependence of results on inputs, and determinism is essential
to the verification of their correctness.

There are two ways of providing a guarantee of determinacy to
the user of a computer system. They are distinguished accord-
ing to whether or not the class of base language programs is
constrained through design of the interpreter to describe only
determinate computations. If this is the case, then any
abstract program resulting from compilation will be deterministic
in execution. Furthermore, if the compiler is itself a deter-
minate procedure, then each translatable source program repre-
sents a determinate procedure. On the other hand, if the de~
sign of the interpreter does not guarantee determinacy of
abstract programs, determinacy of source programs, when de-
sired, must be ensured by the translator.

E. Program Graphs

We are considering two approaches to represent the relationships

32

T R i gan o » oo Ry 2 P oo SRR R S e 2

COMPUTATION STRUCTURES

among instructions of a procedure structure:

1. A conventional form in which the instructions of each
procedure structure are selected by successive integers,
and instructions are executed sequentially except when a
conditional transfer of control directs execution to a
new instruction sequence.

In this form,concurrency is represented by fork instructions
where activity splits into twe concurrent streams and join
instructions where two streams of activity merge into one.

2. A data flow form in which execution of an instruction
is controlled by the availability of the data values re-
quired for its execution. For example, execution of an
add instruction would be enabled as soon as the values of
both operands have been computed.

Concurrency is inherent in a data flow representation since
the creation of a computed value may enable several instruc-
tions. The data flow representations we are investigating are
variations and extensiones of the program graphs introduced Ly
Rodriguez [16]. We shall illustrate our present thoughts re-
garding data flow representations by presenting program graphs
for several programs. Consider the program

begin
vVi=t-X; w:i=Xx-u
if v>wtheny :=w -2e¢elsey :=v + 3
if y >0 then z :=y 4+ 2 else z := 0

end

A conventional machine level representation would be:

begin
fork 41 23: W=-2 >y
t-x-+v 14: if y > 0 goto £5
goto 12 0+ 2z

L1: x = v »+w goto 26

22: join 5: y + 2 >z
it v > w goto 13 L16: end
v+3-+>y
goto 24

A program graph for this program is shown in Fig. 11. The
nodes ox the program graph include functional operators
drawn as circles, predicate operators drawn as diamonds and
two special node types, gate and merge, that perform control
functions. The links may be thought of as conveying tokens

33

COMPUTATION STRUCTURES

sareK]

774

+3

GATE

Fo MerGge L é:-.)
o
>0

y

!

GATE

F. MERGE |t t2
Yz
FIG. 11.

34

O T N P T) 2 TR T e ST E e IR 5 e o S O o Sy e

COMPUTATION STRUCTURES

between nodes of the diagram as in a Petri net. Here the
tokens have information associated with them. Tokens arriving
at or leaving functional operators, and those arriving at pre-
dicate operators convey values (numbers for example); these
links are drawn with small solid arrows. Tokens leaving a pre-
dicate operator convey decisions (true or false) to gate nodes
of the diagram; these links are drawn with open arrowheaus.

We assume the net operatws in a safe manner, that is, tokens

do not overtake one another, nor do they accumulate at nodes.
This may be ensured by acknowledge signals transmitted in the
reverse direction over each link. Thus a value link may be
represented in a Petri net by a pair of places: a place (drawn
as a square box) through which tokens with attached values

move from source node to destination, and an ordinary place
through which "empty" tokens are returned to the source node.
Decision links may be conveniently represented by three places
through which ordinary tokens (not bearing values) move. A
token arriving at the place labeled t signals a true decision;
a token arriving at the place labeled f signals a false deci-
sion.

When a link goes to two or more destinations, tokens are re-
plicated at each branch point so that tokens with identical
information are sent to each node. The branch points act like
wye modules, and await acknowledgment signals from each des-
tination hefore returning an empty token to the source node.

The gate and merge control nodes are needed so that decisions
made by predicate operators may affect the pattern of data

flow through functional operators of the program graph. A
T-gate node permits a value-bearing token to pass through for
each true decision received on the decision link. Whenever a
false decision arrives the value-bearing token is not forwarded.
In either case the gate node acknowledges both tokens received,
and when a gate forwards a token, it waits for acknowledgment
before forwarding another value-bearing token. The behavior
of a gate node is described in Fig. 12. The arrival of a true
decision leads to forwarding of a value token from link 1 to
link 2. Arrival of a false decision causes a value arriving
on link 1 to be acknowledged and discarded. An F-gate node

is identical to the T-gate except that the sense of the de-
cision is reversed.

A merge node permits values sent over its output link to
originate from different sources according to decisions made
during computation. The value sent over the output link is
forwarded from the T- or F-labeled input value link according
as the decision received is true or false. A Petri net for
the switch node is shown in Fig. 13.

Next we give an example showing how iterative programs can
be represented as program graphs:

35

i e e Ry g

COMPUTATION STRUCTURES

v a
S
2
FIG. 2.
-
fi a ot

FI1G, 13.

36

COMPUTATION STRUCTURES

y = X
v =0
while p(w,v) do
begin
vi= £(v); y = gly)
end
zZ =y
end
Noting that the two statements of the body of the iteration

may be performed concurrently, a conventional representation
would be similar to this:

begin
X >y
0+ vy
£1: if p(w,v)goto 24
fork 22
f(v) + v
goto 43
L2: gly) + v
£3: join
goto £l
24: y » z
end

A data flow version of the program is provided in Fig. 14,

Two of the merge nodes serve as the junctions through which
initial values and intermediate values flow to the functional
operators of the body of the whileé loop. The predicate opera-
tor requires one copy of the value of variable w for each

test of the predicate p. These copies are generated by the
center merge node, and the associated gate node. Initiation
of operation of the program graph requires arrival of a false
decision at the decision input link of each of the three
merge nodes, This is provided by the F-buff node which is a
buffer for decisions that sends a false decision as its initial
output, (Fig. 15.).

An important result of Suhas Patil [17]) concerning interconnec-
tions of determinate systems can be applied to program graphs
formed from the node types used in these two examples. We
conclude that any such program graph is a determinate repre-
sentation of a program. This class of program graphs is a
revision of the class studied earlier by Rodriguez, and is

37

COMPUTATION STRUCTURES

3943NW

31v9o
il

17914

—= 394H3W

(H TI_ 3943
4 . 1

L

38

COMPUTATION STRUCTURES

simpler as a result of our improved understanding of concurrent
activities. We expect that future developments in the theo-
retical study of Petri nets will contribute significantly to
the building of a satisfactory theory of program graphs.

Jack Dennis has formulated a class of program graphs suitable
for representing certain computations on structured data [10].
These program graphs were limited in that no provisions were
made for conditional execution of subgraphs or for iterative
computation. We expect to combine the concepts developed in
this class with those of Rodriguez to obtain a general class
of program graphs encompassing,say,all ALGOL 60 programs. Our
final example illustrates the form this class of program
graphs may take.

procedure (a,b,n)
beqin

step 1 through n do

i 1
y :=y + ali] x b[i]

The input data for this procedure will be represented by the
argument structure shown in Fig. 16, having components for the
three formal parameters of the procedure. In the program
graph shown in Fig. 18, a third kind of link is used and is
drawn as a heavy line with a solid arrowhead. Tokens passing
on these links convey access to objects. Execution is initiated
by arrival of a token at the root node P of the program graph.
This token carries access to an argument structure of the form
shown. Fcur new node types are used, (Fig. 17). The select

X node converts access to an object into access to the x-
component of the object. These nodes are used to obtain
access to the components of the argument structure. The
second form of select node uses the integer received on link

3 to select the componert object. The value node converts
access to an elementary object into the value of the object.
Finally, the assign node receives a data value on link 2 and
transforms the object conveyed on link 1 into an elementary
object having that value.

The repeat nodes in this program graph generate multiple copies
of tokens conveying access to the same object, in this case the
actual parameters of the scalar product procedure. One token
is sent over the output link for each true decision received

on the decision 1link. Acknowledgment is not given on the in-
put data link until a false decision is received, whereupon

the node resets and waits for the arrival of new data.

This program graph is determinate, yet we cannot guarantee the

determinacy of any program graph constructed from all node
types introduced here. We would like to find a set of program

39

COMPUTATION STRUCTURES

| F |2
— surr (o aye

FIG. 15,

FIG. 16.

[[[[

SELECT SELECT |e—om VALUE

ASSIGN

FIG. 17.

40

R:1

‘O14

COMPUTATION STRUCTURES

39¥3NW

! 'Ja [1o
| 394 3N OM@ 3INTVA 3INIvA
4 _ |
12373s -+ 1237138
_,V lv3id3ay e—{ 1V 3d3Yy
qd — od —
.D. -O.
123713s 12313s

|

|

e NG L i it

P

41

i > W

COMPUTATION STRUCTURES

graph node types and a condition on their interconnection, such
that the program graphs satisfying the condition are deter-
minate and include representations for a wide variety of pro-
grams.

Certain computations are more naturally expressed in data flow
terms than in conventional form. A typical example is a situa-
tion in which several independent activities generate and con-
sume units of data exchanged among themselves. Suppose a com-
putation is performed by two interconnected modules, (Fig. 19.).
Module 1 takes an initial value x from data cell a and gener-
ates a sequence of values y,, Y1r--+. ¥Yn that are forwarded to
module 2 through data cell b. Module 2 processes these values
as they become available, and, when all values have been pro-
cessed, puts a cumulative result z in cell c. Let the compu-
tations performed by modules 1 and 2 be described by the
following relations where f and g denote unspecified functions.

Yo = f(x) wy =10
¥, =ty Wy = 9(¥gswg)
Yk = f(Yk_l) Wk = g(yk_l,wk_l)

A program graph for this computation is shown in Fig. 20.

The predicate p is applied to each value Yi by both modules to
determine when the last value of a sequence has been processed:

]

ply;) = true, i =1, ..., k - 1

plyy) = false

Note that this program graph allows the two modules to act
concurrently and is formed simply by connecting together pro-
gram graphs that represent the two modules. Furthermore, the
incorporation of a first in-first out queue in the connecting
link would permit module 1 to continue generating values

even when module 2 has not had enough time to use up the pre-
vious values. The addition of queues does not require any
change in the representations of the modules. These properties
are not shared by other representations such as co-routines or
processes inter-communicating by means of semaphores. Further
discussion of these points appears in a recent paper by Jack
Dennis [18].

Program graphs are an attractive representation for procedures
expressed in the base language because the possibilities for
concurrent execution of instructions are exhibited in a natural
way. Program graphs represent many procedures in their maxi-
mum parallel form. Also, it is easy to impose constraints on

42

COMPUTATION STRUCTURES

- ———-

T T T T

4
Vi
=
-

m————

_— e e e e e e e e e e e — e — — — —

RS |
I
\
\

_-

— — — — — — — — m— — e e — e S e — — e e e e E— S — o m—

.._
I

!

_

ﬂ

_

_

ENCARIERE E— T@ F _
3 _

_

!

|

_

_

.

61 Old

d 31vO al
AV 1 N J943N ...u_|‘|:

43

COMPUTATION STRUCTURES

program graphs such that determinate execution is assured with-
out restricting the class of determinate procedures that can
be expressed. Finally, we have found that considering program
graphs as a machine level representation leads to interesting
concepts for the structure of highly parallel computers [10].

F. Translation of Block-Structured Languages

Many important programming languages for practical computation
are block structured; the texts of blocks and procedures are
nested, and identifiers appearing in one text may refer to vari-
ables declared in other texts. We do not plan to include in

the base language provision for directly representing reference
by a procedure to external objects. Therefore, we must show how
the execution of block-structured programs may be effected
through translation into the base language and execution by the
base language interpreter. The following discussion outlines
one way in which this may be accomplished -- a way that seems
attractive in view of the concepts of computer organization

we are investigating.

Consider the program shown in Fig. 21. This program has the
block structure shown; the main block P encloses a procedure
declaration P and a block Q. Upper case letters are used to
identify the texts of blocks or procedures.

If T is a text (block or procedure declaration) of a program,
let B(T) be the set of identifiers occurring in T that are
locally declared. Let X(T) be the set of identifiers occurring
in T, or any text nested within T, that refer to variables de-
clared outside T. For the above program we have

{y}
{f}

{x} B(Q)
{y} X(Q)

{y, z, £} B(F)
@ X(F)

B(P)
X(P)

Since non-local references are excluded in the base language,
we need a scheme for making variables a~zcessed by non-local
reference in the block-structured program accessible through
the argument structure in the base language representation.

We will discuss one method of doing this, details of which are
given in a recent paper by Jack Dennis [19]. To illustrate
this scheme consider the computation of apply p (4). As objects,
the procedure structure P and the local structure L(P) at the
beginning of the computation will be as shown in Fig. 22.
Texts F and Q are represented as components of the object rep-
resenting text P. The local structure for the activation of

P has one component for each identifier in the set B(F)QU X(F).

The first step is execution of the declaration of text F. This
gives the procedure identifier f a value called a closure of
the text F (Fig. 23). The C*T-component of the closure is
the text of procedure F and is shared with the procedure struc-
ture P. The C.E-component of the closure links identifiers in
X(F) to the value these identifiers have in the current proced-
ure activation. Thus the identifier y shares the value 4 with
y in L(P).

44

COMPUTATION STRUCTURES

P— p:= PROCEDURE(y)
BEGIN REAL v,z
FTF f == PROCEDURE(x)
BEGIN REAL x
y*=y+x
- END
P
Q4 gq: BEGIN REAL y F
y = |
APPLY f(y)
B END
2= y¢2
RETURN 2
e END
FIG. 2I.

IP | IL(P)

TEXT P | ! |

| i

[]
TEXT Q ! TEXT F

FIG.22.

45

COMPUTATION STRUCTURES

Entering block Q may be treated as though it were a procedure
without parameters. A new local structure L(Q) is formed and
made inferior to L(P), (Fig. 24.). This new local structure
has a component for each identifier in B(QUX(Q) = {f, yv}.

Identifier f is external, so it is given the same meaning as
f in L(P).

After y in L(Q) is assigned the value 1, the closure of F ig
applied to an argument structure having a l-component of 1 and

The meanings of identifiers x and y in text F are established
as in the case of Text Q. Since Y is in X(F) it is linked to
the E-y - component of the argument structure. Since x identi-
fies the first formal parameter of text F, it is linked to the
l-component of the argument structure. In this way, execution
of the assignment in text F correctly updates the value of Y in
the local structure L(P), (Fig. 26.).

G. Cycles in Structures

The class of objects defined earlier does not permit directed
cycles to occur in the graph of an object. The desirability
of this restriction on the class of objects has been the sub-
ject of considerable Study and discussion. Arguments against

1. Cyclic structures do not seem essential to the repre-

sentation of the structured data types of current important
source languages.

2. When cycles occur in linked 1list structures, they can
usually be considered part of an implementation rather

represented.

3. The presence of cycles in objects makes it difficult
to exploit the concurrency of parts of an algorithm.

The principal arguments in favor of permitting cycles are:

l. Generality of data structures should not be arbitrarily
restricted.

2. Cyclic structures are important for representing cer-
tain kinds of data.

3. Implementation of a base language using cyclic struc-
tures will not present great difficulty.

We have studied two definitive questions to develop better

understanding of the importance of cyclic data structures to
the base language.

46

COMPUTATION STRUCTURES

TP

[TexT P
q

|

;

C
TEXT Q y—J—;
£

o*—N

O —0— = —
-—r—

5

TEXT F

FIG. 24.

47

COMPUTATION STRUCTURES

?L(P)
T L@
| T L(F)
f z y | I
A
S f y |

y
FIG. 25.
¢ L(P) TL(F)
I 1
z y A y

O ———— - —
-

r
%E
|

s
Q)/ - L

sl

FIG. 26.

48

COMPUTATION STRUCTURES

—
p :=PROCEDURE(u)
8

EGIN
P-— f:= PROCEDURE(x); INTEGER «x
BEGIN
F— IF x =0 THEN RETURN |
x :=g(x)
z 1= APPLY f(x)
RETURN 2
END
—APPLY f(u)
END
F1G. 27.
?L(P)
r
lul lxl lfl
L
Ci
“’(E
r_"‘f—-\ ltl
TEXT F +
C
|
FIG.28.
49

COMPUTATION STRUCTURES

One study [19] concerns how cycles can arise during execution
of block-structured programs according to the scheme outlined
earlier. Consider the program shown in Fig. 27.

This program consists of a procedure declaration F which con-
tains an application of itself. Interpretation of the declara-
tion as described above assigns identifier f a value which is

a closure of F, and in which f aprears as an external refer-

ence. This creates a cycle in the local structure L(P), (Fig.
28).

We have found that many block=-structured programs can be re- !
written so they accomplish the original computation, but with- !
out the creation of cycles. The principle is to convey clo-
Sures to and from a procedure activation by passing them as
parameters or results rather than by external references. For
example, the program given above becomes:

P 1= PROCEDURE (u)
BEGIN

r-f : =PROCEDURE(h,x) PROCED h, INTEGER x
BEGIN
ie= IF x= 0 THEN RETURN |

X =g (x)
z ;= APPLY h(h,x)
RETURN 2z

END

APPLY f (f,u)

END
== FIG. 29.

This raises -ome interesting questions. In particular, we
would like to develop a general method for rewriting lock-
Structured programs so that cycles will not arise auring ex-
ecution.

The second study by Ian Campbell-Grant [20]) investigated an
eéxecution mcdel for multiprocess computations that operate on
a data base represented as an arbitrary directed graph. The
arcs of the graph represent structural relations among data
items associated with the nodes. In this model each process
may hold several pointers by which it may access the data base.
Each pointer has an associated access control indicator having
one of the three values:

50

COMPUTATION STRUCTURES

R read access
WD write data access
WS write structure access }

If a pointer carries R-access to a node, the process may apply

the pointer to read (but not alter) the data associated with

the node. The process may also obtain a pointer with R-access

to any node that can be reached over a directed path in the

data base from a node for which it holds R-access. A pointer

carrying WD-access to a node permits the process to alter the

data associated with the node, and to obtain a pointer with

WD-access to any node accessible from the given node. A

pointer carrying WS-access to a node permits a process to '
modify the graph of the data base by adding or deleting arcs

within the subgraph formed by all arcs that can be traversed {
via directed paths starting from the given node. The three

kinds of access are cumulative, that is, WD-access includes l
the privileges of R-access, and WS-access includes the priv- ‘
ileges of R-access and WD-access.

The objective of this study was to show how constraints can

be implemented in an execution model so that any computation
carried on by a set of interacting processes would be deter-
minate. For this purpose, a computation is regarded as deter-
minate if it can never happen that two processes apply pointers
to the same data base node concurrently, unless both processes
possess only R-access.

The scheme used to ensure determinism involves a set of con-
straints. Each constraint is an ordered pair (A, B) where A
and B are pointers held by distinct processes 1 and 2. The

constraint (A, B) signifies that application of pointer B by
process 2 must wait until process 1 reduces its access priv-
ilege for pointer A.

By executing certain instructions defined for the model, a
process may: access nodes by following directed paths in the
data base; create and terminate subsidiary processes; and
apply pointers to read and write the data associated with
accessible nodes of the data base. The execution rules for
each instruction type includes specification of how the con-
straint set must be modified. Campbell-Grant has shown that
the relation graph defined by the set of constraints will
always be acyclic throughout any multiprocess computation by
his model. In consequence, the following condition will
always be satisfied, where the predicate struct (X,Y) is true,
if and only if, there is a node in the data base reachable
over directed paths from the nodes designated by pointers X
and Y:

If pointers A and B are held by distinct processes and
struct (A,B) = true then access (A) = R and access (B) =
R or one of (A, B) or (B, A) is in the constraint set.

This is sufficient to guarantee determinate computation.

51

COMPUTATION STRUCTURES

H. Computers and People

hardware should be designed and evaluated in the context of
the software that provides the interface with the users. we
must now learn how to design and evaluate computer systems in
the context of the community of people that is affected by

by their use. The other concerns the design of computer systems
pPossessing whatever Ccharacteristics are necessary to implement
modes of operation that are, at the very least, not objection-
able from a human standpoint,

three years, although at a low level of intensity. A few
papers by Prof. Robert M. Fano and by some of his students are
listed below. 1n addition, Prof. Fano is preparing a short
monograph based on the Centennial Lectures he gave during the
Spring, 1970, at the Stevens Institute of Technology.

ments. Processes can make calls and return from sphere to
sphere through inter-sphere links. It can be shown that, under
appropriate conditions, calling spheres cannot spy on their
callees, nor the callees on their callers. The mocel includes
also facilities for keeping records of Ccritical actions (by
system programmers, for instance) and for allocating responsi-~
bility for whatever a process does. Such facilities are essen-~
tial to implement and enforce law regulations and contractual
agreements existing in the user community. A brief Summary of
Some of this work is presented in one of the papers listed
below ("Surveillance Mechanisms in & Secure Computer Utility").

52

COMPUTATION STRUCTURES

References
Z=-srences

l. A. W. Holt and F. Commoner, Events and Conditions, Record
of the Project MAC Conference on Concurrent Systems and Paralliel
Computation, ACM, N-w York (1970), pp 3-52.

2. C. A. Petri, Communication With Automata, Supplement 1 to
Technical Report RADC-TR-65-377, Vol. 1, Griffiss Air Force
Base, New York 1966. [Originally published in German: Kommuni-
kation mit Automaten, University of Bonn, 1962.]

3. H. J. Genrich, Simple Nonsequential Processes,
Gesellschaft fur Mathematik und Datenverarbeitung, Bonn, 1971.

4. A. W. Holt and F. Commoner, Events and Conditions, Part 2,
Applied Data Research, Inc., New York, N. Y.

5. S. S. Patil, Limitations and Capabilities of Dijkstra's
Semaphore Primitives for Coordination Among Processes, Computa-
tion Structures Group Memo 57, Project MAC, M.I.T., Cambridge,
Mass., February 1971.

6. E. W. Dijkstra, Co-operating Sequential Processes, Program-
ming Languages, F. Genuys, Ed., Academic Press, New York, 1968.

7. D. E. Muller, Asynchronous Logics and Application to Informa-
tion Processing, Switching Theory in Space Technology, Stanford
University Press, Stanford, California, 1963.

8. J. B. Dennis and S. §. Patil, Speed Independent Asynchronous
Circuits, Proceedings cof the Fourth Hawaii International Con-
ference on System Sciences, 1971.

9. W. W. Plummer, Asynchronous Arbiters, Computation Structures
Group Memo 56, Project MAC, M.I.T., Cambridge, Mass., February
1971.

10. J. B. Dennis, Programming Generality, Parallelism and Com-
puter Architecture, Information Processiing 68, North-Holland,
Amsterdam 1959, pp 484-497.

11. J. B. Dennis, Future Trends in Time Sharing Systems, Time-

Sharing Innovation for O erations Research and Decision-Makinq,
ashington ouncil] r PP - .

12. J. L. Gertz, Hierarchical Associative Memories for Parallel
Computation, Report MAC-TR-69, Project MAC, M.I.T., Cambridge,
Mass, June 1970.

13. P. Lucas and K. Walk, On the Formal Description of pL/T,
Annual Review in Automatic Programming, Vol. 6, Part 3, Pergamon
Press 1969, pp 105-182.

14. J. McCarthy, A Formal Description of a Subset of Algol,
Formal Language Description Languages for Computer Programming,
North-Holland, Amsterdam, 1966, pp 1-1I7.

53

CCMPUTATION STRUCTURES

References (cont.)

15. P. J. Landin, The Mechanical Evaluation of Expressions,
The Computer Journal, Vol. 6, No. 4 (January 1964), pp. 308-320.

16. J. E. Rodriguez, A Graph Model for Parallel Computations,
Report MAC-TR-64, Project MAC, M.I.T., Cambridge, Mass.,
September 1969.

17. s. s. Patil, Closure Properties of Interconnections of
Determinate System, Record of the Project MAC Conference on
Concurrent Systems and Parallel Computation, ACM, New York,
1970, pp. 107-116.

18. J. B. Dennis, Coroutines and Parallel Computation,
Princeton Conference on Information Sciences and Systems,
Princeton, N.J., March 1971.

19. J. B. Dennis, On the Design and Specification of a Common
Bane Language, Proceedings of a Symposium on Computers and
Avtomata, Polytechnic Institute of Brooklyn. To be published.

20. I. Campbell-Grant, "The Controlled Execution of Parallel
Programs Operating on Structured Data", S.M. Thesis, Dept.
of Electrical Engineering, January 1971.

Publications 1970-1971

Campbell-Grant, I., "The Controlled Execution of Parallel
Programs Operating on Structured Data", S.M. Thesis, Dept.
of Electrical Engineering, January 1971.

Dennis, J. B., Coroutines and Parallel Computation, Princeton
Conference on Information Sciences and Systems, Princeton,
N. J., March 1971.

Dennis, J.B., On the Design and Specification of a Common
Base Language, Proceedings of a Symposium on Computers and
Automata, Polytechnic Institute of Brooklyn. To be published.

Pennis, J. B., and Patil, S. S., Speed Independent Asynchronous
Circuits, Proceedings of the Fourth Hawaii International Con-
ference on System Sciences, 1971.

Fano, R. M., "Computers in Human Society =- For Good or I112",
Technology Review, March 1970, pp. 25-31.

54

COMPUTATION STRUCTURES

Publications (cont.)

Fano, R. M., "Computers in Society", to be published in the

Proceedings of the Symposium "L'Informatica, La Cultura e La
Societa <taliana", held at the Fcndazione Giovanni Agnelli,

Torino, Italy, December 9-11, 1970.

Patil, S. S., Limitations and Capabilities of Dijkstra's
Semaphore Primitives for Coordination Among Processes, Computa-
tion Structures Group Memo 57, Project MAC, M.I.T., Cambridge,
Mass., February 1971.

Plummer, W.W., Asynchronous Arbiters, Computation Structures
Group Memo 56, Project MAC, M.T.T., Cambridge, Mass., February
1971.

Rotenberg, Leo J., "Surveillance Mechanisms in a Secure Com-
puter Utility", Computers and Society, Vol. 2, No. 1, April
1971, ACM Special Interest Group on Computers and Society.

Vogt, Carla, "Making Computerized Knowledge Safe for People”,
Technology Review, March 1970, pp. 33-39.

55

" 3 L " e

COMPUTER SYSTEMS RESEARCH

Prof. F. J. Corbato”

Academic Staff

Prof. J. H. Saltzer

Instructors, Research Associates, Research Assistants and Others

D. D. Clark R. R. Schell
J. Coffman M. D. Schroeder
K. T. Pogran A. Sekino

Undergraduate Students

P. B. Bishop R. S. Lamson
D. Bricklin M. Liu
B. Carlson D. Misunas
J. R. Cone D. P. Reed
R. Frankston K. Rhoades i
P. A. Green J. Stern T :
R. H. Gumpertz J. M. Strayhor
P. A. Karger C. D. Tavares
DSR Staff
R. H. Campbell E. W. Meyer, Jr.
R. C. Daley N. I. Morris
S. D. Dunten M. A. Padlipsky
R. J. Feiertag T. P. Skinner
R. L. Gardner M. J. Spier
C. C. Garman V. L. Voydock
R. K. Kanodia M. B. Weaver
R. F. Mabee S. H. Webber

Support Staff

0. D. Carey D. L. Jones

S. Daise T. H. Seymour

C. P. Doyle A. G. Testa

L. J. Haron M. W. Webber
Guest

Prof. G. lazeolla

PRECEDING PASE BLANK

57

V. COMPUTER SYSTEMS RESEARCH

A. Introduction

The Computer Systems Research Group concentrates upon discover-
ing ways to make engineering of complex information systems more
methodical. Its approach is to use the Multics system as a
laboratory. Thus, the work of the group must be classed as
experimental, in contrast to the more theoretical attack fol-
lowed by the Computation Structures Group. Use of an operating
computer utility as a laboratory has both advantages and diffi-
culties. The chief advantage is contact with reality and test-
ing of new engineering ideas in a real operational environment,
a test which is essential to achieve credibility for the ideas.
The chief drawback lies in the unwillingness of live users to
submit to arbitrary changes to their operating environment as

a research group tries out ideas, not all of which are neces-
sarily good ones.

Taker in proper balance, these two considerations can lead to
use of a live system as a laboratory, in which a substantial
number of good research problems can be adequately attacked,
by careful planning. It is in such a laboratory that the
group operates.

In the last twelve months, research progress has been made in
several areas:

Dynamic Reconfiguration

I/0 Programming Language

Automatically Managed Multilevel Memory
Protection of Programs and Data

System Programming Language

Message Handling

Each of these areas will be discussed in turn.

B. Dynamic Reconfiguration

If the "computer utility" is ever tc become as much of a
reality as the electric power utility or the telephone com-
munication service, its continued operation must not be de-
pendent upon any single physical component, since individual
components will eventually fail. This observation leads an
electric power utility to provide procedures whereby an idle
generator may be dynamically added to the utility's generating
capacity while another is removed for maintenance, all without
any disruption of service to customers. A similar scenario has
long been proposed for multiprocessor, multimemory computer
systems, in which one would dynamically switch processors and
memory boxes in and out of the operating configuration as need-
ed. Unfortunately, though there have been demonstrated a few
"special purpose" designs, it has not been apparent how to
provide for such operations in a general purpose system. In

a doctoral thesis done in the CSR Group, Roger R. Schell pro-
posed a general model for the dynamic binding and unbinding of
computation and memory structures to and from ongoing computa-

PRECEDING PAGE BLANK

59

COMPUTER SYSTEMS RESEARCH

tions. Using this mcdel as a basis, he also proposed a specific
implementation of his model for a typical multiprocessor, multi-
memory computing system. One of the results of this work was
the addition to the operating Multics system of the capability
of dynamically adding and removing central processors and mem-
ory boxes. The usefulness of the idea may be gauged by observ-
ing that five to ten such reconfigurations are now performed in
a typical 24-hour operating day.

The full impact of this piece of research should be felt far
beyond the Multics system, since the thesis provides a general
model for such operations, and it can provide the designer of a
new system with the insight needed to allow him to include dyna-
mic reconfiguration in his engineering plans.

C. 1I/0 Programming Language

An area of computer programming which has received too little
attention is that of languages for specifying the detailed i
control of input and output devices. In most cases, the
programmer expresses such control in dynamically constructed
channel instruction sequences, for which his programming tools
are very meager. Often, the nature of a channel program is
hidden in the code of the CPU program which constructs it.
Worse, the construction is usually in terms of the individual
bit string constants which happen to constitute operation codes,
addresses, or control messages for the channel. Thus, although
the programmer may control the CPU with expressions in the PL/I
language, he often controls the I/O channel with expressions in
binary.

Efforts to make progress in this area are frustrating, since
the nature of I/O control is very different for different kinds
of devices. However, there is one class of device within which
I/0 control is fairly well constrained -- the class of type-
writer terminals. Thus, as an experiment, a simple language
was devised which permits quick and easy specification of the
channel programs used for typewriter terminals. The language
includes primitives for synchronization between the 1/0 channel
and the CPU program. A translator for the language was con-
structed, and the Multics typewriter control package was re-
written using the language for all I/0 channel control. The
new typewriter control package handles all I/0 with Model 33,
35, and 37 teletypes, IBM 2741 and 1050 terminals, and also
static display consoles. So far, the new control package has
proven much more maintainable than earlier designs, thus pro-
viding some basis for continued experimentation with I/O }

e g g N G TR A

channel control languages.

D. Automatically Managed Multilevel Memory |

By now, it has become accepted lore in the computer system
field that use ¢f automatic management algorithms for memory
systems, constructed of several levels with different access
times, can provide a significant simplification of programming
effort. Examples of such automatic management strategies in-
clude the buffer memories of the IBM 370 models 155, 165, and

L

60

COMPUTER SYSTEMS RESEARCH

195, and the demand paging virtual memories of Multics, IBM's
CP-67, and the Michigan Terminal System. Unfortunately, behind
the mask of acceptance hides a worrisome lack of knowledge about
how to engineer a multilevel memory system with appropriate
algorithms which are matched to the load and hardware charac-
teristics. One of the projects of the CSR Group is to instru-
ment and experiment with the multilevel memory system of Multics,
in order to learn better how to predict in advance the perfor-
mance of proposed, new, automatically-managed, multilevel-
memory-systems. Several specific aspects of this goal have

been explored recently:

l. A strategy to treat core memory, drum, and disk as a true
three-level memory system has been proposed, including a
"least-recently-used" algorithm for moving things from drum

to disk. Such an algorithm is already in use to determine
which pages should be removed from core memory. The dynamics
of interaction among two such algorithms operating at different
levels are not understood, and some experimental work should
prcvide much insight. The proposed strateqgy will be imple-
mented, and then compared with a simpler strategy which never
moves things from drum to disk, but instead makes educated
"guesses" as to which device is most appropriate for the per-
manent residence of a given page. If the automatic algorithm
is at least as good as the older, static one, it would repre-
sent an improvement in over-all design by itself, since it
would automatically track changes in user behavior, while the
static algorithm requires constant attention as to the validity
of its gquesses.

2. A scheme to permit experimentation with predictive paging
algorithms was devised. The scheme provides for each process
a list of pages to be preloaded whenever the process is run,
and a second list to be immediately purged whenever the pro-
cess stops. The updating of these lists is controlled by a
decision table exercised every time the process stops running.

3. A series of hardware measurements were made to establish
the effectiveness of a small associative memory used to hold
recently accessed page descriptors. These measurements es-
tablished a profile of hit ratio (probability of finding a
page descriptor in the associative memory) versus associative
memory size which should be very useful to the designers of
virtual memory systems.

4. A set of models, both analytic and simulation, were con-
structed to try to understand the behavior of a shared virtual
memory. The most important result of this line of work so far
has been finding that a single parameter of load (the mean ex-
ecution time between "missing" pages in the virtual memory)
suffices to provide a quite accurate prediction of paging and
idle overheads. A doctoral thesis is in progress on this
topic.

As a sidelight, the measurements used to validate the models

led to the discovery of an overloaded disk paging channel, the
addition of a second hardware channel, and the jinvertion of an

61

COMPUTER SYSTEMS RESEARCH

ingenious algorithm to maximize the effective capacity of the
two channels. 1In brief, the two channels both connect to three
hardware disk controllers, each of which can process only one
request at a time. The heart of the algorithm is, when a
channel comes available, to look ahead in the queue of work

for the first outstanding request which is directed to one of
the two unused disk controllers. Although some requests are
thereby processed out of order, the over-all multiprogramming
performance is improved, since the average queuing for disk
service is reduced.

E. Protection of Programs and Data

A long-standing objective of the CSR Group has been to provide
facilities for the protection of executing programs from one
another, so that users of a public computer utility may, with
confidence, place appropriate control on the release of their
private information. 1In 1967, a scheme was proposed which
provided a generalization of the usual supervisor-uyser protec-
tion relationship. This scheme, called "rings of protection",
provides user-written subsystems with the same protection from
other users that the supervisor has, yet without requiring that
the user-written subsystem be incorporated into the supervisor.
This scheme was brought under intense review in the last year,
with two results:

1. A hardware architecture which implements the scheme was
proposed. One of the chief features of the proposed archi-
tecture is that subroutine calls from one protection ring to
another use exactly the same mechanisms as do subroutine calls
among procedures within a protection area. The proposal ap-
pears sufficiently promising that it was included in the speci-
fications for the next generation of hardware to be used for
Multics.

2. As an experiment in the feasibility of a multilayered
supervisor, several supervisor procedures which required pro-
tection, but not all supervisor privileges, were moved into a
ring of protection intermediate between the users and the main
supervisor. The success of this experiment established that
such layering is a practical way of reducing the quantity of
supervisor code which must be given all privileges.

Both of these results are viewed as steps toward first, a more
complete exploitation and understanding of rings of protection,
and later, a less constrained "domain of protection" organiza-
tion. Two doctoral theses are underway in this area.

F. System Programming Languages

Another technique of system engineering methodology being ex-
plored by the CSR Group is that of higher level programming
language for system implementation. The initial step in this
direction (which proved later to be a very big step) was the
choice of the PL/I language for the implementation of Multics.
By now, Multics offers an excellent case study in the viability
of this concept. Not only has the cost of using a higher level

62

COMPUTER SYSTEMS RESEARCH

language been proven acceptable, but increased maintainability
of software has permitted much more rapid evolution of the
system in response to research proposals as well as user needs.

During the year, progress was made on several specific aspects
of exploring higher level languages:

l. The transition from an early PL/I subset compiler to a newer
compiler which handles almost the entire language was completed.
This transition was carried out with performance improvement in
practically every module converted. The significance of the
transition is the demonstration that it is not necessary to
narrow one's sights to a "simple" language for system program-
ming. If the language is thoroughly understood, even a language
as complex as the full PL/I can be effectively used.

2. Notwithstanding the observation just made, the time re-
quired to implement a full PL/I compiler is still too great

for many situations in which the compiler implementation cannot
be started far enough in advance of system coding. For this
reason, there is considerable interest in defining a subset
language which is easily compilable, yet retains the features
most important for system implementation. Such a language was
defined, and a report has been prepared describing it.

3. An implication of using higher-level languages for system
programming is that programmers find it more convenient to
construct large subparts of an operating system out of many
small modules. This modularity generally improves the struc-
tural organization of the subsystem by making its various
functions distinct. However, when therz are many modules to

be assembled into a subsystem, the assembly itself requires a
language to specify many otherwise tedious details of the
binding which is to occur. (For example, when several proce-
dures are bound together, usually only a few of the total set
of entry points are *o remain as entry points from outside

the bound subsystem. Some method is needed to identify which
entry points remain.) The interface between the compiler and
the binder is only beginning to be understood, as another iter-
ation of the binding specification language design was com-
pleted. One of the results of this work has been the definition
of a virtual machine interface which can be respected by the
compiler and the binder, but which does not exercise all of the
f’ xibility implied by the real machine. It will take consid-
erably more experimentation and study to determine if a real
machine could be significantly simplified by removing the un-
used flexibility.

4. A census of Multics system modules was undertaken, to
learn exactly how much of the system was actually coded in
PL/I, and reasonns for use of other languages. Roughly, of

the 1200 system modules, about 1000 were written in PL/I,

and 200 in machine language. About half of the 200 machine
language modules were support routines for the early PL/I
compiler providing, for example, string concatenation sub-
routines. Many of the rest represented tiny subroutines to
execute this or that privileged instruction, etc. (No attempt

63

COMPUTER SYSTEMS RESEARCH

was made to provide PL/I built-in functions for every con-
ceivable hardware neec¢.) Significantly, only a half dozen
modules (the traffic controller, the central page fault path,
and interrupt handlers) which were originally written in PL/I
have been recoded in machine language for reasons of squeezing
the utmost in performance. Several programs, originally
machine language, have been recoded in PL/I to increase their
maintainability.

5. Research in techniques of compiling complex languages was
continued,* with a major result being a separation of the code
generation phase which is sufficient to allow the same code
generator to be used for both PL/I and FORTRAN. Also, new
code optimization strategies were explored.

G. Message Handling

The observation that Multics contained a large number of in-
dependent mechanisms, all of which were solving different
versions of the same problem, led to a proposal for general
supervisor primitives for queuing messages. It would appear
that although one can in principle construct message queues

in addressable memory, proper protection of previously posted
messages requires a protection capability not expressable in
terms of access to addressable memory. Thus the function of
providing protected mailboxes for messages seems to be a primi-
tive one, which must be provided by the supervisor or the hard-
ware. Although message queues by themselves have been proposed
and implemented in other systems, the trick is to embed them in

the architecture in a natural way. In the design developed here,

message queues fit into the general operating system structure
in a way similar to segments. That is, they are catalogued
with distinct names, and they appear in an address space as
objects which act as FIFO queues. In the long run, a message
queue mechamism may be an appropriate object for direct hard-
ware implementation. To explore this area, a software message
queue mechanism was designed, and added to the Multics system,
and the various independent mechanisms are being scrapped.

H. Graphics Support

The CSR Group does not carry out research on techniques of
graphical display. However, there are many very interesting
and sophisticated ideas in the field of graphics, invented
elsewhere, which have not received a true test of usefulness
because they were implemented within some special purpose
system. The CSR Group is attempting to integrate some of
these ideas into a Multics graphics system, in an attempt to
show the feasibility of making sophisticated graphical display
a property of the general purpose computer utility. To this
end, several development lines are in progress:

*This work was actually carried out by our Honeywell counter-
parts in the joint study.

64

e

e 58

COMPUTER SYSTEMS RESEARCH

1. An initial, reasonably simple, graphics display system has
been designed and implemented. Its purpose was principally to
test certain strategies of coupling graphics to the virtual
memory, and to gain some experience in graphics.

2. Attachment and use of the ARDS (Advanced Reactive Display
Station) storage tube display was accomplished.

3. Design was started on a more sophisticated graphics system
which would incorporate many of the test ideas developed at
Lincoln Laboratory, Bell Telephone Laboratories, and the Rand
Corporation. The team doing this design is also responsible
for interfacing to the graphics protocol of the ARPA network,
so that the completed graphics system should be very widely
usable.

I. Other Activities

Several other activities, not all of which are classed as re-
search, were carried out by the group:

1. An interpreter for the LISP language which permits an es-
sentially unlimited workspace within the virtual memory was
implemented. The effectiveness of demand paging for LISP-type
applications has long been a topic of debate, and one purpose
of this work is to help resolve the debate. A LISP compiler
is also being constructed.

2. The exportation of already developed ideas was pursued in
a variety of ways. In January 1971, a symposium to discuss
Multics was held at M.I.T., drawing about 90 attendees from
industry and government. The users' manuals of the system
were upgraded, and a number of technical papers were prepared
and presented. A book by Elliott Organick, describing the
Multics system, was accepted for publication by the M.I.T.
Press, and is scheduled for Spring 1972 publication. Finally,
the operating Multics system itself was exported to two other
sites, the Rome Air Development Center and Honeywell Informa-
tion Systems, Waltham, Mass., technical computing center.

3. In what amounts to a tour-de-force of focusing many ideas
into one mechanism, a complete PL/I source language program
debugging system was designed and implemented. This system,
which required cooperative modifications of the PL/I compiler,
allows methodical exercise of essentially every feature which
a programmer might use in the segmented virtual memory environ-
ment of Multics. Many previous systems have established the
value of powerful program debugging tools in an interactive
environment, but most have been designed primarily for the
sophisticated machine language programmer.

4. As mentioned in the introduction, the privilege of using

a live system as a research laboratory is paid for partly by
the necessity of being responsive to needs of a user community;
a variety of tasks in this area were completed. A facility
for submission of absentee jobs to the system was installed.
System down time following a crash was reduced from 25 minutes

65

COMPUTER SYSTEMS RESEARCH

to 5 minutes. Hardware and software were modified to permit
packing of page tables, to improve performance. A subsystem
which permits use of the entire Dartmouth 635 time-sharing
system within Multics was implemented. A better, faster, text
editor based on "QED" from the SDS 940 time-sharing system was
developed. Finally, at Honeywell, design was completed for an
interpreter for the "APL" language of Iverson.

5. A subgroup of the CSR Group devoted most of its energy to
attaching the ARPA network to Multics. This activity is re-
ported in more detail elsewhere.

J. Acceptance of Multics

Since the earliest proposals for the creation of the Multics
system, there has been a healthy skepticism expressed by many
observers that a system with so many ambitious objectives could
be engineered with acceptable economic performance. During the
year, impressive evidence that the skeptics are wrong was
amassed:

1. Use of the system by people outside the Multics development
group steadily climbed to the point that 2-CPU operation during
the peak hours became necessary. Even the 2-CPU system now
operates at capacity for several hours per day.

2. The M.I.T. Information Processing Center, which operates
the system, found that revenue from paying customers crossed
the break-even point, and began to repay the initial service
underwriting investments made by M.I.T. and Honeywell.

3. Revenue from paying customers exceeded that of each of
the other three major computer systems at M.I.T. (these are
a 360/65 running 0S/MVT, a 360/67 running CP/67 and a 7094
running CTSS).

4. 1In addition to the 700 registered users, some 700 students
used the Multics system in an "Educational Information Service"
which provides a restricted service administered by a student
committee.

5. A number of computer science subjects, including the in-
troductory programming subject, found Multics sufficiently
economical to use for at least part of their required home
problems.

6. Enough long-term interest in Multics was apparent that the
M.I.T. Information Processing Center requested from Honeywell

a quotation for price and delivery of a new hardware base for
the system. At the close of the reporting period, engineering
specifications were largely completed, tentative schedules for
delivery were worked out, and final contraci details were under
negotiation.

Thus, during the year Multics moved from a position of tenta-

tive acceptance to that of being the primary time-sharing
service of the M.I.T. community. Initial estimates of the

66

o —

FEORNE 7 e

CCMPUTER SYSTEMS RESEARCH

price and performance of the proposed follow-on system suggest
that questions of the economic viability of such a system need
no longer be of concern,

K. ARPA Network Status

1. Design Issues

The technical context of the ARPA Network was described in

last year's report. At that time, it was anticipated that
consensus would shortly be reached among the Network Working
Group participants (representing the 15 to 20 sites that will
be linked by the Network) on final designs for a "Host-to-Host"
(or Network Control) protocol and a "Logger" protocol (to allow
direct logins over the Network to the operating systems at the
various sites). However, the combined effects of the technical
diversity of the systems involved and the inherent difficulty
of multi-organizational design work (particularly wlien the
sites are widely scattered geographically) resulted in a less
~lear-cut situation than was hoped for. By the time of the
1971 SJCC meeting mentioned earlier, neither protocol had been
formally enunciated although the technical content of the forth-
coming documents was sufficiently agreed upon to enable imple-
mentation to proceed. (Indeed, the Logger protocol had been
split into two areas, one covering initial connections and the
cther covering Teletypewriter issues.) A considerable portion
of the Group's directly Network-related effort during the re-
porting period, then, was necessarily more concerned with parti-
cipation in the design process than had been supposed last
year.

a) NCP: -- The protocol for the Network Control Program
which each Network "host" system must implement was found to
need revision after publication of its formal statement in the
Summer of 1970. An important change introduced had to do with
the association of byte sizes with connections and byte counts
with messages. This step will be useful for allowing the "Ter-
minal IMP" to access the Network. (A Terminal IMP is a special
Interface Message Processor designed to be used alone -- not,
that is, in conjunction with a large-scale local host system.
Thus, the Network will be available to a much broader community
of users. This is a very important aspect of the Network, in
that general resource-sharing is the Network's major goal, and
communication beyond the confines of host sites is a particularly
desirable corollary.)

b) ICP: -- The first part of the projected Logger protocol,
as noted last year, had to do with getting the attention of the
remote ("server") system from the local ("user") system. This
aspect has been split off into a separate "Initial Connection"
protocol (ICP). Each server site agrees to listen to a desig-
nated socket and route. any activity on it to whichever appro-
priate process, local to it, that will manage Network logins.
When a request for connection arrives on the "Logger" socket,
by convention a message is sent to the user designating the
number of a socket over which the login negotiations are to
proceed. (Actually, the designated socket and the next -- con-
secutively numbered -- socket are used, as connections are de-

67

L

Y

M-qm aeo

COMPUTER SYSTEMS RESEARCH

fined to be over socket pairs.)

c) Telnet: -- The second separable aspect of the previously
conceived Logger protocol was recognized to be that of common
conventions for Teletypewriter use by logged-in users. A "Telnet"
protocol was evolved to satisfy the perceived need for a Network-
wide "virtual terminal". Again, nearly formal specifications
were settled on at the Spring Network Group meeting., By con-
vention, the Telnet processor (which may be either a separate
process or simply a subroutine, depending upon particular host
systems' organizations) will be invoked by the Logger at the
server's site and by whatever routine manages the ICP at the
user's site.

was also designed and initially implemented during the report-
ing period. Given the server system's name, it will execute

the ICP and, if successful, direct user input and output over
the Network, through a Telnet subroutine. It is also exteusible
for management of file transfer operations and other "indirect"
use of remote systems (as well as the "direct" use represented
by a login on 3 remote system) as such protocols are specified.

during Summer 1971, for its role as the prime Multics user
interface to the Network.

2. Implementation

Toward the end of the reporting period, an intensive effort
was being mounted to complete the implementation of the above-
mentioned designs in conformance with ARPA's 1 July target date.

a) INCP and Version I IMP DIM: —-- Prior to the emergence
of the NCP redesign, implementation had proceeded on the "Version
I" protocol. The software to manage the IMP (including buffer-
ing and process wakeups, as well as link allocation and physical
message formatting) was successfully installed in the Standard
Service System. An Interim Network Control Program (INCP) was
also implemented. The INCP, in the interests of allowing early
experiments to be performed, and in order to facilitate checkout
of the lower levels of software and hardware, did not implement
the Host-to-Host control message aspects of the full NCP. It
did, however, furnish the environment for the experiments de-
scribed below.

b) Version II IMP DIM: -- By late May 1971, a revised IMP
DIM which implements the Version II NCP protocol had been suc-
cessfully checked out on the Development Machine and was submitted
for Standard Service System installation. The installation took
Place in early June.

C) NCP: -- The full-scale, Version II Network Control
Program being readied for installation possesses certain tech-
nical interest that is worth noting. It is essentially a finite
state machine, managing sockets on the basis of state table
guided transitions. This approach is expected to facilitate

68

[7 e

COMPUTER SYSTEMS RESEARCH

dealing with future versions of the protocol. The NCP will also
take advantage of the expansion of the Multics protection ring
structure, residing in Ring 1 rather than Ring 0. Thus, alter-
ations to the NCP will not require the production of new Multics
System Tapes. (The IMP DIM, on the other hand, does reside in
Ring 0, since it must deal with wired-down buffers. Therefore,
the situation mentioned earlier in regard to the Development
Machine's availability does have an impact on testing in this
area.) By the end of the reporting periol, the NCP was func-
tioning successfully in the Ring 4 (user ring) environment,

and awaiting Ring 1 installation.

d) Logger: -- The Multics process that will respond to
the Initial Connection protocol is the standard Answering
Service process. Taking advantage of the fact that the Answer-
ing Service was designed to allow various types of terminals to
be connected through a common interface, the Logger implementa-
tion adds to the Answering Service code which employs an exist-
ing transfer vector-like arrangement to attach the Network I/O
streams to the standard Multics process "user i/o" streams.
With the I/O streams suitably attached, the processing of the
login may then proceed in the same fashion as a locally initiated
login. By the end of the reporting period, the Logger was func-
tioning in the Development Machine environment, but proved to
require revision before being submitted for Service System in-
stallation scheduled for late July 1971.

e) Telnet and the Initial Comnection Protocol: -- Although
the design considerations involving the Telnet and Initial Con-
nection protocols were complex, implementations are relatively
straightforward. The network command, which exercises both
protocols, was made ready in a "stripped down" form for inte-
gration with the other Multics Network modules as they went
into final testing. The test version of the network command
was used to perform the Multics-to-Multics login and the logins
to remote systems mentioned earlier. It will be brought up to
Standard Service System quality and installed by early August.

3. EXxperiments

As a combination confidence test and checkout exercise of the
then-current Network implementations on the respective systems,
members of the Project MAC Computer Systems Research and Dynamic
Modeling/Computer Graphics Groups performed an interesting ex-
periment in December 1970. Although it employed specifically
tailored processes on each system, rather than the general-
purpose mechanisms envisioned for the full-fledged Network, the
experiment was of interest both as a demonstration of the utility
of a large fraction of the underlying machinery of the full
Network and as the first in a planned series of progressively
more-sophisticated experiments which take advantage of the fact
that Project MAC has two Network hosts on site, with actively
cooperating staffs.

The experiment involved a logged-in user on the Dynamic Model-

ing/Computer Graphics Group's ITS system communicating via his
console with a logged-in user on Multics. ("Communicating" is

e W »r

COMPUTER SYSTEMS RESEARCH

used in the sense of sending and receiving extemporaneous
messages.) It was called a "polite conversation" owing to
certain constraints which were imposed in order to make the
experiment straightforward to implement: the conversation
begins on a "speak only when you're spoken to" basis, and
subsequently the participants may not interrupt when the

other is "speaking". To further simplify the impelementation,
the conversation was performed over an agreed-on link, with
conscious catering to the respective systems' end-of-line con-
ventions. For all its apparent triviality, the success of the
polite-conversation experiment demonstrated the successful
functioning of all the items then implemented. (With a change
of site number, of course, it could as well have been performed
across the country as merely across the building.)

The participants were so pleased with the success of the polite-
conversation experiment that they decided to improvise a follow-
on experiment on the spot. This entailed rerouting the ITS 1/0
streams to the "user_i/o" streams in the cooperating Multics
process. Although the resulting "pseudo-login" quickly en-
countered difficulties, stemming from the line-at-a-time orien-
tation of the polite conversation, several issues were exposed
which proved to be quite fruitful in subsequent contributions

to the Telnet protocol design. The polite conversation was re-
enacted when the INCP and IMP DIM had been installed on the
Service Machine, but it was decided not to pursue login issues
until a higher degree of Network-wide consensus was reached on
the protocols.

Another experiment employing current implementations was per-

formed during the reporting period, involving the transfer of
files from ITS to Multics.

Publications 1970-1971

Saltzer, J. H. and J. W. Gintell,*"The Instrumentation of Mul-
tics", Communications of the ACM, Vol. 13, No. 8, August 1970,
pp. 495-500. This paper dealt with the desirability of perfor-

mance metering and described various Multics performance metering

tools.

Clark, D., R. M. Graham, J. H. Saltzer and M. D. Schroeder, "The
Classroom Information and Computing Service", MAC TR-80, January
1971, AD-717-857. This report described an operating system de-
signed for use in the M.I.T. Course 6.233, "Information Systems"
the system constitutes a simplified subset of Multics, and its
implementation gave rise to many of the ideas proposed for the
Multics follow-on hardware.

Saltzer, J. H. and J. Ossanna,* "Technical and Human Engineering
Problems in Connecting Terminals to a Time-Sharing System", Pro-
ceedings of the AFIPS Fall Joint Computer Conference, Vol. 37,
1970, pp. 355-362.

*Non-MAC author.

7¢C

~e

COMPUTER SYSTEMS RESEARCH

Publications 1970-1971 (cont.)

Schroeder, M. D., "Performance of the GE-645 Associative Memory
while Multics is in Operation", Proceedings of the AcM SIGOPS
Workshop on System Performance Evaluation, April 1971, Harvard
University, Pp. 227-245,

Schell, R. R., "Dynamic Reconfiguration in Multics", Ph.D.
Thesis, Department of Electrical Engineering, June 1971, also
MAC TR-86, AD-725-859.

71

= e st : e s L L T — AP HTR -2 g B iombone aeaie, . it o an o o

DYNAMIC MODELING/COMPUTER GRAPHICS/COMPUTER NETWORKS

Prof. J. C. R.

Instructors, Research Associates,

Licklider

Research Assistants and Others

R. D. Bressler D. T. McDonald

R. H. Bryan P. L. Miller

R. J. Fleischer H. F. Okrent

F. E. Guertin G. F. Pfister

J. F. Haverty W. G. Shaw

R. Johnston J. R. Sloan
Undergraduate Students

W. F. Bauer E. I. Katz

A. J. Baum R. M. Katz

E. H. Black R. N. King

H. R. Brodie P. B. Kurnik

M. S. Broos P. J. Leach

K. M. Brown P. D. Lebling

A. Y. Chan C. K. Leung

R. G. Curley R. T. Lindsay

S. E. Cutler S. G. Morton

B. K. Daniels P. A. Pangaro
R. A. Freedman G. Pavel
D. E. Geer, Jr. R. L. Prakken
R. A. Guida M. A. Rondio
J. H. Harris L. M. Rubin
P. W. Hughett N. D. Ryan
W. F. Hui H. E. Tucker
E. Kant B. J. Zak

DSR Staff
B. J. Bailin J. P. Jarvis, III
A. K. Bhushan K. J. Martin
G. R. S. Bingham R. M. Metcalfe
A. L. Brown J. C. Michener
M. A. Cohen S. G. Peltan
D. G. Cressey C. L. Reeve
S. W. Galley J. R. Taggart
R. P. Goldberg A. Vezza

Support Staff

M. A. Bizot M.
M. F. Brescia J.
J. C. Cheney A.
M. T. Cheney R.
M. S. Draper F.
C. T. Falls

Guest

Prof. A. Fleisher

J. Grano
A. Haley
J. Hicks
F. Hill
L. Yost

PRECEDING PAGE BLANK

73

A i " o ol 1, A

VII. DYNAMIC MODELING, COMPUTER GRAPHICS, AND COMPUTER NETWORKS

A. Introduction

The Dynamic Modeling Group, tue Computer Graphics Group, and

the Computer Networks Group of Project MAC were formed last

year. The efforts of the first two of those groups and about
half of the third are strongly interrelated, focusing upon the
design and development of a computer system specialized for high-
ly interactive problem solving through modeling. The goals of
and plans for that work were described in a section of the Annual
Report for 1969-70. Progress toward the goals during the year
1970~-1971 will be reported upon now in this section. The other
part of the work in computer networks, also interrelated but
mainly involving members of the Computer System Research Group,
is reported upon in that group's section of this Annual Report.

The main objective of the joint research program of the two-and-
a-half groups is a hardware-software computer system that will
go significantly far beyond conventional time-sharing systems

in facilitating the formulation, understanding, and solution of
difficult problems through modeling. It is now widely recognized
that the best medium in which to represent and experiment with
the interdependencies within complex situations and processes

is that of interactive computer programs. In such programs,
interrelations that are amenable to mathematical representation
can be expressed mathematically, those that are not can be
simulated empirically, and all can be brought together to

yield a model that, when executed in a computer, "runs" and
exhibits dynamic behavior. The behavior, displayed to the
modeler and his associates, reveals consequences of the facts
and assumptions incorporated into the model and of their inter-
relation and organization. If the modeled cituation or process
is at all complex, most people can see "how it works" much more
clearly by modeling it in proygrams and running, observing and
experimenting with the model than by merely thinking about it

or working on it with pencil and paper.

Heretofore, there have been specialized programming languages
(SIMSCRIPT, GPSS, DYNAMO, SIMULA, etc.) to facilitate the prep-
aration of computer-program models, but not specialized computer
systems in which to observe and experiment with such models.
Ordinary computer systems will execute the programs a}l‘rlght,
and good time-sharing systems will to some extent faqll%tate
their preparation, but existing systems are lacking in important
dimensions. They do not provide a store room full of parts

out of which to assemble models. They do not provide some of the
tools required in experimenting with and modifying mo@els.

They do not provide displays through which one can quickly select
and observe various aspects of the behavior of models. And

they do not provide for progressive, accumulative augmentation

of the sets of tools, techniques, parts, and models as the sys-
tem is used in successive modeling projects. The aim of the
program described here is to create a modeling system thgt will
have strong capabilities in those dimensions as well as in the
other dimensions of general-purpose interactive computing.

PRECEBING PASE BLANK

75

L I

M

MODELING, GRAPHICS, NETWORKS

The Dynamic Modeling Group's part of the joint effort is mainly
to create and assemble an array of tools and techniques, exclus-
ive of graphics, that will facilitate modeling. The Computer
Graphics Group's part, of course, is mainly to develop and pro-
vide the tools and techniques of graphic control and graphic
display. The Computer Networks Group's part is to advance the
art of networking and, in particular, the ARPA Network, in such
a way as (a) to make remote resources (e.q., pProcessing programs,
data collections) available to the system, almost as though they
were locally resident parts of it, and (b) to make it possible
to use the system, with little degradation of service, from re-
mote consoles.

programs to serve the needs of modeling, graphics, and network-
ing. There has been, and there continues *o be, much of this
work. It often seems to be a diversion from efforts that would
contribute more directly and more visibly to the development

and understanding of modeling, graphics, and networks, but it

1s essential and innovative work involving new concepts in sys-
tem organization for highly interactive and predominately graph-
ical man-computer interaction.

Because three basic themes are involved in the joint program,

it has been difficult to find an expressive name for the Dynamic
Modeling/Computer Graphics/Computer Networks (PDP-10) system.
Despite experimentation with permutations of "dyna", "graph",
"cogni", "net", and other such combinable forms, we do not yet
have a name that satisfies us. In this report we shall refer

to the computer system -- hardware plus software plus extension
into the ARPA Network -- simply as "the computer system" or "the
system".

B. Dynamic Modeling

During the year, our ideas about the kit of tools and techniques
and the system organization required for dynamic modeling took
more definite shape, and good progress was made toward implement-
ing some of them. Among the implementations having or approach-
ing initial operational Capability at the end of the year were
those relating to mediation, intervention, the library of sub-
routines and data sets, the library of documentation, a program-
ming language based or LISP but extended to handle diverse data
types and to exploit graphics, and a word-oriented system for
representing text.

1. Mediation and Intervention

"Mediation", as the term is used here, is the function of 3 pro-
gram that interposes itself, in order to organize and facilitate
their intercommunications, between other programs or between
routines and the sets of data upon which they operate. The
mediator of the computer system is a collection of programs
called "CARE" ("CAll and REturn") prepared by Jeffery Harris,
Paul Hughe“t, and J. C. R. Licklider. CARE is intended to oper-
ate within each process in the system. CARE is continually being
it &

Nt

76

MODELING, GRAPHICS, NETWORKS

augmented. It is at present operating in some processes, and
we expect to incorporate it into most user-level processes dur-
ing the fall and winter.¥

Much of the motivation behind mediation stems from the modeler's
need to intervene in the operation of his model and experiment
with it. We shall discuss intervention shortly. For the moment,
merely note that the modeler cannot intervene and experiment
conveniently if the parts of his model are linked together tight-
ly, as by a compiler-loader or assembler-loader, when the model
is .introduced into the computer. The mediator CARE effects the
linking as the program is executed. The modeler can therefore
rearrange the parts without having to reload everything and be-
gin over.

In the system, several different kinds of subroutine calls are
recognized. They are graded in complexity and usefulness and
also, of course, in cost. At the time of each complex call,

and again at the time of each corresponding return of control,
CARE interposes itself between the caller and the callee. CARE
then handles several housekeeping chores, such as protecting the
caller's information against disruption by the caller, and gives
the user an opportunity to intervene. The times of calling and
returning are, of course auspicious for intervention because, at
those times, the transitory complexities of looping, dispatch-
ing, pushing, popping, and the like are momentarily suppressed
and information is disposed in the computer memory in a relative-
ly orderly way.

CARE comes into play, also, each time a processing routine
creates or activates or deactivates or purges a set of data.

The data-related functions of CARE are presently being further
developed. At present the arrangement is as follows: When a
processing routine wishes to create or activate a data set, it
issues an order to CARE, naming the data set and (especially

in the case of creation) providing other essential information.
CARE then creates and names an empty data set or activates the
named existing data set of the specified type and sets up a
pointer or pointers to it. Thereafter, the processing routine
operates upon the data set through the pointers -- at arm's
length, as it were -- and in a sense never knows or cares exact-
ly what data set it is processing. That is to say, the process-
ing routine is (was) written to process data sets of a specified
type, and what it does is specialized for the type but not for
the particular data set created or activated.

*The word "process" is used here in the same sense as is under-
stood among users of MULTICS: an organization, in a computer
memory, of routines and data with which is associated certain
housekeeping information, the most essential items of which are
a pointer to the current or pending instruction and the bound-
aries of an address space. The computer system lets each user
employ several or many concurrent and intercommunicating pro-
cesses.

77

AN - i e = S

MODELING, GRAPHICS, NETWORKS

A basic problem is inherent in the fact that the programmer

who prepared the processing routine did not know what data set
later modelers would wish to have it process. In conventional
computing, the user feeds the data into a card reader, and the
processing routine processes whatever data come in. In the
context of dynamic modeling, however, one assumes that there
are several sets of data in the computer store, and the modeler
may wish to substitute one of them for another during a single
run of his model. 1Indeed, the modeler may wish to go back to

a critical point in the run and see what difference would be
made by a substitution of data. CARE handles this problem by
letting the modeler interrupt the execution of the model at any
call or return point and revise certain of CARE's bookkeeping
tables. One table contains a list of translation tables. Each
translation table associates "programmers' names" of data setsg
with "modelers' names" of data sets. By revising the tables,
the modeler can direct processing routines upon whatever data
sets he likes.

In order to intervene effectively, of course, the modeler must
know where his model is in the course of its run. He can tell
something about that from displays of its behavior, but (in

one of its modes) CARE gives him the detailed picture by display-
ing, at each mediated call point and return point, the name of
the subroutine that is being called or returning. 1In a submode
of this "subroutine naming" mode, CARE pauses at each call and

at each return and waits for the modeler to cause it to proceed
by pressing the space bar on his keyboard. The modeler can
proceed step-by-step to a critical point and then intervene.

To get CARE's attention, the modeler simply presses a predesig-
nated key. CARE then responds to commands given in a simple
command language. At present, this language is being augmented
to cover the essential intervention interactions, and it is
being "harmonized", insofar as possible, with the command lang-
uages of other programs in the system. In the interim, the
modeler carries out most of his intervention functions through
DDT (Dynamic Debugging Tool), a program we borrowed from the
Artificial Intelligence Laboratory and have adapted to our sys-
tem. DDT often operates as a process superior to the model
process(es). CARE operates within each model process. CARE
can transfer the modeler's interaction channel(s) to DDT, and
DDT can transfer it (them) back ~- with the state of the model
preserved.

A most important function of intervention is the selection of
aspects of the model's behavior for display and the assignment
of aspects to display areas. Work on that function was in mid-
course at the end of the year. The display part will be de~
scribed in the section on Computer Graphics.

2. The Library of Subroutines and Data Sets

A basic part of the system is a memory-resident address table
that will hold address and related information about every sub-
routine (except for subroutines of the simplest class) and every
nonephemeral data set in the library. Each such subroutine or

78

e

et s
o

PR ,_:_

MODELING, GRAPHICS, NETWORKS

data set, if not already in memory, will be automatically brought
into memory (by DYNAL, a dynamic loader designed and implemented by
Christopher Reeve) when needed. We still hope (cf. last year's
report) to amass a library collection of at least 1,000 generally
useful subroutines and 100 gererally useful data sets. Our
progress toward the subroutine part of that goal has seemed

fairly rapid when judged without reference to interrelation and
documentation. Members of the group are prolific programmers

and excellent debuggers. When judged in terms of the subroutines
fitting into the system, working with one another, and being
comprehensible to users, however, the situation at the end of the
yYear was disappointing. A major campaign to get the library
organized and documented is in the offing. The library of source
programs will be maintained in a compact form by ARCHIV, a file-
compressing program designed and implemented by Allen Brown, Robert
Bressler, John Haverty and Christopher Reeve. The corresponding
object programs will be maintained by ATTACH, designed and imple-
nented by Bruce Daniels. Both ARCHIV and ATTACH are now Operat-
ing.

3. The Library of Documents

We have had operational on MULTICS, for about a Year, a computer-
based system, developed by Richard Bryan, for storing and retriev-
ing information about the software of the modeling system. At
present, that system is being augmented and interfaced to the
PDP-10 via the ARPANET. The corpus of documentation includes,

as of the end of the reporting year, one-page abstracts and
multipage documents describing subroutines, data sets, macros,

and the like.

The main accomplishment of the year, insofar as documentation

is concerned, was the formulation and description of the set of
standards for program Preparation and documentation called
"Convention II". Convention IT is described in a series of 20
documents by David Burmaster, Martha Draper, Paul Hughett,
Karolyn Martin, J. C. R. Licklider, Christopher Reeve and Albert
Vezza. Convention II deals with the various policy and tech-
nical aspects of program preparation and documentation. The
topics include a standard format for documents, three standard
glossaries (notation, abbreviations and expansions, and system-
wide terms), the format of subroutine headers, data-set headers,
and address tables; data types; the naming of files; two kinds
of abstracts; organization and format of listings; the mediator
and its functions; a set of system-wide macros and how to use them;
and other such topics. At the end of the year, Convention IT
was ready for promulgation. A significant part of the ensuing
effort will be to bring all of our software that "has a future"
into accord with Convention II and to make it operate within

the context of the mediator CARE.

One of the provisions of Convention IT is that, associated with
each software entity, such as a subroutine, a data set, or a
macro, there must be an explanation of the mnemonics of the
nhame, a meaningful expansion of the hame, an abstract contain-
ing prescribed classes of information, and a set of descriptors.
The descriptors, mnemonics, expansions, and -- in the case of
entities to which it is applicable -- the calling and returning

79

MODELING, GRAPHICS, NETWORKS

sequence format will be available on-line through an information-
retrieval system associated with CARE. The abstracts, listings,
and other lengthier documents about the software will be avail-
able in a small ink-and-paper library at each console. As indi-
cated earlier, we set up a first version of part of such a system
on MULTICS last year. Now we are beginning to connect it to

the PDP-10 system. Effective information retrieval is an essen-
tial part of the concept of the system we are developing.

4. An Extension of the LISP Language

Our design objective of highly interactive experimentation with
models is inconsistent with the classical organizatiion of soft-
ware based on compiling and loading monolithic masses of soft-
ware in which all the parts are rigidly linked together. The
limitations of the classical organization have been broken in two
main directions, on the one hand in the paradigm of MULTICS,

in which linking is deferred until reference is actually made,
during the execution of a program, to subordinate parts that
should be linked to the parts already running, and on the other
hand in the paradigm of LISP, in which editing, debugging, and
other such activities are carried on within the coherent frame-
work of the language implementation. For our purposes, both
MULTICS and LISP have many desirable features, but neither in
and of itself provides the desired facility for the kind of
modeling to which we aspire. To mention the main shortcomings,
MULTICS is not set up for use with a graphics processor operat-
ing out of main memory, and LISP, while highly coherent internal-
ly, is difficult to bring into relation with external software
and is only weakly developed in the directions of data typology
and graphical interaction. We have therefore been exploring the
problem of incorporating into our system the best of the two
worlds. Members of our groups have been working with the members
of the Artificial Intelligence Laboratory on the design and imple-~
mentation of an extension of the LICP language that will provide
a number of advantages over previous versionz of LISP. These
will include data type checking, lexical scoping, recognition

of a large number of elementary and compound data types, and the
inclusion of primitives upon which to erect a graphical inter-
action subsystem.

The extension of LISP is known locally as "MUDDLE". It was
designed and has been implemented by Carl Hewitt and Gerald
Sussman of the Artificial Intelligence Laboratory and Christopher
Reeve, David Cressey, Bruce Daniels, and Gregory Pfister of
Dynamic Modeling/Computer Graphics/Computer Networks. MUDDLE

is operational now as an interpreter. As implemented, it is
rather separate and distinct from the other software of the
system we are developing. Wishing to bring MUDDLE into our
system in such a way as to integrate its advantages coherently,
we are studying the possibility of merging MUDDLE's data types
with the system's data types and MUDDLE's implementation routines
with the system's subroutine library.

We hope to use MUDDLE as an interpreter for the upper levels of

the subroutine-calling hierarchy. The idea is to employ interpre-
tation in the upper levels, where most of the changes are made

80

MODELING, GRAPHICS, NETWORKS

in the course of exploring a model, and to employ assembled or
compiled subroutines at the lower levels, where the time effi-
ciency of execution (as opposed to interpretation) is most im-
portant. It now seems likely that such an organization of soft-
ware may be feasible. On the other hand, it would not be good

to cause our version of MUDDLZ to diverge greatly from that of
the Artificial Intelligence Laboratory because MUDDLE is envison-
ed as the base for the implementation of PLANNER, and PLANNER
seems likely to be very useful in modeling as well as in arti-
ficial intelligence research.

5. Lexicontext

Fundamental to the design of an integrated or coherent informa-
tion system is the selection of a basic informational building
block. In most computer systems, as in ours at present, the
basic atom of information is either a character (byte) or a
computer word. For substantive modeling applications, however,
the character is too small a unit, and the computer word does
not bear a direct enough relation to the words of natural lang-
uages in terms of which people think. Looking toward a future
in which a good computer system will have, and be able to use
knowledgeably, a vocabulary of tens or hundreds of thousands of
words of natural language, we have developed a system, called
"Lexicontext"*, that gives to the word -- the word of natural
language and/or the word of technical jargon -- the role of basic
building block. In the Lexicontext system, a word is processed,
not as a string of characters, but as a pointer to an argument
in a lexicon of argument-function pairs. The lexical function
is divided into subfunctions. The absolutely essential sub-
function is the spelling of the word. Other subfunctions can

be added with apparatus provided by Lexicontext. They will
include additional morphological information, syntactic informa-
tion, synonyms, definitions, and (hopefully eventually) programs
that give the entries operational meaning in the paradigm of
Winograd's PROGRAMMAR. Most of these subfunctions can be imple-
mented in terms of the basic Lexicontext element, the pointer

to an entry in the lexicon.

Lexicontext has been implemented by John Haverty. 1In his imple-
mentation, text files are composed of elements of uniform size.
Each item of text (except for literals) occupies the same number
of bits of storage (18 bits in half-word mode, 36 bits in full-
word mode) and -- as explained -- each element represents a lexi-
cal word by pointing to its location in the lexicon. The uni-
formity of representation makes it convenient for the computer to
process text -- e.g., to search for instances of a given word
(type) or to parse sentences. The primary lexicon, itself,
consists of alphanumeric strings (spellings). Associated with
each primary entry there may be pointers into one or more data
bases. These data bases are to contain the subfunctions, other
than the spelling mentioned earlier.

*It has a lexicon and deals with text, and we hope that it will
provide a lexical context for work in modeling.

81

MODELING, GRAPHICS, NETWORKS

Actually, Lexicontext provides for 32 separate lexicons, either
"new"” or "old". (New lexicons can be updated on-line or off-
line; old, only off-line.) The current implementation has a
provision for automatic construction of a new lexicon frorm a
conventional text file; for adding words on-line to a new lexi~
con, as new words, not already in any of its lexicons, arise;
for merging a new lexicon into existing old lexicons, and for
converting conventional text files into Lexicontext text files
and vice versa. Each lexicon allows for 215 elements, i.e.,

a vocabulary of slightly over 32,000 lexical words.

Like Hypertextl and NLSZ, Lexicontext structures text in a hier-
archy such as volume/chapter/paragraph/sentence/word. There

is a mechanism for representing extra-hierarchical items such

as footnotes and references.

Lexicontext text files are moxre compact than character-code
files. The compression ratio is not great, but it is good to
gain something in compactness instead of having to trade off
compactness for the efficiency of processing uniform tokens.

C. Computer Graphics

The Computer Graphics group has made good progress, during the
past year, in mastering the Evans and Sutherland display sub-
system and in solving basic problems in the application of
graphics to facilitate human understanding of, and modeling of,
complex processes and organizations. The Evans and Sutherland
display subsystem (E&S) is a very powerful one, not easy to
exploit fully (especially in a time-sharing environment), and
much of the effort in graphics has been devoted to bring the
capabilities inherent in the E&S into the hands of users who
are not display specialists.

Some of the problems (as well as the advantages) of the E&S
stem from the fact that it has its own processor, which operates
in parallel with the PDP-10 processor and the disk channel and
shares memory with them. Since memory is dynamically allocated
by the operating system to the several user processes that are
running concurrently in the PDP-10, it is necessary for the
operating system to mediate the use of the display processor

or to make corresponding adjustments of memory allocation for
it. This has not been a difficult problem so far because we
have been using only one E&S display. We have followed the
mediation approach with success. However, we are now moving
toward time-sharing the E&S display subsystem among four con-
soles, and that move is not trivial. Michael Brescia is de-
signing the display time-sharing system.

1. "Picture Framing"

One of the capabilities of the E&S display subsystem is to focus
its efforts mainly upon any specified small area or areas of a
very large surface on which there is a picture. That capabili-
ty is important hecause, without it, the processor would spend
most of its time processing parts of the picture that lay out-
side the areas of interest. Accordingly, during the past year,

82

B

Y
2

'3
i o ot 503

MODELING, GRAPHICS, NETWORKS

James Michener and other members of the Computer Graphics and
Computer Networks Groups devised a technique, a kind of "picture-
framing service", in which the E&S processor eliminates the
extraneous parts of the picture and constructs, in memory, a
sub-picture limited to a specified area or areas, and then the
PDP-10 processor reformats the delimited picture for transmis-
sion to an Advanced Remote Display Station (ARDS) or an Imlac
console. That technique is used as a service inside our com-
puter system, and is being made available through the ARPANET

to users of ARDS and Imlac consoles at remote locations.

2. Polyvision

Within the general context of modeling, one of the main graphics
problems is display management. A modeler may have a dozen or
more things to display but only a small display area -- a ten
inch square or at best a very few such squares -- in which to
display them. Polyvision is a display-management subsystem,
designed and programmed by James Michener, Edward Black, and
others, that permits the modeler to assign the various aspects
of his model, mainly dynamic aspects, to named display areas
and then to move the areas about, magnifying some and causing
others to contract, either under program control or under the
control of a stylus in the modeler's hand. Polyvision will be
brought into interaction with the mediator CARE in due

course, but it will not be necessary for the modeler to halt
the execution of his model to adjust the configuration of his
display. The modeler can control the display subsystem while
the model is running. This is in line with our basic concept
of graphical display as an aid to observation. It should not
be necessary to build a schedule of observation irto the basic
framework of the model itself. The schedule of cbservation
must be flexible and under the modeler's control throughout
the course of observation.

Eventually, it may be possible to make sigunificant changes to
the model while it is running. However, the problem_of modify-
ing the model "on the fly" is more difficult than the problem
of modifying the observational procedure "on the fly™. The
latter can be thought through and implemented once and then
used with various models; the former seems, in the present,
state of the art, to require model-specific operation.

3. Graphical Debugging

Computer Graphics offers promise of breaking through one of the
most resistant barriers to human comprehension of complex com-
puter programs. The barrier is, figuratively speaking, the
opaque integument of the computer, which deprives the observer
of any global view of what is going on inside. Even with the
best conventional debugging aids, such as DDT, the observer

can see into the inside workings of the machine only through

a very small aperture. At the operator's console, there are
perhaps a few pilot lights, but they do not encode information
in a very meaningful way. At a typewriter console, one can
open and look inside one memory register at a time. With a
graphic display, on the other hand, one can see a map of the
computer memory (either in the literal space of memory registers

83

R RS

MODELING, GRAPHICS, NETWORKS

or in the symbolic space of source-language statements) and
watch the behavior of the program on the surface of the map.

During the past year, we made some progress toward realization
of a meaningful, global display of program behavior. Stuart
Galley completed a graphical display of program behavior called
"ESP", and Paul Hughett completed important portions of a graphi-
cal debugging tool, called "GDT". In both programs, selected
registers and segments of program are represented schematically
upon the display surface, and the flow of information is repre-
sented by moving arrows, moving symbols, and other devices.
These programs represent only small steps toward what should
eventually be a very powerful aid to the understanding of pro-
gram dynamics, but they will, themselves, find useful applica-
tion in the computer system.

4, Elucidations

The difficulty of harnessing a powerful display subsystem in
the interest of man-computer communication about complex pro<«
cesses is balanced by the simplicity of getting such a sub-
system to display mathematical functions. It is easy to pro-
duce all kinds of "graph paper" on the display screen, and it
is easy to create all kinds of curves and surfaces. It is re-
markable how much one can learn from a few minutes of play at
the graphics console -- a few minutes spent in exploring mathe-
matical functions through graphical display. Obviously, the
general problem of relating graphical and symbolic representa-
tions to one another is very important in the understanding of
mathematics. Obviously, a digital computer with a good graphics
subsystem can greatly facilitate the development of such under-
standing.

During the year, several members of the laboratory developed
graphics programs that provide insight into simple mathemati-
cal phenomena. These included two-dimensional and three-

dimensional function plotters (Edward Black, Scott Cutler), a
Fourier transformer (Robert Freedman) and a simulation of the
interplay of gravitational forces in a galaxy (Paul Hughett).

5. Visual Statistical Analysis

Flowing from the general line of observation just mentioned was

a major effort by Robert Fleischer called "Visual Statistics".
This program brings together in a subsystem a collection of
processing and display operations that facilitate visual analysis
of the relations that exist within a collection of data. The
operations permit the selection of data on the basis of various
criteria, the plotting of the data in various modes and formats,
projection from a multidimensional space to a two-dimensional
surface, curve fitting, and so on. We hope to incorporate the
Visual Statistics subsystem into a larger system of data-analysis
routines so that we can bring both intuitive and algorithmic
analysis procedures into productive interaction.

84

e

B e N H—

B e Coana TN

MODELING, GRAPHICS, NETWORKS

6. Imlac Displays

Although not as sophisticated as the E&S display subsystem, the
Imlac consoles, which include minicomputers as well as cathode-
ray-tube displays, are potentially very capable. Our use of
them thus far has been largely limited to alphanumeric process-
ing and display, but we are beginning to exploit their potential
for display of graphs, charts, and diagrams.

David Lebling prepared a PDP-10 assembler for Imlac programs.
Stephen Peltan prepared a loader that loads the Imlac from the
PDP-10. Lawrence Rubin and Stephen Peltan developed split-screen
techniques for Imlac consoles and did the programming required
to make the Imlac's control keys convenient to use in our appli-
cations. And John Haverty designed and implemented a program,
IMEDIT, that makes it convenient to use the Imlac editor in
conjunction with the PDP-10 file-handling system. IMEDIT moves
from the PDP-10 to the Imlac consoles much memory-space-consum-
ing but trivial work. All in all, the Imlac consoles are now
quite convenient and effective for applications that are limited
to alphanumeric information, and they are well on their way to
supporting applications that involve line drawings, also.

D. Computer Networks

The part of the Computer Networks Group to which this report
pertains is the part concerned immediately with the PDP-10 compu-
ter system. Last year, the word "immediately" would not have had
much significance, for the network program was just getting

under way, and energies were focused mainly on getting MULTICS
and the PDP-10 into communication with each other and other
computers in the ARPANET. At the end of this reporting year,
however, one can sit at a PDP-10 and carry out his computing
operations mainly in any one of several other ARPA network
machines. Most of the work to be reported upon here was aimed

at creating the basis in computer communications, through com-
puter programming in the PDP-10, for interaction between the
PDP-10 and other network computers.

l. Network Control Program

Robert Bressler and other members of the Computer Network Group
developed several progressively improved versions of a Network
Control Program (NCP) for the PDP-10 computer. This program
establishes and maintains connections between processes in the
PDP-10 and other ARPANET computers. The next step was to de-
Sign and implement programs that, using the NCP, would make the
PDP-10 a part of an alphanumeric telecommunications network
(TELNET) within the ARPANET. The TELNET programs are of two
kinds, "servers" and "users". The first TELNET server program
completed was a Logger, the function of which is to permit
users of other network computers and users connected to the
network via a TIP to log into the PDP-10 in the same way as
local users. The design of the logger involved Robert Bressler,
Robert Metcalfe, and Arvola Chan, and most of the programming
was done by Chan.

85

MODELING, GRAPHICS, NETWORKS

The next program in the logical hierarchy of network software
was a TELNET user program, designed and prepared by Robert
Metcalfe, the function of which is to permit & user logged
into the PDP-10 to log into another network computer. It
handles terminal communication to and from the EDP-10, includ-
ing communication with a remote TELNET server program, through
the Network Control Program. Together, the TELNET server

and user programs and the NCP provide the basic means of
communication with remote computers and/or terminals.

Even before the basic means of communication were perfected,
attention turned toward the design cf yet higher levels of net-
work software, Abhay Bhushan became interested in the protccol
for the transfer of data and for the transfer of files of data.
His interest led him to the chairmanship of the Committee of
Data and File Transfer Protocol for the ARPANET. At the end of
the reporting year, he was working on software implementations
of the tentative protocols that had been thus far formulated.
Members of the Computer Networks and Computer Graphics Groups
turned their attention, jointly, to problems of graphical com-
munication through the network.

Rather early in the year, interesting explorations of graphical
communication through the network were made in cooperation with
members of the Aiken Computation Laboratory at Harvard. Graphics
programs were originated in the Harvard PDP-10 transmitted
through the network to the Project MAC PDP-10, processed there
by the E&S subsystem, transmitted back to a PDP-10 computer at
Harvard, and displayed there on a Digital Equipment Model 340
display. The same pictures were displayed on the E&S display
at M.I.T., and the characteristics of the network-mediated
processing and display were compared with those of wholly local
processing and display of the same program material. It was
found that there was almost no perceptible difference between
network and local display of single frames. In dynamic display
of continuvously moving pictures involving 10 to 100 lines, how-
ever, there was a big difference. The local display presented
perceptibly continuous motion, whereas the network display
jerked from one configuration to another 2 or 3 times per second.
That was a rather preliminary test, made at an early stage of
network development. Improved means will provide improved per-
formance. We shall make further tests to determine the ability
of the network's programs, Interface Message processors, and
50-kilobaud lines to handle kinematic graphics.

2. The Network at the End of the Year

At the end of the reporting year, the PDP-10 wing of the Computer
Network group at Froject MAC was in the process of consolidat-
ing its basic software subsystems and pressing upward into he
higher echelons of the hierarchy of network software. The
process of consolidation will be time-consuming because, through-
out the year, the network effort was proceeding as rapidly as
possible toward intermediate objectives, and the hurry to achieve
them pushed aside such considerations as thorough testing and
documentation. There is still some testing to be done, and

there is a large amount of documentation.

86

s - - g e ——— o

MODELING, GRAPHICS, NETWORKS

At the same time, there is a keen sense of anticipation within
the group, a strong motivation to master the transfer of data
sets and files and to proceed as rapidly as possible to the
execution in remote computers of subprograms called by programs
in our PDP-10. We want to exploit network subprogram linking
in order to bring functionally within the scope of our library
several very useful collections of programs that exist in re-
mote computers -- collections that we need and that would be
prohibitively expensive to reprogram for the PDP-10.

References

l. Carmody, Steven, Walter Gross, Theodore H. Nelson, David
Rice and Andries van Dam, A Hypertext Editing System for the
/360, Pertinent Concepts in Computer Graphics, M. Faiman and
J. Nievergelt (Eds.), pp. 291-329, University of Illinois
Press, Urbana, 1949.

2, Engelbart, Douglas C., and William K. English, A Research
Center for Augmenting Human Intellect, Proceedings 1968 Fall
Joint Computer Conference, Vol. 33, part one, pp. 395-410, The
Thompson Book Company, Washington, D.C., 1968.

Publications 1970-1971

Baum, Allen J., Minicomputers: Status and Architecture, Tech
Engineering News, 52, No. 8, pp. 25-30, January 1971.

Black, Edward H., A Data Structure Dumper, S.B. Thesis, Dept.
of Electrical Engineering, June 1971.

Bressler, Robert D., Interprocess Communication on the ARPA
Computer Network, S.B. and S.M. Thesis, Dept. of Civil Engineer-
ing, June 1971.

Cutler, Scott E., Computer Graphics, Tech Engineering News, 52,
No. 8, pp. 17-21, January 1971.

Goldberg, Robert P., Hardware Requirements for Virtual Machine
Systems, Proceedings Fourth Hawaii International Conference on
System Sciences, January 1971.

Licklider, J. C. R., Libraries and Information, reprinted from
Libraries of the Future, M.I.T. Press, 1965, in The Computer
Impact, 260-270, Irene Traviss (Ed.), Prentice Hall, Inc., New
York 1970.

Licklider, J. C. R., Social Prospects for Information Utilities,
The Information Utility and Social Choice, Sackman and Nie (Eds.)
AFIPS Press, Montvale, N.J., 1970.

87 ;
|

MODELING, GRAPHICS, NETWORKS

Publications (cont'd)

Licklider, J. C. R., The Role of Computer Graphics, The Com-

puter Utility: Implications for Higher Education, Michael A.
Duggan, Edward F. McCartan, and Manley R. Irwin (Eds.), Heath
Lexington Books, Lexington, Mass., pp. 11-16, 1970

Lindsay, Robert Thomsom, Jr., A Design for a Graphical
Compiler, M. I. T., S. B. Thesis, Dept. of Electrical Engineer-
ing, June 1971.

Vezza, A., anl Knudson, Donald R., Remote Computer Display
Terminals, Computer Handling of Graphical Information, SPSE,
R. D. Murray (Ed.), July 1970.

88

SO e

EDUCATION

Prof. R. R. Fenichel
Prof. J. Weizenbaum

Instructors, Research Associates, Research Assistants and Others

J. Kaplan
S. A. Ward

Undergraduate Students

R. H. Brown
D. M. Christie
R. P. Silberstein

Support Staff

Chen
Garrity
A. Hoer
Young

RI2PZ

Guests

J. Berger, Prof.
P. Eisenbert

89

s %mmq&ﬂﬁi_Q

e T e - ¥ Sy — T T L s e L . e i e T

VIII. EDUCATION

The Project MAC Progress Report V (July 1967-July 1968, p. 98
et seq.) describes the language, at the heart of the TEACH
system, which then was called PL/2 but which since has been
designated UNCL (UNcommonly Clean Language):

"It is an interactive language that somewhat resembles
JOSS, but differs from JOSS and other JOSS-like languages
in several major respects: for example, the presence of
block structure, a context editor, and a function-tracing
feature".

During the year ending June 1971, the UNCL interpreter was
completed. A result of this effort was design of a novel
means of implementing variables of label mode.

Experiments were undertaken with a novel hardwired device which
was designed to search for certain useful configurations of
flip-flop circuits.

Publications 1970-1971

Fenichel, Robert R., "Design of Languages for Elementary
Programming Instruction: Lessons of the Teach Project",
Proceedings of IFIP Conference on Computer Education (August
1970), 111, pp. 175-177.

Fenichel, Robert R., List-Tracing in Systems with Multiple
Cell-Types", Proceedings of the Second Symposium on Symbolic
and Algebraic Manipulation (March 1971), pp. 242-247.

Fenichel, Robert R., "Comment on Cheney's List-Compaction
Algorithm", Communications of the ACM, XIV, 6 (June 1971).

Fenichel, Robert R, "On Implementation of Label Variables",
Communications of the ACM, XIV, 5 {(May 1971).

PRECEDIRG PASL CLAHK

B

IMPLICIT COMPUTATION

Prof. M. L. Dertouzos

Instructors, Research Associates, Research Assistants and Others

F. G. Abramson M. P. Lum

M. W. Dickens C. W. Lynn

M. E. Kaliski J. R. Stinger

P. A, King A. S. Weinberg
Support Staff

L. E. Yaple

PRECEDING PAGE BLANK

93

IX. IMPLICIT COMPUTATION

A. Introduction

This research concerns novel machines and algorithms for the
solution of large-scale problems, e.g., linear and non-linear
systems of equations. Two approaches are taken. 1In the first,
the problem is separated into two parts, one of which is com-
puted exactly (i.e., digitally with a large number of bits),
and an interrelated second part which is computed inexactly
(either digitally with fewer bits, or by analog means). The
exact part checks whether a proposed solution is indeed a
solution, while the inexact part revises the proposed solution
on the basis of results of the exact computation. We have
developed decompositions which compute an exact solution to
linear systems of eéquations via iteration of the above exact-
inexact computing cycles.

In the second approach, the system of equations to be solved

is simulated by a spatial interconnection of computing elements.
Each such element processes two types of variables called
"pressures" and "flows". The flows correspond to the usual
variables (including the unknowns) which are to be processed by
the computing element, while the pressures signify the extent
by which the flows do not satisfy the intended computation of
that element. When several such computing elements are inter-
connected into a composite system, the pressures are used to
Steer the flows toward soluti: values, Moreover, the com-
posite system is, by construction, of the same form as the
constituent elements, i.e., it brocesses pressures and flows,
and may therefore be used to build up larger systems. The
pressures and flows are constrained by each computing element
and composite system to obey a pseu:do-energy constraint analo-
gous to that obeyed by variables and co-variables of "energy
lossy" physical systems. This, in turn, guarantees stability

of the over-all computation.

In addition to these specific approaches, we have investigated
some related fundamental issues. These concern the space-time
and time-accuracy trade-offs in computation, as well as the
logical capabilities of continuous (or analog) computing sys-
tems. Two basic results in this area have given rise to two
papers (one by Abramson on Turing Machines for the real numbers,
and one by Dertouzos on time bounds of space computations) .

Both papers have been accepted for presentation at the 1971
Switching and Automata Theory Conference of the IEEE.

The machines and approaches that we are investigating have ap-’
plications as special-purpose computers for the rapid solution
of large problems (e.g., weather forecasting, space navigation,
and process control), as companions to general-purpose machines,

and as algorithms that can run on conventional digital computers .

These applications are briefly discussed, along with the funda-
mental-research activities, in the following sections.

PRECEDING PAGE BLANK

95

IMPLICIT COMPUTATION

B. Exact-Inexact Machines and Approaches

In Progress Report VII, we described exact-inexact machines with
analog inexact substructures. We have investigated in consider-
able detail one such machine for the solution of systems of
linear equations. We have found that the proposed approach is
feasible and can handle fairly large problems. One limitation
that we encountered is that, in the case of relatively ill-
conditioned problems, the analog errors grow with increasing
system size to the maximum acceptable error (for convergence

of the exact-inexact cycle) of £ 50%. We are currently at-
tempting to find exactly where that limit is. It seems to

occur at system sizes of several hundred equations, for typi-
cal problems.

We have also initiated work on what seem to be promising exact-
inexact approaches with a digitally computed inexact part. One
such approach is presented in the remainder of this section, in
terms of an example.

Consider the structure of Fig. 1. It is interded for the solu-
tion of certain systems of linear equations. Specifically, the
system to be solved is Ax=y, where vector y and matrix A are
given, and vector X is the unknown. For an initial explanation,
let the scalar k., shown in Fig. 1 be unity. The computing struc-
ture consists ofltwo parts =-- a relatively exact substructure
(e.g., 32 bits) which checks if a suggested vector x; satis-
fies the above equation (to that accuracy); this substructure
computes digitally the error Y -Ax;. The other part of the
system is a relatively inexact substructure (e.g., 4 bits)

which computes digitally the correction variable, Ax; as
follows: Ax; = Ax~! (y = A xj)*, where the star subscript in-
dicates inexact approximation (truncation) of the corresponding
quantity to this reduced accuracy. Execution of the computa-
tion is iterative, each iteration consisting of first the com-
putation of the error, then of the correction Ax; and then of
the next iterate Xxj+) as Xj4)] = xi + Axj. If the starred quan-
tities were exact, then the exact solution would be obtained in
one iteration, since xj + Axj; can be easily verified as the solu-
tion of the system Ax= z;_%or any choice of x;. Because these
quantities are not exact, each iteration brings xj,; closer than
¥j to the solution, with contraction depending on t%e error be-
tween their exact and inexact values.

Observe that the idea that is illustrated by this example is
the decomposition of the problem into exact and inexact sub-
structures, not the issue of stability of the above feedback
approach. The stability of iterative algorithms for the
solution of linear systems has been treated extensively in
the literature. It is expected that the exact-inexact ap-
proach is applicable to the majority of these algorithms;
indeed, a part of the proposed work is concerned with such
applications.

We return now to the role of the constant ki and cf the multi-
plications of Fig. 1. As X4 approaches the solution, with

96

R

P YRS ikl

IMPLICIT COMPUTATION

"HOVOYddVY 1OVX3NI - 1OVX3 40 3 1dWYX3 17914

NOILVWHOLNI 1OVYX3NI SNVIN «-—
NOILVAHO4NI LOVX3 SNVIW <=
NOILVIITHILINW 10VX3 V1191 SNV3IW L

NOILVAWWNS 10vX3 vLIoid SNvaw <

(S118 &) M
34N12NyY1sans 1OVX3NI Iv1i91Q

<

— — — —— —

(sl1li8 2¢)
38N1ONYLSANS 10VX3 v1ioIg

A

L

g NPT Y

97

IMPLICIT COMPUTATION

increasing i, the error y - Ax. is computed exactly. It is then

multiplied by k. and convertedlto an inexact value by trunca-
tion of the uﬂdéslrable least-51gn1f1cant bits. This multi-
plication is performed in order to 1ncrease (scale) the magni-
tude of the error to as near as possible the full scale of the
inexact subsystem, so that the inaccuracies of that subsystem
are small compared to the values of its input variables. Thus,
the input to the inexact subsystem is the truncated value of
the quantity k. (y - éﬁi). The effect of constant k., is "can-
celled", after the correction vector has been compu%ed by the
inexact subsystem, through multiplication of that vector by
1/k.. Naturally, the truncated correction vector is padded to
the right with a sufficient number of zeros to offset trunca-
tion, i.e., to match the word length of the exact process.
Thus, as computation progresses (increasing i) and the exact
error y - Ax. becomes progressively closer to zero, the con-
stant k. is made progressively larger so as to keep the in-
exact s§stem inputs near full scale. Observe also that these
multiplication and division operations are performed to full
accuracy.

Observe next that, using straightforward techniques, the exact
subsystem computes the error in time proportional to N2?q? for
an N x N matrix A, at a word length of q bits. This is the
case, since the exact subsystem performs a matrix-vector mul-
tiplication.

The LHEdet subsystem, however, can invert the matrix in time
of order N3%z?, where z is the word length of the inexact com-
putation. This is the case since N? operations are needed and,
of these, multiplication is dominant, requiring time z2 Once
the matrlx is inverted, the time expended per inexact cycle is
N?z2since an N x N matrix multiplies an N-vector, at z bits.
Finally, the number of exact-inexact cycles needed is of order
q/z since, at each iteration, the exact error is reduced by
roughly z bits (recall that the exact error is constantly
scaled up by ki). Thus, the total time for the entire process
grows as:

N'z2 + 3 (n2q? + N%z?)

For large N, this computing time grows essentially as N3¥z?
Thus, compared to an equally stralghtforward exact matrix in-
version approach requiring time N3q?, the above approach is
faster by a factor (q/z)2?. For our example, q/z = 8, hence
that factor is 64.

C. Pressure-Flow Machines

In this approach, the computing structures under consideration
involve the spatial interconnection of computing elements which
correspond to the individual relations (or equations) that make
up the over-all problem. These computing elements, in turn,
process two types of variables, which we call "flows" and
"pressures". The flows correspond to the usual variables in
any computing system, i.e., the unknowns and any intermediate

*These are simply names of variables motivated by physical sys-
tems. We are not referring here to any physical pressures or
flows.

98

T

&-—iA@»}: e

IMPLICIT COMPUTATION

variables needed to compute these unknowns. The pressures, on
the other hand, denote the extent by which the flows do not
satisfy the relations represented by each computing element.
Each computing element treats the flows as inputs and the pres-
sures as outputs. Thus, T'f the flows satisfy the intended re-
lation of that element, then the pressures are zero. I1f,
instead, the flows do not satisfy the intended relation, then
the pressures assume non-zero values which (1) denote the ex-
tent by which the flows do not satisfy the relation, and (2) are
related to the flows through a pseudo-energy constraint, similar
to the relationship of variables and co-variables of physical
energy—-lossy elements. These, as well as certain additional
properties of the pressures and flows are retained under com-
position of the computing elements into larger composite sys-—
tems -- that is, the resultant systems have flows for inputs
and pressures for outputs, which are related by the same type
of pseudo-energy constraints. The result of this organization
is the ability to construct arbitrarily complex, spatially
distributed structures that simulate large systems of equations
and that are capable of converging asynchronously to desired
solutions, in the same sense that aggregates of passive elec-
trical network elements converge on their "solutions", under
given excitations.

In more detail, the organization of pressure-flow machines is
as follows:

1) Primitive digital computing elements are made to
correspond to the desired primitive relations. Each
such element has as many inputs (flows) and as many
outputs (pressures) as there are variables in the pri-
mitive relation. These pressures and flows are re-
lated through a pseudo-energy function, as follows:

a) The flows are the variables of the primitive
relation.

b) The pseudo-energy function is defined on these
variables, such that it is zero if and only if the
values of these variables satisfy the corresponding
relation. Otherwise, the pseudo-energy function is
positive.

c) The pressures are defined as the gradient of the
pseudo-energy, on the space of the flow variables.

2) Composite pressure-flow machines are made up of prim-
itive computing elements, and (recursively) of composite
pressure-flow machines, in direct correspondence to com-
posite relations, which are made up of primitive relations
and (recursively) of composite relations. The rules are
as follows:

a) External variables, i.e., free variables of the
composite relation, appear as flows and as pressures
of the composite machine. As flows, they are simply
connected to the constituent machines, if the

99

SR ——

I

IMPLICIT COMPUTATION

corresponding free variables are related by consti-
tuent relations. As pressures, they are generated
by summation of the corresponding pressures of all
constituent machines which relate that free variable.

b) Internal variables, i.e., variables bound by the
composite relation, appear as neither flows nor pres-
sures of the composite machine. Instead, each such
flow is generated (negatively) by digital integration
of the sum of all corresponding pressures supplied by
constituent machines, i.e., the machines correspond-
ing to constituent relations that relate that bound
variable.

c) The pseudo-energy associated with a composite
machine is the sum of the pseudo-enerdgies of the
constituent machines.

3) Under these composition rules, it is the case that

a) The flows of every composite nachine are the
variables of the corresponding composite relations.

b) The pseudo-energy of every composite machine is
non-negative. In particular, it is zero if and only
if the pseudo-energy of every constituent machine is
also zero, i.e., if every constituent relation is
satisfied, which means that the corresponding com-
posite relation is also satisfied.

c) The pressures of the composite machine are the
gradient of the pseudo-energy of the composite
machine, since they are formed by addition of the
pressures of constituent machines, and since

the pseudo-energy of the composite machine is the
sum of the constituent-machine pseudo-energies.

Observe that the properties of pressure, flow and pseudo-
energy for composite machines (Items 3 (a), (b) and (c)

above) are the same as the properties of the corresponding
entities of primitive computing elements (Items 1 (a), (b)

and (c) above). This consistency under recursion is essential,
for it insures that pressure-flow machines of arbitrary com-
plexity, constructed by the above rules, obey a fixed set of
properties. These properties are, in turn, pivotal in the
ability of pressure-flow machines to solve satisfactorily
specific classes of problems.

One of the principal results to date is that the pseudo-energy
of every composite machine decreases or at worst remains con-
stant if the flows of that composite machine are held constant.
e have further shown that for linear problems (i.e., aggre-
gates of linear primitive relations), which are not singular,
the over-all pseudo-energy decreases, converging towards the
solution. These results make possible the application nf the
pressure-flow machines to problems of arbitrary complexity.

100

Rl 1 e =

IMPLICIT COMPUTATION

D. Fundamental Work

The pressure-flow approach and the inexact part of an exact-
inexact machine are made up of spatially distributed systems.
In order to probe the ultimate computing speed of spatially
distributed systems, we have postulated a set of physico-
mathematically based axioms. These axioms concern the speed,
packing density, and noise threshold of the energy wi. 1 which
any computing device detects or alters the physical represen-
tation of information. The principal result of our work to
date is that the time needed by a spatially distributed system
to compute any n-argument function grows with n at least as
n!'/?, This result is based only on the above-mentioned axioms
and on the fact that the computing function depends non-
trivially on all its arguments. Further results indicate
that, regardless of the viay in which identical computing modu-
les are "stacked" in space, they cannot compute a function of
n arguments as fast as the above bound -- in fact, they often
compute such a function no faster than n!'/%, Finally, the
above bound has been combined with certain other results,
yielding a measure for the computational efficiency of a pro-
cess distributed in time and space. Through this measure, it
is possible to assess the efficiency of a given space-time
process. The details of this development will appear in the
Proceedings of the 1971 Switching and Automata Theory Confer-
ence in a paper by Dertouzos.

Another area of fundamental work is motivated by the logical
capabilities and limitations of the analog substructure of an
exact-inexact machine. Here, we have investigated the logical
capabilities of certain dynamic analog structures made up of
sample—~holds and integrators. This work has resulted in a
wealth of interesting results, theorems, and constructive
techniques for dynamic-system synthesis. They will appear in the
doctoral dissertation of M. E. Kaliski, M.I.T. Department of
Electrical Engineering, to be completed shortly.

We have also investigated the logical capabilities of a class
of Turing Machines which can store and process real numbers.
Results of this work are related to computations on the real
numbers. They will appear in some detail in the Proceedings
of the 1971 Switching and Automata Theory Conference 1in a
paper by Abramson.

Publications 1970-1971

Abramson, F. G., Models for Continuous-Discrete Computation,
S.M. Thesis, Dept. of Electrical Engineering, February 1971.

Dertouzos, M. L., "Computer Graphics: Problems and Progress",
Proceedings, Erlangen Symposium on Display Use for Man-Machine
Dialog, Institut fur Mathematische Mashinen und Datenverarbei-
tung, Erlangen, Germany, March 1971.

Dertouzos, M. L., "Elements, Systems and Computation: A Five
Year Experiment in Combining Networks, Digital Systems and
Numerical Techniques in the First Course", Proceedings, Purdue

101

I

IMPLICIT COMPUTATION

Publications 1970-1971 (cont.)

1971 Symposium on Applications of Computers to Electrical
Engineering Education, Purdue University, Indiana, April 26-28,
1971.

Dickens, M. W., Computer Graphics: Central Problems and Their
Treatment, S.M. Thesis, Dept. of Electrical Engineering, June
1971.

Lum, M., Computer-Aided Analysis of Nonlinear Networks, S.M.
Thesis, Dept. of Electrical Engineering, January 1971.

Lynn, C. W., N<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>