(RISC/os (UMIPS)
System Administrator’s Guide
Volume |
Order Number 3206DOC

Bl

7, mips

The power of RISC is in the system.

RISC/os (UMIPS)
System Administrator’s Guide
Volume |
Order Number 3206D0C

April 1989

Your comments on our products and publications are wel-
come. A postage—paid form is provided for this purpose
on the last page of this manual.

Mfg. Part Number 84-00039-B/02-00136

© 1989 MIPS Computer Systems, Inc. All Rights Reserved.

RISCompiler and RISC/os are Trademarks of MIPS Computer Systems, Inc.
‘UNIX is a Trademark of AT&T.
Ethernet is a Trademark of XEROX.

MIPS Computer Systems, Inc.
930 Arques Ave,
Sunnyvale, CA 94086

Califomia:
All other states:
International:

Customer Service Telephone Numbers:

(800)
(800)
(415)

992-MIPS
443-MIPS
330-7966

Mfg. Part Number 84-00039-B/02-00136

Table of Contents

Preface

xiii

What Is a System Administrator? xiii

How to Use This Guide
Notation Conventions
Command References
Information in the Examples

Part 1: Chapters

Introduction

Chapter 1: System Security

Introduction

Important Security Guidelines

Logins and Passwords
Password Aging

Sample /etc/passwd Entries
Locking Unused Logins

Special Administrative Passwords

Set User and Group IDs

Check Set-UIDs Owned by root
Check Set-UIDs in the Root File System
Check Set-UIDs in Other File Systems

Chapter 2: User Services

Introduction
Login Administration
Adding Users

Changing or Deleting Passwd Entries
Group IDs

The User’s Environment

. xiii
xiv
XV

XV

1-1

1-1
12
13

1-4
1-5

1-7
1-7

1-8

2-1

22
22

2-3
2-5

SYSTEM ADMINISTRATOR’S GUIDE i

Table of Contents

The User’s Home Directory
Environment for Bourne Shell User’s
Environment Variables

umask

The Environment for C-Shell Users
Default Shells and Restricted Shells

User Communications Services
Message of the Day

news

write to All Users

mail and mailx

Anticipating User Requests
Trouble Reporting

Chapter 3: System Run Levels

Introduction

General Operating Policy
Maintaining a System Log
Administrative Directories and Files
Root Directories

Important System Files
Operating Levels

General ‘

How init Controls the System State

A Look at Entering the Multi-User State
A Look at the System Life Cycle

Standalone Mode

Chapter 4: Disk Management

Introduction
Device Types

Hard Disk Devices

r=Y
AL ANTEN ATV AN

Identifying Devices to the Operating System
Block and Character Devices
Defining a New Special File

Formatting and Partitioning

2-5
2-5

2-8
2-8
2-10
2-12
2-12
2-12

213

2-13
2-14
2-14

3-1
3-1
32
32

3-3

35
3-5

39
3-10
3-13

41

42
42

43

4-4
46

Disk Formatting
Disk Partitioning

Increasing Swap Space

Bad Block Handling
When Is a Block Bad?

When Are Bad Blocks Detected?
Scanning the Disk for Bad Blocks

Chapter 5: File System Administration

Introduction

File System Overview
Components of the File System

Structure of A File System - The User’s View

Creating a File System

Making and Mounting a New File System
newfs.ffs and mkfs.ffs

Mounting and Unmounting File Systems

Maintaining a File System

The Need for Policies

Shell Scripts for File System Administration
Monitoring Disk Usage

Monitoring Percent of Disk Space Used
Monitoring Files and Directories that Grow
Identifying and Removing Inactive Files
Identifying Large Space Users

File System Backup and Restore

Complete Backup

Incremental Backup

The restore Command

The tar and cpio Commands

Network Backups

What Can Go Wrong With a File System

Hardware Failure
Program Interrupts
Human Error

- Table of Contents

46
4-6
4-8

49
49
49

4-10

51

5-10

512
512
5-12
512
513
5-13
5-14
5-14
5-15
5-16
5-16
517
5-18
5-19
521
521
521
5-21

SYSTEM ADMINISTRATOR'S GUIDE v

Table of Contents

How to Check a File System for Consistency

The fsck Utility
The fsck Command
File System Components Checked by fsck

Chapter 6: Performance Momtorlng and System
Configuration

Introduction
General Approach to Performance Management

Improving Performance

Modifying the Tunable Configuration Parameters
Improving Disk Utilization

Defining Best System Usage Patterns

Samples of General Procedures

Sample Procedure for Investigating Performance Problems

Performance Tools

timex
The vsar Command
The sar Command

Tunable Parameters
Kernel Parameters
Paging Parameters

Streams Parameters
Buffer Cache Size

Chapter 7: Line Printer Administration

Introduction
How the LP Spooling System Works

Administrative Commands
Command Descriptions and Examples

Printer Interface Programs
Model Interface Programs
Writing Interface Programs

Files and Directories
/usr/spool/lp/FIF0

vi

3-22
5-22
522
5-23

6-1
6-2
6-3
6-3

6-4

6-5
67

6-7

67
6-8
69

6-19
6-19
6-21
6-22
6-24

7-1
7-1
7-2
7-2
7-8
7-8
7-8
7-11
7-11

/usr/spool/lp/default
/usr/spool/lp/log
/usr/spool/lp/oldlog
/usr/spool/lp/outputq
/usr/spool/lp/pstatus
/usr/spool/lp/qstatus
/usr/spool/lp/seqfile
/usr/spool/lp/class
/usr/spool/lp/interface
/usr/spool/lp/member
/usr/spool/lp/model
/usr/spool/lp/request
Lock Files

- Cleaning Out Log Files

Chapter 8: TTY Management

Introduction

Definition of Terms

The TTY System

How the TTY System Works

How to Tell What Line Settings Are Defined

How to Create New Line Settings and Hunt Sequences
How to Modify TTY Line Characteristics

Identifying a Terminal to the System

How to Set Terminal Options

Chapter 9: UUCP Administration

Introduction
A Note on Terminology

Networking Hardware
Networking Commands

User Programs
Administrative Programs

Daemons

Internal Programs

Supporting Data Base

Devices File

Table of Contents

7-11
7-11
7-11
7-11
7-12
7-12
7-12
7-12
7-12
7-12
7-13
7-13
7-13
7-13

81
81
82
82
82
83
8-4
85
86

9-1
9-1
9-2
9-3
9-3
9-3
9-5
9-5
9-6
9-6

SYSTEM ADMINISTRATOR’S GUIDE vii

Table of Contents

Dialers File

Systems File

Dialcodes File
Permissions File

Poll File

Devconfig File

Sysfiles File

Other Networking Files

Administrative Files
Direct Links
UUCP and the Ethernet

Chapter 10: TCP/IP User’s Guide

Introduction

Relevant Documentation

Software Administration
Choosing an Address Class
Selecting a Host Number

Naming the System

Configuring TCP/IP Software
Network Security

Network Application Utilities

Using rep, the Remote Copy Program

Using rsh, the Remote Shell Program

Using rlegin, the Remote Login Program
Using rwho, the Remote Who Program
Using ruptime, the Remote Uptime Program

Using ARPANET Utilities

Using telnet, a Remote Login Program
Using ftp, the File Transfer Program

Chapter 11: NFS User’s Guide

Introduction

Getting Started
Relevant Documentation

Networking Models

viii

9-6
9-10
9-15
9-15
9-21
9-21
9-22
9-22

9-24
9-26
9-27

10-1
10-1
10-2
10-2
10-5
10-7
10-7
10-10
10-17
10-17
10-18
10-19
10-19
10-20
10-21
10-21
10-22

111
11-1
11-2

11-3

NFS Service

NFS Service Overvicw

How NFS Works

How to Become an NFS Server

How to Become an NFS Client

UNIX and NFS

Hints about Debugging UMIPS in the Network Environment
Debugging NFS

Types of Failures

Incompatibilities with NFS

Setting the Time in User Programs

Chapter 12: Printer Spooler

Introduction

Commands

Ipd ~ line printer daemon

Ipq — show line printer queue
lprm - remove jobs from a queue
Ipc - line printer control program

Access control
Setting up
Creating a printcap file

QOutput filters
Access Control

Output filter specifications
Line printer Administration

Troubleshooting
LPR

LPQ

LPRM

LPD

LPC

Table of Contents

11-4
11-4
11-4
11-4
116
116
11-7
11-8
11-10
11-15
11-15

12-1

12-2
12-2
12-2
12-2
123

12-4

12-5
12-5
12-6
12-6

12-7
12-8

129
12-9
129
12-11
12-11
12-11

Chapter 13: SendMail Installation and Operations

Introduction

Basic Installation
Off-The-Shelf Configurations
Installation Using the Makefile

13-1
13-2
13-2
13-3

SYSTEM ADMINISTRATOR’S GUIDE ix

Table of Contents

Installation by Hand

Normal Operations

Quick Configuration Startup

The System Log

The Mail Queue

The Alias Database

Per-User Forwarding (.forward Files)
Special Header Lines

Arguments

Queue Interval

Daemon Mode

Forcing the Queue

Debugging

Trying a Different Configuration File
Changing the Values of Options

Tuning

Timeouts

Forking During Queue Runs
Queue Priorities

Load Limiting

Delivery Mode

Log Level

File Modes

The Whole Scoop on the Configuration
The Syntax g

The Semantics

Building a Configuration File From Scratch

Appendix A

Command line Flags

Appendix B

Configuration Options

Appendix C
Mailer Flags

Appendix D

Other Configuration

Appendix E
Summary of Support Files

13-3

13-7
13-7
13-7
13-7
13-10
13-12
13-12

13-13
13-13
13-13
13-13
13-13
13-14
13-14

13-15
13-15
13-16
13-16
13-16
13-17
13-17
13-17
13-19
13-19
13-22
13-26

13-31
13-31

13-34
13-34

13-37
13-37

13-39
13-39
13-44
13-44

Table of Contents

Chapter 14: Timed Installation and Operations

Introduction

14-1
Guidelines 14-2
Installation 143
Daily Operation 14-3
References 14-4
Chapter 15: Name Server Operations for BIND
Introduction 15-1
Building A System with a Name Server - 152
Resolver Routines in libc ' 152
The Name Service 15-2
Types of Servers 15-4
Master Servers 15-4
Caching Only Server 15-4
Remote Server 15-4
Setting up Your Own Domain 155
DARPA Internet 15-5
CSNET 15-5
BITNET 15-5
Files 15-6
Boot File 15-6
Cache Initialization 15-7
Domain Data Files 15-7
Standard Resource Record Format 15-8
Sample Files 15-13
Domain Management 15-17
/etc/re.local 15-17
/etc/named.pid 15-17
/etc/hosts 15-17
Signals 15-17
Acknowledgments 15-18
References 15-18

SYSTEM ADMINISTRATOR’S GUIDE xi

Table of Contents

Chapter 16: Sendmail - Mail Router

Introduction 16-1
Design Goals 16-3
Overview ' 16-5
System Organization 16-5
Interfaces to the Outside World 16-5
Operational Description 16-5
Message Header Editing 16-7
Configuration File 16-7
Usage and Implementation 16-8
Arguments 16-8
Mail to Files and Programs 16-8
Aliasing, Forwarding, Inclusion 16-8
Message Collection 169
Message Delivery 16-10
Queued Messages 16-10
Configuration : 16-10
Comparison with Other Mailers 16-12
Delivermail ' 16-12
MMDF 16-12
Message Processing Module 16-13
Evaluations and Future Plans A 16-14
Acknowledgements 16-15

References 16-15

xii

Table of Contents

Part 2: Procedures

Introduction P0-1
System Administration Commands PO-1
System States P0-2
Logins P0-2
Passwords P0-2
Information in the Examples P0O-3

Procedure 1: System Identification and Security

Procedure 1.1: Bringing-Up a New System P1-2

Procedure 1.2: Set Time and Date P13
Procedure 1.3: Establish or Change System Name P1-5
Procedure 1.4: Assign Special Administrative Passwords o P1-6
Procedure 1.5: Forgotten Root Password Recovery : | , P1-8

Procedure 2: User Services

Procedure 2.1: Add Users or Groups P2-2
Procedure 2.2: Modify User Information P2-4
Procedure 2.3: Delete Users or Groups P2-5
Procedure 2.4: List Users or Groups P2-7
Procedure 2.5: Write to All Users P2-9

Procedure 3: System States

Procedure 3.1: Powerup P3-2
Procedure 3.2: Powerdown P34
Procedure 3.3: Shutdown to Single-User P3-7
Procedure 3.4: Return to Multi-User P3-8
Procedure 3.5: Running Monitor Programs P3-10
Procedure 3.6: Halt and Reboot the Operating System P3-12
Procedure 3.7: Recovery from System Trouble P3-15
Procedure 3.8: Reload the Operating System P3-18

SYSTEM ADMINISTRATOR’S GUIDE xiii

Table of Contents

Procedure 4: Disk Management

Procedure 4.1: Disk Formatting
Procedure 4.2: Scanning a Disk
Procedure 4.3: Writing a Volume Header
Procedure 4.4: Using the dvhtool Utility
Procedure 4.5: Using the prtvtoc Utility

Procedure 5: File System Administration

Procedure 5.1: Adding Extra Swap Space on the System Disk
Procedure 5.2: Create File Systems on an Extra Disk
Procedure 5.3: Maintaining File Systems

Procedure 5.4: File System Backup and Restore

Procedure 6: System Reconfiguration

Procedure 6.1: Reconfigure the Operating System Kernel

Procedure 7: LP Spooler Administration

Procedure 7.1: Installing the Printer Spooler
Procedure 7.2: Manipulating the Printer Spooler

Procedure 7.3: Printer Defaults

Procedure 8: TTY Management

Procedure 8.1: Check TTY Line Settings
Procedure 8.2: Make TTY Line Settings
Procedure 8.3: Modify TTY Line Characteristics
Procedure 8.4: Observe UMIPS File Modifications

Procedure 9: UUCP Networking

Procedure 9.1: Set Up UUCP Networking Files
Procedure 9.2: UUCP Networking Maintenance
Procedure 9.3: UUCP Networking Debugging

xiv

P4-2
P4-4
P4-7
P4-9
P4-13

P5-2
P5-3
P5-5
P5-9

P6-2

P7-2

P7-4
P7-6

P82
P8-4
P8-5
P&-7

P9-2
P9-10
P9-12

Table of Contents

Procedure 10: TCP/IP Network

Procedure 10.1: Setting-Up the Network P10-2
Procedure 10.2: Using Remote Login and Remote Shell P10-4
Procedure 10.3: Using rwho and ruptime P10-6
Procedure 10.4: Using ftp and telnet P10-7

Procedure 11: NFS Network

Procedure 11.1: Setting-Up an NFS Server P11-2
Procedure 11.2: Setting-Up An NFS Client P11-4
Procedure 11.3: Automatic Rem.ote Mounts P11-5
Appendix A: The Fast File System Al
Appendix B: FSCK B-1
Appendix C: Directories and Files c1
Glossary G-1
Index I-1

SYSTEM ADMINISTRATOR’S GUIDE xv

introduction

The UMIPS System Administrator’s Guide describes the administration of the
MIPS RISComputers running the RISC/os (UMIPS) operating system. It is designed
to accomplish the following objectives:

B provide clear instructions on how to perform the administrative tasks of a
UMIPS system

m give background information about when and why these tasks are desirable

B serve as a quick reference to administrative procedures

What Is a System Administrator?
A System Administrator performs two main tasks:
m decides what rules are needed to govern the use of the computer system

® implements those rules so as to provide the maximum amount of computing
service for the system’s users, consistent with the physical limitations of the
machine

This manual is designed for administrators of systems ranging from a single user
systems to multi-user systems networked to other systems. If you are the only user of
your system, administration consists simply of those things you do to keep the
machine running and your programs and data from disappearing permanently. For
larger systems, administration becomes increasingly complex, as you need to antici-
pate the needs of multiple users and a wide variety of applications. Regardless of your
situation, the appropriate information to begin system administration is covered in
this guide. As you become more familiar with the system, this guide may still serve as
a useful reference along with the System Administrator’s Reference Manual.

How to Use This Guide

This manual is organized as follows:

Chapters 1-11 Reference material
Procedures 1-11 "Cookbook" style examples
Back Matter Appendices, glossary and index

If you are an experienced UNIX System Administrator, you may prefer to simply
consult the Procedure before performing a particular activity for the first time. (The
procedures are written for less experienced administrators but they may illustrate
implementation dependencies that you are not aware of.) If you are not familiar with
administering a UNIX system, it is recommended that you read the appropriate
chapter before performing any particular activity.

This book assumes you are familiar with the UNIX operating system at least as a
user. You should know how to create files with an editor, how to move and remove
files, how to make and remove directories, change directories, and login and logout.

PREFACE xiii

Introduction

If you are not familiar with the UNIX operating system, it is highly recommended
that you become familiar with it before assuming the duties of system administrator.
System administrator (also known as "root" and "superuser") privileges allow powerful
manipulations of this multiuser system. It is possible, for example, to remove all of a
user’s files with a single command, or to mistakenly alter system files that will then
keep the system from rebooting correctly. Many books are currently available that
provide a good introduction to UNIX - start with them and use the system as a user
as much as possible before becoming system administrator. You’ll be glad you did.

A few notes on the use of this manual. Since it deals with system administration,
many crucial system files are manipulated, such as /etc/passwd, /etc/inittab,
/etc/fstab, /etc/hosts, and so on. It is highly recommended that you make a backup
copy of those files before editing them in case anything happens. This warning will
not be repeated every time you are told to edit one of these files. Also, it is advisable
to operate as system administrator only when it is required. For that reason, the con-
vention of a "#" prompt is used to represent a superuser login in the examples. Stan-
dard user logins are represented by the "$" or the "%" prompt. Login as a standard
user whenever the operation permits - your chances of making catastrophic errors are
greatly reduced.

Notation Conventions

Whenever the text includes examples of output from the computer and/or com-
mands entered by you, we follow the standard notation scheme that is common
throughout UNIX system documentation:

B Text that you type in from your terminal is shown in bold type.

® Computer response is shown in constant width type. In cases where the
line on the computer screen is longer than can be shown in this document, the
backslant ("\") is used to indicate that the next line is actually still a part of the
current line.

® Comments and explanations within a display are indented and shown in italic
type.

Ttalics are also used to show substitutable values, such as file, when the format
of a command is shown.

B There is an ifnplied RETURN at the end of each command and menu response
you enter. Where you may be expected to enter only a RETURN (as in the
case where you are accepting a menu default), the symbol <CR> is used.

xiv SYSTEM ADMINISTRATOR’S GUIDE

Introduction

Command References

When commands are mentioned in a section of the text for the first time, a refer-
ence to the manual section where the command is described is included in
parentheses: command(section). The numbered sections are located in the following
manuals: ‘

Section (1) User’s Reference Manual

Sections (1M), (7) System Administrator’s Reference Manual
Sections (2), (3), (4), (5) Programmer’s Reference Manual

Section (1SPP) System’s Programmers Package Reference Manual

Information in the Examples

While every effort has been made to present displays of information just as they
appear on your terminal, it is possible that your system will produce slightly different
output. Some displays reflect a particular machine configuration that may differ from
yours. Changes between releases of the UMIPS system software may cause small

“differences in what appears on your terminal.

PREFACE xv

Introduction

This is Part 1, the "Chapters" section of this document. It contains reference
material useful to the RISC/os system administrator and is divided into the following
chapters:

Besides the reference material provided in these chapters, additional information on
individual system administrator commands can be found in the System Administrator’s
Reference Manual, or by entering:

$ man command_name

to get the online manual page. In addition, a number of books on the market today
provide useful tips on UNIX system administration.

While Part 2 of this book, the Procedures, provides many useful examples of par-
ticular system administration actions, it is a good idea to become familiar with the
general information provided in the corresponding chapters before performing them.

PART 1. INTRODUCTION 1

Chapter 1: System Identification and Secu-

rity

Introduction
Important Security Guidelines

Logins and Passwords

Password Aging

Sample /etc/passwd Entries
Change Every Two Weeks
Change One Time Only
Change by root Only

Locking Unused Logins

Special Administrative Passwords

Set-UID and Set-GID
Check Set-UIDs Owned by root
Check Set-UIDs in the Root File System
Check Set-UIDs in Other File Systems

12

13
1-3
14
14
1-4
1-5

15

TABLE OF CONTENTS

1-5

Introduction

This chapter deals with setting up a secure M-Series system.

B Important security guidelines

Guidelines for setting passwords and permissions; protecting the system from
unauthorized access,

® Logins and passwords

Aging passwords to control the amount of time passwords may be kept for
logins.

Locking logins to prevent their being used.

Protecting administrative commands and logins with passwords.
m Set-UID and Set-GID

Preventing unauthorized use of programs conditioned to execute via an admin-
istrative login,

SYSTEM SECURITY 1-1

Important Security Guidelines

1-2

The security of the system is ultimately the responsibility of all who have access to
the system. No system is totally secure. The system is not tamperproof. Some of
the items to consider are as follows.

Especially with a small computer, physical access to the machine must be con-
sidered. Anyone with physical access to the machine can literally walk off with
it. '

Use the keyswitch lock (on systems that have it). After bringing up the system,
lock the keyswitch and store the key in a safe place. Make sure those who
need it know where it is.

Set the access permissions to directories and files to allow only the necessary
permissions for owner, group, and others.

All logins should have passwords. Change passwords regularly. Do not pick
obvious passwords. Six-to-eight character nonsense strings using letters,
numbers and mixed case are recommended over standard names. Logins that
are not needed should be either removed or blocked.

Dial-up ports that do not have passwords are a security risk.

Any system with dial-up ports i-s:n,ot really secure. Top secret information
should not be kept on a system with dial-up ports.

Users who make frequent use of the su command can compromise the security
of your system. Superusers and users who know other users’ passwords are
able to manipulate the other user’s files. The more people who know a given
password, the less secure is the system.,

Login directories, .profile, .login and .cshre files, and files in /bin, /usr/bin,
and /ete that are writable by others are security give-aways, and an unknowing
or malevolent user can cause problems by editing or removing files in these
areas.

Encrypt sensitive data files. The crypt(1) command provides some protection
for sensitive information.

Log off the system if you must be away from the data terminal. Do not leave a
logged-in terminal unattended, especially if you are logged in as root.

SYSTEM ADMINISTRATOR’S GUIDE

Logins and Passwords

The discussion of logins and passwords covers
® password aging

®m sample /etc/passwd entries

® Jocking unused logins

B special administrative logins

Password Aging

The password aging mechanism forces users to change their password on a regular
basis. Provisions are also made to prevent a user from changing a new password
before a specified time interval. Password aging is selectively applied to logins by
editing the /etc/passwd file.

The password aging information is appended to the encrypted password field in
the /etc/passwd file and consists of a comma and up to four bytes (characters) in the
format: '

TJMmww
The meaning of these fields is as follows:
, The delimiter between the password itself and the aging information.

M The Maximum duration of the password (in weeks, following the notation in
Figure 1-1).

m The minimum time interval before the existing password can be changed by
the user (in weeks, following the notation in Figure 1-1).

ww The week (counted from the beginning of 1970) when the password was last
changed; two characters, ww, are used. You do not enter this information.
The system automatically adds these characters to the password aging infor-
mation.

All times are specified in weeks (0 through 63) by a 64 character alphabet. Figure

1-1 shows the relationship between the numerical values and character codes. Any of
the character codes may be used in the four fields of the password aging information.

Character Number of Weeks

. (period) 0 (zero)

/ (slash) 1

0 through 9 2 through 11
A through Z | 12 through 37
a through z 38 through 63

Figure 1-1: Password Aging Character Codes

SYSTEM SECURITY 1-3

Logins and Passwords

Two special cases apply for the character codes:

® If M and m are equal to zero (the code, ..), the user is forced to change the

password at the next login. No further password aging is then applied to that
login.

m If m is greater than M (for example, the code, ./), only root is able to change

the password for that login.

Sample /etc/passwd Entries

Password administration can be set up in a variety of ways to meet the needs of

different organizations. Some examples are discussed in the following sections.

Change Every Two Weeks

The following shows the password aging information required to establish a new

password every 2 weeks (0) and to deny changing the new password for 1 week (/).

1.

Here is a typical login/password entry in the /etc/passwd file for the typical
user jqu:

jgqu:RTKESmMOE2m.E:100:1:J. Q. Username:/usr/jqu:
To cause jqu to change the password at least every 2 weeks, but keep it at

least for 1 week, you should use the code 0/. After you edit the /etc/passwd
file, adding ,0/ to the password field, the entry looks like this:

jqu:RTKESmMOE2m.E,0/:100:1:J. Q. Username:/usr/jqu:

After the password entry is changed, jqu will have to change the password at
the next login and every 2 weeks thereafter.

After jqu’s first login following the change, the system automatically adds the
two-character, "last-time-changed" information to the password field.

jqu:nCNYv9zhLTojo,0/W9:100:1:J. Q. Username:/usr/jqu:

In this example, jqu changed the password in week W9.

Change One Time Only

The following shows the password aging information required to establish for one
time only a new password when the user next logs in (using the .. code).

1-4

1.

Here is the typical login/password entry for user jqu again:
jqu:RTKESmMOE2m.E:100:1:J. Q. Username:/usr/jqu:
To cause jqu to change the password at the next login (and to cause this only

once), you should use the code ... After you edit the /etc/passwd file, adding
4. to the password field, the entry looks like this:

jqu:RTKESmMOE2m. E,..:100:1:J. Q. Username:/usr/jqu:

After the password entry is changed, jqu will have to change the password at
the next login only.

SYSTEM ADMINISTRATOR’S GUIDE

(\

Logins and Passwords

3. After jqu supplies the new password, the system automatically removes the
aging code (,..) from the password field:

jqu: EFDNLgsFUj.£s:100:1:J. Q. Username:/usr/jqu:

Note that the encrypted password information has changed.

Change by root Only

The following shows the password aging information required to establish a pass-
word for a login so that only the root login can change the password (using the ./
code).

1. Here is the typical login/password entry for user jqu again:

jqu:RTKESMMOE2m.E:100:1:J. Q. Username:/usr/jqu:

2. To prevent jqu from changing the password, you should use the code ./.
After you edit the /etc/passwd file, adding ,./ to the password field, the entry
looks like this:

jqu: RTKESmMOE2m.E,./:100:1:J. Q. Username:/usr/jqu:

Now only root can change the password for the jqu login. If jqu tries to
change the password, a permission denied message is displayed.

Locking Unused Logins
If a login is not used or needed, you should do one of two things:
® remove the entfy from /etc/passwd

m disable (lock) the login

A login is locked by editing the /etc/passwd file and changing the encrypted pass-
word field to contain one or more characters that are not used by the encryption pro-
cess. One way to do this is to use the expression Locked;. In this expression, the
semicolon () is an unused encryption character. The text, however, only serves to
remind you that the login is locked. Another expression, not valid, could also be
used to prevent the use of a login because a space is another unused encryption char-

acter. Another common technique is placing a single "*" character in the password
field.

The following line entry from the /etc/passwd file shows the "locked" bin login.

bin:Locked;:2:2:0000-Admin(0000):/bin:

Special Administrative Passwords

There are two familiar ways to access the system: either via a conventional user
login or the root login. If these were the only two ways to access the system, how-
ever, effective use of the system would have to be curtailed (because root would own
many directories) or many users would have to know the root password (a bad secu-
rity risk) or the system would be wide open (because root would own few directories).
All of these conditions are undesirable.

SYSTEM SECURITY 1-5

Logins and Passwords

The solution to a good mix of system use and system security is available to you
through the use of special system logins and administrative commands that can be
password-protected (see Procedure 1.4 for information on doing this). The com-
mands, which are also logins, that can be password-protected perform functions that
might be needed by a number of users on your M-Series system:

It is recommended that the passwords to these commands/logins be known to
only a few users. '

Login Use

root This login has no restrictions on it and it overrides all
' other logins, protections, and permissions. It allows
the user access to the entire operating system. The
password for the root login should be very carefully

protected.

Sys | This login has the power of a normal user login over
the files it owns, which are in /usr/src.

bin This login has the power of a normal user login over

' the files it owns, which are in /bin.

adm This login has the power of a normal user login over.
the object files it owns, which are in /usr/adm.

uucp This login owns the object and spooled data files in
/usr/lib/uucp.

nuucp This login is used by remote machines to log into the

system and initiate file transfers via
/usr/lib/uucp/uucico.

rje This login has an entry in /etc/passwd. There are no
files currently associated with this login.

daemon | This is the login of the system daemon, which controls
background processing.

Ip This login owns the object and spooled data files in
fusr/spool/lp.

nobody | This login is used for "weak" network services like ftp.

1-6 SYSTEM ADMINISTRATOR’S GUIDE

Set User and Group IDs

The set-user identification (suid) and set-group identification (sgid) bits must be
used very carefully if any security is to be maintained. These bits are set through the
chmod(1) command and can be specified for any executable file. When any user runs
an executable file that has either of these bits set, the system gives the user the per-
missions of the owner of the executable. For example, the /bin/passwd command is
owned by root and has the suid bit set. This allows the passwd command to write the
root-owned /etc/passwd file so users can change their password.

System security can be compromised if a user copies another program onto a file
with -rwsrwxrwx permissions. For example, if the "switch user" (su) command has
the write access permission allowed for others, anyone can copy the shell onto it and
get a password-free version of su. The following paragraphs provide a few examples
of command lines that can be used to identify the files with a set-UID.

For more information about the set-UID and set-GID bits, see chmod(1) and
chmod(2).

Check Set-UIDs Owned by root

The following command line lists all set-UID programs-owned.by root. The
results are mailed to root. All mounted paths are checked by this command starting
at /. Any surprises in root’s mail should be investigated. (Refer to the man pages for
a discussion of the find(1) command used in the example below.)

4 find / —user root —perm —4100 —exec Is =1 {} \; | mail root
You have mail

mail

From root Mon Aug 27 07:20 EDT 1984

—r—Sr—xXr-x 1 root bin 38836 Aug 10 16:16 /usr/bin/at
—r—Sr—Xr—Xx 1 root bin 19812 Aug 10 16:16 /usr/bin/crontab
———8——X——X 1 root sys 46040 Aug 10 15:18 /usr/bin/ct
—r—sr—-sr-x 1 root bin 33208 Aug 10 15:55 /usr/lib/lpadmin
—r—Sr—sr-x 1 root bin 38696 Aug 10 15:55 /usr/lib/lpsched
———S——X——X 1 root other 77824 Aug 18 15:11 /usr/rar/bin/sh
—r—Sr—Xr—X 1 root sys 11416 Aug 11 01:26 /bin/mkdir
—r—SIr—XIr—X 1 root sys 11804 Aug 11 01:26 /bin/rmdir
—r—Sr—Xr—Xx 1 root bin 12524 Aug 11 01:27 /bin/df
—IWSIr—Xr—X 1 root sys 21780 Aug 11 01:27 /bin/newgrp
—r—Sr—sr-x 1 root sys 23000 Aug 11 01:27 /bin/passwd
—r—Sr—Xr—X 1 root sys 23824 Aug 11 01:27 /bin/su

?d

#

In this example, an unauthorized user ("rar" in group "other") has made a personal
copy of /bin/sh and has made it set-UID to root. This means that rar and other
members of the group other can now execute /usr/rar/bin/sh and become the super
user.

SYSTEM SECURITY 1-7

Set User and Group IDs

Check Set-UIDs in the Root File System

The following command line reports all files with a set-UID for the root file sys-
tem. The ncheck(1M) command, by itself, can be used on a mounted or unmounted
file system. The normal output of the ncheck —s command includes special files.
Here, the grep command is used to remove device files from the output. The filtering
done in this example to remove the device files is applicable only for the root file sys-
tem (/dev/dsk/ips0d0s0). The output of the modified ncheck is used as an argument
to the Is command. The use of the s command is possible only if the file system is
mounted.

Is =l ‘ncheck.ffs =s /dev/dsk/ips0d0s0 | cut —=f2 | grep —v dev*

—Ir—-Sr—xXIr—-X 1 root bin 12524 Aug 11 01:27 /bin/df
—IrWXr—sIr—X 1 root sys 32272 Aug 10 15:53 /bin/ipcs
—r—-Xr—sr—x 2 bin mail 32852 Aug 11 01:28 /bin/mail
—r—-Sr—Xr—X 1 root sys 11416 Aug 11 01:26 /bin/mkdir
—IrWwSr—Xr—Xx 1 root sys 21780 Aug 11 01:27 /bin/newgrp
—r—-Sr—sr—Xx 1 root sys 23000 Aug 11 01:27 /bin/passwd
—r—Xr—SI—X 1 bin sys - 27964 Aug 11 01:28 /bin/ps
—r—-Xr—sIr—x 2 bin mail -- 32852 Aug 11 01:28 /bin/rmail
-r-sr-xr—-x ~ 1 root sys 11804 Aug 11 01:26 /bin/rmdir
—r-Sr—Xr—X 1 root sys 23824 Aug 11 01:27 /bin/su
—r—-Xr—sr—x 1 bin sys 21212 Aug 10 16:08 /etc/whodo

#

In this example, nothing looks suspicious. (Note that the "ips" designator for the
disk device may be different on your machine. Look in the /dev/dsk directory for the
correct disk device names for your system. Also note that the ".ffs" appended to the
ncheck command informs ncheck that this is a fast file system as described in Chapter
5. Future versions of UMIPS will assume the fast file system and the .ffs will not be
necessary.)

Check Set-UIDs in Other File Systems

The following command line entry shows the use of the ncheck command to
examine the /usr file system (/dev/dsk/ips0d0s6, assuming a single-disk system with
default partitioning) for files with a set-UID. In this example, the complete path
names for the files start with /usr. /usr is not part of the ncheck output,

1-8 SYSTEM ADMINISTRATOR’S GUIDE

Set User and Group IDs

ncheck.ffs —s /dev/dsk/ips1d0s2 | cut —f2
/dev/dsk/cl1ld0s2:
/bin/at
/bin/crontab
/bin/shl
/bin/sadp
/bin/timex
/bin/cancel
/bin/disable -
/bin/enable
/bin/lp
/bin/lpstat
/bin/ct

/bin/cu
/bin/uucp
/bin/uuname
/bin/uustat
/bin/uux
/1lib/mv_dir
/lib/expreserve
/lib/exrecover
/1lib/accept
/1lib/lpadmin
/1lib/lpmove
/1ib/lpsched
/1ib/lpshut
/lib/reject
/1lib/mailx/rmmail
/lib/sa/sadc
/1lib/uucp/uucico
/1lib/uucp/uusched
/lib/uucp/uuxqt
/usr/rar/bin/sh
#

In this example, the /usr/rar/bin/sh should be investigated.

The designation "ips" in the special file name may differ on your system. Refer to
NOtE| Chapter 4 and your Release Notes for details.

SYSTEM SECURITY 1-9

Chapter 2: User Services

Introduction

Login Administration
Adding Users
Changing or Deleting Passwd Entries
Group IDs

The User’s Environment
The User’s Home Directory
Environment for Bourne Shell Users
Environment Variables
umask
The Environment for C-shell Users
Default Shell and Restricted Shell

User Communications Services
Message of the Day
news
write to All Users
mail and mailx

Anticipating User Requests
Trouble Reporting

2-10

2-12
2-12
2-12
2-13
2-13

2-14
2-14

TABLE OF CONTENTS i

Introduction

This chapter deals with providing a variety of services to the users of your M-
Series RISComputer.

® Login administration

Assigning user and group IDs to users of your system. Maintaining the
/etc/passwd and /etc/group files.

® The user’s environment

Setting up shell environment files and helping users develop individual
environment files. '

® User communications services

Establishing and maintaining such services as message-of-the-day, news and
mail.

- W Anticipating user requests

Developing an organized plan for responding to user problems.

USER SERVICES 2-1

Login Administration

This section describes how to add a new user to the system. (

Adding Users

Before users are permitted to log in to your system, they must be listed in the
/etc/passwd file. You can make the necessary changes to the passwd file using an
editor. You need to login as root to do this; 7etc/passwd is generally installed as a
read-only file. An entry in the passwd file consists of a single line with seven colon-
separated fields. The fields and an example are shown below.

login_name:password:user_id:group_id:comments:home_dir:program

abc:g0Q3xsv05bWuM, 9/TA:103:123:Allen B. Cipher:/usr/abc:/bin/csh

The fields are:

login name A valid name for logging onto the system. A login name is gen-
erally from three to six characters; the first character must be
alphabetic. It is usually chosen by the user.

password The encrypted form of the password, if any, associated with the
login name in the first field. All encrypted passwords occupy 13
-character. The actual password chosen can be any length but is
truncated to the first eight characters. At least one character
must be numeric. This is to discourage users from choosing ordi- (
nary words as passwords. When you add a user to the file you
may use a default password, such as passwd9, and instruct the
user to change it at the first login. Following the encrypted pass-
word, separated by a comma, there may be a field that controls
password aging. See Password Aging in Chapter 1, System Secu-
rity.

user_id The user-ID number (uid) is between 0 and 50,000. The number
must not include a comma. Numbers below 100 are reserved and
User-ID 0 is reserved for the super-user. The System Adminis-
tration menu package does not permit you to specify a number
below 100 when adding a user.

group_id The same conditions apply to the group-ID (gid) number as to
the uid, except that the group-ID 1 is reserved for the other
group.

comiments This field contains the name of the user and any optional addi-

tional information about the user. There is no required format
for this field, but avoid slashes and colons.

home_dir The home directory is where the user is placed upon logging in.
The name is usually the same as the login name, preceded by a
parent directory such as /usr. The modadduser menu of the Sys-
tem Administration package allows you to specify the default
parent directory. The home directory is the origination point of
the user’s directory tree. (

2-2 SYSTEM ADMINISTRATOR’S GUIDE

Login Administration

program This is the name of a program invoked at the time the user logs
in. Typical programs are /bin/sh, /bin/csh and /bin/rsh. If the
field is empty, the default program is /bin/sh.

If you inspect the /etc/passwd file on your M-Series system you will see several
commands listed among the user login names. These are commands such as
sysadm(1) that can have passwords assigned to them.

Changing or Deleting Passwd Entries

There are sysadm usermgmt menu selections for changing or deleting user entries
from the /etc/passwd file (see sysadm(1) and Procedures 2.2 and 2.3). You also have
the option of using an editor to make the changes.

Every so often a user will forget his or her password. When that happens (let’s
say to user abc), you can login as root and enter the command:

passwd abc (The # prompt shows you are root.)
New password: passwd9 (The password entered is actually not echoed.)
Re-enter new password: passwd9

Since you did this as the super-user (root), you were not prompted for the old
password. The command changes abc’s password to passwd9. You should make
sure the user changes the password immediately.

When you delete a login from /etc/passwd using the sysadm usermgmt menu, all
of the user’s files and directories are removed. If you remove an entry from the
passwd file using an editor, you have only removed the entry. The user’s files remain.

Group IDs

Group IDs are a means of establishing another level of ownership of and access
to files and directories. Users with some community of interest can be identified as
members of the same group. Any file created by a member of the group carries the
group-ID as a secondary identification. By manipulating the permissions field of the
file, the owner (or someone with the effective user-ID of the owner) can grant read,
write, or execute privileges to other group members.

Information about groups is kept in the /etc/group file. The fields and a sample
entry from this file is shown and explained below:

group_name:password(empty):group_id:login_names

prog::123:jgp,abc
Each entry is one line; each line has the following fields:

group_name The group name can be from 3 to 8 characters, the first of which
must be alphabetic.

password The password field should not be used. Group passwords are not
generally protected as vigorously as personal passwords, and con-
sequently create an additional security risk when they are used.
You can put a "*" or enter ".Locked" in this field to make it clear
that it is not to be used.

USER SERVICES 2-3

Login Administration

group_id The group id is a number from 0 to 50,000. The number must
not include a comma. Numbers below 100 are reserved.
login_names The login names of group members, separated by commas.

The next section discusses how to provide an initial shell environment for each user.

2-4 SYSTEM ADMINISTRATOR’S GUIDE

The User’s Environment

The user’s environment is determined by the shell used (which is defined in the
program field of the password file). The Bourne shell (/bin/sh) files that create the
user environment are /ete/profile and SHOME/ .profile (SHOME represents the user’s
home directory). The /etc/profile file is executed first, then the SHOME/.profile file.
The C-shell (/bin/esh) environment files are /etc/cshre, $HOME/.login and
$HOME/.cshre.. The order of execution at login time is /etc/cshre, SHOME/.cshre,
and finally SHOME/ .login.

The User’s Home Directory

Each user should be given a home directory. On a small system, you may want to
add user directories to the usr directory, or perhaps to a subdirectory of /usr. If you
have a large number of users, you may want to consider setting up a separate user
partition or disk. (Adding new disks and partitions is discussed in Chapters 4 and 5.)

For example, if you are going to add users to a subdirectory called /usr/people,
follow these steps:

mkdir /usr/people

mkdir /usr/people/carol

chown carol /usr/people/carol

chgrp software /usr/people/carol

chmod u+trwx,g+rx,otrx /usr/people/carol

H H = I I

where "carol" is the new user and you have already added her to the /etc/passwd file
and assigned her to group "software” in the /etc/group file. Her /etc/passwd entry
might look something like this:

carol:nCNYv9zhL4xUn:103:110:Carol Smith:/usr/users/carol:\
/bin/sh

Environment for Bourne Shell Users
Two files determine the Bourne shell user’s environment:

1. The system profile.

The ASCII text file, /etc/profile, contains commands, shell procedures, and
environment variables. The login process initiated when a Bourne shell user
logs in causes this file to be executed. A sample /etc/profile is shown below.
(Pound signs (#) are comment indicators, and lines beginning with "#" are not
executed.)

USER SERVICES 2-5

The User’s Environment

The profile that all logins get before using their
own .profile.
trap "™ 2 3
export LOGNAME
/etc/TIMEZONE

Login and —-su shells get /etc/profile services.
-rsh is given its environment in its .profile.
case "$0". in
—su)
export PATH
—-sh)

export PATH

Allow the user to break the Message of the Day only.

trap "trap '’ 2" 2 ‘

cat -s /etc/motd

trap ™ 2

if mail -e

then

echo "you have mail"

Cfi

if [${LOGNAME} != root]

then ’

news —n

fi
esac
umask 022
trap 2 3

Figure 2-1: A Typical /etc/profile

In addition to /etc/profile for all Bourne shell users, the executable file, .profile, may
reside in a user’s home directory. This individual (user-level) profile can contain
additional commands and variables that further customize a user’s environment. If
one exists, it too is executed at login time, after the execution of /etc/profile.

A standard profile that can be supplied as an initial .profile for Bourne shell users can
be found in /ete/stdprofile. An example of this file is shown below.

2-6 SYSTEM ADMINISTRATOR’'S GUIDE

The User’s Environment

#ident "@Q(#)sadmin:etc/stdprofile 1.2"

#ident

This is the default standard profile provided to a user.
They are expected to edit it to meet their own needs.
umask 022

stty line 1 erase ’'“H’ kill ’'~U’ intr ’'~C’ echoe

list directories in columns
1s() { /bin/ls -C $*; }

Figure 2-2: A Typical $HOME/.profile

Several interesting things are contained in the environment files shown above:
®m Some environment variables are exported (see Environment Variables below).

m A file named /etc/motd is cat-ted (see Message of the Day later in this
chapter).

m If the user is not root, the names of news items are displayed (news =—n; see
news later in this chapter).

m If the user has mail (mail —e), a message about it is displayed.

® The Is command is redefined to always produce a columnar listing.

For information about the Bourne shell programming commands, see sh(1) in the
User’s Reference Manual.

Environment Variables

An array of strings called the environment is made available by exec(2) when a
process begins. Since login is a process, the array of environment strings is made
available to it. An example of a typical array of strings is shown in Figure 2-3.

PS1=$

LOGNAME=abc

PWD=/usr/abc

HOME=/usr/abc
PATH=:/bin:/usr/bin: /usr/ucb
SHELL=/bin/sh
MAIL=/usr/mail/abc
TERM=5420

PAGER=pg

TZ=PST8PDT
TERMINFO=/usr/lib/terminfo
EDITOR=vi

Figure 2-3: Environment Array for a Typical User

USER SERVICES 2-7

The User’s Environment

The environment variables shown in Figure 2-3 give values to 12 names for user
abc. Other programs make use of the information. For example, the user’s terminal (
is defined as a 5420 (TERM=5420). When the user invokes the editor vi(1), vi checks
the file referenced by TERMINFO (/usr/lib/terminfo) where it learns the characteris-
tics of a 5420 terminal (such as the 24-line screen). New variables can be defined at
any time. By convention they are defined with the variable in uppercase, followed by
an equal sign, followed by the value. Once defined, an environment variable can be
made global for the user through the export statement. The individual .profile file
can contain whatever the user wants.

umask

A system default controls the permissions mode of any files or directories created
by a user. The M-Series system has default values of 666 for files and 777 for direc-
tories. That means that for files everyone automatically gets read and write permis-
sion. For directories, everyone gets read, write, and execute permission. (Execute
permission on a directory means the ability to ed to the directory and to copy read-
able files from it.)

Users frequently set up a user mask in their .profile by means of the umask(1)
command. umask alters permission levels by a specified amount. For example,

umask 027

. leaves the permission level for owner unchanged, lowers the permission level for
group by 2, and reduces the permissions for others to zero. The system default was
666; this user mask changes it to 640, which translates into read and write permission ‘(
for the owner, read permission for the group, and no permission for others.

There may be a umask command in /etc/profile. If there is, it does not change a
user’s ability to put one in .profile. (Note that since $SHOME.profile is read after
/etc/profile, the umask in SHOME/.profile would override the /etc/profile umask.)

For a detailed discussion of the Bourne shell, see sh(1).

The Environment for C-Shell Users

The discussion of the C-Shell adds on to the previous discussion on the Bourne
shell. As you will see, commands differ somewhat, and the purpose of this section is
merely to introduce how to set-up users with the C-shell. For details regarding use of
the C-shell, refer to esh(1).

Three files determine the environment for /bin/csh users:

® The system (machine-specific) /etc/cshre.

The file /etc/cshre is executed (or "sourced") by the login process when the C-
shell user logs in to the system. An example /etc/cshre is shown in Figure 2-4
below.

2-8 SYSTEM ADMINISTRATOR’S GUIDE

The User’s Environment

default settings for all users

umask 022
set path = (/bin /usr/net /bin /usr/bin /usr/ucb .)

cat —-s /etc/motd

if ($?LOGNAME == 0) then
echo "$0": LOGNAME: parameter not set
exit 1

else

set mail=/usr/mail/$LOGNAME
endif
if - ({ /bin/mail -e }) then

echo ’‘You have mail.’

endif

if ($LOGNAME != root) then
news -n C

endif

Figure 2-4: A Typical /etc/cshre File

® The User’s .login.

The login process also executes the .login file that resides in the user’s home
directory. This file can be used, for example, to perform various user-specific
actions at login time and set desired variables. Figure 2-5 shows a sample
$HOME/.login file.

setenv SHELL /bin/csh

setenv TERM vt100

stty line 1 erase ’'"H’ kill '"U’ intr ’'~C’ echoe

date

echo "Good morning"

Figure 2-5: A Typical $HOME/.login

m The User’s .cshre.

Each time a new C-shell is created for a user (for example, at login and when-
ever the user enters csh at the command line), the user’s $HOME/.cshre file is
"sourced", initializing the new shell with whatever information the user’s
$HOME/.cshrc has specified. A starter .cshre file for C-shell users is provided
in /etc/stdeshre. Figure 2-6 shows a sample $HOME/.cshre file.

USER SERVICES 2-9

The User’s Environment

#ident

This is the default standard profile provided to a user.

They are expected to edit it to meet their own needs.
umask 022

stty line 1 erase '"H’ kill ’'~U’ intr ’'~C’ echoe
eval ‘tset —5 —Q’ '

list directories in columns and make a long listing easier
alias 1s "1s —C’
alias 11 "ls —al"

make history easier to use and set it to a length of 50
alias h history
set history = 50

enable command line editing for easy re—entry of commands
set lineedit

Figure 2-6: A Starter SHOME/.cshre File

Some of the more interesting aspects of the C-shell environment files included:

¥ automatic sourcing of variables

The setenv command is used to set variables. No specific "Export varia-

blename" statement is required as it is with the Bourne shell,

® aliasing

Names can be arbitrarily assigned (aliased) to command strings. For example,
alias h history permits the single character "h" to be typed instead of the entire

command.

® other aspects

Similar mail, news and motd actions to those performed by the sample profile

for the Bourne shell user are included in the C-shell examples.

For a detailed discussion of the C-shell environment, refer to esh(1).

Default Shells and Restricted Shells

Generally, when a user logs in, the default program that is started is /bin/sh or
/bin/csh. There may be cases, however, where a user needs to be given a restricted

shell.
With the restricted shell (/bin/rsh) the user is not allowed to:

8 change directories

2-10 SYSTEM ADMINISTRATOR’S GUIDE

The User’s Environment

® change the value of SPATH

B redirect output - the restrictions are enforced after .profile has been executed.

The administrator can use a restricted shell strategy to limit certain users to the
execution of a small number of commands or programs. By setting up a special direc-
tory for executables (/usr/rbin, for example), and controlling PATH so it only refer-
ences that directory, the administrator can restrict the user’s activity in whatever way
is appropriate. ‘ ' :

The restricted shell is a subset of the Bourne shell (sh). There is no restricted
version of the C-shell (csh).

Be aware that /bin/rsh is not the same as the remote shell /usr/ucb/rsh discussed in
NotE| Chapter 10.

T

USER SERVICES 2-11

User Communications Services

Several ways of communicating with and among users are available. Some of the
most frequently used are described in this section.

Message of the Day

Items of broad interest that you want to make available to all users can be put in
the /etc/motd file. The contents of /etc/motd are displayed on the user’s terminal as
part of the login process. The login process executes /etc/profile (for Bourne shell
users) or /etc/cshre (for C-shell users), which are executable shell scripts that, among
other things, commonly contain the command

cat /etc/motd

Any text contained in /etc/motd is displayed for each user each time the user logs
in. For this information to have any impact on users, you must take pains to use it
sparingly but consistently and clean out outdated announcements. A typical use for
the Message of the Day facility might be

5/30: The system will be unavailable from 6-1lpm \
Thursday, 5/30 — preventive maintenance.

Part of the preventive maintenance should be to remove the notice from /etc/motd.

news

Another electronic bulletin board facility is in the /usr/news directory: the
news(1) command. The directory is used to store announcements in text files, the
names of which are normally used to provide a clue to the content of the news item.
The news command is used to print the items on your terminal.

A typical /etc/profile and /etc/cshre contain the line

news —n

The =—n argument causes the names of files in the /usr/news directory to be
printed on a user’s terminal as the user logs in, Item names are displayed only for
current items, that is, items added to the /usr/news directory since the user last
looked at the news. The idea of currency is implemented like this: when you read a
news item, an empty file named .news_time is written in your login directory. As with
any other file, .news_time carries a time stamp indicating the date and time the file
was created. When you log in, a comparison is made between the time stamp of your
.news_time file and time stamp of items in /usr/news.

Unlike the Message of the Day where users have no ability to turn the message
off, with news users have a choice of several possible actions:

read everything If the user enters the command, news with no arguments,
all news items posted since the last time the user typed in
the command are printed on the user’s terminal.

select some items If the news command is entered with the names of one or
more items as arguments, only those items selected are
printed.

2-12 SYSTEM ADMINISTRATOR’S GUIDE

User Communications Services

read and delete After the news command has been entered, the user can
stop any item from printing by sending an Interrupt. (The
interrupt is often the DELETE key, but may be CTRL-C
or the BREAK key depending on your terminal setup.)
Sending two Interrupts in a row stops the program.

ignore everything If the user is too busy to read announcements at the
moment, they can safely be ignored. Items remain in
/usr/news until removed. The item names will continue
to be displayed each time the user logs in.

flush all items If the user simply wants to eliminate the display of item
names without looking at the items, a couple of techniques
will work:

$ touch .news_time
updates the time-accessed and time-modified fields of the
$ news > /dev/null

prints the news items on the null device.

Write to All Users

The ability to write to all logged-in users, via the wall(1M) command, is an exten-
sion of the write(1) command. It is fully effective only when used by the super-user.
While wall is a useful device for getting urgent information out quickly, some users
may find it annoying to have messages print out on their terminal right in the middle
of whatever else is going on. The effect is not destructive but may be somewhat irri-
tating. Users may guard against this distraction by including the command

mesg n

in their .profile or .login. This blocks other ordinary users from interjecting a mes-
sage into your stdout. The wall command, when used by the super-user, overrides
the mesg n command. It is best to reserve this for those times when you as the sys-
tem administrator need to ask users to get off the system. The use of the wall com-
mand is described in Procedure 2.

mail and mailx

The UMIPS system offers two electronic mail utilities through which users can
communicate among themselves. If your system is connected to others by networking
facilities, mail(1) and mailx(1) can be used to communicate with persons on other sys-
tems.

mail is the basic utility for sending messages. mailx uses mail to send and receive
messages, but adds to it a multitude of extras that are useful for organizing messages
into storage files, adding headers, and many other functions.

When mailx is used, a set-up file is helpful. You can find a description of how to
use a .mailre set-up file in the mailx(1) pages of the User's Reference Manual.

USER SERVICES 2-13

Anticipating User Requests

As the system administrator for your M-Series system you can expect users to
look to you to help solve any number of problems. In addition to the system log
described in Chapter 3, you will find it helpful to keep a user trouble log. Many of
the problems that users encounter fall into patterns. If you keep a record of how
problems were resolved, you will not have to start from scratch when a problem
recurs.

Trouble Reporting

Another technique that is strongly recommended is an organized way for users to
report problems. The Release Notes supplied with your system provide a Trouble
Report Form that can be used to record and report problems to your Field Service

‘representative. Also, a new userid that users can report problems to is often
effective.

2-14 SYSTEM ADMINISTRATOR’S GUIDE

Chapter 3: Processor Operations

Introduction
General Operating Policy
Maintaining a System Log
Administrative Directories and Files
Root Directories ' ’
Important System Files

Operating Levels
General
How init Controls the System State
A Look at Entering the Multi-User State
Powering Up
Early Initialization
Preparing the Run Level Change
A Look at the System Life Cycle
Changing Run Levels
Run Level Directories
Going to Single-User Mode

Standalone Mode
Turning the System Off

31
32
32
32
33

35

3-6
39
39
3-9
3-9
3-10
3-10
3-10
3-11

3-13
3-14

TABLE OF CONTENTS i

Introduction

This chapter deals with the day-to-day operations of your M-Series RISComputer.

m General operating policy

Guidelines for balancing the needs of system maintenance and the interests of
your user community; suggestions for record keeping; lists of important admin-
istrative directories and files.

m QOperating Levels

Definition of the run levels of the system; how they are controlled.

® Running Standalone Shell and monitor programs

Running firmware-resident and bootable programs from the system firmware.

General Operating Pol'icy

Many administrative tasks require the system to be shut down to a run level other
than the multi-user state (see the discussion on Operating Levels below). This means
that conventional users cannot access the system. When the machine is taken out of
the multi-user state, the users on the machine at the time are requested to log off.
You should do these types of tasks when they will interfere the least with the activities
of the user community. In addition, include a message in /etc/motd and/or news, or
mail messages to the users affected.

Sometimes situations arise that require the system to be taken down with little or
no notice provided to the users. Try to provide the user community as much notice
as possible about events affecting the use of the machine. When the system must be
taken out of service, also tell the users when to expect the system to be available.
Use the Message of the Day (/etc/motd) to keep users informed about changes in
hardware, software, policies, and procedures.

At your discretion, the following items should be done as prerequisites for any
task that requires the system to leave the multi-user state.

1. When possible, schedule service-affecting tasks to be done during periods of
low system use. For scheduled actions, use the Message of the Day
(/ete/motd) to inform users of future actions.

2. Check to see who is logged in before taking any actions that would affect a
logged-in user. The /etc/whodo and /bin/who commands can be used to see
who is on the system.

3. If the system is in use, provide the users advanced warning about changes in
system states or pending maintenance actions. For immediate actions, use the
/etc/wall command to send a broadcast message announcing that the system
will be taken down at a given time. Give the users a reasonable amount of
time to terminate their activities and log off before taking the system down.

SYSTEM RUN LEVELS 3-1

Introduction

Maintaining a System Log

In a multi-user environment it is strongly recommended that a complete set of
records be maintained. A system log book can be a valuable tool when trouble-
shooting transient problems or when trying to establish system operating characteris-
tics over a period of time. Some of the things that you should consider entering into
the log book are: '

® maintenance records and problem information (date/time, description, name of
person making entry)

B printouts of error messages and diagnostic phases

® equipment and system configuration changes (dates and actions)

The format of the system log and the types of items noted in the log should follow
a logical structure. Think of the log as a diary that you update on a periodic basis.

To a large measure, how you use your system will dictate the form and importance of
maintaining a system log.

In addition, UMIPS provides various means to collect system data for later
analysis. Refer to the sar command in Chapter 6, and the crash command example
in Procedure 3 for more information.

Administrative Directories and Files

This section briefly describes the directories and files that are frequently used by a
system administrator. For more detail about the purpose and contents of these direc-
tories and files, see Appendix C. For additional information on the formats of the
system files, refer to Section 4 of the UMIPS Programmer’s Reference Manual.

Root Directories

The directories of the root file system (/) are as follows.

bin Directory that contains public commands.

boot Directory that contains configurable object files created by the
/etc/mkboot(1M) program.

dev Directory containing special files that define all of the devices
on the system.

etc Directory that contains administrative programs and tables.

lib Directory that contains public libraries.

lost+found Directory used by fsck(1M) to save disconnected files.

stand Directory containing standalone commands that reside on

- disk.
tmp Directory used for temporary files.
usr Directory used to mount the /usr file system. (See Chapter 5

for a description of this file system.)

3-2 SYSTEM ADMINISTRATOR’S GUIDE

Introduction

Important System Files

The following files and directories are important in the administration of the M-

Series RISComputer.
/etc/fstab

/etc/gettydefs

/ete/group
/etc/init.d

File used to specify the file system(s) to be mounted by
/etc/mountall and remote file systems to be mounted by
/etc/rmountall.

File containing information used by /etc/getty to set the
speed and terminal characteristics for a line.

File describing each group and its members to the system.

Directory containing executable files used in upward and
downward transitions to all system run levels. These files
are executed in files beginning with S (start) or X (stop)
in /ete/ren.d, where n is replaced by the appropriate run
level.

. There are two good ways to make modification to these commands:
- | NotE

1. Copy the file in /etc/init.d to /etc/ren.d and modify it there.

2. Make a copy of the file in /etc/init.d and change the corresponding
/etc/rcn.d file to point to the new file.

/etc/inittab

/usr/reconfig/master.d

/etc/motd

/etc/passwd
/ete/profile

/ete/cshre

/etc/rcl

/etc/rc0.d

File containing the instructions to define the processes
created or terminated by /etc/init for each initialization
state.

Directory containing files that define the configuration of
hardware devices, software drivers, system parameters,
and aliases.

File containing a brief Message of the Day, called (cat’d)
by /etc/profile.

File identifying each user to the system.

File containing the standard (default) environment for all
Bourne shell users.

File containing the standard (default) environment for all
C shell users.

File executed by /etc/shutdown that executes shell scripts
in /ete/rc0.d and /etc/shutdown.d directories for transi-
tions to system run-levels 0, 5, and 6.

Directory containing files executed by /ete/rc0 for transi-
tions to system run-levels 0, 5, and 6. Files in this direc-
tory execute files in the /etc/init.d directory and begin
with either a K or an S. K indicates processes that are
stopped, and S indicates processes that are started when
entering run-levels 0, 5, or 6.

SYSTEM RUN LEVELS 3-3

Introduction

/etc/re2

/ete/re2.d

/ete/re.d

/ete/re3

/etc/rel3.d

/ete/shutdown

/etc/TIMEZONE
/etc/utmp

/etc/wtmp

/usr/lib/spell/spellhist

/usr/news

File executed by /ete/init that executes shell scripts in
/ete/rc2.d and /ete/re.d on transitions to system run-level
2.

Directory containing files executed by /ete/re2 for transi-
tions to system run-levels 2 and 3. Files in this directory
execute files in the /ete/init.d directory and begin with
either a K or an S. K indicates processes that should be
stopped and S indicates processes that should be started
when entering run-levels 2 or 3.

Directory containing executable files that do the various
functions needed to initialize the system to run-level 2;
they are executed when /ete/re2 is run. (Files contained
in this directory prior to UNIX System V Release 3.0
were moved to /ete/rc2.d. This directory is only main-
tained for compatibility.)

File executed by /ete/init that executes shell scripts in
/etc/rc3.d on transitions to system run-level 3.

Directory containing files executed by /ete/re3 for transi-
tions to system run-level 3 (Remote File Sharing mode).
Files in this directory are linked from the /ete/init.d
directory and begin with either a K or an S. K indicates
processes that should be stopped, and S indicates
processes that should be started when entering run-level
3.

File containing a shell script that gracefully shuts down
the system.

File used to set the time zone shell variable TZ.

File containing the information on the current run-state of
the system.

File containing a history of system logins. If it isn’t there,
no record is kept.

File containing a history of all words that spell fails to
match.

Directory containing news files. This directory should be
checked periodically, and old files should be discarded.

/usr/spool/cron/crontabs

Directory containing crontab files for the adm, root, and
sys logins and ordinary users listed in cron.allow.

Each of these files is described in more detail in Appendix C.

3-4 SYSTEM ADMINISTRATOR’S GUIDE

Operating Levels

General

After you have set up your M-Series RISComputer for the first time, you and
other users can use the system. Whenever you turn it on (including the first time),
the system comes up in a multi-user environment in which

m The file systems in /etc/fstab are mounted.

B The cron daemon is started for scheduled tasks.

m Networking functions (if configured into the system) are available for use.
]

The spooling and scheduling functions of the LP package (if configured into the
system) are available for use. :

m Users can log in. The gettys are spawned on all connected terminal lines listed
in /etc/inittab to have gettys respawned. (With the exception of the console,
gettys are not on when the system is installed. You have to turn them on your-
self.)

This is defined as the multi-user state. It is also referred to as "init state 2"
because all .of the activities of initializing the system are under the control of the init
process. The "2" refers to entries in the special table /etc/inittab used by init to ini-
tialize the system to the multi-user state.

Not all activities, however, can be performed in the multi-user state. For exam-
ple, if you were able to unmount a file system while users were accessing it, you would
cause a lot of data to be lost. Hence, for unmounting and other system administra-
tion tasks, there is a need for another state, the single-user state.

The single-user state is an environment in which only the console has access to
the system and the root file system alone is mounted. You are free to do tasks that
affect the file systems and the system configuration because you are the only one on
the system.

There are other system states (see Figure 3-1), but first a note of clarification.
One of the more confusing things about the discussion of system states is that there
are many terms used to identify the same thing: the particular operating level of the
system.

Here is a list of frequently encountered synonyms:

B run state
run level
run mode
init state
system state

Likewise, each system state may be referred to in a number of ways, for example:
® single-user
® single-user mode

® run level 1, and so on

SYSTEM RUN LEVELS 3-5

Operating Levels

In any case, each state or run level clearly defines the operation of the computer.
Figure 3-1 defines each of them as they pertain to the M-Series system.

Run Level Description
0 Go to Monitor mode. Ready for power-down.

1,s,or S Single-user mode is used to install/remove
software utilities, run file system backups/restores,
and to check file systems. Though s and 1 are
both used to go to single user state, s only kills
processes spawned by init and does not unmount
file systems. State 1 unmounts everything except
root and kills all user processes, except those that
relate to the console.

2 Multi-user mode is the normal operating mode for
the system. The default is that the root (/) and
user (/usr) file systems are mounted in this mode.
When the system is powered up it is put in multi-

user mode.
3 User defined run state
4 User defined run state.
5 1 Go to Monitor mode.
6 Shutdown and reboot

Figure 3-1: System States

How init Controls the System State

UNIX systems always run in one state or another. The actions that cause the
various states to exist are under the control of the init process, which is the first gen-
eral process created by the system at boot time. It reads the file /etc/inittab, which
defines exactly which processes exist for which run level.

In the case of the multi-user state (run level 2), init scans the file for entries that
have a run level of "2", and executes everything after the last colon (:) on the line
containing the corresponding run level.

If you look at your /etc/inittab, you’ll see something that looks like the following.
(It is most unlikely that yours will look exactly like this one; /etc/inittab changes from
one configuration to another.)

3-6 SYSTEM ADMINISTRATOR’S GUIDE

Operating Levels

If /ete/inittab was removed by mistake and is missing during shutdown, init will enter
NOIE| the single user state (init s). While entering single user state, /usr will remain

mounted and processes not spawned by init will continue to run. You should replace
] /etc/inittab before changing states again. '

Copyright (c) 1984 AT&T

All Rights Reserved N

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T
The copyright notice above does not evidence any

actual or intended publication of such source code.

e

#ident "$Header"

#

Field #2 indicates the system’s default run level.
(X for unspecified.)

#

is:2:initdefault:

#

Boot time system initialization.

#

fs::sysinit:/etc/bcheckre >/dev/syscon 2>&l
Check (& fsck) root fs.
mt::sysinit:/etc/brc >/dev/syscon 2>&l

Initialize /etc/mtab.

#

Run level changes.

#

sl:1:wait:/etc/shutdown -y —iS —-g0 >/dev/syscon <&l 2>&l
s2:23:wait:/etc/rc2 >/dev/syscon <&l 2>&l
s3:3:wait:/etc/rc3 >/dev/syscon <&l 2>&l

System shut down.

telinit 0 = Shutdown and halt.

telinit 6 Shutdown and then reboot.

telinit 5 = Like 6, but asks operator which unix
to boot. (DOESN’T WORK.)

= FH = H H HHF

s0:056:wait:/etc/rc0 >/dev/syscon <&l 2>&l

Always run rcO.

of : 0:wait:/etc/uadmin 2 0 >/dev/syscon <&l 2>&l

fw:5:wait:/etc/uadmin 2 2 >/dev/syscon <&l 2>s&l

RB:6:wait:echo "The system is being restarted.” \
>/dev/syscon <&l 2>&l

rb:6:wait:/etc/uadmin 2 1 >/dev/syscon <&l 2>§l

#

SYSTEM RUN LEVELS 3-7

Operating Levels

Gettys

Enabled if field #3 is "respawn";

The h* entries are for M500/800/1000/2000. The d* entries
are for M120 with the DIGI board.

#
#
#
Disabled if field #3 is "off".
#
#
#
#

co:234:respawn: /etc/getty console console none \

tl:
t2:
t3:
ho:
hl:
h2:
h3:
h4:

234
234
234
234
234
234
234
234

LDISCO

(console == tty0)

:0ff:/etc/getty ttyl co_9600 none LDISCO
:0ff: /etc/getty tty2 co_9600 none LDISCO
:0ff: /etc/getty tty3 co_9600 none LDISCO
:0ff: /etc/getty ttyh0 dx 19200 none LDISCO
:0ff: /etc/getty ttyhl dx 19200 none LDISCO
:0ff: /etc/getty ttyh2 dx_19200 none LDISCO
:0ff: /etc/getty ttyh3 dx_19200 none LDISCO
:0ff:/etc/getty ttyh4 dx_19200 none LDISCO

The format of each line is

3-8

id:run-level:action:process

id is one or two characters that uniquely identify an entry.

run-level is zero or more numbers and letters (0 through 6, s, a, b, and ¢) that

determines what run-level(s) action is to take place in. If run-level is null, the
action is valid in all levels.

sysinit

bootwait

wait

initdefault

once

powerfail

respawn

ondemand

action can be one of the following:

run process before init sends anything to the system console
(Console Login:).

start process the first time init goes from single-user to multi-
user state after the system is booted. (If initdefault is set to 2,
the process will run right after the boot.) init starts the pro-
cess, waits for its termination and, when it dies, does not res-
tart the process.

when going to level, start process and wait until it’s finished.

when init starts, it will enter Jevel; the process field for this
action has no meaning,

run process once and don’t start it again if it finishes.

tells init to run process whenever a direct powerdown of the
computer is requested.

if process does not exist, start it, wait for it to finish, and then

“start another.

synonymous with respawn, but used only with level a, b, or c.

SYSTEM ADMINISTRATOR’S GUIDE

(

Operating Levels

off when in level, kill process or ignore it.

W process is any executable program, including shell procedures.

B # can be used to add a comment to the end of a line. Everything after a # on
a line will be ignored by init.

When changing levels, init kills all processes not specified for that level. We’ll go
through more manageable pieces of this table below to get a clearer idea of how the
system is controlled by init.

A Look at Entering the Multi-User State

Powering Up

When you power up your system, it will enter multi-user state by default. (You
can change the default by modifying the initdefault line in your inittab file.) In effect,
going to the multi-user state follows these broad lines:

1. You turn on the computer and enter "auto" at the monitor prompt (to be dis-
cussed shortly).

2. The operating system is loaded and the early system initializations-are started
by init. : '

3. The run level change is prepared by the /ete/re2 procedure.

4. Finally the system is made public via the spawning of gettys along the terminal
lines.

Early Initialization

Just after the operating system is first loaded into core via the specialized boot
programs the init process is created. It immediately scans /etc/inittab for entries of
the type sysinit:

fs::sysinit:/etc/bcheckrc <{/dev/console »>/dev/console 2>&l

This entry causes the /etc/bcheckre script to be executed, which performs various
system checks. Note that the entry indicates a standard input/output relationship with
/dev/console. This is the way communication is established with the system console
before the system has been brought to the multi-user state.

Preparing the Run Level Change

Now the system must be placed in a particular run level. First, init scans the
table to find an entry that specifies an action of the type initdefault. If it finds one, it
uses the run level of that entry to select the next entries to be executed. In our sam-
ple /etc/inittab, the initdefault entry specifies run level 2 (the multi-user state) as the
level to select and execute other entries:

SYSTEM RUN LEVELS 3-9

Operating Leveis

is

s2:
CQO:

tl1:
t2:
t3:
ho:

:2:initdefault:
23:wait:/etc/rc2 > /dev/syscon <&l 2>sl
234:respawn: /etc/getty console console \

none LDISCO # (console == tty0)
234:0ff:/etc/getty ttyl co_9600 none LDISCO
234:0ff:/etc/getty tty2 co_9600 none LDISCO
234:0ff:/etc/getty tty3 co_9600 none LDISCO
234:0ff:/etc/getty ttyh0 dx_19200 none LDISCO

The other entries shown above specify the actions necessary to prepare the system
to change to the multi-user run level. First, /etc/rc2 is executed. It executes all files

in /ete

/rc2.d that begin with the letter S. It then executes any files in the /etc/rc.d

directory. This accomplishes (among other things) the following:

sets up and mounts the file systems

starts the cron daemon

displays the current memory configuration

makes uucp available for use, if installed

makes line printer (Ip) system available for use, if installed
starts a getty for the Console -
starts the hard disk error logging daemon

starts getty on the lines connected to the ports

At this time, the full multi-user environment is established, and your system is
available for users to log in (see Procedures 3.1 and 3.4).

A Look at the System Life Cycle

Changing Run Levels

In
1.

[\

effect, changing run levels follows these broad lines (see Figure 3-3):

The system administrator enters a command that directs init to execute entries
in /etc/inittab for a new run level.

Key procedures, such as /etc/shutdown, /etc/rc0, /etc/rc2, and /etc/re3, are
run to initialize the new state.

The new state is reached, and the system administrator can proceed.

Run Level Directories
Run levels 0, 2, and 3 each have a directory of files that are executed in transi-

tions t
tively.

o and from that level. These directories are rc0.d, rc2.d, and re3.d, respec-
All files in these directories are associated with files in /etc/init.d. The run-

level filenames look like this:

3-10

SYSTEM ADMINISTRATOR’S GUIDE

Operating Levels

SO00name
or

KOOname

The filenames can be split into three parts:

SorK The first letter defines whether the process should be started (S) or
stopped (K) upon entering the new run level.

00 The next two characters are a number from 00 to 99. They indi-
cate the order in which the files will be started (S00, S01, S02,
etc.) or stopped (K00, K01, K02, etc).

name The rest of the filename is the /ete/init.d filename this file is asso-
ciated with.

For example, the init.d file cron is associated with the rc2.d file S75cron. When you
enter init 2 the /etc/rc2.d/S75cron script is executed which in turn executes the shell
script /etc/init.d/cron. This shell script then executes /ete/cron.

Because these files are shell scripts, you can read them to see what they do. You
can modify the files, though it is preferable to add your own since the delivered

scripts may change in future releases. To create your own scripts you should follow
these rules:

® Place the file in the /etc/init.d directory.

B Associate the file to files in appropriate run state directories using the ﬁa111ing
convention described above.

Going to Single-User Mode

At times in a given work week, you will need to perform some administrative
functions in the single-user mode, such as backing up the hard disk and running fsck
on file systems. The normal way to go to single-user mode is through the
/etc/shutdown command. This procedure executes all the files in /ete/rc0.d directory
by calling the /ete/rc0 procedure, accomplishing, among other things, the following:

® closing all open files and stopping all user processes
B stopping all daemons and services

® writing all system buffers out to the disk

® unmounting all file systems except root

B warns users at intervals

The entry for single-user processing in the sample /etc/inittab is:

sl:1l:wait:/etc/shutdown -y —-iS —g0 >/dev/console
2>81 </dev/console

There are two major ways to start the shutdown processing.

1. You can enter the shutdown —iS -g0 command (recommended).

SYSTEM RUN LEVELS 3-11

Operating Levels

You can enter the telinit 1 command (i.e., "tell init to go to state 1"), which
forces the init process to scan the init table (/etc/inittab) for instructions
regarding state 1. The first entry it finds is the s1 entry, and it starts the shut-
down processing. Note that when you bring the system down directly using
the init command instead of the shutdown command, it is necessary to first
warn users that the system is coming down, sync the memory with the disk(s)
and unmount any mounted file systems. For details on these procedures,
refer to the manual pages for wall(1), sync(1M), umount(1M) and init(1M).

Now the system is in the single-user environment, and you can perform the appropri-
ate administrative tasks.

3-12

SYSTEM ADMINISTRATOR’S GUIDE

Standalone Mode

The M-Series machines provide a standalone mode to perform various functions
such as formatting a disk. The standalone mode is the first operating state after
power-on/system reset, and can be accessed from UMIPS single-user mode by activat-
ing init 0:

sync;sync
telinit 0

Upon entering the standalone mode, the monitor prompt ">>" appears. Entering
"help" at the monitor prompt produces the following output:

>> help

COMMANDS :

autoboot: auto

boot : boot [-f FILE] [-n] [ARGS]

cat: cat FILE LIST

disable: disable CONSOLE_DEVICE

dump : dump [-(b|h|w)] [-(o|d|u|x|c|B)] RANGE

enable: enable CONSOLE_DEVICE

£ill: fill [~(b|h|w)] [-v VAL] RANGE

get: g [-(b|h|w)] ADDRESS

go: - go [INITIAL PC]

help: help [COMMAND]

help: ? [COMMAND]

initialize: init

load: load CHAR_DEVICE

put: p [-(b|h|w)] ADDRESS VALUE

printenv: printenv [ENV_VAR_LIST]

setenv: setenv ENV_VAR STRING

sload: sload CHAR_DEVICE

spin: spin [[-v VAL] [—-c CNT] [—(r|w)(b|h|w) ADDR]] *

test: test [mem(c)|cpu(c)|fpu(c)|all] [test num(s)|?(help)] \
[1|1] (oop)

unsetenv: unsetenv ENV_VAR

warm: warm

COMMAND FLAGS
commands that reference memory take widths of:
~b —— byte, -h —-- halfword, -w —-— word (default)
RANGE’s are specified as one of:
BASE_ADDRESS#COUNT
START_ADDRESS:END_ADDRESS
Erase single characters by CTRL-H or DEL
Rubout entire line by CTRL-U
>

Help can also be requested for specific commands, for example:

>> help printenv
printenv: printenv [ENV_VAR_LIST]

SYSTEM RUN LEVELS 3-13

Standalone Mode

>

The printenv command shows the setting of various environment variables, for exam- ()
ple:

>> printenv

netaddr=97.1.0.97

1baud=9600

rbaud=9600
"bootfile=dkip(0,0,8)sash

bootmode=d

console=1

>

Normally, you’d reboot the system by entering auto at the monitor prompt. You can
also use the boot command with various arguments as demonstrated by the examples
that follow:

>> boot dkis()unix
This, like auto, will load the sash, and start the UMIPS init and other programs,
bringing up UNIX. (Note that the disk controller designation (dkis) may differ for
your system. Refer to your Release Notes.)

~>> boot dkis(unix showconfig

This boots UMIPS too, but the output to the console is verbose.

>> boot dkis()unix root=ips1d0s0 \(
The same as above except that UMIPS will be booted from the root disk specified.
(The special files designating different disks vary for different M-Series machines.
Refer to your Relase Notes or observe the special file names in /dev/dsk.)

>> boot dkis()unix askme
The system will prompt for the device to boot from.

>> boot dkis(unix initfile=mv initarg=filel initarg=file2

This executes the UMIPS mv command, renaming filel to file2.

For details regarding the various monitor commands and environment options,
refer to the M-Series Technical Reference.

Turning the System Off

The final step in the life cycle of the system is turning it off. The following entries
apply to powering the system down:

s0:056:wait:/etc/rc0 >/dev/console 2>&l1 <{/dev/console
of:0:wait:/etc/uadmin 2 0 >/dev/console 2>&l </dev/console

3-14 SYSTEM ADMINISTRATOR’S GUIDE

Standalone Mode

To bring the system down, enter the powerdown command or invoke the
/ete/shutdown —i0 command. In either case, the /ete/shutdown and /etc/rc0 pro-
cedures are called to clean up and stop all user processes, daemons, and other ser-
vices and to unmount the file systems. When you see the monitor prompt ">>", it is
safe to press the Power button to power down the system.

If you have disks that have power controls separate from the system, they should be
NOIE| powered-off before powering the system down, and powered—on before powering the
system on. .

SYSTEM RUN LEVELS 3-15

Chapter 4: Disk/Tape Management

Introduction

Device Types
Hard Disk Devices

Identifying Devices to the Operating System
Block and Character Devices
Defining a New Special File
The MKDEV command

Formatting and Partitioning
Disk Formatting
Disk Partitioning
Increasing Swap Space o
Automatically Adding Swap Spéée

Bad Block Handling
When is a Block Bad
How are Bad Blocks Fixed?
When are Bad Blocks Detected?
Often Asked Questions
Scanning the Disk for Bad Blocks

42
42

43
4-4
44
45

49
49
49

4-10
4-10

TABLE OF CONTENTS i

Introduction

This chapter covers what you need to know as system administrator about the
disk device(s) on your M-Series system.

® Disk device types and sizes

® Making devices known to the operating system

B Preparing disks

B Verifying disk usability

® Handling bad blocks

This chapter does not deal with file systems or the information stored on disk
devices. Those subjects are covered in Chapter 5, File System Administration.

DISK MANAGEMENT 4-1

Device Types

The M-Series system has a hard disk and a cartridge tape drive unit. Possible
configurations on the different models of the M-Series system permit you to have one
or more hard disk units.

All system software and user files are kept on the hard disk device(s). The tape
device is used primarily as a means of getting software or user files into the system
where they can be used, or out of the system for backup, storage or transfer.

Hard Disk Devices

The hard disk units come in various sizes, and the options vary for different ver-
sions of the M-Series system. Check your Release Notes for information regarding
disk sizes available for your system.

The file /etc/disktab contains information on some common disk types for use by
the system. '

4-2 SYSTEM ADMINISTRATOR’S GUIDE

(\

identifying Devices to the Operating Sys-
tem

Before a disk device can be used on UMIPS, it must be made known to the sys-
tem. For equipment that comes with your computer, the process of identifying dev-
ices is part of configuration and is done automatically as the system is booted.

The traditional way of handling the identification is through an entry in the /dev
directory of the root file system. Of course, an entry in a directory is a file (or
another directory), and conceptually a disk device is treated as if it were a file. There
is a difference, however, which leads to the practice of referring to devices as "spe-
cial" files. In the place where a regular file would show the character count for the
file, for a special file you find two decimal numbers called the major and minor
numbers. Figure 4-1 shows excerpts from the output of "Is -I" commands on a user’s
directory and the /dev directory.

(a regular file)
—rWw-r————— 1 abc dsg 1050 Apr 23 08:14 dm.ol

(integral hard disk device files)

brw—-—————— 2 root sys 4, 0 Apr 11 11:31 /dev/dsk/ips0d0s0

brw-r————-— 2 root sys 4, 1 Apr 11 11:52 /dev/dsk/ips0d0sl
Crw——————— 2 root sys 4, 0 Sep 29 1987 /dev/rdsk/ips0d0s0
Crw——————— 1 root sys 4, 1 Sep 29 1987 /dev/rdsk/ips0d0sl

(cartridge tape device files)

crw-rw-rw— 8 root sys 5, 72 Apr 9 21:38 /dev/SA/ctape0
crw—-rw—rw— 8 root sys 5, 72 Apr 9 21:38 /dev/rSA/ctape0

Figure 4-1: Directory Listing Extracts: Regular and Device Files

The extracts from directory listings in Figure 4-1 show a regular file (indicated by
the dash (-) in the first position.

® The owner has read/write permission, group members have read permission,
other users have no permissions. It is owned by user abe who is a member of
dsg group.

® Tt has 1050 characters.
® The filename is dm.ol.
® The device files are owned by root.
® Major and minor numbers appear in place of the character count.
Major is the number of the device controller or driver (actually, an offset into a

table of devices in the kernel); minor is the identifying number of the specific
device.

DISK MANAGEMENT 4-3

Identifying Devices to the Operating System

® There are devices that have identical major and minor numbers, but they are
designated in one entry as a block device (a b in the first column) and in
another entry as a character device (a c in the first column). Notice that such
pairs of files have different file names or are in different directories (for exam-
ple, /dev/SA/ctape0 and /dev/rSA/ctape0 for the cartridge tape drive).

The particular disk device is specified as follows:

/dev/dsk/ipsCdDsP
The particular disk device designation (in this case, "ips") varies depending on the sys-
tem. The letters C, D, and P are replaced with the controller number, disk device
number, and partition number, respectively. For example:

/dev/dsk/ips0d0s0
is the root partition on the system disk (controller 0, disk 0, partition 0) and:

/dev/dsk/ips0d1s2

is an extra disk used as more user space or whatever (controller 0, disk 1, partition
2). S

The three number fields in a disk device.designation for a SCSI device are named
nore| differently. The first field is the Logical Unit Number (LUN) which is currently
always "0", the second field is the "target” which is the disk number O to 5, and the
| final field is the partition field as above.

Block and Character Devices

The identification as a block device or a character device has more to do with
how the device is accessed rather A block device name is used when the intent is to
read from or write to the device in logical blocks. In the UNIX system, standard C
language subroutines for handling file I/O work with blocks. (Blocks are discussed in
detail in Chapter 5.)

A character device name is used to read from or write to the device one character
at a time. A character device is also referred to as a "raw" device. This is reflected
in the "r" in the device names or directory names where, for example, the character
device version of the tape drive is in directory /dev/rSA. The character-at-a-time
method is used by some file maintenance utilities.

Defining a New Special File

The need to define new special device files occurs infrequently. When the need
does occur, however, there is a UMIPS command, mknod(1M), available to do it.

The general format of the mknod command is:
mknod name b | ¢ major minor

mknod name p

4-4 SYSTEM ADMINISTRATOR’S GUIDE

Identifying Devices to the Operating System

The options of mknod are:

name Specifies the name of the special file.
b Specifies a block device.
c Specifies a character device. '
The OR sign (|) indicates you must specify one or the other.
major The major number is the slot number.
minor The minor number is the physical device.
p Specifies the special file as a first-in, first-out (FIFO) device. This is

also known as a named pipe. (For more on pipes, see the
Programmer’s Guide.)

The MKDEV Command

UMIPS also provides the MKDEV command which creates a set of special files
based on the contents of a database. MKDEV uses the database files contained in the
./DEV_DB subdirectory. These files are subject to the rules described in
DEV_DB(4).

For example, the entire /dev directory and its subdirectories were created by run-
ning MKDEY in the directory /dev.. MKDEV uses the database files contained in
/dev/DEV_DB. :

DISK MANAGEMENT 4-5

Formatting and Partitioning

Formatting a disk means establishing addressable areas on the medium. Partition-
ing means assigning logical units to addressable areas.

Disk Formatting

Before a disk can be used for the storage of information, it must be formatted.
Formatting maps both sides of the disk into tracks and sectors that can be addressed
by the disk controller. In addition, the format procedure used on UMIPS systems
can be used to check the disk for any defects. When UMIPS is shipped from the fac-
tory, it is on an already formatted hard disk. There is no need to format this disk
unless something goes wrong with it later. Probably the only time youw’ll need to for-
mat a disk is if you get an extra disk for your system, want tg reduce fragmentation,
or to map out a bad block. '

The first block of the disk is reserved for data having to do with the specific disk

and is called the volume header. The volume header contains device parameter infor-

mation, the partition table, and the volume directory. Device parameters are deter-
mined by user input or by default values for recognized devices. The partition table
describes the logical device partitions. The bad sector table maps areas of the disk
that are not usable. Formatting a previously used disk redefines the tracks and erases
any data that may be there.

Disk Partitioning

Hard disks are shipped from the factory already formatted. Partitions on the hard
disk devices on your M-Series system are allocated in a standard arrangement.

Figure 4-2 illustrates the default UMIPS system disk partitioning scheme. Parti-
tion 0 is the root partition, 1 is the swap partition, 6 is the usr partition and 7 is avail-
able as swap or as an extra partition. The default partitioning scheme must be
preserved on the system disk to remain compatible with future installations and
updates.

roLt Jsr exlra/ stp

swap

Figure 4-2 System Disk Partitions

Figure 4-3 illustrates the complete set of disk partitions assigned when a disk is
formatted. These can be used in any non-overlapping combination to partition extra
(non-system) disks. For example, a disk added to your system could use partitions
12, 14 and 15. (Partitions 8, 9, and 10 are reserved for the volume header, track
replace, and entire disk, respectively.)

4-6 SYSTEM ADMINISTRATOR’S GUIDE

Formatting and Partitioning

0-7,11-15 Standard, usable disk partitions
8 Volume header
9 Track replace
10 Entire volume

Figure 4-3 Disk Partition Options

Hard disks can be partitioned when they are formatted by use of the format(SPP)
command, or re-partitioned through use of the dvhtool(1M) command. The format
command is only available from the monitor mode (see Chapter 3), and dvhtool is a
standard UMIPS command.

format creates a volume header for the disk based on certain default values for
recognized disks and user-input values for unrecognized disks. The volume header
contains the partition table for the disk. format lets you list the partition table, add
and delete entries, and modify specific entry information. Use prtvtoc(1M) to get
information concerning specific disk devices on your system. dvhtool is used to
examine and modify the partition table and other parts of the disk volume header.
See Procedure 4 for examples of the use of format, dvhtool and prtvtoc. For more
information on the disk volume header, refer to dvh(4).

DISK MANAGEMENT 4-7

Formatting and Partitioning

Increasing Swap Space

If you frequently get console messages warning of insufficient memory, it may
mean that the system’s current configuration of main memory and swap area is
insufficient to support user demands. Before adding more main memory, an alternate
solution is to expand the swap area (on either single or multiple hard disk systems).

The swap area can be expanded on the system disk by using partition 7, an
unused partition, as an additional swap space. Swap space is added with the swap -a
command. To add partition 7 on the system disk as swap space, enter:

swap -a /dev/dsk/ips0d0s7 start length

where start is the disk sector (512-byte block) of the partition that the swap space
should start at (usually 0), and length is the length in sectors of the swap space.

To add swap space on an extra disk, identify the SCSI disk drive number and the
partition number. For example, if the SCSI disk id 1 has been added to your system
and you want to use it all as swap space, enter:

swap -a /dev/dsk/ips1d0s2 0 nnn

where nnn is the number of sectors contained in partition 2 for the type of disk you
have.

The disk device designator "ips" may differ on your system. Refer to the special file
NOTE| names in /dev/dsk.

Automatically Adding Swap Space

You can add an entry to your /etc/fstab file to cause the system to automatically
add swap space when the system comes up to multiuser mode.

Add a one-line entry to /etc/fstab of the form:
/dev/dsk/XXX none swap Irw,noauto 00

where XXX identifies the additional swap space.

Be sure to back up any data from the partition or disk being converted to swap space
NOIE| because it will be lost.

4-8 SYSTEM ADMINISTRATOR’S GUIDE

Bad Block Handling

It should be pointed out that new bad blocks seldom occur as long as you take
reasonable precautions against movement or vibration of the computer while the disk
is still spinning. But when a new bad block does occur, the data stored in the bad
block is lost and the disk may be unusable in its current state. If bad blocks do
occur, it is important to back-up your system and restore the usability of the disk by
reformatting it.

‘ The phrase "bad block" is an unfortunate UNIXism that should really be "bad sector".
NotE| The term "block” as used here refers to the 512-byte disk sectors.

T

When Is a Block Bad?

A block is bad when it cannot reliably store data. This is discovered only when
an attempt is made to read or write the data and the read or write fails. To make life
more difficult, a read fail does not always guarantee a bad block. A read fail might
also mean problems in the format of the disk or a failure in the controller or drive
hardware.

A write fail generally signals a problem with the format of the disk or a more -
basic failure in the disk or disk controller hardware. To fix problems of these types
you will need to reformat the disk or get the hardware repaired. In the latter case,
you should call your service representative. Several distinct failures occurring about
the same time should also prompt you to contact your service representative to check
them out.

How Are Bad Blocks Fixed?

It is not really so much that a bad block is fixed, but that the system finds a way
to live with it. Essentially, the bad block is "mapped-out", that is, references to the
bad block are automatically referred to a good block. This mapping occurs tran-
sparently to the calling software.

Most disks come with a few manufacturing defects. Bad blocks detected in the
manufacturer’s quality control checks are identified on a label when the unit is
delivered so that if, by some chance, the disk copy of the defect list gets overwritten
or corrupted, this block information can be entered when the disk is formatted. The
format command will prompt for the information. (Note that this has already been
done on the system disk when it is originally formatted and loaded with the operating
system at the factory).

When Are Bad Blocks Detected?

Bad blocks are detected when input/output disk operations fail for several succes-
sive attempts. This means that data being input or output is lost or corrupted.

DISK MANAGEMENT 4-9

Bad Block Handling

Often Asked Questions

Why doesn’t the system try to discover that a given block is bad while the sys-
tem still has the data in memory?

Besides the undesirable increase in system size and complexity, severe perfor-
mance degradation would result. Also, a block can become a bad block after
the copy in memory no longer exists.

Why doesn’t the system periodically test the disk for bad blocks?

Reading blocks with their current contents may not show a bad block to be
bad. A thorough bit pattern test would take so long that you would never run
it, even assuming a thorough test could be devised using ordinary write/read
operations. The disk manufacturer already has tested the disk using extensive
bit pattern tests and special hardware. All manufacturing defects have been
dealt with already.

‘Why are disks with manufacturing defects used?

Allowing the disks to contain a modest number of manufacturing defects
greatly increases the yield, thereby considerably reducing the cost. Many sys-
tems, including this one, take advantage of this cost reduction to prov1de a
more powerful system at lower cost.

Scanning the Disk for Bad Blocks

If a block has become bad during the use of the system, it is necessary to scan for
the bad block and then map it out. Scanning is done with the format command. The
format command is accessed from the monitor as described in Procedure 4.

lose any data contained in the formatted partition(s). Be sure you have an adequate

If you perform either the format or scan portions of the format command, you will
NOTE
backup before formatting.

When format is run, it passes through several phases:

B initializes the disk

® reads media defects supplied on hard disk list

® formats the drive/partition

B scans for bad blocks

® prompts for the media defect list

B maps-out bad sectors

® writes the disk volume header

For details regarding the format command, refer to the System Programmer’s
Package Reference, format(SPP). For details regarding accessing monitor com-

mands, refer to Chapter 3, System States, in this document. Procedure 4 demon-
strates using the format command to scan a partition for bad blocks.

4-10 SYSTEM ADMINISTRATOR’S GUIDE

(

Chapter 5: File System Administration

Introduction 51
File System Overview 52
Components of the File System i 52
Partitions 53
Cylinder Groups 53

File Systems 53

Files and Directories ‘ 5-4
Blocks 5-4
Fragments 5-4
Inodes 55
Structure of A File System -- The User’s View 56
Creating a File System 58
Making and Mounting a New File System 5-8
newfs.ffs and mkfs.ffs 5-8
newfs.ffs 5-8
mkfs.ffs) 59
Mounting and Unmounting File Systems 5-10
The fstab File 5-11
Maintaining a File System 512
The Need for Policies 5-12
Shell Scripts for File System Administration 5-12
Monitoring Disk Usage 5-12
Monitoring Percent of Disk Space Used 5-13
Monitoring Files and Directories that Grow 5-13
Identifying and Removing Inactive Files . 514
Identifying Large Space Users 5-14
File System Backup and Restore 5-15
Complete Backup ‘ 5-16
Incremental Backup 5-16
The restore Command 5-17
The tar and cpio Commands 5-18
Making Multi-tape Backups with tar and cpio 5-19
Network Backups 5-19

TABLE OF CONTENTS i

Table of Contents

What Can Go Wrong With a File System

Hardware Failure
Program Interrupts
Human Error

How to Check a File for Consistency
The fsck Utility
The fsck Command
Sample System Components Checked by fsck
Super Block
Free Blocks
Inodes
Connectivity

ii SYSTEM ADMINISTRATOR’S GUIDE

521
5-21
521
521

5-22
5-22
5-22
5-23
5-23
5-24
5-24
5-24

Introduction

A primary function of the UMIPS operating system is the support of file systems.
The term "file system" in this case refers to a hierarchical arrangement of directories
and files, as described below. The term is also used in a more global sense, referring
to the method of overall management of these structures - as in "The Berkeley Fast
File System." When used in this context, it refers to the actual mechanics of disk -
allocation, file system structure, and the manner in which the operating system
accesses and manages files physically on the disk.

This chapter is divided into three parts:
File System Overview:

This section describes the principles and structure of the UMIPS file sys-
tem.

Creating a File System:
This section describes the process of creating a new file system.

Maintaining a File System:

This section describes the various commands used in the administration of
the file system.

FILE SYSTEM ADMINISTRATION 5-1

File System Overview

The following is an overview of the principles and structure of the UMIPS file sys-
tem. For details regarding its administration, consult Maintaining a File System, later
in this chapter.

UMIPS uses the Berkeley Fast File System (FFS) from UNIX 4.3 BSD, as
opposed to the traditional System V file system (S51K) from Bell Labs. FFS is
favored for a variety of reasons, but primarily due to the significant increases in
throughput rates. The new system uses a more flexible allocation policy which orders
data far more efficiently on the disk. The results are file access rates of up to ten
times faster than those produced by the traditional UNIX file system.

As of this printing, S51K is still an option on UMIPS systems; however, S51K will
NOTE| not be supported in future releases. It is strongly recommended that you use FFS
rather than S51K when setting up your file systems. For this reason, this chapter con-
I tains information pertaining to FFS only. For a comprehensive discussion of FFS vs.
S51K, refer to Appendix A, A Fast File System for UNIX by K. McKusick, et al.)

The following alterations were made to the original file system to produce these
results:

W increasing the minimum block size to 4096 bytes
® providing for an adjustable block size that can vary among file systems
- incorporating a block "fragment" allocation system to minimize waste
m clustering data that is sequentially accessed.
It is important to note that, while the underlying implementation has been
changed by FFS, the original abstraction of the old file system has been retained.
This means that massive software conversion has not been necessary. Furthermore,

the increased flexibility of FFS enables it to be more readily adapted to a wide range
of peripheral and processor characteristics.

In addition to the speed increase, the FFS permits:
® file names up to 255 characters in length

® symbolic links

Components of the File System

The following sections describe the physical components of the file system, and
their relationship to the storage device. These are:

partitions
® cylinder groups
m file systems
B directories
m files
® blocks

5-2 SYSTEM ADMINISTRATOR’S GUIDE

File System Overview

m fragments

® inodes

Partitions

Each disk drive is divided into one or more partitions. "Partition" refers to the
logical subdivision of physical disk space. The size of partitions may vary; the
amount of space to be allocated to a partition is determined when it is created.
Essentially, the partition size is limited only by the total amount of available space on
the disk. (Refer to Chapter 4 for a discussion of disk partitioning.)

~ Cylinder Groups

A disk partition is divided into one or more areas called cylinder groups. A disk
drive consists of several plates, or disks, stacked one above the other. A cylinder is
the vertical row of identical track positions on each of these plates, one above the
other. A cylinder group consists of one or more consecutive cylinders.

Cylihder Group Bookkeeping Information

Associated with each cylinder group is some bookkeeping information that

- includes:

® redundant copies of the file system descriptor, called the super block
m space for file descriptors, called inodes .

® a bit map describing available blocks in the cylinder group, called the block
map

® summary information describing the use of data blocks within the cylinder
group.

Super Block

The super block describes the state of the file system - its size, the number of free
blocks, free inodes, whether it has been modified, etc. Note that the cylinder group
bookkeeping information contains redundant copies of the super block. To protect
these backup copies from simultaneous destruction, the bookkeeping information
begins at a varying offset from the beginning of each cylinder group. The offset
increases by about one track for each succeeding cylinder group. In this way, the
redundant super block information spirals down into the pack, rather than residing
entirely on the top platter. Thus, the data on any single track, cylinder, or platter can
be lost without losing all copies of the super block. The space between the beginning
of the cylinder group and the bookkeeping information is used for data blocks.

Summary. Information
The cylinder group bookkeeping information contains data regarding the number
of directories, inodes, blocks, and fragments contained in the file system. This infor-

mation is referred to as the summary information, and is updated accordingly as the
file system is modified.

File Systems

Each disk partition may contain one file system. "File system" in this case refers
to the hierarchical structure of directories and files within a partition, as opposed to
the overall method and structure of file system management.

FILE SYSTEM ADMINISTRATION 5-3

File System Overview

A file system may not span multiple partitions. However, file systems are actually
located in logical disk partitions that may overlap. This allows, for example, a pro-
gram to copy an entire disk drive containing multiple file systems. On the other hand,
it is important to be careful not to write a partition that is not being used and that
overlaps a partition that is being used because you will destroy data on the used parti-
tion. For example, if you refer to the disk partitioning scheme illustrated in Chapter
4, you can see that system disk partitions 0 and 6 overlap the unused partition 11.
Writing to partition 11 on the system disk will damage the information contained in
partitions 0 and 6.

A file system is described by its super block. The sﬁper block contains file system
size and status, inode information, and block information.

Files and Directories

Within the file system are files. A file consists of a one-dimensional array of
bytes. -

Certain files are used as directories and contain pointers to files that may them-
selves be directories, or regular files. A directory is a special type of file that you are
permitted to use, but not to write. The operating system is responsible for writing
directories.

Blocks

A file is stored in a collection of storage units called blocks. Block size is adju-
stable, and can, in fact, vary among file systems. The minimum UMIPS block size is
4096 bytes, which makes it possible to create files as large as 232 bytes with only two
levels of indirection (refer to Inodes, below). The block size can be any power of two
greater than or equal to 4096, and is assigned when the file system is created. The
most commonly used (and the default) block size on UMIPS systems is 8192 bytes
(referred to as "8K" blocksize).

The block size is recorded in the file system’s super block, and cannot be changed
without rebuilding the file system.

The "8K blocksize" refers to the FFS block, a different entity than the actual disk sec-
NOTE| tor which is also sometimes referred to as a block. This document attempts to make
clear which type of block is being referred to whenever the term "block" is used. Be

I aware of the difference when reading the manual pages. There, "block” often means
512-byte sector.

Fragments

To minimize waste when storing small files, a system of block fragment allocation
has been devised.

A block can be divided into 2, 4, or 8 portions called fragments. Fragment size is
determined when the file system is created; the minimal size is limited by the disk sec-
tor size, which is 512 bytes on a UMIPS system. The most commonly used fragment
size on a UMIPS system is 1024 bytes (referred to as 1K) in conjunction with an 8K
block size.

If a block is fragmented to accommodate a small amount of data, the remaining
fragments of the block can be allocated to other files. For example, an 11000 byte
file, stored on a 8192-byte block/1024-byte fragment file system, would use one full
block and three fragments from another block. If no block with three aligned frag-
ments is available at the time, a full block is split to provide the necessary fragments,

5-4 SYSTEM ADMINISTRATOR’S GUIDE

File System Overview

leaving five unused fragments. The unused fragments can be allocated to another file
as needed.

Inodes

Every file has a descriptor associated with it called an inode. An inode is a
"reserved” block containing information describing the ownership of the file, time
stamps marking last modification and access times, and an array of indices that point
to the data blocks for the file.

- The first 12 blocks of the file are directly referenced by values stored in the inode
itself. An inode may also contain a "singly indirect" pointer to a special disk block
containing pointers to additional file blocks. Some of these blocks, in turn, may con-
tain references to another layer of file blocks. This produces a "fan" of direct and
indirect block references that chain together to form the file. For example, in a file
system with a 4096-byte block size, a singly indirect block contains 1024 further block
addresses, a doubly indirect block contains 1024 addresses of further singly indirect
blocks, and a triply indirect block contains 1024 addresses of further doubly indirect
blocks. There is no quadruple indirection.

A static number of inodes are allocated to each cylinder group when the file sys-
tem is created. The default policy is to allocate one inode for each 2048 bytes of
space in the cylinder group.

FILE SYSTEM ADMINISTRATION 5-5

Structure of A File System - The User’s
View

From the user’s standpoint, a file system consists of directories, subdirectories,
and files arranged in hierarchical order, like an inverted "tree” structure. The follow-
ing diagram illustrates the relationship of directories to files in this tree structure; the
circles represent directories:

| cat mkfs :
who mount
11s passwd

Figure 5-1: Hierarchical structure of a file system

You’ll notice a circle at the top of the diagram, labeled with a single slash. This
represents the "root" directory of all the file systems existing on your UMIPS system,
and is in fact referred to by the name root. Traditionally, the root directory is
represented by a single slash (/).

Attached to the root directory are other directories, one of which (usr) happens
to be a file system that is attached or "mounted” on the /usr directory. The slash in
front of each indicates that they are directly connected to the root directory. Des-
cending from these directories are other directories, subdirectories and files, forming
an increasingly intricate branching structure. Any directory can contain further sub-
directories, as long as space allows. The following diagram shows the addition of
directories and files to the /usr file system:

5-6 SYSTEM ADMINISTRATOR’S GUIDE

/bin /etc
cat mkfs
who mount
Is passwd,

___________ il

i

nclude !

!

Ip stdio.h :
-]
| at time.h :
cut math.h |
- [}
[}

/usr file system !

- Figure 5-2: Hierarchical detail of a typical /usr file system

Structure of A File System - The User’s View

What is important to understand here is that the files and subdirectories under

/bin and /etc are in the same file system (the "root" file system), while the structure
under /usr is a separate file system, contained in a different disk partition (or possibly

on a different disk altogether).

FILE SYSTEM ADMINISTRATION

5-7

Creating a File System

This section describes how a file system is established on a disk partition, and
then how that file system is mounted on the root file system.

Making and Mounting a New File System

Once disks have been formatted and partitioned, file systems can be created on
them and they can then be mounted and used. On a system disk, you simply follow
the operating system installation procedures, and the file systems are created and
mounted automatically. On extra disks, these steps are performed manually. Once
the disk is formatted and partitioned, the next step is to create the file systems, and
make them available for access. The newfs(1FFS) and mkfs(1FFS) commands are
used to create a new file system. The mount(1M) command is used to make a file sys-
tem available for use.

newfs.ffs and mkfs.ffs

The mkfs.ffs program does the actual work of creating a new file system. The
newfs.ffs command is a front-end to mkfs.ffs which calculates various parameters that
are needed by mkfs.ffs. If you use mkfs.ffs directly, you must supply these parame-
ters yourself. For this reason, newfs.ffs is generally used instead of mkfs.ffs, except
under unusual circumstances when these parameters must for some reason be pro-
vided manually.

newfs.ffs

The newfs.ffs program performs the following actions:
1. determines the appropriate parameters to pass to mkfs.ffs
2. Dbuilds the file system by forking mkfs.ffs

3. creates and replicates the superblock

The syntax for newfs.ffs is as follows:

/ete/mewfs.ffs [-N] [-v] [mkfs.[fs-options] -s sectors special_file disk-type

The -N option causes the file system parameters to be printed out without actually
creating the file system. If you have never used newfs.ffs before, it is recommended
that you try a practice run, using this option. The -v option turns on "verbose" mode;
this prints a report of the actions taken by newfs.ffs, including the parameters passed
to mkfs.ffs. ‘

The newfs.ffs =N command output includes a list of alternate superblocks for the
NOIE| filesystem. It is a good idea to save this list in case the file system’s superblock
becomes corrupted.

The -s sectors specifies the size in 512-byte blocks of the file system. Use
prtvtoc(1M) to get partition sizes. special-file is the special file name in /dev and
disk_type is the type of disk as named in /etc/disktab.

5-8 SYSTEM ADMINISTRATOR’S GUIDE

' Creating a File System

newfs.ffs also provides options for overriding the default parameters which are

passed to mkfs.fis. These are the "[mkfs.ffs-options]" referred to in the syntax exam-
ple:

-s size Set the number of file system sectors to size. (Use sectors field in
newfs.ffs syntax described above.)

-b blocksize
Set the file system block size to blocksize bytes. The default is 8192.

-f fragsize Set the file system fragment size to fragsize bytes. The default is 1024.

-t #tracks_per_cylinder
Set the number of tracks per cylinder. The default is 16.

-c #cylinders_per_group
Set the number of cylinders per cylinder group. The default number is 16.

-m free_space_%Set the percentage of free space reserved apart from normal use.
This is the minimum free space threshold; the default is 10%.

-0 optimization_preferenceThis parameter takes one of the two following arguments:
time or space. The time option instructs the system to optimize by
. minimizing the time spent allocating blocks. The space option instructs it
to optimize by minimizing the space fragmentation on the disk. If the free
space reserve is set equal to or greater than 10%, the default is to optim-
ize for time. If the reserve is set below 10%, the default is to optimize for
space.

-r revolutions_per_minute
Specify the number of disk revolutions per minute. The default is 3600.

-S sectorsize
Set the size of a sector in bytes. The default is 512 bytes.

-i #bytes_per_inode
Set the density of inodes for the file system. The default is one inode per
2048 bytes of data space. If you want to increase the number of inodes,

set the number of bytes to a lower number. To decrease total inodes,
enter a higher number of bytes.

mkfs.ffs

The mkfs.ffs program performs the actual work of creating the file system. Nor-
mally, you should not have to use mkfs.ffs directly, since newfs.ffs provides options
for fine-tuning file system parameters.

The syntax for mkfs.ffs is:

/ete/mkfs.ffs [-N] special size [nsect [ntrack [blksize [fragsize [ncpg [minfree
[rps [nbpi[opt1]]]11111]

The parameters are defined as follows:

-N The -N option causes the file system parameters to be printed out without
actually creating the file system. If you have never used mkfs.ffs before, it
is recommended that you try a practice run, using this option.

special mkfs.fis builds a file system by writing to the special device file special
unless the -N option has been given.

FILE SYSTEM ADMINISTRATION 5-9

Creating a File System

size Specifies the number of sectors to be allotted to the file system.
nsect Specifies the number of sectors per track on the disk. The default is 32.
ntrack Specifies the number of tracks per cylinder on the disk. The default is 16.

blksize Set primary block size to blksize bytes. The block size must be a power
of two; currently, two block sizes are allowed: 4096 or 8192 bytes. The
default is 8192.

ragsize Set the fragment size to fragsize bytes. The fragment size must be a
8: g 8!
power of two in the range of 512 to 8192 bytes. The default is 1024.

ncpg Specifies the number of disk cylinders per cylinder group. This must be
in the range of 1 to 32. The default is 16.

minfree This specifies the percentage of free space reserved from normal use.
This is the minimum free space threshold; the default is 10%.

rps Specifies the number of disk revolutions per second. The default is 60.

- nbpi Specifies the number of bytes per inode. The default is 2048 bytes of data
space per inode. If you want to increase the number of inodes, set the
number of bytes to a lower number. To decrease the number of inodes,
enter a higher number of bytes.

opt This parameter takes one of the two following arguments: t for time or s
for space. The t option instructs the system to optimize by minimizing the
time spent allocating blocks. The s option instructs it to optimize by
minimizing the space fragmentation on the disk. If the free space reserve
is set equal to or greater than 10%, the default is to optimize for time. If
the reserve is set below 10%), the default is to optimize for space.

Mounting and Unmounting File Systems

A file system must be mounted in order for it to be accessible to the system. The
mount(1M) command adds an entry for the file system in /etc/mtab, the mount table
which is maintained by the kernel. This entry ties the file system from the specified
disk device with the indicated directory name. For example, the mount command

mount /dev/dsk/ips1d0s6 /usr

indicates that /dev/dsk/ips1d0s6 contains a file system that is accessed via the direc-
tory /usr. The new entry in /etc/mtab would look like this:

/dev/dsk/ipsl1ld0s6/usrffsrwl 2

The mount command has other arguments. See the System Administrator’s Reference
NOTE| Manual for complete details.

The root file system is always mounted as part of the boot procedure. The /usr
file system, which may be on the same disk device as root, is also automatically
mounted as the system is being brought up to multi-user mode. The mount command
that brings these two file systems online is issued by start-up shell procedures when
the system is booted.

5-10 SYSTEM ADMINISTRATOR’S GUIDE

(

Creating a File System

If you change directories (¢d(1)) to an unmounted directory, or a directory in the
process of being mounted, all you will find is the directory itself and an entry for its
parent directory ("." and ".."). Until the mount command cempletes, the system is
oblivious to the contents of the unmounted file system.

The command for unmounting a file system requires only the name of the special
device. To unmount a file system, you issue the umount(1M) command:

umount /dev/dsk/ips1d0s6 -

(Note that the syntax is umount and not unmount.) Unmounting is frequently a
first step before using other commands that operate on file systems (for example,
fsck(1M), which checks and repairs a file system). Unmounting is also an important
part of the process of shutting the system down.

The fstab File

The /etc/fstab file is used by the mount command when the system goes mul-
tiuser. Each line in this file identifies a file system that is to be mounted and where it
is to be mounted. Additional fields describe the type of file system, permissions, and
other options (see fstab(1M)). A sample fstab file is shown below.

/dev/root / ffs rw 0 0

/dev/usr. /usr ffs rw 0 0

/dev/dsk/ips0dlsll /work?2 ffs rw 0 0

/dev/dsk/ips0d0s7 none swap Irw,noauto 00

quasar: /usr /usr/quasar nfs rw,soft,bg,timeo=20,retry=2 0 0

FILE SYSTEM ADMINISTRATION 5-11

Maintaining a File System

Once a file system has been created and made available, there are several tasks
routinely done to make certain that the file systems in regular use are providing the
level of service and stability they should. These tasks can be grouped into the follow-
ing categories:

™ checking for file system consistency
monitoring disk usage
compressing and reorganizing file systems

backing up and restoring file systems

watching for errors

The Need for Policies

File system administration should be based on establishing a set of policies that
are appropriate for your organization. There can be no hard-and-fast rules for such
‘matters as the size of file systems, the number of users in a file system, the way in
which backups are done, the extent to which users can be allowed to keep inactive
files in the system, or the amount of disk space a single user is entitled to occupy.
These questions can only be resolved within the context of the organization. There
are a number of variables involved, such as the number of users, the type of work
they are doing, the number of files needed, and so on. The responsible administrator
must determine what best meets the needs of the organization.

Shell Scripts for File System Administration

Once policies have been designed, many of the routine tasks connected with file
system administration can be automated by using shell scripts. Monitoring disk usage,
for example, can be managed by a shell script that monitors the system automatically,
transmitting messages to the system console when exceptions are detected. Here are
a few ideas:

® Use a shell script running under cron(1M) control to investigate free blocks
and free i-nodes, reporting on file systems that fall below a given threshold.

m Use a shell script to do automatic clean-ups of files that grow.
® Use a shell script to highlight cases of excessive use of disk space.

m Use a shell script to highlight cases of files that haven’t been accessed recently.

Monitoring Disk Usage
Disk usage for the file system should be monitored for the following reasons.

® If not watched regularly, the percentage of disk space used increases until the
allocated space is used up.

® When the allocated space is used up, processes run very slowly, or not at all;
throughput declines radically due to allocation inefficiencies; the system also
spends much of its time printing error messages concerning lack of file space.

5-12 SYSTEM ADMINISTRATOR’S GUIDE

Maintaining a File System

® There is a natural tendency for users to forget about files they no longer need,
unnecessarily using up storage space.

B Some files grow larger as a result of perfecﬂy normal use of the system. It is
an administrative responsibility to keep them under control.

® Some directories, notably /tmp, accumulate files during the day. When the sys-
tem is first brought up, /tmp must have enough free blocks to carry it through
to shutdown(1M). (The crontab(1) periodic file automatically cleans out /tmp
and /usr/tmp.) -

There are four tasks that are part of keeping disk space uncluttered:

1. monitoring percent of disk space used

2. monitoring files and directories that grow

3. identifying and removing inactive files

4

identifying large space users

Monitoring Percent of Disk Space Used'-'

Monitoring disk space may be done at any time to see how close to capacity your
system is running. Until a pattern has emerged, it is advisable to check every day. In
this example, the df(1M) command is used.

$ df /user2

Filesystem Type kbytes use - avail %use Mounted on
/dev/dsk/ips0d0s7 ffs 18703 1880 16823 10% /user?2

$

The results of this example show a filesystem in which only 10% has been used.

Monitoring Files and Directories that Grow

Almost any system that is used daily has several files and directories that grow
through normal use. Some examples are:

File Use

/etc/wtmp history of system logins
/usr/adm/SYSLOG report of system activities
/usr/lib/cron/log history of actions of /etc/cron
/usr/lib/spell/spellhist | words that spell(1) fails to match

The periodic crontab file handles the first three (/etc/wtmp, /usr/adm/SYSLOG
and /usr/lib/cron/log) automatically.

FILE SYSTEM ADMINISTRATION 5-13

‘Maintaining a File System

Identifying and Removing Inactive Files

Part of the job of cleaning up heavily loaded file systems involves locating and
removing files that have not been used recently. The commands you might use to do
this work are shown below; the policy decisions involved are:

® How long should a file remain unused before it becomes a candidate for remo-
val?
®m How should users be warned that old files are about to be phrged?

®m Should the files be permanently removed or archived?

The find(1) command can be used to locate files that have not been accessed
recently. find searches a directory tree beginning at a point named on the command
line. It looks for filenames that match a given set of expressions, and when a match
is found, performs a specified action on the file. This example barely begins to sug-
gest the full power of find.

$ find /usr —type f —atime +60 —print > /tmp/deadfiles &

Here is what the example éccomplishes:

/usr specifies the pathname where find is to start. Presumably, your,
machine is organized in such a way that inactive user files will not
often be found in the root file system.

~type tells find to look only for regular files, and to ignore special files,
- directories, and pipes.

—atime +60 indicates you are interested only in files that have not been accessed
in 60 days.

—print indicates that when a file is found that matches the —type and
—mtime expressions, you want the pathname to be printed.

> /tmp/deadfiles &
directs the output to a temporary file and indicates that the process is
to run in the background. This is a sensible precaution if your
experience tells you to expect a substantial amount of output.

The sysadm fileage(1) command can be used to produce similar information (see
Procedure 5.3).

Identifying Large Space Users

There are several policy decisions that need to be made concerning user disk
usage for your particular installation. These include:

® What constitutes a reasonable amount of disk space for a single user?

m If a user exceeds the normal amount by 25% (for example), is it possible the
user’s job requires extraordinary amounts of disk space?

m Is the system as a whole running short of space? Do existing limits need to be
reviewed?

5-14 SYSTEM ADMINISTRATOR’S GUIDE

Maintaining a File System

Three commands produce useful information in this area: du(1M), df(1M) and
find(1).

du produces a summary of the block counts for files or directories named in the
command line. For example:

$ du /usr

displays the block count for all files and directories in the /usr file system. Optional
arguments allow you to refine the output somewhat. For example, du =s may be run
against each user’s login directory to monitor individual users.

df reports the amount of free disk space in the specified file system. For exam-
ple: ‘

$ df /usr

displays the number of Kbytes available in the /usr file system.

The find command can be used to locate specific files that exceed a given size
limit.
$ find /usr —size +10 —print

This example displays a list of the pathnames of all files (and directories) in the /usr
file system that are larger than 10 (512-byte) blocks.

File System Backup and Restore

The importance of establishing and following a file system backup plan is too
often not appreciated until data is lost and cannot be recovered. Backing-up a file
system takes time. Trying to recover lost or damaged data from paper records and
best-guess-work takes even more time. The value of an effective system backup plan
lies in the ability to recover lost or damaged data easily and reliably.

The dump(1M) and restore(1M) commands are used to backup entire file systems
in a consistent manner. dump supports "dump levels" which can be used to back up
only those files which have changed since the previous dump.

The capability to copy selected directories and files to tape is provided by using
the find(1) command with cpio(1). The directories and files are also read back to the
hard disk by using the appropriate cpio command. Another command that can be
used to archive files is tar(1). Both cpio and tar may be combined with the mul-
tivol(1) command to handle backups that exceed the capacity of a single tape. Note
that backups made with the multivol command must be restored with the multivol
command.

Another method of backing up data is to copy file systems to another computer
system over a high-speed data link. The link between the machines must be a high-
speed data link (for example, Ethernet) so that data transfers can be accomplished
quickly. The target machine should be a larger system with mass storage capability.
The rdump and rrestore commands can be used to perform network backups.

The backup plan can include any or all of these methods. This plan should be
re-evaluated as the use of the machine changes.

FILE SYSTEM ADMINISTRATION 5-15

Maintaining a File System

Complete Backup

A complete backup of a file system is obtained by performing a level 0 dump of
the file system. It is necessary to do this periodically in order to ensure that a com-
plete backup of the file system exists. If the backup requires more than one tape, you
will be prompted when it is time to put the next tape in. The following commands
back up the entire fusr file system:

umount /usr E
dump Ou /dev/dsk/ips0d0s6

(Note that there is no minus ("-") in front of the 0.) This causes all data in the usr file
system (system disk partition 6) to be backed up on the default tape output device
(/dev/mt/ctape0). If you have not inserted a tape, the system will inform you that it
is unable to write to tape and will ask if you want to try again. Dumps are best per-
formed on unmounted file systems.

The disk controller designation "ips" may differ on your system. Refer to the special
NOE | device names in /dev/dsk on your system for the correct prefix.

The 0 in the example above specifies the "level 0" or complete dump of the file
system. The u causes the /etc/dumpdates file to be updated with the date and level
of the dump. This information is used in incremental backups as described in the
next section.

Incremental Backup

An incremental dump backs-up those files that have changed since the last lower-
level dump. When dump is run with the u (update) and dump-level keys specified,
the file /etc/dumpdates is checked to determine when the last lower-level dump
occurred. All files with a later modification time in the specified file system are then
backed-up.

5-16 SYSTEM ADMINISTRATOR’S GUIDE

Maintaining a File System

Below is an example of an /etc/dumpdates file.

/dev/dsk/ips0dls5 0 Sat Jun 4 08:38:53 1988
/dev/dsk/ips0dls5 1 Sat Jun 18 06:44:59 1988
/dev/dsk/ips0dlsll 0 Sat Jun 4 14:46:03 1988
/dev/dsk/ips1d0s2 0 Sat Jun 4 11:42:26 1988
/dev/dsk/ipsldls2 0 Sat Jun 4 09:10:27 1988
/dev/usr 0 Sat Jun 4 07:46:11 1988
/dev/dsk/ipsl1d0s2 1 Sat Jun 18 07:24:45 1988
/dev/dsk/ipsldls2 1 Sat Jun 18 06:47:10 1988
/dev/dsk/ips0dlsll 1 Sat Jun 18 07:14:00 1988
/dev/usr 1 Sat Jun 18 06:42:38 1988
/dev/dsk/ips0dls5 1 Sat Jan 23 15:57:38 1988
/dev/root 1 Sat Jun 18 06:41:55 1988
/dev/dsk/ips1d0s2 2 Tue May 3 18:01:54 1988
/dev/dsk/ipsldls2 2 Tue May 3 18:29:50 1988
/dev/root 0 Sat Jun 4 07:23:06 1988

If a level 1 dump of /usr is now made:
dump 1u /dev/dsk/ips0d0s6

all files modified since June 4th are written to disk.

Note that files backed-up with the dump command can only be recovered by use
of the restore command described below.

The restore Command

The restore(1M) command is used to read files from a tape created by dump and
write them to disk. Caution must be exercised when using this command. A com-
plete restore of a file system could be made by entering this command in the
appropriate directory:

restore r

The result of this is that the files on the dump tape are written to the current directory
(and any subdirectories contained on the tape). These files overwrite any existing files
with the same name! Therefore, this is usually done on a newly-created file system.

A complete multilevel series of incremental dumps can restore the most current back-
ups of the complete file system by beginning with a level 0 dump and then inserting
progressively higher numbered dump tapes until the most recent dump is reached.

The restore command also permits selective backups by use of the x key. The name
of the desired file(s) is supplied on the command line. For example:
restore x /user/johnr/.cshre

would restore the file /user/johnr/.cshre from the dump tape to the current directory.

A useful interface to the restore command is provided by the "-i", or interactive,
option. Used with "-i", restore reads in the directory information from tape and then
provides a standard shell-like interface permitting you to move around the directory
tree to extract files. Commands supported include s, ¢d, pwd, and add (to add files
to the extraction list).

FILE SYSTEM ADMINISTRATION 5-17

Maintaining a File System

The tar and cpio Commands

tar and cpio are two additional commands that can be used to backup files. They
are most useful when backing up directories, single files or files with matching pat-
terns rather than entire file systems. In addition, these commands usually retain exe-
cute permissions accessible by everyone so users can make personal backups,
exchange file tapes, etc. Both commands have options for saving files as well as res-
toring them. .

If you are going to be using tar or epio to make backups that extend over more than
NOTE| ome tape, use the multivol command described below.

The tar command (Tape ARchiver) takes a filename pattern and writes it or reads
it as requested. For example:

$ tar ¢ /user/jar/tester.c
creates a tape containing the file /user/jar/tester.c. The command:
$ tar x /user/jar/tester.c

extracts that file from tape. (Note that the tar command does not use a preceding "-"
before arguments.)

The cpio command takes standard input as the filename(s), so a common way to
use cpio is in conjunction with Is or find. The current directory can be written to
tape like this:

$ env - Is | cpio -0 > /dev/mt/ctapel

(The "env -" removes any environment-specifics from inclusion in the output from the
current command line. It must precede the Is command if the Is command has been
aliased to output listings in columns or add any characters to the file names.)

To restore the same directory using cpio, read in the tape from the directory in
which you want the files to be written:

cpio -i < /dev/mt/ctapel

The main advantage of cpio is the ease with which it can be combined with the
find command as standard input. The great flexibility of the find command makes it
easy to backup files of a certain length, say, or age. For example:

$ find . -type f -mtime -2days -print | cpio -0 >/dev/mt/ctape0
backs up all files (-type f) in the current directory (.) and its subdirectories that have

been modified in the last two days (-mtime -2days) and writes (cpio -0) them to tape
(/dev/mt/ctape0).

5-18 SYSTEM ADMINISTRATOR’S GUIDE

Maintaining a File System

Making Multi-tape Backups With tar and cpio

If you think your backup is going to require more than a single tape, it is a good
idea to use the multivol command. This way, you will not have to figure out how to
divide the backup into tape-sized chunks, but can let multivol do that for you. mul-
tivol prompts for each tape as it is required.

When using multivol, you must either specify the backup device each time or
associate the default backup device /dev/multivol with an actual device. If, for exam-
ple, you want your default backup device to be your tape drive, you can link
/dev/multivol to the tape drive:

In /dev/rmt/ctape0 /dev/multivol

and you will not have to specify the tape device each time you use multivol. To
backup using multivol, pipe to it using this syntax:

backup command | multivol -o [device_name]

where backup command is a tar or cpio command and the rest

of the command line uses multivol -o to output to the default

backup device (the tape, if you made the link described above, or the
device name supplied).

To restore a multivol backup, begin the command line with multivel:
multivol -i [device_name] | backup command

where the -i option is used and backup command is either a

tar or cpio command, depending on which was used to make the backup.
Note also that backups made using multivol must be restored using
multivol.

Network Backups

In addition to using the tape drive or a locally attached disk as a backup device, it
is also possible to perform backups to a remote host if you are attached to a network.
For example, if you have a TCP/IP connection to another machine that is running the
/etc/rmt program, you can use its resources for making backups (assuming you have
so arranged with the system administrator). The commands you would use are
rdump(1M) and rrestore(1M).

rdump uses the same syntax as dump with the exception that you always use the f
option to specify the remote dump site. The syntax is:

rdump f hostname:device filesystem
where hostname is the remote host, device is the disk (or tape) device on the remote

system being used for the backup, and filesystem is the special file name of the file
system being dumped. For example:

FILE SYSTEM ADMINISTRATION 5-19

Maintaining a File System

letc/rdump.ffs f diamond:/dev/disk07 /dev/dsk/ips0d0s7

DUMP :
DUMP :
DUMP:
DUMP:
DUMP:
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP:

#

Date of this level 9 dump: Tue Jun 14 15:22:59 1988
Date of last level 0 dump: Thu Dec 31 17:11:40 1987
Dumping /dev/dsk/ips0d0s7 to /dev/disk07 on host diamond
mapping (Pass I) [regular files]

mapping (Pass II) [directories]

estimated 26 tape blocks on 0.00 tape(s).

dumping (Pass III) [directories]

dumping (Pass IV) [regular files]

DUMP: 18 tape blocks on 1 tape(s)

DUMP IS DONE

Tape rewinding

(Note that the example uses the dump.ffs version of the dump command to specify
the type of filesystem. This will not be necessary on later versions of UMIPS.)

5-20

SYSTEM ADMINISTRATOR’S GUIDE

What Can Go Wrong With a File System

Most of the things that can corrupt a file system have to do with the failure of the
correct pointer and count information to make it out to the storage medium. This
can be caused by

® hardware failure
B program interrupts
® human error

or a combination of hardware/program failures and incorrect procedures.

Hardware Failure

There is no very effective way of predicting when hardware failure will occur.
The best way of dealing with it is to be sure that recommended diagnostic and mainte-
nance procedures are followed conscientiously. For information regarding proper
care of your M-Series system, refer to the M-Series Technical Manual.

Program Interrupts

It is possible that errors that cause a program to fail might result in the loss of
some data. It is not easy to generalize about this because the range of possibilities is
so large. Perhaps the best thing to be said is that programs should be exhaustively
tested before they are put into production with valuable data.

Human Error

While it may be painful to admit it, probably the greatest cause of file system
corruption falls under this heading. We are going to recommend three rules that
should be followed by anyone who manages file systems.

1. ALWAYS check a file system before mounting it. Nothing complicates the
problem of cleaning up a corrupt file system so much as allowing it to be used
when it is bad.

2. NEVER remove a file system physically without first unmounting it.

3. ALWAYS use the sync command before shutting the system down and before
unmounting a file system.

4. Protect your users with regular backups. Accidents can, and do, happen! Let
your users know your backup policies.

The random nature of all these mishaps simply underscores the importance of
establishing and observing good backup practices. It is the most effective form of
insurance against data loss.

FILE SYSTEM ADMINISTRATION 5-21

How to Check a File System for Con-
sistency

When the UMIPS operating system is brought up, a consistency check of the file
systems should always be done. On the M-Series system this check is automatically
done as part of the power-up process. Included as part of that process is the com-
mand fsstat(1M). fsstat returns a code for each file system on the hard disk indicat-
ing whether the consistency checking and repair program, fsck(1M), should be run.

These same commands should be used to check file systems not mounted rou-
tinely as part of the power-up process. If inconsistencies are discovered, corrective
action must be taken before the file systems are mounted. The remainder of this sec-
tion is designed to acquaint you with the fsck utility.

It should be said at the outset that file system corruption, while serious, is not all
that common. Most of the time a check of the file systems finds everything all right.
The reason we put so much emphasis on file system checking is that if errors are
allowed to go undetected, the ultimate loss can be substantial. After a system crash,
however, file system corruption is the norm. On reboot, the system will automatically
perform an fsck and reboot the repaired file system unless this is manually overrid-
den. Using a file system that has not been fsck’ed and has damage can cause exten-
sive files system damage.

The fsck Utility

The file system check (fsck) utility is an interactive file system check and repair
program. fsck uses the information carried in the file system itself to perform con-
sistency checks. If an inconsistency is detected, a message describing the incon-
sistency is displayed. You may elect to have fsck either make the repair or not. The
reason you might choose to have fsck ignore an inconsistency is that you judge the
problem to be so severe that you want either to fix it yourself using the fsdb(1M) util-
ity, or you plan to go back to an earlier version of the file system. The decision to
have fsck ignore inconsistencies and then do nothing about them yourself is not a
viable one. File system inconsistencies do not repair themselves. If they are ignored,
they only get worse.

The fsck Command

The fsck command is used to check and repair inconsistencies in a file system.
With the exception of the root file system, a file system should be unmounted while it
is being checked. The root file system should be checked only when the computer is
in run level S and no other activity is taking place in the machine.

The following is the general format of the fsck command:

fsck [=y][=n][=b block#]|filesystem]

The options of the fsck command are as follows:

-y Specifies a "yes" response for all questions. This is the normal
choice when the command is being run as part of a shell procedure.
It generally causes fsck to correct all errors. The "-y" option is not
recommended when running fsck manually.

5-22 SYSTEM ADMINISTRATOR’S GUIDE

Checking for Consistency

-n Specifies a "no" response for all questions. fsck will not write the
file system.
—=b block# Use the block number as the superblock for the file system. When

you create a file system with newfs (or mkfs) the numbers of alter-
nate superblocks are echoed to the screen. If you have not recorded
these, you can always try block 32, which is always a backup super-
block.

filesystem The file system to be checked. If no file system is supplied, the list
of file systems in /etc/fstab is used.

Sample Command Use

The command line below shows fsck being entered to check the /usr file system.
No options are specified. The system response means that no inconsistencies were
detected. The command operates in phases, some of which are run only if required
or in response to a command line option. As each phase is completed, a message is
displayed. At the end of the program a summary message is displayed showing the
number of files (i-nodes), blocks, and free blocks.

fsck /dev/dsk/ips0d0s6

** /dev/usr . '

** Last Mounted on

** Phase 1 — Check Blocks and Sizes

** Phase 2 — Check Pathnames

** Phase 3 — Check Connectivity

** Phase 4 — Check Reference Counts

** Phase 5 — Check Cyl groups

4627 files, 103421 used, 84944 free (208 frags, \
10592 blocks, 0.1% fragmentation)

*xxxx FILE SYSTEM WAS MODIFIED ****x

#

File System Components Checked by fsck

The following section reviews the components of a UMIPS file system and
describes the kinds of consistency checks that are applied to them.

Super-Block

Summary information associated with the file system’s superblock is the most
likely part of a filesystem to become corrupted. The cause of this is usually shutting
down the machine or unmounting a file system before it has been synced. fsck
checks the superblock information for file system size, number of inodes, free block
count, and free inode count. If problems result from the check of the superblock,
fsck prompts the operator for an alternate superblock number.

FILE SYSTEM ADMINISTRATION 5-23

Checking for Consistency

Free Blocks

fsck verifies the status of the file system’s free blocks by checking that the free
blocks are not claimed by any file and that the number of free blocks plus the number
of claimed blocks equals the total number of blocks in the file system.

If the check indicates the cylinder group’s block map is incorrect, fsck will
rebuild the maps based on the information it has determined.

Inodes

Each inode is checked to determine if it is in the state known as "neither allocated
nor unallocated". The only repair fsck can then make is to clear the inode. fsck also
checks to see that the inode link count is accurate, that the number of data blocks the
inode references is valid, and that the type of data referenced by the inode is con-
sistent with the actual data.

Connectivity

If fsck finds files or directories that are not linked into the file system, it places
them into the lost+found directory in that file system’s root directory (i.e., the direc-
tory the file system is mounted on). The lost+found directory is created automati-
cally when a new file system is made (see newfs(1M)and mkfs(1M)).

(\

5-24 SYSTEM ADMINISTRATOR’S GUIDE

Chapter 6: Performance Management

Introduction

General Approach to Performance Management
Finding Problems
Fixing Problems

Improving Performance
Modifying the Tunable Configuration Parameters
Improving Disk Utilization
Setting the Text-Bit (Sticky-Bit)
Defining Best System Usage Patterns -
The ps Command

Samples of General Procedures
Sample Procedure for Investigating Performance Problems
Check for Excess Swapping
Check for Disk Bottleneck
Check for Potential Table Overflows
Shift Workload to Off-Peak Hours

Performance Tools
timex
The vsar Command
The sar Command

Tunable Parameters
Kernel Parameters
Paging Parameters

Streams Parameters
Buffer Cache Size

6-1

62
62

6-3
6-3
6-3
6-3

6-4

6-5
6-5
6-5
6-5
6-6

6-7

6-8
6-9

6-19
6-19
6-21
6-22
6-24

TABLE OF CONTENTS i

Introduction

This chapter describes ways to monitor and enhance the performance of your M-
Series system.

®m General approach to performance management

Finding and fixing performance problems
®' Improving performance

0 Tuning the kernel for minimum overhead and tuning the disk subsystem for
maximum throughput

0 Workload analysis and housekeeping techniques for reducing peak load
o Estimating capacity
O Samples of typical procedures

® Performance tools

Description of the performance tools.

® Tunable parameters

Extensive definition of the tunable parameters.

PERFORMANCE MONITORING AND SYSTEM RECONFIGURATION 6-1

General Approach to Performance Manage-
ment

Performance management is not an activity that may need your attention when
you first set up your M-Series system. When you bring the computer up for the first
time, the system is automatically set to a basic configuration that is satisfactory for
most applications. This configuration, however, cannot take into account the usage
patterns and the behavior of your particular applications. For this reason, the struc-
ture of the system allows you to reconfigure it to enhance the performance for your
particular environment over that of the standard configuration.

It is very possible that you may never have to do any special fine tuning of your
system, and that your only experience with reconfiguration is when you add new
memory and peripherals.

Finding Problems

The system is automatically configured to its default configuration the first time it
is booted. After the system has been running a day or so, you may receive signals
from a variety of sources that the system needs tuning. In particular, you may see
that the response time is frequently slow. Your job of performance management
really begins then. To proceed, you will use the tools described later in this chapter
(most notably the sar command) to pinpoint the problem.

Fixing Problems

At this point, you need to take some corrective action. Some of the major areas
for action are:

Modifying the tunable configuration parameters.
This is usually referred to as tuning the kernel, since you are adjusting the

essential control structures at the heart of the system (the kernel). Many of
these parameters are described in detail later in this chapter.

When you change any of these parameters you must then reconfigure the sys-
tem, which is the way to recreate a new bootable version of the operating sys-
tem that incorporates the new parameter definitions.

® Uninstalling optional packages not needed by your applications.
This procedure makes disk and memory space available for user programs and
can benefit performance.

® Improving disk utilization.
In addition to the allocation of system memory space deﬁned'by the tunable

parameters, you have some control over how your file systems are organized on
the disk and policies to cache frequently used programs in memory.

® Defining best system usage patterns.
Finally, you can establish the model for best system usage, such as encouraging
users to run large non-interactive programs at night.

These areas are discussed in more detail in the remaining sections of the chapter.

6-2 SYSTEM ADMINISTRATOR’S GUIDE

Improving Performance

This section discusses various ways in which the overall performance of your sys-
tem can be improved.

Modifying the Tunable Configuration Parameters

The setting of the core system tunable parameters is accomplished by editing the
parameter entries in the /usr/reconfig/master.d kernel files. For full definitions of
the individual tunable parameters, and suggestions about setting them, refer to the
section "Tunable Parameters" near the end of this chapter. (See Figure 6-5 for the
recommended initial values for the tunable parameters relative to a particular memory
size.)

Generally, the default parameters for your configuration will result in acceptable
performance. If, however, you are running an application that has special perfor-
mance needs, you can use the tools described in the section "Performance Tools"
below to measure system load and determine which parameters might be changed to
improve performance.

See Procedure 6.1, Reconfiguring the System, for examples of editing the tunables
and reconfiguring the system. Also, look at the end of this section for a sample of a
typical reconfiguration. - :

Improving Disk Utilization

-Disk input/output may cause a bottleneck in system performance. Two steps in
tuning the disk subsystem for better utilization are:

m Setting text-bit (sticky-bit).

® Organizing the file systems to minimize disk activity.

Setting the Text-Bit (Sticky-Bit)

Setting the text-bit can reduce the disk traffic of a select group of commands.
Text pages of sticky commands are kept resident in memory, even when the process
terminates. Once loaded into memory, such pages will usually remain. One excep-
tion is if the pages are reclaimed by the paging daemon in a tight memory situation
(that is, when the number of available pages falls below the low-water mark as defined
by the tunable parameter GPGSLO). Finding sticky pages already in memory can
reduce considerably the loading time for the text pages of a process.

On systems that usually run a light to medium workload and that are seldom in a
tight-memory situation, setting the text-bit can cause a significant improvement in per-
formance. On systems with limited memory or a heavy workload, however, the text-
bit should not be used.

The average amount of free memory should be determined by setting the text-bit
on some test commands with the chmod(1) command, and by using the —r option of
sar(1) to determine the average FREEMEM count over a typical interval of system
activity. If the sar report shows that it is safe to set the text-bit on for some com-
mands, logical candidates would be frequently used, (preferably) small commands. If
the average free memory for the interval is less than the high-water mark plus 100,
then performance is not likely to be significantly improved and may be hurt by setting
the text-bit.

PERFORMANCE MONITORING AND SYSTEM RECONFIGURATION 6-3

Improving Performance

Defining Best System Usage Patterns

After the kernel and the system activities are tuned, and the file systems organ-
ized, the next step for improving system performance is to perform some housekeep-
ing activities and to check whether prime time load can be reduced. The person
responsible for administering the system should check for:

E less important jobS interfering with more important jobs
® unnecessary activities being carried out
m scheduling selected jobs when the system is not so busy

® the efficiency of user-defined features, such as .profile and SPATH

The ps Command

The ps(1) command is used to obtain information about active processes. The
command gives a "snapshot" picture of what is going on, which is useful when you are
trying to identify what processes are loading the system. Things will probably change
by the time the output appears; however, the entries that you should be interested in
are TIME (minutes and seconds of CPU time used by processes) and STIME (time
when process first started). . . -

When you spot a "runaway" process (one that uses progressively more system
resources over a period of time while you are monitoring it), you should check with
the owner. It is possible that such a process should be stopped immediately via the
kill(1) =9 command. When you have a real runaway, it continues to eat up system
resources until everything grinds to a halt.

When you spot processes that take a lot of time to execute you should consider
using cron(1M) to execute the job during off-hours.

6-4 SYSTEM ADMINISTRATOR’S GUIDE

Samples of General Procedures

This section depicts typical approaches to performance management. It describes
a general procedure for troubleshooting performance problems.

Sample Procedure for Investigating Performance
Problems

Locating the source of the problem can require some careful detective work.
Hence, what follows is not a canned procedure, but rather a sample of a typical
approach, covering basic areas where problems usually surface, and suggesting some
of the actions to take that will alleviate the problem. The most common symptom
that a problem exists is consistently poor response time.

Check for Excess Swapping

The first thing to look at is swapping activity, since the swapping of pages is costly
in both disk and CPU overhead. Get the sar(l) =qw report. Look at the percentage
that the swap queue is occupied (%swpocc) for values greater than 5. Then look at
the swap-out rate (swpot/s) for values greater than 1.00.

Check whether the "freemem" count (number of pages available to user pro-
grams), shown by sar —r, is consistently less than the value of the tunable parameter
GPGSHI (high-water mark).

If any or all of these are happening frequently, increase your system memory.

Check for Disk Bottleneck

If the value of %wio (from the sar —u report above) is greater than 10%, or if
the %busy for a disk drive (obtained by sar —d) is greater than 50%, then the system
has a disk bottleneck. Some ways to alleviate a disk bottleneck are:

1. Organize the file system to minimize disk activity. If you have two disks, dis-
tribute the file systems for a more balanced load.

2. Consider adding more memory if the situation persists. Additional memory
reduces swapping/paging traffic and allows an expanded buffer pool (reducing
the number of user-level reads and writes that need to go out to disk).

3. Setting the text-bit on for frequently used files may help, too. See the earlier
discussion of this subject under "Setting Text-Bit (Sticky-Bit)."

4. Consider adding an additional disk and balancing the most active file systems
across the two disks.

Check for Potential Table Overflows

To check for potential table overflows, get the sar —v report. This report will let
you know if overflows have occurred in the process, file, or inode tables. Overflows
in these tables are avoided by increasing NPROC, NFILE, and NINODE kernel
parameters.

PERFORMANCE MONITORING AND SYSTEM RECONFIGURATION 6-5

Samples of General Procedures

Shift Workload to Off-Peak Hours

Examine /usr/spool/crontab to see if jobs are queued up for peak periods that
might better be run at times when the system is idle. Use the ps command to deter-
mine what processes are heavily loading the system. Encourage users to run large,
non-interactive commands (such as nroff(1) or troff(1)) at off-peak hours. You may
also want to run such commands with a low priority by using the nice(1) command.

6-6 SYSTEM ADMINISTRATOR’S GUIDE

Performance Tools

Internal activity is measured by a number of counters contained in the UMIPS
system kernel. Each time an operation is performed, an associated counter is incre-
mented. sar and the other performance tools allow you to monitor the values of
these counters. The functions monitored by sar are discussed in the following sec-
tions. The performance tools for the UMIPS system internal activities described in
this section are:

timex Reports both system-wide and per-process activity during the execu-
tion of a command or program. E

vsar Visual display of sar information. Output is displayed using the
curses database.

sar Samples cumulative activity counters internal to the UMIPS system
and provides reports on various system-wide activities.

sal and sa2 Shell scripts used to sample, process and record system activity data.

sadc system activity data collector samples and records system activity
data. Produces profiles of disk access location and seek distance.

Examples for these tools are provided in the following sections. Command out-
puts are typical values observed for user workloads on the UMIPS operating system. -
Values you receive may be quite different from values in the examples, depending on
your environment. When tuning your system, it is recommended that you use a
benchmark or have the system under a normal load.

timex

The timex command times a command and reports the system activities that
occurred during the time the command was executing. If no other programs are run-
ning, then timex can give you a good idea of which resources a specific command uses
during its execution. System consumption can be collected for each application pro-
gram and used for tuning the heavily loaded resources. For our example, the date
command is used. Enter the following:

$ timex =—s date
Wed Jul 6 16:10:07 PDT 1988

real 0.09

user 0.02

sys 0.05

dunkshot dunkshot 3_0 UMIPS mips 07/06/88

16:10:07 susr $sys $sys %wio %idle
local remote

16:10:07 23 77 0 0 0

16:10:07 device %busy avque r+w/s Dblks/s avwait avserv

16:10:07
16:10:07 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s

PERFORMANCE MONITORING AND SYSTEM RECONFIGURATION 6-7

Performance Tools

16:10:07 0 0 0 0 0 0
16:10:07 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s (j
16:10:07)
in 0 0 0 0.00 0 0
out 0 0 0 0.00 0 0
local 455 42 6 9.68 54.84 695887 1771

16:10:07 swpin/s bswin/s swpot/s bswot/s pswch/s
16:10:07 0.00 0.0 0.00 0.0 39

16:10:07 iget/s namei/s dirbk/s
16:10:07 174 0 277

16:10:07 rung—-sz %runocc sSwpg—-sz %Iswpocc

16:10:07
16:10:07 proc—sz ov inod-sz ov file-sz ov lock-sz fhdr-sz
16:10:07 39/300 0 228/1500 O 66/1000 O 0/100 0o/ O

16:10:07 msg/s sema/s
16:10:07 0.00 0.00

16:10:07 vflt/s pflt/s pgfil/s rclm/s

16:10:07 158.06 174.19 0.00 0.00
16:10:07 freemem freeswp :
16:10:07 3178 83840 ‘i
16:10:07 serv/lo-hi request request server server

0-0 $busy avg lgth $avail avg avail
16:10:07 0 0.0 0 0.0 0

While date, for its simplicity, was used for the preceding demonstration, it is not the
best example since it is not a major user of system resources.

timex can be used in the following way:
$ timex —s application program

Your application program will operate normally. When you finish and exit, the timex
result will be printed on your screen. This can be extremely interesting: you get a
clear picture of system resources used by your program.

The vsar Command

The vsar(1) command provides a visual, more easily accessible display of the
information otherwise provided by the sar command. The options available to vsar
are the same as those supplied to sar described in detail below. Of particular interest
with vsar are the "-S" option which displays all information in a single page display.
When using other options that create outputs greater than a single screen display, the
j, .k, n, and p keys can be used for pagination. The letter q or an Interrupt willexit
the program. (

6-8 SYSTEM ADMINISTRATOR’S GUIDE

Performance Tools

The sar Command

Throughout this section, sar options are described with an analysis of sample out-
puts of the options. sar can be used either to gather system activity data or to extract
what has been collected in data files created by sal and sa2. sal and sa2 are initiated
by entries put in the /usr/spool/cron/crontabs/sys file.

sar —a

The sar —a option reports the use of file access operations. The UMIPS operat-
ing system routines reported are as follows:

iget/s Number of files located by i-node entry per second.

namei/s Number of file system path searches per second. namei calls iget, so
iget/s is always larger than namei/s.

dirbk/s Number of directory block reads issued per second.
An example of sar —a output, with a 30-second sampling interval, follows:
dunkshot dunkshot 3_0 UMIPS mips 07/06/88

00:00:03 iget/s namei/s dirbk/s

01:00:02 2 0 7
02:00:02 1 0 3
03:00:01 1 0 2
(etc.)
14:40:00 2 0 5
15:00:01 3 0 6
15:20:00 4 0 9
15:40:00 4 0 9
16:00:01 2 0 4
16:20:00 4 0 7
Average 23 0 32

The larger the values reported, the more time the UMIPS kernel is spending to
access user files. This indicates how heavily programs and applications are using the
file system(s). The =—a option is helpful for understanding how disk-dependent the
application system is; it is not used for any specific tuning step.

sar —b
The =b option reports the following buffer activity.

bread/s Average number of physical blocks read into the system buffers from
the disk (or other block devices) per second.

PERFORMANCE MONITORING AND SYSTEM RECONFIGURATION 6-9

Performance Tools

Iread/s Average number of logical blocks read from system buffers per
second. (

%rcache Fraction of logical reads found in buffer cache (100% minus the
ratio of breads to Ireads).

bwrit/s Average number of physical blocks written from the system buffers

’ to disk (or other block devices) per second.

Iwrit/s Average number of logical blocks written to system buffers per
second.

%wcache Fraction of logical writes found in buffer cache (100% minus the
ratio of bwrit/s to lwrit/s).

pread/s Average number of physical (raw) read requests per second.

pwrit/s Average number of physical (raw) write requests per second.

The entries that you should be most interested in are the cache hit ratios %rcache
and %wcache which measure the effectiveness of system buffering.

An example of sar —b output follows:

dunkshot dunkshot 3_0 UMIPS mips 07/06/88

00:00:03 bread/s lread/s %rcache ... %wcache pread/s pwrit/s
01:00:02 0 12 100 ... 69 0 0
02:00:02 0 5 29 ... 64 0 0
03:00:01 0 0 100 ... 63 -0 0
(etc.)

Average 0 42 29 ... 85 0 0
sar —cC

The =—c option reports system calls in the following categories:

scall/s All types of system calls per second, generally about 30 per second
on a busy 4 to 6 user system.

sread/s Read system calls per second.

swrit/s Write system calls per second.

fork/s Fork system calls per second, about 0.5 per second on a 4 to 6 user
system. This number will increase if shell scripts are running.

exec/s Exec system calls per second. (If (exee/s) / (fork/s) is greater than
3, look for inefficient $PATHs.)

rchar/s Characters (bytes) transferred by read system calls per second.

wchar/s Characters (bytes) transferred by write system calls per second.

Typically, reads plus writes account for about half of the total system calls,
= although this varies greatly with the activities that are being performed by the system.

(

6-10 SYSTEM ADMINISTRATOR’S GUIDE

Performance Tools

dunkshot dunkshot 3_0 UMIPS mips

00

01:
02:
15:
15:

An example of sar —c output follows:

07/06/88

:00:03 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s

00:02
00:02
20:00
40:00

(étc)

Average

sar —d
The sar =d option reports the activity of block devices.

dunkshot dunkshot 3_0 UMIPS mips

00

01

02

03

device
%busy

avque

r+w/s
blks/s

avwait

avserv

20 9 0 0.30 0.28 2805 90
17 8 1 0.10 0.08 2757 197
45 15 5 0.18 0.35 3689 259
40 20 4 0.14 0.18 5345 923
41 13 5 0.22 0.24 6689 3362

Name of the block device(s) that sar is monitoring.
Percent of time the device was servicing a transfer request.

The average number of requests outstanding during the period of
time (measured only when the queue is occupied).

Number of read and write transfers to the device per second.
Number of 512 byte blocks transferred to the device per second.

Average time in milliseconds that transfer requests wait idly in the
queue (measured only when the queue is occupied).

Average time in milli-seconds for a transfer request to be completed
by the device (for disks this includes seek, rotational latency, and
data transfer times).

An example of sar —d is as follows:

:00:03

:00:02

:00:02

:00:01

(etc.)

Average

07,/06/88

device %busy avque r+w/s blks/s avwait avserv

dkip-0 1 2.4 0 8 20.5 14.6
dkip-0 0 2.5 0 2 0.0 14.5
dkip-0 0 2.5 0 2 0.0 14.4
dkip-0 1 3.3 0 7 34.4 14.7
dkip-1 0 2.2 0 0 0.0 17.5
dkip-2 0 1.6 0 2 0.0 8.7
dkip-3 0 4.3 0 5 0.0 11.4

PERFORMANCE MONITORING AND SYSTEM RECONFIGURATION

6-11

Performance Tools

Note that queue lengths and wait times are measured while the queue had some-
thing on it. If busy is small, large queues and service times probably represent the
periodic sync efforts by the system to ensure that altered blocks are written to the
disk in a timely fashion.

sar —im

The sar —m option reports on inter-process communication activities. Message

and semaphore calls are reported as follows:

msg/s

sema/s

An example of sar ~m output follows:
dunkshot dunkshot 3_0 UMIPS mips

00:00:03
01:00:02
02:00:02
03:00:01

(etec.)

15:40:00
16:00:01
16:20:00

Average

ms
0
0

0.

o

Number of message operations (sends and receives) per second.

Number of semaphore operations per second.

g/s
.00
.00
00

.00
.00
.00

.00

sema/s

0.
0.
0.

o

00
00
00

.00
.00
.00

.00

07/06/88

These figures will usually be zero (0.00) unless you are running applications that

use the message or semaphore features.

sar =q

The sar ~q option reports the average queue length while the queue is occupied
and percent of time occupied.

rung-sz

%runocc

sSWpq-sz

Joswpocc

An example of sar —q follows:

Run queue of processes in memory; typically, this should be less
than 2. Consistently higher values mean you are CPU-bound.

The percentage of time the run queue is occupied; the larger this

value is, the better.

Swap queue of processes to be swapped out; the smaller this number
is, the better.

The percentage of time the swap queue is occupied; the smaller this

value is, the better.

dunkshot dunkshot 3_0 UMIPS mips

6-12 SYSTEM ADMINISTRATOR’S GUIDE

07/06/88

Performance Tools

00:00:03 rung—-sz %runocc swpg-sz %swpocc

01:00:02 1.2 3
02:00:02 1.6 1
03:00:01 1.4 1
04:00:01 1.5 1
({etc.)
15:00:01 1.5 5
15:20:00 1.5 4
15:40:00 1.7 5
16:00:01 1.7 4
16:20:00 1.5 5
Average 1.4 7

If %swpocc is greater than 20, more memory would help reduce swapping/paging
activity. .

sar —u :

The CPU utilization is listed by sar —u (default). At any given moment the pro-
cessor will be either busy or idle. When busy, the processor will be in either user or
system mode. When idle, the processor is either waiting for input/output completion
or has no work to do. The —u option of sar lists the percent of time that the proces-
sor is in system mode (%sys), user mode (%user), waiting for input/output comple-
tion (%wio), and idle time (%idle).

In typical timesharing use, %sys and %usr are about the same value. In special
applications, either of these may be larger than the other without anything being
abnormal. A high %wio generally means a disk bottleneck. A high %idle, with
degraded response time, may mean memory constraints; time spent waiting for
memory is attributed to %idle.

An example of sar —u follows:
dunkshot dunkshot 3_0 UMIPS mips 07/06/88

00:00:03 swpin/s bswin/s swpot/s bswot/s pswch/s

01:00:02 0.00 0.0 0.00 0.0 3

02:00:02 0.00 0.0 0.00 0.0 2

03:00:01 0.00 0.0 0.00 0.0 2

04:00:01 0.00 0.0 0.00 0.0 2
(etc.)

16:20:00 0.00 0.0 0.00 0.0 5

PERFORMANCE MONITORING AND SYSTEM RECONFIGURATION 6-13

Performance Tools

Average 0.00 0.0 0.00 0.0 6

sar =—v

The —v option reports the status of process, i-node, file, shared memory record,
and shared memory file tables. From this report you know when the system tables
need to be modified.

proc-sz Number of process table entries presently being-used/allocated in the
kernel.

inod-sz Number of i-node table entries presently being-used/allocated in the
kernel.

file-sz Number of file table entries presently being-used/allocated in the
kernel. '

ov - Number of times an overflow occurred. (One column for each of

the above three items.)

lock-sz The number of shared memory record table entries presently
being-used/allocated in the kernel.

fhdr-sz No longer applicable.

The values are given as level/table size. ‘An example of sar —v follows:

dunkshot dunkshot 3_0 UMIPS mips 07/06/88
00:00:03 proc—sz ov inod-sz ov file—sz ov lock-sz fhdr-sz
01:00:02 25/300 0 207/1500 49/1000 O 0/100 0o/ O

0
02:00:02 25/300 0 207/1500 0 4971000 0 0/100 0/ O
03:00:01 25/300 0 207/1500 0 4971000 0 0/100 0/ O

(étc.)

14:40:00 38/300

0 230/1500 0 65/1000 0 07100 0/ O
15:00:01 42/300 0 234/1500 0 68/1000 0 0/100 0/ O
15:20:00 39/300 0 232/1500 0 66/1000 0 0/100 0/ O
15:40:00 36/300 0 228/1500 0 6471000 0 0/100 0/ O
16:00:01 36/300 0 228/1500 O 6471000 0 0/100 0/ O
16:20:00 36/300 0 228/1500 0 6471000 0 0/100 0/ O

This example shows that all tables are large enough to have no overflows. Sizes
could be reduced to save main memory space if these are the highest values ever
recorded.

6-14 SYSTEM ADMINISTRATOR’S GUIDE

Performance Tools

sar —w

The =w option reports swapping and switching activity. The following are some
target values and observations.

swpin/s

bswin/s

swpot/s

bswot/s

pswch/s

Number of transfers into memory per second.

Number of 512-byte-block units (blocks) transferred for swép-ins
(including initial loading of some programs) per second.

Number of transfers from memory to the disk swap area per second.
If greater than 1, memory may need to be increased or buffers
decreased.

Number of blocks transferred for swap-outs per second.

Process switches per second. This should be 30 to 50 on a busy 4 to
6 user system.

An example of sar —w output follows:

dunkshot dunkshot 3_0 UMIPS mips 07/06/88

00:00:03 swpin/s bswin/s'éwpdt/s bswot/s pswch/s
01:00:02 0.00 0.0 0.00 0.0 3
02:00:02 0.00 0.0 0.00 0.0 2
03:00:01 0.00 0.0 0.00 0.0 2
04:00:01 0.00 0.0 0.00 0.0 2
05:00:01 0.00 0.0 0.00 0.0 2

(etc.)

15:20:00 0.00 0.0 0.00 0.0 6
15:40:00 0.00 0.0 0.00 0.0 6
16:00:01 0.00 0.0 0.00 0.0 6
16:20:00 0.00 0.0 0.00 0.0 5
Average 0.00 0.0 0.00 0.0 6

This example shows that there is sufficient memory for the currently active users,
since no swapping is occurring.

sar =p
The =p option reports paging activity. The following page rates are recorded.

viit/s

pfit/s

Number of address translation page faults per second (valid page not
present in memory).

Number of page faults from protection errors per second (illegal
access to page) or "copy-on-writes". pfit/s generally consists entirely
of "copy-on-writes."

PERFORMANCE MONITORING AND SYSTEM RECONFIGURATION 6-15

Performance Tools

pgfil/s

rclm/s

An example of sar —p output follows:

tem.

(added to list of free pages).

dunkshot dunkshot 3 0 UMIPS mips

03 vilt/s

00:00:

01:00:02 3.18 5.14
02:00:02 1.03 1.69
03:00:01 0.85 1.50

(etc.)

15:20:00 '2.35 3.71
15:40:;00° 1.87- 2.77
16:00:01 1.01 1.66
16:20:00 1.40 2.37
Average 2.29 4.11
sar =-r

The =r option records the number of memory pages and swap file disk blocks
that are currently unused. The following are recorded.

freemem

freeswap

o O © ©

pflt/s pgfil/s
0.
0.
0.

02
04
00

.04
.00
.00
.03

.07

An example of sar —r output follows:

dunkshot dunkshot 3_0 UMIPS mips

07/06/88

Number of vfit/s per second satisfied by a page-in from the file sys-

Number of valid pages per second that the system has reclaimed

relm/s

0.
0.
0.

o O O O

07/06/88

00
00
00

.00
.00
.00
.00

.00

Average number of 4K pages of memory available to user processes
over the intervals sampled by the command.

Number of 512-byte disk blocks available for process swapping.

00:00:03 freemem freeswp
01:00:02 3715 83840
02:00:02 3716 83840
03:00:01 3707 83840
(etc.)
6-16 © SYSTEM ADMINISTRATOR’S GUIDE

Performance Tools

14

15:
15:
15:
16:
16:
16:

:40:
00:
20:
40:
00:
20:
40:

00
01
00
00
01
00
00

Average

sar -y

3159 83840
3209 83840
3207 83840
3222 83840
3257 83840
3244 83840
3240 83840

3535 83840

The =y option monitors terminal device activities. If you have a lot of terminal
I/0, you can use this report to determine if there are any bad lines. Activities
recorded are defined as follows:

rawch/s
canch/s

outch/s

rcvin/s

xmtin/s

mdmin/s

Input characters (raw queue) per second.

Input characters processed by canon (canonical queue) per second.
Output characters (output queue) per second.

Receiver hardware interrupts per second.

Transmitter hardware interrupts per second.

Modem interrupts per second.

The number of modem interrupts per second (mdmin/s) should be close to 0, and
the receive and transmit interrupts per second (xmtin/s and revin/s) should be less
than or equal to the number of incoming or outgoing characters, respectively. If this
is not the case, check for bad lines.

PERFORMANCE MONITORING AND SYSTEM RECONFIGURATION 6-17

Performance Tools

An example of sar =y output follows:

dunkshot dunkshot 3 0 UMIPS mips 07/06/88

00:00:03 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s

01:00:02 0 0 0, 0 0 0
02:00:02 0 0 0 0 0 0
03:00:01 0 0 -0 0 0 0
(etc.)

14:40:00 0 0 0 0 0 0
15:00:01 0 0 0 0 0 0
15:20:00 0 0 0 0 0 0
15:40:00 0 0 0 0 0 0
16:00:01 0 0 0 0 0 0
16:20:00 0 0 0 0 0 0
16:40:00 0 0 0 0 0 0
Average 0 0 0 0 0 0
sar —A

The sar —A option is equivalent to sar —udqbweayvmprS. The =A option pro-
vides a view of overall system performance. Use it to get a more global perspective.
If data from more than one time slice is shown, the report includes averages.

6-18 SYSTEM ADMINISTRATOR'’S GUIDE

Tunable Parameters

Tunable system parameters are used to set various table sizes and system thres-
holds to handle the expected system load. Caution should be used when changing
these variables since such changes can directly affect system performance. For the
most part, the initial tunable parameter values for a new M-Series system are accept-
able for most configurations and applications. If your application has special perfor-
mance needs, you may have to experiment with different combinations of parameter
values to find an optimal set.

Table 6-1 shows the recommended tunable parameter values for a Release 3.0 sys-
tem. The parameters shown in the table are defined in the appropriate
/usr/reconfig/master.d/kernel.rXX X X-std file (where XXXX is the CPU designation
for your-system such as 2300, 2400 or 3200). The meaning of each parameter is
described below.

Kernel Parameters -
The following parameters are defined in the /usr/reconfig/master.d kernel file.

NCALL Specifies how many call-out table entries to allocate. Each entry
' represents a function to be invoked at a later time by the clock -
handler portion of the kernel. The default value is 700. If more
processes are allowed, or if drivers that use timeouts are added,

this value may need to be increased.

Software drivers may also use call entries to check hardware dev-
ice status. When the call-out table overflows, the system crashes
and outputs the following message on the system console:

PANIC: Timeout table overflow

NINODE Specifies how many i-node table entries to allocate. Each table
entry represents an in-core i-node that is an active file. For exam-
ple, an active file might be a current directory, an open file, or a
mount point. The file control structure is modified when changing
this variable. The number of entries used depends on the number
of opened files. The default value is set at 1500. The value for
NINODE pertains directly to the NFILE value. (NINODE is
equal to or greater than NFILE). When the i-node table
overflows, the following is output on the system console:

WARNING: i—node table overflow

NS5SINODE Not required unless S51K file system is used (not recommended).

NFILE Specifies how many open file table entries to allocate. The default
is 1000. Each entry contains 12 bytes. The NFILE entry relates
directly to the NINODE entry. (NFILE is less than or equal to
NINODE). The NFILE control structure operates in the same
manner as the NINODE structure. When the file table overflows,
the following warning message is output on the system console.

NOTICE: file table overflow

As a reminder, this parameter does not affect the number of open

PERFORMANCE MONITORING AND SYSTEM RECONFIGURATION 6-19

Tunable Parameters

NMOUNT

NPROC

NREGION

NCLIST

MAXUP

NOFILES

NHBUF

files per process (see the NOFILES parameter).

Specifies how many mount table entries to allocate. Each entry
represents a mounted file system. The root (/) file system is
always the first entry. When full, the mount(2) system call returns
the error EBUSY. Since the mount table is searched linearly, this
value should be as low as possible.

Specifies how many process table entries to allocate. Each table
entry represents an active process. The swapper is always the first
entry and /etc/init is always the second entry. The number of
entries depends on the number of terminal lines available and the
number of processes spawned by each user. The average number
of processes per user is in the range of 2 to 5 (also see MAXUP).
When full, the fork(2) system call returns the error EAGAIN.

Specifies how many region table entries to allocate. Most
processes have 3 regions: text, data, and stack. Additional
regions are needed for each shared memory segment and shared
library (text and data) attached. However, the region table entry
for the text of a "shared text" program will be shared by all
processes executing that program. Fach shared memory segment
attached to one or more processes uses another region table entry.
A good starting value for this parameter is about 3.5 times
NPROC. If the system runs out of region table entries, the fol-
lowing message is output on the system console.

Region table overflow

Specifies how many character list buffers to allocate. Since this
system is a streams-based tty IO system, the character list buffers
are not used.

Specifies how many concurrent processes a non-superuser is
allowed to run. This value should not exceed the value of
NPROC (NPROC should be at least 10% more than MAXUP).
This value is per user identification number, not per terminal.

Specifies the maximum number of open files per process. Default
is 100. Values higher than 100 are accessible only to processes
using system calls (open(2), creat(2); for example). Processes
using standard I/O subroutines are limited to 100, independent of
the value of NOFILES. Unless an application package recom-
mends that NOFILES be changed, the default setting of 40 should
be left as is.

Specifies how many “hash buckets” to allocate. These are used to
search for a buffer given a device number and block number
rather than a linear search through the entire list of buffers. This
value must be a power of 2. Each entry contains 12 bytes. The
NHBUF value must be chosen so that the value NBUF divided by
NHBUEF is approximately equal to 4. While the value of NBUF is
normally calculated by the system, that is not true for NHBUF.
NHBUF must be specified in the /usr/reconfig/master.d kernel
file.

6-20 SYSTEM ADMINISTRATOR’S GUIDE

Tunable Parameters

NPBUF

NAUTOUP

BDFLUSHR

MAXPMEM

SHLBMAX

FLCKREC

PUTBUFSZ

MAXSLICE

Specifies how many physical input/output buffers to allocate. One
input/output buffer is needed for each physical read or write
active. The default value is 64.

The NAUTOUP entry specifies the buffer age in seconds for
automatic file system updates. A system buffer is written to the
hard disk when it has been memory-resident for the interval
specified by the NAUTOUP parameter. Specifying a smaller limit
increases system reliability by writing the buffers to disk more fre-
quently and decreases system performance. Specifying a larger
limit increases system performance at the expense of reliability.

Specifies the rate in seconds for checking the need to write the file
system buffers to disk. The default is 1 second.

Specifies the maximum amount of physical memory to use in
pages. The default value of 0 specifies that all available physical
memory be used.

Specifies the maximum number of shared libraries that can be
attached to a process at one time.

Specifies the number of records that can be locked by the system.
The default value is-100.

Specifies the size of a circular buffer, putbuf, that is used to con-
tain a copy of the last PUTBUFSZ characters written to the con-
sole by the operating system. The contents of putbuf can be
viewed using crash(1M).

Specifies in clock ticks the maximum time slice for user processes.
After a process executes for its allocated time slice, that process
is suspended. The operating system then dispatches the highest
priority process and allocates to it MAXSLICE clock ticks.
MAXSLICE, defined in /usr/reconfig/master.d/disp, is normally
one tenth of a second.

Paging Parameters

There exists in the system a paging daemon, vhand, whose sole responsibility is to
free up memory as the need arises. It uses a "least recently used" algorithm to
approximate process working sets, and it writes those pages out to disk that have not
been touched during some period of time. The page size is 4K bytes. When memory
is exceptionally tight, the working sets of entire processes may be swapped out.

The following tunable parameters determine how often vhand runs and under
what conditions. The default values in /etc/master.d/kernel should be adequate for

most applications.

VHNDFRC and VHANDL

Used to determine the initial value for the system variable
VHANDL. VHANDL is set to the maximum user-available
memory divided by VHNDFRC or the value of GPGSHI, which-
ever is larger. The value of VHANDL determines when the pag-
ing daemon vhand runs. The amount of available free memory is
compared with the value of VHANDL every VHANDR seconds.
If free memory is less than VHHANDL, then the paging daemon

PERFORMANCE MONITORING AND SYSTEM RECONFIGURATION 6-21

Tunable Parameters

VHANDR

GPGSLO

GPGSHI

MAXSC

MAXFC

MAXUMEM

MINARMEM

MINASMEM

vhand is awakened.

The default for VANDFRC is 8. Decrease the value to make the
daemon more active; increase the value to make the daemon less
active (must be > 0 and < 25 percent of available memory).

Specifies in seconds the maximum rate at which vhand can run.
vhand will only run at this rate if free memory is less than
VHANDL, as explained above for VHNDFRC. The default is 1.
Increase the value to make the daemon less active (must be an
integer > 0 and < 300). If you have set the value higher, decreas-
ing it makes the daemon more active.

Specifies the low water mark of free memory in pages for vhand
to start stealing pages from processes. The default is
(4*MAXFC). Increase the value to make the daemon more
active; decrease the value to make the daemon less active (must
be an integer > 0 and < GPGSHI).

Specifies the high water mark of free memory in pages for vhand
to stop stealing pages from processes. The default is
(GPGSLO+3*MAXFC). Increase the value to make the daemon

more active; decrease the value to make the daemon less active

(The value must be an integer > 0, > GPGSLO and < 25 percent
of the number of pages of available memory).

Specifies the maximum number of pages which will be swapped
out in a single operation. The default value is 32.

Specifies the maximum number of pages that will be added to the
freelist in a single operation. The default value is 32. ‘

Specifies the maximum size of a user’s virtual address space in
pages. The default is 8192.)

Specifies the minimum number of memory pages reserved for the
text and data segments of user processes. The default is 25.

Threshold value that specifies the number of memory and swap
pages reserved for system purposes (unavailable for the text and
data segments of user processes). The default is 25.

Streams Parameters

The following tunable parameters are associated with Streams processing. These
parameters are defined in the /usr/reconfig/master.d kernel file.

NQUEUE

NSTREAM

The number of STREAMS queues to be configured. Queues are
always allocated in pairs, so this number should be even. A
minimal Stream contains four queues (two for the Stream head,
two for the driver). Each module pushed on a Stream requires an
additional two queues. The default is 150.

The number of "Stream-head" (stdata) structures to be configured.
One is needed for each Stream opened, including both Streams
currently open from user processes and Streams linked under mul-
tiplexers. The recommended configuration value is highly
application-dependent. The default is 50.

6-22 SYSTEM ADMINISTRATOR’S GUIDE

NSTRPUSH

NSTREVENT

MAXSEPGCNT

NMUXLINK

STRMSGSZ

STRCTLSZ

NBLKn

Tunable Parameters

The maximum number of modules that may be pushed onto a
Stream. This is used to prevent an errant user process from con-
suming all of the available queues on a single Stream. By default
this value is 9, but in practice, existing applications have pushed at
most four modules on a Stream.

The initial number of Stream event cells to be configured. Stream
event cells are used for recording process-specific information in
the poll(2) system call. They are also used in the implementation
of the STREAMS I_SETSIG ioctl and in the kernel bufcall()
mechanism. A rough minimum value to configure would be the
expected number of processes to be simultaneously using poll(2)
times the expected number of Streams being polled per process,
plus the expected number of processes expected to be using
STREAMS concurrently. The default is 25. Note that this
number is not necessarily a hard upper limit on the number of
event cells that will be available on the system (see MAX-
SEPGCNT). '

The number of additional pages of memory that can be dynami-
cally allocated for event cells. If this value is 0, only the alloca-
tion defined by NSTREVENT is available for use. If the value is
not 0 and if the kernel runs out of event cells, it will under some
circumstances attempt to allocate another batch of event cells.
Currently, event cells are allocated in batches of 20. MAX-
SEPGCNT places a limit on the number of new batches that can
be allocated in this way.

The maximum number of mﬁltiplexer links to be configured. One
link structure is required for each active multiplexor link
(STREAMS I_LINK ioctl). The default is 1.

The maximum allowable size of the data portion of any
STREAMS message. This should usually be set just large enough
to accommodate the maximum packet size restrictions of the
configured STREAMS modules. If it is larger than necessary, a
single write(2) or putmsg(2) can consume an inordinate number of
message blocks. The recommend value of 4096 is sufficient for
existing applications.

The maximum allowable size of the control portion of any
STREAMS message. The control portion of a putmsg(2) message
is not subject to the constraints of the min/max packet size, so the
value entered here is the only way of providing a limit for the con-
trol part of a message. The recommended value of 1024 is more
than sufficient for existing applications.

The number of STREAMS data blocks and buffers to be allocated
for each size class. Message block headers are also allocated
based on these numbers: the number of message blocks is 1.25
times the total of all data block allocations. This provides a mes-
sage block for each data block, plus some extras for duplicating
messages (kernel functions dupb(), dupmsg()). The optimal
configuration depends on both the amount of primary memory
available and the intended application.

PERFORMANCE MONITORING AND SYSTEM RECONFIGURATION 6-23

Tunable Parameters

STRLOFRAC The percentage of data blocks of a given class at which low-

STRMEDFRAC

T

priority block allocation requests are automatically failed. For
example, if STRLOFRAC is 80 and there are 48 256-byte blocks,
a low-priority allocation request will fail when more than 38 256-
byte blocks are already allocated. The parameter is used to help
prevent deadlock situations by starving out low-priority activity.

The recommended value of 80 works well for current applications.

STRLOFRAC must always be in the range 0 <= STRLOFRAC
<= STRMEDFRAC.

The percentage cutoff at which medium priority block allocations
are failed (see STRLOFRAC discussion above). The recom-
mended value of 90 works well for current applications.
STRMEDFRAC must always be in the range STRLOFRAC <=
STRMEDFRAC <= 100.

There is no cutoff fraction for high-priority allocation requests; it is eﬂ"ectivély 100.
NOTE

Buffer Cache Size

It is not necessary to reconfigure the UMIPS kernel to change the buffer cache
size. (In other systems this is done by modifying the NBUFS parameter.)

The system determines the. size of physical memory at boot time and adjusts the
size of the buffer cache accordingly. In addition, the size of the buffer cache is
adjusted dynamically while the system is running, based on the memory requirements
of user processes as well as kernel needs. The size of the buffer cache can vary from
10% to 50% of physical memory.

6-24

SYSTEM ADMINISTRATOR’S GUIDE

Chapter 7: LP Spooler Administration

Introduction
How the LP Spooling System Works

Administrative Commands
Command Descriptions and Examples
/usr/iib/lpadmin
/usr/lib/Ipsched
/usr/lib/lpshut
/usr/lib/lpmove
/usr/lib/accept
/usr/lib/reject

Printer Interface Programs
Model Interface Programs
Writing Interface Programs

Files and Directories
lasr/spool/lp/FIF0
/usr/spool/lp/default
/usr/spool/lp/log
/usr/spool/lp/oldlog
/usr/spool/lp/outputq
lasr/spool/lp/pstatus
/usr/spool/lp/qstatus
/usr/spool/lp/sedfile
fusr/spool/lp/class
/usr/spool/lp/interface
/usr/spool/lp/member
/usr/spool/lp/model
/usr/spool/lp/request
Lock Files
Cleaning Out Log Files

7-1

7-2
7-2

7-5
7-5
7-6
7-6

7-8
7-8
7-8

7-11
7-11
7-11
7-11
7-11
7-11
7-12
7-12
7-12
7-12
7-12
7-12
7-13
7-13
7-13
7-13

TABLE OF CONTENTS i

Introduction

This chapter tells you about

® How the LP Spooling system works

How to find instructions for installing the LP Spooler

The commands used to administer the system
B Printer interface programs
m LP Spooler files and directories

Error messages issued by the LP Spooler are listed in Appendix C.

How the LP Spooling System Works

The term spool is an acronym for "simultaneous peripheral output on-line." LP
spooling means that you can send a file to be printed (LP originally stood for Line
Printer, but has come to include many other types of printing devices), while you con-
tinue with other work. The LP Spooling system is software that

® handles the task of receiving files users want printed

schedules the work of one or more printers

starts programs that interface with the printer(s)

keeps track of the status of jobs

B issues error messages when problems arise

The LP Spooler has five user commands. These are shown in Figure 7-1.

Command Description

enable(1) Activate the named printer(s).

cancel(1) Cancel a request for a file to be printed.

disable(1) | Deactivate the named printer(s).

Ip(1) Send a file or files to a printer.

Ipstat(1) Print the status of the LP system.

Figure 7-1: User Commands for the LP Spooling System

In addition to being able to send requests to the LP Spooling system, check the
status of requests, and cancel requests, users are given the ability to disable and
enable a printer. The idea is that if a user finds a printer is malfunctioning in some
way, it should not be necessary to call the administrator to turn the printer off.

LINE PRINTER ADMINISTRATION 7-1

Administrative Commands

A separate set of commands available for the LP administrator is shown in Figure
7-2. These commands are found in the /usr/lib directory. If you expect to use them
frequently, you might find it convenient to include that directory in your PATH vari-
able. To use the administrative commands, you must be logged in either as root or as
Ip. Ip is a system login (see Chapter 1, System Security, or Procedure 1.4 for a
description of how to set up a password for a system login).

Command Description

/usr/lib/accept(1M) Permit job requests to be queued for a
specified destination.

/usr/lib/reject(1M) " | Prevent jobs from being queued for a
specified destination. Described on the
same manual page as accept(1M).

/usr/lib/lpadmin(1M) Set up or change the LP configuration.

/usr/lib/lpmove(1M) Move output requests from one destination
to another. Described on the same
manual page as Ipsched(1M).

/usr/lib/lpsched(1M) Start the LP scheduler.

/uasr/lib/lpshut(1M) Stop the LP scheduler. Described on the
same manual page as Ipsched(1M).

Figure 7-2: Administrative Commands for the LP Spooling System !

In Figure 7-2 the administrative commands are listed in the order in which they
occur in the System Administrator’s Reference Manual. In the section that follows, we
describe the commands in the order in which they are usually used.

Command Descriptions and Examples

/usr/lib/lpadmin

The Ipadmin(1M) command is used to add a new printer to the system, assign
classes of printers, name or remove a default destination, and specify interface pro-
grams to be used. lpadmin may not be used when the LP scheduler, Ipsched(1M), is
running, except when the —d option is specified.

One (and only one) of the following three options must always be included on the
command line when you execute lpadmin:

7-2 SYSTEM ADMINISTRATOR’S GUIDE

Administrative Commands

—d[dest]

—xdest

—pprinter

No other options are allowed with —d and —x. However, many arguments are
allowed with the —pprinter option, and at least one argument must always be present.
The —p option names a printer to which the other argument(s) applies. If printer
does not exist, it is created. The arguments that can be used with —p are as follows:

—cclass

—eprinter

-h

~iinterface

—mmodel

=rclass

-vdevice

This argument assigns the printer specified in the —p option to the
specified class.

This argument allows you to use an existing interface program for
a new printer that you are adding to the LP system. When you
select this argument, the interface program for the printer
specified in this argument is copied for the printer specified in the
—p option.

When adding a new printer, this argument means that the printer
is hard-wired to the M series system.

Use this argument to specify a new interface program for the
printer specified in the —p option. interface is the path name of
the new program.

When adding a new printer, this argument means that the device
associated with the printer is a login terminal.

Several "model" interface programs are supplied with the LP
Spooling Utilities. These model interface programs support some
of the common printers that may be used with the M series sys-
tem. Use this argument to select the model interface program
that you want to use with the printer you are adding to the LP sys-
tem.

Use this argument to remove a printer from a class.

This argument must be used when you add a new printer to the LP
system. It associates the printer with the UNIX system file
specified by device. The complete path name must be given for
the file.

The —d[dest] option is used to define an existing system destination as the new
system default destination. If dest is not specified, there is no default destination.
The LP scheduler may be running when you use this option. The default destination
is used to determine where a file named in a user’s Ip command is sent (assuming the
user does not specify a destination on the command line and the environment variable
LPDEST is null). The destination (dest) must already exist.

To remove a destination (dest), the —xdest option is used with Ipadmin. This
option cannot be invoked when the scheduler is running. If it is running, you must
issue the Ipshut command before lpadmin.

LINE PRINTER ADMINISTRATION 7-3

Administrative Commands

Command Examples

In examples 2 through 7, it is assumed that the LP scheduler has already been
NOTE| stopped. This is done through the Ipshut(1M) command. Example 1 does not
require the scheduler to be stopped since only the —d option to Ipadmin is used.

Example 1

Make printer 1p0 the system default destination.

lpadmin —dip0
#

Example 2.

Add a new printer called printer2 and associate it with device /dev/ttyll. Use the
pprx model interface program.

Ipadmin =—pprinter2 —v/dev/ttyll —mpprx
#

When you add a new printer, it is left in a disabled state and does not accept
requests.
Example 3

Create a hardwired printer called Ipl on device /dev/ttyl3. Add Ipl to a new
class called cll, and use the same interface program that is used with printer printer3.

Ipadmin —plpl —v/dev/ttyl3 —eprinter3 —ccll
#

Example 4
Change the interface program for printer Ipl to model interface program pprx.

Ilpadmin —plpl —mpprx
#

Example 5
Add printer printer2 to class cll:
Ipadmin —pprinter2 —ccll
#

Printers that are added to a class are ordered according to the sequence in which
they are added. For example, assume that class cll, in the example above, already
had printers Ipl and Ip2 as members. After adding printer printer2, the order of the
printers would be Ipl, lp2, and printer2. If all three printers are available, and a
request is routed to class cll, the request will be serviced by Ipl. If all three printers
are busy, the request will be serviced by the first available printer.

Example 6

Remove printers 1p1 and 1p2 from class cll:

lpadmin —plpl-=rcll —
lpadmin —plp2 —rcll
#

7-4 SYSTEM ADMINISTRATOR’S GUIDE

Administrative Commands
Example 7

No destination (class or printer) may be removed if it has pending requests. The
pending requests must either be cancelled using the cancel(1) command or moved to

other destinations using the Ipmove(1M) command before the destination can be
removed.

Removing the last remaining member of a class causes the class to be deleted. If
the destination removed is the system default destination, the system will no longer
have a default destination. However, the removal of a class does not imply the remo-
val of printers that were assigned to that class,

lpadmin —xIp3
#

/usr/lib/lpsched

The Ipsched(1M) command starts the LP scheduler. The LP scheduler takes the
top job request off the queue and "hands" it to the appropriate interface program to
be printed on a printer. The LP scheduler keeps track of the job progress, and as
soon as the job is completed, it takes the next job request off the queue and repeats
the process. As long as the LP scheduler is running, jobs requested by Ip will be
printed. If the scheduler is not running, jobs will not be printed.

Every time the scheduler is started, Ipsched creates a file called SCHEDLOCK in
the /usr/spool/lp directory. As long as the SCHEDLOCK file is present, the system
will not allow another scheduler to run. When the scheduler is stopped under normal
conditions, either with Ipshut(1M) or as part of the normal shutdown procedure, the
SCHEDLOCK file is removed. However, if the system comes down abnormally,
there is a possibility that the SCHEDLOCK file may not get removed. To ensure that
the SCHEDLOCK file does not exist, /etc/rc.d/lp contains a command line to
remove SCHEDLOCK first before it attempts to start the scheduler.

The command is entered without arguments.

lIpsched
#

Notice in the example that the command shows no response to let you know that
the scheduler is running. To verify that the scheduler is running, use the Ipstat(1M)
command with the —r option.

Ipstat —r
scheduler is running
#

If many job requests are queued, there may be a delay before the Ipstat command
NOTE| reports that the scheduler is running.

ST

/usr/lib/lpshut

Two of the three lpadmin command options (—x and —p) cannot be executed
unless the LP scheduler is stopped. The Ipshut command stops the LP scheduler and
terminates all printing activity. All requests that were in the middle of printing will be
reprinted in their entirety when the scheduler is restarted. The command is entered
without arguments.

LINE PRINTER ADMINISTRATION 7-5

Administrative Commands

lIpshut
scheduler stopped
#

/usr/lib/lpmove

Occasionally, you may find it necessary to move output requests from one destina-
tion to another. For example, if you have a printer that was removed for repairs, you
will want to move all the pending job requests to a destination with a working printer.
This is done using the Ipmove.command. Be aware that job requests routed to a des-
tination without a printer are automatically rejected.

Another use of the lpmove command is to move specific requests from one desti-
nation to another. When this is done, Ip will no longer accept requests for the origi-
nal destination (this is the same effect as a reject command). Ipmove refuses, how-
ever, to move requests while the LP scheduler is running. The general format of the
Ipmove command is as follows:

Ipmove requests dest

requests are the request identification numbers (request IDs) of jobs waiting to be
printed, and dest is the destination to which the requests are to be moved. The desti-
nation can be a printer or a class of printers.

Command Examples '
Example 1

Move all the requests for printer Ip1 to printer Ip2. Moving the requests renames the
request IDs from lpl-nnn to Ip2-nnn. After the requests are moved, Ip will no longer
accept requests for Ipl (this is the same effect as a reject Ip1 command issued after
the Ipmove).

lpmove Ip1 Ip2
#

Example 2

Move requests 1p1-54 and 1p2-55 to printer IpO:

lpmove lp1-54 1p2-55 Ip0
total of 2 requests moved to 1p0
#

The two requests are now renamed lp0-54 and 1p0-55.
NO’IEl

T
/usr/lib/accept

The accept(1M) command allows job requests to be placed in a queue at the
named destination(s), destination being the name of a printer or class of printers. The
general format of the accept command is as follows:

~ accept destination(s)

7-6 SYSTEM ADMINISTRATOR’S GUIDE

Administrative Commands

Command Example
The sample command line allows printer Ip0 to start receiving requests.

/usr/lib/accept Ip0
destination "1lp0" now accepting requests

#

/usr/lib/reject

Sometimes it is necessary to stop lp from routing requests to a destination. For
example, if a printer has been removed for repairs, or if too many requests are build-
ing at a destination, you may want to prevent new jobs from being queued at this des-
tination. The reject(1M) command performs this function.

Requests in the queue when the reject command is invoked will be printed as
long as the printer is enabled. After the condition that led to denying requests has
been corrected, use the accept command to allow requests to be received again. The
general format of the reject command is as follows:

reject [—r[reason]] destinations

The —r option enables you to let users know why requests are being rejected by
the specified destination. reason is a brief explanation of the purpose for rejecting
requests. If the reason consists of more than one word, enclose it in double quotes
("). The destinations are the printers that are not to accept requests any longer.

Command Example
The example given here is for a printer, printer3, that is being repaired. While
printer3 is out of service you want to prevent Ip from routing requests to it.

reject —r"printer printer3 under repair" printer3
destination "printer3" is no longer accepting requests

#
Users who try to route a job to printer3 will receive the following message:
$ lp —dprinter3 filename
lp: can’t accept requests for destination "printer3" -

printer printer3 under repair

$

LINE PRINTER ADMINISTRATION 7-7

Printer Interface Programs

! Printers that are used as LP Spooling printers must have a printer interface pro-

' gram. Every print request made with the Ip command is routed through the appropri-
ate printer interface program before the request is printed on a line printer. The
printer interface program to use is specified by the Ipadmin(1M) command.

Model Interface Programs

Each type of printer requires its own interface program. Several, referred to as
"model" interface programs, are furnished with the LP Spooling Utilities. The model
interface programs support the DQP-10 printer, the LQP-40 printer, and several other
popular printers. The model interface programs are written as shell procedures, but
they can be written as C programs or any other executable program. They are located
in the /usr/spool/lp/model directory.

Writing Interface Programs

If you have a printer that is not supported by one of the model programs, you will
have to furnish an interface program for it. The shell script for-a "dumb" printer
interface program (a model program) is shown in Figure 7-3. This program may be
used as a guide if you have to provide one of your own.

When the LP scheduler routes an output request to a printer, the interface pro-
gram for the printer is invoked in the directory /usr/spool/lp as follows:

interface/P id user title copies options file ...

Arguments for the interface program are:

p printer name

id | request id returned by Ip

user logname of user who made the request

title optional title specified by the user

copies number of copies requested by user

options blank-separated list of class or printer-dependent options specified
by user

file fuﬂ path name of a file to be printed

When the interface program is invoked, its standard input comes from /dev/null
and both the standard output and standard error output are directed to the printing
device. Interface programs format their output based on the command line argu-
ments. You want to make sure that the interface program has the proper stty modes
(terminal characteristics such as baud rate, output options). You can do this by
adding stty(1) command lines of the form:

stty mode options <&I1

This command line takes the standard input for the stty command from the device.
—————An example of an stty command line that sets the baud rate-at 1200 and sets some of -
the option modes is shown below.

stty —parenb —parodd 1200 cs8 cread clocal ixon 0<&1

7-8 SYSTEM ADMINISTRATOR’S GUIDE

Printer Interface Programs

Because different printers have different numbers of columns, make sure the
header and trailer for your interface program correspond to your printer. When
printing is complete, your interface program should exit with a code that tells the
status of the print job. Exit codes are interpreted by Ipsched as follows:

Code Meaning to lpsched
0 The print job has completed successfully.
1 to 127 A problem was encountered in printing this particular

request (for example, too many nonprintable characters).
This problem will not affect future print jobs. The
Ipsched command notifies users by mail(1) that there was
an error in printing the request,

greater than 127 These codes are reserved for internal use by Ipsched.
Interface programs must not exit with codes in this range.

When problems occur that may affect future print jobs—for example, a device
filter program is missing—it is wise to have your interface program disable printers so
that print requests are not lost. When an active printer is disabled, the interface pro-
gram can be halted with signal 15 (see kill(1) and signal(2)).

Below is an example of a dumb line printér interface program.

LINE PRINTER ADMINISTRATION 7-9

Printer Interface Programs

lp interface for dumb line printer

#

D -0.0.0.0.0.0.0.0.0.0:0.0.0.0.0.0:0:0:0:0:0.0.0.0.0:0:0:0:0.8:0:0:0:0:0:0.0.0.0:¢:0.0:¢
D00 0:0:0.0:0:6:0.0.0.0:6.0.0.0:0:0:0.0:0:0.¢:0.0:0.0.0.0.:0:0.0.0:0:0.6.9:0:0.6.0.0:0.0.6.4
echo "\014\c"

echo "$x\n$x\n$x\n$x\n"

banner "$2"

echo "\n"
user=‘grep "$2:" /etc/passwd | line | cut -d: —-£5‘
if [-n "Suser"]
then

echo "User: S$Suser\n"
else A '

echo "\n"
fi
echo "Request id; $1 Printer: ‘basename $0‘\n"
date
echo "\n"
if [-n "$3"]
then

banner $3

fi
copies=$4

echo 'l\014\c||
shift; shift; shift; shift; shift

files="$x"
i=1
while [$i —le $copies]
do
for file in $files
do
cat "$file" 2>&l
echo "\014\c"
done

i=‘expr $i + 1/
done ‘
echo "$x\ns$x\ns$x\n$x\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n"
echo "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n$x\né$x\néx\né$x\nsx"
echo "$x\n$x\ns$x\nsx\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n"
echo "\n"
echo "$x\n$x\nSx\n$x\n$x\ns$x\nsx\néx\n"

exit 0 :

Figure 7-3: Dumb Line Printer Interface Program

7-100 SYSTEM ADMINISTRATOR’S GUIDE

Files and Directories

This section describes the files and directories in the LP Spooling structure.

/usr/spool/lp/FIF0

FIFO is a special file that all the commands use to send messages to Ipsched.
Any of the LP commands may write to FIFO, but only Ipsched may read it.

/usr/spool/lp/default

This file contains the name of the system default destination. If this file does not
exist or if it is empty, the LP system has no default destination.

/usr/spool/lp/log

The purpose of the log file is to keep a record of all the printing activity that has
taken place since the LP scheduler was last started. This file contains the logname of
the user who made the request, the request id, the name of the printer that the
request was printed on, and the date and time that printing started. Any Ipsched
error messages that occur are also recorded. The first line of the log file shows the
time that the LP scheduler was started. '

/usr/spool/lp/oldlog

The oldlog file contains a record of what was in the log file. When the scheduler
is stopped, the log file is closed. When the scheduler is restarted, all the information
that had accumulated in the log file is copied to the oldlog file, and a new log file is
started. Any information that had been in the oldlog file is overwritten. The first line
of the file tells the time that the scheduler was turned on, and the last line tells the
time the scheduler was turned off.

/usr/spool/lp/outputq

When an output request is made by the Ip command, an entry is made in this
binary file. The LP scheduler takes the job request and hands it to the appropriate
interface program to be printed. After the job is completed, the job request is
removed, and the scheduler takes the next job request from this file and has it
printed. Only those requests made since the last time the LP scheduler was started
are contained in this file (that is, starting the LP scheduler clears this file).

Entries in outputq may be modified by the Ipmove, disable, and Ipsched com-
mand. The cancel, disable, and Ipsched commands can mark entries in this file
"deleted." If a job request is deleted before the job is completed, the entry will
remain in the file.

LINE PRINTER ADMINISTRATION 7-11

Files and Directories

/usr/spool/lp/pstatus

The binary file pstatus contains status information for each printer. Entries are
added and removed from this file by the Ipadmin command, and they are modified by
the cancel, enable, disable, and Ipsched commands. When the lpstat command is
invoked with the —p option, printer status information is obtained from this file.

/usr/spool/lp/qstatus

This binary file keeps track of whether a destination is accepting or rejecting
requests. Entries are added or removed from this file by the Ipadmin command and
modified by the accept and reject commands. When the Ipstat command is invoked
with the —o option, the request status is obtained from this file.

/usr/spool/lp/seqfile

The seqfile file contains the sequence number of the last request id that was
assigned by the Ip command. The sequence number is incremented by Ip for each
request. When the number 9999 is reached, the sequence number is reset to 1.

/usr/spool/lp/class

This is a directory that contains one file for each LP class that has been identified.
(The name of the file is the same as the name of the class.) The file identifies each
member, in this case an LP printer, that is assigned to the class. Class files are
created, modified, and deleted by the Ipadmin command. Every class file must
always have at least one member.

/usr/spool/lp/interface

The interface directory contains one executable interface program for each printer
that is in the LP system. The filename of the interface program is the same as the
printer name. The interface program is invoked with its standard error and standard
output directed to the printer. Interface programs may be shell procedures or com-
piled C programs.

/usr/spool/lp/member

The member directory contains one file for each LP printer. The filename is the
same as the printer name. Each file contains the pathname of the device to which the
member is connected.

7-12 SYSTEM ADMINISTRATOR’S GUIDE

Files and Directories

/usr/spool/lp/model

This is a directory that contains the printer interface programs that are distributed
with the LP Spooling Utilities.

/usr/spool/lp/request

This directory contains a subdirectory for each destination in the LP system. The
name of the subdirectory is the same as the name of the destination. When an Ip
request is made, a request file (or "r" file) and, in most cases, a data file (or "d" file)
are created in the subdirectory of the destination to which the request is going. The
data file stores the file to be printed until the scheduler is ready to print it. A data
file is not created if the file to be printed cannot be linked to the request subdirectory.

The name of the request file is derived from the request identification number and
is of the form r-seqno. The name of the data file is of the form dn-seqno, where n is
a non-negative integer.

The request and data files are deleted by the cancel and Ipsched commands.
They may be moved from one subdirectory to another by the lpmove command.

‘ Lock Files

To guarantee LP commands exclusive access to data files, several "lock" files are
maintained in the LP system. They are binary files that contain the process id of the
locking process. The lock files and their associated data files are:

Lock File Data File

OUTQLOCK outputq
PSTATLOCK | pstatus
QSTATLOCK | qstatus
SEQLOCK seqfile

Lock files "expire" after a given time and may be unlinked by any LP process.
Thus, commands that lock a data file for longer than this interval must update the
modification time on the lock file. The creation, updating, and unlinking of lock files
is handled automatically by the LP low-level file access routines.

Another lock file, SCHEDLOCK, is present while the LP scheduler is running to
ensure that only one invocation of Ipsched is active. Unlike other lock files,
SCHEDLOCK has no expiration time.

Cleaning Out Log Files

As described above, when the scheduler is stopped, the log file is closed. When
the scheduler is restarted, the log file is copied to /usr/spool/lp/oldlog, and a new
log file is started.

LINE PRINTER ADMINISTRATION 7-13

Files and Directories

If the scheduler is not stopped for long periods of time and if you have a large
number of LP requests, the log file can grow to be a large file. You can manually
remove the contents of this file, or you can let the system do it for you on a
scheduled basis (see "Monitoring Files and Directories that Grow" in Chapter 5, File
System Administration).

To have the system clean out the log file, put an entry in a file in the
/usr/spool/cron/crontabs directory. One way to do this is to log in as root and use
the crontab(1) command. The other way is to edit a crontabs directory file.

The example below shows some typical crontab command lines. crontab adds
these command lines to the root file in the /usr/spool/cron/crontabs directory.
Every Friday at 11:00 PM cron(1M) executes the commands. First, the contents of
the log file are copied to the oldlog file, and then the log file is cleaned out.

crontab —1

0 23 * * 5 /bin/su 1lp —c "cp /usr/spool/lp/log
/usr/spool/lp/oldlog"” 1 23 * *x 5 /bin/su lp -c
"»/usr/spool/lp/log" #

Lock File | Data File

OUTQLOCK outputq
PSTATLOCK | pstatus
QSTATLOCK | gstatus
SEQLOCK seqfile

7-14 SYSTEM ADMINISTRATOR’S GUIDE

~—

Chapter 8: TTY Management

Introduction 81
Definition of Terms 81
The TTY System | - 82
How the TTY System Works : 8-2
How to Tell What Line Settings Are Defined 82
How to Create New Line Settings and Hunt Sequences 83
How to Modify TTY Line Characteristics 8-4
Identifying a Terminal to the System ' 85
How to Set Terminal Options 8-6

TABLE OF CONTENTS i

Introduction

This chapter covers the following topics:

® The terms used in discussing TTY management

m How the TTY system works

® How to tell what line settings are defined

® How to create new line settings and hunt sequences

m How to modify TTY line characteristics

® How to set terminal options

Definition of Terms

The following terms are used in this chapter:

TTY

TTY line

port
line settings

baud rate

mode

hunt sequence

terminal options

Derived from the near-classic abbreviation for teletypewriter,
the term covers the whole area of access between the UNIX
system and peripheral devices, including the system console.

- It shows up in commands such as getty(1M) and stty(1), in the
‘names of device special files such as /dev/ttyl, and in the

names of files such as /etc/gettydefs, which is used by getty.

The physical equipment through which access to the computer
is made. '

A synonym for TTY line.
A set of line characteristics.

The speed at which data is transmitted and received over the
line. A part of line settings.

The characteristics of the terminal interface. A part of line
settings. The TTY line and the terminal must be working in
the same mode before communication can take place.
Described in termio(7).

A circular series of line settings such as different baud rates.
During the login sequence, a user looking for a compatible
connection to the computer can go from one setting to the
next by sending a BREAK signal.

Selectable settings that define the way a given terminal
operates. Described in termio(7).

TTY MANAGEMENT 8-1

The TTY System

This section describes how the TTY system operates, and how you can administer
it.

How the TTY System Works

A series of four processes (init(1IM), getty(1M), login(1), sh(1) or e¢sh(1)) con-
nects a user to the UMIPS system. init is a general process spawner that is invoked
as the last step in the boot procedure. It spawns a getty process for each line that a
user may log in on, guided by instructions in /etc/inittab. An argument required by
the getty command is line. The TTY line argument is the name of a special file in the
/dev directory. For a description of other arguments that may be used with getty see
the System Administrator’s Reference Manual.

A user attempting to make a connection generates a request-to-send signal that is
routed by the hardware to the getty process for one of the TTY line files in /dev.
(We’re omitting how the signal gets from the user’s terminal to the M series system.)
getty responds by sending an entry from file /etc/gettydefs down the line. The get-
tydefs entry used depends on the speed argument used with the getty command. (In
the SYNOPSIS of the getty(1IM) command the argument name is speed, but it is
really a pointer to the label field of a gettydefs entry.) If no speed argument is pro-
vided, getty uses the first entry in gettydefs. Among the fields in the gettydefs entry
(described later in this chapter) is the login prompt.

On receiving the login prompt, the user enters a login name. getty starts login,
using the login name as an argument. login issues the prompt for a password, evalu-
ates the user’s response, and assuming the password is acceptable, calls in the user’s
shell as listed in the last field of the /etc/passwd entry for the login name. If no shell
is named, /bin/sh is furnished by default. login also executes /ete/profile for the
/bin/sh user and /etc/cshre for the /bin/csh user.

/bin/sh executes the user’s .profile, if it exists. /bin/csh executes the user’s
.cshre and .login, if they exist. These files often contain stty commands that reset
terminal options that differ from the defaults. The connection between the user and
the UNIX system has now been made.

How to Tell What Line Settings Are Defined
You have three ways to check line settings:

1. Through the System Administration <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>