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Abstract

In most classical frameworks for learning from examples, it is assumed that examples are randomly drawn

and presented to the learner. In this paper, we consider the possibility of a more active learner who is

allowed to choose his/her own examples. Our investigations are carried out in a function approximation

setting. In particular, using arguments from optimal recovery (Micchelli and Rivlin, 1976), we develop an

adaptive sampling strategy (equivalent to adaptive approximation) for arbitrary approximation schemes.

We provide a general formulation of the problem and show how it can be regarded as sequential optimal

recovery. We demonstrate the application of this general formulation to two special cases of functions

on the real line 1) monotonically increasing functions and 2) functions with bounded derivative. An

extensive investigation of the sample complexity of approximating these functions is conducted yielding

both theoretical and empirical results on test functions. Our theoretical results (stated in PAC-style),

along with the simulations demonstrate the superiority of our active scheme over both passive learning

as well as classical optimal recovery. The analysis of active function approximation is conducted in a

worst-case setting, in contrast with other Bayesian paradigms obtained from optimal design (Mackay,

1992).
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1 Introduction

In the classical paradigm of learning from examples,

the data or examples, are typically drawn according to

some �xed, unknown, arbitrary probability distribution.

This is the case for a wide class of problems in the

PAC (Valiant, 1984) framework, as well as other familiar

frameworks in the connectionist (Rumelhart et al, 1986

) and pattern recognition literature. In this important

sense, the learner is merely a passive recipient of infor-

mation about the target function. In this paper, we con-

sider the possibility of a more active learner. There are of

course a myriad of ways in which a learner could be more

active. Consider, for example, the extreme pathological

case where the learner simply asks for the true target

function which is duly provided by an obliging oracle.

This, the reader will quickly realize is hardly interesting.

Such pathological cases aside, this theme of activity on

the part of the learner has been explored (though it is

not always conceived as such) in a number of di�erent

settings (PAC-style concept learning, boundary-hunting

pattern recognition schemes, adaptive integration, opti-

mal sampling etc.) in more principled ways and we will

comment on these in due course.

For our purposes, we restrict our attention in this pa-

per to the situation where the learner is allowed to choose

its own examples
1
, for function approximation tasks. In

other words, the learner is allowed to decide where in the

domain D (for functions de�ned from D to Y ) it would
like to sample the target function. Note that this is

in direct contrast to the passive case where the learner

is presented with randomly drawn examples. Keeping

other factors in the learning paradigm unchanged, we

then compare in this paper, the active and passive learn-

ers who di�er only in their method of collecting exam-

ples. At the outset, we are particularly interested in

whether there exist principled ways of collecting exam-

ples in the �rst place. A second important consideration

is whether these ways allow the learner to learn with a

fewer number of examples. This latter question is partic-

ularly important as one needs to assess the advantage,

from an information-theoretic point of view, of active

learning.

Are there principled ways to choose examples? We

develop a general framework for collecting (choosing)

examples for approximating (learning) real-valued func-

tions. This can be viewed as a sequential version of op-

timal recovery (Michhelli and Rivlin, 1977): a scheme

for optimal sampling of functions. Such an active learn-

ing scheme is consequently in a worst-case setting, in

contrast with other schemes (Mackay, 1992; Cohn, 1993;

Sollich, 1993) that operate within a Bayesian, average-

1This can be regarded as a computational instantiation
of the psychological practice of selective attention where a
human might choose to selectively concentrate on interesting
or confusing regions of the feature space in order to better
grasp the underlying concept. Consider, for example, the sit-
uation when one encounters a speaker with a foreign accent.
One cues in to this foreign speech by focusing on and then
adapting to its distinguishing properties. This is often ac-
complished by asking the speaker to repeat words which are
confusing to us.

case paradigm. We then demonstrate the application of

sequential optimal recovery to some speci�c classes of

functions. We obtain theoretical bounds on the sam-

ple complexity of the active and passive learners, and

perform some empirical simulations to demonstrate the

superiority of the active learner.

2 A General Framework For Active

Approximation

2.1 Preliminaries

We need to develop the following notions:

F : Let F denote a class of functions from some domain

D to Y where Y is a subset of the real line. The do-

main D is typically a subset of Rk
though it could be

more general than that. There is some unknown target

function f 2 F which has to be approximated by an

approximation scheme.

D: This is a data set obtained by sampling the target

f 2 F at a number of points in its domain. Thus,

D = f(xi; yi)jxi 2 D; yi = f(xi); i = 1 : : :ng

Notice that the data is uncorrupted by noise.

H: This is a class of functions (also from D to Y ) from
which the learner will choose one in an attempt to ap-

proximate the target f . Notationally, we will use H
to refer not merely to the class of functions (hypothe-

sis class) but also the algorithm by means of which the

learner picks an approximating function h 2 H on the

basis of the data set D: In other words, H denotes an ap-

proximation scheme which is really a tuple < H; A > :
A is an algorithm that takes as its input the data set D;
and outputs an h 2 H:
Examples: If we consider real-valued functions fromRk

to R; some typical examples of H are the class of poly-

nomials of a �xed order (say q), splines of some �xed

order, radial basis functions with some bound on the

number of nodes, etc. As a concrete example, consider

functions from [0; 1] to R: Imagine a data set is collected

which consists of examples, i.e., (xi; yi) pairs as per our
notation. Without loss of generality, one could assume

that xi � xi+1 for each i: Then a cubic (degree-3) spline

is obtained by interpolating the data points by poly-

nomial pieces (with the pieces tied together at the data

points or \knots") such that the overall function is twice-

di�erentiable at the knots. Fig. 1 shows an example of

an arbitrary data set �tted by cubic splines.

dC : We need a metric to determine how good the ap-

proximation learner's approximation is. Speci�cally, the

metric dC measures the approximation error on the re-

gion C of the domainD: In other words, dC ; takes as its
input any two functions (say f1 and f2) fromD to R and

outputs a real number. It is assumed that dC satis�es

all the requisites for being a real distance metric on the

appropriate space of functions. Since the approximation

error on a larger domain is obviously going to be greater

than that on the smaller domain, we can make the follow-

ing two observations: 1) for any two sets C1 and C2 such
1
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Figure 1: An arbitrary data set �tted with cubic splines

that C1 � C2; dC1(f1; f2) � dC2(f1; f2); 2) dD(f1; f2) is
the total approximation on the entire domain; this is our

basic criterion for judging the \goodness" of the learner's

hypothesis.

Examples: For real-valued functions from Rk
to R; the

L
p
C metric de�ned as dC(f1; f2) = (

R
C
jf1 � f2j

pdx)1=p

serves as a natural example of an error metric.

C: This is a collection of subsets C of the domain. We are

assuming that points in the domain where the function is

sampled, divide (partition) the domain into a collection

of disjoint sets Ci 2 C such that [ni=1Ci = D:

Examples: For the case of functions from [0; 1] to R;
and a data set D; a natural way in which to partition the
domain [0; 1] is into the intervals [xi; xi+1); (here again,
without loss of generality we have assumed that xi �
xi+1). The set C could be the set of all (closed, open, or

half-open and half-closed) intervals [a; b] � [0; 1]:

The goal of the learner (operating with an approxima-

tion scheme H) is to provide a hypothesis h 2 H (which

it chooses on the basis of its example set D) as an ap-

proximator of the unknown target function f 2 F : We

now need to formally lay down a criterion for assessing

the competence of a learner (approximation scheme). In

recent times, there has been much use of PAC (Valiant

1984) like criteria to assess learning algorithms. Such a

criterion has been used largely for concept learning but

some extensions to the case of real valued functions ex-

ist (Haussler 1989). We adapt here for our purposes a

PAC like criterion to judge the e�cacy of approximation

schemes of the kind described earlier.

De�nition 1 An approximation scheme is said to P-

PAC learn the function f 2 F if for every � > 0 and

1 > � > 0; and for an arbitrary distribution P on D;
it collects a data set D; and computes a hypothesis h 2
H such that dD(h; f) < � with probability greater than

1 � �: The function class F is P-PAC learnable if the

approximation scheme can P-PAC learn every function

in F : The class F is PAC learnable if the approximation

scheme can P-PAC learn the class for every distribution

P.

There is an important clari�cation to be made about

our de�nition above. Note that the distance metric d
is arbitrary. It need not be naturally related to the

distribution P according to which the data is drawn.

Recall that this is not so in typical distance metrics

used in classical PAC formulations. For example, in

concept learning, where the set F consists of indicator

functions, the metric used is the L1(P ) metric given by

d(1A; 1B) =
R
D
j1A � 1B jP (x)dx: Similarly, extensions

to real-valued functions typically use an L2(P ) metric.

The use of such metrics imply that the training error is

an empirical average of the true underlying error. One

can then make use of convergence of empirical means to

true means (Vapnik, 1982) and prove learnability. In our

case, this is not necessarily the case. For example, one

could always come up with a distribution P which would

never allow a passive learner to see examples in a certain

region of the domain. However, the arbitrary metric d
might weigh this region heavily. Thus the learner would

never be able to learn such a function class for this met-

ric. In this sense, our model is more demanding than

classical PAC. To make matters easy, we will consider

here the case of P � PAC learnability alone, where P
is a known distribution (uniform in the example cases

studied). However, there is a sense in which our notion

of PAC is easier |the learner knows the true metric d
and given any two functions, can compute their rela-

tive distance. This is not so in classical PAC, where the

learner cannot compute the distance between two func-

tions since it does not know the underlying distribution.

We have left the mechanism of data collection un-

de�ned. Our goal here is the investigation of di�erent

methods of data collection. A baseline against which

we will compare all such schemes is the passive method

of data collection where the learner collects its data set

by sampling D according to P and receiving the point

(x; f(x)): If the learner were allowed to draw its own ex-

amples, are there principled ways in which it could do

this? Further, as a consequence of this exibility ac-

corded to the learner in its data gathering scheme, could

it learn the class F with fewer examples? These are the

questions we attempt to resolve in this paper, and we

begin by motivating and deriving in the next section, a

general framework for active selection of data for arbi-

trary approximation schemes.

2.2 The Problem of Collecting Examples

We have introduced in the earlier section, our baseline

algorithm for collecting examples. This corresponds to

a passive learner that draws examples according to the

probability distribution P on the domain D: If such a

passive learner collects examples and produces an out-

put h such that dD(h; f) is less than � with probability

greater than 1 � �; it P -PAC learns the function. The

number of examples that a learner needs before it pro-

duces such an (�-good,�-con�dence) hypothesis is called
its sample complexity.

Against this baseline passive data collection scheme,

lies the possibility of allowing the learner to choose its
2



own examples. At the outset it might seem reasonable

to believe that a data set would provide the learner with

some information about the target function; in particu-

lar, it would probably inform it about the \interesting"

regions of the function, or regions where the approxima-

tion error is high and need further sampling. On the

basis of this kind of information (along with other infor-

mation about the class of functions in general) one might

be able to decide where to sample next. We formalize

this notion as follows:

Let D = f(xi; yi); i = 1 : : :ng be a data set (con-

taining n data points) which the learner has access to.

The approximation scheme acts upon this data set and

picks an h 2 H (which best �ts the data according to

the speci�cs of the algorithm A inherent in the approx-

imation scheme). Further, let Ci; i = 1; : : : ;K(n)2 be a

partition of the domain D into di�erent regions on the

basis of this data set. Finally let

FD = ff 2 Fjf(xi) = yi 8(xi; yi) 2 Dg

This is the set of all functions in F which are consistent

with the data seen so far. The target function could be

any one of the functions in FD:
We �rst de�ne an error criterion eC (where C is any

subset of the domain) as follows:

eC(H;D;F) = sup
f2FD

dC(h; f)

Essentially, eC is a measure of the maximum possi-

ble error the approximation scheme could have (over the

region C) given the data it has seen so far. It clearly de-

pends on the data, the approximation scheme, and the

class of functions being learned. It does not depend upon

the target function (except indirectly in the sense that

the data is generated by the target function after all, and

this dependence is already captured in the expression).

We thus have a scheme to measure uncertainty (maxi-

mum possible error) over the di�erent regions of the in-

put space D: One possible strategy to select a new point

might simply be to sample the function in the region Ci

where the error bound is the highest. Let us assume we

have a procedure P to do this. P could be to sample

the region C at the centroid of C; or sampling C accord-

ing to some distribution on it, or any other method one

might fancy. This can be described as follows:

Active Algorithm A

1. [Initialize] Collect one example (x1; y1) by sam-

pling the domain D once according to procedure

P:

2. [Obtain New Partitions] Divide the domain D
into regions C1; : : : ; CK(1) on the basis of this data

point.

2The number of regions K(n) into which the domain D

is partitioned by n data points depends upon the geometry
of D and the partition scheme used. For the real line parti-
tioned into intervals as in our example, K(n) = n + 1: For
k-cubes, one might obtain Voronoi partitions and compute
K(n) accordingly.

3. [Compute Uncertainties] Compute eCi
for each

i:

4. [General Update and Stopping Rule] In gen-

eral, at the jth stage, suppose that our partition

of the domain D is into Ci; i = 1 : : :K(j): One
can compute eCi

for each i and sample the region

with maximum uncertainty (say Cl) according to

procedure P: This would provide a new data point

(xj+1; yj+1): The new data point would re-partion

the domain D into new regions. At any stage, if

the maximum uncertainty over the entire domain

eD is less than � stop.

The above algorithm is one possible active strategy.

However, one can carry the argument a little further and

obtain an optimal sampling strategy which would give

us a precise location for the next sample point. Imagine

for a moment, that the learner asks for the value of the

function at a point x 2 D: The value returned obviously

belongs to the set

FD(x) = ff(x)jf 2 FDg

Assume that the value observed was y 2 FD(x): In e�ect,
the learner now has one more example, the pair (x; y);
which it can add to its data set to obtain a new, larger

data set D0 where

D0 = D [ (x; y)

Once again, the approximation scheme H would map

the new data set D0 into a new hypothesis h0: One can

compute

eC(H;D
0;F) = sup

f2FD0

d(h0; f)

Clearly, eD(H;D
0;F) now measures the maximum

possible error after seeing this new data point. This

depends upon (x; y) (in addition to the usual H;D, and
F): For a �xed x; we don't know the value of y we would
observe if we had chosen to sample at that point. Con-

sequently, a natural thing to do at this stage is to again

take a worst case bound, i.e., assume we would get the

most unfavorable y and proceed. This would provide the
maximumpossible error we could make if we had chosen

to sample at x: This error (over the entire domain) is

sup
y2FD(x)

eD(H;D
0;F) = sup

y2FD(x)

eD(H;D [ (x; y);F)

Naturally, we would like to sample the point x for which

this maximum error is minimized. Thus, the optimal

point to sample by this argument is

xnew = argmin
x2D

sup
y2FD (x)

eD(H;D [ (x; y);F) (1)

This provides us with a principled strategy to choose

our next point. The following optimal active learning

algorithm follows:

Active Algorithm B (Optimal)

1. [Initialize] Collect one example (x1; y1) by sam-

pling the domain D once according to procedure

P: We do this because without any data, the ap-

proximation scheme would not be able to produce

any hypothesis.
3



2. [Compute Next Point to Sample] Apply eq. 1

and obtain x2: Sampling the function at this point

yields the next data point (x2; y2) which is added

to the data set.

3. [General Update and Stopping Rule] In gen-

eral, at the jth stage, assume we have in place a

data set Dj (consisting of j data). One can com-

pute xj+1 according to eq. 1 and sampling the func-

tion here one can obtain a new hypothesis and a

new data set Dj+1: In general, as in Algorithm A,

stop whenever the total error eD(H;Dk;F) is less
than �:

By the process of derivation, it should be clear that

if we chose to sample at some point other than that ob-

tained by eq. 1, an adversary could provide a y value and
a function consistent with all the data provided (includ-

ing the new data point), that would force the learner to

make a larger error than if the learner chose to sample

at xnew: In this sense, algorithm B is optimal. It also

di�ers from algorithm A, in that it does not require a

partition scheme, or a procedure P to choose a point in

some region. However, the computation of xnew inherent

in algorithmB is typically more intensive than computa-

tions required by algorithm A. Finally, it is worthwhile

to observe that crucial to our formulation is the deriva-

tion of the error bound eD(H;D;F): As we have noted
earlier, this is a measure of the maximum possible error

the approximation scheme H could be forced to make

in approximating functions of F using the data set D:
Now, if one wanted an approximation scheme indepen-

dent bound, this would be obtained by minimzing eD
over all possible schemes, i.e.,

inf
H
eD(H;D;F)

Any approximation scheme can be forced to make at

least as much error as the above expression denotes. An-

other bound of some interest is obtained by removing the

dependence of eD on the data. Thus given an approx-

imation scheme H; if data D is drawn randomly, one

could compute

PfeD(H;D;F) > �g

or in an approximation scheme-independent setting, one

computes

Pfinf
H
eD(H;D;F) > �g

The above expressions would provide us PAC-like

bounds which we will make use of later in this paper.

2.3 In Context

Having motivated and derived two possible active strate-

gies, it is worthwhile at this stage to comment on the for-

mulation and its place in the context of previous work

in similar vein executed across a number of disciplines.

1) Optimal Recovery: The question of choosing the

location of points where the unknown function will be

sampled has been studied within the framework of opti-

mal recovery (Micchelli and Rivlin, 1976; Micchelli and

Wahba, 1981; Athavale and Wahba, 1979). While work

of this nature has strong connections to our formulation,

there remains a crucial di�erence. Sampling schemes mo-

tivated by optimal recovery are not adaptive. In other

words, given a class of functions F (from which the tar-

get f is selected), optimal sampling chooses the points

xi 2 D; i = 1; : : : ; n by optimizing over the entire func-

tion space F : Once these points are obtained, then they

remain �xed irrespective of the target (and correspond-

ingly the data set D): Thus, if we wanted to sample the

function at n points, and had an approximation scheme

H with which we wished to recover the true target, a

typical optimal recovery formulation would involve sam-

pling the function at the points obtained as a result of

optimizing the following objective function:

arg min
x1;:::;xn

sup
f2F

d(f; h(D = f(xi; f(xi))i=1:::ng)) (2)

where h(D = f(xi; f(xi))i=1:::ng) 2 H is the learner's

hypothesis when the target is f and the function is sam-

pled at the xi's. Given no knowledge of the target, these
points are the optimal to sample.

In contrast, our scheme of sampling can be conceived

as an iterative application of optimal recovery (one point

at a time) by conditioning on the data seen so far. Mak-

ing this absolutely explicit, we start out by asking for

one point using optimal recovery. We obtain this point

by

argmin
x1

sup
f2F

d(f; h(D1 = f(x1; f(x1))g))

Having sampled at this point (and obtained y1 from the

true target), we can now reduce the class of candidate

target functions to F1; the elements of F which are con-

sisitent with the data seen so far. Now we obtain our

second point by

argmin
x2

sup
f2F1

d(f; h(D2 = f(x1; y1); (x2; f(x2))g))

Note that the supremum is done over a restricted set F1

the second time. In this fashion, we perform optimal

recovery at each stage, reducing the class of functions

over which the supremum is performed. It should be

made clear that this sequential optimal recovery is not a

greedy technique to arrive at the solution of eq. 2. It will

give us a di�erent set of points. Further, this set of points

will depend upon the target function. In other words,the

sampling strategy adapts itself to the unknown target f
as it gains more information about that target through

the data. We know of no similar sequential sampling

scheme in the literature.

While classical optimal recovery has the formulation

of eq. 2, imagine a situation where a \teacher" who

knows the target function and the learner, wishes to com-

municate to the learner the best set of points to minimize

the error made by the learner. Thus given a function g;
this best set of points can be obtained by the following

optimization

arg min
x1;:::;xn

d(g; h(f(xi; g(xi))gi=1:::n)) (3)

Eq. 2 and eq. 3 provide two bounds on the perfor-

mance of the active learner following the strategy of Al-

gorithm B in the previous section. While eq. 2 chooses

optimal points without knowing anything about the tar-

get, and, eq. 3 chooses optimal points knowing the target
4



completely, the active learner chooses points optimally

on the basis of partial information about the target (in-

formation provided by the data set).

2) Concept Learning: The PAC learning community

(which has traditionally focused on concept learning)

typically incorporates activity on the part of the learner

by means of queries, the learner can make of an ora-

cle. Queries (Angluin, 1988) range from membership

queries (is x an element of the target concept c) to sta-

tistical queries (Kearns, 1993 ; where the learner can not

ask for data but can ask for estimates of functionals of

the function class) to arbitrary boolean valued queries

(see Kulkarni etal for an investigation of query complex-

ity). Our form of activity can be considered as a natural

adaptation of membership queries to the case of learning

real-valued functions in our modi�ed PAC model. It is

worthwhile to mention relevant work which touches the

contents of this paper at some points. The most signi�-

cant of these is an investigation of the sample complex-

ity of active versus passive learning conducted by Eisen-

berg and Rivest (1990) for a simple class of unit step

functions. It was found that a binary search algorithm

could vastly outperform a passive learner in terms of the

number of examples it needed to (�; �) learn the target

function. This paper is very much in the spirit of that

work focusing as it does on the sample complexity ques-

tion. Another interesting direction is the transformation

of PAC-learning algorithms from a batch to online mode.

While Littlestone etal (1991) consider online learning

of linear functions, Kimber and Long (1992) consider

functions with bounded derivatives which we examine

later in this paper. However the question of choosing

one's data is not addressed at all. Kearns and Schapire

(1990) consider the learning of p-concepts (which are

essentially equivalent to learning classes of real-valued

functions with noise) and address the learning of mono-

tone functions in this context. Again, there is no active

component on the part of the learner.

3)Adaptive Integration: The novelty of our formu-

lation lies in its adaptive nature. There are some simi-

larities to work in adaptive numerical integration which

are worth mentioning. Roughly speaking, an adaptive

integration technique (Berntsen etal 1991, book???) di-

vides the domain of integration into regions over which

the integration is done. Estimates are then obtained

of the error on each of these regions. The region with

maximum error is subdivided. Though the spirit of such

an adaptive approach is close to ours, speci�c results in

the �eld naturally di�er because of di�erences between

the integration problem (and its error bounds) and the

approximation problem.

4) Bayesian and other formulations: It should be

noted that we have a worst-case formulation (the supre-

mum in our formulation represents the maximum pos-

sible error the scheme might have). Alternate bayesian

schemes have been devised (Mackay, 1991; Cohn, 1994)

from the perspective of optimal experiment design (Fe-

dorov). Apart from the inherently di�erent philosophi-

cal positions of the two schemes, an indepth treatment

of the sample complexity question is not done. We

will soon give two examples where we address this sam-

ple complexity question closely. In a separate piece of

work (Sung and Niyogi, 1994) , the author has also

investigated such bayesian formulations from such an

information-theoretic perspective. Yet another average-

case formulation comes from the information-complexity

viewpoint of Traub and Wozniakovski (see Traub etal

(1988) for details). Various interesting sampling strate-

gies are suggested by research in that spirit. We do not

attempt to compare them due to the di�culty in com-

paring worst-case and average-case bounds.

Thus, we have motivated and derived in this section,

two possible active strategies. The formulation is gen-

eral. We now demonstrate the usefulness of such a for-

mulation by considering two classes of real-valued func-

tions as examples and deriving speci�c active algorithms

from this perspective. At this stage, the important ques-

tion of sample complexity of active versus passive learn-

ing still remains unresolved. We investigate this more

closely by deriving theoretical bounds and performing

empirical simulation studies in the case of the speci�c

classes we consider.

3 Example 1: A Class of Monotonically

Increasing Bounded Functions

Consider the following class of functions from the inter-

val [0; 1] � < to < :

F = ff : 0 � f �M; and f(x) � f(y)8x � yg

Note that the functions belonging to this class need not

be continuous though they do need to be measurable.

This class is PAC- learnable (with an L1(P ) norm, in

which case our notion of PAC reduces to the classical

notion) though it has in�nite pseudo-dimension
3
(in the

sense of Pollard (1984)). Thus, we observe:

Observation 1 The class F has in�nite pseudo-

dimension (in the sense of Pollard (1984); Haussler

(1989),).

Proof: To have in�nite pseudo-dimension, it must be

the case that for every n > 0; there exists a set of

points fx1; : : : ; xng which is shattered by the class F :
In other words, there must exist a �xed translation vec-

tor t = (t1; : : : ; tn) such that for every boolean vector

b = (b1; : : : ; bn); there exists a function f 2 F which

satis�es f(xi) � ti > 0 , bi = 1: To see that this

is indeed the case, let the n points be xi = i=(n + 1)

for i going from 1 to n: Let the translation vector then

be given by ti = xi: For an arbitrary boolean vector

b we can always come up with a monotonic function

such that f(xi) = i=(n + 1) � 1=3(n + 1) if bi = 0 and

f(xi) = i=(n + 1) + 1=3(n+ 1) if bi = 1: 2

We also need to specify the terms H; dC ; the proce-
dure P for partitioning the domain D = [0; 1] and so

on. For our purposes, we assume that the approxima-

tion scheme H is �rst order splines. This is simply �nd-

ing the monotonic function which interpolates the data

3Finite pseudo-dimension is only a su�cient and not
necessary condition for PAC learnability as this example
demonstrates.
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in a piece-wise linear fashion. A natural way to parti-

tion the domain is to divide it into the intervals [0; x1);
[x1; x2); : : : ; [xi; xi+1); : : : ; [xn; 1]:The metric dC is an Lp

metric given by dC(f1; f2) = (
R 1
0
jf1 � f2j

pdx)1=p:
Note that we are speci�cally interested in comparing

the sample complexities of passive and active learning.

We will do this under a uniform distributional assump-

tion, i.e., the passive learner draws its examples by sam-

pling the target function uniformly at random on its do-

main [0; 1]: In contrast, we will show how our general

formulation in the earlier section translates into a spe-

ci�c active algorithm for choosing points, and we derive

bounds on its sample complexity. We begin by �rst pro-

viding a lower bound for the number of examples a pas-

sive PAC learner would need to draw to learn this class

F :

3.1 Lower Bound for Passive Learning

Theorem 1 Any passive learning algorithm (more

speci�cally, any approximation scheme which draws data

uniformly at random and interpolates the data by any

arbitrary bounded function) will have to draw at least
1
2
(M=2�)p ln(1=�) examples to P -PAC learn the class

where P is a uniform distribution.

Proof: Consider the uniform distribution on [0; 1] and a

subclass of functions which have value 0 on the region A

= [0; 1� (2�=M )
p
] and belong to F . Suppose the passive

learner draws l examples uniformly at random. Then

with probability (1� (2�=M )
p
)
l
, all these examples will

be drawn from region A. It only remains to show that

for the subclass considered, whatever be the function

hypothesized by the learner, an adversary can force it to

make a large error.

Suppose the learner hypothesizes that the function is

h. Let the value of
(
R
(1�(2�=M)p;1)

jh(x)jpdx)1=p be �: Obviously 0 � � �

(Mp
(2�=M )

p
)
1=p

= 2�: If � < �, then the adversary can

claim that the target function was really

g(x) =

�
0 for x 2 [0; 1� (2�=M )

p
]

M for x 2 (1� (2�=M )
p; 1]

If, on the other hand � � �; then the adversary can

claim the function was really g = 0:
In the �rst case, by the triangle inequality,

d(h; g) = (
R
[0;1]

jg � hjpdx)1=p �

(
R
[1�(2�=M)p;1]

jg � hjpdx)1=p

� (
R
(1�(2�=M)p;1)

Mpdx)1=p � (
R
(1�(2�=M)p;1)

jhjpdx)1=p

= 2�� � > �

In the second case,

d(h; g) = (
R
[0;1]

jg � hjpdx)1=p �

(
R
(1�(2�=M)p;1)

j0� hjpdx)1=p = � > �

Now we need to �nd out how large l must be so that

this particular event of drawing all examples in A is not

very likely, in particular, it has probability less than �.

For (1 � (2�=M )
p
)
l
to be greater than �, we need

l < 1
� ln(1�(2�=M)p)

ln(
1
�
): It is a fact that for � < 1=2;

1
2�

� 1
� ln(1��)

: Making use of this fact (and setting

� = (2�=M )
p; we see that for � < (

M
2
)(

1
2
)
1=p; we have

1
2
(M=2�)p ln(1=�) < 1

� ln(1�(2�=M)p)
ln(

1
�
): So unless l is

greater than
1
2
(M=2�)p ln(1=�); the probability that all

examples are chosen from A is greater than �: Con-
sequently, with probability greater than �; the passive

learner is forced to make an error of atleast �; and PAC

learning cannot take place. 2

3.2 Active Learning Algorithms

In the previous section we computed a lower bound

for passively PAC learning this class for a uniform

distribution
4
. Here we derive an active learning strategy

(the CLA algorithm) which would meaningfully choose

new examples on the basis of information gathered about

the target from previous examples. This is a speci�c in-

stantiation of the general formulation, and interestingly

yields a \divide and conquer" binary searching algorithm

starting from a di�erent philosophical standpoint. We

formally prove an upper bound on the number of exam-

ples it requires to PAC learn the class. While this upper

bound is a worst case bound and holds for all functions

in the class, the actual number of queries (examples) this

strategy takes di�ers widely depending upon the target

function. We demonstrate empirically the performance

of this strategy for di�erent kinds of functions in the

class in order to get a feel for this di�erence. We de-

rive a classical non-sequential optimal sampling strategy

and show that this is equivalent to uniformly sampling

the target function. Finally, we are able to empirically

demonstrate that the active algorithm outperforms both

the passive and uniform methods of data collection.

3.2.1 Derivation of an optimal sampling
strategy

Consider an approximation scheme of the sort de-

scribed earlier attempting to approximate a target func-

tion f 2 F on the basis of a data set D: Shown in

�g. 2 is a picture of the situation. We can assume

without loss of generality that we start out by know-

ing the value of the function at the points x = 0 and

x = 1: The points fxi; i = 1; : : : ; ng divide the domain

into n + 1 intervals Ci (i going from 0 to n) where

Ci = [xi; xi+1](x0 = 0; xn+1 = 1):The monotonicity

constraint on F permits us to obtain rectangular boxes

showing the values that the target function could take at

the points on its domain. The set of all functions which

lie within these boxes as shown is FD:

Let us �rst compute eCi(H;D;F) for some interval

Ci: On this interval, the function is constrained to lie

in the appropriate box. We can zoom in on this box as

shown in �g. 3.

The maximum error the approximation scheme could

4Naturally, this is a distribution-free lower bound as well.
In other words, we have demonstrated the existence of a dis-
tribution for which the passive learner would have to draw at
least as many examples as the theorem suggests.
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Figure 2: A depiction of the situation for an arbitrary

data set. The set FD consists of all functions lying in the

boxes and passing through the datapoints (for example,

the dotted lines). The approximating function h is a

linear interpolant shown by a solid line.
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Figure 3: Zoomed version of interval. The maximum

error the approximation scheme could have is indicated

by the shaded region. This happens when the adversary

claims the target function had the value yi throughout
the interval.

have (indicated by the shaded region) is clearly given by

(

Z
Ci

jh�f(xi)j
pdx)1=p = (

Z B

0

(
A

B
x)pdx)1=p = AB1=p=(p+1)1=p

where A = f(xi+1)� f(xi) and B = (xi+1 � xi):

Clearly the error over the entire domain eD is given

by

epD =

nX
i=0

epCi
(4)

The computation of eC is all we need to implement an

active strategy motivated by Algorithm A in section 2.

All we need to do is sample the function in the interval

with largest error; recall that we need a procedure P
to determine how to sample this interval to obtain a

new data point. We choose (arbitrarily) to sample the

midpoint of the interval with the largest error yielding

the following algorithm.

The Choose and Learn Algorithm (CLA)

1. [Initial Step] Ask for values of the function at

points x = 0 and x = 1: At this stage, the domain

[0; 1] is composed of one interval only, viz., [0; 1]:

Compute E1 =
1

(p+1)1=p
(1�0)1=pj(f(1)�f(0))j and

T1 = E1: If T1 < �; stop and output the linear inter-
polant of the samples as the hypothesis, otherwise

query the midpoint of the interval to get a par-

tition of the domain into two subintervals [0; 1=2)
and [1=2; 1].

2. [General Update and Stopping Rule] In gen-

eral, at the kth stage, suppose that our partition

of the interval [0; 1] is [x0 = 0; x1),[x1; x2); : : : ;
[xk�1; xk = 1]. We compute the normalized error

Ei =
1

(p+1)1=p
(xi � xi�1)

1=pj(f(xi) � f(xi�1))j for

all i = 1; ::; k. The midpoint of the interval with

maximum Ei is queried for the next sample. The

total normalized error Tk = (
Pk

i=1E
p
i )

1=p
is com-

puted at each stage and the process is terminated

when Tk � �. Our hypothesis h at every stage is

a linear interpolation of all the points sampled so

far and our �nal hypothesis is obtained upon the

termination of the whole process.

Now imagine that we chose to sample at a point x 2
Ci = [xi; xi+1] and received the value y 2 FD(x) (i.e.,
y in the box) as shown in the �g. 4. This adds one

more interval and divides Ci into two subintervals Ci1

and Ci2 where Ci1 = [xi; x] and Ci2 = [x; xi+1]: We

also correspondingly obtain two smaller boxes inside the

larger box within which the function is now constrained

to lie. The uncertainty measure eC can be recomputed

taking this into account.

Observation 2 The addition of the new data point

(x; y) does not change the uncertainty value on any of

the other intervals. It only a�ects the interval Ci which

got subdivided. The total uncertainty over this interval
7
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Figure 4: The situation when the interval Ci is sampled

yielding a new data point. This subdivides the interval

into two subintervals and the two shaded boxes indicate

the new constraints on the function.

is now given by

eCi
(H;D0;F) = (

1
p+1

)
1=p

((x� xi)(y � f(xi))
p
+

(xi+1 � x))((f(xi+1) � f(xi))� y)p)1=p =

= G (zrp + (B � z)(A � r)p)
1=p

where for convenience we have used the substitution z =
x� xi; r = y � f(xi); and A and B are f(xi+1)� f(xi)
and xi+1 � xi as above. Clearly z ranges from 0 to B
while r ranges from 0 to A:

We �rst prove the following lemma:

Lemma 1

B=2 = arg min
z2[0;B]

sup

r2[0;A]

G (zrp + (B � z)(A � r)p)
1=p

Proof: Consider any z 2 [0; B]: There are three cases

to consider:

Case I z > B=2 : let z = B=2+� where � > 0: We �nd

supr2[0;A]G (zrp + (B � z)(A � r)p)
1=p

=

�
supr2[0;A] G (zrp + (B � z)(A � r)p)

�1=p

Now,

supr2[0;A] G (zrp + (B � z)(A � r)p) =

supr2[0;A] G ((B=2 + �)rp + (B=2 � �)(A � r)p)

= G supr2[0;A] B=2(r
p
+ (A� r)p) + �(rp � (A � r)p)

Now for r = A; the expression within the supremum

B=2(rp+(A� r)p)+�(rp� (A� r)p) is equal to (B=2+
�)Ap: For any other r 2 [0; A]; we need to show that

B=2(rp + (A � r)p) + �(rp � (A � r)p) � (B=2 + �)Ap

or

B=2((r=A)p+(1�(r=A))p)+�((r=A)p�(1�r=A)p) � B=2+�

Putting � = r=A (clearly � 2 [0; 1]; and noticing that

(1� �)p � 1 � �p and �p � (1� �)p � 1 the inequality

above is established. Consequently, we are able to see

that

sup

r2[0;A]

G (zrp + (B � z)(A � r)p)
1=p

= G(B=2 + �)1=pA

Case II Let z = B=2 � � for � > 0: In this case, by

a similar argument as above, it is possible to show that

again,

sup

r2[0;A]

G (zrp + (B � z)(A � r)p)
1=p

= G(B=2 + �)1=pA

Case III Finally, let z = B=2: Here

supr2[0;A] G (zrp + (B � z)(A � r)p)
1=p

=

G(B=2)1=p supr2[0;A] (r
p
+ (A � r)p)

1=p

Clearly, then for this case, the above expression is re-

duced to GA(B=2)1=p: Considering the three cases, the

lemma is proved.2

The above lemma in conjunction with eq. 4 and obser-

vation 2 proves that if we choose to sample a particular

interval Ci then sampling the midpoint is the optimal

thing to do. In particular, we see that

minx2[xi;xi+1] supy2[f(xi);f(xi+1)] eCi (H;D [ (x; y);F) =

(
1

p+1
)
1=p

(
xi+1�xi

2
)
1=p

(f(xi+1) � f(xi)) = eCi (H;D;F)=2
1=p

In other words, if the learner were constrained to pick

its next sample in the interval Ci; then by sampling the

midpoint of this interval Ci; the learner ensures that the
maximumerror it could be forced to make by a malicious

adversary is minimized. In particular, if the uncertainty

over the interval Ci with its current data set D is eCi ;
the uncertainty over this region will be reduced after

sampling its midpoint and can have a maximum value of

eCi=2
1=p:

Now which interval must the learner sample to mini-

mize the maximum possible uncertainty over the entire

domain D = [0; 1]: Noting that if the learner chose to

sample the interval Ci then

minx2Ci=[xi;xi+1 ] supy2FD eD=[0;1](H;D [ (x; y);F) =

�Pn
j=0;j 6=i e

p
Cj
(H;D;F) +

e
p
Ci

(H;D;F)

2

�1=p

From the decomposition above, it is clear that the opti-

mal point to sample according to the principle embodied

in Algorithm B is the midpoint of the interval Cj which

has the maximumuncertainty eCj (H;D;F) on the basis

of the data seen so far, i.e., the data set D: Thus we can
state the following theorem

Theorem 2 The CLA is the optimal algorithm for the

class of monotonic functions
8



Having thus established that our binary searching al-

gorithm (CLA) is optimal, we now turn our e�orts to de-

termining the number of examples the CLA would need

in order to learn the unknown target function to � accu-
racy with � con�dence. In particular, we can prove the

following theorem.

Theorem 3 The CLA converges in at most (M=�)p

steps. Speci�cally, after collecting at most (M=�)p exam-

ples, its hypothesis is � close to the target with probability
1.

Proof Sketch: The proof of convergence for this algo-
rithm is a little tedious. However, to convince the reader,

we provide the proof of convergence for a slight vari-

ant of the active algorithm. It is possible to show (not

shown here) that convergence times for the active algo-

rithm described earlier is bounded by the convergence

time for the variant. First, consider a uniform grid of

points (�=M )
p
apart on the domain [0; 1]: Now imagine

that the active learner works just as described earlier

but with a slight twist, viz., it can only query points on

this grid. Thus at the kth stage, instead of querying the

true midpoint of the interval with largest uncertainty, it

will query the gridpoint closest to this midpoint. Ob-

viously the intervals at the kth stage are also separated

by points on the grid (i.e. previous queries). If it is the

case that the learner has queried all the points on the

grid, then the maximum possible error it could make is

less than �: To see this, let � = �=M and let us �rst look

at a speci�c small interval [k�; (k+ 1)�]. We know the

following to be true for this subinterval:

f(k�) = h(k�) � f(x); h(x) � f((k+1)�) = h((k+1)�)

Thus

jf(x) � h(x)j � f((k + 1)�)� f(k�)

and so over the interval [k�; (k+ 1)�]R (k+1)�

k�
jf(x)� h(x)jpdx �

R (k+1)�

k�
(f((k + 1)�)� f(k�))pdx

� (f((k + 1)�)� f(k�))p�

It follows thatR
[0;1]

jf � hjpdx =

R
[0;�)

jf � hjpdx+ : : :+
R
[1��;1]

jf � hjpdx �

�((f(�) � f(0))p + (f(2�) � f(�))p + : : :+

(f(1 � �)� f(1 � 2�))p + (f(1) � f(1 � �))p) �

�(f(�) � f(0) + f(2�)� f(�) + : : :+ f(1) � f(1 � �))p

� �(f(1)� f(0))p � �Mp

So if � = (�=M )
p
, we see that the Lp error would be at

most

�R
[0;1]

jf � hjpdx
�1=p

� �: Thus the active learner

moves from stage to stage collecting examples at the grid

points. It could converge at any stage, but clearly after it

has seen the value of the unknown target at all the grid-

points, its error is provably less than � and consequently

it must stop by this time. 2
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Figure 5: How the CLA chooses its examples. Vertical

lines have been drawn to mark the x-coordinates of the

points at which the algorithm asks for the value of the

function.

3.3 Empirical Simulations, and other
Investigations

Our aim here is to characterise the performance of CLA

as an active learning strategy. Remember that CLA is

an adaptive example choosing strategy and the number

of samples it would take to converge depends upon the

speci�c nature of the target function. We have already

computed an upper bound on the number of samples it

would take to converge in the worst case. In this section

we try to provide some intuition as to how this sampling

strategy di�ers from random draw of points (equivalent

to passive learning) or drawing points on a uniform grid

(equivalent to optimal recovery following eq. 2 as we shall

see shortly). We perform simulations on arbitrary mono-

tonic increasing functions to better characterize condi-

tions under which the active strategy could outperform

both a passive learner as well as a uniform learner.

3.3.1 Distribution of Points Selected

As has been mentioned earlier, the points selected by

CLA depend upon the speci�c target function.Shown in

�g. 3-5 is the performance of the algorithm for an ar-

bitrarily constructed monotonically increasing function.

Notice the manner in which it chooses its examples. In-

formally speaking, in regions where the function changes

a lot (such regions can be considered to have high in-

formation density and consequently more \interesting"),

CLA samples densely. In regions where the function

doesn't change much (correspondingly low information

density), it samples sparsely. As a matter of fact, the

density of the points seems to follow the derivative of

the target function as shown in �g. 6.

Consequently, we conjecture that

Conjecture 1 The density of points sampled by the ac-

tive learning algorithm is proportional to the derivative

of the function at that point for di�erentiable functions.

Remarks:
9
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Figure 6: The dotted line shows the density of the sam-

ples along the x-axis when the target was the monotone-

function of the previous example. The bold line is a plot

of the derivative of the function. Notice the correlation

between the two.

1. The CLA seems to sample functions according to

its rate of change over the di�erent regions. We

have remarked earlier, that the best possible sam-

pling strategy would be obtained by eq. 3 earlier.

This corresponds to a teacher (who knows the tar-

get function and the learner) selecting points for

the learner. How does the CLA sampling strategy

di�er from the best possible one? Does the sam-

pling strategy converge to the best possible one as

the data goes to in�nity? In other words, does the

CLA discover the best strategy? These are inter-

esting questions. We do not know the answer.

2. We remarked earlier that another bound on the

performance of the active strategy was that pro-

vided by the classical optimal recovery formulation

of eq. 2. This, as we shall show in the next section,

is equivalent to uniform sampling. We remind the

reader that a crucial di�erence between uniform

sampling and CLA lies in the fact that CLA is an

adaptive strategy and for some functions might ac-

tually learn with very few examples. We will ex-

plore this di�erence soon.

3.3.2 Classical Optimal Recovery

For an L1 error criterion, classical optimal recovery

as given by eq. 2 yields a uniform sampling strategy. To

see this, imagine that we chose to sample the function at

points xi; i = 1; : : : ; n: Pick a possible target function f
and let yi = f(xi) for each i: We then get the situation

depicted in �g. 7. The n points divide the domain into

n+1 intervals. Let these intervals have length ai each as

shown. Further, if [xi�1; xi] corresponds to the interval

of length ai; then let yi � yi�1 = bi: In other words we

would get n+1 rectangles with sides ai and bi as shown
in the �gure.

It is clear that choosing a vector b = (b1; : : : ; bn+1)
0

10
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Figure 7: The situation when a function f 2 F is picked,

n sample points (the x's) are chosen and the correspond-

ing y values are obtained. Each choice of sample points

corresponds to a choice of the a's. Each choice of a func-

tion corresponds to a choice of the b0s.

with the constraint that
Pn+1

i=1 bi = M and bi � 0 is

equivalent to de�ning a set of y values (in other words,

a data set) which can be generated by some function in

the class F : Speci�cally, the data values at the respective
sample points would be given by y1 = b1; y2 = b1 + b2
and so on. We can de�ne Fb to be the set of mono-

tonic functions in F which are consistent with these data

points. In fact, every f 2 F would map onto some b;
and thus belong to some Fb: Consequently,

F = [
fb:bi�0;

P
bi=Mg

Fb

Given a target function f 2 Fb; and a choice of

n points xi; one can construct the data set D =

f(xi; f(xi))gi=1:::n and the approximation scheme gener-

ates an approximating function h(D): It should be clear

that for an L1 distance metric (d(f; h) =
R 1
0
jf � hjdx);

the following is true:

sup
f2F

b

d(f; h) =
1

2

n+1X
i=1

aibi =
1

2
a:b

Thus, taking the supremum over the entire class of

functions is equivalent to

sup
f2F

d(f; h(D)) = sup

fb:bi�0;
P

bi=Mg

1

2
a:b

The above is a straight forward linear program-

ming problem and yields as its solution the result
1
2
M maxfai; i = 1; : : : ; (n+ 1)g:

Finally, every choice of n points xi; i = 1; : : : ; n results
in a corresponding vector a where ai � 0 and

P
ai = 1:

Thus minimizing the maximum error over all the choice

of sample points (according to eq. 2) is equivalent to

argminx1;:::;xn supf2F d(f; h(D = f(xi; f(xi))gi=1:::n) =

argmin
fa:ai�0;

P
ai=1g

maxfai; i = 1 : : :n + 1g
10
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Fn. No. Avg. Random/CLA Avg. Uniform/CLA

1 7.23 1.66

2 61.37 10.91

3 6.67 1.10

4 8.07 1.62

5 6.62 1.56

Table 1: Shown in this table is the average error rate of

the random sampling and the uniform sampling strate-

gies when as a multiple of the error rates due to CLA.

Thus for the function 3 for example, uniform error rates

are on an average 1.1 times CLA error rates. The av-

erages are taken over the di�erent values of N (number

of examples) for which the simulations have been done.

Note that this is not a very meaningful average as the dif-

ference in the error rates between the various strategies

grow with N (as can be seen from the curves)if there is

a di�erence in the order of the sample complexity. How-

ever they have been provided just to give a feel for the

numbers.

We also need to specify some other terms for this

class of functions. The approximation scheme H is a

�rst order spline as before, the domain D = [0; 1] is
partitioned into intervals by the data [xi; xi+1] (again

as before) and the metric dC is an L1 metric given by

dC(f1; f2) =
R
C
jf1(x) � f2(x)jdx: The results in this

section can be extended to an Lp norm but we con�ne

ourselves to an L1 metric for simplicity of presentation.

4.1 Lower Bounds

Theorem 4 Any learning algorithm (whether passive or

active) has to draw at least 
((d=�)) examples (whether

randomly or by choosing) in order to PAC learn the class

F :

Proof Sketch: Let us assume that the learner col-

lects m examples (passively by drawing according to

some distribution, or actively by any other means). Now

we show that an adversary can force the learner to make

an error of atleast � if it draws less than 
((d=�)) exam-

ples. This is how the adversary functions.

At each of the m points which are collected by the

learner, the adversary claims the function has value 0.

Thus the learner is reduced to coming up with a hy-

pothesis that belongs to F and which it claims will be

within an � of the target function. Now we need to show

that whatever the function hypothesized by the learner,

the adversary can always come up with some other func-

tion, also belonging to F ; and agreeing with all the data

points, which is more than an � distance away from the

learner's hypothesis. In this way, the learner will be

forced to make an error greater than �.

The m points drawn by the learner, divides the re-

gion [0; 1] into (at most) m + 1 di�erent intervals. Let

the length of these intervals be b1; b2; b3; :::; bm+1. The

\true" function, or in other words, the function the ad-

versary will present, should have value 0 at the endpoints

of each of the above intervals. We �rst state the following

lemma.

Lemma 2 There exists a function f 2 F such that f
interpolates the data andZ

[0;1]

jf jdx >
kd

4(m + 1)

where k is a constant arbitrarily close to 1.

Proof: Consider �g. 11. The function f is indicated by

the dark line. As is shown, f changes sign at each x =

xi: Without loss of generality, we consider an interval

[xi; xi+1] of length bi: Let the midpoint of this interval

be z = (xi + xi+1)=2: The function here has the values

f(x) =

8<
:

d(x� xi) for x 2 [xi; z � �]
�d(x� xi+1) for x 2 [z + �; xi+1]

d(x�z)2

2�
+

d(bi��)

2
for x 2 [z � �; z + �]

Simple algebra shows thatZ xi+1

xi

jf jdx > d(
bi � �

2
)
2
+ �d(

bi � �

2
) = d(b2i � �2

)=4

Clearly, � can be chosen small, so that

ix i+1
x 10 z

b i

Figure 11: Construction of a function satisying Lemma

2.

Z xi+1

xi

jf jdx >
kdbi

2

4

where k is as close to 1 as we want. By combining the

di�erent pieces of the function we see that

Z 1

0

jf jdx >
kd

4

m+1X
i

b2i

Now we make use of the following lemma,

Lemma 3 For a set of numbers b1; ::; bm such that b1+
b2 + ::+ bm = 1, the following inequality is true

b21 + b22 + ::+ b2m � 1=m

Proof: By induction. 2

Now it is easy to see how the adversary functions.

Suppose the learner postulates that the true function is

h: Let
R
[0;1]

jhjdx = �: If � > �; the adversary claims that

the true function was f = 0: In that case
R 1
0
jh� f jdx =

13



� > �: If on the other hand, � < �; then the adversary

claims that the true function was f (as above). In that

case,

Z 1

0

jf � hjdx �

Z 1

0

jf jdx�

Z 1

0

jhjdx =
kd

4(m + 1)
� �

Clearly, if m is less than
kd
8�
� 1; the learner is forced

again to make an error greater than �: Thus in either

case, the learner is forced to make an error greater than

or equal to � if less than 
(d=�) examples are collected

(howsoever these examples are collected). 2

The previous result holds for all learning algorithms.

It is possible to show the following result for a passive

learner.

Theorem 5 A Passive learner must draw at least

max(
((d=�);
p
(d=�) ln(1=�))) to learn this class.

Proof Sketch: The d=� term in the lower bound follows

directly from the previous theorem. We show how the

second term is obtained.

Consider the uniform distribution on [0; 1] and a sub-

class of functions which have value 0 on the region A

= [0; 1��] and belong to F . Suppose the passive learner
draws l examples uniformly at random. Then with prob-

ability (1 � �)l, all these examples will be drawn from

region A. It only remains to show that for this event,

and the subclass considered, whatever be the function

hypothesized by the learner, an adversary can force it to

make a large error.

It is easy to show (using the arguments of the earlier

theorem) that there exists a function f 2 F such that

f is 0 on A and
R 1
1��

jf jdx =
1
2
�2d: This is equal to 2�

if � =
p
(4�=d): Now let the learner's hypothesis be h:

Let
R 1
1��

jhjdx = �: If � is greater than �; the adversary

claims the target was g = 0: Otherwise, the adversary

claims the target was g = f: In either case,
R
jg�hjdx >

�:

It is possible to show (by an identical argument to the

proof of theorem 1), that unless l � 1
4

p
(d=�) ln(1=�); all

examples will be drawn from A with probability greater

than � and the learner will be forced to make an error

greater than �: Thus the second term appears indicating

the dependence on � in the lower bound.2

4.2 Active Learning Algorithms

We now derive in this section an algorithm which ac-

tively selects new examples on the basis of information

gathered from previous examples. This illustrates how

our formulation of section 3.1.1 can be used in this case

to e�ectively obtain an optimal adaptive sampling strat-

egy.

4.2.1 Derivation of an optimal sampling
strategy

Fig. 12 shows an arbitrary data set containing in-

formation about some unknown target function. Since

the target is known to have a �rst derivative bounded by

d; it is clear that the target is constrained to lie within

the parallelograms shown in the �gure. The slopes of

the lines making up the parallelogram are d and �d ap-
propriately. Thus, FD consists of all functions which lie

within the parallelograms and interpolate the data set.

We can now compute the uncertainty of the approxima-

tion scheme over any interval,C; (given by eC (H;D;F));
for this case. Recall that the approximation scheme H
is a �rst order spline, and the data D consists of (x; y)
pairs. Fig. 13 shows the situation for a particular inter-

val (Ci = [xi; xi+1]). Here i ranges from 0 to n: As in
the previous example, we let x0 = 0; and xn+1 = 1:

The maximum error the approximation scheme H
could have on this interval is given by (half the area

of the parallelogram).

eCi
(H;D;F) = sup

f2FD

Z
Ci

jh� f jdx =
(d2B2

i �A2
i )

4d

where Ai = jf(xi+1) � f(xi)j and Bi = xi+1 � xi:
Clearly, the maximum error the approximation scheme

could have over the entire domain is given by

eD=[0;1](H;D;F) = sup
f2FD

nX
j=0

Z
Cj

jf � hjdx =

nX
j=0

eCj

(5)

The computation of eC is crucial to the derivation of

the active sampling strategy. Now imagine that we chose

to sample at a point x in the interval Ci and received

a value y (belonging to FD(x)). This adds one more

interval and divides Ci into two intervals Ci1 and Ci2 as

shown in �g. 14.. We also obtain two correspondingly

smaller parallelograms within which the target function

is now constrained to lie.

The addition of this new data point to the data set

(D0 = D [ (x; y)) requires us to recompute the learner's

hypothesis (denoted by h0 in the �g. 14). Correspond-

ingly, it also requires us to update eC ; i.e., we now need

to compute eC(H;D
0;F): First we observe that the addi-

tion of the new data point does not a�ect the uncertainty

measure on any interval other than the divided interval

Ci: This is clear when we notice that the parallelograms

(whose area denotes the uncertainty on each interval)

for all the other intervals are una�ected by the new data

point.

Thus,

eCj (H;D
0;F) = eCj (H;D;F) =

1

4d
(d2B2

j�A
2
j ) for j 6= i

For the ith interval Ci; the total uncertainty is now re-

computed as (half the sum of the two parallelograms in

�g. 14)

eCi (H;D
0;F) = 1

4d
((d2u2 � v2)+

(d2(Bi � u)2 � (Ai � v)2))

=
1
4d

�
(d2u2 + d2(Bi � u)2) � (v2 + (A � v)2)

�
(6)

where u = x�xi; v = y�yi; and Ai and Bi are as before.

Note that u ranges from 0 to Bi; for xi � x � xi+1:
However, given a particular choice of x (this �xes a value
of u), the possible values v can take are constrained by

the geometry of the parallelogram. In particular, v can
14



only lie within the parallelogram. For a particular x;
we know that FD(x) represents the set of all possible y
values we can receive. Since v = y � yi; it is clear that
v 2 FD(x) � yi: Naturally, if y < yi; we �nd that v < 0;
and Ai � v > Ai: Similarly, if y > yi+1; we �nd that

v > Ai:
We now prove the following lemma:

Lemma 4 The following two identities are valid for the

appropriate mini-max problem.

Identity 1:

B
2
= argminu2[0;B] supv2fFD(x)�yig

H1(u; v)

where H1(u; v) = ((d2u2 + d2(B � u)2)�

(v2 + (A� v)2))

Identity 2:

1
2
(d2B2 �A2

) = minu2[0;B] supv2fFD(x)�yig
H2(u; v)

where H2(u; v) = ((d2u2 + d2(B � u)2)�

(v2 + (A� v)2))

Proof: The expression on the right is a di�erence

of two quadratic expressions and can be expressed as

q1(u)� q2(v). For a particular u; the expression is max-

imized when the quadratic q2(v) = (v2 + (A � v)2) is

minimized. Observe that this quadratic is globally min-

imized at v = A=2: We need to perform this minimiza-

tion over the set v 2 FD(x)� yi (this is the set of values
which lie within the upper and lower boundaries of the

parallelogram shown in �g. 15). There are three cases to

consider.

Case I: u 2 [A=2d;B � A=2d]
First, notice that for u in this range, it is easy to verify

that the upper boundary of the parallelogram is greater

than A=2 while the lower boundary is less than A=2:
Thus we can �nd a value of v (viz. v = A/2) which glob-

ally minimizes this quadratic because A=2 2 FD(x)�yi:
The expression thus reduces to d2u2+d2(B�u)2�A2=2:
Over the interval for u considered in this case, it is min-

imized at u = B=2 resulting in the value

(d2B2 �A2
)=2

Case II: u 2 [0; A=2d]
In this case, the upper boundary of the parallelogram

(which is the maximum value v can take) is less than

A=2 and hence the q2(v) is minimized when v = du: The
total expression then reduces to

d2u2 + d2(B � u)2 � ((du)2 + (A � du)2)

= d2(B � u)2 � (A� du)2 = (d2B2 �A2
)� 2ud(dB �A)

Since, dB > A; the above is minimized on this interval

by choosing u = A=2d resulting in the value

dB(dB �A)

Case III: By symmetry, this reduces to case II.

Since (d2B2�A2
)=2 � dB(dB�A) (this is easily seen

by completing squares), it follows that u = B=2 is the

global solution of the mini-max problem above. Further,

we have shown that for this value of u; the sup term

reduces to (d2B2 �A2
)=2 and the lemma is proved.2

Using the above lemma along with eq. 6, we see that

minx2Ci supy2FD(x) eCi (H;D [ (x; y);F) = 1
8d
(d2B2

i �A2
i )

=
1
2
eCi

(H;D;F)

In other words, by sampling the midpoint of the inter-

val Ci; we are guaranteed to reduce the uncertainty by

1=2: As in the case of monotonic functions now, we see

that using eq. 5, we should sample the midpoint of the

interval with largest uncertainty eCi(H;D;F) to obtain

the global solution in accordance with the principle of

Algorithm B of section 2.

This allows us to formally state an active learning

algorithm which is optimal in the sense implied in our

formulation.

The Choose and Learn Algorithm - 2 (CLA-2)

1. [Initial Step] Ask for values of the function

at points x = 0 and x = 1: At this stage,

the domain D = [0; 1] is composed of one in-

terval only, viz., C1 = [0; 1]: Compute eC1 =
1
4d

�
d2 � jf(1)� f(0)j2

�
and eD = eC1 : If eD < �;

stop and output the linear interpolant of the sam-

ples as the hypothesis, otherwise query the mid-

point of the interval to get a partition of the domain

into two subintervals [0; 1=2) and [1=2; 1].

2. [General Update and Stopping Rule] In gen-

eral, at the kth stage, suppose that our partition

of the interval [0; 1] is [x0 = 0; x1),[x1; x2); : : : ;
[xk�1; xk = 1]. We compute the uncertainty

eCi =
1
4d

�
d2(xi � xi�1)

2 � jyi � yi�1j
2
�
for each

i = 1; : : : ; k. The midpoint of the interval with

maximum eCi
is queried for the next sample. The

total error eD =
Pk

i=1 eCi is computed at each

stage and the process is terminated when eD � �.
Our hypothesis h at every stage is a linear interpo-

lation of all the points sampled so far and our �nal

hypothesis is obtained upon the termination of the

whole process.

It is possible to show that the following upperbound

exists on the number of examples CLA would take to

learn the class of functions in consideration

Theorem 6 The CLA-2 would PAC learn the class in

at most
d
4�
+ 1 examples.

Proof Sketch: Following a strategy similar to the proof

of Theorem 3, we show how a slight variant of CLA-2

would converge in at most (d=4�+1) examples. Imagine

a grid of n points placed 1=(n� 1) apart on the domain

D = [0; 1] where the kth point is k=(n� 1) (for k going

from 0 to n � 1). The variant of the CLA-2 operates

by con�ning its queries to points on this grid. Thus

at the kth stage, instead of querying the midpoint of

the interval with maximumuncertainty, it will query the

gridpoint closest to this midpoint. Suppose it uses up all

the gridpoints in this fashion, then there will be n � 1

intervals and by our arguments above, we have seen that
15



the maximum error on each interval is bounded by

1

4d
(d2(

1

n � 1
)
2 � jyi � yi�1j

2
) �

1

4d
d2(

1

n� 1
)
2

Since there are n � 1 such intervals, the total error it

could make is bounded by

(n� 1)
1

4d
d2(

1

n� 1
)
2
=

1

4d
(

1

n� 1
)

It is easy to show that for n > d=4�+ 1; this maximum

error is less than �: Thus the learner need not collect any

more than d=4�+1 examples to learn the target function

to within an � accuracy. Note that the learner will have
identi�ed the target to � accuracy with probability 1 (al-

ways) by following the strategy outlined in this variant

of CLA-2. 2

We now have both an upper and lower bound for PAC-

learning the class (under a uniform distribution) with

queries. Notice that here as well, the sample complexity

of active learning does not depend upon the con�dence

parameter �: Thus for � arbitrarily small, the di�erence

in sample complexities between passive and active learn-

ing becomes arbitrarily large with active learning requir-

ing much fewer examples.

4.3 Some Simulations

We now provide some simulations conducted on arbi-

trary functions of the class of functions with bounded

derivative (the class F): Fig. 16 shows 4 arbitrary se-

lected functions which were chosen to be the target func-

tion for the approximation scheme considered. In par-

ticular, we are interested in observing how the active

strategy samples the target function for each case. Fur-

ther, we are interested in comparing the active and pas-

sive techniques with respect to error rates for the same

number of examples drawn. In this case, we have been

unable to derive an analytical solution to the classical

optimal recovery problem. Hence, we do not compare it

as an alternative sampling strategy in our simulations.

4.3.1 Distribution of points selected

The active algorithm CLA-2 selects points adaptively

on the basis of previous examples received. Thus the

distribution of the sample points in the domain D of

the function depends inherently upon the arbitrary tar-

get function. Consider for example, the distribution of

points when the target function is chosen to be Function-

1 of the set shown in �g. 16.

Notice (as shown in �g. 17) that the algorithm chooses

to sample densely in places where the target is at, and

less densely where the function has a steep slope. As our

mathematical analysis of the earlier section showed, this

is well founded. Roughly speaking, if the function has

the same value at xi and xi+1; then it could have a vari-

ety of values (wiggle a lot) within. However, if, f(xi+1)

is much greater (or less) than f(xi); then, in view of the

bound, d; on how fast it can change, it would have had to

increase (or decrease) steadily over the interval. In the

second case, the rate of change of the function over the

interval is high, there is less uncertainty in the values of

the function within the interval, and consequently fewer

samples are needed in between.

In example 1, for the case of monotone functions, we

saw that the density of sample points was proportional

to the �rst derivative of the target function. By contrast,

in this example, the optimal strategy chooses to sample

points in a way which is inversely proportional to the

magnitude of the �rst derivative of the target function.

Fig. 18 exempli�es this.

4.3.2 Error Rates:

In an attempt to relate the number of examples drawn

and the error made by the learner, we performed the

following simulation.

Simulation B:

1. Pick an arbitrary function from class F .

2. Decide N; the number of samples to be collected.

There are two methods of collection of samples.

The �rst (passive) is by randomly drawing N ex-

amples according to a uniformdistribution on [0; 1]:
The second (active) is the CLA-2.

3. The two learning algorithms di�er only in their

method of obtaining samples. Once the samples

are obtained, both algorithms attempt to approx-

imate the target by the linear interpolant of the

samples (�rst order splines).

4. This entire process is now repeated for various val-

ues of N for the same target function and then re-

peated again for the four di�erent target functions

of �g. 16

The results are shown in �g. 19. Notice how the active

learner outperforms the passive learner. For the same

number of examples, the active scheme having chosen its

examples optimally by our algorithm makes less error.

We have obtained in theorem 6, an upper bound on

the performance of the active learner. However, as we

have already remarked earlier, the number of examples

the active algorithm takes before stopping (i.e., out-

putting an �-good approximation) varies and depends

upon the nature of the target function. \Simple" func-

tions are learned quickly, \di�cult" functions are learned

slowly. As a point of interest, we have shown in �g. 20,

how the actual number of examples drawn varies with �:
In order to learn a target function to �-accuracy, CLA-2
needs at most nmax(�) = d=4� + 1 examples. However,

for a particular target function, f; let the number of ex-

amples it actually requires be nf (�):We plot
nf (�)

nmax(�)
as a

function of �: Notice, �rst, that this ratio is always much

less than 1. In other words, the active learner stops

before the worst case upper bound with a guaranteed

�-good hypothesis. This is the signi�cant advantage of

an adaptive sampling scheme. Recall that for uniform

sampling (or classical optimal recovery even) we would

have no choice but to ask for d=4� examples to be sure of

having an �-good hypothesis. Further, notice that that

as � gets smaller, the ratio gets smaller. This suggests

that for these functions, the sample complexity of the

active learner is of a di�erent order (smaller) than the

worst case bound. Of course, there always exists some

function in F which would force the active learner to

perform at its worst case sample complexity level.
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crucial di�erence. The distance metric, d; is not neces-
sarily related to the distribution according to which data

is drawn (in the passive case). This prevents us from us-

ing traditional uniform convergence (Vapnik, 1982) type

arguments to prove learnability. The problem of learning

under a di�erent metric is an interesting one and merits

further investigation in its own right.
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Figure 12: An arbitrary data set for the case of functions

with a bounded derivative. The functions in FD are

constrained to lie in the parallelograms as shown. The

slopes of the lines making up the parallelogramare d and
�d appropriately.
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Figure 14: Subdivision of the ith interval when a new

data point is obtained.
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Figure 15: A �gure to help the visualization of Lemma 4.

For the x shown, the set FD is the set of all values which

lie within the parallelogram corresponding to this x, i.e.,
on the vertical line drawn at x but within the parallelo-

gram.
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Vertical lines have been drawn at the x values where the

CLA queried the oracle for the corresponding function

value.
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