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Abstract
Three-dimensional models which contain both geometry and texture have numerous appli-
cations such as urban planning, physical simulation, and virtual environments. A major fo-
cus of computer vision (and recently graphics) research is the automatic recovery of three-
dimensional models from two-dimensional images. After many years of research this goal is
yet to be achieved. Most practical modeling systems require substantial human input and
unlike automatic systems are not scalable.

This thesis presents a novel method for automatically recovering dense surface patches us-
ing large sets (1000’s) of calibrated images taken from arbitrary positions within the scene.
Physical instruments, such as Global Positioning System (GPS), inertial sensors, and incli-
nometers, are used to estimate the position and orientation of each image. Essentially, the
problem is to find corresponding points in each of the images. Once a correspondence has been
established, calculating its three-dimensional position is simply a matter of geometry. Long
baseline images improve the accuracy. Short baseline images and the large number of images
greatly simplifies the correspondence problem. The initial stage of the algorithm is completely
local and scales linearly with the number of images. Subsequent stages are global in nature,
exploit geometric constraints, and scale quadratically with the complexity of the underlying
scene.

We describe techniques for: 1) detecting and localizing surface patches; 2) refining camera
calibration estimates and rejecting false positive surfels; and 3) grouping surface patches into
surfaces and growing the surface along a two-dimensional manifold. We also discuss a method
for producing high quality, textured three-dimensional models from these surfaces. Some of the
most important characteristics of this approach are that it: 1) uses and refines noisy calibra-
tion estimates; 2) compensates for large variations in illumination; 3) tolerates significant soft
occlusion (e.g. tree branches); and 4) associates, at a fundamental level, an estimated normal
(eliminating the frontal-planar assumption) and texture with each surface patch.

c© Massachusetts Institute of Technology 1999
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Chapter 1

Introduction

Three-dimensional models which contain both geometry and texture have nu-
merous applications. They are used extensively as virtual environments for en-
tertainment (e.g. games, videos, commercials and movies). Three-dimensional
models also have serious applications such as physical simulation and urban
planning. Recent advances in hardware and software have improved our abil-
ity to store, navigate and display large, complex models. However, model con-
struction is frequently a tedious and time consuming task requiring significant
human input. As the size, complexity, and realism of models increase, man-
ual, and even interactive or semi-automatic, model construction will rapidly
become impractical.

This thesis presents a novel method for automatically recovering dense sur-
face patches using large sets (1000’s) of calibrated images taken from arbitrary
positions within the scene. Physical instruments, such as Global Positioning
System (GPS), inertial sensors, and inclinometers, are used to estimate the po-
sition and orientation of each image. The large set of images acquired from a
wide range of viewpoints aids in identifying correspondences and enables accu-
rate computation of their three-dimensional position. We describe techniques
for:

• Detecting and localizing surface patches.

• Refining camera calibration estimates and rejecting false positive surfels.

• Grouping surface patches into surfaces.

• Growing surfaces along a two-dimensional manifold.

In addition, we also discuss a method for producing high quality, textured
three-dimensional models from these surfaces. The initial stage of the al-
gorithm is completely local making it easily parallelizable. Some of our ap-
proach’s most important characteristics are:

• It is fully automatic.

• It uses and refines noisy calibration estimates.

13



14 CHAPTER 1. INTRODUCTION

• It compensates for large variations in illumination.

• It matches image data directly in three-dimensional space.

• It tolerates significant soft occlusion (e.g. tree branches).

• It associates, at a fundamental level, an estimated normal (eliminating
the frontal-planar assumption) and texture with each surface patch.

Figure 1-1: Albrecht Dürer, Artist Drawing a Lute, 1525.

1.1 Background

The basics of perspective image formation have been known for more than 2000
years and date back to Pythagoras, Euclid, and Ptolemy. In the 15th century,
Leono Alberti published the first treatise on perspective and later that century
Leonardo da Vinci studied perspective projection and depth perception. By the
16th century these concepts were well known to artists (e.g. Figure 1-1). In the
18th century Johan Heinrich Lambert developed a technique called space resec-
tion to find the point in space from which a picture was made. Through the end
of the 18th century, the study of perspective focused exclusively on image for-
mation. The main motivation was accurately depicting the three-dimensional
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world on a two-dimensional canvas. Early in the 19th century the photograph
was invented and the natural question followed: Can two-dimensional pho-
tographs be used to deduce the three-dimensional world which produced them?

The problem of recovering three-dimensional information from a set of pho-
tographs or images is essentially the correspondence problem: Given a point in
one image, find the corresponding point in each of the other images. Typically,
photogrammetric approaches (Section 1.1.1) require manual identification of
correspondences, while computer vision approaches (Section 1.1.2) rely on au-
tomatic identification of correspondences. If the images are from nearby po-
sitions and similar orientations (short baseline), they often vary only slightly,
simplifying the identification of correspondences. Once sufficient correspon-
dences have been identified, solving for the depth is simply a matter of geom-
etry. This applies to both calibrated and uncalibrated images. For calibrated
images (known internal calibration, camera position, and orientation) a sin-
gle correspondence is sufficient to triangulate the three-dimensional position
of the scene point which gave rise to the corresponding image points. The un-
calibrated case is more complicated requiring additional correspondences to
recover the calibration as well as the three-dimensional information.

baseline

P

p1 p2

C1 C2

Figure 1-2: Calculating Three-Dimensional Position.

Real images are composed of noisy, discrete samples, therefore the calcu-
lated three-dimensional location of a correspondence will contain error. This
error is a function of the baseline or distance between the images. Figure 1-
2 shows how the location of point P can be calculated given two images taken
from known cameras C1 and C2 and corresponding points p1 and p2 within those
images, which are projections of P. The exact location of p1 in the image is un-
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certain, as a result P can lie anywhere within the left cone. A similar situation
exists for p2. If p1 and p2 are corresponding points, then P could lie anywhere
in the shaded region. Clearly, for this situation increasing the baseline be-
tween C1 and C2 will reduce the uncertainty in the location of P. This leads
to a conflict: short baselines simplify the identification of correspondences but
produce inaccurate results; long baselines produce accurate results but compli-
cate the identification of correspondences. Real images also frequently contain
occlusion and significant variations in illumination both of which complicate
the matching process.

1.1.1 Photogrammetry

Figure 1-3: 19th Century Stereoscope.

About 1840, Dominique François Jean Arago, the French geodesist, advo-
cated the use of photography by topographers. A decade later, Aime Laussedat,
a Colonel in the French Army Corps of Engineers, set out to prove that photog-
raphy could be used to prepare topographic maps. Over the next 50 years, his
work was so complete that Aime Laussedat is often referred to as the father
of photogrammetry. Prior to the advent of computing, analog techniques were
used to physically reproject single images and stereo pairs. The stereoscopic
viewer, shown in Figure 1-3, is one such reprojection device. The availability
of computing in the mid−20th century enabled the introduction of analytical
techniques. For the first time multiple (more than two) photographs could be
analyzed simultaneously [Wolf, 1974, Slama et al., 1980].

In spite of the fact that it originated with ground based imagery, modern
photogrammetry uses long-range aerial imagery almost exclusively. This is
in contrast with the close-range ground base imagery used as input for this
thesis. For accurate results, photogrammetry requires good camera calibra-
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tion. The internal parameters1 are measured in a controlled environment
and traditionally the external parameters are estimated using points whose
three-dimensional position is known or tie-points. Classical photogrammetry
requires a large amount of human input, typically in the form of identifying
corresponding features in multiple photographs. The correspondences are then
used to recalculate the external parameters, as well as determine the three-
dimensional position of selected features. Two classes of techniques are used
to reestimate the external parameters. Closed-form analytic techniques re-
quire fewer correspondences and do not need an initial estimate, but tend to
be numerically unstable and sensitive to error in the data. Global optimization
techniques, such as bundle-adjustment, require both an initial estimate and
many correspondences, but generally produce more stable results. The cali-
bration updates described in Section 5.1 fall into the latter category. Recently,
automated photogrammetric methods have been explored [Greeve, 1996].

A number of the recent interactive modeling systems are based upon pho-
togrammetry2. Research projects such as RADIUS [Collins et al., 1995] and
commercial systems such as FotoG [Vexcel, 1997] are commonly used to ex-
tract three-dimensional models from images. Good results have been achieved
with these systems, however the requirement for human input limits the size
and complexity of the recovered model. One approach to reducing the amount
of human input is to exploit geometric constraints. The geometric structure
typical of urban environments can be used to constrain the modeling process.
Becker and Bove [1995] manually identify groups of parallel and perpendicular
lines across small sets of images. Shum et al.[1998] interactively draw points,
lines and planes onto a few panoramic mosaics. Debevec et al.’s Facade system
[1996] uses a small set of building blocks (cube, cylinder, etc.) to limit the set
of possible models from a small set of images (at most a couple dozen). The
major strength of these systems is the textured three-dimensional model pro-
duced. Debevec et al. cite a hundred fold decrease in human input using the
block-based approach. Despite this reduction, each image must be processed
individually by a human to produce a three-dimensional model, making it dif-
ficult to extend these systems to large sets of images.

1.1.2 Computer Vision

The field of computer vision began with the advent of computing in the mid-
20th century and in many ways developed in parallel to, but separate from
photogrammetry [Horn, 1986, Mayhew and Frisby, 1991, Faugeras, 1993]. A
major focus of computer vision is the automatic recovery of three-dimensional

1See Appendix A for a discussion of internal and external parameters.
2Some might consider these to be in the field of computer vision. We have placed them in

this section because, like traditional photogrammetric methods, they require human input.
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information from two-dimensional images. Both calibrated and uncalibrated
images can be used and as noted above, recovering three-dimensional informa-
tion can be reduced to finding correspondences

Uncalibrated Imagery

Several researchers [Longuet-Higgins, 1981, Horn, 1987, Mohr and Arbogast,
1991, Hartley, 1992, Hartley et al., 1992] have shown that the relative cam-
era orientations3 and the three-dimensional structure of the scene can be re-
covered from images with known internal calibration and unknown external
calibration. If the internal calibration is also unknown, Faugeras [1992] has
shown that the scene structure can only be determined up to an unknown pro-
jective transformation. Structure from motion and direct motion estimation
are two popular approaches which use uncalibrated imagery. Structure from
motion techniques [Ullman, 1978, Ullman, 1979, Tomasi and Kanade, 1992,
Azarbayejani and Pentland, 1995, Seales and Faugeras, 1995] identify and
track high-level features (e.g. edges) across several images. Because both
structure and motion are recovered, a large set of features must be tracked
for a robust solution. Direct motion estimation techniques [Mohr et al., 1993,
Szeliski and Kang, 1994, Ayer and Sawhney, 1995, Adelson and Weiss, 1996,
Irani et al., 1997] use the optical flow of each pixel across images to directly
estimate structure and motion. Computing optical flow tends to be sensitive
to changes in illumination and occlusion. The need to track features or calcu-
late optical flow across images implies that adjacent images must be close. The
cost of acquiring such an image set rapidly becomes prohibitive for large-scale
models.

Calibrated Imagery

A popular set of approaches for automatically finding correspondences from
calibrated images is relaxation techniques [Marr and Poggio, 1979]. These
methods are generally used on a pair of images; start with an educated guess
for the correspondences; then update them by propagating constraints. These
techniques often exploit global constraints such as smoothness [Pollard et al.,
1985] and ordering [Ohta and Kanade, 1985]. They don’t always converge and
don’t always recover the correct correspondences. Utilizing only one pair of
images at a time has several disadvantages.

• The trade off between easily identifying correspondences and accurate
results (discussed above) means that these methods generally produce
less accurate results.

3External calibration in an unknown coordinate frame.
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• The results from one pair are restricted to the regions visible in both im-
ages. To reconstruct a large volume many pairs are required, leading to
the difficult problem of integrating the results from multiple pairs.

Another approach is to use multiple images. Several researchers, such as
Yachida [1986], have proposed trinocular stereo algorithms and some have
proposed using a third image to check correspondences [Faugeras and Robert,
1994]. Others have also used special camera configurations to aid in the cor-
respondence problem, [Tsai, 1983, Bolles et al., 1987, Okutomi and Kanade,
1993]. Bolles et al. [1987] proposed constructing an epipolar-plane image from
a large number of images. In some cases, analyzing the epipolar-plane image
is much simpler than analyzing the original set of images. The epipolar-plane
image, however, is only defined for a limited set of camera positions. Baker and
Bolles [1989] have also attempted to extend the limited set of usable camera
positions. Tsai [1983] and Okutomi and Kanade [Okutomi and Kanade, 1993,
Kanade and Okutomi, 1994] defined a cost function which was applied directly
to a set of images. The extremum of this cost function was then taken as the
correct correspondence. Occlusion is assumed to be negligible. In fact, Okutomi
and Kanade state that they “invariably obtained better results by using rela-
tively short baselines.” This is likely the result of using an image space match-
ing metric (a correlation window) and ignoring perspective distortion and oc-
clusion. Both methods use small sets of images, typically about ten. They also
limit camera positions to special configurations. Tsai uses a localized planar
configuration with parallel optical axes; and Okutomi and Kanade use short
linear configurations.

Some recent techniques use multiple images which are not restricted to
rigid camera configurations. Kang et al. [1995] use structured light to aid in
identifying correspondences. Kang and Szeliski [1996] track a large number of
features across a small number of closely spaced (∼ 3 inches) panoramic images
(360◦ field of view). Neither of these approaches is well suited to extended urban
environments. Structured lighting is difficult to use outdoors and tracking a
dense set of features across multiple large datasets is difficult at best.

Collins [1996] proposed a space-sweep method which performs matching in
three-dimensional space instead of image space. There are several advantages
to matching in three-dimensional space. It naturally operates on multiple im-
ages and can properly handle perspective distortion and occlusion, improving
the matching process. Collins’ formulation assumes that there is a single plane
which separates all of the cameras from the scene. As the plane is swept
away from the cameras, features from all of the images are projected onto it.
Sweep plane locations which have more than a minimum number of features
are retained. The resulting output is a sparse set of three-dimensional points.
Collins demonstrates his method on a set of seven aerial photographs. Seitz
and Dyer [1997] proposed a voxel coloring method which also performs match-
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ing in three-dimensional space. Voxels are reconstructed in a special order such
that if point P occludes point Q for any image then P is reconstructed before Q.
To meet this ordering requirement, no scene points are allowed within the con-
vex hull of the cameras. Collins’ sweep-plane is a special case of this ordering
requirement. Neither of these approaches is suitable for reconstructions using
images acquired from within the scene.

Kutulakos and Seitz [1998b, 1998a] have proposed an extension of voxel
coloring called space carving. The separability requirement is removed. An
initial estimate of the reconstructed volume is required and must be a rela-
tively tight superset of the actual volume. Voxels are tested in order similar to
Seitz and Dyer. Background pixels are removed and matching is performed on
raw pixel values. If the projections of a voxel into the images are not consistent,
the voxel is carved away. The reconstruction is complete when no more voxels
can be removed. The carving operation is brittle. If a single image disagrees
the voxel is removed, making this approach particularly sensitive to camera
calibration errors, illumination changes, complex reflectance functions, image
noise, and temporal variations. In short, it is not well suited to outdoor urban
environments.

While computer vision techniques eliminate the need for human input in
general they have several characteristics which limit their applicability in cre-
ating large, complex, and realistic three-dimensional models.

• They are frequently fragile with respect to occlusion and variations in
illumination.

• They frequently operate on only a few images and do not scale to large
sets of images.

• The output (e.g. depth maps and isolated edges) are generally not directly
useful as a model.

Recently, the last item has been partially addressed by Fua [Fua, 1995, Fua
and Leclerc, 1995, Fua and Leclerc, 1996] who starts with a set of three-
dimensional points and fits small surface elements to the data. Fitting is ac-
complished by optimizing an image-based objective function. This is in contrast
with the approach presented in this thesis which recovers surface elements di-
rectly from the image data. In addition, as presented Fua’s approach does not
have the ability to fill in holes in the three-dimensional points used as input.

Finally, several researchers have used probability theory to aid in recov-
ering three-dimensional information. Cox et al. [Cox, 1994, Cox et al., 1996]
proposed a maximum-likelihood framework for stereo pairs, which they have
extended to multiple images. This work attempts to explicitly model occlusions,
although in a somewhat ad hoc manner. Belhumeur [Belhumeur and Mumford,
1992, Belhumeur, 1993, Belhumeur, 1996] develops a detailed Bayesian model
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of image formation and the structure of the world. These two approaches serve
as the inspiration for the probabilistic elements of this thesis.

1.1.3 Discussion

Photogrammetric methods produce high quality models, but require human
input. Computer vision techniques function automatically, but generally do
not produce usable models, operate on small sets of images and frequently
are fragile with respect to occlusion and changes in illumination. The work
presented in this thesis draws from both photogrammetry and computer vi-
sion. Like photogrammetric methods we produce high quality textured models
and like computer vision techniques our method is fully automatic. The major
inspiration derives from Bolles et al. [Bolles et al., 1987, Baker and Bolles,
1989]. We define a construct called an epipolar image and use it to analyze
evidence about three-dimensional position and orientation. Like Tsai [1983]
and Okutomi and Kanade [Okutomi and Kanade, 1993, Kanade and Okutomi,
1994] we define a cost function that is applied across multiple images, how-
ever, we do not evaluate the cost function in image space. Instead, like Collins
[1996], Seitz and Dyer [1997], and Kutulakos and Seitz [Kutulakos and Seitz,
1998b, Kutulakos and Seitz, 1998a] we perform matching in three-dimensional
space. We also model occlusion and the imaging process similar to Cox et
al. [1996] and Belhumeur [Belhumeur and Mumford, 1992, Belhumeur, 1993,
Belhumeur, 1996].

There are also several important differences from previous work. The epipo-
lar image we define is valid for arbitrary camera positions within the scene and
is capable of analyzing very large sets of images. Our focus is recovering built
geometry (architectural facades) in an urban environment. However, the al-
gorithms presented are generally applicable to objects that can be modeled by
small planar patches. Surface patches (geometry and texture) or surfels are
recovered directly from the image data. In most cases, three-dimensional posi-
tion and orientation can be recovered using purely local information, avoiding
the computational costs of global constraints. Some of the significant charac-
teristics of this approach are:

• Large sets of images contain both long and short baseline images and ex-
hibit the benefits of both (accuracy and ease of matching). It also makes
our method robust to sensor noise and occlusion, and provides the infor-
mation content required to construct complex models.

• Each image is calibrated - its position and orientation in a single global
coordinate system is estimated. The use of a global coordinate system
allows data to be easily merged and facilitates geometric constraints.
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• The fundamental unit is a textured surface patch and matching is done in
three-dimensional space. This eliminates the need for the frontal-planar
assumption made by many computer vision techniques and provides ro-
bustness to soft occlusion (e.g. tree branches). Also, the surface patches
are immediately useful as a coarse model and readily lend themselves to
aggregation to form more refined models.

• The algorithm tolerates significant noise in the calibration estimates and
produces updates to those estimates.

• The algorithm corrects for changes in illumination. This allows raw image
properties (e.g. pixel values) to be used avoiding the errors and ambigui-
ties associated with higher level constructs such as edges or corners.

• The algorithm scales well. The initial stage is completely local and scales
linearly with the number of images. Subsequent stages are global in na-
ture, exploit geometric constraints, and scale quadratically with the com-
plexity of the underlying scene. 4

As noted above, not all of these characteristics are unique, but their combi-
nation produces a novel method of automatically recovering three-dimensional
geometry and texture from large sets of images.

1.2 City Scanning Project

This thesis is part of the City Scanning project whose primary focus is the
Automatic Population of Geospatial Databases (APGD). As its name implies,
the main target of the City Scanning project is urban environments such as
shown in Figure 1-4. In addition to the one presented in this thesis, other
approaches to three-dimensional reconstruction have been explored as part of
the City Scanning project. Coorg [1998] hypothesizes large (building size) ver-
tical faces from sparse edge information and Chou [1998] attempts to deduce
faces by aggregating sparse three-dimensional features. In contrast with these
approaches, this thesis performs dense reconstruction directly from the image
data. Another major focus of the project is the interactive navigation and ren-
dering of city sized databases. The following sections describe the acquisition
and preprocessing phases which produce the calibrated images used as input
for the algorithms presented in this thesis. For a more complete description of
the project see [Teller, 1998a, Teller, 1998b].

4This is the worst case complexity. With spatial hashing the expected complexity is linear
in the number of reconstructed surfels.
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Figure 1-4: Goal of the city project. Rendering from an idealized model built
with human input.
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Figure 1-5: Argus.

Figure 1-6: Hemispherical tiling for a node.



1.2. CITY SCANNING PROJECT 25

1.2.1 Node Acquisition

A self contained platform called Argus (Figure 1-5) continues to be developed
to acquire calibrated images[De Couto, 1998]. At the center of Argus is a
precision computer controlled pan-tilt head upon which a digital camera is
mounted. The camera is initially calibrated using Tsai’s method [Tsai, 1983,
Tsai, 1987] and is configured to rotate about its center of projection. At each
node images are acquired in a hemispherical tiling similar to that shown in
Figure 1-6. Argus is also equipped with a number of navigational sensors in-
cluding GPS, inertial sensors, odometry and inclinometers which enable it to
estimate the position and orientation of each image. Currently node positions
and orientations are also surveyed by hand which serves as validation. The
raw image data, exposure parameters, and absolute position and orientation
estimates are recorded by an on-board computer.

Figure 1-7: Spherical Mosaic for a node.

1.2.2 Mosaicing and Registration

The position and orientation estimates obtained during the acquisition phase
are good, but contain a significant amount of error. Refining these estimates
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has two parts: mosaicing and registration [Coorg et al., 1998, Coorg, 1998].
Mosaicing exploits the constraint that all of the images in a given node share
the same center of projection and form (somewhat more than) a hemisphere.
The relative orientations of a node are optimized by correlating the overlap-
ping regions of adjacent images. A sample of the spherical mosaic produced is
shown in Figure 1-7. Once mosaicing is completed a node can be treated as
a single image with a single position and orientation. Registration identifies
a few prominent features per node and performs a global optimization which
refines the location and orientation of each node.

1.3 Thesis Overview

Figure 1-8 shows an overview of the reconstruction pipeline described in this
thesis. The calibrated imagery described in the last section serves as input to
the pipeline. The left hand column shows the major steps of our approach; the
right hand side shows example output at various stages. The output of the
pipeline is a textured three-dimensional model. Our approach can be generally
characterized as hypothesize and test. We hypothesize a surfel and then test
whether it is consistent with the data. Chapter 2 presents our basic approach.
To simplify the presentation in this chapter we assume perfect data (i.e. perfect
calibration, constant illumination, diffuse surfaces, and no occlusion or image
noise) and use a synthetic dataset to demonstrate the algorithm. Chapter 3
extends the theory to cover camera calibration error, variations in illumina-
tion, occlusion, and image noise. Chapter 4 explores detecting and localizing
surfels. We demonstrate the ability of our algorithm to compensate for cam-
era calibration error, variations in illumination, occlusion, and image noise.
We examine its ability to detect and localize three-dimensional surfaces from
a significant distance (both in position and orientation) using a purely local
algorithm. Noisy data causes some true positives to be missed and compensat-
ing for noisy data increases the number of false positives recovered. Chapter 5
introduces several techniques to remove false positives and fill in the missing
parts. Camera updates and grouping surfels into surface impose global con-
straints which remove nearly all of the false positives. Growing surfaces fills
in most of the reconstruction. Finally we discuss fitting simple models and ex-
tracting textures. We present the algorithms as well as the results of applying
them to a large dataset.

1.3.1 Definitions

Some of the more general or fundamental terms used throughout this thesis
are defined below. Others will be defined as needed.
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Figure 1-8: Overview of Thesis.
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• Internal Parameters: The camera parameters which govern the image
formation process. The exact parameters depend on the camera model
used, but usually include: focal length, aspect ratio, and principle point.
See Appendix A for a more complete description.

• External Parameters: The camera parameters which govern what, in
an absolute coordinate system, is imaged - the location of the center of
projection and the orientation of the optical axis. See Appendix A for a
more complete description.

• Calibrated Image: An image for which both the internal and external
calibration are known. Also referred to as a pose image.

• Node: A set of images acquired from the same location. In other words,
all of the images in a node share the same center of projection. The
images of a node typically have orientations which tile a hemisphere or
more[Coorg et al., 1998].

• Surfel: A small planar surface patch or surface element. This definition
differs from Szeliski’s [Szeliski and Tonnesen, 1992] in that it refers to a
finite sized patch which includes both geometry and texture.

• Units: All of the datasets used in this thesis share a common global coor-
dinate system in which 1 unit equals 1/10 foot.

The pin-hole camera model is used throughout this thesis. As noted in Ap-
pendix A it is a linear model and is not capable of modeling nonlinear dis-
tortion. Images which have large amounts of distortion can be unwarped as
a preprocessing step to remove the nonlinear portions, however this was not
necessary for the datasets used in this thesis.



Chapter 2

The Basic Approach

In this chapter we describe our basic approach. To simplify the presentation
we assume perfect data (i.e. perfect calibration, constant illumination, diffuse
surfaces, and no occlusion or image noise). These assumptions are relaxed in
the following chapter. The approach presented here was initially inspired by
the work of Bolles et al. [1987]. The notation used in this chapter is defined in
Table 2.1 and Section 2.1 reviews epipolar geometry and epipolar-plane images.
We then define a construct called an epipolar image (Section 2.2) and show how
it can be used to reconstruct three-dimensional information from large sets of
images (Section 2.3). Like Tsai [1983] and Okutomi and Kanade [1993] we de-
fine a cost function that is applied across multiple images, however, we do not
evaluate the cost function in image space. Instead, like Collins [1996], Seitz
and Dyer [1997], and Kutulakos and Seitz [1998b, 1998a] we perform match-
ing in three-dimensional space. We also model occlusion and the imaging pro-
cess similar to Cox [1996] and Belhumeur [Belhumeur and Mumford, 1992,
Belhumeur, 1993, Belhumeur, 1996]. There are several important differences,
however. An epipolar image is valid for arbitrary camera positions and over-
comes some forms of occlusion. Where three-dimensional information cannot
be recovered using purely local information, the evidence from the epipolar
image provides a principled distribution for use in a maximum-likelihood ap-
proach (Section 2.4) [Duda and Hart, 1973]. Finally, we present the results of
using epipolar images to analyze a set of synthetic images (Section 2.5).

2.1 Epipolar Geometry

Epipolar geometry provides a powerful constraint for identifying correspon-
dences. Given two cameras with known centers C1 and C2 and a point P in the
world, the epipolar plane Πe is defined as shown in Figure 2-1. P projects to
p1 and p2 on image planes Π1

i and Π2
i respectively. The projection of Πe onto Π1

i

and Π2
i produce epipolar lines �1e and �2

e. This is the essence of the epipolar con-
straint. Given any point p on epipolar line �1e in image Π1

i , if the corresponding
point is visible in image Π2

i , then it must lie on the epipolar line �2e.

29
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Pj Absolute coordinates of the jth surfel.
nj Orientation of the jth surfel.
Ci Center of projection for the ith camera.
Πi

i Image plane for the ith camera.
Ii Calibrated image. Ii = 〈Πi

i , Ci〉.
IIIIIIIII Set of calibrated images. {Ii}.
pi

j Image point. Projection of Pj onto Πi
i.

Πk
e The kth epipolar plane.

�k,i
e Epipolar line. Projection of Πk

e onto Πi
i.

p� Base image point. Any point in any image.
pppppppppj Set of projections of Pj,

{
pi

j

}
.

pppppppppn
j Set of projections of Pj for which the projection is in the

front half space,
{
pi

j

∣∣∣−−→CiPj · n < 0
}

.
C� Base camera center. Camera center associated with p�.
CCCCCCCCC Set of camera centers, {Ci}. May or may not include C�

Π�
i Base image. Contains p�.

ΠΠΠΠΠΠΠΠΠi Set of image planes, {Πi
i}. May or may not include Π�

i

�� Base line. 3D line passing through p� and C�.
��,i
e Epipolar line. Projection of �� onto Πi

i.
����������

e Set of epipolar lines, {��,i
e }.

EPk Epipolar plane image. Constructed using Πk
e .

Ex Epipolar image constructed using p�. x indexes all p�’s.
T (P, I) Function which projects P onto I, e.g. T (Pj , I

i) = pi
j.

V(P, n, I) Ideal image values (no noise or occlusion) at T (P, I).
F(x) Function of the image at point x (e.g. pixel values,

features, etc).
X (x1, x2) Matching function. Quality of match between x1 and x2.
ν(j, α) Match quality. Used to analyze E . Also ν(Pj , nj) and ν(Sj).
d(pi) Depth at image point pi. Distance from Ci to the closest

actual surface in the direction
−−→
Cip

i. If low confidence
or unknown, then ∞.

o(pi
j) Orientation at image point pi

j. Orientation of to the
closest actual surface in the direction

−−→
Cip

i.
G(µ, σ2, x) Gaussian distribution with mean µ and variance σ2

evaluated at x.
{E |C } Set of all E’s such that C is true.
p(P |C ) Probability of P conditioned on C.
−−−→
P1P2 Unit vector in the direction from P1 to P2.
Ml Modeled object. Previously reconstructed.

Table 2.1: Notation used for the basic approach.
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Figure 2-1: Epipolar geometry.

Bolles et al. [Bolles et al., 1987] used the epipolar constraint to construct
a special image which they called an epipolar-plane image. As noted earlier,
an epipolar line �i

e contains all of the information about the epipolar plane Πe

that is present in the ith image Πi
i . An epipolar-plane image is built using all of

the epipolar lines ���������k
e (the boldface symbol denotes a set, i.e.

{
�k,i
e

})
from a set

of images ΠΠΠΠΠΠΠΠΠi which correspond to a particular epipolar plane Πk
e (Figure 2-2).

Since all of the lines ���������k
e in an epipolar-plane image EPk are projections of the

same epipolar plane Πk
e , for any given point p in EPk, if the corresponding point

in any other image Πi
i is visible, then it will also be included in EPk. Bolles,

Baker and Marimont exploited this property to solve the correspondence prob-
lem for several special cases of camera motion. For example, with images taken
at equally spaced points along a linear path perpendicular to the optical axes,
corresponding points form lines in the epipolar-plane image; therefore finding
correspondences reduces to finding lines in the epipolar-plane image.

For a given epipolar plane Πk
e , only those images whose camera centers lie

on Πk
e

({
Ci

∣∣∣Ci · Πk
e = 0

})
can be included in epipolar-plane image EPk. For ex-

ample, using a set of images whose camera centers lie on a plane, an epipolar-
plane image can only be constructed for the epipolar plane containing the cam-
era centers. In other words, only a single epipolar line from each image can be
analyzed using an epipolar-plane image. In order to analyze all of the points in
a set of images using epipolar-plane images, all of the camera centers must be
collinear. This can be a serious limitation.

2.2 Epipolar Images

For our analysis we define an epipolar image E which is a function of a set of
images and a point in one of those images. An epipolar image is similar to
an epipolar-plane image, but has one critical difference that ensures it can be
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Figure 2-2: Epipolar-plane image geometry.
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constructed for every pixel in an arbitrary set of images. Rather than use pro-
jections of a single epipolar plane, we construct the epipolar image from the
pencil of epipolar planes defined by the line �� through one of the camera cen-
ters C� and one of the pixels p� in that image Π�

i (Figure 2-3). Πi
e is the epipolar

plane formed by �� and the ith camera center Ci. Epipolar line �i
e contains all

of the information about �� present in Πi
i. An epipolar-plane image is composed

of projections of a plane; an epipolar image is composed of projections of a line.
The cost of guaranteeing an epipolar image can be constructed for every pixel is
that correspondence information is accumulated for only one point1 p�, instead
of for an entire epipolar line.

P1

Π�
i

Π1
i

Π2
i

Π3
i

C�
C1

C2

C3

p�

P2

p2
1

p3
2

p3
1

p2
2

p1
2

p1
1

Figure 2-4: Set of points which form a possible correspondence.

To simplify the analysis of an epipolar image we can group points from the
epipolar lines according to possible correspondences (Figure 2-4). P1 projects
to pi

1 in Πi
i; therefore ppppppppp1 ({pi

1}) has all of the information contained in ΠΠΠΠΠΠΠΠΠi about
P1. There is also a distinct set of points ppppppppp2 for P2; therefore pppppppppj contains all of
the possible correspondences for Pj. If Pj is a point on the surface of a physical
object and it is visible in both Πi

i and Π�
i , then measurements taken at pi

j should
(under the simple assumptions of this chapter) match those taken at p� (Figure
2-5). Conversely, if Pj is not a point on the surface of a physical object then the
measurements taken at pi

j are unlikely to match those taken at p� (Figures 2-6
and 2-7). Epipolar images can be viewed as tools for accumulating evidence
about the possible correspondences of p�. A simple function of j is used to build

1To simplify the presentation in this chapter the discussion will focus on points, however
(oriented) points and surfels are interchangeable.
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an ordered set so that {Pj} is a set of points along �� at increasing depths from
the image plane.

C3
P1

��

C�
C2

C1

Figure 2-5: Pj is a point
on a physical object.

C3

��

C�
C2

C1

P1

Figure 2-6: Occlusion be-
tween Ci and Pj.

C3

��

C�
C2

C1

P1

Figure 2-7: Inconsistent
background

2.3 Basic Algorithm

An epipolar image E is constructed by organizing{
F(pi

j) | F(·) is a function of the image
}

into a two-dimensional array with i and j as the vertical and horizontal axes
respectively. Rows in E are epipolar lines from different images; columns form
sets of possible correspondences ordered by depth2 (Figure 2-8). The quality
ν(j) of the match3 between column j and p� can be thought of as evidence that
p� is the projection of Pj and j is its depth. Specifically:

ν(j) =
∑

i

X (F(pi
j),F(p�)), (2.1)

where F(·) is a function of the image and X (·) is a function which measures
how well F(pi

j) matches F(p�). A simple case is

F(x) = intensity values at x

and
X (x1, x2) = −‖x1 − x2‖2.

2The depth of Pj or distance from C� to Pj can be trivially calculated from j, therefore we
consider j and depth to be interchangeable. We further consider depth and three-dimensional
position to be equivalent since we use calibrated images and the three-dimensional position
can be trivially calculated from p� and the depth.

3Interestingly, ν
(
j
)

is related to the tomographic algorithm [Ramachandran and Lakshmi-
narayanan, 1971, Gering and Wells, 1999].
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Figure 2-8: Constructing an epipolar image.

Real cameras are finite, and pi
j may not be contained in the image Πi

i

(
pi

j �∈ Πi
i

)
.

Only terms for which pi
j ∈ Πi

i should be included in (2.1). To correct for this,
ν(j) is normalized, giving:

ν(j) =

∑
i | pi

j∈Πi
i

X (F(pi
j),F(p�))

∑
i |pi

j∈Πi
i

1
. (2.2)

Ideally, ν(j) will have a sharp, distinct peak at the correct depth, so that

argmax
j

(ν(j)) = the correct depth at p�.

As the number of elements in pppppppppj increases, the likelihood increases that ν(j)
will be large when Pj lies on a physical surface and small when it does not.
Occlusions do not produce peaks at incorrect depths or false positives4. They
can however, cause false negatives or the absence of a peak at the correct depth
(Figure 2-9). A false negative is essentially a lack of evidence about the correct
depth. Occlusions can reduce the height of a peak, but a dearth of concurring

4Except possibly in adversarial settings.
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images is required to eliminate the peak. Globally this produces holes in the
data. While less then ideal, this is not a major issue and can be addressed in
two ways: removing the contribution of occluded views, and adding unoccluded
views by acquiring more images.

C�
C1

C2

��

C3

M1

M2

P

Figure 2-9: False negative caused by occlusion.
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Figure 2-10: Exclusion region (grey) for surfel located at Pj with normal nj.

A large class of occluded views can be eliminated quite simply. Figure 2-10
shows a surfel located at point Pj with normal nj. Images with camera centers
in the hashed half space cannot possibly have viewed Pj. nj is not known a
priori, but the fact that Pj is visible in Π�

i limits its possible values. This range
of values can then be sampled and used to eliminate occluded views from ν(j).
Let α be an estimate of the normal5 nj and −−→

CiPj be the unit vector along the ray

5Actually, α is the azimuth and the elevation is assumed to be 0. This simplifies the presen-
tation without loss of generality.
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from Ci to Pj, then Pj can only be visible in Πi
i if −−→CiPj ·α < 0. We denote the set of

image points with meet this visibility constraint as pppppppppα
j . At a fundamental level

an estimated normal is associated with each reconstructed three-dimensional
point (or surfel). For single pixels, the estimated normal is very coarse, but its
existence is very useful for grouping individual points (or surfels) into surfaces.
Neighborhood information, introduced in Chapter 3 as small planar patches,
greatly improves the accuracy of the estimated normals.

If the volume imaged by ΠΠΠΠΠΠΠΠΠi is modeled (perhaps incompletely) by previous
reconstructions, then this information can be used to improve the current re-
construction. Views for which the depth6 at pi

j, or d(pi
j), is less than the distance

from Ci to Pj can also be eliminated. For example, if M1 and M2 have already
been reconstructed, then the contributions of Πi

i where i ∈ {1, 2, 3} can be elim-
inated from ν(j) (Figure 2-9). In addition, we weight the contributions based
on their forshortening. The updated function becomes:

ν(j, α) =

∑
i∈Q

(−−→
CiPj · α

)
X (F(pi

j),F(p�))∑
i∈Q

−−→
CiPj · α

(2.3)

where

Q =

i

∣∣∣∣∣∣∣
pi

j ∈ Πi
i

pi
j ∈ pppppppppα

j

d(pi
j) ≥ ‖Ci − Pj‖2

 .

Then, if sufficient evidence exists,

argmax
j,α

(ν(j, α)) ⇒
{

j = depth at p�

α = estimate of nj
.

2.4 Probabilistic Formulation

Probabilities can be used to formulate the notion that ν(j) and ν(j, α) should
be large when Pj lies on a physical surface and small otherwise. Given image
data IIIIIIIII, q the probability that Pj lies on a physical surface, has depth j and
orientation α, and is visible in Π�

i can be written formally as

q = p(d(p�) = j, o(p�) = α | IIIIIIIII). (2.4)

Using Bayes’ rule gives

q =
p(IIIIIIIII |d(p�) = j, o(p�) = α)p(d(p�) = j, o(p�) = α)

p(IIIIIIIII)
.

6Distance from Ci to the closest previously reconstructed object or point in the direction−−→
Cipi

j .
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Of all the image points in IIIIIIIII only pppppppppα
j depend upon α and j. The rest can be

factored out yielding

q =
p(pppppppppα

j |d(p�) = j, o(p�) = α)p(d(p�) = j, o(p�) = α)

p(pppppppppα
j )

(2.5)

log(q) = log(p(pppppppppα
j |d(p�) = j, o(p�) = α)) + (2.6)

log(p(d(p�) = j, o(p�) = α)) − log(p(pppppppppα
j ))

If we assume that the measured pixel values F(pi
j) contain Gaussian noise

with a mean value of F(p�) and a variance of σ2 and that individual pixel mea-
surements are independent then the first term becomes

−1

2

∑
i

((
F(pi

j) −F(p�)
)2

/σ2 + log
(
2πσ2

))
(2.7)

which is very similar to ν(j, α) (Equation 2.3). The next term of Equation 2.6
is a prior on the distribution of depths and orientations. If a partial model
already exists, it can be used to estimate these distributions. Otherwise we
make the standard assumption that all j’s and α’s are equi-probable.

The last term is more challenging; how do we estimate p(pppppppppα
j )? Applying the

same independence assumption as above yields

p(pppppppppα
j ) =

∑
i

log(p(pi
j)).

We could assume that all values of F(·) are equi-probable in all images, making
the denominator irrelevant, and end up with a matching function equivalent
to Equation 2.3. Another approach is to use Πi

i to estimate p(pi
j). p(pi

j) can be
thought of as a significance term. The significance of a match between F(pi

j)
and F(p�) is inversely proportional to p(pi

j). We use a nearby (in both position
and orientation) image Πk

i instead of Πi
i to estimate p(pi

j). pi
j, Ci, and Ck define

an epipolar plane Πki
e . To estimate the distribution we consider epipolar line

�ki,k
e (projection of Πki

e onto image plane Πk
i ). �ki,k

e contains all of the possible
matches for pi

j in Πk
i and we use this set of possible matches and a mixture of

Gaussians model to estimate p(pi
j) giving:

p(pi
j) =

∑
p∈�ki,k

e

G(F(p�), σ2,F(p))

∑
p∈�ki,k

e

1
. (2.8)

Since p(pi
j) depends only upon pi

j and Πk
i , it can be computed once as a pre-

processing step. Figure 2-11 shows two probability images produced in this
manner. Black represents low probability and white high. p(pi

j) can be thought
of as a uniqueness term - pi

j matching p� is only significant if p(pi
j) is low.



2.5. RESULTS 39

Figure 2-11: Probability images for synthetic data.

Our approach to estimating p(d(p�) = j, o(p�) = α | IIIIIIIII) is conservative. It does
not consider subsets of pppppppppα

j or allow individual elements to be tagged as occluded
or outliers. Nevertheless valuable insight was gained from examining p(pi

j). In
the next section results both with and without considering p(pi

j) are presented.

2.5 Results

Figure 2-12: Example renderings of the model.

Synthetic imagery was used to explore the characteristics of ν(j) and ν(j, α).
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A CAD model of Technology Square, the four-building complex housing our lab-
oratory, was built by hand. The locations and geometries of the buildings were
determined using traditional survey techniques. Photographs of the buildings
were used to extract texture maps which were matched with the survey data.
This three-dimensional model was then rendered from 100 positions along a
“walk around the block” (Figure 2-12). From this set of images, a Π�

i and p�

were chosen and an epipolar image E constructed. E was then analyzed using
two function, Equations 2.2 and 2.3where

F(x) = rgb(x) = [r(x), g(x), b(x)] (2.9)

and

X ([r1, g1, b1] , [r2, g2, b2]) = (2.10)

−
(

(r1 − r2)
2

σ2
r

+
(g1 − g2)

2

σ2
g

+
(b1 − b2)

2

σ2
b

)
.

r(x), g(x), and b(x) are the red, green, and blue pixel values at point x. σ2
r , σ2

g,
and σ2

b are the variances in the red, green, and blue channels respectively. For
the synthetic imagery used in this chapter we set σ2

r = σ2
g = σ2

b = 1. Elsewhere,
the variances are estimated during the internal camera calibration and are
assumed to remain constant.

Figures 2-13 and 2-14 show a base image Π�
i with p� marked by a cross.

Under Π�
i is the epipolar image E generated using the remaining 99 images.

Below E is the matching function ν(j) (Equation 2.2) and ν(j, α) (Equation 2.3).
The horizontal scale, j or depth, is the same for E , ν(j) and ν(j, α). The vertical
axis of E is the image index, and of ν(j, α) is a coarse estimate of the orientation
α at Pj. The vertical axis of ν(j) has no significance; it is a single row that has
been replicated to increase visibility. To the right, ν(j) and ν(j, α) are also
shown as two-dimensional plots7 with the correct depth8 marked by a line.

Figure 2-13a shows the epipolar image that results when the upper left-
hand corner of the foreground building is chosen as p�. Near the bottom of E ,
�i
e is close to horizontal, and pi

j is the projection of blue sky everywhere except
at the building corner. The corner points show up in E near the right side as
a vertical streak. This is as expected since the construction of E places the
projections of Pj in the same column. Near the middle of E , the long side to
side streaks result because Pj is occluded, and near the top the large black
region is produced because pi

j �∈ Πi
i. Both ν(j) and ν(j, α) have a sharp peak9

that corresponds to the vertical stack of corner points. This peak occurs at a

7Actually,
∑

α ν
(
j, α

)
/
∑

α 1 is plotted for ν
(
j, α

)
.

8Determined by intersecting �� with the model.
9White indicates the best match, black the worst.
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Figure 2-13: Π�
i , p�, E , ν(j) and ν(j, α) (Part I).
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Figure 2-14: Π�
i , p�, E , ν(j) and ν(j, α) (Part II).
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depth of 2375 units10 (j = 321) for ν(j) and a depth of 2385 (j = 322) for ν(j, α).
The actual distance to the corner is 2387.4 units. The reconstructed world
coordinates of p� are [−1441,−3084, 1830] and [−1438,−3077, 1837] respectively.
The actual coordinates11 are [−1446,−3078, 1846].

Figure 2-13b shows the epipolar image that results when a point just on
the dark side of the front left edge of the building is chosen as p�. Again both
ν(j) and ν(j, α) have a single peak that agrees well with the actual depth. This
time, however, the peaks are asymmetric and have much broader tails. This is
caused by the high contrast between the bright and dark faces of the building
and the lack of contrast within the dark face. The peak in ν(j, α) is slightly
better than the one in ν(j).

Figure 2-13c shows the epipolar image that results when a point just on the
bright side of the front left edge of the building is chosen as p�. This time ν(j)
and ν(j, α) are substantially different. ν(j) no longer has a single peak. The
largest peak occurs at j = 370 and the next largest at j = 297. The peak at
j = 297 agrees with the actual depth. The peak at j = 370 corresponds to the
point where �� exits the back side of the building. Remember that ν(j) does
not impose the visibility constraint shown in Figure 2-10. ν(j, α), on the other
hand, still has a single peak, clearly indicating the usefulness of estimating α.

In Figure 2-14a, p� is a point from the interior of a building face. There
is a clear peak in ν(j, α) that agrees well with the actual depth and is better
than that in ν(j). In Figure 2-14b, p� is a point on a building face that is
occluded (Figure 2-9) in a number of views. Both ν(j) and ν(j, α) produce fairly
good peaks that agree with the actual depth. In Figure 2-14c, p� is a point
on a building face with very low contrast. In this case, neither ν(j) nor ν(j, α)
provide clear evidence about the correct depth. The actual depth occurs at
j = 387.5. Both ν(j) and ν(j, α) lack sharp peaks in large regions with little or
no contrast or excessive occlusion. Choosing p� as a sky or ground pixel will
produce a nearly constant ν(j) or ν(j, α).

Figures 2-15 and 2-16 show the result of running the algorithm on synthetic
data. A grey circle and a black line are used mark the location and orientation
of each image in the dataset. The x and y coordinates have been divided by
1000 to simplify the plots. For each pixel in the set of images shown in Figure
2-12 an epipolar image was constructed and the point with maximum ν(j, α)
recorded. Points for which ν(j, α) is at least -2 and |pppppppppj| is at least 5 are plotted.
Global constraints such as ordering or smoothness were not imposed, and no
attempt was made to remove low confidence depths or otherwise post-process
the maximum of ν(j, α). In Figure 2-15 the grey levels correspond to the density
of reconstructed points, with black the most dense. In Figure 2-16 the grey

101 unit is 1/10 of a foot.
11Some of the difference may be due to the fact that p� was chosen by hand and might not be

the exact projection of the corner.
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Figure 2-15: Density of reconstructed points.
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Figure 2-16: Orientation of reconstructed points.
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Figure 2-17: Distribution of errors for reconstruction.

Figure 2-18: Two views of the reconstruction.
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levels correspond to orientation. The grey scale axis to the right is in units of
π/2. The outlines of the four buildings are clearly visible and the orientations
are roughly correct.

What is difficult to appreciate from these plots is the relative numbers of
points contributing to the black lines compared to the grey outliers scattered
about. Figure 2-17 shows the error distribution for the reconstruction. Plotted
values indicate the percentage of reconstructed points which have no more than
the indicated error. The error measure is

‖Pj (reconstructed) − Pj (actual)‖ / ‖C� − Pj (actual)‖ .

Note that > 85% of the reconstructed points are within 1% of the correct value.
Figure 2-18 shows the lower left corner of the bottom building as viewed from
[−1600,−4000, 1100] and [−2000,−3500, 1200]. The results are rendered as ori-
ented rectangular surfaces using the reconstructed position and estimated ori-
entation. The size is set so that the projection in Π�

i is 1 pixel. For clarity,
the reconstructed points have been down-sampled by 3 in each direction. The
recovered orientations may not be good enough to directly estimate the under-
lying surface, but they are good enough to distinguish between surfaces. This
idea will play an important role in Chapter 5.

Next we explore several modifications to the basic algorithm described in
Section 2.3. The synthetic images in Figure 2-12 were rendered with direc-
tional lighting in addition to global lighting. As a result, image brightness
varies with viewing direction. To compensate we add a brightness correction
term γ to the matching function12:

X ([r1, g1, b1] , [r2, g2, b2]) = −
(

(γr1 − r2)
2

σ2
r

+
(γg1 − g2)

2

σ2
g

+
(γb1 − b2)

2

σ2
b

)

γ =

(
r1r2

σ2
r

+ g1g2

σ2
g

+ b1b2
σ2
b

)
(

r2
1

σ2
r

+
g2
1

σ2
g

+
b21
σ2
b

) .

We also consider two variations of the probabilistic formulation developed in
Section 2.4. In one we limit log(p(pppppppppα

j )) ≥ −15 and the other we do not. The
upper left image shown in Figure 2-12 was selected as Π�

i . 39% or 67,383 pix-
els are reconstructible (i.e. non-sky and non-ground). Each pixel in Π�

i was
reconstructed using the six variants shown in Table 2.2. Variants which in-
clude brightness compensation are annotated with “w/ bc” and those without
“w/o bc”. Variants which use the probabilistic formulation are annotated “+P”
and those that limit the log probability have “>=-15” added. Figure 2-19 shows
error distributions for the variants. Interestingly, variant 6 has the best error

12This is similar to normalized correlation, however we impose nonlinear constraints on γ.
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Figure 2-19: Error distribution for variants.
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distribution, but misses many reconstructible points. Conversely, variant 1 re-
constructs nearly all of the points, but sacrifices some accuracy. Variant 3 is
the overall best.

Points Reconstructed
Variant Label Number Percent
1 M w/ bc 65,582 97
2 M+P w/ bc 63,579 94
3 M+P>=-15 w/ bc 62,564 93
4 M w/o bc 34,710 52
5 M+P w/o bc 24,281 36
6 M+P>=-15 w/o bc 23,485 34

Table 2.2: Performance of algorithm variants.

Finally, we consider the effects of camera calibration noise. Ultimately it is
hoped that Argus will achieve positional accuracy on the order of a few centime-
ters and pose accuracy on the order of a few milliradians. Argus has not yet
achieved this design goal, but we use it as a reference. Uniformly distributed
noise was added to each coordinate of the position and to the orientation in
increments of 2” and 0.1◦ respectively. The results are shown in Figure 2-20.

2.6 Discussion

This chapter defines a construct called an epipolar image and then uses it to
analyze large sets of synthetic data. This analysis produces an evidence versus
position and surface normal distribution that in many cases contains a clear
and distinct global maximum. The location of this peak determines the po-
sition. The algorithm presented uses only local calculations and lends itself
nicely to parallelization.



Chapter 3

The Challenge of Noisy Data

This chapter extends the approach presented in the previous one to work with
noisy data. Specifically data which contains 1) camera calibration error; 2)
significant variations in illumination; and, 3) complex occlusion (e.g. building
viewed through tree branches) and image noise. With these modifications, our
approach shifts from looking for sets of matching points to searching for sets
of highly correlated regions. The fact that at a fundemental level we match
surfels (small planar regions with position, orientation, and texture) is made
explicit in this chapter. The addition of neighborhood information produces sev-
eral benefits, such as accurate normal estimation, but also makes the epipolar
image construct E , described in Chapter 2, less useful. E can no longer be used
to directly visualize possible correspondences. Hypothesizing points along ��

also becomes less attractive. This point wil be addressed furter in Chapter 4.
Some additional notation used in this chapter is defined in Table 3.1.

3.1 Camera Calibration Errors

The epipolar constraint exploited in Chapter 2 relies on accurate camera cali-
bration. If the calibration is not accurate then the constraint that correspond-
ing points must lie on a pair of epipolar lines (e.g. �1e and �2

e in Figure 2-1) no
longer holds. If the calibration error can be bounded then the epipolar lines
become epipolar stripes. Consider perturbing C1 and C2 in Figure 3-1 about
their centers of projection; the intersection of Πe with Π1

i and Π2
i sweeps out

�̃1
e and �̃2

e. The area of the epipolar stripe is proportional to the calibration
error. What was a one-dimensional search with perfect calibration is now a
two-dimensional search. As shown in Figure 3-2, the actual projection of P is
not p̃. If the bounded camera calibration error δ is known then ˜̃p can be calcu-
lated and p ∈ ˜̃p. The effect can be modeled as a displacement [u̇, v̇] of the actual
projection.

Calibration error complicates the epipolar image E and its analysis de-
scribed in Sections 2.2 and 2.3. pppppppppj does not contain all of the information in
Π̃i

i about Pj; we must consider
≈
p
≈
p
≈
p
≈
p
≈
p
≈
p
≈
p
≈
p
≈
pj. Instead of an array (indexed by j and α) of

49
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Sj jth surfel.
y
xSj Point in Sj. x and y are indices into Sj. 0

0Sj ≡ Pj.
si
j Projection of Sj onto Π̃i

i.
sssssssssj Set of projections of Sj,

{
si
j

}
.

y
xs

i
j Point in si
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i
j ≡ p̃i

j.
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j Base surfel.
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y
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}
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ṡ̇ṡṡṡṡṡṡṡsj Matching set of surfels.
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∣∣∣ si
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j

}
.

C̃i Estimated center of projection for the ith camera.
Π̃i

i Estimated image plane for the ith camera.
Ĩi Calibrated image (estimated calibration). Ĩi = 〈Π̃i

i , C̃i〉.
p̃i

j Image point. Projection of Pj onto Π̃i
i .

p̃̃p̃p̃p̃p̃p̃p̃p̃pj Set of projections of Pj,
{
p̃i

j

}
.

˜̃pi
j Noisy Projection of Pj onto Π̃i

i. Area that
Pj projects to given bounded camera calibration error.

v
up̃

i
j Point in ˜̃pi

j. u and v are indices into ˜̃pi
j.

ṗi
j

v̇i
u̇i

p̃i
j where u̇i and v̇i produce the best match.

ṗ̇ṗṗṗṗṗṗṗpj Set of matching image points.
{
ṗi

j

∣∣∣ ṗi
j matches p�

j

}
.

Ṗj Reconstructed world point. Estimated using ṗ̇ṗṗṗṗṗṗṗpj.≈
p
≈
p
≈
p
≈
p
≈
p
≈
p
≈
p
≈
p
≈
pj Set of noisy projections of Pj,

{
˜̃pi

j

}
.

Π̃k
e The kth estimated epipolar plane.

�̃k,i
e Epipolar stripe. Noisy projection of Πk

e onto Π̃i
i.

δi Bounded camera calibration error for Ii

T̃ (P, I, δ) Noisy projection function, e.g. T̃ (Pj , Ĩ
i, δi) = ˜̃pi

j.
Note: T (Pj , Ĩ

i, δi) = p̃i
j.

Table 3.1: Notation used for handling noisy data.

individual pixels, E is now composed of two-dimensional regions. Equations 2.2
and 2.3 become

ν(j) =

∑
i |p̃i

j∈Π̃i
i

max
u,v

X (F(v
up̃

i
j),F(p̃�))

∑
i |p̃i

j∈Π̃i
i

1
(3.1)

and

ν(j, α) =

∑
i∈Q

(−−→
C̃iPj · α

)
max
u,v

X (F(v
up̃

i
j),F(p̃�))

∑
i∈Q

−−→
C̃iPj · α

(3.2)
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where

Q =

i

∣∣∣∣∣∣∣∣
p̃i

j ∈ Π̃i
i

pi
j ∈ pppppppppα

j

d(p̃i
j) ≥

∥∥∥C̃i − Pj

∥∥∥2

 .

Equation 2.8 must also be modified. Epipolar stripe �̃ki,k
e is used to estimate the

distribution instead of epipolar line �ki,k
e producing

p(pi
j) =

∑
p∈�̃ki,k

e

G(F(p�), σ2,F(p))

∑
p∈�̃ki,k

e

1
. (3.3)

In the last chapter, if a match was found the reconstructed point was auto-
matically Pj. This is no longer the case. ṗ̇ṗṗṗṗṗṗṗpj represents our best estimate for a
set of corresponding points and u̇i and v̇i are shifts which correct for the cali-
bration error. What world point Ṗj gave rise to ṗ̇ṗṗṗṗṗṗṗpj? It almost certainly wasn’t
Pj. Assuming that the calibration error can be modeled as zero mean additive
Gaussian noise then the best estimate of Ṗj is the one which minimizes the
sum of squared calibration errors. Two possible measures of the calibration
error are the distance (in three-dimensional space) between Ṗj and the line of
sight through ṗi

j,

argmin
Ṗj

∑
ṗi

j∈ṗ̇ṗṗṗṗṗṗṗpj

−−→
C̃iṗ

i
j × ((Ṗj − C̃i) ×

−−→
C̃iṗ

i
j) · (Ṗj − C̃i) (3.4)

and the distance (in two-dimensional space) between ṗi
j and the projection of

Ṗj, T (Ṗj , Ĩ
i)

argmin
Ṗj

∑
ṗi

j∈ṗ̇ṗṗṗṗṗṗṗpj

|ṗi
j − T (Ṗj , Ĩ

i)|2. (3.5)

The shifts {[u̇i, v̇i]} introduce additional degrees of freedom. One benefit of this
is that Ṗj can be reconstructed from more than one Pj, allowing Ṗj to be recov-
ered even if Pj is not very close. This property will be exploited in Chapter 4.
The additional degrees of freedom also admit additional false positives. Figure
3-3 shows one example which occurs because similar looking points (the upper
left corner of a black square) lie within each ˜̃pj (the grey circles). One way
to limit the number of false positives is to constrain the shifts. All of the shifts
applied to points in a given image should be consistent with a single camera
correction. This will be explored further in Chapter 5.

3.2 Variations in Illumination and Reflectance

The matching function proposed in Equation 2.10 assumes controlled lighting
and diffuse reflectance. Only the overall brightness is allowed to change. Nat-



3.2. VARIATIONS IN ILLUMINATION AND REFLECTANCE 53

...

· · ·
Figure 3-3: False positive induced by compensating for camera calibration er-
ror with shifts.

ural lighting can vary significantly (e.g. time of day, season, weather, etc.) not
only in brightness, but also chromaticity. Real scenes are also not restricted to
objects which reflect diffusely. Both of these make it difficult to compare im-
ages of the same region taken under differing illumination conditions and from
different viewpoints.

A simple linear model can be used to correct images taken under different
viewing conditions (illumination and/or reflectance). The radiance R arriving
at an image sensor from a given region is simply the irradiance I at the region
multiplied by its reflectance k:

R = kI. (3.6)

and the value measured by the image sensor is:

v = f(R) + d. (3.7)

f(·), an invertible function, and b, an offset, are functions of the image sen-
sor1. Figure 3-4 shows a region imaged under different conditions. Clearly, if
k2I2/k1I1 is constant for some region then R2/R1 will also be constant over the
same region. From Equations 3.6 and 3.7 it follows that if for some region

I2k2 = I1k1c (3.8)
1Equation 3.7 is commonly called the image sensor’s intensity response function [Vora et al.,

1997a, Vora et al., 1997b].
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R1

k1

I1

R2

I2

k2

Figure 3-4: Region imaged under different conditions.

and
f(xy) = f(x)f(y) (3.9)

then
v2 = f(c)v1 − f(c)d1 + d2

or
v2 = mv1 + d. (3.10)

Equation 3.9 is true for typical CCD cameras. Equation 3.10 applies to both
diffuse and non-diffuse surfaces and can be calculated independently for each
color channel. We often refer to m and d as an illumination correction. It
allows us to remap image values obtained under one condition to another and
then match them. Substituting Equation 3.10 into Equation 2.10 gives:

X ([r1, g1, b1] , [r2, g2, b2]) = (3.11)

−
(

((mrr1 + dr) − r2)
2

σ2
r

+
((mgg1 + dg) − g2)

2

σ2
g

+
((mbb1 + dg) − b2)

2

σ2
b

)
.

The condition given by Equation 3.8 requires that the product of irradiance
and reflectance vary similarly for changes in viewing conditions at each point
x in the region R:

∀x ∈ R : I2r2 /I1r1 = c. (3.12)

In practical terms, this means that R must be planar (or well approximated
by a plane), uniformly lit, and contain materials with similar reflectance func-
tions. If we are willing to assume that only a limited number of materials
appear in each region, then using clustering techniques to calculate the cor-
rection removes the requirement that the reflectance functions be similar. For
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example, in the next chapter, a region containing a window with specular re-
flection and concrete is successfully corrected with this technique. The spectral
content of the irradiance may be changed arbitrarily from one condition to an-
other and the region may contain different colored materials. If Equation 3.9
is not valid and the intensity response function is known, then image values
can be converted to radiance and the remapping done there.

A single pixel was sufficient to calculate ν(·) as presented in Sections 2.3
and 3.1. This is no longer the case once we consider illumination. In order to
calculate m and b at least 2 pixels are needed and for good results more should
be used. Consider matching images of a surfel (small planar region) Sj with
orientation nj located at Pj. Since orientation is intrinsic to a surfel, Equation
3.1 is no longer useful. We can rewrite Equation 3.2 as

ν(Sj) =

∑
i∈Q

(−−→
C̃iPj · nj

)
max
u,v

 ∑
y
xsi

j∈si
j

X (F(y+v
x+us

i
j),F(y

xs
�
j))

/ ∑
y
xsi

j∈si
j

1


∑
i∈Q

−−→
C̃iPj · nj

. (3.13)

In order to obtain a match, Sj must be close (both in position and orientation) to
a physical surface and Equation 3.12 must be satisfied. Correcting for viewing
conditions allows us to match images taken under different illumination con-
ditions and from different viewpoints, but also admits false positives. Figure
3-5 shows one example. One way to limit the number of false positives is to
constrain the correction (mr, dr, mg, dg, mb, db). This is explored in Section 4.2.

There are several drawbacks to matching surfels instead of individual pix-
els: the cost of computing the match is higher; the shifts introduced in Section
3.1 vary with image position and the distance to the imaged point and there-
fore are not constant throughout the surfel; and, calculating p(pi

j) is problem-
atic. For small calibration errors and small regions it is reasonable to assume
that the shifts are piecewise constant and because of the additional informa-
tion content of a surfel, p(pi

j) is less important. On the positive side, the image
data of a surfel can be used to efficiently calculate u̇i and v̇i and accurately
estimate its normal (Sections 4.2 and 4.3).

3.3 Occlusion and Image Noise

Occlusion poses another difficult problem. Figure 3-6 shows two examples typ-
ical of urban environments. On the left, the foreground building completely
occludes two columns of windows. This view provides no information about
the occluded region and if enough other views are completely occluded we will
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Figure 3-5: False positive induced by correcting for viewing conditions.

Figure 3-6: Hard (left) and soft (right) occlusion.
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not be able to reconstruct that portion of the background building. The exam-
ple on the right is potentially more difficult. The tree only partially occludes
the building. The occluded region contains a significant amount of information
which we would like to use in the reconstruction process. If we are matching
individual pixels this is simple: either a pixel is occluded and does not match
well or it is not and matches. On the other hand, multi-pixel surfels can contain
both occluded and unoccluded pixels.

s�
j si

j

Mask Match

s�
j si

j

Mask Match

Figure 3-7: Masks.

More generally, either a pixel contains data which is representative of a
surface that we intend to model, or it is an outlier. The tree pixels in Figure 3-6
are outliers. Other examples are transient objects (cars, people, etc), imaging
aberrations (sensor noise, blooming), and specular reflections. To account for
this we use a mask and allow individual pixels to be tagged as outliers and
not count towards the match score. Deciding which are outliers and which are
not is the hard part. One possible approach, shown on the left side of Figure
3-7, is to tag every pixel which matches poorly as an outlier. Black indicates
pixels tagged as outliers and poor matches. Clearly the pair (s�j , si

j) should not
be considered a match. Less than 20% of the pixels are tagged yet a perfect
match is obtained. This approach admits too many false positives, particularly
in conjunction with shifts and illumination corrections. A more conservative
approach is shown on the right side of Figure 3-7. A pixel is tagged as an
outlier only if the match is equally poor throughout a small region (the eight
nearest neighbors) around the corresponding pixel. This assumes that the two
regions have already been aligned. Notice that the 1 pixel that which is truly
an outlier is tagged as such and fewer pixels are inappropriately tagged as
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outliers. In some cases, the number of outlier pixels is so high that the entire
region should be tagged as an outlier. Equation 3.13 can be rewritten to account
for both individual pixel and entire region outliers as follows:

ν(Sj) = (3.14)

∑
i∈Q

(−−→
C̃iPj · nj

)
max
u,v

 ∑
y
xsi

j∈si
j

Mi(y
xSj ∈ Sj)X (F(y+v

x+us
i
j),F(y

xs
�
j))

/ ∑
y
xsi

j∈si
j

Mi(y
xSj ∈ Sj)


∑
i∈Q

−−→
C̃iPj · nj

.

where

Q =


i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p̃i
j ∈ Π̃i

i

pi
j ∈ ppppppppp

nj

j

d(p̃i
j) ≥

∥∥∥C̃i − Pj

∥∥∥2

si
j �= outlier∑

y
xsi

j∈si
j

Mi(y
xSj ∈ Sj)

/ ∑
y
xsi

j∈si
j

1 ≥ 0.5


and Mi(y

xSj ∈ Sj) returns 0 if the pixel has been tagged as an outlier and 1
otherwise.

Equations 3.1, 3.2, 3.13, and 3.15 all match against a distinguished element
p̃� or more generally s�j . This assumes that s�j is representative of the actual
appearance of the underlying world surface. In the presence of occlusion and
image noise this is not always the case. Outliers in s�j are not likely to match
the corresponding data in any of the other images resulting in the mismatch
penalty being applied |ΠΠΠΠΠΠΠΠΠi| times. One way to mitigate this effect is to first
estimate s�

j from the image data and then perform the matching. With camera
calibration error and variations in the viewing condition, as well as outliers in
the image data, this is a difficult task. Instead we successively set s�j = si

j. We
can exhaustively test the sij ’s or if we are willing to occasionally miss a match
we can simply try a few of the best.

3.4 Discussion

This chapter introduces several powerful techniques for dealing with data that
contains 1) camera calibration error; 2) significant variations in illumination;
and, 3) difficult occlusion and image noise. As pointed out above, over-fitting
is a concern. The next chapter applies these techniques directly to a large
dataset. And the following chapter imposes several geometric constraints to
prune false positives.



Chapter 4

From Images to Surfels

Chapter 3 discussed several methods to compensate for noisy data. This chap-
ter will explore these methods in practice. We will focus on two characteristics:
the ability to detect nearby (in both position and orientation) surfaces and once
detected, localize their actual position and orientation.

4.1 The Dataset

A Kodak DCS 420 digital camera mounted on an instrumented platform was
used to acquire a set of calibrated images in and around Technology Square
(the same office complex depicted in the synthetic imagery and Figure 1-4)
[De Couto, 1998]. Nearly 4000 images were collected from 81 node points.
Other than avoiding inclement weather and darkness, no restrictions were
placed on the day and time of, or weather conditions during, acquisition. The
location of each node is shown in figure 4-1. At each node, the camera was ro-
tated about the focal point collecting images in a hemi-spherical mosaic (Figure
1-6). Most nodes are tiled with 47 images. The raw images are 1524× 1012 pix-
els and cover a field of view of 41◦ × 28◦. Each node contains approximately 70
million pixels. After acquisition, the images are reduced to quarter resolution1

and mosaiced [Coorg et al., 1998, Coorg, 1998]. Equal area projections of the
spherical mosaic from two nodes are shown in Figure 4-2. The top node was
acquired on an overcast day and has a distinct reddish tint. The bottom image
was acquired on a bright clear day. Significant shadows are present in the bot-
tom image whereas the top has fairly uniform lighting. Following mosaicing,
the estimated camera calibrations are refined.

After refinement, the calibration data is good, but not perfect. The pose
estimates are within about 1◦ and 1 meter of the actual values2. As described
in Section 3.1, these errors produce an offset between corresponding points in
different images. A 1◦ pose error will displace a feature by over 8 pixels. Our

1381× 253 pixels.
2An interactive tool was used to manually identify a number of correspondences which were

then used to bound the camera calibration error.

59
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Figure 4-1: Node locations.

calibration estimates are in an absolute coordinate frame which allows us to
integrate images regardless of when or from what source they were collected.
This greatly increases the quantity and quality of available data, but because of
variations in illumination condition (Section 3.2) also complicates the analysis.

Figure 4-3 and 4-4 show several images from our dataset reprojected3 onto a
surfel which is coincident with an actual surface. The location, orientation, and
size of the surfels used are shown in Table 4.1. Surfel 1 was used to generate
Figure 4-3 and surfel 2 Figure 4-4. If the camera calibration estimates were
perfect and the illumination was constant, the regions in each figure should be
identical4. The misalignment present in both sets is the result of error in the
calibration estimates. Figure 4-3 is representative of the best in the dataset. A
large number of the source images have high contrast and none of the regions
are occluded. The third row has a distinct reddish tint. The four images in
the center of the last row were collected under direct sunlight. And, the last
two images were taken near dusk. Figure 4-4 is more typical of the dataset.
It is lower in contrast and some of the regions are partially occluded by trees.

3Using the estimated camera calibration.
4Ignoring errors introduced during image formation (discretizing into pixels, etc) and re-

sampling.
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Figure 4-2: Example nodes.

Position Normal Size (units) Size (pixels)
Surfel x y z x y z x y x y

1 -1445 -2600 1200 -1 0 0 110 110 11 11
2 -280 -3078 1500 0 -1 0 110 110 11 11

Table 4.1: Surfel parameters.
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Figure 4-3: Reprojection onto surfel 1 coincident with actual surface.

Figure 4-4: Reprojection onto surfel 2 coincident with actual surface.
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Figure 4-5: Source images for selected regions of surfel 1.
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Figure 4-6: Source images for selected regions of surfel 2.
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Figures 4-5 and 4-6 show source images with the reprojected area marked by a
circle for several of the regions shown in Figure 4-3 and 4-4. In the worst cases
all views of a surfel are similar to the upper left image in Figure 4-6.

4.2 Detecting Surfels

This section focuses on using ν(Sj) to detect nearby (both in position and ori-
entation) surfaces. The following algorithm lists the major steps in our imple-
mentation.

1. Hypothesize surfel Sj in world coordinates.

2. Select images Ĩ̃ĨĨĨĨĨĨĨI.

3. Reproject regions sssssssssj.

4. Select next s�
j .

5. For each region sij:

(a) Determine best shift (u̇i, v̇i).

(b) Estimate color correction (mr, dr, mg, dg, mb, db).

(c) Calculate best match.
∑

y
xSj∈Sj

X (F(y+v̇i
x+u̇i

si
j),F(y

xs
�
j))

/ ∑
y
xSj∈Sj

1

6. Evaluate match set ν(Sj):

• If good enough ⇒ done.

• If not ⇒ goto 4.

In Chapter 2 Pj ’s were determined by sampling along ��. In essence, the im-
age data directly determined the test points. 500 j’s and 25 α’s were evaluated
for each p�. Given the dataset described above, this would require evaluating
∼ 5 × 1012 points. Since our calibration estimates are oriented in an absolute
coordinate system, a more efficient approach would be to choose test points in
world coordinates. Sampling the volume of interest (from ground to 2000 units
and containing all nodes) every 100 units in position and at 8 different orien-
tations would test less than 2 × 106 points - more than six orders of magnitude
fewer.

Once a surfel (such as shown in Table 4.1) is selected, we construct Ĩ̃ĨĨĨĨĨĨĨI. Only
cameras which image the front side of the surfel and are not too close or too
far are considered. We use 120 units as the minimum distance and 6000 as
the maximum. In addition, for most of the results presented in this thesis we
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limit |̃ĨĨĨĨĨĨĨĨI| to 20 images. If necessary, |̃ĨĨĨĨĨĨĨĨI| is reduced by choosing the subset which

maximizes the variation in viewpoint. We use the projection of
−−→
SjC̃i onto the

plane containing the surfel as a measure of the viewpoint. The subset which
maximizes the minimum distance between the projections also maximizes the
viewpoint variation.

Each image in Ĩ̃ĨĨĨĨĨĨĨI is then reprojected on the the surfel, producing sets of
regions sssssssssj similar to those shown in Figures 4-3 and 4-4. To facilitate choosing
s�
j , we define a region’s interest as

interest =
(−−→
C̃iPj · α

)∑
u,v

∑
y
xSj∈Sj

X (F(y+v
x+us

i
j),F(y

xs
i
j))

√
u2 + v2

∑
y
xSj∈Sj

1


/∑

u,v

1 (4.1)

where

(u, v) ∈ {(−1,−1), (0,−1), (1,−1), (−1, 0), (1, 0), (−1, 1), (0, 1), (1, 1)}

and then choose the largest one first. This gives priority to regions with in-
teresting textures (i.e. ones which would produce a significant match), better
contrast, and unforeshortened views. Only regions with a minimum interest
(we typically use 50 as the threshold) need even be considered. In fact, at most
we try the top five s�

j ’s. Region 5 (top row, fifth from the left) is the most inter-
esting in Figure 4-3 with a score of 575.5. Region 2 is the most interesting in
Figure 4-4 with a score of 34.55.

Next we consider finding the best match between s�j and si
j. We do this by

evaluating:
max
u,v

ε(u, v) (4.2)

where

ε(u, v) =
∑

y
xSj∈Sj

X (F(y+v
x+us

i
j),F(y

xs
�
j))

/ ∑
y
xSj∈Sj

1 . (4.3)

Steps 5a, 5b, and 5c are actually accomplished simultaneously when finding
the best match but for our discussion we will consider the steps separately.

Figures 4-7 and 4-8 show −ε versus u, x shift, and v, y shift, for three regions
each from Figures 4-3 and 4-4. The left column shows the error near the cor-
rect shift plotted as a three-dimensional surface. The center and right columns
show the projection onto the x-error plane and y-error plane respectively. Re-
gion five from Figure 4-3 is used as s�j for all of the plots in Figure 4-7. The plots
are periodic because of the repetitive texture (windows on the on the building).

5For this example we have lowered the threshold to 25 otherwise this region would not be
considered.
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Figure 4-7: Shift error space near correct shift (left), projection onto the x-
error plane (center), and y-error plane (right). The periodicity is caused by
repetitive texture (windows) on the buildings. The change of periodicity in the
x and y directions is produced by the window spacing in the horizontal and
vertical directions. The change in periodicity from row to row is the result of
foreshortening.
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Figure 4-8: Shift error space near correct shift (left), projection onto the x-
error plane (center), and y-error plane (right). The periodicity is caused by
repetitive texture (windows) on the buildings. The change of periodicity in the
x and y directions is produced by the window spacing in the horizontal and
vertical directions. The change in periodicity from row to row is the result of
foreshortening.
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The different periodicity in the x and y directions reflects the horizontal and
vertical spacing of the windows. The first, ninth, and last regions of Figure 4-3
were used as si

j for the first, second, and third rows of Figure 4-7 respectively.
Region two from Figure 4-4 is used as s�j for all of the plots in Figure 4-8. The
first, fourth, and eleventh regions of Figure 4-4 were used as sij for the first,
second, and third rows of Figure 4-8 respectively.

The si
j ’s used in the first and third rows of Figure 4-7 and the second row

of Figure 4-8 originate from cameras which imaged the surfel from a relatively
oblique viewpoint. The sij for the third line of Figure 4-7 is a very low contrast
image acquired at dusk and the sij for the first line of Figure 4-8 contains signifi-
cant soft occlusion from tree branches. Note that a shift is required in each case
to obtain the best match. All of the plots are smooth with well defined minima
making Equation 4.2 a good candidate for optimization techniques[Press et al.,
1992]. We have tried a number techniques including direction set methods (e.g.
Powell’s method) and conjugate gradient methods6 and all worked well. Mul-
tiple minima, however, are a concern. We consider only the nearest minimum
and use δi to limit the range of valid shifts. For the results presented in this
thesis we limited u and v to ±5. In many cases, only a single minimum exists
within this limited range. The multiple minima, particularly those in Figure
4-7, can lead to false positives like the one illustrated in Figure 3-3.

The color correction is determined using linear regression [Press et al.,
1992] and limiting the correction. sij is used as the x data and s�j as the y.
Each color channel (r, g, and b) is computed separately. Changes in both illu-
mination and reflectance are factored into equation 3.10, however we assume
that changes in illumination dominate the correction. Given this assumption,
mr, mg, and mb are constrained to be positive. Images collected under a clear
sky tend to have a blue tint and those collected under cloudy skies have a red-
dish tint. While changes in the spectral composition of natural lighting are
significant they are limited. Consider the vector [mr, mg, mb]; If brightness is
the only change between sij and s�

j , the vector will be in the direction [1, 1, 1]. We
use the angle between [mr, mg, mb] and [1, 1, 1] as a measure of the variation in
spectral composition and limit it to 10◦. Further, we limit the overall change in
brightness for any channel (m) to a maximum of 10 and a minimum of 1/10. If
the best correction exceeds any of these limits, the match is not allowed.

Figures 4-9 and 4-10 show the regions from Figures 4-3 and 4-4 with the
shifts and color corrections applied7. Once (u̇i, v̇i) and (mr, dr, mg, dg, mb, db) have
been determined calculating the match score is a straight forward evaluation

6Deriving ∇u,vε(u, v) is straight forward and depends only upon the image data and the
gradient of the image data. See Appendix B for details.

7The correction for the 4th region in row 3 of Figures 4-3 and 4-9 which corrects a specular
reflection in the window exceeds the limits described above.
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Figure 4-9: Aligned and corrected regions for surfel 1.

Figure 4-10: Aligned and corrected regions for surfel 2.
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Shift Slope Intercept
Region Match Score Unique x y r g b r g b

1 X -14.8 29.2 -2.5 1.7 1.5 1.5 1.6 -29.1 -28.5 -47.2
2 X -15.0 28.6 -2.3 1.6 1.5 1.5 1.6 -25.8 -28.3 -38.8
3 X -24.4 18.3 -2.0 -1.9 1.4 1.5 1.5 -35.2 -33.7 -48.4
4 X -20.3 22.1 -2.0 -1.1 1.5 1.5 1.5 -39.5 -33.9 -46.2
5 X -0.0 ∞ 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0
6 X -6.8 64.0 -0.0 0.0 1.0 1.0 0.9 -5.3 -0.5 4.3
7 X -31.8 14.9 -3.3 -0.7 1.3 1.4 1.5 -15.4 -12.5 -37.0
8 X -23.7 19.8 -3.2 -0.5 1.3 1.4 1.4 -4.5 -11.9 -14.1
9 X -15.1 30.0 -1.6 -0.6 1.3 1.4 1.5 -17.4 -19.4 -38.2

10 X -25.4 18.4 -1.6 0.1 1.3 1.4 1.4 -14.6 -18.8 -23.6
11 X -34.5 13.9 -3.9 1.4 1.4 1.4 1.6 -31.2 -24.7 -50.2
12 X -40.6 12.0 -4.3 0.8 1.5 1.5 1.5 -33.1 -32.9 -36.7
13 X -50.7 9.7 -5.0 1.4 1.2 1.3 1.4 -9.1 -16.3 -21.4
14 -152.4 3.8 -4.6 -0.8 3.7 3.9 3.9 -194.0 -153.0 -222.8
15 -132.8 4.1 -5.2 0.2 4.2 4.0 4.1 -245.1 -156.9 -226.1
16 -329.2 1.7 -1.5 -0.0 5.4 5.3 5.1 -569.0 -384.2 -491.7
17 -1409.6 0.9 2.3 0.2 -1.2 -1.3 -1.4 232.4 195.2 256.5
18 -781.6 1.1 7.0 -3.4 2.0 1.7 1.6 -176.6 -86.9 -102.0
19 -162.4 3.3 -7.0 2.5 3.8 3.9 3.7 -190.0 -140.3 -224.3
20 -190.0 3.1 -7.0 1.1 3.5 3.6 3.4 -164.3 -119.6 -198.7
21 -132.0 4.0 -7.0 0.9 4.0 3.9 3.7 -216.6 -137.1 -218.0
22 -128.3 4.2 -6.6 -1.1 1.4 1.5 1.7 1.7 -5.9 -31.8
23 -904.4 1.1 -5.2 -2.5 1.1 0.9 0.7 -104.0 -55.6 -19.9
24 -960.6 1.1 -2.9 -1.0 0.9 0.9 0.5 -74.4 -54.5 -4.2
25 -1115.9 1.0 -4.0 4.2 0.7 0.5 0.3 -38.2 -0.8 48.2
26 -924.5 1.1 -1.0 -0.4 0.8 0.9 0.7 -72.9 -57.7 -32.2
27 -1052.3 1.0 -3.8 -3.0 5.4 6.2 0.0 -181.7 -128.3 96.1
28 X -66.4 6.8 -0.7 -0.6 4.8 5.4 4.6 -153.1 -107.5 -187.8

Table 4.2: Match data for surfel 1.

Shift Slope Intercept
Region Match Score Unique x y r g b r g b

1 -177.2 0.9 -1.4 6.0 1.0 1.0 0.9 55.5 49.2 73.2
2 X -0.0 ∞ 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0
3 X -21.3 2.7 -0.1 1.1 1.0 1.2 1.2 15.0 -13.5 -24.6
4 X -17.4 3.2 -0.1 0.7 1.2 1.2 1.2 -3.5 -10.9 -14.6
5 -116.3 1.0 0.0 -0.1 2.1 2.1 1.1 -37.2 -47.1 23.5
6 -249.6 0.8 -7.1 1.9 0.8 0.8 0.4 53.1 31.2 90.1
7 -232.5 0.9 -7.0 -2.1 2.2 0.9 0.1 -86.0 21.4 125.8
8 -233.2 0.9 0.0 0.0 -1.0 -0.9 -1.0 213.9 162.7 233.4
9 X -31.7 1.9 1.5 1.5 1.5 1.7 1.5 -24.7 -32.9 -19.3
10 -116.2 1.0 -0.2 -0.0 1.7 1.7 1.5 -34.8 -16.0 -3.2
11 -75.3 1.3 -0.3 -1.9 1.9 1.9 1.8 -37.2 -26.2 -18.4
12 X -41.2 1.8 2.1 1.0 1.7 1.7 1.5 -40.0 -19.4 -16.0
13 X -44.9 1.8 1.2 2.4 1.6 1.7 1.6 -14.3 -17.4 -13.1
14 X -59.9 1.5 2.4 2.3 1.7 1.7 1.5 -34.5 -19.5 -10.8
15 X -46.5 1.8 1.9 0.2 1.3 1.5 1.3 -5.6 -15.6 -5.2
16 X -44.1 1.8 0.5 0.2 1.4 1.6 1.5 -7.1 -21.1 -17.6
17 -79.8 1.2 -2.2 0.0 4.5 4.3 5.4 -56.7 -0.8 -100.3
18 -69.1 1.2 -1.8 0.8 4.5 5.3 4.4 -50.3 -21.7 -65.0

Table 4.3: Match data for surfel 2.
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(4.4)

where

(u, v) ∈ {(−1,−1), (0,−1), (1,−1), (−1, 0), (1, 0), (−1, 1), (0, 1), (1, 1)}.

A region is considered a match if the shift and color correction are within limits,
at least half of the points in sij contribute to the match and the match score is
good enough and unique enough. For the results presented in this thesis we
require the match score to be ≥ −100 and the uniqueness8 to be ≥ 2. Tables 4.2
and 4.3 show the match data for the regions in Figures 4-9 and 4-10.

Finally, we evaluate the match set. We retain a surfel if the match set
contains a minimum number of regions, the regions come from a minimum
number of nodes, ν(Sj) is greater than or equal to a minimum value and s�j has
an interest which is greater than or equal to a minimum value. For the results
presented in this thesis we require the number of regions to be ≥ 6, the number
of nodes to be ≥ 5, ν(Sj) ≥ −100, and interest ≥ 50. The sets of regions shown in
Figures 4-3 and 4-4 both produce valid matches.

4.2.1 Results

To test the detection characteristics of our algorithm, we evaluated ν(Sj) for
many surfels near an actual surface. A 100× 100× 200 unit volume, the shaded
area in Figure 4-11, was selected so that an actual surface divides the surface
into two cubes. 396 positions chosen at 20 units intervals were used as test
points. Each test point was evaluated every 5◦ for azimuths ±45◦ and every
5◦ for elevations ±45◦. A total of 142,956 surfels were evaluated. Figure 4-
12 shows the fraction of the nearly 13,000 surfels tested at each displacement
that produced a valid match set. The left side of Figure 4-13 shows the frac-
tion of detections versus displacement and the angle between the actual and

8While growing surfaces (discussed in the next chapter) we allow uniqueness as low as 1.5.
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Figure 4-11: Test volume (small
shaded rectangle).

Figure 4-12: Average detection rate.
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Figure 4-14: Empty test volume
(large shaded rectangle).

Figure 4-15: Scale effects for an
unoccluded surface.
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Figure 4-16: Scale effects for an occluded surface without (left) and with (right)
masks.
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tested orientation. The right side shows the fraction of detections versus az-
imuth and elevation9. We also investigated the effect of surfel size on detection
rate. As a control, we measured the detections in the empty volume shown
as a shaded region in Figure 4-14. An actual surface was selected and tessel-
lated with surfels. The fraction of false negatives (1− the detection rate) for
an unoccluded surface versus the fraction of true negatives (1− the detection
rate) for the empty volume is shown in Figure 4-15. Surfel sizes from 5 units
(lower left corner) to 50 (upper right corner) in increments of 5 units are plotted
as diamonds. The “bump” in Figure 4-15 is the result of noise and the discrete
nature of surfels. Similar curves for an occluded (significant tree coverage) sur-
face are shown in Figure 4-16. The left and right plots in Figure 4-16 are for
the same surface. The data shown in the right plot utilizes the mask function
described in Section 3.3. A surfel size near 10 units gives the best all around
performance. The best surfel size is a function of the data and is related to
the size in world coordinates of the significant image features - in our case the
windows. Potentially scale-space techniques such as [Li and Chen, 1995] can
be used to determine the best surfel size.

4.3 Localizing Position and Orientation

As shown in the previous section, our method is capable of detecting surfaces
a significant distance (both in position and orientation) from Sj. The algorithm
described so far produces a set of corresponding textures, ṡ̇ṡṡṡṡṡṡṡsj. The underlying
surface which gave rise to the textures may have a position and orientation dif-
ferent from that of Sj. The information contained in ṡ̇ṡṡṡṡṡṡṡsj can be used to estimate
the position and orientation of the underlying surface.

Once a surface has been detected, we localize its position and orientation
using the following algorithm:

1. Until convergence:

(a) Update surfel position Pj.

(b) Update surfel orientation nj.

(c) Reevaluate ν(Sj).

Steps 1a, 1b, and 1c are actually interdependent and ideally should be calcu-
lated simultaneously. For ease of implementation and to speed convergence10

9All surfels tested at a particular azimuth and elevation regardless of displacement are
included in the fraction.

10Theoretically, convergence is O(n3) where n is the number of parameters optimized, thus
two half-sized problems converge four times faster than the full-sized one. We have observed
this speed up in practice. In addition, the symbolic gradient expression needed by conjugate
gradient methods is much simpler for the two half-sized problems.
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we have separated them. As will be seen in this section, we obtain good results
performing the steps individually.

We use a slightly modified version of Equation 3.4, which considers only
matching regions, to update Pj:

argmin
Ṗj

∑
ṗi

j ∈ ṗ̇ṗṗṗṗṗṗṗpj

si
j ∈ ṡ̇ṡṡṡṡṡṡṡsj
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C̃iṗ

i
j × ((Ṗj − C̃i) ×

−−→
C̃iṗ

i
j) · (Ṗj − C̃i). (4.5)

When Pj is updated, u̇i and v̇i must also be updated. sij changes with the new
Pj but ṗi

j does not, thus (u̇i, v̇i) must be corrected for the difference between the
old and new si

j.
A match’s dependence upon Sj and nj can be made more explicit by rewriting

Equation 3.15 as follows:
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To update nj we evaluate:
argmax

nj

∑
i∈Q

ε(nj). (4.8)

Both direction set methods and conjugate gradient methods11 work well to
solve Equation 4.8.

Once the position and orientation of the surfel have been updated, we reper-
form Steps 2, 3, 5, and 6 of the detection algorithm. Step 2 is only partially per-
formed. Images with currently matching regions are retained. Images which
no longer view the front side of the surfel are eliminated and additional ones
that do are added. Steps 1a, 1b, and 1c of the localization algorithm are re-
peated while the match score is improving until the position update is < 1 unit
and the orientation update is < 1◦ or for 3 iterations if the match score is not
improving.

11While not as straight forward as in the last section, deriving ∇nj ε(nj) leads to an easily
evaluated expression that depends only upon known quantities such as the image data, the
gradient of the image data, and the position and orientation of surfel. See Appendix B for
details.
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a b

c d

Figure 4-17: Surfel localization.
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Figure 4-18: Localization examples.
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4.3.1 Results

Figure 4-17 depicts the localization process. Images which view the front side of
the surfel are shown in grey. Those that contribute to the match set are shown
in black. Lines of sight through the center of the matched regions and building
outlines are also shown in grey. Figure 4-17a shows the initial detection for
a surfel displaced from the actual surface by 100 units in positions and 30◦

in orientation. Figure 4-17b shows the surfel after updating its position and
orientation (Steps 1a and 1b of the localization algorithm). Figure 4-17c shows
a new match set using the updated position and orientation (Step 1c). Figure 4-
17d shows the final match set at convergence. The same set of test points used
to test detection (Figures 4-12 and 4-13) was also used to evaluate localization.
Figure 4-18 shows two test points evaluated at 361 different orientations. The
test point for the plot on the left is 80 units in front of the actual surface and
the one for the right is 100 units behind. The asymmetry in both of these plots
is caused by the asymmetric distribution of cameras shown in Figure 4-24. A
diamond is plotted at the initial orientation for each detection and a plus marks
the final estimated orientation. Figure 4-19 shows the aggregate results for
the complete set of test points. The plot on the left shows final displacement
versus the initial displacement and the angle between the actual and tested
orientation. The plot on the right shows the angle between the actual and final
estimated orientation versus the initial displacement and the angle between
the actual and tested orientation. For displacements upto 100 units in position
and 30◦ in orientation, nearly all of the test points converged to the correct
values.

4.4 Discussion

So far we have focused on detecting and localizing nearby surfels and have not
addressed bogus matches. As pointed in Chapter 3, compensating for noisy
data admits false positives. Figure 4-20 shows the raw surfels12 detected and
localized near one of the buildings imaged in the dataset. There are a signif-
icant number of false positives. Notice the parallel layers of surfels near the
upper right corner of the building. These are false positives similar to the one
shown in Figure 3-3. Many of the surfels are near the surfaces of the building.
Figure 4-21 shows the distribution of distances to the nearest model surface.
Figures 4-22 and 4-23 show the raw results for the full reconstruction and Fig-
ure 4-24 shows the volume used for the full reconstruction. The next chapter
addresses ways to eliminate false positives.

The reconstructions shown in this thesis were performed on quarter reso-

12Only front facing surfels are rendered.
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Figure 4-20: Raw surfels (partial reconstruction).
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Figure 4-21: Distance to nearest model surface (partial reconstruction).
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Figure 4-22: Raw surfels (full reconstruction).
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Figure 4-23: Distance to nearest model surface (full reconstruction).
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Figure 4-24: Reconstruction volume (shaded area) used for full reconstruction.
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Figure 4-25: Raw surfels for full reconstruction using half (top) and eighth
(bottom) resolution images.
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lution images. To test the effects of image resolution, we reran the raw detec-
tion and localization algorithms on half and eighth resolution images. Several
parameters (maximum shifts, interest, and uniqueness) are resolution depen-
dent and these were adjusted appropriately. The results are shown in Figure
4-25. The half resolution reconstruction is very sparse. We suspect the primary
cause is image noise. It turns out that half the output resolution actually corre-
sponds to the full resolution of the physical sensor [De Couto, 1998]. Increased
image noise degrades the match score, whose tolerance was not adjusted, and
interferes with the gradient estimates used to optimize the shifts. Assuming
the noise is Gaussian in nature, reducing the resolution also reduces the noise.
However, there is a limit to how much the resolution can be reduced; sufficient
information must be retained to perform the reconstruction. This implies that
there is a range of image resolutions (with favorable noise characteristics and
sufficient information content) which are essentially equivalent. The quarter
and eighth resolution reconstructions seem to support this view.



Chapter 5

From Surfels to Surfaces

The shifts, illumination corrections, and masks introduced in Chapter 3 to com-
pensate for noisy data also increase the occurrence of false positives. The re-
sults presented in Chapter 4 are purely local and make no attempt to reject
these false positives. This chapter explores several geometric constraints which
together eliminate nearly all false positives.

5.1 Camera Updates

As pointed out in Section 3.1 unconstrained shifts introduce false positives such
as the one shown in Figure 3-3. Figures 5-1 and 5-2 shows shifts {(u̇, v̇)} plot-
ted as a vector field in image-space along with the corresponding image. The
position of each vector corresponds to the location of the center of a matching
region. Note that the shifts appear to be random. The actual image displace-
ments caused by camera calibration error should be consistent with a transla-
tion of the camera center and a rotation about it or formally

(u, v)p̃i
j
= T (Pj , I

i) − T (Pj , Ĩ
i) (5.1)

where
p̃i

j = T (Pj , Ĩ
i)

and Pj is the location of Sj. To enforce this constraint we use the following
algorithm:

1. For each camera Ĩi.

(a) Build
{
(u̇i, v̇i)p̃i

j

}
.

(b) Calculate a first-order camera calibration update, Ĩi′.

(c) Calculate the final camera calibration update, Ĩi′′.

(d) Remove matching regions with shifts that are not consistent with the
final update, Ĩi′′.

85
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Figure 5-1: Shifts {(u̇i, v̇i)} plotted as a vector field and image data for node 27
image 13.
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Figure 5-2: Shifts {(u̇i, v̇i)} plotted as a vector field and image data for for node
28 image 17.
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Figure 5-3: Effects of camera calibration updates.

2. Prune surfels which no longer meet the match criteria.

The left side of Figure 5-3 shows the effect of translating a camera in the 
x
direction. ∆x and T�x are related as

∆x = − f
−→̃
CP · 
z

T�x (5.2)

and similarly for ∆y and T�y

∆y = − f
−→̃
CP · 
z

T�y. (5.3)

The right side of Figure 5-3 shows rotation about the y axis. Differentiating

θ = arctan

(
x − x0

f

)

yields the first order approximation

∆x = −f 2 + (x − x0)
2

f
δθ. (5.4)

Similarly for φ, rotation about the x axis,

∆y =
f 2 + (y − y0)

2

f
δφ. (5.5)
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Finally, for γ, rotation about the optical axis,

∆x = −(y − y0)δγ (5.6)
∆y = (x − x0)δγ. (5.7)

Equations 5.2-5.7 combine to form the following pair of coupled linear equa-
tions:

u̇ =
f 2 + (x − x0)

2

f
δθ +

f
−→̃
CP · 
z

T�x + (y − y0)δγ (5.8)

v̇ =
f 2 + (y − y0)

2

f
δφ +

f
−→̃
CP · 
z

T�y − (x − x0)δγ. (5.9)

Equations 5.8 and 5.9 are solved in a least squares fashion[Watkins, 1991].
Ĩi is updated using δθ, δφ, δγ, T�x, and T�y

1 to produce the initial solution in Step
1b, Ĩi′. The final update is

argmin
Ĩi′′

∑
(u̇i,v̇i)∈Q

‖(u̇, v̇) − T (Pj , Ĩ
i′′) + T (Pj , Ĩ

i)‖2, (5.10)

where
Q =

{
(u̇i, v̇i)

∣∣∣ ε ≥ ‖(u̇, v̇) − T (Pj , Ĩ
i′) + T (Pj , Ĩ

i)‖2
}

.

Typically ε is 1 pixel. Solutions which have enough data (at least 4 points) and
fit well are retained. Ĩi′′ is used to prune inconsistent matches from ṡ̇ṡṡṡṡṡṡṡsj,

si
j \ ṡ̇ṡṡṡṡṡṡṡsj if ε < ‖(u̇, v̇) − T (Pj , Ĩ

i′′) + T (Pj , Ĩ
i)‖2.

After removing inconsistent matches, if ṡ̇ṡṡṡṡṡṡṡsj no longer meets the criteria de-
scribed in Section 4.2, it is discarded. Figure 5-6 shows the average rms shift
before and after performing the calibration update. The number of consistent
data points (shifts) are plotted along the x axis and the square root of the mean
squared shift is plot along the y axis. Note that the necessary shifts are sig-
nificantly reduces. Ideally, after updating the camera calibration estimates, no
shifts would be required. The images used as input contain a small amount of
nonlinear distortion which cannot be modeled by the pin-hole camera model.
We estimate the rms value of this distortion to be about 1 pixel.

Figure 5-4 shows the consistent surfels remaining after applying this algo-
rithm to the raw reconstruction shown in Figure 4-22 and Figure 5-5 shows the
distribution of distances to the nearest model surface. A number of the consis-
tent surfels come from objects which are not in the reference model. The cluster
of surfels between the building outlines near the top center of Figure 5-4 is one
example. These surfels come from a nearby building. As a test, a small portion
of the full reconstruction was rerun with the updated camera calibration. The
results are shown in Figure 5-7. For comparison, the consistent surfels from
the same area are shown in Figure 5-8.

1The internal parameters are held fixed and for stability reasons T�z is not updated.
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Figure 5-4: Consistent surfels.
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Figure 5-5: Distribution of error for consistent surfels.
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Figure 5-6: Comparison of initial and final calibration estimates.



92 CHAPTER 5. FROM SURFELS TO SURFACES

Figure 5-7: Close-up of reconstruction using updated camera calibrations.

Figure 5-8: Close-up of same area showing only consistent surfels from original
reconstruction (estimated camera calibrations).
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5.2 One Pixel One Surfel

��
��
��
��

S1

C̃

S3 S2
Π̃i

Sb

nb

dz

na

dt
Sa

Figure 5-9: A region from one image
which contributes to multiple surfels.

Figure 5-10: Determining if Sb is a
neighbor of Sa.

Figure 5-9 shows a region from one image which contributes to the match
set of multiple surfels. Each pixel in each image should contribute to at most
one surfel. Deciding which surfel is the hard part. Detection and localization
as described in Chapter 4 do not enforce this constraint and as a result even
after enforcing a consistent calibration update there are many image regions
which contribute to multiple surfels. We eliminate them in a soft manner using
the following algorithm:

1. Score each surfel.

2. For each surfel Sa.

(a) For each region sia ∈ ṡ̇ṡṡṡṡṡṡṡsa.

i. For each surfel Sb with a score higher than Sa, if si
b ∈ ṡ̇ṡṡṡṡṡṡṡsb.

A. De-weight si
a.

(b) If the match score is no longer sufficient, prune Sa.

To score a surfel we use a combination of the number of cameras which
contribute to a surfel and the number of neighbors that it has. A surfel Sa is
considered a neighbor of Sb if 1) the distance from Pb to the plane containing
Sa (the normal distance) is no more than dz; 2) the distance from the projection
of Sb onto the plane containing Sa and Pa (the tangential distance) is no more
than dt; and, 3) the angle between na and nb is no more than β. This notion of
neighbors is essentially a smoothness constraint and will be used in the next
section to group surfels. Typically, we use dz = 15, dt = 300, and β = arccos(0.9).
The de-weighting is done in a continuous manner. Sa is divided into sample
points (we use 10 × 10) each with an initial weight of 1.0. Each sample point
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Figure 5-11: Surfels after pruning multiple contributions.
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Figure 5-12: Distribution of error for pruned surfels.

is tested against the cone formed by Sb and C̃i. Those inside the cone have
their weights updated. The new weight is based on the normal distance and
the angle between na and nb. If the angle is greater then β, the new weight
is 0.0. Otherwise, the new weight is based on the normal distance; 1.0 if it is
less than dz, 0.0 if it is greater than 3dz, and varies linearly in between. The
lesser of the currently assigned and new weight is retained. After all Sb’s have
been tested against Sa, the average sample point weight is used as the new
weight for si

a. When each si
a has been tested the sum of the weights is used to

determine if Sa is retained. Figure 5-11 shows the reconstruction after pruning
multiple contributions and Figure 5-12 shows the distribution of distances to
the nearest model surface.

5.3 Grouping Surfels

The buildings we are trying to model are much larger than an individual surfel.
Therefore, a large number of surfels should be reconstructed for each actual
surface. Using the notion of neighbors described in the last section, we group
the reconstructed surfels as follows:

1. For each surfel Sa.
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(a) For each surfel Sb already assigned a group.

i. If Sa and Sb are neighbors.
A. If Sa has not already been assigned to a group, then assign Sa

to the group containing Sb.
B. Otherwise merge the groups containing Sa and Sb.

(b) If Sa has not been assigned to a group, then create a new group and
assign Sa to it.

In practice we retain only groups which have at least a minimum number
of (typically four) surfels. All of the surfels in a group should come from the
same surface. This notion of grouping places no restriction on the underlying
surface other than smoothness (e.g. it may contain compound curves). Figure
5-13 shows the reconstruction after grouping and removing groups with fewer
than four surfels. Nearly all of the surfaces in the reference model have at
least one corresponding group. Figure 5-14 shows the distribution of distances
to the nearest model surface.

5.4 Growing Surfaces

Many of the groups shown in figure 5-13 do not completely cover the underlying
surface. There are several reasons why surfels corresponding to actual surfaces
might not produce a valid match set. The main one is soft occlusion described
in Section 3.3. Another is local maxima encountered while finding the best
shifts and updating the surfel’s normal. In the reconstruction process so far,
the mask technique described in Section 3.3 has not been utilized. In this
section we make use of it. We also use estimated the shifts and illumination
corrections to help place us closer to the correct maxima. We use the following
algorithm to grow surfaces:

1. For each group.

(a) Create an empty list of hypothesized surfels.

(b) For each hypothesized surfel.

i. Test using the detection and localization algorithms.
ii. If a match.

A. Add to the group.
B. Test against each surfel in each of the other groups.

If a neighbor, merge the two groups.

(c) Use the next surfel in the group Sa to generate new hypotheses
and goto Step 1b.
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Figure 5-13: Surfels after grouping.
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Figure 5-14: Distribution of error for grouped surfels.

The hypotheses in Step 1c are generated from Sa by considering the eight
nearest neighbors in the plane containing Sa as shown in Figure 5-15. Sa is
shown in grey and the hypotheses are shown in white. Each of the other recon-
structed surfels in the group are orthographically projected onto the hypothe-
sized surfels and hypotheses which are more than half covered are discarded.
The shifts and illumination corrections associated with Sa are used as initial
values for each hypothesis in Step 1(b)i. In addition we lower the minimum
interest to 25 and the minimum uniqueness to 1.2. Figure 5-16 shows the
reconstruction after growing. After growing, the coverage of each surface is
nearly complete. Figure 5-17 shows the distribution of distances to the nearest
model surface. Figure 5-18 shows grown surfels after removing multiple con-
tributions and grouping as described in the previous two sections and Figure
5-19 shows the distribution of distances to the nearest model surface.

5.5 Extracting Models and Textures

So far, the only assumption we have made about the structure of the world is
that locally it can be approximated by a plane. All of the buildings imaged in
our dataset are composed of planar faces, therefore we simply fit planes to the



5.5. EXTRACTING MODELS AND TEXTURES 99

Figure 5-15: Reconstructed surfel (grey) and hypotheses (white).

groups identified in the previous section. In this case, a face is equivalent to a
large surfel. The position and orientation of Sg are determined by

Pg =
∑

Sj∈Sg

wPj

/ ∑
Sj∈Sg

w (5.11)

and

ng =
∑

Sj∈Sg

wnj

/ ∑
Sj∈Sg

w , (5.12)

where w is the score calculated in Step 1 of the algorithm to remove multiple
contributions and Sg is the set of all surfels in group g. The extent of Sg is
determined by orthographically projecting Sg onto Sg and finding the bounding
box. Figure 5-20 shows the reconstructed Sg ’s. A total of 15 surfaces were
recovered. Figure 5-21 shows the distribution of distances to the nearest model
surface. As noted previously, many surfels come from structures not in the
reference model. Three of the reconstructed surfaces fall into this category,
hence Figure 5-21 has a maximum of 80.

Image data from contributors to ṡ̇ṡṡṡṡṡṡṡsa can easily be related using the illumina-
tion corrections calculated during detection and localization. The relationship
between si

b and ṡ̇ṡṡṡṡṡṡṡsa where ṡ̇ṡṡṡṡṡṡṡsa and ṡ̇ṡṡṡṡṡṡṡsb are members of the same group is more
difficult when i is not a contributer of ṡ̇ṡṡṡṡṡṡṡsa. To resolve these relationships we
construct a table of the illumination corrections for I, the set of images con-
tributing to at least one surfel in S, using the following algorithm:

1. For each group.

(a) Find the surfel with the highest score, Sm.

i. Make s�
m the root of the tree.

ii. Add the illumination correction for sim to the table where i �= �.
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Figure 5-16: Surfels after growing.
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Figure 5-17: Distribution of error for grown surfels.

(b) Until no new entries to the table are added.

i. For each Sj.
A. If ∃ a, b | sa

j is in the table and sbj is not,
Then calculate the illumination correction between sbj and s�

m

and enter it in the table.

We assume that each surfel in a group has at least one contributing image in
common with at least one other surfel in the group. When building the table
we consider only the first correction encountered for each contributing image.
Once the table is built we correct each image in I and reproject it onto Sg. The
texture associated with Sg is simply the average. Figure 5-22 shows two views
of the reconstructed textures. Notice that the rows of window in adjacent faces
are properly aligned. This occurs even though no constraints between faces are
imposed.

5.6 Discussion

This chapter uses several simple geometric constraints to remove virtually all
false positives from the purely local reconstruction described in Chapter 4. Af-
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Figure 5-18: Surfels after regrouping.
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Figure 5-19: Distribution of error for regrouped surfels.

ter imposing consistent calibration updates, removing multiple contributions
and grouping, the remaining surfels are excellent seeds for growing surfaces.
Of the 16 surfaces in the reference model, 12 were recovered. All of the re-
maining surfaces are severely occluded by trees. Nearly all of the images are
similar to the upper left-hand image of Figures 4-4 and 4-6. In spite of this
several surfels were recovered on two of the surfaces, however they did not
survive the grouping process. Figure 5-23 shows the results of growing these
surfels. The top shows the raw surfels after growing and the bottom shows re-
constructed textures. In addition to being severly occluded by trees, the other
two surfaces have very little texture and one of them suffers from a lack of
data. Three surfaces from adjacent buildings not contained in the model were
also recovered. The face near the top center of the upper image in Figure 5-22
is from the Parson’s lab. The surfaces on the left of the upper and the right of
the lower image is from Draper lab.

A summary of the computation required is presented in Table 5.1. The ma-
jor steps of our algorithm and the section which describes them are listed along
with the elapsed and cpu runtimes, number of surfels output, and complexity.
A total of 64.5 hours of cpu time was needed to produce the textured model
shown in Figure 5-22. This is less than 1 minute of cpu time per image and
less than 0.2 seconds of cpu time per test point. The “Detection & Localiza-
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Figure 5-20: Raw model surfaces.
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Figure 5-21: Distribution of error for model surfaces.

Time
Step Section Elapsed cpu Surfels Complexity

Detection & 4.2
Localization 4.3 42hrs† 60hrs 54,212 O(V × N × S)
Camera
Updates 5.1 18.5min 17min 2977 O(N × #2)
1 Pixel,
1 Surfel 5.2 3.5min 2min 1636 O(N × #2)
Group 5.3 4min 2.5min 1272 O(#2)

Grow 5.4 6hrs† 4hrs 3007 O(A × N)
Model 5.5 11.25min 9.5min 15 O(#)
Texture 5.5 24.5min 15.5min 15 O(A × N)

Table 5.1: Run times and orders of growth.
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Figure 5-22: Textured model surfaces.
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Figure 5-23: Textured model surfaces with two additional surfaces.
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tion” and “Grow” steps were performed in parallel on a cluster of 32 400Mhz
dual processor Pentium II machines running linux. The remaining steps were
performed on a single 200Mhz uniprocessor Pentium Pro machine also run-
ning linux. The two times marked with daggers reflect the speed up of parallel
processing. All others (including cpu time for “Detection & Localization” and
“Grow”) are total times. The complexities shown are upper bounds. V is the
reconstruction volume, N is the total number of images, S is the surfel size
(area in world coordinates), # is the total number of recovered surfels, and A
is the total surface area (in world coordinates) of the scene to be reconstructed.

Detection & Localization

As noted above, the reported elapsed time reflects parallel execution. The total
elapsed time is 1,260 hrs (42 hrs × 30 nodes). The cpu time required is 1/20
of the total elapsed time. The major cause of this is I/O. The reconstruction is
divided into 6000 chunks. Each of these chunks is reconstructed independently
and requires loading a large image set from a file server across a network. The
work required to test a single surfel is linearly proportional to surfel area in
world coordinates (S) and the number of images which view the surfel. The
total number of surfels tested is linearly proportional to the reconstruction vol-
ume. N is an upper bound on the number of images which view a surfel, but
it is not a tight bound. For example, only a fraction of the dataset can image
a particular surfel. Therefore, if the dataset is acquired with roughly a fixed
node density and images only contribute to surfels which are not too far away
(Section 4.2), we would expect the number of images which view a surfel to
eventually become independent of N . In essence, once the dataset has reached
a certain size, new images extend the reconstruction volume but do not affect
the local reconstructions at the core of the volume. For large data sets the
expected order of growth is O(V × S)

Camera Updates

The work required to update a single camera is proportional to the number of
surfels it contributes to squared and a total of N cameras must be updated. #
is an upper bound on the number of surfels which a camera can view, but it is
not a tight one. Similar to the discussion in “Detection & Localization”, once
the reconstruction reaches a certain size, the number of surfels imaged by a
given camera should remain roughly constant. Spatial hashing can be used to
help exploit this property. Thus, for large reconstructions the expected order of
growth is O(N)
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1 Pixel, 1 Surfel

The work required to impose the “1 Pixel, 1 Surfel” constraint for a single image
contributing to a given surfel is linearly proportional to the number of surfels in
a cone formed by the camera’s center of projection and the surfel and extending
out to the maximum allowed distance from the camera. This constraint must
be imposed for each image contributing to each of the # surfels. If images can
contribute only to surfels which are not too close (Section 4.2), then once the
reconstruction reaches a certain size, the number of surfels in the cone should
remain roughly constant. Therefore, for large reconstructions with large data
sets the expected order of growth is O(#).

Group

The work required to group a surfel is linearly proportional to the number of
surfels in the vicinity and all # surfels must be grouped. The number of surfels
in a given area is bounded and by using spatial hashing the expected order of
growth becomes O(#).

Grow

The comments in “Detection & Localization” about elapsed time apply here,
except that only 15 surfaces were grown, therefore only 15 nodes were used.
Assuming that the growing algorithm effectively stops at surface boundaries,
there are a total A/S locations on all faces to be tested. For the faces shown in
Figure 5-22 this is a good assumption. For large data sets, each location tested
requires O(S) work, giving an expected order of growth of O(A).

Model

The work required to fit a (plane) model is linearly proportional to the number
of surfels in the group. Since every surfel belongs to a group, the given order of
growth O(#) is a tight bound.

Texture

The work required to extract the texture associated with a face is linearly pro-
portional to the area of the face and the number of images which view it. N
is an upper bound on the number of images which can view a face and since a
face can be of arbitrary size it is not clear that we can do better. Therefore, the
order of growth is O(A × N).
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Chapter 6

Conclusions

This thesis presents a novel method for automatically recovering dense surfels
using large sets (1000’s) of calibrated images taken from arbitrary positions
within the scene. Physical instruments, such as Global Positioning System
(GPS), inertial sensors, and inclinometers, are used to estimate the position
and orientation of each image. Long baseline images improve the accuracy;
short baselines and the large number of images simplify the correspondence
problem. The initial stage of the algorithm is completely local enabling par-
allelization and scales linearly with the number of images. Subsequent stages
are global in nature, exploit geometric constraints, and scale quadratically with
the complexity of the underlying scene.

We describe techniques for:

• Detecting and localizing surfels.

• Refining camera calibration estimates and rejecting false positive surfels.

• Grouping surfels into surfaces.

• Growing surfaces along a two-dimensional manifold.

• Producing high quality, textured three-dimensional models from surfaces.

Some of our approach’s most important characteristics are:

• It is fully automatic.

• It uses and refines noisy calibration estimates.

• It compensates for large variations in illumination.

• It matches image data directly in three-dimensional space.

• It tolerates significant soft occlusion (e.g. tree branches).

• It associates, at a fundamental level, an estimated normal (eliminating
the frontal-planar assumption) and texture with each surfel.

111
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Our algorithms also exploit several geometric constraints inherent in three-
dimensional environments and scale well to large sets of images. We believe
that these characteristics will be important for systems which automatically
recover large-scale high-quality three-dimensional models. A set of about 4000
calibrated images was used to test our algorithms. The results presented in
this thesis demonstrate that they can be used for three-dimensional recon-
struction. To our knowledge, the City Scanning project (e.g. [Coorg, 1998]
and the work presented in this thesis) is the first to produce high-quality tex-
tured models from such large image sets. The image sets used in this thesis
are nearly two orders of magnitude larger than the largest sets used by other
approaches. The approach presented in this thesis, recovering dense surfels
by matching raw image data directly in three-dimensional space, is unique
amoung the City Scanning approaches.

6.1 Future Work

The major limitation of the work presented in this thesis is the difficulty of
performing reconstruction “through the trees”. A large part of the difficulty
is caused by matching against s�j . If s�

j is not representative of the underlying
texture, then the match set ṡ̇ṡṡṡṡṡṡṡsj will most likely be insufficient resulting in a
false negative. If we knew the underlying texture and used it as s�j , the match
set should improve significantly. Similarly, estimating the underlying texture,
rather than simplying selecting one of the views, and using it as s�j should also
improve the match. Potentially this would allow us recover the missing faces
in Figure 5-22.

Several other areas could also benefit from further exploration:

• Develop alternate techniques for exploring the volume of interest.

• Explore improvements/optimizations to the basic algorithms.

• Develop a more sophisticated model of illumination and reflectance to im-
prove the correction.

• Explore fitting a broader class of models to surfels.

• Develop techniques to enhance the recovered texture.

6.1.1 Exploring the Volume of Interest

As noted in Section 4.2, we exhaustively test all of the nearly 2 × 106 points
in the volume of interest. About 2% of the tested points produce surfels and
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Figure 6-1: Free space.

about 6% of those are consistent with a single set of camera calibration up-
dates. One way of reducing the number of points that need to be tested is to
use techniques such as binocular stereo to generate test points that are likely
to produce surfels. Because of error in the estimated three-dimensional posi-
tion, a small volume around the point should be tested. If a surfel is detected
and localized, additional test points can be generate nearby in a manner sim-
ilar to that used in Section 5.4 to grow surfaces. Another possible approach
is to keep track of empty space. For example, if surfel S in Figure 6-1 corre-
sponds to an actual surface, then the shaded area must be empty space and
need not be tested. Conservatively estimating regions of empty space during
the reconstruction process could significantly reduce the number of points ac-
tually tested. Argus, our image acquisition platform is pushed for node to node
while obtaining a dataset and the path it follows also identifies empty space
that limit test points. In a similar fashion, it may prove useful to keep track
of the general location of soft occluders. For example, views which do not have
soft occlusion could be selected preferentially or weighted more heavily.

6.1.2 Improving the Basic Algorithm

Several components of the basic algorithm could be improved. Several param-
eters such as surfel size and thresholds for interest and uniqueness are se-
lected and utilized on a global basis. These values are dependent upon the
data and their values should reflect this dependence. For example, the overall
image brightness and contrast have a large impact on interest and uniqueness
scores. For various reasons (geometry, sun position, etc.), some building faces
are frequently brightly illuminated and others are nearly always in shadow.
Using the same threshold for both tends to produce a large number of false
positives in the former case and a large number of false negatives in the latter.
Thresholds based upon the imaging conditions should produce better results.
The quality of matches could also be improved by performing comparisons at
the appropriate resolution. The effective resolution of reprojected regions vary
with viewing condition (e.g. distance and foreshortening). Source images could
be loaded into a pyramid of resolutions and prior to matching, a level selected
such that all the reprojected textures are of similar resolution. This technique
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should significantly improve the algorithms ability to match distant or highly
forshorted views. As noted in Section 4.3, updating a surfels position and
orientation should ideally be done simultaneously. Formulations which com-
bine these optimizations may localize surfels more accurately. And finally, as
noted in Section 3.3, our masking algorithm is conservative. More sophisti-
cated methods of identifying outlier pixels would enable the masks to be more
widely used and should result in fewer false negatives.

6.1.3 Illumination and Reflectance Models

The correction proposed in Section 3.2 does a good job of compensating for
changes in viewing condition (illumination, view point, reflectance, etc.), but
the extra degrees of freedom also admit false positives such as shown in Figure
3-5. One way to reduce the number of false positives is to constrain the correc-
tions by measuring the viewing conditions. For example, the total irradiance
arriving at a node and an estimate of cloud cover might be sufficient for a rough
estimate of the correction. The corrections used to extract the textures shown
in Figure 5-22 are consistent within a face, but not necessarily between faces.
A direct estimate might make it possible to locate all corrections in a global
correction space.

As demonstrated in Figures 4-3 and 4-9 in some cases our method is ca-
pable of compensating for specular reflection. These corrections are generally
rejected in an attempt to limit false positives. One way to improve match-
ing for surfaces with substantial specular characteristics is to decompose the
reflectance into specular and diffuse components and use just the diffuse com-
ponent for matching. Nayar et al. [Nayar et al., 1997] show that the specular
component of an objects reflectance tends to be linearly polarized while the
diffuse component is not. Using this property and a polarization image1, Na-
yar et al. present an algorithm for separating the components. Wolff [Wolff
and Andreou, 1995, Wolff, 1997] demonstrates a practical device for acquiring
polarization images.

Finally, given a number of images of the same world surface taken under dif-
ferent viewing conditions, it should be possible to estimate its bidirectional re-
flectance distribution function (BRDF) [Horn, 1986]. Tagare and DeFigueredo
[Tagare and deFigueiredo, 1993], Oren and Nayar [Oren and Nayar, 1995], and
Dana et al. [Dana et al., 1996] present a techniques for fitting BRDF’s to image
data.

1A set of color images of the same scene acquired from the same location each imaged with
a polarization filter at a different orientation
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6.1.4 More Descriptive Models

The models extracted in Section 5.5 are composed of simple rectangles. The
buildings in our dataset are well modeled by planar faces, however many build-
ings have components which are not. Fitting general models to data is an open
problem, however expanding the set of primitives to include cones, cylinders,
and spheres as well as planes would greatly increase the descriptive power of
our models. Further, the faces recovered should be part of a closed solid. This
constraint could easily be enforced by hypothesizing missing faces. Imposing
this constraint would result in recovering two of the four unrecovered faces. As
part of the City Scanning project, Cutler [1999] has investigated aggregating
reconstructions from multiple sources and imposing solid constraints.

6.1.5 Better Textures

As described in Section 5.5 the textures displayed in Figure 5-22 are generated
by averaging the illumination corrected image data. The results are good but
can be improved. Iteratively estimating the average texture should improve
the results. For example, the current average texture is used to reestimate the
illumination corrections for each image and weights for each pixel of each im-
age. The new illumination corrections and weights are then used to reestimate
the average texture until it converges. No attempt has been made to align the
data from individual images. Warping techniques similar to those described by
Szeliski [Szeliski, 1996, Szeliski and Shum, 1997] should improve the quality
of the extracted texture.
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Appendix A

Camera Model

R

−→zw

−→yw

−→yc

C

P

−→
T −→xw

−→xc

−→zc
p

Figure A-1: Camera model.

The pin-hole camera model utilized throughout this thesis uses the perspec-
tive projection model of image formation. A 4×3 matrix maps points expressed
in homogeneous coordinates from P3 to P2. The left side of Figure A-1 shows
a camera centered Cartesian coordinate system. The camera’s optical axis is
coincident with the z axis and its center of projection (C) is at the origin. The
image plane is parallel to the xy plane and located a distance f from the origin.
Even though the image plane is not required to be parallel to the xy plane, most
camera models do not explicitly consider this possibility. Instead the effects of
image plane pitch θx and tilt θy are lumped in with lens distortion under the
heading of thin prism distortion. We assume that θx = θy = 0 for consistency
with traditional pin-hole camera models. The point where the image plane and
the optical axis intersect is known as the principal point. Under perspective
projection a point Pc = [Xc, Yc, Zc, 1] projects to point p = [x, y, 1] on the image
plane by the following equations:

x = f
Xc

Zc
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y = f
Yc

Zc

In practice, we are not able to directly access the image plane coordinates.
Instead we have access to an array of pixels in computer memory. In order to
understand the relationship between image plane coordinates and the array
of pixels, we must examine the imaging process. The image plane of a CCD
camera is a rectangular array of discrete light sensitive elements. The output
from each of these elements is an analog signal proportional to the amount
of light incident upon it. The values for each of these elements are read out
one element at a time row after row until the entire sensor array has been
read. The analog signal is converted to digital values by internal circuitry.
Digital cameras use this signal directly. Analog cameras require the use of
an additional external A to D converter commonly known as a frame grabber.
In addition, color cameras require the signals from adjacent red, green, and
blue sensor sites to be combined. The result is an array of digital values which
can be read into the memory of a computer. These processes introduce noise
and ambiguity in the the image data (e.g. pixel jitter which extreme cases can
cause the x and y axes to appear non-orthogonal or skewed [Lenz and Tsai,
1988]). Most camera models omit skew angle θxy (the angle between the x
and y axes minus 90◦). We include θxy but assume it is 0. A single element of
the array in memory is commonly called a pixel. We will refer to the row and
column number of a given pixel as y′ and x′ respectively. Several parameters
are defined to quantify the relationship between the array in memory and the
coordinate system of the image plane. x0 and y0 are the pixel coordinates of the
principal point. sx and sy are the number of pixels in memory per unit distance
in the x and y direction of the image plane. These parameters along with f and
θxy are intrinsic or internal camera calibration parameters. The projection of
point Pc to point p′ = [x′, y′, 1] in memory is described by the following equations

x′ = fsx
xc

zc
+ x0

y′ = fsy
yc

zc

+ y0,

or more compactly

p = PC (A.1)

= P

 sx 0 0
tan θxy sy 0

x0 y0 1/f


C is a 3×3 lower triangular matrix which contains the internal camera param-
eters.
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The right half of Figure A-1 shows an arbitrary Cartesian coordinate system
which we will refer to as the world or absolute coordinate system. A point
Pw in the world coordinate system is transformed into the camera centered
coordinate system by the following equation:

Pc = PwR +
−→
T

or

Pc = Pw

[
R 0−→
T 1

]
(A.2)

Where R is a 3 × 3 orthonormal rotation matrix and −→
T is a 1 × 3 translation

vector. This matrix is commonly referred to as the extrinsic or external camera
parameters.

The pin-hole camera is a linear model and is not able to model nonlinear
effects such as lens distortion. The major categories of lens distortion are:

1. Radial distortion - the path of a light ray traveling from the object to the
image plane through the lens is not always a straight line.

2. Decentering distortion - the optical axis of individual lens components are
not always collinear.

3. Thin prism distortion - the optical axis of the lens assembly is not always
perpendicular to the image plane.
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Appendix B

Gradient Derivations

This appendix presents the symbolic gradient expressions used along with con-
jugate gradient methods to find the optimum shift (Section B.1) and surfel nor-
mal (Section B.2).

B.1 Gradient Expression for Updating Shifts

For simplicity, we derive the results for a single color channel (red). To obtain
expressions for the remaining color channels simply substitute the appropriate
color channel values. Equation 4.3 can be rewritten using Equations 2.9 and
3.11 as

ε(u, v) = εr(u, v) + εg(u, v) + εb(u, v) (B.1)

where

εr(u, v) =
∑

y
xSj∈Sj

((mrr1 + dr) − r2)
2

σ2
r

/ ∑
y
xSj∈Sj

1 , (B.2)

r1 = r
(

y+v
x+us

i
j

)
, (B.3)

and
r2 = r

(
y
xs

�
j

)
. (B.4)

Using linear regression to calculate mr and dr yields1

mr =

∑
x,y

1
∑
x,y

r1r2 −
∑
x,y

r1

∑
x,y

r2∑
x,y

1
∑
x,y

r2
1 −

∑
x,y

r1

∑
x,y

r1

(B.5)

and

dr =

∑
x,y

r2
1

∑
x,y

r2 −
∑
x,y

r1

∑
x,y

r1r2∑
x,y

1
∑
x,y

r2
1 −

∑
x,y

r1

∑
x,y

r1

. (B.6)

1To simplify the presentation x, y is used in place of y
xSj ∈ Sj .
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The gradient of Equation B.1 is

∇u,vε(u, v) = ∇u,vεr(u, v) + ∇u,vεg(u, v) + ∇u,vεb(u, v) (B.7)

=

[
∂εr

∂u
,
∂εr

∂v

]
+

[
∂εg

∂u
,
∂εg

∂v

]
+

[
∂εb

∂u
,
∂εb

∂v

]

Again for simplicity, we derive only ∂εr
∂u

. To obtain an expression for ∂εr
∂v

simply
substitute v for u. Differentiating Equations B.2, B.5, and B.6 with respect to u
gives

∂εr

∂u
=

∑
x,y

((mrr1 + dr) − r2)
(
mr

∂r1

∂u
+ ∂mr

∂u
r1 + ∂dr

∂u
− ∂r2

∂u

)
2σ2

r

/∑
x,y

1 , (B.8)

∂m

∂u
=

((∑
x,y

1
∑
x,y

r2
1 −

∑
x,y

r1

∑
x,y

r1

)(∑
x,y

1
∑
x,y

r1
∂r2

∂u
+
∑
x,y

1
∑
x,y

∂r1

∂u
r2− (B.9)

∑
x,y

r1

∑
x,y

∂r2

∂u
−
∑
x,y

∂r1

∂u

∑
x,y

r2

)
−
(∑

x,y

1
∑
x,y

r1r2 −
∑
x,y

r1

∑
x,y

r2

)
(

2
∑
x,y

1
∑
x,y

r1
∂r1

∂u
− 2

∑
x,y

r1

∑
x,y

∂r1

∂u

))/(∑
x,y

1
∑
x,y

r2
1 −

∑
x,y

r1

∑
x,y

r1

)2

,

and

∂b

∂u
=

((∑
x,y

1
∑
x,y

r2
1 −

∑
x,y

r1

∑
x,y

r1

)(
2
∑
x,y

r1
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∑
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r2
1

∑
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∂r2
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− (B.10)
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∑
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.

u and v are shifts in the −→xc and −→yc directions respectively in image i, therefore
differentiating Equations B.3 and B.4 with respect to u produces

∂r1

∂u
=

∂r1

∂x

∂x

∂u
(B.11)

=
∂r1

∂x,

and

∂r2

∂u
=

∂r2

∂x

∂x

∂u
(B.12)

= 0.
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Substituting Equations B.9, B.10, B.11, and B.12 into Equation B.8 results in
an expression which depends only upon the red channel of the raw image data
and the gradient of the red channel (r1, r2, and ∂r1

∂x
). Similar results apply for

∂εr
∂v

as well as the green and blue channels.

B.2 Gradient Expression for Updating Normals

Again for simplicity, we derive the results for a single color channel (red). To
obtain expressions for the remaining color channels simply substitute the ap-
propriate color channel values. Similar to Equation B.1, Equation 4.7 can be
rewritten as

ε(θ, φ) = εr(θ, φ) + εg(θ, φ) + εb(θ, φ) (B.13)

where

εr(θ, φ) =
∑

i

(∑
x,y

((mrr1 + dr) − r2)
2

σ2
r

/∑
x,y

1

)
, (B.14)

r1 = r
(
T (y

xSj , I
i) + [u, v]

)
, (B.15)

and
r2 = r (T (y

xSj , I
�)) . (B.16)

θ

φ

−→xs

−→ys
−→q

Figure B-1: Surfel with attached coordinate system.

Figure B-1 shows surfel Sj with an attached coordinate system. Points on Sj

can be specified as an offset along −→xs and −→ys relative to Pj,

y
xSj = Pj + xw−→xs + yw−→ys . (B.17)

w is a scale parameter which determines the spacing between points on the
surfel. The normal is parameterized as a small rotation relative to the nj. θ
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specifies the axis of rotation

−→q = −→xs cos θ + −→ys sin θ (B.18)

and φ specify the angle of rotation about−→q . Accounting for the updated normal,
Equation B.17 becomes

y
xSj = Pj + xwR(θ, φ)−→xs + ywR(θ, φ)−→ys (B.19)

where

R(θ, φ) = (B.20) q2
x + (1 − q2

x) cos φ qxqy(1 − cos φ) + qz sin φ qxqz(1 − cos φ) − qy sin φ
qxqy(1 − cos φ) − qz sin φ q2

y + (1 − q2
y) cos φ qyqz(1 − cos φ) + qx sin φ

qxqz(1 − cos φ) + qy sin φ qyqz(1 − cos φ) − qx sin φ q2
z + (1 − q2

z ) cos φ

 .

The image point to which y
xSj projects is

T (y
xSj , I) = [x′, y′]

where

x′ = f
−→xci · (y

xSj − Ci)
−→zci · (y

xSj − Ci)
+ x0 + u, (B.21)

and
y′ = f

−→yci · (y
xSj − Ci)

−→zci · (y
xSj − Ci)

+ y0 + v. (B.22)

The gradient of Equation B.13 is

∇θ,φε(θ, φ) = ∇θ,φεr(θ, φ) + ∇θ,φεg(θ, φ) + ∇θ,φεb(θ, φ)

=

[
∂εr

∂θ
,
∂εr

∂φ

]
+

[
∂εg

∂θ
,
∂εg

∂φ

]
+

[
∂εb

∂θ
,
∂εb

∂φ

]
(B.23)

First we will examine ∂
∂θ

. Differentiating Equation B.14 gives

∂εr

∂θ
=

∑
x,y

((mrr1 + dr) − r2)
(
mr

∂r1

∂θ
+ ∂mr

∂θ
r1 + ∂dr

∂θ
− ∂r2

∂θ

)
2σ2

r

/∑
x,y

1 . (B.24)

Differentiating Equations B.9 and B.10 and using the chain rule produces

∂mr

∂θ
=

∂mr

∂x

∂x

∂θ
+

∂mr

∂y

∂y

∂θ
(B.25)

and
∂dr

∂θ
=

∂dr

∂x

∂x

∂θ
+

∂dr

∂y

∂y

∂θ
. (B.26)
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The expressions for ∂mr

∂x
and ∂mr

∂y
are given in the last section. Differentiating

Equations B.15 and B.16 and using the chain rule yields

∂r1

∂θ
=

∂r1

∂x

∂x

∂θ
+

∂r1

∂y

∂y

∂θ
(B.27)

and
∂r2

∂θ
=

∂r2

∂x

∂x

∂θ
+

∂r2

∂y

∂y

∂θ
. (B.28)

Equations B.21 and B.22 produce

∂x

∂θ
= f

−→zci · (y
xSj − Ci)−→xci ·

∂y
xSj

∂θ
−−→xci · (y

xSj − Ci)−→zci ·
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xSj

∂θ

(−→zci · (y
xSj − Ci))

2 (B.29)

and
∂y

∂θ
= f

−→zci · (y
xSj − Ci)−→yci ·

∂y
xSj

∂θ
−−→yci · (y

xSj − Ci)−→zci ·
∂y

xSj

∂θ

(−→zci · (
y
xSj − Ci))

2 . (B.30)

Differentiating Equation B.19 yields

∂y
xSj

∂θ
= xw

∂R(θ, φ)

∂θ
−→xs + yw

∂R(θ, φ)

∂θ
−→ys (B.31)

where
∂R(θ, φ)

∂θ
= (B.32)[

2qx
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]

and
∂−→q
∂θ

= −→ys cos θ −−→xs sin θ. (B.33)

Substituting Equations B.25, B.26, B.27, B.28, B.29, B.30, B.31, B.32, and B.33
into Equation B.14 results in an expression for ∂εr

∂θ
that is easily evaluated and

depends only upon known quantities. Specifically, the red channel of the raw
image data (r1 and r2), the gradient of the red channel (∂r1

∂x
and ∂r1

∂y
), a scale

parameter (w), the initial surfel (Pj, −→xs , and −→ys ), the best shifts (u̇ and v̇), and
the camera parameters (f , x0, y0, −→xci , −→yci , −→zci , and Ci).

The derivation for ∂
∂φ

is nearly identical. ∂R(θ,φ)
∂φ

is the only significant differ-
ence,

∂R(θ, φ)

∂φ
= (B.34) (1 − q2

x) sinφ qxqy sin φ + qz cos φ qxqz sin φ − qy cosφ
qxqy sin φ − qz cosφ (1 − q2

y) sin φ qyqz(1 − sin φ) + qx cos φ
qxqz(1 − sin φ) + qy cosφ qyqz(1 − sin φ) − qx cosφ (1 − q2

z ) sin φ

 .
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Similar results apply for the green and blue channels.
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