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Abstract

Since robots are typically designed with an individual actuator at each joint, the control of these
systems is often di�cult and non-intuitive. This thesis explains a more intuitive control scheme
called Virtual Model Control. This thesis also demonstrates the simplicity and ease of this control
method by using it to control a simulated walking hexapod.

Virtual Model Control uses imagined mechanical components to create virtual forces, which are
applied through the joint torques of real actuators. This method produces a straightforward means
of controlling joint torques to produce a desired robot behavior. Due to the intuitive nature of this
control scheme, the design of a virtual model controller is similar to the design of a controller with
basic mechanical components. The ease of this control scheme facilitates the use of a high level
control system which can be used above the low level virtual model controllers to modulate the
parameters of the imaginary mechanical components.

In order to apply Virtual Model Control to parallel mechanisms, a solution to the force distri-
bution problem is required. This thesis uses an extension of Gardner`s Partitioned Force Control
method which allows for the speci�cation of constrained degrees of freedom.

This virtual model control technique was applied to a simulated hexapod robot. Although the
hexapod is a highly non-linear, parallel mechanism, the virtual models allowed text-book control
solutions to be used while the robot was walking. Using a simple linear control law, the robot walked
while simultaneously balancing a pendulum and tracking an object.

Thesis Supervisor: Gill A. Pratt
Title: Assistant Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Due to design constraints, robots typically have actuators at the joint level. This produces an
actuation space which is non-intuitive. Because of the non-linearities at the joint level, generally
caused by sine and cosine functions which are used when describing motion in joint space, the control
of a robotic system is often di�cult to understand and visualize. For example it is often not clear
how to specify torques at the ankles, knee, and hip joint of a legged robot in order to produce
smooth motion in the body. However, it is easier to just specify the motion of the body and have
the non-linearities of joints abstracted away.

A control scheme dubbed Virtual Model Control was developed by Pratt [5] in order to make the
control of robotic systems more simple and intuitive. In Virtual Model Control, virtual mechanical
components are used to describe the desired behavior of a robot. The motion of the robot is altered
by modulating the parameters of the virtual mechanical components. For example, if one desired a
robot to stand at a certain height, a virtual spring from the ground to the robot's body could be
connected. The height at which the robot stands could be changed by modulating the rest length
of the spring. The virtual components are used to transform the desired behavior of the robot into
a generalized virtual force on the robot.

The generalized virtual force produced by the virtual components is mapped to joint torques
using virtual model math. When these torques are applied to the joints, the robot will behave
exactly as if the virtual components were really there. Virtual Model Control is a powerful tool
in robotic design because it abstracts away the complexity of control in the joint space and only
requires an intuitive understanding of the desired behavior of the robot.

This thesis proves the validity and usefulness of Virtual Model Control by using it to enable a
simulated hexapod robot to walk. In order to control the hexapod, two virtual model controllers
were developed. One controller regulates the motion of the body in stance and the other regulates
the motion of the legs in swing. The development of the controllers involved deriving the virtual

model math for each set of linkages. The mathematics developed allowed the control of the joints
to be ignored and the control of the robot's body to be dictated by desired motions. Appropriate
virtual mechanical components were also chosen for each controller to induce the desired motion of
the body.

By developing these two virtual model controllers, a higher level controller was implemented in
order to make the robot walk. A simple walking algorithm regulated the virtual controllers. The
walking algorithm chose the appropriate tripod for the task and set the parameters of the virtual
components based on the desired behavior of the robot. Using this method, the robot was induced
to walk while requiring only three user inputs. These user inputs speci�ed the robots speed, the
direction of the robot's travel and the turning rate of the robot's body. The robot was also able to
perform more complex tasks such as balancing a pendulum on its back while walking and tracking
an object.

Simulations of the walking robot can be found at:
http://www.ai.mit.edu/projects/leglab/simulations/hexapod/hexapod.html
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1.1 Summary of Thesis Contents

This thesis is organized in the following manner:

Chapter 2 gives a brief overview of Virtual Model Control and how it is implemented. This
chapter develops a robotic boxer example in order to illustrate Virtual Model Control and its
advantages.

Chapter 3 describes the general structure of the hexapod robot. This chapter also gives an
overview of how Virtual Model Control was used to enduce the robot to walk.

Chapter 4 explains the mathematics used to relate the generalized virtual forces of the hexapod
at the body and the feet to actual joint torques.

Chapter 5 describes the actual simulation of the robot. This chapter also details the development
of the generalized virtual forces using virtual components and describes the walking control
algorithm.

Chapter 6 presents the results of implementing Virtual Model Control on the hexapod in order to
make it walk. This chapter also describes how the robot is able to walk with a pendulum on
its back and gives supporting experimental results.

Chapter 7 discusses the lessons learned in the implementation of Virtual Model Control on a
Walking Hexapod.
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Chapter 2

Virtual Model Control Overview

By developing virtual model controllers, the behavior of the robot can be controlled using only the
state of the virtual components and the current state of the robot (i.e. the joint positions and
velocities). This approach is much more intuitive than other control schemes which attempt to
control the motion of the robot through the speci�cation of individual joint torques or positions in
joint space. The use of Virtual Model Control is particularly helpful in controlling complex tasks
such as walking, runing, dancing, or swimming. In order to implement virtual model controllers, a
complex task must be broken up in to subtasks which are snapshots of the overall task. For example,
walking can be divided into two sub tasks, stance (double support) and swing (single support). Once
virtual model controllers are developed to control the motion of the robot during these subtasks, a
higher level controller can be used to coordinate the virtual model controllers in order to successfully
perform the overall task. The number and type of virtual model controllers developed for a given
task depends on the complexity of the overall task and the desired complexity of the higher level
controller. Choosing the correct subtasks is crucial in the success of the controller. Intuition in the
design of these controllers comes with experience in mechanical and robotic design.

2.1 Developing a Virtual Model Controller

Figure 2-1: Block diagram of simple virtual model controller. This schematic illustrates that given
the desired behavior, a position, velocity, or force, of the end e�ector, a virtual model controller
produces the torques on the joints between the end e�ector and the base.

The formulation and implementation of virtual model controllers are relatively straightforward.
Once a subtask is devised the physical base and the end e�ector of the desired motion must be
identi�ed. Again this is a crucial step in the development of an e�ective controller, and the insight
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into the proper design comes from experience and intuition. The base of the subtask can be thought
of as the part of the robot which remains stationary relative to an external reference frame during
the desired motion of the subtask. The end e�ector is the part of the robot which moves in order
to achieve the desired motion. For example, if it is desired that the robot draw a small picture on a
chalk board, the end e�ector would be the hand and the base would be the center of mass. The end
e�ector should be chosen so that the desired task to be controlled can be described by the desired
values of the end e�ector. If developed correctly, virtual model controller given the desired position,
velocity, or force at the end e�ector will output the joint torques required to achieve the motion of
a desired task.

Virtual model controllers have two important elements. One element is the virtual components
and the other is the virtual model math. Virtual model components are used to translate the desired
variables describing the behavior of the end e�ector into a generalized virtual force acting at the
end e�ector. These virtual model components can be, but are not limited to, linear mechanical
elements such as virtual springs and dampers as well as virtual force sources. The choice of which
virtual components to use depends on the desired motion of the end e�ector. This motion dictates
the parameters of the virtual components which in turn produce a generalized virtual force at the
end e�ector.

Figure 2-2: This expanded block diagram shows two essential elements in a basic virtual model
controller. The virtual components are imaged mechanical components which translate the desired
behavior of the robot at the end e�ector into a generalized force at the end e�ector. The virtual
model math then maps this force to the joint torques between the end e�ector and base.

The generalized virtual force is then converted to correspond to actual joint torques using virtual
model math. The mapping of a generalized virtual force to joints torques is done by deriving the
kinematics of the robot starting from the base to the end e�ector. The Jacobian of the linkage from
the base to the end e�ector is then calculated. The transpose of the Jacobian serves as the mapping
between the virtual force and the actual joint torques. The derivation of the virtual model math for
a serial linkage is relatively straightforward once the appropriate base and end e�ector are chosen.

2.2 Robotic Boxer Example

The following example is developed in order to give a better explanation of the formulation and
implementation of virtual model controllers. This section suggests a possible control scheme for a
robotic boxer. The example presented in this section give an extended explanation of the example
mentioned in [5]. Although it is not obvious how each of the joints of the robotic boxer should be
moved in order to produce a desired motion, it is more obvious how the robotic boxer should move
its �st and body in order to throw a punch and maintain balance. Two virtual model controllers are
discussed in this section. One is a controller for a jab and the other is a controller for balance. Figure
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2-3 depicts the generalized forces at the �st and body as well as virtual components connected to
the �st and body.

Figure 2-3: Modi�ed version of the robotic boxer example by Pratt. In this diagram, the a generalized
virtual force from the body to the �st is shown. A generalized virtual force from the feet to the
body is also shown. Generalized virtual components, V.C., which produce the virtual forces, are
illustrated as well.

2.2.1 Jab Controller

Figure 2-4: Block diagram of the Jab Controller used when a robotic boxer is throwing a punch.
This demonstrates that virtual spring and dampers with virtual force sources can be used to create
a virtual force on the �st given a desired position and force at the �st. The virtual force at the �st
is then translated into the wrist, elbow, and shoulder joint torques through virtual model math.

In order to throw a punch, the motion of the �st, wrist, forearm, elbow, upper arm, shoulder,
and body are involved. The purpose of developing a virtual model controller is to abstract away the
control of each of these components, especially the joint control. The �rst step in developing the
virtual model controller is to decide the end e�ector and the base. In this example, the �st is chosen
as the end e�ector because the motion of a punch can be described by the desired motion of the
�st. The base is the body. Virtual components are then used to translate the desired variables into
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a generalized virtual force. Since the boxer wants to hit an opponent's face as hard as possible, the
desired variables will be a position and a force. In order to achieve these variables, a virtual spring
and damper is used to emulate the force needed to position the �st to opponent's face and a virtual
force source is used to emulate the striking force. These components translate the desired variables
into a generalized virtual force. This generalized force is then mapped to actual joint torques which
in turn produce the desired motion of the �st. The mapping of the generalized force to the joint
torques is achieved by deriving the Virtual Model Math from the body to the hand.

2.2.2 Balance Controller

In order to maintain balance while throwing a jab the center of mass of the robotic boxer must
be controlled. The robotic boxer uses its legs and feet to position its center of mass and maintain
balance. In order to control the center of mass, a control scheme must be developed which, given
a desired motion of the body, outputs the appropriate joint torques at the hips, knees, and ankles.
As stated in the previous section, the development of this control scheme begins by de�ning the end
e�ector and the base. In this example, the end e�ector is the center of mass of the body and the
bases are the two feet. This example is di�erent from the previous one because there are two bases

instead of one. This adds an extra step in the control scheme.
In order to maintain balance, the center of mass of the body needs to be positioned. Also in

order to hold up the body a force equal to the weight of the robot must also be applied. The desired
variables for the robotic boxer are then a position and a force. The virtual components used in
this control scheme are again a virtual spring and damper and a virtual force source. These virtual
components produce the generalized virtual force which would need to be applied to the center of
mass of the body in order to achieve the desired variables.

Figure 2-5: Block diagram of the Balance Controller used by the robotic boxer to maintain stability.
Virtual components of springs and dampers along with forces sources are used to produce a virtual
force on the center of mass given the desired position and force of the center of mass. A force
distribution step is added to this controller since the two legs are parallel mechanisms. The virtual
force on the body is partitioned into two generalized force contributions from each leg. Each of these
forces is then translated into the ankle, knee, and hip joint torques through virtual model math.

Since there are multiple bases in this case, a force distribution operation must be added before
the virtual model math can be used to map the virtual force to the actual joint torques. The force
distribution operation partitions the generalized virtual force acting on the body into generalized
virtual force components. These force components are the contribution of each serial link to the
virtual force at the center of mass. Once the generalized force at the body is broken down into the
virtual force components of each leg, each virtual force component is mapped to the appropriate
joint torques for a given leg using the virtual model math. The virtual model math for each leg is
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derived using the kinematics and Jacobian from the foot to the center of the body for each serial
link.

The development of these two controllers allows for the complete control of a robotic boxer
throwing a jab while standing on two feet. Using these two controllers, the design of a higher level
control algorithm is simpli�ed since the inputs to the virtual model controllers are intuitive forces
and positions. The use of Virtual Model Control is even more powerful when parallel linkages are
involved. Often the distribution between parallel linkages is complex when the serial linkages are
described in joint space. However, since Virtual Model Control abstracts away the complexity of
the joint space and allows behavior to be described using virtual components, a force distribution
function can be incorporated into the virtual model controller which partitions this force in to virtual
force components from each serial linkage.
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Chapter 3

Hexapod Robot Implementation

A hexapod robot was developed in order to test the usefulness of Virtual Model Control. Previous
work involving Virtual Model Control includes its implementation on a foot simulation as well as on a
planar biped simulation and robot by Pratt[5]. These examples, however, were only two dimensional
(2D) implementations. A hexapod was chosen because it is a relatively simple three dimensional
(3D) example. Although the hexapod is among one of the simplest 3D examples, its control is not
a trivial task. Because of the large number of actuated joints, a control scheme at the joint level
would be very complex. Virtual model controllers are used to abstract away this complexity and
simplify the control of the hexapod which enables it to walk.

Figure 3-1: Drawing of the general structure of a hexapod standing on three of its six legs. The
other three legs not shown for clarity. The controllers developed for this robot assumed that the
robot would walk using a tripod gait.

The hexapod robot implements a tripod gait in which it is alternatively supported by a tripod
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composed of three of its six legs. Using three legs for support allows the hexapod to be statically
stable. The hexapod has 18 actuated joints with two degrees of freedom in the hip and one degree
of freedom in the knee for each of the legs. The general structure of the hexapod is shown in 3-1.

In order to induce the robot to walk, two virtual model controllers were developed. One controller
was used to control the motion of the body while the support tripod was on the ground. The other
controller was used to control the motion of the legs in the swing tripod. The next two section give
a brief overview of each of the controllers.

3.1 Swing Tripod Controller

This controller is the simpler of the two because the legs are handled as individual serial linkages.
The Swing Tripod Controller inputs the desired foot positions for each leg of the swing tripod and
outputs the actual joint torques for each joint of the swing tripod. The Swing Tripod Controller can
actually be broken down into three smaller controller as seen in Figure 3-2.

Figure 3-2: Block Diagram of Swing Tripod Controller. This controller is a conglomeration of three
smaller virtual model controller. Each of the smaller controllers input the desired position of a given
leg and return the joint torques for that leg.

The basic structure of this control scheme can be revealed by looking at one of the swing legs
since the structure for each of the smaller controllers is similar. The foot or point at the end of the
leg is considered the end e�ector. The base is the center of the body. In order to move the leg to a
desired position a generalized virtual component is attached from the end of the foot to the desired
position. Using virtual springs and dampers, a generalized virtual force at the foot is produced.
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Using virtual model math derived from the body to the foot, the generalized virtual force is mapped
to the actual joint torques of the leg needed to move the leg to its desired position.

Although the task of changing the desired positions of each foot into joint torques is indepen-
dent between the legs, the Swing Tripod Controller lumps these smaller controllers into one larger
controller. Since the motion of the legs are coordinated in the swing tripod, it is sensible to lump
the smaller controllers of each leg into one controller which moves all three legs of the tripod.

3.2 Stance Tripod Controller

Figure 3-3: Block Diagram of Stance Controller. This virtual model controller in takes the desired
position, velocity, and force of the body and produces the joint torques for all three legs of the tripod.
Inside the Stance Controller is a force distribution operation which partitions the generalized virtual
force on the body in to the virtual force contribution from each leg.

The Stance Tripod Controller is used when all three legs of the tripod are on the ground. During
stance the robot advances in a desired manner by moving its body. The motion of the body is
dependent on the coordination of the three legs and the joint torques of these three legs. The
control and coordination of this task can be rather complicated in joint space due to the linkages
between the feet and body. The Stance Tripod Controller induces the motion of the robot body
using an intuitive set of inputs, position, velocity, and force. The structure of the Stance Tripod
Controller is similar to the Swing Tripod Controller. However, there is an added step due to the
fact that parallel linkages contribute to the motion of the body. In this case, the body is considered
the end e�ector. Since each leg is a serial linkage which contributes to the motion of the body, each
of the three feet is a base.

In order to move the body given desired variables, virtual components need to be attached from
the center of the body to a given desired position. The desired motion of the body was achieved
using virtual springs and dampers and force sources. These virtual components produced a virtual
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force on the body. Before virtual model math can be used to map this generalized virtual force to
the joint torques, an added step of force partition is required. The generalized virtual force on the
body must be broken up into virtual force components contributed by each leg. This operation is
done using an extension of Gardner's Partitioned Force Set [2, 3]. Once the generalized virtual force
on the body is partitioned among the other legs, virtual model math is used to map each of the
virtual forces to the joint torques of the appropriate leg.

3.3 Overall Control Scheme

Once the controllers for the hexapod were developed, a higher level controller is used above them
to switch between the appropriate controllers and set the desired inputs of each in order to induce
walking. A simple walking control algorithm was developed which inputs three variables of velocity
magnitude, velocity angle, and turning rate of the body and outputs the desired motion of the body
and the swing legs. The simplicity of the design of the walking algorithm is contributed to the
development of the Swing and Stance Tripod Controllers which abstract away the complexity of the
control of each joint, leaving only the motion of the feet and body to be commanded.

Figure 3-4: Block Diagramof Overall Control Scheme. This schematic demonstrates how the walking
control algorithm coordinates the Swing and Stance Tripod Controllers by modulating the inputs
into these controllers based on the user inputs of velocity magnitude, velocity direction, and turning
rate of the body.

The above �gure shows the overall design of the control scheme used to make the hexapod walk.
The development of each of the block functions is described in detail in the following sections.
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Chapter 4

Hexapod Virtual Model Math

In order to implement the virtual model controllers described in the previous section the virtual
model math must be derived. In this chapter, the mathematics needed for the Swing and Stance
Tripod Controllers is presented. The method in which the following equations were developed is
detailed in Appendix A. This appendix combines work from [5] and [4]. This chapter will only
briey describe how virtual model math is derived for the hexapod.

Figure 4-1: Diagram of a single leg of the hexapod example. There is one actuated degree of freedom
at the knee and two at the hip. The knee angle is �k and the hip angles are �h1 and �h2. The leg
links are both of length L. The location of the leg with respect to frame fBg is (Px, Py, 0).

Figure 4-1 shows a close up view of one of the legs. There is one actuated degree of freedom
at the knee and two at the hip. The knee angle is �k and the hip angles are �h1 and �h2. The leg
links are both of length L. The location of the leg with respect to frame fBg is (Px, Py, 0). fAgis a
reference frame at the foot and fBg is at the center of the body. These speci�cations are needed in
order to derive the virtual model math for the robot. As stated previously, virtual model math is a
function which maps the generalized virtual force on a part of the robot to the joint torques needed
to move that part.
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4.1 Swing Tripod Math

In the Swing Tripod Controller, we wish to map the generalized virtual forces on the feet of the
swing tripod to the joint torques of the legs. Since the legs are independent serial linkages, the
virtual model math for each linkage can be derived separately. Since the body is the base and the
foot is the end e�ector, the virtual model math must be developed from the body to the foot. The
generalized virtual force B(BAFi) at leg i is generated from frame fBg to fAg and is with respect to
fBg. The mathematics derived here is generalized so that it can be used for any leg i of the swing
tripod.

The generalized force B(BAFi) has three components fxi , fyi , fzi . This force is mapped to the
joint torques �ki , �h1i , �h2i of leg i using the Jacobian transpose JT from fBg to fAig. The virtual
force to joint torque relationship is given by," �ki

�h1i

�h2i

#
= J

T

2
4 fxi

fyi

fzi

3
5 (4:1)

The Jacobian transpose is found by extracting elements from the Jacobian from fBg to fAig.
The Jacobian transpose B(BAi

J) is determined via an iterative computation of the joint velocity to
cartesian velocity mapping, as described in Craig[1],
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where cx = cos(�x) and sx = sin(�x).

4.2 Stance Tripod Math

The virtual model math in the Stance Tripod Controller maps the virtual force on the body to the
joint torques of the three supporting legs. In order to map the virtual force on the body to the
joint torques of each leg, an added step of force distribution must be performed. Because the three
legs are parallel linkages working together to move the body, the generalized force on the body is
partitioned into generalized force components. Each force component is a generalized virtual force
contribution from a given leg to the body. This generalized virtual force for a given leg can then be
mapped to the joint torques of that leg.

4.2.1 Virtual Force to Joint Torque Mapping

The generalized force on the body from the three legs of the stance tripod is B(A
�

B F ). A� denotes
the multiple bases of the feet from which the force on the body at fBg are applied. Since we are
concerned about the relative rotation between the feet and the body, the generalized force B(A

�

B F )
has six components which are the forces and torques on the body in the x, y, and z directions.

B
(
A�

B F ) =

2
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ny

nz

3
77775 (4:3)

After partitioning this force, we have three generalized forces B(A
i

B Fi) which also have 6 com-
ponents which are the force and torque contributions from leg i to the body in the x, y, and z
directions.
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The virtual force B(A
i

B Fi) from the ith leg to the body is mapped to the joint torques of the ith
leg using the relationship,
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JT is the Jacobian transpose from the foot to the body. The Jacobian from the foot to the body
is found using methods detailed in Craig[1]. The Jacobian from the foot to the body is

J =

2
6666664
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where cx = cos(�x) and sx = sin(�x).

4.2.2 Force Distribution Method

In order to partition the generalized force B(A
�

B F ) into three generalized force contributions B(A
i

B Fi)
from each leg, Pratt's Force Distribution Method [4, 5] was employed. This method is an extension
of Gardner's Force Distribution Method [2, 3] and is detailed in Appendix A.

Since no moments can be applied at the point feet, each leg has three natural constraints.
Following the method in Section A.5.1 we have

n = 6; p = 3; l = 3; d = 3; r = 3 (4:7)

To reduce the size of the matrix to be inverted, the individual components of the virtual forces
are partitioned into the Minimum Force Set (6 elements), Redundant Force Set (3 elements), and
Constrained Force Set (9 elements). For 3 design constraints, the horizontal forces of legs 2 and 3
are matched and the lateral force of leg 1 is matched with the sum of the lateral forces of legs 2 and
3,

fx3 = fx2; fy3 = fy2; fy1 = 2fy2 (4:8)

These design constraints are written in the terms of Equation A.16 if the virtual forces are
partitioned as follows,

MFS = ffx1; fz1; fx2; fy2; fz2; fz3g

RFS = ffx3; fy3; fy1g

CFS = fnx1 ; ny1; nz1; nx2; ny2 ; nz2; nx3; ny3; nz3g

The terms of the constraint equation (A.11) are now,
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The elements of the natural constraints, J ia and J ib are extracted from the Jacobian Transpose.
The Minimum and Redundant Force Sets are acted on by J ia where
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The �rst six rows of the constraint matrix state that the sum of the virtual force and moment
vectors for each of the individual legs equals the total virtual force and moment vector acting on the
body at frame fBg. The next three sets of three rows de�ne the natural constraints of zero torque
at each foot. The last three rows are the design constraints chosen in Equation 4.8.

Note that the angles the foot makes with frame fAig do not appear in any of the previous
equations. In order to derive these equations, X-Y-Z Euler angles were used at the feet. The foot
angles did not appear in the torque-force relationship (Equation 4.5). However, they did appear

in the natural constraints, J ia and J ib. The natural constraint equations de�ne a 3 dimensional
subspace of the 6 dimensional virtual force space. This subspace is the space in which \admissible"
virtual forces can be applied. It was veri�ed that this subspace is the same for any foot angles.
Therefore, the foot angles were arbitrarily set to zero.

An intuitive explanation for why the foot angles do not matter is that virtual forces are being
applied from frame fAig to frame fBg with respect to frame fBg. How we de�ne frame fAig therefore
doesn't matter, as long as we can specify the foot angles in some way. Therefore, it is arbitrary what
the foot angles are and we can set them to zero in order to eliminate them from our equations.

The submatrix, J ib, happens to be orthonormal so that its inverse is simply its transpose,

(J ib)�1 = (J ib)T (4:11)

The Constrained Force Set is eliminated to get the following elements in Equation A.14,

Si = Dia; ul = 0; vr = 0 (4:12)
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where,
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To solve for the MinimumForce Set, an inversion of the 6�6 matrix in Equation 4.13 is needed.
The design constraints (Equation 4.8) are then used to solve for the Redundant Force Set in terms
of the Minimum Force Set. Equation A.12 is used to solve for the Constrained Force Set in terms
of the Minimum and Redundant Force Sets and �nally Equation 4.5 is used to compute the joint
torques.
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Chapter 5

Hexapod Walking Robot

Figure 5-1: Graphical rendering of the hexapod robot simulation. The hexapod was simulated using
software which emulates physically based dynamics.

A hexapod robot was built in simulation in order to implement Virtual Model Control. The
mathematics described in the previous section was used in order to develop the virtual model con-
trollers. The virtual model controllers were completed by implementing virtual components in the
simulation. Once the development of the virtual model controllers was complete a high level walking
algorithm was developed in order to regulate the virtual model controllers and induce walking.

The goal of the simulation was to achieve stable walking in a variety of di�erent patterns. Stable
walking was de�ned as the successful periodic cycle from one tripod to the other in order to move
the hexapod. The only input to the hexapod is the speed and direction it should travel as well as
the turning rate about the z axis.
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5.1 Hexapod Simulation

A six-legged robot was created using simulation software which emulates physically based dynamics.
The simulated hexapod has a total mass of approximately 3.8 kg. The body of the hexapod is a
teardrop ellipsoid with a total length of 45.0 cm and width of 8.0 cm. Each leg is made of two links
and has a total mass of 0.07 kg. Each leg link is 10.0 cm in length. At the hip of each leg, there
is a gimble joint in the x and z directions. At the knee, there is a pin joint in the x direction. The
body reference frame is set up so that the x axis points in a direction from the center of mass to the
head, the y axis points to the robot's left side, and the z axis points to the sky.

The simulator was able to measure the position and velocity of the hexapod's body. The simulator
also outputted the angle and angular velocity of all the joint angles. The position of each foot and
the information stating whether it was contacting the ground was also provided by the simulator.
These variables are mentioned because they were used in the control of the hexapod. If the hexapod
were to actually be built, appropriate sensor technology would have to be employed in order to
obtain this information. Such sensors might include gyroscopes, accelerators, and foot switches.

5.2 Virtual Components

As discussed previously, two virtual model controllers were developed in order to simplify the control
of the hexapod. The next two sections describe the virtual components used in the simulation in
order to complete the virtual model controllers. The various spring, damper, and force constants
presented in the next two sections were chosen using design experience and insight. These were also
found through trial and error in order to generate the desired behavior of the walking hexapod.

5.2.1 Stance Controller Virtual Components

Once the robot was \built" in simulation, virtual components were implemented in order to control
the motion of the body. The virtual components were chosen based on the desired motion of the
body. The virtual components input the desired motion of the body and produce the generalized
virtual force on the body. The virtual components serve as simple linear controllers which regulate
the motion of the body.

The following equations demonstrate the simple linear virtual components which were used to
regulate the motion of the body in stance:

Fx = bx( _xd � _xact)

Fy = by( _yd � _yact)

Fz = kz(zd � zact)� bz _zact + fweight

Tx = kroll(rolld � rollact) � broll _rollact

Ty = kpitch(pitchd � pitchact)� bpitch _pitchact

Tz = byaw( _yawd � _yawact) (5.1)

On the left are the six components of the generalized force vector on the body. The expressions
to the right represent the relationship between the desired motion of the body, the state of the
robot, and the virtual components. The �rst three equations are the virtual forces in the x, y, and
z directions and the last three are the virtual torques in roll, pitch, and yaw directions.

Since the desired motion of the robot in the x and y directions is dictated by desired velocities,
the x and y virtual forces are emulated using virtual dampers (velocity control). The virtual force
in the x direction, Fx, is produced by taking the di�erence between the desired velocity in the x
direction, _xd, and the actual velocity in the x direction, _xact, and multiplying it by a damping
coe�cient, bx. The virtual force in the y direction Fy is produced in the same fashion.

During walking the height of the body should remain o� the ground at a given height. In order
to achieve this, the virtual force in the z direction is comprised of a number of virtual components.
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The �rst is a virtual spring and damper which is used to set the height of the body. In this case,
the desired z position of the hexapod was set to 15.0 cm. A virtual force, fweight, was also added in
the z direction in order to combat the weight of the robot. This virtual force component was set to
32.0 N, a value slightly below the weight of the hexapod.

During walking minimal motion in the roll and pitch direction is desired. The position of the
body in these directions should be stable at zero during walking. In order to achieve this, the virtual
torques in the roll and pitch directions are produced using virtual springs and dampers. These PD
controllers are used to maintain a desired position in the roll and pitch directions.

In order to changed the facing of the robot, an angular velocity about the z axis is speci�ed.
The virtual torque, �x is produced using a virtual damper which takes the di�erence between the
desired yaw angular velocity, _yawd, and the actual yaw angular velocity, _yawd, and multiplies it by
a damping coe�cient, byaw.

5.2.2 Swing Controller Virtual Components

The virtual components used to move the legs in the swing tripod produce a virtual force in each leg
given the desired positions of the legs. Because it is desired to command the position of the foot of
each leg during swing, virtual springs and dampers are implemented. Again simple linear controllers
are used to regulate the motion of the legs.

The following equations implement the virtual spring and damper components which were used
to control the motion of the legs during swing:

Fxi = kleg(xdi � xiact)� bleg( _xiact)

Fyi = kleg(ydi � yiact) � bleg( _yiact)

Fzi = kleg(zdi � ziact)� bleg( _ziact ) (5.2)

On the left side are the three components of the generalized force vector on any leg i. The
expression of the right side illustrate the relationship between the desired position of the of leg i, the
actual state of leg i, and the virtual components. These three equations compute the virtual forces
on leg i in the x, y, and z directions. There are only three virtual force components in the generalized
force on the foot because only the position of the foot is important and the relative rotation of the
foot with respect to the body can be disregarded. The virtual force on a foot in the x direction is
given by the di�erence between the desired, xid , and the actual, xiact , position multiplied by a gain
coe�cient, kleg , minus the product of a damping coe�cient, bleg , and the actual velocity, _xact, of
the foot in the x direction. The virtual forces in the y and z directions on the foot are produced in
the same manner. Given the desired x, y, and z positions of each of the feet in the swing tripod, the
virtual components in the swing controller produce a generalized virtual force acting on each foot
from the body.

5.3 Walking Control Algorithm

Having developed the virtual model math and the virtual model components for the swing and
stance tripods, virtual controllers could be implemented in order to move tripods A and B. Tripod
A consists of the legs shown in Figure 3-1 and tripod B consists of the remaining legs. As stated
previously these controllers are able to direct the motion of the body in stance and the legs in
swing given a set of desired velocities and positions. In order to achieve stable walking, the proper
coordination of tripods A and B is needed. A walking control algorithm was developed in order to
switch the controllers applied to tripods A and B and to give these controllers the appropriate input
based on the three user inputs. Figure 5-3 depicts the walking control algorithm as a state machine.

In order to coordinate the motion of the three legs of the swing tripod, a virtual pod leg was
developed. The virtual pod leg is located at the centroid of the triangle which is created when lines
are drawn to connect the three feet of the tripod. The virtual pod is used to determine the desired
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positions for the feet of each of the three legs. Once the desired position of the the virtual pod
foot is calculated, the desired positions of the three individual feet can be calculated since they are
always a given o�set away from the virtual pod foot. The virtual pod is also used to determine the
relative distance of each tripod to the center of mass of the body. This information is used to trigger
transitions out of some states in the walking algorithm.

Figure 5-2: Illustration of the virtual pod leg used to position the swing legs and to determine the
relative distance between the tripods and the center of mass. The virtual pod is located at the
centroid of the triangle drawn by connecting the legs of the tripod. The location of the three legs
in a tripod are always a �xed o�set from that tripod's virtual pod leg.

In Double Support, tripods A and B are both controlled using the Stance Controller. In this
state, the walking control algorithm calculates the desired x and y velocities of the body based on
the user inputs of robot speed and direction of travel. The virtual force on the body is divided
between tripods A and B. The transition from the Double Support state to single support on either
leg is dependent on the relative distance between the center of mass of the body and the virtual pod
foot of each tripod. As the body is moving on its given trajectory, the distance between the center
of mass of the body and the projection of the virtual pod position onto that trajectory is calculated
for both virtual pods A and B. When one of these distances reaches a threshold value, the virtual

pod which is further away is lifted up.
For example, if the desired motion of the robot is away from the virtual pod leg B, the distance

between the virtual pod leg B and the center of mass of the body would reach the lift threshold
before the virtual pod leg A. The robot would therefore lift tripod B. The next actions of the robot
would follow the right lobe of the walking state machine in Figure 5-3

After this transition, tripod A continues to support the body while tripod B is lifted o� the
ground. In the next three states, the supporting tripod A continues to move the body on the given
trajectory while the swing tripod B moves through the air. Throughout these three states tripod
A is controlled by the Stance Controller and tripod B is controlled by the Swing Controller. The
walking control algorithm inputs desired x and y velocities, and turning rate to the stance controller
based on the user inputs Vmag , Vang, and 
.

The desired motion of the swing tripod B is dictated by the motion of the virtual pod leg in the
next three states. The motion of the virtual pod leg is set in each state and the walking algorithm
calculates the desired x, y, and z positions of the actual legs in the swing tripod. In the B Lift state,
the virtual pod is positioned to a given height. Once all the legs of tripod B are o� the ground, the
walking state machine transitions into the next state, Swing B. In this state, the virtual pod leg of
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the swing tripod B moves along the given walking trajectory while mirroring the virtual pod leg of
the support tripod A. When the virtual pod foot of the swing tripod B is a speci�ed down threshold
distance away from the body's center of mass, the walking algorithm transitions in to the B Down
state.

Figure 5-3: Walking algorithm used to control the robot. Each bubble is a state in which the virtual
controllers were used to accomplish the task written in the bubble. The arrows are the transitions

between each of these states. The trigger event for each transition is listed beside the arrows. In
stable walking the robot continuously cycles from double support to single support while switch
tripods A and B.

In the B Down state, the virtual pod foot of the swing tripod B is positioned on the ground.

The support tripod A still continues to move the body. Once ground contact has been made by
all the foot switches in the swing tripod B, the state machine returns to Double Support. Once in
Double Support, the force required to move the body is slowly transferred from the support tripod
to the swing tripod until each are sharing an equal load. The left lobe of the walking state machine
mirrors the right lobe with the roles of tripods A and B switched. In stable walking, the hexapod
periodically cycles through this state machine by altering between the right and left lobes.
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Chapter 6

Experimental Results

Using virtual model controllers allowed a straightforward implementation of a relatively simple
walking control algorithm. This setup facilitated the use of a minimal set of high level user inputs
which commanded the robot to successfully walk di�erent paths. The hexapod is able to trace out
complex walking paths by specifying the magnitude and angle of the body velocity, Vmag and Vang,
and the turn rate of the body, 
. Examples of various walking patterns given di�erent user inputs
is shown in Figure 6-1.

For straight line walking, the hexapod is able to walk at speeds up to 0.8 m/s. Figure 6-2 shows
experimental data from the hexapod while walking in a straight line. In this case the only user
input is a body speed and the other two inputs of velocity angle and yaw velocity are zero. The
data show that the robot behaves in a desired fashion. From its starting position, the robot walks
in a straight line. The speed of the robot increases in the same fashion as the user inputs velocity
steps of 0.2 m/s, 0.4 m/s, and 0.5 m/s. The three graphs on the left of speed, angle, and turn rate
show that the robot moves in a manner which is desired by the user with minimal uctuations. The
right three graphs show that the robot behaves appropriately in the z, roll, and pitch directions as
well. The �nal graph in Figure 6-2 shows that the robot achieves stable walking by periodically
cycling through its walk states. The minor uctuations in the motion of the hexapod come from
the discontinuities of each step. As the robot picks up and puts down its legs, slight disturbances in
the walking pattern are attributed to legs colliding with the ground, shifts in center of mass during
swing, and inertial forces during motion.

Having successfully achieved stable walking in a straight line, other more complicated patterns
were developed in simulation. Figure 6-3 shows data from the hexapod walking in a circle. In this
simulation, the robot traverses a circle while always facing the center of the circle. In order to
achieve this motion, the user input Vmag is set to 0.2m/s, Vang is 1.57 radians, and 
 is 0.3 radians.
As the robot walks around the circle, it tracks the center of the circle so that it is always facing the

center. In the data only a partial arc of the circle is shown for clarity. In order to walk the given
path, the hexapod only stays in double support, state 0, for a split second. Although this is unusual,
it is still able to maintain a stable walking pattern.

It is interesting to note that when the robot begins to walk in this simulation its steps are
irregular until about 2 seconds. At this time, the robot recovers from its missed steps and continues
on its path in a stable walking manner. In simulation when the robot is operating perfectly, it will
continue to operate perfectly until a disturbance is encountered. In this case, the robot started in a
non-ideal state from its desired path of motion. Although the robot stumbles a bit at the beginning
of the simulation, it is able to successfully recover into a stable walking pattern.

6.1 Pendulum Walking

Virtual Model Control was also used to balance a pendulum on the back of the hexapod while
walking. A pendulum of length 30 cm and mass 0.18 kg was attached to the hexapod via a pin joint
which rotates in the y axis as seen in Figure 6-4. A simple LQR controller was implemented along
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with the virtual components in order to regulate the movement of the hexapod in the x direction
and to stablize the pendulum. The equation which relates the virtual force in the x direction, Fx,
to the desired position of the pendulum, the desired velocity of the bug, the state of the pendulum
and the bug, and the virtual components, is

Fx = kx(xd � xact) + bx( _xd � _x) + k1pend(�xpend) + k2pend � (� _xpend) (6:1)

where

xpend = Lpendsin(xpend + pitch)

_xpend = Lpendcos(xpend + pitch)( _xpend + _pitch)

The preliminary gains of these components were found using a mathematical computation soft-
ware, Matlab. These gains were then changed through an iterative process of trial and error in order
to achieve desired performance.

Figure 6-5 shows data from a simulation in which the hexapod walked in a straight line. The
input to the robot was Vmag set to 0.2 m/s with Vang and 
 set to zero. The pendulum and hexapod
exhibit the typical response of a non-minimum phase system. The robot begins by traveling in a
direction opposite to the desired velocity in order to have the pendulum fall in the direction of the
desired velocity. The robot then changes its velocity direction and takes approximately 1 second to
ramp to the 0.4 m/s. After an initial peak in pendulum angle at 0.055 radians, the angle reduces to
around 0.01 radians. The �nal plot of the walking state shows that the bug is able to balance the
pendulum without disrupting its walking cycle.

Data from two other interesting simulations of pendulum walking are also included. Figure 6-6
shows the data from a simulation in which the robot walked in a diamond pattern. The user inputs
of speed and turn rate are constant at 0.2 m/s and 0.0 radians respectively. The direction of travel is
changed every three seconds in order to achieve the diamond pattern. From the speed and pendulum
angle graphs it is observed that there is a discontinuity at six seconds. This discontinuity is due to
the fact that the robot's travel in the x direction switches from being negative to positive.

In the �nal simulation, Figure 6-7, the robot walks a complex pattern consisting of a loop and a
sinusoidal path. The robot is directed to walk in this pattern using the turning rate input. At 0.5
seconds, 
, changes to 0.8 radians and remains constant until 14.0 seconds. This produces the circle
in the robot's path. The wavy pattern is created by varying the input 
 in a sinusoidal fashion. At
about 16.0 seconds the frequency of the input is doubled. The result of the sinusoidal input is a
couple large squiggles and a few smaller squiggles following.

Animations of these simulations can be found at:
http://www.ai.mit.edu/projects/leglab/simulations/hexapod/hexapod.html
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Figure 6-1: Diagrams of di�erent walk paths of the robot as high-level user inputs are varied. Vmag

is the speed of travel, Vang is the direction of travel, and 
 is the rate of turning of the robot's body.
The robot is illustrated as a small rectangle with a circle at it head. The dashed lines represent the
path which the robot was able to walk given the three user inputs listed within its box.
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Figure 6-2: Graphs from the robot walking in straight line. The path the robot walks is illustrated
in the �rst x-y plot. The three smaller graphs on the left show the desired user inputs (dashed lines)
and the actual robot performance(solid lines). In this example, Vmag changes in steps from 0.2 to
0.4 to 0.5; Vang = 0:0 and 
 = 0:0. The desired and actual values of z, roll, and pitch are graphed on
the right. The walk state graph on the bottom shows stable, periodic cycling through the walking
algorithm.
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Figure 6-3: Graphs from the robot walking in a circle while always facing the center. This was
accomplished by setting Vmag = 0:2, Vang = �=2, and 
 = 0:3. It is interesting to note that although
the robot begins with a few stubbling steps, it is able to recover and exhibit stable walking.
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Figure 6-4: Picture of the hexapod robot with a pendulum on its back. The pendulum was con-
nected to the hexapod in order to demonstrate the ease of controlling the robot's body using virtual

model controllers. The robot was able to walk in a variety of di�erent patterns while balancing the
pendulum.
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Figure 6-5: Graphs from the robot walking in a straight line with a pendulum on its back. The
user inputs are Vmag = 0:2, Vang = 0:0, and 
 = 0:0. A graph is added in the upper right corner
which exhibits the pendulum angle. The response exhibited by the robot and pendulum is typical
of a non-minimum phase system.

41



−1 −0.5 0

−0.5

0

0.5

x postion(m)

y 
po

st
io

n(
m

)

0 2 4 6 8 10
−0.05

0

0.05

pe
nd

ul
um

 a
ng

le
(r

ad
)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

sp
ee

d(
m

/s
)

0 2 4 6 8 10
−4

−2

0

2

4

sp
ee

d 
di

re
ct

io
n(

ra
d)

0 2 4 6 8 10
−0.05

0

0.05

tu
rn

in
g 

ra
te

(r
ad

/s
)

time(sec)

0 2 4 6 8 10
0.11

0.12

0.13

z 
po

si
tio

n(
m

)

0 2 4 6 8 10
−0.05

0

0.05

ro
ll 

an
gl

e(
ra

d)

0 5 10 15
−0.06

−0.04

−0.02

0

0.02

pi
tc

h 
an

gl
e(

ra
d)

time(sec)

0 2 4 6 8 10 12
0

20

40

60

w
al

k 
st

at
e

time(sec)

Figure 6-6: Graphs from the robot walking in a diamond pattern with a pendulum on its back. The
hexapod traces out the diamond by varying its speed direction, Vang. The turning rate remains
constant at 0.0 and Vmag is also constant at approximately 0.25.
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Figure 6-7: Graphs from the robot walking in a complex pattern with a pendulum on its back. In
�rst four seconds, the speed of the robot ramps up to 0.4. After this the circular pattern traced out
by the hexapod was dictated by the turning rate, 
. From 5.0 to 14.0 seconds, 
 is constant at 0.7,
and the robot traces a circle. After 14 seconds, the hexapod walks in a wave pattern by varying

 in a sinusoidal fashion. At 16 second the frequency of the input is doubled. Note how well the
actual turning rate mimics the desired rate.
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Chapter 7

Conclusion

Through the implementation of virtual model controllers and a simple walking state machine, stable
walking in a simulated hexapod was achieved. The simplicity of the control allowed the robot to
maneuver in a variety of di�erent patterns given only three user inputs. The robot was also able to
successfully maneuver in these complex patterns while balancing a pendulum on its back.

These results suggest that Virtual Model Control is a powerful tool in robot design. In this case,
Virtual Model Control was used to abstract the control of a three dimensional, multi-linked, parallel
mechanism to three user inputs. Virtual Model Control not only produces successful results but
the design and implementation of virtual model controller is relatively straightforward. Once the
design of the robot is set, the virtual model math for each controller need only be derived once.
Also because of the simplicity and modularity of virtual model controllers, higher level behaviors
and control schemes can be implemented on top of them. Most importantly, the use of virtual
components makes Virtual Model Control very intuitive. By using virtual components which are
familiar to the designer, the behavior of the robot can be more easily directed.

The next step in this research will be to implement Virtual Model Control on an actual physical
robot and have the robot conquer rough terrain. Although the success of the simulation can not
guarantee that an actual robot will walk using Virtual Model Control, it suggests that Virtual Model
Control might be suitable for use in an actual 3D walking hexapod robot.
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Appendix A

Virtual Model Math

Implementation

Most of this appendix is copied from a section in the Pratt, Torres paper [4].
The implementationof virtual models is straightforward. There are four major steps: de�nition of

the virtual model reference frames, computation of the forward kinematics, calculation of a Jacobian
matrix, and computation of the joint torques.

For parallel virtual models, one must divide the generalized force among the individual serial
paths. This requires solving a system of equations (i.e. inverting a matrix). We describe an exten-
sion of Gardner's Partitioned Force Set Control Technique method which minimizes the necessary
computational requirements. All equation derivation can be performed o�-line.

A.1 De�nition of the Virtual Model Frames

Each virtual model requires three coordinate frames. These are the action frame fBg, the reaction
frame fAg, and the reference frame fOg (Figure A-1). The action frame de�nes the virtual model
connection upon which the generalized forces act. The reaction frame de�nes the second attachment
point of the virtual model. The reference frame is the coordinate system in which all displacements,
forces, etc are expressed.

In most treatments of similar control methods, the reaction frame is assumed to be �xed to
ground and usually is not even mentioned. However, one must remember Newton's Third Law.
One cannot simply describe a force acting at a point. One must describe forces acting between two

points. Similarly, in the virtual model context, one cannot simply de�ne a generalized force acting

VA

O
B

A

Figure A-1: Virtual Model Reference Frames. fBg is the action frame. fAg is the reaction frame.
fOg is the reference frame. VA represents the virtual model.
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on a frame but must de�ne a generalized force acting between two frames.
The action, reaction, and reference frames do not need to be inertial, nor cartesian, nor be

directly attached to parts of the physical robot. All three frames simply need to be well de�ned. In
most cases, however, all three frames will be cartesian; they will be connected to logical points on
the robot such as joints, links, or end e�ectors; and the reference frame, fOg, will either be inertial
or coincide with fAg or fBg.

In our use of the reference frame, fOg, we are not concerned about its location, and in fact it
need not be speci�ed. All that is needed is the relative rotation between the reference frame and
the action and reaction frames.

Choice of the virtual model frames is a major part of de�ning a virtual model and must be
done carefully if the desired results are to be obtained. For example, both the action and reaction
frames might be de�ned so that there cannot be a relative rotation between them in any orientation
of the robot. This is perfectly valid but it then makes it impossible to produce a relative torque
between the two. The best tools for determining how to attach the virtual model's frames is physical
intuition, insight, and experience.

A.2 Derivation of the Forward Kinematics

Computing the forward kinematic map, AB
~X, is well documented [1]. For any serial manipulator with

revolute and prismatic joints, AB
~X will be a closed form function of the joint angles and prismatic

displacements, ~�, lying between frames fAg and fBg.
To express the kinematics between frames fAg and fBg with reference to frame fOg, we use the

rotation matrix between fOg and fAg

O(AB
~X) = O

AR
A
B
~X (A:1)

Note that we ignore the displacement between fOg and fAg. This is because we are concerned with
the relative kinematics between the reaction and action frames and not the absolute location of any
of the frames, with reference to fOg or World Coordinates.

All virtual models do not necessarily need to provide actuation. They can be used with the
forward kinematics alone and act simply as virtual sensors.

A.3 Derivation of the Jacobian Matrix

Let the Jacobian Matrix for a virtual model be de�ned as:

A
BJ =

@

@�
A
B
~X (A:2)

The Jacobian can be used for several mappings. It can be used to calculate generalized velocities by

A
B
~_X = A

BJ
~_� (A:3)

which holds by de�nition. To express velocities with respect to the reference frame, we again use
the rotation matrix,

O(AB
~_X) = O

AR
A
B
~_X (A:4)

The Jacobian is also used to transform generalized forces to joint torques as discussed next.
There are several techniques to compute the Jacobian for the 3D case. One method described in

[1] is to recursively compute the joint to cartesian velocity relationship (Equation A.3) and extract
the Jacobian Matrix.
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A.4 Computation of the Joint Torques

To compute the joint torques which will successfully emulate the virtual model, we use the following
equation

~� = A
BJ

T A
B
~F (A:5)

where ~� is the vector of joint torques (or forces for prismatic joints) and A
B
~F is the generalized force

vector acting on action frame fBg from reaction frame fAg de�ned with respect to frame fAg. The
generalized force vector will typically consist of a force and moment vector.

Equation A.5 can be derived starting from the energy balance ~�T �~� = ~FT� ~X [1]. It requires
that the generalized forces which act on action frame fBg be speci�ed in terms of reaction frame
fAg. If the forces are expressed in reference frame fOg, we must use the rotation matrix from fAg
to fOg to express them in fAg,

A
B
~F = A

OR
O(AB

~F ) (A:6)

We can combine Equations A.5 and A.6 to get

~� = A
BJ

T A
OR

O(AB
~F ) = O(ABJ)

T O(AB
~F ) (A:7)

where O(ABJ)
T = A

BJ
T A

OR.
One point of note is that \admissible" generalized forces lie in the row space of O(ABJ)

T . By
admissible, we mean forces which can be realized using the available joint forces. For example, if no
relative motion can be realized along a certain direction, then no matter how large a force is produced
along that direction by the virtual models, no e�ect will result on the robot (assuming rigid links).
Similarly, any generalized forces which lie in the null space of O(ABJ)

T will produce no torque at
the joints and hence have no e�ect on the robot. Whether or not such an inadmissible generalized
force should be allowed probably depends on the implementation. In any case, an inadmissible force
should be detectable. An easy test is to see if it lies in the row space of the Jacobian transpose. When
implementing parallel virtual models, as described below, it is important that the inadmissible force
constraints be known for each of the serial paths of the virtual model so that the desired generalized
force can be accurately divided among the individual serial paths.

A.5 Parallel Mechanisms and Multi-Frame Virtual Models

With a serial link structure all the necessary equations are computationally inexpensive. With a

parallel structure a matrix inversion is necessary in solving the force distribution problem.
We start by de�ning one action frame fBg, one reference frame fOg and multiple reaction frames

fAig as in Figure A-2. Frame fA�g is a construct used to represent all of the frames fAig and can
be viewed as the conglomerate reaction frame. The parallel virtual model can be considered as
multiple serial sub-component acting on the same action frame. Each serial sub-component has a
corresponding Jacobian which is calculated as in Section A.3. We combine these to get2
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(A:8)

We now have a mapping from sub-component generalized forces to joint torques. However,
we wish to specify a single generalized force to act on the action frame. Since the action frame
and reference frame are coincidental for all the sub-components, the vector sum of the individual
generalized forces must equal the desired generalized force,
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Figure A-2: Parallel Virtual Model Reference Frames. Frame fBg is the action frame. Frames
fAig are the reaction frames. Frame fOg is the reference frame. VA represents the conglomerate
virtual model which is comprised of the individual virtual models V Ai. Frame fA�g is an imaginary
construct which represents the reaction frame of the conglomerate virtual model.

pX
i=1

O(Ai

B
~F ) =O (A

�

B
~F ) (A:9)

We need to solve for O(Ai

B
~F ) in terms of O(A

�

B
~F ). To do this we must add a number of constraints.

Some of these constraints will arise due to the inadmissibility of certain individual force directions.
These constraints can be determined by examining the row space of the individual O(Ai

B J)T . Others
will arise from constraints on the robot such as unactuated joints. The rest of the constraints can
be used as design degrees of freedom.

Once enough constraints have been determined, we will have a square invertible constraint matrix,
K, so that the constraints can be written in the form

"
O(A

�

B
~F )

~c

#
= K

2
666666664

~O(A1

B
~F )

~O(A2

B
~F )

...

~O(
Ap

B
~F )

3
777777775

(A:10)

and the individual sub-force vectors solved for by inverting the constraint matrix, K.
The elements of ~c can be extra control variables, such as individual interaction forces, or 0 for

constraints which are solely a function of the forces O(Ai

B
~F ). Of course, we need not retain the

columns of K�1 which are multiplied by 0. We can now substitute back into A.8 to get the �nal
force to torque relationship.

A.5.1 Inverting the Constraint Matrix

Solving Equation A.10 requires inverting a potentially large sparse matrix. We show here a method
for taking advantage of the structure of the constraint matrix, K, in order to reduce computational
requirements. The method is an extension of Gardners's Partitioned Force Set Control Technique
[3, 2].
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Gardner partitions the forces into a Minimum Force Set (MFS) and a Redundant Force Set
(RFS). We extend Gardner's method by adding the Constrained Force Set (CFS) for dealing with
natural constraints, such as underactuated legs, point feet, and limp joints.

We assume that all the serial paths of the parallel virtual models are of the same structure,
with the same number of constraints. We do this only to simplify the following explanation. The
mathematics is easily extended to the general case.

We de�ne the following constants,

n dimension of the generalized force
to be applied

p number of serial paths of the
parallel virtual model

l number of constraints in each
serial path

d = n-l number of non-constrained
degrees of freedom per serial path

r = pd - n number of redundant serial path
virtual force componentss

The number of force elements in the Minimum Force Set will be n; in the Constrained Force Set
l per serial path (pl total); in the Redundant Force Set r. How the forces are partitioned into these
sets depends on the design constraints one wishes to implement and the limitations placed on these
constraints by the extended partitioned force set method.

As an example, suppose we have a 100 leg millipede with 2 joints per leg and point feet. We
would have n = 6 for the 3 elements of the force vector and 3 elements of the moment vector which
we wish to exert; p = 100 for the 100 legs; l = 4 for the 3 constraints of no torques at the feet and
the 1 constraint provided by the underactuation of having only 2 joints per leg; d = 2 meaning each
leg can provide a 2 dimensional force vector from the 6 dimensional space; and r = 194 meaning we
have 194 redundancies and therefore can specify up to 194 design constraints. The Minimum Force
Set would contain 6 elements; the Constrained Force Set 400; and the Redundant Force Set 194.

We �rst partition the virtual forces into the Constrained Force Set (CFS), f ib, and those not in
the CFS, f ia, and rearrange Equation A.10 into the following form,2
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(A:11)

where I is the identity matrix, 0 is the zero matrix, J ia , J ib are natural constraint matrices, and
Dia, Dib are design constraint matrices. The Constrained Force Set consists of the forces f ib while
the forces f ia belong in the Minimum and Redundant Force Sets. The subscript on each matrix
block show the size of the block.

The constrained torques, tic are those which can be measured or inferred but not controlled. For
example, with an unactuated limp joint, tc = 0 while for a joint containing a passive linear spring,
tc = k�.

We can reduce the size of the matrix in equation A.11 by taking advantage of the sparseness of
the natural constraint blocks. Each natural constraint row can be written as

tic = J iaf ia + J ibf ib

Solving for f ib we have,
f ib = Qif ia + (J ib)�1tic (A:12)
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where,
Qi = [�(J ib)�1J ia]

l�d
(A:13)

We can substitute this back into Equation A.11 to get a reduced set of equations,
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where,

u
l

=
X
i

(J ib)�1tic

v
r

=
X
i

Dib(J ib)�1tic

Si = [DibQi +Dia]
r�d

(A.15)

We have now reduced the matrix size from np � np to dp � dp by eliminating the Constrained
Force Set (CFS). Note that Equation A.14 is still in the general form, i.e. we have put no restrictions
on the design constraint equations. We could stop here and invert the new dp�dp matrix, if it were
computationally feasible. In order to further reduce the size of the matrix, we can eliminate the
Redundant Force Set (RFS) by specifying our design constraints in a proper manner.

Similar to [3], we specify the Redundant Force Set, fr , in terms of the Minimum Force Set, fm.

fr
r
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r
�B

r�n
fm
n

(A:16)

where fr is the Redundant Force Set, fm is the Minimum Force Set, c is a vector of variables or
constants, and B is the design constraint matrix.

Writing the design constraints in terms of Equation A.16 requires that

Dib = 0 8i

and Dia are restricted so that we can rearrange Equation A.14 into the following form,"
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We can now eliminate the RFS, fr , from Equation A.17 to by substituting Equation A.16 into
A.17 to get

[f �Arc]
n
= [Am � ArB]

n�n
[fm

n
] (A:18)

To solve for the MFS, fm, we must invert the n� n matrix in Equation A.18. The Redundant
Force Set is then computed by plugging back into equation A.16. Finally, we can rearrange the
Minimum and Redundant Force Sets to get f ia and substitute back into Equation A.12 to solve for
the Constrained Force Set.

In order to use the above method, one must write all the design constraints in the form of
Equation A.16. In writing these constraints, one must specify the Redundant Force Set and the
Minimum Force Set. The remaining forces are the Constrained Force Set. One must make sure that
the choice of design constraints allows for a solution of Equation A.18 to exist.

Examining Equations A.14 to A.18 we see that we take p [l� l], and 1 [n�n] matrix inversions in
solving for the virtual forces applied to each serial path. These inversions will take signi�cantly less
computational resources to perform than the original np � np inversion. Since the computational
complexity of matrix inversion scales with the cube of the matrix size, the above method isO(pl3+n3)
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whereas inverting the original matrix is O(p3n3).

A.5.2 Pseudo-Inversion of the Constraint Matrix

The above discussion assumed that we speci�ed r design constraints. In some cases, we may not
wish to specify as many design constraints, and we may not wish to be limited to specifying all the
constraints in terms of Equation A.17. Suppose we wish to specify only s design constraints, where
s < r. If we specify the design constraints in the form,

fr2
s

= c�B1fm � B2fr1 (A:19)

then instead of Equation A.17, we will have,
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Utilizing the structure of this matrix, we get the following set of Equations,
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The above matrix is non-square. To solve the above equation for fm and fr1, we can use the
Moore-Penrose pseudo-inverse,

A+ = AT (AAT )�1 (A:22)

and then solve for fr2 by substituting back into Equation A.19.
The pseudo-inverse still requires inverting an n � n matrix so our computational requirements

are about the same as the previous method.
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