RISC/os (UMIPS)
User’s Guide
Order Number 3208DOC

7)) Mips

The power of RISC is in the system.

RISC/os (UMIPS)
User’s Guide
Order Number 3208DOC

September 1988

Your comments on our products and publications are wel-
come. A postage-paid form is provided for this purpose
on the last page of this manual.

Mfg. Part Number 84-00032/02-00129

© 1988 MIPS Computer Systems, Inc. All Rights Reserved.

RISCompiler and RISC/os are Trademarks of MIPS Computer Systems, Inc.
UNIX is a Trademark of AT&T.
Ethernet is a Trademark of XEROX, -

MIPS Computer Systems, Inc.
930 Arques Ave.
Sunnyvale, CA 94086

Customer Service Telephone Numbers:

Califoria: (800) 992-MIPS
All other states: (800) 443-MIPS
International: 415) 330-7966

Mfg, Part Number 84-00032/02-00129

Table of Contents

Preface

System Overview -
UMIPS System Tutorial

Part 1: UMIPS System Overview

Chapter 1: ‘What is the UMIPS System?

What the UMIPS System Does
‘How the UMIPS System Works

Chapter 2: Basics for UMIPS System Users

Getting Started

The Terminal

Obtaining a Login Name

Establishing Contact with the UMIPS System

Chapter 3: Using the File System

Introduction

How the File System is Structured
Your Place in the File System
Organizing a Directory

Accessing and Manipulating Files
Summary

Part 2: UMIPS System Tutorials

Chapter 4: Overview of the Tutorials

TABLE OF CONTENTS

ix

ix

ix

1-1
12

2-1
2-2
2-9
2-10

31
32
33
3-11
321
3-49

Table of Contents

Introduction

Text Editing

The Shell

Communicating Electronically
Programming in the System

Chapter 5: Line Editor Tutorial (ed)

Introducing the Line Editor
Suggestions for Using this Tutorial
Getting Started

Exercise 1

General Format of ed Commands
Line Addressing

Exercise 2

Displaying Text in a File

Creating Text

Exercise 3

Deleting Text

Substituting Text

Exercise 4

Special Characters

Exercise 5

Moving Text

Exercise 6

Other Useful Commands and Information

Exercise 7

Answers to Exercises

Chapter 6: Screen Editor Tutorial (vi)

Introduction
Getting Started

iv USER’S GUIDE

4-1
4-2
4-6
4-9

4-10

52

53
59

5-10

5-11
5-19

5-20

5-22
5-26

5-27

5-30
5-35

5-37
5-43

5-44
5-50

5-51
5-57

5-58

6-4

Creating a File
Editing Text: the Command Mode
Quitting vi

Exercise 1

Moving the Cursor Around the Screen

Positioning the Cursor in Undisplayed Text

Exercise 2

Creating Text

Exercise 3

Deleting Text

Exercise 4

Modifying Text

Cutting And Pasting Text Electronically

Exercise 5

Special Commands

Using Line Editing Commands in vi
Quitting vi

Special Options for vi

Exercise 6

Answers To Exercises

Chapter 7: Shell Tutorial (sh)

Introduction

Shell Command Language
Command Language Exercises
Shell Programming

Modifying Your Login Environment
Shell Programming Exercises
Answers To Exercises

TABLE OF CONTENTS

Table of Contents

6-6
6-8

6-12
6-14

6-15

6-26
6-33

6-34
6-37

6-38
6-42

6-43

6-47
6-50

6-51
6-53
6-57

6-59
6-61

6-62

71

72
7-26
7-27
7-60
7-64
7-65

\'J

Table of Contents

Chapter 8: Communication Tutorial

Introduction
Exchanging Messages
mail
mailx
mailx Overview
Command Line Options
How to Send Messages: the Tilde Escapes
How to Manage Incoming Mail |
The .mailrce File
Sending and Receiving Files
Networking

Chapter 9: The C Shell (csh)

Introduction

Using the Shell Interactively

Terminal User Reference

Control Structures and Command Scripts
Miscellaneous Shell Features

Glossary

Appendix A: Summary of the File System
Commands

Appendix B: Summary of UMIPS System
Commands

Appendix C: Quick Reference to ed
Commands

Appendix D: Quick Reference to vi
Commands

Appendix E: Summary of Shell Command
Language

vi USER’S GUIDE

81
8-2
83
811
812
8-13
814

8-21

8-26
8-29
8-42

9-1
9-2
9-12
9-26
9-35
9-39

A1l
B1
C1
D-1

E-1

—~

Table of Contents

Appendix F: Setting Up the Terminal
Glossary
Index

F-1
G-1
I-1

TABLE OF CONTENTS vii

Preface

The material in this guide is organized into two major parts: an overview of the
RISC/os (UMIPS) operating system and a set of tutorials on the main tools available
on the system. A brief description of each part follows. The last section of this Pre-
face, "Notation Conventions," describes the typographical notation with which all the
chapters of this Guide conform. You may want to refer back to this section from
time to time as you read the Guide.

Throughout this publication, the RISC/os (UMIPS) operating system is referred to as
UMIPS or simply "the operating system".

System Overview

This part consists of Chapters 1-3, which introduce you to the basic principles of the
UMIPS operating system. Each chapter builds on information presented in preceding
chapters, so it is important to read them in sequence.

® Chapter 1, "What is the UMIPS System?", provides an overview of the operat-
ing system.

®m Chapter 2, "Basics for UMIPS System Users," discusses the general rules and
guidelines for using the UMIPS system. It covers topics related to using your
terminal, obtaining a system account, and establishing contact with the UMIPS
system.

® Chapter 3, "Using the File System," offers a working perspective of the file sys-
tem. It introduces commands for building your own directory structure,
accessing and manipulating the subdirectories and files you organize within it,
and examining the contents of other directories in the system for which you
have access permission.

UMIPS System Tutorials

The second part of the Guide consists of tutorials on the following topics: the ed text
editor, the vi text editor, the shell command language and programming language, and
electronic communication tools. For a thorough understanding of the material, we
recommend that you work through the examples and exercises as you read each
tutorial. The tutorials assume you understand the concepts introduced in

Chapters 1-3.

& Chapter 4, "Overview of the Tutorials," introduces the four chapters of tutori-
als in the second half of the Guide. It highlights UMIPS system capabilities
such as command execution, text editing, electronic communication, program-
ming, and aids to software development.

®m Chapter 5, "Line Editor Tutorial (ed)," teaches you to how to use the ed text
editor to create and modify text on a video display terminal or paper printing
terminal.

® Chapter 6, "Screen Editor Tutorial (vi)," teaches you how to use the visual text
editor, vi, to create and modify text on a video display terminal.

PREFACE ix

Preface

NOTE

vi, the visual editor, is based on software developed by The University of California,
Berkeley, California; Computer Science Division, Department of Electrical Engineer-
ing and Computer Science, and such software is owned and licensed by the Regents
of the University of California.

Chapter 7, "Shell Tutorial," teaches you to how to use the shell, both as a com-
mand interpreter and as a programming language used to create shell pro-
grams.

Chapter 8, "Communication Tutorial,” teaches you how to exchange messages
and files among users of UMIPS systems and other UNIX-based systems.

Chapter 9, "C Shell Introduction," introduces csh, a command language inter-
preter for UMIPS systems.

Reference Information

Six appendices and a glossary of UMIPS system terms are also provided for refer-

ence.

X

Appendix A, "Summary of the File System," illustrates how information is
stored in the UMIPS operating system.

Appendix B, "Summary of UMIPS System Commands," describes, in alphabet-
ical order, each UMIPS system command discussed in the Guide.

Appendix C, "Quick Reference to ed Commands," is a quick reference for the
line editor, ed. (For details, see Chapter 5, "Line Editor Tutorial.") The com-
mands are organized by topic, as they are covered in Chapter 5.

Appendix D, "Quick Reference to vi Commands," is a reference for the full
screen editor, vi, discussed in Chapter 6, "Screen Editor Tutorial (vi)." Com-
mands are organized by topic, as covered in Chapter 6.

Appendix E, "Summary of Shell Command Language," is a summary of the
shell command language, notation, and programming constructs, as discussed
in Chapter 7, "Shell Tutorial.”

Appendix F, "Setting Up the Terminal," explains how to configure your termi-
nal for use with the UMIPS system, and create multiple windows on the
screens of terminals with windowing capability.

The Glossary defines terms pertaining to the UMIPS system used in this book.

USER’S GUIDE

g

Notation Conventions

The following notation conventions are used throughout this Guide.

bold

italic
constant width

<>

<“char>

[]

command(number)

User input, such as commands, options and arguments to
commands, variables, and the names of directories and
files, appear in bold.

Names of variables to which values must be assigned (such
as password) appear in italic.

UMIPS system output, such as prompt signs and
responses to commands, appear in constant width.

Input that does not appear on the screen when typed, such
as passwords, tabs, or RETURN, appear between angle
brackets.

Control characters are shown between angle brackets
because they do not appear on the screen when typed.
The circumflex () represents the control key (usually
labeled CTRL). To type a control character, hold down
the control key while you type the character specified by
char. For example, the notation <"d> means to hold
down the control key while pressing the D key; the letter
D will not appear on the screen.

Command options and arguments that are optional, such
as [-msCj], are enclosed in square brackets.

The vertical bar separates optional arguments from which
you may choose one. For example, when a command
line has the following format:

command [argl | arg2]

You may use either argl or arg2 when you issue the com-
mand.

Ellipses after an argument mean that more than one argu-
ment may be used on a single command line.

Arrows on the screen (shown in examples in Chapter 6)
represent the cursor.

A command name followed by a number in parentheses
refers to the part of a UMIPS system reference manual
that documents that command. (There are three reference
manuals: the User’s Reference Manual, Programmer’s
Reference Manual, and System Administrator’s Reference
Manual.) For example, the notation cat(1) refers to the
page in section 1 (of the User’s Reference Manual) that
documents the cat command.

In sample commands the $ sign is used as the shell command prompt. This is not
true for all systems. Whichever symbol your system uses, keep in mind that prompts
are produced by the system; although a prompt is sometimes shown at the beginning
of a command line as it would appear on your screen, you are not meant to type it.
(The $ sign is also used to reference the value of positional parameters and named

PREFACE xi

Notation Conventions

variables; see Chapter 7 for details.)

In all chapters, full and partial screens are used to display examples of how your ter-
minal screen will look when you interact with the UMIPS system. These examples
show how to use the UMIPS system editors, write short programs, and execute com-
mands. The input (characters typed by you) and output (characters printed by the
UMIPS system) are shown in these screens in accordance with the conventions listed
above. All examples apply regardless of the type of terminal you use.

The commands discussed in each section of a chapter are reviewed at the end of that
section, A summary of vi commands is found in Appendix D, where they are listed
by topic. At the end of some sections, exercises are also provided so you can experi-
ment with the commands. The answers to all the exercises in a chapter are at the end
of that chapter.

The text in the User’s Guide was prepared with the UMIPS system text editors
NOE [described in the Guide and formatted with the DOCUMENTER’S WORKBENCH
Software: troff, tbl, pic, and mm macros.

xii USER’S GUIDE

Chapter 1: What is the UMIPS System?

What the UMIPS System Does 1-1
How the UMIPS System Works | 1-2
The Kernel ‘ 1-2

. The File System A 13
Ordinary Files K 1-4
Directories 1-4
Special Files 14

The Shell 1-6
Commands : 1-6
What Commands Do 1-6
How to Execute Commands 1-7
How Commands Are Executed 1-8

TABLE OF CONTENTS i

What the UMIPS System Does

The UMIPS operating system is a set of programs (or software) that controls the com-
puter, acts as the link between you and the computer, and provides tools to help you

do your work. It is designed to provide an uncomplicated, efficient, and flexible com-
puting environment. Specifically, the UMIPS system offers the following advantages:

B a general purpose system for performing a wide variety of jobs or applications

® an interactive environment that allows you to communicate directly with the
computer and receive immediate responses to your requests and messages

® a multi-user environment that allows you to share the computer’s resources
with other users without sacrificing productivity

This technique is called timesharing. The UMIPS system interacts with users
on a rotating basis, so that it appears to be interacting with all users simultane-

ously.

® a multi-tasking environment that enables you to execute more than one pro-
gram simultaneously.

The organization of the UMIPS system is based on four major components:

the kernel

the file system

the shell

commands

The kernel is a program that constitutes the nucleus of the
operating system; it coordinates the functioning of the
computer’s internals (such as allocating system resources).
The kernel works invisibly; you need never be aware of it
while doing your work.

The file system provides a method of handling data that makes
it easy to store and access information.

The shell is a program that serves as the command interpreter.
It acts as a liaison between you and the kernel, interpreting
and executing your commands. Because it reads input from
you and sends you messages, it is described as interactive.

Commands are the names of programs that you request the
computer to execute. Packages of programs are called tools.
The UMIPS system provides tools for jobs such as creating
and changing text, writing programs and developing software
tools, and exchanging information with others via the com-
puter.

WHAT IS THE UMIPS SYSTEM? 1-1

How the UMIPS System Works

Figure 1-1 is a model of the UMIPS system. FEach circle represents one of the main
components of the UMIPS system: the kernel, the shell, and user programs or com-
mands. The arrows suggest the shell’s role as the medium through which you and the
kernel communicate. The remainder of this chapter describes each of these com-
ponents, along with another important feature of the UMIPS system, the file system.

2
g‘a /\
Q©

o Programming
N Environment

Electronic
Communication

Text
Processing

Kernel

Additional .
Utility Information

Programs Management

Figure 1-1: Model of the UMIPS System

The Kernel

The nucleus of the UMIPS system is called the kernel. The kernel controls access to
the computer, manages the computer’s memory, maintains the file system, and allo-

cates the computer’s resources among users. Figure 1-2 is a functional view of the
kernel.

1-2 USER’S GUIDE

How the UMIPS System Works

Allocates
system
resources

Manages
memory

Maintains
file system

Controls
access to
computer

Figure 1-2: Functional View of the Kernel

The File System

The file system is the cornerstone of the UMIPS operating system. It provides a logi-
cal method of organizing, retrieving, and managing information. The structure of the
file system is hierarchical; if you could see it, it might look like an organization chart
or an inverted tree (Figure 1-3).

WHAT IS THE UMIPS SYSTEM? 1-3

How the UMIPS System Works

O = Directories
D = Ordinary Files
v = Special Files

O

Figure 1-3: The Hierarchical Structure of the File System

The file is the basic unit of the UMIPS system and it can be any one of three types:
an ordinary file, a directory, or a special file. (See Chapter 3, "Using the File Sys-
tem.")

Ordinary Files

An ordinary file is a collection of characters that is treated as a unit by the system.
Ordinary files are used to store any information you want to save. They may contain
text for letters or reports, code for the programs you write, or commands to run your
programs. Once you have created a file, you can add material to it, delete material
from it, or remove it entirely when it is no longer needed.

Directories

A directory is a super-file that contains a group of related files. For example, a direc-
tory called sales may hold files containing monthly sales figures called jan, feb, mar,
and so on. You can create directories, add or remove files from them, or remove
directories themselves at any time.

All the directories that you create and own will be located in your home directory.
This is a directory assigned to you by the system when you receive a recognized login.
You have control over this directory; no one else can read or write files in it without
your explicit permission, and you determine its structure.

The UMIPS system also maintains several directories for its own use. The structure
of these directories is much the same on all UMIPS systems. These directories,
which include /unix (the kernel) and several important system directories, are located
directly under the root directory in the file hierarchy. The root directory (designated
by /) is the source of the UMIPS file structure; all directories and files are arranged
hierarchically under it.

Special Files

Special files constitute the most unusual feature of the file system. A special file
represents a physical device such as a terminal, disk drive, magnetic tape drive, or
communication link. The system reads and writes to special files in the same way it
does to ordinary files. However the system’s read and write requests do not activate
the normal file access mechanism; instead, they activate the device handler associated

1-4 USER’S GUIDE

How the UMIPS System Works

with the file.

Some operating systems require you to define the type of file you have and to use it in
a specified way. In those cases, you must consider how the files are stored since they
might be sequential, random-access, or binary files. To the UMIPS system, however,
all files are alike. This makes the UMIPS system file structure easy to use. For
example, you need not specify memory requirements for your files since the system
automatically does this for you. Or if you or a program you write needs to access a
certain device, such as a printer, you specify the device just as you would another one
of your files. In the UMIPS system, there is only one interface for all input from you
and output to you; this simplifies your interaction with the system.

Figure 1-4 shows an example of a typical file system. Notice that the root directory
contains the kernel (/unix) and several important system directories.

B EIRVAVAVA () (=)

O = Directories
[:] = Ordinary Files
v = Special Files

Figure 1-4: Example of a File System

/bin contains many executable programs and utilities

/dev contains special files that represent peripheral devices such as the con-
sole, the line printer, user terminals, and disks '

letc contains programs and data files for system administration
/lib contains libraries for programs and languages
/tmp contains temporary files that can be created by any user

lusr contains other directories including mail, which contains files for stor-
ing electronic mail, and news, which contains files for storing elec-
tronic news articles.

WHAT IS THE UMIPS SYSTEM? 1-§

How the UMIPS System Works

In summary, the directories and files you create comprise the portion of the file sys-
tem that is controlled by you. Other parts of the file system are provided and main-
tained by the operating system, such as /bin, /dev, /etc, /lib, /tmp and /usr, and
have much the same structure on all UMIPS ‘systems.

You will learn more about the file system in other chapters. Chapter 3 shows how to
organize a file system directory structure, and access and manipulate files. Chapter 4
gives an overview of UMIPS system capabilities. The effective use of these capabili-
ties depends on your familiarity with the file system and your ability to access infor-
mation stored within it. Chapters 5 and 6 are tutorials designed to teach you how to
create and edit files.

The Shell

The shell is a unique command interpreter that allows you to communicate with the
operating system. The shell reads the commands you enter and interprets them as
requests to execute other programs, access files, or provide output. The shell is also
a powerful programming language, not unlike the C programming language, that pro-
vides conditional execution and control flow features. The model of a UMIPS system
in Figure 1-1 shows the two-way flow of communication between you and the com-
puter via the shell.

Chapter 4 describes the shell’s capabilities. Chapter 7 is a tutorial that teaches you to
write simple shell programs called shell scripts and custom tailor your environment.

Commands

A program is a set of instructions to the computer. Programs that can be executed by
the computer without need for translation are called executable programs or com-
mands. As a typical user of the UMIPS system, you have many standard programs
and tools available to you. If you use the UMIPS system to write programs and
develop software, you can also draw on system calls, subroutines, and other tools. Of
course, any programs you write yourself will be at your disposal, too.

This book introduces you to many of the UMIPS system programs and tools that you
will use on a regular basis. If you need additional information on these or other stan-
dard programs, refer to the User’s Reference Manual. For information on tools and
routines related to programming and software development, consult the Programmer’s
Reference Manual.

The reference manuals may also be available online. (Online documents are stored in
your computer’s file system.) You can summon pages from the online manuals by
executing the command man (short for manual page). For details on how to use the
man command refer to the man(1) page in the User’s Reference Manual.

What Commands Do

The outer circle of the UMIPS system model in Figure 1-1 organizes the system pro-
grams and tools into functional categories. These functions include:

text processing The system provides programs such as line and
screen editors for creating and changing text, a
spelling checker for locating spelling errors, and
optional text formatters for producing high-quality

1-6 USER’S GUIDE

How the UMIPS System Works

paper copies that are suitable for publication.

information management The system provides many programs that allow you
to create, organize, and remove files and direc-
tories.

electronic communication Several programs, such as mail, enable you to

transmit information to other users and to other
UMIPS systems.

software development Several UMIPS system programs establish a
friendly programming environment by providing
UMIPS-to-programming-language interfaces and by
supplying numerous utility programs.

additional utilities The system also offers capabilities for generating
graphics and performing calculations.

How to Execute Commands

To make your requests comprehensible to the UMIPS system, you must present each
command in the correct format, or command line syntax. This syntax defines the
order in which you enter the components of a command line. Just as you must put
the subject of a sentence before the verb in an English sentence, so must you put the
parts of a command line in the order required by the command line syntax. Other-
wise, the UMIPS system shell will not be able to interpret your request. Here is an
example of the syntax of a UMIPS system command line.

command option(s) argument(s)<CR>

On every UMIPS system command line you must type at least two components: a
command name and the RETURN key. (The notation <CR> is used as an instruc-
tion to press the RETURN key throughout this Guide.) A command line may also
contain either options or arguments, or both. What are commands, options, and
arguments?

® a command is the name of the program you want to run
B an option modifies how the command runs

B an argument specifies data on which the command is to operate (usually the
name of a directory or file)

In command lines that include options and/or arguments, the component words are
separated by at least one blank space. (You can insert a blank by pressing the space
bar.) If an argument name contains a blank, enclose that name in double quotation
marks. For example, if the argument to your command is sample 1, you must type it
as follows: "sample 1". If you forget the double quotation marks, the shell will inter-
pret sample and 1 as two separate arguments.

Some commands allow you to specify multiple options and/or arguments on a com-
mand line. Consider the following command line:

WHAT IS THE UMIPS SYSTEM? 1-7

How the UMIPS System Works

command

options

arguments

AN P MmN
we —l —w filel file? file3

In this example, we is the name of the command and two options, —1 and —w, have
been specified. (The UMIPS system usually allows you to group options such as these
to read —lw if you prefer.) In addition, three files (filel, file2, and file3) are specified
as arguments. Although most options can be grouped together, arguments cannot.

The following examples show the proper sequence and spacing in command line syn-

tax:

Incorrect

wcfile
we—lfile
we -1 w

file

we filelfile2

Correct

we file

we -1 file

we —lw file
or

we -1 —w file

we filel file2

Remember, regardless of the number of components, you must end every command
line by pressing the RETURN key.

How Commands Are Executed

Figure 1-5 shows the flow of control when the UMIPS system executes a command.

YOUR

REQUEST

INPUT
SHELL
outputr | (COMMAND

A We—————— LANGUAGE
INTERPRETER)

DIRECTORY

SEARCH

—

PROGRAM PROGRAM
EXECUTION RETRIEVAL

S
=

EXECUTABLE
PROGRAMS

Figure 1-5: Execution of a UMIPS System Command

1-8 USER’S GUIDE

How the UMIPS System Works

To execute a command, enter a command line when a prompt (such as a $ sign)
appears on your screen. The shell considers your command as input, searches
through one or more directories to retrieve the program you specified, and conveys
your request, along with the program requested, to the kernel. The kernel then fol-
lows the instructions in the program and executes the command you requested. After
the program has finished running, the shell signals that it is ready for your next com-
mand by printing another prompt.

This chapter has described some basic principles of the UMIPS operating system.
The following chapters will help you apply these principles according to your comput-
ing needs.

WHAT IS THE UMIPS SYSTEM? 1-9

Chapter 2: Basics for UMIPS System Users

Getting Started

The Terminal
Required Terminal Settings
Keyboard Characteristics
Typing Conventions
The Command Prompt
Correcting Typing Errors
Using Special Characters as Literal Characters
- Typing Speed
Stopping a Command
Using Control Characters

Obtaining a Login Name

Establishing Contact with the UMIPS System

Login Procedure

Password

Possible Problems when Logging In
Simple Commands -

Logging Off

2-1

2-2
2-3
2-5
2-6
2-6
2-7
2-8
2-8
2-8

29

2-10
2-11
2-11
2-13
2-15
2-16

TABLE OF CONTENTS i

Getting Started

This chapter acquaints you with the general rules and guidelines for working on the
UMIPS system. Specifically, it lists the required terminal settings, and explains how
to use the keyboard, obtain a login, log on and off the system, and enter simple com-
mands.

To establish contact with the UMIPS system, you need:
® a terminal

® a login name (a name by which the UMIPS system identifies you as one of its
authorized users)

® a password that verifies your identity
® instructions for dialing in and accessing the UMIPS system if your terminal is
not directly connected or hard-wired to the computer

This chapter follows the notation conventions used throughout this Guide. For a
description of them, see the Preface.

BASICS FOR UMIPS SYSTEM USERS 2-1

The Terminal

A terminal is an input/output device: you use it to enter requests to the UMIPS sys-
tem, and the system uses it to send its responses to you. There are two basic types of
terminals: video display terminals and printing terminals (see Figure 2-1).

Teletype
Teletype Model 43

Model 5410

Figure 2-1: A Video Display Terminal and a Printing Terminal

The video display terminal shows input and output on a display screen; the printing
terminal, on continuously fed paper. In most respects, this difference has no effect
on the user’s actions or the system’s responses. Instructions throughout this book
that refer to the terminal screen apply in the same way to the paper in a printing ter-
minal, unless noted otherwise. .

Required Terminal Settings

Regardless of the type of terminal you use, you must configure it properly to commun-
icate with the UMIPS system. If you have not set terminal options before, you might
feel more comfortable seeking help from someone who has.

How you configure a terminal depends on the type of terminal you are using. Some
terminals are configured with switches; others are configured directly from the key-
board by using a set of function keys. To determine how to configure your terminal,
consult the owner’s manual provided by the manufacturer.

The following is a list of configuration checks you should perform on any terminal
before trying to log in on the UMIPS system.

1. Turn on the power.

2. Set the terminal to ON-LINE or REMOTE operation. This setting ensures
the terminal is under the direct control of the computer.

3. Set the terminal to FULL DUPLEX mode. This mode ensures two-way com-
munication (input/output) between you and the UMIPS system.

2-2 USER'’S GUIDE

The Terminal

4. If your terminal is not directly connected or hard-wired to the computer,
make sure the acoustic coupler or data phone set you are using is set to the
FULL DUPLEX mode.

5. Set character generation to LOWER CASE. If your terminal generates only
upper case letters, the UMIPS system will accommodate it by printing every-
thing in upper case letters.

6. Set the terminal to NO PARITY.

Set the baud rate. This is the speed at which the computer communicates
with the terminal, measured in characters per second. (For example, a termi-
nal set at a baud rate of 4800 sends and receives 480 characters per second.)
Depending on the computer and the terminal, baud rates between 300 and
38400 are available. Some computers may be capable of processing charac-
ters at higher speeds.

Keyboard Characteristics

There is no standard layout for terminal keyboards. However, all terminal keyboards
share a standard set of 128 characters called the ASCII character set. (ASCII is an
acronym for American Standard Code for Information Interchange.) While the keys
are labeled with characters that are meaningful to you (such as the letters of the
alphabet), each one is also associated with an ASCII code that is meaningful to the
computer.

The keyboard layout on a typical ASCII terminal is basically the same as a
typewriter’s, with a few additional keys for functions such as interrupting tasks. Fig-
ure 2-2 shows an example of a keyboard on an ASCII terminal.

BASICS FOR UMIPS SYSTEM USERS 2-3

The Terminal

Figure 2-2: Keyboard Layout of a Teletype 5410 Terminal

The keys correspond to the following:
m the letters of the English alphabet (both upper case and lower case)
® the numerals (0 through 9)

B a variety of symbols (including ! @ # $ % "& () - —+=~{}[] V:;"" <
>,?/)

m specially defined words (such as RETURN and BREAK), and abbreviations
(such as DEL for delete, CTRL for control, and ESC for escape)

2-4 USER’S GUIDE

The Terminal

While terminal and typewriter keyboards both have alphanumeric keys, terminal key-
boards also have keys designed for use with a computer. These keys are labeled with
characters or symbols that remind the user of their functions. However, their place-
ment may vary from terminal to terminal because there is no standard keyboard lay-
out.

Typing Conventions

To interact effectively with the UMIPS system, you should be familiar with its typing
conventions. The UMIPS system requires that you enter commands in lower case
letters (unless the command includes an upper case letter). Other conventions enable
you to perform tasks, such as erasing letters or deleting lines, simply by pressing one
key or entering a specific combination of characters. Characters associated with tasks
in this way are known as special characters. Figure 2-3 lists the conventions based on
special characters. Detailed explanations of them are provided on the next few pages.

Key(s) Meaning

$ System’s command prompt (your cue to issue a command)
#* Erase a character

@ Erase or kill an entire line

<BREAK> Stop execution of a program or command
 Delete or kill the current command line

<ESC> When used with another character, performs a specific function
(called an escape sequence)

When used in an editing session with the vl editor, ends the text
input mode and returns you to the command mode

<CR> Press the RETURN key. This ends a line of typing and puts the
cursor on a new line.

<"d>% Stop input to the system or log off

<"h> Backspace for terminals without a backspace key

<"i> Horizontal tab for terminals without a tab key

<"s> Temporarily stops output from printing on the screen

<“q> Makes the output resume printing on the screen after it has

been stopped by the €8> command

Nonprinting characters are shown in angle brackets (< >).
1 Characters preceded by a circumflex (*) are called control characters and are pro-

nounced control-letter. To type a control character, hold down the control key and
press the specified letter.

Figure 2-3: UMIPS System Typing Conventions

BASICS FOR UMIPS SYSTEM USERS 2-5

The Terminal

The Command Prompt

The standard UMIPS system command prompt is the dollar sign ($). When the
prompt appears on your terminal screen, the UMIPS system is waiting for instructions
from you. The appropriate response to the prompt is to issue a command and press
the RETURN key.

The $ sign is the default value for the command prompt. Chapter 7 explains how to
change it if you would prefer another character or character string as your command
prompt.

Correcting Typing Errors

There are two keys you can use to delete text so that you can correct typing errors.
The @ (at) sign key kills the current line and the # (pound) sign key erases the last
character typed. These keys are available by default to perform these functions.
However, if you want to use other keys, you can reassign the erase and kill functions.
(For instructions, see "Reassigning the Delete Functions" later in this section and
"Setting Terminal Options" in Chapter 7.)

Deleting the Current Line: the @ Sign

The @ sign key kills the current line. When you press it, an @ sign is added to the
end of the line, and the cursor moves to the next line. The line containing the error
is not erased from the screen but is ignored.

The @ sign key works only on the current line; be sure to press it before you press
the RETURN key if you want to kill a line. In the following example, a misspelled
command is typed on a command line; the command is cancelled with the @ sign:

whooo@
who<CR>

Deleting the Last Characters Typed: the # Sign Key

The # (pound) sign key deletes the character(s) last typed on the current line. When
you type a # sign, the cursor backs up over the last character and lets you retype it,
thus effectively erasing it. This is an easy way to correct a typing error.

You can delete as many characters as you like as long as you type a corresponding
number of # signs. For example, in the following command line, two characters are
deleted by typing two # signs.

dattw##e<CR>

The UMIPS system interprets this as the date command, typed correctly.
The BACKSPACE Key

Many people prefer to use the BACKSPACE key for the erase function instead of the
sign key. When you press the BACKSPACE key, the cursor backs up over your
errors, erasing them as it goes. It does not print anything, unlike the # sign key,
which prints a # sign on your screen between an error and a correction. When you
have finished correcting an error with the BACKSPACE key, the line of text on the
screen looks as though it was typed perfectly.

The # sign and BACKSPACE keys are equally effective at deleting characters, but
using the BACKSPACE key gives you better visual information about what you are
doing.

2-6 USER’S GUIDE

The Terminal

Some terminals may not recognize the # sign key as a delete character.
NOTE

I
Reassigning the Delete Functions
As stated earlier, you can change the keys that kill lines and erase characters. If you
want to change these keys for a single working session, you can issue a command to
the shell to reassign them; the delete functions will revert to the default keys (# and
@) as soon as you log off. If you want to use other keys regularly, you must specify
the reassignment in a file called .profile. Instructions for making both temporary and
permanent key reassignments, along with a description of the .profile, are given in
Chapter 7.

There are three points to keep in mind if you reassign the delete functions to non-
default keys. First, the UMIPS system allows only one key at a time to perform a
delete function. When you reassign a function to a non-default key, you also take that
function away from the default key. For example, if you reassign the erase function
from the # sign key to the BACKSPACE key, you will no longer be able to use the #
sign key to erase characters. Neither will you have two keys that perform the same
function.

Secondly, such reassignments are inherited by any other UMIPS system program that
allows you to perform the function you have reassigned. For example, the interactive
text editor called ed (described in Chapter 5) allows you to delete text with the same
key you use to correct errors on a shell commard line (as described in this section).
Therefore, if you reassign the erase function to the BACKSPACE key, you will have
to use the BACKSPACE key to erase characters while working in the ed editor, as
well. The # sign key will no longer work.

Finally, keep in mind that any reassignments you have specified in your .profile do
not become effective until after you log in. Therefore, if you make an error while typ-
ing your login name or password, you must use the # sign key to correct it.

Whichever keys you use, remember that they work only on the current line. Be sure
to correct your errors before pressing the RETURN key at the end of a line.

Using Special Characters as Literal Characters

What happens if you want to use a special character in with literal meaning as a unit
of text? Since the UMIPS system’s default behavior is to interpret special characters
as commands, you must tell the system to ignore or escape from a character’s special
meaning whenever you want to use it as a literal character. The backslash (\) enables
you to do this. Type a \ before any special character that you want to have treated as
it appears. By doing this you essentially tell the system to ignore this character’s spe-
cial meaning and treat it as a literal unit of text.

For example, suppose you want to add the following sentence to a file:
Only one # appears on this sheet of music.

To prevent the UMIPS system from interpreting the # sign as a request to delete a
character, enter a \ in front of the # sign. If you do not, the system will erase the
space after the word one and print your sentence as follows:

Only one appears on this sheet of music.
To avoid this, type your sentence as follows:

Only one \# appears on this sheet of music.

BASICS FOR UMIPS SYSTEM USERS 2-7

The Terminal

Typing Speed

After the prompt appears on your terminal screen, you can type as fast as you want,
even when the UMIPS system is executing a command or responding to one. Since
your input and the system’s output appear on the screen simultaneously, the printout
on your screen will appear garbled. However, while this may be inconvenient for
you, it does not interfere with the UMIPS system’s work because the UMIPS system
has read-ahead capability. This capability allows the system to handle input and out-
put separately. The system takes and stores input (your next request) while it sends
output (its response to your last request) to the screen.

Stopping a Command

If you want to stop the executio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>