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ABSTRACT

Color is a useful visual cue for obtaining surface material information in a scene. Unfortunately, the

surface color of an object can sometimes be di�erent from its recorded color in an image because of

optical e�ects like highlight and inter-body reection. These e�ects often confuse traditional color

algorithms that assume all surfaces in a scene to be perfectly lambertian.

This thesis adopts a signal processing approach to color vision. It represents surface color

as a vector signal in a 3-dimensional color space, from which we extract region and boundary

information. We immediately face two problems with this approach. The �rst, which is the same

problem that traditional color algorithms face, is that highlight and inter-body reection e�ects

make image color di�erent from surface color. We use a simple but e�ective method based on

the theory of polarizing �lters and electromagnetic wave reection to correct for these e�ects on

dielectric material surfaces in the scene. The second problem is to augment traditional scalar

signal processing tools for 3-dimensional color vector signals. We linearize color by de�ning a

notion of color similarity and di�erence, and use these measures in place of their traditional scalar

counterparts in our vector signal processing algorithms.

The main contribution of this thesis is the systematic approach we propose that allows us to

extend scalar signal processing tools and concepts into a multi-dimensional vector domain. We also

discuss some ways of integrating surface color information with grey level intensity information.

Thesis Advisor: T. Poggio

Title: Uncas and Helen Whitaker Professor of Brain and Cognitive Sciences
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Chapter 1

Introduction

Our ability to perceive color is indeed a great asset to our visual system. In everyday life, we

often seem to rely heavily on color cues to help us detect things quickly. My blue research note

book stands out prominently among the heaps of white paper scattered on my desk. A ripe yellow

banana looks very di�erent from an unripe green one in a bowl of fruit. I immediately release the

accelerator of my car and depress the brake pedal when a bright red light suddenly ashes in front

of me. I can a�ord to turn my attention away from the video game I am playing for a few seconds,

because I do not see any green monsters lurking around on the display.

The extent to which we rely on color for vision becomes especially obvious when we try to

identify and locate objects in cluttered black-and-white drawings or images. For example, a normal

person �nds it a lot harder to trace a route on a black-and-white photocopied highway map, than

on a normal colored highway map. In the same way, a ripe yellow banana does not look very

di�erent from an unripe green one in a black-and-white photograph. Although we are still able to

recognize objects and features based on shape, intensity and surface texture alone, our recognition

task would, in most cases, be a lot simpler, faster and more pleasant, if we had the added advantage

of sensing with color.

1.1 Color in Machine Vision

Machine vision can be described as a process that converts a large array of intensity or color data

into a symbolic description of objects in the scene. Most natural scenes contain many di�erent

physical features, such as edges, surfaces and junctions. Early Vision operations try to identify

and locate scene features that may be due to a number of di�erent causes. How well a vision

system �nally describes a scene partly depends on how accurately it interprets the cause of each

physical feature present in the scene, which in turn depends on how well its Early Vision modules

can di�erentiate between the various types of observed features. Table 1.1 summarizes the types of
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Discontinuity Type Physical Cause(s)

Depth discontinuity Occlusion

Orientation discontinuity Surface Orientation

Optical ow discontinuity Occlusion

Surface color discontinuity Material

Texture discontinuity Orientation

Material

Intensity discontinuity only Shadow

Orientation

Material

Table 1.1: Discontinuity Types and Physical Causes

discontinuities that can arise in a scene and their possible physical causes1.

Because most features in a scene show up in an intensity image, intensity information is perhaps

the most useful cue in machine vision. Unfortunately, intensity information alone does not always

allow us to di�erentiate between the various types of physical e�ects that can occur in a scene. For

example, most physical discontinuities in a scene show up as intensity discontinuities in the image, so

intensity edge detection [Canny 83] is a useful tool for detecting and locating physical discontinuities

in general. However, intensity edge detection alone cannot di�erentiate between the various types

of scene discontinuities. That is, it does not provide us with additional information to determine

whether an observed discontinuity is a material discontinuity, an illumination discontinuity or an

orientation discontinuity. Furthermore, it is also true that physical features in a scene need not

always show up in an intensity image. For example, when two isoluminant surfaces are placed side

by side in a scene, we may not detect any discontinuities along their common boundary in the

intensity image, even though there is de�nitely a physical discontinuity at the boundary.

In order to fully detect and interpret the di�erent types of physical e�ects present in a scene,

other early level processes are needed to provide the vision system with additional image under-

standing cues. For example, stereopsis combined with surface interpolation can identify depth and

orientation discontinuities [Grimson 80]. Motion analysis is useful for �nding occlusion boundaries

and recovering 3D structure. [Hildreth 83]. Likewise, color [Rubin and Richards 81] [Rubin and Richards 84]

and texture [Voorhees 87] [Voorhees and Poggio 87] modules can provide useful information for in-

ferring surface material properties.

1Adapted from Table 1.1 of [Voorhees 87]
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1.2 Surface Spectral Reectance and Image Irradiance

When dealing with color vision, it is important to distinguish clearly between the two notions:

surface color (surface spectral reectance) and image color (image irradiance). This section formally

de�nes the two concepts in terms of the color image formation process. For the time being, we

shall just con�ne our discussion to lambertian surfaces, whereby all the light that the surface

reects comes only from the interaction of incident light with the color pigments within the surface

body (body reection). In the next section, we shall talk about highlight or surface reection on

non-lambertian surfaces and how it a�ects the image color of the surfaces.

When light from an energy source falls on a surface, part of the incident light energy interacts

with the color pigments within the surface body and gets reected o� into a color light sensor,

such as a color camera or my eye. The lambertian Color Image Irradiance Equation describes the

relationship between light at di�erent wavelengths falling on the image plane (the image irradiance),

and the physical properties of the lambertian surfaces being illuminated. In most natural situations,

the image irradiance from a particular surface in the scene is proportional to the product of the

amount of light incident on the surface (the surface irradiance) and the fraction of incident light

that the surface reects (the surface spectral reectance). A simpli�ed form of the Color Image

Irradiance Equation may be written as follows:

I(�; ri) = �(�; rs)Fb(v;n; s)E
�(�;n; s); (1:1)

where � is wavelength; rs is the spatial coordinate of the surface patch being imaged; ri is the

coordinate of the point on the image plane onto which rs projects; n is the unit surface normal

vector at the point rs; v is the unit vector in the viewer's direction; s is the unit vector in the

illuminant direction; I is the image irradiance; E� is the surface irradiance; � is the surface spectral

reectance function and Fb is a scaling factor that depends on viewing geometry.

Surface irradiance (E�(�;n; s)) is a function of wavelength, �, and it basically describes the

intensity and color of the light source illuminating the scene. White light, for example, has an

irradiance value that is roughly constant for all wavelengths in the visible spectrum. Red light has

large irradiance values at long wavelengths in the visible light spectrum (near 650nm) and small

irradiance values at short wavelengths (near 420nm).

Surface spectral reectance (�(�; rs)) describes the proportion of incident light that a surface

re-radiates at each spectral wavelength. This surface property is invariant under di�erent lighting

conditions, and it depends only on the material that makes up the surface. Hence, when we refer to

the surface color of an object, we are in fact referring to the spectral reectance values of its surfaces.

For example, a green pear has a surface reectance that peaks near the middle of the visible light

spectrum. A white sheet of paper has a surface reectance that is approximately constant for all

visible light wavelengths.
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Image irradiance (I(�; ri))is the amount of light energy that falls onto the image plane at

each wavelength. This is the measurable quantity that forms images in visual sensors. Under white

light illumination, the image irradiance from a surface is approximately proportional to its surface

spectral reectance, or to its surface color, as can be inferred from the Color Image Irradiance

Equation (1.1). That is to say, the color that a sensor registers for an object in white light

is a close approximation to the object's true surface color. Under colored lighting conditions, we

usually get signi�cant image irradiance components at fewer spectral wavelengths. At these spectral

wavelengths, both the surface irradiance (illumination color) on the illuminated surface and the

surface spectral reectance (surface color) of the surface must have signi�cantly large values. A

yellow banana thus appears green in green light and black in blue light.

In general, image irradiance values cannot be taken as a scaled approximation for surface color

when imaging in colored light. However, for a su�ciently wide range of colored lighting conditions

in a lambertian environment, it is usually true that a patch of uniform spectral reectance in the

scene gives rise to a patch of uniform image irradiance in the image, and a spectral reectance

boundary in the scene gives rise to an image irradiance discontinuity in the image. In other

words, image irradiance uniformity in a lambertian image often implies surface spectral reectance

uniformity in the scene and image irradiance discontinuities often imply surface spectral reectance

discontinuities.

1.3 Highlight and Image Color

For most real surfaces, the lambertian Image Irradiance Equation 1.1 gives only an approximate

description of the color image formation process. For example, in dielectric materials like paints,

plastics, paper, textiles and ceramics, we usually see the reected light as being composed of two

distinct colors. The �rst component results from the interaction of the illuminant with the color

pigments in the material body. This component of reected light is commonly known as the body

component and its color depends both on the color of the illuminant and the surface spectral

reectance values of the illuminated body. The lambertian Image Irradiance Equation presented

in the previous section accounts only for this component of the reected light.

When incident light passes through air and hits a dielectric surface, it encounters a junction

of materials with di�erent refractive indices. The laws of physics and electromagnetism compels

that some percentage of the incident light gets reected directly o� the material junction without

interacting with the color pigments of the material body. This component of reected light makes

up the highlight that we often see on many real surfaces. It is also commonly known as surface

reection [Klinker 88], interface reection or Fresnel reection [Wol� 89] in contemporary vision

literature. Highlight takes the color of the incident light source since it is simply incident light that

is bounced o� the illuminated object's surface in an "unperturbed" fashion, like in a mirror.

With the inclusion of highlight in the image formation process, the Color Image Irradiance
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Equation for non-lambertian surfaces now contains two terms, a body reection term and a surface

reection term:

I(�; ri) = �(�; rs)Fb(v;n; s)E
�(�;n; s)+ Fs(v;n; s)E

�(�;n; s); (1:2)

Here, Fs is a scaling factor for surface reection that depends on viewing geometry and Fb is

a scaling factor for body reection that also depends on viewing geometry. The other symbols in

equation 1.2 are as de�ned in equation 1.1.

Notice that with this new reectance model for non-lambertian materials, image irradiance can

now be described as a mixture of light reected from the material surface and light reected from

within the material body. Since Fs, the scaling factor for surface reection, is usually very sensitive

to viewing geometry and very di�erent in form from Fb, the proportion of highlight and body

reection that a sensor measures can be very di�erent even for relatively nearby points on the same

surface. Since the color composition of highlight is, in general, di�erent from the color composition

of body reection, it is therefore possible that points on the same non-lambertian surface in a scene

can give rise to image irradiance readings of di�erent color composition. In other words, where

there is highlight, we can no longer assume, as we did in the previous section, that a patch of

uniform surface color in the scene will give rise to a patch of uniform color (hue2) in the image.

1.4 Color as an Ill-Posed Problem

What makes color vision a di�cult problem like most other early vision processes ? By trying to

recover information about a 3D world from 2D color images, color vision falls into a general class

of ill-posed problems [Berter Poggio and Torre 86] known as inverse optics. These problems are

inherently under-constrained and have no unique solutions. Let us see why this is so.

If our goal in color vision is to recover the true surface color of an object from its color image,

then we have to compute the surface spectral reectance function (�) of the object from its image

irradiance function (I). This is an under-constrained problem because even if all the surfaces in

the scene were lambertian and equation 1.1 holds, the image irradiance for a point in the scene

still depends on two physical quantities, namely the surface spectral reectance values (�) and the

surface irradiance distribution (E�) at the point. Knowing the surface irradiance distribution in the

scene still does not help us solve for �(�; rs) completely because there is another unknown scaling

factor, Fb, in the Image Irradiance Equation that depends on viewing geometry. In fact, all that

we can recover from I in a bottom up fashion is a scaled factor of �(�; rs) at best, unless we can

force ourselves to make other assumptions about the scene and the real world.

If our goal in color vision is just to �nd uniform surface color regions or boundaries in an image

2This term has not been formally introduced. For now, it is su�cient to think of hue as the normalized � spectrum
of a color signal.
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without recovering true surface color, then we have a simpler task than the one we had before.

The task only requires us to detect uniformity or discontinuities in surface spectral reectance

values (�) by examining image irradiance values (I). In fact, for lambertian scenes under uniform

or smoothly varying lighting conditions, this problem actually becomes well-posed because from

equation 1.1, changes in image irradiance, I , in the image can only be brought about by changes in

surface spectral reectance, �, in the scene. In other words, to �nd uniform surface color regions or

boundaries in a lambertian and uniformly lit scene, all that we have to do is to �nd uniform color

regions or boundaries in the image.

Unfortunately, most natural occurring scenes contain non-lambertian surfaces like dielectrics

and metals, so equation 1.1 is a poor approximation to the image formation process. If we use

equation 1.2 instead of equation 1.1 to account for highlights on non-lambertian surfaces, then we

face an under-constrained problem again, having to compute � from I . This is because the image

irradiance equation now contains two terms, a body reection term and a surface reection term,

and we cannot determine the contribution of the body reection term alone in the image by just

examining the values of I .

1.5 Why Traditional Color Algorithms Fail

In the past, researchers in color vision have been designing algorithms that perform grouping and

segmentation operations on images using image color. We have seen in Section 1.3 that this is in fact

a wrong formulation for most surface color problems. Image color, or image irradiance, depends on

both the surface and body components of reection, so its readings may vary considerably even over

a patch of material with relatively uniform surface color. Body reection, on the other hand, remains

relatively constant in color where surface color is uniform, so it provides us with a much better cue

for analyzing material composition of scenes. Unfortunately, we have seen that extracting the body

component of image color from image irradiance readings is a di�cult problem and this problem is

usually conveniently overlooked in traditional color algorithms. For example, Lightness Algorithms

by Land [Land 59], Horn [Horn 74], Blake [Blake 85] and Hurlbert [Hurlbert 89] assume that surface

spectral reectance can be completely speci�ed by image irradiance in each of 3 chromatic channels

when computing lightness ratios for surfaces. Since the assumption fails where there are highlights

in the scene, these algorithms only work well for recovering surface spectral reectance values of

at Mondrains. Traditional feature histogram based color segmentation schemes [Ohlander 76]

[Shafer and Kanade 82] that group image pixels using image color similarity measures also perform

badly in the presence of strong highlight because they ignore the e�ects of highlight on image

irradiance.

It was not until recently that secondary imaging e�ects like highlights and inter-body reection

were seriously being studied and modeled as components of the image formation process. Klinker,

Shafer and Kanade [Klinker Shafer and Kanade 88b] proposed a dichromatic reection model that
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treats reected light from di-electric surfaces as a vector sum of a body reection component

and a surface reection component, as in equation 1.2. They also demonstrated a technique for

separating highlight from body reection in an image by analyzing color histograms of surfaces.

Bajcsy, Lee and Leonardis [Bajcsy Lee and Leonardis 89] extended the dichromatic reection model

to accommodate minor changes in hue that are brought about by inter-body reections. Although

a number of surface reectance models now exist that can better describe the appearance of non-

lambertian scenes, these models are usually too complex to be used in traditional color algorithms

because of their multiple image irradiance terms.

1.6 Goals of this Thesis

Our primary goal in this thesis is to investigate how image processing concepts that are de�ned for

scalar signals can be extended to process color data.

Current image processing techniques like �ltering, edge detection, region growing and surface

reconstruction are relatively well established and favorably tested concepts in early vision. Often,

a direct application of these algorithms only work for scalar signals, such as grey-level intensity

readings or stereo depth maps. Color data, on the other hand, is usually encoded as triplets of grey-

level intensities in 3 chromatic channels. Since each pixel in a color image has 3 scalar chromatic

components, it seems only reasonable that we should treat color as a vector quantity in some 3

dimensional space. This means that in order to apply the same scalar image processing concepts to

color data, we �rst have to understand and derive their analogous notions in a multi-dimensional

space.

Most early vision systems today process color images by working separately in the 3 chromatic

channels. Since each chromatic channel is an array of scalar values, we can apply existing scalar

image processing algorithms directly to the individual channels. The results from the individual

channels can then be combined, if necessary, to form an overall result for the operation. We see

three problems with this divided approach:

1. The problem of coupling information from separate channels has always been an issue when

dealing with multiple sources of related data. In a Markov Random Field (MRF) formulation,

line processes [Gamble and Poggio 87] can be used to integrate region based information from

separate visual cues. In the case of color where there are multiple related chromatic channels,

Wright's [Wright 89] color segmentation scheme, for example, treats each color channel as a

separate visual cue and integrates discontinuities in the channels using line processes. Ideally,

since color is a primitive attribute of early vision, we want to avoid the added complexity of

having to explicitly integrate information from its separate channels if possible.

2. When some scalar operation is separately applied to each chromatic channel in a color image

and the results recombined as color data, we may not get the same intuitive result as what
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we might expect if an analogous concept of the same operation were applied to color values.

The following two examples expound on what we mean.

In Chapter 5, we argue that color does not change across a pure intensity boundary, such as

a shadow or an orientation edge. So, color edge detection algorithms should not detect edges

at pure intensity boundaries. However, when scalar edge detection algorithms are directly

applied to the separate color channels of an image, we usually still �nd boundarys in all 3

channels where there are just pure intensity edges.

In Chapter 4, we see that when scalar smoothing algorithms are directly applied to the

separate chromatic channels of a color image, colors from brighter pixels tend to get weighted

more in the smoothing process than colors from dimmer pixels. Unless we are concerned

about the discretization noise at dimmer pixels, this is probably not what we want when we

think about averaging color values.

3. There are some scalar concepts that do not have apparent color analogies unless we reason

about them in a multi-dimensional domain. For example, Chapter 4 introduces the concept

of taking color medians for median window �ltering. We see in Chapter 4 that we cannot

conceptualize the notion of median color by working separately in the 3 chromatic channels

of a color sample.

We demonstrate, in this thesis, that the three problems identi�ed above can be naturally over-

come when we deal with color as an entity and not as scalar values in three separate chromatic

channels. We also show how a large number of existing scalar image processing concepts can be

easily extended to work in the color domain, through a systematic but simple linearizationmethod.

Our other goal in this thesis is to demonstrate an external technique for removing highlight

and inter-body reections from images. Since image irradiance is just a poor approximation of

body reection under non-lambertian imaging conditions, our color algorithms will still face the

same surface reection problems that traditional color algorithms had, unless these e�ects can be

reliably and substantially reduced in the images we process. Our proposed solution uses a linear

polarizing �lter to attenuate surface components of reected light from the scene before they enter

the color sensor [Wol� 89]. We show that under a wide range of viewing conditions, the light

that our sensor receives through a polarizing �lter is a much better approximation to the body

component of reected light.

1.7 Method of Investigation

This thesis maintains a qualitative treatment of the color concepts that we are trying to develop.

Scalar analogues to most of our color algorithms can be found in contemporary image processing

literature. Since most of these analogues have been widely studied and well tested in the scalar
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domain, their quantitative issues like computational complexity and other performance measures are

already well known. Our main purpose here is to show that we can derive similar concepts between

single-channel data processing and multi-channel data processing, if an appropriate representation

is chosen for the multi-channel signal. Although our research is done within the framework of surface

color, the results from this study should also be applicable to other forms of multi-dimensional data,

in particular motion �elds.

In the following chapters, we demonstrate how our color algorithms work by showing and

analyzing the results they produce on a set of real and synthetic images. Where possible, qualitative

comparisons are made between the results we obtain and the results obtained by various other

methods of working with color.

1.8 Overview and Contributions

The rest of this thesis is organized as follows: Chapter 2 describes the polarizer technique for

removing highlight, inter-body reections and other secondary e�ects from images. Chapter 3

chooses a representation for color signals and de�nes the notions of color uniformity and color

di�erence in this representation scheme. Chapter 4 addresses the issue of noise in color images

and describes methods for dealing with noise. Chapter 5 looks at the implementation of an edge

detection algorithm for color, while Chapters 6 and 7 deal with the notion of color uniformity and

present two methods for �nding color region features in images.

The main contributions of this thesis are:

1. A vector representation approach to color that naturally integrates information from a color

signal's separate chromatic channels. The approach appears to work for other forms of multi-

dimensional data as well, in particular motion �elds.

2. A surface reection removal technique based on polarization properties of reected light (see

also [Wol� 89]).

3. Our scalar notions of color similarity and di�erence, and the general \linearizing" ideas we em-

ploy for extending certain useful scalar signal concepts into the color domain (see Chapters 3,

4 and 7).

4. Our detailed quantitative analysis of color noise, whose basic form is a Rayleigh distribution

and not a Gaussian distribution.

5. Our color domain extensions of some existing noise reduction, boundary detection, region

�nding and salient reference frame computation algorithms.

6. The idea of introducing a dynamic line process into an existing local color averaging scheme

[Hurlbert and Poggio 88] so that it preserves the sharpness of color boundaries better.
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7. A feature integration algorithm that aligns color image boundaries with grey-level intensity

boundaries and discards spurious color edge fragments due to noise.

8. A statistical approach for selecting and interpreting segmentation thresholds and free param-

eters, which we demonstrate in one of our region �nding algorithms.

9. A highly versatile reference frame algorithm that operates directly on color image data, with-

out having to �rst compute color regions or boundaries.

10. The idea of using reference frames as a source of global image information for region �nding.
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Chapter 2

Recovering Lambertian Components

of Reection

In most natural occurring scenes, a patch of uniform surface color, or uniform surface spectral

reectance, usually corresponds to some physical entity in the viewer's environment. A ripe banana,

for example, gives rise to a patch of yellowish surface spectral reectance in a bowl of fruit, while

an unripe banana gives rise to a patch of green surface spectral reectance. Similarly, surface

color discontinuities in a scene normally arise from object boundaries or material boundaries in

the environment, like the surface color boundaries that a blue note book creates with a brown

wooden table. Although human beings perform remarkably well at isolating uniform surface color

patches even in the presence of strong highlight, machine vision systems today still tend to get easily

confused by the di�erent causes of color variations that can occur in a scene. Strong highlights on

an object can easily be misinterpreted as a separate region of di�erent surface color or a region

of higher albedo. The �rst step for performing machine vision operations on surface color should

therefore be one of recovering body or lambertian reection from image irradiance.

This chapter describes a method of recovering body reection from image irradiance that ex-

ploits electromagnetic polarization properties of reected light. The method was �rst used by Wol�

[Wol� 89] to separate surface and body components of reection from objects. In his experiments,

Wol� showed that highlight can be totally removed from a surface by �rst computing an average

Fresnel Ratio for all points on the surface and then using the ratio to estimate highlight strength

at each pixel. For the purpose of this thesis, a simpler version of the algorithm that does not com-

pute Fresnel Ratios still gives body reection estimates that are su�ciently accurate for our color

processes. Although Wol� also made use of polarization e�ects for other tasks like stereo matching

and material classi�cation in scenes [Wol� 89], its greatest use still lies in body reection recovery

where it reliably reduces secondary imaging e�ects under a wide range of viewing geometries.
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2.1 Model Based Separation of Reection Components

Recent studies by Klinker, Shafer and Kanade [Klinker Shafer and Kanade 88b] have shown that

dielectric surface reection can be adequately described by aDichromatic Reection Model, and that

the model can be used to help split reected light into its surface and body reection components.

The model states that if color is represented as a vector in a three dimensional space spanned by

its chromatic channels, then the color of light reected from a dielectric surface becomes a linear

combination of two color vectors. A matte vector whose length depends on the magnitude of body

reection shows the amount of body reection falling on the color sensor. The color of this vector

depends on the material properties of the illuminated surface. A highlight vector whose length

depends on the strength of highlight coming from the object accounts for the amount of surface

or interface reection falling on the image. The color of the highlight vector is assumed to be the

same as the color of the illuminating light source.

To split color pixels into their body and surface reection components, Klinker, Shafer and

Kanade use the Dichromatic Reection Model to determine the matte and highlight vectors of pixels

on a surface. The algorithm maps all color pixels from a region onto the 3D color space, where

according to the model, the generated cluster would take the shape of a skewed-T. The two linear

sections of the skewed-T cluster point in the directions of the region's matte and highlight vectors.

Pixels that map onto the matte linear section are classi�ed as matte pixels with negligible highlight

components. The color of these pixels in the image is taken to be their body reection color. Pixels

that map onto the highlight linear section are considered highlight pixels whose deviations from

the matte line are caused by the presence of highlight. The strength of highlight at these pixels is

proportional to their color distance from the matte cluster, in the direction of the highlight vector.

The body reection color at each pixel can be recovered by projecting the pixel's color along the

highlight vector onto the matte linear subsection.

Klinker, Shafer and Kanade demonstrated their dichromatic model-based algorithm on a number

of dielectric images by splitting each of them into an image without highlight and an image of just

highlight. Although the algorithm works well for scenes of dielectric objects, the technique fails if

the illuminant color gets very close to the color the object. This is because the two linear branches of

the skewed-T cluster become almost parallel under this condition and are no longer distinguishable

as two linear sections. Also, since the algorithm works by analyzing color variations of regions over

a relatively large local neighbourhood, the algorithm would also fail if there are multiple di�erent

colored light sources illuminating the same object. The skewed-T cluster hypothesis also does not

hold in this case, because each colored light source will give rise to its own highlight branch for the

region in the color histogram.
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Figure 2.1: (a) An incident light wave with polarization perpendicular to the plane of

reection. (b) An incident light wave with polarization parallel to the plane of reection.

2.2 Electromagnetic Properties of Surface Reection

The separation technique that we describe in this thesis is based on the physical property that body

reected light from dielectric surfaces is usually unpolarized, whereas highlight and other forms of

surface reection are usually strongly polarized. Maxwell's electromagnetic �eld equations and the

physics of electromagnetic reection best explain these polarization e�ects.

Light incident on a material surface gets partially reected at the material interface and partly

transmitted through the material junction. The transmitted component interacts with color pig-

ments embedded in the material body, giving rise to body reection or lambertian reection. Since

color pigments are usually randomly scattered in the material body, body reection emerges in a

randomly polarized fashion. For surface reected light, the electromagnetic �elds on both sides of

the material junction and across the material junction must satisfy Maxwell's equations and their

constitutive relations. This includes having tangential electric �eld components and perpendicular

magnetic ux densities that are continuous across the boundary. The reected and transmitted

components of an incident wave can be derived by phase matching the tangential electric and per-

pendicular magnetic �eld components so that they are continuous across the material junction. For

an incident light wave that is polarized perpendicular1 to the plane of reection (see Figure 2.1(a)),

we get the following expressions for the magnitudes of the reected and transmitted electric waves

after phase matching:

1By convention, the polarization direction of a light wave is the direction of its electric �eld.
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Figure 2.2: Squared coe�cients of reection as a function of �i for nt = 1:5. (a) R2
?. (b)

R
2
k. (c) R

2
? and R2

k superimposed.
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cos�i
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cos�i +
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�t
cos�t
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Here, R? and T? are the reection and transmission coe�cients for the perpendicularly polar-

ized light wave, �i and �t are the angles that the incident and transmitted waves make with the

surface normal, ni and nt are refractive indices, and �i, �t are the magnetic permeabilities of the

two media. Note that R? is the quantity that determines the magnitude of interface reection, and

hence the strength of highlight for perpendicular polarization.

For incident light waves whose polarization directions are parallel to the plane of reection

(see Figure 2.1(b)), phase matching of electromagnetic �elds yields the following reection and

transmission magnitude relationships:

Rk =
nt
�t
cos�i � ni

�i
cos�t

ni
�i
cos�t +

nt
�t
cos�i

; (2:3)

Tk =
2ni
�i
cos�i

ni
�i
cos�t +

nt
�t
cos�i

; (2:4)

where Rk and Tk are the reection and transmission coe�cients for parallel polarization, and other

symbols are as de�ned in Equations 2.1 and 2.2. Once again, Rk is the quantity that determines

the magnitude of surface or interface reection.

2.2.1 Electromagnetic Field Strength and Irradiance Intensity

The reection and transmission coe�cients presented in the previous subsection relate the electric

�eld strengths (magnitudes) of light waves before and after undergoing surface reection. Normally,

an imaging device like a CCD camera or a human eye, senses light proportional to its time average
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irradiance intensity:

< I >=
jEj2

2!�
;

where jEj is the light wave's electric �eld strength, ! is its chromatic frequency measured in radians

per second, and � is the propagation medium's magnetic permeability. For surface reected light,

! and � remain unchanged, so the reected to incident light intensity ratios are exactly R
2
? and

R
2
k for perpendicular and parallel polarizations respectively.

2.2.2 Dielectric Materials

Equations 2.1 to 2.4 are unsimpli�ed expressions for the reection and transmission coe�cients of

incident electromagnetic waves on material interfaces. These expressions are derived directly from

Maxwell's equations, so by �rst principles, they are valid for all possible pairs of homogeneousmedia

with magnetic permeabilities and refractive indices. Often, in the scenes we analyze, most of the

objects are dielectrics immersed in air, for which �i � �t � �o and �o is the magnetic permeability

of free space. Factoring away the magnetic permeability terms, Equations 2.1 and 2.3 become:

R? =
nicos�i � ntcos�t

nicos�i + ntcos�t

; (2:5)

Rk =
ntcos�i � nicos�t

nicos�t + ntcos�i

; (2:6)

Using Snell's Law to express one refractive index in terms of the other and then factoring out the

refractive indices from the expressions, we get:

R? = �
sin(�i � �t)

sin(�i + �t)
; (2:7)

Rk = +
tan(�i � �t)

tan(�i + �t)
; (2:8)

The squared surface reection coe�cients for a dielectric with refractive index nt = 1:5 are as

shown in Figure 2.2. A small incident angle, �i corresponds to a viewing geometry with the light

source almost directly behind the viewer, while a large incident angle corresponds to a viewing

geometry whereby the light source is almost directly behind the object. Notice that except for the

extreme case where �i > 75� or the light source is almost directly opposite the viewer with respect

to the object, surface reections are generally weak, at least for parallel polarization components.

To show that surface reection is indeed strongly polarized for dielectric objects, we examine the

Fresnel Ratio for surface reection, [R?=Rk]2, which indicates the relative intensities of reected

light in the perpendicular and parallel polarization directions. A ratio much larger than 1 indicates
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Figure 2.3: Fresnel ratio as a function of �i for nt = 1:5. (a) Normal scale for y � axis. (b)

Base 10 Logarithmic scale for y � axis.

that surface reection is a lot more intense in the perpendicular direction than in the parallel

direction. Surface reected light for [R?=Rk]2 � 1 should then be strongly polarized, since it

contains a large proportion of waves polarized in one particular direction. A ratio that is near

unity gives rise to surface reection whose strength depends very little on polarization angle. Light

reected from the surface should therefore be almost unpolarized, since it contains almost equal

proportions of waves polarized at all angles.

We can use Equations 2.7 and 2.8 to derive the Fresnel ratio at a dielectric surface as a function

of incident angle, �i:

"
R?
Rk

#2
=

2
4cos �i

q
1� (ni

nt
sin �i)2 +

ni
nt
sin2 �i

cos �i
q
1� (ni

nt
sin �i)2 � ni

nt
sin2 �i

3
5
2

: (2:9)

Figure 2.3 shows the plot of Equation 2.9 with nt = 1:5. Again, except for extreme viewing

geometries where �i < 25� or �i > 85�, the Fresnel ratio for surface reection is at least 2, indicating

that surface reected light from dielectrics is generally strongly polarized.

2.2.3 Metals

The separation technique does not work well for metallic materials because their extremely high

surface conductivities (�) make surface reection weakly polarized. Surface conductivity a�ects

the complex permittivity of a substance as follows:

�� = �� j

�

!

(2:10)

where j =
p
�1, ! is the frequency of the incident light wave and � is normal permittivity. Using

the relationship between refractive index (n), complex permittivity (��) and magnetic permeability

(�):
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n = c

p
��� (2:11)

where c is the speed of light in a vacuum, Equations 2.1 and 2.3 for the perpendicular and parallel

surface reection coe�cients of metals can be re-expressed as:
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cos�t +

q
��t
�t
cos�i

: (2:13)

Since large values of � give rise to large absolute values of �t in Equations 2.12 and 2.13, we can

approximate the coe�cients of surface reection as:

R? �
�
q

�t
�t
cos�tq

�t
�t
cos�t

= �1; (2:14)

Rk �

q
�t
�t
cos�iq

�t
�t
cos�i

= 1: (2:15)

This leads to a Fresnel ratio of [R?=Rk]2 � 1 for metals, which explains why surface reection is

weakly polarized.

2.3 Linear Polarizers and Highlight Reduction

Polarized light can be resolved into linearly independent components whose directions are per-

pendicular to the wave's direction of propagation. When light is transmitted through a linear

polarizer
2, the magnitude of the transmitted electric �eld is proportional to the component of the

incident electric �eld in the polarizer's orientation (see Figure 2.4(a)). For light that is unpolarized

or randomly polarized, the electric �eld components of the wave are almost equal in all directions.

So when unpolarized light passes through a linear polarizer, the magnitude and intensity of the

transmitted light wave remains almost constant, regardless of polarizer orientation. Light that is

partially polarized has electric �eld components that are stronger in some directions than others.

When transmitted through a linear polarizer, the magnitude and intensity of the resulting light

wave depends greatly on the orientation of the polarizer. Henceforth, we shall use the term polaroid

�ltering to describe the process of transmitting light through a linear polarizer.

2Also known as polarizers or polaroid �lters
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Figure 2.4: (a) Polarized light transmitting through a linear polarizer. (b) Imaging geometry

for reducing surface reection e�ects in images.

2.3.1 Minimizing Secondary E�ects

Given that body reected light from dielectric surfaces is almost completely unpolarized whereas

surface reection is generally polarized perpendicular to the plane of incidence, it is possible to use

polaroid �lters to help us obtain closer approximations to the color of body reection from reected

light. Figure 2.4(b) shows the imaging geometry of the highlight reduction technique used in this

thesis, where the main idea is to orientate the polarizer such that minimum surface reection passes

through the polarizer into the color sensor.

For the moment, let us assume that we know the surface orientation of all points in the scene,

and hence also the plane of incidence for each ray of light entering the color sensor. Also, let us

suppose that surface reection at any point in the scene arises from a single point light source. The

equation below expresses the intensity of light that the color sensor of Figure 2.4(b) receives, in

terms of the phase angle (�) that the polarizer makes with the plane of incidence. A phase angle

of 0� indicates that the polarizing orientation is parallel to the plane of incidence, while a phase

angle of 90� indicates that the polarizing orientation is perpendicular to the plane of incidence.

I(�) =
1

2
Ib +

"
R
2
?

R
2
? +R

2
k

#
Is sin

2
�+

"
R
2
k

R
2
? +R

2
k

#
Is cos

2
� (2:16)

Equation 2.16 applies for grey-level readings in all three chromatic channels of a color signal.
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Figure 2.5: Fraction of Remaining Highlight after Polaroid Filtering as a function of Angle

of Incidence (nt = 1:5).

The symbols I(�), Ib and Is represent the intensities of image irradiance, body reection and

surface reection respectively. R? and Rk are the reection coe�cients for perpendicular and

parallel polarization as de�ned in the previous section. Since R2
k is always less than or equal to

R
2
?, we see that the contribution of the surface reection terms is minimum when the polarizer is

oriented at � = 0�, parallel to the plane of incidence. Equation 2.16 becomes:

I(�)j�=0� =
1

2
Ib +

"
R
2
k

R
2
? +R

2
k

#
Is: (2:17)

Multiplying the result by 2, we get:

2I(�)j�=0� = Ib + 2

"
R
2
k

R
2
? +R

2
k

#
Is; (2:18)

which always gives us a better approximation to the body reection term, Ib, than a direct mea-

surement of image irradiance:

I = Ib + Is: (2:19)

Figure 2.5 shows the fraction of the original highlight intensity that still remains in an image

after polaroid �ltering, for incident angles in the range of 0� to 90�. Although a relatively large

fraction of highlight still remains for small incident angles of � < 35�, the problem posed is minor

for materials with high lambertian reectances, because the absolute amount of highlight produced

at these angles is relatively low. For large incident angles of � > 80�, we get relatively strong

highlight e�ects whose intensity is only slightly reduced by the �ltering technique. Fortunately, in

most natural occurring scenes, points like these are almost totally occluded from the viewer's line

of sight and make up only a small portion of the entire image.
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2.3.2 Multiple and Extended Light Sources

The argument that highlight is minimized at � = 0� also holds for extended light sources or multiple

point light sources illuminating a single point in the scene. A simple proof for the case of multiple

point light sources proceeds as follows: According to the physical laws of reection, in order for

a color sensor to detect highlight at some point on a surface, the surface normal vector at the

illuminated point must lie on the plane of incidence, which includes the light source, the color

sensor and the illuminated point itself. This means that if a color sensor detects a mixture of

highlight from a few light sources at some point in the scene, all the contributing light sources

must share the same plane of incidence. Aligning a polaroid �lter parallel to the plane of incidence

would therefore minimize highlight contributions from all the individual light sources, and hence

the highlight term as a whole.

Extended light sources can be modeled as a spatially continuous distribution of point light

sources, so the proof outlined in the previous paragraph also applies.

2.3.3 Minimizing Secondary E�ects for all Pixels

How does one go about determining the polarizer orientations that minimize secondary e�ects

at each pixel in the image? A method that explicitly computes the plane of incidence at each

pixel and aligns the polarizer with the plane requires precise and detailed knowledge of imaging

geometry. Unfortunately, such information is usually not available to early vision modules operating

on unconstrained natural occurring scenes.

A closer examination of the problem and of Equation 2.16 reveals that at � = 0�, when the

polarizer is oriented parallel to the plane of incidence at a given pixel, the pixel's intensity readings

in all three chromatic channel are at a global minimum over all values of �. Since our task is just to

minimize I(�) for all pixels in the image, a much simpler approach would be to take multiple images

of the scene at �xed intervals of � and preserve only the minimum chromatic channel readings at

each pixel. To ensure that the minimum values we get at each pixel are reasonably close to their

true minimum values, we take 16 images of the scene at 11:25� intervals of � to cover an equally

spaced 180� arc for all possible planes of incidence. Our sampling resolution gives us a maximum

possible phase mismatch of 5:625� between polarizer orientation and plane of incidence. This allows
us to reduce highlight intensity at each pixel to at least 98% of the attenuation factor that we could

achieve, when the polarizer and plane of incidence are exactly aligned.

2.4 Results

It has been argued that if image irradiance consisted of only body reection from objects in the

scene, and if all light sources in the scene had the same spectral composition, then a patch of

uniform surface spectral reectance in the scene will give rise to a patch of uniform image color
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(hue) in the sensor. The value of polaroid �ltering in color vision can therefore be measured in this

context; that is, a uniformly colored object should appear more uniformly colored in an image with

polaroid �ltering, than in the same image without polaroid �ltering.

This section shows the outcome of polaroid �ltering on three natural occurring scenes of dielec-

tric bodies. In each scene, we investigate the performance of the �ltering operation on a particular

class of secondary imaging e�ects. The �rst example in Figure 2.6 demonstrates highlight removal

on dielectric surfaces. In this scene, one light source is positioned so that highlights from the main

reecting surfaces have moderate incident angles of 25� to 80�. As predicted by the highlight re-

duction ratios of Figure 2.5, the operation eliminates a large portion of the highlight on the upper

surfaces and handles of the inverted plastic cups. Notice the relative absence of highlight bound-

aries on the cups in the color edge map3 of the �ltered image, as compared with the cups in the

color edge map of the un�ltered image.

Figure 2.7 deals with inter-body reection in the scene. The painted grey metal cabinet in

Figure 2.7 reects light from a nearby camera tripod into the color sensor. After polaroid �ltering,

the camera tripod image disappears from the cabinet surface and the boundaries brought about by

the tripod disappear completely from the Canny edge map4.

In Figure 2.8, we see an example of incomplete �ltering that does not totally remove strong

highlight from a scene. A light source positioned almost directly behind the camera illuminates

the plastic cup at a small angle of incidence. Because of the low highlight attenuation factor at

small angles of incidence, a relatively large portion of the original highlight on the cup still remains

after �ltering. Taking vertical hue slices down the center of both images in Figure 2.8, we see that

polaroid �ltering still improves color uniformity for the cup in the image, especially at the highlight

pixels.

2.5 Practical Issues

The advantages of polaroid �ltering over other methods of separating reection components are

obvious. In principle, the technique is capable of operating at a pixel level of resolution, where

highlight and other secondary e�ects at any pixel in the image can be reduced, independent of

information obtained from other nearby pixels. No knowledge is required about local color vari-

ations in the image. Unlike Klinker, Shafer and Kanade's dichromatic model-based separation

algorithm that matches color histogram signatures with model-generated hypotheses, polaroid �l-

tering requires very little computation for recovering lambertian reection components. All that

the operation does is to remember the minimum irradiance value that each image pixel registers

as the polarizer orientation changes. Another desirable feature about the technique is that its

3Color boundary detection is described in Chapter 5
4We are displaying luminance edges instead of color edges for this image because the cabinet and the light source

have the same color.
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Figure 2.6: Top: Plastic Cup image with highlight, before and after polaroid �ltering.

Bottom: Color edge maps.
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Figure 2.7: (a) Top: Painted grey metal cabinet image with reection of camera tripod,

before and after polaroid �ltering. Bottom: Canny (luminance) edge maps.
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Figure 2.8: Top: Plastic cup image with strong highlight, after polaroid �ltering and with

vertical hue slice shown. Bottom: Cross section of hue slice before polaroid �ltering and

after polaroid �ltering.
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operation is not constrained by the number and spectral distribution of illumination sources in

the scene. Filtering works equally well for illuminants of any arbitrary color, as long as surface

reection is su�ciently polarized. The dichromatic model-based scheme, on the other hand, fails

when the color of the illuminant gets too close to the surface color of the object, or when there are

multiple di�erent colored light sources illuminating the same surface.

2.5.1 Real Time Imaging

In the images we produced, the polarizer attached to the front of the camera lens was manually

rotated and frames were grabbed manually at regular phase intervals. A program was executed

between frames to update the minimum image irradiance readings seen at each pixel so far. This

cumbersome process restricted our choice of test scenes to still life objects in arti�cial lighting

environments, where no changes in the scene could occur between frames.

Real time polaroid �ltering requires an automated system to take over the manual chores we

performed, so that changes in the scene can be minimized between frames. The problem of making

quick and precise changes to polarizer orientation can possibly be solved by mounting a thin �lm of

liquid crystals in front of the camera lens. Liquid crystals are substances that behave like electrically

controlled polarizers, whose polarization state and orientation depend on the presence and direction

of an applied electric �eld.

An ideal alternative to grabbing and processing multiple frames for each scene is to have image

sensors with built in hardware that records only minimum values seen at each pixel over a given

time interval. The length of the time window is �xed so that it corresponds to a full 180� phase

cycle of the polarizing element.

The real time �ltering ideas presented in this subsection are issues in sensor and optical imaging

technology, beyond the scope of this thesis. No feasibility studies have been made in this thesis

about the proposed solutions.

2.5.2 Finding Better Lambertian Estimates

One natural extension to our current system would be an algorithm that computes even closer

estimates to body reection from available polarization data. Although polaroid �ltering removes a

substantial amount of secondary imaging e�ects from the scene over a wide range of incidence angles,

Figure 2.5 shows us that in most geometries, some surface reection still remains after �ltering.

The ideal extension we seek should therefore allow us to correctly solve for the unattenuated surface

reection components:

I? =

"
R
2
?

R
2
? +R

2
k

#
Is
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and

Ik =

"
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2
k

R
2
? +R

2
k

#
Is

of Equation 2.16 at each image pixel, so that further compensation can be made to obtain a better

lambertian reection estimate.

Unfortunately, we cannot solve for I? and Ik at each pixel, using only polarization data from

the pixel itself. Casting image irradiance readings from three distinct polarizer orientations into a

set of simultaneous equations, we get:

2
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3
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The rows of the 3 � 3 matrix are not linearly independent for all possible combinations of �1, �2

and �3, so the matrix is not invertible. Hence, no unique solution exists for the vector [Ib I? Ik]T .

To overcome the problem of getting linearly independent readings for recovering Ib, Wol�

[Wol� 89] �rst de�nes the physical quantity Fresnel Ratio as I?=Ik, or equivalently [R?=Rk]2.

Like I? and Ik, the Fresnel Ratio is a quantity that cannot be computed at a given pixel, using

polarization data from the pixel alone. Wol�'s algorithm makes use of polarization data from pixels

within an entire pre-segmented region to compute an average Fresnel Ratio for the region. It then

computes Ib at each pixel in the region using the average Fresnel Ratio value and a re-expressed

version of Equation 2.16, with � set to 0� and 90�. Unfortunately, the algorithm relies on a danger-

ous assumption that Fresnel Ratios are approximately constant within a pre-segmented region. For

at surfaces where incident angles (�i) are relatively uniform throughout, the assumption could be

valid. However, in the experiments we conducted for objects with curved surfaces, the technique

failed badly even when small local patches of 5� 5 pixels were used to compute Fresnel Ratios.

Future work in polaroid �ltering should focus on combining polarization data with model-based

methods of separating reection components for obtaining better body reection estimates. Polar-

ization data provides precise and reliable information on surface reection color. This information

can be well used in model-based separation techniques to generate and con�rm highlight and inter-

body reection hypotheses.
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Chapter 3

Representing Color

To process color as a cue in computer vision, a visual system should �rst have an appropriate

representation for color signals. Often a well chosen representation preserves essential information

and gives good insight to the operations that we want to perform. In Chapter 4, we see that a good

color representation even allows us to develop and express color concepts that are otherwise not

intuitive at �rst glance. Generally, �nding an appropriate representation for some entity involves

knowing how data describing the entity is generated and what information is wanted from the

data. That is, before we even decide upon a method of representing color, we must �rst have a

clear understanding of what constitutes color and what kind of results we expect from our color

operations.

As mentioned in Chapter 1, surface color is an excellent cue for extracting material information

in a scene. In this thesis, our primary focus is on performing surface color operations. Since surface

color, or body color, a�ects only the body component of reection, we shall limit our discussion on

color in the rest of this chapter to the context of body reection alone. This is a reasonable thing

to do because in Chapter 2, we showed a method of substantially reducing the e�ects of surface

reection in a scene using polaroid �lters. Our goal here is to �rst establish a notion of color that

relates to the material composition of a scene. Thereafter, we shall choose a color representation

scheme that best reects the notions of color similarity and di�erence in terms of material similarity

and di�erence.

3.1 Color as a Ratio of Spectral Components

Since the time of Isaac Newton, scientists have been studying the perception of color from many

di�erent standpoints. Color vision literature can been found in the domain of many modern sciences,

including physics, arti�cial intelligence, psychology, physiology and philosophy. But even until

today, many questions about color still remain unresolved. For example, what does one mean by

saying that a banana appears yellow? How does one determine if two plastic cups have similar or
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even identical color?

We believe that in the context of this thesis, color should be treated as a physical measure,

speci�cally, as a normalized ratio of light intensities in its separate chromatic wavelengths. One

example of such a formulation appears in Land's work on Lightness Algorithms [Land 59]. Land

de�nes the surface color of an object as its relative surface spectral reectance, �(�), in each of

three independent chromatic channels. Similarly, the color of body reected light is de�ned as its

relative irradiance, I(�), in three independent sensor channels, where I(�) and �(�) are as related

in the Image Irradiance Equation (Equation 1.1) of Chapter 1. Normally, we use the red, green and

blue spectral wavelengths as the three independent chromatic channels, corresponding to the three

primary colors of visible light. Let us now see why such a physical color formulation is suitable for

our goals in this thesis.

3.1.1 A Surface Color Model

Figure 3.1 shows a microscopic model of a dielectric surface that explains the occurrence of surface

color and body reection. Similar models have been used by Klinker [Klinker 88], Johnston and

Park [Johnston and Park 66], Hunter [Hunter 75] and many others for describing surface and body

reected light. Most dielectric materials consist of a medium with color pigments. The medium

forms the bulk of the material body and is generally transparent to light waves in the visible

spectrum. The color pigments embedded in the medium selectively absorb and scatter light rays

by a random process of reection and refraction. Normally, samples of the same material have

similar color pigment densities and composition, while samples of di�erent material have di�erent

pigment densities and composition. The presence of these pigmented particles in the material

medium gives rise to the surface color or body color that we associate with the dielectric surface. In

this model, we can think of surface color as the fraction of light energy entering the medium at each

chromatic wavelength that does not get absorbed by the color pigments. Because light interacts

linearly with matter under a wide range of illumination intensities, the fraction of unabsorbed light

is usually a constant quantity at each chromatic wavelength.

Body reection results from light interacting with the color pigments of a surface. When

light penetrates a dielectric surface, it travels through the medium, hitting pigmented particles

along its path. Each time it interacts with a pigmented particle, certain wavelengths get strongly

attenuated by the particle while others get reected. Eventually, when it exits from the medium,

only the unattenuated or slightly attenuated wavelengths remain, giving body reected light its

characteristic color. For most dielectric substances, the color pigments within the medium are

uniformly distributed throughout, so the color composition of an emerging light ray does not

depend on the path it takes within the medium. Also, since a light ray usually encounters many

color pigments and undergoes multiple random reections before emerging from the medium, the

direction it emerges does not depend on the direction it enters the medium. All this suggests why

39



Surface 
Reflection

Incident
  Light

Air

Dielectric

Medium

Pigments

Body
Reflection

Figure 3.1: Microscopic model of a dielectric surface.

body reected light is mostly uniform, di�used and highly unpolarized.

3.1.2 Body Reection Color, Body Color and Material Composition

The dielectric surface model we described suggests that the surface color or body color of an object is

material dependent and does not change under di�erent illumination conditions. The color of body

reected light, de�ned as its relative spectral irradiance intensities, depends on both the material's

body color and the scene's illuminant color. Body reected color is also intensity invariant in that

it does not change even if the intensity of the light source changes.

Because color pigment density and pigment composition are both relatively constant quantities

within a sheet of uniform material, we expect body color to be a relatively uniform quantity as

well within the sheet of material. This means that in a scene with no spatially abrupt changes of

illuminant color, regions of uniform surface color can only give rise to regions of continuous body

reection color in the image. The converse is also true for most pairs di�erent surface material

types. Normally, we expect the color pigment densities and pigment compositions of di�erent

material pairs to be su�ciently di�erent, so that signi�cant body color discontinuities can exist

at their junctions. In a scene with no spatially abrupt changes of illuminant color, sharp body

reection color discontinuities in the image can therefore only be caused by material boundaries in

the viewer's environment.

In summary, treating color as a normalized ratio of spectral intensities provides us with a

sensitive measure for inferring color pigment variations in the scene. Very often, variations in color

pigment density and composition correlate well with surface material variations.
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3.1.3 Color Pigments

It may be interesting to note that color pigments actually exist beneath the surface of many

natural and arti�cially occurring dielectric substances. Furthermore, certain pigments can even

be identi�ed by the characteristic colors they cause. Plant tissues for example contain chlorophyll

that gives rise to the greenish appearance of leaves and young stems. Melanin pigments found

in most animal tissues and some older plant tissues, such as the bark of trees, give rise to the

natural brownish appearance of these substances. Other iron-containing protein pigments, such

as hemoglobin, account for the reddish purple color of mammalian blood and certain respiratory

tissues of invertebrates.

Organic and inorganic pigments are often introduced into arti�cial dielectrics to produce colors.

For example, in making paints, lead compounds are usually mixed with the solvent to produce white

paint, while copper based compounds are usually added for greenish and bluish colors. Metallic

pigment compounds can also be found in most natural and synthetic colored gems like rubys,

sapphires and emeralds. Textiles are dielectrics that contain �ber like substances as a medium.

When dyes are applied to textiles, dye pigments dissolve into the textile �bers to selectively absorb

light entering the medium.

3.1.4 Metals

When light falls on a metallic surface, almost all of its incident light energy gets reected o� the

interface as surface reection. Hence, the surface color model that we described here for dielectrics

does not apply for metals. Surface reection is also very much unpolarized for metals, so we cannot

use polaroid �ltering to get a better estimate of body color. Because \white" metals like silver,

zinc and aluminum reect visible light of all spectral wavelengths equally well, they show up in

the scene having the same color as their illuminating source. On the other hand, \brown" metals

like copper, gold and brass absorb wavelengths nearer the blue end of the visible spectrum, so

shorter light wavelengths get strongly attenuated in their surface reection. Both classes of metals,

however, interact linearly with light, so like dielectric body reection, their surface reected color

also depends heavily on the color of their illumination source.

3.2 Color as a 3 Dimensional Vector Space

Given the color model that we want to adopt, how does one go about representing color as a ratio of

spectral intensities? Certainly, an obvious scheme would be to represent irradiant color or surface

spectral reectance as an analytic function of spectral wavelength, �. This scheme preserves all

spectral information of the color signal. Unfortunately, determining such an analytic function for

color involves having to compute a function that �ts the signal's spectral intensity measurements

at each wavelength su�ciently well. Generally, such a function has to be computed from a set of
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dense spectral intensity samples, and the resulting function can be a polynomial of an arbitrarily

high order.

3.2.1 Human Color Perception is 3 Dimensional

One feasible alternative is to represent color as a vector of net spectral intensity or spectral re-

ectance response samples, integrated over �1. Physiological and psychophysical evidence have

shown that human color perception can be described by a vector space with only three dimensions.

A simple argument is based on the observation that human beings have only three types of color

sensing units or cones in their retina. Each type of cone detects light from only a narrow band of

the visible spectrum, centered at some �xed wavelength. Even though there are only three types

of cones in the human retina, the combined responses from all three types of cones at some retina

location can give rise to all the di�erent colors that humans perceive.

Colorimetry methods also reveal the three dimensional nature of human color perception by

demonstrating that all human perceivable colors can be uniquely synthesized using three linearly

independent colored light sources. By three linearly independent colors, we mean no two colors

can be linearly combined to produce the third color. A subject faces a large grey surface with two

holes, where behind each hole is a white lambertian surface. The surface behind one hole is then

illuminated by light of a certain color and the subject's task is to control the intensities of three

linearly independent light sources in the second hole, so that the color and intensity in the two

holes become indistinguishable. The results obtained indicate that with three linearly independent

light sources, there is a unique combination of intensities that produces each match. If only two

linearly independent colored sources are used, most colors cannot be matched by any combination

of intensities. With four or more colored sources, a given intensity and color can be matched by

multiple intensity setting combinations.

3.2.2 The RGB Color Vector Space

Since humans can perceive a su�ciently wide range of di�erent colors and human color perception

spans a three dimensional space, we propose using a 3 dimensional vector representation for color

in this thesis. Each dimension of the vector space encodes the net irradiance intensity or the

net surface spectral reectance response of a color signal at a selected spectral wavelength. In

other words, to represent a color signal in this scheme, we construct a 3 dimensional vector whose

components are the signal's net irradiance intensities or its equivalent surface spectral reectances

in the 3 chosen spectral wavelengths.

1The idea is similar to approximating the spectral function of � with a �nite number of basis functions. See, for

example, [Yuille 84] for work on Spectral Basis Algorithms. In the human visual system, we have 3 basis functions

| the sensitivity functions of the 3 types of cones.
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In order to successfully represent all possible humanly perceivable colors in our vector space,

the three spectral wavelengths that we choose as vector components must be linearly independent

in color: That is, no linear combination of any two chosen wavelengths can form the color of the

third wavelength. An obvious choice of three such colors are the three primary colors of visible

light, namely the Red, Green and Blue spectral wavelengths, which form a set of orthogonal basis

vectors in the human color space. Since most commercially available color cameras also sense in

the red, green and blue spectral channels, this choice of vector components allows us to directly

encode the red, green and blue channel intensities of a color signal as the red, green and blue

components of its color vector. This vector space is commonly known as the RGB Color Vector

Space [Judd and Wyszecki 75] or the RGB Color Cube [Klinker 88], in terms of its three basis vector

components.

3.2.3 A Color Di�erence Measure

How should color similarity and di�erence be quanti�ed in our representation scheme? This is a

tricky problem because we are seeking a single scalar quantity to measure multi-dimensional vector

di�erences. Since color encodes intensity components in three independent chromatic channels, and

for the time being, if no channel is any more important than the other, our di�erence measure must

be equally sensitive to intensity changes in all three channels. Also, in order to truly capture the

notion of color as a ratio of intensities in three chromatic channels and not as a triplet of absolute

intensity values, the di�erence measure must only respond to relative intensity di�erences and not

absolute intensity di�erences. That is to say, the measure should be insensitive to intensity changes

alone that are not color changes. In other words, color vectors having the same relative channel

intensities but di�erent absolute channel intensities should be treated as representations of the same

color, and have zero as their pairwise di�erence measure.

We shall approach the problem by �rst considering how similar and dissimilar colors appear

as vectors in the RGB Color Vector Space. If color is de�ned as its relative values in the three

sensor channels, then similar colors should map to vectors with similar component ratios in the RGB

Color Space, while signi�cantly di�erent colors should map to vectors with dissimilar component

ratios. Graphically, a pair of vectors with similar component ratios point along the same general

direction in the RGB Color Space while vectors with dissimilar component ratios point in di�erent

overall directions. For example, Figure 3.2(a) shows the vector representations, c1 and c2, of two

similar colors, where both vectors have almost parallel orientations. In Figure 3.2(b), the colors

represented by vectors c3 and c4 have dissimilar sensor channel ratios, so the vectors point in

signi�cantly di�erent directions. Notice that it is not the absolute magnitudes of a color vector's

components, but their relative magnitudes that determine the vector's orientation, and hence the

color it represents.

It appears therefore, that we can use the orientation di�erence between two color vectors as

43



R

G

B

c1

c2
c5

c6

R

G

B

c3

c4

R

G

B
A

(a) (b) (c)

Figure 3.2: (a) Color vectors for 2 similar colors. (b) Color vectors for 2 dissimilar colors.

(c) The included angle, A, between 2 color vectors.

their color di�erence measure, because their orientation di�erence correlates well with their spectral

ratio di�erence. We propose using the magnitude of the included angle between the two vectors to

quantify their di�erence in orientation. Figure 3.2(c) shows what we mean by the included angle,

A, between two color vectors, c1 and c2. A can be easily computed from c1 and c2 as follows:

A = arccos

�
c1 � c2

jc1jjc2j

�
(3:1)

where � stands for the vector dot-product operation. As desired, this angular di�erence measure

responds only to true color changes and does not favour magnitude changes in any one channel

more than the others.

In the forthcoming chapters, we shall incorporate this notion of angular color uniformity and

di�erence into our color operations to perform smoothing, edge detection and region segmentation.

3.3 Other Color Spaces and Di�erence Measures

This section reviews some other approaches to representing color and computing color di�erences.

Where appropriate, comparisons will be made with the RGB vector representation scheme and our

angular color di�erence measure.
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3.3.1 UV Normalized Chromaticity Plane

Part of the di�culty in working with color as a ratio is that one has to keep track of irradiance

changes in multiple chromatic channels and how the changes relate to one another. Normalized

colors allows one to perform simple transformations on original sensor readings, like intensities in

the Red, Green and Blue sensor channels, to create a new set of readings, say H, that changes only

at true color boundaries. All that a color algorithm has to do then, is to interpret variations in H

as color variations in the scene. Lee [Lee 86], Hurlbert and Poggio [Hurlbert and Poggio 88] and

many others use the following set of transformations:

u =
R

R+G+ B

(3:2)

v =
G

R+G+ B

(3:3)

w =
B

R+G+ B

(3:4)

to obtain an intensity independent co-ordinate system for color. Normally, only the u and v values of

the transformation are preserved and mapped onto a two-dimensional co-ordinate system, known

as the uv normalized chromaticity plane. Values of w are discarded because they can be easily

derived from u and v. This representation elegantly reduces a three-dimensional color signal to a

two-dimensional co-ordinate system by mapping all RGB triplets of the same color onto the same

location of the uv chromaticity plane.

Finding a satisfactory color di�erence measure becomes a problem in this color representation

scheme if we want a measure that responds equally to magnitude changes in all three chromatic

channels. Euclidean distances on the uv chromaticity plane tend to magnify irradiance changes in

the Red and Green chromatic channels more than changes in the Blue channel. For example, the

colors Red, Green and Blue have R :G :B relative channel intensities of 1 : 0 : 0; 0 : 1 : 0 and 0 : 0 : 1

respectively, and uv co-ordinates of (1; 0), (0; 1) and (0; 0) in the chromaticity plane. White light

has an R :G :B channel ratio of 1
3
: 1
3
: 1
3
and a uv co-ordinate of (1

3
;
1
3
). Although the R :G :B ratio

of White light is equally di�erent from the R :G :B channel ratios of Red, Green and Blue light,

its uv chromaticity co-ordinate is geometrically closer to the Blue co-ordinate than to the Red and

Green co-ordinates. This distance anomaly may be somewhat compensated for if we used weighted

uv Euclidean distances:

kxkW = x
T
W

T
Wx

instead of normalized uv Euclidean distances as a di�erence measure, where xT = [�u�v] is the uv

di�erence vector and W is a 2�2 matrix of relative weights.
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3.3.2 CIE Uniform Color Spaces and Di�erence Measures

CIE2 uniform color spaces are designed to predict the magnitude of human perceived di�erences

between pairs of non-matching colors. Judd and Wyszecki [Judd and Wyszecki 75] provides a good

overview documentation about CIE color spaces and the problems involved with �nding satisfactory

color di�erence formulae.

One of the major problems with computing human perceived color di�erence is that the ob-

server's judgment varies greatly with the conditions of observation and the nature of the color

stimuli. Among the factors a�ecting the observer's judgment are sizes, shapes, brightness and rel-

ative intensities of the test objects and also their surroundings. Although there is currently a large

amount of experimental data on human color discrimination, CIE researchers have only been able

to design empirical models of color spaces that match the data only under certain experimental

conditions.

For standardization purposes among the scienti�c community, the CIE has proposed the use

of two approximately uniform color spaces and their associated color di�erence measures. Both

spaces are intended for normal observation conditions and in some situations, there is even evidence

that di�erent sets of coe�cients in the color di�erence formulae may be more appropriate. The

CIE 1976 (L� u� v�) Space is produced by plotting the quantities L�, u� and v
� in rectangular

co-ordinates, where L� is a function of irradiant intensity while (u� v�) encodes hue and saturation

information. The CIE 1976 (L� a� b�) Space is another three dimensional rectangular color space

where L
� also encodes intensity and (a� b�) results from a di�erent transformation for hue and

saturation values. Both color spaces use Euclidean distances as their color di�erence measures,

which unfortunately does not preserve the notion of color as spectral ratios.

3.3.3 Other 3D Vector Spaces

Physicists and Psychologists have devised a number of linear and non-linear transformations on

RGB channel intensities to obtain other color spaces that model certain psychophysical e�ects. The

YIQ space, for example, attempts to model the opponent-color theory of human color vision. Y is a

quantity very much like the overall intensity of an irradiance signal. The other 2 quantities, I and

Q, are chromaticity values that express color composition using a co-ordinate system whose axes are

opposing colormeasures like red and green, yellow and blue. The HSD (Hue, Saturation and Density)

space uses white light as a reference signal, from which all colors are encoded according to their

peak spectral location in the visible light spectrum (Hue) and spectral purity (Saturation). It is not

clear from current computer vision literature whether any of these color spaces or color di�erence

measures are better suited for color discrimination purposes than our RGB vector representation

scheme.

2International Commission of Illumination.
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3.4 Discussion

This chapter presents a color representation scheme and a color di�erence measure derived from a

pigmentation model of dielectric surfaces. The scheme treats color as a ratio of spectral intensities

to reect the physical property of light interacting linearly with material pigments. In a scene

with uniform or slowly changing illumination, the scheme predicts sharp changes in body reection

color only at material boundaries, because the di�erent pigment compositions of di�erent materials

give rise to their di�erent surface colors. Our angular color di�erence measure, therefore, detects

changes in color pigment content between di�erent regions in the scene by detecting changes in

body reected color.

By ascribing equal weights to irradiance changes in the Red, Green and Blue chromatic channels,

the color di�erence measure assumes that the spectral composition of most natural occurring scenes

contains almost equal amounts of energy in the three spectral wavelengths. Unfortunately, this equal

weighting feature makes the di�erence measure a poor approximation to human color di�erence

perception. There is evidence showing that humans are actually a lot more sensitive to spectral

changes in the Red and Green channels than in the Blue channel. Some cone densities studies near

the fovea of the human retina have even produced red, green and blue cone ratio estimates that

are as unequal as 32 : 16 : 1 [Vos and Walraven 70]! While it appears to be true that most natural

occurring substances like plants, animal tissues and geological features have colors that peak near

the red and green bands of the visible spectrum, man-made substances are equally likely to come

in all possible colors. It is conceivable therefore, that in an environment with man-made objects,

our equally weighted angular measure is likely to be a better overall detector of color di�erences

than a measure that tries to emulate human color di�erence perception.

Because the proper functioning of our representation scheme and color di�erence measure de-

pends only on color being treated as a spectral ratio, we can make our di�erence measure more

sensitive to changes in certain spectral channels by simply scaling sensor readings in the di�erent

channels appropriately. For example, to make a system twice as sensitive to irradiance changes in

the Blue channel than in the Red and Green channels, all one needs to do is to double all sensor

readings in the blue channel before building RGB vector representations. Notice that scaling still

maps (R G B) triplets with the same channel ratio to parallel vectors in the color space. A major

advantage of this feature is that a new set of relative channel sensitivities can always be selected

to suit the task being performed.

The scheme can also be generalized to use any suitable set of orthonormal color basis vectors

other than Red, Green and Blue. For example, a better set of orthonormal color basis vectors

can possibly be derived by performing principle component analysis [Young 86] on a representative

sample of pigment colors. Although such an analysis is beyond the scope of this thesis, our rep-

resentation scheme facilitates the use of a \better" set of color basis vectors should such a set of

vectors be found.
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Chapter 4

Color Noise

When working with natural occurring scenes, one inevitably has to deal with image noise. Noise

introduces random errors into sensor readings, making them di�erent from the ideal irradiance

values predicted by the Color Image Irradiance Equations 1.1 and 1.2 of Chapter 1. These ran-

dom errors often bring about undesirable side e�ects in subsequent vision processes. In boundary

detection for example, noise can give rise to unexpected irradiance discontinuities within surfaces,

or cloud out weak discontinuities between objects, resulting in unwanted spurious edges or missing

boundaries in edge maps. Similarly, in region �nding or image segmentation processes, noise can

perturb sensor readings in ways that lead to over-merging or fragmentation of image regions.

In Chapter 3, we introduced a surface color representation scheme based on the physical proper-

ties of color image formation. This chapter addresses the next logical problem in a signal processing

set-up for color, namely representing and reducing noise e�ects in the color context. We begin by

�rst discussing what we mean by noise in color signals and show how it can be quanti�ed in a way

consistent with our color representation scheme. Next, we extend the concept of smoothing into the

color domain as a means of reducing the strength of random color uctuations in images. The latter

half of this Chapter presents two color noise reduction techniques that preserve the sharpness of

color boundaries, while smoothing away unwanted noise uctuations within uniform color surfaces

at the same time.

4.1 What is Color Noise?

As mentioned in Chapter 3, color images are usually encoded as scalar irradiances in three in-

dependent sensor channels, namely the Red, Green and Blue chromatic channels. Like grey-level

intensity sensors, color sensors can also be a�ected by noise. This happens whenever there are

random uctuations in the scalar image irradiances recorded by each color channel. Normally, we

can expect the strength of scalar noise, N, in each color channel to be White Gaussian in form;

that is, having the following magnitude probability distribution:
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Pr(N = n) = G(�; n) =
1

p
2��

e

� n2

2�2 : (4:1)

To simplify our calculations for the rest of this chapter, we shall also assume that sensor noise

behaves like pairwise independent random variables in all three chromatic channels, having identical

probability distribution functions. That is, all three sensor channels have the same zero average

noise magnitude and the same noise variance, �, over the entire image. For any given image pixel

however, the noise readings in the three channels are totally uncorrelated, hence giving them a

pairwise independent random relationship. Under most imaging conditions with CCD cameras,

these are all reasonable assumptions.

4.1.1 Quantifying Color Noise

In order to deal with noise in the color domain, one should �rst have a proper understanding of

noise as a color e�ect. For example, how should one quantify noise for color values? What does it

mean when the color of one surface is more noisy than the color of another surface? Perhaps the

most straight-forward treatment of noise in a color signal is to keep track scalar noise magnitudes

in the three chromatic channels separately. Existing scalar noise operations can then be applied to

the three chromatic channels individually to reduce noise e�ects. It turns out, however, that such

a direct treatment of noise in the color context is in fact inconsistent with our normalized ratio

de�nition of color. This is because the same set of sensor channel noise readings that one has, can

be translated into color perturbations of di�erent magnitudes, depending on the actual value of the

original color signal. We shall see later in this section how this comes about.

We believe that just as the general notion of noise describes the amount of random uctuation

in a given quantity, color noise should measure the strength of random color uctuation in a color

signal. Because we are adopting a scalar angular measure for quantifying color di�erence in this

thesis, we propose using a similar scalar angular measure for quantifying color uctuation, and

hence color noise as well. Figure 4.1 shows what we mean by an angular noise margin in a color

signal. This approach of representing color noise has the following advantages:

First, the angular measure for color noise is consistent with our intuitive understanding of color

and the noise notion in general. Just as we would expect to �nd large di�erences in values among

members of a noisy scalar distribution, we can also expect to see wide angular spreads of color

vectors, and hence large di�erences in color values among samples of a noisy color distribution.

Second, the approach allows us to compare color noise strengths objectively on an angular

magnitude scale. This is important because it provides us with a means of evaluating the noise

reduction performance of a color noise operator quantitatively, by comparing absolute signal noise

levels before and after the operation.

Third, by using the same units of measurement for color di�erence and color noise, we can

compute Signal to Noise Ratios (SNR) for color images easily by taking direct quotients the two
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Figure 4.1: Noise margins for (a) a Color signal, quanti�ed as an angular measure; and (b)

a scalar signal, quanti�ed as a scalar measure.

quantities. The SNR is a much better indication of how severe noise e�ects are in an image than

absolute noise strength alone. A high SNR implies that noise induced color uctuations are small

as compared with actual color di�erences between image regions. This means that by de�ning

appropriate thresholds, we can still reliably tell apart color changes caused by noise from color

changes across object boundaries. A low SNR on the other hand implies that noise induced color

uctuations are large as compared with actual surface color di�erences, and can be easily mistaken

as actual color changes because of their magnitude. Under such circumstances, a vision system

might have trouble producing reliable edge-maps and region segmentations for the image.

4.1.2 Sensor Channel Noise and Color Noise

The rest of this section examines quantitatively how scalar noise in a color sensor contributes to

angular noise in a color signal. More precisely, we want to derive an angular probability distribution

function, PA(A), for color noise, in terms of scalar sensor noise magnitudes, �, similar to the White

Gaussian scalar noise probability distribution function given in Equation 4.1.

We shall proceed by considering �rst the idea of color noise as color di�erence vectors. Suppose

we represent noise in the 3 channels of a color pixel as a 3D perturbation vector in an RGB color

space. Let us also de�ne the magnitude of a perturbation vector as:
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2 (4:2)

where r, g and b are the scalar noise perturbation magnitudes in the Red, Green and Blue chromatic

channels respectively.

Since we are assuming that all three chromatic channels have identical noise distribution func-

tions of strength �, we can expect the the perturbation vector to have a spatial probability distribu-

tion function that is spherically symmetric about its origin, or in other words, one that depends only

on the value of p. The perturbation vector's magnitude, p, therefore has the following probability

distribution function:

Prp(p) =

Z p

�p

Z pp2�r2

�
p
p2�r2

Prr(r)Prg(g)[Prb(
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where Prr(n) = Prg(n) = Prb(n) = G(�; n) = 1p
2��

e

� n2

2�2 are all White Gaussian noise distribu-

tions with variance �2.

Substituting Gaussian expressions for the channel noise distributions Prr, Prg and Prb of the

double integral and performing the integration step, we eventually get:

Prp(p) = (
1

p
2��

)34�p2e�
p2

2�2 : (4:3)

Figure 4.2 plots the probability distribution function of Equation 4.3 for � = 20. Unlike the

zero-mean scalar noise distribution functions of individual sensor channels that peak at zero, the

function here peaks near p = 28, or in general, at values of p =
p
2�. What is more interesting

however, is that at p = 0, the value of the probability distribution function equals zero. This

suggests that as long as there is some non-zero scalar noise distribution in each individual channel

of a color sensor, all image pixel readings from the sensor will almost certainly be corrupted by

noise. One subtle point to note about Equation 4.3 before we proceed: For a given p value, the

expression evaluates the combined probability densities of all length p vectors in the perturbation

space. To obtain each length p perturbation vector's probability density value, we must divide the

expression by 4� p2, the total \number" of length p vectors in the perturbation space. It is crucial

that we clearly understand what Prp(p) quanti�es when performing the mathematical derivations

below.

To compute the angular color noise distribution, PrA(A), of a signal from its perturbation

magnitude distribution (Equation 4.3), we shall �rst use the geometric con�guration illustrated in

Figure 4.3 to determine Pr(� � A), the system's cumulative angular noise distribution function.

Di�erentiating Pr(� � A) with respect to A would then yield PrA(A), the result we want. If the

unperturbed color vector signal has length L, and p(x) =
p
L
2 + x

2 � 2Lx cosA is the magnitude

of the particular color perturbation vector, then the color noise cumulative angular probability
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Figure 4.2: Perturbation magnitude (Equation 4.3) for � = 20. In general, the function

peaks at p =
p
2�.

distribution would be:

Pr(� � A) =

Z 1

x=0

Z A

�=0

Prp(p(x))

4�p(x)2
2�x2 sin�d�dx

Substituting the expression for Prp from Equation 4.3 into the integral above and expressing p

in terms of x as we did in the previous paragraph, we get:

Pr(� � A) =

Z 1

x=0

Z A

�=0
2�(

1
p
2��

)3x2e�
x2+L2+2Lx cosA

2�2 sin�d�dx

= K �
1

2
cos Ae�

L2 sin2 A

2�2 (1 + erf(
L cos A
p
2�

));

where K is a term without A and erf(t) =
q

2
�

R t
0 e

t2
dt is the error function. Finally, di�erentiating

Pr(� � A) with respect to A yields:

PrA(A) =
1

2
sin Ae

�L2 sin2 A

2�2 (1 +
L
2 cos2A

�
2

)(1 + erf(
L cosA
p
2 �

))

+
1

4
sin 2A

r
2

�

L

�

e

� L2

2�2 : (4.4)

Equation 4.4 clearly shows that the angular noise distribution of a color signal depends on

both the color sensor's scalar noise strength (�) and the signal's vector magnitude (L). Since color

di�erences are quanti�ed as angles in this thesis, it follows that for a �xed sensor channel noise level,

�, colors of brighter image pixels (larger L's) tend to get less severely a�ected by sensor noise than

colors of dimmer pixels (smaller L's). This explains the assertion we made earlier in this section

that the same set of sensor channel noise readings can be translated into color perturbations of
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x

L

p

Figure 4.3: Geometric con�guration for computing angular color noise distribution from

color perturbation magnitude distribution.

di�erent magnitudes.

Under normal lighting conditions where L � � for most image pixels, the second term in

Equation 4.4 diminishes because of the e
� L2

2�2 factor and only the �rst term dominates. Furthermore,

considering only small values of A where the value of PrA(A) is signi�cant, we can make the

following additional approximations: sinA � A, cosA � 1 and (1+erf(L cos Ap
2�

)) = 2. Equation 4.4

thus reduces to:

PrA(A) � Ae

�L2A2

2�2 (1 +
L
2

�
2
); (4:5)

which takes the form of a Rayleigh Distribution: K xe

� x2

2�2r where �r = �
L
. Figure 4.4 plots our

approximate angular color noise distribution (Equation 4.5) against our actual angular color noise

distribution (Equation 4.4) for several values of L=�. Notice how well the approximate distribution

conforms with the actual distribution, even for the relatively small L=� values we use.

A �nal but interesting observation to make about Equation 4.5 is that PrA(A = 0) = 0 as in a

Rayleigh distribution. In other words, as long as scalar channel noise exists in a color sensor, we can

expect the color of all image pixels to be corrupted and di�erent from their original values. Also,

the expected angular color displacement at each pixel is approximately
q

�
2
�r =

q
�
2
�
L
radians.
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Figure 4.4: Actual and Approximate angular noise distributions for three values of L=�.

Top row: L=� = 2. Center row: L=� = 5. Bottom row: L=� = 10. Notice that the

approximation improves as the L=� ratio increases.
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4.2 Color Averaging

To reduce the strength of noise in an image, one normally uses an averaging or smoothing operation

to �lter away random uctuations due to noise. As the name suggests, averaging computes local

mean values at all image pixels to produce output readings that are statistically closer to the

original uncorrupted image signal. For scalar signals bathed in zero-mean White Gaussian noise

with variance �2, it can be analytically shown that taking the mean of a signal over k samples

reduces the signal's noise variance to �2

k
, or 1

k
its original value (see for example [DeGroot 86]).

The average noise strength, �, in the original signal is thus also reduced to �p
k
, or 1p

k
its initial

value in the smoothed output.

4.2.1 The Color Mean

We shall now extend the concept of averaging as a noise reduction technique into the color domain.

Like scalar averaging, this process involves computing an unknown quantity called the mean value of

a sample of colors. Since the main purpose of averaging is one of reducing random noise uctuations

in an image, color averaging should therefore also seek to reduce random angular uctuations

in a color signal. Ideally, this means that the mean color vector we �nd should be a suitable

\representative" of its color sample in some sense.

Most machine vision systems today treat color representativeness as having representative in-

tensity values individually in the three separate chromatic channels. The formula below computes

the arithmetic mean, �, of a scalar valued sample: x1; : : : ; xn:

� =
1

n

nX
i=1

xi: (4:6)

Suppose we use the traditional notion of color representativeness to compute the mean value of

a color sample: c1; : : : ; cn, where each ci is a 3D vector [ri gi bi]
T of Red, Green and Blue channel

intensities. Then the sample's color mean can be expressed as the color vector:

� =
1

n

nX
i=1

ci

=
1

n

nX
i=1

2
664
ri

gi

bi

3
775

=

2
664

1
n

Pn
i=1 ri

1
n

Pn
i=1 gi

1
n

Pn
i=1 bi

3
775 : (4.7)
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Unfortunately, this channel based de�nition of color mean is inconsistent with our ratio color

representation in this thesis, because it allows two color samples containing the same color elements

to produce mean vectors that represent di�erent colors. The following example shows how this

de�nition fails.

Since we are treating color as a normalized ratio of sensor channel intensities, we can replace

any element, say c1, in the color sample above, with a scaled multiple of itself, kc1, and still get

back a color sample with the same color elements. Computing the new sample's color mean using

the approach in Equation 4.7, however, now yields:

�new =
1

n

nX
i=1

ci + (k � 1)c1

= �+ (k � 1)c1: (4.8)

Clearly, the two mean vectors �new and � can point in di�erent directions, and hence represent

di�erent colors.

Rightfully, our color mean algorithm should compute \representative" colors as a whole and

not just representative channel intensity values. It particular, it should be able to use color vectors

having identical channel ratios interchangeably, because they all represent instances of the same

color. This is possible if we adopt an angular interpretation of \color representativeness", similar to

an important mathematical property that the arithmetic mean exhibits. It can be shown that for

a scalar sample: x1; : : : ; xn, the arithmetic mean (�) is the number, d, that minimizes the sample's

Mean Squared Error:

E[(xi � d)2] =
1

n

nX
i=1

(xi � d)2: (4:9)

This is one property that makes the arithmetic mean a good \average" measure, because it main-

tains as small a value di�erence as possible between all elements of the sample and itself.

The mean value (�) of a color sample: c1; : : : ; cn, can therefore be similarly de�ned as the

vector, d, that minimizes the expression:

E[A2(ci;d)] =
1

n

nX
i=1

A2(ci;d): (4:10)

where A(i; j) is the angular color di�erence measure between vectors i and j. The condition is

analogous to that of Equation 4.9 except it now minimizes the angularMean Squared Error between

� and all of c1; : : : ; cn. Physically, if each of c1; : : : ; cn were normalized into a vector of given length

and replaced by an equal length rod of uniform density in the 3D space, then we can imagine � to

be the system's axis of least inertia.
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Equation 4.7 can be modi�ed to compute color mean vectors in the minimum mean squared

error sense. Minimizing squared angular di�erences is equivalent to weighing each color vector's

ratio equally when computing the direction of �. This can be done by normalizing the channel

components of each color vector by the vector's own magnitude as in the summation below:

� =
1

n

nX
i=1

ci

jcij

=
1

n

nX
i=1

1q
r
2
i + g

2
i + b

2
i

2
664
ri

gi

bi

3
775 ; (4.11)

which we shall henceforth adopt as our color mean de�nition.

4.2.2 Color Averaging and Noise Reduction

The following mathematical analysis describes quantitatively how angular noise gets reduced by

computing color mean vectors. Let us consider an averaging operation of n color vectors, c1; : : : ; cn,

whose lengths are L1; : : : ; Ln respectively. All n vectors are immersed in White Gaussian sensor

channel noise of strength �. Using Equation 4.5 together with our length and channel noise pa-

rameters, we get an approximate angular noise distribution for the color vector ci:

Pri(A) � Ae

�L2
i
A2

2�2 (1 +
L
2
i

�
2
); (4:12)

for small values of A.

We shall now use Equation 4.11 to derive a similar expression for the angular noise distribution

of the sample's color mean, �. The normalization step in the summation yields, for each ci, a

color vector of length 1 with individual sensor channel noise distributions G( �
Li
; n). Applying

the Linear Combination Property for Gaussian distributed variables (see for example Chapter 5.6

of [DeGroot 86]) to the summation and division by n steps, we can show that the channel noise

distribution for � will still be Gaussian in form and have a variance of �2

n2
[ 1
L2
1

+ � � �+ 1
L2
n
]. The

resulting magnitude of � will also have an expected value of 1.

To translate �'s channel noise and length parameters into an angular noise distribution, we

substitute 1 for L and �
n

q
1
L2
1

+ � � �+ 1
L2
n
for � into Equation 4.4. This gives us:

Pr�(A) =
1

2
sin Ae

�L2� sin2 A

2�2 (1 +
L
2
� cos

2
A

�
2

)(1 + erf(
L� cosAp

2�
))

+
1

4
sin 2A

r
2

�

L�

�

e

� L2�

2�2 ;
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where 1
L�

= 1
n

q
1
L2
1

+ � � �+ 1
L2
n
, which we can rewrite as: L� = �(

p
nLi) �

p
nLi, assuming the

best possible scenario whereby all the original unnormalized color vectors have approximately the

same length. Finally, considering once again only the small values of A where Pr�(A) is signi�cant,

we get:

Pr�(A) � Ae

�L2�A
2

2�2 (1 +
L
2
�

�
2
)

= Ae

�nL2
i
A2

2�2 (1 +

p
nL

2
i

�
2

): (4.13)

Comparing the Rayleigh distributions of Equations 4.12 and 4.13, we see that before averaging,

the angular noise distribution, Pri(A), of the system, peaks at A = �
Li

with mean

q
�
2
�
Li
. After

averaging, the resulting angular noise distribution, Pr�(A), peaks at A = �p
nLi

with mean
q

�
2n

�
Li
.

Color averaging over n samples thus reduces the strength of angular noise by a factor of
p
n at

best.

4.3 An Averaging Algorithm

Because unconstrained color averaging operates on image color at all pixel locations, actual color

discontinuities get smoothed by the averaging process as well. This smoothing process degrades

color boundaries by slowing down color changes across them. This in turn creates undesirable side

e�ects for certain color operations, like edge detection, that assume sharp color changes across

material boundaries.

Even if we were to consider only Signal to Noise Ratios and not absolute signal strengths at color

boundaries, unconstrained color averaging generally does not help us enhance color discontinuities

either. Suppose we choose a non-directional n � n pixel square kernel for our color averaging

operation. Using results presented in the previous section, we can show that taking an n2 sample

color mean reduces the strength of angular color noise by a factor of n (or to a level of 1
n
times

its original value). Figure 4.5 summarizes next the operator's e�ect on the \slope" of a color

boundary. If the discontinuity were ideal, then smoothing longitudinally across it with the same

kernel transforms its step like pro�le into a ramp whose increments are 1
n
times the magnitude of

the original step di�erence. So, unconstrained averaging with a 2D �lter attenuates both the signal

and noise strengths of a color image by the same proportion, namely 1
n
.

4.3.1 A Markov Random Field Formulation

In this section, we present a di�erent approach to color averaging that helps us overcome the bound-

ary smoothing problem. The approach treats each color image as a 2-dimensional lattice of color val-
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Figure 4.5: (a) Square averaging �lter in the vicinity of a color boundary in 2 dimensions.

(b) Discrete convolution of square �lter and color hue pro�le along a longitudinal cross

section of the color discontinuity (the dotted line in (a)). (c) Result of convolution. A ramp

pro�le whose value increments are 1
n
times the magnitude of the original step di�erence.

59



ues and attempts to �t piecewise smooth color hyper-surfaces to the image data within certain con-

straints. All this is done through a process known as regularization [Poggio Voorhees and Yuille 84],

using a computational framework called Markov Random Fields (MRFs). Several others, notably

Poggio et. al. [Poggio et. al. 85] [Poggio et. al. 87], Gamble and Poggio [Gamble and Poggio 87],

Geman and Geman [Geman and Geman 84] and Blake and Zisserman [Blake and Zisserman 87],

have employed similar techniques before to reconstruct image surfaces of other visual cues, such as

depth and motion �elds, from sparse and noisy data.

Briey, MRFs associate an energy potential with each possible solution to a surface reconstruc-

tion problem. This energy function depends only on local pixel interactions within the reconstructed

image surface. That is, the amount of energy each pixel contributes to the system's total energy

function depends only on the �nal image values assigned to the pixel itself and to its immediate

neighbours. The system's total energy is the sum of the energy potentials contributed by all pixels

in the image. Normally, this quantity is small if all pixels in the reconstructed image have values

that are similar to their immediate neighbours', and close enough to their original values. Finding

a minimum energy solution to the system therefore amounts to smoothing pixel values for the

image, while still maintaining the overall shape of the original surface. More importantly, MRF

techniques are also able to integrate edge based information with region based smoothing because

they contain a mechanism, called a line process, that curbs pixel-wise interaction across plausible

boundaries. So, if we exploit this line process mechanism intelligently in our color averaging task,

we can reduce noise uctuations within image regions, while preserving sharp color changes across

most color boundaries at the same time.

We now describe the MRF technique in greater detail as it applies to our color averaging

problem. Given a color image, we �rst transform the image into a color vector �eld Cxy on a

regular 2 dimensional lattice of points (x; y). Our goal then is to determine a solution �eld ~
Cxy

which is

1. \close" enough to the original color �eld, Cxy, by some measure, and

2. locally \smooth" by some measure except at locations that correspond to plausible color

boundaries in the image.

To formalize the above constraints, we introduce an energy function that the desired solution

�eld, ~
Cxy, should minimize. For each lattice location (x; y), the full energy potential is:

Exy = A2( ~Cxy; Cxy)

+ � [(1� hxy)A2( ~Cx+1;y;
~
Cxy) + (1� hx�1;y)A2( ~Cxy;

~
Cx�1;y)

+ (1� vxy)A2( ~Cx;y+1;
~
Cxy) + (1� vx;y�1)A2( ~Cxy;

~
Cx;y�1)]

+  (hxy + vxy + hx�1;y + vx;y�1); (4.14)
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where as before, A denotes the angular color di�erence measure of Chapter 3. h and v are the

horizontal and vertical line processes that we hinted about earlier. They have a values 0 or 1 at

every (x; y) lattice location, where 1 indicates the presence and 0 the absence of a color boundary.

Qualitatively, Equation 4.14 can be interpreted as follows: The �rst term enforces \closeness" by

penalizing solutions that are very di�erent from the original data value. The second term favours

\smooth" color transitions between neighbouring pixels, except across plausible color boundaries

where the line processes h or v have values of 1. The third term introduces a penalty for each line

process created, so that discontinuities are only declared where color changes are sharp enough to

have arisen from color boundaries. Equation 4.15 gives us the total energy function of the entire

system, which equals the sum of energy potentials over all lattice locations.

Etotal =
X
x;y

Exy: (4:15)

In the past, only stochastic algorithms based onMonte Carlo and simulated annealing techniques

were available to actually solve Equations 4.14 and 4.15 for their minimum energy con�guration ~
Cxy

[Marroquin 85] [Marroquin Mitter and Poggio 85]. Unfortunately, these methods are computation-

ally very expensive and non-deterministic in behaviour. Also, they do not guarantee convergence

although this problem hardly arises in reality. It was not only until recently, when Geiger and

Girosi [Geiger and Girosi 89] developed a mean �eld theory based deterministic approximation to

the stochastic algorithms above, that the MRF approach towards color averaging �nally became a

lot more feasible.

4.3.2 A Deterministic Approach

Our solution to the minimization problem above is based on another MRF deterministic approxima-

tion technique, developed by Hurlbert and Poggio for segmenting scalar hues [Hurlbert and Poggio 88]

[Hurlbert 89]. Here, we are extending their algorithm to smooth 3D color vector �elds. Basically,

we discard the \closeness" term, A2( ~Cxy; Cxy), of Equation 4.14 from the energy potential, and

incorporate the third (line process) term into the second (\smoothness"). The new energy function

becomes:

E
New
xy = �[(1� hxy)Q(A( ~Cx+1;y); ~Cxy) + (1� hx�1;y)Q(A( ~Cxy;

~
Cx�1;y))

+ (1� vxy)Q(A( ~Cx;y+1;
~
Cxy)) + (1� vx;y�1)Q(A( ~Cxy;

~
Cx;y�1))]; (4.16)

where Q(x) is a zero-centered quadratic function, truncated to a constant when jxj is above a

certain value (see Figure 4.6).

Hurlbert and Poggio derived, for the scalar �eld case, an iterative algorithm that uses gradient

descent to �nd stable minimum energy hue con�gurations. For color vector �elds, the following
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x

Q(x)

Figure 4.6: Quadratic function that implements the energy potential for deterministic MRF

smoothing.

di�erential equation (the 3D analogue of Hurlbert and Poggio's scalar equation) governs successive

changes in Cxy:

dCxy

dt

= ��
@E

New
xy

@Cxy

: (4:17)

Assuming none of location (x; y)'s immediate neighbours are separated from location (x; y) by line

processes, then choosing an appropriate value for � and solving the system for values of Cxy at

discrete times t yields:

C
t+1
xy = MEAN(Ct

x+1;y; C
t
x�1;y; C

t
x;y+1; C

t
x;y�1): (4:18)

where MEAN denotes the color mean operation that we de�ned earlier.

Equation 4.18 describes an iterative algorithm that repetitively replaces the color of each image

pixel with the mean color of its four immediate neighbours. Intuitively, the mean operation sup-

presses random angular noise uctuations and propagates uniform color values across the image at

the same time. To prevent smoothing across probable region boundaries, Hurlbert and Poggio's

algorithm takes as input one or more edge maps, which it uses as line processes to contain averag-

ing. In addition, it also disallows averaging between pixels whose hue di�erences are greater than

some free threshold, T. The modi�ed updating algorithm uses only neighbouring pixels having the

same edge label as the central pixel, and whose colors are similar enough to the central pixel's

color to compute new color means. This edge label and color similarity restriction, together with

the original four nearest neighbour updating scheme, helps ensure that averaging only takes place

among pixels that lie on the same side of a physical color discontinuity.
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4.3.3 Simulating a Dynamic Line Process

Because Hurlbert and Poggio's averaging scheme uses the same input edge maps and threshold

values to curb averaging throughout its entire iteration stage, we expect its �nal solution �eld to

exhibit sharp discontinuities only where there are recorded edges, or where the �eld discontinuities

are already su�ciently steep to begin with. This feature would be ideal if our edge map inputs were

perfect or if suitable threshold values could be determined in advance, since the outcome would then

be a set of smoothly colored regions, fully bounded by sharp color discontinuities. Unfortunately,

most edge detection techniques today are not perfect and the edges they �nd often contain broken

fragments [Beymer SM]. The task of determining suitable boundary threshold values for an image

is also a di�cult problem that still has not been satisfactorily solved. So, inter-region smoothing

can still occur where there are edge gaps, and this only weakens the color contrast of the gaps as

the number of iterations increases beyond a certain limit.

Traditional MRF algorithms (eg. Monte Carlo and simulated annealing techniques), on the

other hand, tend to be less badly a�ected by initial edge defects because they contain a mechanism

that dynamically updates line processes. New line processes at weak boundaries can subsequently

be enabled if their discontinuities get sharper as the computation progresses. Similarly, existing

spurious line processes due to data noise can be subsequently disabled, should their random uctu-

ations later diminish. The mechanism is therefore expected to \seal up" most edge gaps until the

lattice of values attains a stable con�guration, which is ideal for controlling the spread of uniform

color values.

A similar \line process updating" mechanism can be easily incorporated into Hurlbert and

Poggio's iterative averaging framework as follows: We interleave the operation of an edge detector

with the existing color update process. The edge detector computes a new edge map for the current

color �eld each time it is invoked. The algorithm then uses this new edge map as its updated \line

process" for subsequent iterations until the next edge detector call.

We have implemented the full deterministic averaging algorithm above that approximates MRF

smoothing with dynamic line processes. The edge detector used is a Canny color edge �nder

that responds to color ratio changes. A detailed description of the edge detector can be found in

Chapter 5. Figures 4.7 and 4.8 show the changing edge maps that the algorithm produces on two

natural occurring images. The algorithm computes a new edge map for each image once every 5

iteration updates. Although we ran the update procedure on each image for only 100 iterations,

the results clearly con�rm 2 important facts:

1. Local averaging does indeed smooth away random color uctuations in an image, as the

temporally decreasing number of spurious edges in the edge maps suggest. On surfaces with

weak specularities, like the cups of Figure 4.8, the algorithm is able to smooth away the

specularities as well.
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Figure 4.7: Changing edge maps produced by our deterministic MRF-like averaging scheme

with a \line process updating" mechanism. Top Left: Original image. Top Right: Initial

edge map. Center Left: Edge map after 10 iterations. Center Right: After 20 iterations.

Bottom Left: After 50 iterations. Bottom Right: After 100 iterations.
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Figure 4.8: Changing edge maps produced by our deterministic MRF-like averaging scheme

with a \line process updating" mechanism. Top Left: Original image. Top Right: Initial

edge map. Center Left: Edge map after 10 iterations. Center Right: After 20 iterations.

Bottom Left: After 50 iterations. Bottom Right: After 100 iterations.
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2. Our simulated \line process updating" mechanism performs well in sealing up most broken

edge fragments and maintaining sharp color contrasts across color boundaries. The edges

that correspond to actual object boundaries in the image are extremely stable only because

no smoothing could have taken place across them.

4.4 Color Median Filtering

Ideally, a machine vision system should be able to determine its own operating parameters auto-

matically under most imaging conditions. Otherwise, it might have to depend on human help to

recalibrate itself for di�erent image inputs. This becomes a serious problem if we want to build

vision systems that guide autonomous robots and vehicles, because these \autonomous" machines

cannot be truly independent of human control.

So far, our color averaging approach assumes two sets of free parameters, namely mask di-

mensions (or in the deterministic MRF approximation case, the number of update iterations) and

boundary thresholds. We shall defer the problem of determining suitable mask sizes for our color

�lters till Chapter 6, where we derive a formal relationship between image noise and signal de-

tectability. As for now, we will just focus our attention on the color di�erence thresholds that

help us de�ne \line processes" for smoothing. In the deterministic MRF approximation scheme

we implemented, these boundary threshold parameters appear absent because they actually reside

within the color edge detection routines that update line processes. In the full MRF smoothing

framework, these thresholds become the  coe�cient of Equation 4.14, a parameter that trades

o� color smoothness with boundary formation. Unfortunately, for most natural occurring images,

choosing a suitable set of boundary thresholds can be a very di�cult problem that involves consid-

erable trial and error. Furthermore, a suitable set of thresholds for one part of an image may not

even be suitable for another part of the same image because of di�erences in appearance.

4.4.1 Why Median Filtering?

This section introduces an alternative approach to color averaging, called color median �ltering, that

implicitly seeks its own natural boundary thresholds at di�erent parts of the image. The technique

replaces each pixel's value with the median value of its local neighbourhood, where mathematically,

the median m of a set of values is such that half the members in the set are \greater" than m and

half are \less" than m. Like mean averaging, median �ltering also produces a \smoothed" image

output in which the strength of random noise is reduced. More importantly however, the technique

also exhibits a desirable side e�ect absent in mean averaging, namely, it preserves the sharpness of

image boundaries and other image line features.

The e�ect of median �ltering on noise and image features can be best illustrated with a 1

dimensional scalar signal processing example as in Figure 4.9. Here, we are convolving the signal
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Figure 4.9: (a) Original noisy scalar signal. (b) Result after Median window �ltering with

a size 13 mask. Notice how outlying data points get rapidly smoothed and how boundary

sharpness gets preserved by the operation. (c) Result after mean averaging with a size 13

mask.
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with a median window �lter of size 13; or in other words, we are replacing each pixel's value with

the median value of itself and its 12 nearest neighbours. Notice two important features about

the operation: First, the technique smoothes away arbitrarily large spikes like those near the step

boundary very rapidly. The spikes' magnitudes do not a�ect the operator's smoothing e�ect much,

because occasional data outliers do not change the value of the median. Second, the operation

preserves the sharpness of edges. Since the median of a sample must be one of the sample's

members, the median value at a boundary location must be an existing value on either side of the

boundary. No \in between" values can be created at the junction, so we can still expect a slope

that is as steep as the original boundary gradient.

4.4.2 Scalar Median Statistics

For scalar signals, we can show that median �ltering is almost as e�ective a noise reduction technique

as mean averaging. Statistically, both the local mean and median values of a noisy signal estimate

the true value of the signal almost equally well. More precisely, the expected errors of the 2

quantities with respect to the signal's true value di�er only by a small constant multiplicative

factor, namely �
2
. We present some relevant results leading to this conclusion in the following 2

paragraphs.

Suppose we use a size n local neighbourhood to determine the true signal value, Sxy, at each

location (x; y) of an image. Let us also assume as before that the image is bathed in white Gaus-

sian noise, G(�; s). The measurable signal at image location (x; y) will therefore be a symmetric

probability distribution function:

f(s) = Sxy +G(�; s);

centered at Sxy, because G(�; s) is itself a zero-centered symmetric probability distribution function.

Assuming further piecewise constancy, such that all n local neighbourhood locations have the same

signal distribution function f(s), then as we have seen before, the size n sample mean, �
S
n
xy, at

image location (x; y) will be an Sxy centered Gaussian distribution function with variance �2

n
.

To determine the size n sample median distribution, ~Snxy, at image location (x; y), we shall use

a theorem on large sample properties of the median (see Section 9.8 of [DeGroot 86]). If the n

nearest neighbours of location (x; y) have the same Gaussian distributed values, f(s), as location

(x; y) itself, then for large values of n, it can be shown that ~Snxy will also have a Gaussian distribution

with mean Sxy and variance 1
4nG2(�;0)

= ��2

2n
.

We shall perform a similar analysis later to compare the smoothing e�ects of median window

�ltering and mean averaging for three dimensional color data.
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4.4.3 The Color Median

Our earlier de�nition of the sample median implicitly assumes some total ordering on all sample

members. Obviously, the same de�nition fails for color data, because no general total ordering

notion exists for vector quantities. To conclude this section, we propose an alternative interpretation

for the color sample median, which we will use in this thesis to synthesize color median �lters.

Intuitively, the color median should exhibit the following 2 properties to ful�ll its role as an

averaging operator and a boundary preserver:

1. It must be a representative measure of its color sample in some sense. Only then can it have

a smoothing e�ect on data like the sample mean.

2. It must have the same value as some member of the sample. Just as the scalar sample median

preserves sharp step pro�les by not introducing any \in between" scalar values at junctions,

the color sample median can also preserve sharp color changes by not introducing any \in

between" color values.

A reasonable color median interpretation follows from an algebraic property of the scalar sample

median, similar to that of Equation 4.9 for the scalar sample mean. It can be shown that for a

scalar sample: x1; : : : ; xn, the sample median is the member, m, that minimizes the Mean Absolute

Error (M.A.E.) term:

E[jxi�mj] =
1

n

nX
i=1

jxi �mj: (4:19)

We shall similarly de�ne the median value of a color sample: c1; : : : ; cn, as the sample member,

cm, that minimizes the expression:

E[A(ci;m)] =
1

n

nX
i=1

A(ci;m); (4:20)

where as before, A(i; j) denotes the angular color di�erence measure between vectors i and j.

Notice how both requirements are met in this de�nition of the color median. An O(n2) algorithm

exists for �nding a pixel's size n local neighbourhood color median vector. Basically, we compute

the system's Mean Absolute Error for each sample member, ci, using Equation 4.20, and select the

sample member, cm, that produces the smallest result.

Figure 4.10 compares the smoothed output of a Gaussian weighted color averaging �lter with

that of an equivalent1 color median �lter on a simple test image. The results are self explanatory.

Notice from the hue maps how color median �ltering preserves sharp hue changes in the original

image, while smoothing away random hue uctuations at the same time.

1The equivalent color median �lter has a mask radius equal to the Gaussian averaging �lter's standard deviation

(�).

69



Figure 4.10: E�ects of 2 passes of weighted color mean averaging (� = 3) and color median

�ltering (window radius = 3) on a plastic cup image. Top Left: Original Image. Top Right:

Region whose hue pro�le we are displaying. Second Row: Color edge maps of original

image, image after color mean averaging and image after color median �ltering. Bottom

Row: U channel hue pro�le of bordered region in original image, in image after color mean

averaging and in image after color median �ltering.
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4.4.4 Color Median Statistics

We conclude this chapter by informally analyzing the e�ectiveness of our color median algorithm

as an angular noise reduction technique. Although our intention here is to seek an average case

noise reduction measure for color median �ltering, we are unfortunately unable to present such a

result at this time because we still do not fully understand the 3-dimensional statistical nature of

the color median. Instead, we shall just derive a result that may be interpreted as a best case noise

reduction measure for color median �ltering. Without further insight into the color median notion

and its statistical behaviour, we can only guess for now that the average case color noise reduction

measure di�ers from this derived best case measure by only a constant multiplicative factor.

Suppose we want to compute the color median of a noisy size n image patch whose individual

pixel colors are c1; c2; : : : ; cn. Our analysis assumes that the color median is the pixel color, ci,

whose ratio is closest to that of the sample's true color mean2. Geometrically, ci is the pixel color

whose angular noise perturbation is smallest among all the sample colors: c1; c2; : : : ; cn.

Recall from Equation 4.5 that a pixel's angular color noise perturbation, A, has the following

approximate distribution:

PrA(A) � Ae

�L2A2

2�2 (1 +
L
2

�
2
);

with mean: �
A �

q
�
2
�
L
. Assuming that the ratio L

�
is su�ciently large, we can further approximate

the distribution above as:

PrA(A) � Ae

�L2A2

2�2
L
2

�
2
: (4:21)

From Equation 4.21, we can now derive the probability distribution function for An, the minimum

value of n independent angular color perturbation (A) measurements:

PrAn(An) � Ane
�nL2A2

n
2�2

nL
2

�
2
: (4:22)

The distribution above has a mean value of �
An =

q
�
2n

�
L
, or 1p

n
times the expected angular

color perturbation of a single pixel. So, like color mean averaging, color median �ltering over n

pixels reduces the strength of angular color noise by a factor of
p
n at best.

2In reality, this need not always be true, so the result we obtain for this analysis will be overly optimistic.
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Chapter 5

Color Boundary Detection

Boundary detection has often been regarded as one of the key early level vision modules in many

computer vision applications, for example model based object recognition [Grimson and Lozano-Perez 85a]

[Grimson and Lozano-Perez 85b], shape from motion computation [Ullman 79] [Hildreth 83] and

stereo image analysis [Marr and Poggio 79] [Grimson 81]. A critical step in abstracting image sig-

nals into symbolic tokens involves identifying and locating physical discontinuities in the scene.

Although intensity edge detection, or the detection of grey level luminance changes, is useful for

�nding most physical discontinuities in the viewing environment, it alone cannot distinguish be-

tween the various types of physical discontinuities because almost all discontinuity types can bring

about image intensity changes (see Table 1.1 of Chapter 1). Other visual cues are needed to classify

the di�erent types of discontinuities present.

Previous work by Rubin and Richards [Rubin and Richards 81] [Rubin and Richards 84] have

shown that color is a useful cue for di�erentiating material changes from other types of scene dis-

continuities. Material boundaries are interesting because they outline object entities or meaningful

parts of an object in the real world. As such, they can be used to speed up higher level vision

processes, in particular object recognition, by grouping together portions of an image that most

probably belong to a single world entity.

In Rubin and Richards' edge algorithm, color (or material) boundaries are detected by �rst

�nding image irradiance discontinuities in the three separate chromatic channels. The algorithm

then performs a Spectral Crosspoint check and an Ordinality test at each edge location to determine

whether the irradiance edge actually corresponds to a color or material boundary, details of which

can be found in [Rubin and Richards 81]. It should be noted, however, that even in an image

without specularities and other secondary e�ects, neither the spectral crosspoint condition nor the

ordinality violation condition need to occur at material boundaries. Most color edge detection algo-

rithms today [Hurlbert 89] [Lee 86] detect material boundaries by �nding grey level discontinuities

in image hue values:
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u =
R

R+ G+B

; and

v =
G

R+ G+B

:

These values are known to be relatively stable within regions of uniform material origin and di�erent

across material boundaries.

This chapter describes an autonomous color boundary detection technique that is based on

the normalized color ratio representation scheme of Chapter 3. By autonomous, we mean that

the technique is able to detect color boundaries independent of other visual cues, such as inten-

sity boundaries. To quantify image color changes, the technique uses the angular color di�erence

measure of this thesis, which we have reasoned to be the most sensitive and \well balanced" color

discriminating measure for our chosen color representation scheme and the pigmentation model

of material composition. We can therefore expect the technique to produce optimally \correct"

edge responses, where \correctness" means successfully marking true color (or material) bound-

aries and not wrongly marking false boundaries, like pure intensity discontinuities due to shadows

or orientation changes.

Because color data is sensed separately as grey level intensities in the three chromatic channels

and combined multiplicatively as ratios, noise e�ects tend to get ampli�ed when computing color,

as discussed in Chapter 4. This usually results in color boundaries that are more badly broken

and less well shaped than their intensity counterparts of the same image. Fortunately, most color

discontinuities in real scenes also correspond to intensity discontinuities that can be independently

detected by intensity edge detectors. The last section of this chapter describes a mechanism that

uses intensity edges to reconstruct the color edges detected by our color edge �nder. The algorithm

takes as input a color edge map with its intensity edge counterpart, and produces an integrated

color edge map whose edges are better connected and localized due to the intensity cues.

5.1 A One-Dimensional Boundary Detection Formulation

Most edge detection techniques today take place in several stages, the �rst of which usually enhances

probable image boundary locations in some fashion. Subsequent stages are then used to mark and

link together discontinuities locations in the image to form linear edge features. The theoretical

emphasis of our work will be on this �rst stage of color boundary detection, namely the problem

of enhancing probable color image boundaries. Although most later color edge detection stages are

also interesting processes that deserve special attention in their own right, they are very similar

in nature to their boundary detection counterparts of other visual cues, and will therefore not

be discussed here in any detail. It is this �rst color boundary enhancement stage that actually
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Figure 5.1: (a) Symbolic description of a color step edge. (b) Desired form of response

after convolution of spatial operator with color step edge pro�le. (c) A linear array of color

vectors, representing a color step edge pro�le. (d) E�ect of sensor noise on the color vector

array representation of (c).

distinguishes our color boundary detection technique from other color edge detection algorithms,

or for that matter, edge detectors of any other visual cue.

The basic design problem is as illustrated in Figure 5.1, where we want to highlight sudden color

changes in an image, like the \step" color pro�le of part (a). Let us assume, for the time being,

that the \step" pro�le is ideal, or in other words, the colors are perfectly uniform on both sides of

the discontinuity. To perform the discontinuity enhancement task, we \convolve" the image signal

with some spatial operator to produce a scalar response that peaks at the color junction. Our

objective is to derive such a spatial operator, that upon \convolving" with a color �eld, produces

a scalar output pattern somewhat similar in form to Figure 5.1(b).

The rest of this section describes how color \convolution" can be transformed into a mathemat-

ically computable operation on vector arrays. Because we are treating color as 3-dimensional vector

values in the RGB color space, the color pro�le of Figure 5.1(a) can be quantitatively represented

as a linear array of 3D color vectors (see Figure 5.1(c)). For ideal \step" pro�les, vector orientation

changes should only occur at color boundaries. The desired convolution operator should therefore

be one that produces scalar response peaks only where there are sudden orientation changes in the

color vector �eld. Notice that in this formulation, pure grey-level intensity changes that only a�ect

the magnitude of color vectors do not give rise to color boundaries.

Under non-ideal imaging conditions, sensor noise corrupts the color pro�le of Figure 5.1(a), so

that the image does not register perfectly uniform color values on both sides of the \step" edge.

Computationally, these noise e�ects appear as small directional perturbations in the pro�le's color

vector �eld representation, see Figure 5.1(d). It is important that the desired convolution operator
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ignores these noise induced vector orientation changes in the image signal, otherwise the output

will be cluttered with many false color boundaries.

5.2 A Color Edge Operator

Most existing edge detection algorithms choose either the �rst or second di�erence between neigh-

bouring image pixels as an appropriate quantity for accentuating intensity changes. Basically,

the di�erence operators transform the image into a more convenient representation for extracting

discontinuities. A signi�cant intensity change gives rise to a peak in the �rst di�erence and a

zero-crossing in the second di�erence, both of which can be straightforwardly identi�ed by simple

algorithms. An excellent survey of these di�erence based measures for edge detection can be found

in [Hildreth 84].

5.2.1 Enhancing Color Discontinuities

The color edge operator presented in this section emulates the performance of a grey-level �rst

di�erence operator on scalar image �elds. First di�erences are appropriate for our particular prob-

lem formulation because they produce outputs that peak at image discontinuities | the type of

response that our subsequent edge processes expect. Also, it turns out that the color �rst di�erence

computation framework can be easily extended to emulate the behaviour of other \�rst di�erence

like" operators, for example the Gaussian �rst-derivative operator. Intensity edge detection results

have shown that the Gaussian �rst-derivative operator produces very stable edge detection results

even in the presence of noise.

The theory behind using �rst di�erences for enhancing discontinuities can be best explained in

the continuous scalar spatial domain. Following through the derivation steps leads to an analogous

discontinuity enhancement process for color data. Given a scalar function f(x), di�erentiating with

respect to space (x) yields the gradient of f :

f
0(x) = lim

dx!0

f(x+ dx)� f(x)

dx

; (5:1)

whose absolute value is locally maximum where the slopes are steepest, namely at sharp disconti-

nuities. For spatially discrete functions like image arrays, the gradient expression of Equation 5.1

can be approximated by the function's �rst di�erence:

f1(x) � f
0(x)

��
dx=1

= f(x+ 1)� f(x); (5:2)

which, for later convenience, we shall re-express as:

f1(x) = sign[f(x+ 1)� f(x)]jf(x+ 1)� f(x)j: (5:3)
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Figure 5.2: (a) A basic �rst di�erence pro�le. (b) The Gaussian �rst derivative | a \�rst

di�erence" like edge mask with a near optimal detectability-localization product.

Equation 5.3 de�nes the scalar �rst di�erence operator as a product of two terms: A sign

term, sign[f(x + 1) � f(x)], indicating the direction of the local slope, and a magnitude term,

jf(x + 1) � f(x)j, showing the amount of local intensity change in f . Only the magnitude term,

jf(x + 1) � f(x)j, is needed for enhancing discontinuities, since the absolute �rst di�erence is

always a local maximum at all discontinuity locations. In the color domain, this absolute �rst

di�erence translates into the angular color di�erence measure of Chapter 3, which quanti�es absolute

di�erences between colors. Therefore, to enhance all color discontinuities in an image, f(x), we

can compute the following quantity:

jf1(x)j = A(f(x+ 1); f(x)); (5:4)

which is conceptually equivalent to computing an absolute gradient for color values.

5.2.2 Extensions for \First Di�erence Like" Mask Patterns

Although the �rst di�erence operator outputs very precise image discontinuity locations in its edge

maps, its small local support makes it very sensitive to random signal uctuations. This often

gives rise to many spurious edge fragments throughout the image. Edge operators with large

local supports, on the other hand, tend to produce results that still remain stable under image

noise, but at the expense of more precise localization. Ideally, we would like to extend the color

�rst di�erence concept to emulate other \�rst di�erence like" mask patterns as well, so that color

boundary detection can be made into a more stable process. Figure 5.2(a) shows the basic pro�le of

a scalar �rst di�erence operator, which is a zero-centered odd symmetric function of 2 rectangular

boxes. We shall consider a mask pattern to be \�rst di�erence like" if it is also an odd symmetric

function with only one zero-crossing at the origin. Generally, \�rst di�erence like" mask patterns

make suitable operators for enhancing step signal discontinuities.

Figure 5.2(b) shows a \�rst di�erence like" Gaussian pro�le:
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G1(x; �) =
x

p
2��3

e

� x2

2�2 (5:5)

which was proven by Canny [Canny 83] to be a very close approximation to his optimal1 step edge

mask. For scalar signals, f(x), each application of the mask at some image point, x = xo computes

a weighted sum of the signal values under the mask window.

G1(x; �) � f(x)jx=xo =
1X

i=�1
G1(i; �)f(i� xo); (5:6)

Since the left half of the mask is totally positive and the right is totally negative in value, (and the

image signal is always non negative), the computation can also be performed by taking the absolute

weighted sums of the two halves separately and then subtracting one result from the other. In

other words:

G1(x; �) � f(x)jx=xo =

�����
1X
i=1

G1(i; �)f(i� xo)

������
������

0X
i=�1

G1(i; �)f(i� xo)

������ (5:7)

which upon closer inspection, equals:

1X
i=1

jG1(i; �)jf(i� xo)�
0X

i=�1
jG1(i; �)jf(i� xo): (5:8)

The expression has an absolute value of:

������
1X
i=1

jG1(i; �)jf(i� xo)�
0X

i=�1
jG1(i; �)jf(i� xo)

������ ; (5:9)

which, like the magnitude component of Equation 5.3, is a di�erence of 2 weighted-sum terms

separated at the mask center. Both quantities produce local response peaks at signal discontinuities.

Equation 5.9 suggests a possible interpretation for a \�rst di�erence like" color edge mask.

Because the two summation terms total (and in some sense, normalize) signal values on both

halves of the mask, they can be replaced by similar color weighted average terms, a description of

which can be be found in Chapter 4. The subtract operation that computes absolute di�erences

between the 2 summations corresponds to the angular di�erence measure in the color domain. The

application of a \�rst di�erence like" mask to a color signal, f(x), can therefore be computed as

follows:

1Canny's optimality criterion is a detection-localization product.
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jG1(x; �) � f(x)jx=xo = A(
1X
i=1

jG1(i; �)j
f(i� xo)

jf(i� xo)j
;

0X
i=�1

jG1(i; �)j
f(i� xo)

jf(i� xo)j
): (5:10)

Intuitively, the result measures weighted average color di�erences across adjacent pixel patches,

instead of simple color di�erences between adjacent pixels.

5.3 Implementation Details

We have implemented a serial version of our color boundary detection algorithm for the Symbolics

Lisp Machines and a parallel version for the Connection Machine. The task essentially involves

incorporating a color boundary enhancement front end into the framework of an existing Canny

intensity boundary detector. The following is an abstract account of the design decisions we made

and some heuristics we adopted in our implementation.

5.3.1 Operating in Two Dimensions

Until now, all our analysis in this chapter has assumed that images are one dimensional color signals

of RGB vector values. For two dimensional color images, f(x; y), an edge point also has an orien-

tation in addition to its two-dimensional position co-ordinate. We shall de�ne the terms gradient

direction to mean the image direction where the color gradient is steepest, and edge orientation

as tangent to the gradient direction. To consistently enhance image locations such that steeper

edges always appear stronger in the output than gentler edges regardless of orientation, we must

be able to compute the color gradient at each edge point in its gradient direction. An inexpensive

method of doing this is to resolve color gradients into spatially orthogonal components as if they

were intensity gradients.

If we assume that color changes are reasonably smooth near color boundaries, then we can

approximate the magnitude and direction of color gradients using color changes in two �xed direc-

tions. Our implementation uses a one dimensional \�rst di�erence like" mask to compute partial

color gradients, fx(x; y) and fy(x; y), in the horizontal and vertical image directions, where:

fx(x; y) = A(f(x+ 1; y); f(x� 1; y))

fy(x; y) = A(f(x; y + 1); f(x; y � 1)):

We can then determine the color gradient magnitude, f1(x; y), from its partial components as

follows:
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Figure 5.3: The same pair of partial color gradient components can be generated by gradi-

ents of the same magnitude in two possible directions.

f1(x; y) =
q
(fx(x; y))

2+ (fy(x; y))
2
: (5:11)

A slightly more complicated process is needed for determining color gradient and edge directions.

Figure 5.3 shows an example of how two di�erent color edge pro�les can give rise to the same partial

gradient pair, fx and fy. We cannot distinguish between the two edge pro�les by just examining

the values of fx and fy , because fx and fy are both absolute values. In other words, there is

no such notion as positive or negative value changes in color, as there is in intensity and other

scalar quantities. To resolve the ambiguity, our implementation computes both possible gradient

directions from the absolute components fx and fy . It then checks the color di�erence along both

directions and takes the \steeper" direction as the gradient direction.

5.3.2 Directed Color Gradients

The operations described so far detect color discontinuities in images. Ideally, these operations

should produce edge maps that mark only those pixels that lie along the boundaries between color

regions. Real images, however, often contain noise that fragments true boundaries and creates

spurious discontinuities in edge maps. Thus, edge detection operations are typically followed by

edge linking procedures, designed to join together edge pixels into continuous line features.

Most edge linking techniques today make use of directed gradients as one of the principle prop-

erties for establishing similarity between adjacent edge points (see for example Chapter 7.2 of

[Gonzalez and Wintz 87]). For intensity images and maps of other scalar quantities, the directed
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Figure 5.4: (a) Noise displaces a bright color vector, c1, by a small angle A1. (b) The same

noise signal displaces a dim color vector, c2, by a large angle A2, where A2 � A1.

gradient points \downhill" where the \slope" is steepest. That is to say, it points in the gradient

direction with an additional constraint that it runs from its higher value end to its lower value end.

Our treatment of color has nothing truly equivalent to the scalar directed gradient notion,

because there is no \greater than" relationship between color values. In order to make use of

existing edge linking techniques for our color edge detector, we adopt the convention that directed

color gradients point from color regions of higher image intensity values to color regions of lower

image intensity values, in the direction of greatest color change. Since real images rarely contain

adjacent isoluminant color regions, it turns out that our heuristic works reasonably well.

5.3.3 Magnitude Scaling

Because white noise is usually uniformly distributed in strength throughout an image, dim color

vectors tend to experience larger noise induced directional perturbations than bright color vectors.

Figure 5.4 illustrates why this is so. Since we are using angular di�erences as a color di�erence

measure, we can expect to detect erroneously large color di�erences due entirely to white noise in

dim image areas. These large color perturbations get wrongly enhanced by our di�erence operators

during edge detection, giving rise to undesirable spurious line fragments in the �nal color edge map.

Our current implementation explores heuristics for ignoring these false color discontinuities.

Basically, we want to de-emphasize angular color di�erences between dim color vectors, while

preserving color discontinuities between bright image pixels. To do this, we scale the angular
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Figure 5.5: Scaling functions for compensating noise e�ects: (a) F (I) = 1, or no scaling.

(b) F (I) = ln I , logarithmic scaling. (c) F (I) = I , linear scaling.

di�erence output of the edge enhancement stage by some non-decreasing local intensity function,

so that di�erence measurements in bright areas get weighted more than di�erence measurements in

dim areas. Figures 5.6 and 5.7 display the edge results we get using three di�erent scaling functions.

In the two test images, we obtained best results in terms of preserving true edges and eliminating

false responses using a logarithmic scaling function, as shown in Figure 5.5(b). Qualitatively, a

logarithmic function seems to be ideal for our scaling purpose because they strongly penalize color

perturbations where intensities (I) are low, but do not overly accentuate color di�erences in high

intensity regions at the expense of color di�erences in moderate intensity regions.

5.4 Luminance Edges { Integrating Other Visual Cues

The ability to intelligently integrate information from di�erent visual cues is perhaps one of the

key reasons why biological vision systems today are still a lot more robust than current arti�cial

vision systems. While early vision processes give independent information about physical discon-

tinuities and surfaces in the scene, visual integration combines information provided separately by

di�erent visual modules to construct scene descriptions that are more complete and more reliable.

Researchers like Gamble and Poggio [Gamble and Poggio 87] have devoted much work to the prob-

lem of integrating information from di�erent visual cues like depth, motion and shading. In this

section, we explore the possibility of integrating boundary based information from intensity and

color data.

5.4.1 The Role of Luminance Edges

As noted by Hurlbert [Hurlbert 89], luminance or intensity edges are excellent visual cues for en-

hancing and locating color discontinuities. Because noise e�ects in the three chromatic channels

combine multiplicatively as ratios when computing color, color boundaries found by segmenting
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Figure 5.6: Edge maps produced with di�erent scaling functions: Top Left: Original Image.

Top Right: F (I) = 1, or no scaling. Bottom Left: F (I) = ln I , logarithmic scaling. Bottom

Right: F (I) = I , linear scaling.
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Figure 5.7: Edge maps produced with di�erent scaling functions: Top Left: Original Image.

Top Right: F (I) = 1, or no scaling. Bottom Left: F (I) = ln I , logarithmic scaling. Bottom

Right: F (I) = I , linear scaling.
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channel ratios alone tend to be more fuzzy with poorly formed outlines than their intensity coun-

terparts. Psychophysically, this agrees with the observation that isoluminant color boundaries

also appear fuzzy to humans, while high luminance contrast color edges capture and contain color

regions well, even if actual hue di�erences between the adjacent regions are small.

Except in synthetic images where isoluminant boundaries can be arti�cially created, most color

image discontinuities also give rise to intensity discontinuities. Color boundaries appearing as edge

features in color edge maps are therefore also very likely to appear as luminance discontinuities in

corresponding intensity edge maps. We shall take advantage of this close spatial correspondence

between color and luminance discontinuities by matching and aligning them together to produce

better connected and better localized color edge outputs. This is possible because luminance edge

features are in general better formed and better localized than color edge features of the same

image.

5.4.2 Overview of Algorithm

We describe, in the following paragraphs, our boundary feature integration technique for improving

color edge outputs. The algorithm has access to a set of color edges and a set of luminance edges

(usually extracted from their respective edge maps), from which it produces an integrated edge map

whose features correspond more accurately to actual scene color discontinuities. First, a note on

terminology before we proceed: We shall use the term \edge (or boundary) feature" to describe a

full length unbroken chain of edge pixels in an edge map. The term \edge (or boundary) segment"

refers to a continuous chain of edge pixels that makes up part of an edge (or boundary) feature.

The full integration process takes place in three stages:

1. Matching and aligning color and intensity boundary features: At the very least,

this stage preserves existing edge features from the original color edge set, so that the output

does not exclude color discontinuities that have already been detected. To improve poorly

formed color edges in the output, we repetitively search for \close spatial matches" between

existing color edge features and luminance edge features. If a \close match" is detected, we

assume that the \matching" portions (or segments) of the two edge features arise from the

same physical discontinuity in the scene. Assuming further that the luminance edge segments

are better localized than their matching color counterparts, we can partially reconstruct the

color edge feature by replacing it with its matching luminance edge segments in the output.

The stage terminates when all reconstructable color edge features have been replaced by their

matching intensity segments.

2. Extending and sealing reconstructed color edges: We extend the partially recon-

structed color edge outputs of Stage 1 to seal up possible edge gaps left behind by the

alignment process. A partially reconstructed color edge feature can appear as a few disjoint

84



edge segments from the luminance edge map. Likewise, two or more color edge features could

have been reconstructed as segments arising from the same luminance edge feature. In both

cases, we would like to link together these disjoint edge segments because they are likely to

have arisen from the same physical color discontinuity.

3. Discarding spurious edge fragments: In general, it is very di�cult for a computer

vision system to reliably tell apart actual edge features from noise induced markings in a

single edge map. With two or more visual cues, it is possible to synthesize a relatively

reliable decision procedure that discards false edge markings using some simple heuristics.

This stage determines which unmatched color edge features are most likely due to noise and

removes them from the �nal color edge output. It bases its decision only on information found

in the original color and luminance edge maps.

5.4.3 Matching and Aligning Color Edges with Intensity Edges

We say that part of a color edge matches part of a luminance edge if every pixel on the matching

color edge segment corresponds to one or more pixels on the matching luminance edge segment and

vice-versa. A color edge pixel corresponds to a luminance edge pixel if their locations are within

some small distance �2 of each other in their respective edge maps, and if their local orientations

di�er by less than some small angle �3. Notice that pixel-wise correspondence, as we have de�ned,

does not have to be unique; that is, it need not be a one-to-one mapping relationship between color

and luminance edge pixels.

Figure 5.8 illustrates our matching and correspondence concepts with some speci�c examples.

In part (a), pixel A of the color edge segment corresponds to pixel B of the intensity edge segment

because they both satisfy the proximity and local orientation constraints. Since correspondence can

be a one-to-many or a many-to-one relationship, pixel A also corresponds to all the shaded edge

pixels near pixel B. In part (b), color edge segment A1 matches luminance edge segment B1 because

all of A1's pixels correspond to one or more of B1's pixels and vice-versa. The same correspondence

relationship holds between the pixels of segment A2 and B2. In general, edge segments A1 and A2

can both be part of the same edge feature, as could edge segments B1 and B2. They can even be

overlapping edge segments for that matter.

We consider a color edge feature reconstructable if a signi�cant fraction4 of its pixels belong to

matching edge segments. Figure 5.9 explains the rationale behind our reconstructability criterion.

Suppose the physical cause of a color edge feature, like F1, also gives rise to one or more luminance

edge features in the intensity image. We can reasonably assume that F1's matching edge segments

make up a very large fraction of its total edge length, because the color and luminance edge features

2We set � to be 3 pixels' length in our implementation.
330� in our implementation.
475% and above, for our implementation
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(a)

Colour Map Luminance Map

A1 B1

A2 B2

(b)

Figure 5.8: (a) An illustration of pixel-wise correspondence. See text for explanation.

(b) An illustration of matches between color and luminance edge segments. See text for

explanation.
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Colour Map Luminance Map

F1

F2

Figure 5.9: A reconstructable color edge feature, F1, and a non-reconstructable color edge

feature, F2. The shaded areas are matching edge segments.

should overlap each other very closely in this case. The converse is usually also true for color and

luminance edge features that do not arise from the same physical discontinuity, as for example edge

feature F2 and its false match.

To reconstruct a color edge feature, we improve its overall localization by aligning its match-

ing edge segments with their corresponding intensity counterparts, and discarding the remaining

unmatched edge portions. Basically, this involves replacing the entire original color edge feature

with its matching luminance edge segments. In Figure 5.9 for example, the reconstruction process

would transform the entire color edge feature, F1, into the lightly shaded luminance edge segments

of the intensity edge map at the end of the edge matching and alignment stage.

Because of its simple design, the matching and alignment stage can sometimes be easily deceived

to produce inconsistent results with certain color and luminance edge con�gurations. Figure 5.10

illustrates two such examples. Part (a) shows a color edge feature intersecting several closely

spaced luminance edges. Although it is clear from the drawing that the color edge feature does

not coincide with any of the luminance edge features, it still produces matching segments on all

of them. The result is a jagged partial reconstruction as shown on the top right map. Part (b)

describes an instance where a single color edge segment gives rise to multiple matching segments in

the luminance edge map. For this example, one possible solution might be a checking mechanism

that prevents the same color edge segment from producing matches on two or more luminance edge

features. We contend, however, that degenerate input con�gurations like these rarely occur in real

world images, so our integration scheme still works well most of the time.
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Reconstructed Edge Segments

(a)

(b)

Figure 5.10: Two examples where the matching and alignment technique produces inconsis-

tent results. On the left are superimposed maps of the color and luminance edge features.

On the right are the aligned edge segments. (a) A color edge feature running across closely

spaced parallel luminance edges. (b) A color edge feature producing matching segments on

two closely spaced luminance edge features.
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5.4.4 Extending and Linking Partially Reconstructed Edge Segments

The matching and alignment process leaves behind an intermediate edge map, whose color edge

segments are generally well localized but mostly disconnected. In this stage, we try to extend and

link together sets of disconnected intermediate edge segments to form longer and more continuous

color edge outputs. We consider a pair of edge segments linkable as part of a single greater color

edge feature, if they jointly satisfy one of two possible conditions (see Figure 5.11):

1. They are both partially reconstructed edge segments produced by matches against the same

original color edge feature. They need not be part of the same luminance edge feature in the

original intensity edge map.

2. They are both partially reconstructed edge segments from the same greater luminance edge

feature in the original intensity edge map. Their matching color edge segments need not have

arisen from the same original color edge feature. If, however, their matching color segments

did actually arise from di�erent color edge features, we require that the break between them

(the two partially reconstructed edge segments) be no larger than some small distance5.

A simple argument explains our linkability criteria for edge segments. Basically, it is reasonable

to assume that edge segment pairs satisfying either of the two conditions above actually arise from

the same real world physical color discontinuity, and so may be linked together to form single

continuous output color edges. The rationale behind the �rst condition is obvious. Since both

edge segments match the same color edge, and single continuous edge features in the original color

map mostly arise from single stretches of physical color discontinuities in the real world, we can

safely conclude that the two edge segments are indeed disjoint portions of the same physical color

boundary feature. We can justify the second condition as follows: If the two partially reconstructed

edge segments arise from the same original intensity edge, it is possible that the two edge segments,

together with the unmatched intensity portion between them, coincide with a single continuous

physical color discontinuity in the real world. If both segments also match the same color edge

feature, the �rst condition holds and we can be very certain of our hypothesis. Even if the two edge

segments do not match the same original color edge, we can still be highly certain of our hypothesis

if there is only a small unmatched portion between the edge segments, because spurious breaks in

the color edge map are common due to noise.

Our actual edge extending and linking process works as follows: For the �rst linkability con-

dition, we want to join together two luminance edge segments whose matching color counterparts

both arise from the same original color edge feature. As for now, we shall just consider the case

where the two luminance edge segments do not arise from the same intensity edge. Notice that

the other case where the two edge segments do belong to the same greater luminance edge also

5In our implementation, this is half the average length of the two partially reconstructed edge segments.
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(a)

Colour Luminance

(b)

Colour Luminance

Figure 5.11: Conditions where two partially reconstructed output edge segments may be

linked to form part of a single greater color edge feature. The segments under consideration

are darkly shaded in the luminance edge maps (right). Their matching color edge segments

are lightly shaded in the color edge maps (left). (a) Both segments have matching segments

on the same original color edge feature. (b) Both segments arise from the same original

intensity edge feature and satisfy some spacing constraints.
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(a) (b)

(c) (d)

Figure 5.12: Linking procedure for two partially reconstructed output edge segments satis-

fying the �rst linkability condition. (a) Output edge segments to be linked (darkly shaded).

(b) Matching color edge segments (shaded) in original color edge map. (c) Map of (a) and

(b) superimposed. (d) Portion of color feature used to link partially reconstructed output

edge segments.
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satis�es the second linkability condition, and will be treated separately together with the second

condition for greater convenience. Because we do not have a reliable stretch of luminance edge

pixels between the two disjoint segments to help us better localize the missing color boundary, our

algorithm must construct the edge link based on information contained in the original color edge

map alone. Figure 5.12 shows how this can be achieved. Basically, the idea is to use the original

color edge feature's central unmatched portion as a link for the two disjoint segments. If gaps still

exist between the end points of the link and the edge segments, we simply seal the gaps by directly

connecting the link and edge segments end points together. Since we are using edge points from the

original color map to extend our color output boundaries, we can expect the extended boundaries

introduced by this process to be as well localized as the original color edge features.

The second linkability condition deals with pairs of disjoint edge segments that belong to the

same greater luminance edge feature. In order to fully satisfy this condition, we argued earlier that

the two edge segments must overlap a single real world color discontinuity that coincides spatially

with their greater luminance edge. Therefore, to link together the two segments, we can simply

extend them along their greater luminance edge feature's path until they meet. Because we are

using intensity edge points to extend our color output boundaries, and luminance edge features

tend to be spatially well aligned with their physical causes, we can expect very well localized and

less fragmented color edge results from this process.

5.4.5 Discarding Spurious Edge Fragments

The integration processes that we have described so far make use of luminance edge features to

realign and reconnect broken color edges. All original color edge features that have not been

improved upon by the previous two stages are still being preserved in the algorithm's output at the

end of the second stage. A little analysis will show that it should also be possible to identify and

discard false color edge features from the output edge map, by comparing and combining color and

intensity edge based information.

We adopt the following heuristics for di�erentiating real color edge features from false color

map markings due to image noise: If a color edge feature matches well with a luminance edge

feature, or if its length is su�ciently large by some appropriate measure6, then from a probabilistic

standpoint, we can reasonably assume that the color edge feature is indeed real, and corresponds to

some material change in the physical world. The assumption makes sense because: (1) it is fairly

unlikely that a randomly formed false color edge actually aligns itself su�ciently well with a physical

luminance edge feature, so as to produce a decent match; nor (2) is it likely that noise induced

hue di�erences in a color image can actually be regular enough to produce long and perceivable

color discontinuities. Our di�erentiation scheme therefore treats all unmatched color edge fragments

below a certain length threshold as noise markings to be discarded from the �nal color edge output.

6In our implementation, we �xed this measure at a constant length of 15 pixels.
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Psychophysically, the scheme apparently agrees well with human visual characteristics, which tends

to readily overlook small color image patches with isoluminant boundaries.

5.4.6 Results

For e�ciency reasons, we implemented a reduced version of the boundary based integration scheme

on a serial Symbolics Lisp Machine, and tested the algorithm on a few image examples. Our im-

plementation di�ers from the original intended design in one major aspect, namely, it does not

take into account the local orientation constraint when matching pixels. Also, the implementation

merges Stages 1 and 2 of the original algorithm together into a single, approximately equivalent pro-

cedure. It is still our intention to eventually have a working implementation of our full integration

scheme at a later date.

Two of our test scenes are shown in Figures 5.13 and 5.14. For each test case, we obtain a set of

luminance edge features by running a Canny intensity edge �nder [Canny 83] through the scene's

grey-level intensity image. We then compute the color edge map using our color boundary detection

algorithm described in the earlier sections. Notice how the luminance edge features of both images,

are on the whole, much better localized and much better connected than their corresponding color

boundaries. Notice also, that these well formed luminance edge features �nally replace and connect

together their matching but poorly localized color edge fragments in the algorithm's output. The

algorithm's third stage can be best appreciated by comparing results where the color images are

most noisy, namely within the subject's hair region for Figure 5.13, and near the rear ends of the

vehicles for Figure 5.14. The stage produces an overall cleaner edge map by correctly discarding

most of the short, unmatched color edges from the �nal output.
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Figure 5.13: First test image example. Top left: Original image. Top right: Luminance

edge map. Bottom left: Color edge map. Bottom right: Reconstructed result.
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Figure 5.14: Second test image example. Top left: Original image. Top right: Luminance

edge map. Bottom left: Color edge map. Bottom right: Reconstructed result.
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Chapter 6

Finding Color Regions

Image segmentation algorithms have generally been based upon one of two basic image value

properties, namely discontinuity and similarity. In the previous chapter, we addressed the problem

of color boundary detection, where an image is partitioned into separate regions based on abrupt

color changes. Our motivation there was to detect edge and line features in the image. This chapter

deals with the dual problem of color boundary detection, called color region �nding, that segments

images into separate regions based on color uniformity. Our goal here is to group individual pixels

in an input image into sets of connected pixels sharing some common physical property (surface

color in this case) to form surface features. Ideally, each of these features should either correspond

to a full world object or a meaningful part of one in the scene.

A little thought will reveal that given perfect boundary maps, region �nding becomes trivially

solvable because we can simply \�ll in" image boundaries to form regions. Despite its seemingly

redundant nature with respect to boundary detection, region �nding has still been widely recognized

as one of the key early level computer vision processes for several reasons. First, boundary maps

of real images are seldom perfect and often fragmented because of sensor noise and other operator

design limitations. Applying these \�lling in" procedures naively to real images can result in

\bleeding" e�ects that gives rise to erroneously overmerged regions. An independent process must

therefore be derived to perform region �nding, which may in turn be combined with boundary

detection to produce better segmentation results [Milgram and Kahl 79] [Haddon and Boyce 90].

Second, although one might eventually want \perfect" boundary and region maps from segmen-

tation algorithms, certain vision applications today can still work fairly well with more \conser-

vative" region �nding results, whereby not every image pixel maps to some region, and not every

output region corresponds to an entire image surface. These \conservative" region estimates can

often be easily obtained using uniformity based region �nding techniques, but not discontinuity

based boundary detection techniques. An excellent example of such an application is in region

based boundary feature grouping, similar in idea to REGGIE of [Clemens 91].

Third, it can be argued that although boundary based information is very useful for accurately
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localizing objects in an image, region based information can sometimes be much better suited for

identifying and con�rming the presence of interesting objects in the scene. For example, I might be

able to identify my research notebook in a heavily cluttered environment, not because I am able to

see its outline clearly among other objects in the scene, but because I can con�dently recognize the

distinctive color of its surface. Similarly, a hunter might be able to spot a leopard hiding behind a

bush by just recognizing the markings on its coat without actually having seen the whole animal.

As mentioned earlier, a computer vision system can emulate these object identi�cation processes

more naturally by using a direct uniformity based region approach to image segmentation instead

of an indirect discontinuity based boundary approach.

6.1 Color Regions and their Computation

Often, what constitutes a \region" will depend on the particular task at hand. We shall pro-

pose a general and somewhat less restrictive notion of region �nding, which we believe, meets the

requirements of many middle and higher level computer vision applications.

6.1.1 A Basic Formulation

Let I represent the entire image region. We can view region �nding as a process that marks out

within I, subregions: R1;R2; � � � ;Rn, such that:

1.
Sn
i=1 Ri � I,

2. Each Ri is a connected set of pixels,

3. Ri \ Rj = fg, for all i 6= j,

4. H(Ri) = TRUE, for i = 1; � � � ; n,

5. H(Ri [Rj) = FALSE, for i 6= j and Ri;Rj have a common boundary.

The boolean predicate, H(R), is sometimes known as a homogeneity function, and is de�ned over

all image pixel within the region R. It establishes a set of uniformity criteria for grouping image

pixels into regions. For color regions, we want H(R) = TRUE if and only if all pixels within R have

color values that are \similar enough" to have arisen from the same physical surface. Much of this

chapter concerns deriving a suitable homogeneity function for color image values.

Notice that Condition 1 does not require all input image pixels to be included in some output

region. This is useful because it allows the region �nder to exclude outlying points that do not

�t well into any region from the �nal segmentation. For color images, such points tend to occur

frequently near region boundaries and within poorly illuminated areas of the image where color

ratios can be extremely noisy.
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6.1.2 Region Finding Algorithms

We describe, in the following paragraphs, the general structure of a uniformity based region �nder

to summarize previous work done in this area, and to outline the color region �nding algorithm

that we will be presenting subsequently. Typically, a uniformity based region algorithm proceeds

in three stages:

1. Mark out initial image locations (or patches) to start region growing: We lay

down a set of \seed" points (or patches) in the image from which we grow regions. Ideally,

each \seed" should be entirely contained within a single image region so that the growing

patch it generates can also be entirely contained within a single image region. Each image

region that we wish to �nd should house at least one \seed".

2. Grow initial patches: We increase the size of each \seed" by appending to it those

neighbouring pixels with \similar" physical attributes, for example luminance, texture or

surface color. Using the basic region �nding formulation we established earlier, if S is a

growing \seed" and p is a neighbouring image pixel, then the growing process appends p to

S if and only if H(S [ fpg) = TRUE. The homogeneity check ensures that all growing \seeds"

stay within bounds of their enclosing regions.

3. Merge adjacent patches that can be combined: When two or more growing \seeds"

meet, we merge them together into a single larger patch if their attributes are \similar"

enough to have arisen from the same physical surface. More formally, if Si and Sj are two
growing \seeds", then the merging process joins them together if and only if H(Si [ Sj) =
TRUE. Again, the homogeneity check ensures that only \seeds" arising from the same physical

entity may be merged, so each larger image patch that the merging process produces still falls

within a single image region.

Steps 2 and 3 are usually performed in parallel and the algorithm terminates when no more \seeds"

can be further grown or merged. The set of �nal patches we get form a segmentation of the image.

Clearly, the main challenge in Step 1 is to design an algorithm that reliably generates sets of

image \seeds" that meet the topological requirements above. It would also be desirable to generate

su�ciently large \seeds" that adequately describe the surface attributes of their enclosing regions

even before further growing. This condition is critical for good region �nding results, because these

\seed" attributes are key inputs to the homogeneity tests of Steps 2 and 3.

Traditional region �nding techniques make use of a partitioning process, called splitting, to

produce maximally large initial image \seeds" [Hanson and Riseman 78] [Rosenfeld and Kak 76]

[Horowitz and Pavlidis 74]. Basically, the idea of splitting is to recursively divide an image into

smaller sub-regions, until each sub-region falls entirely within a single image entity. The process

begins by examining the entire input image for signs of attribute disuniformity, which, if detected,
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indicates the presence of di�erent surface entities in the scene. For images with non-uniform at-

tributes, it then divides the image into smaller sub-regions, and recursively applies the splitting

procedure to each sub-region until no more sub-regions can be further divided. The set of resulting

sub-regions make up the \seeds" that start the subsequent growing and merging stages. A popular

attribute uniformity test paradigm for splitting uses feature histograms to estimate the number of dif-

ferent image entities in an image sub-region [Prewitt and Mendelsohn 66] [Chow and Kaneko 72],

where each histogram mode indicates the presence of one image entity. This test paradigm has also

been extended to use multi-dimensional feature histograms for multi-dimensional image attributes,

like intensity gradients [Bracho and Sanderson 85] and color [Ohlander 76], where the presence of

multiple modes in any histogram dimension indicates the presence of multiple region entities. Gen-

erally however, feature histogramming methods cannot reliably separate image regions whose modes

peak around the same histogram location, especially if one mode is signi�cantly smaller than the

other in size. This happens fairly often in reality when we process images with su�ciently noisy

attributes, and also those with a wide range of region sizes.

A somewhat di�erent \seed" generating approach starts by performing attribute uniformity

tests on small surface patches throughout the input image, after which it links together adjacent

image patches with uniform attributes to form initial \seeds". Since each locally uniform patch

contains no attribute boundaries by de�nition, and pairs of adjacent uniform patches do not contain

separating boundaries between them1, \seeds" generated in this fashion should fall entirely within

a single image region if the attribute uniformity test paradigm is reliable. Some recent work

by Klinker, Shafer and Kanade [Klinker Shafer and Kanade 88a] [Klinker 88] use a similar local

\seed" generating technique in a dichromatic model-based segmentation scheme. To test a patch

of image pixels for attribute uniformity (color uniformity in this case), the technique hashes pixel

RGB values into a 3 dimensional color histogram and checks the resulting distribution for a matte

signature. It then links together adjacent matte patches as initial region �nding \seeds" if their

combined color histogram distribution is also matte in form. On the whole, local techniques like

the above are far less likely to overlook small regions in the input than splitting approaches do,

because by examining small image patches for attribute uniformity instead of large ones, they

do not allow very large regions in the image to cloud out smaller nearby regions. What most

implementations like [Klinker Shafer and Kanade 88a] and [Klinker 88] lack, however, is a general

method for determining suitable test patch sizes.

For Steps 2 and 3, the growing and merging tasks also often reduce to �nding an appropri-

ate homogeneity function for combining pixels with \seeds" or pairs of image \seeds". Like the

uniformity test paradigms of Step 1, the simplest homogeneity functions are also attribute based,

and work by locally comparing pixel values from the pair of image elements to be appended. Usu-

ally, this includes testing the pair of elements for similarity between their mean attribute values,

1We are assuming here that adjacent patches overlap partially.
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their attribute variances and possibly other higher order attribute moments. Klinker, Shafer and

Kanade's dichromatic model-based segmentation scheme uses a set of more versatile similarity con-

ditions to account for the presence of secondary e�ects like specularities in the image. The scheme

takes advantage of the property that surface reected light consists of two components | a matte

component and a highlight component, both of which appear as vectors in the RGB color space.

To compare two image elements for color similarity, the scheme attempts to geometrically infer

and match their matte components by operating on their RGB histogram distributions. Other

more sophisticated homogeneity functions use domain dependent heuristics, like knowledge about

probable boundary shapes and perimeters, to help in their test decisions. Some examples can be

found in [Brice and Fennema 70] and [Feldman and Yakimovsky 74].

6.1.3 Segmentation Thresholds and Parameters

It is reasonable to infer that most variants of the above uniformity based region algorithm will

contain at least a few free operating thresholds and parameters. In Stage 1 for example, we expect

at least one free parameter from the \seed" generation process, such as a uniformity threshold that

controls region splitting, or a mode discrimination threshold for classifying histogram distributions.

In Stages 2 and 3, we can also expect to �nd some attribute uniformity and element size thresholds,

embedded within the \seed" growing and merging procedures.

As in many other early level computer vision processes, one of most di�cult problems in region

�nding concerns choosing a suitable set of free thresholds and parameter values that work well for

a wide range of real images. We shall examine this problem more closely in the color algorithm we

design.

6.2 Tests of Con�dence and Signi�cance | A Statistical Formu-

lation for Color Region Finding

In this section, we introduce a statistical approach to image \seed" generation and attribute unifor-

mity testing using color. Speci�cally, we shall devise statistical tests and answers to the following

questions: (1) How large must a uniform image patch be so that its color can be \measurable" in a

noisy image ? (2) Is a given image pixel located within the interior of a color region ? (3) Are two

adjacent color image patches part of the same greater color region ? Our answers to these questions

will help us determine suitable free thresholds and parameter values in a traditional region �nding

framework, which we shall describe in the next section.

The kind of tests that we will be performing are commonly known as con�dence and signi�cance

tests (see for example [DeGroot 86] and [Frieden 83]). The general form of a con�dence test appears

as follows:
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Prob [jxd � xj � �] � C; (6:1)

where xd is the derived value of a measured noisy quantity, x is the actual value, � is an adjustable

error bound, and C is a free parameter with value between 0 and 1, known as the con�dence

coe�cient. Equation 6.1 describes the \goodness" of a certain measurement, xd, as a combination

of two factors: Its accuracy with respect the actual value, as indicated by the error bound �, and

its certainty factor, as reected by the con�dence coe�cient C, which denotes the probability that

the measured value, xd, falls within the indicated error bound � of the actual value x.

A signi�cance test is similar in spirit to a con�dence test, except that it is used for verifying

hypotheses about systems instead of determining the accuracy of measurements. Given a system,

we postulate a hypothesis (H0) about it, and obtain a set of observations (U) to determine if the

hypothesis is valid. We also associate with the procedure an adjustable parameter, �, known as

the level of signi�cance for the test. An observation U is statistically signi�cant if its chance of

being produced by a system obeying H0 is smaller than �, which may in turn by interpreted as

strong evidence against H0. Conversely, U is statistically insigni�cant if its chance of arising from a

system obeying H0 is greater than �, which may suggest evidence supporting H0. These concepts

about signi�cance testing should become clearer later on in this section.

We see two advantages of applying the above mentioned statistical methods to a traditional

region �nding framework:

1. A more insightful interpretation of free threshold and parameter values: At �rst

glance, our statistical approach does not help us overcome the di�cult problem of selecting

suitable thresholds and parameters values, because it merely replaces one set of free region

�nding thresholds and parameters (those used by the \seed generation" and uniformity test

paradigms) with another set of free parameters (the C, � and � parameters of the con�dence

and signi�cance tests). A closer examination will show, however, that this new set of free

parameters provides greater insight to the system's characteristics, in terms of its attribute

sensitivity (�) and reliability (C and �). We contend that this new set of parameters is more

desirable as a set of adjustable system variables, because they give the user direct control

over the interesting system characteristics.

2. A natural implementation of adaptive thresholding and parameter selection: In

real images, image properties like noise strength, region density and contrast, can be very

di�erent at di�erent image locations. Some traditional region �nding algorithms have made

use of adaptive thresholding and parameter selection techniques to account for these image

property di�erences. Our statistical approach performs these adaptive adjustments automat-

ically because it computes, for each image location, a set of region �nding thresholds and

parameter values that locally meets the user speci�ed sensitivity and reliability levels.
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6.2.1 The Size of Detectable Image Patches

We shall begin by deriving a result that helps us determine a lower size limit for \detectable" noisy

image regions, where our notion of \detectability" will be de�ned shortly. Suppose we want to

segment a perfectly noiseless image, whose entities are all piecewise uniform color surfaces, into a

set of uniform surface color regions. Because the image is noiseless, we can measure the exact color

ratio at each pixel, and so we can isolate color regions that are as small as a single pixel in size.

In a noisy image, there is a non-zero color noise variance at each pixel which degrades our ability

to isolate single pixel image regions. Although we can still obtain arbitrarily good color estimates

in a noisy image by performing local color averaging as in Chapter 4, these averaging results are

valid only if the averaging neighbourhood falls entirely within a single image region. That is, we

can only obtain reliable color estimates for noisy regions that are su�ciently large in size.

We consider a uniform color image patch \detectable", if we can determine its true color ratio

to within an angular error cone of � radians, at a con�dence level of C. Given the angular color

noise distribution in an image, we want to �nd the smallest possible image patch size, N , (measured

in number of pixels) that satis�es the \detectability" condition above. Intuitively, we expect the

value of N to increase as C increases and � decreases.

We shall approach the problem as a con�dence test of accuracy in a mean, where the region's

true color ratio is ĉ, and our task is to quantify the color sample mean's accuracy as a function of

the image patch size N . Assume that the angular noise distribution at each pixel, A = A(cn; ĉ),
is approximately as given in Equation 4.4:

PrA(A) =
L
2

�
2
Ae

�L2A2

2�2 ; (6:2)

where A is the angular color di�erence measure and c� is the color sample mean. From Chapter 4,

the color sample mean of a size N neighbourhood is:

c� =
NX
n=1

cn

jcnj
; (6:3)

and its angular error distribution, E = A(c�; ĉ), is approximately:

PrE(E) =
NL

2

�
2
Ee

�NL2E2

2�2 : (6:4)

To achieve for c� an error cone of � radians at a con�dence level of C, we want a value of N

such that:

Prob [A(c�; ĉ) � �] � C; (6:5)

or equivalently:
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Z �

0
PrE(E)dE � C: (6:6)

Substituting Equation 6.4 into the above and performing the integral, we get:

1� e

�NL2�2

2�2 � C; (6:7)

which eventually reduces to:

N �
2�2

L
2
�
2
ln(

1

1� C

): (6:8)

Equation 6.8 expresses the minimum \detectable" patch size, N , for a designated C and � pair,

as a function of an angular noise strength term, �
L
. We can derive the value of �

L
by measuring �

�A,

the local average angular color di�erence magnitude between two adjacent image pixels. Let �A be

the angular color di�erence magnitude between two adjacent pixels from the same region, in an

image whose angular noise distribution is given by Equation 6.2. Since �A sums the errors of two

independent cn readings, we can easily show that it has the following distribution:

Pr�A(�A) =
L
2

2�2
Ee

�L2E2

4�2 ; (6:9)

whose mean, �
�A, equals

�
L

p
�. So, to compute �

L
at a given image point, we simply measure �

�A for

the pixel's local neighbourhood and multiply the result by 1p
�
.

6.2.2 The Insideness of Image Points

Our next test result determines whether or not an image point is well contained within the interior

of a color region. One way of generating large image \seeds" that do not cross region boundaries,

is to consider only those non-boundary pixels in the image when marking \seeds". The decision

procedure for classifying pixels is not as di�cult as it might seem, because we can still generate

large valid \seeds" by conservatively excluding some interior pixels as boundary pixels, as long as

we do not wrongly include any boundary pixels as interior pixels.

The decision procedure uses a signi�cance test paradigm, with a simplifying assumption that

surface color around an image pixel can only be uni-modal or bi-modally distributed. The former

applies when the pixel is located su�ciently deep within a uniformly colored region, while the latter

holds true when the pixel is near a color boundary. Notice that we are essentially ignoring cases

where the pixel is near a multi-region color junction.

Suppose we establish a hypothesis, H0, that a given pixel lies inside a uniformly colored image

region. For now, let us also assume without any loss of generality that if H0 is false, the pixel lies

on a color boundary of known orientation, and the pixel's local neighbourhood color distribution

appears as in Figure 6.1(b). We can test for H0 by computing the mean color ratio on both halfs of
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(a) (b)

Figure 6.1: (a) Local neighbourhood color distribution of a pixel deep inside a uniformly

colored image region. (b) Local neighbourhood color distribution of a color boundary pixel.

Other color edge orientations are also possible.

the pixel's local neighbourhood, and checking that they are not signi�cantly di�erent for a desired

signi�cance level �.

To compute the left and rightmean color ratios, cL� and cR� , we average colors using Equation 6.3

over all neighbouring pixels within the respective halfs. Assuming as before that the angular color

noise distribution at each pixel is given by Equation 6.2, we can easily derive the following angular

color noise distribution for the left and right half mean vectors respectively:

PrEL(EL) =
NLL

2

�
2

ELe

E2
L
NLL

2

2�2 ; and

PrER(ER) =
NRL

2

�
2

ERe

E2
R
NRL

2

2�2 ;

where NL and NR are the number of pixels in the left and right neighbourhood halfs. Furthermore,

if the true left and right half color means are equal, we can show that their measured angular

di�erence, D� = A(cL� ; c
R
� ), obeys the following angular probability distribution:

PrD�(D�) =
NLNRL

2

(NL +NR)�2
D�e

� D2
�NLNRL

2

2(NL+NR)�2
: (6:10)

We consider H0 (the region interior hypothesis) plausible if the D� value we measure is insignif-

icant relative to the desired � level. That is, if:
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Z D�

0
PrD�(D)dD � (1� �): (6:11)

This reduces to the following inequality:

D� �

s
2(NL +NR)�2

NLNRL
2

ln
1

�

; (6:12)

which may be interpreted as the range of D� values that are too insigni�cant to suggest evidence

against H0, the region interior hypothesis.

6.2.3 Color Similarity between Image Elements

Our �nal test paradigm determines if two image elements have color distributions that are \similar"

enough to have arisen from the same color world entity, where an image element refers to either a

single image pixel or a patch of image pixels. For this thesis, we shall use a color similarity test

that compares only mean color ratios and local color variances of the two image elements being

combined. In the case where an image element is a single pixel or a very small patch, we de�ne its

color mean and color variance to be the color mean and variance of its local neighbourhood, whose

size is determined by Equation 6.8. More sophisticated extensions to our similarity test paradigm

may compare higher order color moments as well.

To determine if two image elements have the same color mean, we use a color di�erence of

mean signi�cance test, similar in form to the region interior test for image pixels, described in

the previous subsection. Qualitatively, the two test procedures are totally identical, except for the

contexts in which they are being applied. Instead of computing and comparing mean color ratios

for a pixel's two local neighbourhood halfs, our similarity test computes and compares color means

for a pair of image elements. We shall not elaborate on the di�erence of mean test procedure any

further, since it has already been adequately described earlier on.

We de�ne the angular color variance, S, of a size N image patch to be:

S =
1

N

NX
i=1

[A(ci; c�)]2; (6:13)

where c1; : : : ; cn are the individual pixel colors and c� is the mean patch color. Assuming again

that each pixel's angular noise distribution, A = A(ci; c�), obeys Equation 6.2, we get the following
exponential form for the squared angular noise distribution, A2 = [A(ci; c�)]2:

PrA2(A2) =
L
2

2�2
e

�L2A2

2�2 : (6:14)

Taking the average of N independent A2 measurements yields the following Order N Erlang dis-

tribution for S:
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PrS(S) =
1

(N � 1)!
(
NL

2

2�2
)NSN�1e�

NL2S

2�2 ; (6:15)

which can be closely approximated using an equivalent Gaussian ofmean 2�2

L2 and variance ( 2�2p
NL2

)2,

even for relatively small patch sizes, N . (See Figure 6.2).

We shall use a di�erence of variance signi�cance test to determine if two image elements have

the same angular color variance. Suppose the two image elements have sizes N1 and N2, and

measured angular color variances S1 and S2 respectively
2. Let H0 be the hypothesis that the two

image elements actually have the same true angular color variance, ST = 2�2

L2 . Using the equivalent

Gaussian approximation for an N
th order Erlang to simplify our calculations, and assuming that

H0 is true, we get:

PrS1(S1) �
1

p
2��S1

e

� (S1�ST )2

2�2
S1

and

PrS2(S2) �
1

p
2��S2

e

� (S2�ST )2

2�2
S2 ;

where �S1 = (2=
p
N1)(�1=L1)

2 and �S2 = (2=
p
N2)(�2=L2)

2 are the derived standard deviations

for the equivalent Gaussian distributions. Combining PrS1(S1) and PrS2(S2) yields a Gaussian

di�erence of angular variance statistic, SD = S1 � S2, with:

PrSD(SD) �
1

p
2��D

e

� S2
D

2�2
D ; (6:16)

where �D =
q
�
2
S1 + �

2
S2.

We say that two image elements have the same angular color variance if their measured SD value

is insigni�cant for the given � level. Graphically, Figure 6.3 shows the range of SD measurements

supporting the equal angular variance hypothesis, H0. Notice that in this statistic, the \ideal" SD

value for H0 is 0, so SD is signi�cant at very positive and very negative values. In other words, to

verify H0, we test for:

Z SD

�SD
PrSD(S)dS � (1� �); (6:17)

which, after some algebraic manipulation, may be re-expressed as:

2We can directly measure the angular color variance of an image patch by �rst computing its mean color vector

and then applying Equation 6.13 over all pixels in the patch.
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Figure 6.2: Approximating the Order N Erlang distribution with Gaussians for selected

values of N . Top row: N = 10. Center row: N = 20. Bottom row: N = 30. Notice that

the approximation gets better as N increases.
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Figure 6.3: Range of insigni�cant SD values supporting the equal angular color variance

hypothesis, H0, for a given signi�cance level �.

�(
SD

�D

) �
1� �

2
: (6:18)

Here, �(x) = 1p
2�

R x
�1 e

�x2

2 dx is the cumulative distribution function for the unit Gaussian prob-

ability distribution function, whose values can be easily obtained from standard mathematical

tables.

6.3 The Overall System

This section lists the steps that make up our statistical region �nding algorithm. Its purpose is two-

fold: First, it serves as a summary for the detailed con�dence and signi�cance tests we described in

the previous section. Second, it gives the reader a clearer overview of how our statistical techniques

�t into a traditional \seed" based region �nding framework. Since it is also possible to replace our

statistical tests with more sophisticated threshold and parameter setting techniques, our description

below also provides a modular framework for possible improvements.

1. Estimate the \detectable" patch size at each image location. We compute the local
�
L
ratio at each image point by averaging angular color di�erences between adjacent pixels

over a small �xed neighbourhood3, and multiplying the result by
q

1
�
. We then use the pixel's

local �
L
value with Equation 6.8 to obtain N , the local minimum \detectable" patch size. Our

implementation uses a 1
2

�
sensitivity level for � and a 99:5% con�dence level for C.

3In our implementation, we used a �xed radius of 3 pixels.
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2. Identify region interior pixels. For each pixel, we examine the color distribution of its

N nearest neighbours to determine whether or not it lies inside a color region. We apply the

\insideness" signi�cance test of Subsection 6.2.2 to check for color edges in four orientations,

namely the horizontal, vertical and the two diagonal directions. If none of the four tests

reveal the presence of a color edge, we consider the pixel an \interior pixel". Otherwise, we

treat it as a \boundary pixel". To ensure that no \boundary pixels" get wrongly classi�ed

as \interior pixels", we must choose a signi�cance level, �, that is not too small. A value of

0:01 works well in our implementation.

3. Link adjacent interior pixels to form \seeds". At the end of Step 2, each connected

patch of \interior pixels" lies entirely within a single color region, and may be used as an

image \seed" for color region �nding. We consider two \interior pixels" connected if they are

one of each others' eight nearest neighbours. Because Step 2 classi�es pixels by examining

their N nearest neighbours' color distribution, we expect that for a size N or larger color

region, the \insideness" test should at least correctly label some of its interior pixels. So,

regions that are size N or larger should contain at least one \seed", and should therefore

appear in the segmentation output.

4. Grow initial \seeds". To consistently merge free neighbouring image pixels with growing

\seeds", we must �rst check that both the free pixels and the \seeds" have similar color prop-

erties. We use the di�erence of mean and di�erence of variance signi�cance tests described

in Subsection 6.2.3 to check for color similarity between the pixels and \seeds". Recall that

for an individual image pixel or a very small \seed", we de�ne its color mean and angular

variance to be the color mean and angular variance of its local size N neighbourhood. Our

implementation uses a signi�cance level of � = 0:005.

5. Combine adjacent \seeds" with similar patch colors. We apply the same di�erence

of mean and di�erence of variance signi�cance tests of Step 4 when combining adjacent image

\seeds". The algorithm repeats Steps 4 and 5 until no more \seeds" can be further grown or

combined.

6.4 Results and Conclusions

6.4.1 Two Examples

We implemented a parallel version of our color region �nder on the Connection Machine and tested

it on a few real images. Figures 6.4 and 6.5 summarize the results we obtained on two test cases: a

striped sweater image and a plastic scene. For ease of reference, we also include some intermediate

region �nding results that our algorithm produces.
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: Segmentation results obtained from our color region �nding algorithm. (a)

Image of a color striped sweater. (b) Local angular color noise strength. Brighter patches

indicate noisier pixels. (c) Relative minimum \detectable patch" widths. Brighter pixels

indicate wider patches. (d) Interior pixels. (e) Image \seeds" obtained from linking adjacent

\interior pixels". (f) Final regions.
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: Segmentation results obtained from our color region �nding algorithm. (a)

Image of a plastic scene. (b) Local angular color noise strength. Brighter patches indicate

noisier pixels. (c) Relative minimum \detectable patch" widths. Brighter pixels indicate

wider patches. (d) Interior pixels. (e) Image \seeds" obtained from linking adjacent \interior

pixels". (f) Final regions.
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The algorithm's �rst step estimates the strength of local angular color noise at each pixel,

using the pixel's local neighbourhood color distribution. We display the output in Figures 6.4(b)

and 6.5(b), where we encode noisier pixels as brighter patches. Notice that brighter pixels on

the noise map correspond to darker locations in the image, as one might expect. Figures 6.4(c)

and 6.5(c) map the derived minimum \detectable patch" widths at each pixel on a gray scale, where

again, brighter pixels indicate wider patches. In Step 2, the algorithm classi�es each image pixel as

either an \interior pixel" or a \boundary pixel". Figures 6.4(d) and 6.5(d) display the classi�cation

results with \interior pixels" being highlighted. Step 3 connects adjacent \interior pixels" to form

initial \seed", as shown in Figures 6.4(e) and 6.5(e). In Figures 6.4(f) and 6.5(f), we present the

�nal color regions that our algorithm �nds after iteratively applying Steps 4 and 5 on the image

\seeds".

6.4.2 System Evaluation

We conclude this chapter by briey evaluating our statistical region �nding approach in the context

of some previous work. Our approach is primarily motivated by the di�cult task that traditional

region �nding algorithms face in selecting suitable segmentation thresholds and free parameters.

To circumvent this problem, we developed a statistical region �nding formulation that helps us

determine suitable segmentation thresholds and parameter values automatically. Although the

approach merely replaces one set of free thresholds and parameters with another set of free statistical

parameters, we contend that the new set of parameters is more desirable as a set of adjustable system

variables, because they provide greater insight to some of the system's important segmentation

characteristics. Also, the approach intrinsically implements adaptive thresholding and parameter

selection | a powerful technique for processing images with variable noise distribution.

Like most traditional uniformity based region �nding techniques, our approach also su�ers from

fragmentation and over-merging e�ects. Fragmentation occurs when one wrongly divides a single

color image entity into multiple �nal output regions. Over-merging does the opposite; it wrongly

merges pixels from two or more color image entities into a single �nal region. We can �nd instances

of both region fragmentation and over-merging in Figures 6.4(a) and 6.5(a), our �nal output maps

for the two example images.

We believe that region �nding algorithms will always su�er from fragmentation and over-merging

e�ects, as long as one continues using only local decision procedures to operate on image elements.

Local decision procedures are those that examine only local image attributes when performing

segmentation tasks. Most computer vision researchers today believe that successful region �nding

algorithms must make use of global decision procedures as well, which includes taking into account

general image information, like overall attribute distribution in the image as a whole. Unfortunately,

the problem of integrating global and local image information for early level vision processes is still

a poorly understood computer vision subject.
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In the next chapter, we shall demonstrate a di�erent region �nding technique that makes use

of intermediate image structures, called region skeletons, as a source of global image information.

The technique produces better region �nding results than our current statistical approach.

113



Chapter 7

Color Ridges and Salient Frames of

Reference

7.1 Reference Frames | an Overview

For certain recognition and knowledge representation tasks, it is sometimes convenient to use a

set of stick-like curves that run along local region centers or axes of symmetry, to geometrically

describe the shape of image regions [Duda and Hart 73] [Pavlidis 78]. Such a description can serve

as shape reference frames for making explicit certain geometric features present in the scene. These

geometric features can then be used as important cues for detecting and inferring the presence of

interesting image objects. Figure 7.1 shows two binary image region examples with their stick-like

shape reference frames superimposed. Notice how each reference frame spans its region interior in

describing its region's shape. Henceforth, we shall use the terms reference frames and skeletons

interchangeably, because of the amazingly close structural resemblance between the two concepts.

Reference frames are an interesting notion in computer vision and robotics because of their

wide range of possible applications. Voronoi diagrams [Canny and Donald 87], or distance refer-

ence frames, are helpful computational geometry tools for robot path planning and con�guration

space computation. In some object representation schemes, reference frames can serve as versatile

primitive constructs for describing complex physical structures, an example being the use of gener-

alized cylindrical reference frames for modeling objects with joints [Russell Brooks and Binford 79]

[Nevetia and Binford 77] [Marr and Nishihara 78]. When dealing with elongated exible objects,

reference frames are useful as a means of �nding stable canonical shape descriptions, because curved

elongated shapes can be \straightened" into their canonical form by \unbending" them along their

skeletons.
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Figure 7.1: Two binary images and their reference frames [Cordella Arcelli and Levialdi 81].

7.1.1 Computing Reference Frames

Most reference frame algorithms today fall into one of two categories, both of which operate on

either line drawings or binary images. The �rst class of algorithms focuses on preserving sym-

metry information in image regions. Skeletons found by this class of algorithms are normally

computed using symmetry measurements of points from region boundaries, and their shapes are

generally una�ected by small outline perturbations or minor curvature irregularities along the re-

gion boundaries. Examples of algorithms in this category include Smoothed Local Symmetries

(SLS) [Connell and Brady 87] and region thinning algorithms [Tamura 78]. A second class of al-

gorithms known as Symmetric Axis Transforms (SAT) [Blum 67] [Blum and Nagel 78] preserves

original shape information of regions at the expense of skeletal structure smoothness. One way of

computing SAT reference frames is by a method nicknamed the \brush�re" algorithm, details of

which can be found in [Blum 67]. SAT skeletal maps are generally very sensitive to irregularities

in the region outline.

Because all the above mentioned algorithms are edge-based methods that take distance or sym-

metry measures from image boundaries, reference frames cannot be computed until edge detection

has been successfully performed. We see a major disadvantage in this approach, namely in its

heavy dependence on edge detection results. Figure 7.2 shows an example of unstable edge de-

tection results, where certain edge segments of an image can disappear and then re-appear again

across scales. Since we usually do not know a-priori what an appropriate edge detection scale might

be for each part of an image, we can expect edge detection algorithms in general to miss �nding

discontinuities along some physical edges. This in turn gives rise to poorly formed reference frames
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Figure 7.2: Canny edge maps of an image at 6 di�erent scales. Notice how certain edges

can disappear and re-appear across scales.

for the a�ected regions. Since humans are capable of providing reasonably close shape descriptions

even for regions with fuzzy boundaries, this suggests that in principle, skeletal maps can still be

computed without edge-based information.

7.1.2 Color Reference Frames

In this chapter, we demonstrate how reference frames can be computed directly from color image

irradiances, without having to make use of any edge-based information. Our intention here is

twofold: First, we want to show that reference frames can indeed be computed using a purely

region-based approach, hence avoiding the problem of relying on edge-detection results altogether.

Second, we want to extend the concept of reference frames into the color domain, just as other

physical concepts, like regions and boundaries, have been used with color data. The reference frame

algorithm that we design will therefore operate on color values instead of intensity values, and the

skeletons we �nd will be uniform surface color skeletons instead of intensity region skeletons. The

main advantage we get here is one of producing better semantic shape descriptors for our images.

As alluded to in Chapter 1, color regions tend to correspond much better to physical entities in

the image than intensity regions, so color reference frames should also serve as much better shape

descriptors for objects in the scene than intensity skeletons.

The rest of this chapter will be organized as follows: First, we introduce a new color notion,

116



called a color ridge, that we use as a model of color uniformity for detecting uniform color regions.

Next, we describe an algorithm for detecting color ridges and ridge centers in an image, which

we use as a means of locating uniform color region centers and axes of symmetry for constructing

skeletons. Then, we modify an existing edge-based reference frame algorithm to compute skeletons

of uniform color image regions in a purely region-based fashion. Finally, we show some skeleton

�nding results together with an interesting application of color skeletons in color region growing.

We shall see that the segmentation results we get here are in fact superior to those produced by

the statistical methods of Chapter 6.

7.2 Color Ridges

This section formally presents the color ridge notion as a color image feature. What is a color

ridge? How does the feature model uniform color regions? What makes the feature \ridge like" in

the conventional sense? These are some of the issues that we will address.

7.2.1 A Color Uniformity Model

To compute color reference frames using a region-based approach, we must �rst have an appropriate

model of color uniformity so that uniform color regions can be treated as interesting image features

just like edge segments or T-junctions. We can then think of the reference frame problem as a dual

problem to boundary detection, where our task here is to �nd and link together salient stretches

of color uniformity features to form skeletons. Figure 7.3(a) shows a 1-dimensional description of

our color uniformity model, called a color ridge. Its structure can be described as a central band

of uniformly colored pixels surrounded by bands of di�erent color. A cross section of its scalar

analogue, an intensity ridge, appears in Figure 7.3(b).

We will be using the color ridge feature of Figure 7.3(a) to model uniform color regions in 1D

as follows: The central band of uniformly colored pixels corresponds to points within the uniform

color region itself. The two di�erently colored side bands set spatial limits to the extent of color

uniformity in the region. They help us estimate the image width of the uniform color region, and

also the location of its center which we use for constructing region skeletons.

How then is the color ridge feature of Figure 7.3(a) related to the scalar ridge notion of Fig-

ure 7.3(b)? To answer this question, let us �rst consider a commonly accepted understanding of

the ridge concept, which is a central elevated surface that rises sharply above two adjacent side

surfaces. In this de�nition, one implicitly assumes that the quantity being measured is scalar,

and that points on a ridge surface have greater values than points o� the ridge platform. For

grey-level intensity images, the conventional ridge concept relates easily to physical regions in an

image having uniformly high intensity values relative to their local neighbourhoods. With color

data however, the ridge notion becomes less clearly de�ned, because color is not a scalar value and
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Figure 7.3: (a) Semantic description of a color ridge. (b) Cross sectional plot of an intensity

ridge.

there is no clear \greater than" relationship in color. In order to have color ridges, as we do in

Figure 7.3(a), it appears that we must �rst adopt a di�erent ridge description that does not depend

on the existence of a \greater than" relationship in the quantity being measured. Alternatively, we

can linearize the color space, so that regions with pixel colors that map uniformly and sharply high

onto an \absolute color scale" can be treated as \ridges" in the color sense. We shall see that both

approaches in fact successfully reconcile our notion of a color ridge, as depicted in Figure 7.3(a),

with the traditionally accepted ridge notion, as shown in Figure 7.3(b).

7.2.2 An Alternative Ridge Description

A helpful way of envisioning color ridges is to describe scalar ridges using only primitive relation-

ships that are also de�ned in the color domain. We shall introduce an alternative ridge description

that does not depend on the existence of a \greater than" operator. This new description only

makes use of di�erence measures, a relationship that is well de�ned both in the scalar domain and

in the color domain.

Figure 7.4(a) shows the cross sectional pro�le of a scalar ridge feature. In Figure 7.4(b), we

have a di�erent graphical representation of the ridge feature in Figure 7.4(a), which we shall refer

to as a di�erence pro�le. The di�erence pro�le of a window displays di�erence measures between

points in the window and a chosen reference value. It can be computed by �rst choosing a reference

value for the window from points near its center, and then plotting relative di�erences between

the reference value and values of points on the pro�le. For a well centered ridge feature, points on

the raised platform should have very small di�erence pro�le readings, because their values are very

close to the window's reference value. Points o� the ridge platform should have large di�erence

readings because their values are very di�erent from the window's reference value. In short, the

di�erence model describes a ridge feature as a central uniform band of points with low di�erence
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Figure 7.4: (a) Cross sectional pro�le of a ridge. (b) Cross sectional di�erence pro�le of

ridge in (a)

values, surrounded by points with high di�erence values. Notice that the di�erence representation

conveniently gets rid of the need for a \greater than" relationship in the quantity being described.

The di�erence model is general enough to describe our proposed notion of a color ridge, if the

ridge feature is well centered within the reference window. If we choose a representative color from

the central band of our color ridge as a reference value, and use the angular measure developed

in Chapter 3 to compute color di�erences, then all points within the central band should produce

low di�erence pro�le readings because they all have colors that are very close or identical to the

window's reference color. Likewise, points outside the central ridge band should have high di�erence

pro�le readings because their colors are very di�erent from the reference color. A color ridge can

therefore be described as a central band of uniformly colored points whose colors are very similar

to the \ridge color", surrounded by points whose colors are very di�erent from the \ridge color".

7.2.3 Absolute Colors

To reason about color ridges as scalar ridges, we need a means of quantifying color in some \abso-

lute" sense, so that we can have a \greater than" relationship for color values. One possibility is

to use a context dependent linearizing transform that assigns scalar similarity measures to colors

in the color space, based on the color of the ridge we are detecting. Colors that are very similar to

the \ridge color" get assigned high similarity values while colors that are di�erent from the \ridge

color" get mapped to low values. Equation 7.1 presents a suitable similarity measure (S�) for the
linearizing transform, where c is the color vector being compared, cR is the context dependent

reference color and � stands for the vector dot product operation.

S�(c) =
c� cR

jcjjcRj
(7:1)
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Figure 7.5: Similarity Measure as a Function of Angular Di�erence for using: (a) Normalized

Vector Dot Products, and (b) Normalized Vector Cross Products.

Equation 7.2 presents another similarity measure (S
) that responds more sensitively to color

dissimilarities near the reference color. The symbols are as de�ned in Equation 7.1 with 
 denoting

the vector cross product operation.

S
(c) = 1�
jc
 cRj
jcjjcRj

(7:2)

Both similarity measures are decreasing functions with respect to the angular color di�erence

measure of Chapter 3. They assign a maximum value of 1 to colors that are identical to the

reference \ridge color", cR, and a minimum value of 0 to colors that are orthogonal to cR in the

RGB vector space. Figure 7.5 shows the relationship between the two similarity measures and the

angular color di�erence measure. It is easy to see that the overall linearizing operator transforms

color ridges into scalar ridges that look like the pro�le in Figure 7.3(b).

We can summarize the analogy between color ridges and scalar ridges as follows: When de�ning

ridges of a certain \ridge color", we use a \goodness" scale that ranks colors according to how similar

they are to the given \ridge color". As in de�ning scalar ridges, we then seek a uniform central

platform of points whose colors rank high on the \goodness" scale, surrounded by points whose

colors rank low on the scale. Since color ridges can be of any color in general, our \goodness" scale

must change each time we want to de�ne a ridge of a di�erent \ridge color".
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7.3 Color Ridge Detection

How do we detect color ridge features in an image? In this section, we present a color ridge

algorithm that helps us locate uniform color region centers and axes of symmetry for �nding color

skeletons. We shall proceed by considering �rst the results we want from our ridge detection process,

following which we determine how we can best go about performing the actual ridge detection task.

Although work like this falls under a general class of computer vision problems known as feature

detection, we shall not attempt to address any optimality or e�ciency issues concerning color ridge

detection here, because similar issues have already been addressed by others in work done elsewhere

[Canny 83]. Also, it turns out that we do not really need very high quality ridge detection results

to compute acceptable color reference frames. Instead, our main purpose is to show how the ridge

concept can be extended into the color domain, and how color ridges can be treated and successfully

detected as an image feature through a simple ridge detection technique.

For the sake of simplicity, we shall just analyze the color ridge detection process in a one-

dimensional domain, and derive �lters that are purely one-dimensional in form. Although images

generally contain two-dimensional entities, our simpli�ed analysis does not a�ect our reference

frame algorithm in any way, because as we shall see later on, all the color ridge detection tasks that

we have to perform are purely one-dimensional in nature. Even if our tasks require us to perform

operations in 2D, the one-dimensional operators that we derive can still be e�ectively employed as

directional 2D operators.

7.3.1 The Operator Output

Because a one dimensional ridge feature has two spatial components, namely a width component and

a location component, our ridge detection process must be able to recover both spatial components

of a color ridge for the sake of completeness. Unfortunately, as in the case of intensity ridge detection

[Canny 83], we cannot synthesize a single operator mask that responds positively to ridges of all

possible sizes. To detect color ridges of all possible widths, we need to adopt a multi-scale approach

that uses a family of masks to account for ridge features over the entire scale space. For most of

this section, we shall only focus our attention on building an operator that detects color ridges of

a single �xed width. To generalize the approach for ridges of other widths, we can simply use a

similar operator design with its linear dimensions appropriately scaled. Ideally, our ridge operator

should exhibit the following two characteristics:

1. If the width of a ridge feature matches the width of the operator mask, then the magnitude

of the operator output should peak near the center of the ridge platform and decrease rapidly

towards the sides of the platform. In other words, the operator output should behave like

a probability measure for estimating the center of the ridge platform. We shall de�ne the

location of the ridge feature as the peak output location on the ridge platform.
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Figure 7.6: An operator window that is centered (a) within a color ridge and (b) near the

edge of a color ridge. In case (a), points near the center of the window give a good estimate

of the overall \ridge color". In case (b), points near the window center give a poor estimate

of the overall \ridge color".

2. When a color ridge is processed by masks of di�erent sizes, the strongest peak response at the

center of the ridge feature should come from the �lter whose width best matches the width of

the ridge. That is to say, if we do not know the width of a ridge, we can deduce its width by

measuring the linear dimensions of the �lter mask that produces the strongest peak response

when applied to the ridge.

7.3.2 A Scalar Approach

As far as possible, we shall design our color ridge operator to emulate the behaviour of a scalar

ridge detector. Each application of the operator on some part of the image proceeds in two steps.

The �rst step linearizes the operation by transforming local colors around a pixel into scalar values.

The second step involves convolving a scalar mask with the linearized data, so that points lying

near the center of a color ridge will produce high output values.

During the �rst step, we need to determine a suitable linearizing transform for pixel colors

within the operator window. This task amounts to \guessing" an appropriate \ridge color", to be

used as a reference vector for our similarity transform. Suppose the center of our operator window

is reasonably well aligned with the center of a color ridge (see Figure 7.6(a)), we can get a fairly

good estimate of the \ridge color" by averaging pixel colors near the center of the window. This

is because points near the center of the window map to points on the ridge platform whose colors

are reasonably close to the overall \ridge color". If our operator window is centered near a color

boundary o� the center of a ridge platform (see Figure 7.6(b)), we cannot get a reasonable \ridge

color" estimate using the same averaging method, because we are likely to average pixel colors from

both sides of the color boundary.
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Figure 7.7: A scalar ridge pro�le and its optimal operator.

To ensure that the operator responds favourably only when we have a reliable \ridge color"

estimate, our approach checks that the window is su�ciently well centered within a color ridge

while \guessing" the \ridge color". It performs the check by computing a local color gradient at

the window center to determine if the window center is indeed su�ciently far away from a color

boundary. If the local color gradient is large, it assumes that the window is centered too near a color

boundary for a reliable color estimate, and so it introduces a heavy penalty on the �nal operator

output. If the gradient is small, it assumes that the window is indeed well centered within a color

ridge, and \guesses" a reference color by averaging pixel values within a small �xed distance1 from

the window center. We use Equation 7.2 to linearize local pixel colors within the operator window.

For a well centered window, we expect the local linearized data within the window to appear as a

scalar ridge pro�le.

The second step convolves a scalar ridge mask with the linearized data to produce an operator

output. Intuitively, we want a mask pattern that has the following properties: When centered on

a ridge feature, the portion of the mask containing the ridge platform should be positive, so that

high similarity values on the ridge can contribute positively to the operator output. Portions of

the mask o� the ridge platform should be negative so as to favour low similarity colors o� the ridge

platform.

Figure 7.72 shows a scalar ridge pro�le together with its optimal operator, obtained by applying

numerical optimization on the operator's impulse response. For the purpose of generating inertia

maps in this thesis, it su�ces to use a more easily computable mask pattern that still detects ridge

features fairly well. One possibility is to use a normalized Gaussian second derivative mask whose

distance between zero-crossings (2�) equals the width of the ridge we are trying to detect:

G2D(x) = (1�
x
2

�
2
)
1

�
3
e

� x2

2�2 (7:3)

1We use 1
4
the radius of the �lter's central lobe.

2From Chapter 4 of [Canny 83]
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The mask outline is similar to the optimal ridge detector pro�le, but has an added advantage of

being easily computable and scalable in real time. Figure 7.8 shows the results we get by using

Gaussian second derivative masks with our color ridge algorithm for detecting an ideal and a noisy

color ridge. Mask sizes ranging from a width of 20 to a width of 120 were applied at each ridge

pixel location and the maximum output value across scales is recorded as the �nal result. The �nal

result is fairly stable under additive white noise and has a signal of the desired form | one that

peaks near ridge centers and diminishes towards color boundaries.

7.3.3 Non-Linear Convolution

As this point, there are still two improvements that we can make to our mask design for better

operator results. The �rst improvement has to do with narrowing operator response widths, so

that sharper peaks can be formed at color ridge centers. Although the Gaussian second derivative

produces output patterns that peak near ridge centers, we want our output readings to decrease

even more rapidly toward color boundaries, so that ridge centers can be more precisely located

even in the presence of noise. Sharper peaks near region centers in turn give rise to better formed

reference frames that keep closer to region axes of symmetry.

An easy and e�ective way of sharpening ridge outputs can be accomplished by using non-linear

operator masks. In Figures 7.9(a) and 7.9(b), we see a ridge feature being convolved with two masks

of mismatched widths. Although it is clear from the �gure that both masks are not well aligned

with respect to the ridge center, we get, in both cases, an incurred output penalization that arises

only from the misalignment between the right half of the mask pattern and the ridge feature. To

increase misalignment penalties up to twice the original amount, we use a technique that separately

convolves the left and right portions of a mask with a ridge feature, so that we can have access to

the results of both \half convolutions". At each spatial location, the technique compares the two

convolution results and outputs twice the smaller of the two values. So, if R(x) is the ridge feature

and G2D(x) is the equation of a Gaussian second derivative mask, the \convolution" output can

be mathematically expressed as:

NL(x) = 2min

 X
i<x

R(x� i)G2D(i);
X
i>x

R(x� i)G2D(i)

!
+G2D(0)R(x) (7:4)

The min operator in Equation 7.4 makes the resulting convolution non-linear. From the overall

process description, we can see that if the mask is centrally aligned with a symmetric ridge, the

output we get will be the same as the output we obtain from a normal linear convolution, because

both halves of the non-linear convolution produce identical results. That is, the non-linear convo-

lution process does not a�ect the peak response that we can get from a symmetric ridge feature.

For masks located o� ridge centers however, we do get a greater output attenuation than what we

would otherwise see, because we are taking min values for the two \half convolutions". In the best
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Figure 7.8: Top Row: Second Derivative of Gaussian mask for ridge pro�les. Middle Row:

Hue U channel of an ideal color ridge with color ridge operator response. Bottom Row:

Hue U channel of a noisy color ridge with color ridge operator response.
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Figure 7.9: A mask that is (a) too big, (b) too small for the ridge. Only the right half

component of the convolution gets penalized in both cases.
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Figure 7.10: Wide color ridges with narrow valleys, corresponding to alternating wide and

narrow color bands.

case, we get twice the attenuation of a linear mask when only one half of the linear convolution

experiences attenuation, as in the examples of Figure 7.9. Our ridge outputs therefore decrease

more rapidly away from ridge centers, towards color boundaries.

7.3.4 Operator Support

Until now, we have assumed that color ridges are spatially well separated enough, so that we can use

operator supports that are as large as a few ridge widths. In Figure 7.7 for example, the operator

support for the ideal ridge mask is three times the width of its target ridge feature. To get near zero

DC-components with a Gaussian second derivative mask, we also need an operator support that is

at least three times the zero-crossing distance of the mask, or three times the targeted ridge width!

In real images where adjacent color regions can have very di�erent widths, as in the example cross

section of Figure 7.10, a large operator support can result in poorly formed peaks, especially if the

alternate wider ridges have very similar \ridge colors".

The second improvement adapts our mask pattern for detecting wide ridges better in the pres-
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Figure 7.11: Left component and right component of improved mask pattern for a color

ridge of width 150. Each central-lobe is a normalized Gaussian �rst derivative of � = 75

and each side-lobe is a Gaussian �rst derivative of � = 75
8 .

ence of narrow valleys. The main idea is to use narrower and deeper side-lobes in our mask pattern,

so that we can still achieve near zero DC output components with a much smaller operator sup-

port. At the same time, we also do not want side-lobes that are too narrow, otherwise the operator

output will be too sensitive to minor color uctuations near the sides of the mask. In our imple-

mentation, we get relatively stable results using normalized side-lobes whose standard-deviations

(�) are one-eighth the main-lobe standard-deviation. It requires an operator support of only 112
times the ridge width.

To combine the two improvements discussed above, we use a pair of Gaussian �rst derivative-

like masks as shown in Figure 7.11 to perform our non-linear convolution operation. The mask pair

achieves the same overall qualitative e�ect as two Gaussian second derivative halfs with compressed

side-lobes. Figure 7.12 shows some examples of the sharper and undistorted results we get using

the non-linear mask pair instead of the Gaussian second derivative mask.

7.4 Finding Color Reference Frames

This section describes a reference frame algorithm that operates on region-based color data. It

models uniform color regions as 1D color ridges and performs color ridge detection to locate region

centers.

7.4.1 A Saliency Network Approach

Our skeletal map algorithm is a modi�ed version of Subirana-Vilanova's saliency based scheme that

�nds image reference frames from line drawings or edge maps [Subirana-Vilanova 90b] [Subirana-Vilanova 90a].
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Figure 7.12: Top Row: Color ridge pro�les. Center Row: Ridge operator response with

Gaussian second derivative mask. Bottom Row: Ridge operator response with improved

non-linear mask.
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Figure 7.13: Left: Image of 3 rectangular regions. Right: \Insideness" or Inertia maps for

the rectangular regions. From the top-left in a clockwise direction, the reference directions

are: North-South, East-West, Northeast-Southwest and Northwest-Southeast. Brighter

points have higher inertia values.

Saliency nets [Sha'ashua and Ullman 88] are dynamic programming algorithms that operate within

a graphical framework for �nding curves that maximize a certain quantity in an image. For the pur-

pose of �nding region skeletons, this quantity can be a combined measure of a curve's smoothness

and its \insideness" with respect to the boundaries of some enclosing image region. Subirana-

Vilanova demonstrated experimentally that curves found using this maximizing criterion usually

turn out to be excellent reference frames for the regions they traverse.

To quantify the \insideness" of points within an enclosing region, Subirana-Vilanova proposes

a directional local symmetry measure, called inertia value, that shows how deep an image point is

within its enclosing region. Points lying deep inside a region near a local axis of inertia have high local

symmetry measures, and so have high inertia values perpendicular to the axis direction. Points lying

near the boundary of a region, far away from an axis of symmetry, have low symmetry measures

perpendicular to the axis direction, and therefore have low inertia values. For any orientation, a

local inertia maximum indicates that the point lies exactly at the center of its enclosing region on

the axis of symmetry. Figure 7.13 shows the \insideness" maps or inertia surfaces of an image with

three distinct regions. The inertia surfaces are computed in the four cardinal directions, parallel

to the sides and diagonals of the image. Brighter points on the maps have higher \insideness" or

inertia values than darker points.

To control the smoothness of a curve, Subirana-Vilanova de�nes another positional and direc-

tional quantity, called tolerated length, which penalizes the \goodness measure" of curves that bend

excessively relative to the shape of their enclosing regions. The tolerated length for a curve at a

point is a function of both the curve segment's local curvature and the enclosing region's local

width perpendicular to the curve (see Figure 7.14). High curvatures and wide enclosing regions

give rise to low tolerated lengths, which in turn give rise to high penalization factors. Essentially,

this constraint only allows high curvature segments to exist along narrow sections of an enclosing

region, just as narrow bodies tend to be more exible than thick bodies.

The full skeleton �nding process proceeds in three steps:
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rc W

Figure 7.14: Radius of curvature (rc) and local region width (W ) | factors a�ecting a

curve's tolerated length.

1. Compute inertia surfaces and region widths: Inertia values and local region widths

are computed over the entire image at a �xed number of equally spaced orientation intervals.

At each point and for each orientation, the algorithm uses the computed inertia value as

an initial \goodness" estimate for �nding skeletons that pass through the point in the given

direction.

2. Perform local network saliency computations to generate curves: The saliency

network consists of a two dimensional grid of processors where each processor holds all the

local state information of an image pixel. The computation �nds for every image pixel and

everyone of its outgoing orientations, the most salient curve starting at that pixel with that

local orientation. During each network iteration, each processor updates its own state by

examining its own \goodness" value and inheriting some of its neighbours' \goodness" values.

At the end of the nth iteration, the network stores the \goodness" measure of the most salient

size n curve that leaves each image pixel in each direction. Local widths are used to compute

tolerated lengths at each pixel direction for controlling line segment curvatures. Only long

smooth curves that stay within the interior of image regions become salient at the end of this

stage.

3. Extract region skeletons from the saliency network: The curve with the highest

saliency or \goodness" measure is identi�ed in the network. Usually, such a curve can traverse

a few image regions, with the �rst region contributing most to its saliency value. We extract

the portion of the curve that lies within the �rst region as a skeleton for the region. The

remainder of the curve is discarded because the curve could have entered subsequent regions

in a highly asymmetric or non-central manner, hence forming unsatisfactory region skeletons.
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In Subirana-Vilanova's test examples where a region is either an isolated line drawing or a

binary image pattern, the task is relatively straight-forward because we can simply truncate a

curve where it �rst crosses a line boundary or a binary threshold. This process is repeated for

the next most salient curve until a su�ciently large portion of the image has been accounted

for.

A more detailed description of the Saliency based reference frame algorithm can be found in

[Subirana-Vilanova 90b] and [Subirana-Vilanova 90a].

7.4.2 Modi�cations for Region-Based Color Data

Subirana-Vilanova's algorithm computes inertia surfaces and width estimates from edge-based in-

formation by taking direct distance measurements from the line drawings or edge maps it works

with. To augment the system for region-based color data, two extensions must be made to the

existing implementation.

First, we need a means of computing inertia surfaces and local widths directly from image color.

Our method should be region-based and not edge based. That is, we do not want to use color edges

anywhere within our computation. Instead, we want to be able to generate inertia surfaces and

local width estimates directly by detecting and measuring uniformly colored image regions.

Second, we need a di�erent heuristic for truncating salient curves in Step 3. Since our truncation

procedure has direct access only to color image irradiances, it must be able to truncate curves

reliably by examining only color changes along their paths. In particular, it must be able to break

curves where color di�erences are consistently large enough to be caused by region boundaries, and

not truncate curves within regions, even though local color di�erences may be large because of

noise.

It turns out that we can use the color ridge notion and the color ridge detection process we

developed earlier to implement the 2 extensions above. We have seen in Chapter 3 that unlike

intensity irradiance or depth values, surface color readings tend to be relatively constant within

uniform material regions, even across sharp orientation changes or lighting shadows. So when

traversing a path in an image, we can expect to see very similar surface color values along portions

of the path within the same image region, and sharp surface color changes where the path crosses

region boundaries. In other words, we can expect the surface color pro�le along any arbitrary image

path to appear very \ridge like", where each color ridge corresponds to a portion of the path that

lies entirely within a single color region.

Our two extensions can therefore be recast as the following color ridge problems: To compute

a point's inertia value in some direction, we �rst take a local image cross section at the point in

the given direction, which should appear as a color ridge feature. We then determine how deep the

point is within its enclosing region by performing ridge detection on the color ridge pro�le. The

point will be assigned a high inertia value if it is located well within the ridge interior and a low
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inertia value if it is located near an edge. So, to compute directional inertia surfaces for an image,

we simply perform directional color ridge detection using the 1D color ridge operator we developed

earlier on all points in the image. The output we get is the inertia surface for the chosen operator

direction.

To extract region skeletons from salient curves, we \unbend" each salient curve into a 1 dimen-

sional color pro�le and treat its color distribution as a sequence of color ridges. Each ridge belongs

to a separate region of the image that the curve traverses. Since we only want a reference frame

for the �rst region the curve traverses, we simply identify the portion of the \unbent" curve that

belongs to the �rst ridge pro�le and truncate it at the end of the ridge pro�le. This amounts to

performing color ridge detection on the curve's \unbent" color pro�le, and cutting the curve where

the output is lowest between the �rst and the second ridge peaks.

7.5 Skeletons and Regions

7.5.1 Implementation Details

The color ridge detector and the modi�ed 3-stage region-based reference frame algorithm described

in the previous sections were implemented on a Connection Machine.

During the �rst stage, we perform directional color ridge detection at multiple scales to compute

inertia surfaces and local width maps at a few di�erent orientations. In our implementation, we

detect ridges for widths of 20 to 150 pixels at steps of 2. This is done at 4 di�erent orientations,

namely the N-S, E-W, NE-SW and NW-SE directions, so as to produce inertia surfaces and local

width maps for the 8 closest neighbour directions.

The second stage computes the saliency measure and direction of the most salient curve starting

at each point in the image. Because we only compute inertia surfaces and local widths for the 8

cardinal directions, the most salient curve's direction at each point is also limited to one of the 8

closest neighbour directions in our current implementation. The number of network iterations we

perform is set to the maximum dimension of the image measured in pixels.

In Stage 3, we �nd skeletons from salient curves by again performing multiple scale color ridge

detection along each curve. We use ridge scales ranging from a width of 20 pixels to the full length

of the curve measured in pixels. Currently, we truncate a curve manually by eyeballing its ridge

detector response for the truncation point { the lowest output location between the �rst 2 signi�cant

ridge peaks. With suitable thresholds for determining signi�cance, it is possible to design a simple

algorithm for taking over the manual curve truncation task. Our skeleton extraction process works

serially beginning with the most salient image curve, that is it �nd a region skeleton from the most

salient curve �rst before searching for the next most salient curve to �nd the next region skeleton.
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Figure 7.15: How region skeletons are computed. (a) The color image. (b) Inertia surfaces

for the image computed using directional color ridge detection. (c) A salient curve the

saliency network �nds from the inertia surfaces. (d) The resulting skeleton for the �rst

region. (e) The result of color ridge detection on the curve's color pro�le. We truncate the

curve at the point where the curve �rst crosses a region boundary, which corresponds to

the lowest output point between the �rst 2 signi�cant ridge peaks. (f) The ridge detection

pro�le expanded to focus on the �rst ridge, which corresponds to the skeleton for the shoe.
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7.5.2 Results

We have successfully tested our directional color ridge �nder and the modi�ed region-based reference

frame algorithm on a few real images. Figures 7.16 and 7.17 summarize the results we obtained

from two test images. The �rst test case (Figure 7.16) is an image of a blurred object in a

uniformly colored background. Both intensity and color edge detection operations produce very

poor edge maps for this image at most scales, so we can expect traditional edge-based reference

frame algorithms to produce poor skeletons for the image too. The second example (Figure 7.17) is a

natural occurring image of the author in a moderately complex indoor environment. It demonstrates

the system's ability to �nd good reference frames for regions of di�erent shapes and sizes.

The �gures also display some of the skeletons we �nd in the two images together with their

associated color regions. Since each skeletal curve generally occupies a good spatial sample of points

from within its enclosing region, its color distribution can be treated as a \representative" color

sample for its enclosing region. We can therefore make use of color skeletons as intermediate color

region descriptors for color region �nding.

Our color region �nding algorithm grows skeletons into complete image regions by working

with the color distribution of each skeleton within a traditional Split and Merge segmentation

framework [Ballard and Brown 82] [Horowitz and Pavlidis 74]. The algorithm �rst computes the

average color (see Chapter 4) and the angular color standard deviation, �a (see Chapter 6), for

each region skeleton. It then recursively examines pixels bordering the skeleton and merges them

with the skeleton to form a larger region if their colors are close enough to the skeleton's average

color. Because the regions in both test images are indeed relatively uniform in color, we can use

a simple closeness measure for merging pixels with skeletons that depends only on the skeleton's

average color and its �a value. In both test cases, we allow merging to occur if the pixel's color

and the skeleton's average color are within 2�a of each other. The segmentation results for most

regions still remain unchanged even after increasing the merging threshold from 2�a to 3�a.

7.6 Summary and Extensions

This chapter introduces a new notion of color uniformity and presents a technique for detecting uni-

form color features directly from color image readings. The color uniformity modeling scheme seeks

an analogous relationship between uniform color regions and scalar 1 dimensional ridge features,

so that traditional scalar ridge detection methods can be employed to detect and locate uniform

color regions in the image. In a scene whose physical surface entities are actually uniformly colored

or just slightly varying in color, the modeling scheme can transform a reasonably well centered

color cross sectional pro�le of some image region into a scalar 1D ridge pro�le. The ridge pro�le's

high central plateau corresponds to the portion of the color cross section that lies within the region

itself. Detecting and locating feature centers for these color ridges thus amounts to highlighting
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(a) (b) (c)

(d)

Figure 7.16: (a) An image of a blurred object in a uniformly colored background. (b) Color

boundaries using a mask size of � = 2. (c) Intensity boundaries using a mask size of � = 2.

(d) Skeleton and color region corresponding to the blurred object.
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Figure 7.17: Top Row: An image of the author in a moderately complex indoor environment,

color boundaries and intensity boundaries. Other Rows: Some color skeletons and regions found

by our algorithm.
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shape centers and local axes of symmetry for uniform color regions in the image.

By successfully linking together continuous stretches of region centers and region local axes of

symmetry to form skeletons, we have in fact demonstrated an independent approach that computes

the dual problem of edge linking in boundary detection. Here, the results we get are salient stretches

of line features that lie within and describe the shapes of uniform color regions in the image. The

advantage of having a skeleton �nding approach independent of boundary detection is obvious, as

vision systems can now infer the overall shapes of image regions even when their region boundaries

are poorly formed. Because region skeletons occupy a good spatial sample of points within their

enclosing image regions, we see that they can serve as helpful intermediate region descriptors and

ideal start points for region �nding operations.

7.6.1 Ridges as a General Uniformity Notion

Section 7.2 extends the notion of scalar ridges into color, a vector domain, and uses the color ridge

concept to model color uniformity. In Section 7.3, we then generalize the traditional scalar ridge

detection process to detect color ridge features. We believe that the ridge concept presented in this

chapter is in fact a more universal descriptive notion that can be extended to model uniformity

in other forms of data as well, such as texture uniformity. All that one needs for making the

ridge extension into another cue is to de�ne an appropriate quantitative similarity or di�erence

measure for the cue. In the case of texture, this quantitative measure can be aMaximum Frequency

Di�erence (MFD) statistic that Voorhees [Voorhees 87] used for texture discrimination. A texture

ridge can then be described as a 1 dimensional texture pro�le with a central block of highly similar

texture points, suitable for modeling uniform texture regions in 1D. To detect and locate texture

ridge centers in images, we can use an approach analogous to the color ridge detection process that

�rst converts texture pro�les into scalar ridge pro�les using texture similarity measurements before

performing scalar ridge detection.

7.6.2 Skeletons and Region Growing

The previous section briey describes a practical application of color reference frames in region

�nding. Currently, our skeleton based region �nder only makes use of skeletons for their repre-

sentative color values within a Split and Merge region growing framework. A natural extension

to the existing system would be to make use of the geometric properties that skeletons poses as

well. We have seen at the beginning of this chapter that skeletons are good shape descriptors for

their enclosing regions because they run through region centers and local axes of symmetry. Since

color ridge detection also gives us width estimates of regions centered about their skeletons, it

makes sense to use the shape of skeletons and their local width estimates as an alternative means

of geometrically controlling the extent of region growing. Future research in this area should try to

integrate the geometric constraints of regions captured by their skeletons together with our current
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skeleton based region growing technique to produce more robust color region �nders.
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