
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Technical Report No. 1573 March, 1996

SketchIT: a Sketch Interpretation Tool
for Conceptual Mechanical Design

Thomas F. Stahovich
This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

We describe a program called SketchIT capable of producing multiple families of designs from a
single sketch.

The program is given a rough sketch (drawn using line segments for part faces and icons for
springs and kinematic joints) and a description of the desired behavior. The sketch is \rough" in the
sense that taken literally, it may not work. From this single, perhaps awed sketch and the behavior
description, the program produces an entire family of working designs. The program also produces
design variants, each of which is itself a family of designs.

SketchIT represents each family of designs with a \behavior ensuring parametric model" (BEP-
Model), a parametric model augmented with a set of constraints that ensure the geometry provides
the desired behavior. The construction of the BEP-Model from the sketch and behavior description
is the primary task and source of di�culty in this undertaking.

SketchIT begins by abstracting the sketch to produce a qualitative con�guration space (qc-
space) which it then uses as its primary representation of behavior. SketchIT modi�es this initial
qc-space until qualitative simulation veri�es that it produces the desired behavior.

SketchIT's task is then to �nd geometries that implement this qc-space. It does this using
a library of qc-space fragments. Each fragment is a piece of parametric geometry with a set of
constraints that ensure the geometry implements a speci�c kind of boundary (qcs-curve) in qc-space.
SketchIT assembles the fragments to produce the BEP-Model.

SketchIT produces design variants by mapping the qc-space to multiple implementations, and
by transforming rotating parts to translating parts and vice versa.

Copyright c Massachusetts Institute of Technology, 1996

This report describes research done at the Arti�cial Intelligence Laboratory of the Massachusetts Institute of Tech-

nology. Support for this research was provided in part by the Advanced Research Projects Agency of the Department

of Defense under O�ce of Naval Research contract N00014-91-J-4038.

SketchIT: a Sketch Interpretation Tool for

Conceptual Mechanical Design

by

Thomas F. Stahovich

B.S., University of California, Berkeley (1988)

S.M., Massachusetts Institute of Technology (1990)

This is an edited version of a document originally

submitted to the Department of Mechanical Engineering

in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1995

3

SketchIT: a Sketch Interpretation Tool for Conceptual

Mechanical Design

by

Thomas F. Stahovich

Originally submitted to the Department of Mechanical Engineering

on May 29, 1995, in partial ful�llment of the

requirements for the degree of

Doctor of Philosophy

Abstract

We describe a program called SketchIT capable of producing multiple families of
designs from a single sketch.

The program is given a rough sketch (drawn using line segments for part faces
and icons for springs and kinematic joints) and a description of the desired behavior.
The sketch is \rough" in the sense that taken literally, it may not work. From this
single, perhaps awed sketch and the behavior description, the program produces an

entire family of working designs. The program also produces design variants, each of
which is itself a family of designs.

SketchIT represents each family of designs with a \behavior ensuring parametric
model" (BEP-Model), a parametric model augmented with a set of constraints that
ensure the geometry provides the desired behavior. The construction of the BEP-

Model from the sketch and behavior description is the primary task and source of
di�culty in this undertaking.

SketchIT begins by abstracting the sketch to produce a qualitative con�gura-
tion space (qc-space) which it then uses as its primary representation of behavior.
SketchIT modi�es this initial qc-space until qualitative simulation veri�es that it

produces the desired behavior.
SketchIT's task is then to �nd geometries that implement this qc-space. It does

this using a library of qc-space fragments. Each fragment is a piece of parametric
geometry with a set of constraints that ensure the geometry implements a speci�c

kind of boundary (qcs-curve) in qc-space. SketchIT assembles the fragments to

produce the BEP-Model.

SketchIT produces design variants by mapping the qc-space to multiple imple-

mentations, and by transforming rotating parts to translating parts and vice versa.

Thesis Supervisor: Professor Randall Davis

Thesis Supervisor: Professor Warren P. Seering

4

Acknowledgments

It was a tremendous pleasure to work with Randall Davis and Howard Shrobe. They

are gifted advisors, insightful teachers, generous with encouragement, and exacting

in their standards.

I am extremely grateful to Warren Seering for his sage advice, careful guidance, and

constant encouragement in matters both academic and professional.

A special thanks goes to George Celniker, a friend and mentor.

A special thanks also goes to Glenn Kramer who, among other things, introduced me
to the AI Lab and the circuit breaker example.

To Kenji Shimada, a great friend and teacher of Japanese culture.

To Leslie Regan for truly caring about students.

To SLCS, especially Bob Young and Jahir Pabon.

To Ron Wiken for building great models of circuit breakers and such, and for being

a good friend.

To Mike Wessler for writing the sketching interface.

To Kevin O'Brien for proofreading the thesis.

To my o�cemates, Brian Anthony, Mark Nahabedian, John Morrell, and Peng Wu:
it was fun.

To my many other friends at the AI Lab: Phillip Alvelda, Mike Caine, Robert Irie,

Akhil Madhani, Laurel Simmons, and Leon Wong.

To the sta� and students of the AI Lab, who make it a great place to be.

Finally, thanks to my parents, Arthur and Marjorie, and my brothers, Jim, Greg,

Mark, Dave, and Steve for their unconditional love, support, and encouragement.

Without them, I could not have done this.

Support for this project was provided by the Advanced Research Projects Agency of

the Department of Defense under O�ce of Naval Research contract N00014-91-J-4038.

Contents

1 Introduction 15

1.1 Project Overview : 15
1.1.1 Context : 15

1.1.2 The Task : 15
1.1.3 Examples : 16
1.1.4 Motivation : 29

1.2 The Approach : 29
1.2.1 Introduction : 29
1.2.2 The Representation : 30

1.2.3 Problem Solving Paradigm : 32
1.2.4 Implementation: System Overview : : : : : : : : : : : : : : : 32
1.2.5 Assumptions : 34

1.3 Guide to This Document : 35

2 The Representation: QC-Space 37

2.1 Introduction : 37
2.2 Con�guration Space : 38

2.2.1 Representing Engagement Faces : : : : : : : : : : : : : : : : : 38

2.2.2 Periodic Boundary Conditions : : : : : : : : : : : : : : : : : : 41
2.2.3 Representing Springs, Actuators, and Fixed Surfaces : : : : : 42

2.2.4 Computing Motion Using C-Space : : : : : : : : : : : : : : : : 43

2.3 Qualitative Con�guration Space : 48
2.4 Using QC-Space to Fix a Sketch : 51

3 The QC-Space Generator 55

3.1 Introduction : 55

3.2 Abstracting C-Space to QC-Space : 57

3.3 Reducing Search : 58

3.3.1 Mapping to QC-Space: Small Targets : : : : : : : : : : : : : : 58

3.3.2 Debugging Rules : 59

4 The Simulator 61

4.1 Introduction : 61

5

6 CONTENTS

4.2 Forces : 63

4.2.1 Force Projections : 63

4.2.2 Spring Forces : 65

4.2.3 Engagement Forces : 65

4.2.4 Engagement Types : 68

4.3 Interface Motion : 69

4.4 Computing Motion : 70

4.5 The Next Event : 75

4.5.1 Events in the Plane : 75

4.5.2 Computing Which Events Happen First : : : : : : : : : : : : 80

4.5.3 Unordered Landmarks : 87

4.6 Intersection Points : 89
4.6.1 The Intersection Between Two Diagonal Qcs-Curves : : : : : : 89
4.6.2 The Intersection Between a Diagonal Qcs-Curves and an In�-

nite Boundary : 91
4.6.3 Enumerating Possible I-Point Locations : : : : : : : : : : : : : 94

4.7 Periodic Boundary Conditions : 94

4.8 Setting Up the Next Step : 97
4.8.1 Keeping Track of Engagements : : : : : : : : : : : : : : : : : 97

4.8.2 Trial Steps : 98
4.9 Controlling The Simulation : 98

4.9.1 External Inputs : 98
4.9.2 Computing Initial Positions : : : : : : : : : : : : : : : : : : : 99
4.9.3 Will The Simulation Terminate? : : : : : : : : : : : : : : : : : 99

4.10 Examples: Envisionments : 101

5 The Tester 105

5.1 Current Implementation : 105

5.2 A More Powerful Tester : 106

5.2.1 Extending the Behavior Speci�cation Language : : : : : : : : 106

5.2.2 Extending the Tester : 107

6 The Motion Type Selector 109

6.1 Introduction : 109

6.2 Abstracting Away Motion Type : 109

7 The Interaction Library 111

7.1 Introduction : 111
7.2 The library : 112

7.2.1 Cam and O�set Follower : 113

7.2.2 Cam and Centered Follower : : : : : : : : : : : : : : : : : : : 120

7.3 Parasitic Interactions : 125
7.4 Where to Attach the Faces : 127

CONTENTS 7

7.5 Assembling the BEP-Model : 135

7.6 Exporting to DesignView : 140

7.7 Periodic Boundary Conditions : 142

8 Related Work 145

8.1 Design Automation : 145

8.1.1 Bond Graph Approaches : 145

8.1.2 Kinematic Building Blocks : 146

8.2 Shape Design : 146

8.3 Sketch Understanding : 147

8.4 Qualitative Physics : 148

8.5 Simulation : 149
8.6 Computing Numerical C-Space : 149

8.7 Component-Connection Models : 150
8.8 Reverse Engineering : 151
8.9 Geometric Features : 151

8.10 Representing Function : 152
8.11 Algebraic Constraints : 152

9 Discussion 155

9.1 Contributions : 155
9.1.1 Turning a Sketch into Working Geometry. : : : : : : : : : : : 155

9.1.2 Speaking the Engineer's Language : : : : : : : : : : : : : : : : 156
9.1.3 Design Variants : 156
9.1.4 QC-Space: As a Representation : : : : : : : : : : : : : : : : : 157

9.1.5 The Library : 158
9.1.6 E�cient Simulation : 158

9.2 Future Work : 159

9.2.1 Extensions : 159
9.2.2 The Vision : 163

A Interaction Library 165

A.1 Pushing: Rotation & Translation : 166

A.1.1 Cam and O�set Follower : 166

A.1.2 Cam and Centered Follower : : : : : : : : : : : : : : : : : : : 168
A.2 Pushing: Rotation & Rotation I : 170

A.3 Pushing: Rotation & Rotation II : 174
A.4 Pushing: Translation & Translation : : : : : : : : : : : : : : : : : : : 175

A.5 Fixed Rotor-Stop : 177

A.6 Rotating Rotor-Stop : 179
A.7 Translating Rotor-Stop : 180

A.8 Fixed Slider-Stop : 182
A.9 Rotating Slider-Stop : 184

8 CONTENTS

A.10 Translating Slider-Stop : 186

B Sketching Tool 189

C Computing Numerical C-Space 191

C.1 Interaction: A Rotating Face & a Translating Face : : : : : : : : : : 191

C.2 Interaction: A Translating Face & a Stationary Face : : : : : : : : : : 198

List of Figures

1-1 One structure for the circuit breaker. : : : : : : : : : : : : : : : : : : 17

1-2 The sketch of the circuit breaker as actually input to SketchIT. : : 18

1-3 The desired behavior of the circuit breaker. : : : : : : : : : : : : : : : 19

1-4 A BEP-Model for the circuit breaker. : : : : : : : : : : : : : : : : : : 20

1-5 Another solution to the BEP-Model of Figure 1-4. : : : : : : : : : : : 21

1-6 A design variant obtained by replacing the rotating lever with a trans-
lating part. : 21

1-7 A design variant obtained by selecting di�erent implementations for
the cam-follower and push-pair engagement pairs. : : : : : : : : : : : 22

1-8 A �ring mechanism from a single action revolver. : : : : : : : : : : : 23

1-9 The sketch of the �ring mechanism as actually input to SketchIT. : 24

1-10 The desired behavior of the �ring mechanism. : : : : : : : : : : : : : 24

1-11 The yoke and rotor device. : 25

1-12 The sketch of the yoke and rotor as actually input to SketchIT. : : 26

1-13 The desired behavior of the yoke and rotor. : : : : : : : : : : : : : : : 26

1-14 A BEP-Model for the yoke and rotor. : : : : : : : : : : : : : : : : : : 27

1-15 The problem solving paradigm. : 30

1-16 Overview of the SketchIT system. : : : : : : : : : : : : : : : : : : : 33

2-1 A rotor and slider. : 38

2-2 The c-space of the rotor and slider : : : : : : : : : : : : : : : : : : : 39

2-3 A c-space with periodic boundary conditions. : : : : : : : : : : : : : 41

2-4 A simple mechanical system and its con�guration space. : : : : : : : 42

2-5 Force F pushes the slider to the left. : : : : : : : : : : : : : : : : : : 44

2-6 The motion of the rotor and slider represented as a trajectory through

c-space. : 45

2-7 The motion of the rotor and slider can be computed by treating the
con�guration as a particle with forces applied to it. : : : : : : : : : : 45

2-8 The trajectory of the rotor-slider device if collisions are elastic. : : : : 47

2-9 The trajectory of the rotor-slider device if there is appreciable inertia. 47

2-10 The generalization of the c-space of the rotor and slider. : : : : : : : 49

2-11 The Qualitative Con�guration Space Representation. : : : : : : : : : 50

2-12 The eight types of qcs-curves. : 50

9

10 LIST OF FIGURES

2-13 A non-monotonic cs-curve. : 51

2-14 Two blocks and their qc-space. : 53

2-15 The qc-space of the two blocks modi�ed to produce the desired behavior. 53

2-16 Three of the possible ways to implement the qc-space modi�cation used

in Figure 2-15. : 54

3-1 A candidate qc-space for the circuit breaker. : : : : : : : : : : : : : : 56

3-2 The eight di�erent qualitative slopes. : : : : : : : : : : : : : : : : : : 57

4-1 Three blocks sliding along a frictionless horizontal surface. : : : : : : 63

4-2 A force projection. : 64

4-3 A translates horizontally, B translates vertically. : : : : : : : : : : : : 65

4-4 A qcs-plane with trajectories that cause penetration. : : : : : : : : : 66

4-5 The normal to the qcs-curve is the vector sum of the directions of the
two forces. : 67

4-6 A pair of blocks and their qc-space. : : : : : : : : : : : : : : : : : : : 67

4-7 A translates horizontally, B vertically. Fixed surface S engages A. : : 69

4-8 Two blocks, A and B, which translate horizontally. : : : : : : : : : : 74

4-9 A horizontal trajectory. : 76

4-10 A trajectory along a qcs-curve. : 77

4-11 A diagonal trajectory. : 78

4-12 A \shadow" in the qcs-plane. : 80

4-13 The trajectory in the lever-hook qcs-plane. : : : : : : : : : : : : : : : 81

4-14 The trajectory in the lever-pushrod qcs-plane. : : : : : : : : : : : : : 81

4-15 The next events for a horizontal trajectory. : : : : : : : : : : : : : : : 82

4-16 The next events for a trajectory along a qcs-curve. : : : : : : : : : : : 83

4-17 The next events for a diagonal trajectory. : : : : : : : : : : : : : : : : 84

4-18 Tiling the active region. : 85

4-19 Two arti�cial boundaries located at in�nity. : : : : : : : : : : : : : : 86

4-20 A net constraint on position that does not include end points or i-points. 87

4-21 A trajectory in qc-space with an ambiguous starting location. : : : : 88

4-22 Depending on the particular shape of qcs-curve Q2, the intersection
between Q1 and Q2 may be either to the left or the right of landmark D. 90

4-23 When the useless ends of Q1 and Q2 are removed, the curves intersect

at an end point. : 91

4-24 The location (K0) of the intersection between Q and IB depends on the
speci�c shape of Q. : 92

4-25 H0 is not ordered with respect to K0. : : : : : : : : : : : : : : : : : : 93

4-26 Two non-intersecting, �nite qcs-curves with intersecting bounding boxes. 95

4-27 The qc-space for the yoke and rotor attened to produce a plane. : : 96

4-28 An envisionment of the circuit breaker's motion during the trip action. 103

4-29 An envisionment of the circuit breaker's motion during reset. : : : : : 104

LIST OF FIGURES 11

7-1 The eight types of qcs-curves. : 112

7-2 The parameterization of a pair of faces used to implement qcs-curve H. 114

7-3 The leading edge of the rotor is shorter than the trailing edge. : : : : 116

7-4 When in this con�guration, the rotor face must not be horizontal. : : 117

7-5 The rotor face must not move tangent to the slider face. : : : : : : : 118

7-6 The parameterization of a pair of faces used to implement qcs-curve B. 120

7-7 The parameterization of a pair of faces used to implement qcs-curve H. 121

7-8 The leading edge of the rotor is perpendicular to the extended slider

face. : 123

7-9 Two superimposed con�gurations of the rotor and slider. : : : : : : : 124

7-10 Two superimposed con�gurations of the rotor and slider. : : : : : : : 125

7-11 The location of the library coordinate frame with respect to the global
coordinate frame. : 127

7-12 The location of the rotor coordinate frame with respect to the global
coordinate frame. : 128

7-13 The location of the slider coordinate frame with respect to the global

coordinate frame. : 128
7-14 (a) The location of the rotating face in the library frame. (b) The

location of the rotating face in the rotor frame. : : : : : : : : : : : : 129
7-15 Template indicating where to attach the rotating face to the rotor. : : 130

7-16 The slider frame and the library frame in the global frame. : : : : : : 131
7-17 Template indicating where the translating face is attached to the slider. 134

7-18 A template for attaching the translating face to the slider. : : : : : : 134

7-19 A circuit breaker qc-space that provides the desired behavior. : : : : 137
7-20 The constraints for the portion of the BEP-Model describing the cam-

follower interaction. : 138
7-21 The i-points for the circuit breaker qc-space. : : : : : : : : : : : : : : 138

7-22 The landmark orderings for the circuit breaker qc-space. : : : : : : : 138

7-23 The complete set of constraints of a BEP-Model for the circuit breaker.
(continued) : 139

7-24 A hand generated solution to the BEP-Model. : : : : : : : : : : : : : 141

7-25 The qc-space for the yoke and rotor attened to produce a plane. : : 143

7-26 A reconstruction of the boundary-crossing qcs-curves from the yoke
and rotor qc-space. : 144

9-1 SketchIT's problem solving paradigm. : : : : : : : : : : : : : : : : 157

9-2 A device with switchable degrees of freedom. : : : : : : : : : : : : : : 161
9-3 The �rst mode of operation. : 162

9-4 The second mode of operation. : 162

A-1 The eight types of �nite qcs-curves. : : : : : : : : : : : : : : : : : : : 165

A-2 The parameterization of a pair of faces used to implement pushing

interactions between rotating and translating faces. : : : : : : : : : : 167

12 LIST OF FIGURES

A-3 The qcs-curve implemented by the geometries in Figures A-2 and A-4. 168

A-4 The parameterization of a pair of faces used to implement pushing

interactions between rotating and translating faces. : : : : : : : : : : 169

A-5 The parameterization of a pair of faces used to implement pushing

interactions between rotating faces for the case in which the qcs-curve

has negative slope. : 171

A-6 The qcs-curve implemented by the geometries in Figures A-5 and A-9. 173

A-7 The parameterization of a pair of faces used to implement pushing

interactions between rotating faces for the case in which the qcs-curve

has positive slope. : 174

A-8 The qcs-curve implemented by the geometry in Figure A-7. : : : : : : 175

A-9 The parameterization of a pair of faces used to implement pushing
interactions between translating faces. : : : : : : : : : : : : : : : : : 176

A-10 Geometry used to implement a �xed rotor-stop. : : : : : : : : : : : : 178
A-11 The qcs-curve implemented by the geometry in Figure A-10. : : : : : 178
A-12 Geometry used to implement a rotating rotor-stop. : : : : : : : : : : 179
A-13 The qcs-curve implemented by the geometry in Figure A-12. : : : : : 180
A-14 Geometry used to implement a translating rotor-stop. : : : : : : : : : 181

A-15 The qcs-curve implemented by the geometry in Figure A-14. : : : : : 182
A-16 Geometry used to implement a �xed slider-stop. : : : : : : : : : : : : 183
A-17 The qcs-curve implemented by the geometry in Figure A-16. : : : : : 183
A-18 Geometry used to implement a rotating slider-stop. : : : : : : : : : : 185
A-19 The qcs-curve implemented by the geometry in Figure A-18. : : : : : 185
A-20 Geometry used to implement a translating slider-stop. : : : : : : : : : 186

A-21 The qcs-curve implemented by the geometry in Figure A-20. : : : : : 187

B-1 The sketching tool used to create sketches for SketchIT. : : : : : : 189

C-1 The interaction of a rotating at face with a translating at face. : : 192

C-2 Case 1: As the shaded regions indicate, the path of the slider intersects

the path of the rotor in two separate locations. : : : : : : : : : : : : : 193

C-3 Case 2: As the shaded region indicates, the path of the slider intersects

the path of the rotor in just one location. The slider pushes the rotor
counterclockwise. : 194

C-4 Case 3: As the shaded region indicates, the path of the slider intersects
the path of the rotor in just one location. The slider pushes the rotor

clockwise. : 195
C-5 Coordinate systems used for computing the con�gurations in which a

point on a rotating body touches a point on a translating body. : : : 197

C-6 The interaction of a translating at face and a stationary at face. : : 201

List of Tables

4.1 Consistent sets of engagements and the resulting motion. : : : : : : : 71

7.1 The 10 distinct implementations required to implement all possible
qcs-curves. : 113

13

14 LIST OF TABLES

Chapter 1

Introduction

1.1 Project Overview

1.1.1 Context

Drawings have always been an important tool for engineers. The oldest known tech-
nical drawing is a ground plan of the ziggurat1 at Ur which was built around 2100
b.c.; the drawing was made to scale and carved in stone.2 By the �fteen century,

Leonardo da Vinci had perfected many of the drawing techniques that are commonly
used today, including cross hatching, sectioning, pictorial sketching, and isometric
sketching.

Our work combines this time honored engineering tool, the drawing, with a modern
tool, the computer, and addresses the issue of how a computer program might read,

understand, and use a sketch of a mechanical device. To do this, we developed
a theory about what kind of information is contained in a sketch of a mechanical
device and tested this theory with an implemented computer program. The program
reads a sketch of a mechanical device and from this produces working geometry as

well as multiple alternative implementations for the device. The program's name is

\SketchIT" for Sketch Interpretation Tool.3

1.1.2 The Task

A common task in mechanical design is the search for part geometries that pro-

vide a desired behavior. Parametric modelers are often useful in this search because

1An ancient Babylonian temple tower consisting of a lofty pyramidal structure built in successive

stages with outside staircases and a shrine at the top.
2Thus began the long tradition of engineering speci�cations carved in stone.
3We considered using the name \etch-a-sketch" for Engineering T ransformation of C lever H acks

using A Sketch, but that was taken by the Ohio Arts Company, an early adopter of graphical user

interfaces.

15

16 CHAPTER 1. INTRODUCTION

they provide a convenient means for modifying geometry. (Parametric modelers are

geometric modelers that allow the geometry to be changed via changes to the dimen-

sions.) However, the designer is still responsible for creating the parametric model in

the �rst place, then for deciding what changes to make. In this situation the designer

is thus still responsible for creating the geometry.

In this project, by contrast, we developed a design assistant called SketchIT

that assists the designer in �nding a geometry that provides a speci�ed behavior.

Our program uses a description of desired behavior to transform an informal sketch

of a mechanical device into what we call a \BEP-Model," a parametric model with

constraints that ensure the geometry produces the desired behavior.4 The program

also generates alternative implementations for the design, each of which is repre-

sented as a BEP-Model. Because the constraints of the BEP-Model are su�cient to
guarantee the desired behavior, every solution to the constraints is a working design.

We have used DesignView, a commercial parametric modeler based on variational
geometry, to solve the constraints of the BEP-Models produced by our program.

1.1.3 Examples

We have tested SketchIT on three design problems: a circuit breaker, a �ring
mechanism for a single action revolver, and a yoke and rotor mechanism (rotation

of the rotor causes the yoke to oscillate). Here we use these examples to illustrate
SketchIT's operation.

Circuit Breaker

Our �rst example concerns the design of a circuit breaker similar to those used in
a home electrical system. One speci�c implementation of the device is shown in
Figure 1-1. In normal use, current ows from the lever to the hook; current overload
causes the bimetallic hook to heat and bend, releasing the lever and interrupting

the current ow. After the hook cools, pressing and releasing the pushrod resets the

device. (Figure 1-3a shows this behavior.)
SketchIT is a tool for conceptual design, and as such is concerned only with the

functional geometry, the faces where parts meet and through which force and motion
are transmitted. Consideration of the connective geometry (the surfaces that connect

the functional geometry to make complete solids) is put o� until later in the design

process. The designer's task is to indicate which pairs of faces are intended to engage
each other; this is done using a simple sketching tool we created. Figure 1-2 shows
the stylized sketch of the circuit breaker the designer created with this sketching tool.

The designer also has to describe the desired behavior of the device to SketchIT;

this is done using a state transition diagram. Figure 1-3b shows the desired behavior

for the circuit breaker. Each node in the diagram is a list of the pairs of faces that

4\BEP-Model" stands for Behavior Ensuring Parametric Model.

1.1. PROJECT OVERVIEW 17

pushrod

lever

hook: bimetallic strip

fixed
stop

current in

current out

Figure 1-1: One structure for the circuit breaker.

are engaged and the springs that are relaxed.5 The arcs are the external inputs that

drive the device: Figure 1-3b describes how the circuit breaker should behave in the
face of heating and cooling the hook and pressing the reset pushrod.

Figure 1-4 shows a portion of one of the BEP-models SketchIT derives from
the sketch of the circuit breaker (Figure 1-2) and the desired behavior (Figure 1-
3b). The top of the �gure shows the parameters that de�ne the sloped faces on the

lever and the hook (faces f2 and f5 respectively). The bottom shows the constraints
that ensure this pair of faces plays its role in achieving the desired overall behavior:
moving the lever clockwise pushes the hook down until the lever moves past the point
of the hook, whereupon the hook springs back to its rest position. As one example of a
constraint, the last equation, 0 > R14/TAN(PSI17) + H2 12/SIN(PSI17), constrains

the parameters of the faces so that the contact point on face f2 never moves tangent to

face f5. This in turn ensures that when the two faces are engaged, clockwise rotation
of the lever always increases the deection of the hook.6

The constraints in a BEP-Model represent the regions in parameter space (i.e.,

the space spanned by the geometric parameters) that provide the desired behavior,

and thus de�ne an entire family of design solutions that the designer can explore.

Because the BEP-Model's constraints ensure that all changes to the geometry still

produce the desired behavior, the model makes it easy for the designer to explore a
whole family of designs.

We have used DesignView to solve the constraints of BEP-Models and to draw

5Here we assume that the pairs of faces not listed at a node are by default disengaged, the springs

not listed are by default not relaxed. See Chapter 5 for a more complete discussion of our behavior

description language.
6If the contact point on face f2 did move tangent to face f5, moving the lever would not change

the deection of the hook.

18 CHAPTER 1. INTRODUCTION

f1

f2 f3

f4 f5

f6

f7 f8

actuator

pushrod
lever

hook: bimetallic strip

(fixed surface)

engagement pairs:
f1 - f6 (push-pair)
f2 - f5 (cam-follower)
f3 - f4 (lever-stop)
f7 - f8 (pushrod-stop)

Figure 1-2: The sketch of the circuit breaker as actually input to SketchIT. En-
gagement faces are shown as bold line segments labeled f1 through f8. The actuator
applied to the pushrod represents the reset motion imparted by the operator. The
parenthesized names in the list of engagement pairs (e.g., push-pair) are for our con-
venience in exposition and are not used by the program.

the resulting geometry. DesignView enforces a BEP-Model's constraints while at the
same time allowing the user to interactively change the parameter values, either by
typing new values with the keyboard or by resizing the geometry with the mouse.

The particular parameter values shown in Figure 1-4 are a solution to the BEP-

Model shown there. We used DesignView to compute these values. Figure 1-5 shows

another solution we obtained with DesignView. Because these parameter values also
satisfy the constraints of the BEP-Model, even this rather unusual geometry provides

the desired behavior. As this example illustrates, the family of designs de�ned by a

BEP-Model includes a wide range of design solutions, many of which would not be
obtained with conventional approaches.

SketchIT also produces two kinds of design variants. It represents each individ-

ual variant with its own BEP-Model, and hence, each design variant is itself a family

of designs. The program produces one kind of variant by changing rotating parts to
translating ones, and vice versa. Figure 1-6 shows an example in which SketchIT

has replaced the rotating lever in Figure 1-2 with a translating part. This particular
design variant is appealing because of its simplicity.

SketchIT produces a second kind of variant by using di�erent implementations

for the pairs of engagement faces. Figure 1-7 shows an example: In the original
implementation of the cam-follower engagement faces, the motion of face f2 is roughly

1.1. PROJECT OVERVIEW 19

Hook Heats

Hook CoolsReset

Hook CoolsReset

Hook Heats

(a)

(b)

1 2

3

1 2

3

push-pair
pushrod-stop
hook = cold

push-pair
pushrod-stop
hook = hot

lever-stop
pushrod-stop
hook = cold

Figure 1-3: The desired behavior of the circuit breaker. (a) Physical interpretation.

(b) State transition diagram. In each of the three states, the hook is either at its hot

or cold neutral position.

20 CHAPTER 1. INTRODUCTION

perpendicular to the motion of face f5; in the new design of Figure 1-7 the motions

are parallel. Hence, the original design implements the cam-follower interaction with

a cam and centered follower while the new design uses a cam and o�set follower.

Conversely, the push-pair faces, originally implemented with a cam and o�set follower,

are implemented with a cam and centered follower in the new design. As the �gure

illustrates, these new implementations for the circuit breaker's engagement faces result

in a rather unusual design.

f8f7

f5
f4

f3f2

f6f1

H1_11 > 0

H2_12 > 0

L15 > 0

0 > R14/TAN(PSI17) + H2_12/SIN(PSI17)PSI17 > 90

PSI17 < 180

PHI16 > 90

PHI16 < 180

S13 > H1_11

R14 2.831

L15 0.142

S13 2.728

PSI17 134.782

H1_11 0.101

H2_12 0.041

PHI16 135.013

Figure 1-4: A BEP-Model for the circuit breaker. For clarity, only those parameters

and constraints that refer to the cam-follower interaction (i.e., faces f2 and f5) are
shown. The decimal number next to each parameter (e.g., the \2.831' next to \R14")

is the current value of that parameter. This particular set of parameter values is a

solution to the BEP-Model, and hence this device achieves the desired behavior.

1.1. PROJECT OVERVIEW 21

f2

f3

f4

f5

f6

f7 f8
f1

Figure 1-5: Another solution to the BEP-Model of Figure 1-4. Shading indicates how
the faces might be connected to esh out the components. This solution shows that
the pair of faces at the end of the lever and the pair of faces at the end of the hook
need not be contiguous.

hook

lever

pushrod

Figure 1-6: A design variant obtained by replacing the rotating lever with a translat-
ing part.

22 CHAPTER 1. INTRODUCTION

hook

cam-follower

lever
pivot

pushrod

pushrod-stop

push-pair

}

}

}{lever-stop f2

f5

Figure 1-7: A design variant obtained by selecting di�erent implementations for the

cam-follower and push-pair engagement pairs. In the state shown, the pushrod is
pressed so that the hook is just on the verge of latching the lever. When the pushrod

is pressed slightly farther, the cam-follower faces will disengage. Then the hook will
relax to the right, placing the dogleg on the hook under the dogleg on the lever,

thereby engaging the lever-stop faces.

1.1. PROJECT OVERVIEW 23

Firing Mechanism

Our second example concerns the design of a �ring mechanism from a single action

revolver shown in Figure 1-8. This example provides a second illustration of the

stylized sketches and behavior descriptions that SketchIT takes as input.

We describe the device to SketchIT with the stylized sketch in Figure 1-9, cre-

ated with the sketching tool described in Appendix B. As before, the sketch is

constructed from line segments representing interacting faces and icons representing

springs, actuators (external motion sources), pivots, and slider joints. These are the

primitives from which all of our sketches are constructed. The �gure also contains the

list of faces that are intended to engage each other. The list of intended engagements

is always required input.
We specify the desired behavior, as we always do, with a state transition diagram

(Figure 1-10). The device starts with the hammer cocked (state 1); Pulling the trigger
causes the hammer to fall (state 2); Pulling the hammer back re-cocks the device,
returning it to state 1.

From the sketch and desired behavior, SketchIT computes multiple new designs,
each of which is represented with a BEP-Model. These variants include both designs

with new motion types and designs with new implementations for the engagement
faces.

Hammer

Slider

Trigger

Stop

Figure 1-8: A �ring mechanism from a single action revolver. Engagement faces are

shown as bold line segments.

24 CHAPTER 1. INTRODUCTION

engagement pairs:
f1 - f4 (cocker)
f2 - f3 (sear)
f5 - f6 (trigger-push)
f7 - f8 (pushrod-stop)

f1

f4

f5 f7
f6

f8

f3
f2

trigger-spring

main-spring

pushrod-spring

trigger-pull

hammer-pull

Figure 1-9: The sketch of the �ring mechanism as actually input to SketchIT.

Engagement faces are shown as bold line segments labeled f1 through f8. The ac-
tuator applied to the hammer (hammer-pull) represents pulling the hammer back.
The actuator applied to the trigger (trigger-pull) represents pulling the trigger. The
parenthesized names in the list of engagement pairs (e.g., sear) are for our conve-
nience in exposition and are not used by the program. The curved arrow represents

the motor turning the rotor. f3, f4, f6, and f8 are attached to the pushrod. f7 is �xed
to ground. f1 and f2 are attached to the hammer.

Hammer-pull

Trigger-pull

1 2
pushrod-stop

trigger-spring = relaxed
main-spring = relaxed

pushrod-stop
trigger-spring = relaxed

sear

Figure 1-10: The desired behavior of the �ring mechanism.

1.1. PROJECT OVERVIEW 25

Yoke and Rotor

Our �nal example concerns the design of the yoke and rotor device shown in Figure 1-

11. Continuous counter-clockwise rotation of the rotor causes the yoke to oscillate left

and right with a brief dwell between each change in direction. We use this example

to illustrate how SketchIT assists the designer in re�ning an initial concept to meet

speci�c design requirements.

There are two important di�erences between this example and the previous two.

First, in previous examples the rotating parts rotated less than a full revolution

but here the rotor's motion is unbounded. Because the rotor can turn through full

revolutions its motion is periodic: when the rotor turns far enough in a single direc-

tion, it will return to its initial position.7 SketchIT employs qualitative reasoning
techniques and periodic motion is often problematic for qualitative reasoners.8 We,
however, have developed special techniques to handle this kind of periodic motion (see
Section 4.7). The second di�erence is that, while previously each face interacted with
exactly one other face, here each face engages multiple faces. Consequently, in this

example SketchIT must design geometry for each face such that the face correctly
achieves multiple, distinct interactions.

Figure 1-11: The yoke and rotor device.

We describe the yoke and rotor to SketchIT with the stylized sketch in Figure 1-
12. The desired behavior is to have each of the rotor blades engage each of the yoke
faces in turn as shown in Figure 1-13. From this input SketchIT generates the

BEP-Model in Figure 1-14.

The designer can now use the family of designs speci�ed by this BEP-model as a
tool for re�ning the initial concept of Figure 1-12 to meet speci�c design requirements.

7One consequence of the rotor having periodic motion (i.e., turning through full revolutions) is

that it cannot be replaced with a translating part; Translating parts cannot exhibit periodic motion.

See Chapter 6.
8See for example [33].

26 CHAPTER 1. INTRODUCTION

A

B

1

2

3

Figure 1-12: The stylized sketch of the yoke and rotor as actually input to SketchIT.
The faces on the yoke are labeled A and B; those on the rotor are labeled 1{3. Each
of the rotor faces is intended to engage each of the yoke faces.

A1

B1

B2

A3

B3

A2

turn ro
tor

Figure 1-13: The desired behavior of the yoke and rotor. The letter and number in

each node indicate which yoke face and which rotor face are engaged in that state.
Turning the rotor is the external input that causes each of the transitions.

1.1. PROJECT OVERVIEW 27

PHI > 90

H > 0

L > 0

PHI <= 180

ACOS (H / R) + ACOS((L ^2 + R ^2 - S ^2) / (2 * L * R)) < 90

W > 0

R > H

PSI > 0

PSI < ASIN (H / R) + 90

AOFF3 358.332

AOFF2 118.332

AOFF1 238.332

R 3.936

Figure 1-14: A BEP-Model for the yoke and rotor; a representative sample of the

parameters and constraints are shown. For simplicity, new variable names have been

substituted for sets of variables constrained to be equal. For example, because all
three rotor blades are constrained to have equal length, R replaces R1, R2, and R3.

28 CHAPTER 1. INTRODUCTION

Imagine that one requirement is that all strokes have the same length. A simple way to

achieve this is to constrain the yoke and rotor to be symmetric. We do this by adding

additional constraints to the BEP-Model, such as the following which constrain the

rotor blades to be of equal length and have equal spacing:

R1 = R2 = R3

AOFF1�AOFF2 = 120�

AOFF3�AOFF1 = 120�

Imagine further that all strokes are required to be 1.0cm long. We achieve this by

adding the additional constraint:

LM29 � LM27 = 1:0

LM29 and LM27 are variables that SketchIT assigns to the extreme positions
of the yoke. We obtain the names of these variables by using a graphical browser to
inspect SketchIT's simulation of the device. (Because we have constrained the yoke

and the rotor to be symmetric, all strokes have the same length.)
Finally, imagine that the dwell is required to be 40�, i.e., between each stroke, the

rotor turns 40� while the yoke remains stationary. We can achieve this by adding one
additional constraint:9

LMG � LM8 = 40�

We can now invoke DesignView to �nd a solution to this augmented set of con-
straints; the solution will be guaranteed to produce both the desired behavior and
the desired performance characteristics (stroke and dwell). The interesting point is

that we were able to re�ne the design simply by adding additional constraints to the

BEP-Model.

9LMG and LM8 are the variables that SketchIT assigns to the position of the rotor at the

beginning and ending of one the dwells. Because we have constrained the yoke and the rotor to be

symmetric, all six dwells have the same duration.

1.2. THE APPROACH 29

1.1.4 Motivation

Designers frequently use sketches because they are a convenient and e�cient way

to capture and communicate design information. Traditional design tools, on the

other hand, do not make use of the designer's \natural language"|sketches; in fact,

these tools often require the designer to describe the design using complex and time

consuming representations. For example, Finite ElementAnalysis (FEA) tools require

that the geometry of the device be \meshed" with large numbers of simple shapes

like square plates and thin rods. By developing methods that exploit the designer's

natural language, this project has the potential to fundamentally change the way

computation is used in design.10

This project concerns the development of a computational tool that can transform
a sketch into working geometry, an essential step on the path from conceptual design
to detailed design. This brings new computational power to the early phases of
design, which traditionally have had very little computational support. Conventional
computational tools are of little use in the early design phases because they require
detailed design information which is simply not known until later in the design process.

FEA tools, for example, require a complete description of the geometry, as well as
the material properties and external loading, before they can compute the stresses on
the mechanical components in the design. By introducing new computational power
into the early phases of design, this project has the potential to greatly accelerate the
design process.

During conceptual design, a high premium is put on examining a large number
of designs in the hope of �nding at least one good solution. The more designs that
are explored, the better are the odds of discovering a good solution. By developing
methods for automatically generating design variants, this project may lead to a more
successful conceptual design process, perhaps producing solutions that would not be

obtained with traditional design methods.

1.2 The Approach

1.2.1 Introduction

Figure 1-15 illustrates the basic paradigm that SketchIT uses to transform a sketch

into working geometry and to generate alternative designs. There are two processes.
In the �rst, SketchIT reverse engineers and generalizes the original design. The

10An historical note: we originally began by examining the spoken language that designers use

to describe mechanical artifacts [47]. We quickly discovered that it is very di�cult to describe a

mechanical device to another person with spoken language alone. This task becomes much easier if

sketches are used. Spoken language is still useful: It augments the sketch by providing additional

information about the intended behavior of the device. In much the same spirit, SketchIT uses a

state transition diagram to annotate the sketch with the intended behavior.

30 CHAPTER 1. INTRODUCTION

result of this process is what we call a \qualitative con�guration space" (qc-space)

representation of the design. In the second process, SketchIT uses this qualitative

representation as a design speci�cation, from which it generates multiple implemen-

tations for the design.

QC
Space

Rev
er

se
 E

ng
in

ee
r

&
G

en
er

al
ize

Rev
er

se
 E

ng
in

ee
r

&
G

en
er

al
ize

Synthesize

Original
Design

New
Designs

Figure 1-15: The problem solving paradigm.

SketchIT's problem solving paradigm is fundamentally one of abstraction fol-
lowed by re-synthesis. SketchIT begins with abstraction because an abstract repre-

sentation simpli�es the reasoning process: A sketch contains an enormous amount of

geometric detail, much of which is irrelevant to the behavior. The abstraction process

strips away the irrelevant detail to expose what is essential.
SketchIT's qualitative con�gurations space representation is the key technology

allowing the program to perform its tasks. In the next section we describe this
representation in more detail; then we briey revisit our problem solving paradigm

and �nally we describe our implementation.

1.2.2 The Representation

SketchIT's task is to transform a given sketch into families of working geometries.

To do this the program must �rst determine what role each part of the device plays

in achieving the desired overall behavior. This task is made di�cult by the fact that
sketches of conceptual designs are often incomplete and incorrect.

1.2. THE APPROACH 31

Sketches are incomplete in the sense that details are missing: a sketch may depict

something about the kind of implementation the designer wants to use, rather than

a speci�c, working implementation (e.g., the designer may want a cam and follower,

but not necessarily with the exact dimensions and shapes shown in the sketch). A

sketch can be incorrect in the sense that it contains a collection of fragments that

implement pieces of the design, but those individual pieces are not integrated to

produce the desired overall behavior.

As SketchIT overcomes the aws in the original sketch and identi�es the role

of each part of the device, it is reverse engineering the design. The usual reverse

engineering problem is to identify what role each part of the device plays in achieving

the actual overall behavior. Here, however, the problem is to determine what role

each part should play in order to achieve the desired overall behavior.
In the domain of sketches of the sort in Figure 1-2, the overall behavior is achieved

through a sequence of interactions between pairs of engaging faces.11 We call a pair
of engaging faces an \engagement pair". (All of the engaging faces in Figure 1-2
are shown as bold lines.) If each engagement pair provides the correct behavior, the
overall device will behave as desired. Hence, the goal of reverse engineering is to
determine what behavior each engagement pair should provide.

After reverse engineering the sketch, SketchIT generates new implementations
for the device by generating new implementations for its engagement pairs. For exam-
ple, Figures 1-4 and 1-7 are two alternative implementations SketchIT produced for
the circuit breaker by selecting di�erent implementations for the engagement pairs.
In both of these designs, each individual engagement pair provides the required be-
havior identi�ed by reverse engineering, hence each design as a whole provides the

desired overall behavior.
To generate these kinds of design alternatives, SketchIT must be able to repre-

sent the behavior of an engagement pair in a way that abstracts away the particular
implementation, thereby a�ording SketchIT the opportunity to select new imple-
mentations. For this purpose SketchIT uses a novel behavior representation we call

qualitative con�guration space. Qualitative con�guration space (qc-space) is an ab-
straction of the conventional (numerical) con�guration space (c-space) representation

commonly used in robotics (e.g., [34]). Because it abstracts away the implementation
used in the sketch, qc-space generalizes the design.

Because SketchIT represents the behavior of engagement pairs with qc-space,

the goal of reverse engineering is to �nd a qc-space representation of the design that
produces the desired overall behavior. Qc-space, explicitly represents the behav-
ior of individual engagement pairs, rather than the behavior of the overall device.

SketchIT determines the overall behavior by qualitatively simulating the device's

11In general, the behavior of a mechanical device is determined by the interactions between the

shapes of the parts. There are well known design techniques for devices with constant interactions,

such as the gear train and linkage design techniques in Erdman and Sandor [10]. We focus on devices

with time varying interactions because this class of devices is not as well understood.

32 CHAPTER 1. INTRODUCTION

qc-space, using a technique we describe below.

1.2.3 Problem Solving Paradigm

As the previous section described, the end result of the \reverse engineer and gen-

eralize" process in Figure 1-15 is a working qc-space|a qc-space that produces the

desired overall behavior. This section briey describes how SketchIT computes a

working qc-space from the sketch, then how it uses this to generate new designs.

SketchIT begins by abstracting the numerical c-space of the sketch to produce a

qc-space; this initial qc-space represents the actual behavior of the engagement pairs

in the sketch. SketchIT uses qualitative simulation to determine if this initial qc-

space provides the desired behavior (i.e, if the device as initially drawn would work).
If so, SketchIT is done with this step. If not, the program modi�es this initial
qc-space until it does provide the desired behavior.

Once SketchIT �nds a working qc-space for the sketch, the synthesis process
begins. The working qc-space speci�es what behavior each engagement pair should
provide. The synthesis process selects for each engagement pair an implementation

that achieves the behavior speci�ed by the working qc-space.
As we mentioned before, an important property of qc-space is that it abstracts

away implementation: it abstracts away both the motion type (rotation or transla-
tion) of the components and the geometry of the engagement faces. Hence, during
the synthesis process, SketchIT is free to select a motion type for each component

and geometry for each engagement face.12 For example, SketchIT produces the
circuit breaker design in Figure 1-6 by selecting rotation for the motion type of the
lever, rather than the translation used in the original sketch (Figure 1-2). Similarly,
SketchIT produces the circuit breaker design in Figure 1-7 by selecting di�erent
geometries for the cam-follower and push-pair faces.

1.2.4 Implementation: System Overview

Figure 1-16 illustrates the way that SketchIT implements the problem solving

paradigm of Figure 1-15. The reverse engineer and generalize process is a form of
generate and test. The qc-space generator produces candidate qc-space representa-

tions of the sketch and passes them to the simulator. Each candidate qc-space is a
guess at what behavior each engagement pair should provide. The �rst candidate is

an abstraction of the numerical c-space of the sketch; the rest are modi�cations of the

�rst. The simulator computes the overall behavior of each candidate, which the tester

then compares to the desired behavior described in the state transition diagram. This

process continues until the tester �nds a qc-space that behaves as desired.
The synthesis process is implemented with two modules. The �rst module selects

12See Chapter 6 for the conditions under which changing motion type is possible.

1
.2
.
T
H
E
A
P
P
R
O
A
C
H

33

QCS
Generator

Simulator

Tester
Motion
Types

Interaction
Library

OK
FAIL

Parametric
 Models &
 Constraints

 Sketch
 & Desired
Behavior

QC-Space

F
igu

re
1-16:

O
v
erv

iew
of

th
e
S
k
e
t
c
h
I
T

sy
stem

.

34 CHAPTER 1. INTRODUCTION

a motion type for each component. The second module selects a geometric imple-

mentation for each engagement pair from a library of interactions. Each library entry

contains a pair of parameterized faces and constraints that ensure that the faces im-

plement a speci�c kind of behavior. SketchIT assembles the parametric geometry

and constraints from the library selections into a BEP-Model.

The bulk of SketchIT's e�ort is spent reverse engineering and generalizing the

design. Because SketchIT synthesizes new designs by using a library of interactions,

the synthesis process is straightforward and computationally inexpensive.

1.2.5 Assumptions

SketchIT's domain is the class of mechanical devices composed of rigid bodies,
springs, pivots, slider joints, and actuators,13 subject to the assumptions below, used
(primarily) to make simulation of the candidate qc-spaces tractable.

� Fixed-axis devices: Each component in the device has a single degree of freedom,
the device as a whole may have multiple degrees of freedom.

� Springs have one end �xed to ground.

� Inertia-free motion: The inertial terms in the equations of motion are negligible
compared to the other terms (e.g., due to large applied forces or high damping).

� Inelastic collisions: When two objects collide, they remain in contact rather

than bouncing apart.

� Frictionless contacts. When two parts touch, there is no friction to resist one
part sliding against the other.

� Monotonic engagements: When one component (the driving component) pushes

another component (the driven component), the driven component's motion will

not change direction as long as the driving component's motion does not.

� Engagement faces are at.

Assuming that devices are �xed-axis precludes linkages. This is necessary because
SketchIT uses qualitative simulation techniques and it is generally accepted that

linkages cannot be e�ectively analyzed using qualitative techniques.14

If both ends of a spring can move, the spring's deection is the di�erence between

the motion of its two ends. With a qualitative representation, di�erences in motion

are subject to ambiguity. If, on the other hand, one end of a spring is �xed, its

13In SketchIT's world an actuator is a motion source, i.e, an actuator applies velocity to a body.
14See for example [46].

1.3. GUIDE TO THIS DOCUMENT 35

deection is determined by the absolute motion of its other end. Hence, by requiring

springs to have one end �xed, we reduce ambiguity in the simulation.

The inertia-free assumption is equivalent to computing motion using quasi-statics

rather than dynamics. Because our equations of motion are assumed to have no inertia

terms, they are �rst order di�erential equations. Hence, this assumption is often

referred to as \�rst order dynamics." Although assuming negligible inertia greatly

simpli�es the qualitative simulation process, it does not pose much of a restriction:

Sacks and Joskowicz [43] examined 2500 mechanisms in a catalog of mechanisms and

found that 80% could be modeled accurately with �rst order dynamics.

In its current implementation, the program can handle only at faces. Extend-

ing the program to handle other kinds of faces (e.g., circular faces) requires a more

complete program module for computing the numerical c-space of the original sketch.
(SketchIT uses the numerical c-space only to obtain an initial qc-space.) However,

computing numerical c-space is a relatively well understood problem (see for example,
[34], [1], [26], and [2]). All other modules of the program, including those that reason
about behavior, are completely adequate to handle devices with non-at faces.15

1.3 Guide to This Document

This document is organized around the system ow chart shown in Figure 1-16. There
is one chapter for each of the modules in the program, as well as a chapter describing
the behavior representation (qc-space).

� Chapter 1 introduces the project, describing the motivation and problem solving

paradigm.

� Chapter 2 describes qc-space.

� Chapter 3 begins the discussion of the modules in the SketchIT system by

describing the qc-space generator.

� Chapter 4 describes the qualitative simulator module.

� Chapter 5 describes the tester module.

� Chapter 6 describes the motion type selector module.

� Chapter 7 describes the interaction library module.

15Because (almost) all of the entries in the current interaction library use at faces, the current

program produces only designs that use at faces, regardless of the kinds of faces used in the original

sketch. We have, however, begun developing library entries that use circular faces.

36 CHAPTER 1. INTRODUCTION

� Chapter 8 reviews related work.

� Chapter 9 discusses the contributions of this project and discusses future work.

� Appendix A: Provides a complete listing of the interaction library.

� Appendix B: Describes the sketching tool.

� Appendix C: Describes our techniques for computing numerical c-space.

Chapter 2

The Representation: QC-Space

QCS
Generator

Simulator

Tester
Motion
Types

Interaction
Library

OK
FAIL

Parametric
 Models &
 Constraints

 Sketch
 & Desired
Behavior

QC-Space

2.1 Introduction

SketchIT's task is to transform a sketch into a set of working geometries, including
alternative implementations for the design. For the class of devices that SketchIT
is concerned with, the overall behavior is achieved through a sequence of interactions

between pairs of engagement faces. Hence, to transform a sketch into even a sin-

gle working geometry, SketchIT must be able to represent and reason about the

behavior of interacting faces. So that SketchIT can generate alternative designs,

SketchIT's representation for behavior must abstract away any particular imple-
mentation, allowing SketchIT the opportunity to select new implementations.

Because con�guration space (c-space) is commonly used to represent the behavior
of interacting faces, our search for a behavioral representation began there. Although

c-space is capable of representing the behaviors we are interested in, it does not

adequately abstract away the implementation of a behavior. Thus, our next step
was to examine ways to extend c-space to obtain a new representation that does

37

38 CHAPTER 2. THE REPRESENTATION: QC-SPACE

adequately abstract away the implementation. We discovered that abstracting c-

space into a qualitative form produces the desired e�ect; hence we call SketchIT's

behavioral representation \qualitative con�guration space" (qc-space).

Because qc-space is an abstraction of c-space, this chapter begins with a brief

description of c-space, then describes how to abstract c-space to produce qc-space.

2.2 Con�guration Space

2.2.1 Representing Engagement Faces

Con�guration space represents the way mechanical components can interact. Con-

sider the rotor and slider in Figure 2-1. If the angle of the rotor, UR, and the position
of the slider, US , are as shown, the faces on the two bodies will touch. Hence, these
particular values of UR and US de�ne a con�guration of the bodies in which the faces
touch. We can represent this pair of values as a point in the plane shown in Figure 2-2.
This plane is called a con�guration space plane (cs-plane).

US

UR

Figure 2-1: A rotor and slider. The slider translates horizontally. The interacting
faces are shown with bold lines.

If we determine all of the con�gurations of the bodies in which the faces touch,

and plot the corresponding points in the cs-plane, we get a curve. This curve, called
a con�guration space curve (cs-curve), is shown in Figure 2-2. The shaded region

\behind" the curve indicates blocked space, con�gurations in which one body would

2.2. CONFIGURATION SPACE 39

Rotor Angle, UR

S
lid

er
P

os
iti

on
, U

S

Figure 2-2: The c-space of the rotor and slider. The inset �gures show the con�gura-
tion of the rotor and slider corresponding to selected points on the cs-curve.

40 CHAPTER 2. THE REPRESENTATION: QC-SPACE

penetrate the other. The unshaded region \in front" of the curve represents free

space, con�gurations in which the faces do not touch.

To be more precise, the shading indicates which con�gurations in the neighbor-

hood of the curve are blocked space. The complete blocked space is obtained by

computing the cs-curves for all pairs of faces in which one face is taken from each

body. Here, however, we are concerned with the blocked space of only those pairs of

faces that are intended to interact. Our task is to design geometry for these faces such

that they provide the desired interaction. In a later stage of design, other surfaces will

be added to connect these faces to produce complete solids. At that point, we must

compute the complete blocked space to ensure that the blocked space contributed by

the connective surfaces does not preclude any of the desired interactions.

In general, c-space represents the con�gurations of a device in which the bodies
do not touch (free space), the con�gurations in which the bodies penetrate (blocked

space), and the con�gurations in which the bodies just touch (the boundary between
free and blocked space). The dimension of the c-space for a set of bodies is equal to
the number of degrees of freedom of the set. The axes of the c-space are the position
parameters (generalized coordinates) of the bodies.

To simplify geometric reasoning, we assume that devices are �xed-axis. That is,

we assume that each body either translates along a �xed axis or rotates about a �xed
axis. Hence, in our world, the c-space for a pair of bodies will always be a plane (a
cs-plane) and the boundary between blocked and free space will always be a curve
(a cs-curve). However, even in our world, a device may be composed of many �xed-
axis bodies. Thus, the c-space for the device as a whole can be of dimension greater
than two (the dimension is equal to the total number of degrees of freedom of all the

bodies). The individual cs-planes are orthogonal projections of the multi-dimensional
c-space of the overall device.

2.2. CONFIGURATION SPACE 41

2.2.2 Periodic Boundary Conditions

So far we have assumed that the c-space for a pair of �xed-axis bodies is always a

plane (a cs-plane), but now we will be more precise. The c-space for a pair of �xed-

axis bodies will always be two-dimensional, but the topology will be planar only if

the bodies rotate less than a full revolution. If a body does rotates more than a full

revolution, its cs-plane must have periodic boundary conditions. For example, if the

rotor and slider in Figure 2-1 start from some initial con�guration, and the rotor angle

increases through a full revolution, the device will be back in its initial con�guration.

For this to happen, the right edge of the cs-plane must wrap around and connect to

the left edge to form a cylinder, as shown in Figure 2-3. (Similarly, the c-space for a

pair of bodies that both rotate through full revolutions would be a torus.)
For ease of presentation, in the remainder of this chapter as well as most of the

chapters that follow, we will restrict our attention to pairwise con�guration spaces
that are planar.1 Then in Sections 4.7 and 7.7 we will complete our discussion by
providing the details speci�c to non-planar pairwise c-spaces.

S
lid

er
P

os
iti

on
, U

S

Figure 2-3: If the rotor turns through a full revolution, the c-space must have periodic
boundary conditions. Thus, the c-space becomes a cylinder.

1By pairwise c-space we mean the c-space of a pair of �xed-axis bodies.

42 CHAPTER 2. THE REPRESENTATION: QC-SPACE

2.2.3 Representing Springs, Actuators, and Fixed Surfaces

In the previous sections we described how c-space represents the interaction between a

pair of (moving) engagement faces. The devices that SketchIT is intended to handle

may also contain springs, actuators, and interactions with �xed surfaces. In this

section we describe how c-space represents the behavior of these other components.

We use as our example the device in Figure 2-4. The device consists of two

blocks, A and B, which interact through a pair of sloped engagement faces. A spring

is attached to block A, an actuator is attached to block B, and there is a �xed surface

with which B may collide.

fixed surface

A

B

UA

UB

UA

UB

np

sp
rin

g

fixed surface

A p
us

hin
g

B

actuator

motion limit

Figure 2-4: A simple mechanical system and its con�guration space. Block A trans-

lates horizontally, block B translates vertically. A spring pushes A to the right, an
actuator pushes B downward, B can bump into a �xed surface (if the actuator is
turned o�).

We begin with what we already know, the c-space representation for the inter-

action between the faces of A and B (computed using the techniques described in
Section 2.2.1). In the con�guration shown, the faces are touching, and thus this con-

�guration is a point on the cs-curve for the engagement pair. If A moves a small
distance in the positive direction, it will push B a small distance in the positive direc-

tion (assume the actuator is turned o�). The faces will still be engaged in this new
con�guration, and hence we have another point on the cs-curve. Continuing in this

fashion we obtain a diagonal cs-curve with positive slope, as the cs-plane in Figure 2-4

shows. If the faces are touching and A moves in the positive direction while B is held
�xed, the faces will penetrate each other. Hence, the space to the right of the cs-curve

is blocked space. (Alternatively, if B moves in the negative direction while A is held
�xed, the faces will penetrate. Hence, the space below the cs-curve is blocked space.

Either way, we compute the same blocked space.)

2.2. CONFIGURATION SPACE 43

Next we consider the spring attached to block A. The neutral position of this

spring corresponds to a particular position of A we call np. In the cs-plane, the locus

of con�gurations in which A's position is np is an in�nite vertical line. Hence the

neutral position of the spring appears as a in�nite vertical line in the cs-plane.

The neutral position of a spring always appears as a vertical or horizontal line in

the cs-plane, because in SketchIT's world the relaxed state of a spring depends on

the position of only one body (recall that a spring always has one end �xed).

In SketchIT's world, actuators apply a motion to a body until the body reaches

a particular position called the motion limit of the actuator. Once the body reaches

this position the actuator turns o� (i.e., the actuator no longer applies any force or

motion to the body). Because the motion limit of an actuator depends on the position

of only one body (just as the neutral position of a spring does), a motion limit always
appears as a vertical or horizontal line in the cs-plane. Hence, the motion limit of the

actuator attached to block B is a horizontal line in the cs-plane of Figure 2-4.
Finally, we consider the interaction between the �xed surface and block B. (Be-

cause the actuator pushes B away from the �xed surface, this interaction will not
happen until after the actuator turns o�.) Because this interaction is independent of
A's position, the corresponding cs-curve is an in�nite horizontal line in the cs-plane.

Because the �xed surface limits B's motion in the positive direction, there is blocked
space above the cs-curve.

As Figure 2-4 illustrates, a cs-plane may contain both �nite cs-curves representing
the interaction between a pair of faces (the diagonal cs-curve), and in�nite boundaries
representing spring neutral positions, motion limits of actuators, and interactions with
�xed surfaces. As a means of di�erentiation, we use solid lines for �nite cs-curves and

dashed lines for in�nite boundaries. For shorthand convenience we often refer to both
�nite cs-curves and in�nite boundaries as cs-curves.

2.2.4 Computing Motion Using C-Space

The previous sections described how c-space represents the behavior of all the di�erent
kinds of parts that compose the devices in our world. Our eventual goal is to determine

what behavior for each part is su�cient for the device as a whole to behave as desired.
Hence, at some point we will need to compute the overall behavior of a device from

a description of the behavior of each of its parts. For mechanical devices composed

of rigid bodies and springs, the overall behavior is characterized by the time history
of the motion of each rigid body in the device.

Physics has already given us a well known set of equations for computing the

time history of the motion of each body in a device, namely Newton's laws. Thus,

in this section we describe how we use Newton's laws to compute motion. We use

as our example the device consisting of a rotor and slider in Figure 2-5. To start

with, we compute the motion of the rotor and slider by reasoning directly from their

structure. Then, we repeat the process, this time computing the motion directly from

44 CHAPTER 2. THE REPRESENTATION: QC-SPACE

the c-space description of the device.

Imagine that the rotor and slider are in the initial positions shown in Figure 2-5

and that a force (F) pushes the slider to the left. As it moves to the left, the slider

will strike the rotor and begin to push it out of the way. Assuming the collision is

inelastic, the rotor and slider will remain in contact, and the slider will continue to

push the rotor out of the way. Eventually the slider will push the rotor far enough

that the two parts disengage. Assuming the motion of the rotor is inertia-free, the

rotor will then stop; the slider will continue to move as long as the force is applied.

US

UR

F

Figure 2-5: Force F pushes the slider to the left.

We can describe the motion of the rotor and slider as a sequence of con�gurations
in c-space. We call this sequence of con�gurations the trajectory through c-space.
Figure 2-6 shows the trajectory corresponding to the motion described above. In the

initial con�guration the rotor and slider are not touching, hence the initial con�g-

uration is in free space. When the motion begins, only the slider moves, and the

trajectory is vertical. While the slider pushes the rotor, the con�guration is a point

on the cs-curve, thus the trajectory follows the cs-curve. Once the engagement is
broken, only the slider moves; the trajectory is once again vertical.

In the physical world forces cause bodies to move, but in c-space forces cause the
con�guration to change. To compute dynamics directly from c-space we treat the

con�guration as a particle in the cs-plane and apply forces directly to this particle.

Cs-curves act like physical surfaces that deect the particle as it moves through c-
space.

2.2. CONFIGURATION SPACE 45

Rotor Angle, UR

S
lid

er
 P

os
iti

on
, U

S

Figure 2-6: The motion of the rotor and slider can be represented as a trajectory
through c-space. The initial con�guration is shown as a dot.

Rotor Angle, UR

S
lid

er
 P

os
iti

on
, U

S

F

Figure 2-7: The motion of the rotor and slider can be computed by treating the

con�guration as a particle with forces applied to it.

46 CHAPTER 2. THE REPRESENTATION: QC-SPACE

Using the particle metaphor we can now compute the motion of the rotor and

slider directly from their c-space, without any reference to the structure of the de-

vice. Figure 2-7 shows the particle we use to represent the con�guration of the rotor

and slider. The force applied to the slider appears in the cs-plane as a force in the

direction of the slider's c-space coordinate (vertical). Similarly, any forces applied to

the rotor would appear in the cs-plane in the direction of the rotor's c-space coordi-

nate (horizontal). The initial con�guration of the rotor and slider de�nes the initial

location of the particle. The net force on the particle causes it to move vertically,

until it strikes the cs-curve. The cs-curve deects the particle as it continues to move

upward. Finally, the particle reaches the end of the cs-curve and once again moves

directly upward.

The example in Figure 2-7 illustrates a general principle: using the particle
metaphor, it is always possible to compute the motion of the bodies in a device

directly from the device's c-space description.
As this example has demonstrated, we make simplifying assumptions about the

motion of bodies. We assume that collisions are inelastic, that motion is inertia-
free, and that contacts are frictionless (we did not explicitly mention the frictionless
assumption in this example). If the collision between the slider and rotor were actually

elastic, the rotor would bounce o� the slider and the trajectory in c-space might look
like Figure 2-8. If there were appreciable inertia, the rotor would continue to move
after it disengaged the slider, producing a trajectory like the one in Figure 2-9. If
there were substantial friction between the rotor and slider, the slider might not be
able to push the rotor and the device would jam.

We make these assumptions about the motion of bodies because they greatly

simplify the trajectories through c-space and hence simplify reasoning about the tra-
jectories. These assumptions are not overly restrictive: Sacks and Joskowicz [43]
examined 2500 mechanisms in a catalog of mechanisms and found that 80% could be
modeled accurately with these assumptions.

2.2. CONFIGURATION SPACE 47

Rotor Angle, UR

S
lid

er
 P

os
iti

on
, U

S

Figure 2-8: The trajectory of the rotor-slider device if collisions are elastic.

Rotor Angle, UR

S
lid

er
 P

os
iti

on
, U

S

Figure 2-9: The trajectory of the rotor-slider device if there is appreciable inertia.

48 CHAPTER 2. THE REPRESENTATION: QC-SPACE

2.3 Qualitative Con�guration Space

In the last section we showed how to represent in c-space the behavior of all of the

components in SketchIT's domain. We also demonstrated that we can use c-space

to reason about behavior: we can compute the overall behavior of a device directly

from the c-space description of its parts. Hence, c-space has many of the properties

we require of a behavioral representation.

To facilitate synthesizing new designs, we require a behavioral representation with

one other essential property: it must generalize the design by abstracting away the

implementation of the behaviors. As we mentioned at the outset, c-space does not

adequately generalize the design, and hence in this section we extend c-space to

produce a new representation that does. We call this new representation qualitative
con�guration space (qualitative c-space or qc-space).

To illustrate, we use the rotor-slider device from Figure 2-1. The cs-curve in
Figure 2-2 represents the interaction between the face on the rotor and the face on
the slider. Notice that if we extend the slider's face farther upward, we obtain the
same cs-curve. Hence the particular cs-curve in Figure 2-2 represents many pairs of
faces (we discussed just two of the possibilities) and in doing so abstracts away the

particular geometry of the rotor and slider. However, the cs-curve is still too speci�c
for our purposes.

To see why, we examine the c-space trajectory that describes the motion of the
rotor and slider (Figure 2-6). As the trajectory moves vertically through the cs-
plane, it is deected to the right by the cs-curve. In physical terms, the slider

pushes the rotor counterclockwise. The essential behavior|the slider pushing the
rotor counterclockwise|is the physical manifestation of the cs-curve deecting the
trajectory to the right. Hence, any cs-curve that deects the trajectory to the right
will produce the same qualitative behavior (i.e., the slider pushing the rotor counter-
clockwise).

Consequently, to generalize the design far enough for our purposes, we want to
identify a class of curves that displace the trajectory to the right. There are many

curve shapes that would do this, but if we generalize only to the class of mono-

tonic curves, we make tractable the task of computing trajectories through multi-
dimensional c-spaces (see Chapter 4).2 Hence, we generalize to monotonic curves.

In addition to its shape, a single cs-curve has two other properties that we can
vary, the location of each end point. In this example there is only one constraint on

the locations of the end points: one end point must be on either side of the initial
vertical segment of the trajectory (otherwise the \particle" will miss the curve, i.e.,

the slider will miss the rotor). Hence, we generalize to monotonic curves that have
one end point on either side of the initial segment of the trajectory.

Figure 2-10 shows our generalization of the c-space of the rotor and slider. We

2A multi-dimensional c-space occurs when a device is composed of many �xed-axis components.

2.3. QUALITATIVE CONFIGURATION SPACE 49

represent the end points of the generalized cs-curve and the starting point of the tra-

jectory with landmarks. Landmarks are quantities with constraints on their relative

ordering, but which do not have absolute values. In Figure 2-10 for example, A, B,

and C are landmarks on the UR axis; all we know about their values is that A < B

< C (which ensures that one end point of the curve is one either side of the initial

segment of the trajectory). The generalized cs-curve is a monotonic curve with pos-

itive slope. (All of this assumes that blocked space is on the appropriate side of the

curve as shown.) Any particular (i.e., numeric) cs-curve whose end points satisfy the

conditions expressed by the landmark orderings, and whose shape is monotonic with

positive slope, will produce the same qualitative behavior as the original.

Figure 2-10 is an example of what we call qualitative con�guration space (qc-

space). Qc-space, which is summarized in Figure 2-11, is SketchIT's primary rep-
resentation of behavior. It inherits all of the desirable properties of c-space that we

described in Section 2.2, and in addition adequately generalizes the design.

UR

U
S

A B C

D

E

F

Figure 2-10: The generalization of the c-space for the rotor and slider. The cs-

curve represents any monotonic curve, but is shown as a straight line for the sake
of convenience. The values A through F are landmark values rather than speci�c

numerical values. The landmark values are constrained to have the ordering shown.

In c-space the interaction between a pair of faces is a cs-curve, but in qc-space the

interaction is a qcs-curve (i.e., a qualitative con�guration space curve). A qcs-curve
represents a family of monotonic cs-curves that all have the same qualitative slope.

Qualitative slope is the obvious notion of describing curves as horizontal, vertical,

50 CHAPTER 2. THE REPRESENTATION: QC-SPACE

Qualitative Con�guration Space

� The interaction between a pair of faces is represented with a qcs-curve.

� Spring neutral positions, actuator motion limits, and interactions with �xed

surfaces are represented by in�nite boundaries.

� Qcs-curves are monotonic and have a qualitative slope.

� Landmark values denote the end points of qcs-curves and the axis crossings of

in�nite boundaries.

� The relative locations of qcs-curves and in�nite boundaries are encoded by the
ordering of the landmark values.

Figure 2-11: The Qualitative Con�guration Space Representation.

Figure 2-12: There are eight types of qcs-curves. For convenience, the diagonal curves

are drawn as straight lines, but they represent any diagonal monotonic curve.

positively sloped, or negatively sloped. We often used the term diagonal slope to

refer to both positively and negatively sloped curves. When the four qualitative

slopes are combined with the two possible locations of blocked space, the result is the
eight qualitatively di�erent cs-curves in Figure 2-12.

In qc-space, the locations of qcs-curves and in�nite boundaries are de�ned by

landmark values: A pair of landmark values de�nes the location of each end point

of a �nite qcs-curve; one landmark value de�nes the axis crossing of each in�nite

boundary. The ordering of the landmark values encodes the relative locations of the

qcs-curves and in�nite boundaries.

Implicit in the qc-space representation is the assumption that each interaction is

2.4. USING QC-SPACE TO FIX A SKETCH 51

monotonic. This was true of the rotor and slider, but there are devices with non-

monotonic interactions. Figure 2-13 shows one example in which the cs-curve is a

piece of a sine curve. However, this interaction can be split into two monotonic

interactions (one with negative slope and one with positive slope) by spitting the

piston face into two faces. SketchIT requires that the user break non-monotonic

interactions into a set of monotonic interactions.

US

US
UR

UR

Figure 2-13: The c-space for this lever and piston is a section of a sine curve. If the

face of the piston is split in half the c-space becomes two monotonic interactions.

2.4 Using QC-Space to Fix a Sketch

SketchIT uses qc-space as a tool for determining what behavior each part of the

sketch ought to provide. The qc-space that SketchIT computes directly from the
sketch is the program's �rst hypothesis about the behavior of each part. SketchIT
tests this hypothesis by qualitatively simulating the overall behavior of the qc-space

and comparing this to the desired behavior described with a state transition diagram

(e.g., Figure 1-3b). If this qc-space produces the correct overall behavior, SketchIT

is �nished with this step. Otherwise SketchIT must modify the qc-space until it

does produce the desired behavior (or until SketchIT determines that the qc-space

is not capable of producing the desired behavior).

52 CHAPTER 2. THE REPRESENTATION: QC-SPACE

Figure 2-11 illustrates that there are only two ways of modifying a qc-space:

changing the qualitative slope of a qcs-curve and changing the relative locations of

two qcs-curves.3 Hence the program searches for a working qc-space by applying just

these two kinds of modi�cations. Once SketchIT �nds a qc-space that produces the

desired behavior, the program produces working geometry by using a library to map

the qc-space back to real geometry. The library, described in Chapter 7, contains

implementations for each kind of behavior that a qc-space can represent.

The remainder of this section provides an example of SketchIT in action, illus-

trating how it uses qc-space to transform a sketch into working geometry. The exam-

ple, shown in Figure 2-14, consists of two translating blocks that interact through a

pair of sloped faces. The desired behavior is for the spring to push block A against

block B, driving B into the stop (the �xed surface).
For the particular geometry shown in the �gure, the device does not work: block

A cannot drive block B into the stop. The qc-space trajectory in the accompanying
qc-space shows the actual behavior: the spring pushes block A into block B; A pushes
B towards the stop; A and B disengage (before B reaches the stop); B comes to rest;
and A continues to the right until the spring relaxes.

Because this qc-space does not produce the desired behavior, SketchIT must

repair it. In this case, there is exactly one modi�cation that will �x the qc-space
(i.e., of all of the particular ways the program could apply the two general kinds of
modi�cations, there is exactly one way that will �x the sketch): SketchIT must
change the relative locations of the diagonal qcs-curve and the horizontal qcs-curve
as shown in Figure 2-15.4

While there is only one particular modi�cation that will repair the qc-space, there

are many ways to map this modi�cation to the geometry of the device. Figure 2-
16 shows three possibilities: the face on A can be extended, the face on B can be
extended, and the �xed surface can be lowered.

This example illustrates an important point: often many di�erent changes to
physical geometry map to the same change in qc-space. Thus, the number of ways

to modify physical geometry is often much larger than the number of ways to modify
qc-space. This is one of the reasons why qc-space is a convenient design space.

Also note the intuitive diagnosis of the failure \A doesn't push B far enough to
reach the stop." In qc-space, \push" is a technically precise term meaning a diagonal

qcs-curve. Similarly, \push far enough to reach the stop" means that the diagonal

3Changing the qualitative slope subsumes choosing which side of the curve is blocked space. For

example, the slope of curve A in Figure 2-12 can be changed to produce curve E. In addition, for

short hand convenience, we use the expression \the relative locations of the qcs-curves" to refer to

the locations of both qcs-curves and in�nite boundaries.
4At �rst glance, one might suggest two ways of repairing the qc-space: making the diagonal

qcs-curve longer or lowering the horizontal qcs-curve. However, because locations in qc-space are

relative rather than absolute, these are really the same repair, i.e., changing the relative locations

of the diagonal qcs-curve and the horizontal qcs-curve (as shown in Figure 2-15.)

2.4. USING QC-SPACE TO FIX A SKETCH 53

qcs-curve (representing the pushing interaction) must reach the horizontal qcs-curve

(representing the stop). As this example illustrates, qcs-space represents behavior

(e.g., \pushing" and \far enough") rather than implementation. Thus, by modifying

qc-space we modify behavior directly. Once we �nd the desired behavior, we then

map to implementation. As Figure 2-16 illustrates, there are many ways to map from

behavior to implementation.

fixed surface

A

B

UA

UB

UA

UB

np

sp
rin

g

fixed surface

A p
us

hin
g

B

Figure 2-14: A simple mechanical device and its qc-space. Block A translates hori-
zontally, B translates vertically, a spring pushes A to the right, B can bump into a
�xed surface. The arrow in the qc-space shows the actual behavior of this device.

UA

UB

np

sp
rin

g

fixed surface

A p
us

hin
g

B

Figure 2-15: The qc-space of the two blocks modi�ed to produce the desired behavior.

54 CHAPTER 2. THE REPRESENTATION: QC-SPACE

A

B

A

B

A

B

Figure 2-16: Three of the possible ways to implement the qc-space modi�cation used

in Figure 2-15: extend the face on A, extend the face on B, and lower the �xed

surface.

Chapter 3

The QC-Space Generator

QCS
Generator

Simulator

Tester
Motion
Types

Interaction
Library

OK
FAIL

Parametric
 Models &
 Constraints

 Sketch
 & Desired
Behavior

QC-Space

3.1 Introduction

SketchIT uses generate and test to reverse engineer the sketch of a device. The goal
of reverse engineering is to determine what behavior each part ought to provide, and

hence the generator's task is to produce hypotheses about the behavior of each part.

The generator expresses each of its hypotheses as a candidate qc-space description
of the design. For example, Figure 3-1 shows a candidate qc-space the generator

produced for the circuit breaker from Chapter 1. To test a hypothesis, SketchIT
qualitatively simulates the candidate qc-space and compares the result to the desired

overall behavior.

This chapter describes how the generator produces candidate qc-spaces: The �rst
candidate is an abstraction of the numerical c-space of the original sketch; the other

candidates are modi�cations of the �rst.1 There are only two kinds of modi�cations

1The generator performs a few tasks which are not essential to an understanding of the program's

operation and which are more appropriately discussed in later chapters where their signi�cance is

apparent. See Sections 4.6.2, 4.6.3, and 4.7.

55

56 CHAPTER 3. THE QC-SPACE GENERATOR

LMA LM4 LM14LM2

LM17

LM8

LM16

LM10

LM5

LMB LM9 LME LM11

Hook
Position

Lever
Angle

LM15

LM3

LM12

LMD

LMC

LM18

LM1

LMA LM4 LM14LM2 LMB LM9 LME LM11
Lever
Angle

pushrod-stop

motion limit

pushrod-spring

push-pair

lever-spring
lever-spring

le
ve

r-
st

op

cam-fo
llower

hook=cold

hook=hot

LM17

LM8

LM16

LM10

LM5

Hook
Position

hook=cold

hook=hot

LM15 LM3 LM12 LMD LMC LM18 LM1

Pushrod
Position

Pushrod
Position

pu
sh

ro
d-

st
op

m
ot

io
n

lim
it

pu
sh

ro
d-

sp
rin

g

Figure 3-1: A candidate qc-space for the circuit breaker.

3.2. ABSTRACTING C-SPACE TO QC-SPACE 57

possible for a qc-space: changing the relative locations of two qcs-curves, or changing

the qualitative slope of a qcs-curve.2

3.2 Abstracting C-Space to QC-Space

As noted, the �rst candidate qc-space is a qualitative version of the numerical c-space

of the original sketch. A qc-space is de�ned by the qualitative slopes and relative

locations of the qcs-curves. SketchIT obtains the qualitative slope of a qcs-curve by

abstracting the slope of the corresponding numerical cs-curve: SketchIT computes

the numerical slope of a straight line connecting the end points of the cs-curve, then

matches this to one of the qualitative slopes in Figure 3-2. SketchIT takes the
relative locations of the qcs-curves directly from the locations of the cs-curves in the
numerical c-space diagram.

Figure 3-2: The eight di�erent qualitative slopes. For convenience, the diagonal
qcs-curves are drawn as straight lines, they can have any shape so long as they are
monotonic.

We could have used general purpose techniques for computing con�guration space

(see, for example, [34], [1], [26], and [2]), but because SketchIT requires only the
locations of the curve end points, we developed simpli�ed, special purpose techniques

that compute just this information. The simplifying insight was that for �xed-axis
devices with at faces, we need to handle only six di�erent kinds of interactions: a

rotating face interacting with a translating face, two rotating faces, two translating

2An implicit assumption in this discussion is that the number of parts in the device is �xed. If we

relax this assumption, there are four additional ways to modify a qc-space: adding new qcs-planes

by adding bodies to the device; adding new qcs-curves by adding pairs of engagement faces, springs,

and actuators; deleting qcs-planes; and deleting qcs-curves. Relaxing this assumption would allow

the program to generate a wider range of design variants. However, we use this assumption in order

to limit search. In e�ect, we search only that part of the design space that is close to the original

sketch.

58 CHAPTER 3. THE QC-SPACE GENERATOR

faces, a rotating face interacting with a �xed face, and a translating face interacting

with a �xed face.3 Appendix C describes our techniques for two of these interactions.

3.3 Reducing Search

The brute force approach|exhaustively enumerating all possible values for the lo-

cation and slope of each qcs-curve|is clearly impractical in any non-trivial design

task. As a result we have identi�ed two sources of knowledge that allow us to prune

the search space: knowledge about the mapping from the sketch to qc-space and

knowledge about trajectories in qc-space.

3.3.1 Mapping to QC-Space: Small Targets

There are circumstances in which small variations in the geometry of the sketch pro-
duce qualitative changes in the behavior. When the program detects these conditions,
it asks the designer well focused questions about his intent.

One such circumstance occurs when a numerical cs-curve is nearly vertical or
nearly horizontal. If the cs-curve really is vertical or horizontal, the interaction is
stop behavior (i.e., one body limits the motion of another); but if the cs-curve is
sloped even very slightly, the interaction is pushing behavior (i.e., one body pushes
the other). A small change in the slope of the cs-curve produces a qualitative change

in behavior. Thus, when the program identi�es a numerical cs-curve that is nearly
vertical or nearly horizontal, it asks the designer if the interaction is intended to
provide stop behavior.

Another set of circumstances occurs when the end points of two numerical cs-
curves are coincident, or nearly so. This is likely to have been intentional, because it

corresponds to a common and useful piece of behavior: if two cs-curves connect end to

end, the device can slip from one engagement pair to the next with no disengagement
in between. Hence if two numerical cs-curves (nearly) connect end to end, the program

asks the designer if a smooth transition between engagement pairs was intended.

The \V" in the top of Figure 3-1 illustrates the use of these questions in the
circuit breaker example. The program notices that the cs-curve for the lever-stop

engagement pair is nearly vertical and asks if we intended stop behavior; in this case
we did. The program then asks if the end points of the lever-stop cs-curve and the

cam-follower cs-curve are intended to be coincident; again they are, in order to allow
the device to slip from one pair of engagement faces to the other without disengaging.

Finally, the program notices that the other ends of the two cs-curves have a coordinate

3We implemented only the �rst and last of these, because that was enough for the three examples

we used to test SketchIT, and because computing c-space curves is a relatively well understood

problem that was not a focus of this work.

3.3. REDUCING SEARCH 59

in common and asks us if this was intended, but this is just coincidental. The \V" in

the �gure reects our answers to these questions.

The program asks questions when it detects small targets in c-space, but notice

that these questions are very sharply focused. For example, when the program notices

a vertical or horizontal curve, it does not ask the user \what did you mean?", but

rather asks the very speci�c question, \is this intended to be a stop?"

The generator examines the c-space of the sketch for the presence of small targets

before it abstracts the c-space to qc-space.

3.3.2 Debugging Rules

In Section 2.2.4 we demonstrated that the behavior of a device can be described as a
trajectory through c-space. For example, Figure 2-6 shows the trajectory describing

the behavior of a device composed of a rotor and slider.
Because we can describe the behavior of a device as a trajectory through c-space,

we can describe the desired behavior as a desired trajectory. The topology of the
c-space can have a strong inuence on whether the desired trajectory (and hence the
desired behavior) is easy, or even possible. This is equally true in qc-space.

We have begun exploring the use of (but have not yet implemented) debugging
rules that examine why a particular qc-space fails to produce the desired trajectory,
based on its topology. If we can diagnose these kinds of failures to produce the
desired trajectory, we may be able to generate a new qc-space by judicious repair of
the current one. Several of the debugging rules we have explored are:

� If the qc-space has a funnel-like topology that \traps" the trajectory, the qcs-

curves should be moved to eliminate the funnel.

� Any qcs-curve that is never touched by the trajectory is useless, and should be

moved.

� If a trajectory terminates at a spring neutral position before it reaches a desired

encounter with a particular qcs-curve, the neutral position should be moved to

the other side of that qcs-curve.

Another kind of debugging strategy is to try to determine which qcs-curves are
likely to be correct (i.e, provide a suitable behavior), so that the modi�cations can

be focused on the other qcs-curves. One approach to this strategy is to simulate each
arc of the state transition diagram individually to determine which arcs produce the

desired transitions (i.e., for each state in the diagram, check if the external inputs

for the arc leaving that state causes a transition to the next state). The qcs-curves
used to achieve the desired transitions are likely to be correct. Modi�cations should

be focused on the other qcs-curves.

60 CHAPTER 3. THE QC-SPACE GENERATOR

Chapter 4

The Simulator

QCS
Generator

Simulator

Tester
Motion
Types

Interaction
Library

OK
FAIL

Parametric
 Models &
 Constraints

 Sketch
 & Desired
Behavior

QC-Space

4.1 Introduction

Chapter 3 described the qc-space generator, which produces a sequence of candi-
date qc-spaces for the sketch. Each of these candidates describes one set of possible
behaviors for each part of the sketch.

A qc-space is an implicit description of behavior: qc-space describes the kinematics

of the device, that is, it describes all possible positions the device's parts can occupy.

This chapter describes the simulator SketchIT uses to make explicit the behavior of

a candidate qc-space. The behavior is characterized by the motion the device's parts
exhibit in response to the external inputs speci�ed by the state transition diagram.

The simulator computes all possible global behaviors of a candidate qc-space (i.e.,
all possible motions of the parts) so that the program can determine if the candidate

is capable of providing the desired behavior. If so, during the synthesis process, the

program will generate working implementations from the qc-space.
The simulator begins by identifying the forces on each part, then uses a qualitative

61

62 CHAPTER 4. THE SIMULATOR

version of Newton's laws to compute the motion of each part. That motion continues

until some event (e.g., a collision) changes the nature of the forces. At this point the

simulator stops, recomputes the forces, then continues simulating. Because this is a

qualitative simulation, ambiguities can arise concerning what will happen next; our

simulator produces an envisionment by determining all possible sequences of events.

To use Newton's laws (i.e., the Newtonian formulation of the equations of motion)

one begins by drawing a free-body diagram for each body. A free-body diagram is a

graphical depiction of a body in which it is isolated from the other bodies it engages by

replacing the engagements with force vectors. Newton's laws then produce a system

of algebraic and di�erential equations that relate the sum of the forces to the time

rate of change of momentum of the body. The solution to this system of equations

contains values for the forces and the motion of the body.
Unfortunately, Newton's laws do not work as easily with a qualitative represen-

tation. If we simply used qualitative versions of the engagement force vectors, there
would be a signi�cant amount of ambiguity in the force sums.1 Hence, computing
motion with a qualitative representation introduces new di�culties and requires spe-
cial techniques. One technique we use is to represent each engagement by the type
of constraint it applies to a body, rather than representing the engagement with an

engagement force.
To illustrate what we mean by type of constraint, consider the three blocks in

Figure 4-1. The spring pushes block A to the right, the actuator pushes block C
to the left. In SketchIT's world, all actuators are assumed to be motion sources,
that is, they assign position as a function of time. Block B, the block in the middle,
experiences two engagement forces, one from A and one from C. Because the forces

are in opposite directions, the qualitative sum of these forces is ambiguous.
However, we know that B will move to the left. Why is this? We know that

the force C applies to B is whatever force is necessary for C to achieve its assigned
motion. We call this kind of engagement a \motion constrained engagement" because
it constrains the motion of the body to which it is applied.

The spring's deection determines the spring's force on A. In an inertia-free world,
A will transmit the spring force to B. Thus, A applies a known force to B. In contrast

to a motion constrained engagement which assigns motion, this kind of engagement
assigns force. We call this kind of engagement a \compliant engagement" because it

assigns force in the same way that a compliant member (e.g., a spring) does.

One of our basic principles is that a motion constrained engagement overpowers

a compliant engagement. Hence, because there is a motion constrained engagement
pushing B to the left and a compliant engagement pushing B to the right, B must

move to the left.

This example illustrates the kinds of techniques our simulator uses to compute

1Each component of a qualitative vector is a qualitative scalar. A sum of qualitative scalars is

subject to ambiguity. Because a qualitative vector has many scalar components, there are many

ways for a sum of qualitative vectors to be ambiguous.

4.2. FORCES 63

actuator

A B C

positive

Figure 4-1: The three blocks slide along a frictionless horizontal surface. The spring
pushes block A to the right, the actuator pushes block C to the left

the behavior of a device. In the following sections, we will describe the simulator in
more detail, describing our representation for forces and engagements, our techniques
for computing motion, and our techniques for determining when an event changes
the motion. We initially focus on devices whose rotating parts turn less than a full
revolution; then in Section 4.7 we describe additional techniques used to simulate
devices containing parts that do rotate through full revolutions.

4.2 Forces

As the example in Figure 4-1 illustrated, computing motion in a qualitative world
requires special techniques for reasoning about forces. In this section, we describe
some of the special techniques we use. First we describe how to simplify forces by

reasoning about their projections on the degrees of freedom of the bodies to which
they are applied. Then we describe the particular issues involved in representing

the two primary kinds of forces in SketchIT's world: spring forces and engagement
forces.

4.2.1 Force Projections

Because we are restricting our attention to �xed-axis bodies, the only component of

a force that has any e�ect on the motion of a body is the projection of the force
along the degree of freedom of the body. Hence, we can simplify forces, without
introducing inaccuracies, by reasoning only about their projections. The advantage

of this simpli�cation is that it greatly reduces the ambiguity in force sums.

We describe a projection with two properties, direction and magnitude. Because

we are using a qualitative representation, we describe the direction as having one
of the three standard values of +, -, or 0. The direction is + if the force has a

64 CHAPTER 4. THE SIMULATOR

fo
rc

e

projection
DOF

positive

Figure 4-2: The block has a translational degree of freedom: it is constrained to
translate along the horizontal dotted line.

component in the direction of positive motion, he direction is - if the force has a
component in the direction of negative motion, and the direction is 0 if the force is

perpendicular to the direction of motion. Similarly, we describe the magnitude as 0
if the force has zero magnitude, or 1 if the force has non-zero magnitude. For brevity
we use the term qualitative force to refer to the projection of a force onto the degree
of freedom of the body to which the force is applied.

Consider, for example, the force applied to the block in Figure 4-2. Because the

block is constrained to move horizontally, only the horizontal projection of the force
has any e�ect on the block's motion. Because the projection points in the negative
direction and has non-zero magnitude, we describe the force qualitatively as (-, 1).

The notion of projecting a force onto the degree of freedom of a body works just
as well if the body rotates instead of translates. In this case, we �rst compute the

moment of the force about the axis of rotation, then project this moment onto the

axis of rotation.
A torque is the moment of a set of forces which produce no net force. An example

is the torque that the stator of an electric motor applies to the rotor. The torque

causes the rotor to spin, but there is no net force that would cause the rotor to

translate. The projection of a torque onto the degree of freedom of a rotating body

is, as one would expect, the projection of the torque onto the axis of rotation. The

projection of a torque on the degree of freedom of a translating body is zero.
When computing the motion of rotating bodies, we reason about moments and

torques; when computing the motion of translating bodies, we reason instead about
forces. However, in both cases the same set of rules apply. Hence we express the rules

in terms of \generalized forces." The term generalized force is a generic name for the

class consisting of forces, torques, and moments. For brevity, we refer to generalized
forces as simply forces.

4.2. FORCES 65

B

UB

UA

A

Figure 4-3: A translates horizontally, B translates vertically.

4.2.2 Spring Forces

In our world, springs always have one end �xed to ground and one end attached to a
movable component. The spring is relaxed when the movable component assumes a
speci�c location called the neutral position. We compute the magnitude of a spring
force in the obvious way: If the movable component's position is greater than the

neutral position, the spring applies a negative force (represented qualitatively as (-,
1)). If the component's position is less than the neutral position, the spring applies a
positive force (represented qualitatively as (+, 1)). Finally, if a spring is relaxed, (+,
0), (-, 0), and (0, 0) are all valid qualitative representations of its force.

4.2.3 Engagement Forces

Engagement forces prevent one engagement face from penetrating the other. The

direction of an engagement force is opposite the direction of motion that would cause

penetration. For example, if block A in Figure 4-3 moves in the positive direction,
it will penetrate B, assuming B does not move. However, if B applies a su�cient
negative force, it will prevent the penetration. Thus, the engagement force B applies

to A has a qualitative direction of \-."

Unlike a spring force whose direction changes with the state of the spring, the

direction of an engagement force is a �xed property of the geometry. However, just

as with a spring force, the magnitude of an engagement force may be either 0 or 1.
The simulator determines which direction of motion causes penetration, and hence

the direction of an engagement force, by examining qc-space. In qc-space (and
c-space), con�gurations in which one object penetrates another are represented as

blocked space. The motion that would cause penetration is the motion that would

take the con�guration into blocked space. For example, Figure 4-4 shows the qcs-
curve for the interaction of blocks A and B from Figure 4-3. If A and B are engaged

66 CHAPTER 4. THE SIMULATOR

UA

TA

UB

TB

Figure 4-4: The current con�guration is shown as a dot. TA is a trajectory that would
cause A to penetrate B. TB is a trajectory that would cause B to penetrate A.

and A moves in the positive direction shown by trajectory TA, the con�guration will
enter blocked space (i.e., the parts would penetrate). To prevent this penetration,
B must apply a force in the negative direction. Hence the force has a qualitative
direction of \-". Similarly, if B moves in the positive direction shown by trajectory
TB, the con�guration will enter blocked space. To prevent this penetration, A must

apply a force in the negative direction. Hence the force has a qualitative direction of
\-".

Figure 4-5 shows the directions of the qualitative engagement forces superimposed
on the qcs-plane. Because qualitative forces are the projections of the real forces onto
the degrees of freedom, they are always parallel to the coordinate axes of the qcs-
plane. The �gure also shows the outward normal to the qcs-curve. Conveniently,

the outward normal is always the vector sum of the directions of the two qualitative
engagement forces. Hence, a simple way to compute the directions of the qualitative

engagement forces is to take the vector components (i.e., the components along the

qc-space axes) of the normal to the qcs-curve.
As an example of using the qcs-curve normal to compute force directions, consider

the pair of blocks and qc-space shown in Figure 4-6. Because the normal to the qcs-
curve has no vertical component, the engagement force that A applies to B has no

component along B's degree of freedom. In our qualitative force vocabulary, the force
has direction \0". Similarly, because the horizontal component of the normal is in

the negative direction, the force of B on A has qualitative direction \-".

Notice that this analysis is consistent with the fact that the interaction is a stop

(which can be determined from the fact that the cs-curve is vertical). For a stop,

there is always one body that can move freely and one body whose motion is limited.
The body that moves freely is the one that experiences the force with a qualitative

direction of \0" (in this case, block B).

4.2. FORCES 67

UA

FBA

UB

FAB

N

Figure 4-5: N is the normal to the qcs-curve, FAB is the force of A on B, FBA is the
force of B on A. The normal is the vector sum of the directions of these two forces.

UA

UB

UA

UB

NA

B

Figure 4-6: A pair of blocks and their qc-space. Block B translates vertically, A

translates horizontally. N is the normal to the qcs-curve.

68 CHAPTER 4. THE SIMULATOR

4.2.4 Engagement Types

In Section 4.1 we introduced the concept of engagement type. In this section we

describe how the simulator determines the type of an engagement so that it can use

the principles developed in Section 4.1 to determine the motion of an object from the

types of its engagements. First, however, we must add to the concept of engagement

type: Each engagement actually has two engagement types, one from the viewpoint

of each of the two bodies. For example, in Figure 4-1 the engagement between B and

C is motion constrained from B's viewpoint, and compliant from C's viewpoint.

The simulator begins determining engagement types by identifying the two kinds

of engagements which are easily identi�able as motion constrained. First, if an en-

gagement is a stop, it is motion constrained from the viewpoint of the body whose
motion is limited. Figure 4-6 shows an example in which block B limits A's motion;
the engagement is motion constrained from A's viewpoint. Second, if a body engages

another body that is positioned by an actuator, the engagement is motion constrained
from the viewpoint of the �rst body. In Figure 4-1, for example, the engagement be-
tween B and C is motion constrained from B's viewpoint because C is positioned by
an actuator.

After the simulator identi�es all of the easily identi�able motion constrained en-

gagements, it uses propagation to identify the remaining ones. Figure 4-7 illustrates
this propagation technique. Fixed surface S acts like a stop and applies a motion
constrained engagement to A. P 0

mce is the actual engagement force that the �xed sur-
face applies to A, and Pmce is the qualitative version of this force (i.e., Pmce is the
projection of the actual force onto A's degree of freedom). Similarly, F 0 and F are

the actual and qualitative forces, respectively, that block A applies to B, and M 0 and
M are the actual and qualitative forces, respectively, that block B applies to A. (The
forces with primes are the actual forces, those without are the qualitative forces.)
According to Newton's second law, F 0 and M 0 are equal and opposite.

Block A will apply a motion constrained engagement to B if A can propagate P 0
mce

to B. This requires that P 0
mce �F

0 > 0. Because F 0 and M 0 are equal and opposite, we

can rewrite this expression as P 0
mce � (�M

0) > 0. Finally, by inspection of Figure 4-7

we see that P 0
mce � (�M

0) > 0 if and only if M and Pmce have opposite qualitative
directions. Thus, to test if A applies a motion constrained engagement to B, we
simply check if M and Pmce have opposite qualitative directions, which indeed they

do.

We can generalize this example into a rule:
Motion Constrained Rule

To test if engagement E between body-1 and body-2 is motion constrained from
body-2's viewpoint, identify the qualitative forceM that body-2 applies to body-1 at

engagement E. If there is a motion constrained engagement that applies a qualitative

force Pmce to body-1, and M and Pmce have opposite qualitative directions (i.e., one
is + and the other is -), then E is motion constrained from body-2's viewpoint.

The simulator applies this rule with a forward chaining rule engine. In e�ect,

4.3. INTERFACE MOTION 69

B
UB

UA

A
PMCE

P'MCE

M

M'

F F'S

Figure 4-7: A translates horizontally, B vertically. Fixed surface S engages A.

the simulator examines all engagements and for each engagement examines both
viewpoints. If the engagement type is unknown and the motion constrained rule
is satis�ed, the simulator labels the engagement as motion constrained from that
viewpoint. The simulator repeats this procedure until no new labels are generated. If

all of the motion constrained engagements produced by stops and bodies positioned
by actuators are labeled to start with, this procedure will identify and label all of
the remaining motion constrained engagements. Any unlabeled engagements must
be compliant because there is no other choice.

To illustrate this procedure, we apply it to the blocks in Figure 4-1. We begin by

labeling the simple cases: the engagement between B and C is motion constrained
from B's viewpoint because C is positioned by a motion source. Using the propagation
rule, we determine that the engagement between A and B is motion constrained

from A's viewpoint. The rule cannot be applied to any of the other engagements.
Hence, the engagement between A and B is compliant from B's viewpoint, and the

engagement between B and C is compliant from C's viewpoint.

4.3 Interface Motion

In the example of Figure 4-1 we decided that block B will move to the left because

there is a motion constrained engagement pushing it in that direction. Now imagine

that the actuator attached to block C pushes C to the right instead of the left. C
will still apply a position constraint to B, and thus the engagement is still a motion

constrained engagement. The force of C on B will still be negative (i.e., the direction

of the engagement force will still be -). However, block B will move to the right.

A convenient way to describe the di�erence between the two situations is in terms

of the relationship between the direction of C's motion and the direction of the force

70 CHAPTER 4. THE SIMULATOR

C applies to B: With the actuator moving to the left, they are in the same direction.

In this case we say that C is applying an \advancing engagement." With the actuator

moving to the right, C's motion and the force C applies to B are in opposite directions,

and we say that C is applying a \retreating engagement." (If the actuator holds C

�xed, we say that C is applying a \stationary engagement.")

Just as the type of the engagement is de�ned from the viewpoint of a particular

body, the interface motion is de�ned from the viewpoint of a particular body. For ex-

ample, when the actuator pushes C to the left in Figure 4-1, the engagement between

B and C is advancing from B's viewpoint and retreating from C's.

Now we have four properties with which to describe an engagement: the interface

motion|whether the engagement is advancing, retreating, or stationary; the direction

of the engagement force|[+, -, or 0]; the magnitude of the engagement force|[0
or 1]; and the type of the engagement|motion constrained or compliant. All four

properties are necessary for computing the motion of a body.

4.4 Computing Motion

Because we use a qualitative representation, and because bodies are �xed-axis, we

describe the motion (velocity) of a body with the standard values of +, -, or 0,
paralleling our representation for forces.

We have three basic principles for computing motion. First, the motion is always
in the direction of the net force. This principle is derived from the inertia-free assump-
tion (with inertia, the acceleration is in the direction of the net force but the velocity

need not be). Second, a motion constrained engagement overpowers a compliant en-
gagement. Now that we have four properties with which to describe an engagement,
we can in fact be more precise about the second principle: An advancing motion
constrained engagement causes motion in the direction of the engagement force; a
stationary motion constrained engagement prevents motion opposite the engagement

force; and a retreating motion constrained engagement allows motion opposite the
engagement force, not faster than the speed of retreat. Third, a pair of engagement

faces that are touching, but instantaneously separating, apply no engagement force

to each other. This happens if the engagement is retreating from both viewpoints, or
stationary from one viewpoint and retreating from the other.

Using these principles, we can derive all consistent combinations of applied en-

gagements and the motion resulting from each consistent combination. Table 4.1

shows these results. For example, because block B in Figure 4-1 experiences a mo-
tion constrained, -, advancing engagement (from C) and a compliant, +, retreating

engagement (from A), rule 8 tells us that B's motion is -.
The rules in the table that contain \BI" (bad input) in the motion column indicate

that the user speci�ed a physically unrealizable set of inputs. There are two kinds

of physically unrealizable inputs: an actuator pushing a body into a stop, and two
actuators pushing against each other. Any combination of engagements not listed in

4.4. COMPUTING MOTION 71

rule spring, engagement motion

external motion constrained compliant

force + - + -

+ - adv sta ret adv sta ret adv sta ret adv sta ret

1 � � 2 � � 2 � � � � � � � � BI

2 � � 2 � � 2 � � � � � � � BI

3 � � 2 � � 2 � � � � BI / +

4 � � 2 � 2 � � � � � � � � BI

5 � � 2 2 � � � � � � BI / -

6 � � 2 � 2 � � � � � 0

7 � � 2 � � � � � � +

8 � � 2 � � � � � � -

9 2 � � � � � � � +

10 � � � � 2 � � � +

11 2 � � � � � � � -

12 � � � � � 2 � � -

13 � 2 � � � � � � � 0

14 � � � 2 � � � � � 0

15 � � � � � � � � 0

Table 4.1: A body's motion is consistent with the engagements it experiences if
the motion and the engagements satisfy one of these rules. Any combination of
engagements not listed is inconsistent. 2= one or more. �= zero or more. blank =
none. adv = advancing, sta = stationary, ret = retreating. \BI" (bad input) indicates
that the user speci�ed incompatible inputs: an actuator pushing against a stop or two

actuators pushing against each other. The magnitude of spring forces and external
forces must be 1. The magnitude of engagement forces is unspeci�ed.

the table is inconsistent.
If we know the properties of all of the engagements for a particular body, we

can use the table to determine the motion of that body. The problem with this

approach is that before we can use the rules in the table to determine the motion

of a body, we must know the interface motion of every engagement applied to that
body. The interface motion of an engagement depends on the motion of the body

that applies the engagement. Hence, to compute the motion of a body, we must know
the motion of every body which engages that body. This leads to a chicken and egg

problem. Consider, for example, using the table to compute the motion of the blocks
in Figure 4-1. We cannot compute the motion of block B until we know A's (and C's)

motion, but we cannot compute A's motion until we know B's.

We can use search to alleviate this problem. For example, we could choose a
motion (+, -, or 0) for each body, compute the resulting interface motion for each

engagement, and check Table 4.1 to determine if each body's motion was consistent

72 CHAPTER 4. THE SIMULATOR

with its engagements. If there were inconsistencies, we would choose di�erent motions

and repeat.

We do use search, but the technique we actually use is much more e�cient than

the brute force approach just suggested. We use an approach variously referred to

as \opportunistic search" or \constraint propagation with assumed states and back-

tracking." The remainder of this section describes our search technique.

The basic principle behind our search technique is that if the simulator can, by

some means, compute the motion of a particular body, the simulator may then be able

to compute the motion of other bodies that that body engages. One can think of this

as the propagation of motion from one body to the next. The simulator starts this

propagation process by computing the motion of each body positioned by an actuator

(the motion of the body is that of the actuator). Then the simulator attempts to
propagate motion from the bodies with known motion to those they touch. Each

time the simulator computes the motion of a new body, it repeats the process of
propagating motion from the bodies with known motion to those they touch.

The propagation process may stall before the simulator has computed the motion
of all of the bodies. To prevent stalling, the simulator assumes a value for the motion
of bodies that match a particular criteria we describe below. After it has computed

or assumed a value for the motion of each body, the simulator checks to see if the
assumed motions are consistent with the engagements. If not, the simulator repeats
the entire process, but assumes di�erent motions for the bodies whose assumed motion
was inconsistent.

The simulator's criteria for deciding when to assume (rather than compute) a
motion depends on two quantities that we call the \mce-direction" and \k-direction"

of the body. The \mce" in mce-direction stands for \motion constrained engagement."
The \k" in k-direction comes from the variable commonly used to denote a spring
constant, and hence is a mnemonic reference to the term compliant engagement.

The mce-direction represents the directions of all of the motion constrained en-
gagement forces applied to a body: If all the motion constrained engagements are

+, the mce-direction is +; if all the motion constrained engagements are -, the mce-
direction is -; if there are both + and - motion constrained engagements, the mce-

direction is �; and if there are no motion constrained engagements, the mce-direction
is 0. In a similar way, the k-direction represents the directions of all of the compliant

engagement forces, spring forces, and external forces applied to a body.

Our search technique relies on six basic strategies for computing the motion of
a body. These strategies are based on our assumption that it is always possible to
compute the interface motion of motion constrained engagements, but sometimes it

is not possible to compute the interface motion of compliant engagements. These as-

sumptions are true of the examples we tried, but they are not in general true: it is not

always possible to compute the interface motion of motion constrained engagements.2

2We discuss more general approaches later.

4.4. COMPUTING MOTION 73

Strategies for computing motion:

1) The mce-direction and the k-direction represent the directions, not the mag-

nitudes, of all of the forces applied to a body. Hence, even if the mce-direction and

the k-direction are the same direction, that does not mean there is a net force (i.e.,

a non-zero force) in that direction. However in this case, the simulator assumes by

default that there is a net force, and hence motion, in that direction. The simulator

makes this assumption without checking if it already knows enough about the forces

to actually determine their magnitudes.

2) If the mce-direction is opposite the k-direction, the simulator waits until it

knows the interface motion of every motion constrained engagement before computing

the motion of the body. (This follows from our assumption that it is always possible
to compute the interface motion of motion constrained engagements.) If there is an

advancing motion constrained engagement, the body's motion is in the mce-direction.
If there is a stationary motion constrained engagement but no advancing ones, the
motion is 0. If there are only retreating motion constrained engagements, the simu-
lator assumes that the motion is in the k-direction. Again, the simulator makes this
assumption without checking if it already knows enough about the forces to actually

determine if any of the forces in the k-direction have a non-zero magnitude.
3) If the mce-direction is � it is likely that there is a bad input (e.g., an actuator

pushing against a stop) and the simulator waits until it knows the interface motion
of every motion constrained engagement so that it can apply rules 1{6 in Table 4.1
to determine if there actually is a bad input. If those rules do not apply, there are no
bad inputs and the simulator recomputes the mce-direction by ignoring the retreating

motion constrained engagements. To see why it does this, we return to the example
in Figure 4-1. Imagine that the actuator pulls C to the right and there is no spring
attached to A. In this case block B will not move. If we put the spring back, B will
move to the right because of the spring force. We see that the retreating engagement
force that C \applies" to B does not determine B's direction of motion. In general, if

we ignore retreating engagements, we still compute the correct direction of motion.
However, in this case, if the simulator ignores the retreating motion constrained

engagements, it can compute the motion using strategy 1 or 2 (if the k-direction is �
see strategy 4).

4) If the k-direction is �, and the mce-direction is + or -, the simulator reduces

this to one of the previous strategies by ignoring retreating compliant engagements
and recomputing the k-direction. (Rule 3 describes why the simulator can safely
ignore retreating engagements.)

5) If there is no force applied to a body, the body's motion is 0.

6) If the body is positioned by an actuator, the body's motion is that of the

actuator.

74 CHAPTER 4. THE SIMULATOR

A B

Figure 4-8: Two blocks, A and B, which translate horizontally.

After it has computed or assumed the motion of each body using these six strate-

gies, the simulator checks to see if the assumed motions are consistent with the

engagements. If not, the simulator repeats the entire process one more time, but as-
sumes that motion is 0 for bodies whose previously assumed motion was inconsistent
with the engagements. If the second attempt to compute motion produces incon-

sistencies, the simulator fails. For the examples we have tried the simulator always
succeeded in computing motion. We chose our method because it is e�cient and
relatively simple, however, there are other available approaches which are complete
as well as e�cient (see [50]).

To illustrate our strategies, we compute the motion of the blocks in Figure 4-1

for the case in which the actuator pushes C to the left. Because there is an actuator
pushing C, we compute C's motion with strategy 6. Block B has a motion constrained
engagement pushing it to the left and compliant engagement pushing it to the right.
Using strategy 2, B's motion is to the left because the motion constrained engagement
from C is advancing. Similarly, we use rule 2 to determine that A moves to the left.

Now imagine that there is no actuator attached to C. In this case, we use strategy
1 and assume that C moves to the right, in the direction of the compliant engagement
force from B. B experiences opposing compliant engagement forces, but because we
know that the force from C is retreating, we use strategy 4 to determine that the net
force on B is to the right (i.e., we ignore the force from C). Then, using strategy 1,

we assume that B moves to the right. Similarly, using strategies 4 and 1, we assume

that A moves to the right. Checking our assumptions, we �nd that all of the motions
are consistent with the engagements.

For another example, consider the two blocks in �gure Figure 4-8. The engagement

between A and B is compliant from both viewpoints. Using strategy 1 we assume

that A moves to the left. With a second application of strategy 1 we assume that B

moves to the right. Checking our assumptions, we �nd that they are inconsistent: A

cannot push B to the right if A is moving to left, and B cannot push A to the left if B
is moving to the right. Hence, we must change our assumptions and try again. Using

strategy 1, and remembering that the previously assumed motion was inconsistent,
we assume that A's motion is 0. Similarly, we use strategy 1 to determine that B's

motion is 0. This time our answer is consistent: each body experiences a stationary,

compliant engagement which cannot cause motion.
If the k-direction is � because the sum of the compliant engagement forces, spring

4.5. THE NEXT EVENT 75

forces, and external forces is genuinely ambiguous, strategy 4 cannot help us compute

the motion. For example, if the actuator in Figure 4-1 is replaced by a spring pushing

C to the left, the k-direction of all three blocks is �. We cannot compute the motion

unless we know which spring force is larger. In this case, the simulator must branch to

consider all three possibilities: A's spring force is larger, C's spring force is larger, the

two spring forces are equal. Our simulator assumes that a body will not experience

a genuinely ambiguous force sum, and hence the program returns failure if one does.

4.5 The Next Event

Because the motion of a rigid body depends on the applied forces, the motion changes
when and only when there is a change in the nature of the forces. There are four

kinds of events that can change the nature of the forces: an engagement is broken,
an engagement is made, a spring passes through its neutral position, or an actuator
reaches its limit. The �rst kind of event occurs when a trajectory in qc-space following
a qcs-curve reaches the end of that curve;3 the other kinds of events occur when the
trajectory hits a new curve.

Because, in our world, the motion of every rigid body remains either strictly

positive, strictly negative, or zero over a time step, all trajectories in qc-space are
monotonic over a time step. Because the trajectory through a qcs-plane is a projection
of a monotonic trajectory (i.e., a projection of the trajectory through the full multi-
dimensional qc-space), the trajectory through a qcs-plane is also monotonic. To
determine which events happen next, the simulator �rst determines which events

would happen if the monotonic trajectory in each qcs-plane continued until an event
occurs in that plane. Then, the simulator uses constraint propagation to determine
which of the events predicted by the individual planes can happen �rst.

4.5.1 Events in the Plane

The simulator selects methods for computing the events in a qcs-plane based on the
kind of trajectory in that plane. The simulator distinguishes three kinds of tra-

jectories: trajectories along �nite qcs-curves, horizontal or vertical trajectories, and

diagonal trajectories.

3There are two ways that an engagement can break: the trajectory in the qcs-plane moves along

the qcs-curve until it reaches the end, or the trajectory moves perpendicular to the qcs-curve. In

the former case, the two engagement faces that comprise the engagement maintain contact pressure

and slide along one another until one face slides past the other. Figure 4-10 shows an example in

which the sloped face on the lever slides past the sloped face on the hook. In the later case, there

is no contact pressure, and the two engagement faces separate without sliding. An example is the

opening of a pair of electrical contacts. This kind of broken engagement is detected by examining

the interface motion of the engagement faces (Section 4.8.1).

76 CHAPTER 4. THE SIMULATOR

Horizontal and Vertical Trajectories

If the trajectory is horizontal or vertical, the simulator determines the next event by

looking along the direction of motion to see which qcs-curve is reached �rst. In e�ect,

the simulator computes the point of intersection, if any, between the trajectory and

each qcs-curve in the plane. If the trajectory does not intersect any qcs-curves, then

no event will occur in this plane (and thus the motion will continue without bound).

If there are intersections, the simulator sorts them by landmark value to see which

one is reached �rst.

Figure 4-9 shows an example of a horizontal trajectory in which the lever moves to

the left and the hook remains stationary. The �rst event occurs when the trajectory

reaches the cam-follower qcs-curve, that is, when the lever hits the hook.

ca
m

-fo
llo

wer

le
ve

r-
sp

rin
g

ne
ut

ra
l p

os
iti

on

hook=hot

hook=cold
le

ve
r-

st
op

Lever Angle

Hook
Position

Figure 4-9: The reset input pushes the pushrod to the left, the pushrod pushes the
lever clockwise, and the hook is relaxed at its cold neutral temperature (left �gure).

The trajectory in qc-space (thick arrow) is horizontal (right �gure).

Trajectories Along a Finite Qcs-curve

If the trajectory in the plane follows a �nite qcs-curve, the next event occurs when the
trajectory reaches the end of the curve or when the trajectory reaches the intersection

between that qcs-curve and another qcs-curve. We call the point of intersection

between two qcs-curves an \i-point" (short for intersection point). Prior to computing

a simulation, SketchIT computes the locations of all of the i-points. Section 4.6

describes the details of this process, but for our purposes here it is necessary to know

only that the i-points exist.

4.5. THE NEXT EVENT 77

Because the locations of the i-points are precomputed, the simulator computes

the next event by simply looking along the trajectory to determine what is reached

�rst, an i-point or an end point. If the trajectory reaches an i-point �rst, there is

only one next event, namely the trajectory hitting the qcs-curve that intersects the

engaged qcs-curve at that i-point.

If the trajectory reaches an end point �rst, there may be multiple next events.

There is always at least one next event, namely the trajectory reaching the end of

the engaged qcs-curve. Additional next events can occur if several qcs-curves have

this end point in common (i.e., this point is the end point of multiple qcs-curves),

because, as noted earlier, a trajectory reaching a new curve is an event. Hence, if an

end point is reached �rst, the simulator checks if there are multiple next events.

Figure 4-10 shows an example of a trajectory along a qcs-curve. This trajectory
occurs when the lever is moving to the left, pushing the hook out of the way. The �rst

event occurs when the trajectory reaches the end of the cam-follower qcs-curve, that
is, when lever slips o� the left edge of the hook. Because the lever-stop qcs-curve has a
common end point with the cam-follower qcs-curve, the simulator considers the lever-
stop qcs-curve to be a new engagement, albeit only an instantaneous one. (In the
next step of simulation, the motion computation will determine that the trajectory

instantly leaves the end of the lever-stop qcs-curve.)

Lever Angle

Hook
Position

ca
m

-fo
llo

wer

le
ve

r-
sp

rin
g

hook=hot

hook=cold

le
ve

r-
st

op

Figure 4-10: The reset input pushes the pushrod to the left, the pushrod pushes the

lever clockwise, and the lever pushes the hook down (left �gure). The trajectory in

qc-space (thick arrow) follows the cam-follower qcs-curve (right �gure).

78 CHAPTER 4. THE SIMULATOR

Diagonal Trajectories

Consider next the situation in Figure 4-11: the trajectory is diagonal and does not

follow a qcs-curve. To determine which qcs-curves the trajectory reaches, and hence

what events happen next, we need to reason geometrically. The simulator uses a

process of elimination to identify which qcs-curves can be reached: it determines

geometrically all of the qcs-curves that cannot be reached; any remaining qcs-curves

can be reached.

The simulator begins by de�ning a new coordinate system with its origin at the

starting point of the trajectory. Because the trajectory is monotonic, it will remain

entirely in one quadrant of the new coordinate system; we call this the active quadrant.

Because the trajectory remains inside the active quadrant, it cannot reach any qcs-
curve that lies completely outside the active quadrant. Thus, the �rst step in the
process of elimination is to eliminate any curve that lies completely outside the active

quadrant. Figure 4-11 shows an example in which the lever is moving to the right
and the hook is moving upward. The �rst quadrant (i.e., the region above and to the
right of the heavy black coordinates axes) is the active one.

Now imagine a \chain" of qcs-curves that divides the active quadrant into two
regions, only one of which includes the origin. We call the region that includes the

origin the active region. Figure 4-11 shows an example in which the chain is composed

Lever Angle

Hook
Position

ca
m

-fo
llo

wer

le
ve

r-
sp

rin
g

hook=hot

hook=coldle
ve

r-
st

op

Figure 4-11: The pushrod-spring pushes the pushrod to the right, the lever-spring

pushes the lever counterclockwise, and the hook moves towards its cold neutral po-
sition (left �gure). The hook is high enough that the lever cannot miss it. The

trajectory in qc-space (thick arrow) is diagonal (right �gure). The active region of

the qcs-plane is shaded.

4.5. THE NEXT EVENT 79

of the lever-stop and the \hook=cold" qcs-curves; the active region is shown as a

shaded rectangle. The trajectory cannot reach any qcs-curve that lies completely

outside the active region.

There may be more than one chain that separates the active quadrant into two

regions. For example, in Figure 4-11, there are three chains: the lever-stop and

\hook=cold" chain, the cam-follower and \hook=cold" chain, and the lever-spring

and \hook=cold" chain. We call the chain with the smallest active region the smallest

chain. In this example, the lever-stop and \hook=cold" chain is the smallest. By

de�nition, all other chains lie completely outside the active region of the smallest

chain. Any qcs-curve that lies completely outside the smallest active region cannot

be reached. Thus, the second step in the process of elimination is to eliminate any

qcs-curves that lie completely outside the smallest active region.
To construct the chains, the simulator must know which qcs-curves intersect

each other, and where those intersections are located. This is another reason why
SketchIT precomputes the locations of all of the intersection points (i-points).4

When a qcs-curve is partially inside and partially outside the active quadrant, it
casts a \shadow," a region that cannot be reached by a monotonic trajectory. Because
the trajectory cannot enter the shadow, any qcs-curve whose intersection with the

active region lies completely inside the shadow cannot be reached. Thus, the third
step in the process of elimination is to eliminate any qcs-curves that are occluded
by shadows.5 Figure 4-12 shows an example in which qcs-curve C1 casts a shadow
shown as a shaded region. Because qcs-curve C2 is inside that shadow, it cannot be
reached by the monotonic trajectory.

To summarize, any qcs-curve that lies completely outside the active quadrant

cannot be reached. If there is are chains that divide the active quadrant so as to de�ne
active regions, then any qcs-curve that lies completely outside that active region of
the smallest chain cannot be reached. Finally, any qcs-curve that is occluded by a
shadow cannot be reached. All of the remaining qcs-curves, including the ones that
compose the smallest chain, can be reached.

In the example of Figure 4-11, all curves except the \hook=cold" and the lever-
stop curves cannot be reached. There are three possible events: The trajectory can

reach the lever-stop qcs-curve, in which case the lever strikes the hook; the hook can
reach the \hook=cold" qcs-curve, in which case the hook relaxes; and the trajectory

can reach the intersection of these two qcs-curves, in which case the lever strikes the

4See Section 4.6
5In its current implementation the simulator does not check if qcs-curves are occluded by shadows,

and thus the simulator may predict events that are not physically possible. In the worst case, this

could cause the program to accept solutions that do not produce the desired behavior. However,

because shadows occur only infrequently (e.g., there were no shadows in the examples we tried),

this de�ciency in implementation should not cause any di�culties in practice. If this should in the

future prove to be a source of di�culty, the program can be easily extended to check for occluded

qcs-curves.

80 CHAPTER 4. THE SIMULATOR

C1
C2

Figure 4-12: A diagonal trajectory in qc-space (thick arrow). Because qcs-curve

C1 is partially inside the active quadrant and partially outside, it casts a \shadow"
(shaded region). Because qcs-curve C2 is inside the shadow, it cannot be reached by
the monotonic trajectory.

hook at the same instant the hook relaxes. Note that these three events are exactly
the ones that common sense would predict if we performed a mental simulation of
the device in Figure 4-11.

4.5.2 Computing Which Events Happen First

After computing the possible events for each qcs-plane, the simulator uses constraint
propagation to determine which of these events can happen �rst. If, for example, the
lever moves to the right in the lever-hook qcs-plane shown in Figure 4-13, then the
lever must also move to the right in the lever-pushrod qcs-plane shown in Figure 4-14.
If, for simplicity's sake, we assume the pushrod is at rest against the pushrod-stop,

the next event in the lever-pushrod qcs-plane occurs when the trajectory reaches

the push-pair qcs-curve, that is, when lever hits the pushrod. (The previous section
describes the next events for the lever-hook qcs-plane.) Now that we have the next
events for these two qcs-planes, lets examine some of the possible choices for which

of these events can actually happen �rst.

Lets assume that in the lever-hook qcs-plane, the trajectory reaches the lever-

stop qcs-curve (i.e., the lever hits the hook), and in the lever-pushrod qcs-plane the

trajectory reaches the push-pair qcs-curve (i.e., the lever hits the pushrod). If the
lever hits the hook, the lever's position must be landmark A. If the lever hits the

pushrod, the lever's position must be landmark B which is greater than landmark
A. Because the lever cannot be in two places at once, we must conclude that these

two events, the lever hitting the hook and the lever hitting the pushrod, cannot both

happen.
Now assume that the lever hits the hook but does not yet reach the pushrod. As

4.5. THE NEXT EVENT 81

Lever Angle

Hook
Position

le
ve

r-
sp

rin
g

hook=hot

hook=cold

ca
m

-fo
llo

werle
ve

r-
st

op

A B

Figure 4-13: The pushrod is at rest against its stop, the lever-spring pushes the lever

counterclockwise, and the hook moves towards its cold neutral position (left �gure).
The hook is high enough that the lever cannot miss it. The trajectory in qc-space
(thick arrow) is diagonal (right �gure). The active region of the qcs-plane is shaded.

Pushrod
Position

Lever Angle

push-pair

le
ve

r-
sp

rin
g

motion limit

pushrod-stop

pushrod-spring

A B

Figure 4-14: When the lever moves to the right in the qcs-plane of Figure 4-13, it

must also move to the right in this qcs-plane.

82 CHAPTER 4. THE SIMULATOR

bounding box

X0 XA XB XC

YC

YB

YA

Y0

X

Y

A

B

C

Figure 4-15: A horizontal trajectory (thick arrow) in the qcs-plane. Because the diag-

onal qcs-curve is monotonic (although we draw it as a straight line for convenience),
the part of the curve between points B and C can be located anywhere inside the
bounding box. The next event occurs when the trajectory strikes the diagonal qcs-
curve, requiring that the trajectory ends inside the bounding box. For no event to
occur, the trajectory must not reach the bounding box.

before, if the lever is to hit the hook, the lever's position must be landmark A. For
the landmark to not reach the pushrod, the lever's position must be to the left of

landmark B. Because landmark A is to the left of landmark B, our assumptions are
consistent. Hence, we conclude that the next event occurs when the lever strikes the
hook. In this case, an event occurs in the lever-hook qcs-plane, but none occurs in
the lever-pushrod qcs-plane.

To compute which events can happen next, the simulator picks one event, possibly

a null event, for each qcs-plane and checks if this set of events places consistent
constraints on the positions of the bodies. If the constraints are consistent (i.e., the

bodies can all be in the required locations at the same time), this set of events can
happen simultaneously, and hence this set of events can happen next. The simulator

repeats this process for each possible combination of events obtained by choosing one

event for each plane.6 If there is more than one consistent set of events, the simulator
generates them all, producing an envisionment.

The position constraints for an event are simple equalities and inequalities between

landmarks. Consider, for example, Figure 4-15 which shows the qc-space trajectory

6The simulator does, however, throw out the combination that consists only of null events, because

that combination corresponds to the current state.

4.5. THE NEXT EVENT 83

of two bodies whose positions are X and Y respectively. The trajectory is horizontal

and starts from the point (X0, Y0). The �rst event occurs when the trajectory reaches

the diagonal qcs-curve. For this event to occur, the trajectory must be somewhere in

the bounding box of the portion of the qcs-curve between point B and point C:

XB < X < XC

Y = Y0
For the null event to occur, the trajectory must not yet reach the bounding box:

X0 < X < XB and Y = Y0

X0XA XB XC

YC

YB

YA

Y0

X

Y

A

B

C

Figure 4-16: A diagonal trajectory (thick arrow) along the diagonal qcs-curve. The
next event occurs when the trajectory reaches the horizontal qcs-curve at point B.

As a second example of constraints, consider Figure 4-16 which shows a trajectory
following a �nite qcs-curve. The �rst event occurs when the trajectory reaches i-point

B:
X = XB and Y = YB

For the null event to occur, the trajectory must not yet reach i-point B:
X0 < X < XB and Y0 < Y < YB
As a third example of constraints, consider the diagonal trajectory shown in Fig-

ure 4-17. There are six possible events.

� The trajectory can reach C1:

X0 < X < XC and Y = YC

The point X = X0, Y = YC is not within the constraints because the trajectory

would have to be vertical, not diagonal, to reach this point. The point X = XC ,
Y = YC is not within the constraints because that is a separate event in which

the trajectory simultaneously reaches C1 and C2.

84 CHAPTER 4. THE SIMULATOR

X0 XA XB XC XD

YC

YD

YB

YA

Y0

X

Y
C1

C2

C3

C4

active region

A

B

C

D

Figure 4-17: The diagonal trajectory (thick arrow) is enclosed by a chain consisting

of qcs-curve C1, C2, and C3. Qcs-curve C4 is inside the active region of the chain.

� The trajectory can reach qcs-curve C2. For this to happen, the trajectory must
be in the bounding box of the portion of C2 between points C and D:

XC < X < XD and YC < Y < YD

� The trajectory can simultaneously reach C1 and C2:

X = XC and Y = YC

� The trajectory can reach C3:

X = XD and Y0 < Y < YD

� The trajectory can simultaneously reach C2 and C3:

X = XD and Y = YD

� The trajectory can reach C4. For this to occur, the trajectory must be inside
the bounding box. In this case, because there are no other qcs-curves with end
points coincident with the end points of C4, the constraints include the end

points:

XA � X � XB and YA � Y � YB

In this example, the constraints for the null event require a little more work

because of the irregular shape of the active region, and the presence of qcs-curve C4

in the middle of the active region. Here, the simulator constructs the constraints

4.5. THE NEXT EVENT 85

X0 XA XB XC XD

YC

YD

YB

YA

Y0

X

Y
C1

C2

C3

C4

Figure 4-18: To compute the position constraints for the null event, the simulator

tiles the active region of the chain. Each shaded tile is a range of positions consistent
with the null event.

as a disjunction of simple constraints. This process is equivalent to tiling the active

region as shown in Figure 4-18. Each tile contributes one pair of constraints to the
disjunction. For example the lower left tile contributes:

X0 < X � XA and Y0 < Y � YA
and the tile second from the bottom, on the left contributes

X0 < X < XA and YA < Y � YD
The simulator uses a very simple tiling technique: There is one column of tiles

for each horizontal landmark from an end point or i-point that lies inside the active

region or is part of the smallest chain. Here there are four such landmarks: XA, XB,
XC , and XD. Similarly, there is one row of tiles for each vertical landmark from an
end point or i-point that lies inside the active region or is part of the smallest chain.

Here there are four such landmarks: YA, YB, YC, and YD. For ease of tiling, the

simulator assumes that the active region is convex.7

7The constraints that the simulator computes from the tiles may erroneously include some 0-

dimensional regions and erroneously exclude some 1-dimensional regions. As an example of the

former error, point (XA,YA) is counted as part of the null event (i.e., as part of the lower left tile)

but is really part of the event in which the trajectory reaches qcs-curve C4. As example of the

latter error, the left edge of the bounding box of qcs-curve C2 (excluding point (XC ,YC)) should be

counted as part of the null event but is not. We can prevent these kinds of errors with more careful

bookkeeping; we have not done this because these kinds of errors do not occur in the examples we

tried.

86 CHAPTER 4. THE SIMULATOR

For a diagonal trajectory for which there is no chain to de�ne an active region,

the simulator can still use the tiling approach to compute the constraints for the null

event. To do this, the simulator de�nes two arti�cial in�nite boundaries located at

in�nity. This guarantees that there will be a chain. The simulator also uses the

arti�cial chains for determining which qcs-curves cannot be reached by the trajectory

(see Section 4.5.1): any qcs-curve that lies completely outside the active region of the

arti�cial region cannot be reached. Figure 4-19 shows an example in which qcs-curve

C1 cannot be reached because it lies completely outside the active region of the chain

composed of the arti�cial horizontal boundary and in�nite boundary C2.

C1
C2

active
region

artificial boundary

ar
tif

ic
ia

l b
ou

nd
ar

y

Figure 4-19: The two arti�cial boundaries are located at in�nity. The horizontal,

arti�cial boundary and qcs-curve C2 de�ne the active region. Qcs-curve C1 cannot
be reached by the trajectory (thick arrow) because C1 is outside the active region.

For each consistent set of events, the simulator's solution to the constraints de�nes

the positions that the bodies occupy when that set of events occurs. These positions
are the initial conditions for the next step of simulation. To consider all possible

qualitatively distinct initial conditions, and hence all possible motions, the simulator
must �nd all tiles that are consistent with a given set of events. For each tile that is

part of a consistent set of events, the simulator must branch the simulation.8

When there is a trajectory following a diagonal qcs-curve, the net constraint for a
particular choice of events may be satis�able only for particular shapes of the diagonal

8Because of the simple tiling technique we use, this can lead to unnecessary branching. For

example, if each of the tiles in the left column in Figure 4-18 is consistent with a particular set

of events, the simulator will have to grow four branches. However, that column could be easily

merged into a single tile, eliminating three branches. Because the examples we tried required only

a very small number of tiles, there was no problem with excessive branching, and hence we did not

implement a subroutine to merge tiles.

4.5. THE NEXT EVENT 87

qcs-curve. This happens when the range of allowed positions (i.e., the positions

consistent with the constraints) is a subset of the interior of the diagonal curve's

bounding box, and that subset contains none of the curve's i-points. Figure 4-20

shows an example in which the curve has no i-points and the net constraint is shown

as a rectangle. For the constraint to be satis�ed, the curve must pass through the

rectangle. If, for example, the curve has the shape shown by the dotted line, the

net constraint cannot be satis�ed. For the examples we have tried, there were no

situations that required constraints on the shapes of the diagonal curves.

The simulator does not currently keep track of the kind of constraint on shape

required in the example of Figure 4-20, and hence, if this kind of constraint is required

for a particular device, the �nal BEP-Model the program generates will be insu�cient

to ensure the desired behavior. A simple remedy is for the program to reject any
designs that require these constraints. A better remedy is for the program to keep

track of these constraints and add them to the BEP-Model for the device.

XA XB

YA

X

Y

YB

Figure 4-20: The trajectory (thick arrow) follows the diagonal qcs-curve. The rect-

angle shows the range of positions consistent with a particular choice of next events.

4.5.3 Unordered Landmarks

Section 4.5.1 discussed how the simulator computes the next events for each qcs-plane.
This section attends to one additional detail necessary to complete that discussion.

Sometimes the landmarks for the initial positions of the bodies (i.e., the positions

at the beginning of a step of simulation) may not be sorted with respect to the
landmarks of the end points and i-points of the qcs-curves. (Recall that an i-point

is the intersection between two qcs-curves.) When this happens, the simulator may

88 CHAPTER 4. THE SIMULATOR

have to enumerate the possible orderings before computing the next events in each

qcs-plane.

Consider, for example, a pair of bodies whose qcs-plane is shown in Figure 4-

21. Imagine that on step N-1 the trajectory is diagonal. Imagine further that step

N-1 results in the null event in this plane, i.e., the trajectory does not hit any qcs-

curves. In this case the trajectory must end somewhere inside the shaded region

(i.e., the active region). Now imagine that on the next step, step N, the trajectory is

horizontal and to the left. Because the initial position can be anywhere in the shaded

region, the trajectory is not located with respect to qcs-curve C: the trajectory could

hit the curve or pass above or below it. As a result, the simulator must branch to

consider all three possibilities.

XA XB XC

YC

YB

YA

X

Y
ste

p
N-1

step N

C

Figure 4-21: The trajectory through a qcs-plane for two consecutive time steps. Dur-
ing step N-1, the trajectory is diagonal with an active region shown by the shaded

rectangle. During step N the trajectory is horizontal.

Now imagine instead that during step N the trajectory is vertical rather than

horizontal. Because the shaded region is to the right of qcs-curve C, and the new

trajectory is vertical, the trajectory cannot reach C. Hence, in this case, even though
the landmarks for the initial position are not sorted with respect to the landmarks of

qcs-curve C, the simulator need not branch.
As this example illustrates, the simulator may sometimes have to branch to con-

sider possible landmark orderings. The general rule is: If the trajectory is in the

direction of a qcs-curve, and the landmarks of the starting point of the trajectory are
not ordered with respect to some of the landmarks of the end points or i-points of

4.6. INTERSECTION POINTS 89

the qcs-curve, the simulator must branch to consider all possible orderings.9

4.6 Intersection Points

In Section 4.5.1 we described how the simulator computes the next events in a qcs-

plane. As we noted there, the simulator must know the locations of all of the in-

tersections between qcs-curves (i-points) in order to compute the next events. In

this section we describe how the simulator computes the location of the intersection

points.

The intersection between a horizontal and a vertical qcs-curve is a well de�ned

point: The x-coordinate of the point is the landmark de�ning the horizontal posi-
tion of the vertical curve, and the y-coordinate is the landmark de�ning the vertical
position of the horizontal curve. Unfortunately, because �nite qcs-curves are mono-

tonic rather than straight lines, the location of the intersection between a diagonal
qcs-curve and any other kind of qcs-curve may be ambiguous.

In fact, if two diagonal qcs-curves intersect each other, the potential ambiguity is
so great that SketchIT does not allow two diagonal qcs-curves to intersect (except
at their end points).10 In the next section we describe the sources of ambiguity and

how the program prevents this ambiguity by ensuring that two diagonal qcs-curves
cannot intersect.11

SketchIT does however allow in�nite boundaries to intersect diagonal qcs-curves.
Section 4.6.3 describes how SketchIT computes the location of these intersections.

4.6.1 The Intersection Between Two Diagonal Qcs-Curves

Consider the intersection of two diagonal qcs-curves, Q1 and Q2 shown in Figure 4-22.
Because the curves can have any shape as long as they are monotonic, the point of
intersection can lie (almost) anywhere inside the intersection of their bounding boxes.

The �gure shows two possible locations of the intersection point (i.e., the point (M0,

N0)) corresponding to two di�erent shapes of qcs-curve Q2. For one shape of the

curve, the intersection is to the left of landmark D (the end point of curve Q3), for
the other it is to the right. Hence, the location of the intersection is ambiguous, even

in qc-space.
If two �nite qcs-curves intersect, one end of each qcs-curve will be useless because

it lies in the blocked space of the other curve (i.e., the trajectory cannot reach that
part of the curve). In the example in Figure 4-22, the portions of the curves below

9In its current implementation our simulator does not branch to consider all possible orderings,

and hence it could fail to compute all of the possible behaviors of a device. While the current

implementation is adequate for the examples we tried, for it to be useful for a wider range of

problems, it must be extended to enumerate all possible orderings.
10i.e., the program does not produce candidate qc-spaces with intersecting diagonal qcs-curves.
11
SketchIT actually ensures that all �nite qcs-curves intersect each other only at their end points.

90 CHAPTER 4. THE SIMULATOR

U1

U2

Q1

Q3

Q2

A B C D E F

G

H

I
J

K
L

M' M'

N'

N'

Figure 4-22: Depending on the particular shape of qcs-curve Q2, the intersection

between Q1 and Q2 may be either to the left or the right of landmark D.

the intersection point are the useless portions. If we discard these portions, there
will be no change in the behavior of the device because the device con�guration can
never reach these portions. However the ambiguity will be eliminated: the qcs-curves
will intersect at their end points (Figure 4-23) and the locations of the end points of

qcs-curves are always well de�ned by a set of ordered landmarks.
Hence, SketchIT requires that qcs-curves are trimmed so that they intersect

only at their end points. One way to do this is to trim the numerical cs-curves

before abstracting the numerical c-space to qc-space.12 Although the location of the
intersection is ambiguous in qc-space, its location in (numerical) c-space is not. Thus,

there is no di�culty in trimming the curves in c-space.
If the bounding box of a diagonal qcs-curve intersects the bounding box of another

�nite qcs-curve, but the qcs-curves themselves are not intended to intersect (i.e., they
do not intersect in numerical c-space), SketchIT must enforce special constraints

to ensure that the curves do not actually intersect. Section 4.6.3 describes how the

program does this.

12In the examples we tried, none of the qcs-curve required trimming, and hence we did not

implement a subroutine to trim numerical cs-curves. However, this is a straightforward extension.

4.6. INTERSECTION POINTS 91

U1

U2

Q1

Q3

Q2

A B D E

G

H

K
L

M'

N'

Figure 4-23: When the useless ends of Q1 and Q2 are removed, the curves intersect

at an end point.

4.6.2 The Intersection Between a Diagonal Qcs-Curves and

an In�nite Boundary

The point at which a diagonal qcs-curve intersects an in�nite boundary may also be
ambiguous. Figure 4-24 shows an example in which qcs-curve Q is intersected by
in�nite boundary IB. We de�ne a new landmark K0, giving the intersection point
(K,K0). Because Q can have any shape as long as it is monotonic, K0 can lie (almost)
anywhere between landmarks B and D (the end points of Q). However, landmark C

(the end point of another qcs-curve) is also between B and D, and thus K0 can lie

either to the left or the right of C.13

We call the point of intersection between an in�nite boundary and a �nite qcs-
curve an i-point. Previously, we used the term i-point to refer to the intersection

between any two qcs-curves, but because SketchIT does not allow �nite qcs-curves

to intersect, we now use this more restrictive de�nition.14

As noted in Section 4.5.1, SketchIT uses the locations of i-points when reasoning
about diagonal trajectories along a qcs-curves. The program also uses the locations
of i-points to construct \chains" when reasoning about a diagonal trajectory through

13It is also possible for K0 and C to be the same landmark, but we do not consider this case.
14
SketchIT does additionally allow in�nite boundaries two intersect other in�nite boundaries

and horizontal and vertical, �nite qcs-curves. However, the locations of these intersections are not

ambiguous. We reserve the term i-point for the allowed intersections that are subject to ambiguity.

92 CHAPTER 4. THE SIMULATOR

A B K' C K' D

I

J

K

L

G

IB

Q

U1

U2

Figure 4-24: Qcs-curve Q can have any shape as long as it is monotonic. Here we show

three possible shapes: bowing upward, straight, and bowing downward. The location

(K0) of the intersection between qcs-curve Q and in�nite boundary IB depends on the
speci�c shape of Q.

4.6. INTERSECTION POINTS 93

the qcs-plane. Hence, ambiguities about the locations of i-points arise when reasoning

about these two kinds of trajectories. When these ambiguities arise, the simulator

could resolve the ambiguities by enumerating the possible locations of the i-points and

branching to consider each choice. However, the bookkeeping is much easier if the

generator enumerates all of the choices up front and generates a candidate qc-space

for each choice. Then each candidate qc-space passed to the simulator includes unam-

biguous locations of the i-points, and hence the simulator encounters no ambiguity.

This is the approach that SketchIT uses.15

We call the landmarks that de�ne the end points of qcs-curves and the locations

of the in�nite boundaries the primary landmarks. The new landmark that we create

for each i-point is called a secondary landmark. For the purposes of the simulator, the

i-points must be completely ordered with respect to the primary landmarks. Also,
all of the i-points for a single qcs-curve must be ordered with respect to each other.

However, they need not be ordered with respect to the i-points of other qcs-curves.
In Figure 4-25, for example, landmark H0 need not be sorted with respect to K0.

A B K' C K' D

I

J

K

L

G

H

H'H'

IB

Q

Z

U1

U2

Figure 4-25: H0 is not ordered with respect to K0.

15Thus, the generator we initially described in Chapter 3 performs a task that we did not describe

there: it enumerates the possible locations of the i-points.

94 CHAPTER 4. THE SIMULATOR

4.6.3 Enumerating Possible I-Point Locations

In this section, we describe the method by which SketchIT enumerates the possible

locations for the i-points: For each diagonal qcs-curve, SketchIT de�nes an i-point

(i.e., SketchIT creates a new landmark) for each in�nite boundary that intersects

that qcs-curve. SketchIT also de�nes an \imaginary" i-point for each primary

landmark spanned by the curve: For each primary landmark that lies in the span

of the curve along the x-axis, SketchIT creates an i-point by intersecting the qcs-

curve with a vertical line through the landmark. Similarly, for each primary landmark

that lies in the span of the curve along the y-axis, SketchIT creates an i-point by

intersecting the qcs-curve with a horizontal line through the landmark.

Every i-point (including the regular, non-imaginary kind) has one primary land-
mark and one new (secondary) landmark. Because the primary landmarks are totally

ordered, and because each i-point has a primary landmark as either its x-coordinate
or its y-coordinate, the i-points for a qcs-curve are partially ordered: Those i-points
whose x-coordinate is a primary landmark form one ordered set, those i-points whose
y-coordinate is a primary landmark form another. To enumerate all possible total
orderings of the i-points, SketchIT simply enumerates all possible ways of inter-

leaving the elements of these two sets (while, of course, maintaining the two partial
orderings).

SketchIT creates the imaginary i-points for two reasons. First, this allows the
program to easily enumerate the possible locations of the regular i-points simply
by interleaving two partially ordered sets. Second, SketchIT uses the imaginary
i-points to ensure that �nite qcs-curves with intersecting bounding boxes do not

intersect except possibly at their end points. The program does this by placing
constraints on the relative locations of the end points and imaginary i-points of the two
curves. Consider, for example, the two curves in Figure 4-26. Here the appropriate
constraints are between end point (A, B) of curve Q1 and the imaginary i-points of
the other curve, Q2. Using the landmark names given in the �gure, the constraints

are: A0 < B and B0 > A.
The generator is the part of the program that actually enforces the non-intersection

constraints (i.e., the kinds of constraints used in the example of Figure 4-26). It does

this by simply rejecting candidate qc-spaces that do not satisfy the constraints.16

4.7 Periodic Boundary Conditions

So far we have considered only pairwise qc-spaces17 that are planar. In this section
we consider cylindrical ones. A pairwise qc-space is a cylinder if one of the two

16Thus, the generator we initially described in Chapter 3 performs a task that we did not describe

there: it �lters out and rejects qc-spaces that do not satisfy the non-intersection constraints.
17By pairwise qc-space we mean the qc-space for a pair of �xed-axis parts.

4.7. PERIODIC BOUNDARY CONDITIONS 95

U1

U2

Q1

Q2

A

B

A'

B'

Figure 4-26: Two non-intersecting, �nite qcs-curves with intersecting bounding boxes.

bodies rotates more than a full revolution and the other either rotates less than a full
revolution or translates.18 Figure 2-3 shows an example.

SketchIT handles a cylindrical qc-space by attening it out into a plane and

adding boundaries at 0 and 2�. When the trajectory through the plane reaches one
of the boundaries, the simulator simply moves it to the other boundary (i.e.,when the
angle reaches 0 the simulator changes the angle to 2�, or vice versa).

The di�culty is how to construct boundaries in qc-space that are located precisely
at 0 and 2�; qc-space is, after all, a qualitative representation. The remedy is to con-

struct the boundaries in the original c-space before abstracting to qc-space. Because
the original c-space is numerical, the boundaries have precise locations there.

The yoke and rotor device from Section 1.1.3 provides us with an example of
a cylindrical qc-space. Figure 4-27 shows the attened out version of the qc-space

SketchIT obtains by unrolling the cylinder and adding boundaries. Because curves

A1 and B2 cross the boundaries, one piece of each these curves is just above the 0
boundary and another piece is just below the 2� boundary.

18If both bodies rotate through full revolutions the qc-space is a torus. SketchIT currently does

not handle toroidal qc-spaces. However, the techniques required to handle a toroidal qc-space are a

direct extension of those currently used to handle cylindrical one.

96 CHAPTER 4. THE SIMULATOR

0 Boundary

2 Boundaryπ

B2
A1

B1

A3

B3

A2

B2
A1

Yoke Position

R
ot

or
 A

ng
le

Figure 4-27: The qc-space for the yoke rotor attened to produce a plane. The labels
on the qcs-curves indicate the names of the interacting faces. For example, curve A1

is the interaction between face A on the yoke and face 1 on the rotor (see Figure 1-12).
Because curves A1 and B2 cross the boundaries, one piece of each of these curves is

just above the 0 boundary and another piece is just below the 2� boundary. Although

the qcs-curves are drawn as straight lines, they can have any shape as long as they
are monotonic.

4.8. SETTING UP THE NEXT STEP 97

4.8 Setting Up the Next Step

Section 4.5 described how the simulator determines when one or more simultaneous

events changes the nature of the forces, requiring the simulator to recompute the

motion of the parts of a device. This section describes how the simulator continues

the simulation after these events occur.

To start the next step of simulation, the simulator must determine which pairs of

engagement faces remain engaged after the terminal events of the previous step and

which do not. The simulator must also determine which inputs are active during the

next step. This section describes how the simulator performs the �rst of these two

tasks. Section 4.9.1 discusses the second task.

4.8.1 Keeping Track of Engagements

At the start of the very �rst step of simulation, the simulator knows which faces
are engaged and which are not (this is part of the initial conditions). To determine

which faces are engaged at the beginning of the next time step, the simulator simply
keeps track of changes in the engagements, i.e., it keeps track of which engaged faces
become disengaged and which disengaged faces become engaged during the current
step.

By computing the events that terminate the current step, the simulator already

does most of the bookkeeping necessary to track the changes in engagements. For
example, every new engagement is marked by an explicit event. Similarly, every
kind of disengagement|except those caused by a process we call \pulling apart"|is
marked by an explicit event. Hence, the only remaining task is to keep track of faces
that disengage by \pulling apart."

By de�nition, \pulling apart" occurs when a pair of faces is engaged and the
interface motion is retreating from both viewpoints, or stationary from one viewpoint

and retreating from the other.19 In this case, the faces instantly disengage, but there

is no change in the nature of the forces, and hence the simulator does not label this
as an event and terminate the current step. To keep track of which faces disengage
by pulling apart, the simulator simply examines the interface motion of each pair of

faces at the start of the current step.

By continuing to apply this continuity principle, the simulator keeps track of the
engagements from one step to the next.

19There are two ways a pair of faces can disengage: one is when the trajectory in qc-space is

(qualitatively) perpendicular to the qcs-curve for the faces, the other is when the trajectory in qc-

space reaches the end of the qcs-curve. The former case is what we call pulling apart, the latter case

is an event that the simulator detects.

98 CHAPTER 4. THE SIMULATOR

4.8.2 Trial Steps

Sometimes when a pair of faces disengages by sliding past each other, either a spring

relaxes or an input turns o� so that the net force causes the faces to instantly re-

engage. In this situation, the simulator will be in error if it assumes that the faces

are disengaged during the next step. To avoid this error, the simulator analyses the

forces that exist when the faces are just on the verge of separating to determine if

the forces actually cause the faces to separate.

The simulator does this by computing a trial step of simulation. The simulator

sets up the next step of simulation as if the faces remain engaged. The simulator

then computes the forces on the bodies to determine if the faces really do disengage.

If they do, the simulator throws away this step of simulation and computes a new
one assuming the faces do disengage. Otherwise, the simulator keeps this step and
continues on.

4.9 Controlling The Simulation

Section 4.4 described how the simulator starts a step of simulation from a known set of
initial conditions. Section 4.5 described how the simulator determines when an event
changes the nature of the forces and hence terminates the current step of simulation.
Section 4.8 described how the simulator determines which pairs of engagement faces

are engaged in the next step of simulation.
In this section we add the last two details that tie all of these pieces together,

allowing us to compute a complete simulation: we describe how the simulator selects
the appropriate external inputs to drive the simulation and how it selects the initial
conditions to start it in the �rst place.

4.9.1 External Inputs

In a conventional (numerical) simulation, external inputs are commonly speci�ed as a

function of time. In our qualitative world, however, this is not possible because time
is not a well de�ned quantity. Instead, we specify the external inputs as a function

of the device state using a state transition diagram. Each node in the diagram is
a list of the pairs of faces that are engaged and the springs that are relaxed. (The

pairs of faces not listed at a node are by default disengaged, the springs not listed
are by default not relaxed.) The arcs are the external inputs that drive the device.

Figure 1-3b, for instance, describes how the circuit breaker should behave in the face

of heating and cooling the hook and pressing the reset pushrod.
Because the external inputs are speci�ed as a function of state, the simulator can

compute the complete simulation in a piecewise fashion by simulating each arc in the
diagram independently. For the circuit breaker, for example, the program simulates

the \hook heats," \hook cools", and \reset" arcs as three separate simulations.

4.9. CONTROLLING THE SIMULATION 99

To simulate an arc, the program �rst computes initial positions for each body from

the state speci�ed by the node at the tail of the arc. The program then applies the

external inputs of the arc and simulates the behavior until the motion either reaches

steady state or stops. Later, the tester (Chapter 5) checks to see if the states at the

end of the simulation of one arc match the initial conditions for the next arc, and so

on. If so, the candidate qc-space is capable of producing the desired behavior and is

accepted.

4.9.2 Computing Initial Positions

To start the simulation of an arc, the program must �rst compute initial positions for

each body. The program derives the initial positions from the list of engaged faces

and relaxed springs speci�ed by the node at the head of the arc. The program does
this using the same kind of constraint propagation it uses in Section 4.5.2 to compute
the next events.

For each pair of engaged faces, the program constructs algebraic constraints that
ensure the initial positions of the corresponding pair of bodies are inside the bounding

box of the qcs-curve for the pair of faces. For each relaxed spring, the program
constructs a constraint that ensures the body attached to the movable end of spring
is located at the spring's neutral position.

By solving these constraints, the program obtains a range of values for the initial
position of each body. The range for a particular body may be large enough that

its initial position is not ordered with respect to the landmarks of the end points
and i-points of the qcs-curves. If this happens, the simulator must branch in order
to consider all possible orderings (see Section 4.5.3), and hence all possible initial
positions consistent with the speci�ed initial state.20

If the constraints on the initial positions are inconsistent (i.e., cannot be satis�ed),

the candidate qc-space is incapable of producing the desired behavior and is rejected.

4.9.3 Will The Simulation Terminate?

One concern in running a simulation is how long the simulation should continue. For

conventional (numerical) simulations, one usually speci�es a time interval. In our
qualitative world, however, it is not possible to specify a time interval because time
is not well de�ned in our qualitative representation. Instead, we simulate until the

motion either reaches steady state or terminates. In this section, we demonstrate

that the simulation will always reach one of these two conditions.
There are three ways in which the motion of a device can continue inde�nitely

in response to a single set of inputs (i.e., the set of inputs applied at a node in the

20Currently, the program enumerates the possible orderings and prompts the user to select one

of the possibilities. This is convenient for debugging purposes. It is a simple extension to have the

program branch to consider all of the enumerated choices rather than prompting the user.

100 CHAPTER 4. THE SIMULATOR

state transition diagram): the device could exhibit cyclic behavior, the device could

asymptotically approach some rest state, or the motion of the parts could reach a

steady state.

First, we consider cyclic behavior. There are three kinds of cyclic behavior: free os-

cillations, such as the oscillation of a mass-spring oscillator; forced oscillations caused

by an oscillating input; and forced oscillations caused by a cycle of engagements, such

as the oscillation of a ratchet pawl that occurs when the ratchet wheel is continuously

rotated.

Because SketchIT's world is inertia-free, there can be no free oscillations. In

SketchIT's world external inputs do not oscillate (they either apply a constant

direction force, apply a constant direction motion, or select a temperature). Hence,

there can be no oscillations caused by oscillating inputs. The application of a sequence
of external inputs with alternating magnitudes can produce forced oscillations. (For

example, the sequence of inputs applied to the circuit breaker causes cyclic behavior.)
However, the single set of inputs applied at a particular node in the state transition
diagram cannot cause forced oscillations.

A device constructed such that its qc-space has periodic boundary conditions can
produce cycles of engagements that lead to forced oscillations. For example, the

yoke and rotor device's qc-space has a periodic boundary condition, and as a result
continuous rotation of the yoke causes a continuous cycle of engagements. Once
SketchIT detects this kind of cycle, it can terminate the simulation because no
new behavior will occur. SketchIT can detect this kind of cycle by checking if the
current state of the device is the same as a previous state. For two states to be the
same, the same engagement pairs must be engaged, the same springs must be relaxed,

and the same inputs must be active.21 For the yoke and rotor, this de�nition of same
state correctly identi�es the behavior of the device as cyclic. An open question is if
there are devices for which this de�nition produces false positives.

To summarize, in SketchIT's world, the only way a device can produce cyclic
behavior in response to a single set of inputs is if the device's qc-space has periodic

boundary conditions. Because SketchIT can detect and terminate this kind of cycle,
the simulation of an arc will never continue inde�nitely as a result of cyclic behavior.

Second, we consider the asymptotic approach to a rest state. A step of simulation
ends because an event occurs, not because a �xed amount of time has elapsed. The

simulator's qualitative representation abstracts away the notion of time duration.

Hence, the time required to asymptotically approach a rest state is abstracted away
and the simulation terminates after a �nite number of steps. Thus, the simulation of
a device that asymptotically approaches a rest state will not continue inde�nitely.

If there are no cycles, the only way that motion can reach a steady state is if the

motion is unbounded, that is, the trajectory in qc-space continues forever without

21Although our procedure for detecting cycles is a simple extension of the current program, we

have not yet implemented it.

4.10. EXAMPLES: ENVISIONMENTS 101

reaching a qcs-curve. Because the simulator exhaustively checks the trajectory for

collision with each qcs-curve, it can determine when no collisions are possible. When

the simulator detects this condition, it terminates the simulation.

Hence, none of the three ways in which motion continues inde�nitely can cause

the simulation of an arc to continue inde�nitely. Of course, if the motion terminates

(i.e., does not continue inde�nitely), so does the simulation. Thus, the simulation of

an arc will always terminate.

4.10 Examples: Envisionments

The last section described how the simulator computes a complete simulation by
simulating each arc of the state transition diagram individually. This section shows
some examples of the output the simulator produces as it simulates an arc. One

purpose of these examples is to illustrate the amount of branching that occurs during
a simulation. The examples are taken from the circuit breaker: the desired behavior is
speci�ed in Figure 1-3b and the particular candidate qc-space is shown in Figure 3-1.

The �rst example is the simulation of the \hook heats" arc. This behavior,
called the trip action, occurs when there is a current overload. Figure 4-28 shows

SketchIT's display of the simulation results. Because the simulator computes an
envisionment, the simulation has a tree structure (node \time-3" is the root). Each
node in the tree corresponds to a step of simulation. By clicking a node with one
mouse button the user obtains the initial conditions for that step; by clicking with
another mouse button, the user obtains a description of the events that caused that

step to terminate. In the discussion below, we summarize the results the user would
obtain by probing the nodes with the mouse.

At time-3 the hook restrains the lever (the lever-stop in engaged), the pushrod
is against its stop (the pushrod-stop is engaged), and the hook heats. Note that
we model the heating of the hook as an instantaneous change in the hook's neutral

position: Before time-3, the hook's neutral position is the \hook=cold" curve in

Figure 3-1, just after time-3, the hook's neutral position is the \hook=hot" curve.
Although the hook's neutral position changes instantly, the hook's physical position
changes gradually in response to the unbalanced force resulting from the change in

neutral position.

As the hook begins to relax, it releases the lever (time-4-zinc-1). As the hook

continues to relax, the lever heads toward a collision with the pushrod. There are

three possible next events: the lever collides with the pushrod (time-7), the hook
reaches its neutral position (time-6), or the lever collides with the pushrod at the

same instant the hook reaches its neutral position (time-5). After the collision at
time-7, there is only one possible next event: the hook reaches its neutral position

(time-8). After the hook relaxes at time-6, there is only one possible next event: the

lever collides with the pushrod (time-9).
As a second example, Figure 4-29 shows the simulation results for the reset action

102 CHAPTER 4. THE SIMULATOR

(i.e, the \reset" arc). The reset action turns a tripped circuit breaker back on after

it has cooled.

The simulation begins at time-3, when the hook is relaxed at the \hook=cold"

neutral position, the pushrod is against its stop (the pushrod-stop is engaged), the

lever is against the pushrod (the push-pair is engaged), and the pushrod is being

pressed. The pushrod pushes the lever which eventually strikes the hook at time-4

(the cam-follower is engaged). As the pushrod continues to push the lever, the lever

pushes the hook out of the way until time-5-zinc-1 when the lever disengages the hook

(the cam-follower disengages). At the start of step time-5 the simulator performs a

single trial simulation step to determine if the lever and hook really do disengage (see

Section 4.8.2).22

After the lever disengages the hook, the pushrod continues to push the lever, and
the hook begins to relax. There are four events that will eventually happen: the

pushrod will reach the end of its stroke, the lever will strike the hook (lever-stop
engages), the pushrod will reach its stop (pushrod-stop engages), and the hook will
reach its neutral position. The �st three of these events always occurs in the order
listed. The fourth event can occur before or after any of the other three events. Each
of the branches that emanate form time-5-zinc-1 corresponds to a di�erent choice for

when the fourth event occurs.
For example, in the branch that terminates at time-10, the sequence of events

is: the pushrod reaches the end of its stroke at the same instant the hook relaxes
(time-8), the lever hits the hook (the lever-stop engages, time-9), and the pushrod
hits its stop (the pushrod-stop engages, time-10). In the branch that terminates at
time-13 the sequence of events is: the hook relaxes (time-7), the pushrod reaches the

end of its stroke (time-11), the lever hits the hook (the lever-stop engages, time-12),
and the pushrod hits its stop (the pushrod-stop engages, time-13).

22The \zinc-1" in \time-5-zinc-1" indicates that a trial step occured.

4.10. EXAMPLES: ENVISIONMENTS 103

Figure 4-28: An envisionment of the circuit breaker's motion during the trip action.

104 CHAPTER 4. THE SIMULATOR

Figure 4-29: An envisionment of the circuit breaker's motion during reset.

Chapter 5

The Tester

QCS
Generator

Simulator

Tester
Motion
Types

Interaction
Library

OK
FAIL

Parametric
 Models &
 Constraints

 Sketch
 & Desired
Behavior

QC-Space

5.1 Current Implementation

During the reverse engineering and generalization process, SketchIT's job is to
determine what behavior each piece of the sketch ought to provide. It does this by
searching for a qc-space description of the sketch that provides the desired overall

behavior.

Chapter 3 described the qc-space generator, which produces a sequence of candi-

date qc-spaces for the sketch. Each of these candidates describes one set of possible

behaviors for each part of the sketch.
A qc-space is an implicit description of behavior: qc-space describes the kinematics

of the device, that is, it describes all possible positions the device's parts can occupy.
Chapter 4 described the simulator SketchIT uses to make explicit the behavior

of a candidate qc-space. The simulator computes all possible motions the device's

parts can exhibit in response to the external inputs speci�ed by the state transition
diagram. The simulator computes the simulation in a piecewise fashion: it simulates

105

106 CHAPTER 5. THE TESTER

each arc of the state transition diagram individually.

This chapter describes the tester that SketchIT uses to compare the simulated

behavior of a candidate qc-space to the desired overall behavior. Because the simula-

tor simulates each arc individually, the tester's job is to determine if the simulation of

one arc reaches the initial conditions of the next arc, and so on. If so, the candidate

qc-space is capable of producing the desired behavior and is accepted.

Because the simulator computes all possible behaviors, the simulation of any par-

ticular arc may branch. Hence the simulation of a single arc may reach several possible

terminal states. To determine if the simulation of one arc reaches the initial condi-

tions of the next, the tester matches each of the terminal states of one arc against the

speci�ed initial state of the next (i.e., to next node in the state transition diagram).

Two states match if the same pairs of faces are engaged and the same springs are
relaxed in the both states. The tester requires that all of the terminal states of one

arc match the initial state of the next. Otherwise it rejects the candidate qc-space
because in this case the device is capable of producing at least one behavior that does
not match the desired behavior.

5.2 A More Powerful Tester

The tester described above is the simplest implementation adequate for the examples
we explored. This section describes how we would construct a more powerful tester.
One of the features of this more powerful tester is that it will support a richer behavior
speci�cation language. This section begins by describing this richer speci�cation

language.

5.2.1 Extending the Behavior Speci�cation Language

We specify the desired behavior of a device with a state transition diagram. In the
current implementation, each node in the diagram is a list of the pairs of faces that

are engaged and the springs that are relaxed. The pairs of faces not listed at a node

are by default disengaged, the springs not listed are by default not relaxed. The arcs
are the external inputs that drive the device.

The more powerful tester will allow additional choices for specifying the states of

engagement faces and springs at a node. Engagement faces will be either engaged,

not engaged, or unspeci�ed. Similarly, springs will be either stretched, relaxed, com-
pressed, or unspeci�ed.

The designer will be able to annotate arcs to specify a desired state for springs
and engagement faces during a transition. For example, the designer may specify that

a particular pair of faces should remain not engaged during a particular transition.

Finally, the designer will be able to specify partially ordered states, that is, a set
of states that can occur in any order.

5.2. A MORE POWERFUL TESTER 107

5.2.2 Extending the Tester

The current tester assumes that, after one set of inputs is applied, the device reaches

steady state before the next set is applied. This assumption is appropriate for the

examples we explored, but is in general too restrictive.

A better approach is for the tester to monitor each branch of the simulation to

determine when the state in that branch reaches the next node in the state transition

diagram. When this happens, the simulator will instruct the simulator to apply the

next set of inputs to that branch.

If all of the branches pass through the desired set of states (i.e., the nodes in the

state transition diagram) in the desired order, the qc-space will surely provide the

desired behavior and will be accepted.
If some of the branches pass through the desired states in the desired order, while

others do not, the qc-space is capable of providing the desired behavior only for
speci�c choices of masses, springs, and actuators. Numerical simulation can be used
to verify the design once these choices have been made. Hence, we can use qualitative
simulation for conceptual design and progress to more precise numerical techniques
(which are more computationally expensive) as more of the design details are selected.

An alternative approach would be to construct additional constraints on the masses,
springs, and actuators that ensure that only the desirable branches of the simulation
are possible. These constraints would be added to the BEP-Models computed from
the qc-space.

108 CHAPTER 5. THE TESTER

Chapter 6

The Motion Type Selector

QCS
Generator

Simulator

Tester
Motion
Types

Interaction
Library

OK
FAIL

Parametric
 Models &
 Constraints

 Sketch
 & Desired
Behavior

QC-Space

6.1 Introduction

This chapter begins discussion of the synthesis process, whose task is to generate

geometry that implements the working qc-spaces computed by the reverse engineer-
ing process. If a qc-space produces the desired behavior, then any geometry that
implements that qc-space will produce the desired behavior.

The motion type selector, which we discuss in this chapter, starts the synthesis

process by selecting a motion type, either rotation or translation, for each part in the
device. In the next chapter we describe the interaction library which selects geometry

for each engagement pair.

6.2 Abstracting Away Motion Type

SketchIT is free to select a new motion type for each part because qc-space abstracts
away this property. More precisely, qc-space abstracts away the motion type of parts

109

110 CHAPTER 6. THE MOTION TYPE SELECTOR

that translate and parts that rotate less than a full revolution. (We consider parts

that rotate through full revolutions below.)

As evidence that a rotating part that turns less than a revolution can be replaced

by a translating part (and vice versa) with no resulting change in behavior, consider

that when the simulator computes motion, it makes no distinctions between these

two kinds of parts. The simulator need not make distinctions because it computes

motion using generalized forces which abstract away a primary di�erence between the

two kinds of parts. Recall that for translating parts the generalized forces are the

usual kind of forces, because these are what e�ect the motion of translating parts.

For rotating parts, the generalized forces are torques and moments of the usual kind

of forces, because these are what e�ect the motion of rotating parts. For both kinds

of parts, the sum of the generalized forces determines the motion. Thus, as long as
the simulator uses generalized forces, the rules for computing motion (i.e, behavior)

do not depend on whether the part rotates or translates.
Qc-space cannot abstract away the motion type of parts that rotate more than

a full revolution. As we discussed in Section 2.2.2, if a part rotates through full
revolutions its coordinate axis in qc-space will wrap around to produce a cylindrical
topology. However, translating parts never produce a cylindrical topology in qc-

space. Thus, there is a qualitative di�erence between these two kinds of parts, and
consequently one kind cannot be substituted for the other.

From a more physical perspective, if a part that rotates through full revolutions
turns far enough in a single direction, it will return to the position from which it
started, without ever having to reverse its direction of motion. The only way that a
translating part can return to the place from which it started is if the part reverses

its direction of motion. Hence, a translating part cannot replace a rotating part that
turns through full revolutions.

In summary, as long a rotating parts rotates less than a full revolution, the use of
generalized forces abstracts away all di�erence between it and a translating part.

By changing translating parts to rotating ones, and vice versa, SketchIT can

generate a rich assortment of new designs, as we saw illustrated in Figure 1-6. The
new designs obtained by changing motion types are completely consistent with the

desired behavior, because they produce the sequence of engagements given in the
state transition diagram.

Chapter 7

The Interaction Library

QCS
Generator

Simulator

Tester
Motion
Types

Interaction
Library

OK
FAIL

Parametric
 Models &
 Constraints

 Sketch
 & Desired
Behavior

QC-Space

7.1 Introduction

The previous chapter described how SketchIT's synthesis process considers all pos-
sible motion types, either rotation or translation, for each component. Here we discuss

how SketchIT implements a qc-space, i.e., how it translates the qc-space into geom-

etry. A qc-space is characterized by the qualitative slope of each qcs-curve, and the
partial orderings of the landmarks. To implement a qc-space, SketchIT must �nd

geometry for each pair of engagement faces, such that the faces produce qcs-curves
that have the correct slope and satisfy the partial orderings of the landmarks.

SketchIT selects an implementation for a pair of faces from a library of in-

teractions. Each library entry contains a pair of parameterized faces and a set of
constraints that ensure the faces implement a monotonic cs-curve with a particular

qualitative slope.1 To facilitate achieving the partial orderings of the landmarks,

1A qcs-curve represents a family of monotonic cs-curves. For a speci�c choice of parameter values,

a library entry produces a single cs-curve. This cs-curve is one member of the family of cs-curves

111

112 CHAPTER 7. THE INTERACTION LIBRARY

each library entry contains algebraic expressions for the end points of the cs-curve

produced by that pair of faces. By selecting a library entry for each qcs-curve, and

assembling the parametric geometry and constraints for each selection, SketchIT

constructs a BEP-Model, a parametric model augmented with constraints that ensure

the geometry provides the desired behavior.

Figure 7-1 shows all possible types of �nite qcs-curves. Because there are eight

types, and the coordinates q1 and q2 can be either rotation or translation, we need a

library capable of implementing 32 di�erent types of interactions.

Figure 7-1: For drawing convenience, qcs-curves are shown as straight line segments;
they can have any shape as long as they are monotonic.

The interaction between a rotating or translating face and a �xed face produces
either a horizontal or vertical, in�nite qcs-curve. These in�nite qcs-curves are in�nite
versions of curves A, C, E, and G inFigure 7-1.2 Because there are four types of in�nite

qcs-curves, and one of the interacting bodies can either rotate or translate while the
other body is �xed, our library must include implementations for 8 additional types
of interactions. Hence, the complete library must include a total of 40 interactions:
32 for �nite qcs-curves and 8 for in�nite ones.

However, by appropriate use of coordinate transformations, we can implement the

40 di�erent kinds of interactions with just 10 di�erent kinds of implementations. Ta-
ble 7.1 show the 10 distinct cases that remain after using coordinate transformations.

In the next section, we describe the library in more detail. Later, we describe how
SketchIT assembles the library entries into a BEP-Model.

7.2 The library

In this section, we describe the interaction library, providing a derivation of several
library entries. The complete library is located in Appendix A.

de�ned by the corresponding qcs-curve.
2The neutral positions of springs and the motion limits of actuators also produce in�nite qcs-

curves, but they do not describe interacting faces, and hence require no geometric implementation.

7.2. THE LIBRARY 113

curve type motion types cases

diagonal both translation 1

diagonal both rotation 2

diagonal translation & rotation 1
horizontal or vertical both translation 1

horizontal or vertical both rotation 1

horizontal or vertical translation & rotation 2
horizontal or vertical translation & �xed 1

horizontal or vertical rotation & �xed 1

Table 7.1: The number of di�erent implementations (cases) required to implement all

possible qcs-curves. \Motion type" refers to the motion type the bodies containing
the faces. The last two table entries correspond to in�nite qcs-curves.

We use as our main example library entries that implement qcs-curve H in Fig-
ure 7-1, for the case in which q1 is rotation and q2 is translation (i.e., rotation in the
negative direction causes translation in the positive direction). We show two di�erent
implementations for this curve.

7.2.1 Cam and O�set Follower

As our �rst implementation for curve H, we use the two at faces whose parame-
terization is shown in Figure 7-2. Our goal is to derive a set of constraints on the

parameters such the faces implement a monotonic qcs-curve with the same slope as
qcs-curve H.

As Figure 7-2 shows, there are 7 parameters that characterize the pair of faces
(we do not count � and x because they measure positions, i.e., they are position
parameters not geometric parameters). To obtain constraints ensuring that the faces

implement qcs-curve H, we must identify the regions in the 7-dimensional parameter
space for which the faces produce a monotonic curve of correct slope. Finding all

such regions, and expressing the result as a set of algebraic constraints is a di�cult, if

not intractable, task. Instead, we look for individual regions for which the constraints
are simple. The more regions we can identify, the more ways the program will have
to implement a design.

To guide us in this search for the simple regions, we take inspiration from the

kinds of geometry that designers commonly use to achieve a particular kind of inter-
action. For example, a common way to implement curve H using the geometry of

Figure 7-2 is if the geometry acts like a cam and o�set follower: a design for which
the translating face does not pass through the pivot of the rotating face. With this

as our inspiration, our goal is to �nd a set of constraints which describe the class of

solutions corresponding to a cam with o�set follower.
Our �rst constraint is that the two faces exist, that is, they have non-zero length.

114 CHAPTER 7. THE INTERACTION LIBRARY

ψ

θ

φ

r

s

L

h

w

x

Figure 7-2: The parameterization of a pair of faces used to implement qcs-curve

H. The rotating face rotates about the origin, its position measured positive coun-
terclockwise with angle �. The translating face translates horizontally, its position
measured positive to the right with x. Shading indicates the back sides of the faces,
i.e., the sides that are inside the solids containing the faces.

De�ning w as the length of the translating face and L as the length of the rotating

face, we trivially obtain:

w > 0 (7:1)

L > 0 (7:2)

To ensure that the translating face does not pass through the pivot (a hallmark

of cam-and-o�set-follower behavior), we de�ne the follower o�set, h, subject to the

constraint:

h > 0 (7:3)

We de�ne h such that when one looks down the positive x-axis, the translating face

7.2. THE LIBRARY 115

is to the left.

To ensure that the rotor (i.e., the rotating body) can actually engage the slider

(i.e., the translating body), we must ensure that the rotor is long enough to reach

the slider. To this end we construct the distance from the pivot to each end of the

rotating face. The longer of the two distances we label r, the other we label s (because

of the constraint expressed by Equation 7.7, one distance is always larger than the

other). r and s are related to the length of the rotating face by:

r = (s2 + L2 � 2sL cos(�))1=2 (7:4)

For the rotor to be long enough to engage the slider, r must satisfy:

r > h (7:5)

If s is su�ciently large, when the rotor is vertical and pointing upward (� � �=2),

the slider face will be able to pass under the rotor face. As a result, there will be
two separate ranges of angle for which the rotor and slider will be able to engage,
one range to the right of vertical and another to the left of vertical. In this case,
the interaction between the rotor and slider will be two disjoint cs-curves, and thus
this geometry will not be a valid implementation of curve H. To ensure that this

kind of disjointed interaction does not occur, we must constrain length s.3 An overly
conservative constraint, which we use for its simplicity, is:

s < h (7:6)

A less restrictive, but equally e�ective constraint is s < h+w cos(� �=2). This
constraint ensures that when the rotor is vertical (i.e., � = �=2) the top of the slider

face is higher than the bottom of the rotor face. For historical reasons, the program
uses the more conservative constraint.

De�ning rotation positive counterclockwise, we can refer to the line labeled r in
Figure 7-2 as the leading edge of the rotor, and the line labeled s as the trailing edge.

If the leading edge is shorter that the trailing edge, the cs-curve will not have the

desired slope.4 Consider a con�guration in which the bottom end of the slider face

touches the middle of the rotor face and the rotor turns counterclockwise as shown
in Figure 7-3. If the leading edge is shorter than the trailing edge, the radius from
the pivot to the contact point will get longer. Because this radius gets longer, the

rotor will push the slider to the right. In this case, the cs-curve will have (at least

locally) a slope like qcs-curve B in Figure 7-1, rather than like qcs-curve H. Hence,
we must constrain the leading edge to be longer than the trailing edge. We express

this constraint in terms of the angle � between the trailing edge and the rotor face:

3We can use the disjointed solution if we know that during the normal operation of the device,

the device only be in con�gurations from one range of engagement.
4We assume that 0 � � � �.

116 CHAPTER 7. THE INTERACTION LIBRARY

θ

φr
s h

ψ

x

Figure 7-3: The leading edge of the rotor is shorter than the trailing edge. Turning
the rotor counterclockwise pushes the slider to the right.

� > �=2 (7:7)

Consider the con�guration in which the tip of the rotor is touching the bottom
of the slider face as shown in Figure 7-4. If the rotor face is horizontal in this
con�guration (it is not horizontal in the �gure), then the pair of faces will act as a
stop: the slider face will be able to slide freely along the rotor face, but the rotor
will be prevented from rotating clockwise. The corresponding qcs-curve will locally

be vertical, not diagonal like qcs-curve H. Hence, we must constrain the rotor face

so that it is not horizontal when in this con�guration. If we de�ne c as the angle
between the rotor face and vertical (see Figure 7-4), the appropriate constraint is:

c < �=2

Our task now is to express c in terms of the parameters of the faces. Figure 7-4
shows the parameters as well as some intermediate variables we use in the derivation.
We start by considering triangle e-f-g shown in the �gure. Because a and b are two

angles of this triangle, and c is the complement of the third angle:

c = a+ b

Using the law of cosines we obtain for a:

a = arccos(L
2+r2�s2

2Lr
)

7.2. THE LIBRARY 117

θ

φ

r

s

ψ

L

h

w

x

a

b

c
e

f

g

Figure 7-4: When in this con�guration, the rotor face must not be horizontal.

By inspection of the �gure we obtain for b:

b = arccos(h=r)

Combining the previous four expressions, we obtain the desired constraint:

arccos(
L2 + r2 � s2

2Lr
) + arccos(h=r) < �=2 (7:8)

Our expression for a assumes that 0 � � � �. Equation 7.7 enforces the lower

bound, but we require an explicit constraint for the upper bound:

� � � (7:9)

For the qcs-curve to be monotonic, the tip of the rotor must never move tangent

to the slider face (see Figure 2-13 for an example of a non-monotonic interaction).

This in turn requires that the angle between the slider face and the leading edge of

the rotor must always be greater than �=2. If we label this angle z, as shown in
Figure 7-5, the constraint is:

118 CHAPTER 7. THE INTERACTION LIBRARY

θ

θ

φ

r

s

w

x

ψψ'

L

h

z

Figure 7-5: The rotor face must not move tangent to the slider face.

z > �=2

The worst case is when the rotor angle is at its smallest, which occurs when the

tip of the rotor touches the lower end of the slider face as shown in Figure 7-5. If we

de�ne 0 as the complement of the angle of the slider face, then by inspection of the
�gure:

z = 0 + �

Because 0 is the complement of we can write:

 0 = � �

For the tip of the rotor to touch the bottom of the slider face, �'s value must be:

� = arcsin(h=r)

7.2. THE LIBRARY 119

Combining the previous four expressions we obtain the �nal form of the constraint:

 < arcsin(h=r) + �=2 (7:10)

If the slider face angle is equal to 0, only one end of the slider face will touch

the rotor. If is less than 0, the rotor can touch the back side of the slider face, but

this should not happen because contact is allowed only on the outside surface of a

part. To ensure that the rotor cannot touch the back side of the rotor face, and that

the contact can actually be face contact (rather than contact at just one end of the

face) we enforce the constraint:

 > 0 (7:11)

Equation 7.1 through Equation 7.11 are the complete set of constraints su�cient
to ensure that the geometry in Figure 7-2 implements qcs-curve H. Now to complete

this library entry, we must derive expressions for the end points of the qcs-curve. One
end point corresponds to the con�guration in Figure 7-5. This end point is the upper
left end point of curve H. Its coordinates are:

�1 = arcsin(h=r) (7:12)

x1 = r cos(�1) (7:13)

The second end point corresponds to the con�guration in Figure 7-4. Its coordinates
are (note that x2 = �x1):

�2 = � � arcsin(h=r) (7:14)

x2 = �r cos(�1) (7:15)

By appropriate use of coordinate transformations, we can use this pair of faces

to implement several other qcs-curves.5 For example, if we measure the position of

the slider positive to the left rather than to the right, we have an implementation

for curve F. If we ip the geometry over as in Figure 7-6, still measuring the rotor

angle positive counterclockwise, we have an implementation for curve B. If we ip the
geometry over and measure the slider position positive to the left rather than to the

right, we have an implementation for curve D. Thus, with the same basic geometry
and constraints, we can implement all four kinds of diagonal curves for the case in

which q1 is rotation and q2 is translation. By the obvious coordinate transformation,

we can also use this geometry to implement all four kinds of diagonal curves for the

5The coordinate transformations change the expressions for the end points of the cs-curve (e.g.,

Equation 7.12) but they do not a�ect the constraints that ensure the curve is monotonic with proper

slope (e.g., Equation 7.1).

120 CHAPTER 7. THE INTERACTION LIBRARY

case in which q1 is translation and q2 is rotation.

ψ

φ
r

s

L

h

w

x

θ

Figure 7-6: The parameterization of a pair of faces used to implement qcs-curve B.
The rotating face rotates about the origin, its position measured positive counterclock-
wise with angle �. The translating face translates horizontally, its position measured
positive to the right with x. Shading indicates the back sides of the faces, i.e., the

sides that are inside the solids containing the faces.

7.2.2 Cam and Centered Follower

As our second implementation for qcs-curve H, we use the two at faces whose pa-
rameterization is shown in Figure 7-7. Here again, our goal is to derive a set of
constraints on the parameters such the faces implement a monotonic curve with the

same slope as curve H. This pair of faces is the same as the ones we used for the

cam and o�set follower (Figure 7-2), but here we explore a di�erent region of the
7-dimensional parameter space; we explore the region corresponding to a cam and

centered follower. 6

6The parameterization in Figure 7-7 is entirely equivalent to that in Figure 7-2.

7.2. THE LIBRARY 121

ψ

θ

φr

s

L

x

h1

h2

Figure 7-7: The parameterization of a pair of faces used to implement qcs-curve
H. The rotating face rotates about the origin, its position measured positive coun-
terclockwise with angle �. The translating face translates horizontally, its position
measured positive to the right with x. Shading indicates the back sides of the faces,
i.e., the sides that are inside the solids containing the faces.

Our �rst constraint is that the rotor face exists, that is, it has non-zero length.

De�ning L as the length of the rotor face, we trivially obtain:

L > 0 (7:16)

To ensure that the translating face passes through the pivot (a hallmark of centered-

cam-and-follower behavior), we de�ne the o�sets between the ends of the slider face

and the pivot, h1 and h2, subject to the constraints:

h1 > 0 (7:17)

h2 > 0 (7:18)

If , the angle of the slider face, equals �=2, the interaction will be non-monotonic

like the example in Figure 2-13. If = �, the slider face will act as a stop, limiting
the clockwise rotation of the rotor. Hence, we obtain limits on the allowable range of

 :

122 CHAPTER 7. THE INTERACTION LIBRARY

 > �=2 (7:19)

 < � (7:20)

We prefer solutions in which the rotor face can make face contact (rather than

just point contact) with the slider. De�ning �, the angle between the trailing edge of

the rotor and the rotor face, we express this condition as:

� > �=2 (7:21)

� < � (7:22)

These two constraints are conservative. We can obtain the strict lower bound for
� by ensuring that, when the trailing edge of the rotor touches the slider, the rotor

face never becomes perpendicular to the slider face. If � was smaller than this strict
lower bound, the back side of the rotor face could touch the slider, but this should
not happen because contact is allowed only on the outside surface of a part. We can
obtain the strict upper bound for � by ensuring that when the rotor face touches
the top end of the slider face, the rotor face is not horizontal. If the rotor face was
horizontal in this con�guration, the slider would act as a stop, preventing clockwise

rotation of the rotor.
As with the previous library entry, we de�ne the leading edge of the rotor to be r

and the trailing edge to be s. Because of Equations 7.21 and 7.22, the leading edge is
always longer than the trailing edge. r and s are related to the length of the rotating
face by:

r = (s2 + L2 � 2sL cos(�))1=2 (7:23)

Next, we constrain the range of engagement so that the interaction is monotonic.

If both h1 and h2 are greater than r, engagement is possible for all angles of the

rotor. In this case, the cs-curve will be a closed curve in the cs-plane, rather than a

monotonic curve. To prevent this, we must ensure that the faces disengage for both

su�ciently large and su�ciently small angles of the rotor. To ensure that the faces
disengage at large angles we require that:

s > h1 (7:24)

At the other extreme, we must ensure that (during clockwise rotation) the faces

disengage before the rotor angle becomes small enough that the leading edge (r) of

the rotor becomes perpendicular to the slider face. If the leading edge did become
perpendicular, the rotor would act as a stop, preventing the slider from moving to

the left. To derive the constraint that prevents this, we de�ne two new quantities, a

7.2. THE LIBRARY 123

ψ

φ
r

s
L

h1

h2
ab(ψ - π/2)(ψ - π/2)

Figure 7-8: The leading edge of the rotor is perpendicular to the extended slider face.

and b, as shown in Figure 7-8. a is the length of the slider face below the x-axis:

a = h2= cos(� �=2)

When the leading edge of the rotor touches and is perpendicular to the extended
slider face, b is the distance measured along the extended slider face from the x-axis to
contact point. When the rotor is in this con�guration, the angle between the leading

edge and the x-axis is � �=2, and b's value is therefore:

b = r tan(� �=2)

Now, we can express the condition that the faces disengage before the leading

edge becomes perpendicular to the slider face as:

a < b

Upon simpli�cation, the previous three expressions yield the desired constraint:

0 > r= tan() + h2= sin() (7:25)

Equation 7.16 through Equation 7.25 are the primary constraints that ensure the
geometry in Figure 7-7 implements qcs-curve H. Section 7.3 describes some additional

124 CHAPTER 7. THE INTERACTION LIBRARY

θ1

θ2

x1x2

Figure 7-9: Two superimposed con�gurations of the rotor and slider. These con�gu-
rations are the end points of the qcs-curve for the intended interaction between the
rotor and slider.

constraints that must also be satis�ed.
To complete this library entry, we must compute the coordinates of the two end

points of the cs-curve for the interaction.7 Figure 7-9 shows the con�gurations corre-
sponding to the end points. One end point is the con�guration in which the leading
edge of the rotor face touches the lower end of the slider face. In qc-space, this end

point is the upper left end of curve H. Its coordinates are:8

�1 = � arcsin(h2=r) (7:26)

x1 = r cos(�1)� h2= tan() (7:27)

The other end point is the con�guration in which the trailing edge of the rotor

face touches the upper end of the slider face:

�2 = arcsin(h1=s) + arccos(
s2 + r2 � L2

2sr
) (7:28)

x2 = s cos(arcsin(h1=s)) + h1= tan() (7:29)

As with the cam and o�set follower, by appropriate use of coordinate transforma-

tions, we can use this same basic geometry and constraints to implement all four kinds

of diagonal curves for the case in which one body rotates and the other translates.

7This geometry actually produces two cs-curves. Here we discuss the end points of the desired

curve. In Section 7.3 we discuss the other curve.
8Note that tan(� �=2) = �1= tan().

7.3. PARASITIC INTERACTIONS 125

7.3 Parasitic Interactions

For the cam and o�set follower we were able to construct constraints that ensure that

there is only one range of engagement. Because there is a single range of engagement,

the interaction is a single continuous curve in c-space. For the cam and centered

follower, however, there are two ranges of engagement. The �rst range of engagement,

shown in Figure 7-9, is the desired one, discussed in the previous section. We use this

range to implement qcs-curves of type H. The second range of engagement occurs

when the rotor points to the left and the slider is on the left side of the pivot as

shown in Figure 7-10. This range produces an undesired, or parasitic, cs-curve which

is disjoint from the desired one.

θ3

θ4

x3 x4

Figure 7-10: Two superimposed con�gurations of the rotor and slider. These con�g-

urations are the end points of the qcs-curve for the parasitic interaction between the

rotor and slider.

Because the cam and centered follower produce a parasitic cs-curve in addition to
the desired one, we can use this geometry to implement curves of type H, only if we

can ensure that during the normal operation of the device, the parasitic engagement

does not occur. We have explored, but have not implemented, two methods for
dealing with this. The �rst method is to wait until more design details have been
selected, then to use numerical simulation to verify that the parasitic engagement

does not occur. If it does occur, we either reject the design or look for di�erent

parameter values, masses, springs, or actuators for which the engagement does not

occur. For example, we might attempt to eliminate the parasitic engagement by

selecting parameter values that make the rotor longer than the travel of the slider,

thereby placing the parasitic engagement out of reach of the slider.

126 CHAPTER 7. THE INTERACTION LIBRARY

The second method is to derive additional constraints that ensure the parasitic

engagement is outside the bounds of the normal operation of the device. To do

this, we �rst examine the qualitative simulation to obtain the landmark values for

the extremes of the motion of the rotor and slider. Measuring angles in the range

�� to �, we call the maximum and minimum positions of the rotor �max and �min
respectively. Similarly, we call the maximum and minimum positions of the slider

xmax and xmin respectively.

Next we compute expressions for the end points of the parasitic curve. Figure 7-10

shows the con�gurations for the two end points. One end point is the con�guration

in which the leading edge of the rotor touches the upper end of the slider face. Its

coordinates are:

�3 = � � arcsin(h1=r) (7:30)

x3 = r cos(�3) + h1= tan() (7:31)

The other end point is the con�guration in which the trailing edge of the rotor
face touches the bottom end of the slider face. Measuring angles in the range �� to
�, the coordinates are:

�4 = �� + arcsin(h2=s) + arccos(
s2 + r2 � L2

2sr
) (7:32)

x4 = s cos(�� + arcsin(h2=s))� h2= tan() (7:33)

Finally, we construct expressions that ensure that the range of motion is outside

the bounding box de�ned by the end points of the parasitic curve. Measuring � in
the range �� to �, the constraints are:

(
�max < �3
�min > �4

)
(7:34)

or

fxmim > x4g (7:35)

There are two ways to satisfy this constraint: either the rotor does not turn far

enough (Equation 7.34), or the slider stroke is not long enough for the parasitic en-
gagement to occur (Equation 7.35). For completeness, we could add another disjunct,

xmax < x3, however, we know that this will not be satis�ed: For the desired interac-
tion to occur, xmust spend some time in the range between x1 and x2 (see Figure 7-9).

Because this range is to the right of x3, the additional disjunct will not be satis�ed.

As Figure 7-10 shows, during the parasitic engagement, the slider touches the back
side of the rotor face. However, once the rotor face is embedded in a solid component,

it is not possible to touch its back side. Hence, we have a second reason why we must

7.4. WHERE TO ATTACH THE FACES 127

ensure that the parasitic engagement is out of the range of normal operation of the

device.

7.4 Where to Attach the Faces

We describe the pair of faces in a library entry with respect to a local coordinate

system included in that entry. To attach the faces to actual components, we must �rst

transform the coordinates of the faces to match those of the components. Fortunately,

we can precompute the necessary coordinate transformations and include them in the

library. Hence, this task is performed as part of constructing the library.

We illustrate this task by deriving expressions to transform the coordinates of the
faces in Figure 7-2 to match those of an arbitrary pair of components. Our goal is a
set of templates (such as Figure 7-15) that show where to attach the faces.

We start by placing the library frame (the coordinate frame of the faces) in the

global coordinate frame as shown in Figure 7-11. The origin of the library frame is
located at the point (XL;YL) in the global frame and is inclined by angle
L from
the horizontal.

(,)X YL L

x ΩL

XL

YL

θ

XG

YG

Figure 7-11: The location of the library coordinate frame with respect to the global
coordinate frame.

(We use bold serif fonts, like XL, to refer to the origin of a coordinate frame. We
use sans serif fonts, like XR, to refer to an axis of a coordinate frame.)

Next, we place the rotor frame (the coordinate frame of the component to which

we attach the rotating face) in the global coordinate frame as shown in Figure 7-12.

The origin of the rotor frame (i.e., the rotor's pivot) is located at the point (XR;YR)

in the global frame. �R is the rotation angle of the rotor.

Similarly, we place the slider frame (the coordinate frame of the component to
which we attach the translating face) in the global coordinate frame as shown in

128 CHAPTER 7. THE INTERACTION LIBRARY

(,)X YR R

XR

YR

XG

YG

θR

Figure 7-12: The location of the rotor coordinate frame with respect to the global
coordinate frame.

XS

XG

YS

YG

xS

ΩSG

(,)X YSGSG

Figure 7-13: The location of the slider coordinate frame with respect to the global
coordinate frame.

7.4. WHERE TO ATTACH THE FACES 129

Figure 7-13. The slider frame translates along a �xed guide inclined an angle
SG

from horizontal. The guide's origin is located at the point (XSG;YSG) in the global

frame. xS is the displacement of the slider along the guide.

The rotating face rotates about the origin of the library frame, and the rotor

rotates about the origin of the rotor frame. Because the face is rigidly attached to

the rotor, the face and the rotor must rotate about the same point. Hence, the two

origins must actually be the same point:

XL = XR
YL = YR

Similarly, the translating face and the slider must translate in the same direction:

L =
SG

(,)X YR R

XR

YR

θR

XG

YG

α

β

(,)X YR R

XL

YL

Ω

XG

YG

θ

β

(a) (b)

SG

Figure 7-14: (a) The location of the rotating face in the library frame. (b) The

location of the rotating face in the rotor frame.

Figure 7-14a shows a new version of the library frame in which we have included

our new knowledge about the location of the origin and the inclination from horizon-

tal. The �gure also shows the absolute rotation angle, �, of the rotating face. We
can express this angle in terms of the other angles in the �gure:

� =
SG + �

Figure 7-14b shows another view of the rotor frame in which we have rigidly
attached the rotating face to the rotor body. The face is attached to the rotor at

some unknown angular o�set, �, which is a free design parameter. The �gure also

130 CHAPTER 7. THE INTERACTION LIBRARY

shows the absolute rotation angle, �, of the rotating face. We can derive a new

expression for � in terms of the angles in the �gure:

� = �R + �

If we combine these two expressions for �, we obtain the desired expression relating

�R to �:

�R = � +
SG � �

For our convenience, we eliminate � in favor of a new parameter �off . The new

parameter is related to the old one by:

�off =
SG � �

Using this new parameter, our expression relating �R to � takes the simple form:

�R = � + �off (7:36)

Similarly, we eliminate � from Figure 7-14b to obtain Figure 7-15. We use this
new �gure as our template for attaching the rotating face to a rotating body.

XR

YR

-θoffΩSG

Figure 7-15: Template indicating where to attach the rotating face to the rotor.

Now we turn our attention to the translating face. Figure 7-16 shows the slider

guide, slider, and library frames in the global frame. Our goal is to determine the
location of point P, the bottom end of the translating face, with respect to the slider

frame.
We begin by expressing P in the library frame:

PL =

x

h

!

where the superscript \L" indicates that P is expressed in the library frame.
Next, we express P in the frame of the slider guide:

7.4. WHERE TO ATTACH THE FACES 131

PSG = PL +

�X

�Y

!

where the point (�X, �Y) is the location of the library frame with respect to slider

guide frame. (Here again, the superscript \SG" indicates the coordinates are ex-

pressed in the slider guide frame.) We use a standard rotation matrix (rotating by

�
SG) to express this location in terms of the absolute locations (i.e., the locations

with respect to the global frame) of the slider guide frame and the library frame:

�X

�Y

!
=

"
cos(
SG) sin(
SG)

� sin(
SG) cos(
SG)

XR �XSG

YR �YSG

!

XS

XG

YS

YG

xS

(,)X YR R

x ΩSG

XL

YL

h

PX

P

∆X

∆Y

ΩSG

(,)X YSGSG

Figure 7-16: The slider frame and the library frame in the global frame.

Because, the slider frame is displaced from the slider guide frame by a distance

xS, we can use our expression for PSG to obtain an expression for P in the slider

frame:

PS = PSG +

�xS
0

!

132 CHAPTER 7. THE INTERACTION LIBRARY

Combining all of the previous expressions we obtain:

PS =

x

h

!
+

"
cos(
SG) sin(
SG)

� sin(
SG) cos(
SG)

XR �XSG
YR �YSG

!
+

�xS
0

!

This gives us the location of PS in terms of several design parameters (
SG, XR,

YR, XSG, and YSG) and two position parameters: x and xS. Because the face is

rigidly attached to the slider, the position of P in the slider frame must be a constant.

Hence, we must be able to eliminate the two position parameters (which are variables)

from our expression for PS .

To this end, we note that x and xS measure the positions of the face and the

slider (respectively) with respect to references that are �xed in the global frame. Also,
because the face is rigidly attached to the slider, if the face undergoes a displacement,
the slider must undergo the identical displacement. These two facts combined require
that xS and x di�er by at most a constant. Calling that constant xoff we obtain:

xS = x+ xoff (7:37)

Substituting this expression into our previous expression for PS we obtain the
desired result:

PS =

"
cos(
SG) sin(
SG)

� sin(
SG) cos(
SG)

XR �XSG
YR �YSG

!
+

�xoff
h

!
(7:38)

With this expression, we now know where to attach the face to the slider. We

simply attach the face so that its lower end is located at the point PS , as shown in
Figure 7-17.

As a second example, we consider the faces in Figure 7-2 for the case in which we
measure x (the position of the translating face) positive to the left rather than to the

right. As we discussed previously, de�ning x positive to the left turns this geometry

into an implementation for qcs-curves of type F in Figure 7-1.
In this case the position of the rotor and the position of the rotating face are still

related by Equation 7.36, and we still use Figure 7-15 as our template for attaching
the face to the rotor. Similarly, the position of the slider and the position of the

translating face are still related by Equation 7.37. However, we must derive a new

template for attaching the translating face to the slider.
In the previous case, when we measured x positive to the right, we placed the

library frame and the slider frame into the global frame such that the axes of the

library and slider frames pointed in the same direction. (That is, XL pointed in the

same direction as XS, and YL pointed in the same direction YS as shown in Figure 7-

16.) However, when we measure x positive to the left rather than to the right, we place
the two frames in the global frame such that their axes point in opposite directions.

7.4. WHERE TO ATTACH THE FACES 133

Doing this, we derive a new expression for the location of P in the slider frame:

PS =

"
cos(
SG) sin(
SG)

� sin(
SG) cos(
SG)

XR �XSG
YR �YSG

!
+

�xoff
�h

!
(7:39)

The di�erence between this expression and Equation 7.38 is the sign in front of

\h." We also derive a new template, shown in Figure 7-18 indicating where to attach

the face to the slider. In our previous template, the face was located in the �rst

quadrant of the coordinate system. Here, because the axes of the slider frame are

rotated 180 degrees from the previous case, the face is in the third quadrant.

134 CHAPTER 7. THE INTERACTION LIBRARY

XS

YS

PS

ψ
w

Figure 7-17: Template indicating where the translating face is attached to the slider:
The lower end of the translating face is attached to the slider at the point PS .

XS

YS

PS

ψ w

Figure 7-18: A template for attaching the translating face to the slider when the

position, x, of the translating face is measured positive to the left relative to the

library frame.

7.5. ASSEMBLING THE BEP-MODEL 135

7.5 Assembling the BEP-Model

In this section, we describe how SketchIT uses library entries like those in Section 7.2

and templates like those in Section 7.4 to construct a BEP-Model. We illustrate

this process by an example, showing how SketchIT constructs BEP-Models for the

circuit breaker qc-space in Figure 7-19. Because qualitative simulation has veri�ed

that this qc-space produces the desired behavior, the BEP-Models SketchIT derives

from this qc-space will de�ne families of designs that all produce the desired behavior.

To construct a BEP-Model, SketchIT must construct an implementation for all

of the qcs-curves in Figure 7-19.9 For each qcs-curve SketchIT: selects an appropri-

ate library entry; creates new instances of the entry's parameters; assigns values to

the landmarks for the end points of the qcs-curve; instantiates the constraints from

the library entry; instantiates the parametric geometry contained in the library entry;
and instantiates the parametric geometry in the templates that indicate how the faces
are attached to components.

In our example, we consider how SketchIT constructs the portion of the BEP-
Model that relates to the cam-follower interaction (top of Figure 7-19). Figure 7-20
shows the constraints for this piece of the BEP-Model. Because the cam-follower qcs-

curve is of type F, the geometry in Figure 7-2 is a valid implementation, as long as
the position of the slider is measured positive to the left (i.e., the direction of positive
displacement is the same as the negative x-axis of the library frame). This is in fact,
the library entry that SketchIT selected for this BEP-Model.

To use this library entry, or any other entry, SketchIT must create new instances

of the parameters it contains. SketchIT does this by appending a unique number to
the end of each parameter name. For example, H 4 is a new instance of the parameter
h.

The �rst four constraints in Figure 7-20 assign values to the landmarks of the
end points of the cam-follower qcs-curve using Equations 7.12 through 7.15.10 As

Equation 7.36 and Equation 7.37 require, SketchIT includes in the value of each

landmark, a term for the o�set between the coordinates of the components and the
coordinates of the faces (i.e., off 1 and off 2). The values for landmarks LM8 and

LM10 include extra negative signs (compared with Equations 7.13 and 7.15) because

9No implementation is necessary for qcs-curves corresponding to spring neutral positions or mo-

tion limits of actuators because these curves do not represent interacting faces.
10To be rigorous we must constrain the landmarks of rotating bodies to be between 0 and 2�. This

is true for bodies that are intended to rotate less than a full revolution as well as for bodies that are

intended to rotate more that a full revolution. In the former case, constraining the landmarks to be

between 0 and 2� ensures that the implementation will actually rotate less than a full revolution. In

the latter case, the device's qc-space is actually a attened out representation of a cylinder or torus

(see Section 4.7). In this attened out representation all landmarks are explicitly constrained to be

between the boundaries at 0 and 2�. For the circuit breaker example, we did not explicitly constrain

the landmarks of the lever to be between 0 and 2�. However, for the yoke and rotor example, we

did explicitly constrain the landmarks of the rotor.

136 CHAPTER 7. THE INTERACTION LIBRARY

of a coordinate transformation: here we measure the position of the slider positive to

the left in Figure 7-2 rather than to the right.

The remaining constraints in Figure 7-20 are instances of Equations 7.1 through 7.11.

These are the constraints that ensure the cs-curve for the cam-follower interaction is

monotonic with the desired slope.

Figure 7-20 shows only the constraints that the cam-follower qcs-curve contributes

to the BEP-Model. The cam-follower also contributes parametric geometry to the

BEP-Model. This contribution consists of the parametric geometry de�ning the faces

shown in Figure 7-2 and the templates indicating how the faces are attached to the

components shown in Figure 7-15 and Figure 7-18.

This completes the process of implementing the cam-follower qcs-curve. SketchIT

repeats this process for the push-pair, lever-stop, and pushrod-stop qcs-curves.
Next, SketchIT assigns values to the landmarks for the i-points. Consider the

i-point de�ned by the intersection of the horizontal \hook=cold" line and the cam-
follower curve in the top of Figure 7-19. The location of this intersection determines
the value of landmark LME. SketchIT reports this constraint with the statement
\(LM E = (INTERSECT (HOOK = LM 16) CAM-FOLLOWER))," indicating that the value
of landmark LME is de�ned by the intersection between the horizontal line located at

landmark LM16 and the cam-follower qcs-curve. Hence, to compute the value of LME
the constraint solver (the program that evaluates the BEP-Model) must compute the
intersection between the horizontal line and the qcs-curve.

There are 5 i-points in Figure 7-19. Each one produces a constraint like the one
de�ning the value of LME. Figure 7-21 shows the �ve constraints.

Finally, to complete the BEP-Model, SketchIT instantiates constraints on the

relative locations of the landmarks. As we described in Section 4.6, the primary
landmarks are completely ordered with respect to themselves. The i-points for a
particular qcs-curve are ordered with respect to both themselves and the primary
landmarks, but are not necessarily ordered with respect to the i-points of the other
qcs-curves. Figure 7-22 shows the constraints SketchIT instantiates to enforce the

landmark orderings for the qc-space in Figure 7-19.11

Figure 7-23 shows the complete set of constraints for the BEP-Model constructed

in this example. In addition to using the cam-and-o�set-follower library entry for the

cam-follower, SketchIT has selected the cam-and-centered-follower library entry for
the push-pair (Figure 7-7), the translating rotor-stop library entry for the lever-stop

(Appendix A), and the �xed slider-stop library entry for the pushrod-stop (Appendix
A). Figure 7-24 shows a hand generated solution to this BEP-Model. This solution

contains connective geometry in addition to the faces de�ned by the BEP-Model.

11Some of these constraints are redundant, however, this causes no di�cultly. For example, to en-

force the ordering of the i-points of the cam-follower qcs-curve, SketchIT constructs the constraints

(LM E < LM 11) and (LM 9 < LM E). Then, when enforcing the ordering of the primary landmarks,

SketchIT constructs the constraint (LM 9 < LM 11). However, this constraint is subsumed by the

other two, and hence is unnecessary.

7.5. ASSEMBLING THE BEP-MODEL 137

LMA LM4 LM14LM2

LM17

LM8

LM16

LM10

LM5

LMB LM9 LME LM11

Hook
Position

Lever
Angle

LM15

LM3

LM12

LMD

LMC

LM18

LM1

LMA LM4 LM14LM2 LMB LM9 LME LM11
Lever
Angle

pushrod-stop

motion limit

pushrod-spring

push-pair

lever-spring
lever-spring

le
ve

r-
st

op

cam-fo
llower

hook=cold

hook=hot

LM17

LM8

LM16

LM10

LM5

Hook
Position

hook=cold

hook=hot

LM15 LM3 LM12 LMD LMC LM18 LM1

Pushrod
Position

Pushrod
Position

pu
sh

ro
d-

st
op

m
ot

io
n

lim
it

pu
sh

ro
d-

sp
rin

g

Figure 7-19: A circuit breaker qc-space that provides the desired behavior.

138 CHAPTER 7. THE INTERACTION LIBRARY

LM_9 = ASIN (H_4 / R_6) + off_1

LM_8 = - (R_6 * COS (ASIN (H_4 / R_6))) + off_2

LM_11 = 180 - ASIN (H_4 / R_6) + off_1

LM_10 = - (- R_6 * COS (ASIN (H_4 / R_6))) + off_2

W_8 > 0

L_7 > 0

H_4 > 0

R_6 = SQRT (S_5 ^2 + L_7 ^2 - 2* S_5 * L_7 * COS (PHI_9))

R_6 > H_4

S_5 < H_4

PHI_9 > 90

ACOS (H_4 / R_6)

+ ACOS((L_7 ^2 + R_6 ^2 - S_5 ^2) / (2 * L_7 * R_6)) < 90

PHI_9 <= 180

PSI_10 < ASIN (H_4 / R_6) + 90

PSI_10 > 0)

Figure 7-20: The constraints for the portion of the BEP-Model describing the cam-
follower interaction.

LM_E = (INTERSECT (HOOK = LM_16) CAM-FOLLOWER)

LM_B = (INTERSECT (PUSHROD = LM_18) PUSH-PAIR)

LM_C = (INTERSECT (LEVER = LM_9) PUSH-PAIR)

LM_D = (INTERSECT (LEVER = LM_11) PUSH-PAIR)

LM_A = (INTERSECT (PUSHROD = LM_12) PUSH-PAIR)

Figure 7-21: The i-points for the circuit breaker qc-space.

LM_18 < LM_1 LM_C < LM_18 LM_D < LM_C

LM_12 < LM_D LM_3 < LM_12 LM_15 < LM_3

LM_12 < LM_18 LM_4 < LM_14 LM_A < LM_4

LM_11 < LM_A LM_E < LM_11 LM_9 < LM_E

LM_B < LM_9 LM_2 < LM_B LM_9 < LM_11

LM_2 < LM_9 LM_11 < LM_4 LM_10 < LM_5

LM_16 < LM_10 LM_8 < LM_16 LM_17 < LM_8

Figure 7-22: The landmark orderings for the circuit breaker qc-space.

7.5. ASSEMBLING THE BEP-MODEL 139

;; cam-follower

LM_9 = ASIN (H_4 / R_6) + off_1

LM_8 = - (R_6 * COS (ASIN (H_4 / R_6))) + off_2

LM_11 = 180 - ASIN (H_4 / R_6) + off_1

LM_10 = - (- R_6 * COS (ASIN (H_4 / R_6))) + off_2

W_8 > 0

L_7 > 0

H_4 > 0

R_6 = SQRT (S_5 ^2 + L_7 ^2 - 2* S_5 * L_7 * COS (PHI_9))

R_6 > H_4

S_5 < H_4

PHI_9 > 90

ACOS (H_4 / R_6)

+ ACOS((L_7 ^2 + R_6 ^2 - S_5 ^2) / (2 * L_7 * R_6)) < 90

PHI_9 <= 180

PSI_10 < ASIN (H_4 / R_6) + 90

PSI_10 > 0

;; push-pair

LM_2 = - (ASIN (H1_30 / S_32)

+ ACOS((S_32 ^2 + R_33 ^2 - L_34 ^2) / (2* S_32 * R_33))

+ off_3

LM_1 = - (S_32 *COS(ASIN(H1_30 / S_32)) + H1_30 / TAN(PSI_36)) + off_4

LM_4 = ASIN (H2_31 / R_33) + off_3

LM_3 = - (R_33 * COS(ASIN(H2_31 / R_33)) - H2_31 / TAN(PSI_36)) + off_4

L_34 > 0

H1_30 > 0

H2_31 > 0

PSI_36 > 90

PSI_36 < 180

PHI_35 < 180

PHI_35 > 90

R_33 = SQRT (S_32 ^2 + L_34 ^2 - 2* S_32 * L_34 * COS (PHI_35))

S_32 > H1_30

0 > R_33 / TAN (PSI_36) + H2_31 / SIN (PSI_36)

;; lever-stop

LM_9 = off_5

LM_8 = R_21 - LS_19 + off_6

Figure 7-23: The complete set of constraints of a BEP-Model for the circuit breaker.
(continued)

140 CHAPTER 7. THE INTERACTION LIBRARY

LM_5 = R_21 + LR_18 + off_6

LS_19 > 0

LR_18 > 0

R_21 > 0

;; pushrod-stop

LM_12 = off_7

E_3 > 0

PHI_2 > 0

PHI_2 < 180

L1_1 > 0

LM_E = (INTERSECT (HOOK = LM_16) CAM-FOLLOWER)

LM_B = (INTERSECT (PUSHROD = LM_18) PUSH-PAIR)

LM_C = (INTERSECT (LEVER = LM_9) PUSH-PAIR)

LM_D = (INTERSECT (LEVER = LM_11) PUSH-PAIR)

LM_A = (INTERSECT (PUSHROD = LM_12) PUSH-PAIR)

LM_18 < LM_1 LM_C < LM_18 LM_D < LM_C

LM_12 < LM_D LM_3 < LM_12 LM_15 < LM_3

LM_12 < LM_18 LM_4 < LM_14 LM_A < LM_4

LM_11 < LM_A LM_E < LM_11 LM_9 < LM_E

LM_B < LM_9 LM_2 < LM_B LM_9 < LM_11

LM_2 < LM_9 LM_11 < LM_4 LM_10 < LM_5

LM_16 < LM_10 LM_8 < LM_16 LM_17 < LM_8

Figure 7-23 continued: The complete set of constraints of a BEP-Model for the circuit
breaker.

7.6 Exporting to DesignView

We use DesignView to evaluate BEP-Models. Currently, we transfer the BEP-Models

to DesignView manually, but this can be done automatically using DesignView's

macro language.
Our BEP-Models provide DesignView with enough information to solve all of the

constraints except those de�ning the locations of the i-points, such as the constraints

shown in Figure 7-21. To solve these constraints, DesignView must compute the

intersection between a diagonal cs-curve and a horizontal or vertical line. This requires
that DesignView have access to either a symbolic or numerical representation for the

shape of the cs-curve. We provide DesignView only with the location of the end
points of a cs-curve, not the shape of the curve itself.12

12For the yoke and rotor example we did provide DesignView with an algebraic expression for the

7.6. EXPORTING TO DESIGNVIEW 141

Because DesignView is a numerical solver, it is adequate to express the shape of

a cs-curve numerically; for this we can use the techniques developed in [26]. Thus,

to complete the implementation, we can connect DesignView to a program that can

numerically compute the shape of a diagonal cs-curve as a function of the geometric

parameters of the pair of faces. This will provide the last needed link and allow

DesignView to enforce all necessary constraints.

hook

cam-follower

lever
pivot

pushrod

pushrod-stop

push-pair

}

}

}{lever-stop f2

f5

Figure 7-24: A hand generated solution to the BEP-Model.

shapes of the cs-curves, thus allowing DesignView to enforce all of the constraints of the BEP-Model.

We are continuing to develop algebraic expressions for the curves produced by the library entries.

142 CHAPTER 7. THE INTERACTION LIBRARY

7.7 Periodic Boundary Conditions

To facilitate simulation, SketchIT attens out cylindrical qc-spaces into planes with

boundaries at 0 and 2�. During synthesis SketchIT must in e�ect reconstruct the

cylindrical qc-space from the attened representation.

The reconstruction process focuses on the qcs-curves that cross the boundaries. In

the attened out representation, the boundary-crossing qcs-curves are split into two

pieces: one piece just above the 0 boundary and another just below the 2� boundary.

To facilitate synthesis, SketchIT must join these pieces back together.

SketchIT joins the two pieces of a split curve by subtracting 2� from the ordi-

nates of the end points and i-points of the piece of the curve near the 2� boundary

(here we assume that the ordinate is the dimension that wraps around to form a cylin-
der). For example, Figure 7-25 shows the attened qc-space for the yoke and rotor
from Section 1.1.3 and Figure 7-26 shows the result of joining the boundary-crossing
curves back together.

Finally, to construct a BEP-Model, SketchIT selects appropriate library entries

for the re-joined boundary-crossing qcs-curves. Because the remaining qcs-curves lie
entirely between the boundaries of the attened out representation, SketchIT can
directly select library entries for them without any additional e�ort.

7.7. PERIODIC BOUNDARY CONDITIONS 143

0 Boundary

2 Boundaryπ

B2 A1

B1

A3

B3

A2

B2

A1

Yoke Position

R
ot

or
 A

ng
le

LM0

LM1

LM2

LM3

LM4

LM5

LM6

LM7

LM8

LM9

LM2P

LM10

LM11

LM12

LM13 LM14 LM15 LM16

(LMA, LM0)

(LMB, LM1)

(LMC, LM2)
(LM14, LMD)

(LM15, LME)
(LMF, LM0)

(LMA, LM2P) (LMF, LM2P) (LMG, LM12)

(LMH, LM11)

Figure 7-25: The qc-space for the yoke and rotor attened to produce a plane. The

labels on the qcs-curves indicate the names of the interacting faces. For example,

curve A1 is the interaction between face A on the yoke and face 1 on the rotor (see
Figure 1-12). Because curves A1 and B2 cross the boundaries, one piece of each of
these curves is just above the 0 boundary and another piece is just below the 2�

boundary. The small black circles with accompanying coordinate tuples are i-points

(not all i-points are labeled). Although the qcs-curves are drawn as straight lines,

they can have any shape as long as they are monotonic.

144 CHAPTER 7. THE INTERACTION LIBRARY

0 Boundary

Yoke Position

R
ot

or
 A

ng
le

LM0

LM1
LM2

LM3

LM10 - 2π

LM11 - 2π
LM12 - 2π

LM13 LM14 LM15 LM16

B2 A1(LMA, LM0)

(LMB, LM1)

(LMC, LM2)
(LM14, LMD)

(LM15, LME)
(LMF, LM0)

(LMG, LM12 - 2)π

(LMH, LM11 - 2)π

Figure 7-26: A reconstruction of the boundary-crossing qcs-curves from the yoke and

rotor qc-space. The pieces of the boundary-crossing curves near the 2� boundary

in Figure 7-25 have been moved below the 0 boundary by subtracting 2� from the

ordinates of their end points and i-points. The small black circles with accompanying

coordinate tuples are i-points. Although the qcs-curves are drawn as straight lines,
they can have any shape as long as they are monotonic.

Chapter 8

Related Work

Our task is to use a description of desired behavior to turn a sketch of a mechanical
device into multiple families of working geometries. No previous work has addressed
this particular task. The work that comes closest to ours is the work in design

automation (speci�cally the approaches based on bond graphs and kinematic building
blocks), the work in shape design, and the work in sketch understanding. The �rst
three sections of this chapter describe these three areas of research.

The remaining sections describe supporting work|such as the work in qualitative
physics and simulation, and work that indirectly touches on some of the issues in-

volved in our task|such as the work in component connection models and geometric
features.

8.1 Design Automation

8.1.1 Bond Graph Approaches

Our techniques can be viewed as a natural complement to the bond graph techniques
of the sort developed by Ulrich [53]. (See [30] for a comprehensive discussion of bond

graphs.) Our techniques are useful for computing geometry that provides a speci�ed

behavior, but because of the inertia-free assumption employed by our simulator, our
techniques are e�ectively blind to energy ow. Bond graph techniques, on the other
hand, explicitly represent energy ow but are incapable of representing geometry.

Prabhu and Taylor [41] and Welch and Dixon [54] extend the bond graph design

approach to allow speci�cation of positions and orientations of components, but they
still do not design the shapes of interacting parts.

Their techniques synthesize a design using an abstract representation of behavior
(bond graphs), then use library lookup to map to implementation. We use a similar

paradigm, however, because our library contains interacting faces, while theirs in-

cludes complete components, we can design interacting geometry, while they cannot.
Like our techniques, their techniques produce design variants.

145

146 CHAPTER 8. RELATED WORK

8.1.2 Kinematic Building Blocks

Our techniques focus on the geometry of devices that have time varying engagements

(i.e., variable kinematic topology). Therefore, our techniques are complementary to

the well know design techniques for �xed topology mechanisms, such as the gear train

and linkage design techniques in Erdman and Sandor [10].

Although these well known techniques are not applicable to our problem, they

can be used to construct mechanism design tools for �xed topology devices as Rosen

et al. [42] demonstrate. They describe a knowledge based tool capable of designing

dwell mechanisms based on cams, gears, and linkages.

There has been a lot of recent interest in automating the design of �xed topology

devices. A common task is the synthesis of a device that transforms a speci�ed input

motion into a speci�ed output motion: Kota and Chiou [31] use a matrix to represent
the desired motion transformation, then use matrix decomposition to decompose this
into basic building blocks. Subramanian and Wang [52] use iteratively deepening
search to compose a sequence of \abstract mechanisms" that achieves the desired
motion transformation. The bond graph based design techniques described above are

also applicable to this task. All of these approaches are capable of producing design
variants, but again, these techniques are not suitable for designing variable topology
devices.

8.2 Shape Design

Although our work crosses many research boundaries, it is most closely related to the
work in shape design.

Joskowicz and Addanki [25] describe an automated tool for shape design. They
start with two interacting shapes (2D pro�les) and the desired behavior described as a
c-space. They then modify the part shapes by adding and deleting line segments and

arcs until the shapes produce the desired c-space. While they take the desired c-space
as input, we compute a qc-space that will provide the desired behavior. Their tech-

niques produce a single design instance, rather than a family of designs as SketchIT

does.
Joskowicz [24] uses a set of local and global operators to simplify and abstract

the c-space for a device in order to reduce irrelevant details. For example, one of

the operators �rst divides the c-space boundaries (cs-curves) into monotonic pieces

and then replaces those pieces with straight line segments. Another operator elim-
inates parts of the c-space that cannot be reached because of a particular choice of

external inputs to the device. The closest application of these operators to our task
is comparing the behavior of two devices: if their simpli�ed and abstracted c-spaces

are the same, the two devices provide the same qualitative behavior. Our task is

still recognizably di�erent: we want to generate designs that all produce the same
qualitative behavior rather than recognizing designs that provide the same behavior.

8.3. SKETCH UNDERSTANDING 147

Caine [2] and Joskowicz and Sacks [27] describe interactive design tools that allow

the designer to modify shape by modifying c-space or vice versa. While we use library

lookup to map from qc-space to geometry, they use numerical techniques, which can be

computationally expensive, to map changes in c-space to changes in geometry. Their

techniques produce a single design instance, while our techniques produce multiple

families of designs. Finally, their techniques are interactive while ours are automatic.

There is some recent work in exploring the mapping between shape and behavior.

Joskowicz et al. [28] use kinematic tolerance space (an extension of c-space) to examine

how variations in the shapes of parts a�ect their kinematic behavior. Their task is

to determine how a speci�ed variation in shape a�ects behavior, ours is to determine

what constraints on shape are su�cient to ensure the desired behavior.

Faltings [14] examines how much a single geometric parameter can change, when
all others are held constant, without changing the place vocabulary (topology of c-

space). Their task is to determine how much a given parameter can change without
altering the current behavior, while ours is to determine the constraints on all the
parameters su�cient to obtain a desired behavior.

Our task is most similar to that of Faltings and Sun [16]. They describe an
interactive design system that modi�es a user selected geometric parameter until there

is a change in the place vocabulary, and hence a change in behavior. Their system
then uses qualitative simulation to determine if the new behavior of the modi�ed
geometry matches a speci�ed desired behavior. (They have a language for specifying
desired behavior just as we do.) They use the techniques in [14] to determine how
much a parameter must change in order to change the place vocabulary.

They modify c-space by modifying geometry, we modify qc-space directly. Because

there are many changes in geometry that map to the same change in c-space, their
search space is larger than ours. Also, our tool is automatic while theirs is interactive,
and we can generate design variants while they cannot.

Gupta and Jakiela [19] describe a novel technique by which a known component
\carves out" the shape of an unknown mating component. They require that one

of the interacting shapes is known, but we do not. Also, they require a complete
description of the desired motion of each component, while we do not.

8.3 Sketch Understanding

There is little previous work in sketch understanding.1 Narayanan et al. [37] use a
diagram of a device to reason about its behavior, but they use a pre-parsed description

of the behaviors of each component while we reason directly from the geometry of

the interacting faces.
Faltings [13] suggests that a sketch is not a single qualitative model but instead

represents a family of precise models. He demonstrates that, taking a sketch as

1See [51] for a discussion of common sketching techniques used in engineering.

148 CHAPTER 8. RELATED WORK

a qualitative metric digram (i.e., a line drawing with approximate dimensions) it

is possible to compute what he calls kinematic topology. Kinematic topology [15]

characterizes the topology of the free space regions of the device's c-space. Kinematic

topology is an abstraction of place vocabulary [12] and as such, it often contains

ambiguities. These ambiguities suggest behaviors that might possibly be obtained

by modifying the geometry of the device. However, he does not provide methods for

determining which modi�cations will yield these other behaviors.

8.4 Qualitative Physics

Our work builds upon the a large and growing body of research in the �eld of qual-
itative physics. Weld [55] provides a comprehensive overview of the �eld. Here, to
provide background for our qualitative simulation techniques, we discuss a represen-

tative sampling of the work in qualitative physics.
de Kleer [6] describes a program that produces causal explanations of the small

signal behavior of electric circuits. The program computes behavior by using con-
straint propagation techniques to propagate the circuit's inputs through the circuit.
These techniques are related to the work of Stallman and Sussman [50]. We use

a simpli�ed version of these propagation techniques in Section 4.4 to compute the
motion of the bodies in a device.

de Kleer [7] describes a qualitative simulator based on conuences, i.e., qualita-
tive di�erential equations. The behavior of each component in de Kleer's world is
characterized by a set of qualitative states (operating regions); the behavior in each

qualitative state is described by a set of conuences. The simulator computes all
possible consistent qualitative states of the components in a device, and all possi-
ble transitions from one set of consistent qualitative states to another. Hence, the
simulator computes an envisionment just as ours does.

de Kleer's simulator must be provided with an enumeration of the possible qual-

itative states (operating regions) of a component. In our domain, however, it is not

possible to enumerate the possible qualitative states of a component because a com-
ponent's behavior depends on the shapes of the other components it interacts with.

Williams [56] describes a simulator that can reason about both the small signal

and the large signal behavior of an electric circuit. The simulator computes the small

signal model that applies in a particular operating mode, then predicts which param-

eters change, possibly causing a transition to another operating mode. The simulator

then uses constraint analysis to determine which of the possible transitions actually
happens �rst. (Kuipers [33] formalizes these techniques.) This is very similar to the

way our simulator computes the next event in Section 4.5: it computes the possible
events in each individual qcs-plane, then uses constraint propagation to determine

which of these events can happen �rst.

Forbus [18] views the world from a process centered perspective rather than a
device centered perspective. These techniques are suited to modeling processes like

8.5. SIMULATION 149

boiling which do not involve a �xed collection of \stu�:" as the boiling process evolves,

water turns to steam and leaves the system. However, the behavior of the kinds of

mechanical devices we are interest in cannot be conveniently decomposed into a set

of processes.

8.5 Simulation

SketchIT uses dynamic simulation to compute the behavior of a candidate c-space.

Conventional dynamic simulators (e.g., [39], [20], and [49]) predict motion by nu-

merically integrating the equations of motion of the device. (See [4], [36], or [29]

for an introductory text on dynamics.) Because we use a qualitative representation
(qc-space), we cannot use numerical integration, and hence must use a qualitative
simulator.

Faltings [12] describes a qualitative simulator for �xed-axis devices. The simulator
is based on a representation called place vocabulary, which is a qualitative version

of c-space. Place vocabulary decomposes the free space regions of a cs-plane into
\places," regions in which the contact between the pair of components is uniform.
There are three kinds of places: two-dimensional regions with no contacts, segments
of cs-curves2 (one contact exists), and intersections between cs-curves (two contact
points exists). Place vocabulary also encodes the allowed transitions between the
places. Because this representation is qualitative, ambiguities may arise as to which

place transitions will actually occur in response to the applied inputs. In this case,
the simulator computes all possible transitions.

Faltings' simulator is intended to be a kinematic simulator, and hence has a limited
ability to reason about forces.3 Our simulator, on the other hand, is a dynamic
simulator, i.e., a simulator that computes the motion resulting from applied forces.

Forbus et al. [17] extend Faltings' techniques to produce a dynamic simulator.
Their simulator models inertia, while we assume that motion is inertia-free. They

represent forces as qualitative vectors, we do not. Our representation for forces (see

Section 4.2) is designed to eliminate the ambiguity that occurs when summing qual-
itative force vectors, thereby reducing branching of the simulation.

8.6 Computing Numerical C-Space

We obtain the �rst candidate qc-space by abstracting the numerical c-space of the
sketch. Because, the abstraction process requires only a partial description of the

numerical c-space of the sketch, we developed simpli�ed, special purpose techniques

2They use the term constraint curve rather than cs-curve.
3Kinematics is the study of motion without reference to the forces which cause that motion.

Kinematic simulation is commonly used to analyze the motion of devices that have a motion source

applied to each degree of freedom.

150 CHAPTER 8. RELATED WORK

that compute just the required information. There are many general purpose tech-

niques for computing the complete numerical c-space of a device. Lozano-P�erez [34],

for example, describes an algorithm for computing the con�guration space of two

polygons that translate in the plane without rotation. Brost [1] and Caine [2] de-

scribe algorithms for the case in which the polygons rotate as well as translate. More

suited to our needs is the work of Joskowicz and Sacks [26]. They compute the full

c-space for a �xed-axis device by computing the cs-plane for each pair of interacting

parts in the device.

8.7 Component-Connection Models

A common abstraction used in qualitative reasoning about physical systems is the
component-connection model: Each component has a set of ports; each port is as-

sociated with a parameter such as voltage or uid ow rate. A set of constraints
characterizes the relationships between the parameters of a particular component's
ports. Components are connected at their ports; when two ports are connected,
they share a common parameter. All of the interesting behavior occurs inside the
components; the connections simply propagate parameter values.

By contrast, for the devices we are interested in, all of the interesting behavior
occurs at the interaction between two components (i.e., the interaction between a pair
of faces). Although the component-connection techniques do not apply directly to the
problems in SketchIT's domain, they do address some relevant issues. Therefore,
this section describes several examples of work in the area.

Doyle's [9] task is to hypothesize a structure that achieves a set of observable
events; ours is to �nd geometry that achieves a desired behavior. He constructs hy-
potheses by connecting together primitive mechanisms (components). Each primitive
mechanisms has a quantity type associated with its cause (input) and e�ect (output).
Two primitive mechanisms can be connected together only if they have compatible

quantity types. This serves as a primary source of constraint for limiting the gener-

ation of hypotheses. In our work, the sketch is the primary source of constraint for
limiting search: we consider only devices that are similar to the initial sketch.

Falkenhainer and Forbus [11] describe a program that uses a library of model

fragments and a description of the structure of a device to construct a model suitable

for answering a user query about the device. The goal is to �nd the simplest model

adequate to answer the query. Each of the model fragments describes one possible

behavior of a component (i.e., one possible set of constraints relating the parameters
at the ports.) The program's task is to determine which of the possible behaviors

actually occurs in the context of the overall device.
Nayak [38] describes a similar system. His task is to construct a model that

provides a causal explanation of a device's behavior. The expected behavior of the

device provides constraint for limiting the search for an adequate model. The expected
behavior is described as a desired causal path, for example, \how does the temperature

8.8. REVERSE ENGINEERING 151

of the thermistor determine the angular deection of the pointer?"

Mashburn and Anderson [35] extend the methods of Falkenhainer and Forbus to

produce a system that guarantees that the model is complete, i.e., that there are

enough equations to solve for the desired quantity.

Davis [5] describes a system that performs circuit diagnosis. His task is to deter-

mine which components, if malfunctioning, could account for a discrepancy between

the observed behavior of a device and the correct behavior. Said di�erently, the

task is to �nd a model that predicts the observed behavior rather than the correct

(intended) behavior.

The primary task of each of these systems is to determine what role each part of

the device plays in achieving the overall behavior. During the reverse engineering and

generalization process, SketchIT has a similar task of determining what role each
part of the device plays in achieving the desired overall behavior (see Figure 1-16).

Hence, the techniques used in these systems could be used to extend SketchIT's
reverse engineering/re-synthesis paradigm to the component-connection domain.

8.8 Reverse Engineering

Before SketchIT can synthesize new designs for a device, it must reverse engineer
the original sketch. Shrobe [46] has also examined the task of reverse engineering,

but his work is in the domain of linkages. He numerically simulates the kinematics of
the linkages using Kramer's TLA [32], then parses the simulation to identify a set of
common behaviors such as dwell and frequency doubling. These techniques might be
used to extend SketchIT's reverse engineering/re-synthesis paradigm to the linkage
domain.

8.9 Geometric Features

In SketchIT's domain, the behavior of a device is determined by how the component

shapes interact with each other. However there are other domains in which the

geometric features of individual components determine important design properties.
Here we consider some of those domains.

For example, Hirschtick [21] describes a knowledge based tool that assists in the

design of aluminum extrusions. The tool is rule-based and works in the domain of

extrusions (cross-sections) built from lines segments and arcs. The rules trigger o�
of patterns of geometric features. One rule, for example, states that a thick wall

and a thin wall that meet at a corner should have a �llet. The program begins by
identifying the important features of the extrusion: walls, corners, hollow cavities,

�llets, etc., then applies the rule-base to produce manufacturing advice.

Dixon et al. [8] describe a similar manufacturing advisor. However, they use a
feature based geometric design tool to construct a geometric model of the device,

152 CHAPTER 8. RELATED WORK

rather than recognizing features in a conventional CAD model of the device. Their

domain is aluminum extrusions, castings, and injection molded plastic.

Wolter and Chandrasekaran [57] describe a feature-oriented design system capable

of representing a wide range of functions. They represent geometry with a hierarchy

of structures called geomes. A geome is a collection of geometric elements with

constraints on how those elements are combined. They label a geome with the function

it is commonly used for. For example, a geome consisting of a cylindrical rod inside

a round hole of the same diameter would be labeled a pivot. The designer constructs

a design by assembling geomes that provide the desired functions.

They also provide abstract geomes, geomes that have no implementation, allowing

the designer to describe the intended function of a device rather than the structure.

The revolute-constraint geome, for example, is a pivot with no implementation. The
designer can later re�ne the abstract geomes to more speci�c geomes that do have

geometric implementations.
Their functional language can represent static features (e.g., a slot) or constant

contact (e.g., a pin in a hole or a rack and pinion). They cannot handle functions
that require intermittent contact such as a the lever and hook in the circuit breaker.

8.10 Representing Function

During reverse engineering, SketchIT determines what role each part of the device

plays in achieving the desired overall behavior. Other researchers have examined
representations that allow a designer to explicitly represent the intended function of
the parts of a device. They reason from symbolic assertions about behavior while we
reason directly from the geometry of the device.

Hodges [22], for example, describes a representation for capturing the behavior

and function of the parts of a device. This representation is used to determine when
a device may be useful for a task for which it was not originally intended. Iwasaki

et al. [23] describe a language for representing the function of the parts of a device.

Their goal is to explicitly record how the device is supposed to work in addition to
recording the device's structure.

8.11 Algebraic Constraints

SketchIT produces output in the form of a BEP-Model, a parametric model with
constraints that ensure the desired behavior. Serrano and Gossard [44] describe a

system called MATHPAK that is suitable for solving the constraints of a BEP-Model.4

Similarly, Serrano [45] describes a system for e�ciently solving systems of algebraic

4DesignView, the system we actually use to solve the constraints of a BEP-Model, is based on

MATHPAK.

8.11. ALGEBRAIC CONSTRAINTS 153

constraints like those contained in a BEP-Model.

Another approach to solving the constraints of a BEP-Model is to use a numerical

optimizer. This would �nd a solution to the constraints that also maximizes some

objective function. Orelup et al. [40] describe one example of an optimizer that could

be used.

154 CHAPTER 8. RELATED WORK

Chapter 9

Discussion

9.1 Contributions

This work produced four main results:

� We produced a computer program that can turn a sketch of a mechanical device

into working geometry by using a description of desired behavior as a guide.

� We built a computer program that can speak the engineer's natural language,

sketches.

� This computer program can also produce design variants.

� We created qualitative con�guration space as a particularly powerful represen-

tation for these tasks.

On the way to achieving these main results, we solved several important subprob-
lems, including:

� We developed a library of parameterized faces with constraints that ensure the

faces implement monotonic interactions.

� We developed e�cient qualitative simulation techniques.

9.1.1 Turning a Sketch into Working Geometry.

We demonstrated that a computer program, using a description of the desired behav-

ior, can turn a sketch of a mechanical device into working geometry. We did this by

developing computational techniques to perform this task, and testing them with an

implemented computer program called SketchIT.

To our knowledge, no previous work has addressed the task of automatically turn-

ing sketches into working geometry.

155

156 CHAPTER 9. DISCUSSION

To perform this task, SketchIT uses a paradigm of reverse engineering fol-

lowed by synthesis. During reverse engineering, SketchIT identi�es what role each

part of the sketch plays in achieving the desired overall behavior. During synthesis,

SketchIT generates geometry that implements the identi�ed role of each part.

SketchIT works in the domain of �xed-axis devices whose behavior is well ap-

proximated with quasi-statics. We chose this domain because it is a large and use-

ful class of mechanical devices, and because it is su�ciently tractable to facilitate

our progress. Although our work focused on a particular class of mechanisms, the

reverse{engineering{and{synthesis paradigm is applicable to a much larger class of

design problems. For example, the paradigm could be applied to designs that rely on

friction and inertia to achieve their behavior (see Section 9.2.1).

9.1.2 Speaking the Engineer's Language

When engineers communicate with each other, they frequently use sketches because

they are a convenient way to both record and communicate design information. By
creating a computer program that can interpret a sketch and transform it into working
geometry, we have moved one step closer to CAD tools that speak the language that
engineers speak to one another.

Traditional design tools are often di�cult to use because they require the designer
to use languages optimized for the program's convenience rather than the engineer's

(e.g., �nite element analysis tools require the engineer to describe a device as a mesh).
As a result, these tools often go unused until the later stages of design where they are
used for analysis and documentation. A CAD tool that speaks the engineer's natural
language would likely be used throughout the entire design process, in much the same
way one would use a human assistant.

9.1.3 Design Variants

SketchIT produces two kinds of design variants: It produces the �rst kind by re-

placing rotating parts with translating ones and vice versa. It produces the second
kind by selecting alternative implementations for the pairs of interacting faces in the

device. We have demonstrated that the designs SketchIT produces include novel
designs.

SketchIT represents each of its designs with a BEP-Model, a parametric model
augmented with constraints that ensure the device produces the desired behavior.

The constraints in each BEP-Model represent the regions in parameter space (i.e., the

space spanned by the geometric parameters) that provide the desired behavior. Thus
they de�ne a family of design solutions that the designer can explore in order to satisfy

other design requirements, such as requirements on size or cost. We demonstrated
that the BEP-Model's family of designs includes a wide variety of design solutions.

Because the BEP-Model's constraints prevent changes to the geometry that are

9.1. CONTRIBUTIONS 157

inconsistent with the desired behavior, the BEP-Model makes it easy for the designer

to explore the design space.

During conceptual design a high premium is placed on examining as many design

alternatives as possible. By producing many alternative designs, SketchIT has the

potential to greatly improve the conceptual design process.

9.1.4 QC-Space: As a Representation

SketchIT's primary tasks are to turn a sketch into working geometry and to produce

alternative implementations. SketchIT uses the problem solving paradigm in Fig-

ure 9-1 to perform these tasks. This paradigm is essentially abstraction followed by

re-synthesis. SketchIT �rst performs abstraction, instead of going directly from the
original design to new designs, because an abstract representation simpli�es the rea-

soning process: A sketch contains an enormous amount of geometric detail, much of
which is irrelevant to the behavior. The abstraction process strips away the irrelevant
detail to expose what is essential.

QC
Space

Rev
er

se
 E

ng
in

ee
r

&
G

en
er

al
ize

Rev
er

se
 E

ng
in

ee
r

&
G

en
er

al
ize

Synthesize

Original
Design

New
Designs

Figure 9-1: SketchIT's problem solving paradigm.

The question is, what is the right abstraction? For mechanical devices, the be-

havior is achieved through interactions between component shapes. Hence, it is not
the shapes themselves that are essential, but rather the interactions between them.

We suggest therefore, that the right abstraction is one that captures interactions but

158 CHAPTER 9. DISCUSSION

strips away their implementations (i.e., strips away individual component shapes).

Qc-space provides precisely this kind of abstraction.

Because qc-space explicitly represents behavior, it is an e�cient representation

for mechanical design. Given the intimate connection between shape and behavior,

design of mechanical artifacts is typically conceived of as the modi�cation of shape to

achieve behavior. But if changes in shape are attempts to change behavior, and if the

mapping between shape and behavior is quite complex [2], then, we suggest, why not

manipulate a representation of behavior? Our qc-space is just such a representation.

We suggest that it is complete and yet o�ers a far smaller search space. It is complete

because any change in shape will produce a c-space that maps to one of the qc-spaces

that our program will consider. Qc-space is a far smaller search space because a single

change to qc-space maps to many changes in shape.
All of this would be for naught if the mapping from qc-space back to imple-

mentation were di�cult. However, this turns out to be a relatively simple problem:
Implementations for interactions can be cataloged; our interaction library is an ex-
ample. By constructing catalogues with multiple implementations for each kind of
interaction, it is possible to exploit this mapping as an opportunity to produce design
variants, as indeed we do.

Our system is an existence proof of the value of qc-space as a representation. We
used qc-space to construct an implemented computer program, and that program
successfully turned sketches into working geometry and produced design variants.

9.1.5 The Library

Using libraries in design tools is not a new idea; the novelty here is in cataloging
mechanical interactions. Conventional design libraries contain either complete com-

ponents or small assemblies of components (e.g., [52]) that are concatenated to pro-
duce complete designs. Our library, on the other hand, contains implementations for

mechanical interactions. Because interactions are at a �ner level of granularity than

components or assemblies, our library provides much greater expressive power than
does a conventional library.

9.1.6 E�cient Simulation

Our simulator employs several innovative techniques that reduce ambiguity in force

balances. By reducing ambiguity, we reduce the amount of search (branching) re-

quired to simulate a device, and hence reduce the amount of computation required.
We represent forces by their projections onto the degrees of freedom of the bodies

to which they are applied. We can make this simpli�cation without introducing

inaccuracies because the projections are the only components of a force that a�ect

the motion of a body. The advantage is that by simplifying forces to their projections,

we greatly reduce the ambiguity in force balances.

9.2. FUTURE WORK 159

Another way we reduce ambiguity is by reasoning about the type of constraint|

motion constrained or compliant|that an engagement applies. One of our basic

principles is that motion constrained engagements overpower compliant ones. For ex-

ample, the resultant of a positive motion constrained engagement force and a negative

compliant engagement force is always a positive force. Without our basic principle,

this force balance would be ambiguous.

9.2 Future Work

9.2.1 Extensions

SketchIT is a prototype software system and as such requires some additional work
before it is complete. The simulator, described in Chapter 4, is the part of the

system that requires the bulk of the continued e�ort. The required extensions needed
to complete the simulator are described throughout that chapter.

Although the interaction library, described in Chapter 7 and Appendix A, contains
at least one implementation for each of the di�erent kinds of qcs-curves, it is by no
means complete. Our library contains implementations that use only at faces1 and
hence we must consider other types of implementations, such as curved faces. In

addition, our use of at faces is not exhaustive: for most pairs of faces we do not
enumerate all the regions in the parameter space (i.e., the space spanned by the
geometric parameters of the pair of faces) for which the faces implement a given kind
of qcs-curve.

We generated our initial library by hand. We would like to develop computational

approaches to complete the library. One approach would be to construct a general
expression for the cs-curve of a pair of faces and then to apply symbolic algebra
techniques to identify the constraints necessary for this general curve to be monotonic
with the desired qualitative slope.

In its current implementation, SketchIT uses search to reverse engineer the

sketch: the program systematically generates candidate qc-spaces for the sketch and
tests them to see if they provide the desired behavior. We believe that we can reverse

engineer the sketch much more e�ciently using debugging rules that examine why
a particular qc-space fails to produce the desired behavior (see Section 3.3.2). By

diagnosing these kinds of failures, we could produce new candidate qc-spaces by

judicious repair of the current one.
We currently use state transition diagrams to specify the desired behavior of a

device in terms of a desired sequence of engagements. We would like to develop a be-

havior speci�cation language that is more like the verbal language that engineers use

to describe the behavior of devices. For example, we would like to specify the desired
behavior using common engineering terms like \ratchet," \clutch", or \trip mech-

1Circular faces are used when rotors act as stops.

160 CHAPTER 9. DISCUSSION

anism." We believe that the state transition diagram language is a good substrate

upon which to implement this better language. For example, many engineering terms,

such as \ratchet," have a direct translation into a desired sequence of engagements,

and hence are simply a macro on top of the state transition diagram language.

SketchIT's domain is �xed-axis devices for which engagements are frictionless

and inertia is negligible. While this is a useful class of devices (see Sacks and Joskowicz

[43]), we would like to relax some of these restrictions in order to enlarge the class of

devices SketchIT can handle. For example, we would like to relax the restriction

to frictionless engagements.

Relaxing this restriction would require modi�cations to both the simulator and the

synthesis modules that generate the BEP-Models. A simple model of friction is that

it either dominates the force balance or is negligible. Hence, when computing force
balances, the simulator would have an additional property to branch on: whether or

not the friction from an engagement dominates the other forces applied to a body.
Once SketchIT determines which engagements should provide high friction and
which should not, it must add appropriate constraints to the BEP-Model.

These constraints can be expressed in terms of the friction cone, which de�nes
the range of forces (i.e., the range of orientations of a force) that a surface can resist

without slipping. The size of the friction cone is a function of the coe�cient of
friction and the geometric parameters of the interacting faces. To ensure that an
engagement provides high friction, SketchIT must add constraints to the BEP-
Model that ensure the engagement forces are inside the friction cone. Conversely, to
ensure that the friction is negligible, the program must add constraints that ensure
the engagement forces are outside the friction cone.

Another restriction we would like to relax is the restriction to �xed-axis devices.
We have identi�ed a commonly occurring class of devices in which a pair of parts
has three degrees of freedom (instead of two degrees of freedom as in a �xed-axis
device) but the con�guration space is still tractable. These devices have switchable
degrees of freedom: for each di�erent mode of operation one of the degrees of freedom

is switched o� so that at any given time, at most two degrees of freedom are active.
SketchIT could represent these kinds of devices with a set of qcs-planes, one for

each mode of operation. The simulator would select the appropriate qcs-plane for
each step of simulation.

Figure 9-2 shows an example consisting of two rotors, labeled A and B. Rotor

A has a spring-loaded plunger protruding from it, B has a spring pushing it toward
a stop. Devices similar to this are used, for example, to index the �lm advance in
cameras. In the �rst mode of operation, the plunger's degree of freedom is turned

o�. As rotor A turns clockwise it pushes rotor B as shown in Figure 9-3. Eventually

the rotors disengage and B's spring pushes B against its stop. In the second mode

of operation, rotor B's degree of freedom is turned o� and the plunger's degree of

freedom is turned back on: Rotor A turns counterclockwise causing the plunger to

be depressed by engaging rotor B as shown in Figure 9-4. In normal use, the device

9.2. FUTURE WORK 161

would alternate between these two modes.

Figure 9-3 shows the qc-space for the �rst mode. The qc-space is a plane de�ned

by the degrees of freedom of the rotors. Because the plunger's degree of freedom

is turned o� in this mode, its degree of freedom does not appear in the qc-space.

Figure 9-4 shows the qc-space for the second mode. This qc-space is also a plane,

but this time it is de�ned by the degrees of freedom of rotor A and the plunger.

At any point in the simulation, one or the other of these qcs-planes will be active.

The simulator's new task is to select the applicable qcs-plane for each step of the

simulation.

After making these extensions to our system, the next task is to determine how

well these techniques scale to design problems more complex than the three working

examples reported here.
We are now beginning to explore how our techniques can be applied to other

problem domains. For example, we believe that the BEP-Model will be useful for
kinematic tolerance analysis (see [3] for an overview of tolerancing). Here the task is
to determine if a given set of variations in the shapes and locations of the parts of a
device will compromise the desired behavior. A possible approach to this task is to
determine if the variations are contained in the family of working designs de�ned by

the BEP-Model. For example, a simplistic implementation would use Monte Carlo
simulation to determine if a large number of designs randomly selected from the
speci�ed set all satisfy the constraints of the BEP-Model.

We have also begun to explore design rationale capture. We believe that the
constraints of the BEP-Model will be a useful form of design documentation, serving
as a link between the geometry and the desired behavior. The constraints might, for

example, be used to prevent subsequent redesign e�orts from modifying the geometry
in a way that compromises hard won design features in the original design.

A

plunger

B

stop

UA

UPL

UB

Figure 9-2: A device with switchable degrees of freedom. The device employs two

rotors, labeled A and B. Rotor A has a spring-loaded plunger protruding from it, B

has a spring pushing it toward a stop.

162 CHAPTER 9. DISCUSSION

A

B

stop

stop

UA

UB
A pushing B

Figure 9-3: The �rst mode of operation and the corresponding qc-space. The plunger's

degree of freedom is switched o�.

A
B

UA

UPL

A pushing plunger

plunger

Figure 9-4: The second mode of operation and the corresponding qc-space. Rotor B's

degree of freedom is switched o�.

9.2. FUTURE WORK 163

9.2.2 The Vision

The ultimate goal of this project was to develop techniques that allow a computer

program to read, understand, and use sketches of mechanical devices. The end result

is a computer program that can transform a sketch into working geometry and produce

alternative implementations. From a broader perspective, this project is a small

step toward a much larger vision of getting the knowledge of the engineer into the

computer.

For the most part, computers are currently expediters of bookkeeping. Their

primary use in design is for documentation and analysis. We look to a future in

which computers take a more active role in the design process, performing the same

kinds of tasks that a human design assistant might. For this future to become a
reality, computer programs must be able to understand the language that designers

use to communicate design information, and the programs must contain knowledge
about the physical artifacts being designed. For SketchIT to perform its tasks, for
example, it must be able to read a sketch|the language that engineers use to describe
mechanical devices|as well as use knowledge about mechanical devices: knowledge
of the laws of motion and knowledge in the form of a library of interactions.

This future will be the third revolution in the use of computers in design. The
�rst revolution was the electronic drafting board, the second was the computer as a
physical simulator, and the third will be getting the knowledge of the engineer into
the computer.

164 CHAPTER 9. DISCUSSION

Appendix A

Interaction Library

This appendix contains our complete library of interactions. Chapter 7 describes how
we derive and use the library.

The library contains implementations for every possible type of qcs-curve. Fig-

ure A-1 shows all the possible types of �nite qcs-curves. Because there are eight types,
and the coordinates q1 and q2 can be either rotation or translation, the library must
be capable of implementing 32 di�erent types of interactions. The current library has
one implementation for each of these 32 types.1

Figure A-1: The eight types of �nite qcs-curves. For drawing convenience, the diag-

onal qcs-curves are shown as straight line segments; they can have any shape as long

as they are monotonic.

The interaction between a rotating or translating face and a �xed face produces

either a horizontal or vertical, in�nite qcs-curve. These curves are in�nite versions
of curves A, C, E, and G in Figure A-1. Because there are four types of in�nite

qcs-curves, and one of the interacting bodies can either rotate or translate while the

other body is �xed, the library must include implementations for 8 additional types

1There are two implementations for diagonal curves for which one body translates and the other

rotates.

165

166 APPENDIX A. INTERACTION LIBRARY

of interactions. Hence, the complete library includes a total of 40 interactions: 32 for

�nite qcs-curves and 8 for in�nite ones.

By appropriate use of coordinate transformations, we can implement the 40 dif-

ferent kinds of interactions with just 10 di�erent kinds of implementations. Table 7.1

shows the 10 distinct cases that remain after using coordinate transformations. Here

we provide implementations for just the 10 distinct cases; Chapter 7 describes how

to apply coordinate transformations to obtain the others.

A.1 Pushing: Rotation & Translation

Implementations for:

� interaction: pushing, rotation & translation

� curve length: �nite

� curve type: diagonal

� number of implementations: 2

A.1.1 Cam and O�set Follower

The geometry in Figure A-2 can be used to implement a pushing interaction between

a rotating face and a translating face. This particular implementation is called a cam
and o�set follower. The hallmark of this implementation is that the translating face
cannot pass through the pivot of the rotating face (Section A.1.2 shows a di�erent
implementation in which the translating face can pass through the pivot). This
geometry can be used to implement any diagonal qcs-curve for which one body rotates

and the other translates. Here we show how it is used to implement qcs-curves with
qualitative slope H. Section 7.2.1 shows how to implement the other three diagonal

slopes by appropriate use of coordinate transformations.

CONSTRAINTS

For the cs-curve to be monotonic and have qualitative slope H, the geometry must

satisfy the following constraints:

w > 0 (A:1)

L > 0 (A:2)

h > 0 (A:3)

r = (s2 + L2 � 2sL cos(�))1=2 (A:4)

A.1. PUSHING: ROTATION & TRANSLATION 167

ψ

θ

φ

r

s

L

h

w

x

Figure A-2: The parameterization of a pair of faces used to implement pushing in-

teractions between rotating and translating faces. The rotating face rotates about
the origin, its position measured positive counterclockwise with angle �. The trans-
lating face translates horizontally, its position measured positive to the right with x.
Shading indicates the back sides of the faces, i.e., the sides that are inside the solids
containing the faces.

r > h (A:5)

s < h (A:6)

� > �=2 (A:7)

arccos(
L2 + r2 � s2

2Lr
) + arccos(h=r) < �=2 (A:8)

� � � (A:9)

168 APPENDIX A. INTERACTION LIBRARY

 < arcsin(h=r) + �=2 (A:10)

 > 0 (A:11)

END POINTS

Figure A-3 shows the qcs-curve implemented by the geometry in Figure A-2. The

coordinates of the end points of the curve are:

�1 = arcsin(h=r) (A:12)

x1 = r cos(�1) (A:13)

�2 = � � arcsin(h=r) (A:14)

x2 = �r cos(�1) (A:15)

θθ1 θ2

x
x1

x2

Figure A-3: The qcs-curve implemented by the geometries in Figures A-2 and A-4.

For drawing convenience, the qcs-curve is shown as a straight line segment; it can

have any shape as long as it is monotonic.

A.1.2 Cam and Centered Follower

The geometry shown in Figure A-4 can be used to implement a pushing interaction

between a rotating face and a translating face. This particular implementation is

A.1. PUSHING: ROTATION & TRANSLATION 169

called a cam and centered follower. The hallmark of this implementation is that the

translating face can pass through the pivot of the rotating face. This geometry can be

used to implement any diagonal qcs-curve for which one body rotates and the other

translates. Here we show how it is used to implement qcs-curves with qualitative slope

H. Section 7.2.1 shows the kinds of coordinate transformations needed to implement

the other three diagonal slopes.

ψ

θ

φr

s

L

x

h1

h2

Figure A-4: The parameterization of a pair of faces used to implement pushing in-
teractions between rotating and translating faces. The rotating face rotates about
the origin, its position measured positive counterclockwise with angle �. The trans-

lating face translates horizontally, its position measured positive to the right with x.

Shading indicates the back sides of the faces, i.e., the sides that are inside the solids
containing the faces.

CONSTRAINTS

For the cs-curve to be monotonic and have qualitative slope H, the geometry must

satisfy the following constraints:

L > 0 (A:16)

h1 > 0 (A:17)

170 APPENDIX A. INTERACTION LIBRARY

h2 > 0 (A:18)

 > �=2 (A:19)

 < � (A:20)

� > �=2 (A:21)

� < � (A:22)

r = (s2 + L2 � 2sL cos(�))1=2 (A:23)

s > h1 (A:24)

0 > r= tan() + h2= sin() (A:25)

END POINTS

Figure A-3 shows the qcs-curve implemented by the geometry in Figure A-4. The
coordinates of the end points of the curve are:

�1 = � arcsin(h2=r) (A:26)

x1 = r cos(�1)� h2= tan() (A:27)

�2 = arcsin(h1=s) + arccos(
s2 + r2 � L2

2sr
) (A:28)

x2 = s cos(arcsin(h1=s)) + h1= tan() (A:29)

A.2 Pushing: Rotation & Rotation I

Implementations for:

� interaction: pushing, rotation & rotation

� curve length: �nite

� curve type: diagonal types D and H

A.2. PUSHING: ROTATION & ROTATION I 171

The geometry in Figure A-5 can be used to implement diagonal qcs-curves with

negative slope for which both bodies rotate (i.e., types D and H). Here we show how

it is used to implement qcs-curves with qualitative slope H. To implement curves with

slope D, the geometry must be ipped about the horizontal line connecting the pivots

(see for example, Figure 7-6). When the geometry is ipped over, the rotation angles

are still measured positive counterclockwise.

R1

R2

L2

S2

S1

L1

φ1φ2

d

y
x

Figure A-5: The parameterization of a pair of faces used to implement pushing inter-
actions between rotating faces for the case in which the qcs-curve has negative slope.
Shading indicates the back sides of the faces, i.e., the sides that are inside the solids

containing the faces.

CONSTRAINTS

For the cs-curve to be monotonic and have qualitative slope H, the geometry must
satisfy the following constraints:

�1; �2; R1; R2; L1; L2 > 0 (A:30)

S1 = (R2
1 + L2

1 � 2R1L1 cos(�1))
1=2 (A:31)

S2 = (R2
2 + L2

2 � 2R2L2 cos(�2))
1=2 (A:32)

d� S2 > R1 (A:33)

R1 > d�R2 (A:34)

d� S1 > R2 (A:35)

R2 > d�R1 (A:36)

172 APPENDIX A. INTERACTION LIBRARY

L1 < R1 cos(�1) (A:37)

L2 < R2 cos(�2) (A:38)

e1 = arccos

"
d2 +R2

1 �R2
2

2dR1

#
(A:39)

e2 = arccos

"
d2 +R2

2 �R2
1

2dR2

#
(A:40)

e1 < �=2� e2 � �2 (A:41)

e2 < �=2� e1 � �1 (A:42)

END POINTS

Figure A-6 shows the qcs-curve implemented by the geometry in Figure A-5. The
coordinates of the end points of the curve are:

x1 = � � e1 (A:43)

y1 = e2 (A:44)

x2 = � + e1 (A:45)

y2 = �e2 (A:46)

A.2. PUSHING: ROTATION & ROTATION I 173

y

x

y1

x1

y2

x2

Figure A-6: The qcs-curve implemented by the geometries in Figures A-5 and A-9.

For drawing convenience, the qcs-curve is shown as a straight line segment; it can

have any shape as long as it is monotonic.

174 APPENDIX A. INTERACTION LIBRARY

A.3 Pushing: Rotation & Rotation II

Implementations for:

� interaction: pushing, rotation & rotation

� curve length: �nite

� curve type: diagonal types B and F

The geometry in Figure A-7 can be used to implement diagonal qcs-curves with

positive slope for which both bodies rotate (i.e., types B and F). Here we show how it

is used to implement qcs-curves with qualitative slope B. To implement curves with

slope F, the inside and outside of each face must be swapped (i.e., the side of the face
that is currently the outside becomes the inside).

R1

R2

L2

L1

d

y x

Figure A-7: The parameterization of a pair of faces used to implement pushing inter-
actions between rotating faces for the case in which the qcs-curve has positive slope.
Shading indicates the back sides of the faces, i.e., the sides that are inside the solids

containing the faces.

CONSTRAINTS

For the cs-curve to be monotonic and have qualitative slope B, the geometry must

satisfy the following constraints:

R1; R2; L1; L2; d > 0 (A:47)

R2 > d +R1 (A:48)

R2 < d+R1 + L1 (A:49)

R2 + L2 > d +R1 + L1 (A:50)

A.4. PUSHING: TRANSLATION & TRANSLATION 175

END POINTS

Figure A-8 shows the qcs-curve implemented by the geometry in Figure A-7. The

coordinates of the end points of the curve are:

x1 = � arcsin

R2 sin(�y1)

R1 + L1

!
(A:51)

y1 = � arccos

R2
2 + d2 � (R1 + L1)

2

2R2d

!
(A:52)

x2 = �x1 (A:53)

y2 = �y2 (A:54)

y

x

y1

x1

y2

x2

Figure A-8: The qcs-curve implemented by the geometry in Figure A-7. For drawing

convenience, the qcs-curve is shown as a straight line segment; it can have any shape

as long as it is monotonic.

A.4 Pushing: Translation & Translation

Implementations for:

� interaction: pushing, translation & translation

� curve length: �nite

176 APPENDIX A. INTERACTION LIBRARY

� curve type: diagonal

The geometry in Figure A-9 can be used to implement pushing interactions be-

tween translating faces. It can implement any diagonal qcs-curve for which both

bodies translate. Here we show how it is used to implement qcs-curves with qualita-

tive slope H. The other three kinds of diagonal curves are implemented by ipping

the directions of positive displacement.

φ1

φ2

α

x

yL1

L2

Figure A-9: The parameterization of a pair of faces used to implement pushing inter-

actions between translating faces. Shading indicates the back sides of the faces, i.e.,
the sides that are inside the solids containing the faces.

CONSTRAINTS

For the cs-curve to be monotonic and have qualitative slope H, the geometry must

satisfy the following constraints:

L1; L2 > 0 (A:55)

0 < � < � (A:56)

0 < �1 < � (A:57)

0 < �2 < � (A:58)

A.5. FIXED ROTOR-STOP 177

0 < � + �1 < � (A:59)

0 < � + �2 < � (A:60)

Figure A-6 shows the qcs-curve implemented by the geometry in Figure A-9. The

coordinates of the end points of the curve are:

x1 = �L1 cos(�1)� L1

sin(�1)

tan(�)
(A:61)

y1 = L1

sin(�1)

sin(�)
(A:62)

x2 = L2

sin(�2)

sin(�)
(A:63)

y2 = �L2 cos(�2)� L2

sin(�2)

tan(�)
(A:64)

A.5 Fixed Rotor-Stop

Implementations for:

� interaction: rotation stopped by stationary face

� curve length: in�nite

� curve type: horizontal or vertical

The geometry in Figure A-10 can be used to implement a �xed rotor-stop. Here

we show how it is used to implement in�nite, vertical curves of type G. To implement

in�nite, vertical curves of type C, the inside and outside of each face must be swapped
(i.e., the side of the face that is currently the outside becomes the inside). Horizontal
curves are implemented by de�ning the degree of freedom of the rotor to be the

ordinate of the cs-plane rather than the abscissa.

CONSTRAINTS

No constraints are necessary to ensure that the cs-curve is monotonic. To ensure

that the qualitative slope is G, the geometry must satisfy the following constraints:

R;L > 0 (A:65)

� > ��=2 (A:66)

178 APPENDIX A. INTERACTION LIBRARY

φ

φ

L

L

R

R

θ

θ0

Figure A-10: Geometry used to implement a �xed rotor-stop. The position of the
rotor is measured positive counterclockwise with angle �. The �xed face is located at
angle �0.

� < �=2 (A:67)

END POINTS

Figure A-11 shows the qcs-curve implemented by the geometry in Figure A-10.

θθ0

Figure A-11: The qcs-curve implemented by the geometry in Figure A-10.

A.6. ROTATING ROTOR-STOP 179

A.6 Rotating Rotor-Stop

Implementations for:

� interaction: rotation stopped by rotating face

� curve length: �nite

� curve type: horizontal or vertical

The geometry shown in Figure A-12 can be used to implement a rotating rotor-

stop. Here we show how it is used to implement vertical curves of type C. To imple-

ment vertical curves of type G, the inside and outside of each face must be swapped

(i.e., the side of the face that is currently the outside becomes the inside). Horizontal
curves are implemented by de�ning degree of freedom y to be the abscissa of the
cs-plane and x to be the ordinate.

φ2 φ1

ay x

d

R

Figure A-12: Geometry used to implement a rotating rotor-stop. The positions of

the rotors are measured positive counterclockwise.

CONSTRAINTS

No constraints are necessary to ensure that the cs-curve is monotonic. To ensure

that the qualitative slope is G, the geometry must satisfy the following constraints:

R; d; �1; �2 > 0 (A:68)

a > 0 (A:69)

180 APPENDIX A. INTERACTION LIBRARY

a+ �1 < � (A:70)

�2 < 2� � �1 (A:71)

END POINTS

Figure A-13 shows the qcs-curve implemented by the geometry in Figure A-12.

y

xπ/2

a φ2-

a φ1+

Figure A-13: The qcs-curve implemented by the geometry in Figure A-12.

A.7 Translating Rotor-Stop

Implementations for:

� interaction: rotation stopped by translating face

� curve length: �nite

� curve type: horizontal or vertical

The geometry in Figure A-14 can be used to implement a translating rotor-stop.

Here we show how it is used to implement horizontal curves of type A. To implement

horizontal curves of type E, the inside and outside of each face must be swapped (i.e.,

the side of the face that is currently the outside becomes the inside). Vertical curves

are implemented by de�ning degree of freedom � to be the abscissa of the cs-plane

and x to be the ordinate.

A.7. TRANSLATING ROTOR-STOP 181

h

h

LS

LR

x

R

θ
θ0

Figure A-14: Geometry used to implement a translating rotor-stop. The position of
the rotor is measured positive counterclockwise with angle �. The translating face
slides along a guide located at angle �0.

CONSTRAINTS

No constraints are necessary to ensure that the cs-curve is monotonic. To ensure
that the qualitative slope is A, the geometry must satisfy the following constraints:

LR; LS ; R > 0 (A:72)

END POINTS Figure A-15 shows the qcs-curve implemented by the geometry in
Figure A-14.

182 APPENDIX A. INTERACTION LIBRARY

x
(-)R LS (+)R LR

θ0

θ

Figure A-15: The qcs-curve implemented by the geometry in Figure A-14.

A.8 Fixed Slider-Stop

Implementations for:

� interaction: translation stopped by �xed face

� curve length: in�nite

� curve type: horizontal or vertical

The geometry shown in Figure A-16 can be used to implement a �xed slider-stop.
Here we show how to implement vertical curves of type C. To implement vertical

curves of type G, the inside and outside of each face must be swapped (i.e., the
side of the face that is currently the outside becomes the inside). Horizontal curves

are implemented by de�ning the slider's degree of freedom to be the ordinate of the

cs-plane rather than the abscissa.

CONSTRAINTS

No constraints are necessary to ensure that the cs-curve is monotonic. To ensure
that the qualitative slope is C, the geometry must satisfy the following constraints:

L1; e > 0 (A:73)

� > 0 (A:74)

A.8. FIXED SLIDER-STOP 183

φ φ

L1 L1

x x0

e e

Figure A-16: Geometry used to implement a �xed slider-stop. The position of the
slider is measured positive to the right with x. The �xed face is located at x0.

� < � (A:75)

END POINTS

Figure A-17 shows the qcs-curve implemented by the geometry in Figure A-16.

xx0

Figure A-17: The qcs-curve implemented by the geometry in Figure A-16.

184 APPENDIX A. INTERACTION LIBRARY

A.9 Rotating Slider-Stop

Implementations for:

� interaction: translation stopped by rotating face

� curve length: �nite

� curve type: horizontal or vertical

The geometry in Figure A-18 can be used to implement a rotating slider-stop.

Here we show how it is used to implement vertical curves of type G. To implement

vertical curves of type C, the inside and outside of each face must be swapped (i.e., the
side of the face that is currently the outside becomes the inside). Horizontal curves
are implemented by de�ning degree of freedom y to be the abscissa of the cs-plane

and x to be the ordinate.
CONSTRAINTS

No constraints are necessary to ensure that the cs-curve is monotonic. To ensure
that the qualitative slope is G, the geometry must satisfy the following constraints:

�;R > 0 (A:76)

a < b (A:77)

b < c (A:78)

b� a < �=2 (A:79)

c� b < �=2 (A:80)

� < 2� � (c� a) (A:81)

END POINTS

Figure A-19 shows the qcs-curve implemented by the geometry in Figure A-18.

A.9. ROTATING SLIDER-STOP 185

φ

aR
xy

a
c

b

Figure A-18: Geometry used to implement a rotating slider-stop. The position of the
slider is measured with displacement x along a �xed axis inclined an angle b from the

horizontal. The angle of the rotor is measured positive counterclockwise with angle
y.

y

x

a φ-

c

R

Figure A-19: The qcs-curve implemented by the geometry in Figure A-18.

186 APPENDIX A. INTERACTION LIBRARY

A.10 Translating Slider-Stop

Implementations for:

� interaction: translation stopped by translating face

� curve length: �nite

� curve type: horizontal or vertical

The geometry in Figure A-20 can be used to implement a translating slider-stop.

Here we show how to implement vertical curves of type C. To implement vertical

curves of type G, the inside and outside of each face must be swapped (i.e., the side

of the face that is currently the outside becomes the inside). Horizontal curves are
implemented by de�ning degree of freedom y to be the abscissa of the cs-plane and x
to be the ordinate.

φ φ

L1 L2

x x0

e y

Figure A-20: Geometry used to implement a translating slider-stop. The position of
one slider is measured positive to the left with x. The position of the other slider (the

one that acts as a stop) is measured by displacement y along a �xed guide inclined
an angle � from horizontal. This guide intersects the path of the other slider at x0.

CONSTRAINTS

No constraints are necessary to ensure that the cs-curve is monotonic. To ensure

that the qualitative slope is C, the geometry must satisfy the following constraints:

L1; L2; e > 0 (A:82)

� > 0 (A:83)

� < � (A:84)

END POINTS

Figure A-21 shows the qcs-curve implemented by the geometry in Figure A-20.

A.10. TRANSLATING SLIDER-STOP 187

y

x

e-L2

e+L1

x0

Figure A-21: The qcs-curve implemented by the geometry in Figure A-20.

188 APPENDIX A. INTERACTION LIBRARY

Appendix B

Sketching Tool

This appendix describes the CAD-like sketching tool (sketcher) we use to create
sketches for SketchIT.1 Figure B-1 shows the sketcher being used to create a sketch
of a circuit breaker.

Figure B-1: The sketching tool used to create sketches for SketchIT.

The tool-bar at the left of the sketcher window provides a set of tools and objects.

From the top down these are: the selection and editing tool (arrow); the face object

for creating faces on bodies; the pivot object; the slider joint object; the tool for

1Mike Wessler skillfully and generously wrote the sketching tool.

189

190 APPENDIX B. SKETCHING TOOL

specifying which pairs of faces interact; the \current body tool" which uses color to

indicate the body to which the next object will be attached; the spring object; and

the actuator object.

The user constructs a sketch from icons and line segments. The sketcher provides

icons for springs, actuators, slider joints, and pivots (the icons correspond to objects

from the tool-bar). The pivot icon is a small circle with a short radial line. The radial

line serves as a handle for rotating the body attached to the pivot. To attach a spring

to a rotating body, one �rst rotates the body (using the radial line on the pivot)

to the approximate neutral position of the spring. Then selecting the spring icon in

the tool-bar, and clicking on the pivot, attaches a spring (with appropriate neutral

position) to the body. Actuators (with motion limits) are attached in a similar way.

The icon for a slider joint is a two-headed arrow with a short line extending from
it. This line has the same purpose as the radial line on the pivot icon: it is used

to de�ne neutral positions and motion limits when attaching springs and actuators,
respectively.

Because SketchIT requires that all of the springs attached to a single body be
lumped into a single, equivalent spring, the sketcher allows only one spring to be
attached to a body. For simplicity, the sketcher likewise allows only one actuator to

be attached to a body. SketchIT however can handle multiple actuators attached
to a single body as long as only one is active at any given time (it is not physically
possible for two or more actuators to be active at the same time unless they all apply
exactly the same motion.)

Interacting faces are drawn as line segments. Shading indicates the back side of
a face (i.e., the side of the face that is inside the body containing the face). Color

coding indicates which faces are attached to which bodies. The designer speci�es that
a pair of faces is intended to interact by pressing the �fth button (from the top) in
the tool bar and selecting the pair of faces.

Because SketchIT works in the domain of �xed-axis devices, the sketcher ensures
that each body is connected to ground by either a single pivot or a single slider joint.

Appendix C

Computing Numerical C-Space

SketchIT produces the �rst candidate qc-space for a sketch by abstracting the
sketch's numerical c-space. This appendix describes how SketchIT �rst computes
that numerical c-space. We could have used general purpose techniques for computing

numerical c-space (see, for example, [34], [1], [26], and [2]), but because SketchIT
requires only the locations of the curve end points, we developed simpli�ed, special
purpose techniques that compute just this information. The simplifying insight was
that for �xed-axis devices with at faces, we need to handle only six di�erent kinds
of interactions: a rotating face interacting with a translating face, two rotating faces,

two translating faces, a rotating face interacting with a �xed face, and a translating
face interacting with a �xed face.

We implemented only the �rst and last of these, because that was enough for the
three examples we used to test SketchIT, and because computing c-space curves is
a relatively well understood problem that was not a focus of this work. We describe
the two implemented cases below.

C.1 Interaction: A Rotating Face & a Translat-

ing Face

This section describes how we compute the end points and the blocked space side

of the cs-curve for a rotating at face interacting with a translating at face. The
geometry of a typical pair of faces is shown in Figure C-1. The end points of the cs-

curve correspond to the largest and smallest displacements of the slider (and rotor)

for which the faces still touch. The analysis reduces to one of three special cases
summarized below (see Figure C-1 for a de�nition of the terms):

� Case 1: If max(sa; sb) < min(ra; rb) the two extremes are:

� point Ra on the rotor touching point Sa on the slider

� point Rb on the rotor touching point Sb on the slider

191

192 APPENDIX C. COMPUTING NUMERICAL C-SPACE

� Case 2: If rb > ra, sa > ra, and sb < rb the two extreme displacements occur

when point Rb on the rotor touches point Sb on the slider.

� Case 3: If ra > rb, sa < ra, and sb > rb the two extreme displacements occur

when Ra on the rotor touches point Sa on the slider.

� Otherwise, the two faces do not touch each other and the cs-curve is not de�ned.

ra
Ra

d

sa

sb

sl
id

er
 a

xi
s

rb

Rb

Sa

Sb

nS

nR

rotor pivot
φ

N

Figure C-1: The interaction of a rotating at face with a translating at face. The

rotor's angle is � and the slider's position is d. Points Ra and Rb denote the ends
of the face on the rotor, and are expressed in the rotor's coordinate system. When
looking along the rotor face in the direction from Ra to Rb, the inside of the rotor

will be on the left-hand side. nR is the inward normal to the face. Sa, Sb, and nS are

de�ned similarly. N is the direction of the slider axis

The �rst case is the situation depicted in Figure C-2. The distinguishing feature of

this case is that the path of the slider intersects the path of the rotor in two separate
locations. Hence, there are two separate ranges of engagement. However, only one

of the ranges is physically possible. In the example shown in the �gure, the range of

C.1. INTERACTION: A ROTATING FACE & A TRANSLATING FACE 193

engagement at the top of the �gure is the impossible one: this range of engagement

would require the rotor face to touch the back side of the slider face.1

For the second and third cases, shown in Figures C-3 and C-4 respectively, the

path of the slider intersects the rotor in one location. For the second case, the slider

pushes the rotor counterclockwise, while in the third case it pushes the rotor clockwise.

Ra
Rb

rotor pivot

Sa

Sb

Figure C-2: Case 1: As the shaded regions indicate, the path of the slider intersects

the path of the rotor in two separate locations.

1Recall that in the �nal design, the slider face will be one face on a solid body.

194 APPENDIX C. COMPUTING NUMERICAL C-SPACE

Rb

rotor pivot

Sb

Ra

Sa

Figure C-3: Case 2: As the shaded region indicates, the path of the slider intersects
the path of the rotor in just one location. The slider pushes the rotor counterclockwise.

C.1. INTERACTION: A ROTATING FACE & A TRANSLATING FACE 195

Rb

rotor pivot

Sb

Ra

Sa

Figure C-4: Case 3: As the shaded region indicates, the path of the slider intersects
the path of the rotor in just one location. The slider pushes the rotor clockwise.

196 APPENDIX C. COMPUTING NUMERICAL C-SPACE

All three of these cases require computing the con�gurations in which a particular

point on a rotating body touches a particular point on a translating body. For

example, the second case requires computing the two con�gurations in which point

Rb on the rotor touches point Sb on the slider.

To obtain a general solution to the problem, we use the coordinate systems shown

in Figure C-5 (variables shown in bold are vector quantities). PointQR is an arbitrary

point on the rotor (rotating body), QS is an arbitrary point on the slider (translating

body). For the two points to touch, they must be equidistant from the rotor pivot

(as well as satisfying other criteria described below). If we de�ne Z as a vector from

the pivot to point QS, and r as the radius from the pivot to point QR, the condition

is:

Z � Z = r2 (C:1)

Next, we express Z in terms of the locations of the rotor pivot and slider guide
in the global coordinate system, and the location of the slider point relative to the
slider guide (we express Z in the global coordinate system):

Z = PS �PR +

"
cos() � sin()

sin() cos()

QS +

"
d

0

#!
(C:2)

Substituting this expression for Z into Equation C.1 produces a new expression
that we solve to obtain two values (the equation is quadratic) for d; these represent
the two positions of the slider for which the point on the rotor can touch the point
on the slider.

For each of these two slider positions, there is unique position of the rotor for

which the point on the rotor touches the point on the slider. To compute these rotor
positions we use the fact that, during contact, the vector Z from the pivot to point
QS is the same as the vector from the pivot to point QR:

Z = r

"
cos(�+ �0)

sin(�+ �0)

#
(C:3)

To solve for the rotor angle, �, corresponding to one of the two values for d,

we substitute the value of d into Equation C.2 to obtain a value for Z. Then, we

substitute this value of Z into Equation C.3 and solve for �.
The analysis produces two possible con�gurations because there are two sets of

values for d and �. A set of values is valid only if, in that con�guration, the normals to
the faces are in opposite directions. If the normals were in the same direction, one face

would have to be touching the back side of the other, but this is not physically possible.

If, for example, the rotor and slider in Figure C-2 are touching in a con�guration inside
the shaded region at the top of the �gure, the rotor will be touching the back side of

the slider face. Using the normals to the faces de�ned in Figure C-1, the criterion for

selecting valid con�gurations is:

C.1. INTERACTION: A ROTATING FACE & A TRANSLATING FACE 197

global coordinate system

rotor pivot

rotor body

φ

QR=(r,)φ0

φ0
r

PRslider guide

slider body

d

QS S S=(X , Y)

PS

ψ

Z

Figure C-5: Coordinate systems used for computing the con�gurations in which a

point on a rotating body touches a point on a translating body. The coordinate
system of the rotor pivot is located at point PR in the global coordinate system.

The displacement of the rotor body is denoted by �. Point QR is the point on
the rotor expressed in the coordinate system of the rotor body (expressed in polar

coordinates). The coordinate system of the slider guide is located at the point PS

and has inclination with respect to the global coordinate system. The slider body
coordinate system translates along the x-axis of the slider guide coordinate system

with displacement d. Point QS is the point on the slider expressed in the slider body
coordinate system.

198 APPENDIX C. COMPUTING NUMERICAL C-SPACE

nR � nS < 0 (C:4)

To compute the end points of the cs-curve, we select the appropriate case from

the three listed previously, thereby determining the con�gurations corresponding to

the two end points. We then use Equations C.1 through C.4 to solve for the positions

of the rotor and slider corresponding to each of these con�gurations. The positions

thus obtained are the coordinates of the two end points.

Once we have the end points, we compute the qualitative slope and blocked space

side of the cs-curve. We express the result as one of the curve types shown in Figure 3-

2. Without loss of generality, we assume that the slider's displacement, d, is the

abscissa of the cs-plane, and the rotor's displacements, �, is the ordinate. Then, we
compute the angle � (measured from horizontal) of a straight line connecting the two
end points. Finally, we use these rules to match the cs-curve to one of the qcs-curves

in Figure 3-2:

� If � = 0; �:

� If (Ra � nR) � k̂ > 0 (where k̂ is a unit vector in the global z-direction)
then Type A

� Else Type E

� If 0 < � < �=2 or � < � < 3�=2:

� If N � nS < 0 then Type B

� Else Type F

� If � = �=2; 3�=2

� If N � nS < 0 then Type C

� Else Type G

� If �=2 < � < � or 3�=2 < � < 2�

� If N � nS < 0 then Type D

� Else Type H

C.2 Interaction: A Translating Face & a Station-

ary Face

This section describes how we compute the location and blocked space side of the
cs-curve for a translating at face interacting with a stationary at face. As we saw

C.2. INTERACTION: A TRANSLATING FACE & A STATIONARY FACE 199

in Figure 2-4, the cs-curve for this kind of interaction is an in�nite boundary. The

location of an in�nite boundary is expressed in terms of the point at which it crosses

one of the coordinates axes in the cs-plane (for a �nite cs-curve, on the other hand,

the location is expressed in terms of the two end points).

The geometry of a typical pair of faces is shown in Figure C-6. Because there is

only one degree of freedom (translation of the slider), there is only one con�guration

in which the faces touch. This con�guration, which corresponds to an end point of

one face touching the other face, de�nes the location of the in�nite boundary.

Our strategy for computing this is to compute all of the mathematically possible

con�gurations in which an end point of one face touches the other face, and then to

select from these the one con�guration that is physically possible.

We begin by expressing the locations of the end points of the stationary face in
the slider guide coordinate system (vectors are in bold, and superscripts indicate the

x and y-components of vector quantities.):

TRot =

"
cos() sin()
� sin() cos()

#
(C:5)

�Fa = TRot (Fa �PS) (C:6)

�Fb = TRot (Fb �PS) (C:7)

Next, we sort the end points of the faces with respect to the y-direction of the
slider guide coordinate system:

Stop =

(
Sa SYb < SYa
Sb otherwise

(C:8)

Sbot =

(
Sb SYb < SYa
Sa otherwise

(C:9)

�Ftop =

(
�Fa

�FY
b <

�FY
a

�Fb otherwise
(C:10)

�Fbot =

(
�Fb

�FY
b <

�FY
a

�Fa otherwise
(C:11)

The next step is to compute each of the mathematically possible con�gurations

in which an end point of one face touches the other face. Computing one of these

con�gurations is equivalent to intersecting two lines: a line that passes through the
point and is parallel to the slider axis, and a line de�ned by the face.

We illustrate the process by computing the con�guration in which point Stop on

the slider touches the �xed surface. This con�guration is (mathematically) possible

only if the point is in line with the face:

200 APPENDIX C. COMPUTING NUMERICAL C-SPACE

SYtop �
�FY
top

SYtop �
�FY
bot

(C:12)

If Equation C.12 is satis�ed, then contact is possible, and we compute the position

the slider must occupy for the contact to occur:

d =

8<
:
�FX
top � SXtop if �FX

top =
�FX
bot

�FX
bot +

�FX
top

��FX
bot

�FY
top�

�FY
bot

�
SYtop �

�FY
bot

�
� SXtop otherwise

(C:13)

We perform a similar analysis for the other three point-face combinations by
making the obvious variable substitutions in Equations C.12 and C.13.

If the complete analysis determines that none of the four point-face contacts is

possible, then there is no interaction between the two faces. If the analysis determines
that point-face contacts are possible, we must determine which of the mathematically
possible contacts is physically possible, and hence determine the location of the in�nite
boundary. We use the following test: If the inward normal to the slider face (nS)
points in the negative x-direction of the slider body coordinate system, the location
is the minimum of the d values for the point-face contacts. In addition, assuming the

slider position is the abscissa of the cs-plane, the blocked side of the in�nite boundary
is the same as that of qcs-curve C in Figure 3-2. On the other hand, if the inward
normal does not point in the negative x-direction, the location is the maximum of
the d values, and the blocked side is the same as that of qcs-curve G.

C.2. INTERACTION: A TRANSLATING FACE & A STATIONARY FACE 201

global coordinate system

slider guide

slider body

d
PS

ψ
Sa

Sb

Fb

Fa

nS

nF

Figure C-6: The interaction of a translating at face and a stationary at face. The
slider's position is d. The coordinate system of the slider guide is located at the point

PS , and has inclination with respect to the global coordinate system. Points Sa and
Sb denote the ends of the slider face, and are expressed in the slider body coordinate

system. When looking along the slider face in the direction from Sa to Sb, the inside
of the rotor will be on the left-hand side. nS is the inward normal to the face. Fa,

Fb, and nF are de�ned similarly, but are expressed in the global coordinate system.

202 APPENDIX C. COMPUTING NUMERICAL C-SPACE

Bibliography

[1] R. C. Brost. Analysis and planning of planar manipulation tasks. Technical

Report CMU-CS-91-149, Carnegie Melon University, 1991.

[2] Michael E. Caine. The design of shape frommotion constraints. Technical Report
1425, MIT AI Lab., September 1993.

[3] Kenneth W. Chase and Alan R. Parkinson. A survey of research in the appli-
cation of tolerance analysis to the design of mechanical assemblies. Research in

Engineering Design, 3:23{37, 1991.

[4] Stephen H. Crandall, Dean C. Karnopp, Edward F. Kurtz, Jr., and David C.

Pridmore-Brown. Dynamics of Mechanical and Electromechanical Systems.
Robert E. Krieger Publishing Co., Malabar, Florida, 1968.

[5] Randall Davis. Diagnostic reasoning based on structure and behavior. Arti�cial
Intelligence, 24:347{410, 1984.

[6] Johan de Kleer. Causal and Teleological Reasoning in Circuit Recognition. PhD
thesis, Massachusetts Institute of Technology, September 1979.

[7] Johan de Kleer and John Seely Brown. A qualitative physics based on conu-
ences. Arti�cial Intelligence, 24:7{83, 1984.

[8] John R. Dixon, Eugene C. Libardi, Jr., Steven C. Luby, and Mohan Vaghul.

Expert systems for mechanical design: Examples of symbolic representations of
design geometries. Engineering with Computers, 2(1):1{10, 1987.

[9] Richard James Doyle. Hypothesizing device mechanisms: Opening up the black
box. Technical Report 1047, MIT AI Lab., 1988.

[10] Arthur G. Erdman and George N. Sandor. Mechanism Design: Analysis and

Synthesis, volume 1. Prentice-Hall, Inc., Englewood Cli�s, New Jersey, 1984.

[11] Brian Falkenhainer and Kenneth D. Forbus. Compositional modeling: Finding
the right model for the job. Arti�cial Intelligence, 51:95{143, 1991.

203

204 BIBLIOGRAPHY

[12] Boi Faltings. Qualitative kinematics in mechanisms. Arti�cial Intelligence,

44:89{119, 1990.

[13] Boi Faltings. Qualitative models in conceptual design: A case study. In Reasoning

with Diagrammatic Representations, Papers from the 1992 Spring Symposium,

Technical Report SS-92-02, pages 69{74. AAAI Press, 1992.

[14] Boi Faltings. A symbolic approach to qualitative kinematics. Arti�cial Intelli-

gence, 56:139{170, 1992.

[15] Boi Faltings, Emmanuel Baechler, and Je� Primus. Reasoning about kinematic

topology. In Proceedings IJCAI-89, pages 1331{1336, 1889.

[16] Boi Faltings and Kun Sun. Computer-aided creative mechanism design. In

Proceedings IJCAI-93, pages 1451{1457, 1993.

[17] Ken D. Forbus, Paul Nielsen, and Boi Faltings. Qualitative spatial reasoning:
The clock project. Technical Report 9, Northwestern University, The Institute
for the Learning Sciences, 1991.

[18] Kenneth D. Forbus. Qualitative process theory. Arti�cial Intelligence, 24:85{168,
1984.

[19] Rakesh Gupta and Mark J. Jakiela. Simulation and shape synthesis of kinematic
pairs via small-scale interference detection. Research in Engineering Design,

6:103{123, 1994.

[20] Edward J. Haug. Computer-Aided Kinematics and Dynamics of Mechanical Sys-

tems, Volume I: Basic Methods. Allyn and Bacon, Boston, 1989.

[21] Jon Kieth Hirschtick. Geometric feature extraction using production rules. Mas-

ter's thesis, Massachusetts Institute of Technology, 1986.

[22] Jack Hodges. Naive mechanics, a computational model of device use and function
in design improvisation. IEEE Expert, 7(1):14{27, February 1992.

[23] Yumi Iwasaki, Richard Fikes, Marcos Vescovi, and B. Chandrasekaran. How
things are intended to work: Capturing functional knowledge in device design.

In Proceedings IJCAI-93, pages 1516{1522, 1993.

[24] Leo Joskowicz. Simpli�cation and abstraction in kinemactic behaviors. In Pro-

ceedings IJCAI-89, pages 1337{1342, 1989.

[25] Leo Joskowicz and Sanjaya Addanki. From kinematics to shape: An approach
to innovative design. In Proceedings AAAI-88, pages 347{352, 1988.

BIBLIOGRAPHY 205

[26] Leo Joskowicz and Elisha Sacks. Computational kinematics. Arti�cial Intelli-

gence, 51:381{416, 1991.

[27] Leo Joskowicz and Elisha Sacks. Con�guration space computation for mechanism

design. In Proceedings of the IEEE Robotics and Automation Conference, 1994.

[28] Leo Joskowicz, Elisha Sacks, and Vijay Srinivasan. Kinematic tolerance analysis.

In 3rd ACM Symposium on Solid Modeling and Applications, 1995.

[29] Thamas R. Kane and David A Levinson. Dynamics: Theory and Applications.

McGraw Hill, New York, 1985.

[30] Dean Karnopp and Ronald Rosenberg. System Dynamics: A Uni�ed Approach.
John Wiley and Sons, New York, 1975.

[31] Sridhar Kota and Shean-Juinn Chiou. Conceptual design of mechanisms based on
computational synthesis and simulation of kinematic building blocks. Research
in Engineering Design, 4:75{87, 1992.

[32] Glenn A. Kramer. Solving geometric constraint systems. In Proceedings AAAI-

90, pages 708{714, 1990.

[33] Benjamin Kuipers. Qualitative simulation. Arti�cial Intelligence, 29:289{388,
1986.

[34] Tom�as Lozano-P�erez. Spatial planning: A con�guration space approach. IEEE
Transactions on Computers, C-32(2), February 1983.

[35] Timothy A. Mashburn and David C. Anderson. Automatically deriving behavior
constraints for performance variables in mechanical design. Research in Engi-

neering Design, 6:85{102, 1994.

[36] J. L. Meriam. Dynamics. John Wiley and Sons, Inc., New York, second edition,

1975.

[37] N. Hari Narayanan, Makasi Suwa, and Hiroshi Motoda. How things appear

to work: Predicting behaviors from device diagrams. In Proceedings AAAI-94,
pages 1161{1167, 1994.

[38] P. Pandurang Nayak, Leo Joskowicz, and Sanjaya Addanki. Automated model
selection using context-dependent behaviors. In Proceedings AAAI-92, pages

710{716, 1992.

[39] Parviz E. Nikravesh. Computer-Aided Analysis of Mechanical Systems. Prentice
Hall, Englewood Cli�s, New Jersey, 1988.

206 BIBLIOGRAPHY

[40] M. F. Orelup, J. R. Dixon, and M. K. Simmons. Dominic ii: More progress to-

wards domain independent design by iterative redesign. In Intelligent and Inte-

grated Manufacturing Analysis and Synthesis, Winter Annual Meeting of ASME,

pages 67{80, 1987.

[41] D. R. Prabhu and D. L. Taylor. Synthesis of systems form speci�cations con-

taining orientations and positions associated with ow variables. In Advances

in Design Automation, Volume 1, Computer-Aided and Computational Design,

pages 273{279, 1989.

[42] D. Rosen, D. Riley, and A. Erdman. A knowledge based dwell mechanism assis-

tant designer. Journal of Mechanical Design, 113:205{212, September 1991.

[43] Elisha Sacks and Leo Joskowicz. Automated modeling and kinematic simulation
of mechanisms. Computer-Aided Design, 25(2):106{118, February 1993.

[44] D. Serrano and D. C. Gossard. Combining mathematical models with geometric
models in cae systems. In Proceedings of the 1986 ASME International Comput-

ers in Engineering Conference and Exhibition, pages 277{284, 1986.

[45] David Serrano. Constraint Management in Conceptual Design. PhD thesis,
Massachusetts Institute of Technology, 1987.

[46] Howard Shrobe. Understanding linkages. In Proceedings AAAI-93, pages 620{
625, 1993.

[47] Thomas F. Stahovich, Randall Davis, and Howard Shrobe. An ontology of me-
chanical devices. In Working Notes, Reasoning about Function, 11th National

Conference on Arti�cial Intelligence, pages 137{140, 1993.

[48] Thomas F. Stahovich, Randall Davis, and Howard Shrobe. Turning sketches into
working geometry. In Proceedings of the Seventh International ASME Conference

on Design Theory and Methodology, 1995.

[49] Thomas Frank Stahovich. Computational tools for conceptual design. Master's

thesis, Massachusetts Institute of Technology, 1990.

[50] Richard M. Stallman and Gerald Jay Sussman. Forward reasoning and

dependency-directed backtracking in a system for computer-aided circuit analy-

sis. Technical Report Memo 380, MIT AI Lab., September 1976.

[51] Robert F. Steidel, Jr. and Jerald M. Henderson. The Graphic Languages of

Engineering. John Wiley and Sons, New York, 1983.

[52] Devika Subramanian and Cheuk-San (Edward) Wang. Kinematic synthesis with

con�guration spaces. In The 7th International Workshop on Qualitative Reason-

ing about Physical Systems, pages 228{239, May 1993.

BIBLIOGRAPHY 207

[53] Karl T. Ulrich. Computation and pre-parametric design. Technical Report 1043,

MIT AI Lab., 1988.

[54] Richard V. Welch and John R. Dixon. Guiding conceptual design through be-

havioral reasoning. Research in Engineering Design, 6:169{188, 1994.

[55] Daniel S. Weld and Johan de Kleer, editors. Readings in Qualitative Reason-

ing about Physical Systems. Morgan Kaufmann Publishers, Inc., San Mateo,

California, 1990.

[56] Brian C. Williams. Qualitative analysis of mos circuits. Arti�cial Intelligence,

24(1{3):281{346, 1984.

[57] Jan Wolter and Periannan Chandrasekaran. A concept for a constraint-based
representation of functional and geometric design knowledge. In Proceedings of

the Symposium on Solid Modeling Foundations and CAD/CAM Applications,
pages 409{418. ACM Press, 1991.

