MIPS-FORTRAN Programmer’s Guide
and Language Reference
Order Number 3103DOC

11 ' " e H L] ]

11

The power of RISC is in the system.



MIPS-FORTRAN Programmer’s Guide
and Language Reference
Order Number 3103DOC

May 1989

Your comments on our products and publications are wel-
come. A postage-paid form is provided for this purpose
on the last page of this manual.

Mfg. Part Number 84-00054—002/02-00085-002



© 1989 MIPS Computer Systems, Inc. All Rights Reserved.

RISCompiler and RISC/os are Trademarks of MIPS Computer Systems, Inc.
UNIX is a Trademark of AT&T.
Ethernet is a Trademark of XEROX.

MIPS Computer Systems, Inc.
930 Arques Ave.8
Sunnyvale, CA 94086

Customer Service Telephone Numbers:

California: (800) . 992-MIPS
All other states: (800) 443-MIPS
International: (415) 330-7966

Mfg. Part Number 84-00054—002/02-00085-002



Summary of Changes

May 1989 Edition

The following summarizes the changes made to the former (July 1988) edition of
this manual that appear in this edition:

Part I: Programmer’s Guide

About This Book. Removed first sentence in second paragraph of the first
page that makes referece to full ANSI compatibility.

Chapter 3. Technical correction in Fortran/Pascal interface examples..

Chapter 4. Added MALLOC and FREE function extensions to Chapter 4.

Part Il: Language Reference
Chapter 4. Added a description of the POINTER specification statement.

General. Change highlighting of text that describes FORTRAN extensions
from underline to shade. Made minor technical and editorial corrections
throughout.






About Part | of This Book

Part I of this book provides information on implementing MIPS-FORTRAN pro-
grams using RISC/os™ and the RISCompiler™ system. Refer to Part II (the
MIPS-FORTRAN Language Reference manual) for the syntax and description of
the language.

MIPS extensions provide full VMS FORTRAN™ compatibility to the extent pos-
sible when not acutally using the VMS operating system or VAX data representa-
tion. MIPS-FORTRAN also contains extensions that provide partial compatibil-
ity with programs written in SVS FORTRAN™ and FORTRAN 66.

MIPS-FORTRAN is a superset of VMS FORTRAN; the MIPS RISCompiler
system can convert source programs written in VMS FORTRAN into machine
programs executable under RISC/os™.

Scope
Although the RISC/os programming environment includes all standard UNIX
driver commands and system tools, this book does not describe those tools in de-
tail. For details, you may need to refer to the RISC/os User’s Reference Manual
and other associated publications listed at the end of this preface.

Topics Covered
This book has these chapters:

e Chapter 1: Compiling, Linking and Running Programs.
Gives an overview of components of the compiler system, de-
scribes how to compile, link edit, and execute a MIPS—
FORTRAN program. Also describes special considerations for
programs running on a RISC/os systems, such as file format, er-
ror handling, and programming invocation.

e Chapter 2: Storage Mapping. Describes how the size and
value ranges for variables, and how they are mapped to the stor-
age of a RISComputer system.

e Chapter 3: Language Interfaces. Provides reference and
guide information on writing programs in FORTRAN, C, and
Pascal that can communicate with each other.

e Chapter 4: System Functions and Subroutines Describes
functions and subroutines that can be used with a program to
communicate with the RISC/os operating system.

* Appendix A: Runtime Error Messages. Lists and explains the
error messages that can be generated during program execution.

e Index. Contains index entries for this publication.

Part I: FORTRAN Programmer’s Guide v



About Part |

For More Information

You may need to refer tothe MIPS—-FORTRAN Language Reference (Part I of
this book) or one of the following as you use this manual;

o  MIPS Assembly Language Programmer’s Guide (3201DOC)

e RISC/os User’s Reference Manual (3204DOC)

vi Part I: FORTRAN Programmer's Guide



Contents

About Part I of This Book

0D .« ettt e e e iii
Topics COvered . ... ...ttt e e e iii
For More Information ...............uiiiierneiineeieinnneennnns iv

Chapter 1: Compiling, Linking, and Running Programs

Compilingand Linking ............oiiiiiiiiiiiiiiiiiii i, 1-1
DIIVeTS . ittt e e 1-1
Compilation . ...ttt e 1-2
Compiling Multi-Language Programs .................coovvnn... 1-3
Linking Objects ....... ..o iiitiiiiiiiiiiiiiiiiiiiianiiann 1-4
Specifying Link Libraries . ... ......ooiiiiiin it 1-5

Driver OpHONS . . ..ottt i e e e i 1-6
Debugging . ... it e 1-12
Profiling ... ... i e e 1-13
Optimizing ...... ...t ettt 1-13
Performance .............iiiiiiiiiiii i e 1-14
Byte Ordering Options . ..........viiiuriineiiieiineennnnn. 1-14

Object File TOOIS ... ..iitttie ittt et 1-15

ATCIVeT . 1-15

Run-Time Considerations ............c.c.oiieeiriineiiiineennnennnnn.. 1-16
Invoking aProgram ............ ... .. i 1-16
File Formats . ...... ... oiiiiiiiii ittt 1-16
Preconnected Files ........... .o, 1-16
File POSILONS ... ...ttt i e 1-17
Unknown File Status ..........oiiiiiiiii i, 1-17
Run-Time ErrorHandling .................. ..., 1-17

Chapter 2: Storage Mapping
Chapter 3: FORTRAN Program Interfaces

FORTRAN/CINtErface ..........couiiiiiiiniiiiie i, 3-1
Procedure and Function Declarations . ..............c.covvunn.... 3-1
ATGUIMENLS .. ..t e 3-3
ArrayHandling . ...... ... .. .. .. 34
Accessing Common Blocksof Data . ............covveenennnn... 3-5

FORTRAN/Pascal INterfaces ... ......ovuuririeieiiniinnnnnnnnnnnnnn. 3-6
Procedure and Function Declarations . ........................... 3-6
ATGUMENES ...t e 3-7
Execution—-Time Considerations .................ccovvveieunn.. 3-9
ArrayHandling ............. .. . i 3-9

Part I: FORTRAN Programmer’s Guide vii



Accessing Common Blocksof Data . ...............oovvvenn.... 3-10

Chapter 4: System Functions and Subroutines

Library FUnctions . ............oiiiiiiit e, 4-1

Intrinsic Subroutine Extensions .............. v et 4-3
DATE .. e 43
IDATE ..o 44
ERRSN S e 4-4
EXIT .o 44
FREE ... e
TIME . e 4-5
MV BIT S .. 4-5

Intrinsic Function EXtensions . ... ........vvttttineen e iannnnnnnn. 4-5
SECN DS .. e 4-6
RAN L 4-6
MALLOC ... e e e e 4-6

Appendix A: Run-Time Error Messages

viii Part I: FORTRAN Programmer’s Guide



1
Compiling, Linking,
and Running Programs

This chapter contains the following major sections:

e Compiling and Link Editing, which describes the compilation
environment, how to compile and link FORTRAN programs.
Examples are included to show how to create separate linkable
objects written in FORTRAN, C, Pascal, or other languages sup-
ported by the compiler system, and to link them into an executa-
ble object program.

e Driver Options, which gives an overview of the debugging, pro-
filing, optimizing and other options provided with the FOR-
TRAN {77 driver.

e Object File Tools, which briefly summarizes the capabilities of
the odump, nm, file, and size programs that provide listing and
other information on object files.

¢ Archiver, which summarizes the functions of the ar program
that maintains archive libraries.

¢ Run-Time Considerations, which describes how to invoke a
FORTRAN program, how the operating system treats files, and
run-time error handling.

You should refer to the Release Notes that accompanied your FORTRAN instal-
lation package. This document sometimes lists compiler enhancements, possible
compiler errors, and how to circumvent them.

Compiling and Linking

Drivers
Intelligent programs called drivers actually invoke the major components of the
compiler system: the FORTRAN compiler, the uopt optimizer, the code genera-
tor, the assembler, and the link editor. The f77 command runs the driver that
causes your programs to be compiled, optimized, assembled, and link edited.

The format of the £77 driver command is as follows:
£77 [option] ... filename.f
where:

f77 invokes the various processing phases that compile, optimize, assemble,
and link edit the program.

Part I: FORTRAN Programmer's Guide 1-1



Chapter 1

option represents the driver options, through which you provide instructions ’
to the processing phases. These options are discussed later in the chapter. (

filename f is the name of the file that contains the FORTRAN source state-
ments. The file name must always contain the suffix f, for example

myprog.f.
Compilation
The driver command f77 can both compile and link edit a source module. The
next figure shows the primary drivers phases, and their principal inputs and out-
puts for the source modules more.f.
more. f
» | Fortran Front End
Optimizer (optional)
Code Generator
Assembler
Link Editor ‘\
Note the following:
¢ The name of the source file ends with the required suffix .f.
¢ The driver produces a linkable object file when you specify the
—¢ driver option. This file has the same name as the source file,
except with the suffix .0. For example, the following command
line:
£77 more.f -c
produces the more.o file in the above example
e The default name of the executable object file is a.out. For ex-
ample, the command line
£77 myprog.f
produces the executable object a.out. (
1-2

Part I: FORTRAN Programmer's Guide



Compiling, Linking, and Running Programs

s You can specify a different name for the executable object using
the driver option —o name, where name is the name of the exe-
cutable object. For example, the following command line

£77 more.o -o exec.myprog

link edits the object module more.o and produces an executable
object named exec.myprog.

The following command line
£77 myprog.f -o exec.myprog

compiles and link edits the source module myprog.f and pro-
duces an executable object named exec.myprog.

NOTE: If you specify more than one object file on the command line, the file
containing the main program must be specified first. The link editor requires this
information.

Compiling Multi-Language Programs

The compiler system provides drivers for other languages, including C, Pascal,
COBOL, and PL/1. If one of these drivers is installed in your system, you can
compile and link your FORTRAN programs to the language supported by the
driver. (See the Language Programmer’s Guide for a list of available drivers
and the commands that invoke them; refer to Chapter 4 of this manual for con-
ventions you must follow in writing FORTRAN program interfaces to C and Pas-
cal programs.)

When your application has two or more source programs written in different lan-
guages, you should compile each program module separately with the appropri-
ate driver and then link them in a separate step. You can create objects suitable
for link editing by specifying the —c option, which stops the driver immediately
after the assembler phase. For example:

cc —c main.c
£77 —-c rest.f

The two command lines shown above produce linkable objects named main.o
and rest.o, as illustrated in the next figure.

Part I: FORTRAN Programmer’s Guide 13



Chapter 1

Linking Objects

1-4

main.c rest.f
C Front End Fortran Front End
| ]
Code Generator Code Generator
Assembler Assembler
main.o rest.o

You can also use the f77 driver command to link edit separate objects into one
executable program when the main program is written in FORTRAN. The driver
recognizes the .o suffix as the name of a file containing object code suitable for
link editing and immediately invokes the link editor. The following command
line link edits the object created in the last example:

£f77 -0 all main.o rest.,o

This statement produces the executable program object all. Note that main.o
contains the main routine and is specified, as required, first. If the main program
is not written in FORTRAN, you should use the applicable driver. For example,
if the main program were written in C, you would use the ¢c driver command, as
shown below:

cc -0 all main.o rest.o -1F77 -1U77 -1I77 -lisam —lm

The figure below shows the flow of control for this link edit.

main.o rest.o

Link Editor

Link Libraries

all

Part I: FORTRAN Programmer’s Guide



Compiling, Linking, and Running Programs

Both f77 and cc use the C link library by default. However, the cc driver com-
mand does not know the names of the link libraries required by the FORTRAN
objects; therefore, you must specify them explicitly to the link editor using the
—I option as shown in the example. The characters following —1 are short-hand
for link library files as shown in this table:

—1 |Link Library Contents
F77 | /ust/lib/libF77.a Fortran intrinsic function
library
177 | /usr/lib/libl77.a Fortran 1/O library
U77 | /usr/lib/libU77.a Fortran UNIX interface
library
isam | /usr/lib/libisam.a Indexed sequential access method library
m Jusr/lib/libm.a Math library

See the FILES section in f77(1) of the User’s Reference Manual for a complete
list of the files used by the FORTRAN driver. See 1d(1) in the same manual for
information on specifying the —I option.

Specifying Link Libraries

As noted, if you compile multi-language programs, you must explicitly load any
required runtime libraries. For example, if you write your main program in FOR-
TRAN, and some procedures in Pascal, you must explicitly load the Pascal li-
brary libp.a and the main library libm.a with the options -Ip and —Im (abbrevia-
tions for the libraries libp.a and libm.a), as shown below, when you link these
programs.

To find the Pascal library, the link editor replaces the -1 with /ib and adds an .a
after p. Then, it searches the /lib, /usr/lib and /usr/local/lib directories for this
library. For a list of the libraries that a language uses, see the associated driver
manual page cc(1), f77(1), pe(1), cobol(1), or pl1(1) in the User’s Reference
Manual.

You may need to specify libraries when you use UNIX system packages that are
not part of a particular language. Most of the manual pages for these packages
list the required libraries. For example, the plotting subroutines require the li-
braries listed in the plot(3X) manual page; these libraries are specified as fol-
lows:

Part I: FORTRAN Programmer’s Guide 1-5



Chapter 1

To specify a library created with the archiver, type in the pathname of the library
as shown below.

NOTE: The link editor searches libraries in the order you specify. Therefore, if
you have a library (for example libfft.a) that uses data or procedures from -lp,
you MUST specify libfft.a first.

Driver Options

The section contains a summary of the FORTRAN-specific driver options. See
f77(1) in the User’s Reference Manual for a complete description of the compiler
options; see 1d(1) in the same manual for a description of the link editor options.

Part I: FORTRAN Programmer's Guide



Compiling, Linking, and Running Programs

Option Name

Purpose

66

-align8

-alignl6

—align32

Permits compilation of FORTRAN 66 source programs.

The following three options when used at compile time gen-
erate various degrees of misaligned data in common blocks,
and the code to deal with the misalignment.

NOTE: When specified, these options can degrade program
performance; —align8 causes the greatest degree of degrada-
tion and —align32 causes the least.

Permits objects larger than 8 bits to be aligned on 8-bit
boundaries. Using this option will have the largest impact on
performance.

Permits objects larger than 16 bits to be aligned on 16-bit
boundaries; 16-bit objects must still be aligned on 16-bit
boundaries (MC68000-like alignment rules).

Permits objects larger than 32 bits to be aligned on 32-bit
boundaries; 16-bit objects must still be aligned on 16-bit
boundaries, and 32-bit objects must still be aligned on
32-bit boundaries.

You must specify this option in the compilation of all mod-
ules that reference or define common blocks with misaligned
data. Failure to do so could cause core dumps (if the trap
handler is not used), or mismatched common blocks.

To load the system libraries capable of handling misaligned
data, use the -L/usr/lib/align switch at load time. The trap
handler may be needed to handle misaligned data passed to
system libraries not included in the /usr/lib/align directory
(see fixade(3f).

Part I: FORTRAN Programmer’s Guide



Chapter 1

Option Name | Purpose

—automatic Causes the current values of local variables to be saved
each time procedures is called. This ensures that the correct

values are preserved for the calling programs regardless of
calls to the same procedure by other programs.

-C Generate code for runtime subscript range checking. The de-
fault suppresses range checking.

—check_bounds| Causes an error message to be issued a run—-time when the
value of an array subscript expression exceeds the bounds

declared for the array.
—col72 Sets the source statement format to the following:
Column Contents
1-5 Statement label
6 Continuation indicator
7-72 Statement body
73—-end Ignored

If the source statement contains fewer than 72 characters,
no blank padding occurs; the TAB—format facility (de-
scribed in Chapter 1) is disabled.

This option provides the SVS FORTRAN 72—column op-

tion mode.
—col120 Sets the source statement format to the following:
Column Contents
1-5 Statement label
6 Continuation indicator
7-120 Statement body
121—end Ignored

If the source statement contains fewer than 120 characters,
no blank padding occurs; the TAB—format facility (de-
scribed in Chapter 1) is disabled.

This option provides the SVS FORTRAN default mode.

1-8 Part I: FORTRAN Programmer’s Guide



Compiling, Linking, and Running Programs

Option Name

Purpose

—<pp

—d_lines

extend_source

Runs the C macro preprocessor on all source files
(including those created by RATFOR or EFL) before
compilation.

Causes any lines with a D in Column 1 to be compiled. By
default, the compiler treats all lines with a character in
Column 1 as comment lines.

flags is a valid option for the EFL preprobessor. The
valid flags are listed in the efl(1) description .

The EFL input filename is filename.e; the resulting out-
put is placed in filename. You must specify the —K op-
tion to retain the output file.

Sets the source statement format to the following:

Column Contents

1-5 Statement label

6 Continuation indicator
7-132 Statement body
133-end Warning message issued

If the source statement contains fewer than 132 characters,
blanks are assumed at the end; the ability of TAB-
formatted lines to extend past Column 132 is disabled.

This option provides VMS FORTRAN 132—column mode,
except that a warning, instead of fatal, error message is
generated when text extends beyond Column 132.

Calls the EFL and RATFOR preprocessors only, and puts
output in an .f file. Doesn’t produce .o files.

Part I: FORTRAN Programmer’s Guide



Chapter 1

Option Name |Purpose

-i2 All small integer contents become integer*2. All variables
and functions implicitly or explicitly declared type integer
or logical (without a size designator, i.e. ¥2, ¥4, etc.) will
be integer*2 or logical*2 respectively.

If the generic function results don’t determine the preci-
sion of an integer—valued intrinsic function, the compiler
chooses the precisions that returns integer*2. The default
is integer*4. Note that integer*2 and logical*2 quantities
don’t obey the FORTRAN standard rules for storage loca-
tion.

—m Applies the M4 macro preprocessor to source files to be
transformed with EFL or RATFOR. The driver puts the
result in a .p file. Unless you specify the —K option, the
compiler removes the .p file upon completion. See the
md(1) description in the User’s Reference Manual for de-
tails.

~Nlgxscnl] nnn | nnnis a decimal number changing the default size of the
static tables in the compiler. See the f77(1) description in
the User’s Reference Manual for details.

—noextend_source Sets the source statement format to the following:

Column Contents
1-5 Statement label
6 Continuation indicator
7-72 Statement body
73-end Ignored

If the source statement contains fewer than 72 characters,
then blanks are assumed at the end; the ability of TAB-
formatted lines to extend past Column 72 is disabled.

This option provides the VMS-FORTRAN default mode,
except that a warning, instead of a fatal, error message is
generated when text extends beyond Column 132.

-noi4 Same as —-i2 option.

1-10 Part I: FORTRAN Programmer’s Guide



Compiling, Linking, and Running Programs

Option Name | Purpose
-nof77 Same as —onetrip switch except for the following:

1. EXTERNAL statements have an altered
syntax and functionality.

2. The default value for the BLANK= clause
in an OPEN statement is "ZERO".

3. The default value for the STATUS=
clause in an OPEN statement is 'NEW*.

—onetrip Compiles DO loops so that they execute at least

-1 once if reached. By default, DO loops aren’t executed if
the upper limit is smaller than the lower limit. Similar to
the —nof77 option.

-Rflags flags is a valid option for the RATFOR preprocessor; the
flags are given in the ratfor(1) page in the User’s Refer-
ence Manual.

The RATFOR input file name is filename.r
the resulting output is placed in filename.f. You must
specify the —K option to retain the output file.

—static Local variables are saved in one static location,
subsequent calls to the procedure containing the variables
can change their values. This overrides the default
—automatic option.

—systype name | Use the named compilation environment name. See
compilation(7) for the compilation environments that
are supported and their names.

-U Causes the compiler to recognize upper— and lowercase
alphabetic characters. For example, the compiler con-
siders a and A as distinct characters.

—u Turns off FORTRAN default data typing and
any data typing explicitly specified in an IMPLICIT
statement. Forces the explicit declaration of all data

types.

-w66 Suppresses FORTRAN 66 compatibility
warning messages.

-vms Causes all defaults to be in accordance with
VMS-FORTRAN specifications.

Part I: FORTRAN Programmer’s Guide 1-11



Chapter 1

Debugging

The compiler system provides a source level, interactive debugger called dbx
that you can use to debug programs as they execute. With dbx you can control
program execution by setting breakpoints; then, when the programs halts at a
breakpoint, you can monitor what is happening, modify values, and evaluate re-
sults. Dbx keeps track of variables, subprograms, subroutines, and data types in
terms of the symbols used in the source language. You can use this debugger to
access the source text of the program, to identify and reference program entities,
and to detect errors in the program’s logic.

The next example shows a compilation with the —g option and the start of a dbx

session.
mips (2] 77 myprog.f -g <@ Compile with full source-debugging
mips[3] dbx =@ Invoke the debugger

enter object file name (default is ‘a.out’): <RETURN> <@ Specify a.out as object
dbx version 1.30

Copyright 1986 MIPS Computer Systems Inc.

Type ‘help’ for help.

reading symbolic information ...
main: Source not available
(dbx) help = Enter help to display dbx commands available.

MOST USED COMMANDS

quit[!] - quit dbx

run argl arg2 ... < fl1 >& f2 - begin execution of the program

stop at <line> - suspend execution at the line

[n] cont <signal> - continue with signal

return - continue until the current procedure returns
print <exp> ... - print the value of the expressions

printf ”“string”, exp, ... - print expressions using format string(C)
where [n] - print currently active procedures (stack trace)
status - print trace/stop/record’s in effect

func <proc> - move to activation level of <proc>

<exp>[/ | ?])<count><format> - display count number of formatted memory item
file <file> - change current file to file

list <exp>:<int> - list source lines at <exp> for <int> lines

sh <shell command> - perform shell command

HISTORY, ALIAS, and INPUT/OUTPUT REDIRECTION

quit([!] - quit dbx
alias - print aliases
alias name ”“string” ~ set name to alias ”string”

Compiling a FORTRAN Program and Invoking the Debugger (dbx)

Reference Information

1-12

For a complete list of —g driver options, see f77(1) manual page in the User’s

Reference Manual.; see dbx(1) in the same manual for information on the debug-

ger.

Part I: FORTRAN Programmer’s Guide



Compiling, Linking, and Running Programs

Profiling

Optimizing

The compiler system permits the generation of profiled programs that, when exe-
cuted, provide operational statistics. This is done through driver option —p
(which provides pc sampling information) and the pixie and prof programs.

Below is an example of one use of the profiling facility, where default options
produce a pc—sampling listing. However, a variety of other options and methods
of profiling are available; if you wish to learn more about them (and the informa-
tion displayed in the pc—sampling listing), read Chapter 4 of the Language Pro-
grammer’s Guide, which describes the advantages and methods of profiling, and
gives examples of the various options and commands to achieve the desired re-
sults. See also prof(1) for detailed reference information.

mips[4]  f77 myprog.f -p —o myprog @——————— Compile with profiling
mips[5] myprog <@ Execute resulting object
mips[6]  prof myprog «@———————— Run profiler to display pc-sampling feature
Profile listing generated Wed Mar 30 10:27:03 1988 with:

prof myprog

V$ADDDE8 is an alternate entry within V$SUBDE8 (../v_addde8.s)
blkclr and bzero (bzero.s) synonymous: using latter

* -p[rocedures] using pc-sampling; *
* sorted in descending order by total time spent in each procedure; *
* unexecuted procedures excluded *

Each sample covers 8.00 byte(s) for 20% of 0.0500 seconds

$time seconds cum % cum sec procedure (file)

20.0 0.0100 20.0 0.01 P$DISPLAY.PUT_PART (../displa.pll)
20,0 0.0100 40.0 0.02 tskip (termcap.c)

20.0 0.0100 60.0 0.03 read (read.s)

Generating Profile Information on a FORTRAN Program

The table belows summarizes the optimizing function available:

Option Result

—Q02 The global optimizer (uopt) phase executes. It performs optimization
only within the bounds of individual compilation units.

—O1 Default option. This option causes the code generator and assembler

phases of compilation to improve the performance of your executable
object.

—O00 No optimization.

Part I: FORTRAN Programmer’s Guide 1-13



Chapter 1

The default option (—O1) causes the code generator and the assembler to per-
form basic optimizations such as constant folding, common subexpression elimi-
nation within individual statements, and common subexpression elimination be-
tween statements.

The global optimizer—invoked by the —QO2 option—is a single program that
improves the performance of an object programs by transforming existing code
into more efficient coding sequences. Although the same optimizer processes all
compiler optimizations, it does distinguish between the various languages sup-
ported by the compiler system programs to take advantage of the different lan-
guage semantics involved.

See the Languages Programmer’s Guide for details on the optimization tech-
niques used by the compiler and tips on writing optimal code for optimizer proc-
essing.

Performance
In addition to the optimizing options, the compiler system provides other options
that can improve the performance of your programs:
¢ The —feedback and —cord options (see f77(1) in the User’s
Reference Manual) together with the pixie(1) and prof(1) utili-
ties can be used to reduce possible machine cache conflicts. See
Reducing Cache Conflicts in Chapter 4 of the Language Pro-
grammer’s Guide for an example using these facilities.
¢ The link editor —G num and —bestGnum options offer a
means to control the size of the global data area, which can offer
significant performance improvements. See Limiting the Size
of the Global Pointer Data in Chapter 4 of the Language Pro-
grammer’s Guide and 1d(1) in the User’s Reference Manual for
more information.
¢ The —jmopt option permits the link editor to fill certain instruc-
tion delay slots not filled by the compiler front end. This option
may improve the performance of smaller programs not requiring
extremely large blocks of virtual memory. See the 1d(1) for
more information.
Byte Ordering Options
The compiler can produce program objects executable on target machines with
either a big—endian (with the —EB option ) or little-endian (—EL) byte ordering
scheme. By default, the compiler produces program objects executable on target
machines with the same byte ordering scheme as the compilation machine. See
Appendix D in the Language Programmer’s Guide for a description of of big
and little endian byte ordering.
1-14

Part I: FORTRAN Programmer’s Guide



Compiling, Linking, and Running Programs

Object File Tools

The following tools provide information on object files as indicated:

Archiver

odump: The odump tool lists headers, tables, and other selected
parts of an object or archive file. An explanation of the informa-
tion provided by odump can be found in Chapters 10 and 11 of
the Assembly Language Programmer’s Guide.

nm: The nm tool prints symbol table information for object files
and archive files.

file: The file tool lists the properties of program source, text,
object, and other files. This tool often erroneously recognizes
command files as C programs. It does not recognize Pascal or
LISP programs.

size: The size tool prints information about the text, rdata, data,
sdata, bss, and sbss sections of the specified object or archive
file(s). The contents and format of section data are described in
Chapter 10 of the Assembly Language Programmer’ s Guide.

For more information on these tools, see odump(1), nm(1), file(1), or size(1) in
the User’'s Reference Manual.

An archive library is a file that contains one or more routines in object (.0) file
format; the term object as used in this chapter refers to an .o file that is part of an
archive library file. When a program calls an object not explicitly included in the
program, the link editor (Id) looks for that object in an archive library. The edi-
tor then loads only that object (not the whole library) and links it with the calling
program.

The archiver (ar) creates and maintains archive libraries and has the following
main functions:

Copying new objects into the library
Replacing existing objects in the library
Moving objects about the library

Copying individual objects from the library into individual ob-
ject file.

See the ar(1) in the User’s Reference Manual for additional information on the
archiver.

Part I: FORTRAN Programmer’s Guide 1-15



Chapter 1

Run-Time Considerations

invoking a Program

File Formats

To run a FORTRAN program, invoke the executable object module produced by
the 77 command, enter the name of the module as a command. By default, the
name of the executable module is a.out. If you included the —o filename option
on the Id (or f77) command line, the executable object module has the name that
you specified.

FORTRAN requires four kinds of external files:

o sequential formatted

e sequential unformatted
¢ direct formatted

¢ direct unformatted.

The operating system implements such files as ordinary files and assumes that
they have the proper internal structure.

FORTRAN J/O is based on records. When a program opens a direct file, the re-
cord length of the records must be given. The FORTRAN I/O system uses the
length to make the file appear to be made up of records of the given length.
When the record length is 1, the system treats the files as ordinary system files
(as byte strings, in which each byte is addressable). A READ or WRITE request
on such files consumes bytes until satisfied, rather that restricting itself to a sin-
gle record.

Because of special requirements, sequential unformatted files will probably be
read or written only by FORTRAN /O statements. Each record is preceded and
followed by an integer containing the length of the record in bytes.

During a READ, FORTRAN I/O breaks sequential formatted files into records
by using each new-line indicator as a record separator. The FORTRAN 77
American National Standard does not define the required result after reading past
the end of a record; the I/O system treats the record as being extended by blanks.
On output, the I/O system writes a new-line indicator at the end of each record.
If a user program also writes a new-line indicator, the I/O system treats it as a
separate record.

Preconnected Files

1-16

The following table shows preconnected files at program start.

Unit# Unit
5 Standard Input
6 Standard Output
0 Standard Error

Part I: FORTRAN Programmer’s Guide



Compiling, Linking, and Running Programs

All other units are also preconnected when execution begins. Unit # is connected
to a file name fort.n. These files need not exist, nor will they be created unless
their units are used without first executing an open. The default connection is for
sequentially formatted I/O.

File Positions
The FORTRAN 77 standard does not specify where OPEN should initially posi-
tion a file explicitly opened for sequential I/O. The I/O system positions the file
to start—of—file, both for input and output. The execution of an OPEN statement
followed by a WRITE on an existing file causes the file to be overwritten, eras-
ing any data in the file. In a program called from a parent process, Units 0, 5,
and 6 are positioned as they come from the parent process.

Unknown File Status

When the parameter STATUS=UNKNOWN is specified in an OPEN statement,
the following occurs:

e If the file doesn’t already exists, it is created and positioned at
start—of—file.

e If the file already exists, it is opened and any data in the file is
truncated.

Run-Time Error Handling

When the FORTRAN run-time system detects an error, the following action
takes place:

e amessage describing the error is written to the standard error
unit (Unit 0) See Appendix A for a list of the error messages
and the appropriate action to take the action to take when one is
received.

o If the f77-dump-flag environment variable is set to yes, the pro-
gram is terminated with a signal

e acore file, which can be used with dbx (the debugger) to inspect
the state of the program at termination, is produced. For more
information on dbx, see the Languages Programmer’s Guide.

To invoke dbx using the core file, enter the following:

% dbx binary-file core

where binary_file is the name of the object file output (the default is a.out). For
more information on dbx, see Chapter 1.

Part I: FORTRAN Programmer’s Guide 1-17



Chapter 1

1-18

Part I: FORTRAN Programmer’s Guide



2

Storage Mapping

This chapter describes how the FORTRAN compiler implements size, alignment,

and value ranges for the various data types. This information is summarized in

Table 1.1.
Type Synonym Size Alignment Value Range
byte integer*1 8 bits | byte -128 .. 127
integer*1 8 bits | byte -128 .. 127
integer*2 16 bits | halfword1 -32,768 to 32,767
integer integer'4 | 32 bits | word 2 2% 2%
logical*1 8 bits | byte 0.1
logical*2 16 bits | halfword’ 0..1
logical logical*4 | 32 bits | word 2 0.1
real real*4 32 bits | word 2 See Note 1.
double precision | real*s 64 bits | doubleword® | See Note 1.
complex complex*8 | 64 bits | word 2
double complex | complex*16 [128 bits doubleword®
character 8 bits | byte -128 .. 127
'Byte boundary divisible by two.
2Byte boundary divisible by four.
3Byte boundary divisible by eight.

Table 1.1. Size, Alignment, and Value Range of FORTRAN Data Types

See the notes starting on the following pages for details on some of the items in

the table.

1. Approximate valid ranges for real and double are:

Maximum Value

3.40282356*10°8
1.7976931348623158%10°°8

real
double

Part I: FORTRAN Programmer’s Guide 2-1



Chapter 2

2-2

Minimum Values

Denormalized Normalized

real 1.40129846%10 4° 1.17549429%10 38
double | 4.9406564584124654*10 2% |2.2250738585072012%10 08

NOTE: When a REAL*16 declaration is encountered, the compiler issues a
warning message. REAL*16 items are allocated 16 bytes of storage per ele-
ment, but only the first eight bytes of each element are used; those eight

bytes are interpreted according to the format for REAL*8 floating numbers.

When a REAL*16 constant is encountered in a source program, the compiler
issues a warning message. The constant is treated as a double precision
(REAL*8) constant. REAL*16 constants have the same form as a double
precision constant, except he exponent indicator is Q instead of D.

2. Table 1.1 states that double precision variables always align on a

doubleword boundary. However, FORTRAN permits these variables to align
on a word boundary if a common statement or equivalencing requires this.

3. Forcing integer, logical, real, and complex variables to align on a halfword

boundary is not allowed., except as permitted by the —align8, —allgn16 and
-align32 command line options. See Chapter 1.

With the exception of equivalencing a double precision data item to a 32-bit
data item, no other equivalencing can be done that will misalign the items.

4. Within a program, integer*1, integer*2, and integer*4 are interchangeable

if integer*2 doesn’t force the integer*4 to align on a halfword boundary
and if integer*4 isn’t assigned a value outside the allowed range.

5. A complex data item is an ordered pair of real numbers; a double—complex

data item is an ordered pair of double—precision numbers. In each case, the
first number represents the real part and the second represents the imaginary
part.

6. Logical data items denote only the logical values TRUE and FALSE (written

as: .true. or false.).

7. You must explicitly declare an array in a dimension declaration or in a data

type declaration. The compiler follows these rules for dimension support:
¢ Allows up to seven dimensions.

o Assigns a default of one to the lower bound, if a lower bound
isn’t explicitly declared in the dimension statement.

o Creates an array the size of its element type times the number of
elements.

Part I: FORTRAN Programmer’s Guide



Storage Mapping

e Stores arrays in column—major order.

8. The following rules apply to shared blocks of data set up by the common
statements:

e The compiler assigns data items in the same sequence as they
appear in the common statement(s) defining the block.

¢ You can allocate both character and noncharacter data in the
same common block.

e When a common block appears in multiple program units, the
compiler allocates the same size for that block in each unit, even
though the size required may differ (due to varying element
names, types, and ordering sequences) from unit to unit. The
size allocated corresponds to the maximum size required by the
block among all the program units.

Part I: FORTRAN Programmer’s Guide 2-3



Chapter 2

2-4 Part I: FORTRAN Programmer’s Guide



3
FORTRAN
Program Interfaces

This appendix describes the coding interfaces between FORTRAN programs and
programs written in C or Pascal; it gives rules and examples for calling and pass-
ing arguments among these languages.

You may need to refer to other sources of information as you read this appendix:

e For information on storage mapping—how the variables of the
various languages appear in storage—refer to Chapter 2 (for
FORTRAN) of this manual and to Chapter 2 in the Languages
Programmer’s Guide (for other languages).

o For information on the standard linkage conventions the RIS-
Compiler system uses in generating code, see Chapter 7 of the
MIPS Assembly Language Programmer’s Guide.

For information on built—in functions that help you communicate with non—-FOR-
TRAN programs, see Chapter 4 of this manual.

FORTRAN/C Interface

Procedure and Function Declarations

Names

This section discusses items you should consider before writing a call between
FORTRAN and C.

In calling a FORTRAN subprogram from C, the C program must append an un-
derscore () to the name of the FORTRAN subprogram. For example, if the
name of the subprogram is matrix, then call it by the name matrix_. When FOR-
TRAN is calling a C function, the name of the C function must end with an un-
derscore.

Note that only one main routine is allowed per program. The main routine can be
written in either C or FORTRAN. Below is an example of a C and a FORTRAN
main routine.

(o] FORTRAN
main() { write(6,10)
printf(“hi!\n”); | 10 format (‘hi!’)
} end

Part I: FORTRAN Programmer’s Guide 3-1



Chapter 3

Invocations ( \

Invoke a FORTRAN subprogram as if it were an integer—valued function whose
value specifies which alternate return to use. Alternate return arguments (state-
ment labels) are not passed to the subprogram but cause an indexed branch in the
calling subprogram. If the subprogram is not a function and has no entry points
with alternate return arguments, the returned value is undefined. The FORTRAN
statement

call nret (*1,*2,*3)
is treated exactly as if it were the computed goto
goto (1,2,3), nret()

A C function that calls a FORTRAN subprogram can usually ignore the return
value of a FORTRAN subroutine; however, the C function should not ignore the
return value of a FORTRAN function. The table below shows equivalent func-
tion and subprogram declarations in C and FORTRAN programs:

C Function Declaration FORTRAN Declaration

double dfort_ double precision function dfort()

double rfort_() real function rfort()

int ifort_() integer function ifort()

intifort_() logical function Ifort() (
Note the following;:

¢ Avoid calling FORTRAN functions of type float, complex, and
character from C.

* You cannot return complex types between C and FORTRAN.

e A character-valued FORTRAN subprogram is equivalent to a C
language routine with two extra initial arguments: a data address
and a length.

Thus:

character*15 function g(...)

is equivalent to:

char resultl[];
long int length;
g_(result, length, ...)

and could be invoked in C by:

char chars[15]; .
g_(chars, 15); (

3-2 Part I: FORTRAN Programmer’s Guide



FORTRAN Program Interfaces

Arguments

The following rules apply to arguments passed between FORTRAN and C:

1.

All arguments must be passed by reference. That is, the argument must spec-
ify an address rather than a value. Thus, to pass constants or expressions,
their values must be first stored into variables and then the address of the
variable passed.

When passing the address of a variable, the data representations of the vari-
able in the calling and called routines must correspond, as shown in Table
C.1.

FORTRAN ]
integer*2 x short int x;
integer x long int x; or just int x;
logical x long int x;
real x float x;
double precision x double x;
complex x struct { float real, imag; } x;
double complex x struct { double dreal, dimag; } x;
character*6 x char x[6];

Table C.1. Equivalent FORTRAN and C Data Types

Note that FORTRAN requires that each integer, logical, and real variable
occupy 32 bits of memory.

The FORTRAN compiler may add items not explicitly specified in the
source code to the argument list. The compiler adds the following items un-
der the conditions specified: '

e Destination address for character functions, when called.

e Length of a character string, when an argument is the address of
a character string.

When a C program calls a FORTRAN subprogram, the C program must ex-
plicitly specify these items in its argument list in the following order:

1. Destination address of character functions.
2. Normal arguments (addresses of arguments or functions).
3. Length of character strings. The length must be specified as an

absolute value or integer variable. The next two examples illus-
trate these rules.

Part I: FORTRAN Programmer’s Guide 3-3



Chapter 3

Example 1: The following example shows how a C routine must specify the
length of a character string (which is only implied in a FORTRAN call).

FORTRAN call to sam*

external £ L. .
character*7 s Length | implicit.

integer b(3)

call sam(f, b(2), s)

C call to sam*

int £(); ) .
char s[7]; Length of s is explicit.

long int b [3];

sam (£, &b[1l], s, 7);

*sam is a routine written in FORTRAN.

Example 2: The following example shows how a C routine can specify the
destination address of a FORTRAN function (which is only implied in a
FORTRAN program).

FORTRAN Call to 1*

external £

character*10 £f,g

g = f() g f(address(g),length(f))
implied.

C Call to

char s[10]
£ (&s,10) ;€ Address and length explicit.

Function f*

character*10 function £()

f = 701234567894 .
return <€— Moves value to location

end . at passed address.

*f is a function written in FORTRAN.

Array Handling
FORTRAN stores arrays in column—major order with the leftmost subscript vary-
ing the fastest. C, however, stores arrays in the opposite arrangement, with the
rightmost subscripts varying the fastest, which is called row-major order. Here’s
how the layout of FORTRAN arrays and C arrays looks:

3-4

Part I: FORTRAN Programmer’s Guide

(



FORTRAN Program Interfaces

FORTRAN

integer t(2,3)
t(1,1), t(2,1), t(1,2), t(2,2), t(1,3), t(2,3)

C

int t([2][3];
t[01[0], t[01[1], t[0]([2], t([1]([0], t[1][1], t[1][2]

Note that the default for the lower bound of an array in FORTRAN is 1, whereas
itis0in C.
When a C routine uses an array passed by a FORTRAN subprogram, the dimen-

sions of the array and the use of the subscripts must be interchanged, as shown in
the following example.

FORTRAN caller: C called routine:

void
P___( a, i, 3
int _*j, *3

10

Dimensions and subscripts
are reversed.

1 is subtracted fro
the indices. j and i are
pointers to integers.

The FORTRAN caller prints out the value 99. Note the following:

Because arrays are stored in column—major order in FORTRAN
and row—major order in C, the dimension and subscript specifi-
cations are reversed.

In FORTRAN, the lower-bound default is 1, whereas it is 0 in
C; therefore, 1 must be subtracted from the indices in the C rou-
tine. Also, because FORTRAN passes parameters by reference,
the *j and *p are pointers used in the C routine.

Accessing Common Blocks of Data

The following rules apply to accessing common blocks of data:

¢ FORTRAN common blocks must be declared by common state-
ments; C can use any global variable. Note that the common
block name in C (sam_) must end with an underscore.

e Data types in the FORTRAN and C programs must match unless
you desire equivalencing. If so, you must adhere to the align-
ment restrictions for the data types described in Chapter 2.

Part I: FORTRAN Programmer’s Guide 3-5



Chapter 3

¢ If the same common block is of unequal length, the largest of the
sizes is used to allocate space.

¢ Unnamed common blocks are given the name BLNK .

The following gives examples of C and FORTRAN routines that access common

blocks of data.

C FORTRAN
struct S {int i; float j;lr_; subroutine sam()
main() {. common /r/i,r
sam_(); i = 786
printf(”%d %£f\n”, r_.i, r_.j); r = 3.2
} return

The C routine prints out 786 and 3.2.
FORTRAN/Pascal Interfaces

This section discusses items you should consider before writing a call between
FORTRAN and Pascal.

Procedure and Function Declarations

Names

In calling a FORTRAN program from Pascal, you must place an underscore (_)
as a suffix to routine names and data names.

To call FORTRAN from Pascal or vice versa, specify an underscore (_) as the
suffix of the name of the FORTRAN or Pascal routine being called. For exam-
ple, if the routine is called matrix, then call it by the name matrix_. When FOR-
TRAN is calling Pascal, the name of the called Pascal routine must end with an
underscore.

In Pascal, always declare the external FORTRAN subprogram or function with
VAR parameters.

Note that only one main routine is allowed per program. The main routine can be
written either in Pascal or FORTRAN. Below is an example of a Pascal and a
FORTRAN main routine.

Pascal FORTRAN

program p; write(6,10)

begin format ("hi!’)
writeln(”hi!”);| stop

end. end

3-6 Part I: FORTRAN Programmer’s Guide



FORTRAN Program Interfaces

Invocation

Arguments

If you have alternate return labels, you can invoke a FORTRAN subprogram as if
it were an integer—valued function whose value specifies which alternate return
to use. Alternate return arguments (statement labels) are not passed to the func-
tion but cause an indexed branch in the calling subprogram. If the subprogram is
not a function and has no entry points with alternate return arguments, the re-
turned value is undefined. The FORTRAN statement

call nret (*1,*2,*3)
is treated exactly as if it were the computed goto
goto (1,2,3), nret()

A Pascal function that calls a FORTRAN subroutine can usually ignore the return
value. The table below shows equivalent function declarations in Pascal and
FORTRAN.

Pascal FORTRAN

function dfort_(): double; double precision function dfort()
function rfort_(): real; real function dfort()

function ifort_(): integer; integer function ifort()

FORTRAN’s built-in data type complex doesn’t exist in Pascal and therefore
there isn’t a compatible way of returning these values from Pascal.

A character-valued FORTRAN function is equivalent to a Pascal language rou-
tine with two extra initial arguments — a data address and a length.

The following FORTRAN declaration:

character*15 function g(...)

is equivalent to the Pascal code:

type string = array[l..15];

var
length: integer;
a : array[1l..15] of char;

procedure g (var a: string; length: integer; ...);external;

and could be invoked by the Pascal line:
g_(a, 15);

The following rules apply to arguments specifications in both FORTRAN and
Pascal programs:

1. All arguments must be passed by reference. That is, the argument must spec-
ify an address rather than a value. Thus, to pass constants or expressions,
their values must be first stored into variables and then the address of the
variable passed.

Part I: FORTRAN Programmer’s Guide 3-7



Chapter 3

2. When passing the address of a variable, the data representations of the vari-

able in the calling and called routines must correspond, as shown in Table
C.2.

Pascal FORTRAN
integer integer*4, integer, logical
cardinal
char character
boolean logical*l
enumeration
real real, real*4
double double precision,real*8
procedure .. subroutine
record complex
r : real;
i : real;
end;
record double complex
r : double;
i : double;
end;

Table C.2. Equivalent FORTRAN and Pascal Data Types

Note that FORTRAN requires that each integer, logical, and real variable
occupy 32 bits of memory.

Functions of type integer, real, or double precision are interchangeable be-
tween C and Pascal, and require no special considerations.

The FORTRAN compiler may add items not explicitly specified in the
source code to the argument list. The compiler adds the following items un-
der the conditions specified:

o Destination address for character functions, when called.

¢ Length of character strings, when an argument is the address of a
character string.

When a Pascal program calls a FORTRAN subprogram, the Pascal program
must explicitly specify these items in its argument list in the following order:

1. Destination address of character functions.
2. Nommal arguments (addresses of arguments or functions).

3. Length of character strings. The length must be specified as an
absolute value or integer variable. The next two examples illus-
trate these rules.

Part I: FORTRAN Programmer’s Guide

(



FORTRAN Program Interfaces

Example: The following example shows how a Pascal routine must specify
the length of a character string (which is only implied in a FORTRAN call).

FORTRAN call to sam*

Length of s
external f is implicit.
character*7 s
integer b(3)

call sam(f,b(1l),s)

Pascal call to sam*
procedure f ; external;

s: array[l..7] of char;
: of integer;

Length of s
is explicit.

*sam is a routine written in FORTRAN.

Execution—Time Considerations

Array Handling

Pascal checks certain variables for errors at execution time, whereas FORTRAN
doesn’t. For example, in a Pascal program, when a reference to an array exceeds -
its bounds, the error is flagged (if runtime checks aren’t suppressed). You cannot
expect a FORTRAN program to detect similar errors when you pass data to it
from a Pascal program.

FORTRAN stores arrays in column—major order where the leftmost subscripts
vary the fastest. Pascal, however, stores arrays in the opposite arrangement, with
the rightmost subscript varying the fastest, which is called row—major order.
Also, FORTRAN’s default lower bound for arrays is 1. Pascal has no default;
the lower bound must be explicitly specified. Here’s how the different layouts
look:

Pascal

var t: array([l..2,1..3] of integer;
tf1,11, tIi1,21, tI1,3]1, t(2,1], tIl2,2], t[2,3]

FORTRAN

integer t(2,3)
t(,1), t(2,1), t(1,2), t(2,2), t(1,3), t(2,3)

When a Pascal routine uses an array passed by a FORTRAN program, the dimen-
sions of the array and the use of the subscripts must be interchanged. The exam-
ple below shows the Pascal code that interchanges the subscripts.

Part I: FORTRAN Programmer’s Guide 3-9



Chapter 3

In the following example, the FORTRAN routine calls the Pascal procedure p, ( )
receives the value 99, and prints it out. '

FORTRAN Pascal
integer a(2,3) type arry = array[l..3, 1..2];
call p(a, 1, 3 ) procedure p ( var a: arry; var i,j:integer);
write(6,10)a(1,3) begin
10 format (1x,19) alj, i1 := 99;
stop end
end

In the next example, the Pascal routine passes the character string “0123456789"
to the FORTRAN subroutine s_, which prints it out and returns.

Pascal

type string = array[l..10] of char;
procedure s_( var a: string; i: integer);external;
/* Note the underbar */
program s;
var
r: string;
begin
r:= ”0123456789";
s_(r,10); ('
end.

FORTRAN

subroutine s(c)
character*10 c
write(6,10)c

10 format (6, 10)c
return

end

Accessing Common Blocks of Data
The following rules apply to accessing common blocks of data:

¢ FORTRAN common blocks must be declared by common state-
ments; Pascal can use any global variable. Note that the com-
mon block name in Pascal (sam_) must end with an underscore.

e Data types in the FORTRAN and Pascal programs must match
unless you desire implicit equivalencing. If so, you must adhere
to the alignment restrictions for the data types described in
Chapter 2.

¢ If the same common block is of unequal length, the largest of the
sizes is used to allocate space.

e Unnamed common blocks are given the name _ BLNK__, (
(where _ is the underscore character).

3-10 Part I: FORTRAN Programmer’s Guide



FORTRAN Program Interfaces

Example

The following gives examples of FORTRAN and Pascal routines that access

common blocks of data.

Pascal

FORTRAN

var
a_: record
i : integer;
r : real;
end;

procedure sam _;
external;

program s;

begin

a_.i := 4;
a_.r := 5.3;
sam _;

end.

10

subroutine sam()
common/a/i,r
write(6,10)1i,r
format (1x,I5, F5.2)
return

end

The FORTRAN routine prints out 4 and 5.30.

Part I: FORTRAN Programmer’s Guide

3-11



Chapter 3

3-12

Part I: FORTRAN Programmer’s Guide



4
System Functions
and Subroutines

This chapter describes extensions to FORTRAN 77 that are related to the UMIPS
operating and compiler systems.

Library Functions
The following tables summarize the functions that are available in the FOR-
TRAN run-time library. These functions provide an interface from FORTRAN
programs to the system in the same manner as the C library does for C programs.
The compiler automatically loads an interface routine when it processes the asso-

ciated call.
Function Purpose
abort abnormal termination
access determine accessibility of a file
alarm execute a subroutine after a specified time
chdir change default directory
chmod change mode of a file
ctime return system time
dtime return elapsed execution time
etime return elapsed execution time
exit terminate process with status
fdate return date and time in an ASCII string
fgetc get a character from a logical unit
flush flush output to a logical unit
fork create a copy of this process
fputc write a character to a FORTRAN logical unit
fseek reposition a file on a logical unit
fstat get file status
ftell reposition a file on a logical unit
gerror get system error messages
getarg return command line arguments
getc get a character from a logical unit
getcwd get pathname of current working directory
getenv get value of environment variables
getgid get user or group ID of the caller
getlog get user’s login name

Summary of System Interface Routine Library (Part 1 of 2).

Part I: FORTRAN Programmer’s Guide 41



Chapter 4

Function Purpose

getpid get process ID

getuid get user or group ID of the caller
gmtime return system time

iargc return command line arguments
idate return date or time in numerical form
ierrno get system error messages

irand return random values

isatty find name of a terminal port

itime return date or time in numerical form
kill send a signal to a process

len tell about character objects

link make a link to an existing file

loc return the address of an object

ltime return system time

perror get system error messages

putc write a character to a FORTRAN logical unit
gsort quick sort

rand* return random values

signal change the action for a signal

sleep suspend execution for an interval
stat get file status

time return system time

ttynam find name of a terminal port

unlink remove a directory entry

wait wait for a process to terminate

Summary of System Interface Routine Library (Part 2 of 2).

You can display reference information on the functions shown in the figure using
the man command in the following format:

man 3f function

4-2 Part I: FORTRAN Programmer’s Guide



System Functions and Subroutines

Intrinsic Subroutine Extensions

DATE

This section describes the intrinsic subroutines that are extensions to FORTRAN
77. The following summarizes applicable rules for the subroutines.

1. The subroutine names are specially recognized by the compiler. A user—
written subroutine with the same name as a system subroutines routine must
be declared in an EXTERNAL statement in the calling subprogram.

2. Using a user—written subroutine with the same name as a system subroutine
in one subprogram does not preclude using the actual system subroutine in a
different subprogram.

3. To pass the name of a system subroutine as an argument to another subpro-
gram, the name of the system subroutine must be declared in an INTRINSIC
statement in the calling subprogram.

4. 'When a system subroutine name is passed as an argument to another subpro-
gram, the call to the system subroutine via the formal parameter name in the
receiving subprogram must use the primary calling sequence for the subpro-
gram (when there is more than one possible calling sequence).

The following table gives an overview of the system subroutines and their func-
tions; they are described in detail in the sections following the table.

Subroutine | Information Returned

DATE Current date as nine-byte string in ASCII representation.

IDATE Current month, day, and year, each represented by a
separate integer.

ERRSNS Description of the most recent error.

EXIT Terminates program execution.

FREE Deallocates an area of memory.

TIME Current time in hours, minutes, and seconds as an
eight-byte string in ASCII representation.

MYVBITS Moves a bit field to a different storage location.

The subroutines are described in detail starting on the next page.

Retumns the current date as set by the system; the format is as follows:

CALL DATE (buf)

where buf is a variable, array, array element, or character substring nine bytes
long. After the call, buf contains an ASCII variable in the format dd-mmm-yy,
where dd is the date in digits, mmm is the month in alphabetic characters, and yy
is the year in digits.

Part I: FORTRAN Programmer’s Guide ' 4-3



Chapter 4

IDATE

ERRSNS

EXIT

FREE

Returns the current date as three integer values representing the month, date, and
year; the format is as follows:

CALL IDATE (m,d,y)

where m, d, and y are either INTEGER*4 or INTEGER*2 values representing the
current month, day, and year. For example, the values of m, d, and y on August
10th, 1989, are as follows:

m= 8
d = 10,
y = 89

Returns information about the most recent program error; the format is as fol-
lows:

CALL ERRSNS(argl,arg2,arg3,arg4,argb)

The arguments (argl, arg2, etc.) can be either INTEGER*4 or INTEGER*2 vari-
ables; upon return from ERRSNS, they contain the information shown in the fol-
lowing table:

Argument Contents

argl UNIX global variable errno, which is then reset
to zero after the call.

arg2 Zero

arg3 Zero

arg4 Logical unit number of the file which was being processed
when the error occurred.

args Zero

Although only argl and arg4 return relevant information, arg2, arg3, and arg5
are always required.

Causes normal program termination, and optionally returns an exit-status code

CALL EXIT (status)

where status is an INTEGER*4 or INTEGER*2 argument containing a status
code.

Deallocates an area of memory previously allocated by MALLOC; the format is
as follows:

FREE (p)

where p is the pointer previously returned by MALLOC, but not already given to
FREE. The memory is returned to the memory manager, making it unavailable
to the programmer.

Part I: FORTRAN Programmer’s Guide

(

('



System Functions and Subroutines

TIME

Returns the current time in hours, minutes, and seconds; the format is as follows:

CALL TIME (clock)

clock can be a variable, array, array element, or character substring; it must be
eight bytes in length. After execution, clock contains the time in the format
hh:mm:ss, where hh, mm, and ss are numerical values representing the hour, the
minute, and the second.

MVBITS

Transfers a bit field from one storage location to another; the format is as fol-

lows:

CALL MVBITS (source, sbit,length,destination,dbit)

The arguments are defined in the following table:

Argument

Type

Contents

source

sbit

length

destination

dbit

integer variable or
array element

integer expression

integer expression

integer variable or
array element

integer expression

Source location of bit field to
be transferred.

First bit position in the field to
be transferred from source.

Length of the field transferred from source.

Destination location of the bit field.

First bit in destinatiorto which the field
is transferred.

" The arguments can be declared as INTEGER*2 orINTEGER*4 .

Intrinsic Function Extensions

The following table gives an overview of the intrinsic functions added as exten-

sions of FORTRAN 77.
Function | Information Returned
SECNDS | Elapsed time as a floating point value in seconds.
RAN The next number from a sequence of pseudo random numbers.
MALLOC | Allocates an area of memory.

These functions are described in detail in the following sections.

Part I: FORTRAN Programmer’s Guide

4-5




Chapter 4

SECNDS

RAN

MALLOC

4-6

Returns the number of seconds since midnight, minus the value of the passed ar-
gument; the format is as follows:

s = SECNDS (n)

After execution, s contains the number of seconds past midnight less the value
specified by n. Both s and »n are single—precision, floating point values.

Generates a random number; the format is as follows:

v = RAN(s)

The argument s is an INTEGER*4 variable or array element; s serves as a seed in
determining the next random number and should initially be set to a large, odd
integer value. This permits the computation of multiple random numbers series
by supplying different variable names as the seed argument to RAN.

Allocates an area of memory and returns the address of the start of that area; the
format is as follows:

p = MALLOC (n)

* where n is an integer specifying the amount of memory to be allocated, in bytes.

If successful, it returns a pointer to the first element of the region, otherwise it
returns an integer 0. The region of memory is not initialized in any way.

Part I: FORTRAN Programmer’s Guide



Appendix A

Run-Time Error Messages

When the FORTRAN run-time system detects an error, the following action
takes place:

e amessage describing the error is written to the standard error

unit

(Unit 0)

e If the f77-dump—flag environment variable is set to yes, the pro-
gram is terminated with a signal

e acore file, which can be used with dbx (the debugger) to inspect
the state of the program at termination, is produced.

If the environment variable f77—-dump-flag is set to any value other than yes, the
program terminates with one of the error codes shown in the following table.

Diagnostic Message

Explanation

100 error in format

101 illegal unit number

102 formatted io not allowed

103 unformatted io not allowed

The format contained a syntactic error. The
format is printed as part of the diagnostic
message.

No more units are available. All unit num-
bers have been used.

Cannot do formatted I/O on a file opened as
FORM-"UNFORMATTED’. See the de-
scription of the FORM clause of the OPEN
statement in Chapter 8 of the FORTRAN
Language Reference manual.

Cannot do formatted 1/O on a file not
opened as FORM—-"UNFORMATTED’. See
the description of the FORM clause of the
OPEN statement in Chapter 8 of the FOR-
TRAN Language Reference manual.

Part I: FORTRAN Programmer's Guide

A-1



Appendix A

A-2

Diagnostic Message

Explanation

104 direct io not allowed

105 sequential io not allowed

106 can’t backspace file

107

108 can’t stat file

109 unit not connected

110 off end of record
111 truncation failed in endfile
112 incomprehensible list

input

113 out of free space

114 unit not connected

115 read unexpected character

Cannot do direct access I/O on a file not
opened as SEQUENTIAL="DIRECT’. See
the description of the SEQUENTIAL clause of
the OPEN statement in Chapter 8 of the FOR-
TRAN Language Reference manual.

Cannot do sequential access 1/0 on a file
opened as SEQUENTIAL="DIRECT’. See the
description of the SEQUENTIAL clause of the
OPEN statement in Chapter 8 of the FOR-
TRAN Language Reference manual.

Cannot backspace on files not associated with
a random access device, for example on a file
associated with a tape device.

Not used

Access to a unit connected to a file was denied
by the operating system, as indicated by the
accompanying system error code. See the in-
tro(2) manual page in the System Program-
mer’s Manual for an explanation of the system
error code.

The specified unit number is not connected to
a file. This message can occur after a CLOSE
is executed.

An attempt was made to read or write past
end-of-record.

An attempt to truncate a file using an
ENDFILE statement failed.

Input selected list-directed operations does not
match the type of the variables in the input list.
The expected type or invalid character encoun-
tered is specified in the diagnostic message.

The operating system denied the request for
space required by the Fortran run-time sys-
tem.

An attempt was made to access a unit that was
not connected; the open failed.

Unexpected character encountered on a read
operation. The character did not match the
format specified for the READ.

Part I: FORTRAN Programmer’s Guide




Run-Time Error Messages

Diagnostic Message Explanation

116 blank logical input field Invalid characters encountered in a read of
logical value. Logical inputs must be speci-
fied as one of ¢, f, .true., .false. (upper— or
lowercase.

117-125 Not used.

The file specified in an OPEN statement with
STATUS=NEW already exists. The file can-
not be overwritten when STATUS=NEW is
specified.

127 can’t find ’old’ file The file specified in an OPEN statement with
STATUS=NEW does not exist. The file can-
not be created when STATUS=0LD is speci-
fied.

128 unknown system error A system error specified by the system error
number in the diagnostic message occurred.
See the intro(2) manual page in the Program-
mer’s Reference Manual for an explanation of
the error code.

126 'new’ file exists

129 requires seek ability The unit is not connected to a random access
device, as is required by the I/O statement
causing the error condition.

130 illegal argument Invalid *form* specified.

131 Not used.

Part I: FORTRAN Programmer’s Guide A3



Appendix A

A-4

Part I: FORTRAN Programmer’s Guide



Numbers

66 command line option, 1-6

A

—align16 driver option, 1-7, 2-2
—align32 driver option, 1-7
—align32 driver option, 2-2
—align8 driver option, 1-7
—align8 driver option, 2-2

ar (archiver), 1-15

archiver, 1-15

argument
exchanging with C programs, 3-3—3-4
exchanging with Pascal programs, 3—7—3-9

array
handling with C programs, 34
handling with Pascal programs, 3-9—3-10

—automatic driver option, 1-8

B

bestGnum option, 1-14
byte, alignment, size, and value ranges, 2-1—2-4
byte ordering options, 1-14

C

—C driver option, 1-8
C language programs, interfacing with, 3—1

C program interface
examples
argument passing, 34
comon block access, 3—-6
passing arrays, 3-5
invoking a FORTRAN program, 3-2

C programs, compiling with FORTRAN programs, 1-3
cache conflicts, reducing, 1-14

character, alignment, size, and value ranges, 2-1—2-4
—check_bounds driver option, 1-8

—c0120 driver option, 1-8

—col72 driver option, 1-8

Part I: FORTRAN Programmer’s Guide

Index

command line options, 1-6—1-9

common blocks
accessing from C programs, 3-5—3-6
accessing from Pascal programs, 3-10—3-12

complex, alignment, size, and value ranges, 2-1—24
cord option, 1-14

core dump, after error, 1-17

—cpp driver option, 1-9

D

DATE intrinsic subroutine, 4-3
~d_lines driver option, 1-9

dbx, 1-12—1-13
See also debugging

debugging, options, 1-12—1-13 -
debugging (dbx), example, 1-12

double precision, alignment, size, and value ranges,
2-1—-2-4

driver options, 1-6—1-9
drivers, purpose, 1-1

E

-EB option, 1-14

-EL option, 1-14

ERRSNS intrinsic subroutine, 44
EXIT intrinsic subroutine, 44
error handling, run—time, 1-17

examples
compiling object programs, 1-3
debugging (dbx), 1-12
linking object programs, 1-4
profiling, 1-13

—extend_source driver option, 1-9

F

~F driver option, 1-9

—F option, 1-9

[ suffix, 1-1

77 driver command, syntax, 1-1
feedback option, 1-14

X-1



Index

file formats, 1-16
file properties, listing with file utility, 1-15

files
positions, 1-16, 1-17
unknown status on OPEN, 1-17

functions, run—time library, 4-1—4-2

G

G option, 1-14

IDATE intrinsic subroutine, 44

—i2 driver option, 1-10

integer, alignment, size, and value ranges, 2-1—2-4
intrinsic subroutines, 4-3—4-5

invoking a program, 1-16

J

jnopt option, 1-14

L

library functions, 4-1—4-2

library, archive, copying and replacing programs, 1-15
link editing, using driver command, 1-2

link libraries, required, 1-4—1-5

linking objects, 1-4—1-5

logical, alignment, size, and value ranges, 2—-1-—2-4

M

MALLOC, intrinsic function, 4-6
MVBITS intrinsic subroutine, 4-5
—m driver option, 1-10

X-2

N

—N driver option, 1-10

new-line indicator, in output records, 1-16
nm, printing symbol table information, 1-15
—noextend_source driver option, 1-10

-noi4 driver option, 1-10

o)

.0 suffix, 1-2

odump, uisng to obtain object layout, 1-15
optimizer, 1-13—1-14

options, driver, FORTRAN-specific, 1-6—1-9
options, driver, 1-6—1-9

P

Pascal program interface
examples
argument passing, 3-8
array handling, 3-9—3-10
common block access, 3—-11
invoking a FORTRAN program, 3-6
rules and conventions, 3-6—3-12

Pascal programs, compiling with FORTRAN pro-
grams, 1-3

PL/1 programs, compiling with FORTRAN programs,
1-3

performance, improving, 1-14
pixie program, 1-13, 1-14
prof program, 1-13, 1-14
profiling, 1-13

R

RAN, intrinsic function, 4-6

range checking, 1-8

real, alignment, size, and value ranges, 2-1—2-4
record formats, 1-16

record separator, 1-16

run-time
error handling, 1-17

Part I: FORTRAN Programmer’s Guide




Index
library functions, 4-1—4-2 ' T
TIME intrinsic subroutine, 4-5

S

size utility, 1-15

U

underscore, use when calling C program, 3-1

source file, naming convention, 1-2 unformatted record formats, 1-16
subroutines, intrinsic, 4-3—4-5

subscript range checking, 1-8 V

symbol table, printing, 1-15 VMS-FORTRAN, default mode, 1-10

Part I: FORTRAN Programmer’s Guide X-3



Index

X-4

Part I: FORTRAN Programmer’s Guide



About Part Il of This Book

Part II of this book describes MIPS-FORTRAN, which contains full American
National Standard (ANSI) Programming Language FORTRAN (X3.9-1978) plus
MIPS extensions that provide full VMS FORTRAN compatibility to the extent
possible without the VMS operating system or VAX data representation. MIPS—
FORTRAN also contains extensions that provide partial compatibility with pro-
grams written in SVS FORTRAN and FORTRAN 66.

MIPS-FORTRAN is a superset of VMS FORTRAN; the MIPS RISCompiler™
system can covert source programs written in VMS FORTRAN into machine
programs executable under RISC/os™ (UMIPS).

Type Keywords
INTEGER COMPLEX

<etc.>

shows that INTEGER* 1 and BYTE are extensions while INTEGER and COM~-
PLEX are standard Fortran 77 keywords.

Intended Audience

This manual is intended as a reference manual rather than a tutorial, and assumes
familiarity with some algebraic language or prior exposure to FORTRAN.

MIPS-FORTRAN is referred to as FORTRAN in this manual, except in such
instances where distinctions between MIPS-FORTRAN and ANSI FORTRAN
(FORTRAN 77 or FORTRAN 66) are being specifically discussed.

Corequisite Publications

This manual describes the FORTRAN language specifications. Refer to the
MIPS-FORTRAN Programmer’s Guide (Part I of this book) for information on
the following topics:

e How to compile and link edit a FORTRAN program.
e Alignments, sizes, and variable ranges for the various data types.

e The coding interface between FORTRAN programs and pro-
grams written in C and Pascal.

Part Il: FORTRAN Language Reference iii



¢ File formats, run—time error handling, and other information re-
lated to the operating system (RISC/os).

e Operating systems functions and subroutines that are callable by
FORTRAN programs.

Refer to the Languages Programmer’ s Guide (3200DOC) for information on the
following topics:

¢ Anoverview of the compiler system.

¢ Information on improving the program performance, showing
how to use the profiling and optimization facilities of the MIPS
RISCompiler system.

¢ A detailed description of the debugger (DBX).

e The dump utilities, archiver, and other tools for maintaining
FORTRAN programs.

For information on the interface to programs written in assembly language, refer
to the Assembly Language Programmer’s Guide.

Organization of Information

The following topics are covered in this manual:

¢ FORTRAN language elements

¢ Data types, constants, variables and arrays

e Expressions

o FORTRAN statements, grouped according to the general class of
functions they perform:

(V]

0

4]

(o)

0

Specification statements
Assignment statements
Control statements
Input/output statements

Format specifications

Appendix A contains tables showing the intrinsic functions supported.

Part Il: FORTRAN Language Reference



About Part Il

Syntax Conventions

The following conventions and symbols are used in the text to describe the form
of FORTRAN statements:

UPPER CASE Upper case letters and words are to be written as
shown, except where noted otherwise.

lower case Lower case abbreviations and words represent
characters or numerical values that you define.
You replace the abbreviation with the defined

value.
[1 Brackets are used to indicate optional items.
{} Braces surrounding two or more items indicate

that at least one of the items must be specified.

I The OR symbol separates two or more optional
items.

An ellipsis indicates that the preceding otpional
items may appear more than once in succession.

O A pair of parentheses is used to enclose entities and
must be written as shown.

(blank) Blanks have no significance unless otherwise
noted.

Below are two examples illustrating the syntax conventions.

DIMENSION a(d) [,a(d)]
indicates that the FORTRAN keyword DIMENSION must be written as
shown, that the entity a(d) is required, and that one or more of a(d) may be

optionally specified. Note that the pair of parentheses () enclosing d are re-
quired.

{STATIC | AUTOMATIC} v [,v]

indicates that either the STATIC or AUTOMATIC keyword must be written
as shown, that the entity v is required, and that one or more of v items may be
optionally specified.

Part Il: FORTRAN Language Reference



vi

Part Il: FORTRAN Language Reference



Contents

About Part II of This Book

Intended AudiencCe . ........cciiiiiiiin it i it et i e, iii
Corequisite Publications . .. .......oiittiirii it it iii
Organization of Information .............. .. .ot iv
Syntax CONVENtioNS . .. ....vttie et in et iin e enreieeenneeneenns v

Chapter 1: FORTRAN Elements and Concepts

0 13 10 1-1
FORTRAN Character Set . .......vvineirtieieniieieeneeanneennnn. 1-1
ESCape SeqUeNCeS . ... vvvtiit ittt it i e e 1-2
Collating SEqUENCE . . . ..ottt ittt iet et iie e it e e 1-2
SymboliC Names . ...ttt ittt ittt e e et 1-3
Scope of SymbolicNames ...........coviiiiiiininnninenenn. 14
Source Program Lines ...........oiiuiiiiiinetinineeineennnnannns 1-4
L0) 13411 01 1P 14
Debugging Lines ..........coiiiiiiiiiiieinnineeiaeennenn, 1-5
Initial Lines . . ..ot i i i e e e e 1-5
Fixed Format . ........c.oiiiiiiiiiiiii e iiieennennannnns 1-5
Continuation Lines ........... ... ittt 1-6
Blank Lines . . ..ottt i e e i e e e 1-7
Program Organization ................iiiiiiiiiinnreinenneennnnnns 1-7
FORTRAN Statements . . ... ovvvn it iieiiieeiineneeennnnns 1-7
Program Units . ... it i e e 1-7
Main Program ...........coiiiiiiiinii i i i 1-7
11 10)0) (0 04 1 14 £ P 1-8
Intrinsic Functions ............c.c.coiiiiiiniiiiiii i, 1-8
Executable Programs ....................ooeinn, e 1-8
Executable and Nonexecutable Statements ..............ccciveinenennn.. 1-9
Executable Statements . ............iiiiieiin i, 1-9
Nonexecutable Statements . ............veiieerieernnennennnnn 1-9
Order of Statements . ........ouittnrnintininnnenennennnn. 1-10
Execution SEqUENCE ... ...ttt i e 1-11

Part Il: FORTRAN Language Reference vii



Chapter 2: Data Types, Variables, and Arrays

O IV W ot e e 2-1
Data Types of Symbolic Names .. ........oovveeiinnnnenennn.. e 2-1
Implicit Typingof Data ............cutiiinineeiiiiiiiieeiiannn.. 2-2
ConStaNtS ...ttt 2-2
Integer CONStantS ... ...vvirririnn e iieeiineeneernnneenns 2-3
Hexadecimal Integer Constants . ...........coeeeeeernnneneennnn. 2-3
Octal Integer ConStants .. .........veerrernnneeeeennnnnennnnns 2-4
Real Constants ................ O 24
Double Precision Constants . ...........oveeeunerunnneenneennn. 2-5
Complex CONSLANLS .+ . vvvtiteiiererie e inreeineennneenns 2-6
Logical ConsStants .. .........covvereireniinneenennnnnererennns 2-7
Character ConStantS . ......vvuiriineeeerriiieieeeinnennenns 2-7
Hollerith ConStants . . ...t iiee it iiiaeeeneann 2-8
Rules ............ f e e e e 2-9
Bit Constants . ............iuiiirinrt it 2-9
Vaniables ... ... e 2-11
Character SubSIngs . ......ooviiiiiit it iie e, 2-11
SubSting Names . . .. ..ottt ittt e 2-11
Substring Values €1, 2 . .....iurier ettt 2-12
RECOTAS . . .t i e e e et e e e 2-13
Overview of Records and Structures ................ovuvununn... 2-13
Record and Field References ..............coviiiiinnnnennnn.. 2-14
Aggregate Assignment Statement . ............ ... 2-14
AITayS ..o e 2-14
Array Names and TyPes ... ..viiineeniiiiiie e e 2-15
Array Declarators ................. e et 2-15
Value of DimensionBounds .................................. 2-16
Array Size . ... i et e 2-17
Storage and Element Ordering ...............co0iiiiiiivenn.... 2-17
Subscripts . .....iii i et e e 2-18

viii Part IIl: FORTRAN Language Reference



Chapter 3: Expressions

OV TV W ittt e e e e 3-1
Arithmetic EXPressions .............ouiiiiiinniiiinnrennnnnnnnnnnn. 3-1
Arithmetic Operators .. .......c.cvveuirirennnreennnneennennnnn. 3-2
Interpretation of Arithmetic Expressions ......................... 3-2
ArithmeticOperands ............cciiiiiiiiiniiiiin .. 3-3
Arithmetic Constant EXpressions ............covvviiivneenn... 34
Integer Constant EXpressions ............coveiiiiennnnnnennn.. 3-5
Rules for Evaluating Arithmetic Expressions ..................... 3-5
Single-Mode Expressions ............cieiiiiiiiinn... 3-5
Mixed-Mode Expressions . ..........ccoeviieninennn.n. 3-5
ExXponentiation ...........c.ouiiiiiiiiiin ittt 3-6
Integer Division ......... ... ittt i i 3-6
Character EXPressions . .........uuiiiteitiiiineeneeeernininnnnnn. 3-6
Concatenate Operator ..........c.cvvuiireerineerrnnnennnennnns 3-7
Character Operands ..........c.ooviiiieiiiiinnenneeennnnnnnnn. 3-7
Character Constant EXpressions . . ........ooevvvveeennenennnnn... 3-8
Relational Expressions .................. P 3-8
Relational Operators . . .....cvit ittt ittt iiie 3-8
Relational Operands ................. e reeset e ey 3-8
Evaluating Relational EXpressions .............ccoviviiiinennn... 3-8
Arithmetic Relational Expressions ................ccciivivnnn.. 3-9
Character Relational EXpressions . ..............cvviinnnnennn. 3-9
Logical EXPIessions . ........uuiuiniiiiiiii ittt 3-10
Logical Operators . ... ..vun 'ttt iieeiee e iiiiee s 3-10
Logical Operands ............uuiiiiinnerriiinneennnnnn. 3-11
Interpretation of Logical Expressions ...................c.ccouu... 3-12
General Rules for Evaluating EXpressions . ...........coovviiiinnnnnnn.. 3-13
Precedence Of Operators . . ....vovetiiinien e eiiiineennnnn. 3-13

Integrity of Parentheses and InterpretationRules .................. 3-14

Part |I: FORTRAN Language Reference ix



Chapter 4: Specification Statements

L0 ) 1 1o 4-1
AUTOMATIC STATIC ... e e i e e e e 4-3
U ittt i i i e e e e e e e 4-3
SYIAX ottt e s 4-3
Method of Operation .............c.iiniiiiiinnenneneen .. 4-3
RUleS fOr USe . ..vviii ittt i it i ettt e et 4-4
|5 € 111 0] [P 4-4
BLOCK DAT A . ittt it it it ia s 4-5
L0 4-5
)1 ). PP 4-5
Method of Operation . ...........c.coiiritninninnenneeenennnn. 4-5
RUIES Of USE ..ttt ittt it it ittt ittt naennannns 4-5
L0031 1% 1) [P 4-6
L8O 4-6
B £ - U 4-6
Method of Operation . .........c.oveiiieinrinenineneenenennnns 4-6
RUIES Of USE .ottt i it i sttt e e 4-7
RESIICHONS . ..ottt r ittt it e i it e it e it e 4-7
|5 11 o) (1P 4-8
DA A L e e e i e e 4-10
U ittt it ittt i ittt et et e i e e 4-10
241 . PP 4-10
Method of Operation ..........coiviviiiinrinenriinnneneennn. 4-10
RUIES . it e e e 4-11
Restrictions . ...... i e e et e eee e i e e e e 4-12
Data Type Statements (MUMETIC) ... .vvverntene e eeeneennennnnn. 4-13
U ittt ittt it et e e e e e e i e 4-13
R 711 . 4-13
Method of Operation . ..........c.cveiiininernvnnnneeneneenen. 4-14
Rules forUse ......coviiiiiiin it ittt e, 4-14
EXamples ...ttt i e e e e e e 4-15
Data Type Statements (Character) ............vvvveiiinernernenenennns 4-16
USe oot Peraneaaes 4-16
701 4-16
Rules forUse ......ccoviiiiiiiiii it 4-16
EXample . ... e e e 4-17
DIMEN SION .ot i ittt et e e e 4-18
USE it e e e 4-18
751 . 4-18
Method of Operation .............ccoiiiiiiiiineiieinnnnnn. 4-18
Rules forUse ......cvviiiiiiiiiiii ittt 4-18
€ 11 o) (T 4-18

Part Il: FORTRAN Language Reference



EQUIVALENCE . ...ttt ittt ettt ettt et
L
S MK . .ttt e e
Method of Operation .............coiiiiiiiinneiinnennnnnnn.
RulesOf USe . ....oiiiiiii it et et
ReSITICHONS . . ..ottt i e e et
Example 1 .. ... i e e
Example 2 ..o e e
EXTERNAL ... i i e e e

D)7 1 b P
RulesforUse ........ccoiiiiiiiiii ittt
ReStHCHONS .. ..ottt i i i e
Example .. ...t e
IMPLICIT .. i e e
DS o e e
SyNtaX 1 e
Method of Operation — Syntax 1 ..............covviviiiinnn...
R 017
Method of Operation — Syntax 2 .............ccvviiinnnnnnnnn.
D 01 b
Method of Operation— Syntax3 ................cccvvviinnnn...
Rules for Use — Al SYNtaxes ............ovvuienneeneennnnnnns
Examples . ........iiiiiii i e e
INTRINSIC ... e e

SYIEAX oottt e e
RUIES fOr USe . .vitir it e e e e
| 4 T (o)
EXamples . .......oiiiiiiiiii i e
NAMELIST .o e e et e e
L8
R 1 V.S
RUlES Of USE . .oto ittt e e e e e e e e
Examples .. ......oiiiiiii
PARAMETER . ... . e e e e

SYIEAX © .ottt ettt e e
Method of Operation ............ccovviiiiineeeiiineninnnn.
RulesforUse ........ooiiiiiiiii i
ReStiCtions . . ... ..ooiiiii i e
Examples .. ....... i e

Part Il: FORTRAN Language Reference

4-19
4-19
4-19
4-19
4-19
4-20
4-20
4-21
4-22
422
422
422
4-22
4-23
423
4-24
424
424
4-24
425
4-26
4-26
426
427
427
428
428
4-28
428
4-28
428
4-28
4-29
429
429
4-29
4-29
4-30
4-30
4-30
4-30
4-30
432
4-32

Xi



1200100 15 : S e 4-33

L0 4-33
R 4L . G 4-33
RUIES fOr USe . ..iiiiii ittt ittt ittt ie e n e aearaenens 4-33
2Ty (1 () P 4-33
Example . ... e it e s 4-34
PROGRAM ...ttt ittt it ettt et et i 4-35
LT 4-35
R 117 <O 4-35
RuUles Of USe . ..oit i i i i i it e it it 4-35
RECORD ... i e et e et e et e e e 4-36
L 4-36
B 1L . 4-36
Method of Operation ..........oiiiiinriiiiiierneneeeennennns 4-36
Examples .......... f e e e et 4-36
SAVE e e e i 4-37
L0 4-37
R L . 4-37
Method of Operation ............coiviiiirieinrrnnnnnennnenn. 4-37
RUIES Of USE .o v ittt ittt ittt et ittt et c it i e e e 4-38
2T 1y (o2 (o) ¢ 4-38
EXamples ......iiiiiiiiiiiiii i i i i i e e 4-38
STRUCTURE ... ittt ittt ittt teraeeaaiananns 4-39
L0 . 4-39
Syntax (General) ..........oiiriii it i i P, 4-39
UNION Declaration Syntax . ........ccoeveeeneenrnernnenenennns 4-40
Method of Operation ..........c.ccvuiiiininneenneeneeneennnnns 4-40
Examples(General) ........coiviiniiiiiniiiiinin e, 4-41
Examples (UNION) . ...vtiiir ittt it it ieeein i, 4-42
VOLATILE ...ttt ittt et ettt ie i eee e enrernaennns 4-43
L8 4-43
4L .S 4-43

Chapter 5: Assignment and Data Statements

O IV W ittt it it e e i e e e e 5-1
Arithmetic Assignment Statements ..............ovviiiiiernrnnnnnnn.. 5-1
Logical Assignment Statements ..............veureeernnnneennnannnnn 5-5
Character ASSIZNMENE . ... ..tttte it iineeineneernneeoineenns 5-5
Aggregate ASSINMENt . ......vtti ettt it it i i i e 5-6
Statement Label Assignment . ............uiiiiiiniinneiinennennnenns 5-6
Data Initialization ...........c.cciiiiiiiiiiin ittt 5-7
IMPlEd—DO ... i i e e e e 5-8
LA P 5-8
Syntax . ......iiiiiiii i, P 5-8
Method of Operation ...........coviiiiiiinriiinnennnnennnnn 5-8-
RULES . . e e e 5-8

xi Part Il: FORTRAN Language Reference



Chapter 6: Control Statements

CALL . e e e 6-3
L 6-3
N 01 6-3
Method of Operation . .............uiiiiniiiiinnnnnnnnn 6-3
Rules Of USE ... oottt et 6-3
Example . ... e 64
CONTINUE ...ttt et 6-5
DS o e e 6-5
A 1 ) S 6-5
Method of Operation .............ciiiiiiiiiiiiinieneennnnnn. 6-5
DO e 66
L £ 66
A 11 S PP 6-6
Methodof Operation ............coiiiiiiiiiininiirnnnnnn.. 6-6
Rules of USe . ..ot et 6-8
ReSIHCHONS . ..o ot i it et it 6-8
Example . ... 6-9
DOWHILE . ...t Ceeae 6-10
USe L 6-10
N 81 . 6-10
Method of Operation .............ccoiiiiirriiiiiiinnenennnnn. 6-10
ELSE .. 6-11
U o e 6-11
D 1 . 6-11
Method of Operation ............ccoiiiiiiienneiiiiinennnnnnn. 6-11
Rules 0f Use ...ttt et 6-11
RestriCHONS . . ... i e e e 6-12
EXample ... e 6-12
ELSEIF .. 6-13
U i e 6-13
D) 0L P 6-13
Method of Operation ...........couiiiiiiinnniinnnneennnnnnn. 6-13
Rules 0f USe ...t ettt e 6-14
ReStriCHONS . . .....vii i e e 6-14
Example .. ... e 6-14
END L 6-15
U e 6-15
D 0L 6-15
Methodof Operation ............. ... iiiiiiineiennnnnnnn. 6-15
Rules 0f USe ....ooviii i e 6-15
END DO ... 6-16
U i 6-16
0 L 6-16

Part IIl: FORTRAN Language Reference Xiii



Xiv

Syntax ............
Example ..........

Use ...oovvvevn..

Use ...covvvvin...
Syntax ............

Method of Operation

Rulesof Use .......
Example ..........
GO TO (Symbolic Name) ..
Use ..oovvevnnnn.
Syntax ............

Method of Operation

Rulesof Use .......
Example ..........
IF (Arithmetic) ...........
Use .oovvvviennn,
Syntax ............

Method of Operation

Rulesof Use .......
Example ..........
IF (Branch Logical) .......
Use ...oooiiiiit
Syntax ............

Method of Operation

Example ..........
IF (Test Conditional) ......
Use ..oovvvvvvnnnn
Syntax ............

Method of Operation

Restrictions . .......

Syntax ............
RETURN ...............

Syntax ............

e 6-17
........................................ 6-17
........................................ 6-17
........................................ 6-17
........................................ 6-17
........................................ 6-18
........................................ 6-18
........................................ 6-18
........................................ 6-18
........................................ 6-19
........................................ 6-19
........................................ 6-19
........................................ 6-19
........................................ 6-19
........................................ 6-19
........................................ 6-20
........................................ 6-20
...... 6-20
........................................ 6-20
e 6-20
........................................ 6-20
........................................ 6-21
........................................ 6-21
........................................ 6-21
........................................ 6-21
........................................ 6-21
........................................ 6-21
........................................ 6-22
........................................ 6-22
........................................ 6-22
........................................ 6-22
........................................ 6-22
........................................ 6-23
........................................ 6-23
......................................... 6-23
........................................ 6-23
..... 6-24
........................................ 6-24
........................................ 6-25
........................................ 6-25
........................................ 6-25
........................................ 6-25
........................................ 6-26
........................................ 6-26
........................................ 6-26
........................................ 6-26

Part Il: FORTRAN Language Reference



Syntax ............

Method of Operation

Chapter 7: Input/Qutput Processing

Records .................
Formatted Records .

Unformatted Records

Endfile Records ....
I/O Statements ...........

........................................

........................................

........................................

........................................

........................................

........................................

.......................................

........................................

........................................

Unformatted Statements .. ....cov it iie i ittt e ittt

Formatted Statements

External Files ......
Internal Files ......
Methods of File Access .. ..
Sequential Access . . .
Direct Access ......
Keyed Access .....

Connection of a Unit

........................................

........................................

........................................

........................................

........................................

........................................

........................................

........................................

........................................

........................................

Disconnection of a Unit ..ottt ittt

Chapter 8: Input/Output Statements

ACCEPT ...............

Example ..........

Method of Operation

Examples .........

CLOSE .................

Method of Operation
DECODE ...............

Purpose ...........

Syntax ............

........................................

........................................

----------------------------------------

----------------------------------------

........................................

& e s 6 4 s e s s s s e B e s s o s s 8 s e w e s s e s s s e s e s s e s o e

........................................

........................................

........................................

........................................

........................................

........................................

........................................

........................................

........................................

........................................

........................................

Parameter Explanations ................cco0iiiiiiiiiiiinneen..

Method of Operation

Part II: FORTRAN Language Reference

........................................

6-27
627
627
6-27

7-1
7-1
7-1
72
72

7-2
7-3
7-3
-4
74
7-5
7-5

7-6
-7

-7

8-1
83
8-3
8-3
8-3
8-3
84
84
84
84
84
8-5
8-5
8-5
8-6
87

87

87
87

Xv



XVi

DEFINEFILE . ...ttt ittt iie e eneeeeiaennannenns 8-8
PUIPOSE .« it e e e e 8-8
R 1L . QA 8-8
Parameter Explanations ...............coiiiiirineennnninnnnnnn. 8-8
Method of Operation .............. P 8-8
DELETE . .. i i it e i e i e 89
PUIPOSE .« oot e et e 8-9
B 41 S 8-9
Parameter Explanations ................ccuviiiniinnnnnennnn.n. 8-9
Method of Operation .............c.cviiiiiiineninennnnnennnnn. 8-9
Examples . .....coviniiiiiiii i i i e i e e 8-9
1) ) 8-10
PUIPOSE .ot e e e e e 8-10
DL . 8-10
Parameter EXplanations ..............coiiiiiiiiiniinnnennnnnn 8-10
Method of Operation .............cciiiiiiiiinenrinennnnennnn. 8-10
ENDFILE ...........cciiiiiiiiiiin.. PPt 8-11
PUIPOSE . o e . 8-11
N 11 ) S 8-11
Method of Operation .............cciviiriiineininennnnennnnn 8-11
Examples .......... e e e, 8-11
FIND o e e e e 8-12
PUIPOSE .o et e e e 8-12
R 01 TN - 8-12
INQUIRE ... it i e et ettt e 8-13
PUIDOSE . ottt e e 8-13
N 01 S 8-13
Method of Operation ..............ciiiiiiiiineennennnennnn. 8-17
Examples . ...ttt i e 8-17
OPEN . 8-18
PUIPOSE .ot e e e e 8-18
D11 S 8-18
Rulesof Use ...t et 8-23
EXamMPIES . ..ottt e e e e 8-23
PRINTorTYPE ............. ettt et e, 8-24
PUIDOSE . ottt e e e 8-24
D7 1 . 8-24
Rulesof Use ...t i e et 8-24
BXaAmMDIeS ...t e 8-24
READ (DiT€CE ACCESS) « v v v v vt tte ettt i ten e ie e et iae e en s 8-25
PUIPOSE .« oottt e 8-25
D)7 1 b 8-25
Parameter Explanations ................coviiiiiiiiniinnennnn. 8-25
READ (INdexXed) . ..ovvvvinniiiit ittt ettt iee e 8-26
PUIDOSE .o e 8-26
R 1L S 8-26
Parameter Explanations ...............co0iiiiiiiirnennennn. 8-26
READ (Internal) . . . ovvvn ittt ittt it e e e e et et e ie e 8-27

Part ll: FORTRAN Language Reference



PUIPOSE .ottt e i e et e e 8-27

7 41 8-27
Parameter EXplanations .............couuiiiieeneneenennnarnnens 8-27
READ (Sequential) . ........ivuiiernunenernenennenneneneenennnnnas 8-28
PUIPOSE . it i e it 8-28
) 41 . < e, 8-28
Namelist-Directed ...........ccoiiiiiiiiiiiiiiiiiniineennnans 8-28
Parameter EXplanations ..............ciiiiininiennnennnnnnnn. 8-28
Method of Operation ............coveiiiiinennnennnnnnn R 8-29
RUIES . ottt it e e e e i e e 8-29
EXampIes . ...ttt i e 8-32
REWIND ..o i i i et ettt et inne e, 8-33
U8 ittt i i e e e e e e et e 8-33
I 1L 8-33
Method of Operation .............cciiiiiiiniineeinennnnnnnnn. 8-33
Examples . ...t e e 8-33
REWRITE ... i i et i et et eaeeaens 8-34
B L. QAP 8-34
Parameter EXplanations ..............ccoiiiiiinriineennennnn. 8-34
RUIES Of USE .ottt ittt ittt it it ittt ittt ia i 8-34
251 1) o) L 8-34
UNLOCK ittt ittt ettt enastaeeneernnannenns “es 8-35
1y 0] 8-35
A 4L . QA 8-35
Parameter EXplanations .............ouiiiineerinennennnennnn. 8-35
Method of Operation ............ciiiiiiiinenneenneennnnnnnns 8-35
Examples ......ooiiiiiiii i i et e 8-35
WRITE (Dir€Ct ACCESS) + v vt vt e eie it e tteeneneenennsonenennenennes 8-36
PUIPOSE . o e e e e 8-36
N7 11 . Qe 8-36
Parameter Explanations ............ ... .ottt 8-36
Rulesof Use ........ccoiiiiiiiiiiiiiiiiiie i, e 8-36
WRITE (Indexed) . .. ..oviinn ittt ittt et e, 8-37
PUIPOSE .ot e e e e e 8-37
B 11 b 8-37
Parameter Explanations ..................... e, 8-37
Rulesof USe ....coviiiir it it et e iiie e enns 8-37
WRITE (Internal) . ...ttt it it e i et in s 8-38
PUIPOSE . o e e e e e 8-38
N 4L .G 8-38
Parameter EXplanations ...............coiiiiiniiinennnnennnn.. 8-38
Rules Of USe ...ttt it et et c i 8-38

Part Il: FORTRAN Language Reference Xvii



WRITE (Sequential) .......... N e e et e e 8-39
PUIPOSE . et e e e e e 8-39
8L . S 8-39
Parameter Explanations ............... ... o i, 8-39
Method of Operation ............c.coeiiiiiniiiiinnennnnnnnn.. 840
RUIES ..o . 840
EXamples ...ttt e e 842

Control Information List —cilist ...........cooiviiiiniiiinn .., 8-43
Unit Specifier —unum ...........c00iiiiiiiiiiniiaen... 8-44
Format Specifier — FMT ... ... ...ttt 844
Namelist Specifier — NML . ..........iiiiiiiiiiinennnnn.. 8-45
Record Specifier —REC ....... ...ttt inannn 8-45
Key-Field—Value Specifier—KEY ............cciiiviininn.... 845
Key—of-Reference Specifier —KEYID ...................o..t. 846
Input/Output Status Specifier —ios ..., 8-46
Error Specifier — ERR . ....... ...ttt 846
End—of-File Specifier —END ............ccoiiiiiiiiinnnnnn. 847

Input/Output List — i0lSt . ..., 847
Input List ... 847
OUIPUL LSt . ..o e 8-48
Implied-DOLIStS . ... ..o it it e 848
Example .. ... e 848

Data TransferRules . ........ ... ittt 849
Unformatted Input/Output ...........cooiiiieiineeinnennnn.. 849
Formatted Input/Output ...........coiuiiiiiiinrninnennnn.n, 8-49

Chapter 9: Format Specification

OV TVI W L. 9-1

Format Stored as a CharacterEntity ......................ccoiiiinn... 9-1

FORMAT Statement ...........ooiutietrrnnneenernernnnenninennnn. 9-2
Format Specification ............ ...ttt 9-2
Repeatable DesCriptors . .. .....c.cviin vttt 9-3
Format Specifier Usage ..............coiiiiiiiiinnnnnnnn. 9-3
Variable Format EXpressions .............c.cooviiiinieinneeinn.. 9-5
General Rules forusing FORMAT ......................c.o.... 9-7
InputRules Summary ............oitiiiiinniiiiiinneeennn, 9-8
Output Rules Summary ............ccoviiiiinneeeninnnnnnnn... 9-8

Field and Edit DeSCHPLOTS .. .......outtttiiiete e e, 9-9

Field Descriptor Reference ..............c.ccoiiiiiiiiin .. 9-9
Numeric Field Descriptors . .........couveiiininneeeeinnnnnnn.. 9-9
Default Field Descriptor Parameters ................coovvuvunnnn. 9-10
ITField DesCriptor . ...ttt it ettt et 9-10
O Field DesCriptor . ...ttt 9-12
ZField DesCriptOr .. vvi ettt it 9-13
FField Descriptor . . . ..o vvttiiii ettt 9-14
EField Descriptor . .........iuiiiiiiiiiiiiiiiiiiiiiiinennnn 9-16
DField DesCriptor . .......oiviiuiiiiiie ittt 9-18
GField DeSCriptor . ..ottt ie e 9-19

Xviii

Part ll: FORTRAN Language Reference



P Edit DeSCIPIOr .. vttt ettt e e eiiie e eniie e 9-21

Scale Factor . ......couiiiiiiiiiiiiiiii i 9-22
LEditDescriptor ..........cooiiiiiiiiiiin e beeeeee 9-23

AEdit DesCriplor .. ..ottt ittt ittt ti i 9-24
Repeat Counts . ....oviiniiiit ittt ittt ent e, 9-25
HField Descriptor ........ooiiiiiiiiiini i eennnneeennnn. 9-26
Character Edit DesCHiptor ... ..o veti it iie i i einennearennns 9-26

QEdit Descriptor .......oviiiiiiin it e 9-27

Edit DescriptorReference ............c.oiiiiiiiiiiiiiiniiinnneenn. 9-28
XEdit DesCriptor . ...ovviirin ettt iiie i 9-28

T Edit DesCriPtOr . ..ottt ittt ittt et en e eenennenanns 9-28
TLEdit DeSCHPIOr . ..o vttt it ien e 9-28
TREditDesCriplor . ....oovviiii it it iiiine i 9-28

BN Edit DesCriplor . ... i ittt it ie i eieinn e 9-29

BZ Edit DesCriptor ... vvt ittt it it e e 9-29

SP Edit DesCHPIOr ..ottt iiieiieiieeereenneenennneenns 9-29

SS Edit Descriptor .....ovtvtii ittt it it i e e 9-29

S Edit DesCriplOr ...t i ittt i e e e e e e 9-29

Colon DeSCriPIOr ..o vttt ittt it ei ettt e 9-29

S Edit DesCIiPIOr .. .vvtitiit ettt it e 9-30
Complex DataEditing ...........couiiiiiii ittt iieiineennnnns 9-30
Carriage Control .. .......coiiirr ittt iiieeie e 9-31

Slash Editing . . ...ovvittie ittt i it i i i ce e eeie e 9-31
Interaction Between /O Listand Format . . ......................ooaa.. 9-32
List-Directed Formatting . .........ccoiiriiriineiinreriiineennnennns 9-33
List-DirectedInput . . . . ..o e 9-33
List-Directed Output . ........couuntirnnnrninnerrnneeennnnnnn 9-35

Chapter 10: Functions and Subprograms

OV eIVIEW L.t e e e e 10-1
Statement FunCtions .. .......uuiiiiriiiin ittt it 10-2
Defining a Statement Function .. ............ccoiiiiiiinnn.. 10-2
Referencing a Statement Function ..................ccvin... 10-3
Operational Conventions and Restrictions ........................ 10-3
Parameter Passing ..............coiiiiiiiiiiianneinnn.. e 104
Dummy Arguments ...........ceiiinirrerenrernrenneenneenns 104
Built-InFunctions ........... ...ttt 10-5
Function and Subroutine Subprograms ................ccciiiiiiiiia... 10-6
Referencing Functions and Subroutines .......................... 10-6
Executing Functions and Subroutines .......,.......cccovvvun... 10-7
FUNCTION .. o et ettt e 10-9
U o e e e 10-9
N 4L . 10-9
Rulesof Use ....... ..ottt i i, 10-9
Restrictions .. ...ttt i e 10-10

Part Il: FORTRAN Language Reference Xix



SUBROUTINE ... ittt ittt ettt e it e te it 10-11
Use .ooviviiiiiiinnn.. e ettt e e e 10-11
R 51 . P 10-11
Rules Of USe ..iviiiiiiii ittt it e et et e e eee e 10-11
ReStHCHONS ., . oottt it ittt i it et ee e 10-11

A 1 (A 10-11
U ittt ittt it ittt et e et e e et e 10-12
Syntax ............. ettt e e 10-12
Method of Operation ...........ccviiiinirnennennennennenn. 10-12
Rules Of USe .. ..cviiiiiii it ettt ettt ia s 10-13
] (613 o) T 10-14

Chapter 11: Compiler Options

OPTIONS Statement . ........uiueerneernnnneennneeenneenneeenneens 11-1

IN-Line OptionS ... ..oiiitit ittt et et e 11-2
SCOLT2 0ption .......oiviiiiiii it 112
$COLI20 Option .. ....uiiieeee ettt eeii e i e 11-2
$F66DO OPLON .. ..\ttt eineeiiiiiiiiieiiiineeenens 11-2
$INCLUDE Option . .....vvveteeiiiireeeeeeiiieeeeennnnn.. 11-3
BINT2 OptiOn ...ttt ittt et 11-3
BLOG2 OptON ...ttt ettt e e 11-3

Appendix A: Intrinsic Functions

Genericand SpecificNames .............ccoiiiiiiiiiiiiiinnennnnnn.. A-1

Referencing an Intrinsic Function .................. .. ... .. ..., A-1

Operational Conventions and Restrictions . .............coivviennnnnn.. A-2

List Of FUNCHONS ... ...iiittiiii it et i it it iine e A-2

XX

Part Il: FORTRAN Language Reference



Overview

1
FORTRAN Elements
and Concepts

This chapter provides definitions for the various elements that comprise a FOR-
TRAN program. The FORTRAN language is written using a specific set of char-
acters that form the words, numbers, names, and expressions that make up FOR-
TRAN statements. These statements form a FORTRAN program. The FOR-
TRAN character set, rules for writing FORTRAN statements, the main structural
elements of a program, and the proper order of statements in a program are dis-
cussed in this chapter.

FORTRAN Character Set

The FORTRAN character set consists of 26 upper—case and 26 lower—case letters
(alphabetic characters), characters O through 9 (digits), and special characters.
This manual refers to letters (uppercase and lowercase) together with the under-
score ( _) as extended alphabetic characters. The extended alphabetic characters
together with the digits are also referred to as alphanumeric characters.

The complete character set is as follows:

Letterss: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

Digits: 0123456789

Special Characters:

Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
, Comma

. Decimal Point

$ Currency Symbol
Apostrophe

: Colon

! Exclamation Point
_ Underscore

” Quotation Mark

+ 1

~ AN~ x|

-

Part Il: FORTRAN Language Reference 1-1



Chapter 1

Digits are interpreted in base 10 when a numeric value is represented.

A special character may serve as an operator, a part of a character constant, a part
of a numeric constant, or some other function.

Blank characters may be used freely to improve the appearance and readability of
FORTRAN statements. They have no significance in FORTRAN statements,
except in the following cases:

®

When used in character constants

When used in H- and character—editing in format specifications
When used in Hollerith constants

To signify an initial line when used in column 6 of source line

When counting the total number of characters allowed in any one
statement

These special considerations are discussed in more detail in the appropriate sec-

tions.

The compiler aligns character string constants and unequivalenced scalar local
character variables on an INTEGER word boundary. It places a null character
after each character string constant appearing outside a DATA statement for
compatibility with routines written in C.

Collating Sequence

The collating sequence for letters and digits defines the relationship between
them and is used to compare character strings.

Part Il: FORTRAN Language Rerference

( )



Elements and Concepts

The collating sequence is determined as follows:

Symbolic Names

A is less than Z, and a is less than z. The order of listing the al-
phabetic characters above specifies the collating sequence for
alphabetic characters. The relationship between the same letter
in lowercase and uppercase is unspecified.

0is less than 9. The order in which digits are listed above de-
fines the collating sequence for digits.

Alphabetic characters and digits are not intermixed in the collat-
ing sequence.

The blank character is less than the letter A (upper and lower-
case), and less than the digit 0.

The special characters given as part of the character set are not
listed in any given order. There is no specification as to where
special characters occur in the collating sequence.

A symbolic name is a sequence of characters used to identify the following user—
defined local and global entities:

Local

Global

variable

constant

array

statement function
intrinsic function
dummy procedure

common block
external function
subroutine

main program

block data subprogram

A symbolic name can contain any alphanumeric characters; digits and _ (under-
score) are allowed in addition to upper— and lower—case alphabetic characters.
However, the first character must be a letter.

Part Il: FORTRAN Language Reference

1-3



Chapter 1

Examples of valid symbolic names are:
CASH C3P0 R2D2 LONG_NAME _THIS_
Examples of invalid symbolic names in are:

X*4 (Contains a special character)
3CASH (First character is a digit)

Scope of Symbolic Names
The rules for determining the scope of symbolic names are as follows:

1. A symbolic name that identifies a global entity, such as a common block,
external function, subroutine, main program, or block data subprogram has
the scope of an executable program. It must not be used to identify another
global entity in the same executable program.

2. A symbolic name that identifies a local entity, such as an array, variable, con-
stant, statement function, intrinsic function, or dummy procedure, has the
scope of a single program unit. It must not be used to identify any other local
entity in the same program unit.

3. A symbolic name assigned to a global entity in a program unit must not be
used for a local entity in the same unit. However, it may be used for a com-
mon block name, or an external function name, that appears in a FUNCTION
or ENTRY statement.

Source Program Lines

A source program line can be thought of as a sequence of character positions,
called columns, numbered consecutively starting from Column 1 on the left.
Lines can be classified as comment lines, initial lines, continuation lines, and
debugging lines (an extension to FORTRAN 77.

Comments
A comment line is used solely for documentation purposes and does not affect
the execution of a program. A comment line may appear anywhere and has one
of the following characteristics:
e Anupper—case C (C) or an asterisk (*) in Column 1, and any
sequence of characters from Column 2 through to the end of the
line
¢ Ablankline
1-4

Part II: FORTRAN Language Rerference



Elements and Concepts

Initial Lines

Initial lines contain the FORTRAN language statements that make up the source
program; these statements are described in detail under Program Organization
later in this chapter. Each FORTRAN line is divided into the following fields:

e Statement label field

e Continuation indicator field
o Statement field

e Comment field

The fields in a FORTRAN line can be entered either on a character—per—column
basis, or by using the TAB character to delineate the fields, as described in the
following sections.

Fixed Format

Consider a FORTRAN line to be divided into columns, with 1 character per col-

umn as indicated below:
Field Column
Statement Label 1 through 5
Continuation Indicator 6
Statement 7 to the end of the line or to the

start of the comment field

Comment (optional) 73 or ! through end of line

Part Il: FORTRAN Language Reference 1-5



Chapter 1

Continuation Lines

A continuation line is a continuation of a FORTRAN statement and is identified
as follows:

¢ Columns 1 through 5 must be blank.

e Column 6 contains any FORTRAN character, other than a blank
or the digit 0. Column 6 is frequently used to number the con-
tinuation lines.

As with initial lines, Columns 7 through the end of the line contain the FOR-
TRAN statement or a continuation of the statement.

Up to 19 continuation lines are allowed. (

Part ll: FORTRAN Language Rerference



Elements and Concepts

Blank Lines

A line that is entirely blank is a comment line. It can be used to improve the
readability of a program.

Program Organization

Program units are made up of FORTRAN statements. A FORTRAN program
consists of one or more program units.

FORTRAN Statements

Program Units

Main Program

FORTRAN statements are used to form program units. Each statement is written
from Column 7 onwards of an initial line and Column 7 onwards of as many as
19 continuation lines. A statement must not contain more than 1320 characters,
including blank characters.

A statement must not begin on a line that contains any portion of a previous
statement, except as part of a logical IF statement.

The END statement signals the physical end of a FORTRAN program unit, and
begins in Column 7 or any later column of an initial line. No other statement
may have an initial line that contains END as its first three nonblank characters.

All FORTRAN statements, except for assignment and statement function state-
ments, begin with a keyword. A keyword is a sequence of characters that identi-
fies the type of FORTRAN statement.

A statement label provides a means of referring to individual FORTRAN state-
ments. A statement label consists of one o five digits—one of which must be
nonzero—placed anywhere in Columns 1 through 5 of an initial line. Blanks and
leading zeros are not significant in distinguishing between statement labels.

The following statement labels are equivalent:
” 123 ” 11123 ” Ill 2 3[! II00123I/

Two or more statements in a program unit must not have the same statement la-
bel.

It is not necessary to label a FORTRAN statement. However, only labeled state-
ments may be referenced by other FORTRAN statements. PROGRAM, SUB-
ROUTINE, FUNCTION, BLOCK DATA, and INCLUDE statements must not
be labeled.

A program unit consists of a sequence of statements and optional comment lines.
It may be a main program or a subprogram. The program unit defines the scope
for symbolic names and statement labels.

A program unit always has an END statement as its last statement.

The main program is the program unit that initially receives control upon execu-
tion.

Part Il: FORTRAN Language Reference 1-7



Chapter 1

Subprograms

A main program may have a PROGRAM statement as its first statement. It may
contain any FORTRAN statement, except a FUNCTION, SUBROUTINE,
BLOCK DATA, ENTRY or RETURN statement. A SAVE statement in a main
program does not affect the status of variables or arrays. A STOP or END state-
ment in a main program terminates execution of the program.

The main program may be a non—-FORTRAN main program. See Chapter 3 of
the FORTRAN Programmer’ s Guide for information on writing FORTRAN pro-
grams that interact with programs written in other languages.

A main program may not be referenced from a subprogram or from itself.

A subprogram is a program unit that receives control when referenced or called
by a statement in a main program or another subprogram.

A subprogram may be:

e A function subprogram identified by a FUNCTION statement

e A subroutine subprogram identified by a SUBROUTINE state-
ment

e A block data subprogram identified by a BLOCK DATA state-
ment

¢ A non-FORTRAN subprogram

Subroutines, external functions, statement functions, and intrinsic functions are
collectively called procedures. A procedure is a program segment that performs
an operational function.

An external procedure is a function or subroutine subprogram that is processed

independently of the calling or referencing program unit. It may be written as a
non-FORTRAN subprogram as described in Chapter 3 of the FORTRAN Pro-
grammer’s Guide.

Intrinsic Functions

Intrinsic functions are supplied by the processor and are generated as in-line
functions or library functions. See Appendix A for a description of the func-
tions, the results given by each, and their operational conventions and restric-
tions.

Program units are made up of FORTRAN statements. A FORTRAN program
consists of one or more program units.

Executable Programs

1-8

An executable program consists of exactly one main program and zero or more
of each of the following entities:

¢ Function subprogram

¢  Subroutine subprogram

Part Il: FORTRAN Language Rerference



Elements and Concepts

e Block data subprogram
e Non-FORTRAN external procedure

The main program must not contain an ENTRY or a RETURN statement. Upon
encountering a RETURN statement, the compiler issues a warning message; at
execution time, a RETURN statement stops the program. Execution of a pro-
gram normally ends when a STOP statement is executed in any program unit or
when an END statement is executed in the main program.

Executable and Nonexecutable Statements
FORTRAN statements are classified as executable or nonexecutable statements.

Executable Statements

An executable statement specifies an identifiable action and is part of the execu-
tion sequence in an executable program. Executable statements are organized
into three classes. ’

Assignment statements:

e Arithmetic, logical, statement label (ASSIGN), and character
assignment

Control statements:

e Unconditional, assigned, and computed GO TO
e Arithmetic IF and logical IF

e Block IF, ELSE IF, ELSE, and END IF

e CONTINUE

e STOP and PAUSE

e DO

e CALL and RETURN

e END

Input/Output statements:
e READ, WRITE, and PRINT

¢ REWIND,

Nonexecutable Statements

A nonexecutable statement is not part of the execution sequence. A statement
label is permitted on most types of nonexecutable statements but that label must
not be used for an executable statement in the same program unit.

Part Il: FORTRAN Language Reference 1-9



Chapter 1

A nonexecutable statement may perform one of the following functions:

o Specify the characteristics, storage arrangement, and initial val-
ues of data

¢ Define statement functions

e Specify entry points within subprograms

¢ Contain editing or formatting information

¢ Classify program units

¢ Specify inclusion of additional statements from another source

The following data type statements are classified as nonexecutable:

CHARACTER type
COMPLEX
DIMENSION
DOUBLE PRECISION
INTEGER
LOGICAL
REAL
BYTE
Other program statements that are also classified as nonexecutable include the
following:
BLOCK DATA INCLUDE
COMMON INTRINSIC
DATA PARAMETER
ENTRY PROGRAM
EQUIVALENCE SAVE
EXTERNAL SUBROUTINE
FORMAT Statement function
FUNCTION VIRTUAL
IMPLICIT

Order of Statements

The following rules determine the order of statements in a main program or sub-
program:

1. Inthe main program, a PROGRAM statement is optional; if used, it must be
the first statement. In other program units, a FUNCTION, SUBROUTINE,
or BLOCK DATA statement must be the first statement.

2. Comment lines can be interspersed with any statement and can precede a
PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA statement.

3. FORMAT and ENTRY statements may be placed anywhere within a pro-
gram unit after a PROGRAM, FUNCTION, SUBROUTINE, or BLOCK
DATA statement.

1-10 Part II: FORTRAN Language Rerference



Elements and Concepts

Execution Sequence

ENTRY statements may appear anywhere in a program unit except:
e between a block IF statement and its corresponding END IF statement

e within the range of a DO loop; that is, between a DO statement and the
terminal statement of the DO loop

The FORTRAN 77 standard requires that specification statements, including
the IMPLICIT statement, be placed before all DATA statements, statement
function statements, and executable statements.

Specification statements specifying the type of the symbolic name of a con-
stant must appear before the PARAMETER statement that identifies the
symbolic name with that constant.

The FORTRAN 77 standard allows PARAMETER statements to intersperse
with IMPLICIT statements or any other specification statements, but a PA-
RAMETER statement must precede a DATA statement.

PARAMETER statements that associate a symbolic name with a constant
must precede all other statements containing that symbolic name.

All statement function statements must precede the first executable state-
ment.

IMPLICIT statements must precede all other specification statements except
PARAMETER statements.

The last statement of a program unit must be an END statement.

NOTE: These rules apply to the program statements after merging of lines
included by all INCLUDE statements. INCLUDE statements may appear
anywhere in a program unit.

The execution sequence in a FORTRAN program is the order in which state-
ments are executed. The normal sequence of execution is the order in which
statements appear in a program unit. This is carried out as follows:

o Execution begins with the first executable statement in a main
program and continues from there.

¢ When an external procedure is referenced in a main program or
in an external procedure, execution of the calling or referencing
statement is suspended. Execution continues with the first exe-
cutable statement in the called procedure immediately following
the corresponding FUNCTION, SUBROUTINE, or ENTRY
statement.

Part Il: FORTRAN Language Reference 1-11



Chapter 1

¢ Execution is returned to the calling statement via an explicit or
implicit return statement. ' (

¢ Normal execution proceeds from where it was suspended or |
from an alternate point in the calling program.

¢ The executable program is terminated normally when the proces- |
sor executes a STOP statement in any program unit or an END
statement in the main program. Execution is also terminated
automatically when an operational condition prevents further
processing of the program.

Normal execution sequence may be altered by a FORTRAN statement that
causes the normal sequence to be discontinued or causes execution to resume at a
different position in the program unit. Statements that may cause a transfer of

control are:
e« GOTO
¢  Arithmetic IF |
e RETURN
e STOP

¢ Aninput/output statement containing an error specifier or end—
of-file specifier (

e CALL with an alternate return specifier

¢ Alogical IF containing any of the above forms

¢ Block IF and ELSE IF

o The last statement, if any, of an IF block or ELSE IF block
¢« DO

¢ The terminal statement of a DO loop

e END

1-12 Part Ill: FORTRAN Language Rerference



2
Data Types, Variables,
and Arrays

Overview

In general, there are three kinds of entities that have a data type: constants, data
names, and function names. The types of data allowed in FORTRAN are:

e INTEGER - positive and negative integral numbers, and zero.

e REAL - positive and negative numbers with a fractional part,
and zero.

e DOUBLE PRECISION - same as REAL but using twice the
storage space and possibly greater precision.

e COMPLEX - ordered pair of REAL data: real and imaginary
parts, as inm + ni.

e DOUBLE COMPLEX - ordered pair of double precision data.
e LOGICAL - boolean data representing true or false.

e CHARACTER - character strings.

e HOLLERITH - an historical data type for character definition.

Together, INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and DOU-
BLE COMPLEX constitute the class of arithmetic data types.

The type of data is established in one of two ways: implicitly, depending on the
first letter of its symbolic name (described in this chapter), or explicitly through a
type statement (described in Chapter 4).

A data value may be a variable or a constant, that is, its value either can or cannot
change during the execution of a program. An array is a sequence of data items
occupying a set of consecutive bytes.

Part Il: FORTRAN Language Reference 2-1



Chapter 2

Implicit Typing of Data

Constants

2-2

If not explicitly specified by a type statement or a FUNCTION statement, the
data type of a data item or a data name or function name is determined implicitly
by the first character of its symbolic name. By default, a symbolic names begin-
ning with I, J, K, L, M, or N (upper case or lower case) implies an INTEGER
data type; names beginning with all other letters imply a REAL data type. The
default implicit data type corresponding to each letter of the alphabet may be
changed or confirmed through an IMPLICIT statement.

The data type of external functions and statement functions are implicitly deter-
mined in the same manner as above. The type of an external function may also
be explicitly declared in a FUNCTION statement.

A constant is a data value that cannot change during the execution of a program
and can be of the following types:

¢ arithmetic constants
¢ logical constants

e character constants

A symbolic name can be assigned for a constant using the PARAMETER state-
ment. Blank characters occurring within a constant are ignored by the processor
unless the blanks are part of a character constant.

The compiler supports the following types of arithmetic constants: integer, real,
double precision, complex, and double complex. An arithmetic constant may be
signed or unsigned. A signed constant has a leading plus or minus sign to denote
a positive or negative number, respectively. A constant that may be either signed
or unsigned is an optionally signed constant. Only arithmetic constants may be
optionally signed.

Part ll: FORTRAN Language Reference



Data Types, Variables, and Arrays

Integer Constants

The sections that follow describe the various types of constants in detail.

NOTE: The value zero is considered neither positive or negative: a signed zero
has the same value as an unsigned zero.

An integer constant is a whole number with no decimal points; it can have a posi-
tive, negative, or zero value.

An integer constant has the following form:

SWw

where:

s is the sign of the number: — for negative, + (optional) for
positive.

ww is a whole number.

It is written with a sign (optional for +) followed by a string of decimal digits
interpreted as a decimal integer. When used in FORTRAN, an integer constant
must comply with the following rules:

e It must be a whole number, that is, without a fractional part.

e If negative, the special character minus (—) must be the leading
character. The plus sign (+) in front of positive integers is op-
tional.

o It must not contain embedded commas.

Examples of valid integer constants are:
0 +0 +176 -1352 06310 35

Examples of invalid integer constants are:

2.03  Decimal point not allowed. This is a real constant (described in a
following section of this chapter).

7,909 Embedded commas not allowed.

Part Il: FORTRAN Language Reference 2-3



Chapter 2

Real Constants

2-4

A real constant is a number containing a decimal point or exponent, or both; it
can have a positive, negative, or zero value.

A real constant may have the following forms:
sww ff Basic real constant
sww.ffEsee Basic real constant followed by a real exponent
swwEsee  Integer constant followed by a real exponent
where:
s is the sign of the number: — for negative, + (optional) for positive.
ww is a string of digits denoting the whole number part, if any.
is a decimal point.
bid is a string of digits denoting the fractional part, if any.
Esee  denotes a real exponent, where see is an optionally signed integer.

A basic real constant is written as an optional sign followed by a string of deci-
mal digits containing an optional decimal point. There must be at least one digit.

A real exponent denotes a power of ten.

The value of a real constant is either the basic real constant or, for the forms
sww ffEsee and swwEsee, the product of the basic real constant or integer con-
stant and the power of ten indicated by the exponent following the letter E.

All three forms may contain more digits than the precision used by the processor
to approximate the value of the real constant. See Chapter 2 of the FORTRAN
Programmer’s Guide for information on the magnitude and precision of a real
number.

Part Il: FORTRAN Language Reference



Data Types, Variables, and Arrays

The following examples illustrate real constants written in common and sc1ent1ﬁc
notation with their corresponding E format:

Common Notation Scientific Notation Real Exponent Form
5.0 0.5*10 .5E1 or 0.5E1
364.5 3.465*10 2 .3645E3
49,300 4,93*%10 4 .493E5
-27,100 -2.71*%10 4 -.271E5
-.0018 -1.8*10-3 -.18E-2

The following real constants are equivalent:
5E4 ©5.E4 .5E5 5.0E+4 +5E04 50000.

Invalid Real Constant Reason Invalid
-18.3E No exponent following the E
E-5 Exponent part alone
6.01E2.5 Exponent part must be an integer
3.5E4E2 Only one exponent part allowed per constant
19,850 Embedded commas not allowed

Double Precision Constants

A double precision constant is similar to a real constant, except it can retain more
digits of the precision than a real constant. (The size and value ranges of double

precision constants are given in Chapter 2 of the FORTRAN Programmer’ s
Guide.)

A double precision entity may assume a positive, negative, or zero value and may

be written in one of the following forms:
swwDsee  An integer constant followed by a double precision exponent

sww ffDsee A basic real constant followed by a double precision exponent

where:
s is an optional sign.
ww is a string of digits denoting the whole number part, if any.
bid is a string of digits denoting the fractional part, if any.
Dsee denotes a double precision exponent, where see is an optionally

signed exponent.

The value of a double precision constant is the product of the basic real constant
part or integer constant part and the power of ten indicated by the integer follow-
ing the letter D in the exponent part. Both forms can contain more digits than
used by the processor to approximate the value of the real constant. See Chapter

Part Il: FORTRAN Language Reference 2-5



Chapter 2

2 of the FORTRAN Programmer’s Guide for information on the magnitude and
precision of a double precision constant.

Valid forms of double—precision constants are:

1.23456D3
8.9743D0
-4.D-10
16.8D-6

The following forms of the numeric value 500 are equivalent:

5D2 +5D02 5.D2 5.D+02 5D0002

The following table shows some invalid double—precision constants and the rea-
sons they are invalid.

Invalid Constant Reason Invalid
2.395D No integer portion after the letter D.
-9.8736 Missing D exponent designator.
1,010,203D0 Embedded commas not allowed.

Complex Constants

2-6

A complex constant is a processor approximation to the value of a complex num-
ber. Itis represented as an ordered pair of real data values. The first value repre-
sents the real part of the complex number and the second represents the imagi-
nary part. Each part has the same precision and range of allowed values as for
real data.

A complex constant has the form:

(m,n)

where m and n each have the form of a real constant, representing the complex
value m + ni, where i is the square root of —1. m denotes the real part; n denotes
the imaginary part. Both m and » may be positive, negative, or zero.

Examples of valid forms of complex data are:

Valid Complex Constant Equivalent Mathematical Expression
(3.5,-5) 3.5-5 i
(0,-1) -
(0.0,12) 0+12 i or 12 i
(2E3,0) 2000+0 i or 2000

Part IIl: FORTRAN Language Reference

(



Data Types, Variables, and Arrays

The following table shows some invalid constants and the reasons they are inva-

lid.

Invalid Constant Reason Invalid
(1, ) No imaginary part
(1,2.2,3) More than two parts

(10,52.D5) Double precision constants are not allowed for either part

(1.15,4E) Imaginary part has invalid form

Logical Constants
A logical constant represents only the values true or false.

A logical constant is specified by one of the following forms and has the indi-

cated value:
Form Value
.TRUE. true
FALSE. false

Character Constants

A character constant is a string of one or more characters capable of being repre-
sented by the processor. Each character in the string is numbered consecutively
from left to right beginning with 1.

If the delimiter is ”, then a quotation mark within the character string is repre-
sented by two consecutive quotation marks with no intervening blanks.

If the delimiter is ’, then an apostrophe within the character string is represented
by two consecutive apostrophes with no intervening blanks.

Blanks within the string of characters are significant.

The length of a character constant is the number of characters, including blanks,
between the delimiters. The delimiters are not counted, and each pair of apostro-
phes or quotation marks between the delimiters counts as a single character.

NOTE: Character constants cannot be used as actual arguments to numeric
typed dummy arguments.

Part Il: FORTRAN Language Reference 2-7



Chapter 2

The following table gives examples of valid character constants are and shows

how they are stored. ( ’
Constant How Stored
"DON’ 7T/ DON’T
“I'M HERE!” I’M HERE!
f STRING'’ STRING
r LMNII IIOP 7 LMNI, IIOP

The following table shows some invalid character constants and the reasons they

are invalid.
Invalid Constant Reason Invalid
"ISN.T Terminating delimiter missing -
.Yes’ Mismatched delimiters
CENTS Not enclosed in delimiters
re Zero length not allowed
" Zero length not allowed

2-8

Part ll: FORTRAN Language Reference



Data Types, Variables, and Arrays

Part Il: FORTRAN Language Reference 2-9



Chapter 2

2-10

Part Il: FORTRAN Language Reference



Data Types, Variables, and Arrays

Variables
A variable is an entity with a name, data type, and value. Its value is either de-
fined or undefined at any given time during the execution of a program.

The variable name is a symbolic name of the data item and must conform to the
rules given for symbolic names. The type of a variable is explicitly defined in a
type—statement or implicitly by the first character of the name.

A variable may not be used or referred to unless it has been defined through an
assignment statement, input statement, DATA statement, or through association
with a variable or array element that has been defined.

Character Substrings

A character substring is a contiguous sequence of characters that is part of a
character data item. A character substring must not be empty; i.e., it must con-
tain at least one byte of storage. Each character is individually defined or unde-
fined at any given time during the execution of a program.

Substring Names

A substring name allows the corresponding substring to be defined and refer-
enced in a character expression. A substring name has one of the following
forms:

v([el]:[e2])
a(s[,s]...) ([ell:[e2])

where:

v is a character variable name.
a is a character array name.

el and e2 are integer expressions, called substring expressions.

s is a subscript expression.

The value el specifies the leftmost character position of the substring relative to
the beginning of the variable or array element from which it was abstracted,
while e2 is the rightmost position. Positions are numbered left to right beginning
with 1. For example, EX(3:5) denotes characters in positions three through five
of the character variable EX. C(2,4)(1:5) specifies characters in positions one
through five of the character array element C(2,4).

A character substring has the length €2 — el + 1.

Part Il: FORTRAN Language Reference 2-11



Chapter 2

Substring Values e1, e2

The value of the numeric expressions el and e2 in a substring name must fall ( )
within the range:

1<el<e2<len

where len is the length of the character variable or array element. A value of one
is implied if el is omitted. A value of len is taken if €2 is omitted. When both el
and e2 are not specified, the form v(:) is equivalent to v and the form a(s [,s]...)(?)
is equivalent to a(s [,s]...).

The specification for e/ and e2 can be any numeric integer expression, including
array element references and function references. Consider the character variable
XCHAR = "QRSTUVWXYZ'.

Examples of valid substrings taken from this variable are:

Expression Substring Value | Substring Length
EX1 = XCHAR(3:8) STUVWX
EX2 = XCHAR(:8) ORSTUVWX
EX3 = XCHAR(5:) UVWXYZ
Other examples are: (

BQUO)(2:IX) Specifies characters in positions 2
through integer IX of character array
BQ(10). The value of IX must be 2 and
the length of an element of BQ.

BLT() Equivalent to the variable BLT.

2-12 Part ll: FORTRAN Language Reference



Data Types, Variables, and Arrays

Part Il: FORTRAN Language Reference 2-13



Chapter 2

Arrays

2-14

An array is a nonempty sequence of data of the same type occupying consecutive
bytes in storage. A member of this sequence of data is referred to as an array
element.

Each array has the following characteristics:

e Anarray name
e A datatype
e Array elements
e An array declarator specifying:
0 The number of dimensions
o the size and bounds of each dimension

An array can be defined using a DIMENSION, COMMON, or type statement
(described in Chapter 4); it can have a maximum of seven (7) dimensions.

NOTE: For information on array handling when interacting with programs writ-
ten in another language, see Chapter 3 of the FORTRAN Programmer’s Guide.

Part ll: FORTRAN Language Reference



Data Types, Variables, and Arrays

Array Names and Types

Array Declarators

An array name is the symbolic name given to the array and must conform to the
rules given in Chapter 1 given for symbolic names. An array can be specified
by the array name alone when reference is made to the array as a whole. An ar-
ray name is local to a program unit.

An array element is specified by the array name and a subscript. The form of an
array element name is:

a (s [,s8]...)
where:

a is a array name.
(s [,5]...) is a subscript.
s is a subscript expression.

The number of subscript expressions must be equal to the number of dimensions
in the array declarator for the array name.

An array element can be any of the types of data allowed in FORTRAN. All ar-
ray elements are the same data type. The data type is specified explicitly using a
type statement, or implicitly by the first character of the array name.

A different array element may be referenced by changing the subscript value of
the array element name.

An array declarator specifies a symbolic name for the array, the number of di-
mensions in the array, and the size and bounds of each dimension. Only one ar-
ray declarator for an array name is allowed in a program unit. The array
declarator may appear in a DIMENSION statement, a type statement, or a COM-
MON statement, but not more than one of these.

An array declarator has the form:
a(dld]..)
where:
a is a symbolic name of the array.
d is a dimension declarator of the following form:
[dl:] a2
where:
dl is a lower dimension bound.
d2 is a upper dimension bound.

dl must be a numeric expression. d2 must be a numeric expression or an asterisk
(*). An asterisk is allowed only if d2 is part of the last dimension declarator (see
below).

Part II: FORTRAN Language Reference 2-15



Chapter 2

An array declarator is either an actual array declarator or a dummy array
declarator. In an actual array declarator the array name is not a dummy argu-
ment. Conversely, a dummy array declarator is an array declarator that has a
dummy argument as an array name. An array declarator may be one of three
types: a constant array declarator, an adjustable array declarator, or an assumed—
size array declarator.

Each of the dimension bounds in a constant array declarator is a numeric con-
stant expression. An adjustable array declarator is a dummy array declarator
that contains one or more dimension bounds that are integer expressions but not
constant integer expressions. An assumed-size array declarator is a dummy ar-
ray declarator that has integer expressions for all dimension bounds, except that
the upper dimension bound d2 of the last dimension is an asterisk (*).

A dimension bound expression must not contain a function or array element
name reference.

Value of Dimension Bounds

2-16

The lower dimension bound d/ and the upper dimension bound d2 can have posi-
tive, negative, or zero values. The value of the upper dimension bound d2 must
be greater than or equal to that of the lower dimension bound d1.

If a lower dimension bound is not specified, its value is assumed to be one (1).
An upper dimension bound of an asterisk (*) is always greater than or equal to
the lower dimension bound.

The size of a dimension that does not have an asterisk (*) as its upper bound has
the value:

@-dn+1

The size of a dimension that has an asterisk (*) as its upper bound is not speci-
fied. ‘

Part Il: FORTRAN Language Reference



Data Types, Variables, and Arrays

Storage and Element Ordering

Storage for an array is allocated in the program unit in which it is declared, ex-
cept in subprograms where the array name is specified as a dummy argument.
The former declaration is called an actual array declaration. The declaration of
an array in a subprogram where the array name is a dummy argument is called a
dummy array declaration.

The elements of an array are ordered in sequence and stored in column order.
This means that the leftmost subscript varies first, as compared to row order, in
which the rightmost subscript varies first. The first element of the array has a
subscript value of one; the second element has a subscript value of two; and so
on. The last element has a subscript value equal to the size of the array. Con-
sider the following statement that declares an array with an INTEGER type state-
ment:

INTEGER t (2,3)

The elements of this array are ordered as follows:

t(1,1) 1(2,1) t(1,2) t(2,2) t(3,3) t(2,3)

Part Il: FORTRAN Language Reference 2-17



Chapter 2

Subscripts

The subscript describes the position of the element in an array and allows that
array element to be defined or referenced. The form of a subscript is:

(s [,s]...)
where:

s is a subscript expression. The term subscript includes the parentheses that
delimit the list of subscript expressions.

A subscript expression must be a numeric expression and may contain array ele-
ment references and function references. However, it must not contain any func-
tion references that affect other subscript expressions in the same subscript.

If a subscript expression is not of type integer, it is converted to integer values;
any fractional part is truncated.

Because an array is stored as a sequence in memory, the values of the subscript
expressions must be combined into a single value that is used as the offset into
the sequence in memory. That single value is called the subscript value. The
subscript value determines which element of the array is accessed. The subscript
value is calculated from the values of all the subscript expressions and the de-
clared dimensions of the array (see Table 2.1).

n | Dimension

Declarator Subscript Subscript Value
1 | (1:k1) (s1) 1+ (s1+1)
2 | (j1k1,j2:k2) (s1, 82) 1+ (s1-j1) + (s2j2 )*d1

3 | (1k1,j2:k2,j3:k3) (s1,~s2,~83) | 1+ (s1j1) + (s2—j2)*d1 +
(s3—j3 )*d2*d1

n | (Gl:kl,..jn:kn) (s1,...sn) 1+ (s1-j1) + (s2—j2) *d1

+ (s3—j3 )*d2*d1 +... +
(sn—jn ) *dn—1* ~dn—2%* ...*¥d1

Table 2.1. Determining Subscript Values

The subscript value and the subscript expression value are not necessarily the
same, even for a one—dimensional array. For example:

DIMENSION X (10,10),Y(-1:8)
Y(2) = X(1,2)

Y(2) identifies the fourth element of array Y, the subscript is (2) with a subscript
value of four, and the subscript expression is 2 with a value of two. X(1,2) iden-
tifies the eleventh element of X, the subscript is (1,2) with a subscript value of
eleven, and the subscript expressions are 1 and 2 with the values of one and two,
respectively.

2-18 . Part ll: FORTRAN Language Reference



3
Expressions

Overview

An expression performs a specified type of computation. It is composed of a se-
quence of operands, operators, and parentheses. The types of expressions per-
mitted in FORTRAN are:

e Arithmetic
e Character
e Relational
e Logical

This section describes the formation, interpretation, and evaluation rules for each
of the expressions. Mixed-mode expressions are FORTRAN 77 enhancements
of FORTRAN 66 and are also discussed in this chapter.

Arithmetic Expressions

An arithmetic expression specifies a numeric computation which yields a nu-
meric value upon evaluation. The simplest form of an arithmetic expression may
be:

An unsigned arithmetic constant

o The symbolic name of an arithmetic constant
e  An arithmetic variable reference

e An arithmetic array element reference

e An arithmetic function reference

More complicated arithmetic expressions are constructed from one or more oper-
ands together with arithmetic operators and parentheses.

Part ll: FORTRAN Language Reference 3-1



Chapter 3

Arithmetic Operators

The arithmetic operators are shown in the following table:

Operator Function
ok Exponentiation
* Multiplication
/ Division
+ Addition or Identity
- Subtraction or Negation

An exponentiation, division, or multiplication operator can be used only with two
operands and written between the two operands. An addition or subtraction op-
erator can be used with two operands or one operand; in the latter case, it is writ-
ten preceding that operand.

Two operators may not be written in succession. (Note that the exponentiation
operator consists of the two characters ** but is a single operator.) Implied opera-
tors, as in implied multiplication, are not allowed.

Interpretation of Arithmetic Expressions

3-2

Interpretation of arithmetic expressions using these operators are shown below.

Operator Use Interpretation
ok x1 ** x2 Exponentiate x1 to the power of x2.
* x1 *x2 Multiply x1 and x2
/ x1/x2 Divide x1 by x2
+ x1 +x2 Add x1 and x2
+x X (identity)
- x1-x2 Subtract x2 from x1
-X Negate x

An arithmetic expression containing two or more operators is written and inter-
preted based on a precedence relation among the arithmetic operators, unless the
order is overridden by the use of parentheses. This precedence is shown in the
following table:

Operator Precedence
ok Highest
*/ Intermediate
+,— Lowest

As an example:

-A/B-C**D

Part Il: FORTRAN Language Reference



Expressions

The operators are executed in the following sequence:

1. C**D denotes the result X to give A/B-X.

2. A/B denotes the result Y to give Y-X.

3. Y-X gives the final result.

Arithmetic Operands

Arithmetic operands must specify values with integer, real, double precision,
complex, or double complex data types. Specific operands may be combined in
an arithmetic expression. The arithmetic operands, in increasing complexity, are:

e Primary
o Factor
e Term

e Arithmetic expression

A primary is the basic component in an arithmetic expression. The forms of a
primary are:

e Unsigned arithmetic constant

e Symbolic name of an arithmetic constant
e Arithmetic variable reference

e Arithmetic array element reference

e Arithmetic function reference

e Arithmetic expression enclosed in parentheses

Part Il: FORTRAN Language Reference 3-3



Chapter 3

A factor consists of one or more primaries separated by the exponentiation op-
erator. The forms of a factor are: (

e Primary
¢ Primary ** factor

Factors with more than one exponentiation operator are interpreted from right to
left. For example, I**J**K is interpreted as I**(J**K), and I**J**K**L is inter-
preted as P**(J**(K**L)).

The term incorporates the multiplicative operators into arithmetic expressions.
Its forms are:

e Factor
¢ Term/factor
e Term * factor

The above definition indicates that factors are combined from left to right in a
term containing two or more multiplication or division operators.

Finally, at the highest level of the hierarchy, are the arithmetic expressions. The
forms of an arithmetic expression are:

¢ Term
e +term (
e —term

Arithmetic expression + term

Arithmetic expression — term

An arithmetic expression consists of one or more terms separated by an addition
operator or a subtraction operator. The terms are combined from left to right.
For example, A+B—C has the same interpretation as the expression (A+B)-C.
Expressions such as A*~B and A+B are not allowed. The correct forms are
A*(-B) and A+(-B).

An arithmetic expression may begin with a leading plus or minus sign.
Arithmetic Constant Expressions

An arithmetic constant expression is an arithmetic expression containing no vari-
ables. Therefore, each primary in an arithmetic constant expression must be one
of the following:

¢ An arithmetic constant
¢ The symbolic name of an arithmetic constant (

e An arithmetic constant expression enclosed in parentheses

Part ll: FORTRAN Language Reference



Expressions

In an arithmetic constant expression, the exponentiation operator is not allowed -
unless the exponent is of type integer. Variable, array element, and function ref-
erences are not allowed. Examples of integer constant expressions are:

7

-7

~T+5

3k

x+3 (where x is the symbolic name of a constant)

Integer Constant Expressions

An integer constant expression is an arithmetic constant expression containing
only integers. It can contain constants or symbolic names of constants, provided
they are of integer type. As with all constant expressions, no variables, array ele-
ments, or function references are allowed.

Rules for Evaluating Arithmetic Expressions

The data type of an expression is determined by the data types of the operands
and functions that are referenced. Thus, integer expressions, real expressions,
double precision expressions, complex expressions, and double expressions have
values of type integer, real, double precision, complex, and double complex, re-
spectively.

Single-Mode Expressions

Single-mode expressions are arithmetic expressions in which all operands have
the same data type. The data type of the value of a single-mode expression is
thus the same as the data type of the operands. When the addition operator or the
subtraction operator is used with a single operand, the data type of the resulting
expression is the same as the data type of the operand.

Mixed—Mode Expressions

Mixed-mode expressions contain operands with two or more data types. The
data type of the value resulting from evaluation of a mixed-mode expression de-
pends on the rank associated with each data type, as follows:

Data Type Rank

INTEGER*1 1 (lowest)
INTEGER*2

INTEGER*4

REAL*4

REAL*8 (double precision)
COMPLEX*8

COMPLEX*16

9N BN

(highest)

Part Il: FORTRAN Language Reference 3-5



Chapter 3

Exponentiation

Integer Division

Except for exponentiation (discussed below), the data type of the value produced
by a mixed-mode expression is the data type of the highest-ranked element in
the operation. The value of the lower-ranked operand is converted to the type of
the higher ranked operand and the operation is performed on values with equiva-
lent data types. For example, the data type of the value resulting from an opera-
tion on an integer operand and a real operand is real.

Operations which combine REAL*8 (DOUBLE PRECISION) and COM-
PLEX*8 (COMPLEX) are not allowed. The REAL*8 operand must be explicitly
converted (e.g., by using the SNGL intrinsic function).

Exponentiation is an exception to the above rules for mixed-mode expressions.
When raising a value to an integer power, the integer is not converted. The result
is a type of the left operand.

When a complex value is raised to a complex power, the value of the expression
is defined as follows: ‘

x¥2 = EXP(x , * LOG(X))

One operand of type integer may be divided by another operand of type integer.
The result of an integer division operation is a value of type integer referred to as
an integer quotient. The integer quotient is obtained as follows:

e If the magnitude of the mathematical quotient is less than one,
then the integer quotient is zero. For example, the value of the
expression (18/30) is zero.

¢ If the magnitude of the mathematical quotient is greater than or
equal to one, then the integer quotient is the largest integer that
does not exceed the magnitude of the mathematical quotient and
whose sign is the same as that of the mathematical quotient. For
example, the value of the expression (-9/2) is (-4).

Character Expressions

3-6

A character expression yields a characterstring value upon evaluation. The
simplest form of a character expression may be:

e A character constant

e A character variable reference

e A character array element reference
e A character substring reference

o A character function reference

Part Il: FORTRAN Language Reference



Expressions

More complicated character expressions are constructed from one or more oper-
ands together with the concatenate operator and parentheses. -

Concatenate Operator

Only one character operator is defined in FORTRAN: the concatenation (/) op-
erator. A character expression formed from the concatenation of two character
operands x] and x2 is specified as:

x1 // x2

The result of this operation is a character—string with a value of xI extended on
the right with the value of x2. The length is the sum of the lengths of the charac-
ter operands. For example, the value of

*HEL’ // 'L0O2’
is a string  HELLO2' .
Character Operands

A character operand must identify a value of type character and must be a char-
acter expression. The basic component in a character expression is the character
primary. The forms of a character primary are as follows:

e Character constant

e Symbolic name of a character constant

e Character variable reference

e Character array element reference

o Character substring reference

o Character function reference

o Character expression enclosed in parentheses

A character expression consists of one or more character primaries separated by
the concatenation operator. Its forms are:

e Character primary
o Character expression // character primary

In a character expression containing two or more concatenation operators, the
primaries are combined from left to right. Thus, the interpretation of the charac-
ter expression

IAI // IBCDI // IEFI
is a same as:

('ar // 'BCD') // 'EF'

Part Il: FORTRAN Language Reference 3-7



Chapter 3

The value of the above character expression is the same as the constant
'ABCDEF’.

Except in a character assignment statement, concatenation of an operand with an
asterisk (*) as its length specification is not allowed unless the operand is the
symbolic name of a constant.

Character Constant Expressions

A character constant expression is a character expression containing nothing that
can vary. Each primary in a character constant expression must be either a char-
acter constant, the symbolic name of a character constant, or a character constant
expression enclosed in parentheses. Variable, array element, substring, and func-
tion references are not allowed.

Relational Expressions

A relational expression yields a logical value of either . TRUE. or .FALSE. upon
evaluation and comparison of two arithmetic expressions or two character ex-
pressions. A relational expression may appear only within a logical expression.

Relational Operators

The relational operators are:

EQ. Equal to
. .NE. Not Equal to
.GT. Greater than
.GE. Greater that or equal to
.LT. Less than
.LE. Less than or equal to

The precedence among FORTRAN operators is such that arithmetic and charac-
ter operators are evaluated before relational operators.

Relational Operands

The operands of a relational operator may be arithmetic or character expressions.
Two operands are required to form a relational of the following form:

el relop e2

where:

el and e2 are arithmetic or character expressions.
relop is the relational operator.

Note that e/ and e2 must be both arithmetic or both character.

Evaluating Relational Expressions

Evaluation of a relational expression produces a result of type logical, with a
value of .TRUE. or .FALSE.. The manner in which the expression is evaluated
depends upon the data type of the operands.

Part ll: FORTRAN Language Reference



Expressions

Arithmetic Relational Expressions

An arithmetic relational expression has the form:

el relop e2

where:

el and e2 are each an integer, real, double precision, complex, or double
complex expression.

relop is a relational operator.

Complex type operands are allowed only when the relational operator .EQ. or
NE. is used.

An arithmetic relational expression has the logical value .TRUE. only if the val-
ues of the operands satisfy the relation specified by the operator. Otherwise, the
value is .FALSE.. If the two arithmetic expressions el and e2 differ in type, the
expression is evaluated as follows:

((el) - (e2)) relop 0

where the value 0 (zero) is of the same type as the expression ((e)- (e2)) and the
type conversion rules apply to the expression. A double precision value must not
be compared with a complex value.

Character Relational Expressions

A character relational expression has the logical value .TRUE. only if the values
of the operands satisfy the relation specified by the operator. Otherwise, the
value is .FALSE. It has the following form:

el relop e2

where el and e2 are character expressions and relop is a relational operator.

The result of a character relational expression depends on the collating sequence
as follows.

e If el and e2 are single characters, their relationship in the collat-
ing sequence determines the value of the operator. el is less
than or greater than e2 if el is before or after €2 respectively in
the collating sequence.

e Ifeither el or €2 are character strings with length greater than 1,
corresponding individual characters are compared from left to
right until a relationship other than .EQ. can be determined.

o If the operands are of unequal length, the shorter operand is ex-
tended on the right with blanks to the length of the longer oper-
and for purpose of the comparison.

e If no other relationship can be determined after the strings are
exhausted, the strings are equal.

Part Il: FORTRAN Language Reference 3-9



Chapter 3

The collating sequence depends partially on the processor; however, equality

tests .EQ. and .NE. don’t depend on the processor collating sequence and can be- (
used on any processor. '

Logical Expressions

A logical expression specifies a logical computation which yields a logical value
upon evaluation. The simplest form of a logical expression is a:

¢ Logical constant

¢ Logical variable reference

¢ Logical array element reference
¢ Logical function reference

e Relational expression

More complicated logical expressions are constructed from one or more logical
operands together with logical operators and parentheses. Five logical operators
are permitted in FORTRAN and are discussed in the next section.

Logical Operators

The logical operators defined in FORTRAN are shown in the table below.

Operator Function (
.NOT. Logical Negation
.AND. Logical Conjunct
.OR. Logical Disjunct
LEQV. Logical Equivalence
.NEQV. Logical exclusive OR
Same as .NEQV.

Only the logical negation operator .NOT. is used with one operand; all other logi-
cal operators require two operands.

When a logical expression contains two or more logical operators, the order in

which the operands are combined is shown below, unless the order is changed by
the use of parentheses.

Operator Precedence

.NOT. Highest

AND. °

.OR. °

EQV.,.NEQV Lowest (

3-10 Part Il: FORTRAN Language Reference



Expressions

For example, in the expression

W .NEQV. X .OR. Y .AND. Z

The operators are executed in the following sequence:
e Y .AND. Z denote the result as A to yield W NEQV. X .OR. A

e X .OR. A denote the result as B to yield W .NEQV.B
e W .NEQV.B gives the final result.

Logical Operands

Logical operands specify values with a logical data type. The forms of a logical
operand are:

e Logical primary

e Logical factor

e Logical term

e Logical disjunct

e Logical expression

The logical primary is the basic component of a logical expression. The forms of
a logical primary are:

e Logical constant

e Symbolic name of a logical constant

gerior logical variable reference

o Logical array element reference

r logical function reference

¢ Relational expression

r logical expression in parentheses

Note that two logical operators may not appear in succession and that implied
logical operators are not allowed.

The logical factor provides for the inclusion of the logical negation operator
NOT. and has the following forms:

Part Il: FORTRAN Language Reference 3-11



Chapter 3

¢ Logical primary
e NOT. logical primary

The logical term uses the logical conjunct operator .AND. to combine logical
factors. It takes the forms:

¢ Logical factor
¢ Logical term .AND. logical factor

In evaluating a logical term with two or more .AND. operators, the logical factors
are combined from left to right. For example, X .AND. Y .AND. Z has the same
interpretation as (X .AND. Y) .AND. Z.

The logical disjunct is a sequence of logical terms separated by the .OR. operator
and has the following two forms:

e Logical term
¢ Logical disjunct .OR. logical term

In an expression containing two or more .OR. operators, the logical terms are
combined from left to right in succession. For example, the expression X .OR. Y
.OR. Z has the same interpretation as (X .OR. Y) .OR. Z.

At the highest level of complexity is the logical expression. A logical
expression is a sequence of logical disjuncts separated by either the .EQV.,
operators. Its forms are:

o Logical disjunct

¢ Logical expression .XOR. logical disjunct

The logical disjuncts are combined from left to right when a logical expression
contains two or more .EQV., .XOR., or ; operators.

A logical constant expression is a logical expression in which each primary is
either a logical constant, the symbolic name of a logical constant, a relational ex-
pression in which each primary is a constant, or a logical constant expression en-
closed in parentheses. A logical constant expression may contain arithmetic and
character constant expressions but not variables, array elements, or function ref-
erences.

Interpretation of Logical Expressions

In general, logical expressions containing two or more logical operators are exe-
cuted according to the hierarchy of operators described previously, unless the
order has been overridden by the use of parentheses. The form and interpretation
of the logical operators is defined as shown in the following table:

3-12 Part Il: FORTRAN Language Reference



Expressions

IF THEN
X1= X= NOT.X: | X1.AND. X , X: OR.X:2 |X: .EQV.X:2
.FALSE. |FALSE. .TRUE. .FALSE. FALSE. TRUE. JFALSE.
JFALSE. |.TRUE. FALSE. FALSE. TRUE. FALSE. .TRUE.
TRUE. |.FALSE. - FALSE. .TRUE. FALSE. TRUE.
TRUE.  |.TRUE. - .TRUE. .TRUE. TRUE. FALSE.

General Rules for Evaluating Expressions

Several rules are applied to the general evaluation of expressions. This section
covers the priority of the different FORTRAN operators, the use of parentheses
in specifying the order of evaluation, and the rules for combining operators with
operands.

Note that any variable, array element, function, or character substring in an ex-
pression must be defined with a value of the correct type at the time it is refer-
enced.

Precedence of Operators

The precedence among arithmetic operators was given previously as:

Operator Precedence
ok Highest
n*,/ Intermediate
n+,-— Lowest

The precedence among logical operators was given previously as:

Operator Precedence
.NOT. Highest

[ ]

[ ]

Lowest

No precedence exists among the relational operators, and there is only one char-

acter operator, // (concatenation).

The precedence among expression operators in each type is:

Part Il: FORTRAN Language Reference

3-13



Chapter 3

Type Precedence
Arithmetic Highest
Character °
Relational b
Logical Lowest

Integrity of Parentheses and Interpretation Rules

3-14

Parentheses are used to explicitly specify the order of evaluation of operators
within an expression. Expressions within parentheses are treated as an entity.

In an expression containing more than one operation, the processor first evaluates
expressions within parentheses. Subexpressions within parentheses are evaluated
beginning with the innermost subexpression and proceeding sequentially to the
outermost. The processor then scans the expression from left or right and per-
forms the operations according to the operator precedence described previously.

Part Il: FORTRAN Language Reference



4
Specification Statements

Overview

Specification statements are nonexecutable FORTRAN statements that provide
the processor information about the nature of specific data and the allocation of
storage space for this data.

The specification statements are summarized below.

Statement Purpose

BLOCK DATA First statement in a block data subprogram used
to assign initial values to variables and array ele-
ments in named common blocks.

COMMON Declares variables and arrays so that they are put
in a storage area that is accessible to multiple
program units, thus allowing program units to
share data without using arguments.

DATA Supplies initial values of variables, array ele-
ments, arrays, or substrings.

Data type Explicitly defines the type of a constant, vari-
able, array, external function, statement func-
tion, or dummy procedure name. Also, may
specify dimensions of arrays and the length of
the character data.

Part Il: FORTRAN Language Reference 4-



Chapter 4

4-2

Statement

DIMENSION

EQUIVALENCE

EXTERNAL

IMPLICIT

INTRINSIC

PARAMETER

PROGRAM

SAVE

Purpose

Specifies the symbolic names and dimension
specifications of arrays.

Specifies the sharing of storage units by two or
more entities in a program unit, thus associating
those entities.

Identifies external or dummy procedure.

Changes or defines default implicit type of
names.

Identifies intrinsic function or system subrou-
tine.

Gives a constant a symbolic name.

Defines a symbolic name for the main program.

Retains the values of variables and arrays after
execution of a RETURN or END statement in a
subprogram.

Detailed descriptions of the above statements follow in alphabetical order.

Part ll: FORTRAN Language Reference



Specification Statements

Part Il: FORTRAN Language Reference 4-3



Chapter 4

Part Il: FORTRAN Language Reference



Specification Statements

Use

Syntax

BLOCK DATA

First statement in a block data subprogram used to assign initial values to vari-
ables and array elements in named common blocks.
BLOCK DATA [sub]

where sub is a symbolic name of the block data subprogram in which the
BLOCK DATA statement appears.

Method of Operation

Rules of Use

A block data subprogram is a nonexecutable program unit with a BLOCK
DATA statement as its first statement, followed by a body of specification state-
ments and terminated by an END statement. The specification statements al-
lowed include: COMMON, DATA, DIMENSION, EQUIVALENCE,
IMPLICIT, PARAMETER, RECORD, SAVE, structure declarations, and type
statements. Comment lines are permitted.

Only entities in named common blocks or entities associated with an entity in a
common block may be initially defined in a block data subprogram.

1. The optional name sub is a global name and must be unique. Thus, BLOCK
DATA subprograms may have the same external name.

2. Anexecutable program may contain more than one block data subprogram
but may not contain more than one unnamed block data subprogram.

3. Asingle block data subprogram may initialize the entities of more than one
named common block.

Part Il: FORTRAN Language Reference 4-5



Chapter 4

COMMON

Use

Syntax

Declares variables and arrays so that they are put in a storage area that is accessi-
ble to multiple program units, thus allowing program units to share data without
using arguments.

COMMON [/[chl/] nlist [[,]1/[cb]l/ nlist]

where cb is a common block name and nlist is a list of variable names, array
names, array declarators,

Method of Operation

4-6

A storage sequence, composed of a series of storage units, that is shared between
program units is referred to as common storage. For each common block, a com-
mon block storage sequence is formed consisting of the storage sequences of all
entities in the list of variables and arrays for that common block. The order of
the storage sequence is the same as their order of appearance in the list. In each
COMMON statement, the entities specified in the common block list nlist fol-
lowing a block name cb are declared to be in common block cb.

In an executable program, all common blocks with the same name have the same
first storage unit. This establishes the association of data values between pro-
gram units.

The storage sequence formed above is extended to include all storage units of
any storage sequence associated with it by equivalence association.

FORTRAN has the following types of common storage:

¢  Blank common storage, which can be accessed by all program
units in which it is declared. It has no identifying name and one
blank common area exists for the complete executable program.

e Named common storage, which has an identifying name and is
accessible by all program units in which common storage with
the same name is declared.

Entities in a named common may be initially defined with the DATA initializa-
tion statement in a BLOCK DATA subprogram, but entities in blank common
may not be initialized by the DATA statement,

Part Il: FORTRAN Language Reference



Specification Statements

Rules of Use

Restrictions

COMMON

The number of storage units needed to store a common block is referred to as its
size. This includes any extensions of the sequence resulting from equivalence
association. The size of a named common block must be the same in all program
units in which it is declared. The size of blank common need not be the same
size in all program units.

A variable name, array name, array declarator, or record may appear only
once in all common block lists within a program unit.

A blank common block is specified by omitting the common block name ¢b
for each list. Thus, if the first common block name is omitted, all entities
appearing in the first nlist are specified to be in a blank common.

If the first cb is omitted, the first two slashes become optional. Two slashes
with no block name between them declare the entities in the following list to
be in blank common.

Any common block name cb or an omitted cb for blank common may occur
more than once in one or more COMMON statements in a program unit. The
list following each appearance of the same common block name is treated as
a continuation of the list for that common block name.

All entities in a common block containing a character variable or character
array must be of type character.

Names of dummy arguments of an external procedure in a subprogram must
not appear in a common block list.

A variable name that is also a function name must not appear in the list.

Part II: FORTRAN Language Reference 4-7



Chapter 4

COMMON
Examples
COMMON //F,X,B(5)
COMMON F,X,B(5)
COMMON /LABEL/NAME, AGE,DRUG,DOSE//Y (33),
Z,/RECORD/,DOC, 4 TIME(5), TYPE(8)
The first two examples are equivalent and define a blank common block (note
that these two COMMON statements must not appear in the same program unit).
The third example makes the following COMMON storage assignments:
1. NAME, AGE, DRUG, and DOSE are placed in common block LABEL.
2. Y and Z are placed in blank common.
3. DOC, TIME, and TYPE are placed in common block RECORD.
4-8

Part ll: FORTRAN Language Reference



Specification Statements

COMMON

The use of a COMMON statement by a subprogram and its calling program is:

THIS PROGRAM READS VALUES AND PRINTS THEIR
SUM AND AVERAGE
COMMON TOT, A(20), K, XMEAN
READ (5,10) K, (A(I), I = 1,K)
CALL ADD
WRITE (6,20) TOT, XMEAN
10 FORMAT (I5/F(10.0))
20 FORMAT (5X, S5HSUM =,2X,F10.4/5X,12HMEAN VALUE =,2X,F10.4)
STOP
END

THIS SUBROUTINE CALCULATES THE SUM AND AVERAGE

SUBROUTINE ADD

COMMON PLUS, SUM(20), M, AVG
PLUS = SUM(1)

DO 5 I =2,M

5 PLUS = SUM (I) + PLUS
AVG = PLUS/FLOAT (M)
END

Note that there are two COMMON statements: one in the calling program and
one in the subroutine. Both define the same four entities in the COMMON even
though each common statement uses a unique set of names. The calling program
has access to COMMON storage through entities TOT, A, K and XMEAN. Sub-
routine ADD has access to the same common storage through the use of the enti-
ties PLUS, SUM, M, and AVG.

Part Il: FORTRAN Language Reference 4-9



Chapter 4

DATA

Use

Syntax

Supplies initial values of variables, array elements, arrays, or substrings.

DATA nlist/clist/ [[ , 1 nlist/clist/]

where:

nlist  is alist of variable names, array names, array element names, substr-
ing names or implied-DO lists (described later in this chapter).

clist  is alist of the form:
al,a]...
where a has either of the forms:

C
r¥c

c is a constant or the symbolic name of a constant.

r is a nonzero, unsigned integer constant or the symbolic name of a
positive integer constant. The second form implies r successive ap-
pearances of the constant c.

Method of Operation

4-10

In data initialization, the first value in clist is assigned to the first entity in nlist,
the second value in clist to the second entity in nlist, and so on. There is a one—
to—one correspondence between the items specified by nlist and the constants
supplied in clist. Hence, each nlist and its corresponding clist must contain the
same number of items and must agree in data type. If necessary, the clist con-
stant is converted to the type or length of the nlist entity exactly as for assign-
ment statements.

If the length of the character entity in nlist is greater than the length of its corre-
sponding character constant in clist, then blank characters are added to the right
of the character constant. But if the length of the character entity in nlist i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>