

Additional Resources for Developers from Microsoft Press
Published and Forthcoming Titles on Microsoft" Visual Studio®

Visual Basic Programming Microsoft Data Access Inside Microsoft Windows
Visual C# 2008: Communication Foundation

Microsoft Visual Basic® 2008 The Language Microsoft ADO.NET 2.0 Justin Smith
Express Edition: Donis Marshall Step by Step 978-0-7356-2306-4
Build a Program Now! 978-0-7356-2540-2 Rebecca M. Riordan
Patrice Pelland 978-0-7356-2164-0 Other 978-0-7356-2541-9 Programming Microsoft Developer Topics

Visual C# 2005: Programming Microsoft
Microsoft Visual Basic 2008 The Language ADO.NET 2.0 Debugging Microsoft
Step by Step Donis Marshall Core Reference .NET 2.0 Applications
Michael Halvorson 978-0-7356-2181-7 David Sceppa John Robbins
978-0-7356-2537-2 978-0-7356-2206-7 978-0-7356-2202-9

Microsoft Visual Basic 2005
Programming Microsoft

Programming the Microsoft I. M. Wright's "Hard Code" Visual C# 2005:
Step by Step The Base Class Library ADO.NET Entity Framework Eric Brechner
Michael Halvorson Francesco Salena David Sceppa 978-0-7356-2435-1
978-0-7356-2131-2 978-0-7356-2308-8 978-0-7356-2529-7

The Practical Guide to
Programming Windows® CLR via C#, Programming Microsoft Defect Prevention
Services with Microsoft Second Edition ADO.NET 2.0 Applications Marc McDonald, Robert
Visual Basic 2008 Jeffrey Richter Advanced Topics Musson, Ross Smith
Michael Gernaey 978-0-7356-2163-3 Glenn Johnson 978-0-7356-2253-1
978-0-7356-2433-7 978-0-7356-2141-1

Web Development
Software Estimation:

Programming Microsoft .NET Framework Demystifying the Black Art
Visual Basic 2005: Microsoft ASP.NET 3.5 Windows Presentation Steve McConnell
The Language Step by Step Foundation:

978-0-7356-0535-0
Francesco Salena George Shepherd A Scenario-Based Approach
978-0-7356-2183-1 978-0-7356-2426-9 Billy Hollis The Security

978-0-7356-2418-4 Development Lifecycle

Visual C# Microsoft ASP.NET 2.0 Michael Howard

Microsoft Visual C#~ 2008 Step by Step 3D Programming for Steve Lipner

Express Edition: George Shepherd Windows
978-0-7356-2214-2

Build a Program Now! 978-0-7356-2201-2 Charles Petzold
Patrice Pelland 978-0-7356-2394-1 Code Complete,

978-0-7356-2542-6 Programming Microsoft Second Edition
ASP.NET 3.5 Microsoft Windows Steve McConnell

Microsoft XNA™ Game Dino Esposito Workflow Foundation 978-0-7356-1967-8

Studio 2.0 Express: Learn 978-0-7356-2527-3 Step by Step
Programming Now! Kenn Scribner

Software Requirements,

Rob S. Miles Programming Microsoft 978-0-7356-2335-4 Second Edition

978-0-7356-2522-8 ASP.NET 2.0 Karl E. Wiegers
Core Reference Microsoft Windows

978-0-7356-1879-4

Microsoft Visual C# 2008 Dino Esposito Communication Foundation
Step by Step 978-0-7356-2176-3 Step by Step More About Software

John Sharp John Sharp Requirements: Thorny

978-0-7356-2430-6 Programming Microsoft 978-0-7356-2336-1 Issues and Practical Advice
ASP.NET 2.0 Applications Karl E. Wiegers

Microsoft Visual C# .2005 Advanced Topics Applications = Code +
978-0-7356-2267-8

Step by Step Dino Esposito Markup: A Guide to the
John Sharp 978-0-7356-2177-0 Microsoft Windows
978-0-7356-2129-9 Presentation Foundation

Charles Petzold
978-0-7356-1957-9

microsoft.com/mspress

Microsoft®

Windows® Embedded CE 6.0
Fundamentals

Stanis/av Pavlov

Pavel Belevsky

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2008 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Original Russian language edition copyright © 2008 by Quarta Technologies. All rights reserved. Translations and publication
by arrangement with the original publisher, Quarta Technologies, Moscow, Russia.

Library of Congress Control Number: 2008931433

Printed and bound in the United States of America.

123456789 QWT 321098

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveSync, Direct3D, DirectDraw, DirectShow, DirectX, Excel, IntelliSense, Internet Explorer,
JScript, MSDN, Outlook, SQL Server, Visual Studio, Win32, Windows, Windows Media, and Windows Mobile are either
registered trademarks or trademarks of the Microsoft group of companies. Other product and company names mentioned
herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author's views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Editorial Production: Biblioso Corporation
Technical Reviewer: Stas Pavlov and the Windows Embedded CE development team
Project Sponsor: Sondra Webber
Cover: Tom Draper Design

Body Part No. X14-95993

Dedication

Dedicated to Taras II. Oemyankov,

without whom I would not have become the kind of person and the specialist that I am,

and without whom this book would have never been possible.

He was really looking forward to this book appearing,

but unfortunately he did not live to see that day.

Contents at a Glance
1 Introduction ... 1

2 Operating System and Application Development Tools 11

3 Operating System Architecture 75

4 Build System .. 101

5 Board Support Package (BSP) 121

6 Driver Architecture· 135

7 Starting the Operating System 159

8 Building Devices 167

9 Application Development 203

10 Testing Operating System Images 215

Glossary .. 231

References .. 233

Index .. 235

v

Table of Contents

1 Introduction 1
About This Book .. 1

Chapter 1: Introduction ... 1

Chapter 2: Operating System and Application Development Tools 1

Chapter 3: Operating System Architecture 1

Chapter 4: Build System .. 2

Chapter 5: Board Support Package (BSP) 2

Chapter 6: Driver Architecture 2

Chapter 7: Starting the Operating System 3

Chapter 8: Building Devices 3

Chapter 9: Application Development 4

Chapter 10: Testing Operating System Images 4

Glossary .. 4

References .. 4

Resources ... 4

Embedded Systems ... 5

Windows Embedded CE History 6

Windows Embedded CE Solutions 7

Developer Workstation Requirements 10

2 Operating System and Application Development Tools 11
Installing Visual Studio 2005 .. 11

Installing the Platform Builder Toolkit 20

Installing Updates .. 24

Development Tools Interface .. 32

Main Views, Windows, and Menus of the Design Interface 32

Remote Utilities ... 55

File Viewer .. 55

Heap Walker ... 59

Zoom ... 62

Process Viewer ... 63

Registry Editor ... 64

System Information ... 65

Performance Monitor ... 66

Spy ... 67

vii

viii Table of Contents

Kernel Tracker .. 69

Call Profiler .. 71

3 Operating System Architecture 75
Operating System Kernel Architecture 76

Operating System and Hardware Interaction 78

Operating System Virtual Memory Architecture 78

Memory Management ... 83

Processes, Threads, Fibers, and the Scheduler 88

Synchronization Objects .. 93

Interrupt Architecture .. 98

4 Build System .. 101
Directory Tree of the Build System 102

Environment Variables of the Build System 104

Image Build Modes ... 105

Build Stages .. 106

Pre-Sysgen Build .. 108

Sysgen ... 108

Post-Sysgen Build .. 109

Build Release Directory (Buildrel) 110

Make Run-Time Image (Makeimg) 110

Binary Image Builder (.Bib) 111

Object Store Initialization Files (.Dat) 115

Registry Initialization Files (.Reg) 115

Database Initialization Files (.Db) 115

Component and Module Build 116

Dirs Files .. 116

Makefile Files ... 117

Sources Files .. 117

Sources.cmn File ... 118

Build Errors ... 118

5 Board Support Package (BSP) 121
BSP Directory Structure .. 122

Boot Loader .. 124

OEM Abstraction Layer .. 127

Common Platform Code ... 129

Kernel Independent Transport Layer (KITL) 132

Table of Contents ix

Drivers .. 132

Configuration Files .. 132

Creating a New BSP ... 133

6 Driver Architecture 135
Driver Implementation Architecture 136

File System Drivers, Thread Drivers, and Native Drivers 138

User-Mode Drivers and Kernel-Mode Drivers 141

Loading the Drivers ... 146

Driver Development .. 149

7 Starting the Operating System 159
Image Preparation .. 159

Startup Process ... 161

Loading the File System ... 164

Loading the Device Manager ... 165

8 Building Devices 167
BSP Cloning .. 173

Cloning a Component or a Project 175

Automatic Application Launch at Startup 177

Automatic Load of Drivers During the System Startup 180

Device Power Management ... 181

Device File System .. 187

Device Registry ... 193

Device Databases ... 197

Device Plug and Play Messaging System 198

Device System Shell ... 199

Adding Files to the Device Image 200

Creating File Shortcuts in the Device 201

9 Application Development 203
Native Code and Managed Code 203

OS Design Subprojects and Separate Projects 205

Building Applications as OS Design Subprojects 207

Building Applications as Separate Projects 209

Environment Preparation for Building Native Code Applications 209

Environment Preparation for Building Managed Code Applications .. 211

Connecting to the Device to Deploy and Debug Applications 212

x Table of Contents

10 Testing Operating System Images 215
Windows Embedded CE Test Kit 215

Testing the Image with Support for KITL Enabled 217

CETK Utilities .. 222

Application Verifier .. 222

CPU Monitor .. 225

PerfToCsv .. 226

Print Screen .. 227

Windows Embedded CE Stress Tool 227

Glossary .. 231

References .. 233

Resources . .. 235

Index ... 237

Chapter 1

Introduction
This book addresses technical aspects of building operating system (OS) images for embed­

ded applications and contains a wide spectrum of practical information. A developer can

use this book as an everyday reference. It is our hope that this book will help the reader to

build successful solutions by using the Microsoft Windows Embedded CE platform. This book

is intended for everyone who develops or plans the development of embedded devices

based on Windows Embedded CE. If you are just learning about the Windows Embedded

CE operating system, this book can serve as a starting point for further learning. If you are

already familiar with Windows Embedded CE, this book provides advice and recommen­

dations for developing devices.

About This Book
The book consists of 10 chapters, a reference list, and resources, as follows.

Chapter 1: Introduction

This chapter provides a first look at Windows Embedded CE 6.0 R2, as well as its capabilities

and development tools. The chapter provides an overview of the operating system, where

and how it can be used, and a brief description of other available embedded operating

systems from Microsoft.

Chapter 2: Operating System and Application
Development Tools

The Windows Embedded CE 6.0 R2 operating system includes an easy-to-use suite of

developer tools that enables you to configure and build an image of the operating system,

develop drivers, and create applications. The chapter discusses the process of installing the
development environment and covers the available tools and their capabilities.

Chapter 3: Operating System Architecture

This chapter provides a detailed look into the architecture of the Windows Embedded CE 6.0

R2 operating system, including kernel architecture, virtual memory, processes, interrupts,

and scheduler. Windows Embedded CE 6.0 is a real-time, componentized, multithreading

operating system that supports preemptive multitasking and runs on multiple processor

1

2 Chapter 1 Introduction

architectures, including ARM, Microprocessor without Interlocked Pipeline Stages (MIPS), x86,

and SH4. The Windows Embedded CE operating system operates in the virtual address space

of 4 gigabytes (GB). The system kernel uses the upper 2 GB of virtual memory in the OS,

while the user process uses the lower 2 GB of virtual memory.

Chapter 4: Build System
This chapter addresses the Windows Embedded CE 6.0 R2 unified build system for OS

images. The Windows Embedded CE tools use a unified build system. An operating system

can be built by using the Microsoft Visual Studio 2005 integrated environment or by using

the command line. The build tools are composed of batch files and console utilities. The build

process is controlled by the preconfigured environment variables and the parameters that
are passed when a program call is made. Environment variables are initialized during the first

stage by using the command files (the PBlnitEnv.bat file is called, from which a call is then

made to the Wince.bat file by supplying it with all necessary parameters). Blddemo.bat is the

main command file of the build system. It represents a point of entry into the system be­

cause it launches other files and build utilities that can launch other command files and build

utilities.

Chapter 5: Board Support Package (BSP)
This chapter discusses various aspects of the BSPe, such as the architecture, the structure of

package directories, and the common platform code. The BSP enables a developer to build

a run-time image for a specific hardware platform. To build an operating system image for

a hardware platform, it necessary to have the corresponding BSP. Usually, BSP develop­
ment is the most labor-intensive part of building a device. BSP development requires that

the developer know the hardware architecture as well as the operating system architecture.

All interaction between the operating system and the device is implemented in the BSP.

Therefore, the quality of the BSP determines the resulting quality of the device.

Chapter 6: Driver Architecture
This chapter covers the architecture of drivers for Windows Embedded CE 6.0 R2, including

classification according to various criteria, implementation architecture, native and stream

drivers, loading drivers, and driver development. A driver represents code that provides the

operating system with an interface to a physical or a virtual device. The operating system

expects a driver to implement a predetermined interface, which creates an abstraction of a
specific hardware or virtual device implementation. Under Windows Embedded CE, in most

cases, a set of functions and control codes (IOTCLs) represents this interface that the driver

code implements. The driver infrastructure makes it possible for a certain component of the

About This Book 3

operating system to enable other components of the operating system and applications to
use an integrated interface with the hardware, regardless of its implementation.

Chapter 7: Starting the Operating System

Understanding the processes that occur at system startup is important for building Windows
Embedded CE-based devices. By looking at the process of system initialization, you can more
clearly understand the role of each component included in the system kernel, as well as the
role of the code supplied by Microsoft and the one developed by the BSP manufacturer.

Chapter 8: Building Devices

The process of building devices on the Windows Embedded CE platform can be divided into
the following several stages:

• Device planning.

o Defining the device requirements.

o Choosing and/or planning the development of the hardware platform.

o Selecting the base template of the operating system design.

• Developing the hardware platform (optional).

• Developing and updating the BSP for a selected hardware platform (optional).

o Launching Windows Embedded CE on a target hardware platform.

o Updating and developing the drivers.

• Operating system design.

o Configuring a run-time image.

o Application development.

o Building a staging version of the OS image.

o Building a Software Development Kit (SDK) set to provide outside developers

with an opportunity for development under this device.

o Building the final version of the image for the release.

• Image testing.

• Planning for image deployment and the process of image deployment.

4 Chapter 1 Introduction

Chapter 9: Application Development
This chapter covers the differences between native (unmanaged) and managed code, choos­

ing when to create an OS design subproject or a separately developed project, how to pre­

pare for application development, making device connections, and application debugging

approaches.

Device applications for Windows Embedded CE can be developed by using the native code

and managed code. You can develop native code applications either as subprojects of the
operating system design, or as separate projects. While developing projects in the na-

tive code separately from the operating system design, you must first build a design of the

operating system for which you will be developing applications. After that, you can create

an SDK and install it on a development workstation. You can develop applications that use

managed code only as separate projects. However, as opposed to native code applications,

managed code applications do not require an SDK to be installed. Instead, they rely on the

device's run-time environment.

Chapter 10: Testing Operating System Images
The process of testing operating system images for target devices is an integral part of

the device-development process. A thorough and regular testing during the development

stage reduces the overall cost of the device maintenance during its life span. Testing and

verification also enable developers to find potential problems and resolve them.

Microsoft's toolset offers a wide selection of advanced testing tools included in the Windows

Embedded CE Test Kit (CETK).

Glossary
The glossary contains a listing of terms used in the book and their explanation.

References
This section contains the literature sources that were referred to or otherwise used for writing

the book.

Resources
A list of useful resources, such as:

• Web sites.

• Newsgroups.

• Developer forums.

• Books.

Embedded Systems 5

Embedded Systems
Each day, computer technologies are becoming more and more integrated with our lives.

Most of us cannot imagine being without a cell phone or an MP3 player. No one is surprised
to see an automated teller machine (ATM) on the street or at a subway station. People's

homes often contain cable and satellite receivers. A growing number of amateur photogra­

phers prefer digital cameras. What do all these devices have in common? The answer is quite

simple-they all have a microprocessor. Often times, these microprocessors are very power­

ful. Not long ago, most computer users would have dreamed about having the processing

capabilities available to us now. Yet, in order to utilize a modern processor and to make sure

it performs its assigned functions, you need to have an operating system and an application.

At the initial stage of the embedded device market 10 years ago, the producer had no other

choice but to create a new, specialized operating system for each new device that was tightly

integrated with software responsible for the execution of certain functions. This approach,

in addition to being time-consuming, required the efforts of a large team of highly skilled

programmers. All of this, in turn, resulted in high development costs and high product costs,

which sharply limited the number of potential consumers. Despite this, demand for various

intelligent devices noticeably increased. The emergence of specialized operating systems

designed for a broad spectrum of solutions helped in addressing the resource and time

requirements of the development. Now, developers can focus on creating applications and
implementing new features for consumers.

In 1996, Microsoft Corporation introduced its first Microsoft Windows CE 1.0 operat-

ing system for non-personal-computer embedded devices. Microsoft wanted to create an

operating system suitable for a wide range of tasks and provide developers with the op­
portunity to use already existing knowledge in the development of programs for computers

running Windows, through the use of a common programming interface for all systems.

In this way, the task of creating a single platform for embedded devices was resolved.

Developers who have experience in writing software for desktop computers could build

applications for embedded devices. This development also fulfilled an important requirement

for the platform, which is the ability to implement all the latest achievements in information

technology, such as Internet technologies, wireless communications, and digital audio and

video recording. All this has led to a further reduction in costs and development time, and

thus enabled developers to create mass-produced, high-tech devices.

Today, Microsoft offers manufacturers and developers of embedded devices a line of

operating systems. This line includes several classic operating systems that have licens-

ing restrictions to be used only with embedded and non-personal-computer devices; two

operating systems designed for general use; an operating system targeting a certain market;

as well as versions of server operating systems for creating specialized network servers.

Specifically, Microsoft includes:

6 Chapter 1 Introduction

• Windows Embedded CE is designed for mobile devices, terminals, cell phones and

IP phones, multimedia devices,;TV/video consoles, industrial automation equipment,

and other devices that require a minimum size, integration of multiple microprocessor

architectures, and support for real-time operations.

• Windows XP Embedded is designed to be used in ATMs, gaming devices, heavy­

duty TV/video consoles, cash registers, point-of-sale devices, and information kiosks­

Areas that require high productivity, data security, the use of standard computer

equipment, and minimal expenses for developing and using software applications.

• Windows Embedded for Point of Service (WEPOS) is designed for the service in­

dustry. It is based on the Windows XP Embedded technology, and it enables original

equipment manufacturers (OEMs) to deploy from standard distribution media.

• A line of embedded server solutions from Microsoft is a logical conclusion of the

broader line of embedded operating systems. It enables developers to build infrastruc­

ture solutions based on the Windows Embedded platform.

Aside from the operating systems mentioned above, it is necessary to also mention the

Microsoft Windows Mobile operating system, which is designed for the manufacturers of

pocket PCs and smart phones. It is based on the CE operating system and contains additional

wireless technologies and specialized software.

Windows Embedded CE History

The history of Windows Embedded CE began in 1996, when Microsoft released its first oper­

ating system (CE 1.0) for non-personal-computer devices, which was originally positioned for

the pocket PC market. In 1997, the system (2.0 CE) became componentized and was designed

for a wide range of devices and more processor types. Following that, there were two more

minor releases (2.11 and 2.12), which expanded and enlarged the functionality of the operat­

ing system. Version CE 3.0, released in 2000, contains support for real-time operation and ad­

vanced multimedia technologies such as DirectDraw, DirectShow, and Windows Media Player.

The next version (CE 4.0) came out in 2001. It contained support for advanced technologies

such as Direct3D, Universal Disc File System (UDFS), Simple Object Access Protocol (SOAP),

advanced power management, and SQL Server CE database. Minor releases 4.1 and 4.2 pro­

vided developers with expanded accessibility functionality by adding support for viewing

files, Bluetooth profiles, and 1Pv6, as well as support for Voice over Internet Protocol (VoIP)

telephony, transaction-safe FAT (TFAT), and .NET Compact Framework 1.0.

In 2005, Microsoft released the next version of the system (CE 5.0), which provided develop­

ers with support for new technologies, such as Universal Serial Bus (USB) 2.0, Secure Digital

Input/Output (SDIO), Windows Media 9, and Microsoft Internet Explorer 6, as well as a uni­

fied build system, release-quality drivers, and a BSP with a dedicated general development

infrastructure of BSP and OEM adaptation layer (OAL) available to the developer. In re-

Embedded Systems 7

sponse to the demands of today's embedded devices market, Microsoft released a Network

Multimedia Feature Pack in 2006.

With Windows Embedded CE version 6.0, released in the fall of 2006, the system architecture
has undergone substantial changes. Now every process has 2 GB of virtual memory (previously

32 MB), and the number of possible simultaneously running processes increased to 32,000 (pre­

viously 32). In previous versions, parts of the system kernel were implemented as a set of sepa­

rate processes, whereas in Windows Embedded 6.0, they are combined into one kernel. System

processes have become dynamic-link libraries (DLLs) that are loaded into kernel space. This

increases the performance of the operating system, reduces overhead for system application

programming interface (API) calls, and unifies the kernel interface. Now a developer can load

drivers into kernel space and also be able to create drivers that load in a special user process.

In November 2007, Microsoft released the Windows Embedded CE 6.0 R2 upgrade, which

adds new components and BSP packages to the CE 6.0 operating system.

Windows Embedded CE Solutions

Many developers come across different versions of Windows Mobile created on pocket

computers based on Windows CE, and that may create a stereotype that CE was intended

exclusively for mobile devices. In reality, there are already Windows CE-based solutions avail­

able for various applications, from car-based computers, consumer electronics, and telecom­

munication equipment to industrial automation systems and robotics equipment. The entire

spectrum of available applications was initially designed in the system's architecture. As

opposed to many other operating systems, from the beginning, Windows Embedded CE was

created without being tied to a specific processor architecture or hardware implementation.
The only limitation was that it used a 32-bit processor. Today, Windows Embedded CE 6.0

supports four processor architectures (ARM, MIPS, SH4, and x86) and a considerable number

of their implementations offered by different processor manufacturers.

Windows Embedded CE provides developers with flexibility to choose from more than 600

components that can be used to create operating system images that include only the

functionality that is necessary for a given device. The operating system offers application

developers a set of APls based on standard Win32 API as well as additional APls specifically

for embedded devices. Because Windows Embedded CE supports only part of the Win32 API
and has certain specifics that have to do with the embedded nature of the operating system,

applications written for the desktop versions of the Windows operating system may require

additional adaptation and modification in order to be functional on embedded devices.

Either way, launching programs on a device requires recompiling.

Similar to the desktop versions of Windows, Windows Embedded CE uses a standard format

of the executable file-Portable Executable (PE), which enables the developer to use the ma­

jority of standard utilities that support PE format, such as Dependency Walker or DumpBin.

8 Chapter 1 Introduction

Windows Embedded CE 6.0 offers the developer a wide range of opportunities and supports

a large selection of technologies, such as:

• Rapid systems and application development.

o ARM emulator and design templates for various types of devices.

o AYGShell API, which ensures compatibility with Windows Mobile applications.

o .NET Compact Framework 2.0 and 3.5, including the headless device version,

Active Template Library (ATL), Microsoft Foundation Classes (MFC), Windows
Template Library (WTL), Standard Template Library (STL), ActiveSync, Exchange

Server client, intermediate Global Positioning System (GPS) driver, Speech API 5.0,

Windows Messenger, Pocket Outlook Object Model (POOM), Extensible Markup

Language (XML), and Microsoft SQL Server Compact 3.5.

o Simple Network Management Protocol (SNMP).

o 3.9 million lines of source code, 100 percent of the source kernel code.

o Production Quality OAL (PQOAL), a set of libraries and source code for creating
the OAL.

o BLCOMMON, a set of libraries and source code for creating a boot loader.

o Production-quality drivers and BSPs included with the shipped product.

o Reference implementations of drivers and technologies.

o Support for several languages and building devices with several language

interfaces.

• Network and wireless technologies.

o Transmission Control Protocol/Internet Protocol (TCP/IP), 1Pv4, 1Pv6, Network

Driver Interface Specification (NDIS) 5.1, Winsock 2.2, Internet Protocol security
(IPsec) v4.

o Personal area network (PAN), local area network (LAN), wide area network

(WAN), Bluetooth, 802.11.

o SOAP, OBject EXchange (OBEX), Lightweight Directory Access Protocol (LDAP)
client, Remote Desktop Protocol (RDP).

o VoIP, real-time communications (RTC), Session Initiation Protocol (SIP).

o Radio Interface Layer (RIL), support for Short Message Service (SMS), Wireless

Application Protocol (WAP), support for Subscriber Identity Module (SIM) cards.

o Remote API (RAPI) and RAPl2, Point-to-Point Protocol over Ethernet (PPPoE),

Telephony Application Programming Interface (TAPI), virtual private network (VPN).

Embedded Systems 9

• Server-side technologies.

o Telnet, File Transfer Protocol (FTP), server message block (SMB}, Common Internet

File System (CIFS), Microsoft Message Queuing (MSMQ), Remote Access Service

(RAS}, Point-to-Point Tunneling Protocol (PPTP), Universal Plug and Play (UPnP).

o Web server with support for Active Server Pages (ASP).

o Parental control.

o Print server, Web proxy.

• Multimedia.

o DirectDraw, DirectShow, Direct3D.

o Windows Media Player, Windows Media Audio (WMA), MP3.

o Internet Explorer.

o DVD Video API.

o Digital Rights Management.

• Storage and file systems.

o File Allocation Table (FAT), TFAT, Extended File Allocation Table (exFAT), binary

ROM image file system (BinFS), Object Store.

o CD File System (CDFS}/UDFS.

o File System Driver (FSD) Manager, cache manager.

o CEDB, EDB database.

With its wide selection of technologies and support for a variety of independent third-party

software, Windows Embedded CE enables developers to create a broad range of devices,

including:

• Personal mobile devices.

• Tablet PCs.

• Smart phones.

• IP Phones.

• Digital cameras.

• Personal multimedia devices.

• Thin clients.

• Gateways.

• TV/video plug-in devices.

• Industrial controllers.

10 Chapter 1 Introduction

• Medical equipment.

• Printers.

• Scanners.

• Gaming devices.

The development tools for Windows Embedded CE 6.0 are integrated with Visual Studio

2005. They are supplied as an addition to this advanced development suite. Integration with

Visual Studio makes it possible to use a single environment for application and system de­

velopment. Along with the new development tools, the tool suite also includes a new ARM

device emulator integrated with Platform Builder, which simplifies configuration tasks and

the process of developing and testing of operating system images. The entire capability of

the Visual Studio source-code editor is now available to CE 6.0 developers, including syntax
highlighting and Microsoft lntelliSense technology. New graphic editors are available, includ­

ing registry editor and OS image editor. Windows Embedded CE 6.0 uses the improved Visual

Studio 2005 compiler, which has better compatibility with C++; includes improved libraries;

support for CRT, ATL, and MFC; and more advanced run-time safety checks. The new version

of CE also includes postmortem debugging. This presents additional opportunities for diag­

nosing potential problems and optimizing the efficiency of the system. The software package

includes a utility that determines the appropriate run-time license and supports export of

reports into HTML. This improves coordination and tracking while working with a project.

Developer Workstation Requirements
• Microsoft Windows 2000 Professional with Service Pack 4 or Windows XP Professional

with Service Pack 2.

• Minimum 933 MHz processor (2 GHz is recommended).

• Minimum 512 MB RAM (1 GB is recommended).

• 18 GB of free disk space for installation.

• 1 GB of free disk space on system disk.

• DVD-ROM drive.

A trial version of Windows Embedded CE can be obtained from a local distributor of embed­

ded Microsoft systems; it can also be ordered or downloaded from the Microsoft Web site.

Windows Embedded CE installation instructions are included in the setup CD supplied with

the software. You can also use step-by-step installation instructions in Chapter 2, "Operating

System and Application Development Tools."

Chapter 2

Operating System and
Application Development Tools

Microsoft Windows Embedded CE includes a set of tools to assist with the design and config­

uration of operating system (OS) images, as well as the development of drivers, services, and

applications. Platform Builder for Windows Embedded CE 6.0 is a plug-in for Microsoft Visual

Studio 2005. Windows Embedded CE includes a version of Visual Studio 2005 Professional

and the Platform Builder toolset. During Platform Builder installation, Platform Builder's Help

is integrated with Visual Studio's Help.

Using the popular Visual Studio development suite as a base for the Windows Embedded

CE 6.0 development toolset makes it possible to substantially increase the ease of image

development under Windows Embedded CE. Visual Studio includes helpful features such as
Microsoft lntelliSense auto-complete, syntax highlighting, the graphic registry editor, the sys­

tem image viewer, and many others. In addition to the development tools, Platform Builder

also includes numerous command-prompt utilities that assist with certain tasks during the

development of plug-in devices. In subsequent chapters, I cover the core toolset and some of

the additional utilities in more detail.

Installing Visual Studio 2005
Because Windows Embedded CE development tools are an addition to Visual Studio 2005,

setup should begin with the installation of Visual Studio 2005. After you insert the distribu­

tion DVD into the DVD drive with the Auto-Play option enabled, the Visual Studio 2005 in­

stallation screen appears, as shown in Figure 2-1.

11

12 Chapter 2 Operating System and Application Development Tools

and required
components.

FIGURE 2-1 Visual Studio 2005 installation screen

The only available option is Install Visual Studio 2005. After you click this option, the Welcome

to the Microsoft Visual Studio 2005 Installation wizard screen appears, as shown in Figure 2-2.

Welcome to the Microsoft Visual Studio 2005
installation wizard.

This wizard guides you through installing this program
and all required components,

Help Improve Setu11
You can submit anonymous information about your
Visual Studio setup experiences to Microsoft. To
part1c1pate, check the box below.

r Yes. 1end information about my setup e:-:perience:;: to Micro~oH
Corporation.

Ji) For more information, click kD'l.1!.'! ... C.QIG:is;.i\QI!.J?..QJLC;-x

Loading completed Click Ne~t to continue

FIGURE 2-2 Welcome to the Microsoft Visual Studio 2005 Installation wizard screen

Click Next and read the terms and conditions. If you agree, select I accept the terms of the

license agreement and enter the license key, as shown in Figure 2-3.

~f\ Please e>iit all applications before
W continuing with the installation.

Some components require that network
connections be temporarily suspended
during setup.

(!) Setup has detected that the following reqwred
components are already installed:
Microsoft Windows Installer 3.1

Microsoft .NET Framework 2.0

MSXML 6 .0 Parser

Microsoft Document Explorer 2005

Microsoft Visual Studio 2005

To install, you must accept the End User License
Agreement and enter your product key.

FIGURE 2-3 License key entry screen

Installing Visual Studio 2005 13

~e ~u~:~~-~~~:~Jil~ ~eg:de:~~~tders~:~d- ~~~; :e~~~~~:::~:- ~,~~
stnct1ons described in the EULA. You will ~e asked to re~1iew --1
n~d~ 1!:1t~~~~te~ru~ 0~n8~~~~t c!~~~~~/ u~~:~: :nudL~~~~~ou I

laccept the terms of the EULA. For your futu.re ret~rence, you I
may pririt the text of the EULA from the eula.txt file of this

!product. You may also receive a copy of this EULA b~ contactmg I
th.e Microsoft subsidiary serving your coun~r~, or by wntmg to :
Microsoft Sales Information Center/One Microsoft I

eay/Redm:~.~~~.~~~~~~~,--·-_,,, -·-- w~--~
~

I have read, understood and agreed to the terms of the End User
License Agreement and so signify by clicking 'I accept the terms of
the License Agreement' and proceeding to use this product.

The Microsoft Visual Studio 2005 Setup wizard prompts you to select the installation type:

Default, Full, or Custom. Choose Default, as shown in Figure 2-4.

®Default

Installs the recommended features for the product

0 Full
Installs all features for the product

0 Custom
Select features to include and e:-:clude from the
product

FIGURE 2-4 Options page

Click the Install button and wait for the setup routine to finish, as shown in Figure 2-5.

14 Chapter 2 Operating System and Application Development Tools

FIGURE 2-5 Setup routine progress

After the installation completes, a screen appears indicating that the Visual Studio setup
completed, as shown in Figure 2-6. Click Finish.

Visual Studio Setup has completed.
Read the security notes,

FIGURE 2-6 Setup completion

\.1) Security Notes:

command line
interface can perform lo-cal or remote
scans of Windows systems, MBSA runs on
Windows 200-0 and Windows XP systems.

• If Microsoft Intemiat Information Services

Installing Visual Studio 2005 15

After a while, a Setup Menu screen appears with links to all setup options enabled, as shown

in Figure 2-7.

rc"t1·a·;l"g·e- .. o·r··ife·n1·o·v·e· .. vis-iJ"ar·s·tu·cfro· .. 2"0'tf5
Repair1 reinsta!l 1 or install additional Visual Studio 2005
features. You can also uninstall Visual ::~tudio 2005.

Install Product Documentation
Install the MSDN Library, which includes Help for V1-;ual
Studio,

Check for Service Releases
Check for the latest Serv·1ce Releases to ensure optimal
functionality of Visual Studio 2005.

FIGURE 2-7 Setup options

You must install the product documentation. Click Install Product Documentation. After you

click this option, a Welcome to the Setup wizard for MSDN Library screen appears, as shown
in Figure 2-8.

Welc:ome to the Setup·Wizard.·tor MSIJN library
for \!is11al St11dio 2005
The Setup.Wizard win.install M5DN UbraryforVisuaf$tudio 2005
on yourcornputerfot use in Visu<;I Studio 2005. Jo continu<1, chck
Next.

FIGURE 2-8 Setup wizard

Click Next. The license agreement screen appears, as shown in Figure 2-9.

16 Chapter 2 Operating System and Application Development Tools

FIGURE 2-9 License agreement screen

Read the license agreement. If you agree, select I accept the terms in the license agreement

and click Next to bring up the Customer Information screen, as shown in Figure 2-10.

FIGURE 2-10 Customer Information screen

Enter your information and click Next to bring up a selection screen listing three setup types:

Full, Custom, and Minimum. Choose the setup option selected by default (Full), as shown in
Figure 2-11.

Setup Type
Select. a setup type.

r. !'iinm:ii~qmm~niliiii):
Installs all documentation to the local hard drive.
Space required an C: 1950M8
Space available. on C: 29GB

(" !;;ustom
Lets you choose the installation location and specify which
content to install.

r ~inimum
Installs Visual Studio documentation based on the Visual Studio
2005 Features that are installed on this computer,

Space reqUired on C: 868M8
Space available on C: Z9GB

FIGURE 2-11 Setup Type screen

Installing Visual Studio 2005 17

Click Next. A screen prompting a selection of the setup files' location appears, as shown in

Figure 2-12.

Oestinati<m Folder
Click Next.to install to this folder, or dick Browse to install to a
different folder.

FIGURE 2-12 Destination folder selection

Accept the default location and click Next.

18 Chapter 2 Operating System and Application Development Tools

FIGURE 2-13 Ready to Install the Program screen

The Ready to Install the Program screen appears, as shown in Figure 2-13. Click Install and

wait until the installation process completes. After setup completes, a screen indicating that

installation has been successfully completed appears, as shown in Figure 2-14. Click Finish.

FIGURE 2-14 Setup Completed screen

After a while, a setup welcome screen appears with all setup options enabled. Click Exit. In

order to use the enhancements available in Service Pack 1 for .NET Compact Framework 2.0,

it is necessary to install an update for Visual Studio 2005. This update can be downloaded

directly from: www.microsoft.com/downloads/details.aspx?familyid=7BEFD787-9BSE-40C6-

8Dl0-D3A43E5856B2, or you can search the list of available updates from the Microsoft Web

Installing Visual Studio 2005 19

site. Double-click the downloaded NETCFSetupv2.msp file to launch the update process. A

setup welcome screen appears, as shown in Figure 2-15.

welcollle to the Patch for Microsoft .NET
colllr:iactl'ramework 2.0 SPl

FIGURE 2-15 Patch welcome screen

Click Next. The license agreement screen appears, as shown in Figure 2-16.

License Agreement
You must accept the
accept the terms of t
accept click 1 Accept"

LEASE NOTE: Microsoft cor·poration (or based on where you live, one of its
ffiliates) licenses this supplement to you. You may use a copy of this
upplement with each validly licensed copy of Microsoft Visual Studio 2005
oftware (for which this supplement is applicable) (the "software"). You may
ot use the supplement if you do not have a license for the software. The

license terms fur the softwa.-e apply to your use of this supplement. Microsoft
provides support services for the supplement as desrnbed at
·www. support. m icrosoft. corn/com mon/interrrationa I. aspx,

FIGURE 2-16 License agreement selection

Read the license agreement. If you agree, select I accept the terms in the license agreement

and click Next. A window appears, as shown in Figure 2-17, indicating that the Setup wizard

is ready to begin the installation.

20 Chapter 2 Operating System and Application Development Tools

FIGURE 2-17 Ready-to-install screen

Click Patch and wait until setup completes. After setup completes, a screen appears

indicating that the installation has finished. Click Finish.

Installing the Platform Builder Toolkit
After you insert the distribution DVD into the DVD drive with the Auto-Play option enabled,

the Platform Builder Setup wizard screen appears, as shown in Figure 2-18.

Welcome to the Windows
Embedded CE 6.0 Setup
Wizard

The Setup Wizard will install Windows Embedded CE 6. O on
your computer, Click Next to continue or Cancel to exit the
Setup Wizard.

FIGURE 2-18 Platform Builder Setup wizard screen

Installing the Platform Builder Toolkit 21

Click Next. A product key screen appears, as shown in Figure 2-19.

IN4i"Cf~1rmm·!H~!ii!!llll:!:i!l·lh$!-m·'E•ilil•ml~iD•!+lllllllllllllllllllllllllllllllB

• Customer Information

Please enter your information.

b!ser Name:

Qr9anizatfon:

)Quarta Technologies

E'.lease enter the product key:

c=J·c=J·c=J·c=J·c=J

< !l,ack [iext >

FIGURE 2-19 Customer Information screen

Enter the product key and click Next. The license agreement screen appears, as shown in
Figure 2-20.

License Agreement

Please read the following license agreement carefully,

MICROSOFT EVALUATION SOFTWARE LICENSE
TERMS

MICROSOFT WINDOWS EMBEDDED CE 6.0 TOOLKIT

These I icense terms are an agreement between M icrosoA: Corporation
(or based on where you live, one. of its affiliates) and you. Please read
them. They apply to the evaluation software named above, which

FIGURE 2-20 License agreement screen

Read the license agreement. If you agree, select I accept the terms in the license agreement

and click Next. A screen prompting a selection of installation features appears, as shown in
Figure 2-21.

22 Chapter 2 Operating System and Application Development Tools

Setup

'I

.

1
~6~0 ~~:::~g System

;····· ·. X • MIPS!l
......... ; X • MIPS!l_FP

· • X • MIPSIV

I ~.•; x. •. MIPSIV _FP
i· X • SH4
· ... , X • x86

FIGURE 2-21 Installation directory screen

In addition, choose the Shared Source feature and support for x86 platform, and click Next.

The license agreement about the Shared Source screen appears, as shown in Figure 2-22.

Source License Agreement

hese license terms are an agreement bet>Neen you and Microsoft
orporation* *. If you use the software, you accept this license.

do not accept the license, do not use the software.

FIGURE 2-22 Shared Source license agreement screen

Installing the Platform Builder Toolkit 23

Read the license agreement. If you agree, select I accept the terms in the license agreement

and click Next. A screen appears, as shown in Figure 2-23, indicating that the Setup wizard is

ready to begin the installation.

Ready to Install

The Setup Wizard is ready to begin the installation

Click Install to begin the installation. lf you want to review or change any of your
mstallation settings, click Back. Click Cancel to exit the Setup Wizard.

FIGURE 2-23 Ready to Install screen

Click Install and wait until the setup completes. After the setup completes, a screen appears

indicating that the installation has finished. Click Finish. The Windows Embedded CE 6.0

toolkit has been installed successfully. Launch the previously installed Visual Studio 2005,

which brings up a selection of environment settings, as shown in Figure 2-24.

Before you begi11 using Visual Studio for the firot time, you need to specify the t1•pe of
development actiyjty you engage in the most, such as Visual Basic or Visual C#. Visual Studio
uses this information to apply a predefined collection of settinlls to the development
environmenn:hat is. designed.for your development activity.

You can choose tou;e a different colledion.of settings at any time .. From the Tools menu,
choose Import. and Export Setting> and the.n choose Re>;et ~II setting>.

l;l!oOlit: you~ default environment settirms1

Gener al Development Settings
Platform Builder Development Settings
Visual Basic Development Settings
Visual C# Development Settings
Visual C ++ Development Settings
Visual J# Development Settings
Web Development Settings

qescriptt.;in:
Please select one of the collections of sem1gs
fromfhelist. '

FIGURE 2-24 Default environment settings selection

24 Chapter 2 Operating System and Application Development Tools

Select Platform Builder Development Settings and click Start Visual Studio. The current

settings will be reset to the default Platform Builder environment settings.

Installing Updates
To ensure that the application developer tools included with Platform Builder are work-

ing properly, it is necessary to install Visual Studio 2005 Service Pack 1. This update can be

downloaded directly from http://msdn2.microsoft.com/en-us/vstudio/bb265237.aspx, or you
can search the list of available updates from the Microsoft Web site. Before you start the

installation process, make sure you have 3 GB of available free space on your hard drive. Be

prepared to wait. The setup process can take a considerably long time.

Double-click the downloaded file VS80spl-KB926601-X86-ENU.exe to launch the update

process. After a while, a screen appears indicating that extraction is in progress, as shown in

Figure 2-25.

Pl~O.~ w.ait whi\et:his 4pd~\el$ appied. ir!i WaY t~
s~eral (hinUt?S (o sevefql tiour(depJ?ndir1gonth~
!Jftlllut<s yoti haveiri;t~lled. . . •. ·. · fflll.

FIGURE 2-25 Extraction progress

After a while, a Preparing to Install window appears. Wait until the installation process has

successfully transitioned to the next stage. A window appears, as shown in Figure 2-26,

asking you to confirm that you want to install Service Pack 1 for Visual Studio 2005.

FIGURE 2-26 Confirmation dialog window

Click OK to continue installation. A license agreement screen appears, as shown in

Figure 2-27.

Microsoft Visual Studio 2005 Professional Edition· ENU 51!~Yi!;!l ~f111(

View EULA for printing

PLEASE NOTE: Microsoft Corporation (or based on where you live, one of its
affiliates) licenses this supplement to you. You may use it with each validly
licensed copy of Microsoft Visual Studio 2005 software (the 'softwarel- You may
not use the supplement if you do not have a license for the software. The license
terms for the software apply to your use of this supplement. Microsoft provides
support services for the supplement as described at
www.support.microsoft.com/common/international.aspx.

Please read the rights and restrictions described in the End User License
Agreement (EULA), io accept the terms ollhis EULA click "I accept". To decline
the terms of this EULA click"/ decline" Before this software oan be installed, the
terms of this.EULA must be accepted.

IJ:l,Ccept IJ;[ecline

FIGURE 2-27 License agreement

Installing Updates 25

Read the license agreement If you agree, click I accept The setup process continues. Wait

for the dialog window indicating that setup has been successfully completed, as shown in

Figure 2-28,

i§llif.ti·''t#Q'i,ll9•11L!'bii\1[.i,#JlijMIUiSllJ¥§,f)tj§b"1$o~t-:81

Microsoft Visual Studio 2005 Prolessiont!ll t::dllion • ENU,8.ervlce Paci< 1
(KB9266Q1) was.successfully instil.lied on Micro$oftVisual Studio 20D5
Professlorral Edition· ENU ·

FIGURE 2-28 Installation completion dialog window

Click OK. The Visual Studio 2005 configuration screen appears. Wait until configuration

completes. Service Pack 1 for Visual Studio 2005 has been installed.

Now it is necessary to install an update for the development tools for Service Pack 1, which

adds a CEDebugX toolkit for multithreaded programming, support for eXDI 2.0 hardware

debugging, and support for Remote Tools Framework, which enables you to create custom·

ized remote toolkits. Service Pack 1 for Platform Builder for CE 6.0 is available from:

www.microsoft.com/downloads/details.aspx?Familyld=BFODCOE3-8575-4860-A8E3-

290ADF242678

Finish working with Visual Studio 2005 and launch the setup process for Service Pack 1 for

Platform Builder for CE 6.0, To launch the installation process, double-click the setup file,

26 Chapter 2 Operating System and Application Development Tools

Windows Embedded CE 6.0 Platform Builder Service Pack l.msi. After a while, the first Setup

wizard screen appears, as shown in Figure 2-29 .

• 1-

Welcome to the Windows
Embedded CE 6.0 Platform
Builder Service Pack 1 Setup
Wizard

The Setup Wizard will install Windows Embedded CE 6.0
Platform Builder Service Pack 1 on your computer. Click Next
to continue or Cancel to exit the Setup Wizard,

FIGURE 2-29 Welcome screen

Click Next. The license agreement screen appears, as shown in Figure 2-30 .

License Agreement

Please read the following license agreement carefully.

MICROSOFT SOFTWARE SUPPLEMENTAL
LICENSE TERMS

WINDOWS EMBEDDED CE 6.0 PLATFORM
BUILDER SERVICE PACK 1

FIGURE 2-30 License agreement screen

•

Read the license agreement. If you agree, select I accept the terms in the license agreement

and click Next. A Ready to Install screen appears, as shown in Figure 2-31.

i!&' Windows Embedded CE 6.0 Platform Bgilder !i'er!!!itl!l i!lll!ll! 1~01'! :
Ready to Install

The Setup Wizard 1s ready to begin the installation

CfJck Install to begin the installation. If you want to review or change any of your
installation settings, click Back. Click Cancel to exit the wizard.

FIGURE 2-31 Ready to Install screen

Installing Updates 27

Click Install to launch the setup process. A screen appears showing the setup progress. Next,

the following Setup wizard screen appears, as shown in Figure 2-32.

Installing Windows Embedded CE 6.0 Platform
Builder Service Pack 1

Plea5" woit while the Setup Wi~ard ini;i;olls Windows Embedded CE 6.0 Platform
l3Uilder Service P<1ckt. This may take ;everill minutes.

Status:. Copying new files
IHHllHllHllllHHliii'I~·~.~~· ~· ·~-· -· ·-~~·~

FIGURE 2-32 Installation progress

Wait until setup completes. This may take 10-20 minutes depending on the processor speed.
A screen appears indicating that the installation process has been completed, as shown in

Figure 2-33.

28 Chapter 2 Operating System and Application Development Tools

Completed the Windows
Embedded CE 6.0 Platform
Builder Service Pack 1 Setup
Wizard

FIGURE 2-33 Installation completion screen

Click Finish. Installation of the Service Pack for Platform Builder for CE 6.0 is now complete.

You must also install the developer toolkit for Windows Embedded CE 6.0 R2. A trial version

is available at www.microsoft.com/downloads/details.aspx?Family1D=f4lfc7cl-f0f4-4fd6-

9366-b6le0ab59565&Displaylang=en.

Welcome to the Windows
Embedded CE 6.0 R2 Setup Wizard

The Setup Wizard will install Windows Embedded CE 6. 0 R2 on your
computer, Click Next to continue or Cancel to exit the Setup Wizard.

FIGURE 2-34 Setup welcome screen

Installing Updates 29

The installation process is somewhat different if you install from a setup DVD/CD rather than

from the Web. The Web installation verifies the currently installed version of the developer

toolkit, downloads a special program, and launches the setup routine. With the setup DVD/

CD installation, once the disk is inserted into the DVD/CD drive, a browser window opens,

prompting you to select an update or launch the Windows Embedded CE R2 setup process,
as shown in Figure 2-34.

Click Next. The license agreement screen appears, as shown in Figure 2-35.

MICROSOFT SOFTWARE SUPPLEMENT AL
LICENSE TERMS

INDOWS EMBEDDED CE 6.0 R2

OR WINDOWS EMBEDDED CE 6.0 TOOLKIT

icrosoft Corporation (or based on where you live, one of its affiliates) licenses
••. is supplement to you. You may use it with each validly licensed copy of
:~?··Microsoft Windows Embedded CE 6.0 Toolkit software (the "software"). You
,,.,,,.Cie ay not use the supplement if you do not have a license fur the software. The

,er,1A,.U"')l"'.(""o.

FIGURE 2-35 License agreement screen

Read the license agreement. If you agree, select I accept the terms in the license agreement
and click Next. A screen appears prompting you to select board support package (BSP) items

to install, as shown in Figure 2-36.

30 Chapter 2 Operating System and Application Development Tools

1 n Windows Embedded CE 6.0 R2 Setup ~ ~ ~I

FIGURE 2-36 BSP selection

Choose the BSPs you want to install and click Next. A screen appears indicating that packages

are ready to install, as shown in Figure 2-37.

; 11 Windows Embedded CE 6.0 R2 Setup 11f~~;=

Ready to Install

The Setup Wizard is ready to begin the installation

FIGURE 2-37 Ready to Install screen

Installing Updates 31

Click Install to launch the setup process and to bring up a screen showing the setup progress.

Wait until setup completes. This may take 20-30 minutes depending on the processor speed.

A screen appears indicating that the installation process has been completed, as shown in

Figure 2-38.

Completed the Windows
Embedded CE 6.0 R2 Setup Wizard

Click the Finish button to exit the Setup Wizard.

FIGURE 2-38 Installation completion screen

Click Finish. Installation of Windows Embedded CE 6.0 R2 is now complete. Note that

Windows Embedded CE 6.0 R2 contains all upgrades for Windows Embedded CE 6.0 that

were released prior to Windows Embedded CE 6.0 R2. After Windows Embedded CE 6.0 R2

has been installed, you need to install all the necessary updates that have been released

since Windows Embedded CE 6.0 R2.

32 Chapter 2 Operating System and Application Development Tools

Development Tools Interface

Main Views, Windows, and Menus of the Design Interface

After a new OS design project has been created, the main window of Visual Studio 2005 ap­
pears, as shown in Figure 2-39.

hi! cellcore
•common
hi! data•ync
hi! dcom
hi! directx
hi! FP _VOIP

hi! gdiex
hi! ie

if (INVALID_HANDLE_VALUE == m_hFile)
return O;

return GetFileSize (m_hFile, NULL);

return the current byte position of the open :file
BOOL FileStream::CurrentByte(BYTE •b)

I '

FIGURE 2-39 Visual Studio 2005 main window

The upper portion of the screen contains the menu and a set of tool bars. The selection of

toolbars changes depending on the current environment mode: code editing mode, debug­

ging mode, and so on. After Platform Builder for CE 6.0 has been installed, the standard tool­

bars have all available options enabled, and a new Target tool bar appears, as shown in Figure

2-40 (lower-right-hand corner), which enables you to choose a target device to be loaded, to

plug or unplug a device, as well as to open Target Control or Connectivity Options.

FIGURE 2-40 Toolbar options

Development Tools Interface 33

The left section of the screen contains a workspace with several views. By default, it has the

following three views selected: Solution Explorer, Catalog Items View, and Class View. The

right section of the screen contains the source-code editor. The bottom section contains

various windows, including the Output window (Windows CE Debug and Windows CE Log),

Code Definition window, and Call Browser.

The new tools support lntelliSense for the Windows Embedded CE source code and for ap­

plications, as well as for configuring system files. Platform Builder also includes a graphical

interface for the registry editor and .bin file editor. The graphical registry editor is opened

automatically when you double-dick the registry configuration file in the design window, as

shown in Figure 2-41.

El~ \;.dlt !l)ew l:r<>Ject:. !lJ,Jlld Q_ebug Target Iools Wjndow !:;.ommunity tielp

Device Emulate • Platform Builder (_ TGTCPU) • I hlO

. ii (Default)

FIGURE 2-41 Graphical registry editor

!I Device.A.rraylndex

iDll
llill Flags

ii IClass
iii loBase

ti lolen

Ima Order
ii Preli•

llill S~slntr

~Device: CE Device

REG_SZ
REG_DWORD
REG_SZ
REG_DWORD
REG_SZ
REG_DWORD
REG_DWORD
REG_DWORD
REG_SZ
REG_DWORD

• 'fi;i 'l!l!l l ~~----------;-;c-[~·
Data_ _ __ .g
(value not set) .,

0.00000000 (OJ I
Com16550.Dll
0.0000001 0 (16)
{CC5195AC-BA49-48a0-BE 17-DFGD 1 ...
0.00000218 (760)
o.ooooooos 1s1
0.00000000 (0)
COM
0.00000013 (19)

In order to open a .bin file for viewing or partial editing, choose Open from the File menu.

In the menu that appears, choose File to display a standard Windows dialog window for
opening files. From there, choose the .bin file and click Open. Figure 2-42 shows the content

of the NK.bin file.

34 Chapter 2 Operating System and Application Development Tools

'4JI NK.bin
80NK

$··lft Boot Registry
. !···iliill HKEY _CLASSES_ROOT

iiliill HKEY_CURRENT_USER
$Hill HKEY_LOCAL_MACHINE

i L. ..• HKEY _USERS
S·1ft Registry
' $··iliill HKEY _CLASSES_ROOT

$·iliill HKEY_CURRENT_USER
i rtJ··iliill HKEY_LOCAL_MACHINE
i Liliill HKEY_USERS , ...

FIGURE 2-42 .Bin file content

appdata.ini
~ asterisk.wav

II asyncmac.dll
II audevman.dll
II autoras.dll
II aygshell.dll
II backlight. dll
II battdrvr.dll
iJboot.hv
ii busenum.dll

II cachefilt.dll
[ill ceconlig.h
llceddk.dll
llcelobj.dll
!I ceshell.dll
iJ close.2bp
(.ll close. wav
II com16550.dll

. II commctrl.dll
II commdlg.dll

1 ~connmc.exe

69 Configuration Settings
3116 Wave Sound

59904 Application E•tension
82944 Application E•tension
19456 Application E•tension
97280 Application E•tension
8704 Application E•tension

22528 Application E•tension
36864 HV File
31232 Application E•tension

105984 Application E•tension
15180 CIC++ Header
44544 Application E•tension
36864 Application E•tension

477184 Application E•tension
134 28P File

3388 Wave Sound
103424 Application E•tension
905216 Application E•tension
141824 Application E•tension
190976 Application

25.10.200719:20:(
25.10.200719:20:<
25.10.200719:20:1
25.10.2007 19: 40:4
25.1 0. 2007 19:40:'
25.1 0.2007 19:40:'
25.10.200719:40:4
25.10.200719:20:<
25.10.200719:20:~

25.10.200719:26:<
25.10.2007 19: 40:<
25.10.200719:40:4
25.10.200719:40:4
07.09.2006 3:52:5(
07.09.2006 3:52:5(
25.10.200719:20:4
25.10.200719:40:4
25.10.2007 19: 40:4
25.10.200719:40:

If you open the .bin file as a project (Project/Solution from submenu Open), the image can

be loaded onto a device and debugged. Now let us take a closer look at each of the views of

the main workspace area.

In the Solution Explorer view, you can see a Windows Embedded CE catalog hierarchy, con­

figuration files, OS design subprojects, and Software Development Kit (SDK). The Solution

Explorer view also shows the Favorites folder, where you can add links to frequently used

parts of the hierarchy of the Windows Embedded CE source code, as shown in Figure 2-43.

r;••!!@Mii*••m•i§GH .,
r[;l Solution 'CEBook' (1 project) ·~-~-~
! [~}- • CEBook

I 5.,•.: " .c:/WINCE600
B·· eiiilmi&ll

i j l'.li ARUBABOARD

I
Lil CEPC

[]!COMMON
[li DEVICEEMULA TOR

i &l t:lJi H45AMPLE

I I.ti Lil MAINSTONEIII
• i±.1 ~ T5530

lB l:lii VOiP _PXA270
t:.:.a PRIVATE
Wll PUBLIC
Favorites

Parameter Files

SD Ks

Subprojects

FIGURE 2-43 Windows Embedded CE catalog hierarchy

Development Tools Interface 35

Once you have selected the node from the Solution Explorer, you can perform the following

actions, as shown in Figure 2-44:

• Build BSP, OS components, subprojects, and so on (Build, Rebuild, Sysgen, Build and
Sysgen, Rebuild and Clean Sysgen).

• Open Di rs or Sources file (Open), depending on the type of selected node.

• Launch the graphic editor of the Sources or Di rs file (Properties), depending on the
type of selected node.

• Open Build Window.

• Exclude from Build.

• Show in Favorites.

• Open the project directory by using Windows Explorer.

36 Chapter 2 Operating System and Application Development Tools

FIGURE 2-44 Possible actions

The Catalog Items View, as shown in Figure 2-45, enables you to add and remove options,

modules, and components from the operating system design.

FIGURE 2-45 Catalog Items View

Development Tools Interface 37

Empty check boxes in the Catalog Items View mean that those options have not been

selected. Selected check boxes indicate that the options have been chosen; filled out

boxes mean that the options have been automatically added by the system to resolve

dependencies.

You can filter a view for User-selected Catalog Items Only, User-selected Catalog Items and

Dependencies, and All Catalog Items in Catalog. You can also do a catalog search and launch
a view update, as shown in Figure 2-46.

Filter ... ' @1 I <Search>

User-selected Catalog Items Only

User-selected Catalog Items and Dependencies

All Catalog Items in Catalog

FIGURE 2-46 Filter options

Class View has convenient navigation within the subprojects' source code, as shown in Figure
2-47.

~·+ ~ ... ,,.1:8· l <Search>
f;..i;a· ~~bproject.1 (CEBook)

;m. -,~ISllll!G!./i'rl:tll!d
I : ... _~ Macros and Constants

I
I

I

7 _:s
. a ''I

L.-......,,..,..........-~~-"~------~~--~~--~---~---'""'~-~~-------,_, .. ,,~ .. ,
1---~··· ... -- ······--------· ------,-- --··-··--··-·--···1

~ Initlnstance(HINSTANCE hlnstance, int nCmdShow) I
\ MyRegisterC!ass(HINSTANCE hlnstance) !

i '~ WinMain(HINSTANCE hlnstance, HINSTANCE hPrevlnstance,!
cl.@! WndProc(HWND hWnd, UINT message, WPARAM wParam, L~
if) hlnst I

FIGURE 2-47 Class View

38 Chapter 2 Operating System and Application Development Tools

Let us take a closer look at the utilities available in the bottom section of the window.

The Call Browser enables you to quickly determine what functions are calling a particular

function, as shown in Figure 2-48. It also has a search capability.

WinMain(HINSTANCE hlnstancei HINSTANCE hPrevinstancei lPWSTR lpCmdLine1 int nShowCmd)

Calls from 'WinMain'

DispatchMessage

GetMessage

~ Initlnstance(HINSTANCE hlnstancei int nCmdShow)
LoadAcceler a tors
LoadString

MyRegisterClass(HINSTANCE hlnstance)
TranslateAccelerator
TranslateMessage(const MSG *pMsg)

~tfil'!Call Graph (j] Output

FIGURE 2-48 Call Browser

The Code Definition window shows the definition of the function code selected in the editor,
as shown in Figure 2-49.

FIGURE 2-49 Code Definition Window

You can add additional windows with utilities and views to your design environment. To do

that, select them from the View menu of Visual Studio 2005, as shown in Figure 2-50.

Let us look at the options available from the main menu. We shall discuss only those options

that are specific to Windows Embedded CE. The Project submenu, as shown in Figure 2-51,

enables you to add new and existing subprojects to your OS design. It enables you to set

subproject build order, add new and existing SD Ks, and access the properties of the objects
selected in the Solution Explorer (the last item on the menu that ends in Properties).

View Projed SUUd Debug Torget Data Tools Window Community Help

~ Solution Explorer Ctrl+Alt+L

i'..';l Bookmark Window Ctrl+K, Ctrl+W

l§lt Class View Ctrl+Shift+c

l1'i, Code Definition Window Ctrl+Shift+V

:i'!l Object Browser Ctrl+Alt+ J

1 liiJ Output Alt+2

Li; Property Manager

• Resource View Ctrl+Shift+E

~ Toolbox Ctrl+Alt+X

Find Results

Toolbars

HACCEL hAccelTs

// Initialize. g

LoadStr ing (h!n::

LoadString (hin.:::
MyRegisterClas::

11 Perform a l

._ [J Command Window Ctrl+Alt+A

ill Full Screen S~ft_+~lt_+;o~t~~- • Catalog Items l/iew

.$71 r·~~wiq . .:itE· !~0t:k.'1.:m:l Ch i-1 [j Document Outline Ctrl+Alt+D

~ tfovi91m" (i;n\'.:!; d

f<J~:-:.-t. r.:~o;,i·

Ct;l+'..;i·i;h:+·

FIGURE 2-50 View menu

Add New Subproject •••

Add Existing Subproject •••

Add New SOK .. ,

Add Existing SOK .. ,

X·· Remove

Set as Startup Project

Del

Iii CEBook Properties.,. Alt+F7

Oat

FIGURE 2-51 Project submenu

Error list Ctrl+\1 ctrl+E

Object Test Bench

Properties Window Alt+Enter

Server Explorer Ctrl+Alt+S

Task List

Macro Explorer

Start Page

Web Browser

Ctrl+\, Ctrl+T

Ctrl+Alt+R

Development Tools Interface 39

If the Solution Explorer has the root node of the OS design selected, then selecting

Properties from the Project submenu brings up the OS design properties, as shown in
Figure 2-52.

Common Properties are those that apply to the entire design environment. They have only

one setting, and that is to specify the OS build tree where Windows Embedded CE 6.0 is in­

stalled. When Configuration Properties is selected, a drop-down list appears where you can

choose a configuration type for viewing or editing properties: Active, Debug, Release, or All
Configurations.

40 Chapter 2 Operating System and Application Development Tools

Locale

· Build Options
Environment
Custom Build Actions

' · Subproject Image Settings

FIGURE 2-52 OS design properties

8-- Configuration Properties

'lill!ll
(·Locale

i · · Build Options

' · Environment
L ... Custom Build Actions

i. · Subproject Image Settings

FIGURE 2-53 OS design configuration properties

Now let's look at Configuration Properties. Under General settings, you can set the release
directory to which the built modules are copied, the build type (Debug or Release), and the
target file name for the image that will be used by the debugger, as shown in Figure 2-53.

Development Tools Interface 41

The Locale setting enables you to specify the supported locales and codepages. You can set

a default locale, check Localize the build, or check Strict localization checking in the build, as

shown in Figure 2-54.

El·· Common Properties
• L. Build Tree (WINCEROOT)

El· Configuration Properties
;··General

illll
L. Build Options

~Afrikaans
D Albanian
D Arabic [Algeria)
D Arabic [Bahrain)
[J Arabic [Egypt)

!· Environment ... :oilfaUJfiCcale: . . . " · ! •.. custom Build Actions · ,.__.,. .. ____.....,. ______ _._......; ____ ...__,_,

: ... Subproject Image Settings : : ':I English [United States) :!] ·

FIGURE 2-54 OS design locale options

Build Options include settings for the variables used most frequently to control the build

process, as shown in Figure 2-55.

a .. Configuration Properties

L:~:;a~:al
!""''liliid
;,. .. Environment
!... Custom Build Actions
L. Subproject Image Settings

acked events in RAM [IMGOSCAPTURE=1)
~ Enable eboot •pace in memory [IMGEBOOT =1 J
0 Enable event tracking during boot [IMGCELOGENABLE=1)
D Enable hardware·assi•ted debugging support [IMGHDSTUB=1)
~ Enable kernel debugger (no IMGNODEBUGGER=1)
~ Enable KITL (no IMGNOKITL=1 J

0 Enable profiling (IMGPROFILER=1)
D Flush tracked events to release directory (IMGAUTOFLUSH=1]
D Run-time image can be larger than 32 MB [IMGRAM64=1 j
D Use •copy instead of links to populate release directory (BUILDREL_USE_COPY=1 I

·· · 0 Write run-time image to flash memory (IMGFLASH=1]

FIGURE 2-55 OS design build options

42 Chapter 2 Operating System and Application Development Tools

Table 2-1 provides the variable names and values.

TABLE 2-1 Variable names.

Build Setting

Build tracked events in RAM

Variable

IMGOSCAPTURE

Enable eboot space in IMGEBOOT
memory

Enable event tracking during IMGCELOGENABLE
boot

Enable hardware-assisted
debugging support

... .-.....

Enable Kernel Debugger

Enable KITL

Enable profiling
•• o ••• OOMM .. -• .. ~O ,.,,. • ••••0 .. -00 .. 000-~M"'

Enable ship build

Flush tracked events to
release directory

Run-time image can be
larger than 32 MB

IMGHDSTUB

IMGNODEBUGGER

IMGNOKITL

I MG PROFILER

WINCESHIP

IMGAUTOFLUSH

IMGRAM64

Use xcopy instead of links BUILDREL_USE_COPY
to populate release directory

Write run-time image to IMGFLASH
flash memory

Value (ifselected)

Adds the OSCapture.exe module to the
image. During the load, the OS mod­
ule starts writing system events into the
random access memory (RAM).

-, -·- ' . ", ... "-'··-·-,.··-···
Reserves eboot space in memory. Enables
the module to preserve the data that can
be read by the system during the load.

Adds CELog.dll to the image and initializes
the system event collection when it loads.

Enables hardware debugging support.

Includes kernel debugging support in the
image.

Includes support for Kernel Independent
Transport Layer (KITL).

• ,, •• "'" .,.~~n-·•···-•' ·--·•·-~--•-•••••••••••••••

Includes kernel profiling.

OS images built with this flag output no
debugging messages.

Enables flushing of event logging to the
release directory.

·-·····-····· . .,. , .. , , •...• ,_.,.·-··· .. ,. . ._ ··,-···-·····--····
Enables support for a run-time image
larger than 32 megabytes (MB).

Copies files to the release directory instead
of creating hard links.

Enables writing of the run-time image to
flash memory after download.

The following environment variables enable you to fine-tune build settings by specifying

additional environment variables, as shown in Figure 2-56.

Development Tools Interface 43

CEBook Property Pages m "4',:fil;Z~ZimTum

E,3·· C~mmon Properties
L .. Build Tree (WINCEROOT)

g .. C?nfigur ation Properties
: ... General
: .. Locale
, Build Options

~-· .1;1;;11111111
' .. Custom Build Actions
L. Subproject Image Settings

Efl\lironinent variables:

Variable Value

New ...

OK

FIGURE 2-56 OS design additional environment variables specification

iJ CQ.nflguration Manager, , ,

cancel t}pply

The following settings enable you to perform custom build actions during certain build

stages, as shown in Figure 2-57.

CEBook Property Pages = ";;W:;f;: l;J,WF3 't im

.. ~qrif~ura~: JActive(Device E~ulator <!J pjatform:

r.;i .. Common Properties
. : .. Build Tree (WINCEROOT)

EJ .. Configuration Properties
L ·General
) Locale

: ... Build Options
~ Environment
:. ·custom Build Action•
L. Subproject Image Settings

: iuikhtep; I Pre-Sysgen

6cliom for thii • Post-S ysgen
....----""'1Pre-Make Image

Post-Make Ima e

FIGURE 2-57 OS design custom build actions

CQflfigura~on M;iriager,,.

6!Jply . t

The last option is Subproject Image Settings for the OS design, as shown in Figure 2-58.
Double-clicking a subproject name opens a dialog window where you can choose to ex­

clude a subproject from the build (Exclude from build), exclude it from the image (Exclude

44 Chapter 2 Operating System and Application Development Tools

from image), and, finally, whether you want to always build and link as debug. No option is

selected by default.

El· Configuration Properties
··General
.. Locale

L. Build Options
j Environment
L .. Custom Build Actions

FIGURE 2-58 OS design Subproject Image Settings

Let's proceed to the next menu item, which is Build, as shown in Figure 2-59. This submenu

contains actions that pertain to the build of the operating system design, subprojects, and

SDK.

Build · DebuQ 1arget 1>ata TOOis Window

il!iii' Build Solution F?

, Rebuild Solution Ctrl+Alt+F7

, Clean Solution

Build CEBook

Rebuild CEBook

Clean CEBook

Advanced Build Commands

. ; B~iid .. ~ii .. ~~b~~~j~~t;
Rebuild All Subprojects

, Copy Files to Release Directory

Make Run-Time Image

Global Build Settings

" Targeted Build Settings

Batch Build ••.

·:. Configuration Manager ...

FIGURE 2-59 Build menu

Development Tools Interface 45

Table 2-2 provides action descriptions for each menu item.

TABLE 2-2 Build menu item descriptions.

Menu Item

Build Solution

Build <OS design name>

Rebuild Solution

Rebuild <OS design name>

Clean Solution

Clean <OS design name>

Advanced Build Commands

Build All Subprojects

Rebuild All Subprojects

Build All SDKs

Copy Files to Release
Directory

Make Run-Time Image

Open Release Directory in
Build Window

Global Build Settings

Targeted Build Settings

Batch Build

Configuration Manager

Action

Builds the OS and all projects not excluded from the build. Also
creates the run-time image.

Deletes previously created OS modules. Also builds the OS and
all projects not excluded from the build and creates the run-time
image.

Deletes previously created OS modules.

Provides access to advanced commands.

Builds all subprojects.

Deletes previously created binary code, builds all subprojects, and
creates the run-time image.

Launches building of SDKs included in the current OS design project.

Copies OS files to the release directory.

Builds the run-time image.

Opens the command line of the release directory of the current build
of the OS design and installs all necessary environment variables for
the OS build from the command line.

Provides access to the OS build settings when launched from the
Build menu.

Enables you to configure settings for the target BSP and project
builds launched from the Solution Explorer view.

Enables you to edit and select several configurations for the build.

Enables you to edit and set active configuration for the build.

The Advanced Build Commands submenu provides access to advanced build actions, as

shown in Figure 2-60 .

. ·" .[. • • •• ,:;,11--.%.o ~ysgen
El.Jild All Subprojects Clean Sysgen

Rebuild AH Subprojects Build and Sysgen
·---·····--···--·---·· -··-·-·--· --··-
Si.id(A!! SlJ~':-;,.. Rebuild and Clean Sysgen

:;;; F;5~~~-;j;~~·~~r~~~~~;··-· -·---·-· - Build Current BSP and Subprojects

: Make Run-Time Image Rebuild Current BSP and Subprojects

FIGURE 2-60 Advanced Build Commands submenu

Table 2-3 provides action descriptions for the Advanced Build Commands menu actions.

46 Chapter 2 Operating System and Application Development Tools

TABLE 2-3 Advanced Build Commands menu actions.

Meri.ultem

Sysgen

Clean Sysgen
'"~~~~o.MO.o.•oo ••• , ••

Build and Sysgen

Rebuild and Clean Sysgen

Build Current BSP and
Subprojects

Rebuild Current BSP and
Subprojects

·Action·

Same as Build Solution.

Same as Rebuild Solution.

Builds components from the source code supplied by Microsoft.
After that, same as Build Solution. NOT RECOMMENDED.

Removes all previously built OS components. After that, build
components from the source code supplied by Microsoft. After that,
same as Build Solution. NOT RECOMMENDED.

Builds the current BSP and subprojects. To successfully complete the
command, you must previously build an OS (by running Sysgen).

Deletes the previously created BSP modules and subprojects and
rebuilds them.

The Global Build Settings submenu enables you to choose the settings related to the image

build by using the Build menu actions, including Advanced Build Commands, as shown in

Figure 2-61.

Copy Files: to Release Directory After Build

Make Run-Time Image After Build

FIGURE 2-61 Global Build Settings submenu

Table 2-4 provides the description of Global Build Settings.

TABLE 2-4 Description of settings.

Menu Item

Copy Files to Release
Directory After Build

Make Run-Time Image
After Build

Action

Files are copied to the release directory after build.

Makes the run-time image from OS modules in the release directory.

The Targeted Build Settings submenu, as shown in Figure 2-62, enables you to choose

settings for the BSP, OS components, subprojects, and so on, for the target build launched

from the Solution Explorer view.

FIGURE 2-62 Targeted Build Settings submenu

Table 2-5 provides the description of Targeted Build Settings.

Development Tools Interface 47

TABLE 2-s Description of settings.

Menu Item Action

Make Run-Time Image
After Build

Makes the run-time image from OS modules in the release directory.

If the OS build is launched, most of the Build menu items become unavailable and a new

menu item appears (Cancel) that enables you to terminate the current build, as shown in

Figure 2-63.

FIGURE 2-63 Menu during build

Let us proceed to the Target menu, as shown in Figure 2-64. It lists actions for working with

a device.

Window Community Help

class view

FIGURE 2-64 Target menu

-'•WinMair

ing(hinstance, IDS_J
ing(hlnstance, IDC_~

terClass(hinstance);

File Viewer

Heap Walker

Zoom

Process Viewer

Registry Editor

System Information

Performance Monitor

Spy

Kernel Tracker

48 Chapter 2 Operating System and Application Development Tools

Table 2-6 provides action descriptions for menu items.

TABLE 2-6 Description of settings.

Menu Item

Attach Device

Detach Device

Reset Device

Target Control

Run Programs
... ~--·····-·,. ,. __ .,_,. ... _._.

CE Debug Zones

Connectivity Options

Debug Message Options

Release Directory Module

Remote Tools

File Viewer

Action

Attach a device. Depending on the settings, download/flash the OS
image.

·•··· ••.....••. ,. ··-···, . ·--·"··---····· ·······- - , ,., ·-··.---.. ···-··--····· .• _,. - ·--·-·-·--· .. · -···
Detach a device.

Reset a device. This action has to be supported by the device.

Open the control window of the target device-the client part of CE
Shell (CESH). This enables you to receive information about practical­
ly all aspects of the device, as well as to launch and stop programs.

Runs a program on the target device.
, ,. ••••• vv -··-···--·---·········· ,.,, ••••• ~····· •

Establishes debug zones for loaded modules.

Brings up a dialog box for connectivity options.

Brings up a dialog box for debug message options.

Brings up a dialog box for configuring modules that always load
from the release directory.

Remote Tools submenu.

File Viewer utility .
... ,_.,·-·-···- -···-·~-·~···· , --····-·-··-··-.-··· _, ,. ,,_ ·-·---·········· ._,,.,,.,. ____ , -···, ·~-~- .. -··-··.
Heap Walker

Zoom

Process Viewer

Registry Editor

System Information

Performance Monitor

Spy

Kernel Tracker

Call Profiler

Heap Walker utility.
, ""-~~ -.... --", .. . -·--···-~-- ... -····-·----·--· ·-··--""····-----····-···~···-····-~~---··"·--~-

Utility for taking screen shots with zoom capability.

Process Viewer utility.

Registry Editor utility.

Utility for displaying system information.

Utility for monitoring performance.
........... _,•.. ., ...•.........• , .. ._.,•... ., ...•..

Utility for displaying window messages.

Utility for OS execution monitoring, such as threads, synchronization
objects, interrupts, and so on.

Utility for remote call profiling.

Let us take a closer look at each of the menu items, except for the Remote Tools submenu,

which we will discuss in more detail later.

• Attach/Detach/Reset Device A device can be selected from the Device pane. By de­

fault, it is the last device selected in the Connectivity Options dialog box.

• Target Control is a view of the control window for the current device to which the

design tools are currently attached. To enable this utility, the image needs to include

Core OS\CEBASE\Core OS Services\Kernel Functionality\Target Control Support (Shell.
exe). The window that appears lists various debugging actions. This is one of the

primary debugging utilities. Some of the system information still can be obtained only

through this utility.

Development Tools Interface 49

• Run Programs This opens a dialog window that enables you to select a program to

launch the device, as shown in Figure 2-65. You will be able to launch programs stored

in the image, as well as those in the release directory of the operating system's image.

e,vailable Programs: .. I Bun
celogflush. e:-:e
connmc.exe
control.exe
ctlpnl.exe
D MAcnect. exe
eboot.exe
emulatorstub. exe
eventrst.exe
explorer.exe
iltiming. exe
l~addbg. exe .:J

FIGURE 2-65 Run Program window

• CE Debug Zones This menu item enables you to view the control window for debug

zones. You may select a loaded module and specify which debug zones you want to

be active. The debug zones provide an opportunity to receive debugging informa­

tion without interrupting the operating system/module's operation, as shown in
Figure 2-66.

m1.nm-m•!·~·m,1m.1;11111111111111111111111111t,1~iil
Name:

kitl.dll
rnglt_o.dll
ndis.dll
ndispwr.dll
ndisuio.dll
nelbios.dll

nleddrvr.dll
notify.dll
nllrnssp.dll
nllmssp_ svc.dll
oalioctl.dll
ole32.dll

QebugZones (nk.exe):

~[IJ]Error

[;,>1[1] Warning
D [2] Function
fi'][3] Info
0[4] Stub/Keyv/Args
[][5] Cache

J Bl;i ~:,~ •.
0[8] PCI
CJ [9] M emor_y
0[10] IO

:CC[11] Timer
0[12]1oCll

FIGURE 2-66 Debug zones

• Connectivity Options This menu item brings up a dialog window that lists op­

tions that enable you to connect with a device. This dialog window contains several

50 Chapter 2 Operating System and Application Development Tools

subwindows for performing various tasks. By default, it opens a window with target

device connectivity options, as shown in Figure 2-67.

FIGURE 2-67 Connectivity options

When the dialog window appears, it has a Target Device drop-down box with current device

settings. If needed, you may choose any other settings or create new ones (use the Add

Device option). The Download drop-down box enables you to choose a service that is used

for loading the image onto a device. If the selected service enables you to configure its set­

tings, once this service is chosen, the Settings button becomes enabled. Clicking this button

brings up a Settings dialog box. The Transport drop-down box enables you to choose the

kernel-level transport by which the target device connects to the developer workstation. If

the selected transport enables you to configure its settings, once this transport is chosen,
the Settings button becomes enabled. Clicking this button brings up a Settings dialog box.

From the drop-down Debugger box, you may select the debugger. If the selected debugger

enables you to configure additional settings, once that debugger is selected, the Settings

option becomes enabled. Selecting this option opens up a Settings dialog window.

The Core Service Settings window, as shown in Figure 2-68, contains information about the

image of the operating system associated with the device. It enables you to configure the

way the image is loaded onto the device and some of the KITL settings.

Development Tools Interface 51

Qownload Image: ··-·---·-·---··-··-·--·--··--·-·

r. Always
r Only if image changed
r Only on initial download
r Never (jump to image on!Y)

FIGURE 2-68 Core Service Settings window

The Service Status window, as shown in Figure 2-69, provides a view of the current status of

the services associated with the load, debugging, transport, and so on.

FIGURE 2-69 Service status

Kernel Debugger OS Awareness
.Kernel Debugger Probe driver
T argel Control
Debug Message
Transport
Download
Application Level Bootstrap Service
~

The Add Device window, as shown in Figure 2-70, enables to add you a new configuration to

connectivity settings, or, to use Platform Builder's terminology, to add a device.

52 Chapter 2 Operating System and Application Development Tools

FIGURE 2-70 Add Device window

The Delete Device window enables you to remove a previously created device, as shown in

Figure 2-71.

FIGURE 2-71 Delete Device window

The Debug Message Options dialog box enables you to set the format and the output

method for debugging messages. The Release Directory Modules dialog box, as shown

Development Tools Interface 53

in Figure 2-72, enables you to tell the debugger what modules must be loaded from the

image's release directory. You can debug and rebuild a driver without having to constantly

rebuild the system image.

Modules to. load frorn release directory:

FIGURE 2-72 Release Directory Modules dialog box

Clicking the Add button brings up a list of modules from the release directory. Figure 2-73
shows only a partial list.

!!il~i

~I
>,-:fd~dv~~11ack-lig-htd-ll --~""°': ~ ... ·.·.·.I
amdnord.dll
ar6k ndis cf.dll

FIGURE 2-73 Available modules

Let us proceed to the next menu. The Tools menu contains several CE utilities: Clone BSP;

License Run-time Image (not available in the trial version); Run-time License Assessment Tool;

and CE Update Check.

The Debug menu is enhanced to include new actions that provide the developer with

additional opportunities for debugging, specifically:

• Symbol Search Path.

• Windows CE Debugger Extensions.

• Go To Location.

• Capture Dump File.

54 Chapter 2 Operating System and Application Development Tools

Source Path Mapping.,.

Symbol Search Path.,.

Shift+FS

Ctrl+Alt+E

Windows CE Debugger Extensions.,.

Fl!

F!O

Shift+Fll

Ctrl+Alt+Q

F9

FIGURE 2-74 Debug options

Alt+F9

Ctrl+Alt+V1 A

Alt+?

Ctrl+Alt+H

Ctrl+Alt+U

Ctrl+Shift+Alt+P

Alt+8

Alt+S

The Windows submenu, as shown in Figure 2-74, provides access to various utilities that

enable you to collect information about the connected device, including:

• Call Stack .

• Threads .

• Modules .

• Processes .

• Autos .

• Watch .

• Memory submenu .

• Disassembly .

• Registers .

• List Nearest Symbol.

• Advanced Memory .

The Debug menu actions described above become available once the debugger has been

connected to the device. In concluding the description of the design interface, it is necessary

to point out that at the time of this writing, Windows Embedded CE 6.0 projects were not

supported by Team Foundation System.

Remote Utilities 55

Remote Utilities
This section covers the following remote utilities for Windows Embedded CE 6.0:

• File Viewer.

• Heap Walker.

• Zoom.

• Process Viewer.

• Registry Editor.

• System Information.

• Performance Monitor.

• Spy.

• Kernel Tracker.

• Call Profiler.

Note that in order for the Zoom and Spy utilities to work correctly, the image must contain

the following components: Core OS\CEBASE\Shell and User lnterface\Graphics, Windowing

and Events\Minimal GWES Configuration, Core OS\CEBASE\Shell and User lnterface\Graphics,

and Windowing and Events\ Minimal GDI Configuration. The Call Profiler utility requires

that the image contain Core OS\CEBASE\lnternational\National Language Support (NLS) or

Core OS\CEBASE\lnternational\English (US) National Language Support only with Core OS\
CEBASE\Application and Service Development\(Libraries and Runtimes\ Standard String

Functions - ASCII (corestra).

File Viewer

The File Viewer utility enables you to view the contents of the device file system, import
files from the device, export files to the device, browse the properties of files and directo­

ries, create directories, and rename files and directories stored on the device. To launch this

utility, choose Target from the main menu, then select Remote Tools and, in the menu that

appears, choose File Viewer. The main program window appears. In the upper section of
the screen, there is a dialog box for the target device. If the device has an established active

connection with Platform Builder, you may skip all configuration settings and choose Default

Device, which uses the default settings of the most recently connected device, as shown in

Figure 2-75.

56 Chapter 2 Operating System and Application Development Tools

FIGURE 2-75 Windows Embedded CE Remote File Viewer

If it is necessary to add additional settings or to add a new device, you can click Cancel and

add new settings to connect to a device. These settings are configured the same way from all

remote utilities.

To set the configuration settings, choose Configure Windows CE Platform Manager in the

Connection menu. A dialog box appears, as shown in Figure 2-76.

FIGURE 2-76 Configuration dialog box

This dialog box enables the addition of new settings, or, in Platform Builder terminology,

to Add Device, Delete, view Properties, or see About information. Clicking the Add Device

button adds a new device to the list. You can rename it right away. After the device has been

added, you can select it from the list and edit its properties, as shown in Figure 2-77.

Remote Utilities 57

FIGURE 2-77 Device properties

Transport is used for communicating on the application level between the device and the

remote utility. The program ships with support for the following transports:

• ActiveSync.

• KITL.

• Transmission Control Protocol/Internet Protocol (TCP/IP).

The use of ActiveSync as a transport mechanism requires that the developer's workstation

and the device both support ActiveSync. KITL transport uses the same KITL connection as the

Kernel Debugger, and it requires that the device support KITL. TCP/IP transport uses TCP/IP

protocol to communicate with the device, and the device has to support the network proto­

col. If needed, you can additionally configure transport properties by clicking Configure.

The startup server is responsible for copying files needed for Platform Manager to the de­

vice, running those files, utilizing the transport, and establishing a connection between the

developer workstation and the target device. The program includes the following startup

server types:

• ActiveSync Startup.

• CESH Startup.

• KITL Startup.

• Manual Startup.

The ActiveSync startup server uses ActiveSync for copying and launching operations on

the target device; CESH and KITL startup servers use Target Control Service (Shell.exe). The

Manual startup server brings up a dialog box with a list of files that must be copied to the

device as well as the program that needs to be run after copying completes in order to

connect to the developer's workstation.

58 Chapter 2 Operating System and Application Development Tools

After the necessary transport and the startup server have been selected, you can test the

device connection by pressing the Test button. A dialog window appears showing the

process of being connected to a device, as shown in Figure 2-78.

FIGURE 2-78 Testing device connection

If connection to the device has been successfully established, a dialog box appears with a

Connection to device established message and an OK button, as shown in Figure 2-79.

FIGURE 2-79 Successful device connection

To connect to a device, choose Connection, and then choose Add Connection. A dialog box

appears, similar to the one that shows up when the program starts. Choose a device and click

OK. A dialog box appears showing the progress of being connected to the device. After a

successful connection, you can see the catalog hierarchy in the left pane and the currently

selected catalog in the right pane, as shown in Figure 2-80.

El··· Default Device
i····tilil Network
JiHiJ Release
'·· ·!Sil Recycled
; Ga Application Data
'-···Ii.I My Documents
i····1'Ei! Program Files

i:B-·!Sil Documents and Settings
'-·Ga Temp
i=B€illllm

·~····

~~ ceconfig, h
Ei/ceddk.dll
rZJJcefobj.dll
~cefwcli.exe
Ei/ ceshell. dll
Ei/cetlkitl.dll
Ei! cetlstub.dll
~close.2bp
~close.wav
Ei/com 16550. dll
~commctrl.dll
~commdlg.dll
17.1 connmc .exe
llt1connpnl.cpl
~control.exe
~control.Ink
i:}copyrts.txt
Eilcoredll.dll

':.~ . .:: cplmain.cpl

~credprov.dll
~credsvc.dll
~critical.wav
~crypt32.dll
~ctlpnl.exe
Ei/cxport.dll
iz;Jdefault.hv

Remote Utilities 59

Ei/ default. wav
~desktopdirectory.ir
Ei!device.dll
~DeviceEmulator _lcc

[!tjldevmgr .dll
~dhcp.dll
~dhcpsrv.dll
~dmacnect.exe
~dmacnect.lnk
~dmatrans.dll

FIGURE 2-80 Windows Embedded CE Remote File Viewer-connected

By using the menu and the toolbox, you may perform the following actions:

• Browse the device file system.

• Import files from the device.

• Export files to the device.

• View properties of files and directories.

• Create directories.

• Rename files and directories in the device.

Heap Walker

The Heap Walker utility enables you to view process heaps, their identifiers, and flags, as

well as the structure and the content of each heap. To launch this utility, choose Target from

the main menu, then Remote Tools and, in the menu that appears, choose Heap Walker. The

main program window appears. In the upper portion of the screen, there is a dialog box for

the target device. If the device has an established active connection with Platform Builder,

you may skip all configuration settings and choose Default Device, which uses the default

settings of the most recently connected device.

To configure additional settings or to add another device, click Cancel and configure the

connection settings for the device. These settings are configured in the same way for all

remote utilities. They were discussed in more detail in the "File Viewer" section.

60 Chapter 2 Operating System and Application Development Tools

To connect to a device, choose Connection, and then choose Connect to Device. A dialog

box appears, similar to the one that shows up when the program starts. Choose a device and

click OK. A dialog box appears showing the progress of being connected to the device. After

the connection has been successfully established, a list appears showing processes and their
heaps.

This utility may show three windows: Process_List, Heap_List, and Heap_Dump. After the

device has been connected, a window appears showing the process list and the heaps

associated with each process, as shown in Figure 2-81.

NK.EXE
NK.EXE

OxD06E2DBO NK.EXE
OxD042EOIO NK.EXE
OxD00489DO NK.EXE
OxD0042FIO NK.EXE
OxD0040A90 Ox00400002 NK.EXE

' OxD0040770 Ox00400002 NK.EXE
OxD00404BO Ox00400002 NK.EXE

, OxD0040010 Ox00400002 NK.EXE HF32_DEFAUL T
Ox02020010 OxOOEB0002 shell.axe HF32_DEFAUL T
Ox04021250 OxOIAI0002 udevice.exe
Ox04020010 OxOIAI0002 udevice.exe HF32_DEFAULT
Ox06020010 Ox01200006 udevice.exe HF32_DEFAULT

; Ox08020010 Ox01FB0006 udevice .exe HF32_DEFAUL T
OxOA020010 Ox03560002 udevice.exe HF32_DEFAUL T
OxOC020010 Ox034D0006 HF32_DEFAULT
Ox10020830

FIGURE 2-81 Windows Embedded CE Remote Heap Walker process list

Double-clicking the heap opens a window that lists blocks of the heap memory and includes
information about their address, block size, and block flag (fixed or free), as shown in

Figure 2-82.

Remote Utilities 61

iii Wmdow< CE Remote Heap Walker - [Heap_l1<t for Subpro1edl.e>1e Proce:ssid - ; l!IJ

Ox12020010 1124 Fixed
Oxl2020490 16 Fixed
Oxl20204BO 28 Fixed
Oxl20204FO 28 Fixed
Ox12020530 24 Fixed
Ox12020570 60 Fixed
Oxl20205DO 24 Fixed
Oxl2020600 2560 Free

FIGURE 2-82 Windows Embedded CE Remote Heap Walker heap list

Double-clicking a block brings up a window showing the content of the selected heap's
memory block, as shown in Figure 2-83.

Moooooo~~M~~oo~rooooooooo t ... HeaP .. «
00 20 00 00 00 00 00 00 00 00 00 00 54 00 02 12 , T ...
010000 00 00 00 00 00 03 09 44 00 00 00 00 00 D
00 00 00 00 48 87 05 40 20 88 05 40 010000 00 H*.@@,@

1202004F 54 00021230000000 00 00000010 000212 T ... O
1202005F 54 00 0212 00 00 00 00 00 00 00 00 00 00 02 12 T
1202006F 50 07 00 00 80 07 00 00 30 00 00 00 80 00 00 00 P o
1202007F ~woooog~~~~~~~~~oo~ P ... WUUUUUUUU.11.u
1202008F 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1202009F 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
120200AF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
120200BF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
120200CF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
120200DF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '"''""'""''
120200EF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '"'""''""''
120200FF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1202010F 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1202011F 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '"""''""'"
1202012F 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 "'""'"'"'"

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

FIGURE 2-83 Windows Embedded CE Remote Heap Walker heap memory block

62 Chapter 2 Operating System and Application Development Tools

Zoom

The Zoom utility enables you to capture screen shots of the target device. To launch this util­

ity, choose Target from the main menu, then choose Remote Tools and, in the menu that ap­

pears, choose Zoom. The main program window appears. In the upper portion of the screen,

there is a dialog box for the target device. If the device has an established active connection

with Platform Builder, you may skip all configuration settings and choose Default Device,

which uses the default set connected device.

To configure additional settings or to add another device, click Cancel and configure the con­

nection settings for the device. These settings are configured in the same way for all remote

utilities. They were discussed in more detail in the "File Viewer" section.

To connect to a device, choose Connection, and then Connect to Device. A dialog box ap­

pears, similar to the one that shows up when the program starts. Choose a device and click

OK. A dialog box appears showing the progress of being connected to the device. After the

connection has been successfully established, a screen shot of the current screen of the tar­

get device appears, as shown in Figure 2-84.

FIGURE 2-84 Windows Embedded CE Remote Zoom-in

By using the menu, you may zoom in on or zoom out on the image (View, and then Zoom

In/Zoom Out), open the image of the current device screen in a new window (File, and then

New Bitmap), or refresh the image in the current window (Connection, and then Refresh).

The resulting image can be copied to the exchange buffer (Edit, and then Copy All/Copy

Window), saved as a file (File, and then Save As), or printed out (File, and then Print).

Remote Utilities 63

Process Viewer

The Process Viewer utility enables you to gather information about the processes launched in

the target device, the process threads, and modules loaded into the processes. To launch this

utility, choose Target from the main menu, then choose Remote Tools and, in the menu that

appears, choose Process Viewer. The main program window appears. In the upper portion of

the screen, there is a dialog box for the target device. If the device has an established active

connection with Platform Builder, you may skip all configuration settings and choose Default
Device, which uses the default settings of the most recently connected device.

To configure additional settings or to add another device, click the Cancel button and

configure the connection settings for the device. These settings are configured in the same

way for all remote utilities. They were discussed in more detail in the "File Viewer" section.

To connect to a device, choose Connection, and then Connect to Device. A dialog box ap­

pears, similar to the one that shows up when the program starts. Choose a device and click

OK. A dialog box appears showing the progress of being connected to the device. After the

connection has been successfully established, the information about the processes launched

in the device appears, as shown in Figure 2-85.

E.ile):'.lew !::onnectlon t:!elp

Pr aces PID Base Prior~ #T eads Booe Addr Access Ke Wihdow ..
Mf, E~1E 00400002 3 59 00070000 00000000
shell.exe OOEB0002 00010000 00000000
udevice.exe 01Al0002 00010000 00000000 Input Panel
udevice.exe 01200006 00010000 00000000
udevice.exe 01FB0006 00010000 00000000
udevice.exe 03560002 00010000 00000000
explorer .exe 034D0006 00010000 00000000 Task Manager

.:.I servicesd.exe 037110006 00010000 00000000

Thread ID Curr.entP!D Thread Priorit Access Ke
038EOOOA 00400002 251 00000000
03820001\ 00400002 249 00000000
03470006 00400002 249 00000000
03380006 00400002 249 00000000
03340006 00400002 109 00000000
03010006 00400002 251 00000000
02(90006 00400002 240 00000000

.:.I 02C70006 00400002 249 00000000

Mod Module ID ProcCWnt Glob ICOu t se Addr B<ls Size h odu FultPath
cetlkitl.dll 94E4A618 2 40AA0000 24576 94E4A618 \Release\ ...
cetlstub. dll 94E55BDO 40ABOOOO 20480 94E55BDO \Windows ...
toolhelp. dll 97F37D4C 40150000 24576 97F37D4C \,Windows, , ,
coredll.dll 97FFE6CC 11 11 40010000 937984 97FFE6CC \Windows ...
wopm.dll 94DA0000 1 40320000 32768 94DAOOOO \Windows ...
ceshell.dll 94DAD75C 40890000 491520 94DAD75C \Windows ...
ssllsp.dll 94DD8B2C 1 40360000 94208 94DD8B2C \Windows ...

Re,acly .rconriei:ter~~[D.i~~it-o~~k:e~~-'~~.:~~4~~___:;;::.::_:-=~~· ~ r~-INiJM

FIGURE 2-85 Windows Embedded CE Remote Process Viewer

When you select a process in the upper section of the screen, the middle section shows

information about the process threads; the bottom section shows information about the

64 Chapter 2 Operating System and Application Development Tools

modules loaded in the processes. Clicking the button with a red cross on the main pane

enables you to stop a process. To refresh device information, select Connection and then

Refresh from the utility's main menu.

Registry Editor

The Registry Editor utility enables you to view and edit the registry of the target system. To
launch this utility, choose Target from the main menu, then choose Remote Tools, and in the

menu that appears, choose Registry Editor. The main program window appears. In the up­

per portion of the screen, there is a dialog box for the device you want to connect to. If the

device has an established active connection with Platform Builder, you may skip all configura­

tion settings and choose Default Device, which uses the default settings of the most recently
connected device.

To configure additional settings or to add another device, click the Cancel button and config­

ure the connection settings for the device. These settings are configured in the same way for

all remote utilities. They were discussed in more detail in the "File Viewer" section.

To connect to a device, choose Connection, and then Add Connection. A dialog box appears,

similar to the one that shows up when the program starts. Choose a device and click OK. A

dialog box appears showing the progress of being connected to the device. After the con­

nection has been successfully established, the left pane displays a hierarchical tree of the
registry of the desktop machine and the target device, and the right pane displays the value

of the registry keys chosen in the left pane, as shown in Figure 2-86.

(Default)

, §!)Launch!O

~Launch20
~Depend20

: §!) Launch30

~Depend30
§!)Launch60

,, ~Depend60

: §!)Launch50

Irul]oependSO

shell.exe

device.di!

OA 00

gwes.dll

14 00

services5tart, exe

1400

explorer. exe
1400IEOO

FIGURE 2-86 Windows Embedded CE Remote Registry Editor

Remote Utilities 65

This utility is similar to its desktop version of the registry viewer, and it enables you to perform

all registry actions, including exporting registry files. The registry actions are accessible from

the context menu (right-dick mouse menu) and from the main utility's pane. To refresh device

information, choose Connection and then choose Refresh from the utility's main menu.

System Information

The System Information utility enables you to browse system information about the device,

including memory, device storage, and metrics. To launch this utility, choose Target from

the main menu, then choose Remote Tools and, in the menu that appears, choose System

Information. The main program window appears. In the upper portion of the screen, there is a

dialog box for the device you want to connect to. If the device has an established active con­

nection with Platform Builder, you may skip all configuration settings and additionally choose

Default Device, which uses the default settings of the most recently connected device.

To configure additional settings or to add another device, click the Cancel button and

configure the connection settings for the device. These settings are configured in the same
way for all remote utilities. They were discussed in more detail in the "File Viewer" section.

OS Manufacturer Microsoft Corp or a ti on
Processor StrongARM

System Time (UTC) 26/ 10/2007 Friday, 03: 42: 19,000
Time Zone Pacific Daylight Time (GMT -7:00)
Default Locale Identifier Ox00000409
Default Language Identifier Ox0409

OEM Code Page 437

FIGURE 2-87 Windows Embedded CE Remote System Information

To connect to a device, choose Connection, and then Connect to Device. A dialog box

appears, similar to the one that shows up when the program starts. Choose a device and
click OK. A dialog box appears showing the progress of being connected to the device. After

the connection has been successfully established, the left pane displays a hierarchical tree of

system information, and the right pane displays information about the items chosen in the

left pane, as shown in Figure 2-87.

66 Chapter 2 Operating System and Application Development Tools

Performance Monitor

The Performance Monitor utility enables you to track various performance indicators of the

target system. To launch this utility, choose Target from the main menu, then Remote Tools

and, in the menu that appears, choose Performance Monitor. The main program window

appears. In the upper portion of the screen, there is a dialog box for the target device. If the

device has an established active connection with Platform Builder, you may skip all configura­

tion settings and choose Default Device, which uses the default settings of the most recently

connected device.

To configure additional settings or to add another device, click the Cancel button and

configure the connection settings for the device. These settings are configured in the same

way for all remote utilities. They were discussed in more detail in the "File Viewer" section.

To connect to a device, choose Connection, and then Connect to Device. A dialog box

appears, similar to the one that shows up when the program starts. Choose a device and click

OK. A dialog box appears showing the progress of being connected to the device. After the

connection has been successfully established, the program starts copying the files that are

needed in order to monitor the performance of the target system. After copying and ini­

tialization of the remote part of the device are completed, the developer will have access to

the interface that is similar to an interface of the desktop version of Performance Monitor, as

shown in Figure 2-88.

FIGURE 2-88 Windows Embedded CE Remote Performance Monitor

Remote Utilities 67

Just like the desktop version, this utility enables you to represent data in several forms,

including Chart, Alert, and Report, as well as to write information to a log. Views can be

toggled from the main pane (the second group of the four buttons on the right-hand side) or

from the main menu (View). You can add counters to each view. To add or remove a counter,

you can use the Edit menu and then the first item (Add to Chart, Add to Log, etc.) or the

main pane (the first button in the third button group on the left).

Pressing the Add button brings up a dialog box showing a counter selection to add. The

dialog boxes are slightly different depending on the selected view (Chat, Alerts, or Report).

The utility can show the current target device information, as well as the information from a

log created previously by this utility. Developers may add their own counters to Performance

Monitor by creating special extension libraries.

Spy
The Spy utility enables you to browse open windows of the device and their properties. To

launch this utility, choose Target from the main menu, then Remote Tools and, in the menu

that appears, choose Spy. The main program window appears. In the upper portion of the

screen, there is a dialog box for the target device. If the device has an established active

connection with Platform Builder, you may skip all configuration settings and choose Default
Device, which uses the default settings of the most recently connected device.

To configure additional settings or to add another device, click the Cancel button and

configure the connection settings for the device. These settings are configured in the same

way for all remote utilities. They were discussed in more detail in the "File Viewer" section.

To connect to a device, choose Connection, and then Connect to Device. A dialog box

appears, similar to the one that shows up when the program starts. Choose a device and click

OK. A dialog box appears showing the progress of being connected to the device. After the

connection has been successfully established, a window appears showing the hierarchical

tree of the system windows, as shown in Figure 2-89.

68 Chapter 2 Operating System and Application Development Tools

00000000 "Desktop Window" (None)

0 70022E30 "<No name>" (tooltips_class32)

r:i+D 70022C30 "<No name>" (HHTaskBar)

B·O 70022FFO "Task Manager" (Dialog)

. . ·D 70023130 "&switch To" (Button)

· 0 70023250 "&End Task" (Button)

·· 0 70023370 "<No name>" (listbox)

· ·D 70023470 "&Active Tasks:" (static)

L. .. D 70021ABO "<No name>" (tooltips_class32)

[:iJ 0 70021 SFO "<No name>" (DesktopExplorerWindow)

·. ··D 70023590 "Def a ult !me" (!me)

B··D 70022250 "Input Panel" (SipWndClass)

· L 0 70022380 "<No name>" (42429667-ae04-lld0-a4f8-00aa00a749b9 -Microsoft!MWndClass)

0 70021010 "WinCENotify" (WinCENotify)

'. · 0 700209DO "CursorWindow" (static)

FIGURE 2-89 Windows Embedded CE Remote Spy

Double-clicking a node of the hierarchical view displays a dialog box listing the properties of
the corresponding window, as shown in Figure.2-90.

FIGURE 2-90 Window property screen

Remote Utilities 69

Kernel Tracker

The Kernel Tracker utility enables you to watch the operations of the system and the

applications in real time, including:

• All the processes, threads, and their interaction.

• System events and the threads that represent them.

• System interrupts (the image should include support for profiling).

• System information.

Kernel Tracker also enables you to view the execution of the system and the application in

the target device dynamically from within. It provides effective solutions to the problems a
developer may be faced with including thread interaction analysis in a multithreaded appli­

cation and finding the root causes of the slow performance of a driver.

[±!·· Interrupts

:±J Idle<<OxOOOOOOOO>>
[B · NK. EXE «Ox00400002 > >
i±J .. sheU.exe<<OxOOEB0002>>
$·· udevice.exe<<Ox01A10002>::i ,__ ____ _,___ ___________ __,. ___ _
ff .. udevice.exe<<Ox01200006>> ,__ ____ ,____ ____ _,,,_ ________ _

~--udevice.exe<<Ox01FB0006>> 1------._..--------------­
±1·· udevice.exe<<Ox03560002>> 1-----------------~~---
rtJ .. M@iji§fA1MIH!iJll1!11ii ,__ ____ ,,,__ ____ _.___ ________ _
tB·· servicesd.exe<<Ox037A0006> ,_ _________ __,_ _____ ~---- 1

i:8CEMGRC.EXE<<Ox03ACOOOA> 1-----4------,.C---------
83·· R TH. EXE< <0x036 l000E > >

FIGURE 2-91 Windows Embedded CE Remote Kernel Tracker

Thread Running

Thread Blocked

- - - - Thread Sleeping

Thread Migrate

~ Process Running

-- Process Not Running

SYNCHRONIZATION
\E£ Enter Critical Section

[QI Leave Critical Section

[!] Create Event

~Set Event

[!] Reset Event

It! Pulse Event

~ Close Event

li'I Delete Event

["jj Wait for Multiple Objects

• Sleep Event

IS Create Semaphore

ml Release Semaphore

~ Close Semaphore

li!l Delete Semaphore

To launch this utility, choose Target from the main menu, then Remote Tools and, in the menu

that appears, choose Kernel Tracker. The main program window appears. In the upper portion

70 Chapter 2 Operating System and Application Development Tools

of the screen, there is a dialog box for the target device. If the device has an established active

connection with Platform Builder, you may skip all configuration settings and choose Default

Device, which uses the default settings of the most recently connected device.

To configure additional settings or to add another device, click the Cancel button and

configure the connection settings for the device. These settings are configured in the same

way for all remote utilities. They were discussed in more detail under the File Viewer utility.

To connect to a device, choose Connection, and then Connect to Device. A dialog box ap­

pears, similar to the one that shows up when the program starts. Choose a device and click

OK. A dialog box appears showing the progress of being connected to the device. After the

connection has been successfully established, the program will start copying the files needed

for monitoring the target system. After copying and initialization of the remote section of the

device are completed, a window with three vertical views appears. The left pane displays the

process tree, threads, and interrupts; the central pane displays system details; and the right

pane displays the symbols' explanation. The main application pane enables you to access the

main utility controls, as shown in Figure 2-91.

In the left pane, the tree can be expanded in order to view what process threads have been

started. The central pane displays a detailed view of the system, as shown in Figure 2-92.

'· VolumeCompactThread <<t'.
VolumeCompactThread <<I_

· · FileSysMain < <Ox0068000:.

RunApps <<Ox00630002>
' ·· PowerHandlerGuardThrd < ·,

'- PagePoolTrimThread
· ·· PagePoolTrimThread
• · NK.EXE «01x00410ll02:»·!.'--

FIGURE 2-92 Windows Embedded CE Remote Kernel Tracker detailed system view

Remote Utilities 71

By using the main pane of the application, you may set the zoom level (Zoom Range (ms)),

with a maximum of 1 millisecond (ms) and a minimum of 10,000 milliseconds. The square

boxes in the system details window represent various system events tracked by the utility. If

you hover the cursor over a square, you will be able to see detailed information about the
selected event. By using the menu (View, and then Event Filter), you can filter system events

available for viewing.

FIGURE 2-93 Thread pane context menu

FIGURE 2-94 System details pane context menu

The context menus in a thread pane, as shown in Figure 2-93, and in a system details pane,

as shown in Figure 2-94, enable you to perform additional actions to analyze the system

processes, as well as to find and resolve problems. The utility saves the session data for sub­

sequent analysis, for which the user is prompted at the end.

Call Profiler

The Call Profiler utility enables you to track the time it takes to run parts of the applica­

tion code and therefore to locate problems in the code that impact the application perfor­

mance as a whole in a negative way. To ensure that this utility is capable of collecting data,
the application code needs to receive additional instructions that will send Call Profiler the

information about code operation. In order to perform this build, it is necessary to set

additional parameters for the application build:

• WINCECALLCAP=l, for CallCAP profiling.

• WINCEFASTCAP=l, for FastCAP profiling.

This can be done in the Command Prompt window of the design interface or in the Sources

file. As we mentioned earlier, the profiler subsystem supports two types of profiling, FastCAP

72 Chapter 2 Operating System and Application Development Tools

and CallCAP. FastCAP inserts a service code before calling each function and right after the

return from the application function. CallCAP inserts a service code right after a function is

called and before the return from the function. FastCAP functionality is not supported for

x86 processors.

To launch this utility, choose Target from the main menu, then Remote Tools and, in the

menu that appears, choose Call Profiler. The main program window appears. In the up-

per portion of the screen, there is a dialog box for the target device. If the device has an

established active connection with Platform Builder, you may skip all configuration settings
and choose Default Device, which uses the default settings of the most recently connected

device.

To configure additional settings or to add another device, click the Cancel button and

configure the connection settings for the device. These settings are configured in the same

way for all remote utilities. They were discussed in more detail in the "File Viewer" section.

To connect to a device, choose Connection, and then Connect to Device. A dialog box

appears, similar to the one that shows up when the program starts. Choose a device and click

OK. A dialog box appears showing the progress of being connected to the device. Next, a

dialog box for launching the Call Profiler appears, as shown in Figure 2-95.

FIGURE 2-95 Collection Control dialog box

Click the Start button to start collecting data. After that, you will be able to launch programs

on the device and perform all necessary actions. After the test scenarios have been run, click

the Finish button to stop collecting data and to view it in a graph. A second option is to

launch the application on the device by pressing the Launch button and entering the

application name, as shown in Figure 2-96.

Remote Utilities 73

FIGURE 2-96 Launch program for profiling

Collected information can be available in various views. It enables you to analyze the applica­

tion performance, as shown in Figure 2-97.

~~1wmdows CE Remote Call Profiler - [ButterHy 14 :CAP26.trnp (Full) [Q 1:6 Um Uil 16'1 ~] ' '." '•::w!', ,
•• EJie · [dit · .. ·)!)ew ll.d;ion · .. 1®1~ . · i;;onnedlon : · ~rndow !:!~Ip

1~1 ~ e&J l!tilrlitl ,fl. ~1" ·.>' !t1·.1>1 ~ 'l~•l .. 1#1 ~ \" oS··::,,1
0 , , , , I , , , , I , , , , I , , , Width 166 217767 (t) , I ,

% Application Exclusive Time = 54 i 23 ill.
-...,_%Application Inclusive Time= lOOiOO ·.·.;·.· ..
.._ %ElapsedExdusiveTime=52,13 ·.· <

'- % Elapsed Inclusive Time = 100 i 00
% Time Exclusive Remote Call Profiler C

·-.., '% Time Inclusive Remote Call Profiler O

., Application Exclusive Time = 9 984 889

, Application Inclusive Time= 18 410 812

, AVG Application Exclusive Time = 9 984
,, AVG Application Inclusive Time = 18 41 C

•AVG Ela.osed E~du;iveTi1e ~ 20 15~

fllllCti(lll N"!fi! •l)l"<lpt!ttl!!l;
function Node properties,

FIGURE 2-97 Analysis of collected data in Call Profiler

#calls; I

:±] lcounter: Time

% tails I < •o/.App.1r\C1.~il!le I:: •1•11

1..1
% calls I %App.Ind.Time I %A

100,00

Note that the Call Profiler utility is not intended for profiling the system code.

74 Chapter 2 Operating System and Application Development Tools

Table 2-7 shows other utilities included in the toolkit.

TABLE 2-7 Other utilities.

Utility

CEAppCompat.exe

BinCompress.exe

BinMod.exe

CEBackup.exe

CreateMUl.bat

CvrtBin.exe

DumpBin.exe

KbdGen.exe

Readlog.exe

StampBin.exe

Sysgen_capture.bat

ViewBin.exe

CabWiz.exe

Wceldcmd.exe

Unldcmd.exe

Purpose
Checks the compatibility of libraries and applications of earlier version
of CE with the new version of the operating system.

Prepares compressed files for the x86 BIOS loading utility.

Extracts and replaces files in the image. Only for files from the FILES
section.

Backs up and restores system libraries supplied with Platform Builder
(.lib files from the Public directory tree).

Creates Multilingual User Interface (MUI) files for a given language.

Converts ROM files (.bin) into true binary format or into the Motorola
format.

Collects information from 32-bit Common Object File Format (COFF)
files (.exe, .DLL), such as imported and exported functions.

Generates keyboard layout files for Windows Embedded CE using DLL
files of the Windows XP keyboard layout as a base.

Converts the log file CELog into a text format or a format readable by
the Kernel Tracker utility.

Enables you to view and modify data in the ROMPID and ROMHDR
regions of the binary image (BIN).

Generates Sources files for Public projects that the developer wishes to
transfer to his or her own code tree; for example, a driver that can be
transferred to the developer's own BSP for subsequent modification.

Views information about the system's image (.bin).

Creates .cab files for installing programs on the device.

Used to install .cab files to a specified location. Supports standalone
devices.

Used for uninstalling created .cab files. Supports standalone devices.

Chapter 3

Operating System Architecture
Microsoft Windows Embedded CE 6.0 is a real-time, componentized, multithreaded operat­

ing system (OS) that supports preemptive multitasking and runs on multiple processor archi­

tectures, including ARM, Microprocessor without Interlocked Pipeline Stages (MIPS), x86, and
SH4. Windows Embedded CE 6.0 operates in the virtual address space of 4 gigabytes (GB).

The system kernel uses the upper 2 GB of virtual memory, while the active user process uses

the lower 2 GB. Windows Embedded CE 6.0 supports up to 32,000 user processes, with the

actual number of processes limited by the system resources. User processes include special

processes that make the application programming interface (API) available for user applica­

tions. Such applications are named user-mode servers. These include Udevice.exe (User Mode

Driver Host, a process that loads user-mode drivers) and Servicesd.exe (a process that loads

services such as Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), Universal

Plug and Play (UPnP), and so on). The system shell makes the main interface available to the

user. If the system shell makes an additional API available, it is also a user-mode server.

The core of the operating system is the Nk.exe process, into which dynamic libraries respon­

sible for various types of system functionality are loaded. You can also load system libraries

and drivers into the kernel. Kernel libraries that make the API available for user applications

are named kernel-mode servers.

The system API is available to applications through the coredll.dll library, which is linked to all

executable modules of the operating system. The kernel modules are linked to a special ver­

sion of coredll.dll for the kernel named k.coredll.dll. If a module is linked to cored I I.di I and is

loaded into the kernel, then all coredll.dll calls are automatically rerouted to k.coredll.dll.

In addition to the system API, the operating system offers an application API that is similar to

the desktop Win32 APL A developer can access applied functionality through various appli­
cation libraries, such as Wininet.dll, Winsock.dll, Msxml.dll, and Winhttp.dll. The system archi­

tecture includes the following components, as shown in Figure 3-1.

75

76 Chapter 3 Operating System Architecture

FIGURE 3-1 System architecture

Operating System Kernel Architecture
Let us take a closer look at the structure of the system kernel. A system kernel can be graphi­

cally represented as shown in Figure 3-2.

Operating System Kernel Architecture 77

FIGURE 3-2 System kernel

The Nk.exe process is built from a static OEM adaptation layer (OAL) library, which is linked to
the kernel.di! library file. Therefore, in Windows Embedded CE 6.0, the interface between the

OAL and the system kernel is predetermined as much as possible. Table 3-1 outlines the main

kernel-mode system servers and their functionality.

TABLE 3-1 Kernel-mode system servers.

Kernel-Mode Server

kernel.di I

kitl.dll

filesys.dll

fsdmgr.dll

device.di I

devmgr.dll

gwes.dll

k.coredll.dll

Functionality

This is the system kernel. It provides basic functionality such as mem­
ory management, process loading, scheduler, and process and thread
management.

Implements Kernel Independent Transport Layer (KITL).

File system, object store, registry, CEDB database, and system initial­
ization.

File system manager, file system filter manager, and media manager.

Together with devmgr.dll, it provides the Device Manager functional­
ity.

Loads and manages drivers; loads input/output (1/0) resource man­
ager.

Responsible for the Graphics, Windowing, and Events Subsystem
(GWES). Supports windows, dialog boxes, controls, menu, and other
resources related to the user interface. Controls window manager and
window messaging manager, including keyboard messages, mouse
messages, touch screen messages, and so on.

A version of coredll.dll for the system kernel.

In addition to the system libraries, you can also load kernel-mode drivers into the kernel.

78 Chapter 3 Operating System Architecture

Operating System and Hardware Interaction
The Windows Embedded CE 6.0 kernel interacts with hardware through the OAL, which con­

ceals specific implementation of the processor and its periphery from the kernel implemen­

tation for the processor type shipped with the developer tools. It also performs hardware

initialization. The operating system interacts with hardware by using drivers. A combination

of the OAL, drivers, and configuration files for a specific hardware platform is named a board

support package (BSP). The development suite includes samples of BSP implementations

for reference platforms. Usually, a new BSP development starts by cloning the existing BSP

sample that most closely matches the development BSP.

As mentioned before, drivers can be loaded into the kernel space. Such drivers are named

kernel-mode drivers. Drivers that are loaded into a specialized user process, Udevice.exe (or
User Mode Driver Host), are named user-mode drivers. Kernel-mode drivers offer higher

productivity. Systems that use user-mode drivers are more fault-tolerant. The infrastructure

of system drivers is designed in such a way that if certain requirements are met, you can

develop drivers that function in both user mode and kernel mode.

Operating System Virtual Memory Architecture
The Windows Embedded CE 6.0 operating system is built based on virtual memory, which

provides the operating system with a flexible and effective way of managing the limited

resources of physical memory. The architecture of virtual memory is a mapping of virtual

memory addresses to physical addresses. The architecture of virtual memory implies that

virtual memory is mapped to physical memory, and not vice versa. Generally speaking, it is
impossible to determine a corresponding virtual address if you know the physical address.

Besides, sometimes it is common for multiple virtual addresses to be mapped to the same

physical address. For example, the binary code of a dynamic-link library (Dll) can be loaded

once into physical memory, yet be used by various processes.

Windows Embedded CE 6.0 is a 32-bit operating system. The 32-bit architecture provides

4 gigabytes (GB) of address space. Windows Embedded CE 6.0 operates in a flat 4-GB ad­

dress space where the system kernel uses the upper 2 GB and the active user process uses

the lower 2 GB. Virtual memory is allocated by page. The size of a virtual memory page in CE

6.0 equals 4 kilobytes (KB) and is determined by the architecture of the supported processor

types. A virtual memory page represents a contiguous sequence of bytes, which corresponds

to a contiguous physical memory page. The memory management unit (MMU) of the pro­

cessor is responsible for working with virtual memory and for translating virtual addresses

into physical addresses. Information about virtual-to-physical memory mapping is stored in

the page table. The page table stores information about virtual-to-physical memory page

mapping as well as additional page properties such as write access, availability for execu­

tion, access denial, and so on. When the system accesses the memory address, the processor

Operating System Virtual Memory Architecture 79

checks page tables in order to find the physical page that the system is addressing. If the
physical page is not found, a page fault occurs. A page fault also occurs if the requested ac­
cess to the address does not match the page, such as during attempts to write to a page that
is marked as read-only.

There are three states of virtual memory in CE 6.0:

• Free when memory is not allocated or used by the system.

• Reserved when memory is reserved but has not yet been mapped to the physical
addresses.

• Committed when memory is reserved by the system and its mapping to physical ad­
dresses has been set.

Windows Embedded CE 6.0 commits virtual pages by request, which means that the process
of committing a page is postponed for as long as possible. For example, when Windows
Embedded CE allocates a stack or a heap, virtual memory is reserved, not committed. When
an active application thread tries to access a reserved address, a page fault occurs, the active
thread execution is suspended, the kernel processes the page fault, a necessary number of
pages are committed, and code tables are corrected, after which the active threads resume
operations. Page fault processing happens entirely inside the kernel and is thus hidden.
Therefore, the process of addressing the memory (in this case, a stack memory or a heap
memory) is completely transparent to the application.

Physical Memory

Ox02000000

OxOOOOOOOO

Virtual Memory
--------- OxFFFF FFFF

Kernel
Space

OxCOOO 0000

OxAOOOOOOO

Ox80000000

OxOOOOOOOO

FIGURE 3-3 An example of static mapping from physical memory to virtual memory

80 Chapter 3 Operating System Architecture

A key element of the virtual memory architecture is the ability to map virtual addresses to

physical addresses. Windows Embedded CE provides two virtual-to-physical mapping types,

static and dynamic. The processor (for MIPS and SH4) or the manufacturer in an OAL (for

x86 and ARM) in a special structure named OEMAddressTable determines static mapping. An

example of static mapping is shown in Figure 3-3.

An important distinction of statically mapped virtual memory is that it is always available (com­

mitted), as opposed to dynamically mapped memory. Therefore, the kernel has guaranteed
access to statically mapped virtual memory, which is required for low-level kernel initialization

and for processing exception errors such as page faults. The necessity of enabling memory

access for the kernel produces a requirement that the entire read-only memory (ROM)/random

access memory (RAM) of the device can be statically mapped, including the device memory

that is used for processing interrupt service routines (ISRs), which are processed in the kernel­

exception context.

Windows Embedded CE supports static mapping of two virtual memory regions, each 512

MB in size. The lower 512 MB (Ox8000 OOOO-Ox9FFF FFFF) of virtual memory is mapped to
physical memory with caching, and the upper 512 MB (OxAOOO OOOO-OxB999 9999) of virtual

memory does not use caching. Static mapping of the virtual memory is a good demonstra­

tion of the virtual memory architecture having two different virtual memory addresses

with different access properties mapped to the same physical memory. Accessing virtual
memory in region Ox8000 OOOO-Ox9FFF FFFF does not necessarily result in accessing physical

memory, because the value can be read from the cache. Accessing virtual memory in region

OxAOOO OOOO-OxB999 9999 always results in accessing physical memory. This distinction is

important to keep in mind while developing drivers.

FIGURE 3-4 Windows Embedded CE 6.0 virtual memory space map

Operating System Virtual Memory Architecture 81

Dynamic mapping of the virtual memory occurs as part of the system and application op­

erations by calling functions such as VirtualAlloc, VirtualAllocEx, VirtualCopy, VirtualCopyEx,

VirtualAllocCopyEx, and so on. Despite the fact that the system uses 4-KB virtual memory
pages, the system API of Windows Embedded CE 6.0 enables you to allocate virtual memory

only with a 64-KB alignment (16 pages) that commits (maps) virtual memory by request or by

calling designated functions directly by using page-by-page alignment. Figure 3-4 shows a

Windows Embedded CE 6.0 virtual memory space map.

The kernel address space takes up the upper 2 GB and is identical for all system processes.

The user space takes up the lower 2 GB and is unique for each process. The system kernel

maps the address space of each designated process into this address space each time there is

a switch between processes. At any given time, there is only one current process that has its

own address space; it cannot access the address space of another process or obtain access to

the kernel memory space. The system kernel has access to the entire address space and can

obtain access to any permitted memory address.

Let us now look at a more detailed map of virtual memory of the operating system by exam­

ining the virtual memory allocation in kernel virtual address space, as shown in Figure 3-5.

OxFFFF FFFF

OxFOOO 0000

OxEOOOOOOO

OxDOOOOOOO

OxC8000000

OxCOOOOOOO

OxAOOO 0000

Ox80000000

FIGURE 3-5 Kernel virtual address space map

82 Chapter 3 Operating System Architecture

Table 3-2 provides a detailed description of kernel virtual memory allocation.

TABLE 3-2 Kernel virtual memory allocation.

Memory Regfon Size Description
Ox80000000-0x9FFFFFFF 512 MB Statically mapped virtual addresses accessed with caching.

OxAOOOOOOO-OxBFFF FFFF 512 MB Statically mapped virtual addresses accessed without caching .
.•......•.................•.............•.... , •.... ., ·-·······-··················

OxCOOOOOOO-OxC7FF FFFF 128 MB Mapping of execute in place (XIP) DLLs loaded by the kernel,
servers, and kernel drivers. XIP entails running without copying
into the RAM and fix-up addresses.

OxC8000000-0xCFFFFFFF 128 MB Object store for RAM file system, CEDB databases, and registry.

OxDOOOOOOO-OxDFFFFFFF 256 MB Virtual memory of the kernel used for all OS kernel modules.

OxEOOOOOOO-OxEFFFFFFF 256 MB Virtual memory of the kernel, if supported by the processor.

OxFOOOOOOO-OxFFFFFFFF 256 MB Captures system calls and includes kernel data pages.

Let us now proceed to the discussion of virtual memory allocation in user address space, as
shown in Figure 3-6.

Ox7FFF FFFF

Ox70000000

Ox60000000

Ox40000000

OxOOOOOOOO

FIGURE 3-6 Kernel virtual address space map

Ox7FFO 0000

Buffer Between User Spaces
and Kernel (1 MB}

! User Kernel Data (64 KB}

Ox00010000

t

Memory Management 83

Table 3-3 provides a detailed description of user virtual memory distribution.

TABLE 3-3 User virtual memory distribution.

Memory Region

OxOOOOOOOO-OxOOOlOOOO

Ox00010000-0x3FFFFFFF

Ox40000000-0x5FFFFFFF

Ox60000000-0x6FFFFFFF

Ox70000000-0x7FEFFFFF

Ox7FFOOOOO-Ox7FFFFFFF

Size

64 KB

1 GB-64 KB

512 MB

256 MB

255 MB

1 MB

Memory Management

Description

User kernel data. The user process has read-only ac­
cess.

Contains process space executable code, virtual mem­
ory, heap, and stack. Virtual memory allocation starts
immediately after executable code and proceeds from
the bottom up.

Contains DLLs, code, and data with memory allocation
proceeding from the bottom up. Libraries that are
loaded into various processes are loaded by using the
same address. At the same time, code pages refer to
the same physical pages, and data pages refer to dif­
ferent physical pages for various processes.

The regions of memory-mapped files that are stored
in the memory. Unnamed memory-mapped files are
stored at fixed addresses for backward compatibility.

Shared heap between the kernel and processes. The
kernel, servers, and drivers may allocate memory to
this region and write to the allocated memory. The
user process can only read from this region. It enables
the user process to receive data from the kernel
without making a system kernel call.

Cannot be viewed for protection purposes; acts as a
buffer between user space and kernel space.

The processes of dynamic allocation, which consists of committing and freeing virtual

memory directly by using a designated API (VirtualXxxx), provide an opportunity to utilize

the maximum capability of the virtual memory architecture. However, the use of those
functions implies that you have knowledge of the structure and virtual memory architecture

of Windows Embedded CE 6.0 and, possibly, of the processor physical architecture.

Table 3-4 describes the main API for working with virtual memory and its purpose.

84 Chapter 3 Operating System Architecture

TABLE 3-4 Functions for virtual memory API.

f1.mction

VirtualProtectEx

VirtualQueryEx

VirtualAlloc

Virtual Free

Virtual Protect

VirtualQuery

VirtualAllocEx

VirtualFreeEx

VirtualCopyEx

Purpose ·

Enables you to modify memory attributes on a page level.

Sets access protection for the page region in the address space of a speci­
fied process.

Provides information about the page region in the address space of a
specified process.

•• ·• ··•····-· ·•·e··-•·-•··-··•--'-••·•·•--·-··- ····-···· ··-·

Commits the page region in the address space of a process in which it is
called.

Frees or decommits the page region in the address space of a process in
which it is called.

Sets access protection for the page region in the address space of a pro­
cess in which it is called.

Provides information about the page region in the address space of a
process in which it is called.

Commits the page region in the address space of a specified process; the
allocated is initialized to zeroes.

Releases and/or decommits the page region in the address space of a
specified process.

Dynamic mapping of the virtual address to the physical address; a new
entry is created in the page table.

The resulting mapping is turned off by calling VirtualFree.
•""'~~··~~~·=-=~•w•~=• ••••••w·w==•···~w·= ·•=···w• • ... o•••••••• •• •• w•··-· """"'"-'""""""""""-••----·--.--.--•wwww-.••••• w• • ••• ••• -~·-•··--••••••••••·-·••••••••••••••••• ••

VirtualAllocCopyEx Works as a consecutive execution of the VirtualAllocEx function and then
the VirtualCopyEx function. The resulting mapping is turned off by calling
VirtualFreeEx. Accessible only in kernel mode.

The application development process often does not require that you interact directly with
virtual memory; however, you must have the ability to dynamically allocate a large number
of memory regions of variable size (usually, a lot less than 64 KB) with granularity of at least 1
byte. To solve this problem, the operating system provides applications with a heap created
through direct interaction with virtual memory. A heap provides a developer with an ability

to allocate memory blocks of variable size with granularity of 1 byte without having to com­
mit virtual memory.

Windows Embedded CE 6.0 implements a heap as follows:

• It is a sequence of unmovable blocks.

• When searching for free memory, the first suitable block is allocated.

• If the first block of the needed size is not found and the heap has no restrictions on
maximum size, additional memory is allocated for the heap.

Memory Management 85

• When additional memory is allocated, a heap is not guaranteed contiguity of its result­

ing address space.

• Free heap blocks are combined forward according to a list with each memory alloca­

tion and deallocation cycle.

• A search for blocks for new memory allocation always starts from the last allocated or

deallocated block.

• Each time there is a request for more than 16 KB of memory, a separate heap is created.

Because unmovable blocks are used, virtual memory pages (4 KB) are deallocated by the

heap only when all of its blocks are deallocated. An application can allocate and deallocate

memory from a heap arbitrarily. However, considering the sequential structure of the heap
and the algorithm of searching for unallocated blocks, that are being used, there is a pos­

sibility of heap fragmentation. Heap fragmentation may result in the increase of time that

it takes to search for unallocated blocks and, in an extreme case, despite the presence of

unallocated memory space, it would be impossible to allocate memory from a heap without

having additional memory.

This type of heap implementation works best with smaller memory blocks of the same size

or of sizes that are as similar as possible, by using the "first one to be allocated, last one to be

deallocated" rule, which provides the most efficient use of the block combining algorithm.

When the operating system creates the process, it automatically creates and reserves (but

does not commit) a process heap with 64 KB of memory. The initial heap size is 64 KB,

with 60 KB of virtual memory reserved and 4 KB left at the end of the region for additional

protection against heap overflow.

A heap that is created automatically when the process is loaded is named a local heap. A

developer can create any number of private heaps for use in his or her application. If a heap

is created by the kernel process, it may be a shared heap. A shared heap, is available to

the kernel for reading and writing, whereas user processes can only have read access to it.
Windows Embedded CE 6.0 includes a new type of heap, and that is a remote heap which is

a heap that one process (server) creates in another process (client). A process that creates a

remote heap has full access to it, whereas the client process has read access and an optional

write access.

When a heap is created, the developer may specify the initial and the maximum size of the

heap. If a maximum size of the heap is specified, the heap is created with a certain size, so

that automatic size growth does not happen.

The main API for working with heaps is described in Table 3-5.

86 Chapter 3 Operating System Architecture

TABLE 3-5 Heap API functions.

Function

CeRemoteHeapCreate

CeRemoteHeapMapPointer

HeapAlloc

HeapCompact

Heap Destroy

Heap Free

HeapReAlloc

HeapSize

HeapValidate

LocalAlloc

Local Free

LocalReAlloc

Local Size

GetProcessHeap

CeHeapCreate

Purpose

Creates a remote heap in a specified process and determines the
client process rights to the heap.

o• o•ov, ,. , "'~", ~

Maps a pointer to the memory received from a remote heap in one
process to a pointer that is available to another process from a pair.

Allocates memory from a given heap.

Compacts unallocated heap blocks that are close together and
stops committing large unallocated blocks of virtual memory.

Destroys a specified heap.

Deallocates memory that was allocated from a specified heap.

Reallocates memory from a specified heap.

Returns a memory block size allocated from a specific heap.

Validates service information about the heap.

Allocates memory from a process heap (local heap).

Frees up memory that was allocated from a local heap.

Reallocates memory from a local heap.

Returns a memory block size allocated from a local heap.

Returns a handle to a local heap of the process in which it is called.

Allocates a heap with specified memory allocator and memory
deallocator functions.

A stack is the simplest type of memory that is available to a developer. It is created, used, and

controlled automatically. A stack is used for storing local variables in functions, addresses of

function returns, and the state of the processor registers during exception handling.

Under Windows Embedded CE 6.0, a stack is created for each thread in the system. Stack

architecture depends on the hardware architecture, although the stack size is usually limited

to 64 KB, out of which 8 KB are reserved to control stack overflow1. Therefore, by default, the

stack size is limited to 56 KB.

If the entire stack object is used, an attempt to allocate memory from it results in an access

violation error and the application terminates abruptly.

1 Default linker settings include a control stack overflow option.

Memory Management 87

By using the /STACK linking parameter, you can change the default stack size; you can also

specify the size of a stack directly during the process of creating a thread by using the

CreateThread function. When you change the default stack size, it is necessary to consider

that all threads in the system will be created by using the specified stack size, which may
result in memory availability issues in the systems with limited resources. Stack memory is

committed on a per-page basis only if necessary. Memory is committed initially when the

scheduler makes a thread available for execution for the first time.

A static data block represents the next type of memory. This block contains strings, buf-

fers, and other static values that the application references throughout its life. Windows

Embedded CE 6.0 allocates two sections for static data, one for read/write data and one for

read-only data. Because the operating system allocates these areas on a per-page basis,

there may be some space left over from the static data up to the next page boundary. It is
recommended that no extra space be left at the end of the static block area. It might be bet­

ter to move a few buffers into a static data area, rather than allocating those buffers dynami­

cally, as long as there is space in the static data area, or to initialize lines statically rather than

dynamically. The easiest way to determine the size of static data is by accessing the map file

of the linker.

Memory-mapped files represent the next type of memory used in applications. Memory­

mapped files are the files that are mapped into the virtual address space. A developer has

access to files by simply accessing certain areas of the memory. Changes made directly in

memory are mapped accordingly in the file.

The operating system enables you to create named and unnamed memory-mapped files.

The named memory-mapped files can be accessed from another process by requesting a file

with the same name, thus enabling different processes to interact with each other. The un­

named memory-mapped files also can be used for interprocess communications. In order for

another process to access the mapping, it is necessary to use the DuplicateHandle function

to make a new handle to the mapping and pass the handle to the other process.

If the file that is being mapped to memory was created based on an actual media device, the

operating system handles this file by reading the file data from the media device in memory

and back. These types of memory-mapped files are named file-backed. You can create a

memory-mapped file that will have no corresponding file in the media device. In this case,
the entire file is stored in the operating system memory and not on a disk. Such files are

named RAM-backed.

The main API for working with memory-mapped files and its purpose are described in

Table 3-6.

88 Chapter 3 Operating System Architecture

TABLE 3-6 Functions for working with memory-mapped files.

Function

CreateFile

CreateFileForMapping

CreateFileMapping

MapViewOfFile

FlushViewOfFile

UnmapViewOfFile

Purpose·
Creates and opens a file that can be used for memory mapping.

Returns a file handle.

Creates and opens a file that can be used for memory mapping. The
kernel creates the file. The handle automatically closes when the process
completes.

You should not use this function; instead, you should use the regular
CreateFile function.

Returns a file handle.

Creates a named or unnamed memory-mapped file based on another file
or RAM. This function also returns a handle of a memory-mapped file.

Creates a view of a memory-mapped file or its part in the address space
and returns the initial address of the view of a memory-mapped file. -•

Flushes the view of a memory-mapped file.

Unmaps a view of the memory-mapped file.

Processes, Threads, Fibers, and the Scheduler
The Windows Embedded CE base execution unit is a thread. Each thread has its own context

(stack, priority, access rights, and so on) and is executed in the process container. Each pro­

cess contains at least one thread that is the primary thread. Windows Embedded CE has a

theoretical limitation of 32,000 processes that the system can simultaneously load. The num­

ber of threads is not theoretically limited, but that number is limited by the number of avail­

able descriptors. All process threads have a shared address space-the memory allocated

by one thread is available to other threads within that process. Also, all process threads have

equal rights to access descriptors regardless of the nature of their handle. Access rights to the
address space of another process are determined on a thread level.

The scheduler is a kernel component responsible for managing thread execution. The sched­

uler ensures a predictable order of thread execution by using thread prioritization. When

interrupts occur in the scheduling system, the scheduler takes the interrupts into account and

reprioritizes threads accordingly. The Windows Embedded CE scheduler implements a pro­

cess of time-slotted operation that uses multitasking, is based on priority, and has support
for a single-level priority inversion.

Processes, Threads, Fibers, and the Scheduler 89

The multitasking support system of Windows Embedded CE has the following characteristics:

• Time-sliced multitasking.

o Usually, a slice of execution time (quantum) is equal to 100 milliseconds (ms).

o A quantum can be set by the device manufacturer.

o A quantum can be set programmatically for each thread.

• 256 priority levels.

o 0-thread executes until completion.

o 251-default thread priority.

• Preemptive multitasking.

o If several threads of different priority levels are ready for execution, the thread
with the highest priority level as of the time of scheduling is made available for
execution.

• Round-robin scheduling of threads with the same priority level.

o After a thread has completed executing a quantum, if the system had other
threads with the same priority level as the first thread, the system suspends ex­

ecution of the specified thread and makes another thread available for execution.
The suspended thread is scheduled for execution after the system runs all threads

with the same priority level. That is, the system executes threads with the same
priority level cyclically.

o If a time slice is set to zero, the system excludes the thread from cyclical execution
and instead runs it until it completes or is blocked, as long as there are no higher­

priority threads or interrupts.

• One level of priority inversion is supported.

o Priority inversion happens when a lower-level-priority thread blocks the execu­
tion of a higher-level-priority thread by holding the resource for which the

higher-level priority thread waits.

o A one-level priority inversion denotes that only one thread's priority is increased,
which helps to resolve one-level blocking problems. If a lower-level-priority
thread is blocked by a process with an even lower priority level, then one-level

priority inversion will not be able to unblock the resource.

Figure 3-7 shows an example of thread execution that demonstrates time-slicing, a cyclical
scheduling of threads with the same priority level, and pushing threads with a lower priority
level to the background.

90 Chapter 3 Operating System Architecture

I
I I I

I I
1--a..1'""1 I I ...-1.....I

I I I I
--2 3-....2--3-' I I I I I

r--4.....&..4-.
I I
I c:

" I I I I
c::

I
.~ "O "O "O .s
.Q E]1 E E]1]1 E » E "O

:::J Q :::J :::J Q Q :::J "' :::J

Q:
..., 0 ..., ..., 0 0 ..., Q) ...,
c: iii c: c: iii iii c: c:: c:
Cll .-I Cll Cll N "' Cll .-I Cll
:::J :::J :::J :::J :::J
O' "O O' O' "O "O O' "O O' "' "' "' "' "C !!! "C "C !!! !!! "C !!! "C
Cl.) .c: Cl.) Cl.) .c: .c: Cl.) .c: Cl.)
(/) (/) (/) (/) (/)
a. a. a. a. a.
Cll Cll Cll Cll Cll
[Li [Li [Li [Li [Li

•' Time

Quantum

FIGURE 3-7 Windows Embedded CE scheduler thread execution

Let us take a closer look at the process depicted in Figure 3-7. There are four threads. The

first thread (1) has the highest priority level, while the fourth thread (4) has the lowest prior­

ity level. The second (2) and the third threads (3) have the same priority level, which is higher

than that of the fourth thread and lower than the priority of the first thread. At the initial

stage, the first thread has the highest priority level of all threads that are ready to be ex­

ecuted. It executes within a quantum (slice) of time, after which the scheduler places it again

for execution because the thread continues to have the highest priority level. After a while, in

less than one time quantum of execution, the first (1) thread is blocked. Now the second (2)

and the third (3) threads can be executed. Because these threads have equal priority, they are

scheduled to be executed in a cyclical manner. In our case, first the second (2), then the third

(3), then again the second (2) executes until it is blocked and the third one (3) executes until

that one is blocked. Now the system has only one thread, the fourth thread (4), that is ready

for execution. It is executed in a quantum of time, after which the scheduler once again starts

planning its execution because it remains to be a thread with the highest priority level ready

for execution. After a while, in less than one time quantum of execution, the first (1) thread is

unblocked, so the first thread is ready for execution. Execution of the fourth (4) thread stops,

and it is preempted by the first (1) thread, which continues to run.

Figure 3-8 shows a typical scheme of resource blocking that is resolved by priority inversion.

Preempted

, Took
: Ownership
'f'

Blocked

Processes, Threads, Fibers, and the Scheduler 91

Freed Took
Ownership

FIGURE 3-8 Resource blocking resolved by priority inversion

Let us take a closer look at the process depicted in Figure 3-8. Thread A acquires a resource,

and after a while it is pushed away by a higher-priority thread B, which in its turn is pushed

away by thread C, which, after a while, is blocked while waiting for a resource captured by

thread A. Because thread A is not the highest-priority thread of the ones that are left, af-

ter the high-priority thread C is blocked, it will stop executing and the resource will remain

blocked. Therefore, a low-priority thread blocks a higher priority thread as far as the resource

is concerned. When a similar situation is detected, the scheduler increases the priority of a

lower-priority thread A to the level of a blocked high-priority thread C until a lower-priority

thread has freed a resource. After that, the priority level of low-priority thread A is restored,

and thread C continues executing.

Windows Embedded CE implements a single-level priority inversion, which means that prior­

ity is increased for only one thread. Therefore, if a thread that blocked a higher-priority-level

thread is blocked by a lower-priority thread, the single-level priority inversion will not result

in unblocking. A fully nested priority inversion may resolve a multilevel mutual blocking; the

scheduler will go through all blocked threads and increase the priority if necessary until a

higher-priority thread is unblocked. However, this disrupts a predictability of execution and

does not provide an opportunity to entirely utilize priority inversion in a system with a real­

time support, such as Windows Embedded CE.

A developer is required to write his or her code in such a way that avoids mutual blocking. In

real-time systems, a developer must avoid priority inversion because it disrupts the execution

thread. To do that, it is necessary to not have race conditions for a resource, which is accom­

plished by setting the same priority level for all threads that work with one resource.

Let us now look at how APls work with threads. Table 3-7 shows the main API for working

with threads and processes, as well as the functions

92 Chapter 3 Operating System Architecture

TABLE 3-7 Functions for working with threads and processes.

Function

CeGetThreadPriority

CeGetThreadQuantum

CeSetTh read Priority

•·Purpo~·.

Returns the priority (0-255) of a thread.

Returns the time slice (quantum) of the thread execution.

Sets priority (0-255) of a thread.
·····-·--·-·······--············ '"""'""'"""·····~"~-----·······-······· -······. ·-·· ··--·····-·-·--···---·-··---·····'"·······-··· .. ··•···•···•·

CeSetThreadQuantum Sets the time slice (quantum) of the thread execution.
..

CreateProcess

Create Thread

ExitProcess

ExitThread

Creates a new process and the main thread.
.••..•...••..........•...........

Creates a thread in the address space of a process.

Finishes the current process and all of its threads.

Finishes the current thread.

GetCurrentProcess Returns a pseudo-handle of the process in which it was named.
--··--··· .. ~· ~·-····~·~----·-----···--~····-······- .. ------·--·---,.·-.. .--.. _ _. ___ ._ .. _ . . ~··-~"-

GetCurrentProcessld

GetCurrentThread

Returns the identifier of a process in which it was named; coincides with
the pseudo-handle of the process.

Returns the pseudo-handle of the process in which it was named.

Returns the identifier of the thread in which it was named; coincides with
GetCurrentThreadld the pseudo-handle of the process.

~=····-···--···-······--"···----·----~.--..... .,., ... -....... ----~---~····--····=······---.. ----·--· ... ---~-------··--··········---·--····"'"""·-··-- ·····--·-----.... -..
GetExitCodeProcess

GetExitCodeThread

GetThreadContext

GetThread Priority

OpenProcess

OpenThread

Returns an exit code for a specified process.

Returns an exit code for a specified thread.

Returns the context for a specified thread.

Returns the priority (248-255) of a specified process.

Returns a handle for the existing process according to an identifier.

Returns a handle for the existing thread according to an identifier.
................ ·····--··- ·····-·········· ·············-----··············- ·················---······-·--·-··---··-··- ·- ·-······----····---~- ... -· ----~··-

Resume Thread

SetThreadContext

SetThreadPriority

Sleep

SuspendThread

TerminateProcess

Terminate Thread

TlsAlloc

Tis Free

TlsGetValue

Decreases suspend count by one. Thread execution will continue when the
count is equal to zero.

.......................... .. ·····•

Sets context for a specified thread.

Sets priority (248-255) for a specified thread.
..

Suspends execution of the current thread for a specified period of time.

Suspends thread execution and increases suspend count by one.
....................................... =-·--··._,. .. ,.

Terminates a specified process and all of its threads.

Terminates a specified thread.

Receives an index for making an entry in a thread local storage (TLS).

Frees an index of a local thread storage thus making it reusable.

Receives a value from local thread storage according to an index.

TlsSetValue Sets a value in local thread storage according to an index.

Synchronization Objects 93

In addition to the threads whose execution is scheduled by the system scheduler, there are

execution units that are manually scheduled for execution by an application. These units are

named fibers. Fibers have the following characteristics in Windows Embedded CE:

• A fiber is executed in a context of a thread that launches it.

• Each thread may execute several fibers.

• In order to manage fibers, the thread itself needs to be converted to a fiber by calling
the ConvertThreadToFiber function.

• A fiber is executed when its thread is executed.

• Fibers are not preempted. The thread switches fiber execution directly.

The main API for working with fibers and its purpose are listed in Table 3-8.

TABLE 3-8 Functions for working with fibers.

Function

ConvertThreadToFiber

Create Fiber

DeleteFiber

GetCurrentFiber

GetFiberData

SwitchToFiber

Purpose

Converts a current thread to a fiber.

Creates a fiber and sets its stack and the starting address. Does not
launch a fiber execution.

Deletes a current fiber.

Returns the current fiber's address.

Returns data transferred to a fiber by ConvertThreadToFiber and
CreateFiber functions.

Launches execution of a specified fiber.

Synchronization Objects
Synchronization routines that ensure a coordinated execution of threads and a safe access to

resources are an integral part of a multithreaded execution system. Windows Embedded CE

has the following synchronization objects:

• Critical sections.

• Mutexes.

• Semaphores.

• Events.

• Point-to-point message queue.

In addition to these objects, you can also use a thread's handlers and interlocked functions.

94 Chapter 3 Operating System Architecture

Each type of synchronization object has its own name space. An object with an empty string

(") is also considered a named object.

Synchronization objects can be in a signaled or a non-signaled state. A thread requests a

synchronization object and is blocked if an object is in a non-signaled state. After an object

switches to a signaled state, the thread continues execution.

Table 3-9 provides a list of functions that enable you to block a thread execution until a cer­

tain synchronization object has changed to a signaled state.

TABLE 3-9 Function list for blocking threads.

Function

WaitForSingleObject

WaitForMultipleObjects

Purpose

Blocks a thread execution while waiting until a specified synchroniza­
tion object has switched to a signal state.

Blocks a thread execution while waiting until one of the specified
synchronization objects has switched to a signal state.

Let us begin looking at synchronization by examining interlocked functions. Interlocked

functions provide synchronized access to a shared variable. The objective of the function is to

prevent a preemptive movement of a thread during its execution. Interlocked functions and

their purpose, provided by Windows Embedded CE, are listed in Table 3-10.

TABLE 3-10 Interlocked functions and their purpose.

Function

Interlocked Increment

Interlocked Decrement

Interlocked Exchange

lnterlockedTestExchange

lnterlockedCompareExchange

lnterlockedExchangeAdd

lnterlockedCompareExchange­
Pointer

lnterlockedExchangePointer

Purpose

Atomically increments the value of a specified 32-bit variable by
one.

Atomically decrements the value of a specified 32-bit variable by
one.

Atomically exchanges the values of two 32-bit variables.

Provides a conditional testing and sets the value of a 32-bit
variable.

Provides a conditional atomic comparison and sets the value of a
32-bit variable.

Atomically changes the value of a 32-bit variable to a specified
value.

Provides a conditional atomic comparison and sets the value of a
pointer.

Atomically sets the value of a pointer.

A thread handle can act as a synchronization object. A thread is in a signaled state when it's

executing, and it's in a non-signaled state when it's not executing.

Synchronization Objects 95

A critical section is designed to protect the code area that accesses a shared resource that

must not be concurrently accessed by more than one thread of execution. A critical section is

a special data structure that an application must allocate and initialize before using it. To pro­

tect a code area, a thread calls a critical section (by using the EnterCriticalSection function)
and is blocked2 until the critical section becomes available. When exiting a code area that

needs to be protected, the thread frees the critical section (by using the LeaveCriticalSection

function).

Critical section functions must have a pointer to the critical section data structure, which lim­

its the range of a critical section to the visibility range of a corresponding variable that con­

tains a specialized structure, that is, the range of the process or the library.

Entering a critical section does not result in turning to the kernel and creating a kernel-based
object, as long as there are no blocks. Therefore, using critical sections is a very effective so­

lution when there are only a few blocks.

The main API for working with critical sections and its purpose are provided in Table 3-11.

TABLE 3-11 Functions for working with critical sections.

Function

lnitializeCriticalSection

EnterCritica !Section

T ryEnterCritica !Section

LeaveCriticalSection

DeleteCriticalSection

Purpose

Initializes a critical section.

Blocks a thread execution while waiting for access to a critical section.
The function is returned when the thread that makes the call becomes
the owner of the critical section.

Tries to enter a critical section without blocking execution. If the call is
successful, the thread becomes the owner of the critical section.

Leaves a specified critical section.

Deallocates all resources of a critical section that is owned by any
thread.

A mutex is designed to provide mutually exclusive access to a resource. A mutex is in a sig­

naled state when it is not owned by any thread. When it is owned by a thread, it is switched

to a non-signaled state. At any point in time, only one thread can own a mutex. As opposed

to a critical section, a mutex is a pure-kernel object, and therefore, when accessed by another

process, regardless of blocking, the kernel is called, which results in considerable overhead.

A mutex can be named or unnamed. Named mutexes provide synchronization among dif­

ferent processes. Mutex synchronization is achieved by using standard WaitForSingleObject/

WaitForMultipleObject functions. After a mutex operation finishes, its handle must be freed

by calling a standard CloseHandle function.

2 Also available is TryEnterCriticalSection, which enables you to try to obtain a critical section without blocking
execution.

96 Chapter 3 Operating System Architecture

The main API for working with mutexes and its purpose are listed in Table 3-12.

TABLE 3-12 Functions for working with mutexes.

Function

CreateMutex

ReleaseMutex

Purpose

Creates a named or unnamed mutex object.

Releases a specified mutex object.

A semaphore is designed to limit the number of threads that are simultaneously using a re­

source. When a semaphore is initialized, the system specifies the initial number and the maxi­

mum number of threads that can simultaneously use a resource. Each time a process takes

ownership of a semaphore, the counter is decremented by one. Each time a process frees a
semaphore, the counter is incremented by one.

The counter value may be no less than zero and no more than the maximum value specified

upon semaphore creation. A semaphore is in a signaled state when the count is greater than

zero, and it's in a non-signaled state when it is equal to zero. A semaphore can be named or

unnamed. Named semaphores provide the ability to perform synchronization among differ­

ent processes.

Semaphore synchronization is achieved by using standard WaitForSingleObject and
WaitForMultipleObject functions. After a semaphore operation terminates, its handle must

be freed by calling a standard CloseHandle function.

The main API for working with semaphores and its purpose are listed in Table 3-13.

TABLE 3-13 Functions for working with semaphores.

Function

CreateSemaphore

ReleaseSemaphore

Purpose

Creates a named or unnamed semaphore object.

Releases a specified semaphore by incrementing the counter by acer­
tain value.

The system uses events for informing that certain events have occurred at a certain mo­

ment in time. A thread may await a certain event to perform certain actions. An event is in a

signaled state when it is set, and it's in a non-signaled state when it is not set (reset). Based

on how resetting is done, events are classified into those with automatic resets and manual

resets. Events with an automatic reset are switched into a non-signaled state by the kernel as
soon as one thread that is awaiting an event has been freed. Events with a manual reset must

be reset manually by calling a special function.

An event can be named or unnamed. Named events provide synchronization among differ­

ent processes. Event synchronization is achieved by using standard WaitForSingleObject and

Synchronization Objects 97

WaitForMultipleObject functions. After an event operation finishes, its handle must be freed

by calling a standard CloseHandle function.

The main API for working with events and its purpose are listed in Table 3-14.

TABLE 3-14 Functions for working with events.

Function

Create Event

SetEvent

ResetEvent

PulseEvent

Purpose

Creates a named or unnamed event object.

Turns the event object into a signal state.

Turns off the signal state of the event.

Turns the event object into a signal state after a certain number of threads have
been unblocked. It turns off the signal state of the event object.

Let us take a closer look at the way the API interacts with various event types. When switch­

ing a manual reset event to a signaled state by using the SetEvent function, the event re­

mains in a signaled state until it is manually reset by the ResetEvent function. During this

reset, all threads awaiting the event are unblocked, along with the threads that start waiting

for the event after it is manually set and before it is manually reset. When the PulseEvent

function is used with a manual reset event, the event is switched to a signaled state, all

threads awaiting the event are unblocked, and the event is switched to a non-signaled state.

When an automatic reset event is set to a signaled state by calling the SetEvent function, only

one thread awaiting execution is unblocked. Then, the kernel switches the event to a non­

signaled state. An event remains in a signaled state until one thread is unblocked. Then, the

event switches to a non-signaled state, while the rest of the threads awaiting the event re­

main blocked. When using the PulseEvent function with an automatic reset event, the event

switches to a signaled state. If there are threads awaiting the event, one thread is unblocked.

Then, the event switches to a non-signaled state even if no threads have been unblocked.

A point-to-point message queue is designed for synchronization when it is necessary to

transmit additional information. It uses minimum resources and is designed for maximum ef­

ficiency. It is used by the power-management subsystem and Plug and Play. A point-to-point

message queue can be named or unnamed. Named point-to-point message queues provide

synchronization among different processes. Point-to-point message queue synchronization

is achieved by using standard WaitForSingleObject and WaitForMultipleObject functions.

After a point-to-point message queue operation finishes, its handle must be freed by calling

a standard CloseHandle function.

The main API for working with PPP event queues is listed in Table 3-15.

98 Chapter 3 Operating System Architecture

TABLE 3-15 Functions for working with point-to-point message queues.

Function·

CreateMsgQueue
...

CloseMsgQueue

GetMsgQueuelnfo

ReadMsgQueue

ReadMsgQueueEx

WriteMsgQueue

OpenMsgQueue

Purpos'e

Creates and opens a user message queue.

Closes an open message queue.

Returns information about a message queue.

Reads one message from the message queue.

Reads one message from the message queue and, optionally, returns se­
curity context of the message sender.

Writes one message into a message queue.

Opens an existing message queue according to a handle.

Interrupt Architecture
Practically all peripheral devices use interrupts to inform the operating system that certain

actions need to be taken to provide services for those devices. A device driver must process

an interrupt in order to provide a necessary service to a peripheral device.

A physical interrupt request (IRQ) is a hardware line by which a device sends an interrupt sig­

nal to a microprocessor. A system interrupt (SYSINTR) is a mapping of the IRQ for which an

OAL is responsible.

Some peripheral devices do not generate microprocessor interrupts. In those cases, a device

controller processes interrupts.

Under Windows Embedded CE, interrupt processing is divided into two parts: interrupt

service routine (ISR) and interrupt service thread (IST).

Each IRQ is associated with an ISR. Several interrupt sources can be associated with one ISR. If

an interrupt is rising, the kernel calls a corresponding ISR routine for that interrupt. When the

ISR execution completes, the routine returns a logical identifier of SYSINTR. The kernel checks

the logical identifier of an interrupt and sets an event that is associated with it. The scheduler

plans the execution of the IST that is waiting for the event, as shown in Figure 3-9.

The main task of the ISR is to determine the system identifier of the interrupt (logical inter­

rupt) request and mask it. The ISR can also perform other time-critical tasks. However, it is

necessary to minimize the time of ISR operation, because during its operation at least those

IRQs that have equal priority level and those with lower priority are not served. An ISR can be

statically linked to the kernel or it can be installed by calling the kernel. In both cases, the ISR

should have no external dependencies, either explicit or implicit. System kernel architecture

supports nested interrupt processing by providing the ability to process higher-priority IRQs

Interrupt Architecture 99

that arrive while the ISR runs. A developer must implement the necessary hardware support

for his or her device and for his or her ISR routines.

ln~errupt
··servi<;e
R~utinit : ·

FIGURE 3-9 Interrupt handling

+-' c
<1l
>

LU

. : . ll'lt~r.rJpt ·
Set:ViceThread

m
c
0
Cl
+-' c.
2
Q;
+-'
..<::

0
)>
r

;:s:;
(J)

3
~

::J

~
2
"O
Uf

If the processor architecture supports multiple hardware IRQs, then the developer must

register the ISR routine in the OAL for each IRQ. For processors with one IRQ, such as ARM,

the kernel calls one predetermined procedure that must be implemented in the OAL, and the

developer can register separate installable ISRs in the kernel.

The kernel loads the installable ISRs dynamically while executing the LoadlntChainHandler

function. The use of the installable ISR (llSR) implies that the kernel has registered the ISR
for a designated IRQ, which initiates calling a chain of installable ISRs (NKCalllntChain) and

returns a logical identifier of the SYSINTR to the kernel. Processors with one IRQ, such as

ARM, require that initiating a call to a chain of interrupts be performed by a predetermined

function that processes interrupts (OEMlnterruptHandler).

When calling the NKCalllntChain function, the kernel calls the ISRs that were registered by

calling LoadlntChainHandler on a first-in, first-out (FIFO) basis. If the llSR procedure that has

been called does not process a specified interrupt, it returns SYSINTR_CHAIN, and the kernel

proceeds to call the next llSR procedure. If the llSR procedure that has been called is able

to process a specified interrupt it returns a non-SYSINTR_CHAIN identifier, and the kernel

returns a specified identifier; the rest of the IS Rs are not called.

100 Chapter 3 Operating System Architecture

The IST performs the bulk of processing. The IST is a regular system thread that has a high

enough priority for handling the tasks of processing a specific interrupt for a specific device.

An IST is usually a part of the driver. An IST must perform at least the following actions:

1. It creates a standard event (by using the CreateEvent function).

2. It registers the event in the kernel for a certain logical identifier of SYSINTRs (by using

the lnterruptlnitialize function).

3. It waits for an event associated with the interrupt (by using the WaitForSingleObject
function).

4. It notifies the kernel at the end of processing that the interrupt is done (by using the

lnterruptDone function).

If a driver uses the installable ISR, then it can load the llSR (by using the LoadlntChainHandler

function); configure it (by using the KernellibloControl function), and, when the driver

is finished, unload llSR (by using the FreelntChainHandler function). When the

FreelntChainHandler function is called, the llSR code is not named when processing a cor­

responding IRQ, but it remains in the memory. When the LoadlntChainHandler is called the

next time, the same llSR procedure uses the previously loaded code. Windows Embedded CE

6.0 includes a configurable llSR procedure that has a common purpose (Generic Installable

ISR- GllSR). Its source code is located in the \Public\Common\Oak\Drivers\GllSR directory.

Chapter 4

Build System
The Microsoft Windows Embedded CE development toolset uses a unified build system. A

developer can build an operating system (OS) from the Visual Studio 2005 integrated

environment or from a command-line interface. Visual Studio 2005 menu items launch the

necessary batch files. The build tools suite is composed of a set of batch files (batch files)

and console utilities. Designated environment variables and the parameters that are passed

during calls to the build system control the build process. Batch files initiate environment

variables during the initial stage by calling PBlnitEnv.bat, which then calls Wince.bat with the

necessary parameters. The file blddemo.bat is the main batch file that controls the overall

build system. It in turn launches other batch files and build utilities, which can then launch

further batch files or utilities of their own, as needed.

The batch files used by the build system have documentation in the internal comments and

in Help, which makes it possible to trace the entire chain of calls to batch files and utilities.

The Nmake (Nmake.exe) utility is ultimately used for compiling and linking. It uses all the

necessary tools for the chosen processor architecture.

The tools suite and the input files for building the system are located in the catalog directory

tree, the root of which is determined by the environment variable _WINCEROOT (by default,

it is the WINCE600 directory in the disk's root). The subdirectory structure is designed in such

a way that the hardware-dependent part (Platform catalog) is separated from the hardware­

independent part (Public and Private catalogs) of the operating system. The functionality of
an OS image can be either set through Platform Builder's user interface (UI), or more directly

by setting environment variables within the build window.

In order to select a necessary functionality of the OS image, it is necessary to set environ­

ment variables of the image, which appear as SYSGEN_XXX. The usual method for setting

environment variables of the build is to select items of the Platform Builder catalog.

Additional environment variables can be specified in the OS design settings, as well as

directly from a command-line window by using the main build batch file, blddemo.bat.

The information about building separate components and the OS image is contained in

various configuration files. The Dirs files, Sources files, and Nmake configuration files are used

for building modules, whereas .bib, .reg, .dat, and .db files are used for building a binary

run-time image. The roles of these files are discussed later in this chapter.

The end result of a build process is a monolithic run-time image that can be loaded onto an

emulator or a target device for subsequent debugging.

101

102 Chapter 4 Build System

Directory Tree of the Build System
An operating system is built from a directory tree (catalog hierarchy). Table 4-1 lists standard

subdirectories of the root directory and descriptions.

TABLE 4-1 Standard subdirectories.

Directory

SDK

OSDESIGNS

PLATFORM

PUBLIC

PRIVATE

OTHERS

3RDPARTY

Description

Contains compilers and link utilities for supported platforms (x86, ARM, SH4,
Microprocessor without Interlocked Pipeline Stages [MIPS]). Additional utilities for
building a system image are located in the%_ WINCEROOT%\PUBLIC\COMMON\
OAK\BIN\1386 folder.

By default, this directory contains the OS designs that are in progress. Each
subdirectory corresponds to a named design of the operating system. An OS
design consists of various modules, such as tools and drivers.

The specified directory contains the hardware-dependent part of the operating
system, such as board support packages (BSPs) and drivers. Subdirectories contain
the implementation of OEM adaptation layer (OAL) and drivers for a specific
hardware platform. If a custom BSP needs to be created, its implementation is also
located in that directory. The Common subdirectory contains the common
platform code, including auxiliary libraries for writing the BSP and drivers.

Contains hardware-independent components of the operating system.

Contains the source code of the operating system. Windows Embedded CE cre­
ates this directory if the Shared Source feature is chosen and the additional license
agreement is accepted during the installation. After Platform Builder is installed,
the license agreement is located in the following file: \Program Files\Microsoft
Platform Builder\6.00\source.rtf.

Contains various components that for a variety of reasons were not included in the
above directories, such as:

• ATL8, which contains libraries, header files, and initial files for debugging ATL
applications.

• DotnetV2, which contains executable .NET files for supported processor archi­
tectures.

• Edb, which contains executable modules for supporting Enhanced Database
files.

• SQLCE20, which contains SQL Compact Edition libraries for each supported
processor architecture.

• VisualStudio, which is a utility for working with devices for Visual Studio.

Directory for own components, such as those that were cloned from Public or
Private. It is independently created by a developer and, similar to Public, it is
automatically scanned for catalog files.

OO'O'O' o o-o~ o'o' 'o•~oo• c '"o~~'"' •o•o ~''

Let us take a closer look at the subdirectories of the Public directory, as shown in Table 4-2.

Directory Tree of the Build System 103

TABLE 4-2 Subdirectories of the Public directory.

Directory

CEBASE

CELLCORE

COMMON

DATASYNC

DCOM

DIRECTX

GDIEX

IE

NETCFV2

OS TEST

PBTOOLS

RDP

SCRIPT

SERVERS

SHELL

SHELLSDK

SPEECH

SQLCE

VOiP

WCEAPPSFE

WCESHELLFE

Purpose

Device templates for thin client, gateway, and so on.

Components for working in cellular networks.

The CATALOG subdirectory contains the Platform Builder catalog. The OAK
subdirectory contains common components of the operating system, files
that manage the system build process, and auxiliary utilities.

Components for supporting synchronization of Windows Embedded CE de­
vices with desktop computers.

Components to support DCOM.

Support for DirectX.

Support for GDI+.

Internet Explorer 6.0 and additional modules.

For including .NET Compact Framework into the image.

Windows Embedded CE Test Kit (CETK).

Example of implementing an extension for Performance Monitor.

Support for Remote Desktop Protocol (RDP).

Script support for: Microsoft JScript 5.5 and VBScript 5.5.

Servers: HTTP, FTP, UPnP, OBEX, Telnet, and so on.

System shells including Standard Shell, Explorer Browser, and CEShell.

Application programming interface (API) shells of Pocket PC 2002 and
AYGShell API.

Support for Microsoft Speech API (SAPI) 5.0.

For including SQL CE in the image.

Support for Voice over IP (VolP)-based applications and SIP-based services.

WordPad and lnbox.

Windows Embedded CE shell components.

Most subdirectories in the Public directory contain Cesysgen, OAK, and SDK folders.

Cesysgen contains files, including header files, DEF files for generating DLLs, and other files

used in the build process, that are filtered based on selected OS functionality. The OAK folder

contains libraries and configuration files that are necessary for building a component. The

SDK folder contains auxiliary files for building applications that use the functionality of a

specified component. The DDK folder contains files that are needed for developing drivers.

104 Chapter 4 Build System

Environment Variables of the Build System
As mentioned above, the OS build process is controlled through environment variables. An

OS design is defined by what environment variables it sets. Each OS design has an associ­

ated PBlnitEnv.bat file that is called to configure the build environment for that OS design.

PBlnitEnv.bat is called either when a new build window is opened through the Build Open

Release Directory in the Build Window menu item in Platform Builder, or when an OS build is

initiated through the Platform Builder UI. A sample PBlnitEnv.bat file is as follows:

@echo off
REM Initial environment configuration
set _PB_INSTALL_ROOT=C:\PROGRA-1\MIOD56-l\6.00
set USING_PB_WORKSPACE_ENVIRONMENT=l
set _WINCEROOT=C:\WINCE600
set _FLATRELEASEDIR=C:\WINCE600\0SDesigns\CEBook\CEBook\RelDir\ _
DeviceEmulator_ARMV4I_Debug
set LOCALE=0409
set _PROJECTROOT=C:\WINCE600\0SDesigns\CEBook\CEBook\Wince600\DeviceEmulator_ARMV4I
REM Workspace and configuration variables
set PBWORKSPACE=C:\WINCE600\0SDesigns\CEBook\CEBook\CEBook.pbxml
set PBWORKSPACEROOT=C:\WINCE600\0SDesigns\CEBook\CEBook
set PBCONFIG=Device Emulator ARMV4I Debug
REM Call wince.bat
call C:\WINCE600\public\COMMON\OAK\MISC\wince.bat ARMV4I CEBook DeviceEmulator
REM Make sure all build options are turned off
set IMGNODEBUGGER=
REM Anchored features
set SYSGEN_WCETK=l
REM BSP features
REM Misc settings
set WINCEDEBUG=debug
set PATH=%PATH%;C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\ _
Microsoft Platform Builder\6.00\cepb\IdeVS
REM Configuration environment variables
REM Build options
set IMGEBOOT=l
REM Project settings
set _USER_SYSGEN_BAT_FILES=C:\WINCE600\0SDesigns\CEBook\CEBook _
\Wince600\DeviceEmulator_ARMV4I\OAK\MISC\CEBook.bat
REM Locale options
set IMGNOLOC=O
set IMGSTRICTLOC=O

As the code sample shows, PBlnitEnv.bat calls Wince.bat. Wince.bat is where the majority of

environment variables are then set. Table 4-3 describes some of the more common environ­

ment variables.

Image Build Modes 105

TABLE 4-3 Environment variables.

Name

_WINCEROOT

PUBLICROOT

PROJECTROOT

PLATFORM ROOT

_TGTCPU

_TGTPLAT

_TGTPROJ

FLATRELEASEDIR

DEPTREES

CL

LINK

Variable of

SYSGEN_XXX type

Variable of

BSP_XXX and

BSP_NOXXX type

Variable of

MGXXX and

IMGNOXXX type

Variable of

PRJ_XXX type

Image Build Modes

Purpose

Build tree root.

PUBLIC (%_WINCEROOT%\PUBLIC) directory.

OS design build directory.

PLATFORM (%_WINCEROOT%\PLATFORM) directory.

Architecture of the processor for which the system is built.

Target hardware platform (BSP).

Name of the operating system design.

A directory into which all built modules and configuration files are cop­
ied for a subsequent build of a binary image of the operating system.

Specifies which Public directories are processed during the Pre-sysgen
Build and Sysgen stages.

The compiler, Cl.exe, uses this variable. If defined, it appends arguments
in the command line.

The linker, Link.exe, uses this variable. If defined, it prepends arguments
in the command line.

Adds a required component to the OS build.

Specifies which BSP components need to be included or excluded dur­
ing the build.

System image settings (KITL, Kernel Debugger).

Additional project settings.

There are three main modes for building an image: Debug, Release, and Ship. In terms of

build options, Debug and Release modes are mostly as you would expect for Visual Studio,

but they also control some additional settings that are Windows CE specific. In the Visual

Studio integrated environment, you can select a build mode in the Configuration Manager

window that can be called from the Build menu by choosing the Configuration Manager

submenu. You can also set Debug or Ship modes from a build window by setting the

environment variables WINCEDEBUG or WINCESHIP, as described in more detail below.

106 Chapter 4 Build System

In Debug mode, the Kernel Debugger and a Kernel Independent Transport Layer (KITL)

transport mechanism are enabled by default. The debugger outputs verbose informa­

tion, the OS run-time image has a bigger size, and it is executed relatively slowly. This type

of build is not used very often for building an operating system. It is needed only when

it is necessary to debug all modules of the operating system or to use debugging zones.

It may also be needed for debugging the BSP and drivers. For that mode, the values are:

WINCEDEBUG=DEBUG and WINCESHIP=O.

In Release mode, most of the debugging tools are disabled by default. However, because the

Windows CE Kernel Debugger is an OS component, it can be added to the run-time image

and used. Also note that RETAILMSG macro messages continue to be displayed. For that

mode, the values are: WINCEDEBUG=RETAIL and WINCESHIP=O. In Windows Embedded

CE 6.0, the Kernel Debugger is a component; therefore, it can be added to the run-time im­

age. If you add kernel support to the image, you can debug subprojects of the operating sys­

tem, drivers, and so on without entering Debug mode of the operating system's code.

A final run-time image available to the end user is usually built in Ship mode, with the de­

bugging tools completely excluded from the image. Ship mode uses the following settings:

IMGNOKITL=l (KITL is excluded from the image), IMGNODEBUGGER=l (Kernel Debugger is

excluded from the image), WINCEDEBUG=RETAIL, and WINCESHIP=l. An image built in Ship

mode does not output debugging information, and it suppresses the output of some of the

error messages.

Build Stages
The build process generally consists of five stages, as follows:

1. Pre-sysgen.

2. Sysgen (system generation).

3. Post-sysgen Build.

4. Build Release Directory (Buildrel).

5. Make Run-Time Image (Makeimg).

A typical diagram of building an image (without the Pre-sysgen stage) is shown in Figure 4-1.

The batch file Cebuild.bat manages the Pre-sysgen, Sysgen, and Post-sysgen Build stages;

Build Rel.bat builds a flat build directory; and Makeimg.exe builds the final image. Figure 4-2
shows the main calls to the files responsible for the build.

Build Stages 107

Ill-+
..

FIGURE 4-1 Build stages for building a run-time image

FIGURE 4-2 Calls to files during run-time image creation

108 Chapter 4 Build System

Pre-Sysgen Build
During the Pre-sysgen stage, the OS components are compiled from Public and, possibly,

Private directories (the list of subdirectories that are being processed is contained in the

environment variable _DEPTREES). A complete Pre-sysgen build is never used-components

of the operating system come in a preassembled form. You can rebuild a certain component

from the command line or from a design interface without having to perform a complete

Pre-sysgen build.

If it is necessary to modify an operating system component located in Public or Private direc­

tories, it is necessary to clone a component and apply changes to your own copy by possibly

moving it to a design directory such as BSP or 3RDPARTY, depending on the purpose of that

component.

Sysgen
After Pre-sysgen, we have a full set of components and technologies that the OS provides.

Sysgen performs several tasks, including dependency resolution, component filtration, and

building OS modules. The built modules include only those technologies and enhance-

ments that were added manually by the developer and automatically during dependency

resolution. During the Sysgen stage, the system processes subdirectories listed in the

_DEPTREES variable. The build process has to go through this stage at least once. It also

has to go through this stage each time an OS component is added or removed (through

the component catalog or directly by setting the SYSGEN_XXX variables). The results of the

Sysgen stage are stored in the %_PROJECTROOT%\cesysgen directory. Filtered libraries are

copied into oak\lib, sdk\lib, and ddk\lib subdirectories; header files and .def files are

copied into oak\inc, sdk\inc, and ddk\inc, as shown in Table 4-4. Modules that are built

during Sysgen are copied into the oak\target subdirectory. During this stage of a build pro­

cess, the main tool is the Sysgen.bat file (located in the %_WINCEROOT%\PUBLIC\COMMON\

OAK\MISC directory). The functionality is determined by the environment variables by means

of launching the batch file %_PROJECTROOT%\OAK\misc\cesysgen.bat.

TABLE 4-4 Filtered and resulting files.

Filtered· files

Sdk\lnc*.*

Oak\lnc*.*

Ddk\lnc*.*

Oak\Files\Common*.*

Resulting files

Cesysgen\Sdk\lnc

Cesysgen\Oak\lnc

Cesysgen\Ddk\lnc

Cesysg e n\Oa k\Fi I es

Build Stages 109

The filtration of header files and .def files is done by using the Cefilter.exe utility. While

processing files, Cefilter.exe is looking for the following comments in the file text, and it

performs necessary filtration actions:

II @CESYSGEN IF [!]<Component> [[OR I I AND I &&] [!]Component]

II @CESYSGEN ELSE

I I @CEYSSGEN ELSE IF [!]<Component> [[OR I I I AND I &&] [!]Component]

I I @CESYSGEN ELSEIF [!]<Component> [[OR I I I I AND I &&] [!]Component]

II @CESYSGEN ENDIF

If the file is not C/C++, then suitable comment symbols are used, such as a semicolon or

pound sign instead of two slashes. In the code sample above, <Component> represents vari­

ables that are generated from the SYSGEN_XXX type variable during the Sysgen stage. These

can be variables that determine modules and appear as <module_MODULES_ <submodule>

(for example, DCOM_MODULES_DLLHOST, CE_ MODULES_SHELL, IE_MODULES_WININET),

or <module>_ <component> (e.g., DEVICE_DEVCORE, FILESYS_FSHEAP).

To launch Sysgen from a Visual Studio menu, it is necessary to select Build submenu, and

then Build <Design name>. Alternatively, you can also launch Sysgen from the command-line
build window by running the Blddemo.bat -q command.

The Sysgen stage takes a considerable amount of time to complete. In order to reduce

the execution time of the Sysgen stage, in the _DEPTREES variable you can specify only

those directories that must go through Sysgen. To do that, it is necessary to create a

%_TGTPROJ%.bat batch file in the OS design directory (_PROJECTROOT) with the following

contents: set _DEPTREES=<dirl> <dir2> ... <dirX>, where dirX is a subdirectory in the Private

or Public directories.

Post-Sysgen Build
During the Post-sysgen build stage, BSP and subprojects that are added to the OS design are

built. The build process uses header files that were filtered during the previous stage, .def
files, and static libraries. Errors that occur during that stage are usually caused by a lack of

the necessary functionality and are resolved by adding the required components (setting

environment variables) and subsequently running the Sysgen stage again. BSP develop-

ers have an opportunity to perform Sysgen BSP filtration of BSP components depending
on the OS functionality they choose (it must be supported by the BSP). To accomplish that,

the BSP directory must have a Cesysgen subdirectory that contains a Makefile file. Most

BSP packs that provide this functionality simply include the \PUBLIC\COMMON\cesysgen\

CeSysgenPlatform.mak file in their Makefile files.

To launch a build of the BSP and all of the subprojects, from the Visual Studio menu, select

Build, Advanced Build Commands, and then select Build Current BSP and Subprojects.

Alternatively, from a command line, type Blddemo.bat -qbsp. To build an individual sub­

project, from the Visual Studio menu select Build from the Subproject context menu.

110 Chapter 4 Build System

Alternatively, from a command line, type Build.exe after changing to the Subproject

directory, which contains the Dirs or Sources files.

Build Release Directory (Buildrel)

During the Buildrel stage, the files received after Sysgen and Post-sysgen Build stage pro­

cessing are copied to a flat build directory (_FLATRELEASEDIR), where a run-time image of

the operating system is being built. The directory is called flat because all files are copied
without file paths. The content of the following directories is copied to the _FLATRELEASEDIR

directory.

%_PROJECTROOT%\Cesysgen\Oak\Files
%_PROJECTROOT%\Oak\Files
%_PROJECTROOT%\Cesysgen\Oak\Target\%_ TGTCPU%\%WINCEDEBUG% %_PROJECTROOT%\Oak\Target\%_
TGTCPU%\%WINCEDEBUG%
%_PLATFORMROOT%\%_TGTPLAT%\Target\%_ TGTCPU%\%WINCEDEBUG%
%_PLATFORMROOT%\%_TGTPLAT%\Files
%_PLATFORMROOT%\%_TGTPLAT%\cesysgen\Files

To enable automatic copying of executable files during a module build, it necessary to set

the WINCEREL variable in the Sources configuration file. This ensures that when the initial

file of one component (such as the BSP) is changed, you do not have to go through the

Build rel stage again. Despite the ability to copy executable files automatically during the

build process, you have to run the Build rel stage at least once in order to copy all necessary

executable and configuration files. When changes are made to configuration files, the

Buildrel stage has to be run again.

For NTFS volumes, hard links to files are used instead of file copies by default. When editing
hard-linked files, it is important to keep in mind that this modifies the initial files directly. The

BUILDREL_USE_COPY environment variable sets the copying method.

Copying can be launched manually. To do that, from the Visual Studio main menu, select

Build, and then Copy Files to Release Directory. Alternatively, from the command-line build

window, type BuildRel.bat.

Make Run-Time Image (Makeimg)

During the final stage, the content of the flat build directory (_FLATRELEASEDIR) is as­

sembled into a binary run-time image named NK.BIN or NK.NBO. The making of an image is

managed by the Makeimg.exe utility. Let us look at the steps that need to be taken during

the Makeimg stage to form a monolithic image of the operating system.

First, the Fmerge.exe utility merges the following configuration files and initialization files:

Build Stages 111

1. The .bib files are merged into a CE.bib file (a configuration file that contains a list of files

and parameters for forming a monolithic image).

2. The .reg files are merged into a Reglnit.ini file (registry initialization file).

3. The .dat files are merged into an lnitObj.dat file (object store initialization file).

4. The .db files are merged into an lnitDB.ini file (database initialization file).

After than, the Reglnit.ini file is compressed into a binary file named Default.fdf.

The system then localizes executable files and libraries by replacing the resources according

to a selected language, as determined by the LOCALE variable. At the end, the Romimage.exe

utility creates a binary image of the system from the files specified in Ce.bib. Romimage.exe

makes it possible to create a system image in several formats. The main format is a tagged
binary image of the system (.bin). A ready .bin file can be converted into an absolute binary

format (NBx) or a 32-bit Motorola SRE format by using the CvrtBin.exe utility.

The image-build procedure can be launched manually. In order to do that, from the Visual

Studio main menu, select Build and then Make Run-Time Image. Alternatively, from the com­
mand line, run Makeimg.exe.

Table 4-5 lists the necessary build stages depending on changes in the OS design.

TABLE 4-5 Build stages required based on OS design changes.

Adding/Removing Directory
BSP and Subprojects Image Settings Components

Sysgen +

Post-sysgen Build + Possible +

Build rel Possible + +

Makeimg + + +

CONFIGURATION FILES

Binary Image Builder (.Bib)

The .bib files describe the memory structure (ROM/RAM) and specify what files need to be

included into the image; they also contain additional configuration parameters related to the

memory. A merged .bib file named CE.bib, which the Romimage.exe utility uses for forming a
monolithic image, contains the following .bib files:

• BSP files (Config.bib, Platform.bib).

• Files of selected Windows CE components (Common.bib, and so on).

112 Chapter 4 Build System

• OS design files (Project.bib and subproject .bib files).

The .bib files are text files. Their content is divided into the MEMORY, CONFIG, MODULES,

and FILES sections.

MEMORY Section
This section is usually located in the Config.bib files, and it determines the allocation of the

virtual address space among applications and the system image. Each entry in the MEMORY

section that describes a memory region contains the following fields: region name, initial

memory address, size, and type. The fields are written as one line and are separated by

spaces and/or tabular symbols. Region names have to be unique except for the reserved

name, RESERVE, which can be used more than once. Regions that contain RESERVE in their

name reserve the memory regions that are not used by the system image.

The types of memory that show how each memory region will be used are listed in
Table 4-6.

TABLE 4-6 Memory region types and usage.

Memory Type

RAM

RAM IMAGE

RESERVED

FIXUPVAR

CONFIG Section

Purpose

Used by the system kernel for the program and file system in the memory.
This type of region must be aligned by page boundaries (4 KB).

This type of memory region is marked as read-only. This region stores the sys­
tem image, which includes the execute in place (XIP)module that is executed
locally. On the physical level, this can be a memory region where the system
image or flash memory (which is addressed by the processor directly) is load­
ed. The Romimage.exe utility creates a binary file (.bin) for this region type.
This type of region must be aligned by page boundaries (4 KB).

Romimage.exe does not process this type of region. Developers process and
use this memory type for information purposes, such as specifying the
memory region that is used by the device buffer.

Enables you to set values of the global variables of the kernel during the
MAKEi MG stage. The starting address for a variable is always 0, and instead of
the size in bytes, it specifies a needed value.

This section is usually located in the Config.bib file and is optional. It contains additional

parameters for configuring the system image. Listed below are some of the parameters that
can be used:

• AUTOSIZE (ONIOFF) enables you to automatically allocate space that the run-time

image does not use for applications. By default, Romimage.exe disables AUTOSIZE.

Build Stages 113

• COMPRESS (ONIOFF) enables compression of the files that are loaded into the

memory and are not executed in place (XIP). The compression component has to be

present in the system image in order to support file compression functionality. By

default, Romimage.exe enables compression.

• ROMSTART is a virtual address of the ROM beginning.

• ROMSIZE is the size of the ROM in bytes.

• ROMWIDTH is the width of the ROM in bits.

If the ROMSTART, ROMSIZE and ROMWIDTH variables are set, Romimage.exe builds a

run-time image in the absolute binary data format (.nbO or .abx).

• SRE (ONIOFF) is used for creating an image in Motorola-S format. This option is dis­
abled by default.

Table 4-7 shows a sample entry in the CON FIG section.

TABLE 4-7 CON FIG section entry.

NK

RAM

nk.exe:gpdwVariable

MODULES Section

8C800000

8COSOOOO

00000000

00800000

007BOOOO

00000006

RAM IMAGE

RAM

FIXUPVAR

This section contains a list of system image modules that are executed in place without be­

ing additionally loaded into the memory and cannot contain more than 2,000 modules. This

section may include all executable modules and libraries except for the applications written

with managed code, because the latter require that they are additionally loaded into the

memory. Each entry in the MODULES section that describes an included module contains the

following fields: name, path, region, and attributes. The fields are written on one line and are
separated by one or more spaces or tabular symbols.

The Name field denotes the file's name in the image, and it may not coincide with the initial

name of the file; paths are not used. A full path to a module in the file system is stored on
the developer's machine. The Region field denotes the RAM IMAGE regions specified in the

MEMORY section into which the module is added. Table 4-8 shows some possible attribute

values, which can be combined.

114 Chapter 4 Build System

TABLE 4-8 Attribute values.

Attribute

s
H

R

D

Kor Z

u

Q

Purpose

System file.

Hidden file.

Compress the resources. Applies to the MODULES section only.

Disables module debugging.

Module needs to be prepared for execution in the kernel address space (to map
the address).

Do not compress the file.

Module needs to be prepared for execution in the user address space and the
kernel address space. The line,

file.di! $(_FLATRELEASEDIR)\file.dll SHQ is converted into

k.file.dll $(_FLATRELEASEDIR)\file.dll SHK and

file.di! $(_FLATRELEASEDIR)\file.dll SH .
.......................................

Compress module.
......... ...••.....•......•.•••......•.•••.•. _,

Mark module as non-trusted. Applies to the MODULES section only.

c
N

p
·-~·····-·-· . ,. ·~·~-----~"·- ~-~---.. ----~··--·-·--·~,·-··,,.,,. ···-··----·~ .. -' ·····---

x

M

u

Do not check CPU type specified in file header. Usually used for resource libraries.

Sign module and include signatures to the ROM. Applies to the MODULES section
only.

Signals that the kernel must not demand page the module. By default, the kernel
demand pages modules as needed. This flag is usually set for system services that
are called in paging, or which are in out-of-memory (QOM) condition. Applies
only to the MODULES section.

Keep module uncompressed.

A sample entry in the MODULES section:

INIT.EXE $(_FLATRELEASEDIR)\INIT.EXE NK SH
MYDLL.DLL $(_FLATRELEASEDIR)\MYDLL.DLL NK SHC

FILES Section
Files from this section are loaded into the device memory region that is available for applica­

tions. As a rule, these files include program data and managed code applications files. The

files from this section are compressed by default. Before being loaded in the memory, the

compressed files are decompressed. The file entry format is the same as one in the MODULES

section.

Build Stages 115

Object Store Initialization Files (.Dat)

The .dat files are used for initializing a file system in the memory (RAM file system). During

the MAKEIMG stage, .data files are merged into the lnitObj.dat file. The resulting lnitObj.dat

file is used by Filesys.dll for creating a directory tree of the file system in the memory. Entries

in the DAT files have the following format:

root: [-Di rectory(" <di rectory name>")] [-Fi 1 e (''<fi na 7_ fi 7 e_name>'', "<i niti a Lfi 7 e> ")]

where <directory_name> is the name of the directory, <final_file_name> is the final name of

the file that is copied from the \Windows directory, and <initial_file> is the name of the initial

file in the \Windows directory.

The following content of a .dat file is created the Program Files directory and its My Projects

subdirectory and is copied by the MyProg.exe file into the Program Files directory:

Root:-Directory("Program Files")
Di rectory("\Program Files"): -Di rectory("My Projects")
Di rectory("\Program Fil es"): -Fi 1 e ("MyProg. exe», "\Wi ndows\MyProg. exe")

Registry Initialization Files (.Reg)

Registry files form the initial registry of the operating system. The format of Windows

Embedded CE registry files is similar to that of the desktop version of Windows. During the

MAKEi MG stage, all registry files in the build directory (_FLATRELEASEDIR) are merged into
the Reglnit.ini file in the following order:

1. Registry files of components of the operating system (Common.reg, IE.reg, Wceapps.
reg, Wceshell.reg).

2. Registry files of subprojects that were added to the OS design.

3. Project.reg is created for each design of the operating system. It enables you to add
general configuration settings to the current design and to redefine registry settings of

the OS components and subprojects.

4. Platform.reg is usually provided by the BSP manufacturer and includes the initial regis­

try settings for hardware (BSP and device drivers).

Therefore, Project.reg settings can redefine the component settings, whereas Platform.reg

settings can redefine the settings for all other files.

Database Initialization Files (.Db)

During the MAKEi MG stage, .db files are merged into an lnitDB.ini file and are used for ini­

tializing EDB databases that are included in the image. The entry format is described in detail

in the supplied .db files.

116 Chapter 4 Build System

Component and Module Build
Build.exe utility manages the process of compiling and linking components and modules.

Dirs and Sources files are used for telling Build.exe where to build from (Dirs files) and what

to build with (Sources files).

Figure 4-3 shows a diagram of the build process managed by Build.exe.

Current Directory

FIGURE 4-3 Components and modules build process

Let us examine the build process in more detail.

Dirs Files

%_WINCEROOT%\
PUBLIC\OAK\MISC
Directory

Di rs files tell Build.exe what subdirectories in the current directory that the build needs to

take place in, which is similar to launching Build.exe in each of the indicated subdirectories.

The structure of a Dirs file is straightforward.

As an example, the following file content is prescribed by Build.exe in order to perform a

build in the Oak and SOK subdirectories of the current directory:

DIRS=Oak SDK

Moving from one subdirectory to another continues until one subdirectory has no Di rs file

present; a search for the Sources file is conducted in this directory. If the Sources file is found,

Build.exe utility launches Nmake.exe and passes Makefile (located in the same directory as

Sources) to Nmake.exe as a parameter.

Component and Module Build 117

Makefile Files

The Makefile file contains the rules for Nmake.exe that are necessary for the build. In most

cases, the Makefile file contains just one line including the content of Makefile.def file:

!INCLUDE $(_MAKEENVROOT)\makefile.def.

Makefile.def file contains general rules for compiling and linking of the entire Windows

Embedded CE operating system. Aside from the general rules, the file has a directory that
includes the content of the SOURCES file of the current directory:

!INCLUDE $(MAKEDIR)\sources.

Sources Files

The Sources file contains build information for a specific component. The general entry

format for the Sources file is as follows:

<Variable name> = <Value 1> [<Value 2> ... <Value M>] \

<Value M+l> \

<Va7ue N>

If a variable can have several values, the values are separated by a space. To merge several
lines, the backslash symbol is used. Let us look at the variables that are used in the Sources

file, as shown in Table 4-9.

TABLE 4-9 Sources file variables.

Variable Name

SOURCES

TARGETNAME

TARGETTYPE

TARGETLIBS

SOURCELIBS

Windows Embedded CE Shell Components

List of initial files.

Name of resulting file without an extension.

Type of resulting file:

• PROGRAM-application.

• DYNLINK-dynamic-link library.

• LIBRARY-static library

Depending on the type, the resulting file receives the extension .exe, .dll, or
.lib, respectively.

List of static libraries (.lib) and object files (.obj) that are necessary for
linking an executable module (.exe) or a dynamic library (.dll). This variable
is ignored if a static library is being built.

List of static libraries (.lib) used for linking a static library from several
libraries.

118 Chapter 4 Build System

Variable Name

RELEASETYPE

Windows Embedded CEShell Components

Location of the intermediate and final build files:

• LOCAL-in the subproject directory.

• OAK-%_PROJECTROOT%\Oak\Target or%_ PROJECTROOT%\Oak\Lib.

• PLATFORM-%_TARGETPLATROOT%\Target or%_
TARGETPLATROOT%\ Lib.

··

POSTLINK_PASS_CMD Command to be executed after linking. As a rule, it is used for copying ad­
ditional files into the build directory.

PRELINK_PASS_CMD Command to be executed before linking.

Sources.cmn File

The Sources.cmn file enables you to determine general build settings for several projects.

The content of this file is included in Makefile.def by the directory before the content of the

Sources file. Sources.cmn must be located in the upper directory that contains the Di rs file.

Build Errors

The presence of a Build.err file in the root directory of the build is an indication that an er­

ror exists. The main tool for analyzing errors during the build stage is the Output window in

Visual Studio's integrated interface and the Build.log file located in the root directory of the

build system (_WINCEROOT).

Sysgen Error

During the Sysgen stage, errors usually occur when the OS design does not have necessary

components. This problem is solved by adding a necessary component by using Platform

Builder directory and setting certain environment variables. Errors can also occur while edit­

ing the content of Public and Private directories directly.

Post-Sysgen Build Error

During this stage, compiling and linking errors occur. Such errors can be caused by a lack of

the necessary header files and libraries. Because filtered files are used during this stage, the

problem can usually be resolved by adding the necessary components with a subsequent

execution of the Sysgen stage.

Buildrel Error

Copying errors occur during the Buildrel stage. Possible causes of errors are the following:

Component and Module Build 119

• Insufficient disk space.

• Blocking of the simultaneously used files.

• Files marked as read-only.

Makeimg Error

The most common errors during this stage are the following:

• The absence of a file specified in CE.bib in the flat release directory (_FLATRELEASEDIR).

• Syntax errors in the registry files.

• The image size exceeds the value specified in Config.bib.

Chapter 5

Board Support Package (BSP)
The board support package (BSP) enables a developer to build a run-time image of the

Windows Embedded CE operating system for a specific hardware platform. Each hardware

platform for which an operating system needs to be built must include its designated BSP.
Usually, building a BSP is the most labor-intensive part of creating a device. Building a BSP

requires that the developer is familiar with the hardware architecture as well as the architec­

ture of the operating system. All of the interaction of the operating system with the device is

implemented in BSP, and therefore, the quality of the BSP determines the resulting quality of

the device.

The tools supplied with Platform Builder for CE 6.0 R2 contain several examples of BSP imple­

mentation and at least one BSP for each supported processor architecture, as follows:

• ARM.

o Intel PXA27x Processor Development Kit (Mainstonelll).

o Texas Instruments SDP2420 Development Board.

o Tl OMAP5912 Aruba Board.

o Voice over IP PXA270 Development Platform.

o Device Emulator.

• X86.

o CEPC.

o HP Compaq t5530 Thin Client Development Platform.

• MIPS.

o NEC Solution Gear 2-Vr5500 Development Kit.

• SH4.

o Renesas US7750R HARP (Aspen) Standard Development Board.

o STMicroelectronics STi7109 MB442 Development Platform.

The BSP contains the entire hardware-dependent source code that is necessary for creating

an abstraction of the operating system that is independent of a specific hardware platform

implementation. The main components of a BSP are as follows:

• Boot loader.

• OEM adaptation layer (OAL).

• Drivers.

• Configuration files.

121

122 Chapter 5 Board Support Package (BSP)

The main tasks of the boot loader are to load a run-time image into the memory and

to move to its starting point. The boot loader can receive an OS image from a variety of

sources: the network (eboot), COM port (sboot}, Universal Serial Bus (USB}, flash card, hard

disk, and so on. A boot loader is not required for launching an operating system on a device;

the Windows Embedded CE 6.0 operating system can function without a boot loader. The

presence of a boot loader expedites the process of building a device, and on a production

device, it makes it possible to offer additional service functions such as reflash device

firmware, diagnostics, and so on.

A BSP includes the following components:

• OAL creates a kernel abstraction that is separate from a specific processor implemen­

tation; it includes code for interrupt processing, timers, IOCTL, etc.

• Drivers provide the operating system with an interface to the platform's hardware

devices.

• Configuration files contain information needed by the build system in order to build

a run-time image with a given BSP.

Where can a device developer obtain a BSP? First of all, hardware manufacturers often in­

clude BSPs with their product. Second, as mentioned above, the development tool suite

has at least one BSP for each of the supported processor architectures, which can be used

directly or as a base for building a custom BSP. Finally, a device developer can use the most
suitable BSP that has an available source code as a base to build a custom BSP. In order to do

that, the device schematics or similar information must be available.

As mentioned above, the process of building a BSP is the most labor-intensive part of build­

ing a device, and thus, it is important to know what resources, libraries, and implementation

architecture Microsoft offers for building a BSP.

BSP Directory Structure
During installation, each BSP is deployed as a subdirectory of the Platform directory located

in the Windows Embedded CE 6.0 directory tree root. All BSP shipped by Microsoft and

third-party BSP are installed there. The BSP that is being developed also needs to be located

in that directory.

Let us examine the typical structure of a directory used to build a BSP. Table 5-1 shows the

subdirectory names of a BSP and their purpose.

BSP Directory Structure 123

TABLE 5-1 Standard BSP subdirectories.

Directory Name

CATALOG

CESYSGEN

FILES

SRC

Purpose

Mandatory directory. It contains a catalog file that publishes the BSP in the
Platform Builder catalog.

Optional directory. It contains the Makefile file that is necessary for involv­
ing BSP in the Sysgen stage of building the operating system by making it
possible to filter the BSP functionality that is being built, depending on the
selected system components.

Mandatory directory. It contains BSP configuration files, such as Platform.bib,
Config.bib, Platform.reg, Platform.db, etc. During the Buildrel stage, the files
are copied into a flat release directory (FLATRELEASEDIR). If a BSP is involved
in the filtering process, the filtered files are copied into the CESYSGEN\FILES
directory then copied into a flat release directory (FLATRELEASEDIR). It means
that if any changes were made to the files in this directory and the BSP sup­
ports file filtering, then in order for a new filtered version of the files to be
sent to FLATRELEASEDIR, it is necessary to perform the Sysgen stage of the
BSP ..

Optional directory. It is present in all BSP packages included in Platform
Builder. It is a root directory for the source code that implements a BSP. The
BSP source code is built during the Post-sysgen Build stage; the build process
is controlled by the Dirs and Sources files. The developer has no requirements
to meet as far as implementation of the BSP source code tree is concerned.

Table 5-2 provides a listing of names of the main subdirectories of SRC directory and their

purpose as it applies to the BSP included in Platform Builder.

TABLE 5-2 Subdirectories of SRC directory.

Directory Name Purpose

BOOTLOADER Contains boot loader implementation.

BOOTLOADER\EBOOT Contains boot loader implementation for the network environment.

COMMON Contains common code for a specific BSP. Usually is a common part of the
boot loader and OAL.

DRIVERS Contains directories that store implementation of the platform drivers.

INC Contains header files.

OAL\OALLIB Contains source code for OAL implementation and configuration
build files.

OAL\OALEXE Contains configurations files (Sources, Makefile) for building the OAL.exe exe­
cutable file from the OAL.lib library. It links the OAL.lib library to the required
common libraries as well as other libraries. It may contain the function code
and the stub code for the functionality that is not implemented by OAL. ------------ ---·----"' ------------

KITL Contains the source code and configuration files for building KITL.dll

124 Chapter 5 Board Support Package (BSP}

Boot Loader
The boot loader is a standard part of any BSP. A boot loader performs at least the following
tasks:

• Hardware initialization.

• Platform initialization related to image loading onto a device.

• Loading of the operating system image into the memory (RAM and/or ROM).

• Start the operating system by jumping to the OS entry point.

A boot loader can implement any additional functionality required during the development,
testing, or end-user device operation. The boot loader has no formal implementation
requirements that need to be met.

Usually the boot loader is implemented as a component that is separate from the operating
system. The boot loader has its own configuration binary image builder (.bib) file located in

the Bootloader build directory along with the Sources and Makefile files.

The Platform Builder development toolset includes several auxiliary libraries for implement­
ing a boot loader. Table 5-3 provides the library names and locations.

TABLE s-3 Boot loader library names and locations.

Name
BLCOMMON

EBO OT

BOOTPART

Locatiori

\PLATFORM\COMMON\SRC\COMMON\ BOOT

\PUBLIC\COMMON\OAK\DRIVERS\ETH DBG\EBOOT

\PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\ BOOTPART
•¥•;• - .---·· , • ._~••¥•¥V".V¥ .. •••-•-H•-~•,__. .. ._ •¥•••~•=•• ·-. ---••¥••• "°"¥¥¥-.-¥•••~=~···-·.-• .-•••-•¥••¥••¥•••"°Vo·-·=~~~~-

ETH DBG \PUBLIC\COMMON\OAK\DRIVERS\ETHDBG

The BLCOMMON library provides the infrastructure for implementing the boot loader. The

main task of this library is to provide implementation that initially supports Platform Builder
tools. The BLCOMMON library implements the majority of a boot loader's common tasks. In
order to implement a boot loader for a specific hardware platform, it is necessary to utilize
the code of low-level hardware implementation as well as a pre-defined set of functions that
the BLCOMMON library calls. The Ethernet boot loader (EBOOT) library contains implemen­
tation for working with Dynamic Host Configuration Protocol (DHCP), Trivial File Transfer
Protocol (TFTP) and User Datagram Protocol (UDP), which can be used for implementing a

boot loader in a network environment. The BOOTPART library contains auxiliary functions
for working with partitions and for reading from and writing to flash media. The Ethernet

debugging libraries (ETHDBG) provide the functionality of a debugging network (Ethernet)
driver for some network cards. Table 5-4 shows the card names and implementation
locations.

Boot Loader 125

TABLE 5-4 Interface cards and their locations.

Card Name

3COM 3C90X

AMD Am79C970

AMD Am79C973

Crystal CS8900A

DEC/Intel DC21140

National Semiconductor DP83815
(MacPhyter)

NE2000-compatible

RealTek RTL8139 and compatibles

Location

\PUB LI C\CO MM ON\OAK\D R IVERS\ETH D BG\3C90X

\PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\AM79C970

\PUBLIC\COM MON\OAK\DRIVERS\ETH DBG\ AM79C973

\PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\CS8900

\PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\DEC21140

\PU BLIC\COM M 0 N\OAK\D R IVERS\ETH DBG\DP83815

\PUBLIC\COM MON\OAK\DRIVERS\ETH DBG\N E2000

\PU BLIC\COM M 0 N\OAK\DR IVERS\ETH D BG\RTL8139

Figure 5-1 shows a simplified diagram for implementing a boot loader.

When the system starts, it passes the control to the address where the point of entry into the
Startup() function is located. This function is responsible for a low-level hardware initializa­

tion and for calling the C function Main(), which calls the BootloaderMain() function from
BLCOMMON. The BootloaderMain() function implements the main execution thread of the
boot loader by calling return call functions. The functions that determine the base execution

procedure are as follows:

• OEMDebuglnit provides initialization of the debugging transport subsystem.

• OEMPlatformlnit provides a high-level platform initialization.

• OEMPreDownload initializes services that are needed for loading an image.

• OEM Launch performs initializations that are necessary after the image has been

loaded and jumps to the OS entry point.

In order to provide support for serial port operations, a developer utilizes the following
functions:

• OEMlnitDebugSerial().

• OEMWriteDebugString().

• OEMWriteDebugByte().

• OEMReadDebugByte().

126 Chapter 5 Board Support Package (BSP)

FIGURE 5-1 Boot loader implementation

Usually, the OEM Debug I nit() function calls the function OEMlnitDebugSerial() for initializing

the debugging transport subsystem via a serial port. In order to load the image, the

BLCOMMON library calls the function OEMReadData(), which reads the transport protocol

data. By implementing the OEMShowProgress() function, a developer can display the

progress of the image-load process. The OEMMapMemAddr() function is intended for cach­

ing the images designed for flash memory. If a network boot loader is implemented, usually

the EBOOT library is used (consisting of functions with the Eboot prefix), which is awaiting

OEM Abstraction Layer 127

the OEMEthGetFrame(), OEMEthSendFrame(), and OEMEthGetSecs() functions to be imple­

mented. These functions usually call the corresponding functions of a matching debugging

network driver directly. In order to work with flash memory, a developer must implement

the following designated set of functions: OEMStartEraseFlash(), OEMContinueEraseFlash(),
OEMFinishEraseFlash(), OEMlsFlashAddress(), and OEMWriteFlash(). A developer may

implement only the necessary functions instead of the others by using stubs.

OEM Abstraction Layer
The OAL contains the code that creates an abstraction of the operating system kernel

independent of a specific physical platform implementation. This enables the common

kernel' of Windows Embedded CE to function on several platforms.

The OAL implements the system's starting code, interrupt processing code (ISR, support for

installed ISR, a table of interrupt request (IRQ) static mapping in system interrupt (SYSINTR),

and so on), power management code (On, Off, and Idle power states), timer code, and

various IOCTL control codes (IOCTL_HAL_GET_DEVICE_ID, IOCTL_HAL_GET_UUID, and so on),

The OAL provides an interface to the system kernel by implementing a certain set of func­

tions and IOCTL.

At the same time, the system kernel provides the OAL with a set of functions that must be

used while implementing the OAL. Therefore, in Windows Embedded CE 6.0, interaction be­

tween the kernel and the OAL is unified as much as possible, which is a result of architectural

changes in the kernel-the OAL is no longer statically linked to the operating system kernel.

Instead, the OAL is built into an executable file, OAL.exe, by being dynamically linked to the

kernel library (kernel.di!).

In standard BSP implementations, the OAL layer is built in two stages and is located in the

following directories: \SRC\OAL\OALLIB, which contains the platform-specific code that is

built into a static library, and \SRC\OAL\OALEXE, which contains the code and the specific

build instructions for OAL.exe (it links OAL.lib to other libraries). Furthermore, during the

Makeimg stage, OAL.exe is built into a run-time image as NK.exe, which is a traditional name

for the OS kernel in Windows CE. During the load of NK.exe by OAL.exe, the system kernel is

loaded dynamically (kernel.di!).

As mentioned before, it is necessary to implement a predefined set of functions and IOCTL

control codes. Table 5-5 provides a list of some of the functions with their description.

1 One kernel per processor architecture (ARM, MIPS, SH4,x86).

128 Chapter 5 Board Support Package (BSP)

TABLE 5-5 Predefined functions.

Name Purpose

OEMlnitDebugSerial The first Original Equipment Manufacturer (OEM) function called by
the kernel. Provides initialization of the debugging input/output (1/0)
through a serial port.

OEMWriteDebugByte Writes a byte into a debug port.

OEMWriteDebugString Writes a string into a debug port.

OEMReadDebugByte Reads a byte from a debug port.

OEMlnit This is the second OEM function that the kernel calls. It provides initial­
ization of all of the required hardware, including timer, bus, and 1/0; ISR
registration except for ARM and Kernel Independent Transport Layer
(KITL) initialization. The function is called at an early stage of system ini­
tialization, and therefore, during initialization it is necessary to take into
account the following environment characteristics: a single-thread execu­
tion, system calls are disallowed, there is no blocking, and there is no
support for exception handling.

~--0 0 ~ -~""" - 0

OEMlnterruptEnable Enables an interrupt with a specified identifier. This function is called from
the lnterruptlnitialize and lnterruptMask functions.

OEMlnterruptDisable Disables an interrupt with a specified identifier. This function is called
from the lnterruptDisable and lnterruptMask functions.

OEMlnterruptDone Processes the announcement stating that interrupt processing is done.
This function is called from the lnterruptDone function.

OEMlnterruptHandler Applies only to the ARM architecture. This is an interrupt-handing
function that is called with any interrupt on the ARM platform; it returns
a SYSINTR identifier and therefore ISR is not registered in OEM I nit on the
ARM platform. The role of this function is to determine a corresponding
source of the interrupt.

OEMlnterruptHandlerFIQ Applies only to the ARM architecture. Support for Fast Interrupt Query
has limitations. It is not used in the BSPs included with Windows
Embedded CE.

OEM Idle This function is called only if there are no threads scheduled for execu­
tion. It provides an opportunity to switch the processor into a low energy
consumption mode.

OEMPowerOff Switches the processor to the minimum power usage mode or simply
turns power off.

OEMloControl This function is called from the KernelloControl function. It implements the
IOCTL interface of OAL for the operating system kernel. A device manufac­
turer may implement additional IOCTL codes to suit its own needs.

OEMSetRealTime Provides the kernel with an interface to the real-time hardware clock­
setting real time.

OEMGetRealTime Provides the kernel with an interface to the real-time hardware clock­
getting real time.

OEMSetAlarmTime Provides the kernel with an interface to the real-time hardware clock­
setting the Alarm.

Common Platform Code 129

Table 5-6 shows some of the IOCTL control codes.

TABLE 5-6 IOCTL control codes.

Name

IOCTL_HAL_GET_DEVICE_INFO

IOCTL_HAL_GET_UUID

IOCTL_HAL_REQUEST _IRQ

IOCTL_HAL_REQUEST_SYSINTR

IOCLT_HAL_REBOOT

IOCTL_HAL_POSTI NIT

Purpose

Device information.

Unique device identifier.

IRQ request for a device based on device location (DEVICE_
LOCATION).

SYSINTR request through IRQ.

Hot device restart.

Called while initializing the operating system before the start of
other processes.

Developers can build the OAL by implementing its functionality directly, or they can utilize

the common platform code (common libraries). The OAL architecture based on common

libraries is named Production Quality OAL (PQOAL). It includes all common libraries, imple­

mentation infrastructure, and so on. All BSPs included with Platform Builder have the OAL

implemented in the PQOAL architecture.

Common Platform Code
The Platform directory contains another directory named Common that contains the source

code of function libraries that Microsoft supplies, which are available to developers while

building their own BSP (boot loader, OAL and drivers). These libraries implement most of the

required functionality that is common for all BSPs. Common libraries do not contain code

that is dependent on a specific platform based on a specific implementation of a micropro­

cessor chip.

The purpose of creating a common code (common libraries) is to provide maximum code re­

usability and thus to reduce labor and time needed to create a BSP. Common code provides

an opportunity to develop a BSP in a modular fashion by using all the necessary components

from the included common libraries.

Common platform code consists of a set of libraries that Microsoft includes in the source

code. These libraries implement the functionality that is common for all BSP devices of

Windows Embedded CE. BSP developers may use these libraries for building or customizing

their own BSPs. These libraries were created in order to reduce the complexity of creating

custom BSPs by reusing existing code. The common code contains functionality implementa­

tion that may be useful while building a boot loader, OAL, and system drivers.

130 Chapter 5 Board Support Package (BSP)

In addition to the libraries, the common code offers an implementation framework for situa­

tions such as when OAL code specific to a given hardware platform is implemented through

return function calls and for providing data structures implemented in a BSP. This framework

greatly simplifies the task of porting BSPs. At the same time, there are no requirements a

developer has to meet as far how and in what form common libraries are be used. The de­

veloper may use only those libraries that are necessary by implementing the rest of the func­

tionality independently or by cloning the implementation of the required common libraries

into a personal BSP directory and making all necessary changes directly in it.

The use of common code enables a developer to substantially reduce the time needed to

build a BSP by using a code that was tested by Microsoft and to create a BSP that has the

same architecture as the BSPs Microsoft includes with the OS development tools.

The common code located in the \PLATFORM\COMMON\SRC\ directory is organized by the

following subdirectories depending on the processor architecture and functionality:

• ARM common code for the ARM processor architecture.

• COMMON common code that is not dependent on the processor architecture.

• MIPS common code for the Microprocessor without Interlocked Pipeline Stages

(MIPS) processor architecture.

• SHX common code for the SHX processor architecture.

• SOC common code for various system-on-chip (SOC) systems.

• X86 common code for the X86 processor type architecture.

The code located in these directories is built into libraries during the platform build process.

These libraries are located in the \PLATFORM\COMMON\LIB\<PROCESSOR_TYPE>\<BUILD_
TYPE>\ folder, where <PROCESSOR_TYPE> means ARM, MIPS, SHX or X86, and <BUILD_

TYPE> means Retail or Debug. BSPs refer to \PLATFORM\ COMMON\LIB\ directory by using

the _PLATCOMMONLIB variable.

The \PLATFORM\COMMON\SRC\COMMON\ subdirectory contains the code that is not de­
pendent on processor architecture, and it is organized within the subdirectory according to

its functionality:

• BOOT support infrastructure for building a boot loader.

• CACHE used for working with cache and Translation Lookaside Buffer (TLB).

• CEDDK part of CEDDK.

• ETHDRV network drivers that have debugging function for the boot loader.

• FLASH used for working with CFI NOR Flash.

• ILT part of the Interrupt Latency Timing (ILTiming) implementation, which includes the

utilities for measuring delays during IRQ processing.

• INTR common code for working with interrupts (IRQ mapping into SYSINTR).

Common Platform Code 131

• 10 general 1/0 code.

• IOCTL common hardware-independent IOCTL control codes.

• KITL hardware-independent part of KITL implementation.

• LOG outputs debugging information.

• OTHER various stub functions.

• PCI simplified implementation for working with the Peripheral Component

Interconnect (PCI) bus for the boot loader and for initializing the operating system.

• PERREG retains the registry for NOR Flash.

• POWER implements hardware-independent IOCTL codes for managing the power

supply.

• RTC implementation of the Real Time Clock functions.

• TIMER a timer implementation.

The following directories contain the code that is dependent on processor architecture:

• \PLATFORM\COMMON\SRC\ARM\

• \PLATFORM\COMMON\SRC\MIPS\

• \PLATFORM\COMMON\SRC\SHX\

• \PLATFORM\COMMON\SRC\X86\

These directories can contain code in the Common subdirectory that functions for the archi­

tecture of the respective processor, as well as for specific architecture implementations (for

example \MIPS\ MIPS32, \ARM\ARM920T, and \ARM\ARM926).

The \PLATFORM\COMMON\SRC\SOC\ directory includes subdirectories that contain the

code related to a chip-specific implementation, along with its periphery and related proces­

sor resources. Most of the code related to a processor is located in a corresponding sub­

directory of the \PLATFORM\COMMON\SRC\SOC\ directory. The directory name contains

the SOC name, then the underscore, then the developer's initials, and then, after another
underscore, the implementation version number, such as X86_MS_Vl, OMAP2420_MS_Vl,

PXA27X_MS_Vl. Each subdirectory that corresponds to the SOC chip usually contains subdi­

rectories that store implementation of a certain chip-based functionality, such as drivers and

1/0 including additional OAL initialization.

It is assumed that implementation of libraries located in the subdirectories is not dependent

on the platform hardware on a corresponding SOC chip. As already mentioned, developers

may use the common platform code in any way they consider suitable. It is necessary, how­

ever, to observe a common rule, and that rule is, you should never directly modify the code

shipped with the Platform Builder. First, clone the necessary part of the library into your own

BSP directory, and then, make changes to the copy of the code.

132 Chapter 5 Board Support Package (BSP)

Kernel Independent Transport Layer (KITL)
KITL separates the implementation of a low-level transport interface from the service proto­

col that provides a communication mechanism between a developer's workstation and the
target device.

Drivers
In addition to the microprocessor, the platform consists of multiple peripheral devices. The

operating syste_m may need drivers in order to use to use these devices. The development

tools include a large number of drivers, both as part of the platform-independent code and

as part of the supplied BSPs. If a shipped driver is not compatible, it is necessary to imple­

ment a custom-built driver as part of the BSP (SRC\DRIVERS). To expedite the build process,

the most suitable driver shipped with the software is used as a base. Table 5-7 provides a list

of directories that contain the majority of drivers included in Windows Embedded CE.

TABLE 5-7 Included drivers.

Directory

\PUBLIC\COMMON\OAK\DRIVERS\

\PLATFROM\COMMON\SRC\SOC\

\PLATFORM\<PLATFORM_NAMf>\SRC\DRIVERS

Description

Contains platform-independent drivers such
as bus drivers and the model device driver
(MDD) parts of layered drivers.

Contains implementation of drivers for the
SOC peripherals.

Contains implementation of drivers for a
specific platform and the Platform Dependent
Driver (PDD) part of layered drivers.

The structure of drivers and their types is covered in more detail in the next chapter.

Configuration Files
An operating system is built from batch files, and the build process is controlled by configu­

ration files. Prior chapters provide a more detailed description of the file entry formats and

the purpose of configuration files. Table 5-8 shows a list of BSP configuration files and

describes their purpose.

Creating a New BSP 133

TABLE 5-8 BSP configuration files and their purpose.

File

<PLATFORM_ NAME>. BAT

CONFIG.BIB

PLATFORM.BIB

PLATFORM.REG

PLATFORM.DAT

PLATFORM.DB

Creating a New BSP

Description

The file is located in the BSP directory root. It contains settings for
environment variables related to the BSP build. It is not launched for
execution, and it must not contain any commands except for setting
variables and, possibly, for conditional file filtering during the Sysgen
stage.

The file is located in the Files directory of the BSP. It contains the main
parameters of the ROM/RAM platform, as well as various additional
settings, such as settings for OAL variables, and image builds in vari­
ous formats.

The file is located in the Files directory of the BSP. It contains a list of
BSP files included in the run-time image of the operating system.

The file is located in the Files directory of the BSP. It contains initial
registry settings for the BSP components, including the drivers.

The file is located in the Files directory of the BSP. It contains details
about the initialization of the file system into memory required for the
BSP. Usually, the file is empty.

The file is located in the Files directory of the BSP. It contains de­
tails about the initialization of the system base required for the BSP.
Usually, the file is empty.

Creating a new BSP is the most complicated task while building embedded solutions based

on Windows Embedded CE. Usually, you start building a BSP by cloning the most suitable

package that is available in the source code. Then, it is necessary to perform the analysis of

platform differences and to modify the code of the cloned BSP. This modofication may in­

clude customization of drivers or a low-level initialization code. In any event, in order to build

a BSP it is necessary to have the hardware diagram or similar information available.

Quite often, BSPs without included source code have the ability to provide additional plat­

form functionality by building new device drivers that are connected through various inter­

faces. Specialized IOCTL control codes are usually available in this case for obtaining IRQ and

SYSINTR, while the platform supports installable interrupt service routines (llSR).

Chapter 6

Driver Architecture

A driver is software that provides the operating system (OS) with an interface to a physical or

a virtual device. The operating system expects drivers to implement a predefined interface

that creates an abstraction of a specific hardware or a virtual implementation of a device. In
Microsoft Windows Embedded CE 6.0, this interface represents a set of functions and input/

output control codes (IOCTL) that must be implemented in the driver's code in most cases.

The driver infrastructure makes it possible for a designated part of the operating system to

provide parts of the operating system and the application software with a unified interface

with the system hardware regardless of its implementation.

In order to understand the various drivers that come with Windows Embedded CE, it is

necessary to classify them. Depending on the perspective, such as architecture, loading into

memory, loaded modules, system load time, and supported device type, the same driver can
be classified in different ways. For example, a layered, kernel-mode driver that the Device

Manager (device.dll) loads during the system startup provides support for a serial port. Let us

formalize our classification:

• Implementation architecture.

o Layered driver, which consists of the model device driver (MDD) and the platform

dependent driver (PDD).

o Hybrid driver.

o Monolithic driver.

• Loading module.

o Device Manager (device.di!)- stream drivers.

o GWES (gwes.dll)-drivers that are used only by the Graphics, Windowing, and

Events Subsystem (GWES).

o File system (filesys.dll)-drivers of file systems.

• Loading into memory.

o Into kernel memory-kernel-mode drivers.

o Into a specialized user process (Udevice.exe)-user-mode drivers.

• System load time.

o When starting the system.

o By request.

135

136 Chapter 6 Driver Architecture

• Type of supported device.

o Serial port.

o Video adapter.

o Network card.

o Touchscreen.

o Keyboard.

o Mouse.

o Human interface device (HID), and so on.

Driver Implementation Architecture
Several different types of driver implementation architecture are available. The most com­

mon architecture type in Windows Embedded CE is a layered driver often called an MDD/
PDD driver. In this architecture, a driver is built from two parts, the MDD library and the PDD
library.

The MDD library implements a functionality that is common for a certain class of device

drivers by providing the operating system with a required interface-usually, as a defined set
of IOCTL control codes and, possibly, functions. This interface is usually called Device Driver
Interface (DDI). The MDD layer also implements an interrupt service thread (IST) and defines
the interface for interacting with the PDD layer, which is called Device Driver Service Interface

(DDSI). A service interface depends on the driver type and the MDD library implementation.

The PDD library contains a code that works with a specific hardware device implementation
by providing the MDD layer with a pre-defined set of functions (DDSI).

PDD

Device

FIGURE 6-1 Layered driver architecture

Driver Implementation Architecture 137

A two-level model simplifies the development and the process of porting the drivers. All a

developer has to do is implement the POD layer and use the common MOD layer implemen­

tation. For each device type that supports this layered architecture, Windows Embedded CE

includes an MOD implementation as part of a completely implemented driver. Figure 6-1
illustrates the layered architecture.

The use of a two-level MDD/PDD model implies MOD persistence, where the same MOD is

used for all PDDs. When it is necessary to provide the operating system with some unique

device functionality that is a logical extension of the MDD/PDD implementation for a

given device type, it is possible to clone MOD implementation and to expand the interface

between MOD and POD (DOSI), as well as the interface offered by the MOD layer to the

operating system. This hybrid type of driver architecture is shown in Figure 6-2.

Expanded POD

Device

FIGURE 6-2 Hybrid driver architecture

The next available type of driver architecture is the monolithic architecture, which has no

intermediate interface. A monolithic driver implements the interface with the operating sys­

tem (e.g. DOI) and interacts directly with a specific hardware implementation. This type of

architecture is usually utilized in the following cases:

• When there is no layered model for a device type.

• Device hardware implements some functionality as the one implemented in the MOD

layer.

• It is necessary to provide access to a unique device functionality that does not fit into

the architecture of the existing implementation of the MOD layer.

• When using an MDD/PDD model, it is not possible to achieve a required efficiency level.

Building a monolithic driver is the most complex task; however, using this implementation

architecture makes it possible to obtain high efficiency and to maximize the hardware use.

Figure 6-3 illustrates a monolithic architecture.

138 Chapter 6 Driver Architecture

Monolithic Driver

Device

FIGURE 6-3 Monolithic driver architecture

Regardless of the selected implementation architecture, a developer may use as a base the

source code included with the development tools. Table 6-1 lists the directories that contain

the majority of drivers included with Windows Embedded CE.

TABLE 6-1 Included driver directories.

Directory

\PUBLIC\COMMON\OAK\DRIVERS\

\PLATFROM\COMMON\SRC\SOC\

\PLATFORM\<PLATFORM_NAMf>\SRC\DRIVERS

Description

Contains platform-independent drivers,
which are usually bus drivers and the MDD
parts of layered drivers.

Contains driver implementation for the sys­
tem-on-chip (SOC) periphery.

Contains implementation of drivers for a
specific platform and the PDD part of layered
drivers.

File System Drivers, Thread Drivers, and Native Drivers
As mentioned earlier, in Windows Embedded CE the following three modules (parts of the

kernel) can load drivers:

• Device.di!.

• Gwes.dll.

• FileSys.dll.

The Device Manager (Device.di!) loads the drivers that implement a stream interface. A

stream interface is a predetermined set of functions that a driver is supposed to provide to

the Device Manager. No restrictions exist in terms of the device types where a stream driver

can be implemented. The majority of Windows Embedded CE drivers support a stream inter-

File System Drivers, Thread Drivers, and Native Drivers 139

face. Table 6-2 lists stream interface functions with their descriptions (the XXX-prefix that is

defined by the developer may not be present).

TABLE 6-2 Stream interface functions.

Function

XXX_lnit

XXX_PreDeinit

XXX_Deinit

XXX_Open

XXX_PreClose

XXX_Close

XXX_IOControl

XXX_Read

XXX_Write

XXX_Seek

XXX_PowerUp

XXX_PowerDown

Description

The Device Manager calls this function while loading the driver. It
performs all required initialization.

The Device Manager calls this function before calling XXX_Deinit. It
marks an instance of the device as invalid and performs all necessary
actions to prevent resource contention in a multi-threaded imple­
mentation.

The Device Manager calls this function before the driver is offload­
ed. It performs a necessary procedure of freeing the resources.

This function is called while calling CreateFile with a device name. It
creates a handle for Read/Write/IOControl.

The Device Manager calls this function before calling XXX_Close. It
marks the device handle as invalid and performs all necessary ac­
tions to prevent resource contention in a multi-thread implementa­
tion.

This function is called when calling CloseHandle with a device han­
dle. It clears the context.

This function is called when calling DeviceloControl. In many driver
types, this is where most of the driver functionality resides.

This function is called when calling Read File. It performs a Read op­
eration. Frequently, it is not implemented.

This function is called when WriteFile. It performs a Write operation.
It is not implemented frequently.

This function is called when SetFilePointer. It performs a Move op­
eration. Frequently, it is not implemented.

The power management system calls this function when the system
returns from Suspend mode. It performs the actions that are neces­
sary to return the system from the Suspend state.

The power management system calls this function when the system
goes into Suspend mode. It performs the actions that are necessary
to enter a Suspend mode.

Stream drivers are unique in a sense that they can be named and are accessible through

functions that interact with the file system. Calling CreateFile with a device name returns a

handle that makes it possible to access a driver by using both a standard file API (Read File/

WriteFile/SetFilePointer) and the so-called worker bee of thread drivers-DeviceloControl.

The Device Manager registers the following three different file namespaces in the file system

for accessing named stream drivers:

140 Chapter 6 Driver Architecture

• Legacy (DEVl:).

• Device-based (\$device\DEV1).

• Bus-based (\$bus\PCl_O_l_O).

The file system recognizes device calls and reroutes to the Device Manager.

The legacy namespace is used first in CE. A device name is built from the device prefix and its

index. The prefix and the index are taken from the registry and the driver-load parameters.
An index value can be between zero and nine. Therefore, only 10 devices with the same

name or device prefix can be accessible through a legacy namespace.

A device namespace ($device) is similar to a legacy space but the former has no index restric­

tion. A device name is built by adding a device prefix and its index, separated by a back slash

(\), to the $device space identifier, preceded by a back slash. A device namespace makes it

possible to call more than 10 devices with the same index.

The bus namespace ($bus) provides additional possibilities for working with bus-based de­

vice drivers. It is implemented by both the Device Manager and the driver. A device name is

built by adding a bus name to the $bus namespace identifier and preceded by a back slash

(\), underscore bus number, underscore device number, and underscore function number.

The handle that is returned by making a call via a bus name has additional characteristics

as opposed to the handles that are obtained by making a call via a legacy space or a driver
space, which makes it possible to perform bus architecture-specific operations.

A stream driver does not necessarily have to support a named interface. If a driver does not

have to interact with other drivers or applications, then it may not implement the functions

that are responsible for the access to a named interface- XXX_Open/XXX_Close.

Figure 6-4 illustrates a stream driver architecture.

The GWES (GWES.dll) module loads the device drivers that are exclusively used by this

system, which are all the following drivers related in any way to the user interface: keyboard,

video adapter, touch screen, printer, and mouse. These types of drivers are sometimes named

native drivers, where each class of devices whose drivers are loaded by GWES has its own

interface with GWES.

The file system (FileSys.dll) module loads the file system drivers. File system drivers are imple­

mented as a DLL that implements a predefined set of functions and IOCTL control codes.

These functions are called by using a standard set of file system application programming

interfaces (APls) through the files that the file system driver registered.

t

User-Mode Drivers and Kernel-Mode Drivers 141

t
Access a Driver Functionality

CreateFile()/ReadFile()/WriteFile()/SetFilePointer()/
DeviceloControl()

Registers Device Namespaces

Legacy/Device/Bus

+

t

Requests to Load/Unload a Driver

ActivateDeviceEx()
DeactivateDevice()

Loads/Unloads a Driver

Provides Access from Other System Parts

~
Interrupt Service Handler

Sets Interrupt Events --+
..,_ Install llSR

Call lnterruptDone()

Interrupt Service Routines

Returns SYSINTR

FIGURE 6-4 Stream driver architecture

User-Mode Drivers and Kernel-Mode Drivers
In Windows Embedded CE, drivers can be loaded into either the kernel space (kernel-mode

drivers), or into a specialized user-mode drivers host process-Udevice.exe (user-mode

drivers). The drivers loaded by the GWES and FileSys subsystems can only be kernel-mode

drivers. The drivers loaded by the Device Manager (Device.di I) can be both kernel-mode

drivers and user-mode drivers. By default, unless a special flag is set in the registry settings

(DEVFLAGS_LOAD_AS_USERPROC(OxlO)), a driver is loaded into the kernel space.

142 Chapter 6 Driver Architecture

As mentioned earlier, drivers provide interfaces to a physical or virtual device. The quality,

stability, and security of drivers determine the quality, stability, and security of the entire sys­

tem. Regardless of a driver's type, it should be robust. A system with only one compromised

kernel-level driver becomes fully compromised because a kernel-level driver has full access to

user memory, as well as full access to kernel memory. A developer should consider all inputs

to driver functions as originating from non-trusted sources. All input should be checked and

handled carefully. User-mode drivers do not have full access to kernel and user memory, but

through the reflector service discussed below, they have access to kernel memory for opera­
tions. A system can be compromised through a low-quality driver, and therefore, all the rules

mentioned above are also applicable to user-mode drivers. In addition, the user-mode driver

infrastructure provides the possibility to limit access to kernel memory by using registry set­

tings. Developers should keep in mind that access from a user-mode driver to the kernel

must be restricted as much as possible.

Kernel-mode drivers have a certain advantage compared to the user-mode drivers in terms

of their efficiency, accessibility of internal kernel structures, and API. Kernel-mode drivers

can have direct, synchronous access to user buffers because they have direct access to user

memory. When loading a driver into the kernel, keep in mind the stability and security

requirements discussed earlier. A driver error may result in a kernel error, which results in

system failure. In order to reload a driver, it may be necessary to restart the device.

Kernel-mode drivers cannot display the user interface directly. To show the user interface,
kernel drivers use an additional kernel capability-support for the UI Proxy device driver. In

order to enable this capability in the OS image, it is necessary to add the UI Proxy for kernel­

mode drivers (SYSGEN_UIPROXY) component into an OS design. To display the user interface,

a kernel-mode driver calls the CeCallUserProc function and passes, as a parameter, the library

name that implements the user interface. The internal details of how the kernel-mode driver

displays the user interface are as follows:

1. The specified proxy device driver of the user interface is loaded into the Udevice.exe

host process.

2. A function specified in the CeCallUserProc function is called, and the specified param­

eters are passed to this function.

3. The function performs the necessary actions.

4. The result is transformed accordingly and is returned into the kernel-mode driver (out­

put parameters of the CeCallUserProc function).

It is important to point out that the user interface proxy driver is loaded with the first call.

Registry settings determine the drivers that are loaded into the Udevice.exe process.

Microsoft attempted to make the kernel-mode drivers and user-mode drivers as compatible

as possible. However, loading the drivers into a user process imposes the following certain

restrictions upon the driver:

User-Mode Drivers and Kernel-Mode Drivers 143

• Kernel structure and kernel memory are not accessible.

• A large part of the kernel API is not available.

• The use of the available part of the kernel API is restricted by registry settings.

• Limited access to user buffers.

Therefore, a universal driver that must have the ability to load into both the user space and

the kernel space must be implemented while taking into account the limitations of user­
mode drivers.

The use of user-mode drivers can improve the system stability, security, and fault-tolerance.

User-mode drivers can be separated from other user-mode drivers by being loaded into dif­

ferent Udevice.exe host processes and by being isolated from the kernel. These drivers have

far fewer privileges than the kernel-mode drivers. If a user-mode driver fails, it may be possi­

ble to reload it without having to reload the entire system. However, developers should keep

in mind the security and stability considerations mentioned earlier. Developing user-mode

drivers does not mean that developers can omit security and stability requirements.

Keep in mind that in general kernel-mode drivers are more efficient than user-mode drivers.

Moreover, not all types of drivers can be user-mode drivers. All file system drivers, all native

(GWES) drivers, and all network drivers can be only kernel-mode drivers.

The support infrastructure for user-mode drivers is called the User-mode Driver Framework.

The central part of this framework is the reflector service. This service provides the user­

mode drivers with the ability to work in user mode. For each user-mode driver, a reflector

service object is created and is responsible for the following functionality:

• It loads and controls the host process.

• It reroutes calls to the driver over to the host process from the operating system.

• It transforms pointer parameters (first-level pointers) of the calling process to the driver

address space.

• It provides the user-mode driver with access to some kernel-mode services.

The reflector service object masks the differences between user-mode drivers and kernel­

mode drivers from the rest of the system. When utilizing a functionality of a specific driver,

an application or another driver does not differentiate between a user-mode driver and a

kernel-mode driver. The reflector service object provides a user-mode driver with access to

a part of the kernel-level API, including: CreateStaticMapping(); NKDeleteStaticMapping();

VirtualCopy(); FreelntChainHandler(); lnterruptlnitialize(); lnterruptDisable(); lnterruptDone();
lnterruptMask(); and LoadlntChainHandler(). At the same time, the reflector service validates

input parameters before performing the requested actions in accordance with the registry

settings in the driver branch, where loBase represents the physical address/addresses and

lolen represents the length/lengths. In the case of one contiguous fragment, loBase and

144 Chapter 6 Driver Architecture

lo Len are created as a DWORD type. If access is needed to several non-contiguous fragments

of physical memory, loBase and lolen are created as a multi_sz type, which stores addresses

and lengths.

As mentioned earlier, user-mode drivers can be separated from one another by being

loaded into different host processes. In order to accomplish that, a special registry key of

the following kind needs to be created: HKEY_ LOCAL_MACHINE\Drivers\ProcGroup_XXXX,

where XXXX is the driver group number. The registry key must have the following values:

• ProcName requires Udevice.exe for the user-mode drivers.

• ProcVolPrefix is a prefix that is registered as a volume, such as $udevice, for ac­

cessing the drivers via the functions of the file system and DeviceloControl, such as

\$udevice\DEV1.

Furthermore, the ProcGroup type DWORD value needs to be set to the group number of the

user-mode driver registry key. Drivers with different group numbers will be loaded into dif­

ferent host processes, while drivers with the same group number will be loaded into one host

process.

Note that the Device Manager is responsible for loading user-mode drivers, so all user-mode

drivers are stream drivers.

The user-mode driver is loaded as follows:

• The Device Manager receives a request to load the driver.

• The Device Manager validates that this is a user-mode driver.

• The Device Manager creates a reflector service object.

o The reflector service object loads the host process for user drivers (udevice.exe)

by passing it the volume name specified in registry settings as a parameter.

• The host process for user drivers creates and mounts the specified volume and registers
the file system API set.

o The request is returned to the reflector service.

• The request is returned to the Device Manager.

• The Device Manager calls XXX_lnit.

o The reflector service redirects the request to the host process for user-mode

drivers.

• The host process processes the request.

• The host process loads the appropriate driver.

• The host process calls the XXX_lnit function of the driver.

User-Mode Drivers and Kernel-Mode Drivers 145

• The driver returns the device context.

o The device context is returned to reflector service.

o The device context is returned to the Device Manager.

• The Device Manager creates a handle and returns it to the initiator that loaded the de­
vice driver.

• The driver is loaded and is accessible through a standard file system API set and
DevoceloControl.

Figure 6-5 illustrates a user-mode driver loading process.

12. Return
the Device Handler

3. Create and
Mount Volume
and Register

File System API

7. Forward

1. Requests to
Load a Driver

XXX_lnit Call ActivateDeviceEx()

4. Return Call I
2. Create a User-1

Mode Driver
Host Process User Space

-- --- --- ---------------- ------------+- 2. Create a Reflector Kernel Space
Service Object

5. Return Call

6. Call XXX_lnit

FIGURE 6-5 A user-mode driver loading process

1. Requests to
Load a Driver

ActivateDeviceEx()

The fixup of the modules located in the MODULES section of binary image builder (.bib) files

occurs during the Makeimg stage. Therefore, it is necessary to specify the memory region for

address fixup. If a driver is loaded into the kernel address space, then the module needs have

146 Chapter 6 Driver Architecture

the K flag set in the .bib file. If a driver is loaded into the user process, then the K flag does

not need to be set. If a load is necessary, both the user space and the kernel space need to

have the Q flag set. The drivers located in the FILES section of .bib files can be loaded both

into the user space and the kernel space. The address fixup occurs while driver is loaded into

memory for execution.

Loading the Drivers
There are three modules that are responsible for loading the drivers: Device Manager

(Device.di!), GWES (Gwes.dll), and file system (Filesys.dll). Regardless of the module respon­

sible for loading the drivers, all settings are stored in the registry of the operating system.

The Device Manager is responsible for loading stream drivers. Stream drivers can be loaded

by calling a special function named ActivateDeviceEx() that uses a handle of a registry key

that contains driver settings as values, or it is done automatically at the system startup.

Table 6-3 provides some of the registry settings that the Device Manager uses for loading

stream drivers. Those settings should be placed as values of any appropriate registry key

which will be used for a ActivateDeviceEx() call. To specify drivers for automatically loading at

the system startup the special keys in registry are used wich will be discussed below.

TABLE 6-3 Registry settings for loading stream drivers.

Va.luename

Dll

Prefix

Order

Index

I Class

Flags

. Description

Required. Specifies the driver file name.

Optional. Defines the prefix of the stream driver and part of the device name for
accessing through the file system. It must match the prefix that is used for imple­
menting driver functions if the Ox0008 flag is not set. This flag means that driver
functions were implemented without a prefix (lnit, Deinit, Write, and so on).

···

Optional. It determines the load order of the drivers. It enables you to implement
scenarios with drivers being dependent on the load order during the automatic
load at system startup. The drivers are loaded in the order specified by this
parameter. If the parameter is missing, the drivers will be loaded after with this
parameter-usually, according to the registry's numeric order .

.•.........................•......

Optional. It is part of the device name for accessing through the file system. It is
added to the prefix on the right. If the setting is missing, the Device Manager will
automatically use the next sequential value for the devices with one

• ••••••••••••w••••ww'""'-'"~·•··,..,. •••••••••w••v••v·.--·----• ""'·---·•••.V•••

Optional. It specifies a class or classes of the device. It is used in the PnP messag­
ing system. Examples: loading a block driver, pointing to the power management
system that the driver support power management, etc.

Optional. It specifies how the driver will be loaded.

Table 6-4 provides some of the values for setting the Flags value.

Loading the Drivers 147

TABLE 6-4 Values for setting the Flags value.

Value

OxOOOOOOOO

OxOOOOOOOl

Ox00000002

Ox00000004

Ox00000008

OxOOOOOOlO

OxOOOOOlOO

OxOOOOlOOO

OxOOOlOOOO

Description

No flags.

The driver is unloaded after the XXX_lnit function is called or after the function
return.

Driver is loaded by using Loadlibrary instead of Load Driver.

Driver is not loaded.

Driver is implemented without by using a prefix in the function names (lnit,
Deinit, Write, etc.).

Loads the driver in user-mode.

Driver is loaded only when there is an exclusive access to IRQ.

Driver is loaded during boot phase one.

Access to the driver is possible only from a privileged application.
'ff"', ""'"'·-·---

There is also a certain set of registry settings, which are accessed through auxiliary func­

tions DDKReg_Getlsrlnfo() and DDKReg_GetWindowlnfo(), and which are actively used while

implementing the drivers supplied with the operating system. Bus drivers can configure these

settings, or they can be set manually. Table 6-5 lists the main settings.

TABLE 6-5 Registry settings for driver implementation.

Value Name

lrq

Sysintr

lsrDll

lsrHandler

BusNumber

Interface Type

lo Base

lo Len

MemBase

MemLen

Description

Physical IRQ request that the device uses.

System identifier of the interrupt.

Points to the library of the installable ISR.

Points to the routine function name in the installable ISR.

Number of the bus if the system had more than one bus of the same type.

The bus type used by the device.

A relative address of the 1/0 window/windows.

Length/lengths of the 1/0 window/windows.

Relative address of the memory window/windows.

Length/lengths of the memory window/windows.

Let us now look at the automatic loading of stream drivers at the system startup. When the

system is started, the Device Manager loads and reads the RootKey value of the registry key

HKEY_LOCAL_MACHINE\Drivers. Next, the Device Manager calls ActivateDeviceEx with the

148 Chapter 6 Driver Architecture

HKEY_LOCAL_MACHINE\<RootKey> key where <RootKey> is the RootKey value. By default,

this value is equal to \Drivers\Builtln.

The HKEY_LOCAL_MACHINE\<RootKey> key contains the settings for bus enumerator
(BusEnum.dll). The bus enumerator driver reads all subkeys of the registry key where it is lo­

cated, and for each key it calls the ActivateDeviceEx() function. The sequence of calling the

ActivateDeviceEx() function for the drivers is determined by the Order value. Drivers with a

lower Order value are loaded first. Drivers without the Order settings are loaded after the

drivers that have the Order settings-usually, according to the registry's numerical sequence.

Therefore, in order to load a stream driver, at system startup it is necessary to place the reg­

istry key with its settings as a subkey of HKEV_LOCAL_MACHINE\<RootKey> registry. By de­

fault, it is located in HKEY_ LOCAL_MACHINE\ Drivers\Builtln.

The GWES (Gwes.dll) loads the keyboard, video adapter, touchscreen, printer, and mouse

drivers. The loading of each driver type is determined by its unique registry settings. Let us

take a closer look at the load process for some of the native drivers.

The following algorithm is used during the load of the video adapter driver.

At first, GWES looks through a list of values stored in the HKEY_LOCAL_MACHINE\System\

GDl\DisplayCandidates key with the names that contain CandidateXwhere Xis a sequential

number of a candidate for a video adapter driver; the X value can range from 1 to 32. These

values contain a line of code data which points to a registry key in relation to HKEY_LOCAL_

MACHINE. GWES browses through the values sequentially until it finds the key that is present

in the system. Next, GWES attempts to load the video adapter driver that is specified in the

DisplayDll value of the found registry key. The process of browsing registry key values ends.

If the HKEY_LOCAL_MACHINE\System\GDl\DisplayCandidates key is missing or if there are no

registry keys specified in the CandidateX values, GWES loads the driver specified in the value

with the name Display from the HKEY_LOCAL_MACHINE\System\GDl\Drivers key. This value

must contain the name of the library of the video adapter driver. If the key is missing, GWES

will attempt to load the driver with a default file name which is ddi.dll.

Windows Embedded CE supports dual monitors, but the second video adapter driver is

not loaded automatically. In order to load the driver of the secondary display, it is neces­
sary to call CreateDC directly by specifying the driver's name and by using the obtained

handle for drawing from that point forward, as follows: HDC hSecondaryDi splay =

CreateDC(<Driver_File_Name>, NULL, NULL, NULL).

Note that on the secondary display the developer is responsible for rendering the entire dis­

play because Windows manager cannot access it.

The PS/2 keyboard driver is loaded by GWES at system startup. The GWES module reads

the value that contains the name Status in the HKEY_LOCAL_MACHINE\HARDWARE\

Driver Development 149

DEVICEMAP\KEYBD key and determines if the keyboard is present and its characteristics. If

it does not find it, by default it assumes that the keyboard is present and that it contains the

ENTER and ESC keys, as well as alpha-numeric keys and further looks for a value with the

name DriverName. It has to contain the name of the keyboard driver. By default, the key­
board driver also contains the mouse drivers.so no separate settings for loading the mouse

driver are needed. The HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\MOUSE settings

can be used by the mouse driver or other parts of the system, but GWES does not use them

for a separate load of the mouse driver.

In order to load a touch screen driver, GWES validates the presence of a value with the name

DriverName in the HKEV_LOCAL_MACHINE\HARDWARE\DEVICEMAP\TOUCH registry key

and loads the specified library.

The FileSys module loads the file system drivers. File system drivers can be loaded in two

different ways. The first method is the automatic load during the system startup, which is

typically used for the file systems that do not have a corresponding block driver (HKEY_

LOCAL_MACHINE\System\StorageManager\Autoload\<Fi/e_System_Name> key). The second

method is to load during the process of mounting media while a corresponding block driver

is being loaded. While loading a block driver, the driver sends a request to mount a media

device. The Storage Manager receives this call and requests information about the device

profile. After that, it loads a matching driver for that partition. Next, the Storage Manager

enumerates the partitions and loads file system drivers based on the partition type.

You can specify file system settings for any mounted media with a given file system.

They must be present as values in the registry key HKEY_LOCAL_ MACHINE\System\

StorageManager\<File_System_Name>, where <File_System_Name> is FATFS, UDFS, etc. The

registry key settings are HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\<Device_

Profile_Name>\<File_System_Name>, where \<Device_Profile_Name> is CDProfile, HDProfile,

PCMCIA, SDMMC, etc. override the file system settings stored in the HKEY_LOCAL_

MACHINE\System\StorageManager\<Fi/e_System_Name> key.

Driver Development
A choice of the driver implementation method depends heavily on the device type and addi­

tional requirements. For example, a majority of debugging drivers for network cards shipped

with the development tools work in poll mode, which is often unacceptable for a regular

network driver.

Let us look at a driver implementation that utilizes interrupts. In Windows Embedded CE, the

processing of interrupts is divided into two parts: interrupt service routine (ISR) and interrupt

service thread (IST). ISR routines are part of the OAL layer. Otherwise, if support is included

in the OAL layer, they can be installed during execution (installable ISR routines-llSR). The

main tasks of the ISR routine are to determine the source of the interrupt, mask the inter-

150 Chapter 6 Driver Architecture

rupt, and return the logical system interrupt (SYSINTR) identifier to the system. IST is a worker

bee that performs the majority of interrupt processing. It creates an event, registers it in the

kernel for a certain logical interrupt, and waits for the event. When the event is created, it

performs all the necessary processing based on the event. If a driver uses an installable ISR,

then IST loads the installable routine. If a driver has a multi-threaded implementation, then

the process of creating and installing an ISR can be executed in one thread, such as the main

thread while another thread can wait and process a different event. Driver tasks include the

following:

• Determine a system identifier of the interrupt.

o Can be specified directly in the driver.

o Can be obtained from registry settings by using the DDKReg_Getlsrlnfo()

function.

o Can be obtained by sending the request to the OAL layer by using IRQ
- IOCTL_HAL_REQUEST_SYSINTR.

• Create an event (CreateEvent()).

• Register the event in the kernel for a specified system identifier of the interrupt

(lnterruptlnitialize()).

• Wait for an event by using WaitForSingleObject().

• Once the event has been created, process it appropriately.

• After the processing is finished, call lnterruptDone().

If a driver uses an installable ISR routine, then it additionally performs the following tasks:

• Determines the settings for the ISR routine (name, entry point, and other parameters).

o Can be directly specified in the driver.

o Can be obtained from registry settings by using the DDKReg_Getlsrlnfo()

function.

• Loads an installed llSR procedure for a specific IRQ request (LoadlntChainHandler()).

• Configures the llSR procedure (KernellibloControl()).

• After finishing, it calls the FreeintChainHandler() function, which excludes the installed

llSR procedure from a chain of installed procedures that are called in the OAL layer

while processing a specified interrupt request (IRQ). It keeps the library code loaded in

memory.

The installable ISR routine is implemented as a dynamically loaded library. This library must

meet the following requirements:

• The entire implementation code must be inside the library; no explicit dependencies

should exist.

Driver Development 151

• No implicit dependencies can exist (NOMUPS16CODE = 1).

• The C run-time library cannot be used (NOLIBC = 1).

The development tools are shipped with generic installable service routine (GllSR), which is

an installed procedure for processing common interrupts. It is supplied in the source code (\

Public\Common\Oak\Drivers\GllSR\), is applicable for a majority of situations, and reads the

registers/ports in order to determine the status of an interrupt. The GllSR procedure can be

configured with KernellibloControl by setting the following:

• Register address/port address.

• Register size/port size.

• A feature, memory, or input/output (1/0) register or port.

• A mask.

Working with buffers that are passed from the calling code to drivers is an important part of

driver development. Before we start discussing this subject let us provide a few definitions, as

shown in Table 6-6, that will be used later on.

TABLE 6-6 Definitions for working with buffers.

Term

Access Checking

Pointer Parameter

Embedded Pointer

Secure copy

Marshaling
or
mapping

Synchronous Access

Definition

Checks to make sure that the caller process has enough privileges to access
the buffer.

A pointer that is passed to an API function as a parameter.

A pointer that is passed to an API function inside a data structure or a buffer.

A local copy of the buffer data that has been passed.

Usually applies to pointers. Prepares a pointer to be used in another process.

Provides access to the buffer during the API call in the caller thread.

When applications need to call some functionality implemented by drivers, usually they need

to pass some information to drivers. It is possible for drivers to use shared memory space

to pass parameters, such as by using shared heaps or memory mapped files. In most cases,
driver functionality is accessable through API calls by using parameters.

This accesibility scenario results in two issues. First, parameters use memory in the user mem­

ory process space, while drivers reside in the kernel memory space (for kernel-mode driv­
ers) or in another user process (for user-mode drivers). Second, the caller must have enough

rights to access the passed buffer. Therefore, during driver development, you must check ac­

cess to passed buffers and provide drivers with access to the caller's buffer data. Figure 6-6

illustrate a sample marshaling case.

152 Chapter 6 Driver Architecture

Pointer Parameter

Embedded Pointer

0101010010101

User Memory Space

App.exe

FIGURE 6-6 A sample marshaling case

In this case, App.exe calls a Driver.di! function with two parameters. The first is a pointer pa­
rameter, and the second is a structure with an embedded pointer. If the Driver.di! function is

called synchronously (from the caller's thread), the App.exe memory space can be accessed

directly from the Driver.di! functions during the call. Only synchronous, direct access requires

an access check and not marshaling.

There are two options if asynchronous access to the buffers is required: The first is to make

a copy of the buffer into the driver memory, and the second is to create an alias to the same

physical memory as the buffer that is being passed.

As mentioned earlier, there are several types of marshaling:

• Direct access.

o The calling process buffer is directly accessible for the lifetime of the call.

o It is possible only with a synchronous access for the kernel-mode drivers.

• Copying.

o The buffer being passed is copied to the working buffer of the driver.

o A driver is working with a copy. If needed, it is copied back.

• The use of an alias.

o Creating a new buffer in the driver that is associated with the same physical

memory as the buffer that is being passed.

o All buffer changes are automatically accessible in the calling process.

Driver Development 153

The kernel is independently able to determine the best marshaling method. Depending on

whether there is synchronous or asynchronous access to the buffer, a different API set needs

to be used for marshaling.

With synchronous access, the kernel automatically converts pointer parameters, and

therefore, the developer has to manually map the embedded pointers by calling

CeOpenCallerBufer(), which validates access and performs marshaling and at the end calls

CeCloseCallerBuffer().

With asynchronous access, the conversion procedure that occurs with synchronous access

needs to be supplemented with a preparation of all pointers for asynchronous access by

calling the CeAllocAsynchronousBuffer() function, and at the end, calling the

CeFreeAsynchronousBuffer() function.

Data marshaling has the following restrictions for user-mode drivers:

• With asynchronous access, the pointer parameter is accessible in Read-Only mode;

there is no support for Write mode.

• Despite the capability to perform manual marshaling of built-in pointers, when calling

from the kernel to a driver, it is possible to receive pointers that are not accessible from

the user-mode drivers.

Thus, it is most efficient to use a flat buffer containing all the data for the user-mode drivers

and to not use asynchronous access.

Table 6-7 provides summary information about the system API that should be used for

checking access and marshaling a caller's buffers.

TABLE 6-7 Buffer marshaling API.

Marshaling Pointer Parameter

Synchronous Access No need for additional API calls

CeAllocAsynchronousBuffer()

Asyncronous Access

CeFreeAsynchronousBuffer()

Embedded Pointer

CeOpenCallerBufer()

CeCloseCallerBuffer()

CeOpenCallerBufer()

CeAllocAsynchronousBuffer()

CeFreeAsynchronousBuffer()

CeCloseCallerBuffer()

The process of passing data to a driver results in additional risks associated with a possibil­

ity of modifying the pointers and/or data to which they point during an API execution after

being validated by the driver. To prevent these types of attacks, a safe copy method is used

which, involves creating a separate copy of the data stored by the driver. When a safe copy

154 Chapter 6 Driver Architecture

is created, the buffer that is being passed is copied into a local buffer of the driver. It is

desirable to use it in the following cases:

• For all embedded pointers.

• For all parameters that need to be validated before being used.

Notice that the use of a safe copy reduces efficiency to a certain degree. You can create a

safe copy through several ways:

• Manually.

• By using CeOpenCallerBuffer() with the ForceDuplicate parameter set as TRUE for em­

bedded pointers.

• By using CeAllocDuplicateBuffer() for pointer parameters.

Table 6-8 shows the available marshaling API functions.

TABLE 6-8 API for marshaling.

Function

CeOpenCallerBuffer

CeCloseCallerBuffer

CeAllocAsynchronousBuffer

CeFreeAsynchronousBuffer

CeFlushAsynchronousBuffer

CeAllocDuplicateBuffer

CeFreeDuplicateBuffer

Description

Validates access and performs marshaling of the pointer. Returns a
marshaled pointer. Allocates resources. In order to free resources
after the pointer processing is finished, the CeCloseCallerBuffer
function must be called.

Frees up all resources allocated by the CeOpenCallerBuffer function.
If necessary, writes back to the buffer that was passed.

Prepares a buffer that was previously marshaled by the
CeOpenCallerBuffer function or automatically by the system, for an
asynchronous access. This function must be called synchronously
before the return to the calling thread. It allocates resources. In
order to free resources after the pointer processing is finished; the
CeFreeAsynchronousBuffer function must be called.

Frees up resources allocated by the CeAllocAsynchronousBuffer
function. If necessary, writes back to the buffer that was passed.

Makes changes in the source buffer in accordance with the changes
in the buffer that was changed by the CeAllocAsynchronousBuffer
function.

Creates a secure copy of the parameter-pointers.

Frees up resources allocated by the CeAllocDuplicateBuffer function.
If necessary, writes back to the buffer that was passed.

Aside from that, Windows Embedded CE 6.0 includes a set of supplemental C++ classes for

marshaling (\PUBLIC\COMMON\OAK\INC\MARSHAL.HPP). Table 6-9 provides a listing of

classes and their descriptions.

Driver Development 155

TABLE 6-9 Additional marshaling classes.

Class

AsynchronousBuffer_t

DuplicatedBuffer_t

MarshalledBuffer_t

Description

Wrapper class for the CeAllocAsynchronousBuffer and
CeFreeAsynchronousBuffer functions. Used for marshaled pointers that
require an asynchronous access.

Wrapper class for the CeAllocDuplicateBuffer and
CeFreeDuplicateBuffer functions. Used for pointer parameters.

Wrapper class for the CeOpenCallerBuffer, CeCloseCallerBuffer,
CeAllocAsynchronousBuffer, and CeFreeAsynchronousBuffer functions.
Used for non-marshaled embedded pointers.

Speaking of the development of reliable and stable drivers, keep in mind that it is necessary
to insert __ try/ __ except/ __ finally blocks into the executable code that can cause an exception

error, especially for the code that accesses data received from outside.

Debugging is a big part of driver development. Windows Embedded CE development tools
provide all needed functionality to debug drivers. Windows Embedded CE provides two pos­
sibilities for debugging drivers: the first is standard step-by-step debugging with the pos­
sibility to enter kernel-supplied code, and the second is debugging without interruptions by

using debug zones. Note that to use the standard kernel debugger, KITL should be imple­
mented for the particular hardware platform and selected transport method.

If you want to have the capability to debug any part of the system, you should build a Debug
OS image. If you want to debug an entire driver, then it is enough to build a Retail OS image
that includes the kernel debugger, KITL, and the debug version of the driver with all auxiliary
debug files. If you want to debug an entire driver and a part of the system, you should in­
clude the components in the previous case, as well as the debug version of the required sys­

tem part with all auxiliary debug files in the image. For detailed information about building
an OS image, see Chapter 4, "Build System."

Debug zones are an improved version of the "printf debugging" technique and include the
possibility to configure the output at run-time, as well as integrating with Platfrom Builder.
Fundamentally, debug zones send conditional output to the debug output. In this way, de­
bug zones can provide you with information about your driver execution without interrupt­
ing an execution.

All the supplied system code actively uses debug zones, so you can see not only the output

from your driver debug zones but also most of the surrounding system activity. This capabil­
ity can be helpful to discover and resolve problems during driver development.

156 Chapter 6 Driver Architecture

To use debug zones in your own code you should do the following:

• Include dbgapi.h in the driver's header file: #include <DBGAPI. H>

• Define masks for debug zones, such as:

//zone 0
#define ZONEMASK_INIT
//zone 1
#define ZONEMASK_ACTIONS
//zone 2

(Ox00000001«0)

(OxOOOOOOOl«l)

#define ZONEMASK_EXCEPTIONS (Ox00000001<<2)

//zone 14
#define ZONEMASK_WARNING
//zone 15
#define ZONEMASK_ERRORS

(Ox00000001<<14)

(Ox00000001<<16)

• Define flags to use in conditional debug zones output, such as:

//true if zone 0 is enabled
#define ZONE_INIT
II true if zone 1 is enabled

DEBUGZONE (0)

#define ZONE_ACTIONS DEBUGZONE (1)
//true if zone 2 is enabled
#define ZONE_EXCEPTIONS DEBUGZONE (2)

/I true if zone 14 is enabled
#define ZONE_WARNING DEBUGZONE (14)
II true if zone 15 is enabled
#define ZONE_ERRORSDEBUGZONE (15)

• Define parameter dpCurSettings, such as:

DBGPARAM dpCurSettings = {

//Usually name of module
TEXT("MyDriver"),

} ;

{ // Names for 16 zones
TEXT("Ini t"), TEXT("Acti ons"), TEXT("Exceptions"), TEXT('"'),
TEXT(''"), TEXT(""), TEXT(""), TEXT(""),
TEXT(""), TEXT(""), TEXT(""), TEXT(""),
TEXT('"'), TEXT(""), TEXT("Warni ngs"), TEXT("Errors")

},

// Zones enabled by default
ZONEMASK_ERRORSI ZONEMASK_EXCEPTIONSIZONEMASK_INIT

• Register debug zones by using appropriate macros, such as:

o DEBUG REGISTER() for Debug build. Use NULL as parameter if uses for .exe. Use

handle as parameter if uses for .dll.

o RETAILREGISTERZONES() for retail and debug build. Use NULL as parameter if

uses for .exe. Use handle as parameter if uses for .dll.

• Include appropriate macros in the driver code (see Table 6-10 for details).

Driver Development 157

• Make appropriate OS build (Debug or Retail).

• Load the image to device.

• Use Platform Builder to configure active debug zones for your module (see Chapter 2
for more information).

TABLE 6-10 Debug zone macros.

Macros

RETAILMSG (<Expression>, <Message>)

RETAILLED (<Condition>,<Parameters>)

ERRORMSG(<Expression>, <Message>)

DEBUGMSG(<Expression>, <Message>)

DEBUGLED(<Condition>,<Parameters>)

DEBUGCHK(<Expression>)

DEBUGZONE(<Zone Id>)

DEBUGREGISTER(<Handle>)

RETAILREGISTERZONES(<Handle>)

Description

Conditionally outputs a printf-style formatted
message.

Conditionally outputs WORD value to the LED.

Conditionally outputs a printf-style formatted
message with ERROR with the file name and
line number of the error.

Conditionally outputs a printf-style formatted
message.

Conditionally outputs a WORD value to the
LED.

Asserts an expression and produces a
Debug Break if the expression is FALSE.

Tests the mask bit in the current debug zone
settings.

Registers debug zones for your process or
module only on Debug builds.

..•..... , .. ,

Registers debug zones on Debug and Retail
builds

Chapter 7

Starting the Operating System

Understanding the processes that take place during the system startup is important for

building devices based on Microsoft Windows Embedded CE. As we look at the process of

system initialization, the role of each of the components that make up the system kernel,

as well as the role of the included code and custom code developed by the Board Support
Package (BSP) manufacturer, becomes much clearer.

No boot loader is required in order to load the Windows Embedded CE operating system

(OS). The use of a boot loader simplifies development tasks significantly, but its presence is

not required for the end device. It implies that the image of the operating system is located

in ROM and that during a device startup, a jump is made to the address of the kernel startup

function. However, not all platforms support such an option (for example, x86). Using the

boot loader makes it possible to perform a preliminary platform preparation, to load the
image of the operating system into the correct location in RAM, and only then jump to the

kernel startup function.

At first, let us look at how the boot loader performs during the system startup. For more

information about the boot loader implementation, see Chapter 5, "Board Support Package

(BSP)." Next, we shall take a look at how the Windows Embedded CE kernel is started.

Image Preparation
While building a system image, the following actions are performed to prepare an image for
execution:

• Preparing for the execution of the OS image in place (in accordance with the settings of

the CON FIG section of the binary image builder (.bib) file).

• Creating a special structure that contains information about the image contents and

table of contents (TOC).

• Assigning the pTOC variable in Nk.exe the meaning of a TOC pointer.

This results in an image that is ready to execute in certain addresses of virtual memory that

contains a special structure depicting the image contents. In order to launch the system for

execution, the boot loader must load the image into correct addresses; it must then verify

that by shifting from the start of the image by Ox40, the CECE signature (Ox43454345) is

present [the ECEC in memory (Ox45434543)]. Next to it, there is a pointer to the ROMHDR

structure, and after that, there is a pointer to the TOC (pTOC) structure. The boot loader

159

160 Chapter 7 Starting the Operating System

reads the value of the pointer to the TOC structure and validates the entry for NK.EXE.

Following that, it jumps to the address of the kernel startup function.

The startup kernel function StartUp() is developed by using assembler language.
Implementation can be separated out. It can take place partly in the platform's common

code (\PLATFORM\COMMON\SRC\SOC\<SOC_D/R>\OAL\STARTUP\ and (\PLATFORM\

COMMON\SRC\<CPU_FAM/LY>\COMMON\STARTUP\), and partly in BSP code directly

(\PLATFORM\<PLATFORM_ NAMf>\SRC\OAL\OALLIB\). This function's code depends heavily
on the platform. The main tasks of the Startup function are to transfer the processor into a

predefined state and to perform an appropriate low-level initialization of the hardware, in­

cluding initializing the memory controller, disabling interrupts, TLB cache and the Memory

Management Unit (MMU) module, and performing initialization of the system-on-chip

(SOC). After the processor is initialized, the Startup function will call the functions KernelStart

or Kernellnitialize (x86) (\PRIVATE\WINCEOS\ COREOS\NK\LDR\<CPU_FAM/LY>\). The

KernelStart/Kernellnitialize function performs the following main actions:

• Copies sections defined in the ROMHDR (through ulCopyEntries, and ulCopyOffset)
into RAM by using KernelRelocate(). After this, global variables Nk.exe become acces­

sible for read and write operations.

• Initializes the first-level page table based on OEMAddressTable (ARM and x86).

• Enables the MMU module and cache (ARM and x86).

• Finds the entry point into kernel.di! (FindKernelEntry).

• Calls the kernel entry point by passing a pointer to KdataStruct as a parameter, which

also contains a pointer to the OEMlnitGlobals and OEMAddressTable functions (x86 and

ARM).

In the current implementation, the kernel.di! entry point function is named NKStartup().

Its implementation is located in the \PRIVATE\WINCEOS\COREOS\KERNEL\<CPU_FAM/LY>\

directory. The kernel entry point function performs the following actions:

• Initializes the NKGLOBALS structure. This structure contains all functions and variables

that are exported by the kernel to the OAL and Kernel Independent Transport Layer

(Kill) if KITL is implemented as a separate DLL library.

• Calls the OEMlnitGlobals function by passing the initialized NKGLOBALS structure to it.

• OEMlnitGlobals returns the structure OEMGLOBALS. This structure contains all
functions and variables that are exported by the OAL to the kernel and KITL layer if KITL

is implemented as a separate DLL library.

• The ARMSetup() function is called for ARM processors, whereas the MIPSSetup()

function is called for Microprocessor without Interlocked Pipeline Stages (MIPS)

processors.

Startup Process 161

• If the image has KITL, the kernel attempts to load it and calls the entry point.

• The OEMlnitDebugSerial() function is called.

• By using the OEMWriteDebugString() function, the kernel outputs to the debug output

a string that containes the information about the kernel starting with "Windows CE

Kernel for ... ".

• The OEMlnit() function is called which initializes the hardware platform.

• The KernelFindMemory() is called, (\PRIVATE\WINCEOS\ COREOS\NK\KERNEL\loader.c).

• The Kernellnit() function is called (\PRIVATE\WINCEOS\COREOS\ NK\KERNEL\nkinit.c).

For ARM, the KernelStart() function is called from (\PRIVATE\WINCEOS\COREOS\NK\

KERNEL\ARM\armtrap.s, which calls Kernellnit().

• In some architectures, a forced rescheduling is performed after the exit from

Kernel I nit().

Startup Process
Figure 7-1 shows part of the system startup process: StartUp() - KernelStart()/

Kernellnitialize() - NKStartup() (<Kernel Entry>()). The code implemented in the OAL layer is

shown in gray. It also shows the main tasks being performed and the functions called.

The OEMlnit() function is implemented in the OAL layer, and it is responsible for platform

initialization including the interrupt, timer, KITL, and bus.

The Kernellnit() calls the following functions:

• APICalllnit ()configures the system API: \PRIVATE\WINCEOS\ COREOS\NK\KERNEL\

apical I.e.

• Heaplnit () initializes the kernel heap: \PRIVATE\WINCEOS\ COREOS\NK\KERNEL\heap.c.

• lnitMemoryPool () initializes a physical memory pool: \PRIVATE\WINCEOS\COREOS\NK\

KERNEL\physmem.c.

• PROClnit ()initializes infrastructure for support processes: \PRIVATE\ WINCEOS\

COREOS\NK\KERNEL\process.c.

• VMlnit () initializes virtual memory for the kernel process: \PRIVATE\WINCEOS\

COREOS\N K\KERN EL\vm.c.

• THRDlnit ()initializes threads; creates a tread with a working SystemStartupFunc func­

tion and launches that thread for execution by using the MakeRun() function: \PRIVATE\

WI NCEOS\COREOS\N K\ KERN EL\thread.c.

• Mapfilelnit () initializes support for memory-mapped files: \PRIVATE\WINCEOS\

COREOS\NK\ MAPFILE\mapfile.c.

162 Chapter 7 Starting the Operating System

c

FIGURE 7-1 System startup process StartUp()-><Kerne!Entry>

The SystemStartupFunc() function (\PRIVATE\WINCEOS\COREOS\NK\KERNEL\schedule.c)

performs the following actions:

• Calls the Kernellnit2() function that completes kernel initialization.

• Calls the Loaderlnit() function the initializes the kernel loader for EXE/ DLL - \PRIVATE\

WI NCEOS\COREOS\N K\KERN EL \loader.c.

• Initializes a cookie that protects the stack: __ security_init_ cookie().

• Initializes a page pool: PagePoollnit(), CELog, profiler, etc. - Loggerlnit(), system

debugger - SysDebuglnit().

• Calls IOCTL- IOCTL_HAL_POSTINIT. A developer can use its implementation for

additional initialization after kernel initialization.

• Creates two threads that are ready to execute. The first one has a working

PowerHandlerGuardThrd function and the second one has a working RunApps

function.

Startup Process 163

The RunApps() function (\PRIVATE\WINCEOS\COREOS\NK\KERNEL\kmisc.c) performs the

following actions:

• Loads filesys.dll.

• Creates a thread ready for execution with a working function, which is the entry point

of filesys.dll.

• If the image has filesys.dll and the file system, it waits for the file system to be initialized

(SYSTEM/FSReady event), then loads MUI and system settings from the registry and in­

forms the file subsystem about completion of required tasks:(* pSignalStarted) (0).

• A thread becomes a thread for cleaning dirty pages in the background.

Figure 7-2 shows part of the process of system startup: Kernell nit() - SystemStartupFunc() -

RunApps(). It also shows the main tasks performed and the functions called.

FIGURE 7-2 System startup process Kernellnit()->RunApps()

164 Chapter 7 Starting the Operating System

Loading the File System
Let us proceed to the process of loading filesys.dll. As opposed to the previously covered

parts of the kernel, the source code of filesys.dll is not provided in Shared Sources, and
therefore, the load of filesys.dll can be traced by using the load log by setting certain values

in Debug Zones as well as by using the code that interacts in some way with the loading of

filesys.dll.

Next, we shall look at the cold boot. During the cold boot, filesys.dll performs the following

main actions:

• Initializes the object store memory and maps it for itself.

• Initializes an application programming interface (API) set of the file system and inter­
mediate APls (databases, point-to-point message queue, event log, and registry).

• Initializes registry data.

o The initialization procedure will differ depending on the type of registry used

(hive-based or RAM-based).

o During this stage, the Device Manager (device.di!) can be loaded if it is necessary

to load the drivers for accessing the media where the hive-based registry is going

to be stored.

o If the Device Manager (device.di!) is loaded during this stage, then after the nec­

essary drivers are loaded, device.di! is suspended while waiting for the initializa­

tion of filesys.dll to be finalized.

• Informs the kernel that filesys.dll performed base initialization (sets the SYSTEM/
FSReady event) and waits for a signal from the kernel - (* pSignalStarted) (0) to con­

tinue initialization (see the RunApps() function above).

• Filesys.dll launches applications specified in the registry key HKEY_LOCAL_MACHINE\

lnit.

o If this registry key contains the Device Manager (device. dll) and it's already been

loaded, filesys.dll sets the SYSTEM/BootPhase2 event. After this message is re­

ceived, the Device Manager continues to load the drivers (\PRIVATE\WINCEOS\

COREOS\ DEVICE\DEVCORE\devcore.c).

After the initialization of filesys.dll completes, the system is completely operational. Figure

7-3 shows part of the process of starting the system through filesys.dll and the main tasks

being performed.

Loading the Device Manager 165

FIGURE 7-3 System startup process through filesys.dll

Loading the Device Manager
The Device Manager (device.di!) loaded during the system startup reads the RootKey

value in the registry key HKEY_LOCAL_ MACHINE\Drivers. Next, the Device Manager calls

ActivateDeviceEx with the HKEY_LOCAL_MACHINE\<RootKey> key, where <RootKey> is the

value of RootKey. By default, this value is equal to \Drivers\Builtln.

HKEY_LOCAL_MACHINE\<RootKey> contains the settings for bus enumerator (BusEnum.dll).

The bus enumerator driver reads all sub keys in the registry key where it's located, and for

each key it calls the ActivateDeviceEx() function. The order in which the drivers are calling

ActivateDeviceEx() is determined by their Order value. The drivers with lower Order values

are loaded first. Drivers without the Order value being set are loaded after the drivers with

an Order value, which are usually in the registry's enumeration order.

If the Device Manager is loaded when the registry is initialized, it first loads the drivers from

the registry's boot section that is mounted by filesys.dll (Boot.hv). The load procedure is the

same as the one described above.

Let us look at the format of values of the HKEY_LOCAL_MACHINE\lnit key for automatically

launching applications at the system startup. The I nit key may contain two types of values:

one with a name of LaunchXX and DependXX type, where XX value can be between 00

and 99.

LaunchXX contains a value of REG_SZ type, which must be the name of the program that

needs to be launched, e.g., program.exe, without parameters. The value of XX determines the
load order; the lower the XX value, the earlier the application will be launched.

DependXX contains a value of the REG_BINARY type; it also makes it possible to deter­

mine the dependencies of applications on other applications during the load by specifying

what applications should be loaded before the application specified in the corresponding
LaunchXX key. Indexes of XX applications that the specified application is dependent on are

indicated as a list of words string (word-2 bytes), with the words' byte order reversed.

166 Chapter 7 Starting the Operating System

The application specified in the I nit key must inform the system that it loaded successfully

and that dependent applications can be loaded by calling the SignalStarted() function with

a parameter that is passed to it by the system as a command line parameter during the load

process. This is why it is impossible to specify command line parameters when loading ap­

plications from the lnit key.

Following is an example of the registry key I nit content:

[HKEY_LOCAL_MACHINE\Init]
"LaunchlO" = "shell.exe"
"Launch20" = "device.dll"
"Depend20" = "hex:Oa,00"
"Launch30" = "gwes.dll"
"Depend30" = "hex:l4,00"
"Launch50" = "explorer.exe"
"Depend50" = "hex:14,00, le,00"

In this case, the shell.exe application will be launched first; next-the Device Manager (de­

vice.dll), which depends (in this example) on shell.exe; next, gwes.dll is loaded, which depends

on the Device Manager; finally, explorer.exe is loaded, which depends on the Device Manager

(device.di!) and gwes.dll.

Chapter 8

Building Devices
The process of building devices based on Windows Embedded CE can be separated out into

several stages:

• Device planning.

o Requirements definition.

o Selection and/or planning of hardware development.

o Selection of a base template for the operating system (OS) design.

o Planning of image deployment for production.

• Development of the hardware platform (optional).

• Development and customization of a Board Support Package (BSP) for a selected hard­
ware platform (optional).

o Launching Windows Embedded CE on a selected hardware platform.

o Driver development.

• Operating system design.

o Configuring a run-time image.

o Developing applications.

o Building and testing intermediate versions of the image.

o Creating a Software Development Kit (SDK) to enable third-party developers to

build solutions for this device.

• Building the final version of the image for testing and release.

• Final testing of the image.

• Image deployment for production.

The process of building a device starts with a planning phase. This phase is no less impor­

tant than BSP development or image design. Planning can help ensure that the device is

implemented with the fewest resources and in the expected time. A traditional approach to

development consists of defining the requirements and the features of the target device.

The more complete the requirements, the more possible it is to accurately select a suitable

hardware platform for the device. During the planning phase, you can perform testing of

the Windows Embedded CE operating system on the available hardware platforms in order

to determine more precisely the hardware and software requirements of the device. Often

167

168 Chapter 8 Building Devices

times during the planning phase, developers do not consider how OS images are moved to

the device during the production phase. This is a critical factor that may considerably in­

crease the production costs. For instance, in the case of medium and large volumes, if OS im­

ages require manual loading to each device, this can substantially increase labor costs.

There are two options in hardware platform selection: use an existing platform or develop

a new, independent one. When an existing platform is selected, it is necessary to make sure

that the BSP is accessible in the same form as is needed for implementing the device require­

ments. For instance, if you need to connect additional peripheral devices to the main device
and reconfigure the interrupt controller to perform the tasks that will be implemented by the

device, then, most likely, it would be necessary that BSP source codes are accessible. If, on the

other hand, you need to simply deploy a specialized application over a hardware platform

with standard functionality, then, most likely, the BSP source codes would not be necessary.

It is essential to understand the importance of BSP accessibility for a selected platform. The

absence of a BSP prolongs the development time considerably, which increases the overall

development costs. BSP development is the most labor-intensive part of a device-building

process. It requires that the developer know the hardware architecture as well as the operat­

ing system architecture. All of the interaction between the operating system and the plat­

form is implemented in the BSP. Therefore, the quality of the BSP determines the resulting

quality of the device.

Nevertheless, the implementation of the device requirements may require the creation of a

custom device hardware design. In this case, it is necessary to make sure that the source code

has a BSP that is sufficiently similar to the hardware platform of the device. The presence of

such a BSP may be of considerable help during the development of a custom BSP.

Please note the development tools included with Platform Builder for Windows Embedded

CE 6.0 R2 contain several examples of BSP implementation-at least one BSP for each of the

following supported processor architectures: ARM, x86, SH4, and Microprocessor without

Interlocked Pipeline Stages (MIPS).

The basics of BSP development are covered in Chapter 5, "Board Support Package (BSP)''.

During BSP development, the components involved include the following:

• Boot loader.

• OAL and Kernel Independent Transport Layer (KITL).

• Drivers.

A boot loader is not required for a BSP, but its presence speeds up the development process
considerably. A considerable portion of the boot loader code and OAL code is common. An

important function of a BSP is support for KITL over the transport that is accessible on the

hardware platform, such as serial port, Ethernet, and Universal Serial Bus (USB). KITL sup­

port is practically a mandatory requirement to ensure the efficiency of the development of

169

drivers and for debugging the image of the operating system. KITL can be part of the OAL,

or it can be implemented as a separate library. After the main functionality of OAL has been

implemented, you can start implementing the drivers for peripheral devices. Note that the

mechanism of transforming a hardware interrupt into a system identifier resides in the OAL

layer and can be expanded by using installable interrupt service routines when OAL supports

this functionality.

For more information about the architecture of the operating system and the drivers, see

Chapter 3, "Operating System Architecture," and Chapter 6, "Driver Architecture."

During the planning phase, it is also necessary to determine the type of a device to build. The

device type selection determines the standard design template to use as a base when build­

ing the device run-time image. Windows Embedded CE 6.0 R2 contains the following device

design templates and template versions:

• Consumer media device.

o Digital media receiver.

o Set-top box.

o Custom device.

• Industrial device.

o Industrial controller.

o Internet appliance.

o Gateway.

• PDA device.

o Mobile handheld.

o Enterprise Web pad.

• Phone device.

o IP phone basic.

o IP phone advanced.

o Small-footprint device.

• Thin client.

o Windows Thin Client.

o Enterprise terminal.

o Windows network projector.

The main list contains the device design templates. The sub-items contain different versions

of the same template. Table 8-1 provides a detailed description of the purpose of each tem­

plate version.

170 Chapter 8 Building Devices

TABLE s-1 Device design templates.

Design
Template

Consumer
Media Device

Consumer
Media Device

Design Template Description
Version

Digital Media
Receiver

Set-Top Box

Devices that will play and/or store various multi-media resourc­
es, including music, video, and images.

Devices that will be connected to the TV to access the Internet
and to view multimedia resources. By default, it is built with a
standard CE shell and a browser that has TV navigation mode
enabled.

Custom Device - By default, no catalog components are selected. This enables
you to select only the required components while going
through the OS Design Wizard.

Industrial
Device

Industrial
Device

Industrial
Device

PDA Device

PDA Device

Phone Device

Phone Device

Small
Footprint
Device

Thin Client

Thin Client

Thin Client

Industrial
Controller

Internet
Appliance

Gateway

Mobile Handheld

Enterprise
Web Pad

IP Phone Basic

IP Phone
Advanced

Windows
Thin Client

Enterprise
Terminal

Windows
Network
Projector

Industrial automation devices such as control panels and pro­
grammable controllers.

Devices with a keyboard, monitor, and usually with a browser­
based interface.

Devices that function as a network gateway and provide wired
and wireless access to Internet connections from a home net­
work.

Mobile devices that support a touch screen and/or a keyboard,
such as warehouse terminals for tracking merchandise.

A touch screen-based Web Pad with a screen resolution from
640x480 and higher; a standard CE shell and additional applica­
tions with their own application-based or browser-based shell.

VoIP phone without a user interface.

VoIP phone with a user interface, contacts, and a rich and con­
figurable user interface, which may include Windows Messenger
and a browser.

Devices for which the image size is a significant requirement.
It implies that all the required components will be selected
directly from the catalog.

Devices with a minimum interface that enables you to obtain
access by using the Remote Desktop Protocol (RDP) and, pos­
sibly, to use a browser.

Devices that provide a more familiar thin client interface to a
corporate user, such as a self-serve kiosk with its own shell, a
cash register, etc.

Devices that map the Remote Desktop of a personal computer
running Vista with RDP, such as network projectors.

After the initial design template has been selected, you need to create a base OS design

and configure it in accordance with the device requirements. Please note that even if a

171

self-developed BSP is used, it is necessary to clone it prior to creating a base image and use

the cloned version from that point on.

The following main settings are available for the OS design:

• Adding/removing components from the catalog into the OS design.

• Setting the parameters in the configuration files. For more information about configu-

ration files, see Chapter 4, "Build System."

o Registry (*.reg).

o Device memory and image contents (*.bib).

o Initialization of the RAM-based file system (*.dat).

o Built-in databases (*.db).

Project settings that are accessible through the Project Properties dialog box. For more

information, see Chapter 2, "Operating System and Application Development Tools."

o General settings.

o Locale settings.

o Build settings (configuring the appropriate build variables).

o Setting optional build variables directly.

o Additional actions during the build process.

The next stage is to create the main application or a set of device applications that provide

the main device functionality. This stage can also include the configuration and customiza­

tion of applications included with Windows Embedded CE 6.0 R2, such as Windows Thin

Client or VoIP phone based on the IP phone advanced template. Keep in mind that the code

provided with the development tools must be cloned.

During the development process, the OS image builds are preformed regularly for the purpose of

driver and application debugging. It is also recommended that the developers create intermedi­

ate builds for the testing that must be performed and, if necessary, also create intermediate SDKs

for the purpose of developing and/or testing of third-party development for the device. The use

of the above-mentioned approach enables the developer to identify the problems, if they appear,

prior to final testing of the OS image/device before releasing it to production.

Once these tasks have been completed, you need to build the image for final testing and

production.

For production purposes, the release version of the image is built without KITL, debugger, and

profiling support, with the Enable Ship Build option set, and usually without CE Control Shell

(CESH). It may be necessary to create an image with different settings for testing purposes.

After passing the necessary tests, the final image is ready to be moved to production. If test­

ing has uncovered substantial problems, it is necessary to perform additional customization

tasks according to the cycle described above.

172 Chapter 8 Building Devices

Figure 8-1 shows the process for building a device.

L - +

:. .•
.......... _...

FIGURE 8-1 Process for building a device

I

<111111• •I

Subsequent chapters cover typical tasks that come up during the process of building a device.

BSP Cloning 173

BSP Cloning
Any development process should start from cloning a BSP. It is important to understand that

any changes made to the BSP during the development will be used in all future OS designs
based on that BSP.

BSP cloning is done by using the development tools. To access the tools select Tools, then

Platform Builder for CE 6.0, and from the drop-down menu, choose Clone BSP. A Clone Board

Support Package window appears, as shown in Figure 8-2.

FIGURE 8-2 Cloning a BSP dialog

From the drop-down list, select Source BSP, enter the following information about the new

BSP that will be created as a result of cloning:

• Name the name of the package the way it will appear in the component catalog.

• Description description of the package the way it will appear in the component

catalog.

• Platform directory the name of the new directory in %_WINCEROOT%\• PLATFORM

where the source BSP will cloned into.

• Vendor BSP manufacturer's name the way it will appear in the component catalog.

• Version BSP version name the way it will appear in the component catalog.

If the Open New BSP Catalog File in Catalog Editor flag is set, then after cloning is complet­

ed, the new BSP file will open in the catalog file editor.

Figure 8-3 shows an example of a completed form.

174 Chapter 8 Building Devices

FIGURE 8-3 Completed form example

After the form is filled out, click Clone and wait until cloning completes. This process creates

a corresponding BSP directory, as shown in Figure 8-4.

tion 'CEBook2' (1 project)

··• CEBook2 $··· .. C:/WINCE600
. El·· !:Iii PLATFORM

i ~-·· ell ARUBABOARD

~-· ell CEPC
~-· ell COMMON
ffi ... ell DEl/ICEEMULATOR

i!J. · ell H4SAMPLE
!iJ... ell MAINSTONEIII

V-!111
1±1··· !:Iii Parameter Files

iii··· ell src
, l±J... ell T5530

i 00·· ell l/OIP _PXA270

, l!J··· llil PR!\/ ATE
! i!!··· !:Iii PUBLIC

L.. .. * Favorites

cQ Solution Explorer

FIGURE 8-4 BSP directory

The BSP is an available selection item from the Third Party section of the catalog, as shown in

Figure 8-5.

Cloning a Component or a Project 175

I <Search>

MyDevErnu: AR MV4 I

~Solution Explorer l•~~talog Item_;;_ .. _ .. ~class View

FIGURE 8-5 BSP selection item

After cloning, it can be used just like any other BSP.

If the Open New BSP Catalog File in Catalog Editor flag was set during the cloning process,

the BSP catalog file will open in Catalog Editor. You can perform the necessary editing tasks

in that file, as shown in Figure 8-6.

Ethernet Boolloader (eboot)

$l WINCEROOTJIPLA T FORMIMYDEVEMUISRC\BOOTLOADERIEBOOT

I '°' catalog Editor I El Sour~e

FIGURE 8-6 Catalog Editor

Cloning a Component or a Project
Development tools come with a great deal of source code for drivers, programs, static librar­

ies, and dynamic libraries. Often, the developer needs to modify the source code included

with the component's development tools in order to perform a certain task.

Chapter 4, "Build System," includes a detailed discussion of the process of building a

Windows Embedded CE operating system and its components. All components are repre-

176 Chapter 8 Building Devices

sented by a folder or a folder hierarchy in the file system located in special catalogs (PUBLIC,

PRIVATE) on different levels starting from the build tree root %_WINCEROOT%, plus the con­

figuration files that control the build process (Sources, Dirs). Similar to the BSP process, the

changes will be made to each of the OS designs that use that particular driver, program, or

library. It is important to keep in mind that subsequent upgrades to the development tools

may erase those changes. It is for these reasons that it is necessary to clone the part of the

code that will keep changing.

Because components are represented by folders and folder trees, cloning is done by simply

copying and making the needed corrections in the Sources file. Drivers are cloned into the

platform directory; other projects are simply cloned into the operating system design directory.

For the projects that generate .DLL and .EXE files on output, the process of cloning is simpli­
fied by using the Sysgen_capture.bat utility, which collects all the necessary settings into the

Sources file. Projects that generate .LIB files are usually cloned by simple copying, possibly by

taking into account general settings of the Sources file (see Sources.cmn below). Some of the

catalog components can be cloned by using built-in development tool options. To do that,

right-click the component, and, if the built-in utility can clone this component, the drop­

down menu will display the Clone Catalog Item. Click that item to launch the cloning process.

In conclusion, a few recommendations regarding cloning:

• When cloning a project, go up the catalog hierarchy and if you locate the Sources.cmn
file-add from that file into the copied Sources file either the entire content or the fol­

lowing variables:

o COMMONPUBROOT.

o PROJROOT.

o ISVINCPATH.

o _OEMINCPATH.

• After copying is done, it is necessary to set/change the settings of at least the following

variables in accordance with the following tasks:

o RELEASETYPE specifies where the build results will copied to. For drivers and

projects that are related to a specific hardware platform and were cloned into an

appropriate BSP directory, the release type is set in PLATFORM. For other projects

the type is set depending on the purpose of the project and can be LOCAL, OAK,

SOK, DOK, CUSTOM.

o Set WINCEOEM as 1 This is necessary to ensure that the project can link to

system libraries and header files of the projects that are built from the PUBLIC

directory.

Please note that these settings are also available in the Project Settings dialog box.

Automatic Application Launch at Startup 177

Automatic Application Launch at Startup
When custom built applications are integrated into an OS image, there is often a require­

ment for them to launch automatically at startup.

The process of starting the operating system is discussed in more detail in Chapter 7,

"Starting the Operating System." At startup, the system loads all applications specified in

the HKEY_LOCAL_MACHINE\lnit registry key with the values of LaunchXX type, where XX

can be between 00 and 99 and represent the sequence that applications are launched. If
it is necessary to specify the dependency of a launched application on other automatically

launched applications, the DependXX values are used, where XX matches the XX value in the

LaunchXX key where dependency is specified.

LaunchXX contains a value of the REG_SZ type which must be the name of the program that

needs to be launched, such as program.exe, without the parameters. The XX value deter­

mines the load order, so the lower the XX value, the earlier this application launches.

DependXX contains a value of the REG_BINARY type, which enables you to determine the
dependency of applications on other applications during the load by specifying which ap­

plications must be loaded prior to the application specified in the corresponding LaunchXX

key. The indexes of XX applications that a given application is dependent on are specified as

a lists of words (a word is 2 bytes) with a reverse byte order.

The application specified in the lnit registry key must inform the system that it has loaded

successfully and the dependent applications can be loaded by calling the SignalStarted()

function with a parameter that it is passed to by the system as a command line parameter

during the load. This is precisely the reason why it is not possible to specify the command

line parameters from the lnit key during the application load.

An example of the I nit registry key is shown below:

[HKEY_LOCAL_MACHINE\Init]
"LaunchlO"="shell .exe"
"Launch20"="device.dll"
"Depend20"="hex:Oa,00"
"Launch30"="gwes.dll"
"Depend30"="hex:l4,00"
"LaunchSO"="MyShell .exe"
"DependSO"-"hex: 14, 00, le, 00"

In this case, the shell.exe application launches first, then it loads the Device Manager (device.

dll), which depends (in the example) on shell.exe, then it loads gwes.dll, which is dependent
on the Device Manager, and finally, MyShell.exe, which depends on both the Device Manager

(device.di!) and gwes.dll.

178 Chapter 8 Building Devices

In order to launch your own application, you need to specify appropriate values in the OS

design registry file (Project.reg) located in the Parameter Files folder of the Solution Explorer

window, as shown in Figure 8-7.

FIGURE 8-7 OS design registry file

Double-click the file to open a graphic registry file editor where you can conveniently enter

the necessary values into the registry, as shown in Figure 8-8.

FIGURE 8-8 Registry file editor

Before configuring settings for an automatic startup, it is necessary to make sure that they

will not override the general system settings and BSP settings. To view general system set­

tings, open and view the Common.reg file in the file editor, as shown in Figure 8-9.

common.reg projeet;~

l+ICI HKEY _CLASSES_RDDT
$ Cl HKEY _CURRENT _USER
$ HKEY _LDCAL_MACHINE

Comm
Drivers
ExtModems

0-init
: t:I BootVars

: t:I Loader
' ... t:I MUI

rBt:I nls
t .. CI notify

$.. t:I Printers
ffi .. CI Security

i ffi .. CI Services
i rnCI SOFTWARE
i 00· Cl System
! il=J .. CI Time Zones
: L .. CI uiproxy
L..llil HKEY_USERS

Start Pagf: ·

Ii (Default)
I Depend20
II Depend30
II Depend60
II Depend99
ii Launch05
ii;ll Launch05
Ii Launch10
Ii Launch20
!;a Launch30
@a Launch60
ii Launch99

REG_BINARY
REG_BINARY
REG_BINARY
REG_BINARY
REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ

Automatic Application Launch at Startup 179

1400
1400
CelogFlush.exe
OSCapture.exe
shell.exe
device.di!
gwes.dll
servicesStart.exe

btgw.exe

[;;I Solution 'CEBool<2' (I project)
El ... CEBookZ

[~I· "C:/WINCE600
ij:J. t.liil PLATFORM
$· Clli PRIVATE
B· Elll PUBLIC

[fi · 1Ji1 cellcore
$... 1Ji1 common

EI- Elli Parameter Files ' : I common.bib
:. ... common.dat
:..... common.db

\.. 'l""llh"d§li
~ .. t.ii CESYSGEN
$.. tJll oak
ffi. Oii sdk

$... !Ill datasync
~ ... 1Ji1 deem
i±J ... !Ill directx
ffi .. IJil FP _VOiP
1$!Ill gdiex
~···!Ill ie

_____ , _____ §1~-~~~~~~~~==~~""'''
Ill RegEdit Jlit~l!t.lke':· ~Solution Explorer .Catalog Items View

~=-==-~"-'"-'~-'--'-'""-""-'-~~'---~~~~-'-~~

FIGURE 8-9 Editing Common.reg in the file editor

In order to view the BSP settings, it is necessary to open and view the Platform.reg file of the

corresponding BSP used in a given design, as shown in Figure 8-10.

platform.reg . ; •.t®
EB-Cl HKEY _CLASSES_RDOT
$-Cl HKEY_CURRENT_USER
B'0 HKEY_LDCAL_MACHINE
· BJ·CI Comm

1 lJiil ControlPanel
itJ .. t::liil Drivers
: ... GI Explorer

liJ·CI HARDWARE
$Glll'.llt
il=J .. CI Security

. rfi .. GI Services
j rnCI SOFTWARE
i i±l·GI System
L .. GI HKEY_USERS

REG_BINARY
REG_SZ EmulatorStub.exe

[{]111~Re~g~Ed~~[J~~~~lit~.2:'.~~~~~~~~~fi.~~~~
FIGURE 8-10 Viewing the Platform.reg file

[;;I Solution 'CEBoo1<2' (I project)

B .. • CEBookZ

El' " C:/WINCE600
g ... Wli! PLATFORM
' tiJ· · tJll ARUBABOARD

ffi .. IJil CEPC
cl+· tJll COMMON
$... IJil DEVICEEMULA TOR

$ IJil H45AMPLE
i±J... tli MAINSTONEIII
!$1... 1Ji1 MyDevEmu

j ! J ~-·· ~ 1Par~7.:~:~i~~~b
i : ; i i · platform.dat
j j ! i i .. platform.db
! ! ! l L... tl§llliiiipi§li

.... ..J .. J.~~:;~~~~llL_ _____ _

180 Chapter 8 Building Devices

Automatic Load of Drivers During the System Startup
When custom built drivers are integrated into a device OS image, it is often required that

these drivers be loaded automatically at the system startup.

The process of starting the operating system is discussed in more detail in Chapter 7,

"Starting the Operating System." The Device Manager (device.di!) is responsible for loading

stream drivers at startup.

The Device Manager (device.di!) loaded at the system startup reads the value with the

RootKey name in the HKEY_LOCAL_MACHINE\Drivers registry key. Next, the Device Manager,

calls ActivateDeviceEx with the HKEY_LOCAL_MACHINE\<RootKey> key where <RootKey> is

the RootKey value. By default, this value is \Drivers\Builtln.

The HKEY_LOCAL_MACHINE\<RootKey> contains the settings for loading the bus enumera­

tor (BusEnum.dll). The bus enumerator di'iver reads all sub-keys of the registry key where it

is located, and for each key, it calls the ActivateDeviceEx() function. The order of calling the

ActivateDeviceEx() function for the drivers is determined by the settings of their Order value.

The drivers with the lesser Order values are loaded first. Drivers without the Order settings

are loaded after the drivers with the Order settings in accordance with the registry's numeri­

cal sequence.

In order to configure an automatic load of a custom-built stream driver during the system

startup, it is necessary to enter appropriate values into the OS design registry file (Project.reg)

located in the Parameter Files folder of the Solution Explorer window, as shown in Figure 8-11.

lution 'CEBook2' (1 project) El···. CEBook2 $··· .. C:fWI_NCE600
:·····.Favorites

B··· till Parameter Files
. B··· Device Emulator: ARMl/4 I (Active) I project.bib

project, dat
project.db

) .• ,, •.
!····· li:I SDKs
~... 1111 Subprojects

iqsolution Ex ...

FIGURE 8-11 OS design registry file

Figure 8-12 shows an example of the registry settings for the MyDriver.dll driver whose func­

tions are implemented without a prefix (the Flags value is equal to 8).

/project St~ Page

r·Ci HKEY_CLASSES_ROOT
; .. Ci HKEY _CURRENT _USER
B·~ HKEY_LOCAL_MACHINE
· lB··Ci Comm

f····Ci E •plorer
! Ci ldent
r±ICI SYSTEM
i····Ci Windows CE Tools
B··~ Drivers

• El~ Buildln
! ; Ci M,9D1iVer
; ·Ci HKEY_USERS

; ID RegEdit)ili.~

· ii (Default)

IUD
Iii Prefi•
~lnde:-c
!I Order
[I Flags

REG_SZ
REG_SZ
REG_SZ
REG_DWORD
REG_DWORD
REG_DWORD

FIGURE 8-12 Registry settings for MyDriver.dll

Device Power Management

Device Power Management 181

Data
(value not set)
MyDriver.dll
MDR
0.00000001 (1 J
0•00000000 (OJ
0.00000008 (8)

Power management is one of the important tasks for the device in general and is critical for

mobile devices that are not permanently connected to an AC power source.

Windows Embedded CE includes a base implementation of the power-management sub­

system named Power Manager. Power Manager is represented by two catalog items: Power

management and Power management minimal.

Power Manager provides applications and drivers of peripheral devices with an infrastruc­

ture that enables them to manage power efficiently. This includes requesting that a neces­

sary power state is set for peripheral devices or the system as a whole. The use of the power

management mechanism enables you to detach the overall power state of the system from

the power state of a specific peripheral device. For example, when the system is switched

to a lower power usage state, the GSM/GPRS will continue to receive the power needed for

implementing the functionality of receiving calls and transferring data. Power manager is the

central point for collecting information regarding the general status of power usage by the

system and peripheral devices, as well as the information about power management require­

ments for devices. Power Manager uses this information to perform itsnecessary actions by

utilizing the built-in power management algorithm.

Power Manager interacts with applications and device drivers to ensure that peripheral de­

vices and the system in general operate in a required power state. Applications and drivers

are not required to support power management. Power Manager interacts only with those

device drivers and applications that inform it about power management support.

182 Chapter 8 Building Devices

In order to interact with Power Manager, an application must use a special application pro­

gramming interface (API) set. For the Power Manager to be aware that a driver supports

power management, the driver must contain an identifier of an appropriate device class

in its registry settings (IClass parameter), or during initialization, the driver must call the

Advertiselnterface function with the same class identifier.

A base Power Manager is implemented by using a layered MDD/PDD architecture (see

Chapter 6, "Driver Architecture"). The source code is located in the \PUBLIC\COMMON\

OAK\DRIVERS\PM\ folder. The PDD part of the driver determines power management states

supported by the system, as well as the logic and the method of switching from one power

management state to another. A device manufacturer can re.write the PDD part of the Power

Manager in accordance with its own power management requirements for the target device.

common

t±Hlill Services
tl:Hiil SOFTWARE
~Hilt System
' l~Hilil' CurrentControlSet

EHilil' Control
' iiJ··lllil Layouts

Ei•~
EJ ... ActivityTimers
i i ·lllil SystemActivity
i L.!llll UserActivity
: lllil Interfaces
~--State
. j ... lllil Back~htOff

i .. ·-blll ColdReboot

Lt: ~:boot
i r!J--Qil Resuming
i ~-lllil ScreenOff

~Hiii Suspend
! ~... Systemldle
t E':J ... Unattended
i t Ll'.lll {EB91 C7C9-BBF6·4a2d-9ABB-69724EED97D1}
i E:J ... Userldle
i L.!llil {EB91 C7C9-88F6-4a2d·9ABB-69724EED97D1}
L .. lilll Timeouts

EventLog

FIGURE 8-13 Power Manager registry settings

Peripheral devices can have four predefined states:

• Full on marked in registry settings as 0.

• Low on marked in registry settings as 1.

• Standby marked in registry settings as 2.

• Sleep marked in registry settings as 3.

• Off marked in registry settings as 4.

REG_DWDRD
REG_SZ
REG_DWORD

Device Power Management 183

Registry settings are used to map the power states of the system to the power states of pe­

ripheral devices and other settings of the power management subsystem. Those settings

are located in the HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Power key of

system registry. Figure 8-13 shows an example of the Power Manager registry settings in the

Common.reg file that is opened in a graphic registry editor of the development studio.

In the HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Power\State sub key, the

sub keys represent a listing of system power states. Mapping a default device state and
individual devices are specified as values of a corresponding key of the system state, as

shown in Figure 8-14.

Ellil:1 State
---WI BacklightOff
----Gl!i ColdReboot
i !:JI On
·---Gl!i Reboot

1tJ !:JI Resuming
ltl--Gl!i ScreenOff
r±i--Gl!i Suspend
i:\J !:JI Systemldle
El S l/nat~rided

:g· Name
ii'! (Default)
ii bkl1:
ii Default
llWl Flags
~wav1:

: -GI {EB91C7C9-88F6-4a2d-9AB8-69724EED97D1} ,;;;f

REG_SZ (value not set)
REG_DWORD Ox00000004 (4)
REG_DWORD OxOOOOOOOO (0)
REG_DWORD Ox00400000 (4194304)
REG_DWORD Ox00000004 (4)

FIGURE 8-14 Mapping of a default device state and individual devices

In Figure 8-14, the Unattended state of the system is mapped into the On (0) state for all
devices except for bkll: (backlight) and wavl: (audio output) - those are Off (4). The globally

unique identifier (GUID) of the key, which determines the system's power state, is used by

the sub keys to specify the settings for mapping the system's power state to the devices of

an appropriate class (in this case, it is CE_DRIVER_POWER_MANAGEABLE_DISPLAY_GUID, a

display with a Power Manager support). In our example'. the system's power state Unattended
is mapped as off (04) for the devices of a display with a Power Manager support class, as

shown in Figure 8-15.

(EBo1L T9 'H6 4d2d Sw88 E'J':"4EEDo~D1)

FIGURE 8-15 Mapping system power state for a class of devices

184 Chapter 8 Building Devices

Base implementation of Power Manager is based on activity timers. The registry key

H KEY _LOCAL_MACH IN E\System\Cu rrentControlSet\Control\Power\Activity Ti me rs con ta ins

sub keys that determine two activity timers: SystemActivity and UserActivity. The UserActivity

timer is activated if the user does not perform interactive actions during a predetermined
time. The Systemldle timer is activated if the system has no active processes during a certain

period of time.

When timers are activated, the Power Manager makes a determination to switch to another

power state. The switchover does not happen all at once, but with a certain delay (timeout)

during which the timer must not reset, i.e. timer activation conditions must be retained, such

as no user activity.

The settings for switchover timeouts are kept as values in the HKEY_LOCAL_MACHINE\
System\CurrentControlSet\Control\Power\Timeouts key, as shown in Figure 8-16. A timeout

value depends on the device power source type at a given time (alternative current or bat­

tery), as well as depending on what power state the system is switching from and to.

Activit~ Timers
Interfaces
Stale -FIGURE 8-16 Switchover timeout registry key

REG_SZ
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD

(value not set)

OxOOOOOOOI (15)
OxOOOOOOOO (0)
OxOOOOOOOO (OJ
Ox0000012c (300)
Ox0000003c (60)
OxOOOOOOOI (15)
Ox000001 2c (300)
Ox000000b4 (180]
Ox000000b4 (180)
Ox0000003c (60)

The registry key values determine a timeout in seconds. For example, switching from the

On to the Userldle state results in a 60-second timeout after the UserActivity timer goes off

when it is using a battery power source. If the timer is not reset during that time, there will be
no user activity.

Figure 8-17 shows Power Manager interaction with applications and drivers.

Registration to Receive Notifications
Set Power Requirements

Registration to Receive Notifications
Set Power Requirements

FIGURE 8-17 Power Manager interaction

Device Power Management 185

Setting the Power State
Current Power State Request

Supported Functionality Request
Notification of Parent Devices

(IOCTL)

To ensure support for power management, the peripheral device driver must be a stream in­

terface driver, and it must support the following IOCTL control codes, as shown in Table 8-2.

TABLE 8-2 IOCTL control codes.

Code Purpose

IOCTL_POWER_CAPABILITIES This IOCTL queries to determine device-specific capabilities. If a driver
fails this IOCTL, the Power Manager assumes the target driver does
not handle the remaining IOCTLs and will not send them. All drivers
that support the Power Manager interface must handle this IOCTL.

IOCTL_POWER_SET This IOCTL requests a change from one device power state to another.
If the driver does not support the proposed device power state, then
it should write its adjusted device power state into pBufOut.

IOCTL_POWER_QUERY This 1/0 control checks whether changing power states is feasible. This
1/0 control is deprecated and is not called by Power Manager.

IOCTL_POWER_GET This IOCTL gets the current device power state. The Power Manager
will only send this IOCTL to drivers that support the power manage­
ment IOCTLs.

IOCTL_REGISTER_POWER_ This IOCTL notifies the parent device so the parent device can reg-
RELATIONSHIP ister all devices it controls. The Power Manager ignores the return

values from this IOCTL, which provides an opportunity for a parent
device to notify the Power Manager about any active devices that it
controls. The Power Manager sends this IOCTL to devices that include
the POWER_CAP_PARENT flag in the Flags member of the POWER_
CAPABILITIES structure.

186 Chapter 8 Building Devices

Power Manager controls power states of peripheral devices by sending IOCTL control

codes to the drivers that support power management. Applications and drivers can request

changes to a power state of the system in general or a peripheral device. A driver should not

change its power state by itself; it requires that a request is sent to the Power Manager, which
makes a decision whether a power state can be changed. Power Manager may decline the

request of a driver or an application, or it may change a power state to a different level than

what was requested. For example, a device that is in the On mode (0) is requesting to switch

to a sleep mode (3), but the Power Manager, which has complete information about system

processes, may decide to switch the device only to the Low On mode (1). On the other hand,

a driver may not decline a request from the Power Manager regarding a power change of a

peripheral device, and must process this request.

Drivers and applications use the following API, as shown in Table 8-3, to request changes to

a power state.

TABLE 8-3 API for requesting changes to a power state.

function
DevicePowerNotify

Purpo!Pe.

Sends a request to the Power Manager about changing a power state
of a peripheral device.

Drivers and applications can register in order to receive notifications when power changes

occur by using the following set of API, as shown in Table 8-4.

TABLE 8-4 API for registering for notifications.

Fundion Purpose
RequestPowerNotifications Registers a message queue to receive power change notifications.

StopPowerNotifications Stops receiving power change notifications.

Such applications and drivers can request that the Power Manager keep specific peripheral

devices in a certain power state by using the following set of API, as shown in Table 8-5.

TABLE 8-5 API for keeping peripheral devices in a specific power state.

Ftincti<>n Purpose ·
SetPowerRequirement Informs the Power Manager about power requirements of a given

peripheral device.

ReleasePowerRequirement Informs Power Manager that it can release previously set power re­
quirements of a given peripheral device.

Device File System 187

An application can also request that the Power Manager change the power state of the sys­

tem as a whole by using the following API, as shown in Table 8-6.

TABLE 8-6 API for changing the power state for the system.

Function

SetSystemPowerState

Purpose

A request sent to the Power Manager about changing a power state
of the system as a whole.

Similar to the situation with a request for a power change of a peripheral device, the Power

Manager may decline an application's request for a power change of the system.

Device File System
Compared to the desktop Windows operating systems, the Windows Embedded CE file

system is implemented with one root catalog "'\'for all mounted file systems. File systems

are mounted as subdirectories of the root catalog; one file system can be mounted as a

root file system. A directory name is determined by the settings of a value with the name

Folder, which is located in the key that contains the Storage Manager's profile settings:

HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\<Media_Profi/e_Name>.

Figure 8-18 shows storage manager profiles settings from the Common.reg file that is open

in the registry's graphical editor of Visual Studio.

REG_SZ
REG_DWORD Ox00000001 (1)
REG_DWORD Ox00000001 11)
REG_SZ IDE Hard Disk Drive

FIGURE 8-18 Storage Manager profiles settings from the Common.reg file

Sub keys of the HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\ key represent var­

ious profiles. For the HDProfile representing an IDE hard drive, the folder name is determined

188 Chapter 8 Building Devices

by the LO(_STORE_HD_FOLDER macro, which is replaced by a value during the process of

localization, such as Hard Disk.

The file system types that Windows Embedded CE 6.0 supports are listed in Table 8-7.

TABLE 8-7 Supported file system types.

File System

FAT or FATFS

exFAT

TFAT

BinFS

CDFS/UDFS

RAM (object
store)

RELFSD

BriefDescription

A standard FAT file system. The maximum file size is 4 GB; it also has a partition
size limit. It is simple to implement and is sufficiently reliable. It is supported by
many operating systems.

A new file system that removes the limitations of the FAT file system. It enables
you to create files greater than 4 GB in size as well as large size partitions. It can
be extended by the device manufacturer. Supported by Microsoft Windows Vista
with Service Pack 1.

An exFAT-based file system that supports transactions. It contains two copies of
FAT tables: it requires support from a media block driver.

File systems that provide the capability for mounting a *.bin file (which is a result
of romimage.exe execution) as a file system. It enables you to divide the system
image into parts: the part that contains the system kernel and everything else
required to get the media driver up and BinFS where the rest of the system image
resides as part of the .bin file.

File systems that provide the capability for working with CD and DVD media de­
vices.

A new driver of the object store file system that implements a fully functional file
system with directories, files, etc. It removes the restriction that requires that the
file system be mounted in the memory as the root system which was mandatory
in prior versions of the operating system1. Now, just like all other file systems, this
file system is managed by FSD Manager2.

Oo·-~'0 '"""~"O 'o~· c -~ ·~

During the development, the file system mounts a release directory of the op­
erating system on the developer's workstation into the \Release directory of the
device.

File systems can be loaded by using two methods:

• Automatically by the Storage Manager at system startup.

• By responding to a request while mounting a Storage Manager.

1 It is sufficient to set the PRJ_ENABLE_FSMOUNTASROOT environment variable in order for the file system to be
mounted into RAM as \Object Store, instead of the root. It is also necessary to set one of the two variables
(PRJ_BOOTDEVICE_ATAPI or PRJ_BOOTDEVICE_MSFLASH) depending on whether the file system of what type of
media (disk or flash) is going to be mounted as a root system instead of a RAM file system.

2 Particularly, this provides the capability to implement the file system's RAM encryption by using the file system's
filter.

Device File System 189

The settings for automatically loaded file systems are stored as sub keys of the HKEY_LOCAL_

MACHINE\System\StorageManager\Autoload key, as shown in Figure 8-19.

... Name T e Data
)i (Default) REG_SZ (value not set)

lmageUpdate ~ BootPhase REG_DWORD OxOOOOOOOO (0)
0 bjectS tore ll\lil DisableFileCompression REG_DWORD Ox00000001 11 I

EH2t S tor ageM a nag er ~Dll REG_SZ lilesys.dll
AutoLoad ~ LoadFlags REG_DWORD Ox00000001 (1 J
!di li1lllill i; M ountAsB ootable REG_DWORD Ox00000001 (1)

. {di RAMDisk ll\lil MountAsRoot REG_DWORD Ox00000001 (1)
RamFlsh \i MountPermanent REG_DWORD Ox00000001 (1) Lill RAMFMD
Rellsd {I Paging REG_DWORD Ox00000001 (1)

sdnpcid
Lill BinFS
Lill CDFS

FIGURE 8-19 Sub keys for configuring automatically loaded file systems

The type of a file system that is mounted by request is determined by Partition Manager

according to the type of the mounted partition. The settings for mapping the partition
identifier to the file system are located in the registry key HKEY_LOCAL_MACHINE\System\

StorageManager\PartitionTable, as shown in Figure 8-20.

Lill FATFS
Filters
IMGFS
MSIFS
MSIFS_CD

··!di MSPART

, Lill 1111111m1
El l2l!i Profiles

El g CD Profile
· Lill CDRom

HD Profile
Lill MMC

MS Flash
Eil!I MSFlash_RAMFMD

PCM CIA

RamFlsh
SD Memory

REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ

FIGURE 8-20 Settings for mapping the partition identifier to the file system

Data ..
(value not set)
FA TFS
FA TFS
FA TFS
MSIFS
FA TFS
FA TFS
FA TFS
FA TFS
BOOT
BINFS
RAWFS
RAWFS
IMGFS
BINARY

The default file system settings are located in the registry keys that use the following naming

convention: HKEY_LOCAL_MACHINE\System\StorageManager\<Fi/e_System_Name>.

These settings can be redefined or added to for a specific media profile in the regis­

try keys that have the following naming convention: HKEY_LOCAL_MACHINE\System\
StorageManager\Profiles\<Media_Profile_Name>\<File_System_Name>.

Windows Embedded CE 6.0 file systems support filters that are implemented as special librar­

ies that provide a predefined set of functions. A filter can be registered on the file system

level; that way, it will be loaded for any media on which the specified file system will be

190 Chapter 8 Building Devices

mounted. If the filter is registered on the media profile and file system level, the filter will be

raised only when the file system is loaded for the media specified in the profile. The filter's

operations are transparent to the rest of the system and applications.

Figure 8-21 provides an example of file system filter settings from the Common.reg file that

is open in the registry's graphic editor of Visual Studio.

FIGURE 8-21 File system filter settings from the Common.reg file

The upper rectangle shows registration of a filter for the file system (the registration settings

are shown on the right-hand side). This filter will be loaded for all media that FATFS file sys­

tem (classic FAT) will be mounted for. The lower rectangle shows registration of two filters:

one for HDProfile and another for the FATFS file system; these filters will be loaded only
when the hard disk with a FAT file system will be mounted.

Windows Embedded CE includes several additional services for the file subsystem:

• Caching.

• Encryption.

• Replication.

Windows Embedded CE operating system includes two types of caching services for the file
system:

• File caching.

• Disk caching.

Device File System 191

File caching is implemented as a file system filter (file system caching manager). It can work

with any file system, it does not require changes to the file system implementation, and it

caches file data.

Disk caching is implemented as an auxiliary library. To use this service, the file system driver

must use this library in its implementation. Disk caching is usually used for caching file sys­

tem metadata. FATFS, TFAT and exFAT files systems can be configured to use disk caching.

Figure 8-22 provides an example of caching settings for FATFS file system from the Common.

reg file that is open in the registry's graphic editor of Visual Studio.

... x

value not set
REG_SZ disk cache. dll

01 CacheSi2e REG_DWORD 0.00000000 (0)
fl DisableAutoFormat REG_DWORD Ox00000001 (1)
[I Disable.b.utoScan REG_DWORD Ox00000001 (1)

ion REG_SZ exfat.dll
: II EnableCache REG_DWDRD Ox00000001 (1)
lj Friend!yName REG_SZ FAT FileSystem
II Paging REG_DWDRD Ox00000001 (1)
@llUtil REG_SZ fatutil.dll

FIGURE 8-22 Caching settings for FATFS file system

The upper rectangle shows the CacheDLL settings of disk caching for the FATFS file system

- diskcache.dll. This library is available in Shared Sources and is located in the \PRIVATE\

WINCEOS\COREOS\STORAGE\DISKCACHE\ directory. The lower rectangle shows the registry

key that contains the settings for file caching for the FATFS file system implemented as a file

system filter cachefilt.dll (see previous figure). This library is available in Shared Sources and is

located in the \PRIVATE\WINCEOS\COREOS\FSD\CACHEFILT\ directory.

192 Chapter 8 Building Devices

Windows Embedded CE includes a mechanism for encrypting file system data. This mecha­

nism is implemented as a file system filter named encfilt.dll. This filter is registered to the file

system and a media profile the same way as any other file system filter that is shipped as a

source code. Its implementation is located in the \PUBLIC\COMMON\OAK\DRIVERS\FSD\

ENCFILT\ directory.

When building a device, the developer must choose one of two options of the internal file

system (also see Figure 8-23):

• ROM-only file system.

• RAM and ROM file system.

Applications and Services Development

Communication Services and Networking

Compression

Database Support

File and Database Replication

FIGURE 8-23 Options of the internal file system

When choosing the ROM and RAM File System option, the content of ROM is mapped to the

\Windows directory, the file system (object store) is initialized in the memory in accordance

with the .dat file settings (see Chapter 4, "Build System"). and it is mounted as a root file

system.

When choosing the ROM-only File System option, the content of ROM is mapped to the

\Windows directory and the file system is not created in the memory, but it still provides the

capability to mount the external file system a root file system.

A typical task while building a device is to ensure that the system state is saved between

cold boots. It means that you have to save registry files and registry settings that are created

Device Registry 193

and/or modified while working with a device. A solution to this task is to mount an energy­

independent storage as a file system root and to use registry hive. In order to mount storage

as a root storage containing the registry, it is necessary to configure appropriate registry set­

tings by creating the values MountAsBootable and MountAsRoot of the DWORD type with

a value equal to 1 in the registry keys with of the following type: HKEY_LOCAL_MACHINE\

System\StorageManager\Profiles\<Media_Profi/e_Name> or HKEY_LOCAL_MACHINE\System\

StorageMa nager\Profiles\ <Media_Profile_ Name>\ <File_ System_ Name>. The H KEY _LOCAL_

MACHINE\System\StorageManager\Profiles\<Media_Profi/e_Name> key determines the set­
tings for any file systems that will be mounted on the volumes of a specified media profile.

The H KEY _LOCAL_MACH IN E\System\StorageManager\Profi les\ <Media_ Profile_ Name>\ <File_

System_ Name> key determines the settings for a specific file system that will be mounted on

the volumes of a specified media profile. This key's settings predetermine the value specified
in the HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\< Media_Profile_Name>

key.

The settings required for implementing a hive-based registry is discussed in more detail in

the next chapter.

Device Registry
Similar to the desktop version of Windows, Windows Embedded CE saves the settings of the

operating system, applications, and drivers in the system registry. The Windows CE registry is

organized similar to the desktop operating system registry, and it has the following four root

entries:

HKEY_CLASSES_ROOT.

HKEY_LOCAL_MACHINE.

HKEY_CURRENT_USER.

HKEY_USER.

The HKEY_CLASSES_ROOT hive contains the settings related to the processing of file exten­

sions and the COM subsystem. The HKEY_LOCAL_MACHINE hive contains the system settings
as well as the settings for the drivers and applications of the system as a whole. The HKEY_

CURRENT_USER hive contains the current user settings, which is actually a reference to a cor­

responding sub key of the HKEY_USER hive. The HKEY_USER contains sub keys that represent

settings for all users, including a default user.

In order to work with the registry, you can use an API set similar to the one available with the

desktop version. The API functions are listed in Table 8-8.

194 Chapter 8 Building Devices

TABLE 8-8 API functions for working with the registry.

Function

ReadGenericData

RegCloseKey

RegCopyFile

RegCreateKeyEx

RegDeleteKey

RegDeleteValue

RegEnumKeyEx

RegEnumValue

Reg Flush Key

RegOpenKeyEx

RegQuerylnfoKey

RegQueryValueEx

RegSetValueEx

WriteGenericData

Purpose

Reads the system password from the registry.

Closes a handle of the registry key.

Saves a copy of the current registry in the memory to a specified file.

Creates a specified registry key.

Deletes a specified registry key and all of its sub keys.

Deletes a specified value from a given key.

Enumerates sub keys of a given registry key. Returns one key for each
call. When there are no more keys, it returns ERROR_NO_MORE_ITEMS.

Enumerates values of a specified registry key. Returns one key for each
call. When there are no more keys, it returns ERROR_NO_MORE_ITEMS.

Flushes all changes to a specified key, its sub keys, and values into the
registry.

Opens a given registry key.

Requests information about a specified registry key.

Requests type and value of a specified registry key.

Sets a given value for a specified registry key.

Writes the system password from the registry.

Windows Embedded CE supports two registry types:

• Hive-based.

• RAM-based.

By default, Windows Embedded CE 6.0 uses a hive-based registry. A hive-based registry
saves registry data as files (hives) that can be located in any supported file system.

A hived-based registry has the following characteristics:

• It supports a multi-user configuration.

• It provides the capability to save the registry settings between the device cold boots.

• It is divided into three parts.

o System hive (System.hv, Default.hv).

o User hive (User.hv).

o Boot hive (Boot.hv).

Device Registry 195

The name and location of the system hive is determined by the System Hive registry value of

the HKEY_LOCAL_MACHINE\init\BootVars key. A catalog for defining user directories with

user hives is specified in the ProfileDir registry value of the HKEY_LOCAL_MACHINE\init\

BootVars registry key.

Boot.hv is the boot hive that is stored in the ROM. Default.hv is the system hive that is kept in

the ROM. The system hive stored on the media saves only the changes related to the registry

hive stored in the ROM. The user hive has a similar functionality.

During the first boot, registry hive files are automatically created in the media device. The

media-based registry hive files are bound to the registry from the image. When the image is

changed, during the first boot, the media-based registry hive files will be created anew and

the prior files will be removed.

Figure 8-24 shows the settings for the hive-based registry's location as they appear in the

Common.reg file that is open in the Visual Studio graphical registry editor.

{Default)

ii Flags
ii Flags
~Flags
I} Flags

ii Flags
iiii'l ProfileDir
[i S ystemH ive

REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_SZ Documents and Settings
REG_SZ Documents and Settings\system.hv

FIGURE 8-24 Settings for the hive-based registry's location

In order to configure a hive-based registry, it is necessary to perform the following actions:

1. Select a catalog item that includes support for a hive-based registry.

2. Select catalog items that include support for the media device and the file system

where the registry files are going to be saved (Storage Manager, FAT File System,
Device Manager, etc.).

3. Make sure that settings for all drivers that are required for starting the media device

with a file system in the registry settings files are enclosed by special markers:

HIVE BOOT SECTION <settings for required drivers>;END HIVE BOOT SECTION.

4. Set the load flag for the first stage of the device launch (OxlOOO) for all the drivers that

are needed to start a media device with a file system on it.

196 Chapter 8 Building Devices

6. Configure the desired settings for the location of the system hive and user hive:

[HKEY_LOCAL_MACHINE\init\BootVars]

"SystemHive" = "<full_path_to_the_system_hive_file>"

"ProfileDir" = "<path_to_the catalog_for_user_directories>"

7. The paths do not include the name of the directory under which the media device is

mounted. Those paths are specified relative to the directory of the mounted media,

such as "MyRegistry\system.hv" and "UserProfiles".

8. Configure the load stage of the Storage Manager and the Device Manager by using the

following key and the flags shown in Table 8-9:

[HKEY_LOCAL_MACHINE\init\BootVars]

"Flags"= dword:<flag_value>.

9. The flags are combined with a logical OR operator. Usually, the '3' value is used by the

hive-based registry, which means that the registry will be saved to the mounted media

that requires a block driver.

TABLE 8-9 Load stage flags.

Flag Value

OxOOOl

Ox0002

Ox0004

Ox0008

Description
Storage manager is launched during the first stage of the system
start for the hive-based registry.

Device Manager is launched during the first stage of the system
start for the hive-based registry.

Storage manager is launched during the first stage of the system
start for the registry in ROM, such as when it is stored in BinFS on
an external media device.

Device Manager is launched during the first stage of the system
start for the registry in ROM, such as when it is stored in BinFS on
an external media device.

10. Set the load flag for the corresponding media profile for the selected file system:

[H KEY _LOCAL_MACH IN E\System\StorageManager\Profiles\ <Media_ Profile_ Name>\

<File_ System_ Name> J

"MountAsBoot"=dword:l

The registry settings that have to do with the location of hive registry files and the stages of

loading the storage manager and driver manager are usually stored in the Project.reg file.

The presence of HIVE BOOT SECTION markers needs to be verified in the Platform.reg and,

possibly, Common.reg files.

By default, changes in the registry are written to the media while the device goes to suspend

state. If needed, you can call the Reg Flush Key function directly in order for the changes to be

Device Databases 197

saved to a registry hive file on the media. You can also set an additional environment build

variable PRJ_ENABLE_REGFLUSH_THREAD, which will add a thread to the system-a thread

that will periodically flush the registry changes to the media.

Usually, in order to mount a media device, it is necessary to have an appropriate block driver

(Promise Controller ATAPI driver, Serial ATA, Intel Strata Flash NOR Driver, etc.) present in the

image; the Device Manager is necessary in order to load this driver; the storage manager, the

partition driver, and the file system driver are necessary in order to mount the volume and its

file system above the block media.

Also, the operating system provides the capability to keep a hive-based registry in the mem­

ory. This mechanism is designed for use with energy-independent memory, such as SRAM or

similar kinds; however, it can be used with a memory region allocated in the Config.bib file.

A RAM-based registry keeps the registry data in an object store. Therefore, during a cold

boot the data is lost. If, in the case of a RAM-based registry, there is a requirement that the

registry data is kept during a cold boot, it is necessary to either ensure that RAM has an in­

dependent power source, or make sure to save the registry data to an energy-independent
media when the device goes off and then restore it after a cold boot. Windows Embedded

CE provides a necessary infrastructure for that process.

Device Databases
Often times, a built-in application needs to have a capability to store structured data. In or­

der to do that, it is necessary to have a fast and compact database that is well integrated with

the operating system. Windows Embedded CE includes two types of databases:

• CEDB.

• EDB.

CEDB consists of records that have several properties. The properties are determined on the

database level. Records are stored in the database; the database, in turn, is stored in a vol­

ume that can contain several databases.

CEDB has the following characteristics:

• It is a single-user database.

• Every single operation is atomic.

• Maximum database volume size of 16 MB.

• Maximum record size of 128 KB.

• Does not support named properties.

• No restrictions on the number of properties per database.

198 Chapter 8 Building Devices

• Does not support password-protection.

EDB database is a new database format for Windows Embedded CE. Just like CEDB database,

it has the <property>-<fie/d>-<database>-<volume> architecture.

The database is implemented based on a minimal version of the SQL Server Compact engine

and provides the following capabilities:

• Support for multiple users.

• Support for transactions.

• Maximum database volume size of 64 MB.

• Improved productivity.

• A maximum record size of 8 KB, not counting the thread data.

• Supports named properties.

• A maximum number of properties in a database is 1024.

• Supports password protection.

Support for CEDB is retained for compatibility with prior versions of the operating system. It

is recommended that EDB is used with the new projects or, if it doesn't provide enough ca­

pabilities, an appropriate version of SQL Server Compact.

The API set for CEDB and EDB does not contain any similarities in the desktop version. You

can receive more information in the product documentation'.

Device Plug and Play Messaging System
Windows Embedded CE has a subsystem that is similar to the PnP messaging system of a

desktop operating system. When the drivers are loaded, it can provide the system with the

information about the classes supported by the device by using either a registry setting

(!Class) or by calling the Advertiselnterface() function directly. A device class is basically a

predefined set of functionality implemented by the device.

For instance, DEVCLASS_STREAM_GUID is a regular stream interface driver and DEVCLASS_
CAMERA_GUID is a camera driver.

A messaging subsystem is implemented as part of the Device Manager subsystem. Their in­

teraction is shown in Figure 8-25.

3 Windows Embedded CE Features/File Systems and Storage Management/Databases and Windows Embedded
CE Features/File Systems and Storage Management/File Systems and Storage Management Reference/Database
Reference

Device System Shell 199

Registers ---i~~ RequestDeviceNotifications()

I Class
Advertiselnterface()

FIGURE 8-25 Plug and Play messaging system

Any driver or an application can be registered to receive a notification about a device that

implements a certain class being connected or disconnected. It enables you, among other
things, to implement a system that supports an auto-start of applications from external me­

dia when they are mounted.

An API set used for working with the notification subsystem is shown in Table 8-10.

TABLE 8-10 API for working with the Plug and Play notification system.

Function Purpose

RequestDeviceNotifications Requests a receipt of notifications from the Device Manager related
to connecting and disconnecting devices that implement functionality
of a certain device class (IClass, Advertiselnterface).

StopDeviceNotifications Stops the previously requested Device Manager notifications about
devices being connected or disconnected.

Using this system enables you to create drivers and applications that start automatically or

that launch a certain procedure when a predefined device type appears in the system. For

instance, it applies to automatic scanning of all external mounted file systems by anti-virus

software when they are connected or starting a navigation program when connecting a GPS
device.

Device System Shell
A typical task that needs to be performed while building a device is to set up one's own ap­

plication as a system shell. For Windows Embedded CE, replacing the shell only means speci­

fying one's own program in the auto-start registry key HKEY_LOCAL_MACHINE\lnit and, if

200 Chapter 8 Building Devices

needed, masking or removing the shell auto-start registry key from the files provided in the

development tools.

Please note that the standard shell (explorer.exe) provides the system with an additional API

(Shell API); if the program uses it, then it can operate only above the standard shell. In that

case, a program label (see the section below titled, "Creating File Shortcuts in the Device")

can be placed into a standard shell auto-start folder (\Windows\StartUp), and the custom

shell's position can be set on top of all windows, which previously hid the task panel.

Keep in mind that the standard shell auto-start folder is not automatically created when the

image with an added standard shell is built.

Adding Files to the Device Image
Integration of third-party software, including drivers, is one of the most typical tasks while

building a device. In spite of its perceived complexity, this task is relatively straightforward to

perform.

In order to include a file into the system image, it is necessary that, prior to the Makeimg

stage, the image build in the release directory has a binary image builder (.bib) file, which

contains entries that appropriately include the required files in the image.

It can be the Project.bib file or a separate newly-created file. Copying the Project.bib into a

release directory will occur automatically. When a separate (one's own) file is used, it is neces­

sary to ensure that it is copied into the release directory before the Makeimg stage. It can be

done by using Custom Build Action from the OS design settings. This task can also be per­

formed by first launching the image build without the Makeimg stage, manually copying the

required files-including the configuration files-into the release directory as the next step,

and then launching the Makeimg stage.

The format of the required entries in the .bib file is shown below:

<NameOfFi7einTheimage> <Fi7ePathOnDisk>\<Fi7eNameOnDisk> <ROMregion> <Fi7eProperties>

Note that these entries should be placed in the appropriate section of .bib file (FILES or

MODULES). For example:

FILES
File.txt c:\MyFiles\File.txt NK SH

This example is not useful because it requires configuration data being passed to someone
else, which requires the creation of an additional folder tree for saving the files included in

the image.

Creating File Shortcuts in the Device 201

It would be more useful to find a way to copy all necessary files into the release directory be­

fore the MAKEi MG stage of the image build; in which case the .bib file entry in our example

will look as follows:

FILES
File.txt $(_FLATRELEASEDIR)\File.txt NK SH

The most convenient method of copying that enables you to keep the files in the same loca­

tion and to conveniently share them and their configuration is to create a component or a
project that contains all the necessary files including the configuration files. In this case, the

copying of files can be done by using standard and accessible mechanisms for copying ad­

ditional files into the release directory (POSTLINK_PASS_CMD)'.

Creating File Shortcuts in the Device
When a RAM-based file system is used, the initialized DAT files determine the hierarchy of

directories and files. Copying is done when the hierarchy is initialized. Therefore, the same
files are located in the \Windows directory where ROM is mapped to and in the memory

where they are copied when a file system is initialized in the memory.

The use of file shortcuts instead of copying the actual files enables you to save the memory

space when the memory based file system is used. When the end device is created, you can

add the necessary shortcuts to the desktop and to the menu ahead of time to make them

more accessible for the end user.

For example, in order to automatically launch a program when a standard shell is used, you

can place its label into the auto-start folder \Windows\StartUp\.

A label in Windows Embedded CE is represented by an .Ink file of a predefined format.

<NumberOfASCIISymbo7sOfACommandAfterAPoundSymbo7>#<CommandExecutedWhenYouC7ickTheLabe7> ·

For example:

17#\Windows\calc.exe
33#\Windows\QuartaProg.exe Top Shell

Adding the label file into the image is done the same way as for all other files.

4 Mike Hall (Microsoft) wrote a useful utility named CEFileWiz that creates all the necessary configuration files for
including files into the image. The author provides regular updates to this utility. To download it, visit his blog at:
http://blogs.msdn.com/mikehall/ (listed under Interesting Tools in the left-hand side of the page).

Chapter 9

Application Development
This chapter covers the differences between native and managed code, choosing when

to create an operating system (OS) design subproject or a separately developed project,

how to prepare for application development, making device connections, and application

debugging approaches. For detailed information about native code application development

for Windows Embedded CE, see Douglas Boling's book, "Programming Windows Embedded

CE 6.0 Developer Reference, 4th Edition," and for more information about managed code

application development, see the book of Andy Wigley, Daniel Moth, and Peter Foot,
"Microsoft Mobile Development Handbook." Alternatively, you can use the MSDN Web site

to find documentation, code samples, articles, virtual labs, and Web casts.

You can build applications for Windows Embedded CE by using native code or managed

code. Native code applications can be built as subprojects of the OS design, or as individual

projects. When building projects by using native code separately from the OS design, the

first step is to build an OS design, and later build applications for it. After that, an SDK should

be created and installed with the development tools. Managed code applications can be built

only as separate applications. However, as opposed to native code applications, managed
code applications actually do not require an SDK to be installed with the development tools,

and instead require the execution environment of the device.

Native Code and Managed Code
Native (unmanaged) code is code written in C/C++ or ASM and compiled on a development

workstation to produce binary code that is native to the device processor. Applications built

in native code do not require additional subsystems as part of the device in order to run.
However, applications must be built for each supported processor type.

Managed code is code written in (#/VB.NET by using the .NET Compact Framework and

compiled on a development workstation to platform-independent Intermediate Language

(IL). The .NET Compact Framework Base Class Libraries (BCL) provide an application
programming interface (API) for managed applications. The run-time Execution Engine (EE)

together with the BCL are called the Common Language Runtime (CLR) and provide execu­

tion support for managed applications on a device. Managed code is compiled to binary

code that is native to the device processor by CLR on a first call. This process is called Just-In­

Time (JIT) compilation. Applications built in managed code require the CLR subsystem as part

of the device in order to run. An application can be built once and work for all supported

processor types.

203

204 Chapter 9 Application Development

Figure 9-1 illustrates native and managed code application architectures on a device.

Just-in-time Compilation

Compile IL Code to Machine Code

!

Device

Platform Interaction

COM lnterop
P/lnvoke

FIGURE 9-1 Native and managed application code architectures on a device

Managed Code

Native Code

Native code applications have the fullest possible access to the system, but writing native

code applications is a more complicated task than writing managed code applications, es­

pecially if an application interacts with Web Services, Windows Communication Foundation,

and so on. Not all system features that are directly accessible from native code applications

are accessible from managed code applications, but this situation has been improving in the
.NET Compact Framework with each release. Also, the .NET Compact Framework1 provides

Platform Invoke (P/lnvoke) service and COM interoperability (COM lnterop). P/lnvoke is used

to call native code dynamic link libraries (0LLs), and COM lnterop is used to interact with

COM objects.

Table 9-1 summarizes native and a managed code from a developer's perspective.

1 .NET Compact Framework 2.0 and later.

OS Design Subprojects and Separate Projects 205

TABLE 9-1 Native and managed code comparison.

Native Code

Compiled to machine code.

At least recompilation is required to
support different CPU architectures.

No need for additional infrastructure
to run on device.

Maximum possible access to system API
and services.

Full supports of COM and ActiveX
development.

Can use Microsoft Foundation Classes,
Active Template Library, Windows Template
Library, and Standard Template Library.

Can develop by using the following tools:

Visual Studio 2005 Service Pack 1, Visual
Studio 2008.

Managed Code

Compiled to Intermediate Language code.

No recompilation required for different supported
CPU architectures.

Needs Common Language Runtime on a device to
run.

Access to services and API supported by the
.NET Compact Framework.

P/lnvoke to access a platform API and COM
lnterop to interact with COM objects.

Access to system API and services requires
additional work or may be impossible.

Managed components can be exposed as COM
components with some limitations.

Uses Base Class Libraries. Some third-party libraries
are available.

Can develop by using the following tools:
Visual Studio 2005 Service Pack 1 with appropriate
.NET Compact Framework update (see Chapter 2)
for .NET Compact Framework 2.0, and Visual Studio
2008 for .NET Compact Framework 2.0 and 3.5

A developer should consider using native or development code depending on the required

development tasks and keeping in mind the considerations mentioned above .. Note that

some system code can't be managed, including OAL, drivers and services.

OS Design Subprojects and Separate Projects
The easiest way to develop a device application is to build it as a subproject along with the

OS design. The only suitable toolset for this purpose is Visual Studio 2005 with the Service

Pack 1 with Platform Builder for CE 6.0 add-on installed.

When debugging an OS design subproject, you can debug at the system level if you have

the Kernel Debugger included in the OS design. An OS design subproject can be automati­
cally included in the produced run-time image. These OS design subprojects are useful for

building system services, drivers, or for any kind of system-level development. Note that an

OS design subproject can be only native; all managed code development should be done as

separate projects.

206 Chapter 9 Application Development

A separate project can be used for all non-system development, especially when a developer

needs to use auxiliary libraries such as Microsoft Foundation Classes, Active Template Library,

Windows Template Library, Standard Template Library, and others. It is useful to use separate

projects to develop COM, ActiveX, business applications, network applications, and so on.

To build an application using native code separately from the OS design, it is necessary to

create an SDK. Then, Visual Studio 2005 with Service Pack 1 and Visual Studio 2008 can be

used to develop applications.

Table 9-2 compares OS design projects and separate projects from a developer's perspective.

TABLE 9-2 Comparison of OS design subprojects and separate projects.

OS Design Subproject

Only native code development.

Can debug down to the system level.

Even using standard Microsoft auxiliary
libraries may require additional work.

Seamless drivers and services development.

Can automatically be included in an OS
run-time image.

Can develop by using the following tools:
Visual Studio 2005 Service Pack 1 with
Platform Builder for Windows Embedded CE
6.0 Service Pack 1.

Separate projects

Native and managed code development.

Cannot debug the OS.

Seamless support for auxiliary libraries such as
Microsoft Foundation Classes, Active Template
Library, Windows Template Library, and Standard
Template Library.

Note that auxiliary libraries should be included
manually into an OS run-time image if necessary.

Practically impossible to develop drivers.

Should be included into an OS run-time image
manually.

Can develop by using the following tools:

Visual Studio 2005 Service Pack 1 and
Visual Studio 2008.

A developer should consider creating OS design subprojects or separate projects keep-

ing in mind the differences discussed above. Some application types cannot be developed

separately, such as drivers and other hardware-assisted services. These application types are

always OS design subprojects. On the other hand, managed applications cannot be

OS design subprojects.

Building Applications as OS Design Subprojects 207

Building Applications as OS Design Subprojects
To add a subproject to an existing OS design, complete the following steps.

1. From the main menu in Visual Studio, select Project, and then Add New Subproject.

Alternatively, in the menu of the Subprojects node in Solution Explorer, select Add New

Subproject.

2. An Add New Subproject Wizard dialog box appears, as shown in Figure 9-2.

Windows Embedded CE Subproject Wizard "''cl :; l,'£81 ;;

Select name, location and template

/ivailable templates:

WCE Console Application
WCE Dynamic-Link library
WCE Static Library
WCE TUX Dynamic-Link Library

~ubproject name:

!subproject 1

Loi;.at\on:

jc: \ WINCE600\0SDesigns\CEBook2\CEBook2\Subpr•

FIGURE 9-2 Add New Subproject Wizard dialog box-start screen

3. Select a subproject type, name, and location. Click Next.

4. A screen appears prompting you to select the desired application type. Select the ap­

plication type to create and click Finish, as shown in Figure 9-3.

208 Chapter 9 Application Development

FIGURE 9-3 Add New Subproject Wizard-application type selection

5. This creates a new OS design subproject, as shown in Figure 9-4.

EEBook2
C:/WINCE600
!lill PLATFORM
!lill PRiii A TE
!lill PUBLIC

Subproject 1 (C: /WINCE60D/OS[,es1gns/,=EBook::'/CEBook2/Subpr cqect 1 /sources)

!lill Include files
!lill Parameter files
!lill Resource files
!lill Source files
[!] postlink. bat
[!] prelink. bat
II} ReadMe, txt

View

FIGURE 9-4 Operating system design subproject

Building Applications as Separate Projects 209

You can debug a subproject by using standard Visual Studio and Platform Builder capabilities

(see Chapter 2 for more details). For OS design subprojects, you can debug down to the sys­

tem level if you include Kernel Debugger in the OS design, whereas it is impossible to debug

at the system level for projects that are developed separately.

Building Applications as Separate Projects

Environment Preparation for Building
Native Code Applications

To build a native code application as a separate project, a developer needs to create an SOK

and install it in the appropriate development tools. In order to create an SOK, it is necessary

to first build the OS image without support for kernel debugging and KITL. To create a new

SOK, follow these steps:

1. From the main menu in Visual Studio, select Project, and then select Add New SOK. Or,

in the menu of the SOK node in Solution Explorer, select Add New SOK.

2. An Add New SOK Wizard dialog box appears.

; License Terms

i····Readme
.··CPU Families

Development Languages
· Additional Folders

· Emulation

FIGURE 9-5 SDK property dialog

The left side of the dialog box shows SOK property groups, as shown in Figure 9-5. By select­

ing each group, one by one, you can configure the required settings. When you are done

configuring the SOK settings, click Finish.

210 Chapter 9 Application Development

This creates a new OS design SOK with corresponding parameters, as shown in Figure 9-6.

Solution E 1..plorer - Solution 1CEBook21 r, 1 pt 01ect)

tion 'CEBook2' (1 project)

CEBook2

C:/WINCE600

!ll PLATFORM
!ll PRIVATE

FIGURE 9-6 New SOK of an OS design

If the system image is built for the emulator, and if the emulator is going to be used for

building applications, it is necessary to configure the settings for the Emulation group. These

settings include RAM and screen resolution, as shown in Figure 9-7.

· license Terms
··Readme

.... CPU Families
· ·Development Languages

» Additional Folders

j®~!IW:

FIGURE 9-7 SOK parameters

Visual Studio 2005 with Service Pack 1 and Visual Studio 2008 ship with exactly the emulator

version that includes a BSP with Platform Builder for CE 6.0 image development tools.

Building Applications as Separate Projects 211

After an SOK has been created and configured, it needs to be built. To launch an SOK build

process, select a required SOK in the SOK node of Solution Explorer, and in the context menu

(right-click SDK) select Build. A build process will be launched. When it is finished, an installa­

tion file <SDK_Name>.msi will be created in a directory specified earlier in the SOK settings.
This MSI installation file needs to be installed on the development computer that has Visual

Studio 2005 with Service Pack 1 or Visual Studio 2008 installed, and on which you are plan­

ning to build applications for a designated device.

After an SDK has been installed, in the target devices of the development tools, there will be

an option to select a device named <SOK_ Name> as a target when building a new project in

native code.

Note that the previous version of the operating system contained a Microsoft Foundation

Classes (MFC) component to be included in the OS design. The new version does not include

such a component, and therefore MFC support should be added manually by including

distributable libraries shipped with Visual Studio 2005/2008.

Environment Preparation for Building
Managed Code Applications

As opposed to native code applications, managed code applications do not require the SDK

to be installed to develop an application for a device. Managed-code applications require an

appropriate execution environment on the target device. For Windows Embedded CE 6.0 it

could be .NET Compact Framework 2.0 or .NET Compact Framework 3.5.

To develop managed code applications, a developer can use Visual Studio 2005 with Service

Pack 1 and Visual Studio 2008. Visual Studio 2005 with Service Pack 1 enables a developer

to develop for .NET Compact Framework 2.0, and Visual Studio 2008-for .NET Compact

Framework 2.0 and .NET Compact Framework 3.5.

Although there is no need to create an SDK in order to develop and debug applications that

use managed code, when a device emulator is used, it is more practical to create and install

an SDK that supports development using managed code. In this case, the emulator launches

automatically when a developer starts debugging or deploying from Visual Studio. It is not
necessary to configure additional settings in order to connect to it and perform debugging;

all that is needed for deployment and debugging is to select a device named <SOK_ Name>

Emulator.

When a new application project is created using managed code, in Visual Studio 2005 you

need to select Windows CE 5.0, and in Visual Studio 2008 you need to select Windows CE.

212 Chapter 9 Application Development

Connecting to the Device to Deploy and Debug Applications

Before a developer can start deploying and debugging applications on a device, a connec­

tion between development tools (Visual Studio) and a device should be established.

When using an emulator as a target device and installing the appropriate SOK, there is no

need to configure additional connectivity settings for debugging. As mentioned above, the

emulator launches automatically when a developer starts debugging or deploying from

Visual Studio.

In the case of an actual physical device, additional steps may be required to connect to a

device. There are two possible scenarios that may require additional steps: either the device

includes ActiveSync support, or it does not. By using ActiveSync, you can establish a connec­

tion to the target device through a cradle, USB, Bluetooth, or infrared. ActiveSync performs

most of the work automatically. A developer only needs to provide additional settings de­

pending on the connection type. You should have ActiveSync installed on a development

workstation to establish a connection to a device with ActiveSync support.

Determining the Device IP Address

If a device does not have ActiveSync, a developer can debug applications over a TCP/IP con­

nection to the target device. To connect to a device by using a TCP/IP connection, perform
the following steps.

1. Copy files from Program Files\Common Files\Microsoft Shared\CoreCon\1.0\Target\

wce400\<Processor_Type> directory to the \Windows directory of the device, using any

available means. The simplest way to have the files on a device is to include those files

in the device's run-time image (see Chapter 4 for more details). Copy the following files:

ConmanClient2.exe, CMaccept.exe, DbgTL.dll, and TcpConnectionA.dll.

a. Launch ConmanClient2.exe on the device.

b. Launch CMaccept.exe on the device.

c. The device will be available to connect to for three minutes.

2. Determine the device IP address through any available means. Open the Device

Properties dialog box and specify the IP address in the TCP Connect Transport settings.

a. On the Visual Studio Tools menu, click Options, then click Device Tools, and then

click Devices.

b. Select Windows CE Device, and then click Properties.

c. To the right of the Transport box, click Configure.

d. In the Configure TCP/IP Transport dialog box, select Use specific IP address, and

then type the device IP address.

e. Close the dialog boxes.

Building Applications as Separate Projects 213

If a developer has a device with a user interface (UI) and standard shell, then the Control

Panel can be used to set the appropriates static IP address on the device. If a device does not

have a UI and standard shell, then a developer can include cmd.exe (Console Window cata­

log item) and ipconfig.exe (Network Utilities (lpConfig, Ping, Route) catalog item) into the

device run-time image, and then use those utilities to obtain the device IP address by run­

ning ipconfig at the command prompt. Note that cmd.exe 1/0 may be redirected to a serial

port, so even if a device does not have a UI, the IP address can be received. If none of the

described methods are applicable, then a developer can write an application as an OS design

subproject that returns the IP address of the device to the developer.

Debugging applications for Windows Embedded CE is practically the same as for desktop

applications. The only difference is that a developer should establish a connection to a device

before starting debugging. For more information about available debugging options, see

Chapter 2.

Chapter 10

Testing Operating System Images

Testing operating system (OS) images is an integral part of building devices. A careful

and regular testing of a device during the development stage reduces the overall costs of

maintaining a device during its lifecycle and makes it possible to identify potential problems

and resolve them early.

Microsoft provides a wide selection of extensible testing tools included in Windows

Embedded CE Test Kit (CETK).

Windows Embedded CE Test Kit
The CETK includes a collection of tests for a standard set of drivers and OAL, with the

possibility to expand it by using special libraries. Additionally, the CETK includes utilities

that enable you to trap errors in the application code, capture screens of a launched device,

perform stress-testing, and so on.

There are two scenarios for launching a test.

• By using the client-server architecture.

• Locally on the device.

A client-server testing scheme provides a convenient interface for selecting, configuring

and launching tests, as well as for viewing test results. This architecture provides additional

advantages when it is necessary to test several devices. Local testing on the device is used

when a server is not available, when a connection to the server cannot be established, or

when overhead connection costs may significantly distort test results. In order to launch a

test process on a device, it is necessary to have all modules required for testing available.

The first method of testing requires the presence of the server side and the client side

components. The server-side process is launched on the workstation and is responsible for

managing test launches and logging their results. The client side process is launched on the

target device. It performs all necessary tests and sends the test results to the server side.

Figure 10-1 provides a general overview of CETK architecture.

215

216 Chapter 10 Testing Operating System Images

FIGURE 10-1 CETK architecture

A server-side program (CETest.exe) is launched on a workstation or another machine that

has the CETK installed. It then connects to the client-side program (Clientside.exe), which

was previously launched on the target device if using TCP/IP. The process of selecting and

configuring tests is done by using the CETest.exe graphic interface. When a test is launched,

all the necessary information is sent to the client. The client, on the other hand, launches the

Tux utility by specifying appropriate parameters for running a test. Test results are logged to

a file by using a mechanism implemented in Kato.di!.

Please note that to ensure that the client-server solution works, it is necessary to ensure

that the Clientside.exe module has been moved to and executed on the target device. If

either Kernel Independent Transport Layer (KITL) or ActiveSync are present in the image of

the target system, with the appropriate server-side settings, this should happen automati­

cally. Otherwise, the Clientside.exe module needs to be manually copied to the device and

launched by specifying connection parameters to the server in the command line or the

server-side connection configuration file.

When testing is launched directly on the device, the Clientside.exe module is not used.

Testing is done by launching the Tux utility by specifying testing parameters in the command

line. When testing is launched directly on the device, the Tux utility and the Tux libraries,

which contain all the required tests, need to be copied to the device.

Testing the Image with Support for KITL Enabled 217

Testing the Image with Support for KITL Enabled
Let us review the process of testing the image with support for KITL in a client-server so­

lution. In order to launch the server part, from the Start menu, select Programs, select
Windows Embedded CE 6.0, and then select Windows Embedded CE 6.0 Test Kit. It is

necessary to ensure that connection settings have been specified before testing can begin.

You can configure connections settings in the Device Connection dialog window, as shown in

Figure 10-2. This dialog window can be opened by selecting Connection, and then selecting

Start Client in the main menu of the server-side window.

DeY1ce Connection , J>~i" J.:

FIGURE 10-2 Device Connection dialog window

You can connect to the device by clicking the Connect button. The Connection Settings

dialog box is accessible by clicking Settings. All settings are configured similar to remote

utility settings. While the connection is established, the client program, Clientside.exe, is

copied to the device and launches on it, as shown in Figure 10-3.

218 Chapter 10 Testing Operating System Images

Waiting for server message
Done Retrieving Device Status
Retrieving Device Status
Received server message
Waiting for server message
Done Retrieving Driver Info
Retrieving Driver Info
Received server message
Wailing for server message
Done Returning Sys Info
Returning Sys Info
Received server message
Wailing for server message
Connected via PlatManfKITL
Attempting to connect to server (OJ

FIGURE 10-3 CETK client-side program

After a connection to the device has been established successfully and the image functional­

ity has been determined in the Windows Embedded CE Test Kit window, a sub item appears

in the Windows Embedded CE Test Kit Server folder. This sub-item corresponds to the

connected device and has a list of available tests, as shown in Figure 10-4.

FIGURE 10-4 Available tests

Testing the Image with Support for KITL Enabled 219

Tests are grouped by a category folder, such as Audio, Display, Keyboard, and so on. The

folders marked with an exclamation icon (!) denote that the image does not have this

functionality available for testing, or was not automatically detected on the device. In order

to select an individual test, open the folder group and check the tests that are required. To
modify testing parameters, right-click the test item and in the drop-down menu select Edit.

By using testing parameters, you can specify options such as the test length, content, and

so on.

After the test content and parameters have been established, you can launch a test by

selecting the Tests menu item, selecting Start/Stop tests, and then choosing the device on

which the tests will be launched, as shown in Figure 10-5.

:,a. Wmdows Embedded CE Test Kit "c~J,8 f:

El ~ Windows Embedded CE Test Kit Server
El !ti WindowsCE (ARM\f41) [Test in Progress Mouse Test]

El ® liiJl Windows Embedded CE Test Catalog
}}G;j Audio

[!] · ~ Audio Quality Test
[!] ff!' Bluetooth

$·1IJ Camera
[!]~Cellular
i±I Gill Display

tfJ -!£!' Ethernet
[!] ·II:\! Filesys
[!] ff!' IR Port
ri:J G:l Keyboard

tfH::'!' Modem
B-·Gili! Mouse

, ' .. 0itllfiiMl'lll-iDllMI
[!]· G::JI Multimedia
[!JG:';' NLED

i±l--·12iJ OAL Cache Tes ts
fti···[a OAL Iriterrrupt Tes ts
i±J .. !l;l;;J OAL Ioctl Tests

FIGURE 10-5 Specific test selection

The process of test execution is shown in the Windows Embedded CE Test Kit dialog box,
located next to the device item and each of the selected tests. Some tests, such as the

keyboard and mouse tests, require user interaction. You can stop a test by using the same

menu item as the one used for launching a test: Start/Stop tests.

To view test results, from the main menu, select Tests, View results, and then select the

target device. In order to view all test results, select View All Results. To view the results of a

particular test, select the menu item with the appropriate name, as shown in Figure 10-6.

220 Chapter 10 Testing Operating System Images

Summary

50 Passed Manual Key Press
51 Failed Key Sequence Check

*** TEST COMPLETED

*** Test Hame: Instructions
**" Test ID: 11l
*** Library Path: \kbdtest.dll
*** Command Line:
*** Kernel Mode: Ho
*** Result: Passed
*** Random Seed: 7966
*** Thread Count:
***Execution Time: ll:llll:ll7.698

{/TESTCASE RESULT~"'PASSED">

FIGURE 10-6 Viewing specific test cases

The Test Result window is divided into three panels. The upper panel contains a list of com­

pleted tests. For each individual test there is a corresponding log file. The files containing the

results of testing are stored in the directory \Program Files\Microsoft Platform Builder\6.00\

CEPB\WCETK\results. The central panel shows the results of individual sub-tests that are in­

cluded in the test item selected in the upper panel. Sub-tests may have following results:

• Passed.

• Failed.

• Skipped.

• Aborted.

The lower panel contains detailed information about each sub-test. This information can be

used to diagnose errors during test execution.

The Tux utility is responsible for test execution on the device. This utility can be launched

by the client module, Clientside.exe, or started manually for running tests without a server.
The tests shown in the server-side window of CETK contain the command-line parameters

for launching the Tux utility. The test configuration, logging parameters, and other necessary

information are passed to the Tux utility as command-line parameters that are listed in

Table 10-1.

Testing the Image with Support for KITL Enabled 221

TABLE 10-1 Tux utility parameters.

Parameter

-b

-e

-s <file-name>

-d <DLL library>

-c<parameters>

-r<number>

-x<range>

-I

-Iv

-t <address>

-n

-h

Description

Suspends execution after the Tux library is loaded. Used in debugging of test
libraries for setting breakpoints.

Disables exceptions processing.

Performs a number of tests whose configuration settings are stored in the file
that is being passed.

Loads a specified Tux library to perform testing. This parameter can be reused
for loading several libraries.

Passes specified parameters to a test Tux library. The parameters are passed to
the last library that was specified earlier by using the -d parameter.

Sets the initial value for the random number generator. This parameter is
passed to the last library that was specified earlier by using the -d parameter,
which enables you to use different initial values of the random number genera­
tor for different libraries.

Specifies what tests need to be run. For instance, xlO, 12, and 15-20. The
parameter can be reused for different libraries. The parameter applies to the
last library that was specified earlier.

Outputs a list of all available tests for the libraries specified in the -d parameter.

This parameter is similar to -1, except that it outputs more detailed information.

Specifies the name or IP address of the computer on which the server-side CETK
was launched. Using this switch with an empty IP address specifies the work­
station as the server. If the parameter is not specified, then tests are performed
locally without connecting to the server.

Launches tests in the kernel mode by using KTux.dll.

Outputs a list of parameters of the Tux.exe command line.

Parameters available while using Kato.di! logging.

-k <address>

-m

-o

-f <filename>

-a

Specifies the name or the IP address of the computer that the test results will be
sent to. The use of this key with an empty address denotes that the workstation
is acting as a server. In addition, the log can be sent to the debugger (-o) or
entered into a file (-f).

Performs logging in Extensible Markup Language (XML) format.

Outputs the results through the debugger.

Saves results to a file. By default, the results file is overwritten .
.. ·-··-··

Adds results to an earlier created file specified in the <-f > parameter.

Parameters available while using Toolhelp.dll.

-z <delay> Stops execution of the Tux library after a specified number of seconds.
.......

222 Chapter 10 Testing Operating System Images

The CETK architecture provides developers with an opportunity to create their own tests. To

create your own test libraries, you can use a template located in \Program Files\Microsoft

Platform Builder\6.00\cepb\ wcetk\Tux\Tuxskel or, you can create a subproject of the OS

design, such as WCE Tux dynamic-link library. Examples of Tux library implementations are

located in the PRIVATE\TEST folder in the root of the build tree if you have installed the

private sources during Platform Builder installation.

CETK Utilities
By default, the utilities and auxiliary modules launched on the workstation are located in the

\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\desktop\directory. The

default location of the utilities and libraries launched on the device being tested is the

\Program Files\Microsoft Platform Builder\6.00\ cepb\wcetk\ddtk\<CPU_FAMILY>\ folder.

Application Verifier
The Application Verifier utility is used for testing the stability of applications and for detect­

ing typical development errors. It enables you to detect and identify memory leaks, unclosed

descriptors, GDI object, as well as unclosed descriptors and GDl-objects, as well as to detect

some versions of heap corruption. This utility enables you to receive information that may be
difficult to obtain by using other methods. For instance, you may be able to examine a mod­

ule during the load process when a standard debugger may not be usable.

The Application Verifier utility uses specialized Shim libraries to collect information. The

principle of Application Verifier's operation via Shim libraries is shown in Figure 10-7.

Standard Call

Call
through

Shim
Library

Shim Library

FIGURE 10-7 Application Verifier's operation via Shim libraries

The Application Verifier utility enables two scenarios for its usage: remotely through CETK

and locally.

CETK Utilities 223

Let us look at the scenario of launching Application Verifier through CETK. After CETest.exe

has been launched and a device connection has been established, as we described earlier, in

the server-side dialog box, right-click the node corresponding to the device, and in the drop­

down menu that appears, select Tools, and then select Application Verifier.

To ensure that this utility is working correctly, it is necessary to add, as a minimum, one mod­

ule to validate that it is connected to the device. Therefore, in the dialog box that appears, it

is necessary to click Close without connecting to the device, as shown in Figure 10-8.

To seled applications to be verified, ctick Add. You can !hen
select lest settings for e~ch spedfie application. Once the
applications appear in the Apptications pane.you can run them
by e~her clicking Run or by ;tarting. theinmanually.

Applications:

{default}
{all}

FIGURE 10-8 Application Verifier utility

The tesl settinQ• for each application ~sist until the opplication
is remQved f10m the Applications pane. To copy loQs from the
device, click llet logs .. To view logs saved by yourself or another
person, dick View E"ported Log.

Test settings:

Then add the module by clicking the Add button and specifying the module's file name.

After the test module has been added to the Applications list, connect to the device by

clicking the Connect button. Before testing begins, you can choose what errors the module
will be tested for. The software package is shipped with three Shim libraries, as follows:

• Heap Verifier checks for memory leaks and heap corruption.

• Handle Leak Tracker checks for unclosed file descriptors, synchronization objects,

and so on.

• Shell Verifier determines unreleased GDI objects.

The module is checked each time it is launched regardless of whether it was launched from

the development and debugging tools or directly from the system's image.

After the test module has finished its operation, a log file is created in the device file system

root. The log file can be loaded to the test station by clicking Get Logs. The utility is shipped

224 Chapter 10 Testing Operating System Images

with a convenient log file viewer that can be accessed by clicking View Exported Log, as
shown in Figure 10-9.

U n·freed heap allocation. 27 items (1 022 bytes) at Ox403e49ec
Un-freed heap allocation. 30 items (1151 bytes) at Ox403e49ec
Un·freed heap allocation. 7 items (56 bytes) at Ox404465d0
U n·freed obiect. 1 items at Ox0001 edb8

(kernel.dll:8008D4A4) Callstack:
(kernel. dll: 8008D 4A4) Ox411a1 bcO: shim_ usergdi.dll!(null) + 1 be Oh
(kernel.dll:8008D4A4) Ox411 a2060: shim_usergdi.dll!(null) + 2060h
(kernel.dll:8008D4A4) Ox0001edb8: cetsc.exel?SH Setlcon@CSH@@SAHPAUHINSTAN :.
[kernel.dll:8008D4A4) Ox0002a8c4: cetsc.exe!?PropPgLocalResDialogProc@CPropLocal %

(kernel. dll: 8008D 4A4 J Ox0002ab38: cetsc. exe! ?S taticPropPglocalR esD ialogProc@CProp
(kernel.dll:8008D4A4J Oxc00338e4: k.coredll.dll!xxx_PerformCa118ack4 +ch [5x)
(kernel.dll:8008D 4A4) Oxc0153864: gwes. dll! ?WindowProcCallback@@Y AJPl>XPSAJPAU I
(kernel.dll:8008D 4A4 I Oxc0154654: gwes. dll! ?CallWindowProcW _l@CWindow@@SAJV?1
[kernel. dll: 8008D4A4) Oxc019d92c: gwes. dill ?DefDlgProcW _l@D ialogManager_ t@@SAJF
(kernel.dll:8008D4A4) Ox40022890: coredll.dll!DefDlgProcW + 14h [2•]
(kernel. dll:8008D 4A4 J Oxc014f67c: gwes.dll! ?S endM essageWithOptions@M sgQueue@@~
(kernel. dll: 8008D4A4) Oxc014f a7c: gwes. dll! ?S endMessageW _l@M sgQueue@@SAJPAU 1; ..

FIGURE 10-9 Viewing an exported log

To launch the Application Verifier utility directly on the device, it is necessary to copy the

following files to the device:

• AppVerif.exe .

• Shim_heap.dll .

• Shim_verifier.dll .

• Shim_hleak.dll .

• Shim_usergdi.dll .

• Verifhlp.dll .

Then launch the executable file AppVerif.exe. When the utility is launched directly on the de­

vice, the same options are available as when it is launched by using the server-side CETK. The

Application Verifier utility is extensible. The ShimGenUl.exe utility is used to create custom

Shim libraries, as shown in Figure 10-10.

1wrn1· i!!· ·!!I· lll!f¥!!!!· •l·IZ!·~BME9MmR!All·i§!li!tltilll·l ···-r='fCil~i
File

Original DLL: jc \WINCE600\0SDesigns\CETKICETK\RelDir\D _.j
Output file:J
APIFiller:

ChooseColor, commdlg. ('""
ChooseF ont\\/, commdlc
CommDI ExlendedError~

PrinlD lg, comm dig. dll

FIGURE 10-10 Shim library generator

CETK Utilities 225

After the utility is launched, specify the initial library in the Original DLL field; its function

will be redirected to a Shim library, Next, from the list of all available functions of the

library shown on the left pane, select the functions you need into the right pane. Clicking the

Generate Code button will create initial template files. All that is left for the developer to do

is to develop the selected functions and to build a Shim library.

CPU Monitor

The CPU Monitor utility is used to view the processor load and the use of memory on the

device, as shown in Figure 10-11. It is launched from the server-side window of the CETK.

Choose a CoreCon devi~e ':t:'~:~::J'*
CE [iev1ce
CE Dump File
Emulator

FIGURE 10-11 CPU Monitor utility

After CETest.exe has been launched and a device connection has been established, as

described earlier, in the server-side dialog box, right-click the node corresponding to the

device, and in the drop-down menu that appears, select Tools, and then select CPU Monitor.

A dialog window appears where you will need to select a device and click OK.

226 Chapter 10 Testing Operating System Images

Figure 10-12 shows what the CPU Monitor utility dialog window looks like after a connection

to the device has been made. The information collected with the help of the CPU Monitor
utility can be saved as a .TXT or an .XML file through the main utility's menu by selecting File,
and then Save.

FIGURE 10-12 CPU Monitor utility dialog window

PerfToCsv

The PerfToCsv utility from the CETK test kit enables you to convert the log files of test re­
sults into comma-separated values (.csv) files so they can be viewed easily in a spreadsheet
application, such as Microsoft Excel.

By default, this utility is located in the \Program Files\Microsoft Platform Builder\6.00\cepb\
wcetk\ddtk\desktop folder and is launched from the command-line prompt by using the
following syntax:

PerfToCsv.exe <initia7_7og_fi7e> <converted_fi7e>.csv

CETK Utilities 227

Print Screen

The Print Screen utility is used to capture screen shots of the target CE device. The screen

shots are saved as .bmp files. As opposed to the Remote Zoom utility, Print Screen enables

you to do a screen capture without using a workstation.

In order to launch this utility, it needs to be manually copied to the device. Its executable file

is called prt_scrn.exe which is located in the \Program Files\Microsoft Platform Builder\6.00\

cepb\wcetk\ddtk\<CPU_FAM/LY> folder.

The Print Screen utility is launched on the device from the command-line prompt by using

the following syntax:

Prt_scrn [-d <number>] [-s <numberl> <number2>] [-e <numberl> <number2>] <screenshot_file_name>

Table 10-2 lists the parameters available with the Print Screen utility.

TABLE 10-2 Parameters available with the Print Screen utility.

Parameter Description

-d <number> Determines in what period of time in seconds after the utility is
launched, a screen capture needs to be made.

-s <numberl> <number2> Sets horizontal and vertical coordinates of the upper left angle of a
rectangular screen section for taking a screen capture. A default value
is 0 0.

-e < numberl> <number2> Sets the position of the lower right angle of a rectangular screen
section for taking a screen capture. A default value is the screen
resolution (horizontal and vertical, respectively) minus 1.

•••• o. '<> ~rn

Windows Embedded CE Stress Tool

To perform device stress-testing, the CETK provides the Windows CE Stress Tool utility that

enables you to check the system's stability when it experiences pressure on certain functional

blocks and when the system has insufficient resources.

The stress-testing utility utilizes the client-server architecture. This type of testing consists of

randomly launching modules from a test kit during a certain period of time. Each module

loads a certain functional block of the system. The utility supports the launch of its own test

modules that implement a given interface. Figure 10-13 shows the Windows Embedded CE

Stress Tool architecture.

228 Chapter 10 Testing Operating System Images

Target Device

KITL_-+--+
TCP/IP

FIGURE 10-13 Windows Embedded CE Stress Tool architecture

When stress testing is performed without the use of CETK, it is necessary to copy the client­

side files to the device manually. After that, you can launch the client-side and the server-side

programs by using the switches appropriate for the connection type. A connection between

a client and a server can be established through KITL or Transmission Control Protocol/

Internet Protocol (TCP/IP) by using the required command-line switches for the appropriate

connection type, as listed in Table 10-3.

TABLE 10-3 Command-line parameters to start stress-testing utilities.

Col'll'.le¢ti.on Type setting!!

Clientside - sClient.exe

Server-side - sServer.exe

Kilt'

AppKitl

-dev cetk

The server-side interface is shown in Figure 10-14.

TCP/le .

tcp <name or IP address of the server>:O

-dev cetk -prot TCP

CETK Utilities 229

' Windows Embedded CE Stress - Wa1tmg to connect... : 2 ,:"14& _

FIGURE 10-14 Server-side interface

The stress-testing parameters listed in Table 10-4 are set in the Windows Embedded CE
Stress dialog window.

TABLE 10-4 Stress-testing parameters.

Parameter

Auto Launch

Auto Terminate

Concurrent Modules

Module Duration

Module Mix

Logging

Test module failure
condition

More Options

Description

Automatic launching of stress testing.

Automatic termination of stress testing.

The number of concurrently launched modules.

The duration of each module's execution in minutes.

A set of modules launched during the process of stress testing. If CETK is
selected, the program will launch all modules supported by the image.

Logging parameters.

Conditions that determine a test failure.

Additional settings for stress testing.

230 Chapter 10 Testing Operating System Images

You can launch a stress test by clicking Launch. To terminate a stress test, click Terminate.
The server-side program waits for launched tests to end. On the device screen, the testing
process appears, as shown in Figure 10-15.

FIGURE 10-15 Testing process display

The results and configuration settings of a completed stress test are saved to an XML file in
the \Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\desktop\Windows CE
Stress\ directory.

Glossary
The glossary includes important terms used in the book and their definitions.

Access checking A check to verify that the

caller process has permissions to access

the buffer.

Application Logically grouped executable

code.

Board Support Package (BSP) A BSP is the

common name for all board hardware­

specific code. It typically consists of the

boot loader, the OEM adaptation layer

(OAL), and board-specific device drivers.

Catalog A container of components that

presents a selectable feature for an OS

design to the user.

Component Smallest OS functional compo­

nent that can be added to an OS design.

Device Manager Part of the system kernel

responsible for working with stream

interface drivers.

Embedded pointer Pointer that passes to

an API function in a data structure or

buffer.

Interrupt service routine (ISR) A small

subroutine that resides in the OEM ad­

aptation layer (OAL). The ISR executes

in kernel mode and has direct access to

the hardware registers. Its sole job is to
determine what interrupt identifier to

return to the interrupt support handler.

Essentially, ISRs map physical interrupts

onto logical interrupts.

Interrupt service thread (IST) A thread

created by a device driver to wait on an

event.

IRQ (Interrupt Request) IRQ values are

associated in hardware with interrupts.

Each IRQ value can be associated with

one or more Interrupt Service Routines

(ISRs) that the system will run to process

the associated interrupt when it is

triggered.

Kernel Debugger The kernel debug-

ger integrates functionality required to

configure a connection to a target device

and download a run-time image to the

target device. It allows the debugging

of the Operating System, drivers, and

applications.

Kernel Independent Transport Layer

(KITL) The KITL is designed to provide an

easy way to support debugging services.

Kernel-Mode Driver A driver that runs in

the kernel's memory space.

Layered device driver A sample device

driver that comes with the Platform

Builder. It contains two layers: a model

device driver (MDD) layer and a plat­
form-dependent driver (PDD) layer.

Managed code Code written in C# or

VB.NET for.NET Compact Framework.

Marshaling A process to check the access
rights and validity of data for different

processes.

Model device driver (MOD) The platform­

neutral layer of a native device driver

supplied by Microsoft.

231

232 Glossary

Module A subset of the Windows CE operat­

ing system. Windows CE is structured as

a collection of modules. Each module is

a self-contained subset of the Windows

CE operating system that can be used to

construct a customized operating system

for a particular device.

Native code Code written in ASM/C/C++

that uses the Win32 API.

OEM adaptation layer (OAL) An OAL is

a layer of code that logically resides

between the Windows Embedded CE
kernel and the hardware of your target

device. Physically, the OAL is linked with

the kernel libraries to create the kernel

executable file.

OS design A Platform Builder for Windows

Embedded CE6 R2 project that generates

a customized binary runtime image of the

Windows Embedded CE6 R2 operating

system

Platform Dependent Driver (POD) The PDD

layer of a layered driver is the part that

interfaces directly with hardware and per­

forms any hardware-specific processing.

Pointer parameter Pointer that is passed to

an API function as a parameter.

Process A running application that con-
sists of a private virtual address space,

code, data, and other operating-system

resources, such as files, pipes, and syn­

chronization objects that are visible to the

process. A process also contains one or

more threads that run in the context of

the process.

Production Quality OAL (PQOAL) The

PQOAL is a standardized OAL structure

that simplifies and shortens the pro­

cess of developing an OAL. It provides

you with an improved level of OAL

componentization through code librar­

ies, directory structures that support code

reuse, centralized configuration files, and

a consistent architecture across processor

families and hardware platforms.

Reflector service The service that enables

user-mode drivers to access the kernel

and hardware by performing requests on

their behalf.

Run-time image The binary file that will be

deployed on a hardware device . It also

contains the complete operating system

required files for applications and drivers.

Secure copy Local copy of a data buffer.

Stream interface driver A stream inter­

face driver is any driver that exposes the

stream interface functions, regardless

of the type of device controlled by the

driver. All drivers other than the native

drivers managed by GWES export a

stream interface.

Synchronization primitive/object An

object that enables completion of

synchronization tasks in a multithreaded
environment.

Synchronous access Access to the buffer at

the time of an API call.

Thread The smallest software unit that the

scheduler can manage on the Operating

System. There can be multiple threads in a

single driver or application.

User-mode drivers Drivers loaded in user

mode and all applications run in user

memory space. When they are in this

mode, drivers and applications do not

have direct access to hardware memory

and have restricted access to certain APls

and the kernel.

References
Building Solutions Using Windows

Embedded CE 6.0 course

Course 2540N: Building Embedded Solutions

Using Windows CE 5.0

Windows Embedded CE blog, http://blogs.

msdn.com/ce_base/

Boling, Douglas. Programming Windows

Embedded CE 6.0 Developer Reference.

4th Edition. Microsoft Press, 2007.

Wilson, Y. James, Aspi Havewala. Building

Powerful Platforms with Windows CE.

Addison-Wesley Professional, 2001.

Murray, John. Inside Microsoft Windows CE

Microsoft Press, 1998.

233

Resources

Forums

• Russian-speaking forum dedicated to Microsoft embedded operating systems:
http://www.msembedded.ru/forum

Biogs

• Windows Embedded CE team blog: http://blogs.msdn.com/ce_base

• .NET Compact Framework team blog: http://blogs.msdn.com/netcfteam

• HopperX blog, dedicated to device issues: http://blogs.msdn.com/hopperx/

• Mike Hall blog, dedicated to Microsoft embedded operating systems:
http://blogs.msdn.com/mikehall/

• SQL Server Compact Edition team blog: http://blogs.msdn.com/
sqlservercompact/

Newsgroups

• microsoft.public.windowsce.platbuilder

• microsoft.public.windowsce

• microsoft.public.pocketpc.developer

• microsoft.public.windowsce.embedded

Books

• Boling, Douglas. Programming Windows Embedded 6.0 Developer Reference.

4th Edition. Microsoft Press, 2007.

• Wilson Y., James and Aspi Havewala. Building Powerful Platforms with

Windows CE. Addison-Wesley Professional, 2001.

• Murray, John. Inside Microsoft Windows CE. Microsoft Press, 1998.

235

Index

Symbol
$bus namespace, 140
$device namespace, 140

3COM 3C90X network card, 125
3RDPARTY subdirectory, 102

32-bit architecture, 78

802.1, 8

.bib files, 111

CONFIG section of, 112
execute in place (XIP) and, 113

MEMORY Section of, 112

MODULES attributes in, 114
MODULES section of, 113

.cab files for installing programs,
74

CL environment variable, 105

.dat files, 111, 115

.db files, 111, 115

DEPTREES environment variable,

105, 108
FLATRELEASEDIR environment

variable, 105, 110

ISVINCPATH variable, 176
.lib files. See static libraries (.lib)

.NET Compact Framework, 6, 8,

103,203
.obj files. See object files (.obj)

_OEMINCPATH variable, 176

_PLATFORMROO,,S environment
variable, 105

_PROJECTROO,,S environment

variable, 105

PROJROOT variable, 176
_PUBLICROOT environment

variable, 105

.reg files, 111, 115
__ security_init_ cookie function,

162

/STACK linking parameter, 87
_TGTCPU environment variable,

105
_TGTPLAT environment variable,

105

_TGTPROJ environment variable,

105
__ try/ __ except/ __ finally blocks,

155
_WINCEROOT environment

variable, 101, 105, 176

A
absolute binary format, 111

abstraction of hardware or virtual

device, 2, 127, 135

access checking, 151
ActivateDeviceEx function, 146,

148, 165
Active Server Pages (ASP), 9

ActiveSync, 8, 57, 216

Active Template Library (ATL), 8,

206
ActiveX, 206
ActivityTimers registry key, 184

adaptation of desktop

applications, 7

Add Device window, 51

Add New Subproject wizard
dialog box, 207

address fixup, 145

addressing of memory, 79

Advanced Build Commands

option, 45
Advanced Memory utility, 54

advantages of kernel-mode

drivers, 142

Advertiselnterface function, 182,

198
alerts, 67
aliases and buffers, 152

allocating memory regions with
fine granularity, 84

AMD Am79C970 network card,

125
analysis of session data, 71

apicall.c file, 161

API, See application programming

interface (API)

application development,

203-213
application libraries, 75

application programming

interface (API), 7

Application Verifier utility, 222

architecture of device
drivers<$startrange>, 135

architecture of the Windows
Embedded CE Test Kit (CETK),

215
architecture of virtual memory, 78

architecture of Windows
Embedded CE, 75

ARM emulator, 8

ARM processor, 2, 121

ARMSetup function, 160

armtrap.s file, 161
Aruba Board, 121

ASM code, 203
ASP. See Active Server Pages (ASP)

Aspen Development Board, 121

assembler language, 160

asynchronous access to buffers,
152-153

AsynchronousBuffer_t class, 155

ATL8 directory, 102

ATL. See Active Template Library
(ATL)

ATM. See automated teller
machine (ATM)

Attach Device option, 48

attacks, 153
audio output, 183
Autoload registry key, 149, 189

automated teller machine

(ATM), 5

automatically launching
applications at the system

startup, 165, 177-179

automatically loading drivers

during system startup, 180

237

238 automatic reset event

automatic reset event, 97 hardware interaction, 78 Exclude from build option
AUTOSIZE parameter, 112 overview of, 121-133 and,43

Autos utility, 54 Platform.reg file for a, 115 final stage of the, 110

auxiliary debug files, 155 quality of a device and, 121 general settings for the, 40

auxiliary functions for working reducing the time to input files for the, 101
with partitions, 124 build a, 130 Makeimg errors during the, 119

AYGShell API, 8 self-developed, 171 Nmake utility and, 101

source code of a, 123 Post-Sysgen errors during the,

B Sysgen filtration for a, 109 118

Boot hive, 194 stages during the, 106
backlight driver, 183 Boot.hv file, 165 Sysgen errors during the, 118
backup and restore boot loader, 121, 124 variables used to control the, 41

system libraries and, 74 device development process BuildRel.bat file, 110
Base Class Libraries (BCL), 203 and,168 Buildrel. See Build Release
base operating system design, implemention of a, 125 Directory (Buildrel)

170 libraries for a, 124 Build Release Directory (Buildrel),
Batch Build option, 45 serial port operations and, 125 110
batch files for the build process, Startup() function and, 125 Buildrel errors, 118

101 startup sequence and, 159 BUILDREL_USE_COPY variable,
BCL. See Base Class Libraries (BCL) tasks of a, 124 42, 110
BIB. See Binary Image Builder (BIB) BootloaderMain() function, 125 Build Solution option, 45
binary image (BIN), 74 BOOTLOADER subdirectory, 123 build system
Binary Image Builder (BIB), 111, BOOTPART library, 124 directory tree of the, 102

145, 200 BootPhase2 event, 164 build system, 101-119
Binary Rom Image File System BootVars registry key, 195 Build tracked events in RAM

(BinFS), 9, 188 browse open windows of a device, setting, 42
BinCompress.exe, 74 67 build tree, 39
BinFS. See Binary Rom Image File BSP. See Board Support Package build type, 40

System (BinFS) (BSP) Builtln registry key, 148, 165
BinMod.exe, 74 BSP_NOXXX environment BuldRel.bat file, 106
BLCOMMON, 8, 124 variables, 105 bus architecture-specific
Blddemo.bat file, 2, 101 buffer marshaling API, 153 operations, 140
Blddemo.bat -qbsp command, buffers, 87, 143, 151 bus-based namespace, 140

109 Build All SDKs option, 45 bus enumerator (BusEnum.dll),
block driver, 146 Build and Sysgen option, 46 148
blocking threads, 94 Build Current BSP and Subprojects BusNumber registry parameter,
Bluetooth, 8 option, 46 147
Board Support Package (BSP), 2 Build.err file, 118

CeSysgenPlatform.mak file and, Build.exe, 110, 116 c 109 Build.log file, 118
cloning a, 78, 173 Build menu items, 45 CabWiz.exe, 74

components of a, 122 build order, 38 CacheDLL settings, 191
configuration files and, 122, 132 build process, 2 cachefilt.dll library, 191
customizing a, 129 batch files for the, 101 caching manager, 191

development requirements, 2 Build.exe and, 116 caching of images designed for

device development and, 168 build options and, 41 flash memory, 126
directory structure of a, 122 Buildrel errors during the, 118 caching of static memory, 80

drivers and, 122 command files for the, 2 caching services for the file

examples of a, 121 custom build actions and, 43 system, 190

FILES directory of a, 133 errors during the, 118 Call Browser window, 33

CallCAP profiling, 71

Call Profiler utility, 48, 71

application performance

measuring by using, 71
CallCAP profiling and, 71

FastCAP profiling and, 71

required components for, 55

Sources file and, 71
Call Stack utility, 54
camera driver, 198

CandidateX registry
parameter, 148

capturing screenshots of the

target CE device, 227
car-based computers, 7

catalog hierarchy, 34, 102

Catalog Items View, 33, 36

CATALOG subdirectory, 103, 123

CIC++ code, 203
C# code, 203
CD File System (CDFS), 9, 188

CDFS. See CD File System (CDFS)

CDProfile registry key, 149

CE 1.0. See Microsoft Windows

CE 1.0
CeAllocAsynchronousBuffer

function, 153-154

CeAllocDuplicateBuffer function,

154

CEAppCompat.exe, 74
CEBackup.exe, 74

CEBASE subdirectory, 103
CE.bib file, 111

Cebuild.bat file, 106

CeCallUserProc function, 142
CECE signature, 159

CeCloseCallerBuffer function,
153-154

CEDB database, 77, 82, 197

CEDebugX toolkit for multi­

threaded programming, 25
CE Debug Zones option, 48

CE_DRIVER_POWER
MANAGEABLE_DISPLAY_

GUID, 183
CEFileWiz utility, 201

Cefilter.exe utility, 109

CeFlushAsynchronousBuffer
function, 154

Copy Files to Release Directory option 239

CeFreeAsynch ro nou sBuffer
function, 153-154

CeFreeDuplicateBuffer function,
154

CeGetThreadPriority function, 92

CeGetThreadQuantum function,
92

CeHeapCreate function, 86

CELLCORE subdirectory, 103
CELog.dll file, 42

CELog file conversion, 74

CeOpenCallerBufer function,
153-154

CEPC BSP, 121

CeRemoteHeapCreate
function, 86

CeRemoteHeapMapPointer

function, 86

CeSetThreadPriority function, 92

CeSetThreadQuantum
function, 92

CESH. See CE Shell (CESH)
CE Shell (CESH), 48, 171

CESH Startup server, 57
CESYSGEN directory, 123

CeSysgenPlatform.mak file, 109
CETest.exe. See server-side

program (CETest.exe)

CETK. See Windows Embedded CE

Test Kit (CETK)
charts, 67

CIFS. See Common Internet File

System (Cl FS)
Class View, 33, 37

Clean Solution option, 45
Clean Sysgen option, 46
client-side program (Clientside.

exe), 216

clock, 128

Clone Board Support Package
dialog window, 173

Clone BSP option, 173

Clone Catalog Item option, 176
Cloning, 78, 131, 175

CloseHandle function, 96, 139

CloseMsgQueue function, 98

CLR. See Common Language
Runtime (CLR)

CMaccept.exe, 212

cmd.exe, 213

Code Definition window, 33, 38

codepages, 41

COFF files, 74

cold boot, 164, 192, 197
committed virtual memory, 79

Common.bib file, 111
Common Internet File System

(CIFS), 9

Common Language Runtime

(CLR), 203
common platform code, 129

COMMONPUBROOT variable, 176

Common.reg file, 115, 178, 183

COMMON subdirectory, 103, 123,
129-131

compatibility checks, 74

compiler
improvements of the, 10

run-time safety checks and, 10

componentized design, 6-7, 75
components of a Board Support

Package (BSP), 122

COMPRESS parameter, 113

compromised kernel-level driver,

142
COM subsystem, 193

conditional debug output, 155
Config.bib file, 111, 133

CONFIG section, 112, 159

configurable llSR procedure, 100

Configuration Manager option,

45, 105
Configure Windows CE Platform

Manager option, 56

ConmanClient2.exe, 212
connectivity options, 48

Console Window catalog item,

213
consumer electronics, 7

consumer media device, 169
context of th reads, 88

Control Panel, 213

control window of the target

device, 48

ConvertThreadToFiber
function, 93

Copy Files to Release Directory

After Build option, 46

Copy Files to Release Directory

option, 45, 110

240 copying errors

copying errors, 118 DDKReg_GetWindowlnfo adaptation and modification
coredll.dll library, 75 function, 147 of, 7
core of the operating system, 75 DDSI. See Device Driver Service embedded application
Core Service Settings window, 50 Interface (DDSI) development in comparison
costs of development, 5 DebugBreak macro, 157 to, 213
CPU Monitor utility, 225 Debug build mode, 105 Detach Device option, 48
CreateDC function, 148 DEBUGCHK macro, 157 DEVCLASS_CAMERA_GUID, 198
create directories on a device, 55 debugging DEVCLASS_STREAM_GUID, 198
CreateEvent function, 97, 150 conditional output for, 155 devcore.c file, 164
CreateFiber function, 93 control window of the target development costs, 168
CreateFileForMapping device for, 48 development tools for Windows

function, 88 driver development and, 155 Embedded CE, 10
CreateFile function, 88 eXDI 2.0 support, 25 interface of, 32-54
CreateFileMapping function, 88 hardware debugging development tools for Windows
CreateMsgQueue function, 98 support, 42 Embedded CE, 11-74
CreateMUl.bat file, 74 kernel debugging support, 42 DEVFLAGS_LOAD_AS_USERPROC
CreateMutex function, 96 managed code and, 212 flag, 141
CreateProcess function, 92 output method for, 52 device-based namespace, 140
CreateSemaphore function, 96 postmortem, 10 Device Connection dialog
CreateStaticMapping subprojects and, 205 window, 217

function, 143 TCP/IP connections and, 212 device context, 145
CreateThread function, 87, 92 transport subsystem for, 125 device controller, 98
critical sections, 93, 95 without interruptions by using device databases, 197

functions for working with, 95 debug zones, 155 device development
C run-time library, 151 DEBUGLED macro, 157 Board Support Package (BSP)
Crystal CS8900A network card, Debug menu, 53 accessibility and, 168

125 Memory submenu, 54 costs of, 5
custom build action, 200 Windows submenu, 54 image builds during, 171
customizing a Board Support debug message options, 48, 52 KITL support and, 168

Package (BSP), 129 DEBUGMSG macro, 157 overview of, 167-201
custom Shim libraries, 224 DEBUG REGISTER macro, 156, 157 planning phase during, 167
CvrtBin.exe, 74, 111 DEBUGZONE macro, 157 process for, 172

debug zones, 49, 155 stages of, 167

D macros for, 157 traditional approach to, 167
printf debugging and, 155 device.di! library, 77

database initialization file, 111, registering of, 156 Device Driver Interface (DDI), 136
115 DEC/Intel DC21140 network Device Driver Service Interface

databases, 197 card, 125 (DDSI), 136
data marshaling, 153 Default.fdf file, 111 Device Emulator, 121, 210
DATASYNC subdirectory, 103 Default.hv file, 195 DeviceloControl function, 139
DAT files, 201 default stack size, 87 Device Manager, 77, 135, 138,
dbgapi.h, 156 default thread priority, 89 144, 164
DBGPARAM structure, 156 DeleteCriticalSection function, 95 device notification system, 199
DbgTL.dll library, 212 Delete Device window, 52 DevicePowerNotify function, 186
DCOM subdirectory, 103 DeleteFiber function, 93 device power state, 181
DDI. See Device Driver DependXX registry parameter, device prefix, 140

Interface (DDI) 165, 177 device properties, 57
DDKReg_Getlsrlnfo function, 147, design templates, 169 device transports, 57

150 sub-items of, 169 device type selection, 169
desktop applications devmgr.dll library, 77

ExitThread function 241

DHCP See Dynamic Host Con- secondary display and loading Enable hardware-assisted de-
figuration Protocol (DHCP) of, 148 bugging support setting, 42

diagnosing potential problems, 10 service interface of a, 136 Enable Kernel Debugger setting, 42
digital media receiver, 169 shared memory and, 151 Enable KITL setting, 42
Digital Rights Management, 9 stream, 135 Enable profiling setting, 42
Direct3D, 6 stream interface functions and, Enable ship build setting, 42
DirectDraw, 6 139 encfilt.dll library, 192
directory structure of a Board thread, 138 encryption, 188

Support Package (BSP), 122 unique device functionality and, energy-independent memory, 197
DirectShow, 6 137 energy-independent storage, 193
DIRECTX subdirectory, 103 user process, 7 Enhanced Database (EDB), 102, 198
Dirs files, 101, 116 worker bee of a, 139 EnterCriticalSection function, 95

Nmake utility and, 116 driver directories, 138 enterprise terminal, 169
structure of, 116 driver infrastructure, 2, 135 enterprise Web pad, 169

Disassembly utility, 54 DriverName registry parameter, enumerating partitions, 149
diskcache.dll library, 191 149 environment variables
DisplayCandidates registry key, DRIVERS subdirectory, 123 build process and, 2

148 dual monitors, 148 build process and, 104-105
DisplayDll registry parameter, 148 DumpBin.exe, 74 configuring of, 101
Dll registry parameter, 146 DuplicatedBuffer_t class, 155 OS design and, 104
DLLs. See dynamic-link libraries DuplicateHandle function, 87 ERRORMSG macro, 157

(DLLs) DVD Video API, 9 errors during the build process, 118
DotnetV2 directory, 102 Dynamic Host Configuration establishing a connection
dpCurSettings parameter, 156 Protocol (DHCP), 124 between the developer
driver, 2 dynamic-link libraries (DLLs), 7 workstation and the target

architecture, 135-157 virtual memory and, 78 device, 57
auxiliary debug files for a, 155 dynamic mapping of virtual ETHDBG library, 124
Builtln registry key of a, 148 memory, 80-81 Ethernet boot loader (EBOOT), 124
classification of a, 135 Ethernet debugging libraries
definition of a, 135 E (ETHDBG), 124
development, 149 event collection, 42
device context and, 145 EBOOT. See Ethernet boot loader event log, 164
efficiency of a, 143 (EBOOT) events, 93, 96
fault tolerance and, 78 EBOOT library, 124 functions for working with, 97
file system, 138 eboot loader, 122 interrupt service thread (IST)
group number of, 144 eboot space, 42 and, 150
hybrid, 135 EBOOT subdirectory, 123 exception errors, 80, 155
intermediate global positioning EDB. See Enhanced Database exception handling, 86

system (GPS), 8 (EDB) Exchange Server client, 8
interrupts and, 149 EE. See Execution Engine (EE) Exclude from build option, 43
kernel mode and, 77 embedded pointer, 151, 154 Exclude from image option, 44
kernel space and, 7 embedded systems eXDI 2.0 hardware debugging
layered, 135 infrastructure solutions and, 6 support, 25
load parameters, 140 initial stage of, 5 execute in place (XIP), 82, 113
MDD/PDD architecture for, 136 server solutions and, 6 Execution Engine (EE), 203
Monolithic, 135 embedded systems, 5-10 execution monitoring, 48, 69
Native, 138 Enable eboot space in memory exFAT. See Extended File
porting a, 137 setting, 42 Allocation Table (exFAT)

release-quality, 6 Enable event tracking during boot ExitProcess function, 92
reload a, 142 setting, 42 ExitThread function, 92

242 explorer.exe

explorer.exe, 200

export files to a device, 55

exporting registry files, 65

Extended File Allocation Table
(exFAT), 9, 188

Extensible Markup Language
(XML), 8

F
FastCAP profiling, 71

FAT. See File Allocation Table (FAT)

FATFS registry key, 149

fault tolerance, 78, 143

Favorites folder, 34
Fibers, 88

characteristics of, 93
functions for working with, 93

FIFO. See First In, First Out (FIFO)

File Allocation Table (FAT), 9, 188

file-backed memory-mapped
files, 87

file namespaces, 139

FILES directory, 123, 133

file shortcuts, 201
filesys.dll library, 77, 115, 164

FileSys module, 149

file system, 187
File System Driver (FSD), 9, 138,

140
loading of a, 149

mounting media and, 149

overriding settings for a, 149

Storage Manager and, 149

file system filter manager, 77
file system manager, 77

file system types, 188
File Transfer Protocol (FTP), 9, 75

File Viewer utility, 48, 55

filter settings, 190

filters for the file system, 189
filtration of header files, 109

final stage of the build process,

110
First In, First Out (FIFO), 99

FIXUPVAR memory type, 112
Flags registry parameter, 146

flash memory, 42

auxiliary functions for, 124

caching of images designed

for, 126

flat 4 GB address space, 78

flushing of event logging to the

release directory, 42
Flush tracked events to release

directory setting, 42

FlushViewOfFile function, 88

Fmerge.exe, 110
Folder registry parameter, 187

forced rescheduling, 161
ForceDuplicate parameter, 154

fragmentation of heaps, 85

FreelntChainHandler function,

100, 143, 150
free virtual memory, 79

FSD. See File System Driver (FSD)

fsdmgr.dll library, 77

FSReady event, 163

FTP. See File Transfer Protocol
(FTP)

G
gathering information about

processes, 63
GDIEX subdirectory, 103

Gear 2-Vr5500 Development Kit,

121

general system settings, 178
Generic Installable ISR (GllSR),

100, 151

GetCurrentFiber function, 93

GetCurrentProcess function, 92
GetCurrentProcessld function, 92

GetCurrentThread function, 92

GetCurrentThreadld function, 92
GetExitCodeProcess function, 92

GetExitCodeThread function, 92

GetFiberData function, 93

GetMsgQueuelnfo function, 98
GetProcessHeap function, 86

GetThreadContext function, 92

GetThreadPriority function, 92

GllSR. See Generic Installable ISR
(GllSR)

Global Build Settings option, 45

Global Build Settings submenu, 46

global positioning system (GPS),

8, 199

GPS. See global positioning
system (GPS)

Graphics, Windowing, and Events
Subsystem (GWES), 77, 135

group number of drivers, 144
GWES. See Graphics, Windowing,

and Events Subsystem (GWES)

gwes.dll library, 77

H
Handle Leak Tracker shim library,

223
hard links, 42, llO
hardware debugging support,

25,42

hardware-dependent part of the

operating system, 102

hardware-independent part of

the operating system, 102
hardware initialization, 124

hardware interaction, 78

hardware platform selection, 168

HDProfile registry key, 149, 187

header files, 109
Cefilter.exe utility and, 109

headless device version, 8

HeapAlloc function, 86
heap API, 86

heap.c file, 161

HeapCompact function, 86
HeapDestroy function, 86

heap dump, 60

HeapFree function, 86

Heaplnit function, 161

HeapReAlloc function, 86
Heaps, 59

fragmentation of, 85

implementation of, 84

local heap, 85

maximum size of, 85
memory regions for, 83

overflow of, 85

private heaps, 85

remote, 85

shared, 83, 85
unmovable memory blocks

and,85
HeapSize function, 86

HeapValidate function, 86

Heap Verifier shim library, 223

Heap Walker utility, 48, 59-61

high-level platform initialization,

125

history of Windows Embedded

CE,6

hive-based registry, 193

HIVE BOOT SECTION marker, 196

HKEY_CLASSES_ROOT hive, 193

HKEY_CURRENT_USER hive, 193

HKEY_ LOCAL_MACHINE\\

Drivers\\ProcGroup_XXXX

registry key, 144

HKEY_LOCAL_ MACHINE\\Drivers

registry key, 165, 180

HKEY_LOCAL_MACHINE\\

HARDWARE\\DEVICEMAP\\

KEYBD registry key, 149

HKEY _LOCAL_MACHINE\\

HARDWARE\\DEVICEMAP\\

MOUSE registry key, 149

H KEY_LOCAL_MACH I NE\\

HARDWARE\\DEVICEMAP\\

TOUCH registry key, 149

HKEY_LOCAL_MACHINE hive, 193

H KEY _LOCAL_MACH I NE\\lnit

registry key, 164, 177

HKEY_LOCAL_MACHINE\\System\\

CurrentControlSet\\Control\\

Power registry key, 183

HKEY_LOCAL_MACHINE\\System\\

GDl\\DisplayCandidates

registry key, 148

HKEY_LOCAL_MACHINE\\

System\\StorageManager\\

Autoload registry key, 149

HKEY_LOCAL_MACHINE\\

System\\StorageManager\\

Profiles registry key, 149, 187

HKEY_LOCAL_ MACHINE\\

System\\StorageManager
registry key, 149

HKEY_USER hive, 193

hot device restart, 129

HP Compaq t5530 Thin Client

Development Platform, 121

HTTP. See Hypertext Transfer

Protocol (HTTP)

hybrid driver, 135, 137

Hypertext Transfer Protocol

(HTTP), 75

!Class registry parameter, 146, 182

IE.reg file, 115

IE subdirectory, 103

llSR. See installable ISR routines

IL. See Intermediate Language (IL)

image build modes, 105-106

image size exceeds the value

specified in Config.bib, 119

IMGAUTOFLUSH variable, 42

IMGCELOGENABLE variable, 42

IMGEBOOT variable, 42

I MG FLASH variable, 42

IMGHDSTUB variable, 42

IMGNODEBUGGER variable, 42,

106

IMGNOKITL variable, 42, 106

IMGNOXXX environment

variables, 105

IMGOSCAPTURE variable, 42

IMGPROFILER variable, 42

IMGRAM64 variable, 42

import files from a device, 55

inaccessible pointers, 153

lnbox, 103

include a file into the system

image, 200

INC subdirectory, 123

Index registry parameter, 146

industrial automation systems, 7

industrial controller, 169

infrastructure solutions, 6

lnitDB.ini file, 111

initialization files

CE.bib, 111

lnitDB.ini, 111

lnitObj.dat, 111

Reglnit.ini, 111

lnitializeCriticalSection function, 95

initial stage of embedded

systems, 5

lnitMemoryPool function, 161

lnitObj.dat file, 111, 115

input files for the build process, 101

input/output control codes

(IOCTL), 2, 127, 129, 135

input/output (1/0), 77

installable ISR routines, 99, 147, 149

C run-time library and, 151

requirements for, 150

IOCTL 243

installation instructions for

Windows Embedded CE, 10

Install Visual Studio 2005 option,

12

integration with Visual Studio, 10

lnteliSense technology, 10, 33

Intel PXA27x Processor

Development Kit

(Mainstonelll), 121

Intel StrataFlash NOR Driver, 197

lnterfaceType registry parameter,

147

interlocked functions, 93-94

intermediate builds, 171

intermediate global positioning

system (GPS) driver, 8

Intermediate Language (IL), 203

Internet Appliance, 169

Internet Explorer 6, 6, 103

Internet Protocol security (IPsec), 8

interprocess communication, 87

lnterruptDisable function, 128, 143

lnterruptDone function, 100, 128,

143, 150

lnterruptlnitialize function, 100,

143, 150

lnterruptMask function, 128, 143

interrupt request (IRQ), 98, 127

interrupts, 88

architecture of, 98-100

drivers and, 149

handling of, 99

peripheral devices and, 98

interrupt service routine (ISR),

80,98

external dependencies and, 98

main task of an, 98, 149

interrupt service thread (IST), 98,

136

events and, 150

main task of an, 100

system interrupt (SYSINTR) and,

150

WaitForSingleObject function

and, 150

loBase parameter, 143, 147

1/0. See input/output (1/0)

IOCLT_HAL_REBOOT code, 129

IOCTL. See input/output control

codes (IOCTL)

244 IOCTL_HAL_GET_DEVICE_INFO code

IOCTL_HAL_ GET _DEVICE_I N FO kernel.dll library, 77, 127 limit access to kernel memory, 142

code, 129 KernelFindMemory function, 161 line of operating systems, 5
IOCTL_HAL_GET_UUID code, 129 Kernel Independent Transport LINK environment variable, 105
IOCTL_HAL_POSTINIT code, 129, Layer (KITL), 42, 57, 77, 132, linker settings

162 217 stack overflow option, 86

IOCTL_HAL_REQUEST_IRQ code, Kernellnit2 function, 162 List Nearest Symbol utility, 54

129 Kernell nit function, 161 loader.c file, 16-162

IOCTL_HAL_REQUEST_SYSINTR Kernellnitialize function, 160 Loaderlnit function, 162

code, 129, 150 KernellibloControl function, 100, loading a block driver, 146

IOCTL_POWER_CAPABILITIES 150 loading a mouse driver, 149

code, 185 kernel libraries, 75 loading of user-mode drivers,

IOCTL_POWER_GET code, 185 kernel-mode drivers, 77, 78, 141 144, 146

IOCTL_POWER_QUERY code, 185 advantages of, 142 loading stream drivers, 146

IOCTL_POWER_SET code, 185 system failures and, 142 LoadlntChainHandler function,
IOCTL_REGISTER_POWER user interface and, 142 99, 143, 150

RELATIONSHIP code, 185 kernel-mode servers, 75 load process for native drivers, 148

loLen parameter, 143, 147 Kernel Relocate function, 160 load stage flags, 196
IP address detection, 212 kernel space,~ 81 LocalAlloc function, 86

ipconfig.exe, 213 KernelStart function, 160-161 Local Area Network (LAN), 8

IP phone, 169 kernel startup function, 160 Locale setting, 41, 111

IPsec. See Internet Protocol Kernel Tracker utility, 48 LocalFree function, 86

security (IPsec) Kernel Tracker utility, 69-71 local function variables, 86

1Pv4, 8 KEYBD registry key, 149 local heap, 85

1Pv6, 8 keyboard layout files, 74 localized executable files and

IRQ. See interrupt request (IRQ) keyboard messages, 77 libraries, 111
lrq registry parameter, 147 K flag, 145 Localize the build option, 41

ISR. See interrupt service routine KITL. See Kernel Independent LocalReAlloc function, 86
(ISR) Transport Layer (KITL) LocalSize function, 86

lsrDll registry parameter, 147 kitl.dll library, 77, 123 LOC_STORE_HD_FOLDER macro,

lsrHandler registry parameter, 147 KITL Startup server, 57 188
IST. See interrupt service thread KITL subdirectory, 123 Loggerlnit function, 162

(IST) KITL support, 168 logging in XML, 221

kmisc.c file, 163 low energy consumption mode,

J 128

L low-level hardware initialization,
JIT. See Just-In-Time (JIT) 125

compilation label file, 201 low-quality driver, 142
JScript 5.5, 103 LAN. See Local Area Network

Just-In-Time (JIT) compilation, 203 (LAN)
M launching applications at the

K system startup, 165 MacPhyter network card. See

LaunchXX registry parameter, National Semiconductor
Kato.di! library, 216 165, 177 DP83815 (MacPhyter)
KbdGen.exe, 74 layered driver, 135 network card
k.coredll.dll library, 75, 77 LDAP. See Lightweight Directory macros for debug zones, 157
KdataStruct structure, 160 Access Protocol (LDAP) main device functionality, 171
kernel abstraction, 122 LeaveCriticalSection function, 95 Main() function, 125
kernel API, 143 legacy namespace, 140 Mainstonelll. See Intel PXA27x
kernel architecture, 76-77 Lightweight Directory Access Processor Development Kit
kernel debugging support, 42, Protocol (LDAP), 8 (Mainstonelll)

106

My Projects subdirectory 245

Makefile files, 117 memory buffers, 87 Setup Wizard of, 13
Makefile.def, 117 memory controller, 160 Solution Explorer of, 34

Makeimg errors, 119 memory management, 77, 83 subprojects and, 205
Makeimg.exe, 106 Memory Management Unit View menu of, 38
Make Run-Time Image After Build (MMU), 78, 160 Microsoft Windows CE, 5, 6

option, 46- 47 memory-mapped file API, 88 Microsoft Windows Mobile, 6
Make Run-Time Image (Makeimg), memory-mapped files, 87 minimum power usage mode, 128

106, 110 file-backed, 87 minor releases of Windows
Make Run-Time Image option, 45 interprocess communication Embedded CE, 6
managed code application and,87 MIPS. See Microprocessor without

development, 203 named, 87 Interlocked Pipeline Stages
managed code applications, 4 RAM-backed, 87 (MIPS)
managing thread execution, 88 Unnamed, 87 MIPSSetup function, 160
manually scheduled execution of memory regions for static MMU. See Memory Management

threads, 93 mapping, 80 Unit (MMU)
manual reset event, 97 MEMORY Section, 112 mobile handheld, 169
Manual Startup server, 57 memory types, 112 model device driver (MDD), 135
mapfile.c file, 161 FIXUPVAR, 112 MODULES attributes, 114
Mapfilelnit function, 161 RAM, 112 MODULES section, 113
mapping of pointers between RAMIMAGE, 112 Modules utility, 54

processes, 151 RESERVED, 112 monitoring
mapping of virtual memory MFC. See Microsoft Foundation process threads, 70

addresses to physical Classes (MFC) system events, 71
addresses, 78 MGXXX environment variables, monolithic driver, 135, 137

MapViewOfFile function, 88 105 monolithic image of the
Marshal.hpp file, 154 Microprocessor without operating system, 110
Marshaling, 151 Interlocked Pipeline Stages Motorola format, 74, 111

aliases and, 152 (MIPS), 2, 121 MountAsBootable registry
C++ classes for, 154 Microsoft Foundation Classes parameter, 193
restrictions for user-mode (MFC), 8, 211 MountAsRoot registry parameter,

drivers, 153 Microsoft Message Queuing 193
risks of, 153 (MSMQ), 9 mouse driver, 149
types of, 152 Microsoft operating systems mouse messages, 77
wrapper classes for, 155 line of, 5 MOUSE registry key, 149

MarshalledBuffer_t class, 155 Microsoft SQL Server Compact, 8 MSMQ. See Microsoft Message
masks for debug zones, 156 Microsoft Visual Studio 2005, 2, Queuing (MSMQ)
maximum number of 10 Msxml.dll library, 75

simultaneously running build mode selection, 105 multimedia technologies, 6
processes, 7 Catalog Items View in, 36 multitasking, 88

maximum size of heaps, 85 Class View in, 37 preemptive, 90
MB442 Development Platform, environment settings for, 23 multithreaded operating system,

121 installation of, 11 75
MDD. See model device driver main window of, 32 mutexes, 93, 95

(MDD) Output window of, 33 functions for working with, 96
media-based registry hive files, Platform Builder for Windows mutual blocking, 91

195 Embedded CE 6.0 and, 11 MyDriver.dll sample, 181
media manager, 77 Project submenu of, 38 My Projects subdirectory, 115
media profile, 190 Service Pack 1 for, 24
MemBase registry parameter, 147 Service Pack 1 for .NET Com-
MemLen registry parameter, 147 pact Framework 2.0 and, 18

246 named memory-mapped files

N 0 OEMSetRealTime function, 128

OEMShowProgress function, 126
named memory-mapped files, 87 OAL. See OEM adaptation layer OEMStartEraseFlash function, 127
named properties, 198 (OAL) OEMWriteDebugByte function,
named stream drivers, 139 OAL.exe, 123, 127 125, 128
National Semiconductor DP83815 OALEXE subdirectory, 123 OEMWriteDebugString function,

(MacPhyter) network card, 125 OAL.lib library, 123 125, 128, 161
native code application OALLIB subdirectory, 123 OEMWriteFlash function, 127

development, 203 OBEX. See OBject EXchange Off power state, 183
native code applications, 4 (OBEX) OMAP5912 Aruba Board, 121
native drivers, 138, 140 OBject EXchange (OBEX), 8 On power state, 183

load process for, 148 object files (.obj), 117 OpenMsgQueue function, 98
NDIS. See Network Driver Object Store, 9, 77, 188 Open New BSP Catalog File in

Interface Specification (NDIS) object store initialization file, 111, Catalog Editor flag, 173
NE2000-compatible network 115 OpenProcess function, 92

card, 125 OEM adaptation layer (OAL), 6, 77, Open Release Directory in Build
NEC Solution Gear 2-Vr5500 121, 127-129 Window option, 45

Development Kit, 121 OEMAddressTable, 80, 160 OpenThread function, 92
NETCFV2 subdirectory, 103 OEM. See Original Equipment operating system images
network boot loader, 126 Manufacturer (OEM) testing of, 4
network cards, 124 OEMContinueEraseFlash function, operating system (OS), 5
Network Driver Interface 127 optimizing the efficiency of the

Specification (NDIS), 8 OEM Debug/nit function, 125 system, 10
network drivers, 143 OEMEthGetFrame function, 127 Order registry parameter, 146,

poll mode and, 149 OEMEthGetSecs function, 127 148, 165
Network Multimedia Feature OEMFinishEraseFlash function, 127 Original Equipment Manufacturer

Pack, 7 OEMGetRealTime function, 128 (OEM),6
network projector, 169 OEMGLOBALS structure, 160 OSCapture.exe module, 42
Network Utilities (lpConfig, Ping, OEM/die function, 128 OS. See operating system (OS)

Route) catalog item, 213 OEMlnitDebugSerial function, OS design
NK.BIN file, 110 125, 128, 161 build options and, 41
NKCalllntChain function, 99 OEM/nit function, 128, 161 common properties of the, 39
NKDeleteStaticMapping function, OEMlnitGlobals function, 160 configuration properties for

143 OEMlnterruptDisable function, the, 40
Nk.exe process, 75, 77, 127 128 environment variables and, 104
NKGLOBALS structure, 160 OEMlnterruptDone function, 128 Locale setting for the, 41
nkinit.c file, 161 OEMlnterruptEnable function, 128 release version of an, 171
NK.NBO file, 110 OEMlnterruptHandlerFIQ separate projects and, 209
NKStartup function, 160 function, 128 subprojects and, 205
Nmake configuration files, 101 OEMlnterruptHandler function, templates for the, 169
Nmake utility, 101, 116 99, 128 OS design project, 32
NOLIBC setting, 151 OEMloControl function, 128 OS design properties, 39
NOMUPS16CODE setting, 151 OEMlsFlashAddress function, 127 OSDESIGNS subdirectory, 102
non-contiguous fragments of OEM Launch function, 125 OS image editor, 10

physical memory, 144 OEMMapMemAddr function, 126 OSTEST subdirectory, 103
non-signaled state of OEM Platform/nit function, 125 output method for debugging

synchronization objects, 94 OEMPowerOff function, 128 messages, 52
non-system development, 206 OEMPreDownload function, 125 Output window, 33
notifications for power state OEMReadDebugByte function, overflow of heaps, 85

changes, 186 125, 128 ownership of a semaphore, 96
NTFS volumes, 110 OEMSetAlarmTime function, 128

process threads 247

p Shared Source feature and, 22 power state changes, 186
Target menu of, 47 power state for peripheral

page fault, 79 Target toolbar of, 32 devices or the system, 181
processing of a, 79 Tools menu of, 53 predefined states for, 182

PagePoollnit function, 162 Platform catalog, 101 subsystem for, 181
page size of virtual memory, 78 Platform.db file, 133 power management codes, 127
page table, 78 platform dependent driver (PDD), PPPoE. See Point-to-Point
PAN. See Personal Area Network 135 Protocol over Ethernet

(PAN) platform initialization, 124 (PPPoE)
Parameter Files folder, 178, 180 Platform Invoke (P/lnvoke) PPTP. See Point-to-Point
parental control, 9 service, 204 Tunneling Protocol (PPTP)
Partition Manager, 189 Platform.reg file, 115, 133, 179 PQOAL. See Production Quality
Partitions, 149 PLATFORM subdirectory, 102, OAL (PQOAL)
PartitionTable registry key, 189 122, 129 predictability of execution, 91
password protection, 198 Plug and Play, 198 preemptive multitasking support,
PBlnitEnv.bat file, 2, 101, 104 PnP messaging system, 198 75, 90
PBTOOLS subdirectory, 103 Pocket Outlook Object Model Prefix registry parameter, 146
PCMCIA registry key, 149 (POOM), 8 PRELINK_PASS_CMD variable, 118
PDA device, 169 pocket PCs, 6 pre-sysgen stage, 106, 108
PE format. See Portable pointer mapping, 151 primary thread, 88

Executable (PE) format pointer parameter, 151, 154 printf debugging, 155
performance alerts, 67 point-to-point message queue, Print Screen utility, 227
performance charts, 67 93, 97 prioritization of threads, 88
performance improvements, 7 functions for working with a, 98 race conditions and, 91
Performance Monitor utility, 48, Point-to-Point Protocol over priority inversion, 89, 91

66 Ethernet (PPPoE), 8 Private catalog, 101
extensions for the, 103 Point-to-Point Tunneling Protocol private heaps, 85

performance reports, 67 (PPTP), 9 PRIVATE subdirectory, 102
PerfToCsv utility, 226 poll mode, 149 PRJ _BOOTDEVICE_ATAPI
peripheral devices POOM. See Pocket Outlook environment variable, 188

drivers for, 132 Object Model (POOM) PRJ_BOOTDEVICE_MSFLASH
interrupts and, 98 Portable Executable (PE) format, 7 environment variable, 188
power state for, 181 porting a driver, 137 PRJ_ENABLE_FSMOUNTASROOT

Personal Area Network (PAN), 8 POSTLINK_PASS_CMD variable, 118 environment variable, 188
phone device, 169 postmortem debugging, 10 PRJ_ENABLE_REGFLUSH_ TH READ
physical memory Post-Sysgen errors, 118 environment variable, 197

non-contiguous fragments of, post-sysgen stage, 106, 109 PRJ_XXX environment variables,
144 POWER_ CAPABILITIES structure, 105

physmem.c file, 161 185 process.c file, 161
P/lnvoke service. See Platform POWER_CAP_PARENT flag, 185 Processes utility, 54

Invoke (P/lnvoke) service power management, 181 process for building a device, 172
planning phase, 167 Advertiselnterface function and, process heaps, 59
Platform.bib file, 111, 133 182 initial size of, 85
Platform Builder for Windows audio output and, 183 process loading, 77

Embedded CE, 11 backlight and, 183 process management, 77, 88
Debug menu of, 53 interaction with applications process of test execution, 219
installation of, 20-24 and drivers, 184 processor architectures for
Service Pack 1 for, 25 IOCTL control codes for, 185 Windows Embedded CE, 7
Service Pack 1 for Microsoft notifications for, 186 process threads

Visual Studio 2005 and, 24 Power Manager and, 181 monitoring of, 70
Setup Wizard of, 20, 26

248 Process Viewer utility

Process Viewer utility, 48, 63-64 rapid systems and application flushing of event logging to
ProcGroup registry parameter, 144 development, 8 the, 42
PROClnit function, 161 RAS. See Remote Access Services Release Directory Module option,
ProcName registry parameter, 144 (RAS) 48
ProcVolPrefix registry parameter, RDP. See Remote Desktop ReleaseMutex function, 96

144 Protocol (RDP) ReleasePowerRequ i rement
production costs, 168 RDP subdirectory, 103 function, 186
Production Quality OAL (PQOAL), Read File function, 139 release-quality drivers, 6

8, 129 ReadGenericData function, 194 ReleaseSemaphore function, 96

ProfileDir registry value, 195 ReadLog.exe, 74 RELEASETYPE variable, 118, 176
profiler subsystem, 71 ReadMsgQueueEx function, 98 RELFSD file system, 188

Program Files directory, 115 ReadMsgQueue function, 98 reload a driver, 142

Project.bib file, 112 RealTek RTL8139 network card, Remote Access Services (RAS), 9
Project.reg file, 115 125 Remote API (RAPI), 8
Project Settings dialog box, 176 real-time communications (RTC), 8 Remote Desktop Protocol (RDP),
Project submenu of Microsoft real-time hardware clock, 128 8, 103

Visual Studio 2005, 38 real-time operating system, 75 remote heap, 85
Promise Controller ATAPI driver, predictability of execution in Remote Registry Editor, 64

197 a, 91 Remote Registry Editor. See
PS/2 keyboard driver, 148 Rebuild All Subprojects option, 45 registry editor
pTOC variable in Nk.exe, 159 Rebuild and Clean Sysgen option, Remote Tools Framework, 25
Public catalog, 101 46 Remote Tools option, 48
PUBLIC subdirectory, 102 Rebuild Current BSP and remote utilities, 55
PulseEvent function, 97 Subprojects option, 46 Remote Zoom utility, 227
PXA270 Development Platform, Rebuild Solution option, 45 rename files and directories

121 reducing development time, 130 stored on a device, 55

reflash device firmware, 122 Renesas U57750R HARP (Aspen)

Q reflector service, 142-143 Standard Development
RegCloseKey function, 194 Board, 121

Q flag, 146 RegCopyFile function, 194 reports, 67
quality of a device, 121 RegCreateKeyEx function, 194 RequestDeviceNotifications
quantum, 89 RegDeleteKey function, 194 function, 199

RegDeleteValue function, 194 RequestPowerNotifications

R RegEnumKeyEx function, 194 function, 186

RegEnumValue function, 194 requirements
R2 upgrade, 7 RegFlushKey function, 194, 196 developer workstation, 10
race conditions, 91 Reglnit.ini file, 111 rescheduling, 161
Radio Interface Layer (RIL), 8 Registers utility, 54 RESERVED memory type, 112
RAM-backed memory-mapped registry API, 194 reserved virtual memory, 79

files, 87 registry editor, 10, 33, 48, 64 Reset Device option, 48
RAM-based registry, 197 registry initialization file, 111, 115 ResetEvent function, 97
RAM. See random-access memory registry settings for stream resource manager, 77

(RAM) drivers, 146 ResumeThread function, 92
RAM encryption, 188 registry types, 194 RETAILLED macro, 157
RAM file system, 192 RegOpenKeyEx function, 194 RETAILMSG macro, 106, 157
RAM IMAGE memory type, 112 RegQuerylnfoKey function, 194 RETAILREGISTERZONES macro,
RAM memory type, 112 RegQueryValueEx function, 194 156-157
random-access memory (RAM), 42 RegSetValueEx function, 194 reusing existing code, 129
range of devices, 9 Release build mode, 105 RIL. See Radio Interface Layer (RIL)
RAPI. See Remote API (RAPI) release directory, 40 risks of buffer marshaling, 153

Spy utility 249

robotics equipment, 7 Secure Digital Input Output Short Message Service (SMS), 8

ROM and RAM File System (SDIO), 6 signaled state of synchronization

option, 192 security of drivers, 142-143 objects, 94

ROM files, 74 self-developed BSP, 171 SignalStarted function, 166
ROM file system, 192 semaphores, 93, 96 SIM. See Subscriber Identity
ROMHDR region, 74, 159 functions for working with, 96 Module (SIM)

Romimage.exe, 111 ownership of, 96 Simple Network Management
ROM-only File System option, 192 separate projects for application Protocol (SNMP), 8

ROMPID region, 74 development, 209 Simple Object Access Protocol

ROMSIZE parameter, 113 Serial ATA, 197 (SOAP), 6
ROMSTART parameter, 113 serial port operations, 125 single-level priority inversion, 91
ROMWIDTH parameter, 113 Server Message Block (SMB), 9 SIP. See Session Initiation Protocol

root catalog, 187 server-side program (CETest.exe), (SIP)

root file system, 187 216 size of a virtual memory page, 78
RootKey value, 147, 165, 180 server solutions Sleep function, 92
round-robin scheduling of embedded systems and, 6 small-footprint device, 169

threads, 89 SERVERS subdirectory, 103 smart phones, 6
RTC. See real-time service interface, 136 SMB. See Server Message Block

communications (RTC) Service Pack 1 for .NET Compact (SMB)

RunApps function, 163 Framework 2.0, 18 SMS. See Short Message Service
Run Programs option, 48 Service Pack 1 for Platform (SMS)

run-time image Builder, 25 SNMP. See Simple Network

build stages for a, 107 Servicesd.exe, 75 Management Protocol

configuration files for the, 101 Service Status window, 51 (SNMP)

include a file into the, 200 session data analysis, 71 SOAP. See Simple Object Access
preparing for the execution of Session Initiation Protocol (SIP), 8 Protocol (SOAP)

the, 159 SetEvent function, 97 SOC chip, 131

testing of, 215-230 SetFilePointer function, 139 SOC chip. See system-on-chip
Run-time image can be larger SetPowerRequirement function, (SOC)

than 32 MB setting, 42 186 Software Development Kit (SOK),
run-time safety checks, 10 SetSystemPowerState function, 187 3, 171, 209

SetThreadContext function, 92 Solution Explorer, 33-34, 46, 178

s SetThreadPriority function, 92 solutions
set-top box, 169 Windows CE-based, 7

safe copy method, 153 Setup Wizard, 20, 26 source code, 8, 123
sboot loader, 122 SH4 processor, 2, 121 SOURCELIBS variable, 117
schedule.c file, 162 shared heap, 83, 85 Sources.cmn and, 118
scheduler, 77, 88, 93 shared memory, 151 Sources.cmn file, 176
screen capture, 227 Shared Source feature, 22, 102 Sources file, 101
SCRIPT subdirectory, 103 Shell, 75 Call Profiler utility and, 71
SDIO. See Secure Digital Input Shell API, 200 format of a, 117

Output (SDIO) Shell.exe. See Target Control Sysgen_capture.bat and, 74
SOK. See Software Development Service (Shell.exe) variables for, 117

Kit (SOK) SHELLSDK subdirectory, 103 SOURCES variable, 117
SOK subdirectory, 102 SHELL subdirectory, 103 Speech API 5.0, 8, 103
SDMMC registry key, 149 Shell Verifier shim library, 223 SPEECH subdirectory, 103
SDP2420 Development Board, 121 ShimGenUl.exe utility, 224 Spy utility, 48, 67
secondary display, 148 Shim library, 222 browse open windows of a
secure copy, 151 Ship build mode, 105 device with the, 67

shortcuts, 201 required components for, 55

250 SQLCE subdirectory

SQLCE subdirectory, 103 StopDeviceNotifications SYSINTR. See system interrupt

SQL Server CE, 6 function, 199 (SYSINTR)

libraries for, 102 StopPowerNotifications Sysintr registry parameter, 147

SQL Server Compact engine, 198 function, 186 SystemActivity timer, 184

SRAM, 197 Storage Manager, 149, 187 system API, 75
SRC directory, 123 stream drivers, 135 system architecture changes, 7

SRE parameter, 113 architecture of, 140 system architecture of Windows

stability of drivers, 142 automatic loading at system Embedded CE, 75

stack overflow option, 86 startup, 147 system event collection, 42

stack regions in memory, 83 file namespaces and, 139 system events

stack usage, 86 registry settings for, 146 filtering of, 71

default stack size and, 87 stream interface functions, 139 monitoring of, 71

exception handling and, 86 Stress Tool utility, 227 system failure, 142

threads and, 86 Strict localization checking in the system hive, 194

stages during the build process, build option, 41 SystemHive registry value, 195

106 subproject .bib files, 112 Systemldle timer, 184

StampBin.exe, 74 subproject build order, 38 System Information option, 48

standalone devices, 74 Subproject Image Settings option, System Information utility, 65

standard shell, 200 43 system interrupt (SYSINTR), 98,

standard subdirectories, 102 subprojects, 205 127, 150

Standard Template Library (STL), Subscriber Identity Module (SIM), 8 system libraries

8,206 subsystem for power backup and restore of, 74

Startup() function, 125, 160 management, 181 system-on-chip (SOC), 138, 160

startup sequence sub-test results, 220 system power state, 181

automatically loading drivers supported technologies, 8 system processes, 7

during the, 180 Suspend mode, 139 system shell, 75

launching applications during SuspendThread function, 92 system stability, 143

the, 165 Switch To Fiber function, 93 SystemStartupFunc function, 162

startup sequence, 159-166 synchronization among different

Startup server, 57 processes, 96 T states of virtual memory, 79 synchronization objects

static data blocks, 87 non-signaled state of, 94 t5530 Thin Client Development

read-only data and, 87 signaled state of, 94 Platform, 121

read/write data and, 87 thread descriptors as, 94 table of contents (TOC), 159

static IP address on a device, 213 synchronization objects, 93-98 tagged binary image, 111

static libraries (.lib), 117 synchronous access to user TAPI. See Telephony Application

static mapping of virtual memory, buffers, 142, 151, 153 Programming Interface (TAPI)

80 syntax highlighting, 10 Target Control option, 48

caching and, 80 SysDebuglnit function, 162 Target Control Service (Shell.

regions for, 80 Sysgen.bat file, 108 exe), 57

Status registry parameter, 148 Sysgen BSP filtration, 109 target device

step-by-step debugging, 155 Sysgen_capture.bat file, 74 establishing a connection

STi7109 MB442 Development Sysgen errors, 118 between the developer

Platform, 121 Sysgen option, 46 workstation and the, 57

STL. See Standard Template Sysgen stage, 106, 108 file system of a, 187

Library (STL) SYSGEN_UIPROXY identifier, 142 target device development

STMicroelectronics STi7109 SYSGEN_XXX environment stages, 3

MB442 Development variables, 101, 105 Targeted Build Settings option, 45

Platform, 121 SYSINTR_CHAIN identifier, 99 Targeted Build Settings submenu,

46

User-mode Driver Framework 251

TARGETLIBS variable, 117 interrupts and, 88 trivial file transfer protocol

Target menu, 47 managing execution of, 88 (TFTP), 124

TARGETNAME variable, 117 manually scheduled execution T ryEnterCritica ISectio n

Target toolbar, 32 of, 93 function, 95

TARGETTYPE variable, 117 manual reset events and, 97 Tux command-line parameters,

tasks of a boot loader, 124 multitasking and, 88 220

TcpConnectionA.dll library, 212 mutexes and, 93 Tux utility, 216

TCP/IP. See Transmission Control mutual blocking of, 91

Protocol/Internet Protocol point-to-point message queues u (TCP/IP) and,93

Team Foundation System, 54 primary, 88 Udevice.exe. See User Mode

technologies supported by prioritization of, 88- 89 Driver Host (Udevice.exe)

Windows Embedded CE, 8 priority inversion and, 89 UDFS. See User-defined File

telecommunication equipment, 7 processes and, 88 System (UDFS)

Telephony Application quantum and, 89 UDFS registry key, 149

Programming Interface race conditions and, 91 UDP. See User Datagram Protocol

(TAPI), 8 round-robin scheduling of, 89 (UDP)

Telnet, 9 semaphores and, 93 UI Proxy device driver, 142

TerminateProcess function, 92 stacks and, 86 unallocated memory

TerminateThread function, 92 suspend execution of, 92 algorithm of searching for, 85

testing theoretical limitation of, 88 Unattended power state, 183

device connections, 58 Threads utility, 54 unified build system, 2, 6

logging in XML during, 221 Timeouts registry key, 184 directory tree of the, 102

operating system images and, 4 timer codes, 127 unified build system, 101-119

overview of, 215-230 time-slicing, 89 unique device identifier, 129

production and, 171 time-slotted operation, 88 universal driver, 143

scenarios for, 215 Tl OMAP5912 Aruba Board, 121 Universal Plug and Play (UPnP),

stress testing, 227 TlsAlloc function, 92 9, 75

Texas Instruments SDP2420 TlsFree function, 92 Universal Serial Bus (USB), 6

Development Board, 121 TlsGetValue function, 92 Unldcmd .exe, 74

TFAT. See transaction-safe FAT TOC. See table of contents (TOC) unmanaged code, 203

(TFAT) Tools menu, 53 UnmapViewOfFile function, 88

TFTP. See trivial file transfer TOUCH registry key, 149 unmovable memory blocks, 85

protocol (TFTP) touch screen messages, 77 upgrades for Windows Embedded

thin client, 169 tracing of filesys.dll, 164 CE, 31

third-party software, 200 traditional approach to device UPnP. See Universal Plug and Play

THRDlnit function, 161 development, 167 (UPnP)

thread.c file, 161 transaction-safe FAT (TFAT), 6, US7750R HARP (Aspen) Standard

thread drivers, 138 9, 188 Development Board, 121

worker bee of, 139 transaction support, 198 USB. See Universal Serial Bus

thread management, 77 translating virtual addresses into (USB)

threads physical addresses, 78 UserActivity timer, 184

automatic reset events and, 97 Transmission Control Protocol/ User Datagram Protocol (UDP),

blocking of, 94 Internet Protocol (TCP/IP), 124

context of, 88 8,212 User-defined File System (UDFS),

critical sections and, 93 transports, 57 6, 188

default priority of, 89 subsystem for debugging, 125 User hive, 194

descriptors of, 94 trial version of Windows User-mode Driver Framework, 143

events and, 93 Embedded CE, 10, 28

252 User Mode Driver Host (Udevice.exe)

User Mode Driver Host (Udevice.
exe), 75, 142

user-mode drivers, 78, 141

Binary Image Builder (BIB) and,

145
buffers and, 143

device context and, 145

group number of, 144

inaccessible pointers in, 153
kernel API and, 143

loading of, 144

marshaling restrictions for, 153
restrictions of, 142

user-mode servers, 75

user processes, 75
user space, 81

Use xcopy instead of links to

populate release directory

setting, 42

utilities in the Windows
Embedded CE Test Kit (CETK),

222

v
variables for Sources files, 117

variables used to control the build

process, 41

VB.NET code, 203

VBScript 5.5, 103
video adapter driver, 148

ViewBin.exe, 74

View menu of Microsoft Visual

Studio 2005, 38

view the contents of the device

file system, 55
virtual address space, 75

VirtualAllocCopyEx function, 81,
84

VirtualAllocEx function, 81, 84

VirtualAlloc function, 81, 84
VirtualCopyEx function, 81, 84

VirtualCopy function, 81, 143

VirtualFree function, 84

virtual memory

addressing of, 79
allocating with fine granularity,

84

architecture of, 78

dynamic-link libraries (DLLs)

and, 78

dynamic mapping of, 80

kernel regions in, 82

limit access to kernel memory,
142

limitation of, 7

mapping to physical addresses,
78

Memory Management Unit
(MMU) and, 78

page size of, 78

page table and, 78

physical addresses and, 78

stack regions in, 83
states of, 79

static mapping of, 80

system kernel and, 2, 75

user address space in, 82

user processes and, 2, 75
virtual memory API, 84
virtual private network (VPN), 8

VirtualProtectEx function, 84

Virtual Protect function, 84

VirtualQueryEx function, 84
VirtualQuery function, 84

VirtualSetAttributesEx function,

84

vm.c file, 161

VMlnit function, 161
Voice over Internet Protocol

(Vol P), 6, 103

Voice over IP PXA270

Development Platform, 121
VoIP. See Voice over Internet

Protocol (VoIP)

VOiP subdirectory, 103

VPN. See virtual private network
(VPN)

VS80spl-KB926601-X86-ENU.exe

file 24

w
WaitForMultipleObjects function,

94, 96
WaitForSingleObject function, 94,

96, 100, 150

WAN. See Wide Area Network
(WAN)

WAP. See Wireless Application
Protocol (WAP)

Watch utility, 54

WCEAPPSFE subdirectory, 103

Wceapps.reg file, 115
Wceldcmd.exe, 74

WCESHELLFE subdirectory, 103

Wceshell.reg file, 115

WCF. See Windows Communi-
cation Foundation (WCF)

Web pad, 169

Web Services, 204

WEPOS. See Windows Embedded
for Point of Service (WEPOS)

Wide Area Network (WAN), 8
Win32 API, 7, 75

WINCE600 directory, 101

Wince.bat file, 2, 101, 104

WINCECALLCAP variable, 71

WINCEDEBUG environment
variable, 105-106

WINCEFASTCAP variable, 71

WINCEOEM variable, 176

WINCEREL variable, 110
WINCESHIP environment variable,

105
WINCESHIP variable, 42, 106

window manager, 77

secondary display and, 148

window messaging manager, 77
Windows CE Debug window, 33

Windows CE Log window, 33

Windows Communication

Foundation (WCF), 204

Windows Embedded CE, 6
catalog hierarchy of, 34

componentized design of, 6

development tools for, 10-74
driver directories of, 138

drive~inciudedin,132

file system of, 187

hardware-dependent part of, 102
hardware-independent part

of, 102

history of, 6
installation instructions for, 10

kernel architecture of, 76-77

maximum number of

simultaneously running

processes on, 7

Zoom utility 253

Windows Embedded CE (continued) client-side program (Clientside. worker bee of thread drivers, 139

monolithic image of the, 110 exe), 216 wrapper classes for marshaling, 155

multimedia technologies and, 6 directory of the, 103 WriteFile function, 139

multitasking support system Excel and, 226 WriteGenericData function, 194

of, 89 Kato.di! library, 216 WriteMsgQueue function, 98

.NET Compact Framework and, 6 Kernel Independent Transport Write run-time image to flash

performance improvements Layer (KITL) and, 217 memory setting, 42

in, 7 logging in XML and, 221 WTL. See Windows Template

Platform Builder Service Pack 1 process of test execution and, Library (WTL)

for, 26 219
Platform catalog of, 101 scenarios for, 215 x Private catalog of, 101 server-side program (CETest.

processor architectures and, 2 exe), 216 x86 BIOS loading utility, 74

processor architectures for, 7 sub-test results and, 220 x86 processor, 2

Public catalog of, 101 Tux utility, 216 Device Emulator and, 121

R2 upgrade of, 7 utilities in the, 222 FastCAP functionality and, 72

range of devices supported Windows Embedded CE Test Kit XIP. See execute in place (XIP)

by, 9 (CETK), 215-216 XML. See Extensible Markup

requirements for the developer Windows Embedded for Point of Language (XML)

workstation, 10 Service (WEPOS), 6 XXX_Close function, 139

solutions based on, 7 Windows Media 9, 6 XXX_Deinit function, 139

source code of, 102 Windows Media Audio (WMA), 9 XXX_lnit function, 139

startup sequence of, 159-166 Windows Media Player, 6 XXX_IOControl function, 139

system architecture changes Windows Messenger, 8 XXX_Open function, 139

in, 7 Windows Sockets (Winsock), 8 XXX_PowerDown function, 139

system architecture of, 75 Windows Template Library (WTL), XXX_PowerUp function, 139

technologies supported by, 8 8, 206 XXX_PreClose function, 139

trial version of, 10, 28 Windows XP Embedded, 6 XXX_PreDeinit function, 139

upgrades for, 31 Winhttp.dll library, 75 XXX_Read function, 139

virtual address space of, 2 Wininet.dll library, 75 XXX_Seek function, 139

Windows Embedded CE 6.0 Winsock. See Windows Sockets XXX_Write function, 139

Platform Builder Service (Winsock)

Pack 1.msi file, 26 Winsock.dll library, 75 z
Windows Embedded CE Test Kit Wireless Application Protocol

(CETK), 4 (WAP),8 Zoom option, 48

ActiveSync and, 216 WMA. See Windows Media Audio required components for, 55

architecture of the, 215 (WMA) Zoom utility, 62

WordPad, 103

Additional Resources for Developers: Advanced Topics
and Best Practices
Published and Forthcoming Titles from Microsoft Press

Code Complete, Second Edition
Steve McConnell• ISBN 0-7356-1967-0
For more than a decade, Steve McConnell, one of the premier
authors and voices in the software community, has helped
change the way developers write code-and produce better
software. Now his classic book, Code Complete, has been fully
updated and revised with best practices in the art and science
of constructing software. Topics include design, applying
good techniques to construction, eliminating errors, planning,
managing construction activities, and relating personal
character to superior software. This new eqltio11 features fully
updated information on pr\')gramming techniques, including
tpe emergence of. Web·style programming, and integrated
coverage of Object-oriented design. You'll .alSO, find new code
examplepboth good and bad~n c + +; Microsoft® Visual

·Basic®, C#, and Java, although the focus i~ squarely on
·techniques and practices.

More About Software Requirements:
Thorny Issues and Practical Advi.ce

•;.~~ilk~d~~j;~i7Ss~~2~~?·J ::,,,,.
war~l~H~'tisfu!dall of tile ·.· .•.
i)ro~ct ~!fic'l.t!9ns. bvt f11.He<:!

•· tci rniletarw. e>f.t!l!' customers.· ·
· ·. elpec!<!tiohs1 Witho.ut fQrmal,
• •. YJi.r:lfl~.!Jle J'equirements-apda
· · r¥iana.Qing the~the

· · .etween. •
t.hink tl\ey're
.a.nd wtia~
hey!~ !;t()i,ng .
le$$ions aboUt
enis engi" . . : : ·. ·.· ..

fol'.'i\'ial0r academic, and nOt of valUe •·
hal dev¢1.Qpment teal:ns; 10 this foUqw~

.. equiremef1ts, Setond Editi<;m. you will
e Eifacticaf tedmlques for gathering and
. ·. iequit$:rfle'~ts that "help yQU delf\i~r si>ftware

·' ~and cust0rner spedficati~ Succinct and
· irtiirie(jia,,tely 'useful, this booki.s a rnust· have. fpr developers
anij archite~ts, · ·

Software Estimation: Demystifying the Black Art
Steve McConnell• ISBN 0-7356-0535-1
Often referred to as the "black art" because of its complexity
and uncertainty, software estimation is not as hard or mysterious
as people think. However, the art of how to create effective cost
and schedule estimates has not been very well publicized.
Software Estimation provides a proven set of procedures and
heuristics that software developers, technical leads, and project
managers can apply to their projects. Instead of arcane treatises
and rigid modeling techniques, award-winning author Steve
McConnell gives practical guidance to help organizations
achieve basic estimation proficiency and lay the groundwork te>
cantinue improving project cost estimates. This book does not
avoid the rnorinornplex ma~hernatii;'al estimation approaches,
but the non-mathematical reader will find plenty of useful
guidelines without getting bogged doWn in complex formulas.

Debugging, Tuning, and Testing
Micro$oft .NET 2.0 Applications
John Robbins• ISBN 0-7356~2202-7

, . ·Maki~ art~Plfr;i!tio1'tth~be$fhcan be nas Jong been .i(tirn't• ·
<~h.nsi.irnin.!;t:taskbest al;C6mpiislieij;~<ltb spe<;iatize(j:and~•· •

··· .!ools .. WtthMlerp~\/isti~l ~udio'" 2005; clevelopers'flave ·· · · •
.•· ;ivi1 ilab~ .;i new ~ill!~ o,f l'lul]Hn ful)cijO.i'\alitY'that .i!t:il!l:il~ , ... • ..•.
· tf1.enito del'lu!!J their code qui<;kly and efficiently, ~11n~ Itta op~

timtnTI perlorrnan~, and.tfiStapplicatioriS to eils.U,re c()rii~
.. ibifity;\lnd trciuble-fre11 ope,rati9n; In thi~.accj!!~ib~ .. !!r'd ~!!Q.cl,s~ .•.

on. book, debu99ing expert John Robbins shows de>Jelopers. ·
· h.Ow toosethe tools, and functiops in.Visv<tl$tudio ~ their Tt/WJ ··· ··
· ad~ntag!Ho ensure highcq.u<11ity applicatibns,

· The .sec~rity. ~velopr,nelit. Ufecycle ··
Michael Howard ll!nd Steve Lipner• 1SBN o~ 7396-2214-0
Adapted frqm M,k.ro~ott's ~tan~atd 4~1o,prnetJt procsss, the •·.
Se'uriw Developrnel'lt Ufecycle (SDL) is a rnetho¢olo,gy that · ·
helps reduce the nurnb11r of seciurit)' defectsin cbd.e atevery
stage of the development process, from design to release, This
book details each stage 6ftll!i! Sot.methodology and dis~
its implementation across a range of Microsoft sottwarli, including'
Microsoft Windows Server™ 2003, Microsoft.SQ[S11r~r™ 2000
Service Paclc 3, and Microsoft Ex<;hange Si!niet i!OO;i Set'Yi~
Pa~k 1; t.o h(llp m\!8surablyimp~9veseeuritY•fe~tures:yOJ.!gllt ·
dlrectaC:~~~~Jf\$igt\ts from ~~'.s secu.rftxt~m. l"lpd; . •· .••
lessons that.ar~.applicaQ!i:1 to saftiN~'de~llWm!i(lt•pr9c~!;siiS : :
worldWide, whether oh a smaU·sciateqr ~ la_rge.;S~e~ 1'.hisbl:J.ok .
. includes a .co featuring videos of de>iekiper tr.alpihg cl~!!E!~ ..

For more information about Microsoft Press® books and other learning products,
visit: www.microsoft.com/mspress and www.microsoft.com/learning Micl'OSOft®

Press Microsoft Press products are available worldwide wherever quality computer books are sold. For more information, contact your book or
computer retailer. software reseller. or local Microsoft Sales Office, or visit our Web site at www.microsoft.com/mspress. To locate your
nearest source for Microsoft Press products, or to order directly, call 1-800-MSPRESS in the United States. (In Canada, call 1-800-268-2222.)

Additional Resources for Web Developers
Published and Forthcoming Titles from Microsoft Press

Microsoft® Visual Web Developer™ 2005
Express Edition: Build a Web Site Now!
Jim Buyens e ISBN 0-7356-2212-4
With this lively, eye-opening, and hands-on book, all you need
is a comput<;ir and the desire to learn how to create Web pages
now using Visual Web Developer Express Edition! Featuring a
full working edition of the software, this fun and highly visual
guide walks you through a complete Web page project from
set-up to launch. You'll get an introduction to the Microsoft
Visual Studio® environment and learn how to put the light­
weight, easy-to-use tools in Visual Web Developer Express to
work right away-,building your first, dynamic Web pages with
Microsoft ASP.NET 2.0. You'll get expert tips, coaching, and
visual examples at each step of the way, along with pointers
to additional learning resoµrces.

Microsoft ASP.NET 2.0 Programming
Step by Step
George Shepherd® ISBN Oc7356-2201-9
With dramatic improvements in performance, productivity, .and
security featuri:s,Visual Studio 2005 and ASP.NET 2.0 deliver a
simplified,high-per(ormance, and powerful Web. development
experience; ASP.NET2.0 features a new set of controls ancl
infrastructure that simplifyWeb-based data access and inclucle
functionality. thatfadlitates code reuse, visual consistency, and
aesthetic appeal. Now you can teach yourself the. essentials of
working with ASP.NET 2.0 in the .Visual Studio environment~
a_ne step ata time.With Step byStep, you work at your own
pace through hands·on, learn.by-doing exercises. Whether
you're a .beginning programmer ornew to this version of the
technology,. you'll understand the. core capabilities and
. fµndarnentaltechniques for ASP.NET 2.0, Each. chapter puts
you lowork, showing you how, when, and why to \J~.specifk
fe~tures ofthe ASP.NET 2.0 rapid application development
en\firorirnenf and guiding you as you create actual components
anti.working applications for the Web, including advanced

· features·suc~ as,personalizatio.n.

Programming Microsoft Windows® Forms
Charles' Petzold e IS.BN·.0-7356~2153cS

Programming M icrosoftWeb Forms
Douglas J .. Reilly e ISBN 0-7356-2179-9

CLRvia.C++
Jeffrey Richter withStanleyB .. ·Lippman
ISBN·o~7356-2248.•5

Programming Microsoft ASP.NET 2.0
Core Reference
Dino Esposito & ISBN 0-7356-2176-4
Delve into the core topics for
ASP.NET 2.0 programming,
mastering the essential skills and
capabilities needed to build high­
performance Web applications
successfully. Well-known ASP.NET
author Dino Esposito deftly builds
your expertise with Web forms,
Visual Studio, core controls,
master pages, data access, data
binding, state management,
security services, and other must­
know topics-combining defini­
tive reference with practical, hands-on programming instruc­
tion. Packed with expert guidance and pragm;itic examples, this
Core Reference delivers the key resources that you heed to
develop professional-level Web programming skills.

ProgrammingMicrosoftASP.NEff 2.0
Applicatic:ms.:.Advanced Topi<:s
Dino Esposito e ISBN0-7356-2177•2
Masteradvanced topics in ASP.NET
2.0 programming-'-':'gaining the
essential insights and in-depth
understanding that you need to
build sophisticated, highly func~
tionalWeb applications success•
fully, Topics include Web forms,
Vi.sual $tudi() 2005, core controls,
master pages, data access; data
binding; state management;
and security c:onsiderations.
Developers often .discover that
the.more they useASP.N.H the
more they need ta know. With expert guidance from ASP.NET
authority Dino Esposito; you get the ih·depth, comprehensive
information that leads to fulln1astery ofthe technology.

Debugging, Tuning, and Testing Microsoft .NET 2.0
Applications
John Robbins 11t ISBN 0~7356-2202c7

CLR via C#, Second Edition
Jeffrey Richter e ISBN 0-7356-2163-2

For more information about Microsoft Press® books and other learning products,
visit: www.microsoft.com/books and www.microsoft.com/learning Microsoft®

Press
Microsoft Press products are available worldwide wherever quality computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit our Web site at www.microsoft.com/mspress. To locate your
nearest source for Microsoft Press products, or to order directly, call 1-800-MSPRESS in the United States. (In Canada, call 1-800-268-2222.)

Security Books for Developers
Published and Forthcoming Titles

The Security Development
Lifecycle: Demonstrably
More-Secure Software
Michael Howard and Steve Lipner
ISBN 9780735622142

Your software customers demand-and deserve­
better security and privacy. This book is the first
to detail a rigorous, proven methodology that
measurably minimizes security bugs: the Security
Development Lifecycle (SOL). Two experts from the
Microsoft® Security Engineering Team guide you
through each stage and offer best practices for
implementing SOL in any size organization.

Developing More-Secure
Microsoft ASP.NET
2.0 Applications
Dominick Baier
ISBN 9780735623316

Advance your security-programming expertise for
ASP.NET 2.0. A leading security expert shares best
practices, pragmatic instruction, and code samples
in Microsoft Visual C#® to help you develop Web
applications that are more robust, more reliable, and
more resistant to attack. Includes code samples on
the Web.

Writing Secure Code for
Windows Vista™
Michael Howard and David LeBlanc
ISBN 9780735623934

Written as a complement to the award-winning
book Writing Secure Code, this new reference focuses
on the security enhancements in Windows Vista.
Get first-hand insights into design decisions,
and practical approaches to real-world security
challenges. Covers ACLs, BitLocker™, firewalls,
authentication, and other essential topics, and
includes C# code samples on the Web.

See more resources at microsoft.com/mspress
and microsoft.com/learning

Hunting Security Bugs
Tom Gallagher, Bryan Jeffries,
Lawrence Landauer
ISBN 9780735621879

Learn to think like an attacker-with insights from
three security testing experts. This book offers
practical guidance and code samples to help find,
classify, and assess security bugs before your software
is released. Discover how to test clients and servers,
detect spoofing issues, identify where attackers can
directly manipulate memory, and more.

Writing Secure Code,
Second Edition
Michael Howard and David LeBlanc
ISBN 9780735617223

Discover how to padlock applications throughout
the entire development process-from designing
applications and writing robust code to testing for
security flaws. The authors-two battle-scarred veterans
who have solved some of the industry's toughest
security problems-share proven principles, strategies,
and techniques, with code samples in several languages.

The•Practical Guide to Defect Prevention
Marc McDonald, Robert Musson, Ross Smith
ISBN 9780735622531

Microsoft® Windows® Presentation
Foundation DeveloperWorkbook
Billy Hollis
ISBN 9780735624184

Developing Drivers with the Microsoft
Windows Driver Foundation
MicrosoffWindowsHardware Platform Evangelism Team
ISBN 9780735623743

Embedded Programmingwiththe
Microsoft .NET Micro.framework
Donald Thompson ar\d Rob S. Miles
ISBN 9780735623651

Microsoft Press® products are available worldwide wherever quality computer books are sold. For more information,
contact your bookseller, computer retailer, software reseller, or local Microsoft Sales Office, or visit our Web site at
microsoft.com/mspress. To locate a source near you, or to order directly, call 1-800-MSPRESS in the United States.
(In Canada, call 1-800-268-2222.)

hat do you think
this book?

We want to hear
from you!
Do you have a few minutes to participate in a brief online survey?

Microsoft is interested in hearing your feedback so we can continually improve our books
and learning resources for you.

To participate in our survey, please visit:

www.microsoft.com/learning/booksurvey/

... and enter this book's ISBN-10 or ISBN-13 number (located above barcode on back cover*).
As a thank-you to survey participants in the United States and Canada, each month we'll
randomly select five respondents to win one of five $100 gift certificates from a leading
online merchant. At the conclusion of the survey, you can enter the drawing by providing
your e-mail address, which will be used for prize notification only.

Thanks in advance for your input. Your opinion counts!

*Where to find the ISBN on back cover

~ ...
~

00000

Example only. Each book has unique ISBN.

llllicrosott®
Press

No purchase necessary. Void where prohibited. Open only to residents of the 50 United States (includes District of
Columbia) and Canada (void in Quebec). For official rules and entry dates see:

More Great Developer Resources
Published and Forthcoming Titles from Microsoft Press

Developer Step by Step
•Hands-on tutorial covering

fundamental techniques and
features

• Practice files on CD

• Prepares and informs new"toctopic
programmers

Developer Reference
• Expert coverage of core. topics

• Extensive, pragmatic coding
examples

• Builds professional-level proficietKy
with a Microsoft technology

Focused Topics
• Deep coverage of advanced

techniques and capabilities

• Extensive, adaptable coding
examples

• Promotes full mastery of a
Microsoft technology

See even more titles
on our Web site!

Microsoft'
Visual Basie"" 2008
Step by Step
Michael
Halvorson
978-0-7355-2537-2

Programmif!g
Microsoft
Visual C# 200&:
The Lang u<Jge
Donis Marshall
978-0-7356-2540-2

CLRvia C#, ·
Secollll. !Etlltio.n
Jeffrey Richter
978-0-7356-2163-3

Programming
Microsoft
ADO.NET 2.0
Core Reference
David Sceppa
978-0-7356-2206-7

Debugging
.... Microsoft .NH 2.0

Applications
John Robbins
978-0-7356-2202-9

Microsoft
ASP.NET 3.5
Step by Step
George Shepheril
978'0-7356-242"6-9

Programming
Microsoft
ASP.NET 35
Dino Esposito
978-0-7356-2527-3

Programming
Winc!ows• Services
with Microsoft
Visual Basic 2008.
Michael Gemaey
978-0-7 356-2433-7

Microsoft
ADO.NET 2.0
Step by Step
Rebecca M. Riordan
978-0-7356-2164-0

Programming
Microsoft
Visual Basic 2005:
The language
Francesco Salena
978-0-7356-2183-1

Programming
Microsoft
ASRNET2.0
Applications
Advanced Topics
Dino Esposito
978-0-7356-2177-0

Explore our full line of learning resources at: microsoft.com/mspress and microsoft.com/learning

Windows® Embedded CE 6.0
Fundamentals
Delve into core tools and techniques-and begin
building embedded devices now

Help drive the next wave of smart, connected devices. Guided
by two experts on Windows Embedded CE, you 'll examine the
core architecture, tools, and techniques that streamline the
development process-and help get your ideas to market faster.

Discover how to:
• Install the development environment and toolset

• Apply the device-planning practices that help optimize
development time and resources

• Exploit the unified build system, including batch files and
console utilities

• Use-or create-board support packages for hardware­
specific code

• Dig into driver infrastructure, classes, and development
processes

• Design and configure a custom run-time image

• Test and verify devices with the Windows Embedded CE
Test Kit

• Create an SDK to extend your application to third-party
developers

ISBN-13: 973-0-7356-2625-<l
ISBN·lO: ().7356-2625-1

9 780735 626256

U.S.A. $39.99
[Recommended]

Programming/Windows

RESOURCE ROADMAP

Developer Step by Step

• Hands-on tutorial covering
fundamental techniques and features

• Practice files on CD

• Prepares and informs new-to-topic
programmers

Developer Reference

• Expert coverage of core topics

• Ex nsive, pragmatic cod ing examples

• uilds professional-level profici ency
with a Microsoft technology

Focused Topics

• Deep coverage of advanced
techniques and capab ilities

• Extensive, adaptable coding examples

• Promotes fu 11 mastery of a
Microsoft technology

See inside cover for more information

