MIPS R4000 M:croprocessor User’s Manual
2nd Edition (Preliminary) :

Your comments on our products and publications are
welcome.

© 1992 MIPS Technologies, Inc. All Rights Reserved.

RISCompiler, RISCwindows, and RISC/os are Trademarks of
MIPS Technologies, Inc.

UNIX is a Registered Trademark of Unix Systems Laboratories,
Inc. ‘

Motif is a Trademark of OSF.

MIPS Technologies, Inc.
950 DeGuigne Drive
Sunnyvale, CA 94088

Preface

Preface

This document describes the MIPS R4000 RISC-based microprocessor.
The chapters and appendices of this Book are grouped in the following
way: :
e Architecture

o Implementation Details

* Electrical and Physical Specifications

+ Instruction Set Summaries
Chapter 1is a general discussion (including a historical context) of the
RISC microprocessor in general and the R4000 in particular.
Chapter 2 provides an overview of the CPU instruction set by
summarizing each instruction category ina table.
Chapter 3 describes the operation of the R4000 instruction execution
pipeline. It describes the basic operation of the pipeline and
interruptions to the pipeline flow caused by interlocks and exceptions.
Chapter 4 is a discussion of the memory management system
including memory mapping, virtual memory, and address
translation.
Chapter 5 is a discussion of the exception processing respurces and
capabilities of the R4000. It presents an overview of the CPU exception
handling process and describes the format and use of each CPU
exception handling register. ‘
Chapter 6 is a discussion of the Floating-Point Unit (FPU). The FPU is
a coprocessor for the Central Processing Unit (CPU) that extends the
CPU instruction set to perform floating-point arithmetic operations.

R4000 User’s Manual—Preliminary ' i

Preface

Chapter 7 is a discussion of the Floating-Point Unit’s exception -
processing.

Chapter 8 is a discussion of the signals that comprise the interface
between the R4000 and other components in the system. The signals
discussed include the System Interface, the Clock/Control Interface,
the Secondary Cache Interface, the Interrupt Interface, the
Initialization Interface, and the JTAG Interface.

Chapter 9 is a discussion of the system interface. The system interface
allows the processor access to external resources such as memory and
1/0. It also allows an external agent access to certain processor
internal resources.

Chapter 10 is a discussion of the clocks used in the R4000 and the
processor status reporting mechanism. The topics covered include the .
basic System Clocks, interfacing to a Phase-Locked system, interfacing
to a system without Phase Locking, and processor Status Outputs.

Chapter 11 is a discussion of the cache memory hierarchy, the
operation of the primary and secondary caches, and the R4000’s
interface to the secondary cache. It also discusses cache-coherent
operation in a multiprocessor system

Chapter 12 is a discussion of the Initialization interface. The
fundamental, or ‘start-up’, operational modes for the processor are
introduced to the processor through the initialization interface.

Chapter 13 is a discussion of the JTAG interface. The JTAG boundary

scan mechanism provides a capability for testing the interconnection
between the R4000 processor, the printed circuit board to which it is
attached, and the other components on the board.

Chapter 14 is a discussion of the six hardware, two software, and one
non-maskable processor interrupts.

Chapter 15 is a discussion of the Error Checking and Correcting (ECC)
mechanisms of the R4000.

Chapter 16 is a discussion of the electrical and physical characteristics

- of the R4000.

Appendix A is a detailed description of the operation of each R4000
instruction in both 32- and 64-bit modes. The instructions are listed in
alphabetical order.

Appendix B is a detailed description of the operation of each (FPU)

- instruction. The instructions are listed alphabetically.

Appendix C is a discussion of the Single Error Correcting Double
Error Detecting (SECDED) codes. These are the codes chosen for the
processor’s secondary cache data and secondary cache tag.

v

R4000 User’s Manual—-Preliminary

Preface

Appendix D is a discussion of sub-block ordering. Sub-block ordering

is an order for the transmission of data elements that form a block of

data when the first transmitted data element is not the data element at

the beginning of the block.

Appendix E is a discussion of the output buffer the Ai/At control

mechanism which controls the speed of the R4000 output driver,

ensuring drive-off times are only as fast as necessary to meet
 thesystem requirement of single cycle transfers.

AppendixF is a discussion of the passive components which comprise

the Phase-Locked Loop (PLL).

Appendix G is a desciption of Coprocessor 0 hazards.

R4000 User’s Manual--Preliminary v

I-;reface

i _ R4000 User's Manual—-Preliminary

Contents

Preface iii
1 Introduction 1
What Is RISC? 1
Benefits of RISC Design 2
Shorter Design Cycle 2
Effective Utilization of Chip Area 3
User (Programmer) Benefits 3
Advanced Semiconductor Technologies 3
Optimizing Compilers 3
: Family of Compilers 4
64-bit Architecture 5
The R4000 Processor 6
Processor General Features 7
CPU Registers 8
CPU Instruction Set Overview 9
Data Formats and Addressing 14
System Control Coprocessor (CP0) 17
Floating-Point Unit (FPU) ‘ S L
_ .On-chip Caches " : 20
Memory Management System - 21
The Translation Lookaside Buffer (TLB) ' 21
Operating Modes 21
R4000 Superpipeline Architecture 22
Cache Memory Hierarchy 24
- Secondary Cache Interface ‘ 24
System Interface reesases : , 24
R4000 Configurations — -
Compatibility 25
2 CPU Instruction Set Summary 1
Instruction Formats 1
Load and Store Instructions 2
Computational Instructions 7
Jump and Branch Instructions 16
Special Instructions 20
Exception Instructions 20
Coprocessor Instructions 21
System Control Coprocessor (CP0) Instructions 24
3 The R4000 Pipeline 1
Basic Pipeline Operation 1
Branch and Load Delay 5
Interlock and Exception Timing 6
Special Cases 11
4 Memory Management System 1
Memory System Architecture 1
Operating Modes 2

R4000 User's Manual--Preliminary vii

Contents

User Mode Virtual Addressing 3
Supervisor Mode Virtual Addressing, 5
Kernel Mode Virtual Addressing 7
Virtual Memory and the TLB 10
System Control Coprocessor 11
TLB Entry Format 12
EntryHi, EntryLo0, EntryLol, and PageMask Registers.........e..... 15
EntryHi Register (CPU Register 10) 15
EntryLoO (2), and EntryLol (3) Registers 16
PageMask Register (5) 16
Index Register (0) 17
Random Register (1) 17
Wired Register (6) .18
Virtual Address Translation 19
TLB Instructions 2
5 Exception Processing 1
Exception Handling Operation 1
The Exception Handling Registers 2
Context Register (CPO Register 4) 3
Bad Virtual Address Register (BadV Addr) (8) 4
Count Register (9) ' 4,
Compare Register (11) 5
Status Register (12) 6
Cause Register (13) : 9
Exception Program Counter (EPC) Register (14) 12
Processor Revision Identifier (PRId) Register (15)..cccuecueesunscrmssenenes 13
Config Register (16) ... ‘ 14
Load Linked Address (LLAddr) Register (17) 16
WatchLo (18) and WatchHi (19) Registers 16
XContext Register (CP0 Register 20) 16
Error Correction Code (ECC) Register (26) 18
Cache Error Register (27) 19
Cache Tag (TagLo, and TagHi) (28) (29) Registers 21
Error Exception Program Counter (Error EPC) Register (30)......... 22
Exception Description Details 23
Exception Operation .23
Exception Vector Locations 26
Priority of Exceptions 27
Reset Exception _ 28
Soft Reset Exception 28
NonMaskable Interrupt (NMI) Exception 29
Address Error Exception 30
TLB Exceptions 31
TLB Refill Exception 31
TLB Invalid Exception 32

viii , R4000 User's Manual--Preliminary

Contents

TLB Modified Exception 33
Cache Error Exception 33
Virtual Coherency Exception 34
Bus Error Exception 34
Integer Overflow Exception 35
Trap Exception 36
System Call Exception 36
Breakpoint Exception - 36
Reserved Instruction Exception 37
Coprocessor Unusable Exception ; 38
Floating-Point Exception 39
Watch Exception : 39
Interrupt Exception 39
6 Floating-Point Unit 1
Functional Overview 1
FPU Features 3
FPU Programming Model 3
Floating-Point General Registers (FGRs) 3
Floating-Point Registers 6
Floating-Point Control Registers....... 6
Control/Status Register FCR31 (Read and Write)......ccc..... 7
Implementation and Revision Register FCRO (Read Only)10
Floating-Point Formats 11
Binary Fixed-Point Format 14
Instruction Set Overview 14
‘Load, Store, and Move Instructions 16
Floating-Point Conversion Instructions 18
Floating-Point Computational Instructions 19
Branch on FPU Condition Instructions -]
FPU Instruction Pipeline 23
Instruction Execution 23
Instruction Execution Times 24
Scheduling FPU Instructions 26
FPU Pipeline Overlapping 26
Instruction Scheduling Constraints ; 27
FPU Divider Constraints 27
: FPU Multiplier Constraints 27
Instruction Latency, Repeat Rate and Pipeline Stage Sequences....31
Resource Scheduling Rules 33
7 Floating-Point Exceptions 1
Exception Trap Processing 2
Flags 3
Inexact Exception (I) 4
Invalid Operation Exception (V) 5
Division-by-Zero Exception (Z) 6

R4000 User's Manual--Preliminary 7 ix

Contents

8 Signal Descriptions

9 System Interface

Overflow Exception (O)

Underflow Exception (U)

Unimplemented Instruction Exception (E)

Saving and Restoring State

Trap Handlers for IEEE Standard Exceptions

System Interface
Clock/Control Interface

Secondary Cache Interface

Interrupt Interface

Initialization Interface

JTAG Interface

Signal Summary

System Events

Processor Requests.
External Requests

Read Requests

Pending Read Requests

Read Responses
Write Requests

Update and Invalidate Requests

Snoop Requests

.Intervention Requests

Flow Control for Requests
Processor Request Sequencing

Primary and Secondary Cache Miss on a Load

Primary and Secondary Cache Miss on a Store

Secondary Cache Hit on a Store to a Shared Line
Uncached Load or Store

K;Esxom.nmmppppxwwupsowwmpuumw\lmm

Cache Operations 13
External Request Handling 13
Invalidate and Update Cancellation 14
Load Linked Store Conditional Considerations 14
System Interface Protocol 16
Introduction 16

System Interface Arbitration 17

System Interface Request Descriptions 18
Invalidate and Update Acknowledge Protocol 19
Arbitration Protocol 19
Processor Read Request Protocol 20
Processor Write Request Protocol 23
Processor Invalidate and Update Request Protocol 25

. Processor Null Write Request Protocol 25
Processor Cluster Protocol 25

R4000 User's Manual--Preliminary

Contents

External Request Protocol 26
External Read Request Protocol . 27
External Null Request Protocol 28

- External Write Request Protocol 30
External Invalidate and Update Request Protocol..............31

Read Response Protocol 32

: External Intervention Request Protocol 34

External Snoop Request Protocol 37

Processor Request and Cluster Flow Control 38

Data Rate Control 41

Multiple Drivers on the SysAD Bus 45

System Interface Endianness 45

45
48

Cycle Counts for System Interface Interactions
System Interface Syntax
System Interface Command and Data Identifier SyntaX. ..o 48
System Interface Command Syntax 49
System Interface Data Identifier Syntax 56
System Interface Addresses 59
, Processor Internal Address Map 60
10 Clock/Control Interface 1
Basic System Clocks 1
MasterClock 1
SyncIn/SyncOut 1
PClock : 2
SClock 2
: 2
2
4
5
6
6
9
12
1
1
1
2
3
6
9

TClock
: RClock
System Timing Parameters '
Clock Interfacing to a Phase-Locked System
Clock Interfacing to a System Without Phase-Lock
Interface to Gate-Array System
Interface to CMOS Logic System
Processor Status Outputs
11 Cache Organization, Operation, and Coherency
Cache Organization
Primary Caches... ;
Primary Instruction Cache
Primary Data Cache
Secondary Cache
Primary and Secondary Cache Interaction
Cache Line Ownership 11
Cache Operation 11
Cache Coherency 11
Cache State Changes 14
Cache Line Write-Back ' 16

R4000 User's Manual--Preliminary ' ' xi

Contents

Manipulation of the Caches by an External Agent c...eeweeeessecsee
Ordering Considerations

Cpherence Conflicts

[
® 3

-
0

How Coherency Conflicts Arise
System Implications of Coherence Conflicts

)
-

N
g

N
g

System Model

Coherency Model
Handling Coherence Conflicts
Coherent Read Conflicts
Invalidate Conflicts
Coherent Write Conflicts

Secondary Cache Interface

Secondary Cache Interface Signals
Operation of the Secondary Cache Interface

Read Cycles
Write Cycles

12 Initialization Interface

Functional Overview

Initialization Interface Operation

Boot-Time Modes

Reset Operation

Power-on Reset

Cold Reset

Warm Reset

13 JTAG Interface

JTAG Interface Signal Summary

JTAG Functionality

JTAG Test Access Port (TAP)...

JTAG TAP Controller
Instruction Register

Bypass Rpgit:fpr

Boundary Scan Register
Implementation Specific Details

14 Processor Interrupts

15 Error Checking and Correcting

16 Specifications
" Electrical Characteristics

Maximum Ratings
Operating Range

Operating Parameters

MasterClock and Clock Parameters
Systemn Interface Parameters
Secondary Cache Interface Parameters
Capacitive Load Deration

Physical Specifications

QO\WPW‘MMHHHHHO\&u)MMMRHH@W\]\]MHHH&)\&K&SB%QGE

R4000 User's Manual--Preliminary

Contents

Signal to Pin Correlation of R4000PC 7
Pinout of R4000PC 10
Signal to Pin Correlation of R4000MC/SC 11
Pinout of R4000MC/SC Package 16
A CPU Instruction Set Details A-1
Instruction Classes A-2
Instruction Formats , A-3
Instruction Notation Conventions A-4
Instruction Notation Examples - A-6
Load and Store Instructions ; A-7
Jump and Branch Instructions A-8
Coprocessor Instructions A-9
System Control Coprocessor (CP0) Instructions A-9
B FPU Instruction Set Details B-1
Instruction Formats ~ B-1
Floating-Point Loads, Stores, and Moves B-4
Floating-Point Operations B-4
Instruction Notational Conventions....... - B-5
Instruction Notation Examples ; B-5
Load and Store Instructions R— B-6
Computational Instructions - B-8
FPU Instruction Opcode Bit Encoding ; B-61
C SECDED Codes : C1
Single Error Correcting/Double Error Detecting Codes C1
ECC Check Code Generation C3
Determining Single Data Bit Errors R C-3
Single Data Bit ECC Error , C-4
Single Check Bit ECC Error C4
Multiple Data Bit ECC Errors C-5
25-Bit Parity Check Matrix C-5.
D Sub-block Ordering D-1
E Output Buffer Di/Dt Control Mechanism E-1
F PLL Passive Components F-1
G R4000 Coprocessor 0 Hazards G-1

R4000 User's Manual--Preliminary " xiii

Introduction

This introductory chapter provides you with the following

information: :

* An explanation of RISC architecture, with subsections
describing the benefits of using RISC design, the relationship
between RISC architecture and optimizing compilers, and a
description of the MIPS compiler family. '

"o An overview of the R4000 features, including the Memory
Management System, pipeline architecture, memory hierarchy,
and interfaces to external cache memory and the remainder of
the system. '

What Is RISC?

Historically, the evolution of computer architectures has been
dominated by families of increasingly complex central processors.
Under market pressures to preserve existing software, Complex
Instruction Set Computer (CISC) architectures evolved by the
accretion of microcode and increasingly intricate instruction sets. This
intricacy in architecture was itself driven by the need to support high-
level languages (HLLs) and operating systems, as advances in
semiconductor technology made it possible to fabricate integrated
circuits of greater and greater complexity. And at the time it seemed
self-evident to designers that architectures should become more

" complex as technological advances made such VLSI designs possible.

In recent years however, Reduced Instruction Set Computer (RISC)
architectures have implemented a different model for the interaction
between hardware, firmware, and software. RISC concepts emerged
from a statistical analysis of the manner in which software actually
uses processor resources: dynamic measurement of system kernels

R4000 User's Manual—Preliminary 1-1

Chapter 1

and object modules generated by optimizing compilers showed that
the simplest instructions were used most often—even in the code for
CISC machines! Correspondingly, complex instructions were often
unused because their single way of performing a complex operation
rarely matched the precise needs of the high-level language.

RISC, on the other hand, eliminated microcode routines and turned
low-level control of the machine over to software. The RISC approach
was not new, but its application became more universal in recent
years, due to the increasing prevalence of high-level languages, the
development of compilers able to optimize at the microcode level,
and dramatic advances in semiconductor memory and packaging. It
is now feasible to replace a machine’s relatively-slow microcode ROM
with faster RAM, organized as an instruction cache. Machine control
then resides in this instruction cache that is, in effect, customized on
the fly: the instruction stream generated by system- and compiler-
generated code provides a precise fit between the requirements of
high-level software and the low-level capabilities of the hardware.

Reducing or simplifying the instruction set was not the primary goal
of RISC architecture; it is a pleasant side effect of techniques used to

.gain the highest performance possible from available technology.

Thus, the term Reduced Instruction Set Computers is a bit misleading: it
is the push for performance that really drives and shapes RISC

designs.

- Benefits of RISC Design

Some of the benefits that result from RISC design techniques are not
directly attributable to the drive to increase performance, but area
result of the basic reduction in complexity—a simpler design allows
both chip-area resources and human resources to be applied to
features that enhance performance. Some of these benefits are
described below. .

Shorter Design Cycle

The architectures of RISC processors can be implemented more
quickly than their CISC counterparts: it is easier to fabricate and
debug a streamlined, simplified architecture with no microcode than
a complex, microcoded architecture. CISC processors have sucha
long design cycle that they may not be completely debugged by the
time they have been rendered technologically obsolete. The shorter
time required to design and implement RISC processors allows them
to make use of the best available technologies.

R4000 User’s Manual--Preliminary

Introduction

Effective Utilization of Chip Area

The simplicity of RISC processors also frees scarce chip geography for
performance-critical resources such as larger register files, Translation
Lookaside Buffers (TLBs), coprocessors, and fast multiply and divide
units. Such resources help RISC processors obtain an even greater
performance edge.

User (Programmer) Benefits
Simplicity in architecture also helps the user in the following ways:
¢ A uniform instruction set is easier to use.

« A dloser correlation is made possible between the
instruction count and the cycle count, making it easier te
measure code optimization activities.

Advanced Semiconductor Technologies

Each new VLSI technology (ECL, GaAs) is introduced with tight
limits on the number of transistors that can be fit on each chip. Since
the simplicity of a RISC processor allows it to be implemented in fewer

transistors than its CISC counterpart, the first computers capable of
exploiting these new VLSI technologies have been using and will
continue to use RISC architecture.

Optimizing Compilers

RISC architecture is designed so that compilers, not assembly
languages, have the optimal working environment. RISC philosophy
assumes that high-level language (HLL) programming is used, a
philosophy in contrast to the older CISC philosophy developed when
- assembly language programming was of primary importance.
The trend toward HLL instructions has led to the development of
more efficient compilers to convert HLL instructions to machine code.
Primary measures of a compiler’s efficiency are:

e the compactness of its generated code
e the shortness of its execution time

Optimizing compilers and RISC architectures have a synergistic
relationship; compilers perform their best job of optimizationina
RISC environment. Reciprocally, RISC architectures rely on compilers
to obtain their best performance.

R4000 User’s Manual--Preliminary 1-3

Chapter 1

During the development of more efficient compilers, an analysis of
instruction streams revealed that the greatest amount of time was
spent: ~

» executing simple instructions

o performing load and store operations
while the more complex instructions were used less frequently.

It was also learned that compilers produce code that is often a narrow
subset of the processor’s instruction set architecture (ISA). A compiler
prefers instructions that perform simple, well-defined operations and
generate minimal side-effects. Complex instructions and features are
just not used by compilers; the more complex, powerful instructions
are either too difficult for the compiler to use or those instructions do
not precisely fit HLL requirements. : :

Thus, a natural match exists between RISC architectures and efficient,
optimizing compilers. This match makes it easier for compilers to
generate the most effective sequences of machine instructions to

" accomplish tasks defined by the high-level language.

Family of Compilers

Many compiler products—especially those designed for
microprocessors—are cobbled from various sources and do not
necessarily fit together very well. However, the MIPS language suite
approach shares common elements across the family of compilers
instead of treating each language’s compiler as a separate entity. In
this way the MIPS suite of compilers, RISCompilers™, can offer both
tight integration and broad language coverage.

The MIPS suite of compilers does the following:

 Provides industry-standard front ends for six languages (C,
FORTRAN, Pascal, Ada, PLI, COBOL) '

e Uses a common intermediate language, thus offering an
efficient way to add language front ends over time

o Shares all of the back end optimization and code
generation

o Uses the same object format and calling conventions
 Supports mixed-language programs cleanly

+ Supports debugging of programs written in all languages,
including mixtures

1-4

R4000 User’s Manual--Preliminary

Introduction

This language suite approach yields high-quality compilers for all
languages, since common elements make up the majority of each of
the language products. In addition, the ability to develop and execute
multi-language programs is provided, promoting flexibility in
development, avoiding recode of proven program segments, and
protecting the user’s software investment. The common back-end also
exports optimizing and code-generating improvements immediately
throughout the suite of RISCompilers, thereby reducing maintenance.

64-bit Architecture

The MIPS R4000 family of RISC microprocessors consists of high-
performance 32-bit and 64-bit processors; the natural mode of
operation for the R4000 is as a 64-bit microprocessor. It can, however,
be programmed to operate as a 32-bit processor.
The R4000 provides a 64-bit on-chip floating-point unit (FPU), 64-bit
.integer ALU, 64-bit integer registers, and a 64-bit virtual address
space. 32-bit applications maintain compatibility even when the
processor operates as a 64-bit processor.

R4000 User's Manual--Preliminary 1-5

Chapter 1

The R4000 Processor

The R4000 has many features that differ from the R2000/R3000
processor family. In addition to a high-performance integer unit, the
R4000 contains: : ‘
¢ a48-entry fully-associative on-chip TLB, with two pages
mapped to each entry
* separate on-chip primary data and instruction caches

o . an optional off-chip secondary cache
e an on-chip FPU
Figure 1-1 shows a block diagram of the R4000.

1-6 ‘ R4000 User’s Manual--Preliminary

Introduction

tosccesscssesssecssnsncsace

64-bit System Bus
A

System
Control

SCache Data Cache [®——| PCache

Control Control

instruction
Cache

NN AIYNR

SRANDINIINAD SHPLL DI CHRAENGARN

!

ORI XN SRINILAAIIII NN P I

CPO CPU FPU
Exception/Control CPU Registers FPU Registers
Registers

ALU Pipeline Bypass
Memory Management
Regxsters Load Aligner/Store Driver 3 FP Multiplier
Translation o | Integer Multiplier/Divider FP Divider
Lookaside T B
Buffers
- - Address Unit
FP Add, Convert
Square Root
PC Incrementer

Pipeline Control

Figure 1-1 R4000 Internal Block Diagram

Processor General Features

This section briefly describes the programming model, the MMU, and
the caches in the R4000. A more detailed description is given in

succeeding sections.

¢ Full 32-bit and 64-bit Operation. The R4000 contains
thirty-two general-purpose 64-bit registers. (When
operating as a 32-bit processor, the general-purpose
registers are 32-bits wide.) All instructions are thirty-two

bits wide.

R4000 User’s Manual--Preliminary

Chapter 1

CPU Registers

e Efficient Pipelining. The superpipeline design of the
processor results in an execution rate approaching one
instruction per cycle. Pipeline stalls and exceptional events
are handled precisely and efficiently.

e MMU. The R4000 processor uses an on-chip TLB that
provides rapid virtual-to-physical address translation of:

- 2-GByte user virtual address space in 32-bit mode
- 512-Gbyte user virtual address space in 64-bit mode.

e Cache Control. The R4000 primary instruction and data
caches reside on-chip, and can each hold from 8 Kbytes to
32 Kbytes. An off-chip secondary cache can hold from 128
Kbytes to 4 MBytes. All R4000 cache control, including the
secondary cache control, logic is on-chip.

e TFloating Point Unit. The FPU is located on-chip and
implements the ANSI/IEEE standard 754-1985.

The CPU provides thirty-two general-purpose registers, a Program
Counter (PC), and two registers that hold the results of integer
multiply and divide operations. These registers are either 32-bits or
64-bits wide, depending on the mode of operation. Two general-
purpose registers have special functions:

e 0 is hardwired to a value of zero. 0 can be used as the
target register for any instruction the results of which can
be discarded. 70 can also be used as a source when a zero
value is needed.

e 131 is the link register for JumpAndLink instructions. It
should not be used explicitly by other instructions.

The MIPS architecture defines three special registers whose use or
modification is implicit with certain instructions. These special
registers are:

e PC Program Counter

e HI Multiply and Divide Register higher result

e LO Multiply and Divide Register lower result
The two Multiply and Divide Registers (HI, LO) store the doubleword,
64-bit result or quadword, 128-bit result of integer multiply operations
and the quotient (in LO) and remainder (in HD) of integer divide
operations.

R4000 User’s Manual—Preliminary

Introduction

Figure 1-2 shows the CPU Registers.

General-Purpose Registers
&3 31 0 Multiply and Divide Registers
Y 63 31 0
r1 [ﬁ HI J
r2 63 31 0
[]
, C L0 i
[]
* " Program Counter
r29 63 31 ' 0
130 i PC
r31
Register width depends on mode of operation: 32-bit or 64-bit

Figure 1-2 CPU Registers

The R4000 has no Program Status Word (PSW) Register; its functions
are provided by the Status and Cause Registers incorporated within
Coprocessor 0 (CP0). CPO registers are described later in this chapter.

CPU Instruction Set Overview

Each CPU instruction is thirty-two bits long. As shown in Figure 1-3,
there are three instruction formats: immediate (I-type), jump (-type),
and register (R-type). Using only these three instruction formats
simplifies instruction decoding, more complicated (and less
frequently used) operations and addressing modes can be synthesized
by the compiler using sequences of these simple instructions.

R4000 User’'s Manual--Preliminary 1-9

Chapier 1

, 31 2625 2120 1615 0
| I-Type (Immediate)] op rs rt ~ immediate
31 26 25 0
J-Type (Jump) op target
31 2625 2120 1615 1110 65 0
R-Type (Register) op rs rt rd sa | funct

Figure 1-3 CPU Instruction Formats

The instruction set can be divided into the following groups:

Load and Store instructions move data between memory
and general registers. They are all I-type instructions, since
the only addressing mode supported is base register plus
16-bit, signed immediate offset. '

Computational instructions perform arithmetic, logical,

shift, multiply, and divide operations on values in registers.

They occur in both R-type (both the operands and the
result are stored in registers) and I-type (one operand is a
16-bit immediate value) formats.

Jump and Branch instructions change the control flow of a
program. Jumps are always to a paged, absolute address
formed by combining a 26-bit target address with the high-
order bits of the Program Counter (J-type format) or
register addresses (R-type format). Branches have 16-bit
offsets relative to the program counter (I-type).
JumpAndLink instructions save a return address in register
31. -

Coprocessor instructions perform operations in the
coprocessors. Coprocessor load and store instructions are I-
type (see the FPU instructions in Chapter 5).

Coprocessor 0 instructions perform operations on CP0
registers to manipulate the memory management and
exception handling facilities of the processor. Table 1-3
shows these instructions.

Special instructions perform system calls and breakpoint
operations. These instructions are always R-type.

1-10

R4000 User’s Manual--Preliminary

Introduction

e Exception instructions cause a branch to the general
exception-handling vector based upon the result ofa
comparison. These instructions occur in both R-Type (both
the operands and the result are registers) and I-type (one
operand is a 16-bit immediate value) formats.

A more detailed summary is provided in Chapter 2 and a complete
description of each instruction is given in Appendix A.

Table 1-1 lists the instruction set (ISA) common to all MIPS R-Series
processors; Table 1-2 lists R4000 instructions that are extensions to the
ISA. These instructions result in code space reductions,
multiprocessor support, and improved performance in operating
system kernel code sequences and in situations where run-time
bounds checking is frequently performed.

R4000 User’s Manual--Preliminary 1-11

Chapter 1

Table 1-1 CPU Instruction Set (ISA)

OP Description OP Description
Load and Store Instructions Multiply and Divide Instructions
LB Load Byte MULT Multiply
LBU | Load Byte Unsigned MULTU | Muttiply Unsigned
LH Load Halfword DIV Divide
LHU Load Halfword UnSigned DIVU Divide UnSigned
LW Load Word MFHI Move From Hi
LWL Load Word Left MTHI Move To Hi
LWR Load Word Right MFLO Move From LO
:3 gtore avtl:v 5 MTLO Move To LO
tore Haltwor .
sw Store Word , j:xnr‘r;p and Branch Instructions
SWL Store Word Letft .
SWR Store Word Right jgl‘ jﬁ:g QZ:;;:’(
A‘{ "L‘S"l‘;t':’e'd“_:*t'“"“°“s JALR Jump And Link Register
oot | e o | o
QE‘I?I U gg?;:? T;dsl?z;‘n;l‘g;:gme BLEZ Branch on Lessthan or Equal to Zero
SLTIU | Seton Less Than Immediate ngz g::z: on f::?;::;‘;éem
-1 Unsigned
AND!I | AND Immediate BGEZ g:;;';;g Greaterthan o
ORI R di
XORI gxcllg;:: Cl)al;tlelmmediate BLTZAL Branch on Less Than Zero And Link
LUl Load Upper immediate BGEZAL gzg?n%n[-%fater than or Equal to
, &l:ithr:reat:'zlr;astruc;;ons Coprocessor Instructions
ADD A d:p » Rtyp LwcCz Load Word to Coprocessor z
ADDU Add Unsigned SWCz Store Word from Coprocessor z
SUB Subtract MTCz Move To Coprocessor Z
SUBU | Subtract Unsigned MFCz. Move From Coprocessor z
SLT Set on Less Than CTCz | Move Control to Coprocessor z
SLTU Set on Less Than Unsigned gg%zz I\Cng;reocc:::s‘;?‘g;g&?fcessor z
AND AND
OR OR BCzT Branch on Coprocessor z True
XOR Exclusive OR BCzF Branch on Qoprocessor z False
NOR N . .
°© O,R . Special Instructions
Shift Instructions SYSCALL | System Call
SLL Shift Left Logical BREAK Break
SRL Shift Right Logical
SRA Shift Right Arithmetic
SLLV Shift Left Logical Variable
SRLV Shift Right Logical Variable
SRAV Shift Right Arithmetic Variable
1-12 R4000 User’s Manual—Preliminary

Introduction

Table 1-2 Extensions to the ISA

oP _Description oP Description
Load and Store Instructions Multiply and Divide Instructions
LD Load Doubleword DMULT | Doubleword Multiply
LDL Load Doubleword Left DMULTU | Doubleword Multiply Unsigned
LDR Load Doubleword Right DDIV Doubleword Divide
LL Load Linked DDIVU | Doubleword Divide Unsigned
LLD Load Linked Doubleword Jump and Branch Instructions
Lwu Load Word Unsigned .
sc - BEQL Branch on Equal Likely
scD Store Condft!onal BNEL Branch on Not Equal Likely
Store Conditional Doubleword BLEZL Branch on Less than or Equal
SD Store Doubleword to Zero Likely
SDL Store Doubleword L?ﬂ BGTZL | Branch on Greater Than Zero Likely
SDR Store Doubleword Right BLTZL | Branch on Less Than Zero Likely
SYNC | Sync . BGEZL | Branch on Greater than or
Arithmetic Instructions Equal to Zero Likely
(ALU Immediate) BLTZALL | Branch on Less Than Zero And
DADDI | Doubleword Add Immediate Link Likely
DADDIU| Doubleword Add Immediate BGEZALL| Branch-on Greater than or Equal to
Unsigned Zero And Link Likely
Arithmetic Instructions ggi;t granc: on goprocessor z ";n.;e L&f:g
(3-operand, R-type) ranc c.:n oprocessor z False y
DADD | Doubleword Add e fxcipé"’"t '"Tsh“ “°ﬂ°E"s |
DADDU | Doubleword Add Unsigned rap if Greater Than or fqua’ =
DSUB Doubleword Subtract TGEU |Trap l_f Greater Than or Equal Unsigned
DSUBU | Doubleword Subtract Unsigned || T-T Trap if Less Than
. . . TLTU Trap if Less Than Unsigned
Shift Instructions TEQ Trap if Equal
DSLL Doubleword Shift Left Logical TNE Trap if Not Equal
DSRL | Doubleword Shift Right Logical || TGEI Trap if Greater Than or Equal Immediate
DSRA Doubleword Shift Right Arithmetic|| TGEIU Trap if Greater Than or Equal
DSLLV | Doubleword Shift Left immediate Unsigned
Logical Variable TLTI Trap if Less Than immediate
DSRLV Eg;'gﬁ"{,‘;’ﬁi’a%?;ﬁ Right TLTIU | Trapif Less Than Immediate Unsigned
DSRAV | Doubleword Shift Right TEQ! Trap if Equal Immediate
Arithmetic Variable TNEI Trap if Not Equal Immediate
DSLL32| Doubleword Shift Left
Logical + 32 Coprocessor Instructions
DSRL32 qugﬁWOfd Shift Right DMFCz |Doubleword Move From Coprocessor z
ogical + 32 o DMTCz |Doubleword Move To Coprecessor Z
DSRA32| Doubleword Shift Right LDCz |Load Double Coprocessor
Arithmetic + 32
SDCz Store Double Coprocessor z

R4000 User's Manual--Preliminary

1-13

Chapter 1

Table 1-3 CPO Instructions

Op Description

DMFCO Doubleword Move From CPO
DMTCO Doubleword Move To CPO

MTCO Move to CPO

‘MFCO Move from CPO

TLBR Read Indexed TLB Entry
TLBWI Write Indexed TLB Entry
TLBWR Write Random TLB Entry
TLBP " Probe TLB for Matching Entry
ERET Exception Return

Data Formats and Addressing

The R4000 uses four data formats: a 64-bit doubleword, a 32-bit word,
a 16-bit halfword and an 8-bit byte. The byte ordering is configurable
as either Big-endian or Little-endian format. Endianness refers to the
location of byte 0 within a multi-byte structure.-

Figure 1-4 and Figure 1-5 show the ordering of bytes within words
and the ordering of words within multiple-word structures for the
Big-endian and Little-endian conventions.

When the R4000 is configured as a Big-endian system, byte 0 is the
most-significant (leftmost) byte, thereby providing compatibility with
MC 68000 and IBM 370° conventions. This configuration is shown in

Figure 1-4.
, 'Big Endian

Higher Word
Address 31 24 23 16 15 8 7 0 Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0
k%greerss e Most-significant byte is at lowest address. ,

e Word is addressed by byte address of most-significant byt

Figure 1-4 Addresses of Bytes within Words: Big-endian Byte Alignment

1-14 R4000 User's Manual--Preliminary

Introduction

When configured as a Little-endian system, byte 0 is always the least-
significant (rightmost) byte, which is compatible with iAPX"™ x86 and
DEC VAX® conventions. This configuration is shown in Figure 1-5.

Little Endian
Higher Word
Address 81 24 23 16_15 8 7 0 Address
11 10 9 8 8
7 5 4 4
3 2 1 0 0
Lower ® | east-significant byte is at lowest address.
Address e \Word is addressed by byte address of least-significant byte
Figure 1-5 Addresses of Bytes within Words: Little-endian Byte Alignment
In this book, bit 0 is always the least-significant (rightmost) bit; thus,
bit designations are always Little Endian (although no instructions
explicitly designate bit positions within words). ’
Figure 1-6 and Figure 1-7 show byte alignment in doublewords.
Higher Big Endian
Address : Doubleword
63 , Address
16 | 17 { 18 | 19 | 20 | 21 | 22 | 23 16
Byte # { 8 9 |10 | 11 | 12 | 13 | 14 | 15 8
0 1 2 3 4 5 6 | 7 0

Lower
Address

* Most-significant byte is at lowest address.
¢ Word is addressed by byte address of most-significant byte

Figure I1-6 Addresses of Bytes within Doublewords: Big-endian Byte Alignment

R4000 User’s Manual--Preliminary

1-15

Chapter 1

Higher
Address

Lower
Address

Little Endian Doubleword
63 0 Address

15 | 14 |13 |12 |11 [10| 9 | 8 8
7 1 6 | 5 | 43210 0

23| 22|21 | 20|19 | 18 | 17 | 16 16
Byte #

® | east-significant byte is at lowest address. A
® Word is addressed by byte address of least-significant byte

" Figure 1-7 Addresses of Bytes within Doublewords: Little-endian Byte Alignment

The CPU uses byte addressing for halfword, word, and doubleword
accesses with the following alignment constraints:

o Halfword accesses must be aligned on an even byte
boundary (0, 2, 4...)

» Word accesses must be aligned on a byte boundary -
divisible by four (0, 4, 8...)

e Doubleword accesses must be aligned on a byte boundary
divisible by eight (0, 8, 16...).

As shown in Figure 1-6 and Figure 1-7, the address of a multiple-byte
data item is the address of the most-significant byte on a Big-endian .
configuration, or the address of the least-significant byte on a Little-
endian configuration.

Special instructions are provided for loading and storing words and
doublewords that are not aligned on 4-byte (word) or 8-word (double
word) boundaries: LWL, LWR, SWL, SWR, LDL, LDR, SDL, SDR.
These instructions are used in pairs to provide addressing of
misaligned words with one additional instruction cycle over that
required for aligned words. For each of the two endianness
conventions, Figure 1-8 shows the bytes that are accessed when
addressing a misaligned word with byte address 3.

1-16

R4000 User’s Manual--Preliminary

Introduction

Higher
Address

Lower
Address

31 24 23 16 15 8 7 0
4 5 6 Big
3 Endian
31 24 28 16 15 8 7 0
6 5 4 Little
3 Endian

Figure 1-8 Example Misaligned Word: Byte Address $3

System Control Coprocessor (CP0) |

The MIPS ISA allows up to four coprocessors (designated CP0
through CP3). Coprocessor 1 (CP1) is reserved for the on-chip,
floating-point coprocessor. Coprocessor 2 (CF2) is reserved for future
- definition by MIPS, and the encoding for Coprocessor 3 (CP3) is used
to provide certain extensions to the MIPS ISA. Coprocessor 0 (CP0) is
also incorporated on the CPU chip and supports the virtual memory
system and exception handling. The virtual memory system is
implemented with an on-chip TLB and a group of programmable
registers, as described in Table 1-4. , '
CPO translates virtual addresses into physical addresses and manages
exceptions and transitions between kernel, supervisor, and user
states. It also controls the cache subsystem and provides diagnostic
control and error recovery facilities. The R4000 also providesa generic
system timer for interval timing, timekeeping, process accounting,
and time-slicing (see the Count and Compare Registers in Chapter 5).

R4000 User’s Manual--Preliminary

Chapter 1

Count

Compare

SR

Cause

EPC

PRId

[] Exception Processing

Reg. # Register Name
0 Config
1 LLAddr
2 WatchLo
3 WatchHi
4 XContext
; _

"6

7
8
9
10 ECC
11 CacheErr
12 Taglo
13 TagHi
14 , ErrorEPC
15

Legend

Memory Management

Reg. #
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Reserved

Figure 1-9 The R4000 CPO Registers

The CPO registers shown in Figure 1-9 and described in Table 1-4
manipulate the memory management and exception handling

capabilities of the CPU. Refer to Chapter 4 fora detailed description of

the registers associated with the virtual memory system and to
Chapter 5 for descriptions of the exception processing registers.

R4000 User's Manual--Preliminary

Introduction

Table 14 System Control Coprocessor (CPO) Registers

Description

Number | Register
0 Index
1 Random
2 EntryLo0
3 EntryLo1
4 Context
5 PageMask
6 Wired
7 —
8 BadVAddr
9 Count
10 EntryHi
1 Compare
12 SR
18 . Cause
14 EPC
15 PRId
16 Config

- 17 LLAddr
18 WatchLo
19 WatchHi
20 XContext
21-25 —_
26 ECC
27 CacheErmr
28 Tagl-o
29 TagHi
30 ErrorEPC
31 —_—

Programmable pointer into TLB array
Pseudorandom pointer into TLB array (read only)
Low half of TLB entry for even VPN

Low half of TLB entry for odd VPN

Pointer to kernel virtual PTE table in 32-bit addressing mode
TLB Page Mask

Number of wired TLB entries

Reserved

Bad virtual address

Timer Count

High half of TLB entry

Timer Compare

Status Register

.Cause of last exception
Exception Program Counter

Processor Revision Identifier
Configuration Register

Load Linked Address

Memory reference trap address low bits
Memory reference trap address high bits
Pointer to kernel virtual PTE table in 64-bit addressing mode
Reserved:

Secondary-cache ECC and Primary Parity
Cache Ermror and Status Register

Cache Tag Register

Cache Tag Register

Error Exception Program Counter
Reserved

Floating-Point Unit (FPU)
The MIPS Floating-Point Unit (FPU) operates as a coprocessor for the

CPU and extends the CPU instruction set to perform arithmetic

operations on values in floating-point representations. The FPU, with
associated system software, fully conforms to the requirements of

ANSI/IEEE Standard 754-1985, “IEEE Standard for Binary Floating-
Point Arithmetic.”

The FPU features:

R4000 User’s Manual—-Preliminary

1-19

\

Chapter 1

e Full 64-bit operation. The FPU contains 16 64-bit registers
or, optionally, thirty-two 64-bit registers that hold single-
precision or double-precision values. The 16 additional
floating-point registers are enabled by setting the FR bit in
the Status register. The FPU also includes a 32-bit Status/
Control Register that provides access to all IEEE-Standard
exception handling capabilities. :

e Load and Store Instruction Set. Like the CPU, the FPU
uses a load- and store-oriented instruction set. Floating-
point operations are started in a single cycle and their
execution is overlapped with other fixed-point or floating-
point operations.

¢ Tightly coupled Coprocessor Interface. The FPU is on-
chip and appears to the programmer as an extension of the
CPU (the FPU is accessed as Coprocessor 1). This forms a
tightly coupled unit with a seamless integration of floating-

~ point and fixed-point instruction sets. Since each unit
receives and executes instructions in parallel, some
floating-point instructions can execute at the same rate 2
instructions per cycle) as fixed-point-instructions. The FPU
instructions are summarized in Chapter 6, Floating-Point
Unit.

On-chip Caches

The R4000 incorporates on-chip instruction and data caches to keep
the high-performance pipeline full. Each cache has its own 64-bit data
path that can be accessed in parallel. The caches can be accessed twice
in one cycle. Combining this feature with a pipelined, single-cycle
access of each cache, the cache subsystem provides the integer and
floating-point units with an aggregate bandwidth of 1.6 GBytes per
second at a Master Clock frequency of 50 MHz. The R4000 caches are
described in detail in Chapter 11, Cache Organization, Operation, and
Coherency.

1-20

R4000 User’s Manual--Preliminary

Introduction

Memory Management System

The R4000 has a physical addressing range of 64 Gbytes (36 bits).
However, since most systems implement a physical memory smaller
than 4 Gbytes, the CPU provides a logical expansion of memory space
by translating addresses composed in a large virtual address space
into available physical memory addresses. In 32-bit mode, the virtual
address space is divided into 2 Gbytes per user process and 2 Gbytes
for the kernel. In 64-bit mode, the virtual address is expanded to allow
512 Gbytes of user virtual address space.

The Transla_tioh Lookaside Buffer (TLB)

Virtual memory mapping is assisted by a TLB. This TLB caches virtual
address translations. The fully-associative, on-chip TLB contains 48
entries, and each of these entries maps a pair of variable-sized pages
(page size varies from 4 KBytes to 16 MBytes, increasing by multiples
of 4). An address translation value is tagged with the most-significant
bits of its virtual address (the number of these bits depends upon the
size of the page) and a per-process identifier. If there is no matching
entry in the TLB, an exception is taken and software refills the on-chip
TLB from a Page Table resident in memory. An entry, chosen at
random, is replaced to make way for the new one. This TLB s referred
to as the JTLB.

- The R4000 also has a two-entry instruction TLB (ITLB) to assist in
instruction address translation. The ITLB is completely invisible to
software and is present for performance reasons only.

Operating Modes

The R4000 CPU has three operating modes: User mode, Kernel mode,
and Supervisor mode. The CPU normally operates in User mode until
an exception is detected forcing it into Kernel mode. It remains in
Kernel mode until an Exception Return (ERET) instruction is executed.
The Supervisor mode can be used to design secure operating systems.
The manner in which memory addresses are translated or mapped
depends on the operating mode of the CPU. Chapter 4 describes the
MMU and Operating modes in greater detail.

R4000 User's Manual--Preliminary | ' 1-21

Chapter 1

R4000 Superpipeline Architecture

The R4000 exploits instruction-level parallelism using a
superpipelined implementation. The R4000 uses an 8-stage
superpipeline which places no restrictions on the instruction issued.
Under normal circumstances, any two instructions are issued each
cycle. '

The internal pipeline of the R4000 operates at twice the frequency of
the master clock. This is shown in Figure 1-10. The 8-stage
superpipeline of the R4000 achieves high throughput by pipelining
cache accesses, shortening register access times, implementing virtual
indexed primary caches, and allowing the latency of functional units
to span multiple pipeline clock cycles (pcycles). In the rest of this
document, the internal pipeline clock and clock cycles are often
referred to as pclock and peycles respectively. The R4000
superpipeline is covered in greater detail in Chapter 3.

The execution of a single R4000 CPU instruction consists of the

following eight primary steps:
- IF Instruction fetch First half. Virtual address is presented to
the I-cache and TLB.

IS © Instruction fetch Second half. The I-cache outputs the
‘ instruction and the TLB generates the physical address.

RF Register File. Three activities occur in parallel:

e instruction is decoded and a check is made for
interlock conditions, '

o instruction tag check is made to determine if there is a
cache hit or not, '

o operands are fetched from the register file.
EX Instruction EXecute. One of three activities can occur:

e if the instruction is a register-to-register operation, an
arithmetic, logical, shift, multiply, or divide operation
is performed;

e if the instruction is a load and store, the data virtual
address is calculated;

1-22 . R4000 User’s Manual--Preliminary

Introduction

if the instruction is a branch, the branch target virtual

address is calculated and branch conditions are

Data cache First half. A virtual address is presented to the

Data cache Second half. The D-cache outputs the

instruction and the TLB generates the physical address.

© Tag Check. A tag check is performed for loads and stores to

determine if there is a hit or not.

checked.
DF
‘ D-cache and TLB.
DS
TC
WB

register file.

Write Back. The instruction result is written back to the

The R4000 uses an 8-stage pipeline; thus, execution of 8 instructions
at a time are overlapped, as shown in Figure 1-10.

Master | . (8-Deep)
Clock Cycle . : _ m—
[MF] 18 [RF] EX| DF | DS] 1C | WB
(TF] 1S [RF] EX] DF | DS| TC [WB]
Poveel F TS TRE] EX] DF | DS|TC | WB]
MF]© [RF] EX|DF|DS[TC[WB]
(MF] 18 | RE|EX|DF [DS]TC [WB]
[FI B |RF|EX] DF] DS [TC [WB]
ME |15 | RF] EX [DF | DS [TC | WB]
TF | IS TRE | EX] DF | DS | TC | WB]
Current
CPU
Cycle

Figure 1-10 R4000 Pipeline and Instruction Overlapping

R4000 User's Manual--Preliminary

1-23

Chapter 1

Cache Memory Hierarchy

To achieve its high performance in uniprocessor and multiprocessor
systems, the R4000 supports a cache memory hierarchy that increases
memory access bandwidth and reduces the latency of load and store
instructions. The two-level cache memory hierarchy consists of on- '
chip instruction and data caches, and an optional external secondary
cache that can vary in size from 128 Kbytes to 4 Mbytes.

The secondary cache is assumed to consist of one bank of industry-
standard static RAM (SRAM) with output enables. The secondary
cache consists of a quadword (128 bit) wide data array and a 25-bit
wide tag array. Check fields are added to both the data and tag arrays
to improve data integrity. The secondary cache may be configured as
either a joint cache or split instruction/data cache. The maximum
secondary cache size is 4 MBytes and the minimum secondary cache
size is 128 KBytes for a joint cache and 256 KBytes for split instruction/
data cache. The secondary cache is direct-mapped, and is addressed
with the lower part of the physical address.

A detailed description of the cache hierarchy is given in Chapter 11,
Cache Organization, Operation, and Coherency.

Secondary Cache Interface

The R4000SC and R4000MC versions of the R4000 interface to an
optional secondary cache. The R4000 provides all of the secondary
cache control circuitry, including ECC protection, on chip. The
secondary cache interface consists of a 128-bit data bus, a 25-bit tag
bus, an 18-bit address bus and SRAM control signals. The 128-bit wide
data bus minimizes cache miss penalty, and allows the use of standard
low-cost SRAMs in the secondary cache design.

System Interface

The R4000 supports a 64-bit system interface that can be used to
construct uniprocessor systems with a direct DRAM interface with or
without a secondary cache or cache-coherent multiprocessor systems.
The interface consists of a 64-bit multiplexed address and data bus
with 8 check bits and a 9-bit parity-protected command bus. In
addition, there are 8 handshake signals. The interface has a simple
timing specification and is capable of transferring data between the
processor and memory at a peak rate of 400 Mbytes/second at 50
MHz.

1-24

R4000 User's Manual--Preliminary

Introduction

R4000 Configurations

The R4000 is packaged in three different configurations. All
processors are implemented in sub-1 micron CMOS technology:

o The R4000SC is designed for use in high-performance
uniprocessor systems. It is packaged in a 447-pin LGA/
PGA and includes integrated control for large secondary
caches built from standard SRAMs.

e The R4000MC is designed for use in large cache-coherent
multiprocessor systems. The R4000MC is also packaged in
447-pin LGA/PGA and includes, in addition, support for a
wide variety of bus designs and cache-coherency
mechanisms.

e The R4000PC is designed for cost-sensitive systems such as
inexpensive desktop systems and high-end embedded
controllers. It is packaged in a 179-pin PGA. The R4000PC
does not support a secondary cache. ‘

Compatibility _
The R4000 provides complete application software compatibility with
the MIPS R2000, R3000, and R6000 processors. Although the
architecture has evolved in response to a compromise between
software and hardware resources in the computer system, this
evolution maintains object-code compatibility for programs that
execute in User mode (see Chapter 4, Memory Management System, for
a description of operating modes). Like its predecessors, the R4000
implements the MIPS Instruction Set Architecture (ISA) for user-mode
programs; this guarantees that user-mode programs conforming to
the ISA will execute on any MIPS hardware implementation.

R4000 User’s Manual—Preliminary 1-25

Chapter 1

1-26 R4000 User’s Manual--Preliminary

CPU Instruction Set Summary

2

This chapter provides an overview of the CPU instruction set by
summarizing each instruction category in a table. Refer to Appendix
A for individual descriptions of each CPU instruction.

The FPU instructions are summarized in Chapter 6, and are described
in detail in Appendix B. : g .

Instruction Formats

Each CPU instruction consists of a single word (32 bits) aligned on a
word boundary. There are three instruction formats, as shown in
_Figure 2-1. The use of these three instruction formats simplifies
instruction decoding since the compiler can synthesize more
complicated (and less frequently used) operations and addressing
modes. In the MIPS architecture, coprocessor instructions are
implementation-dependent; see Appendix A for R4000 Coprocessor 0
instruction details.

R4000 User's Manual--Preliminary 2-1

Chapter 2

I-Type (Immediate)
31 2625 2120 16 15 0
[Top | rs | t | immediate |
J-Type (Jump) S
31 26 25 _ 0
| op | target I
- R-Type (Register)
31 2625 2120 1615 1110 65 0
[op | rs [t | rd [sa |funct]
| op is a 6-bit operation code
rs _ is a 5-bit source register specifier
rt is a 5-bit target (source/destination)
register or branch condition
immediate | is a 16-bit immediate value, branch dis-
placement or address displacement
target is a 26-bit jump target address
rd is a 5-bit destination register specifier
sa is a 5-bit shift amount
funct | is a 6-bit function field

Figure 2-1 CPU Instruction Formats

Load and Store Instructions

Load and Store instructions move data between memory and the
general registers. They are all immediate (I-type) instructions. The
only addressing mode that load and store instructions directly
support is base register plus 16-bit signed immediate offset.

' The instruction immediately following a load can use the contents of

the loaded register. In such cases, hardware interlocks require
additional real cycles; consequently, scheduling load delay slots isstill
desirable, for both performance and R3000 compatibility. However,
the scheduling of load delay slots is not absolutely required for
functional code.

R4000 User's Manual--Preliminary

CPU Instruction Set Summary

The load and store instruction opcode determines the access type
which indicates the size of the data item to be loaded or stored as
shown in Figure 2-2. Regardless of access type or byte-numbering
order (endianness), the address specifies the byte with the smallest
byte address in the addressed field. For a Big-endian configuration, it
is the most-significant byte; for a Little-endian configuration, itis the
least-significant byte.

The bytes that are used within the addressed doubleword can be
determined from the access type and the three low-order bits of the
address, as shown in Figure 2-2. Only the combinations shownin
Figure 2-2 are permissible; other combinations cause address error
exceptions. Table 2-1 lists the load and store instructions defined by
the ISA. Table 2-2 lists the instructions which are extensions to the ISA.

R4000 User's Manual--Preliminary 2-3

Chapter 2

Figure 2-2 Byte Specifications for Load and Store Instructions

Access Type Low Order Bytes Accessed
Mnemonic Address Bits Big-Endian Littie-Endian
63 0] 63 0
(Value) 21110 Byte Byte
Doubleword (7) § 0 | O 00“2345677654371]0
) olojojo|t1]2]{3|4|5]|6 #e6|5|4|3[{2(1]0
Septibyte (6) , ; :
0|0}1 1]2|3|4|5|6l7}7]|6|5]4|3]|2]1
] ojo|lofolt1{2]|3]|4|5E 5(4]3]2]1}0
Sextibyte (5)
ol1|ofEi2(3|a(5]|6]|7]7|6[5[4]8]|2 '
e oloflofo|1{2]3]|4ki: ' 413121110
Quintibyte (4)
o111 3lals|e|7)7|6|5[4|3
ojojojoji1i2|8
Word (3) S
110 | 0 pade 4|1516)7
ojojlojo|t1|2 3 211})0
Triplebyte (2) of(o0}1 1123 312]1
ripie
plebyt 1]0]0 4156 6|5|afs
1|01 Fas > sle|7]7le|58
oj{o}lojo|1 110
0|17]0 213 312
Halfword (1) .
11010 415 514
11110 6171716
0100
o001
of(t]o
Byte () RN
e
1 {010
1 0] 1
11110
111 1

R4000 User's Manual--Preliminary

CPU Instruction Set Summary

Table 2-1 Load and Store Instruction Summary (ISA)

S —

Instruction | Format and Description] “op | base l rt | offset |

| Load Byte | LB nioffset(base) ’
Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed byte and load into register rt.
Load Byte | LBU r,offset(base)
Unsigned | Sign-extend 16-bit offset and add to contents of register base to form address.
' Zero-extend contents of addressed byte and load into register r.

Load LH noffset(base) .

Halfword Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed halfword and load into register 1.

Load LHU n offset(base)

Halfword Sign-extend 16-bit offset and add to contents of register base to form address.

Unsigned Zero-extend contents of addressed halfword and load into register r.

Load Word | LW ntoffset(base)

Sign-extend 16-bit offset and add to contents of register base to form address.
Load contents of addressed word into register rt. (sign extended if 64-bit mode)

Load Word | LWL rtoffset(base) '

Left | Sign-extend 16-bit offset and add to contents of register base to form address.
Shift addressed word left so that addressed byte is leftmost byte of a word.
Merge bytes from memory with contents of register rt and load the result into
register ri. (sign extended if 64-bit mode)

Load Word | LWR noffset(base)

Right Sign-extend 16-bit offset and add to contents of register base to form address.

! Shift addressed word right so that addressed byte is rightmost byte of a word.
Merge bytes from memory with contents of register rt and load the result into
register 1. (sign extended if 64-bit mode)

Store Byte | SB ri,offset(base)

Sign-extend 16-bit offset and add to contents of register base to form address.
Store the least-significant byte of register rt at addressed location.
Store SH noffset(base) ' _
Halfword Sign-extend 16-bit offset and add to contents of register base to form address.
v Store the least-significant halfword of register rt at addressed location.

Store Word | SW rt,offsel(base) ,
Sign-extend 16-bit offset and add to contents of register base to form address.
Store the contents of the least significant word of register rt at addressed location.

Store Word | SWL rtoffset(base) .

Left Sign-extend 16-bit offset and add to contents of register base to form address.
Shift contents of register rt left so that the leftmost byte of the low-order word is
in the position of the addressed byte. Store the bytes containing the original data
in the low-order word into corresponding bytes at addressed byte.

Store Word | SWR rt,offset(base)

Right Sign-extend 16-bit offset and add to contents of register base to form address.
Shift contents of register rt right so that the rightmost byte of the low-order word
is in theposition of the addressed byte. Store the bytes containing the original
data in the low-order word into corresponding bytes at addressed byte.

R4000 User's Manual--Preliminary 2-5

Chapter 2

Table 2-2 Load and Store Instruction (ISA Extensions)

Instruction Format and Description | op base rt offset
Load t2 n,offseﬂ‘basa). ") ‘
Doubleword Sign-extend 16-bit offset and add to contents of register base to form address|
Load contents of addressed double word into register rt.
Load LDL rt, offset{base) :
Doubleword Sign-extend 16-bit offset and add to contents of register base to form address.
Left Shift addressed doubleword left so that addressed byte is leftmost byte of a
doubleword. Merge bytes from memory with contents of register 1t and load the
result into register rt. :
Load LDR ri, offset(base)
Doubleword Sign-extend 16-bit offset and add to contents of register base to form address.
Right Shift addressed doubleword right so that addressed byte is rightmost byte of a
doubleword. Merge bytes from memory with contents of register rt and load the
result into register .
Load Linked LL ri,offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address.
. . Sign-extend contents of addressed word and load into register . :
Load Linked. LLD n,offset(base) .
Doubleword Sign-extend 16-bit offset and add fo contents of register base to form address.
Load contents of addressed doubleword into register rt.
Load Word LWU nt,offset(base)
Unsigned Sign-extend 16-bit offset and add to contents of register base to form address.
Zero extend contents of addressed word and load into register rt.
Store - S momsenoase) _ . :
Doubleword Sign-extend 16-bit offset and add to contents of register base to form address)
Store contents of register rt at addressed location.
Store Su 1,unsenwase)
Conditional Sign-extend 16-bit offset and add to contents of register base to form address.
Conditionally store low-order word of register rt at addressed location.
Store SCDr,offset(base)
Conditional Sign-extend 16-bit offset and add to contents of register base to form address.
Doubleword Conditionally store contents of register rt at addressed location.
Store SDL rt,offset(base) " :
Doubleword Sign-extend 16-bit offset and add to contents of register base to form address.
Left Shift contents of register rt left so that the leftmost byte of the word is in the posi-
tion of the addressed byte. Store the bytes containing the original data in the low-
order doubleword into corresponding bytes at the addressed byte.
Store SDR rt,offset(base)
Doubleword Sign-extend 16-bit offset and add to contents of register base to form address.
Right Shift contents of register rt right so that the rightmost byte of the word is in the
position of the addressed byte. Store the bytes containing the original data in the
low-order doubleword into corresponding bytes at the addressed byte.
Sync SYNC
Complete all outstanding load or store instructions before allowing any new load
and store instruction to start.
2-6

R4000 User's Manual--Preliminary

CPU Instruction Set Summary

Computational Instructions

Computational instructions perform arithmetic, logical, shift,
multiply, and divide operations on values in registers. They occur in
both register (R-type) format, in which both operands are registers,
and immediate (I-type) format, in which one operand is a 16-bit
immediate. There are four categories of computational instructions:

e ALU Immediate instructions
* Three-Operand Register-Type instructions
e Shift instructions
e Multiply and Divide instructions
When operating in 64-bit mode, 32-bit operands must be correctly sign

extended. The result of operations which use incorrectly sign-extend-
ed, 32-bit values is unpredictable.

R4000 User's Manual--Preliminary 2-7

Chapter 2

Table 2-3 ALU Immediate Instruction Summary

Instruction

Formatand Description [op [rs | 1 |

immediate J

ADD Immediate

ADDI rtrs,immediate

Add 16-bit sign-extended immediate to register rs and place the 32-bit result
(sign-extended in 64-bit mode) in register rt. Trap on 2's-complement overfiow.

ADD Immediate
Unsigned

ADDIU ri,rs,immediate

Add 16-bit sign-extended immediate to register rs and place the 32-bit result
(sign-extended in 64-bit mode) in register 1. Do not trap on overfiow.

Set on Less Than
Immediate

SLTI rt,rs,immediate

Compare 16-bit sign-extended immediate with register rs as signed
integers. Result is set to 1 if rsis less than immediate; otherwise result is set

1o 0. Place result in register 1.

Set on Less Than

SLTIU rtrs,immediate

AND Immediate

Immediate Compare 16-bit sign-extended immediate with register rs as unsigned
Unsigned integers. Result is set to 1 if 5 is less than immediate; otherwise result is set
to 0. Place result in register rt.
-ANDI t,rs,immediate

Zero-extend 16-bit immediate, AND with contents of register rs and place

- the result in register rt.

OR Immediate

ORI ri,rs,immediate

Zero-extend 16-bit immediate, OR with contents of register rs and place
the result in register rt.

Exclusive OR XORI rt,rs,immediate.
immediate - | Zero-extend 16-bit immediate, exclusive OR with contents of register rs and
place the result in register rt. .
Load Upper LUI rt,immediate
Immediate Shift 16-bit immediate left 16 bits. Set least-significant 16 bits of word to
zeros. Store the result in register rt.
2-8

~ R4000 User's Manual--Preliminary

CPU Instruction Set Summary

Table 2-4 ALU Immediate Instruction (ISA Extensions)

Instruction

Format and Description | op | rs | it | immediate |

DADD Iimmediate

DADDI rt,rs,immediate : -
Add 16-bit sign-extended immediate to register rs and place the 64-bit result
in register rt. Trap on 2's-complement o