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Abs t ract

With the development of high-level languages for new computer architectures comes the

need for appropriate debugging tools as wel l . One method for meeting this need wouldbe

to develop, fromscratch, a symbol ic debugger with the introduction of each newlanguage

implementation for any given architecture. This, however, seems to require unnecessary

dupl ication of e�ort among developers. Compilation technology has al leviated some du-

pl ication of e�ort in the development of compi lers. Can similar ideas aid in the e�cient

development of symbol ic debuggers as wel l?

Maygenexplores the possibi l i tyof makingdebugger development e�cient byinuencing

the language and architecture development processes. Maygen is a \debugger generation

system," bui lt uponthe idea that symbol ic debuggers canbe dividedintothree components:

a set of source language interface routines, a set of machine architecture interface routines,

anda language-independent andarchitecture-independent debugger skeleton. Maygenthen

exploits this modularity: First, Maygen precisely de�nes as wel l as houses the language-

independent and architecture-independent debugger skeleton. Second, Maygen de�nes the

protocol for interface interaction among source language developers, machine architecture

developers, and the general -purpose debugger skeleton. Final ly, Maygenprovides a frame-

work inwhichthe resident debugger skeleton is automaticallydeveloped into a stand-alone

symbolic debugger; the resultingdebugger is tai loredtothe speci�c provisions of aparticular

language group and a particular architecture group.
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Chapter 1

Int r oduct i on

Recent years have seenasurge of newcomputer architectures as industryandacademiawork

to developfaster processing power. Withthe predominance of high-level programmingover

machine-level programming as wel l , the need for debugging tools that use source language

names and notations has increased. 1 Much e�ort has been given to automating the phases

of compi ler writing in order to simpl i fy high-level language implementation for these new

architectures. Similar e�orts at automation have not, unfortunately, been given to the

production of debuggers.

This lackof automationindebugger productioncanprove expensive interms of engineer-

ing hours, andthus monetarycosts, required for development. Earlyon in the development

of anexperimental computer system, a low-level debugger is needed toevaluate whether the

systemis workingcorrectly. After the newcomputer systemis running, eachnewhigh-level

language written for the systemrequires a corresponding high-level debugger because users

want to debug in terms of the symbols and constructs of the source language. One method

for meeting these debugging needs would be to develop fromscratch a newdebugger for

each newarchitecture and for each newlanguage implemented for a given architecture.

Unfortunately, writing debuggers is not only tedious but also time consuming.

1The terms \high-level debuggi ng," \source- l evel debuggi ng, " and \symbol i c debuggi ng" are used i nter-

changeabl y to mean debuggi ng of programs i n terms of thei r source- l evel names and constructs.

12



CHAPTER 1. I NTRODUCTI ON 13

Asimilar problemconfrontedcompiler developers about �fteen years ago. Compilation

technology has since then focused on reducing dupl ication of e�ort for various phases of

compi ler implementationwithconsiderable success. Most notably, parser generators[Joh75,

MKR79, ASU86, FJ88] , such as yacc[Joh75] , and scanner generators, such as lex[ASU86,

FJ88] , have essential lyel iminatedthe manual creationof parsers andscanners, respectively.

Less known but also important have been e�orts at automating the development of code

generators[GG78, DNF79, Bir82, LJG82] andevenentire compi lers[BBK +82, Ras82, Tof90,

Sto77, Sch88] . Maygen explores the possibi l i ty of applying similar ideas of automation to

debugger development.

1.1 Project Overvi ew

This thesis explores a novel approachto providing source-level debugging support through

the development of a \debugger generation system." In general , an al l -purpose debugger

generation systemmight be a tool that takes as input a source language description and a

machine architecture description, 2 and produces as output a ful ly functional , stand-alone,

language-dependent debugger for the speci�ed architecture. Figure 1-1 depicts such a sys-

tem.

Adebugger produced by such a generation systemconsists of a core debugger skeleton

(SKEL) providedby the generator, a source language interface (SLI) createdby the gener-

ator fromthe source language input, and a machine architecture interface (MAI) created

by the generator fromthe machine architecture input. Figure 1-2 depicts the components

of such a generated debugger.

The debugger generation systemdesigned in this project is cal led Maygen. 3 Maygen

di�ers fromthe described al l -purpose generation systemin terms of what information is

conveyed fromeach of the source language and machine architecture developers to the

2Detai l s about the terms \source l anguage" and \machi ne archi tecture" can be found i n Secti on 4. 2.
3The name \Maygen" ori gi nated f roman i ni ti al project goal of generati ng vari ous symbol i c debuggers f or

one speci �c target archi tecture, the Mayy[Dav92]. The proj ect l ater evol ved to encompass vari ous target

archi tectures as wel l , though the name Maygen remai ned.
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generation system. In the al l -purpose system, input consists of source language and target

architecture descriptions that are then used by the generator to automatical ly create the

needed interface routines. In the Maygen system, the maximal set of routines comprising

each interface is ful ly speci�ed byMaygento the users of the generation system; the input

fromthe users contains informationthat conveys toMaygenwhichof the de�ned interface

routines are avai lable. Once the avai lable interface routines are known, the Maygensystem

determines what additional components (parts of the SKEL) are necessarytoprovide overall

debugger functional ity as wel l as to promote the smooth interaction of the two interfaces

describedabove. TheMaygensystemframeworkmaintains the debugger skeleton, interprets

the inputs, and performs the necessary information processing to create a stand-alone,

language-dependent and architecture-dependent debugger.

Figure 1-3 depicts the interrelationship among users of the Maygen system. Maygen

users can be classi�ed into one of two groups. \Phase I" users work with the Maygen

systemat debugger generationtime, whi le \Phase II" users workwithgenerateddebuggers

at debugger runtime.

Aprototype of the Maygensystemhas been developed and two test sets have been run

to demonstrate the viabi l i ty of such a system. The test sets include a declarative Prolog-

l ike source language running ona target virtual machine emulator andanimperative source

language running on a target paral lel , message-passing distributed-memory architecture.

1. 2 Thes i s Organi zat i on

The remainder of this thesis describes the advantages and disadvantages of related work,

explains why the Maygengenerateddebugger is a more feasible approach, andpresents the

design, implementation, evaluation, and achievements of the Maygensystem.

Chapter 2 begins by briey examining previous research e�orts at providing debugging

support for multiple languages.

Chapter 3 presents the features of the canonical Maygen debugger in comparison and

in contrast to existing debuggers.
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Chapter 4 then describes the Maygensystemdesign, including the source language and

machine architecture interface protocols, the core debugger skeleton, and the generation

frameworkused to create debuggers.

Chapter 5 elaborates upon the prototype of the Maygen systemthat was developed, as

wel l as provides some of the more interesting implementation issues involved.

Chapter 6 then discusses the test cases used to evaluate both the capabi l i ties and the

e�ectiveness of the generation systemprototype.

Final ly, Chapter 7 summarizes the Maygen project, presents the author's conclusions,

and speculates upon possible directions for further research in the area of debugger gener-

ation.



Cha p t e r 2

Rel at ed Work

The idea of debugger generation, althoughno suchsystemis knownto exist or to ever have

beendesigned, was proposedbyJohnson[Joh78] in1978. While Johnson's ownfocus was on

providing amultil ingual tool for debugging, he commentedthat a debugger generationsys-

temcould possibly be an alternative approachto providing source-level debugging support

for multiple languages.

Despite the lack of previous work ondebugger generation, two related areas of research

have provided some insight for the Maygen project. Speci�cal ly, the areas of multi l ingual

debugging and language-independent debugging also try to provide debugging support for

multiple languages.

2. 1 Mul t i l i ngual Debuggi ng

Multi l ingual debugging is a debugging style that permits the debugging of software inwhich

components have been written in more than one source language[Joh82] . Multi l ingual

debugging is useful to consider because of some issues that are simi lar to those of debugger

generation. Speci�cal ly, the needto distinguishbetweenlanguage-dependent and language-

independent components of debuggers pertains to both.

Two examples of multil ingual debuggers are VAXDEBUG[Bea83] and SWAT[Car83] .

18
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VAXDEBUGis the VAX-11Debugger developedat Digital Equipment Corporation. For a

particular set of supportedsource languages, VAXDEBUGunderstands: howsymbol names

are composedinthe language, howlanguage expressions are interpreted, howandwhentype

conversions are done in the language, howvalues in the language are displayed, and how

the language scope rules work. AlthoughVAXDEBUGunderstands this informationfor a

de�ned set of languages, i t operates according to the rules of only one language at a time.

VAXDEBUGsupports the fol lowing languages: assembly, Fortran, Bl iss, Basic, Cobol ,

Pascal , andPL/I.

SWATis a source-level debugger developed by Data General Corporation. SWAT

supports �ve high-level languages, each of which conforms to an agreed upon \Common

Compiler Component Methodology." This methodology de�nes a common intermediate

language, procedure-cal l ing sequence, and language runtime environment that must be fol -

lowed by each of the supported languages. The languages understood by SWATare: C,

Cobol , Fortran77, Pascal , andPL/I.

2. 2 Language-i ndependent Debuggi ng

Similar tothe ideaof multi lingual debugging is language-independent debugging. Language-

independent debugging refers to debugging techniques that are independent of any one

particular source language[Joh82] . Adebugging systemthat has dealt speci�cal ly with

the issue of language-independence is the RAIDEsystem[Joh77] . Johnson explains that

a separate debugging language might be desirable. The debugging language created for

the RAIDE system, cal led Dispel [Joh81] , i s designed to aid communication between an

interactive user and a runtime, symbol ic debugging system.

2. 3 Advantages and Di sadvantages

Indeed, these previous systems present approaches to debugging that appear to accommo-

date multiple languages. Such accommodation leads to improved economyof implementa-
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tion as wel l as increased ease in product maintenance. In addition, these systems o�er a

certain amount of functional consistency to the debugger user.

Unfortunately, these systems have several shortcomings. First, theyare unable tohandle

the pecul iarities of any speci�c language; there is no extension mechanismwith which to

cater to the needs of a givenparticular language. Second, the languages supported by each

of the multi lingual debuggers are speci�ed beforehand; to handle another language would

meanhavingto rewrite the debugger itsel f. These systems are l imitedto debuggingnot just

a pre-de�ned set of languages, but moreover, only a pre-de�ned set of semantical ly simi lar

languages.

Afurther fault l ies in the language-independent debugging systemas wel l . Auser must

�rst learn a completely separate language, the debugging language, before evenbeing able

to start debugging a program. Once debugging can actual ly proceed, the user then needs

to worry about the possibi l i ty of faulty debugging programs in addition to faulty source

programs.

Admittedly, multi l ingual and language-independent debugging techniques o�er some

gains over single-language debuggers. Nevertheless, the de�ciencies in these debugging

techniques are considerable.
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Canoni cal Gener at ed Debugger

The Maygendebugger tries tomaintainthe desirable features of multi l ingual and language-

independent debuggers whi le also trying to improve upon their shortcomings. This chapter

begins bydescribing the features of the canonical Maygengenerated debugger, proceeds to

explain the motivationbehind the chosendesign, and then demonstrates howthis design is

able to o�er more thanmulti lingual and language-independent debuggers.

3. 1 Overvi ew

The canonical Maygen debugger general ly resembles a typical single-language source-level

debugger for a compiledlanguage in that it o�ers the \traditional"functional itywithwhich

users are accustomedto debugging programs. The Maygendebugger debugs compiledcode

that has not been optimized. It i s also expected that the user starts up the Maygen de-

bugger and then runs a programunder debugger control . The maximal set of fundamental

debugging faci l i ties that are supported 1 by aMaygendebugger include: starting, stopping,

single-stepping, and continuing an execution; loading a �le; resetting the machine; setting,

clearing, and l isting machine-level as wel l as source-level breakpoints; activating and sus-

1Each of the supported faci l i ti es i s onl y avai l abl e upon sati sf acti on of speci �c condi ti ons. See Chapter 4

for detai l s.
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Table 3.1: Can on i c a l May ge n De b u gge r Fu n c t i o n a l i t y

Start execution

Stop execution

Continue execution

Single-step execution (fol lowing cal l s)

Single-step execution (not fol lowing cal l s)

Load a �le

Reset the machine

Set, clear, l i st machine-level breakpoints

Set, clear, l i st source-level breakpoints

Activate breakpoints

Suspend breakpoints

Display and set variable values

Display register values

Trace and untrace variables

Trace and untrace procedures

List traced variables

List traced procedures

List user programlabels and symbols

Showcurrent source l ine

Print informationabout debugger status

Display l i st of debugger commands

Repeat previous command

Quit Debugger

Comment (ignored)

pending breakpoints; displaying and setting variable values and register values; tracing and

untracing variables and procedures; l i sting traced variables and procedures; indicating the

current source l ine; displaying a l ist of debugger commands with help information; repeat-

ing the previous command; quitting the debugging session; and adding a comment. The

Maygendebugger functional ity is summarized inTable 3.1.

Eachcommand's availabi li tydepends upon its semantic correctness inthe context of the

particular source language or machine architecture involved, as wel l as upon the support

providedbyboththe source language andthemachine architecture developers. For example,
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adebugger user shouldnot be able to set logic variables inProlog; thus, the commandtoset

the value of a variable is not made available ina generatedPrologdebugger. Inthis manner,

each generated debugger is tai lored speci�cal ly to the particular language and architecture

in question.

In addition to the fundamental debugging faci l i ties, the Maygen debugger also has a

mechanismfor incorporating extension commands that are then ful ly available to the de-

bugger user. For example, the option to choose whether an execution wil l proceed in a

breadth-�rst manner or a depth-�rst manner is not provided by the canonical Maygende-

bugger; however, this might be adesirable commandtohave inaPrologdebugger. AProlog

systemdeveloper, then, can speci fy this option as an extension command to the Maygen

system, which wil l then add it to the set of commands avai lable in the generated Prolog

debugger.

Extension commands can be speci�ed and provided by the source language developer,

the machine architecture developer, or both. Extension commands are of two general a-

vors. \Independent" extensioncommands are sel f-containedinthat their functional itydoes

not depend upon any routines that might not be avai lable, e.g. , fromeither the source lan-

guage interface routine set or the machine architecture interface routine set. \Dependent"

extension commands, on the other hand, are not sel f-contained in that their functional ity,

and thus their avai labi l ity to the debugger user, depends upon at least one of the routines

fromeither the source language interface routine set or the machine architecture interface

routine set. 2

Final ly, the canonical Maygendebugger understands that not al l machines are uniproces-

sors; the Maygendebugger understands that amachine mayhave more thanone processing

node. Insuchcases, theMaygendebugger operates onasingle node at a time. The debugger

user has the abi l i ty to determine the total number of processing nodes present, determine

2Ei ther type of extensi on command|independent or dependent|can use routi nes expl i ci tl y provi ded by
the debugger skel eton i f desi red. (See Chapter 4 for detai l s. ) Si nce the avai l abi l i ty of an extensi on command

does not hi nge upon the avai l abi l i ty of routi nes provi ded by the debugger skel eton (because the l atter are

always avai l abl e), debugger skel eton routi nes do not pl ay a rol e i n the cl assi �cati on of extensi on commands
i nto one of the two categori es.
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Table 3.2: Add i t i o n a l May ge n De b u gge r Fu n c t i o n a l i t y f or Mu l t i p r oc e s

Displaynumber of nodes present and avai lable

Showcurrent node

Switch to a di�erent node

Change number of nodes available

the number of nodes avai lable, determine which node is being debugged, switch fromthe

current node being debugged to adi�erent node, andchange the number of nodes avai lable.

Maygen's default mode of execution for multiprocessors is that which is provided by the

machine architecture developer. Table 3.2 summarizes the additional debugger functional ity

providedbyMaygen for multiprocessor architectures.

3. 2 Des i gn

3.2. 1 Debuggi ng Unopt i mi zed Compi l ed Code

The canonical Maygen debugger was developed to work on unoptimized, compi led code

rather thanonoptimizedor interpretedcode. Althoughusing aninterpreter as the base of a

debugger might be bene�cial because of howwel l i t supports interactive debugging[Mak91] ,

the approach is more complicated. In addition to a debugger skeleton, the generation

systemwould need to maintain an interpreter skeleton as wel l . This interpreter skele-

ton either would need to interpret a broad class of source languages, which is currently

infeasible[Joh77] , or wouldneed to be developed by the generation systeminto a language-

dependent, architecture-dependent interpreter. The generationof suchaninterpreter might

itsel f be an interesting researchproblem, but is tangential to the issue of debugger genera-

tion.

Furthermore, Troisi [Tro82] points out that interpreted code may run di�erently than

compiledcode; thus, a debugger basedupon an interpreter maynot i l luminate the problem
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area of the source code. In addition, a debugger based upon an interpreter might su�er

fromsigni�cantly decreased execution speed[Edw75] .

Likewise, the issue of debugging optimizedcode is alsotangential to the primaryconcern

of howtoautomatical lycreate a symbol ic debugger. 3 Thus, the canonical Maygendebugger

expects that the code a user loads and therefore wants to debug is unoptimized. Once such

code has been determined to be correct, then the user can explore performance issues.

3. 2. 2 Provi di ng Tai l ored, Tradi t i onal Funct i onal i ty

The canonical Maygendebugger o�ers a variety of traditional debugging commands to the

user. Sucha designwas chosennot only because users are more accustomedto this method

of debugging and thus can have less startup time learning howto use a Maygendebugger,

but alsobecause users wouldbe providedwiththe essentials of a runtime debugging system,

which are the abi l i ty to set breakpoints and examine values within the programbeing

debugged[Bro79, Joh81] .

Some traditional debugging commands, such as starting an execution, make sense for

essential ly al l languages. The relevance of some other commands, however, are not nec-

essari ly immediately apparent. For example, setting a breakpoint makes perfect sense in

a language such as Cor Pascal ; but, what does it mean to set a breakpoint in Prolog?

It might, for example, mean the abi l i ty to temporari ly stop execution at any of the four

ports of the multiported box model for Prolog execution[SW90] . Another example is the

tracing of variables. This might make good sense inan imperative language, but what does

it mean in a declarative one? An example of howthe tracing of variables could be used

in a declarative language is to fol lowclauses that match (are true) for a particular search.

In cases such as the two described, it i s left up to the language developer or architecture

developer to decide inwhat manner eachsupported traditional debugging commandcanbe

best exploited for debugging of the given language on the given architecture.

3See Secti on 7. 2. 2 f or more detai l s.
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3. 2. 3 Support i ng Ext ens i on Commands

Admittedly, not al l of the traditional debugging commands are necessari lyappl icable for al l

source languages or al l machine architectures. For this reason, the Maygendebugger might

only provide a subset of the traditional commands, depending on the speci�c language and

architecture inquestion. That is, theMaygendebugger is speci�cal lydesignedtobe capable

of having a commandset tai lored to the target language and architecture.

This tai loring of the Maygen debugger's command set goes beyond simply deleting ir-

relevant or inappl icable traditional debugging commands. Sucha systemwouldbe not only

too l imiting for the extremelyunconventional target language and/or architecture, but also

not good enough for a more conventional but sl ightly di�erent target language and/or ar-

chitecture. Accordingly, the Maygendebugger is designed to support extensioncommands.

The extension commands enable language and architecture developers to extend the basic

command set of a Maygen debugger to include any additional ly desired functional ity that

is potentially highly-speci�c for that particular language or architecture.

3. 2. 4 Support i ng Mul t i proces s or s

Although the target architecture for Maygen might be a paral lel one, the focus of this

project is ondeveloping a method for generating debuggers rather thanon determining the

best wayto implement a parallel debugger. Thus, Maygendebuggers have beendesigned to

deal onlywithsimple notions of paral lel i sm, suchas knowingabout the existence of multiple

processing nodes. AMaygendebugger operates on one processing node at a time and can

switchfromone node to another upon the user's request. These capabi l i ties al lowfor more

meaningful debugging onamultiprocessor thanpossible fromadebugger withabsolutelyno

knowledge of multiple nodes. Maygen generated debuggers do not, however, address more

complex paral lel i smissues, such as the monitoring of interprocess communication. Such

issues, although potential ly bene�cial , would tend to detract fromthe primary concern of

the project.
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3. 3 Advantages

The more obvious advantages of using Maygendebuggers over traditional , single-language

debuggers are simi lar to the advantages attributed to the use of multi lingual or language-

independent debugging techniques. First, Maygen debuggers sti l l present a certain degree

of functional consistency to the debugger user, resulting in less learning overhead. Second,

Maygendebuggers are cheap to bui ld since they require l i ttle work on the part of language

developers and architecture developers compared to the e�ort needed to create debuggers

fromscratch. Final ly, maintenance is simpl i�edbecause the driving engine of the debugger

is simi lar fromone Maygendebugger to the next.

WhileMaygendebuggers share the advantages of multi l ingual andlanguage-independent

debugging systems over traditional , single-language debuggers, Maygen debuggers addi-

tional ly compensate for the de�ciencies inherent inmulti lingual and language-independent

systems. Maygen debuggers are exible; they can be tai lored to the speci�c needs and

pecul iarities of di�erent languages and architectures. This exibi l i ty comes in part from

the selective avai labi li ty of the supported debugging routines. More importantly, though,

this exibi l i ty comes fromthe system's al lowance of and support for extension commands.

These features taken together result in a systemcapable of handl ing semantical ly di�er-

ent languages. Furthermore, Maygen debuggers can be generated for more than just a

pre-de�ned, l imited set of languages.

Howis it that the Maygendebugger canbe so exible? The answer l ies in the fact that

it i s a generateddebugger, that it i s generated according to the speci�cs of eachparticular

language and each particular architecture. This is made possible through the Maygen

generation system.



Cha p t e r 4

Generat i on Sys t em Des i gn

4. 1 Overvi ew

The Maygen systemconsists of three major components: a set of interface protocols, a

debugger skeleton, and a generation framework. The protocols speci fy the exact nature of

the interface routines that promote smooth communicationbetween the debugger skeleton

and the rest of the programming environment. 1 The routines that are avai lable for a given

debugger to be generated are conveyed by way of input �les to the generation framework.

The generation framework, housing the debugger skeleton, processes the input data and

produces a stand-alone, language-dependent and architecture-dependent debugger.

Figure 4-1portrays the components of theMaygensystemandhowtheyare interrelated,

whi le Figure 4-2 shows the pieces of a Maygengenerated debugger.

The Maygen systemwas designed in this manner in order to have the capabi l i ty of

producing a debugger that is exible, in terms of handl ing very di�erent inputs, yet prac-

tical , in terms of providing large savings to language and architecture developers. Since

interpreter-baseddebuggers have some intrinsic problems, the debugging of compi led code

was chosenas the basis for Maygen. The decisionto have a generationsystemat al l evolved

1The \rest of the programming envi ronment" ref ers to the \source l anguage" and \machi ne archi tecture. "

These are expl ai ned i n detai l i n Secti on 4. 2.
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Figure 4-2: Th e Comp on e n t s o f a May ge n Ge n e r at e d De b u gge r

fromthe knowledge that non-generateddebuggers, suchas multil ingual debuggers, lack the

exibi l i ty needed to support an arbitrary number of language systems as wel l as to handle

semantical ly di�erent language systems. On the one hand, the generation aspect, tai loring

abi l i ty, and extensionmechanismof the Maygensystemmake canonical Maygendebuggers

exible. Onthe other hand, the core debugger skeletonalongwiththe automatic processing

of it into a generated debugger make canonical Maygendebuggers practical .

Analternative methodthat was consideredfor achievingthe dual goals of exibi l i tyand

practical i ty was to add debugging constructs to a source �le in a preprocessing-type step.

Preprocessors have the advantage that the compiler of the source language to be debugged

need not be modi�ed[Edw75] . This method, however, seemed to be extremely l imiting in

terms of what debugging capabi l i ties a debugger user would have, as wel l as in terms of

what languages and systems could actual ly be handled e�ectively.
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4. 2 Inter face Protocol s

An important aspect of developing the Maygen systemis deciding upon the interaction of

the Maygendebugger with the rest of the world. Some programming languages employthe

notion of an abstract machine, or virtual machine, withwhich to serve conceptual 2 and/or

implementational 3 purposes. Whenthis is the case, the high level aspects of the abstraction

could be exploited for the purposes of debugging. An example is the modi�cation of the

ports of the Prolog boxmodel to support debugging[SW90] .

Conventional languages such as Cand Fortran do not real ly have abstract machines

with which to visual ize their execution. For example, in a Unix system[MM83] , an object

�le produced by the Ccompiler executes as just another process running under the Unix

operatingsystem. Conceptual ly, onemight visual ize that process havingacertainamount of

memoryal locatedto it andhave a notionof data and instructions residing in that memory,

as wel l as a\locationcounter"that indicates the current instructionbeingexecuted. Clearly,

such a mental model of programexecution is down near the level of the operating system

andmachine architecture onwhich the process is running.

The Maygen systemadopts an intermediate position toward debuggers that attempts

to take advantage of higher levels of abstractionwhen avai lable, but that can be used for

lower-level conventional programs as wel l . The Maygensystemseparates the sourceprogram

fromthe evaluationenvironment.

Accordingly, the two interfaces to the Maygen debugger are the source programand

the evaluation environment. The interface to the source language is �ttingly referred to as

the Source Language Interface (SLI). The interface to the evaluation environment is less

appropriately referred to as the Machine Architecture Interface (MAI); this interface might

2As a conceptual techni que, the abstract machi ne al l ows a hi gh l evel way to thi nk about the executi on of

a program. Thi s capabi l i ty i s especi al l y useful when the programming l anguage contai ns non-tri vi al control
mechani sms such as Prol og's uni �cati on or Snobol ' s pattern matcher.

3As an impl ementati on techni que, the abstract machi ne can serve as a speci �cati on that descri bes detai l s

of a parti cul ar al gori thm, such as a uni �er or pattern matcher, used to impl ement the l anguage. In addi ti on,
the abstract machi ne can serve as an impl ementati on prototype, as i n the Li sp functi ons Eval and Appl y,

whi ch de�ne the compl ete Li sp eval uator i n just a f ewl i nes of Li sp code.
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encompass not only the machine architecture, but also a runtime system, an operating

system, an abstract machine, or a combination.

The interface protocols speci fy the exact nature of the routines that are used by the

core debugger to interact with the source programand the architecture. 4 Each interface

protocol can be thought of as the set of routines that comprise the interactionbetweenthe

core debugger andsource program, or betweenthe core debugger andmachine architecture.

The Source Language Interface routines are provided by a language developer, whi le the

Machine Architecture Interface routines are providedby a systemdeveloper.

Eachinterface consists of approximately�fteenroutines; these translate tothe supported

functional ity of a generated debugger. There exists a minimal subset of routines that are

required of the Source Language Interface and of the Machine Architecture Interface in

order for a working debugger to be generated. With the provision of this minimal subset,

Maygen can automatical ly create a low-level debugger. With the provision of increasingly

more Source Language Interface andMachine Architecture Interface routines, Maygen can

create symbol ic debuggers with increasingly larger amounts of functional ity. These sets of

interface routines are experimentally derived.

Table 4.1 l i sts the routines constituting the Source Language Interface as speci�ed by

the current Maygendesign. Similarly, Table 4.2 l i sts the routines containedin the Machine

Architecture Interface as speci�ed by the current Maygendesign.

The interface protocols not only speci fy the routines that should be provided, but also

the format inwhich such information is conveyed to the generation framework. The input

to the generationframeworkconsists of two text �les, one for informationabout the Source

Language Interface andthe other for informationabout the MachineArchitecture Interface.

The Source Language Interface input �le contains: a l i stingof the Source Language Interface

routines with speci�cation of whether or not each is avai lable, the name of the source

language, the location and name of a l ibrary containing the Source Language Interface

4Henceforth, the \machi ne archi tecture" and the \archi tecture" ref er to the eval uati on envi ronment,
except when speci �ed otherwi se.
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Table 4.1: S ou r c e La n gu a ge I n t e r f a c e Rou t i n e s

Initial ize SLI

Map procedure to object l ine

Map procedure beginning to object l ine

Map procedure ending to object l ine

Trace procedure

Map source l ine to object l ine

Read in symbols

Print labels

List procedures

Print symbols

Display text of current source l ine

Untrace procedure

Process initial debugger arguments

Print SLI information

Table 4.2: Mac h i n e Ar c h i t e c t u r e I n t e r f a c e Rou t i n e s

Initial ize MAI

Is programloaded?

Instal l machine breakpoint

Continue program

Uninstal l machine breakpoint

Set machine breakpoint on a procedure

Clear machine breakpoint on a procedure

Read in program

Print register contents

Run program

Step, fol lowing procedure cal l s

Step, not fol lowing procedure cal l s

Reset machine

Process initial debugger arguments

Print MAI information

Change current processing node

Change number of avai lable nodes
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routines, andinformationabout eachextensioncommanddesiredbythe language developer.

This extension command information includes the total number of extension commands

supported by the language developer as wel l as detai l s about each extension command.

These detai l s include: the name of the command, the declaration used to indicate it i s an

external ly de�ned procedure, the invocationof the commandwith its arguments, anda l ist

of Source Language Interface andMachine Architecture Interface routines upon which the

proper functioning of the extension commanddepends. 5

Similarly, the MachineArchitecture Interface input �le contains: a l i stingof theMachine

Architecture Interface routines with speci�cation of whether or not each is avai lable, the

name of the architecture or abstract machine, the locationandname of a l ibrarycontaining

the Machine Architecture Interface routines, and information about each extension com-

manddesired by the machine developer. The information for these extension commands is

exactly analogous to that of the extension commands for the Source Language Interface.

The Machine Architecture Interface input �le additional ly contains informationabout how

many processing nodes are present as wel l as howmany processing nodes are avai lable in

the target architecture.

An example of a Source Language Interface input �le template, which can be �l led in

by a language developer, canbe found inAppendix A. Appendix Bcontains an example of

a Machine Architecture Interface input �le template.

4. 3 Debugger Skel eton

The debugger skeleton consists of the components of a symbol ic debugger that have been

determined to be language-independent and architecture-independent. These components

have been grouped together to formthe coreof a debugger, hence debugger skeleton, which

the Maygen systemuses as the backbone withwhich to create Maygendebuggers.

The debugger skeletoncan be thought of as providing the glue necessary for coherently

5For i ndependent extensi on commands, thi s l i st wi l l be empty.
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sticking together the interface routines. More accurately, the debugger skeleton is several

�les of code, some of which contribute directly (unchanged) to the code of a generated

debugger, and some of which are either supersets of or incomplete fragments of code that

wi l l be modi�edbythe generationframeworkintocode that wi l l thenbe part of a generated

debugger. The �nal output �les include amake�le withwhichthe user canmake the newly-

generated debugger fromits source code.

More descriptively, the debugger skeleton consists of debugger components such as the

debugger user interface, command loop driver, and grungy initial ization and maintenance

routines, e.g. , for keeping track of tracing. The debugger user interface can range froma

simple textual interface to a muchmore elaborate graphical user interface. This interface

need only be written once and then can be used for each subsequent Maygen debugger.

An example of a grungy maintenance job is the breakpointing faci l i ty: coordinating the

setting (and checking for dupl icates), clearing (and checking for val idity), keeping track,

l i sting, instal l ing, uninstal l ing, activating, and suspending of machine-level andsource-level

breakpoints.

Each debugger command supported by the debugger skeleton is a�liatedwith certain

Source Language Interface andMachineArchitecture Interface routines uponwhichits func-

tional ity depends. Agiven, supported debugger command is only available i f the routines

upon which it depends are made avai lable by the language and/or architecture developers.

For example, the command that al lows a debugger user to set a breakpoint on a source

l ine depends upon one Machine Architecture Interface routine (instal l machine breakpoint)

and one Source Language Interface routine (map source l ine to object l ine). If ei ther of

these routines is not supported, then the source-level breakpoint setting command is un-

available in the subsequently generated debugger. The debugger commands supported by

the debugger skeletonare identical to those previously described inTable 3.1.

As mentioned previously, a fewdebugger skeleton routines are expl icitly provided to

aid Maygen systemusers. Language or architecture developers can freely cal l these rou-

tines fromwithin either extension commands or Interface routines. The debugger skeleton
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Table 4.3: De b u gge r S k e l e t on Rou t i n e s Ava i l a b l e t o De v e l o p e r s

Instal l breakpoints

Uninstal l breakpoints

Checkwhether breakpoint address already exists

Add procedure to l i st of procedure breakpoints

Remove procedure fromlist of procedure breakpoints

Addmachine address to l i st of machine breakpoints

Remove machine address fromlist of machine breakpoints

routines supported in this manner are l i sted inTable 4.3.

4. 4 Generat i on Framework

This section describes the overal l framework used by the Maygen systemto create a func-

tional debugger. This framework serves as the driving engine for accepting input informa-

tion about the Source Language and Machine Architecture Interfaces, for translating the

input into which debugger commands wi l l be available, and for appropriately modi fying

and appending the debugger skeleton tomake it a stand-alone debugger.

The generation framework understands the format of the input �les and thus can read

and interpret the informationin the input. The generation frameworkalso houses, or more

accurately, keeps track of, al l the pieces of the debugger skeleton. The framework knows

which pieces are to be left intact to become part of a generated debugger as wel l as which

need to be either augmentedor chopped and spl iced.

The generation framework decides, based upon which Source Language Interface and

Machine Architecture Interface routines are known to be avai lable, what components wi l l

go into the debugger to be generated and howthese components should be put together to

make a working unit. The framework processes the input information to determine which

debugger commands wi l l comprise the commandset of the debugger to be generated. These

commandnames are thenincorporatedintothe \helpl i st"avai lable todebugger users, whi le



CHAPTER 4 . GENERATI ON SYSTEMDES I GN 37

the code that implements these commands are incorporated into the source code �les that

compi le into the functional debugger. Final ly, the generation framework outputs al l the

necessary code �les and a make�le for the newMaygendebugger.

The framework is designed to performat generationtime al l of the interpretation and

processingnecessaryfor agivendebugger tobe generated. Byperformingal l input interpret-

ing and processing during debugger generation, Maygen debuggers can avoid unnecessary

runtime ine�ciency.
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Prot ot ype Impl ement at i on

The Maygensystemdesignencompasses more thandoes the prototype that has been imple-

mentedthus far. This chapter describes the environment inwhichthe systemwas developed

and the scope of the prototype, as wel l as presents some of the more interesting implemen-

tational detai l s.

5. 1 Overvi ew

The experiment was carried out using the equipment and faci l i ties of Hewlett Packard

Laboratories. Asingle-processor workstation HP9000/840 running HP-UX7.0, Hewlett

Packard's versionof UNIX, was usedfor the development of the debugger generationsystem.

The prototype Maygensystemis written in the Clanguage.

The prototype generationsystemconsists of the Source Language Interface andMachine

Architecture Interface protocols with routines de�ned and input �le formats speci�ed, an

implemented subset of the designed debugger skeleton, and a functional generation frame-

work that handles the existing debugger skeleton and inputs.

38
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5. 2 Maygen Debugger Features

The canonical Maygen debugger of the prototype generation systemsupports most of the

functional ity supported by that of the designed system. These commands are summarized

in Table 5.1. The commands that are not supported in this implementation are l i sted in

Table 5.2. An additional note is that the support for tracing and untracing of procedures

is currently implemented as the setting and clearing of breakpoints on procedure names.

Tracingof procedures couldbe mademore elaborate bynot onlybreakingwhenaprocedure

is reached, but also automaticallydisplaying the values of the procedure's arguments upon

invocation and displaying any return value upon exit.

As in the design, each debugging command's availabi li ty depends upon its semantic

correctness in the context of the particular source language or machine architecture in-

volved, as wel l as upon the support providedby both the source language and the machine

architecture developers.

The prototype canonical Maygen debugger is able to support one of the two avors

of extension commands described in Section 3.1. Independent extension commands are

currently incorporated in the prototype, whereas dependent extension commands are not.

Final ly, the prototype Maygendebugger operates ona single node at a time, but under-

stands that there might be more thanone processor in the target architecture. Thus, when

the target architecture has multiple nodes, the generatedMaygendebugger al lows the user

to: determine the total number of nodes present, determine howmanynodes are avai lable,

�nd out which node is being debugged, switch between nodes, and change the number of

nodes avai lable. This functional ity is identical to that designed, which is summarized in

Table 3.2.

5. 3 I nter f ace Protocol s

The Source Language Interface and Machine Architecture Interface are implemented as

described in Section 4.2, having the goal of separating the source programfromthe evalua-
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Table 5.1: De b u gge r Fu n c t i o n a l i t y I mp l e me n t e d I n Pr ot ot y p e

Start execution

Stop execution

Continue execution

Single-step execution (fol lowing cal l s)

Single-step execution (not fol lowing cal l s)

Load a �le

Reset the machine

Set, clear, l i st machine-level breakpoints

Set, clear, l i st source-level breakpoints

Activate breakpoints

Suspend breakpoints

Display register values

Trace and untrace procedures

List user programlabels and symbols

Showcurrent source l ine

Print informationabout debugger status

Display l i st of debugger commands

Repeat previous command

Quit Debugger

Comment (ignored)

Table 5.2: De b u gge r Fu n c t i o n a l i t y Not I mp l e me n t e d i n Pr ot ot y p e

Display and set variable values

Trace and untrace variables

List traced variables

List traced procedures
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tionenvironment. The speci�ed routines comprising the Source Language Interface are the

same as those l i sted in Table 4.1; l ikewise, the speci�ed routines comprising the Machine

Architecture Interface are the same as those enumerated inTable 4.2.

The input �le formats, which the Maygen prototype uses, are identical to those pre-

scribed by the interface protocol design of Section 4.2. The sample Source Language In-

terface input �le template located inAppendix Ais the actual input �le template used for

the prototype's language test cases. Similarly, the sample Machine Architecture Interface

input �le template located in Appendix B is the actual input �le template used for the

prototype's architecture test cases.

5. 4 Debugger Skel eton

The prototype debugger skeleton consists of components of a symbol ic debugger that are

language-independent and architecture-independent, as designed. However, the prototype

debugger skeleton does not encompass as much basic supported functional ity as does the

designed debugger skeleton. Also, the debugger user interface is a purely textual one.

The command loop driver is based upon a Clanguage switch statement that switches

on the interactive user's typed command. This implementation was chosen for relative

e�ciency in carrying out the desired command and for ease in tai loring the appropriate

code �les to the inputs.

The debugger skeleton consists of �ve �les that contribute unchanged to a generated

debugger's source code and six �les that are modi�ed into �les that are then directly part

of a generated debugger's source code. The �les that contribute unchanged contain source

code �les that implement breakpoints, essential debugger initial izations anddriver routines,

and input/output routines. These �les also include header �les that l i st Source Language

Interface, Machine Architecture Interface, and debugger skeleton routines.

The �les that need to be modi�ed before becoming part of a generated debugger are

the make�le, \cases" �le, \�l ler" �le, extension command �le, \miscel laneous" �le, and

\debugger help l i st" �le. The \cases" �le is a superset of the code needed to decide what
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to performfor each command. When the prerequisite routines are available for a given

debugger command, that command wil l be associated with code that performs the actual

command; when the prerequisite routines are not avai lable, however, that command wil l

be associatedwith code that relays to the user the unavai labi li ty of the invokedcommand.

In addition, each command is accordingly added or not added to the debugger help l i st in

the \debugger help l i st" �le. Thus, when a user cal l s up a help l i st of debugger commands,

those commands that are not avai lable, due to lack of su�cient support fromeither the

language or architecture developer, wi l l not be includedinthe l i st. The \�l ler"�le is created

by Maygen to account for al l of the Source Language Interface and Machine Architecture

Interface routines that are not providedas inputs. Maygencreates \�l ler"routines to satisfy

the compiler's checks, knowing that these dummyroutines wi l l not actual ly be cal led. The

extensioncommand�le is createdbyMaygento handle the cal l ing of appropriate extension

commands upon a user's invocation of such commands. Final ly, the \miscel laneous" �le is

created by Maygen to hold two architecture-dependent de�nitions as wel l as routines for

printing informationupon debugger startup and exit.

5. 5 Generat i on Framework

The prototype generation framework is as described in Section 4.4. This generation frame-

work understands the input �le formats, reads and interprets the input �les, accordingly

performs the actual modi fying of the debugger skeleton�les described in the previous sec-

tion, and outputs al l necessary source code to create a newdebugger.
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Res ul t s

This chapter discusses the test cases used to evaluate the prototype generationsystem, and

hence the Maygen systemdesign itsel f.

6. 1 Overvi ew

The goal for choosing the test cases was to select domains that are quite di�erent in order

to showthe exibi l i ty that Maygen has in comparison to existing systems for providing

debugging support to multiple programming environments. Each test set 1 i s comprised of

a source language that conforms to the Source Language Interface protocol (in terms of

interface routines andMaygen input �le), and amachine architecture that conforms to the

Machine Architecture Interface protocol (in terms of interface routines and Maygen input

�le).

Twosuchtest sets have beenrunthroughthe Maygensystem. The twosource languages

and their evaluation environments are: a declarative language, OPAL, running on the OM

virtual machine, andanimperative language, C, runningontheMayyparal lel architecture.

By generating a symbol ic debugger for both a declarative language and an imperative

language, Maygendemonstrates its abi l i ty to handle semantically-di�erent languages.

1A\test set" consi sts of both a source l anguage \test case" and a machi ne archi tecture \test case. "

43
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Table 6.1: S LI Rou t i n e s S u p p ort e d By OPAL

Initial ize SLI

Map procedure to object l ine

Map procedure beginning to object l ine

Read in symbols

Print labels

Print symbols

Print SLI information

Process initial debugger arguments

6. 2 Tes t Cases

6. 2. 1 OPAL and OM

OPAL, the Oregon Paral lel Logic language, i s a Prolog-l ike language developed at the

University of Oregon[Con90, Con91, Con92] . OPAL is based on the AND/ORProcess

Model [Kac90] , which is an abstract model for paral lel logic programs. The AND/ORPro-

cess Model has anoperational semantics de�nedbyasynchronous objects that communicate

entirely bymessages.

OPALprograms are compi ledintothe instructionset of the OPALMachine, or OM. The

OMis avirtual machine simi lar to theWarrenabstract machine[War83] for standardProlog

implementations. The di�erence is that the OMvirtual machine is designed for programs

that execute according to the AND/ORProcess Model onnonsharedmemorymultiproces-

sors. The version of the OMvirtual machine used for this test set runs on a uniprocessor

UNIXworkstation; i t does not exploit ANDor ORparal lel i smin this implementation.

The OPAL language test case supports eight out of the fourteen Source Language In-

terface routines speci�ed by the Maygen prototype and provides no extension commands.

The routines supported by OPAL are summarized in Table 6.1, whi le those that are not

supported are l i sted inTable 6.2.

The OMvirtual machine test case supports �fteen out of the seventeenMachine Archi -
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Table 6.2: S LI Rou t i n e s Not S u p p ort e d By OPAL

Mapprocedure ending to object l ine

Trace procedure

Map source l ine to object l ine

List procedures

Display text of current source l ine

Untrace procedure

tecture Interface routines speci�ed by the Maygen prototype. Additional ly, the OMtest

case provides twelve independent extension commands.

The OMvirtual machine supports al l of the Machine Architecture Interface routines

except the two routines speci�c to multiprocessors since the OMimplementation is for a

uniprocessor. Tables 6.3 and 6.4 summarize those routines supported and not supported,

respectively, by the OMvirtual machine.

The extension commands provided by the OMvirtual machine provide the debugger

user with the capabi l i ties to choose between: searching for al l solutions or for just one

solution, performing a breadth-�rst or a depth-�rst search, executing in quiet mode or not,

tracing processes or not during execution, tracing instructions or not during execution, and

displaying registers symbol ical ly or not. The extension commands also enable the user to

print sections of object code, sections of the heap being used by the OMvirtual machine,

message or process information, queue contents, anda process tree for the execution. These

additional features are summarized in Table 6.5. A sample OMMachine Architecture

Interface input �le can be found inAppendix C.

The Maygen generation framework accepted the input �les of the described test set

and produced a symbol ic debugger for OPAL running on the OMvirtual machine. The

debugger commands supported by the generatedOPALdebugger are l i sted inTable 6.6

The OPAL Source Language Interface input �le and the OMMachine Architecture

Interface input �le were tested to have varying numbers of interface routines available to



CHAPTER 6 . RESULTS 46

Table 6.3: MAI Rou t i n e s S u p p ort e d By OM

Initial ize MAI

Is programloaded?

Instal l machine breakpoint

Continue program

Uninstal l machine breakpoint

Set machine breakpoint on a procedure

Clear machine breakpoint on a procedure

Read in program

Print register contents

Run program

Step, fol lowing procedure cal l s

Step, not fol lowing procedure cal l s

Reset machine

Print MAI information

Process initial debugger arguments

Table 6.4: MAI Rou t i n e s Not S u p p ort e d By OM

Change current processing node

Change number of avai lable nodes
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Table 6.5: MAI Ex t e n s i o n Comma n d s Pr ov i d e d By OM

Toggle al l -solutions

Toggle breadth-�rst search

Toggle quiet mode

Toggle process trace

Toggle instruction trace

Toggle symbol ic register display

Print code

Print heap

Print message information

Print process information

Print queue contents

Print process tree

Maygen. The supportedfunctional ityof eachresultingOPALdebugger variant was checked

to ascertain that the debuggers changed accordingly. These generated OPAL debugger

variants were then tested on a suite of OPALprograms to veri fy their correctness.

6. 2. 2 C and Mayy

The language of the second test set is C, the familiar, imperative language developed by

Ritchie[KR88, KW91] . Cis a relatively low-level , general -purpose programming language.

While Cprovides data types and fundamental control-owconstructions such as looping

and decision making for single-threaded control ow, it does not provide bui lt-in higher-

level mechanisms suchas input/output faci l i ties or operations oncomposite objects suchas

l i sts and arrays.

Compiled Cprograms are processed by the Mayy architecture[Dav92] . The Mayy,

developed at Hewlett Packard Laboratories, serves as a back-end processor for a Hewlett

Packard Series 800 workstation. The Mayy is a scalable, general -purpose paral lel pro-

cessing architecture; i t i s a distributedmemorymachine withcommunicationsupportedby

message passing.
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Table 6.6: Fu n c t i o n a l i t y o f t h e Ge n e r at e d OPAL De b u gge r

Print help information

Repeat previous command

Activate breakpoints

Set breakpoint on object l ine

Set procedure breakpoint (trace procedure)

Continue frombreakpoint or step

Delete breakpoint on object l ine

Delete procedure breakpoint (untrace procedure)

Read in compileduser program

Display general registers

Print information about debugger status

List breakpoints

List user programlabels

List user programsymbols

Quit debugger

Run program

Single step (fol lowcal ls)

Single step (do not fol lowcal ls)

Suspend breakpoints

Reset machine to startup state

Comment (ignored)

Execute an extension command:

- Toggle al l -solutions

- Toggle breadth-�rst search

- Toggle quiet mode

- Toggle process trace

- Toggle instruction trace

- Toggle symbol ic register display

- Print code

- Print heap

- Print message information

- Print process information

- Print queue contents

- Print process tree
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Table 6.7: S LI Rou t i n e s S u p p ort e d By C

Initial ize SLI

Map source l ine to object l ine

Map procedure to object l ine

Map procedure beginning to object l ine

Map procedure ending to object l ine

List procedures

Read in symbols

Process initial debugger arguments

Print SLI information

Table 6.8: S LI Rou t i n e s Not S u p p ort e d By C

Trace procedure

Untrace procedure

Print labels

Print symbols

Display text of current source l ine

The Clanguage test case supports nine out of the fourteen Source Language Interface

routines speci�ed by the Maygen prototype and provides no extension commands. The

routines supported by Care summarized in Table 6.7, whi le those that are not supported

are l i sted inTable 6.8.

The Mayyarchitecture test case supports sixteen out of the seventeenMachine Archi -

tecture Interface routines speci�edbythe Maygenprototype. The Mayytest case supports

al l of the Machine Architecture Interface routines except execution stepping that does not

fol lowprocedure cal l s. Tables 6.9 and 6.10 summarize those routines supported and not

supported, respectively, by the Mayy test case.

Additional ly, the Mayytest case provides three independent extensioncommands that
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Table 6.9: MAI Rou t i n e s S u p p ort e d By May f l y

Initial ize MAI

Is programloaded?

Instal l machine breakpoint

Continue program

Step, fol lowing procedure cal l s

Uninstal l machine breakpoint

Set machine breakpoint on a procedure

Clear machine breakpoint on a procedure

Read in program

Print register contents

Run program

Reset machine

Process initial debugger arguments

Print MAI information

Change current processing node

Change number of avai lable nodes

Table 6.10: MAI Rou t i n e Not S u p p ort e d By May f l y

Step, not fol lowing procedure cal l s

give users the capabi l i tyto select whichCPUof the current processing node to debug. Each

Mayyprocessingnode has twoCPUs: theMessage Processor (MP) andthe ExecutionPro-

cessor (EP). The Mayyextension commands provide the debugger user with the fol lowing

capabi l i ties: to select the MPof the current node for debugging, to select the EPof the

current node for debugging, and to determine whichCPUis the current (being debugged)

CPUof a givenMayyprocessing node. These additional features are summarizedinTable

6.11.

The Maygen generation framework accepted the input �les of the described test set
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Table 6.11: MAI Ex t e n s i o n Comma n d s Pr ov i d e d By May f l y

Select MPof current node

Select EPof current node

Determine whichCPUis current CPU

and produced a Cdebugger for the Mayy. The debugger commands supported by the

generatedCdebugger are l i sted inTable 6.12

The CSource Language Interface input �le and the Mayy Machine Architecture In-

terface input �le were tested to have varying numbers of interface routines available to

Maygen. The resulting Cdebugger variants were inspected to ensure that their set of

supported functional ity changed accordingly. As observed for the OPAL/OMtest set, the

supported functional ity of each resulting generated Cdebugger also correctly reected the

changedMaygen inputs.

Due to logistical di�culties, 2 the generatedCdebugger variants were \tested"byclosely

watching the commands attemptedto be written to the Mayymonitor, the software that

connects the Mayyarchitecture withits front-endworkstation. Interfacing to this monitor

is the Mayy's debugger l ibrary. Normal ly, anydebugger for the Mayycal ls basic routines

fromthis debugger l ibrary. The debugger l ibrary routines, which normal ly communicate

directlywiththeMayyvia themonitor program, were replacedduringtestingwithverbose

stubs. Attemptedcommandwrites to the monitor fromgeneratedCdebugger variants were

thencomparedwiththe attemptedcommandwrites of simi lar debuggingcommands invoked

froman existing, tested debugger for the Mayy.

2The Mayy archi tecture can onl y be used l ocal l y because i ts sof tware currentl y does not support remote

access. Maygen work, however, was compl eted 3000 mi l es f romthe resi dence of the Mayy.
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Table 6.12: Fu n c t i o n a l i t y o f t h e Ge n e r at e d C De b u gge r

Print help information

Repeat previous command

Activate breakpoints

Set breakpoint on source l ine

Set breakpoint on object l ine

Set breakpoint at procedure beginning

Set breakpoint at procedure exit

Set procedure breakpoint (trace procedure)

Continue frombreakpoint or step

Delete breakpoint on object l ine

Delete breakpoint on source l ine

Delete procedure breakpoint (untrace procedure)

Read in compileduser program

Display general registers

Print information about debugger status

List breakpoints

List procedures

List traced procedures

Quit debugger

Run program

Single step (fol lowcal ls)

Suspend breakpoints

Reset machine to startup state

Comment (ignored)

Execute an extension command:

- Select MPof current node

- Select EPof current node

- Determine whichCPUis current CPU

Execute a multinode command:

- Change processing nodes

- Determine current number of nodes

- Determine current node
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Concl us i ons

This chapter summarizes the Maygen project, presents some conclusions about debugger

generation in general and the Maygen approach in speci�c, and suggests areas for further

research.

7. 1 Summary

The abi l i tytoprovide debuggingsupport for multiple languages is animportant one because

of today's demand for high-level debuggers to accompany high-level languages.

Twoprevious approaches that were considered for providingdebugging support for mul-

tiple languages are multil ingual debugging and language-independent debugging. These

approaches might be feasible when the set of languages that the systems support are se-

mantically very similar. Such similarity, however, may be more rare in the future and is

presently non-existent for paral lel languages. Hence there has been a strong need to pur-

sue other debugging methods that are capable of supporting a semantical ly diverse set of

languages.

Maygen, the debugger generation systemdescribed in this thesis, i s precisely such a

debugging method. In l ight of the greater semantic diversity amongst programming lan-

guages, this systemis more feasible than previous approaches to providing debugging sup-
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port because of its abi l i tyto take intoaccount di�erent programmingmodels. Additional ly,

generated debuggers exhibit a large degree of functional consistency, thus minimizing the

user's overhead in learning a newdebugging systemfor eachnewlanguage.

The Maygen systemprovides for \quick and easy" creation of language-dependent de-

buggers for the respective target architectures. Sucha feat is made possible bythe system's

imposition of interface protocols to be fol lowed by language developers and architecture

developers, provisionof the glue necessary to not only smoothly connect the two interfaces

but also serve as the core debugging engine, and provisionof the framework that performs

the actual gluing of the separate pieces.

Maygen has been shown to handle both a declarative language and an imperative lan-

guage with reasonable results. The generated debuggers provided at least the minimal

functional ityneeded for useful debuggingwithout muchadditional e�ort onthe part of lan-

guage and architecture developers. Moreover, the generated debuggers were able to cater

to the particular needs of each language and each architecture. Speci�cal ly, the generated

OPALdebugger included several commands to provide for debugging features speci�c to

Prolog-l ike languages, whi le the generated Cdebugger included commands to provide for

debugging features speci�c to multiprocessor architectures.

Thus, the Maygen debugger generation systemis a viable approach to providing de-

bugging support for multiple languages, an increasingly important consideration as very

di�erent languages, such as paral lel languages, are created.

7. 2 Future Work

Because Maygenpresents a feasible solutionfor providingdebugging support, i t i s interest-

ing to speculate upon what directions further research in the area of debugger generation

might take.
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Table 7.1: Fu t u r e May ge n Wor k

Additional test sets

Improved test cases

Enhanced skeletonand additional interface routines

7. 2. 1 Maygen Prot otype Enhancement s

Several areas cal l for immediate improvement inthe Maygenprototype. Most notablyis the

need to further explore the sample space of programming languages and their evaluation

environments bycreatingadditional test sets. Agoodthirdtest set might be the Lisp[WH84,

Bro86] language along with the Lisp runtime system. In addition, the existing test cases

shouldbe expandedwhere possible inorder toproduce debuggers withincreasedamounts of

functional ity. Final ly, the existingdebugger skeletoncouldbe enhancedtoprovide a greater

maximal amount of supported generated debugger functional ity. This enhancement would

most l ikely also require the speci�cation of additional interface routines to be provided by

the language and/or architecture developers. The suggested immediate modi�cations to

the Maygenprototype are summarized inTable 7.1.

7. 2. 2 Rel at ed Areas t o Expl ore

This section presents research areas suggested byMaygenworkbut of a muchbroader na-

ture than that presented in the previous section. These areas can be grouped into four

primary topics: creation of a Runtime SystemInterface (RSI); characterizationof a lan-

guage, architecture, or runtime systemand the subsequent automatic generation of the

respective Interface routines fromeach characterization; debugging of optimized code; and

true debugging of paral lel systems.

The division of the \world" that Maygen debuggers viewis a rather unique one. Al-

though the separation of a source programfromthat on which it runs, i ts evaluationenvi -
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ronment, i s a viable approach for the Maygen debugger, an alternative division might be

to separate the source programfromits runtime systemas wel l as fromits architecture. 1

This approachmight provide for a \cleaner" andmore traditional division; but, at the same

time, this approachmight be unnecessari ly complexdue to the desire to exploit higher-level

abstractions when avai lable, as described in Section 4.2.

Amore thought-provoking area to explore is that of characterizing a source language

in a way that a generation systemcould then automatical ly create the Source Language

Interface routines de�ned in the Maygen system. Analogously, the characterizations of

a machine architecture and of a runtime system, as wel l as the subsequent generation

of Machine Architecture Interface and Runtime SystemInterface routines pose interesting

questions. Akeyidea tokeepinmind, though, is that althoughamethodof characterization

for these areas couldprove theoretical ly interesting, i t might not be practical in the context

of e�cient debugger generation. For example, language developers might �ndit mucheasier

to conformto a set protocol for interface interaction (i .e. , provide de�ned routines) rather

than to conformto a \characterizationmethod" for describing their language (i .e. , provide

a characterizationof their language).

Athird idea is that perhaps a debugger generationsystemcould be developed that can

better handle the debugging of optimized code. Astart in that direction is that generated

debuggers might be able to support semantical ly-unchanging optimizations|optimizations

that are transparent to the user, such as deal ing with register use versus memory use or

caching. Another example of such an optimizationwould be one that moves a value to a

storage place earl ier thanexpected accordingto the source program, but that does not mat-

ter since that particular memory location is not needed anymore. Hennessy examines the

tradeo�between the optimization of code and the abi l i ty to symbol ically debug it[Hen79] ,

whi le Zel lweger both studies the problemof debugging optimized programs and attempts

to confront one aspect of this problem[Zel84] .

A�nal area of research suggested by Maygen work is the generation of true paral lel

1\Archi tecture" i n thi s case ref ers to the eval uati on envi ronment mi nus the runtime system.
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Table 7.2: De b u gge r Ge n e r at i o n S y s t e ms : Ar e a s t o Ex p l or e

Separation of runtime systeminterface

Characterizationof source languages

Generation of SLI routines

Characterizationof machine architectures

Generation of MAI routines

Characterizationof runtime systems

Generation of RSI routines

Handl ing of OptimizedCode

Addition of True Parallel ism

debuggers. AlthoughMaygen's approachof having knowledge of multiple processing nodes

but debugging only one node at a time is su�cient for this initial project in debugger

generation, future workwil l probably need to better address paral lel debugging issues.

The suggested areas to explore in further research of debugger generation systems are

summarized inTable 7.2.

Without question, Maygen not only has presented an interesting and viable approach

to providing debugging support for multiple language systems, but has also suggested a

wealthof interesting research topics to pursue.



App e ndix A

SLI I nput Fi l e Templ at e

%% INPUTFILEFORMATFORSOURCELANGUAGE

SOURCELANGUAGENAME:

(e. g. , CLU)

%###%

your source l anguage name

DEBUGGERLIBRARY PATH:

(e. g. , =users=tsi en=maygen=opal =)

%###% 10

your debugger l i brarypath name

DEBUGGERLIBRARYFILENAMEWITHOUTLEADING"lib" ORTRAILING".a":

(e. g. , for "libmf_debug.a", onl y use "mf_debug")

%###%

your l i brary�l e name

%%%%%%%%%%%

%%Procedures: %%

%%%%%%%%%%% 20
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1. %###%Y

int i ni tsl i (vo i d)

%%========================================================

%%Requi res: ���

%%Modi �es: ���

%%E�ects: Does any necessary i ni ti al i zati ons f o r SLI

%% Returns: 1 i f everythi ng i ni ti al i zed ok; 0 otherwi se.

%%Note: (If procedure mi ssi ng, assumed that there i s

%% no i ni ti al i zati on necessary f o r SLI) 30

%%========================================================

2. %###%[Yor N]

i n t mapproc to obj ect(char *proc, c h a r *l abel )

%%========================================================

%%Requi res: proc i s name user uses to ref er to gi ven procedure

%% l abel i s name that compi l er mi ght use to ref er to proc

%%Modi �es: ���

%%E�ects:

%% Returns: �1 i f syntax error i n proc spec 40

%% 0 i f procedure not found

%% n > 0, where n =object l i ne correspondi ng to

%% the source code of proc

%%========================================================

3. %###%[Yor N]

i n t mapprocbegi n to obj ect(c h a r *proc, c h a r *l abel )

%%========================================================

%%Requi res: proc i s name user uses to ref er to gi ven procedure

%% l abel i s name that compi l er mi ght use to ref er to proc 50

%%Modi �es: ���

%%E�ects:

%% Returns: �1 i f syntax error i n proc spec

%% 0 i f procedure not found

%% n >0, where n =object l i ne correspondi ng to

%% the begi nni ng source l i ne of proc
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%%========================================================

4. %###%[Yor N]

i n t mapprocend to obj ect(c h a r *proc, c h a r *l abel ) 60

%%========================================================

%%Requi res: proc i s name user uses to ref er to gi ven procedure

%% l abel i s name that compi l er mi ght use to ref er to proc

%%Modi �es: ���

%%E�ects:

%% Returns: �1 i f syntax error i n proc spec

%% 0 i f procedure not found

%% n, where n =object l i ne correspondi ng to

%% the end source l i ne of proc

%%========================================================70

5. %###%[Yor N]

v o i d traceprocedure(c h a r *proc, c h a r *l abel )

%%========================================================

%%Requi res: proc i s name user uses to ref er to gi ven procedure

%% l abel i s name that compi l er uses to ref er to proc

%%Modi �es: ���

%%E�ects: Does whatever i s necessary to trace proc

%% Returns: ���

%%========================================================80

6. %###%[Yor N]

i n t mapsource to obj ect(i n t srcl i ne)

%%========================================================

%%Requi res: srcl i ne i s an i nteger

%%Modi �es: ���

%%E�ects:

%% Returns: �1 i f there i s not source code at l i ne srcl i ne, or

%% i f a breakpoi nt cannot be set at that l i ne.

%% n, where n =object l i ne correspondi ng to 90

%% l i ne srcl i ne.
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%%========================================================

7. %###%Y

i n t readsymbol s(c h a r *�l ename)

%%========================================================

%%Requi res: �l ename i s the name of �l e wi th symbol s to be read i n

%%Modi �es: ���

%%E�ects: Loads user programsymbol s and=or l abel s;

%% sets gl obal i n t programstart l oc to be address of 100

%% where programstarts, i f known. Sets gl obal

%% c h a r userprogram[ ] to be �l ename.

%% Returns: 1 i f symbol s read successful l y; 0 otherwi se.

%%========================================================

8. %###%[Yor N]

v o i d pri ntl abel s(c h a r *arg1)

%%========================================================

%%Requi res: arg1 i s not requi red, but coul d be used

%%Modi �es: ��� 110

%%E�ects: Pri nts out l abel s of user programcurrentl y l oaded.

%% Returns: ���

%%========================================================

9. %###%[Yor N]

v o i d l i stprocedures(c h a r *arg1)

%%========================================================

%%Requi res: arg1 i s not requi red, but coul d be used

%%Modi �es: ���

%%E�ects: Pri nts out procedures of user programcurrentl y l oaded. 120

%% Returns: ���

%%========================================================

10. %###%[Yor N]

v o i d pri ntsymbol s(c h a r *arg1)

%%========================================================
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%%Requi res: arg1 i s not requi red, but coul d be used

%%Modi �es: ���

%%E�ects: Pri nts out symbol s of user programcurrentl y l oaded.

%% Returns: ��� 130

%%========================================================

11. %###%[Yor N]

v o i d di spl aysource l i netext(c h a r *srcl i ne)

%%========================================================

%%Requi res: src l i ne i s a l i ne of user programor i s empty

%%Modi �es: ���

%%E�ects: Pri nts out source code correspondi ng to l i ne src l i ne

%% of user program, or, i f srcl i ne i s empty, then

%% shows current l ocati on i n programand the source 140

%% code correspondi ng to current l ocati on.

%% Returns: ���

%%========================================================

12. %###%[Yor N]

v o i d untraceprocedure(c h a r *proc, c h a r *l abel )

%%========================================================

%%Requi res: proc i s name user uses to ref er to gi ven procedure

%% l abel i s name that compi l er uses to ref er to proc

%%Modi �es: ��� 150

%%E�ects: Does whatever i s necessary to untrace proc

%% Returns: ���

%%========================================================

13. %###%[Yor N]

v o i d pri ntsl i i nf o(v o i d )

%%========================================================

%%Requi res: ���

%%Modi �es: ���

%%E�ects: pri nt source l anguage i nformati on rel evant to debuggi ng 160

%% Returns: ���
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%%========================================================

14. %###%[Yor N]

i n t ProcessSLIArgs(i n t argc, c h a r *argv[ ] , c h a r *progname)

%%========================================================

%%Requi res: progname i s name of debugger program

%%Modi �es: ���

%%E�ects: Processes arguments, i f any, of a generated debugger.

%% Pri nts a "Usage error:" l i ne to output i f returni ng 0. 170

%% Returns: 1 i f everythi ng ok; 0 otherwi se.

%%========================================================

==================

EXTENSIONCOMMANDS

==================

NUMBEROFEXTENSIONCOMMANDS

(0 <=number <=20)

%###% 180

<number>

For each extensi on command, speci f y:

(1) hel p l i ne, i ncl udi ng both name of command user wi l l type

and hel p stri ng f o r hel p menu

(e. g. , "ta Toggle all-solutions.")

(2) i nvocati on of name of routi ne to be cal l ed, usi ng arguments

arg1, arg2, arg3 (max 3 args)

(e. g. , "toggle_all_solutions();")

(3) ext e r n ref erence l i ne 190

(e. g. , "extern void toggle_all_solutions();")

EXAMPLE:

Extensi on Command 1

%###%
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ta <n> Toggl e al l�sol uti ons. n =max number of sol ns

%###%

toggl e al l sol uti ons(arg1);

%###% 200

e x t e r n v o i d toggl eal l sol uti ons();



App e nd i x B

MAI I nput Fi l e Templ at e

%% INPUTFILEFORMATFORTARGETARCHITECTURE

TARGETARCHITECTURENAME:

(e. g. , CM5)

%###%

your archi tecture name

DEBUGGERLIBRARYPATH:

(e. g. , =users=tsi en=maygen=om=)

%###% 10

your debugger l i brarypath name

DEBUGGERLIBRARYFILENAMEWITHOUTLEADING"lib" ORTRAILING".a":

(e. g. , f o r "libmf_debug.a", onl y use "mf_debug")

%###%

your l i brary�l e name

ACTUALNUMBEROFPROCESSINGNODES INTARGETARCHITECTURE

("1" f o r a uni processor)

%###% 20

your number

65
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DESIREDNUMBEROFPROCESSINGNODES INTARGETARCHITECTURE

(DESIREDNUMBER<=ACTUALNUMBER; "1" f o r a uni processor)

%###%

your number

%%%%%%%%%%%

%%Procedures: %%

%%%%%%%%%%% 30

1. %###%Y

i n t i ni tmai (v o i d )

%%========================================================

%%Requi res: ���

%%Modi �es: ���

%%E�ects: Does any necessary i ni ti al i zati ons f o r MAI

%% Returns: 1 i f i ni ti al i zati on successful ; 0 otherwi se.

%%========================================================

40

2. %###%Y

i n t programl oaded(v o i d )

%%========================================================

%%Requi res: ���

%%Modi �es: ���

%%E�ects:

%% Returns: 1 i f programi s l oaded

%% 0 i f programi s not l oaded

%%========================================================

50

3. %###%[Yor N]

i n t Instal lMachi neBreakpoi nt(i n t addr)

%%========================================================

%%Requi res: addr i s a val i d code address of the current

%% programwhere a breakpoi nt can be set

%%Modi �es: (obj ect code)
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%%E�ects: Instal l s a breakpoi nt at addr such that when

%% programexecuti on reaches addr, i t hal ts

%% Returns: Ori gi nal i nstructi on (i n t ) bei ng repl aced by breakpoi nt,

%% to be passed to Uni nstal lMachi neBreakpoi nt. Returns 60

%% an i nteger <0 i f di d not i nstal l correctl y.

%%========================================================

4. %###%Y

v o i d conti nueprogram(v o i d )

%%========================================================

%%Requi res: ���

%%Modi �es: ���

%%E�ects: If programi s runni ng, conti nues runni ng i t.

%% Otherwi se pri nts a message to user that program 70

%% shoul d be started �rst.

%% Returns: ���

%%========================================================

5. %###%[Yor N]

i n t Uni nstal lMachi neBreakpoi nt(i n t addr, i n t ori gi nstructi on)

%%========================================================

%%Requi res: addr i s a val i d code address of the current

%% programwhere a breakpoi nt can be removed;

%% ori g i nstructi on i s i denti cal to that returned by 80

%% Instal lMachi neBreakpoi nt

%%Modi �es: (obj ect code)

%%E�ects: Uni nstal l s a breakpoi nt at addr such that when

%% programexecuti on reaches addr, i t no l onger hal ts

%% due to thi s breakpoi nt. Ori gi nal i nstructi on i s

%% rei nstated.

%% Returns: i n t n: n=0 i f worked correctl y; n<0 i f di d not work

%%========================================================

6. %###%[Yor N] 90

i n t SetMachi neProcBreakpoi nt(c h a r *proc, i n t n, i n t traceon)
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%%========================================================

%%Requi res: proc i s name user uses to ref er to a procedure on whi ch

%% a breakpoi nt i s to be added

%% n i s the code address where thi s procedure starts

%%Modi �es: (obj ect code)

%%E�ects: Adds proc to l i st of procedure breakpoi nts by cal l i ng

%% i n t addto proc breakpt l i st(c h a r *proc, i n t addr,

%% i n t traceon). (1 i f good; 0 i f bad)

%% (i n SKEL) and adds correspondi ng machi ne address 100

%% breakpoi nt(s) f roml i st by cal l i ng (i n SKEL: )

%% i n t addto machi ne breakpt l i st(i n t addr).

%% (1 i f good; 0 i f bad)

%% Returns: 1 i f set successful l y; 0 otherwi se

%%========================================================

7. %###%[Yor N]

i n t Cl earMachi neProcBreakpoi nt(c h a r *proc, i n t n)

%%========================================================

%%Requi res: proc i s name user uses to ref er to a procedure on whi ch 110

%% there i s a breakpoi nt to be removed.

%% n i s the code address where the procedure starts

%%Modi �es: (obj ect code)

%%E�ects: Removes proc f roml i st of procedure breakpoi nts by cal l i ng

%% i n t removef rom proc breakpt l i st(c h a r *proc, i n t addr)

%% (1 i f good; 0 i f bad returned)

%% (i n SKEL) and removes correspondi ng machi ne address

%% breakpoi nts f roml i st by cal l i ng (i n SKEL: )

%% i n t removef rommachi ne breakpt l i st(i n t addr)

%% (1 i f good; 0 i f bad returned) 120

%% Returns: 1 i f successful ; 0 otherwi se

%%========================================================

8. %###%Y

i n t readprogram(c h a r *�l ename)

%%========================================================
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%%Requi res: �l ename i s the name of �l e to be read i n

%%Modi �es: (machi ne state)

%%E�ects: Loads user program; l oads the code i nto the code

%% memory. Set ags such that program l oaded() wi l l 130

%% r e t ur n true. Rei ni ti al i ze memory, etc.

%% Returns: 1 i f programread successful l y, 0 otherwi se

%%========================================================

9. %###%[Yor N]

v o i d pri ntregi stercontents(c h a r *arg1, c h a r *arg2)

%%========================================================

%%Requi res: arg1 i s possi bl y an envi ronment

%%Modi �es: ���

%%E�ects: Pri nts the contents of the machi ne regi sters; 140

%% If env i s gi ven, onl y pri nts that envi ronment

%% Returns: ���

%%========================================================

10. %###%Y

v o i d runprogram(c h a r *a1)

%%========================================================

%%Requi res: arg1 i s empty or i s a l i ne number at whi ch to begi n

%% executi on

%%Modi �es: ��� 150

%%E�ects: Reports that user programi s al ready runni ng (and

%% suspended) or e lse begi ns to run the program.

%% Returns: ���

%%========================================================

11. %###%[Yor N]

v o i d dostep(c h a r *arg1, c h a r *arg2)

%%========================================================

%%Requi res: arg1 i s empty or the number of steps user wants to step.

%% arg2 i s empty or the l ocati on f romwhi ch to begi n steppi ng 160

%%Modi �es: ���
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%%E�ects: Executes arg1 steps of user program, begi nni ng at

%% l ocati on arg2.

%% Returns: ���

%%========================================================

12. %###%[Yor N]

v o i d dobi g step(c h a r *arg1)

%%========================================================

%%Requi res: arg1 i s empty or the l ocati on f romwhi ch to begi n steppi ng 170

%%Modi �es: ���

%%E�ects: Executes a process=procedure of user program, begi nni ng at

%% l ocati on arg1.

%% Returns: ���

%%========================================================

13. %###%Y

v o i d resetmachi ne(v o i d )

%%========================================================

%%Requi res: ��� 180

%%Modi �es: machi ne state

%%E�ects: Resets the machi ne state, sets runni ng to fal se (0)

%%========================================================

14. %###%[Yor N]

v o i d pri ntmai i nfo(v o i d )

%%========================================================

%%Requi res: ���

%%Modi �es: ���

%%E�ects: Pri nts out i nformati on about user program, debugger 190

%% status, etc.

%% Returns: ���

%%========================================================

15. %###%[Yor N]

i n t ProcessMAIArgs(i n t argc, c h a r *argv[ ] , c h a r *progname)
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%%========================================================

%%Requi res: progname i s name of debugger program

%%Modi �es: ���

%%E�ects: Processes arguments, i f any, of a generated debugger. 200

%% Pri nts a "Usage error:" l i ne to output i f returni ng 0.

%% Returns: 1 i f everythi ng ok; 0 otherwi se.

%%========================================================

16. %###%[Yor N]

i n t changenode(i n t arg1)

%%========================================================

%%Requi res: arg1 i s an i nteger speci f yi ng the newnode to be

%% debugged. Is al ready checked f o r <=max avai l abl e

%% and >0 210

%%Modi �es: machi ne state

%%E�ects: Does the necessary i nternal state changes to debug

%% node number arg1

%% Returns: 1 i f everythi ng ok; 0 otherwi se.

%%========================================================

17. %###%[Yor N]

i n t resi zenumber nodes(i n t arg1)

%%========================================================

%%Requi res: arg1 i s an i nteger speci f yi ng the newdesi red number 220

%% of processi ng nodes. Is al ready checked f o r <=max

%% and >0

%%Modi �es: machi ne state

%%E�ects: Does the necessary i nternal state changes to al ter

%% desi red number of nodes avai l abl e to arg1

%% Returns: 1 i f everythi ng ok; 0 otherwi se.

%%========================================================

==================

EXTENSIONCOMMANDS 230

==================
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NUMBEROFEXTENSIONCOMMANDS

(0 <=number <=20)

%###%

<number>

For each extensi on command, speci f y:

(1) hel p l i ne, i ncl udi ng both name of command user wi l l type

and hel p stri ng f o r hel p menu 240

(e. g. , "ta Toggle all-solutions.")

(2) i nvocati on of name of routi ne to be cal l ed, usi ng arguments

arg1, arg2, arg3 (max 3 args)

(e. g. , "toggle_all_solutions();")

(3) e x t e r n ref erence l i ne

(e. g. , "extern void toggle_all_solutions();")

EXAMPLE:

Extensi on Command 1 250

%###%

ta <n> Toggl e al l�sol uti ons. n =max number of sol ns

%###%

toggl e al l sol uti ons(arg1);

%###%

e x t e r n v o i d toggl eal l sol uti ons();



App e nd i x C

Sampl e OMVi r t ual Machi ne MAI

I nput Fi l e

%% MAI INPUTFILEFORTARGETARCHITECTUREOMVIRTUALMACHINE

TARGETARCHITECTURENAME:

%###%

OM

DEBUGGERLIBRARYPATH:

%###%

=users=tsi en=maygen=om=

10

DEBUGGERLIBRARYFILENAMEWITHOUTLEADING"lib" ORTRAILING".a":

%###%

mg mai

ACTUALNUMBEROFPROCESSINGNODES INTARGETARCHITECTURE

%###%

1

73
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DESIREDNUMBEROFPROCESSINGNODES INTARGETARCHITECTURE

%###% 20

1

%%%%%%%%%%%

%%Procedures: %%

%%%%%%%%%%%

1. %###%Y

i n t i ni tmai (v o i d )

2. %###%Y

i n t programl oaded(v o i d ) 30

3. %###%Y

i n t Instal lMachi neBreakpoi nt(i n t addr)

4. %###%Y

v o i d conti nueprogram(v o i d )

5. %###%Y

i n t Uni nstal lMachi neBreakpoi nt(i n t addr, i n t ori gi nstructi on)

40

6. %###%Y

i n t SetMachi neProcBreakpoi nt(c h a r *proc, i n t n, i n t traceon)

7. %###%Y

i n t Cl earMachi neProcBreakpoi nt(c h a r *proc, i n t n)

8. %###%Y

i n t readprogram(c h a r *�l ename)

9. %###%Y 50

v o i d pri ntregi stercontents(c h a r *arg1, c h a r *arg2)

10. %###%Y
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v o i d runprogram(c h a r *a1)

11. %###%Y

v o i d dostep(c h a r *arg1, c h a r *arg2)

12. %###%Y

v o i d dobi g step(c h a r *arg1) 60

13. %###%Y

v o i d resetmachi ne(v o i d )

14. %###%Y

v o i d pri ntmai i nfo(v o i d )

15. %###%Y

i n t ProcessMAIArgs(i n t argc, c h a r *argv[ ] , c h a r *progname)

70

16. %###%N

i n t changenode(i n t arg1)

17. %###%N

i n t resi zenumber nodes(i n t arg1)

==================

EXTENSIONCOMMANDS

==================

NUMBEROFEXTENSIONCOMMANDS 80

%###%

12

Extensi on Command 1

%###%

ta Toggl e al l�sol uti ons.

%###%

toggl e al l sol uti ons();
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%###%

e x t e r n v o i d toggl eal l sol uti ons(); 90

Extensi on Command 2

%###%

tb Toggl e breadth��rst search.

%###%

toggl e breadth �rst();

%###%

e x t e r n v o i d toggl ebreadth �rst();

100

Extensi on Command 3

%###%

tq Toggl e qui et mode.

%###%

toggl e qui et mode();

%###%

e x t e r n v o i d toggl equi et mode();

110

Extensi on Command 4

%###%

tp Toggl e process trace.

%###%

toggl e process trace();

%###%

e x t e r n v o i d toggl eprocess trace();

Extensi on Command 5 120

%###%

ti Toggl e i nstructi on trace.

%###%
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toggl e i nstructi ontrace();

%###%

e x t e r n v o i d toggl ei nstructi ontrace();

Extensi on Command 6

%###% 130

td Toggl e symbol i c reg di spl ay.

%###%

toggl e symbol i c di spl ay();

%###%

e x t e r n v o i d toggl esymbol i c di spl ay();

Extensi on Command 7

%###%

pc Pri nt code f rom<n>to <m>. 140

%###%

pri nt code(arg1, arg2);

%###%

e x t e r n v o i d pri ntcode();

Extensi on Command 8

%###%

ph Pri nt heap f rom<n>to <m>.

%###% 150

pri nt heap(arg1, arg2);

%###%

e x t e r n v o i d pri ntheap();

Extensi on Command 9

%###%

pm Pri nt message (detai l ed contents of Mreg).
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%###%

pri nt message i nfo(arg1, arg2); 160

%###%

e x t e r n v o i d pri ntmessage i nfo();

Extensi on Command 10

%###%

pp Pri nt process (detai l ed contents of Preg).

%###%

pri nt process i nfo(arg1, arg2);

%###% 170

e x t e r n v o i d pri ntprocess i nfo();

Extensi on Command 11

%###%

pq Pri nt message queue.

%###%

pri nt queue contents();

%###%

e x t e r n v o i d pri ntqueue contents(); 180

Extensi on Command 12

%###%

pt Pri nt process tree.

%###%

pri nt process tree();

%###%

e x t e r n v o i d pri ntprocess tree();
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