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Abstract

Low-latency communication in large-scale multiprocessors requires high-

performance interconnection schemes. Multistage interconnection networks

with redundant paths combine high performance with fault-tolerance, but

exact evaluation of the blocking probability of interconnection networks with

redundant paths is expensive. Equations for the blocking probability and

throughput of multistage, multipath interconnection networks are derived.

A method of approximate solution of the equations is presented, with a

derivation of error bounds on the estimated solution. A program that solves

the equations exactly and approximately is presented.
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Chapter 1

Introduction

1.1 Background

The realization of low-latency communication in large-scale multiprocessors

requires high-performance interconnection schemes. Both direct and indirect

networks are examples of these; here our focus is on self-routing, multistage

networks, both with unique paths and with multiple (redundant) paths.

One popular measure of the performance of a multistage interconnection

network is its bandwidth or throughput { that is, the expected number of mes-

sages it delivers in each cycle, where the inputs have some given probability

of generating a message. A related measure, from which the bandwidth

may be calculated in some models, is the probability of successful message

transmission or the normalized throughput { the probability that an arbi-

trary message at an input is not blocked (and presumably queued for later

service) by some other request in the course of delivery. The problem of

calculating the probability of successful message transmission is more often

referred to in the telephone switching literature by its complement { the

blocking probability, and we shall do the same here.

The problem of computing blocking probabilities in regular variants of

unique-path multistage interconnection networks has been extensively stud-

ied. These networks were called Banyan networks by Goke and Lipovsky

[9]. Patel [21] and Kruskal and Snir [15] in particular presented expressions

for the probability of successful message transmission of delta networks,

which are a particular regular variant of Banyan networks. Multiproces-

sors have been built using such regular Banyan networks for interconnection

[22, 24]. A later chapter presents a method for calculating the exact block-

1



CHAPTER 1. INTRODUCTION 2

ing probabilities of unbu�ered Banyan networks that applies not only for

delta networks, but in the general case of any unique-path network. The

method applies where sources generate messages with di�erent probabilities,

as well as where di�erent destinations have di�erent probabilities of having

messages addressed to them.

However, precisely because Banyan networks are unique-path networks,

they are not inherently fault-tolerant. The failure of a switching element

will necessarily cut o� communication between at least one message source

and one message sink in the network. A scheme that allows replacement of

failed components with idle spares must be used to maintain connectivity.

This is the approach used in, e.g., the extra-stage cube network [1], or in

the dynamic redundancy network [13], both of which emulate a (Banyan)

indirect cube network and provide fault-tolerance by recon�guring in the

presence of faults.

An alternative to the maintenance of idle spares is to make active use

of the \spares" to increase bandwidth, by building a multipath network.

Here we mean that, in the course of normal (fault-free) communication, the

redundant paths are used in routing packets to their destinations. Some

examples of these are the augmented delta network [8], the multibuttery

network [26], and the merged delta network [23].

Both fault-tolerance and performance can be enhanced with the addition

of multiple paths. Unfortunately, multipath networks create problems for

the tra�c theorist. In a Banyan network, if one assumes messages at the

inputs are generated by independent processes, the presence or absence of

messages at the inputs of any switch in the network is independent of the

presence or absence of messages at the other inputs of that switch.1 Thus

the analysis of blocking probabilities in Banyan networks is simpli�ed, and

polynomial-time algorithms exist for calculating the exact blocking proba-

bility [14]. When multiple paths are allowed, independence is violated.

The author has found in the literature no polynomial-time algorithm

that calculates the exact blocking probability of a multipath network, nor

any proof that the problem is NP- or #P-hard. The method described in a

later chapter, for synchronous, packet-switched multipath networks, requires

the solution of a number of equations that is exponential in the number

of communications channels entering a stage in the network. A program

that automatically solves these equations exactly, given a description of

the network, is presented in what follows; but it cannot be used on large

1As will be shown in Section 3.2.
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networks, as the running time grows too quickly.

Thus an approximation method must be used to estimate the block-

ing probability of larger networks. The exact solution remains useful, not

only because it is used in the approximation method, but because it allows

some evaluation of approximation methods through comparison with exact

solutions for small problems. We consider two approximation methods.

The �rst is direct simulation of the network, where sample input loads

are selected and o�ered to the simulation, the fraction of messages blocked

in each is calculated, and a blocking probability is estimated. The second,

which is more satisfactory because it achieves the same error bounds in less

running time than does direct simulation, is approximation of the solution

to the equations, by a Monte Carlo method that we shall describe. This is

similar to the approach taken by Harvey and Hills in [11]. Harvey and Hills

were considering circuit-switched telephone networks with unique paths; but

their approach, which was to �nd approximate solutions of exact equations,

rather than exact solutions to approximate equations, can still be of use

here.

1.2 Prior Work

The earliest work in analysis of the performance of interconnection networks

was driven by the need to e�ciently switch telephone tra�c. Some of the

earlier work on interconnection networks and their performance, by Clos [7]

and Benes [3], concentrated on the design of non-blocking networks, networks

for which a connection that constitutes a bijective mapping from sources to

destinations can always be accomplished without blocking.

Non-isochronous applications such as shared-memory references in a mul-

tiprocessor can better tolerate blocking, and thus often use blocking variants

of Banyan networks, as presented by Goke and Lipovski [9].

Patel [21] presented a probabilistic analysis of the blocking probability

of delta networks, a subset of the more general class of Banyan networks.

His work assumed that all sources transmit with uniform probability, and

that all destinations are selected with uniform probability. Bhuyan [5] has

extended Patel's work to include analysis of the case where each processor

has a single favorite destination that is not the favorite destination of any

other processor. Kruskal and Snir [15] have extended Patel's work by �nding

an asymptotic expression for the blocking probability in networks with large

numbers of stages.
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Analyses that model the bu�ering that must be used due to blocking

in Banyan networks have also been developed; two recent examples include

the work of Merchant [18] and Lin and Kleinrock [17]. These models can-

not be used for multipath networks, however, due to the above-mentioned

correlation of channel loads in a multipath network.

The literature on performance of multistage multipath networks is more

sparse. Speci�c topologies are usually simulated, as in [2], [8], [23], and [16].

A similar problem has been studied in the context of telephone switching

systems [12]. However, in telephone switching systems the model is one of

a circuit-switched network where the holding time for circuits varies. Fur-

thermore, in the methods described in [12], it is assumed that the networks

modeled are symmetric; because there are classes of asymmetric networks

that are of interest,2 and because we are partly interested in calculating

blocking probabilities in the presence of (asymmetric) faults, these methods

are not satisfactory.

1.3 Motivation

Our goal in this work is to provide a tool that can be used by multiprocessor

architects to easily compare the performance of competing multistage inter-

connection network structures. A secondary goal is to provide an analysis

that highlights some of the aspects of interconnection network structure that

have particular bearing on performance.

Almost all Banyan networks used in multiprocessors to date have been

delta or omega networks, and the performance of these has been studied

extensively. Our contribution is in providing a method of calculating the

throughputs of Banyan networks of arbitrary interconnection structure and

with unusual switching components. The method allows easy modeling of

cases with general destination distributions and general source transmission

probabilities.

Multipath, multistage network performance has been less widely stud-

ied. The correlation of channel loads can have signi�cant e�ects on the

performance of these networks. The methods we develop calculate the joint

probability mass function of groups of channels between stages of the net-

work to allow calculation of multipath network performance parameters. We

hope that the multipath network designer who wishes to examine the results

of a design decision will be able to achieve some insight from our model.

2E.g., the randomly-interwired butteries of [16].
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Random interwiring of multipath networks (as described in [16]) for

fault-tolerance yields a large space of possible network structures; one might

generate a number of these, insert faults randomly and select the one with

the best performance. In [2], Chong et al. describe the use of simulation to

evaluate di�erent circuit-switched multipath networks, including randomly-

and deterministically-interwired networks. The method we develop allows a

quick measure of performance in fewer steps than does direct simulation of

the network.

1.4 Approach

We use a simple model of o�ered tra�c in our calculation of blocking prob-

abilities for both Banyan and multipath networks. In our model, although

di�erent inputs in the network can have varying probabilities of transmis-

sion, we assume that the messages presented at the inputs to the network

are produced by independent memoryless processes.

This model is known to be optimistic. The throughput calculated in an

analysis using this model will be higher than the throughput calculated in

simulations that include bu�ering, or in more detailed analyses that model

bu�ering. We can understand one reason for the optimism of the model

by considering that it cannot account for multiple conicting requests pre-

sented to the network. In the case of, say, a three-way collision between

requests competing for the same resource in one cycle, only one request can

be serviced, and there will necessarily be a collision again at the next cycle

between the remaining requests.

Patel has noted the optimism of this memoryless model and comments

that in his simulations that took bu�ering into account, the probability

of successful message transmission varied only slightly from that predicted

by the memoryless model [21]. Nussbaum et al. examined the analogous

assumption for circuit-switched interconnects and reported that the error in

the memoryless model was at all loads less than 10%, and suggested that

for most purposes the memoryless model should probably be preferred for

its simplicity [20].

Bhandarkar examined in particular the probability that a memory el-

ement in a distributed-memory multiprocessor system would be busy, and

compared his analysis, which did model bu�ering of blocked requests, with

a memoryless model [4]. His conclusion was that where the ratio of the

number of memories to the number of processors was greater than 0:75,
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the expected number of busy memories in the memoryless model is always

within 6 to 8% of that in the bu�ering model.

The results reported by Chang et al. were similar: in examining the

throughput of multiprocessor memories, they found that a memoryless model

was always 6 to 8% more optimistic than the results they generated with an

analysis that modeled queueing of memory requests [6].

Given that our primary goal is to provide multiprocessor architects with

a means of comparing the performance of alternative network structures,

we deemed the known optimism of the memoryless model to be worth the

simplicity it a�ords, especially in view of the complexity of the problem of

deriving blocking probabilities in multipath networks.

1.5 Outline

In the remainder of this document, we further de�ne the problem of calculat-

ing the throughput and blocking probability of a multistage interconnection

network and present methods for solving it.

In Chapter 2 we de�ne the problem and our model speci�cally enough to

allow the description of a method for analyzing the performance of Banyan

networks. Chapter 3 presents that method, as well as a program that cal-

culates the performance parameters numerically or symbolically.

Chapter 4 further de�nes our model to include multipath networks and

presents equations for exactly analyzing the performance of multipath net-

works. Chapter 5 presents means of approximating the performance pa-

rameters of multipath networks. Finally, we have included a listing of our

procedures for Banyan network performance evaluation in an appendix, as

these were compact enough to make such presentation practical.



Chapter 2

Problem Statement

2.1 The Model

An indirect network is one in which the network switching elements are

segregated from the inputs and outputs of the network, as in Figure 2.1.

The message sources inject messages into the network at the inputs, which

in Figure 2.1 are depicted on the left side and are labeled I0 through I7.

Messages are routed through the network and arrive at the message sinks on

the right side, labeled O0 throughO7. In a multiprocessor, the network input

channels might connect to 8 processing elements, and the output channels

might connect to the same 8 processing elements.

The particular class of indirect networks that we model is the class of

multistage, unbu�ered, synchronous, packet-switched networks. Such a net-

work might look like the one depicted in Figure 2.2. This network has

multiple stages: if we consider the stage consisting of all the sources to be

stage 0, then stage 1 consists of the column of switching elements connected

directly to the sources; stage 2 the column of switches to the right of stage

1, etc.

The networks we consider are self-routing: each message contains the

information necessary to route the message from the source where it is in-

jected to the sink that is its destination. No global information is used in

the routing process, so that the probability mass function of the loads on

the output channels of a switch can be calculated from the probabilities of

the loads on the input channels. As a simple example, in the indirect cube

of Figure 2.2, 2� 2 switching elements route on individual bits of the desti-

nation address, starting with the low-order bit. There are log2 8 = 3 address

7
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Figure 2.1: An indirect network is one in which switching elements are

segregated from the inputs and outputs of the network. Messages enter the

network through the input channels on the left side, and are routed to the

output channels on the right side.
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an indirect cube; multipath networks will be treated in Chapter 4.



CHAPTER 2. PROBLEM STATEMENT 9

bits; the switching elements at stage 0 route on the 20's bit; those at stage

1 on the 21's bit, and those at stage 2 on the 22's bit. A cleared address bit

indicates that the message should be routed through the upper channel; a

set address bit indicates that it should be routed though the lower channel.

Thus a message addressed to destination 6 = 1102 leaves stage 0 through

an upper channel, stage 1 through a lower channel, and stage 2 through a

lower channel.

Blocking occurs in the 2 � 2 crossbar when two messages arriving at

the inputs are both to be routed through the same output channel. Both

requests cannot be serviced, and so one of the messages is routed through

the output channel, and the other is blocked. In our model, both messages

have equal likelihood of being routed through the output channel, and many

switching elements behave this way; but one might easily modify the analyses

we present to change this assumption.

We also consider networks in which the channels between stages can carry

more than one message. Kruskal and Snir referred to such networks as dilated

networks [15], and we follow their lead here; furthermore we call switching

elements in which the output ports can pass more than one message dilated

switching elements. We refer to each of the dilated output ports as a logical

direction. If a switch has N input ports, each of which can receive a single

message, and M output ports, each of which can send up to K messages

simultaneously, we call it an N �M , dilation K switch.

We calculate the throughput of the network under the following assump-

tions:

� The processes generating messages at the sources are independent and

memoryless. With some speci�ed probability pi, each source i gen-

erates or fails to generate a single message at the beginning of each

cycle. Each generated message is directed to a stage 1 switch.

� The network is synchronous: at each cycle messages move from stage

i to stage i+ 1.

� The network is treated as unbu�ered (as described in Section 1.4): if a

message is blocked at some stage, it is considered to be lost, and does

not in any way a�ect the future states of the system.

� If A0; A1; : : : are random variables representing the addresses of mes-

sages generated in some particular cycle by message sources 0; 1; : : :,

then the Ai are independent and identically distributed; the distribu-

tion can be speci�ed as a parameter of the model.
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We de�ne our model further in Chapter 4, extending it as necessary for

multipath networks.

2.2 The Problem

We are interested in deriving the bandwidth, or throughput, of a multistage

interconnection network { that is, the expected number of messages it de-

livers in a cycle. We calculate this number by �nding the probability mass

functions1 of the loads on channels leading to sinks.

Suppose that the network has M sources. Call the probability that the

ith source generates a message in a given cycle Pi. If we say that B is

the bandwidth and PS is the probability of successful message transmission,

then we may calculate PS as the ratio of B to the expectation of the input

message loading. PS will vary with the input loading, because of internal

blocking in the network. B, too, will vary because of internal blocking and

also directly with the number of messages entering the network. Thus we

can better express PS and B as functions of the Pi, giving us the relation:

PS (P0; P1; : : : ; PM�1) =
B (P0; P1; : : : ; PM�1)PM�1

i=0 Pi

(2:1)

Thus our problem is �nding the probability mass functions of the loads on

channels leading to sinks. These probability mass functions can also be used

to specify other information besides mean throughput; if the network is not

symmetric, or if a non-uniform destination address distribution for injected

messages is speci�ed, or if di�erent sources are speci�ed to have di�erent

probabilities of message generation, then the loads on individual channels

leading to sinks will be of interest in �nd the e�ects of the asymmetries on

tra�c to particular destinations.

The quantities B and PS will typically vary smoothly with the source

transmission probabilities Pi. Let us consider a simple case. If the destina-

tion distribution is uniform, all sources i have equal probability of generating

messages, and we vary Pi between 0 and 1 for the network of Figure 2.2,

the resulting graphs for the bandwidth and probability of successful message

transmission are as shown in Figures 2.3 and 2.4, respectively.

The probability of successful message transmission is close to 1 when

there are very few messages injected into the network, because there is little

1Joint probability mass functions, in the case of multipath networks.



CHAPTER 2. PROBLEM STATEMENT 11

0.2 0.4 0.6 0.8 1
P0

1

2

3

4

E[A]

Figure 2.3: Bandwidth (labeled E[A]) plotted versus message generation

probability (labeled P0) for the network of Figure 2.2. Here the destination

address distribution is uniform.
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Figure 2.4: Probability of successful message transmission (labeled

PfSuccessg) plotted versus message generation probability (labeled P0) for

the network of Figure 2.2, with a uniform destination address distribution.
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blocking in a nearly empty network. PS decreases as the number of mes-

sages injected into the network increases. The bandwidth or throughput

starts at 0, when no messages are being injected into the network, and, be-

cause of blocking, increases less than linearly as the probability of message

transmission increases.



Chapter 3

Performance of Banyan

Networks1

3.1 Introduction

In this chapter we present a method of calculating the throughput of a

Banyan network. As described in Section 1.2, Patel [21] and Kruskal and

Snir [15] have presented solutions to this problem for regular variants made

up of crossbar switching devices, but we present a method that works for

Banyan networks of arbitrary interconnection structure and allows modeling

of some unusual switching devices.

Consider �rst the probability mass function of the message load on a

single channel in a Banyan network. The channel may either be carrying a

message, in which case its message load is one, or it may be idle, in which

case its message load is zero. Let the random variable l denote the message

load. The two values that l can take on partition the space of possible

loading con�gurations for the network into two disjoint subsets. l is then

a Bernoulli random variable, and we use the notation pl(l0) to denote the

value of its probability mass function at l0.
2 We denote the value of the

Z-transform of l's probability mass function at z with the notation pTl (z).

Our approach will be to de�ne three operations on the probability mass

functions of channel loads. These are called bundling, switching, and con-

centration. They are represented graphically as depicted in Figure 3.1. We

1The work described in this chapter was performed jointly with Dr. Thomas F. Knight,

Jr. and has been described in [14].
2In later sections we will also use the notation Pfl = l0g, when this is convenient.

13
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j

k

j+k kj
j −> k

Figure 3.1: (a) The symbol for bundling two input bundles into one. (b)

The symbol for concentrating j channels to k channels. (c) The symbol for

switching with probability q to the top output channel, and 1 � q to the

bottom output channel.

compose these operations to model switching elements, and further accord-

ing to the interconnection structure of the network. The result is an oper-

ation that transforms the probability mass functions of the loads on input

channels to the probability mass function of the load on an output channel.

3.2 Loads on Banyan Network Channels at a Sin-

gle Stage are Independent

We require a simple proof to proceed. We will be forming the sum of the

loads on distinct channels in a single stage in a Banyan network, and thus

we need to understand how, if at all, the random variables we are summing

are correlated. It turns out that these loads are in fact independent. A proof

for the special case of delta networks is presented in [21]; here we present a

di�erent proof for the general case.

The proof is straightforward. Note �rst that, if messages are generated

at source nodes by mutually independent random processes, and the sets

of messages on distinct channels entering a switching node originate at dis-

joint sets of source nodes, then the loads on those channels are necessarily

independent.

We now claim that the sets of messages on distinct channels entering

any switching node in a Banyan network satisfy this criterion: i.e., they

originate at disjoint sets of sources.
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For, consider: if channel A and channel B are two channels entering a

switching node, and a message on channel A and a message on channel B

originate at a single source, then it must be the case that at least two paths

exist from that source to any sinks accessible from the switching node: one

path that uses channel A and one that uses channel B. But this is impossible

in a Banyan network, as Banyan networks are in fact those in which there

is exactly one path from each source to each sink.

Thus the sets of messages on distinct channels entering any switching

node in a Banyan network must originate at disjoint sets of sources, and so

the loads on the channels entering any switching node in a Banyan network

must be mutually independent, as was to be proved.

3.3 Bundling

We call the operation of summing the loads on a group of channels bundling.

We will call such a group of channels a bundle.

Because channel loads are independent, if we are summing loads a and

b, then we form the convolution of their probability mass functions. We use

the notation

B [pa(a0) ; pb(b0)] � pa(a0) � pb(b0) (3:1)

Of course, this operation can be performed on bundles, as well as on

single channels. The result of bundling two bundles composed respectively

of n and m single channels is a bundle whose load can take on values rang-

ing from 0 through n + m. We depict in Figure 3.2 one possible loading

probability mass function of a bundle composed of 8 single channels.

In the Z-domain, bundling becomes multiplication of the Z-transforms

of the loading probability mass functions in question:

Z [B [pa(a0) ; pb(b0)]] = p
T
a (z) � pTb (z) (3:2)

3.4 Concentration

Suppose in an N �M , dilation K switch3 more than K arriving messages

are to be routed in a particular logical direction. Some of the messages are

3See Section 2.1 for an explanation of dilated switches.
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Figure 3.2: Loading probability mass function for an eight-channel bundle,

where each channel carries a message with probability 1=2.

then blocked and must be dropped. We call the operation that corresponds

to this situation concentration.

More speci�cally, suppose we have a bundle of N single channels, whose

load we call a, and we wish to direct messages from it into a bundle of K

single channels, whose load we call b. Of course if N � K, pb(l0) = pa(l0) for

all loads l0, because in this case none of the messages on the input bundle

will ever be blocked. If N > K, we calculate the probability mass function

of b as follows:

� Because the output bundle carries fewer thanK messages exactly when

the input bundle carries fewer than K messages, we have that pb(l0) =

pa(l0) where l0 < K.

� The output bundle will carry K messages whenever the input bundle

carries at least K messages; thus we have that pb(K) =
PN

i=K pa(i0).

� Because the output bundle cannot carry more thanK messages, pb(l0) =

0 for l0 > K.

Intuitively, then, we can think of the e�ect of concentration on the input

loading probability mass function as truncating it at K, by setting prob-
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Figure 3.3: 6-concentration of the loading probability mass function of Fig-

ure 3.2.

abilities for loads greater than K to 0 and adding to the probability for

K the probabilities for all greater input loads. In Figure 3.3 we show the

result of concentrating to 6 channels the loading probability mass function

of Figure 3.2.

If �(n) denotes the value of the unit impulse function at n, we can express

the loading probability mass function of an N -channel bundle as an impulse

train with value ki at i:

pl(l0) =
NX
i=0

ki�(l0 � i)

If u (n) the value of the unit step function at n, we can express concen-

tration of this N -channel bundle to a K-channel bundle as follows:

CN;K [pl(l0)] � pl(l0)u(K � l0) +

0
@ NX
l1=K+1

pl(l1)

1
A
�(l0 �K) (3:3)

In the Z-domain, we have
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Z [CN;K [pl(l0)]] = p
T
l (z)�

NX
l1=K+1

pl(l1) z
l1 +

0
@ NX
l1=K+1

pl(l1)

1
A
z
K

Combining the two summations, we get

Z [CN;K [pl(l0)]] = p
T
l (z) +

NX
l1=K+1

pl(l1)
�
z
K � z

l1
�

(3:4)

3.5 Switching

We call the elementary operation of directing the messages on a bundle to

two other bundles of the same width as the input bundle switching. Here we

do not mean to use the term in precisely the sense that it is used when we

speak of, e.g., a 2�2 switch. In the elementary operation we call switching,

no blocking is modeled; no messages can be lost. What we are modeling

instead is the direction of messages to separate ports in routing.

We specify the probability that the messages on the input load are

switched in the direction of the output load. This probability is calculated

in accordance with the destination address distribution (as will be described

in Section 3.6); but as an example, for the 2� 2 crossbars in the network of

Figure 2.2 under a uniform destination address distribution the probability

speci�ed for the switching operation will be 1=2.

Thus the switching operation is performed on an input loading proba-

bility mass function and a switching probability, and its result is an output

loading probability mass function. Call the load on the input bundle a, and

that on the output bundle b, and say that the input bundle (and perforce

the output bundle) is composed of N single channels.

We form pb(b0) by conditioning on the number of messages on the input

bundle:

pb(b0) =
NX

a0=0

pbja (b0 j a0) pa(a0)

To evaluate the conditional probability, let q be the probability that

an input message is switched to the output bundle. By independence of

message destinations, each message is switched independently, and thus the

number of messages switched to the output bundle is binomially distributed,
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because it is the number of successes in a0 independent Bernoulli trials with

probability q of success:

pbja (b0 j a0) =
 
a0

b0

!
q
b0(1� q)a0�b0

Substituting, we have

S [pa(a0) ; S] � pb(b0) =
NX

a0=0

pa(a0)

 
a0

b0

!
q
b0(1� q)a0�b0 (3:5)

In the Z-domain, we take an analogous approach. Note that the number

of messages routed to the output channel is the sum of a random number

of identically distributed random variables. The number of summands is

the number of messages on the input load. The summands themselves are

Bernoulli random variables that are 1 when the message in question is routed

to the output bundle and 0 when it is not.

If we use the random variable c to denote one of the summands, its

probability mass function is given by

pc(c0) = (1� q)�(c0) + q�(c0 � 1)

with Z-transform
p
T
c (z) = 1� q + qz

Thus we have

Z [S [pa(a0) ; q]] = p
T
a

�
p
T
c (z)

�
= p

T
a (1� q + qz) (3.6)

Of course, if we cascade K switching operations whose probabilities are

q1; q2; : : : ; qK , the e�ect on the probability that an individual message is

routed to the output bundle is the same as if we performed one switching

operation with q =
QK
i=1 qi.

The (predictable) e�ect of switching upon a loading probability mass

function is to decrease the mean. The e�ect on the distribution of Figure 3.2

of switching with q = 1=2 is shown in Figure 3.4.
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Figure 3.4: The e�ect of switching the loading probability mass function of

�gure 3.2 with probability 1=2.

3.6 Deriving Switching Probabilities from Mes-

sage Destination Distributions

The technique we use for deriving switching probabilities from message des-

tination distributions has also been used by Lin and Kleinrock in [17].

As described in Section 2.1, the addresses of distinct messages injected

into the network are independent and identically distributed. Suppose that

the message sinks are numbered 0; 1; : : : ; N � 1, and consider a switch X

for which the set of accessible message sinks is S. Suppose that X has M

output ports. By uniqueness of paths in a Banyan network, the ports must

have disjoint sets S1; S2; : : : ; SM of accessible destinations, and because the

destinations accessible through the output ports are all the destinations, we

must have that
SM
i=1 Si = S. An example is depicted in Figure 3.5.

We wish to know the probability that an arbitrary message arriving

at switch X is directed in direction i. Suppose that some message W with

destination given by the random variable D is injected into the network. The

value we are looking for is the conditional probability that W is addressed

to a destination in the set Si, given that it has arrived at switch X . We

have
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Figure 3.5: The destination set of the switch X is f1; 3; 5; 7g. The destina-
tion set of the upper channel is f1; 5g; that of the lower channel is f3; 7g.

PfD 2 Si j D 2 Sg =
Pf(D 2 Si)\ (D 2 S)g

PfD 2 Sg

=
PfD 2 Sig
PfD 2 Sg

=

P
s2Si PfD = sgP
s2S PfD = sg (3.7)

where the last expression follows from mutual exclusivity of destinations.

3.7 Example: the 2
k
� 2

k Crossbar

As an example of both the symbolic and numeric use of our method, we

derive a well-known expression for the throughput of the 2k � 2k crossbar.

We form a schematic representation of the crossbar with a combination

of our operators. First we construct a bundle of 2k channels by bundling the

single-channel inputs k times. Then we switch the messages on the bundle

k times, to form 2k bundles, each of which can hold 2k messages. Finally we

concentrate these 2k-wide bundles to single channels, thereby modeling the

blocking that takes place in the crossbar. Figure 3.6 shows the result for an

8� 8 crossbar.
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Figure 3.6: Schematic representation of an 8 � 8 crossbar network. Here

we show the switching probabilities set for a uniform destination address

distribution.
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For brevity's sake, in our analysis we assume that all input channels have

a single probability Q of transmitting, and that the destination address dis-

tribution is uniform. It will be evident that the derivation would otherwise

proceed in the same fashion, but would be more lengthy.

Suppose that the input channels have probability Q of transmitting dur-

ing a cycle. If we call the load on an input channel y, the loading probability

mass function for an input channel will then be

py(y0) = Q�(y0 � 1) + (1�Q) �(y0)

with Z-transform
p
T
y (z) = Qz + (1� Q)

Bundling k times, we get for the transform of the probability mass function

of the load xc on the bundle entering the switches

p
T
xc
(z) =

�
p
T
y (z)

�2k
Let xs be the load on a channel after the stages of switching, but before

concentration. We switch k times with probability 1=2 at each stage, the

result being the same as switching once with probability 1=2k:

p
T
xs
(z) =

 
p
T
y

 
z + 2k � 1

2k

!!2k

=

 
Q

 
z + 2k � 1

2k

!
+ (1�Q)

!2k

=

�
Q

2k
z +

�
1� Q

2k

��2k

=
2kX
l=0

 
2k

l

!�
1� Q

2k

�l �
Q

2k
z

�2k�l

To make the expression clearer, we substitute M = 2k, rearrange, and

invert the Z-transform:

p
T
xs
(z) =

�
Q

M

�M  
MX
l=0

 
M

l

!�
M

Q

� 1

�l
z
M�l

!

pxs (xs0) =

�
Q

M

�M  
MX
l=0

 
M

l

!�
M

Q

� 1

�l
�(xs0 � (M � l))

!
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We can save ourselves some work in performing the concentration from

2k (that is, M) channels to one channel by making use of the following

device. We note that, because we are concentrating to a single channel, the

only possible loads for the channel are 0 and 1. We recall from Section 3.4

that concentration will retain the probability for a load of 0, as 0 is less

than the maximum load on the channel. The probability for a load of 1 will

necessarily be the complement of that for 0. First we take the probability

that xs = 0:

pxs (0) =

�
Q

M

�M  
MX
l=0

 
M

l

!�
M

Q

� 1

�l
�(� (M � l))

!

We simplify the expression by noting that the terms where l 6= M will all

be 0:

pxs (0) =

�
Q

M

�M �
M

Q

� 1

�M

=

�
1� Q

M

�M

If we call the load on an output channel l, the loading probability mass

function for an output channel is then given by

pl(l0) =

�
1� Q

M

�M
�(l0) +

 
1�

�
1� Q

M

�M!
�(l0 � 1) (3:8)

The expected load on an output channel is then

E[l] =

 
1�

�
1� Q

M

�M!

There are M output channels, so the expected load on all of them, or the

throughput of the crossbar, is

ME[l] =M

 
1�

�
1� Q

M

�M!

The expected load on an input channel was Q, so that the total expected

input load is MQ. We can now use Equation (2.1) to derive the probability

of successful message transmission in M �M crossbar:

PS =

�
1�

�
1� Q

M

�M�
Q
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Figure 3.7: The probability of successful message transmission (labeled

PfSuccessg) as a function of the probability that a source is transmitting

(labeled Qi), in an eight-by-eight crossbar network with a uniform destina-

tion distribution.

We plot the probability of successful message transmission against the source

transmission probability in Figure 3.7.

3.8 Automatic Calculation of Numerical Values

for Performance Parameters

We present in Appendix A a package of Mathematica procedures that imple-

ment the elementary operations we have described. Of course the operations

are easily implemented in other languages, but it is advantageous to use a

symbolic algebra package if one wishes to derive symbolic expressions for

performance.

We can use this package to implement procedures that operate on source

loading probability mass functions and return the loading probability mass

functions for channels leading to sinks. As an example, we turn again to the

network of Figure 2.2. The tree whose root is one of the sinks and whose

leaves are the sources is depicted in Figure 3.8.

Assuming for clarity's sake that the destination address distribution is
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Figure 3.8: The tree of channels leading to a sink in the network of Fig-

ure 2.2.

uniform, we might use our package to model the 2� 2 crossbar as follows:

crossbar2x2[PMF1_, PMF2_] :=

concentrate[switch[bundle[PMF1, PMF2],

1/2],

1]

If we also assume (again, in the interests of brevity; it will be clear that

the calculation in the general case is no more complex) that all sources

transmit with equal probability, we can take advantage of the symmetry of

the network to calculate the loading probability mass function of a channel

leading to a sink as follows:

threeStageDelta[q_] :=

Block[{inputPMF, stage1PMF, stage2PMF},

inputPMF := [(1-q), q];

stage1PMF := crossbar2x2[inputPMF, inputPMF];

stage2PMF := crossbar2x2[stage1PMF, stage1PMF];

crossbar2x2[stage2PMF, stage2PMF]

]
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Here the probability that a source is transmitting is speci�ed as the input

parameter; three levels of switching are performed; the result of the last is

returned.

We may calculate the resulting bandwidth and probability of successful

message transmission from Equation (2.1), as is done in Section 3.7. The

results are plotted in Figures 2.3 and 2.4, on page 11.

3.9 Modeling an Unusual Switching Component

We use an example to illustrate the modeling of an unusual switching com-

ponent { an 8 � 4, dilation 2 switch.4 Such switches are more usually used

in multipath networks, as we shall see in Chapter 4, but Banyan networks

with replicated links are not unknown, and Kruskal and Snir have analyzed

regular variants in [15].

3.9.1 An Application for an 8 � 4, dilation 2 Switch

We can use standard 4 � 4 crossbars to build a 16 � 16 indirect binary

cube network, as depicted in Figure 3.9. The methods of analysis of the

performance of this network follow directly those of Sections 3.7 and 3.8.

As an alternative, we might choose to use a di�erent sort of switching

element in the �rst stage, to improve performance. This switching element

{ an 8� 4, dilation 2 switch { has eight input channels, but switches mes-

sages in only four logical directions, with two output ports for each of these

logical directions. If only one message is switched in a particular direction,

the output port is picked randomly. If two messages are switched in the

direction, both ports are used; if more than two messages are switched in

the direction, the excess messages are blocked.

In Figure 3.10, we show how we might modify the �rst stage of the 16�16
indirect cube network to make use of the dilated switching component. The

second stage must still use 4 � 4 crossbars, to select the particular output

channel to which the message is directed.

Although it might appear that we have constructed a multipath network

here, in fact we have not. The numbers appearing next to output ports on

the dilated components in Figure 3.10 are logical direction numbers, and it

is to be noted that both outputs for a particular logical direction lead to

4See Section 2.1 for an explanation of this terminology.
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Figure 3.9: A 16�16 indirect binary cube network built from standard 4�4

crossbars.
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Figure 3.10: A 16 � 16 indirect binary cube network with the �rst stage

built from 8 � 4, dilation 2 switches, and the second stage from standard

4� 4 crossbars.



CHAPTER 3. PERFORMANCE OF BANYAN NETWORKS 30

1

2 4

8

8

8

8->2

2
.5

.5

Figure 3.11: Schematic representation of an eight-by-four, dilation two

switching component. The switching probabilities are for a uniform des-

tination address distribution.

the same second-stage switch; the model will reect this. Thus we have four

two-channel bundles leading from each �rst-stage component.

3.9.2 Deriving Expressions for the Performance of the 8� 4,
Dilation 2 Switch

A schematic model of the 8 � 4, dilation 2 switch is shown in Figure 3.11.

Note that, in our model, the only di�erence between this component and

the 8�8 crossbar of Figure 3.6 is that there are only two stages of switching,

and the �nal concentration is to two channels, rather than to one. Here we

gain an intuition from our model: we noted that concentration was where

blocking occurred. Because there is less concentration in the new network,

there will be less blocking.

The derivation follows that of the 2k�2k crossbar in Section 3.7. Again,

for brevity's sake we assume a uniform destination distribution. Call the

load on an input channel y. Assuming all inputs transmit with probability

Q, the loading probability mass function for an input channel is

py(y0) = Q�(y0 � 1) + (1�Q) �(y0)
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with Z-transform
p
T
y (z) = Qz + (1� Q)

Call the load on the bundle entering the switches xc. The transform of the

probability mass function of xc is then

p
T
xc
(z) =

�
p
T
y (z)

�8
We switch twice with probability 1=2 each time, the result being the same

as switching once with probability 1=4. If xs is the load on a channel after

the two stages of switching, we have

p
T
xs
(z) =

�
p
T
y

�
z + 3

4

��8

=

�
Q

�
z + 3

4

�
+ (1� Q)

�8

=

�
Q

4
z +

�
1� Q

4

��8

=
8X
l=0

 
8

l

!�
1� Q

4

�l�
Q

4
z

�8�l

Now we invert the transform:

pxs (xs0) =

�
Q

4

�8 8X
l=0

 
8

l

!�
4

Q

� 1

�l
�(xs0 � (8� l))

!

We concentrate to two channels here, so that it still saves us some work

to use the technique we did for the crossbar, but it will be a little more

complicated to do so.

We take the probability that xs = 0 �rst. The sum will be zero whenever

l 6= 8, giving us:

pxs (0) =

�
Q

4

�8� 4

Q

� 1

�8

=

�
1� Q

4

�8
For xs = 1, the sum will be zero whenever l 6= 7, giving us:

pxs (0) =

�
Q

4

�8
(8)

�
4

Q

� 1

�7

= 2Q

�
1� Q

4

�7
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Call the load on a two-channel output bundle l. We know that pl(0) =

pxs(0) and pl(1) = pxs(1). The only other case for a two-channel bundle is

l = 2, so the probability for l = 2 must be the complement of the other two

cases, so we have for the probability mass function of l:

pl(l0) =

�
1� Q

4

�8
�(l0) + 2Q

�
1� Q

4

�7
�(l0 � 1)

+

 
1�

�
1� Q

4

�7�
1 +

7Q

4

�!
�(l0 � 2)

By our assumptions of uniformity, all four output bundles have the same

loading probability mass function, and so the throughput of the switch is

E[4l]:

E[4l] = 4

 
1 �
 
2Q

�
1� Q

4

�7!
+ 2 �

 
1�

�
1� Q

4

�7 �
1 +

7Q

4

�!!

The expected load on an input channel was Q, so that the total expected

input load is 8Q. As for the crossbar, we use Equation (2.1) to derive the

probability of successful message transmission:

PS =
Q

�
1� Q

4

�7
+ 1�

�
1� Q

4

�7 �
1 + 7Q

4

�
Q

=
1 +

�
Q�

�
1 + 7Q

4

�� �
1� Q

4

�7
Q

=
1�

�
1 + 3Q

4

� �
1� Q

4

�7
Q

The probability of successful message transmission is plotted against the

source transmission probability in Figure 3.12.

3.9.3 Performance of the 8� 4, Dilation 2 Switch

We can use our package of Mathematica procedures to write a procedure for

the 8� 4, dilation 2 switch, as follows:

eightXfourD2[q_] :=

Block[{bundled, switched, instages, outstages},
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Figure 3.12: Probability of successful message transmission plotted against

source transmission probability for an 8 � 4, dilation 2 switch, under a

uniform destination address distribution.

instages = 3;

outstages = 2;

bundled = {(1-q), q};

Do[bundled = bundle[bundled, bundled], {instages}];

switched = bundled;

Do[switched = switch[switched, .5], {outstages}];

concentrate[switched, 2]]

We will need a four-by-eight, input dilation two crossbar for the second

stage:

crossbar2x4in2[stageTwoPMF_] :=

Block[{bundled, switched},

bundled = stageTwoPMF;

bundled = bundle[bundled, bundled];

switched = bundled;

Do[switched = switch[switched, .5], {2}];

concentrate[switched, 1]]
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Figure 3.13: The bandwidth of the 16 � 16 indirect cube made from 4� 4

crossbars, as depicted in Figure 3.9, is shown dashed. The bandwidth of the

variant with a �rst stage made from 8 � 4, dilation 2 switches, as depicted

in Figure 3.10, is shown in solid black. Both are plotted against the source

transmission probability, for a uniform destination address distribution.

Now we can specify a procedure that yields as output the probability

mass function of the load on a channel leading to a sink, given the probability

that a source is transmitting:

eightXfourD2indirect16[q_] :=

Block[{firstStageOut},

(* input of first stage is just q *)

(* returns LPMF for 2-wide channel *)

firstStageOut = eightXfourD2[q];

(* now feed to 4x4 crossbars and return result *)

crossbar2x4in2[firstStageOut]]

We plot in Figure 3.13 the bandwidth for the 16�16 indirect cube made

from 4� 4 crossbars, and that for the variant with a �rst stage made from

8�4, dilation 2 switches. It will be seen that, as predicted, the performance

of the network built with the dilated part is better.



Chapter 4

Analyzing the Performance

of Multipath Networks

4.1 Introduction

In the previous chapter we have presented a method of analysis of Banyan

network performance. But as we discussed in the introduction, Banyan

networks, while amenable to analysis, are not intrinsically fault-tolerant.

We present in this chapter a method of analysis of multipath networks.

The performance parameters, and the model, are much the same as for

Banyan networks; but the requirement of unique paths and thus indepen-

dence of channel loads is removed.

We leave behind the scheme of using elementary operations to build de-

scriptions of switching elements, and instead directly derive the joint loading

probability mass function for a set of channels leading from a switch.

We also present a program that solves these equations exactly. As was

mentioned in the introduction, the program cannot be used for large net-

works, as its running time grows too quickly. We have found in the literature

no polynomial-time program that computes the exact blocking probability

of a multipath network. It may be that the problem is intractable, although

we know of no proof of NP- or #P-completeness for it.

Chapter 5 describes an approximation method for estimating solutions

to the equations, by making use of the exact solution for subproblems.

35
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Figure 4.1: An 8 � 8 deterministically-interwired network with redundant

paths. There are a number of di�erent paths from any source to any sink,

to increase fault-tolerance; redundant paths from message source 4 to sink

3 are highlighted. Routing is oblivious, with stochastic concentration. This

wiring scheme is from [2].

4.2 Extensions to the Model

Figure 4.1 depicts a multipath network. We extend our model so that sources

can have more than one channel to the network. A source still generates at

most one message per cycle, which is directed to a stage 1 switch via one of

the channels connecting the source to the network. The particular channel

is selected randomly and with uniform probability.

As before, the processes generating messages at the sources are inde-

pendent and memoryless. With some speci�ed probability pi, each source

i generates or fails to generate a single message at the beginning of each

cycle. The network is synchronous: at each cycle messages move from stage

i to stage i+ 1. It is also unbu�ered: if a message is blocked at some stage,

it is considered to be lost, and does not in any way a�ect the future states

of the system.

We use dilated switches, as described in Section 2.1, so that the set

of output channels of a switching element is divided into nonempty disjoint

subsets called logical directions. At each cycle, the switching element directs
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each incoming message in one logical direction. As for Banyan networks,

we can choose the switching probabilities to model any single destination

address distribution. When we route messages in a logical direction, we use

stochastic concentration:

� If there are fewer messages or exactly the same number of messages

directed in the logical direction as there are channels in that logical

direction, then the channels that will carry the messages are chosen

randomly, with uniform probability.

� If there are more messages directed in a logical direction than there

are channels in that direction, the messages that can be carried are

chosen with uniform probability, and the other messages are blocked

and lost.

We note again that our network is self-routing: each message contains

the information necessary to route the message from the source where it is

injected to the sink that is its destination. No global information is used. In

particular, this means that if we have several switches at a single stage, then

given the loads on their input channels, the loads on the output channels of

each switch are independent of the loads on the output channels of the other

switches. This fact will be important in allowing us to factor joint loading

probability mass functions.

Having extended our model, let us return to the network of Figure 4.1.

The switches here are 4 � 2, dilation 2 switches, except at the last stage,

where they are simply 2 � 2 (dilation 1) switches. In the 4 � 2, dilation 2

switches, the top two output channels constitute one logical direction, and

the bottom two constitute another.

As with Banyan networks, we wish to �nd the bandwidth and the proba-

bility of successful message transmission of the networks we model. We �nd

these parameters by �nding the probability mass functions of the loads on

channels leading to sinks.

4.3 The Joint Probability Mass Function of an

Aggregate of Channels

Suppose that the input channels of a switch S, depicted in Figure 4.2, are

connected to several switches R1; R2; : : : ; Ri. Let us use the random variable

L to denote the entire output loading con�guration of S at some speci�ed
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Figure 4.2: Interstage wiring. Note that no subset of the channels depicted

need have mutually independent loads in a network with redundant paths.

The output channels on the right of the switch marked S are those whose

loads are referred to collectively in the text with the random variable L.

discrete time t, so that PfL = lg is the probability that the output channels

of the switch have some particular loads designated in their aggregate by l

during cycle t.

Now consider the loads on the input channels C11; : : : ; Ciw at cycle t�1.

(Because we assume a synchronous, unbu�ered network with memoryless

processes generating the messages at the inputs, only the cycle before cycle

t is of interest.) Let us denote the loads on the input channels at cycle t� 1

with the random variables LC11
; : : : ; LCiw .

In order to �nd the joint probability mass function of the loads on the

output channels of S, we condition on the loads on the input channels:

PfL = lg =
X

lC11 ;:::;lCiw

PfL = l j LC11
= lC11

; : : : ; LCiw = lCiwg �

PfLC11
= lC11

; : : : ; LCiw = lCiwg (4.1)

where the sum is over all tuples lC11
; : : : ; lCiw with elements in f0; 1g.

Suppose that we can compute PfL = l j LC11
= lC11

; : : : ; LCiw = lCiwg.1
In order to compute the probability of an output loading con�guration of S

we will still need to �nd the joint probability mass function of the channel

1An expression for this conditional probability is derived in Section 4.4.
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Figure 4.3: Channels referred to in Equation (4.2). Although the probabil-

ities of the message loads on the channels C11; : : : ; Ciw are not in general

independent, the loads on the subset of channels from each switching element

are independent given the message loads on the input channels B11; : : : ; Bit.

loads LC11
; : : : ; LCiw . In a Banyan network, it would be easy to compute this

function; it would simply be the product of the probability mass functions of

the loads on the individual channels, as channel loads in a Banyan network

are independent.2 In a network with redundant paths, however, the loads

on these channels are not in general independent, as they may derive from

the same sources, and a message from a single source that has traveled one

path in the network cannot be traveling along another path. Thus another

method must be used.

In Figure 4.3, we see that the input channels C11; : : : ; Ciw of switch S

are the output channels of switches R1; : : : ; Ri. Let us call the loads on

the input channels to these switches LB11
; : : : ; LBit. We may now calcu-

late PfLC11
= lC11

; : : : ; LCiw = lCiwg by conditioning on the values of the

variables LB11
; : : : ; LBit. We have

PfLC11
= lC11

; : : : ; LCiw = lCiwg =X
lB11 ;:::;lBit

PfLC11
= lC11

; : : : ; LCiw = lCiw j LB11
= lB11

; : : : ; LBit = lBitg �

PfLB11
= lB11

; : : : ; LBit = lBitg (4.2)

2See Section 3.2.
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where the sum is over all tuples lB11
; : : : ; lBit with elements in f0; 1g.

The loads on the output channels of these switches are not in general

mutually independent. However, let us partition them into subsets according

to the switch at which they originate, so that for the channels shown in

Figure 4.3 we would have the subsets

fC11; : : :C1ug ; fC21; : : :C2vg ; : : : ; fCi1; : : : ; Ciwg

Note that, under the assumption of independence of message destinations,

and given the loads on the channels B11; : : : ; Bit, the loads on the switch

output channel subsets are mutually independent. As mentioned in Sec-

tion 4.2, this is a consequence of the fact that the networks we model are

self-routing. No global information is used in routing messages through the

network.

That is, if we know the input loads for the switches R1; : : : ; Ri, then the

loading probabilities for the output channels of each of the switches do not

depend on the output loads of any other switch. We may use this fact to

derive the joint probability mass function of the loads on the output channels

C11; : : : ; Ciw by conditioning on the input channel loads. We have then

PfLC11
= lC11

; : : : ; LCiw = lCiwg =X
lB11 ;:::;lBit

P
n
LC11

= lC11
; : : : ; LC1u=lC1u

j LB11
= lB11

; : : : ; LB1r
= lB1r

o
�

P
n
LC21

= lC21
; : : : ; LC2v=lC2v

j LB21
= lB21

; : : : ; LB2s
= lB2s

o
�

: : : �
PfLCi1 = lCi1 ; : : : ; LCiw = lCiw j LBi1 = lBi1 ; : : : ; LBit = lBitg �
PfLB11

= lB11
; : : : ; LBit = lBitg (4.3)

where the sum is once again over all tuples lB11
; : : : ; lBit with elements in

f0; 1g.
The subexpression PfLB11

= lB11
; : : : ; LBit = lBitg can be evaluated re-

cursively by means of Equation (4.3), until the channels B11; : : : ; Bit corre-

spond to sources. If these channels originate at message sources, then we

substitute instead the probability mass functions corresponding to sources.

We may simply take the product of these functions for the sources in ques-

tion, as in our model the processes generating messages at the sources are

mutually independent.

If source i, depicted in Figure 4.4, generates a message with probability

pi and has k channels into the network, then we have for the loads on the
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Ii

C1

Ck

Figure 4.4: The source Ii generates a single message at each cycle with

probability pi. The message is transmitted with uniform probability over a

randomly picked channel in the set fC1; : : : ; Ckg.

channels C1; : : : ; Ck the joint probability mass function

PfLC1
= lC1

; : : : ; LCk = lCkg =

8>>><
>>>:

1� pi if all the lCj are 0
pi
k

if exactly one lCj is 1,

and the rest are 0

0 otherwise

(4.4)

It remains now to evaluate the conditional probabilities in Equation (4.3).

Recall that these are the joint conditional probability that some subset of

the output channels of a dilated switch have a particular load, given that

the input channels have a particular load. We derive an equation for these

conditional probabilities in the next section.

4.4 Joint Probability Mass Functions of Dilated

Switch Output Channels

Suppose we have anM�N , dilation K switch. We may form the conditional

probability mass function of the loads on the output channels, given the

input load, by conditioning. Say that the random variable Lf;g represents

the load on the gth channel in the f th logical direction.

We wish to evaluate the expression

PfL1;1 = l1;1; : : : ; LN;k = lN;k j LC1
= lC1

; : : : ; LCM = lCMg

For an event E, de�ne

QfEg = PfE j LC1
= lC1

; : : : ; LCM = lCM g (4:5)
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Of course QfEg, like PfE j LC1
= lC1

; : : : ; LCM = lCM g, is a probability in

the usual sense; the de�nition is used to make completely clear the signi�-

cance of the further conditioning we perform below. We will condition on

the number of messages directed in each logical direction. If the random

variable Ci represents the number of messages routed in logical direction i,

we have:

QfL1;1 = l1;1; : : : ; LN;k = lN;kg =X
d1;:::;dN

QfL1;1 = l1;1; : : : ; LN;k = lN;k j D1 = d1; : : : ; DN = dng �

QfD1 = d1; : : : ; DN = dng (4.6)

where the sum is over all N -tuples d1; : : : ; dN such that each di � 0 andPN
i=1 di = j.

Now we consider the switching probability. We calculate the probabil-

ities for the N logical directions using Equation (3.7) of Section 3.6 (of

course, under uniform addressing each of these probabilities would be 1=N).

Suppose that these probabilities are q1; q2; : : : ; qN . By our assumption of

independence of message addresses, the probability that of the
PM

i=1 lCi ar-

riving messages, d1 are directed in direction 1, d2 in direction 2, and so on,

is simply multinomial, so that

QfD1 = d1; : : : ; DN = dNg =
 PM

i=1 lCi

d1; : : : ; dN

!
q
d1
1 q

d2
2 � � �qdNN (4.7)

Now let us evaluate QfL1;1 = l1;1; : : : ; LN;k = lN;k j D1 = d1; : : : ; DN = dng.
Say that bi is the number of messages output in direction i; that is, bi =PK

g=1 li;g. This number is not the same as di, because if there are more than

K messages to be output in a K-wide direction, some messages are dropped

and lost. If bi messages are output, then under stochastic concentration the

channels are picked with uniform probability, and so the probability of any

single con�guration will be 1=
�K
bi

�
. Thus

QfL1;1 = l1;1; : : : ; LN;k = lN;k j D1 = d1; : : : ; DN = dNg =8>><
>>:

0 if for any i, bi 6= min (di; K)
NY
i=1

1�K
bi

� otherwise
(4.8)

where bi =
PK

g=1 li;g.
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Combining Equations (4.5), (4.6), (4.7), and (4.8), we have

PfL1;1 = l1;1; : : : ; LN;k = lN;k j LC1
= lC1

; : : : ; LCM = lCMg =0
@ NY

i

1�
K
bi

�
1
A X

d1;:::;dN

 PM
i=1 lCi

d1; : : : ; dN

!
q

d1
1 q

d2
2 � � �qdNN (4.9)

where bi =
PK

g=1 li;g, and the sum is over the N -tuples d1; : : : ; dN such that

for each di, min (di; K) = bi, and
PN

i=1 di =
PM

i=1 lCi .

Of course, if the conditional joint probability of the load on a subset

of the switch's output channels is desired, as opposed to all of the switch's

channels, we can simply sum this expression over all the possible loads on

the complement of the subset of channels whose loads are required, as the

di�erent con�gurations of the output channels are mutually exclusive events.

4.5 Automatic Calculation of Blocking Probabil-

ities

It will be clear that the automatic calculation of blocking probabilities by

this means will require a great deal of time. Suppose we have a computer

program that calculates the blocking probabilities for a network in the most

obvious way, by �nding the joint probability mass function of the channels

leaving the �nal stage, using Equation (4.3) recursively. In the worst case, we

can imagine a network where there are N stages andM dependent channels

between each of the N stages, and the joint probability mass function of all

of the channels between each of the stages must be formed. The domain

of the joint probability mass function for each stage then is of size 2M ,

each value being calculated as a sum over 2M terms. Assuming the time

to calculate each of the terms summed over in Equation (4.3) is O(M), we

have then O
�
NM22M

�
for the worst-case performance.

The performance on some networks can be better than this, however.

Suppose that we need to calculate PfLC1
= lC1

; : : : ; LCn = lCng. Let S (c)

denote the set of source nodes from which messages can reach channel c.

If we can partition the set of channels fC1; : : : ; Cng into disjoint subsets

S1; : : : ; Sm such that for any C1 2 Si and C2 2 Sj , i 6= j, S (C1) \ S (C2) is

empty, then the loads on the channels in each subset Si are independent of

the loads on the channels in any and all of the other subsets in the partition.3

3As can be seen from the argument in Section 3.2.
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Figure 4.5: The network of Figure 4.1, with switches labeled.

Then the expression PfLC1
= lC1

; : : : ; LCn = lCng can be factored into the

product of m joint probability mass functions, one for each subset Si. In the

limiting case of a Banyan network, a complete factoring will be possible for

every set of channels, and the summation itself can be factored, so that the

worst case performance for a Banyan network of N stages with M channels

between the stages becomes O(NM).

A Common LISP program has been written to evaluate the joint prob-

ability mass function of the loads on speci�ed channels in a multistage in-

terconnection network. The program is given a symbolic description of the

interconnection network; this requires labeling the switching nodes of the

network. We show a labeling of the network of Figure 4.1 nodes in Fig-

ure 4.5. The input description for this network is shown in Figure 4.5.

The program uses the network representation to build an internal struc-

ture in which (for example) information about independence of channel loads

has been pre-computed, and channels have been assigned names generated

from the names of the their nodes of origin and destination. One can then

query the program for the probability mass function of interest. The result

is numerical, as in the example below:

> (setq d8x8 (parse-multistage-network

deterministically-interwired-8x8-rep))
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(defparameter deterministically-interwired-8x8-rep

;; inputs first -- these don't get a conditional probability

;; function.

'((i0 (a b) nil 1/2) (i1 (a b) nil 1/2)

(i2 (a b) nil 1/2) (i3 (a b) nil 1/2)

(i4 (c d) nil 1/2) (i5 (c d) nil 1/2)

(i6 (c d) nil 1/2) (i7 (c d) nil 1/2)

;; stage 1 4x4's

(a (e f g h) 4x2d2-cp-fun) (b (e f g h) 4x2d2-cp-fun)

(c (e f g h) 4x2d2-cp-fun) (d (e f g h) 4x2d2-cp-fun)

;; stage 2 4x4's

(e (tt0 tt1 tt2 tt3) 4x2d2-cp-fun)

(f (tt0 tt1 tt2 tt3) 4x2d2-cp-fun)

(g (tt4 tt5 tt6 tt7) 4x2d2-cp-fun)

(h (tt4 tt5 tt6 tt7) 4x2d2-cp-fun)

;; stage 3 2x2's

(tt0 (o0 o1) 2x2d1-cp-fun) (tt1 (o0 o1) 2x2d1-cp-fun)

(tt2 (o2 o3) 2x2d1-cp-fun) (tt3 (o2 o3) 2x2d1-cp-fun)

(tt4 (o4 o5) 2x2d1-cp-fun) (tt5 (o4 o5) 2x2d1-cp-fun)

(tt6 (o6 o7) 2x2d1-cp-fun) (tt7 (o6 o7) 2x2d1-cp-fun)

;; outputs

(o0) (o1) (o2) (o3) (o4) (o5) (o6) (o7)))

Figure 4.6: Symbolic description of the network of Figure 4.5. The descrip-

tion speci�es that during each cycle each source node generates a message

with probability 1=2.
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#<MULTISTAGE-NETWORK 8x8>

> (jlpmf '(tt6-o7-0 tt7-o7-0) d8x8)

(#S(JLPMF-PART CHANNELS (#<CHANNEL TT6-O7-0>

#<CHANNEL TT7-O7-0>)

NUMBER-OF-CHANNELS 2

VECTOR #(10321939817/17179869184

2931771091/17179869184

2931771091/17179869184

994387185/17179869184)))

Here we have calculated the joint probability mass function of the loads

on two channels leading from two 2� 2 switches to sink O7 in the network

of Figure 4.1, given a probability of transmission in each message source

of 1=2, and under a uniform destination address distribution. The vector

component of the structure result above is indexed by integers in which the

bit with weight 2i speci�es the load of the ith channel (starting with i = 0)

in the vector of channels whose joint loading probability mass function was

required. Thus in the example above, the probability that no messages are

transmitted to sink O7 is 10321939817=17179869184� 0:601; the probabil-

ity that 1 message is transmitted along the channel from switch TT7 to O7

is 2931771091=17179869184� 0:171, as is the probability that 1 message is

transmitted along the channel to O7 from switch TT6. Finally, the probabil-

ity that both channels carry a message is 994387185=17179869184� 0:058;

we assume here, as in [2], that a message sink can receive two messages

during a single cycle.4

To �nd the blocking probability of the network, we use Equation (2.1);

we form the probability of successful message transmission as the ratio of the

expected number of messages entering the network to the expected number

of messages arriving at sinks. Because of the symmetry of the network, all

the channels leading to sinks have identical loading probabilities, and so

we can simply sum the expectations of their loads. We have then that the

expected number of messages arriving at a single sink is

1 � 2931771091
17179869184

+ 1 � 2931771091
17179869184

+ 2 � 994387185

17179869184
=

981539569

2147483648
� 0:457

4If a sink can receive only one message during a cycle, then the expected number of

messages received by a sink during a cycle will be

1�
10321939817

17179869184
=

6857929367

17179869184
� 0:40
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Figure 4.7: The probability of successful message transmission (PfSuccessg)
plotted against the the source transmission probability (Pi) for the network

of Figure 4.1, under a uniform destination address distribution.

and the expected number of messages arriving at all sinks during any cycle

is

8 � 981539569

2147483648
=

981539569

268435456
� 3:66

Because the expected number of messages entering the network is 8 � 1
2
= 4,

we have that the aggregate probability of successful message transmission

in this network at a loading factor of 1=2 is

E[messages arriving at sinks]

E[messages injected by sources]
=

981539569

1073741824
� 0:914

and thus the blocking probability is approximately 0:086.

We plot for the network of Figure 4.1 the probability of successful mes-

sage transmission versus the probability that a source transmits in Fig-

ure 4.7.

The Common LISP implementation internally records joint probability

mass functions so that they need not be recomputed. The implementation

has been coded with some attention to performance, because, although the

asymptotic performance is pessimal, the same code is used on subnetworks

of larger networks in an approximation scheme.



CHAPTER 4. PERFORMANCE OF MULTIPATH NETWORKS 48

Figure 4.8: A 16 � 16 network with random interwiring in the �rst and

second stages. The �gure is from [2].

4.6 Applicability of Exact Calculation of Block-

ing Probabilities

We have presented a means of exact calculation of the blocking probability

of a multistage network with redundant paths, and demonstrated its use in

a program that automatically calculates blocking probabilities and exploits

independence of channel loading probabilities where this is possible.

The implementation described cannot be used to calculate the blocking

probabilities of networks with much more path redundancy than the one of

Figure 4.1. We might consider an implementation that could exploit the

symmetry exhibited by some multistage networks, but such an implemen-

tation could still not be used on a network like that in Figure 4.8, in which

the wiring in the �rst and second stages is not symmetric and is in fact

randomly generated. That such networks are of interest is demonstrated in

[16].

Thus we must seek approximate solutions to the problem. This we do



CHAPTER 4. PERFORMANCE OF MULTIPATH NETWORKS 49

in the next chapter, where we will see that the exact equations and our

algorithm for solving them can be used to realize a faster approximation

method.



Chapter 5

Approximating Performance

Parameters for Multipath

Networks

5.1 Introduction

We saw in the previous chapter that exact calculation of the probability

mass functions of channels leading to sinks in a multipath network could

be very expensive. In this chapter we seek a method of approximation of

performance parameters that will allow us to estimate to within a given

error the loading probability of a channel leading to a sink. We will do

this by using Monte Carlo methods, attempting both direct simulation of

the network and also approximation of Equation (4.3), and compare the

expense and error of the two methods.

Our approximations use exactly the model we described in Sections 2.1

and 4.2. We will �nd that this exact correspondence is important as we

develop a method of approximating solutions to the equations by a combi-

nation of simulation and exact methods.

5.2 Direct Simulation

In direct simulation, we simulate the transition through the network of a

group of messages generated in a single cycle as follows:

50
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1. Messages are generated for the cycle being simulated by sources in

accordance with the source transmission probabilities pi.

2. Addresses are picked according to the destination address distribution.

3. The messages arrive at switching elements and are directed in logical

directions in accordance with their addresses.

� The direction of more messages in a logical direction than there

are channels in the direction is resolved by randomly choosing

messages are blocked.

� Output channels within a logical direction are selected randomly,

with each channel having the same probability of being selected

to carry a message.

4. Step 3 is repeated until we have calculated the loads of the channels

whose states we are examining in the simulation.

Note that, using the results of Section 3.6, we can generate the same

distribution of messages as we do in step 2 by modifying step 3 to randomly

pick, for each message, a logical direction in accordance with the switching

probabilities of the switch. Our simulation algorithm then becomes:

1. Messages are generated for the cycle being simulated by sources in

accordance with the source transmission probabilities pi.

2. The messages arrive at switching elements and are directed in logical

directions in accordance with the switching probabilities of the switch.

� The direction of more messages in a logical direction than there

are channels in the direction is resolved by truncating the number

of messages to the dilation of the logical direction.

� Output channels within a logical direction are selected randomly,

with each channel having the same probability of being selected

to carry a message.

3. Step 2 is repeated until we have calculated the loads of the channels

whose states we are examining in the simulation.

Simulation procedures for the random selections described above are

straightforward. We describe them briey here; details of these techniques

can be found in introductory texts on probability models (e.g., [25]).
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Message generation is performed by simulating the generation of a Bernoulli

random variable with the source transmission probability. Selection of logi-

cal directions for a message can be performed by subdividing the half-open

interval [0; 1) into as many segments as there are logical directions, the length

of the segment for a logical direction being the same as the probability of

selecting that direction. A uniform random variable U is generated and the

segment into which U falls is taken as corresponding to the selected logical

direction. Finally, the random selection of output channels within a logical

direction can be performed in many ways; we do so by considering the k

channels to correspond to bits in a k-bit vector. If there are n messages to

be directed in the logical direction, we set only the low n bits in the vector

and then randomly permute the vector, which can be done in O(k) steps.1

The bits that are set after the permutation correspond to the channels that

carry messages.

5.3 Approximation of Performance Parameters

Using Direct Simulation

Repeated simulations can be used to approximate the parameter of interest

by the Monte Carlo method. Suppose that what we are interested in is the

probability that some set of channels C has a particular loading con�guration

l. We run some number N of simulations, examining after each simulation

the loads on the channels C. If the channels have the loading con�guration

l, the experiment is considered a \hit" and has value 1. If the channels do

not have the loading con�guration l, the experiment is a \miss" with value

0. The mean of the values of the experiment is taken as an approximation

of the expected load.

Now we describe direct simulation using standard notation, as the tex-

tual description above would prove too unwieldy later in the chapter.2

Let r1; r2; : : : ; rk denote all the random variates that might be required

to perform a single direct simulation by the algorithm described above.3

Then let R = (r1; r2; : : : ; rk) be a vector of these random variates. Now let

R1;R2; : : : ;Rn be a sequence of such vectors, identically and independently

distributed.

1Using an algorithm on pp. 474{476 of [25].
2We use the notation of [10].
3That the number of random variates that might be required is �nite will be clear when

we consider that only a �nite number of outcomes from each experiment is possible.
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If f (R) is a function whose value is 1 where the channels C whose states

we are examining in simulation have the load l, and 0 where they do not,

then the variables

fi = f (Ri)

are identically and independently distributed. If E[f (R)] = �, then

~
f =

nX
i=1

fi

is an unbiased estimator of PfLC = lg = �.

In order to calculate error bounds on our approximations, we will need

to know the variance of ~
f . Because the fi are Bernoulli,

Var
�
~
f

�
=

1

n

� (1� �)

because � (1� �) is the variance of f (R). Unfortunately, this expression

will not be very useful in practice, as we do not a priori know �, or there

would be no need to estimate it. Thus we estimate the variance of f (R),

using the unbiased estimator

s
2 =

1

n� 1

nX
i=1

�
fi � ~

f

�2
� Var (f (R))

There are means of estimating the variance of s2, but we will not use

these, as in practice the variance is small, and our error bounds are conser-

vative.

Given the estimate s2 for Var (f (R)), we may estimate the variance of
~
f as

Var
�
~
f

�
� s

2

n

yielding a standard error of s=
p
n, which shows clearly that the error will

vary as the inverse root of the number of trials.

5.4 Bounding the Number of Iterations

To bound the number of iterations for which our simulation must run in

order to achieve a speci�ed level of precision at a speci�ed con�dence, we
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can use the Chebyshev Inequality, which states that ifX is a random variable

with mean � and variance �2, then

PfjX � �j � kg � �
2

k
2

Call the number of iterations performed n. Suppose that we wish to bound

by c the probability that our estimate ~
f deviates from the value � being

estimated by more than some fraction d of �. Because the variance of ~
f is

�2

n
we have

P
n��� ~f � �

��� � d�

o
� �

2

nd
2
�
2

P

8<
:
��� ~f � �

���
�

� d

9=
; � �

2

nd
2
�
2

(5.1)

Now we can estimate the number of iterations we require by considering c,

the complement of our desired con�dence level:

c =
�
2

nd
2
�
2

n =
�
2

cd
2
�
2

(5.2)

In practice we use the estimate s2 for �2 and the estimate ~
f for � in cal-

culating a projected number of iterations. We repeat the calculation after

each iteration of the algorithm and check to see whether we have performed

enough iterations to bound the error as desired.

The Chebyshev Inequality provides a conservative bound on the num-

ber of iterations required. For large numbers n of simulations, we expect

from the Central Limit Theorem that the distribution of ~f is approximately

normal. Thus, for example, we may have 95% con�dence that ~
f is in the

interval
h
� � 2sp

n
; �+ 2sp

n

i
. We can use the Central Limit Theorem in the

same way that we did the Chebyshev Inequality, to calculate a projected

number of iterations required to bound the error as desired.

By the Central Limit Theorem we have that

P

�
f1 + f2 + : : :+ fn � n�

�

p
n

� a

�
! �(a) as n!1
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so that

P

�
~
f � � � a�p

n

�
! �(a)

P

8<
:
��� ~f � �

���
�

� a�

�

p
n

9=
; ! �(a)� �(�a)

= 2�(a)� 1 as n!1 (5.3)

Substituting d for a�
�
p
n
and taking the complement, we have then

P

8<
:
��� ~f � �

���
�

> d

9=
;! 2

 
1� �

 
�d

p
n

�

!!
as n!1 (5:4)

where as before we use the estimate s for � and the estimate ~
f for � in

practice. If we wish to bound by c the probability that ~
f varies from the

desired result by more than d, we may use our formula by calculating after

each iteration of the simulation the quantity 2
�
1� �

�
�d
p
n

�

��
and halting

when it is less than c.4

5.5 An Example of Direct Simulation

A program has been written to estimate the probability that a set of channels

in a network will have a particular load, using the simulation algorithm of

Section 5.2. Although simulation will let us estimate blocking probabilities

for larger networks, and we will use a larger network later in the chapter, here

we use the network of Figure 4.1, reproduced here in Figure 5.1. We do so

because we know an exact result for this network (as shown in Section 4.5),

and thus we can verify that in this example the simulation algorithm achieves

the error bounds it should.

We will estimate the probability that both of the channels leading to

sink 7 in this network carry no messages. We had determined in Section 4.5

that this probability (under uniform addressing, with each source having a

probability of 0:5 of generating a message at each cycle) was

PfLTT6�O7�0 = 0; LTT7�O7�0 = 0g = 10321939817

17179869184
� 0:6008

4Of course, we could also use the inverse function ��1 to allow us to project a number

of iterations; but we have not done this here.
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Figure 5.1: The 8� 8 deterministically-interwired network of Figure 4.1. In

the example we estimate the probability that the channels leading to sink 7

carry no messages, under uniform addressing.

We see in Figure 5.2 the result of running the program to estimate the re-

quired probability, using Equation (5.4) to calculate the number of iterations

necessary to achieve an estimate that lies within 1% of the actual value with

95% con�dence.

We see that approximately 25; 000 iterations are required to estimate the

value
15222

25211
� 0:604

which is indeed within 1% of the exact solution. Using the more conservative

bound of Equation (5.2), the simulation runs for about 133; 000 iterations,

yielding a result of 79825=132847� 0:6009.

5.5.1 The Expense of Direct Simulation

For a network with N stages with M channels between each stage, an itera-

tion of the direct simulation algorithm of Section 5.2 runs in time O(NM).

We can use Equation (5.2) to bound the total cost of estimating � with a
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> (setq o7-channels (elements-named '(tt6-o7-0 tt7-o7-0) d8x8))

(#<CHANNEL TT6-O7-0> #<CHANNEL TT7-O7-0>)

> (simulate-multi-channel-loading-probability d8x8 o7-channels '(0 0)

(make-clt-stopping-function .01 .05 5000))

Iteration 15; mean: .667; variance: .238; current confidence .042

Iteration 5000; mean: .607; variance: .239; current confidence 0.62

Iteration 10000; mean: .603; variance: .239; current confidence .782

Iteration 15000; mean: .605; variance: .239; current confidence .871

Iteration 20000; mean: .603; variance: .239; current confidence .919

Iteration 25000; mean: .604; variance: .239; current confidence .949

15222/25211

76026279/317784655

25211

Figure 5.2: Estimating by direct simulation the probability that both chan-

nels leading to sink 7 in the network of Figure 5.1 carry no messages, under

uniform addressing and with a source transmission probability of 1=2.

deviation factor of d and at a con�dence of 1� c as

O

 
NM

�
2

cd
2
�
2

!
= O

�
NM

(1� �)

cd
2
�

�

because in the Bernoulli trials that make up the iterations of a direct simu-

lation we have �2 = � (1� �).

5.6 Approximating a Solution to the Exact Equa-

tions

5.6.1 Approximating Equation (4.2) Across a Single Stage

We saw in Chapter 4 that our method of exact calculation of blocking

probabilities su�ered from exponential increase in the expense of calculation

as the number of dependent paths between stages increased. Equation (4.2)

speci�ed the probability that a set of output channels of switches, depicted

in Figure 5.3, carried a particular load:
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Figure 5.3: The network stage referred to by Equation (5.5).
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PfLC1
= lC1

; : : : ; LCk = lCkg =X
lB1 ;:::;lBm

PfLC1
= lC1

; : : : ; LCk = lCk j LB1
= lB1

; : : : ; LBm = lBmg �

PfLB1
= lB1

; : : : ; LBm = lBmg (5.5)

where the sum is over all tuples lB1
; : : : ; lBm with elements in f0; 1g.

A method of approximate solution of this equation that suggests itself

immediately is one of the following form:

Rather than calculating this sum over all tuples lB1
; : : : ; lBm,

calculate it exactly for only some of the tuples.

To be more precise, suppose that we de�ne

g (lB1
; : : : ; lBm) =

PfLC1
= lC1

; : : : ; LCk = lCk j LB1
= lB1

; : : : ; LBm = lBmg

and we generate tuples lB1
; : : : ; lBm randomly in accordance with the prob-

ability mass function PfLB1
= lB1

; : : : ; LBm = lBmg.
Now g (lB1

; : : : ; lBm) is a random variable, and its expectation is

E[g (lB1
; : : : ; lBm)]

=
X

lB1 ;:::;lBm

g (lB1
; : : : ; lBm) PfLB1

= lB1
; : : : ; LBm = lBmg

=
X

lB1 ;:::;lBm

PfLC1
= lC1

; : : : ; LCk = lCk j LB1
= lB1

; : : : ; LBm = lBmg �

PfLB1
= lB1

; : : : ; LBm = lBmg
= PfLC1

= lC1
; : : : ; LCk = lCkg

Thus we see that g (lB1
; : : : ; lBm) is an unbiased estimator of the probability

we wished to estimate: PfLC1
= lC1

; : : : ; LCk = lCkg.
We can readily calculate

PfLC1
= lC1

; : : : ; LCk = lCk j LB1
= lB1

; : : : ; LBm = lBmg

by factoring the expression as in Equation (4.3). As we observed in Chap-

ter 4, although the loads on the channels C1; : : : ; Ck are not in general

independent, the loads on the subset of channels originating at each switch-

ing element are independent given the message loads on the input channels

B1; : : : ; Bm.
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Figure 5.4: The solid box shows the stages of the network for which the

estimator g performs an exact calculation; the dotted box shows the stages

of the network for which h will perform an exact calculation.

5.6.2 Approximating Equation (4.2) Across Multiple Stages

We have then an estimator for the probability that a set of channels at

some stage in the network carries a particular load. We may estimate the

value of this probability by generating, in accordance with the appropriate

probability distribution, input loads for the switches at which the channels

originate. It occurs now to ask whether we might be able to extend the

estimation technique to cover more than one stage of the network.

The situation is as depicted in Figure 5.4. We have an estimator g that

will allow us to estimate the probability of loads on the channels C1; : : : ; Ck,

if we generate the loads on the input channels B1; : : : ; Bm. We require an

estimator h that will allow us to estimate the probability of loads on the

channels O1; : : : ; On, by generating the loads B1; : : : ; Bm.

The estimator h (lB1
; : : : ; lBm) will in fact simply be

h (lB1
; : : : ; lBm) =

PfLO1
= lO1

; : : : ; LOn = lOn j LB1
= lB1

; : : : ; LBm = lBmg (5.6)
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which, by an argument identical to that for g, will be an unbiased estimator

of PfLO1
= lO1

; : : : ; LOn = lOng.
To evaluate the conditional probability, we de�ne

QfEg = PfE j LB1
= lB1

; : : : ; LBm = lBmg

If the input channels to the �nal-stage switches are called D1; : : : ; Dj,

we now have

QfLO1
= lO1

; : : : ; LOn = lOng =X
lD1

;:::;lDj

Q
n
LO1

= lO1
; : : : ; LOn = lOn j LD1

= lD1
; : : : ; LDj

= lDj

o
�

Q
n
LD1

= lD1
; : : : ; LDj

= lDj

o
(5.7)

which is similar to Equation (4.2). Note that

Q
n
LO1

= lO1
; : : : ; LOn = lOn j LD1

= lD1
; : : : ; LDj

= lDj

o
=

P
n
LO1

= lO1
; : : : ; LOn = lOn j LD1

= lD1
; : : : ; LDj

= lDj

o

because, given the loads on the input channels D1; : : : ; Dj, the loading

probabilities on the channels O1; : : : ; On are independent of the loads on

B1; : : : ; Bm, so long as these are distinct from D1; : : : ; Dj. Thus the condi-

tional probability inside the summation can be factored in the same fashion

as that in Equation (4.2).

We can evaluate the term

Q
n
LD1

= lD1
; : : : ; LDj

= lDj

o

using Equation (5.7) recursively, just as we did with Equation (4.2). In fact,

the only point at which the evaluation of h (lB1
; : : : ; lBm) will di�er from

that of a network comes when the channels D1; : : : ; Dj correspond to the

channels B1; : : : ; Bm. At this point we will be evaluating

Q
�
LB1

= l
0
B1
; : : : ; LBm = l

0
Bm

	
=

P
�
LB1

= l
0
B1
; : : : ; LBm = l

0
Bm

j LB1
= lB1

; : : : ; LBm = lBm

	
which will be 1 only when

lB1
= l

0
B1
; : : : ; lBm = l

0
Bm
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and will be 0 otherwise.

It is interesting to note that this last expression can thus be factored as

Q
�
LB1

= l
0
B1
; : : : ; LBm = l

0
Bm

	
=

P
�
LB1

= l
0
B1
j LB1

= lB1

	
� : : : � P

�
LBm = l

0
Bm

j LBm = lBm

	
which demonstrates that, given the input loads, the individual channel prob-

abilities are independent. In particular, we see that in evaluating h (lB1
; : : : ; lBm)

we may treat the channels B1; : : : ; Bm as the source channels of a network

the sources of which have transmission probability 0 when lBj = 0, and

transmission probability 1 when lBj = 1.

That is, we see from Equation (4.4) that a channel leading from a source

that transmits with probability lBi has a loading probability mass function

P
n
LBi = l

0
Bi

o
=

(
1� lBi if l0Bi is 0

lBi if l0BI is 1
(5.8)

which, because lBi and l
0
Bi

can only be 0 or 1, is the same as

P
n
LBi = l

0
Bi
j LBi = lBi

o

Therefore we see that we may evaluate the conditional probability that

is the de�nition of the estimator h by means of recursive application of

Equation (4.3) with a network whose sources IB1
; : : : ; IBm are connected to

channels B1; : : : ; Bm. Source IBj has source transmission probability 0 when

lBj = 0, and source transmission probability 1 when lBj = 1.

Thus a scheme for approximating Equation (4.2) is to pick a stage at

which to divide the network, and solve the network to the right of it exactly,

given source transmission probabilities equal to loads that we generate with

probabilities given by the joint probability mass function of the channels

where the division was made. This yields a sample value of the unbiased

estimator h (lO1
; : : : ; lOn), whose expectation we may evaluate by a Monte

Carlo method.

5.6.3 Generating Random Variates from the Joint Probabil-

ity Mass Function PfLB1
= lB1

; : : : ; LBm = lBmg

It remains to describe a method of generating random tuples lB1
; : : : lBm in

accordance with the probability mass function PfLB1
= lB1

; : : : ; LBm = lBmg.



CHAPTER 5. APPROXIMATIONS FOR MULTIPATH NETWORKS 63

The method is straightforward: we simply simulate the network using the

method of Section 5.2, and use the channel loads generated by the simula-

tion. Because we were careful that our simulation would correspond exactly

to the equations, the random variates generated this way will have the mass

function PfLB1
= lB1

; : : : ; LBm = lBmg.
Thus we see that one method of approximate solution of the exact equa-

tions corresponds to combining simulation and exact calculation. In fact,

looked at another way, solving for the loading probabilities of the subnetwork

made up of the later stages is simply a means of reducing the variance of the

simulation, because, as we shall see, h (lO1
; : : : ; lOn) will always have lower

variance than the corresponding Bernoulli variable in direct simulation.

5.7 Examples of Approximation of the Exact Equa-

tions

A program has been written to use the approximation method described in

the previous section. We will �rst examine some details of the performance

of the method by considering some examples in detail. Then we will use the

techniques we have described to compare the performance of three networks.

5.7.1 Performance of the approximation method on some

simple examples

For a �rst example, let us consider the familiar network depicted in Fig-

ure (5.5). Here the estimator h is used for only the �nal stage of the network.

The resulting run is shown in Figure 5.6.

We see that about 11; 000 iterations are required to estimate a loading

probability of
100811

168112
� 0:5997

as compared to about 25; 000 iterations for the same error bound by di-

rect simulation. The reason for the di�erence is directly evident when we

compare the variance of f (R) to that of h (lO1
; : : : ; lOn):

Var (f (R)) � 0:239 but Var (h (lO1
; : : : ; lOn)) � :098

so that the variance has been reduced by a factor of about 2:43.

This is in fact a general result; the variance of h will always be lower

than that of f , as we shall see in Section 5.9.
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Figure 5.5: The 8 � 8 deterministically-interwired network of Figure 4.1.

The left box contains the two stages simulated in the �rst example of Sec-

tion 5.7.1; the right box contains the stage solved for exactly.

> (estimate-loading-probability d8x8-left-2 d8x8-right-1

'((tt6-o7-0 0) (tt7-o7-0 0))

(make-clt-stopping-function .01 .05 5000)

'(g-tt6-sink h-tt6-sink g-tt7-sink h-tt7-sink))

Iteration 15; mean: 0.7; variance: .151; current confidence .056

Iteration 5000; mean: .597; variance: 0.1; current confidence .819

Iteration 10000; mean: .601; variance: .098; current confidence .944

100811/168112

231602841/2354912896

10507

Figure 5.6: Estimation by approximation method of the probability that

both channels leading to sink 7 in the network of Figure 5.5 carry no mes-

sages, under uniform addressing and with a source transmission probability

of 1=2. Compare to Figure 5.2.
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Figure 5.7: The 16 � 16 randomly-interwired network of Figure 4.8. The

network is from [2].

It will be clear from Equations (5.2) and (5.3) that, all other factors

remaining equal, the number of iterations required to achieve an error bound

is a linear function of the variance of the random variable whose expectation

is being estimated.

Now we try direct simulation and our approximation method on the

four-stage 16� 16 network of Figure 4.8, reproduced in Figure 5.7.

We see in Figure 5.8 the results of using direct simulation to estimate

the probability that the top channel leading to sink 0 in the network of

Figure 5.7 carries no messages. In Figure 5.9 we see the results of using

the approximation method where exact calculation is used for only the �nal

stage of the network. Finally, in Figure 5.10 we see the results of using

the approximation method where exact calculation is used for the �nal two

stages of the network. In all three cases, uniform addressing was used, with

sources having transmission probabilities of 1=2.

Where direct simulation was used, the variance was � 0:171; where exact

calculation was used for only the �nal stage, the variance was � 0:072; where

exact calculation was used for the �nal two stages, the variance was � 0:018.
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> (simulate-multi-channel-loading-probability rnd16x16

(elements-named '(tt0-o0-0) rnd16x16) '(0)

(make-clt-stopping-function .01 .05 5000))

Iteration 15; mean: 0.8; variance: .171; current confidence 0.06

Iteration 5000; mean: .778; variance: .173; current confidence .815

Iteration 10000; mean: 0.78; variance: .172; current confidence 0.94

8392/10737

2459905/14409054

10737

Figure 5.8: Estimating the probability that the �rst channel leading to sink

0 in the network of Figure 5.7 carries no messages, by direct simulation.

10; 737 iterations were required to achieve the error bound of �1% with

95% con�dence. Here uniform addressing was used, with sources having

transmission probabilities of 1=2.

> (estimate-loading-probability rnd16x16-left-3 rnd16x16-right-1

'((tt0-o0-0 0))

(make-clt-stopping-function .01 .05 5000)

'(s-tt0-sink t-tt0-sink))

Iteration 15; mean: 0.75; variance: 0.08; current confidence .082

7101/9076

2976821/41177812

4538

Figure 5.9: Estimating the probability that the �rst channel leading to sink

0 in the network of Figure 5.7 carries no messages, by approximation where

exact calculation is used for only the �nal stage of the network. 4; 538 itera-

tions were required to achieve the error bound of �1% with 95% con�dence.

Uniform addressing was used, with sources having transmission probabilities

of 1=2.
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> (estimate-loading-probability rnd16x16-left-2 rnd16x16-right-2

'((tt0-o0-0 0))

(make-clt-stopping-function .01 .05 5000)

'(j-s-sink k-s-sink l-s-sink m-s-sink

j-t-sink k-t-sink l-t-sink m-t-sink))

Iteration 15; mean: .762; variance: 0.02; current confidence .164

16577/21376

935754207/51132760064

1169

Figure 5.10: Estimating the probability that the �rst channel leading to sink

0 in the network of Figure 5.7 carries no messages, by approximation where

exact calculation is used for the �nal two stages of the network. 1; 169 itera-

tions were required to achieve the error bound of �1% with 95% con�dence.

Uniform addressing was used, with sources having transmission probabilities

of 1=2.

We see then that by using exact calculation for two stages of this network,

we reduce the number of iterations necessary by a factor of about 9. In the

next section we will see why we can always expect lower variance from h

than from f .

5.7.2 A comparison of the performance of three networks

We present three example networks, all taken from [2]. The �rst net-

work, shown in Figure 5.11, is constructed from two non-dilated four-stage

networks connecting 16 endpoints. Because the degree of path-redundancy

is small (there are only two paths connecting any two endpoints), automatic

calculation of the exact probability of successful message transmission is

feasible.

The second network, shown in Figure 5.12, is a deterministically-interwired

multipath network constructed from 4 � 2, dilation 2 crossbars, and 2 � 2

crossbars. As can be seen in the �gure, multiple paths connect any two

endpoints, and calculation of the exact probability of successful message

transmission is not quickly feasible on current uniprocessor workstations.

The third network is the randomly-interwired multipath network of Fig-

ure 5.7. Recall that, as with the deterministically-interwired network, mul-

tiple paths connect any two endpoints, and, again, exact calculation of per-
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Figure 5.11: A 16� 16 network constructed from two non-dilated networks

each connecting 16 endpoints. Redundant paths between an input and an

output are shown. The �gure is from [2].



CHAPTER 5. APPROXIMATIONS FOR MULTIPATH NETWORKS 69

Figure 5.12: A 16 � 16 network with deterministic interwiring in the �rst

and second stages. Redundant paths between an input and an output are

shown. The �gure is from [2].
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Figure 5.13: The probability of successful message transmission is shown

for each of the three networks in Figures 5.11, 5.12, and 5.7. The results

for the replicated network are shown in black, and are exact; the results

for the deterministically-interwired network are shown in grey, and those

for the randomly-interwired network are shown dashed. See the text for a

discussion of the results.

formance parameters is too expensive to be feasible.

The performance of the three networks can nonetheless be compared ef-

fectively using the exact method for the �rst and the approximation method

for the second and third. In the cases where the approximation method was

used, we have speci�ed that the solution must lie within �1% of the actual

value with 95% con�dence.

We see in Figure 5.13 the probability of successful message transmission

for each of the three networks, and in Figure 5.14 the bandwidth, or through-

put, for each of the three networks. As was also found in [2] (although using a

much more complex model), the deterministically- and randomly-interwired

networks perform identically to within the resolution of the approximation;

and the replicated network performs considerably worse than either.



CHAPTER 5. APPROXIMATIONS FOR MULTIPATH NETWORKS 71
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Throughput

Figure 5.14: The bandwidth, or throughput, is shown for each of the three

networks in Figures 5.11, 5.12, and 5.7. The results for the replicated net-

work are shown in black, and are exact; the results for the deterministically-

interwired network are shown in grey, and those for the randomly-interwired

network are shown dashed. See the text for a discussion of the results.
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5.8 Variance of Estimators in the Approximation

Method and in Direct Simulation

A simple and well-known theorem in Monte Carlo methods con�rms what we

have seen in our examples: the estimator h will always have lower variance

than will the estimator f . In [10], the theorem is paraphrased as, \if, at any

point of a Monte Carlo calculation, we can replace an estimate by an exact

value, we shall reduce the sampling error in the �nal result." This is why

we can see our method of approximating the exact equations as a means

of reducing the variance of the simulation. The exact equations are too

expensive to solve exactly for large networks with many dependent paths,

but knowledge and use of the exact equations on a subproblem makes it

possible for us to realize in simulation the reduced sampling error promised

by the theorem.

The argument in [10] is short enough that we reproduce it here, adapted

to our particular estimators.

We note that f (R) and h (lB1
; : : : ; lBm) have the same mean, �. Because

f is binomial, it has variance � (1� �). The variance of h is given by

Var (h) = E
h
h
2
i
� E[h]2

Thus

Var (f)� Var (h) = � � �
2 �

�
E
h
h
2
i
� �

2
�

= � � E
h
h
2
i

= E
h
h� h

2
i

Now, h, being a loading probability, lies in the interval [0; 1], so that ev-

erywhere h � h
2. But h takes on with nonzero probability at least some

values that are not 0 or 1, because h is not Bernoulli, so that for some tuples

hlB1
; : : : ; lBmi, h�h

2
> 0. Thus E

�
h � h

2
�
> 0 and Var (f) > Var (h), as we

desired to show.

5.9 Expense of the Approximation Method

One is tempted by the results of Section 5.7.1 to ask what happens if we again

increase the number of stages for which h performs an exact calculation.

Although it seems likely that the variance would be reduced further, the
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experiment is not likely to be worth our while, as the network for which

we would be calculating exactly the loading probabilities would now have a

much larger number of redundant paths leading from its sources to sink 0.

Thus we would be faced with the same problem of exponential growth as

before.

Our method can only reduce the expense of simulation so much, until the

exponential growth of the running time of each iteration with the number of

dependent channels dominates the savings in number of iterations. In fact,

the �nal stage of a network, considered by itself, will always constitute a

Banyan network, and so we can can always calculate loading probabilities

across it at the same asymptotic expense as simulation { there are no redun-

dant paths, and the reduction of the number of iterations with the variance

will be realized in reduced running time.

The �nal two stages of the network of Figure 5.7 do not constitute a

Banyan network, but the number of redundant paths between a source and

a sink is small (two), and so in this case the running time is also signi�cantly

reduced. In many types of multipath networks larger �nal subnetworks

constitute Banyan networks or have small numbers of dependent channels;

in these networks it will be pro�table to use exact calculation for more than

one �nal stage.

In a network with N stages withM channels between each stage, if exact

calculation is used for the �nal K stages, then in the worst case, where the

load on every channel between two stages of switches in the �nal K stages

is dependent on the loads on the other channels between those two stages

of switches, the running time of exact calculation for the �nal stages will

be O
�
KM22M

�
. There will be N � K stages simulated, at an expense of

O((N �K)M) steps per simulation, so that the worst-case performance will

be

O

 
�
2
M

cd
2
�
2

�
K22M + (N �K)

�!
= O

 
�
2
M

cd
2
�
2

�
22MK +N

�!

where c is the complement of the desired con�dence; d is the deviation factor,

� is the mean and �2 the variance of h, the result of exact calculation.

The worst-case result is misleading, however, because in networks built in

practice, the subnetworks constituted by �nal stages have smaller numbers of

dependent channels than does the entire network. In fact, if the �nal stages

for which exact calculation is performed constitute a Banyan network, then

the running time of exact calculation is O(KM), and the asymptotic running
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time of the approximation is simply

O

 
NM

�
2

cd
2
�
2

!

where once again c is the con�dence complement, d the deviation factor, �

the mean and �2 the variance of h.

5.10 Conclusions

We have developed methods of calculating the value of some performance

parameters for multistage networks { the normalized throughput and prob-

ability of successful message transmission { by computing the loading prob-

abilities of channels leading to sinks.

We showed initially that independence of loads on channels in a Banyan

network allows a simple means of calculating channel loading probabilities

for these networks, and described a way of composing operations on loading

probability mass functions to derive expressions for the performance param-

eters. We presented a program that derived such expressions and could be

used for numerical calculation of performance parameters.

We then saw that independence of loads on channels will not hold in

multipath networks, and developed equations for channel loading probabil-

ities in these networks. We showed that the number of equations that must

be solved by this method is exponential in the number of dependent paths

in the network, rendering the method impractical for large networks. We

presented a program that could be used to calculate channel loading prob-

abilities exactly for small networks, and discussed its performance in the

cases of multipath networks and Banyan networks.

We developed a method of approximate solution of the exact equations,

and compared its performance to that of direct simulation. We developed

programs for both our approximation method and direct simulation. We

saw that use of the exact equations will always a�ord some improvement in

performance, by reducing the variance of the estimator in question; and we

discussed cases where the reduction in running time will be quite substantial.

5.11 Future Work

The literature on Monte Carlo methods contains many techniques for re-

ducing the variance of estimators. Some of these are particularly promising
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for our application. For example, the use of strati�ed sampling, where the

strata are segregated by the number of messages generated by sources in

a particular cycle, should be easy to implement and promises a signi�cant

reduction in variance.

We look forward to comparing more results of the application of these

methods to the results of more faithful and complex simulations performed

at M.I.T.'s Transit Group. The aim of the Transit Group's simulations is to

select a network structure for implementation in a large-scale multiprocessor.

We expect from the results cited in Section 1.4 that our model will be useful

in comparing candidate networks.



Appendix A

Mathematica Procedures for

Modelling Banyan Networks

concentrate::usage =

"concentrate[x, n] concentrates the LPMF x to n channels."

concentrate[x_, n_] :=

(* get distribution for 0 through n-1 channels, and add

as last element the sum of the rest of the channels. *)

Append[Take[x, n], Apply[Plus, Drop[x, n]]]

discreteconvolution::usage =

"discreteconvolution[x, y] treats x and y as 0-based

vectors and returns their discrete convolution."

discreteconvolution[x_, y_] :=

Block[{xlgth, ylgth, lgth},

xlgth = Length[x];

ylgth = Length[y];

lgth = xlgth + ylgth - 1;

(* in summation, portions of sequence with indices

out of range for sequences must be treated as

0. *)

Table[Sum[If[k < 1 || k > xlgth ||

(n-k+1) < 1 || (n-k+1) > ylgth,

0,

(* because of the 0->1 index

76
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translation, we increase the y-index

to shift the result sequence back

down to begin at 1. *)

x[[k]] y[[n-k+1]]],

{k, xlgth}],

{n, lgth}]]

bundle::usage =

"bundle[x, y] forms the LPMF that results from bundling

two input bundles with LPMFs x and y."

bundle[x_, y_] :=

discreteconvolution[x, y]

switch::usage =

"switch[x, p] returns the LPMF of an output bundle to

which x is switched with probability p."

switch[x_, p_] :=

Block[{lgth},

lgth = Length[x];

Table[Sum[x[[i+1]] Binomial[i, n] p^n (1-p)^(i-n),

{i, n, lgth-1}],

{n, 0, lgth-1}]]
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