

Additional Resources for Developers from Microsoft Press

Visual Basic 2005 Web Development Microsoft SQL Server 2005 Inside Microsoft

Microsoft Visual Basic® 2005 Microsoft Visual Web
Applied Techniques SQL Server 2005:

Express Edition: Developer'" 2005
Step by Step Query Tuning and

Build a Program Now! Express Edition:
Solid Quality Learning Optimization

Patrice Pelland Build a Web Site Now!
978-0-7356-2316-3 Kalen Delaney, et al.

978-0-7356-2196-1
978-0-7356-2213-5 Jim Buyens

978-0-7356-2212-8
Microsoft SQL Server 2005

Microsoft Visual Basic 2005
Analysis Services Other

Step by Step Microsoft ASP.NET 2.0
Step by Step Developer Topics

Michael Halvorson Step by Step
Reed Jacobson,
Stacia Misner, Debugging Microsoft

978-0-7356-2131-2 George Shepherd and Hitachi Consulting .NET 2.0 Applications
978-0-7356-2201-2

Programming Microsoft
978-0-7356-2199-2 John Robbins

978-0-7356-2202-9
Visual Basic 2005: Programming Microsoft
The Language ASP.NET 2.0

Microsoft SQL Server 2005

Francesco Balena Core Reference
Reporting Services Hunting Security Bugs

978-0-7356-2183-1 Dino Esposito
Step by Step Tom Gallagher, Bryan Jeffries,

Stacia Misner and Lawrence Landauer
978-0-7356-2176-3 Hitachi Consulting 978-0-7356-2187-9

Visual C# 2005 978-0-7356-2250-0
Microsoft Visual C#® 2005

Programming Microsoft Software Estimation:

Express Edition:
ASP.NET 2.0 Applications Microsoft SQL Server 2005 Demystifying the Black Art

Build a Program Now!
Advanced Topics Integration Services Steve McConnell

Patrice Pelland
Dino Esposito Step by Step 978-0-7356-0535-0

978-0-7356-2229-6
978-0-7356-2177-0 Paul Turley

Developing More-Secure
Hitachi Consulting The Security

Microsoft Visual C# 2005 978-0-7356-2405-4 Development Lifecycle

Step by Step
Microsoft ASP.NET 2.0 Michael Howard

John Sharp
Applications Programming Microsoft Steve Lipner
Dominick Baier

978-0-7356-2129-9 978-0-7356-2331-6
SQL Server 2005 978-0-7356-2214-2

Andrew J. Brust

Programming Microsoft Data Access
Stephen Forte Writing Secure Code,

Visual C# 2005: 978-0-7356-1923-4 Second Edition

The Language Microsoft ADO.NET 2.0 Michael Howard

Donis Marshall Step by Step Inside Microsoft David LeBlanc

978-0-7356-2181-7 Rebecca M. Riordan SQL Server 2005: 978-0-7356-1722-3

978-0-7356-2164-0 The Storage Engine

Programming Microsoft Kalen Delaney Code Complete,

Visual C# 2005: Programming Microsoft 978-0-7356-2105-3 Second Edition

The Base Class Library ADO.NET 2.0 Steve McConnell

Francesco Balena Core Reference Inside Microsoft 978-0-7356-1967-8

978-0-7356-2308-8 David Sceppa SQL Server 2005:
978-0-7356-2206-7 T-SQL Programming Software Requirements,

CLR via C#, ltzik Ben-Gan, Dejan Sarka, Second Edition

Second Edition Programming Microsoft and Roger Wolter Karl E. Wiegers

Jeffrey Richter ADO.NET 2.0 Applications 978-0-7356-2197-8 978-0-7356-1879-4

978-0-7356-2163-3 Advanced Topics
Glenn Johnson Inside Microsoft More About Software

Microsoft .NET 978-0-7356-2141-1 SQL Server 2005: Requirements: Thorny

Framework 2.0 Poster Pack T-SQL Querying Issues and Practical Advice

Jeffrey Richter SQL Server 2005 ltzik Ben-Gan, Lubor Kollar, Karl E. Wiegers

978-0-7356-2317-0 and Dejan Sarka 978-0-7356-2267-8
Microsoft SQL Server 2005 978-0-7356-2313-2
Database Essentials
Step by Step
Solid Quality Learning
978-0-7356-2207-4

microsoft.com/mspress

Micl'osott®

Programming Windows®
Embedded CE 6.0
Developer Reference

Douglas Boling

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2008 by Douglas Boling

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2007934742

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 2 1 0 9 8 7

Distributed in Canada by H.B. Fenn and Company Ltd.

A ClP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at wWw.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, DirectX, Internet Explorer, MS-DOS, Outlook, Visual C++, Visual Studio,
Win32, Windows, Windows Media, Windows Mobile, Windows NT, Windows Server, Windows Vista,
and Zune are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries. Other product and company names mentioned herein may be the trademarks of
their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author's views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: Kathleen Atkins
Editorial Production: Abshier House
Technical Reviewer: Rob Miles; Technical Review services provided by Content Master, a member
of CM Group, Ltd.

Body Part No. X14-06995

To Nancy Jane

Contents at a Glance

Part 1 Windows Programming Basics
1 Hello Windows CE .. 3

2 Drawing on the Screen 35

3 Input: Keyboard, Mouse, and Touch Screen 85

4 Windows, Controls, and Menus 119

5 Common Controls and Windows CE 161

6 Dialog Boxes and Property Sheets 197

Part 11 Windows CE Programming
7 Memory Management 241

8 Modules, Processes, and Threads 267

9 The Windows CE File System 329

10 The Registry ... 357

11 Windows CE Databases 381

12 Notifications .. 405

Part 111 Advanced Windows CE
13 Windows CE Networking 433

14 Device-to-Device Communication 469

15 System Programming 535

16 Serial Communications 555

17 Device Drivers and Services 581

v

Table of Contents
Acknowledgments .. xv

Introduction .. xvii

Part 1 Windows Programming Basics

1 Hello Windows CE .. 3
What Is Different About Windows CE 3

Fewer Resources in Windows CE Devices 4

Unicode .. 4

New Controls ... 4

Componentization ... 5

Win32 Subset ... 5

It's Still Windows Programming ... 6

Hungarian Notation ... 6

Your First Windows CE Application 7

Building Your First Application 9

Running the Program ... 11

What's Wrong? ... 11

Hello2 .. 12

Anatomy of a Windows-Based Application 14

The Window ... 14

The Window Class .. 15

The Window Procedure ... 15

The Life of a Message ... 15

Registering the Window Class 19

Creating the Window ~ 20

The Message Loop .. 23

The Window Procedure ... 24

HelloCE ... 27

The Code .. 28

Running HelloCE ... 33

o you think of this book? We want to hear from you!

ft is interested in hearing your feedback so we can continually improve our books and
g resources for you. To participate in a brief online survey, please visit:

vii

viii Table of Contents

2 Drawing on the Screen .. ' 35
Painting Basics .. 36

Valid and Invalid Regions .. 36

Device Contexts .. 37

Writing Text ... 39

Device Context Attributes 40

The TextDemo Example Program 42

Fonts · , 47

The Fontlist Example Program 53

Bitmaps .. 61

Device-Dependent Bitmaps 61

Device-Independent Bitmaps 62

DIB Sections ... 63

Drawing Bitmaps ... 65

AlphaBlending ... 68

Lines and Shapes .. 69

Lines .. 69

Shapes .. 72

Fill Functions ... 75

The Shapes Example Program 77

3 Input: Keyboard, Mouse, and Touch Screen 85
The Keyboard ... 85

Input Focus .. 85

Keyboard Messages ... 86

Keyboard Functions ... 91

The Key Trac Example Program 93

The Mouse and the Touch Screen 101

Mouse Messages .. 101

Working with the Touch Screen 102

The TicTacl Example Program , 109

4 Windows, Controls, and Menus 119
Child Windows ... 119

Window Management Functions 120

Enumerating Windows ... 120

Finding a Window ... 121

Moving a Window ... 121

Editing the Window Structure Values 122

Table of Contents ix

Windows Controls .. 124

Working with Controls ... 124

Button Controls ... 126

The Edit Control ... 128

The List Box Control. ... 129

The Combo Box Control .. 130

Static Controls ... 130

The Scroll Bar Control .. 131

Controls and Colors .. 135

Menus ... 135

Handling Menu Commands 137

Resources .. 137

Resource Scripts ... 138

Icons ... 139

Accelerators .. 140

Bitmaps .. 141

Strings ... 141

The DOIView Example Program 142

5 Common Controls and Windows CE 161
Programming Common Controls 161

The Common Controls .. 164

The Command Bar ... 164

Other Menu Controls .. 184

The Month Calendar Control 185

The Date and Time Picker Control 187

The List View Control .. 190

The CapEdit Control ... 192

Other Common Controls .. 193

Unsupported Common Controls 194

6 Dialog Boxes and Property Sheets 197
Dialog Boxes ... 197

Dialog Box Resource Templates 198

Creating a Dialog Box .. 201

Dialog Box Procedures ... 202

Modeless Dialog Boxes ... 206

Property Sheets ... 207

Common Dialogs .. 213

The DlgDemo Example Program 214

x Table of Contents

Part 11 Windows CE Programming

7 Memory Management 241
Memory Basics ... 241

About RAM ... 241

About ROM ... 242

About Virtual Memory ... 242

An Application's Address Space 246

The Different Kinds of Memory Allocation 247

Virtual Memory ... 248

Heaps .. 254

The Local Heap .. 254

Separate Heaps ... 256

The Stack ... 260

Static Data .. 260

String Resources ... 263

Selecting the Proper Memory Type 263

Managing Low-Memory Conditions 264

8 Modules, Processes, and Threads 267
Modules ... 267

Processes .. 270

Creating a Process ... 271

Terminating a Process .. 274

Other Processes ... 274

Threads .. 275

The System Scheduler .. 276

Creating a Thread ... 278

Setting and Querying Thread Priority 281

Setting a Thread's Time Quantum 282

Suspending and Resuming a Thread 282

Fibers ... 283

Thread Local Storage .. 285

Synchronization .. 287

Events .. 288

Waiting .. 289

Semaphores .. 293

Mutexes .. 295

Duplicating Synchronization Handles 296

Table of Contents xi

Critical Sections ... 297

Interlocked Variable Access 298

Interprocess Communication ... 300

Finding Other Processes .. 300

WM_COPYDATA ... 301

Named Memory-Mapped Objects 301

Point-to-Point Message Queues 304

Communicating with Files and Databases 308

The XTalk Example Program .. 308

Exception Handling,•. 320

C++ Exception Handling .. 321

Win32 Exception Handling 324

9 The Windows CE File System 329
The Windows CE File System API. 330

Standard File 1/0 .. 330

Memory-Mapped Files ... 338

Navigating the File System 339

Dealing with Storage , 346

The Object Store .. 347

Accessing Volumes With the File API 347

The Storage Manager .. 349

10 The Registry . .. 357
Registry Organization .. '. 357

The Registry API .. 359

Opening and Creating Keys 359

Reading Registry Values .. 360

Writing Registry Values ... 360

Deleting Keys and Values 361

Enumerating Registry Keys 362

Flushing the Registry .. 362

Registry Change Notifications : 363

The RegView Example Program 363

11 Windows CE Databases 381
The Two Databases ... 381

Basic Definitions ... 381

The Database API .. 383

xii Table of Contents

12 Notifications .. 405
User Notifications .. .405

Setting a User Notification406

Timer Event Notifications .. 410

System Event Notifications ... 411

The NoteDemo Example Program412

Querying Scheduled Notifications 425

Bubble Notifications426

Adding a Notification .. 427

Modifying a Notification 430

Removing a Notification .. 430

Part Ill Advanced Windows CE

13 Windows CE Networking 433
Windows Networking Support 433

WNet Functions ... 433

The ListNet Example Program444

TCP/IP Programming454

Socket Programming ... 455

Blocking versus Nonblocking Sockets465

14 Device-to-Device Communication 469
Infrared Communication ... 469

IR Basics .. 469

Discovery ... 470

Publishing an IR Service .. 472

Querying and Setting IR Socket Options473

The MySquirt Example Program 474

Bluetooth .. 490

Stack ... 491

Discovery ... 492

Publishing a Service .. 501

Bluetooth Communication with Winsock 504

Bluetooth Communication with Virtual COM Ports 506

The BtSquirt Example Program 511

Table of Contents xiii

15 System Programming 535
The Windows CE Memory Architecture 535

Application Space ... 536

Kernel Space .. 538

Writing Cross-Platform Windows CE Applications 539

Platforms and Operating System Versions 539

Compile-Time Versioning 541

Explicit Linking .. 542

Run-Time Version Checking 543

Power Management ... 544

Defining the Meaning of "Off" 544

Querying the Power State 545

The Power Manager ... 547

Managing Power without the Power Manager 550

16 Serial Communications 555
Basic Serial Communication .. 555

Opening and Closing a Serial Port 556

Reading from and Writing to a Serial Port 556

Asynchronous Serial 1/0 .. 557

Configuring the Serial Port. 559

Setting the Port Timeout Values 561

Querying the Capabilities of the Serial Driver 563

Controlling the Serial Port 564

Clearing Errors and Querying Status 565

Stayin' Alive ... 566

The CeChat Example Program .. 567

17 Device Drivers and Services 581
Basic Drivers ... 581

Driver Names ... 582

The Device Driver Load Process 583

Enumerating the Active Drivers 587

Reading and Writing Device Drivers 588

Writing a Windows CE Stream Device Driver 590

The Stream Driver Entry Points 591

Managing Buffers ... 598

Device Interface Classes .. 604

Device Driver Power Management 606

xiv Table of Contents

Building a Device Driver ... 609

Debug Zones ... 609

The Generic Driver Example 611

Services ... 618

Service Architecture .. 618

The Life of a Service .. 619

Application Control of a Service 620

The Service DLL Entry Points 622

The Service IOCTL Commands 623

Super Service ... 626

Services.exe Command Line 630

TickSrv Example Service .. 630

Index •......••.•........••.•........•............................ 645

o you think of this book? We want to hear from you!

ft is interested in hearing your feedback so we can continually improve our books and
g resources for you. To participate in a brief online survey, please visit:

Acknowledgments
Books are produced by diverse teams of talented people. My name appears on the cover, but

countless others were involved in this book's creation. The teams of people who worked on

this edition all pushed themselves to the max to complete this revision.

First, there's the talented team at Microsoft Press. Kathleen Atkins is the project leader and
editor of all four editions of this book. Kathleen's continued stewardship of this book over

the years has provided a level of quality that wouldn't have been possible without her. Devon

Musgrave was the content development manager. Ben Ryan was the acquisitions editor for

this edition of the book and deserves credit for getting this revision released.

The technical editor was Rob Miles of Content Master. Rob not only caught some potentially

embarrassing errors, his British perspective pointed out some of my more "colonial" expres

sions. Other editoral and production duties were performed by Abshier House.

Thanks also to the various Microsoft development and marketing teams. Over the years, they

have tolerated my endless questions. Thanks to Mike Thomson, Chip Schnarel, and Mike Hall

for answering questions and providing support to make this book better.

A special thanks goes to my agent, Claudette Moore, and the team at Moore Literary
Agency. Claudette handled all the business details, freeing me to deal with the fun stuff.

This edition of Programming Windows Embedded CE builds on the foundation of the three

earlier editions, so what you read is based on work from a much larger team. In addition

to the people already mentioned, other folks from Microsoft Press have helped immensely
in the editing and production of the earlier editions of the book. They include Jim Fuchs,

Shawn Peck, Brian Johnson, Julie Xiao, Rebecca McKay, Rob Nance, Cheryl Penner, Elizabeth

Hansford, and Michael Victor.

My personal support team is headed by my wife, Nancy. Thanks, Nancy, for the support,

help, and love. The team also includes our boys, Andy, Sam, and Jake. They make sure I

always remember what is important in life. Finally, I acknowledge my parents, Ronald and

Jane Boling. They are my role models.

xv

Introduction
I've been working with Microsoft Windows CE for almost as long as it's been in existence. A

Windows programmer for many years, I'm amazed by the number of different, typically quite

small, systems to which I can apply my Windows programming experience. These Windows

CE systems run the gamut from PC-like mini-laptops to cellular phones to embedded de

vices buried deep in some large piece of industrial equipment. The use of the Win32 API in

Windows CE enables tens of thousands of Windows programmers to write applications for

an entirely new class of systems. The subtle differences, however, make writing Windows CE

code somewhat different from writing for the desktop versions of Windows. It's those differ

ences that I'll address in this book.

Just What Is Windows CE?
Windows CE is the smallest and arguably the most interesting of the Microsoft Windows
operating systems. Windows CE was designed from the ground up to be a small, power

efficient operating system with a Win32 subset API. Windows CE extends the Windows API

into the markets and machines that can't support the larger footprints of the Windows Vista

or even the Windows Embedded XP kernel.

The now-defunct Windows 95/98/Me line was a great operating system for users who

needed backward compatibility with MS-DOS and Windows 2.x and 3.x programs. Although

it had shortcomings, that operating system series succeeded amazingly well at this difficult

task. The Windows NT/2000/XP/Vista line, on the other hand, is written for the enterprise. It

sacrifices compatibility and size to achieve its high level of reliability and robustness.

Windows CE isn't backward compatible with MS-DOS or Windows. Nor is it an all-powerful

operating system designed for enterprise computing. Instead, Windows CE is a lightweight,
multithreaded operating system with an optional graphical user interface. Its strength lies in

its small size, its Win32 subset API, and its multi platform support.

A Little Windows CE History
To understand the history of Windows CE, you need to understand the differences between

the operating system and the products that use it. The Windows CE operating system is

developed by a core group of programmers inside Microsoft. Their product is the operat
ing system itself. Other groups, who develop devices such as the Windows Mobile line, use

the most appropriate version of Windows CE that's available at the time their product is to

be released and add their own code. This dichotomy has created some confusion about how

xvii

xviii Introduction

Windows CE has evolved. Let's examine the history of each, the devices and the operating

system itself.

The Devices
The first products designed for Windows CE were handheld "organizer" devices with

480-by-240 or 640-by-240 screens and chiclet keyboards. These devices, dubbed Handheld
I

PCs, were first introduced in late 1996. Fall Comdex 97 saw the release of a dramatically

upgraded version of the operating system, Windows CE 2.0, with newer hardware in a

familiar form-this time the box came with a 640-by-240 landscape screen, sometimes in

color, and a somewhat larger keyboard.

In January 1998 at the Consumer Electronics Show, Microsoft announced two new platforms,
the Palm-size PC and the Auto PC. The Palm-size PC was aimed directly at the pen-based

organizer market dominated by Palm OS-based systems. The Palm-size PC featured a

portrait mode and a 240-by-320 screen, and it used stylus-based input. Unfortunately for

Windows CE fans, the public reception of the original Palm-size PC was less than enthusiastic.

Later that year, a new class of mini-laptop-style Windows CE machines with touch-typable

keyboards and VGA or Super VGA screens made their appearance. These machines, called

H/PC Professionals, provided 10 hours of battery life combined with improved versions of

Microsoft's Pocket Office applications. Many of these machines had built-in modems, and
some even diverged from the then-standard touch screen, sporting track pads or IBM's

TrackPoint devices.

In April 2000, Microsoft introduced the Pocket PC, a greatly enhanced version of the old

Palm-size PC. The original Pocket PC used a prerelease of the more full-featured Windows CE
3.0 operating system under the covers. The user interface of the Pocket PC was also differ

ent, with a cleaner, 2D look and a revised home page, the Today screen. The most important

feature of the Pocket PC, however, was the greatly improved performance of Windows CE.

Much work had been done to tune Windows CE for better performance. That improvement,

coupled with faster CPUs, allowed the system to run with the zip expected from a pocket

organizer. With the Pocket PC, the inevitability of Moore's Law enabled Windows CE devices

to cross over the line: the hardware at this point was now capable of providing the comput

ing power that Windows CE required.

The Handheld PC was updated in 2000 to use Windows CE 3.0. Although these systems

(dubbed the Hand held PC 2000) weren't a consumer success, they did find a home in the

industrial market, where their relative low cost, large screens, and great battery life satisfy a

unique niche market.

The Pocket PC was updated in late 2001 with a release named Pocket PC 2002. This release

was based on the final released version of Windows CE 3.0 and contained some user in

terface improvements. An exciting development was the addition of the Pocket PC Phone

Introduction xix

Edition, which integrated cellular phone support into a Pocket PC device. These devices com

bined the functionality of a Pocket PC with the connectivity of a cellular phone, enabling a

new generation of mobile but always connected software.

Another group within Microsoft released the Smart Display, a Windows CE .NET 4.1-based

system that integrated a tablet form factor device with wireless networking and a base connected

to a PC. When the Smart Display is in its base, it's a second monitor; when removed, it becomes a

mobile display for the PC. The Smart Display didn't gain much traction, but the remote desk

top technology perfected for the device found its way into later versions of Windows CE.

In the spring of 2003, the Pocket PC team released an update of the Pocket PC called the

Pocket PC 2003. This system, while not providing much of a change to the user interface, did

provide a huge increase in stability and performance because it was based on Windows CE

.NET 4.2. The Pocket PC 2003 also added integrated Bluetooth support for those OEMs that

chose to include it.

At the same time, Microsoft was working with OEMs to produce cellular phones based on

Windows CE. A smattering of these phones, called Smartphones, were released in late 2002

and were initially based on Windows CE 3.0. An upgrade in 2003 moved the Smartphone to

Windows CE 4.2 and increased the feature set of the device to include the .NET runtime.

An update to the Pocket PC and Smartphone platforms, called Pocket PC/Smartphone 2003
Second Edition, was released in March 2004. These devices supported different screen reso

lutions, screen rotation, and updated communication support. These systems continued to

be based on a slightly modified Windows CE .NET 4.2 kernel.

In May 2005, the Pocket PC and Smartphone platforms were updated and renamed with
the umbrella term, Windows Mobile. These new systems took advantage of an updated

Windows CE 5 kernel and featured a change from a RAM-based file system to a flash-based

file system. This change prevented data loss on the systems due to run-down batteries with

a tradeoff of a noticable drop in performance. The platforms updated their multimedia

credentials with Windows Media Player 10 and Direct Show capture support. Later updates

to this line provided push e-mail support.

The Windows Mobile team followed in February 2007 with Windows Mobile 6. Interestingly,

this release was based on a tweaked Windows CE 5 kernel, not Windows CE 6, which had
been released a few months before. Nomenclature also changed with the Pocket PC now

referred to as Windows Mobile Classic, the Pocket PC Phone Edition referred to as Windows

Mobile Professional, and the Smartphone referred to as Windows Mobile Standard.

New devices are being introduced all the time. An example is the Zune media device from

Microsoft. While not a programmable device like the Pocket PC or Smartphone, the device is

based on Windows CE. The power of the Windows CE operating system enables applications

that are beyond the capability of systems with simpler operating systems to run on these

devices and yet smaller than devices needed to run Windows Vista.

xx Introduction

The Operating System
Although these consumer-oriented products made the news, more important development

work was going on in the operating system itself. The Windows CE operating system has

evolved from the days of 1.0, when it was a simple organizer operating system with high

hopes. Starting with Windows CE 2.0 and continuing to this day, Microsoft has released

embedded versions of Windows CE that developers can use on their custom hardware.

Although consumer platforms such as the Windows Mobile series get most of the publicity,

the improvements to the base operating system are what provide the foundation to these

new consumer devices.

Windows CE 2.0 was released with the introduction of the Handheld PC 2.0 at Fall Comdex

1997. Windows CE 2.0 added networking support, including Windows standard network

functions, a Network Driver Interface Specification (NDIS) mini port driver model, and a ge

neric NE2000 network card driver. Added COM support allowed scripting, although the sup

port was limited to in-proc servers. A display driver model was also introduced that allowed

for pixel depths other than the original 2-bits-per-pixel displays of Windows CE 1.0. Windows

CE 2.0 was also the first version of the operating system to be released separately from a prod

uct such as the H/PC. Developers could purchase the Windows CE Embedded Toolkit (ETK),

which allowed them to customize Windows CE to unique hardware platforms. Developers who

used the ETK, however, soon found that the goal of the product exceeded its functionality.

With the release of the original Palm-size PC in early 1998, Windows CE was improved yet

again. Although Windows CE 2.01 wasn't released in an ETK form, it was notable for its effort

to reduce the size of the operating system and applications. In Windows CE 2.01, the C run

time library, which includes functions such as strcpy to copy strings, was moved from a stati

cally linked library attached to each EXE and DLL into the operating system itself. This change

dramatically reduced the size of both the operating system and the applications themselves.

In August 1998, Microsoft introduced the H/PC Professional with a new version of the operating

system, 2.11. Windows CE 2.11 was a service pack update to Windows CE 2.1, which was never

formally released. Later in the year, Windows CE 2.11 was released to the embedded community

as Microsoft Windows CE Platform Builder version 2.11. This release included support for an im

proved object store that allowed files in the object store to be larger than 4 MB. This release also

added support for a console and a Windows CE version of CMD.exe, the classic MS-DOS-style

command shell. Windows CE 2.11 also included Fast IR to support lrDA's 4-MB infrared standard,

as well as some specialized functions for IP multicast. An initial hint of security was introduced in

Windows CE 2.11: a device could now examine and reject the loading of unrecognized modules.

Windows CE 2.12 was also a service pack release to the 2.1, or Birch, release of Windows CE.

The big news in this release was a greatly enhanced set of Platform Builder tools that included

a graphical front end. The operating system was tweaked with a new notification interface

that combined the disparate notification functions. The notification user interface was exposed

in the Platform Builder to allow embedded developers to customize the notification dialog

Introduction xxi

boxes. A version of Microsoft's PC-based Internet Explorer 4.0 was also ported to Windows

CE as the Genie, or Generic IE control. This HTML browser control complements the simpler

but smaller Pocket Internet Explorer. Microsoft Message Queue support was added as well.

The "go/no go" security of Windows CE 2.11 was enhanced to include a "go, but don't trust"

option. Untrusted modules could run-but not call-a set of critical functions, nor could they

modify parts of the registry.

The long-awaited Windows CE 3.0 was finally released in mid-2000. This release followed the

April release of the Pocket PC, which used a slightly earlier internal build of Windows CE 3.0.

The big news for Windows CE 3.0 was its kernel, which was optimized for better real-time

support. The enhanced kernel support includes 256 thread priorities (up from 8 in earlier

versions of Windows CE}, an adjustable thread quantum, nested interrupt service routines,

and reduced latencies within the kernel.

The improvements in Windows CE 3.0 didn't stop at the kernel. A new COM component

was added to complement the in-proc COM support available since Windows CE 2.0. This

new component included full COM out-of-proc and DCOM support. The object store was
also improved to support up to 256 MB of RAM. File size limits within the object store were

increased to 32 MB per file. An Add-On Pack for the Platform Builder 3.0 added even more

features, including improved multimedia support though a media player control; improved

networking support (and XML support) with PPTP, ICS, and remote desktop display support;

and a formal introduction of the DirectX API.

The next release of Windows CE involved more than just new features; the name of the prod

uct was also changed. Windows CE .NET 4.0, released in early 2001, changed the way virtual

memory was organized, effectively doubling the virtual memory space per application.

Windows CE .NET 4.0 also added a new driver loading model, services support, a new file

based registry option, Bluetooth, 802.11, and 1394 support. Ironically, while .NET was added

to the name, Windows CE .NET 4.0 didn't support the .NET Compact Framework.

Late in 2001, Windows CE 4.1 was a follow-on to Windows CE 4.0, adding IP v6, Winsock 2, a
bunch of new supporting applets, and an example Power Manager. Windows CE 4.1 also sup

ports the .NET Compact Framework. The final bits of the .NET Compact Frameworkruntime

were released as a quick fix engineering (QFE) package after the operating system shipped.

The second quarter of 2003 saw the release of Windows CE .NET 4.2. This update provided

cool new features for OEMs wanting to support Pocket PC applications on embedded sys

tems. The Pocket PC-specific APls that support menu bars, the soft input panel (SIP}, and

other shell features were moved to the base operating system. The Explorer shell was rewrit

ten to support namespace extensions. The performance of the kernel was improved by di
rectly supporting hardware paging tables on some CPUs.

In July 2004, Microsoft released Windows CE 5.0. This release focused as much on improved

performance as new features. The kernel retained the familiar 32 process and 32 Meg VM

limits that had been in place since the Windows CE 1.0. However, the network stack and file

xxii Introduction

system were modified for better performance. The tools set used by OEMs, Platform Builder,

was dramatically updated in an attempt to easy porting of the operating system to new

hardware. Some of these efforts were successful, others were not as successful in easing the

burden on OEMs.

The most significant update to Windows CE since its inception was provided with the release

of Windows Embedded 6.0 in November 2006. The kernel of Windows CE 6 was completely

rewritten eliminating the 32 process limit and the 32-MB VM limit that had started to bur

den embedded developers. The new kernel boasts a "limit" of 32K processes and a 2-GB VM

space per process. In addition to the new kernel, Windows Embedded CE 6 brought some of

the Windows Mobile 5 features such as Direct Show capture, a cellular radio stack, and sup

port for ExFAT, an improved version of the venerable FAT file system.

Because Windows CE is a work in progress, the next version of Windows CE is being devel

oped. I'll be updating my Web site, www.bolingconsulting.com, with information about this

release as it becomes available.

Why You Should Read This Book
Programming Microsoft Windows CE is written for anyone who will be writing applications for

Windows CE. Embedded systems programmers using Windows CE for a specific application,

Windows programmers interested in writing or porting an existing Windows application, and

even developers of managed code can use the information in this book to make their tasks

easier.

The embedded systems programmer, who might not be as familiar with the Win32 API as

the Windows programmer, can read the first section of the book to become familiar with

Windows programming. Although this section isn't the comprehensive tutorial that can be

found in books such as Programming Windows, by Charles Petzold, it does provide a base

that will carry the reader through the other chapters in the book. It can also help the embed
ded systems programmer develop fairly complex and quite useful Windows CE programs.

The experienced Windows programmer can use the book to learn about the differences

among the Win32 APls used by Windows CE and the desktop versions of Windows. The differ

ences between Windows CE and the desktop are significant. The small footprint of Windows

CE means that many of the overlapping APls in the Win32 model aren't supported. Some sec

tions of the Win32 API aren't supported at all. On the other hand, because of its unique set

ting, Windows CE extends the Win32 API in a number of areas that are covered in this text.

Although no .NET Compact Framework material is covered in this edition, the book remains

useful for the developer using the .NET Compact Framework. The Compact Framework

currently has gaps in its functionality: it requires managed applications to make calls to the

operating system to perform certain tasks. The book is a great guide to what's available in

the operating system.

Introduction xxiii

The method used by Programming Windows CE is to teach by example. I wrote numerous

Windows CE example programs specifically for this book. The source for each of these exam

ples is printed in the text. Both the source and the final compiled programs for a number of the

processors supported by Windows CE are also provided on the book Web site. In addition,
examples that "didn't make the cut" when the final edits were made are also on the Web site.

The examples in this book are all written directly to the API, the so-called "Petzold" method

of programming. Since the goal of this book is to teach you how to write programs for

Windows CE, the examples avoid using a class library such as MFC, which obfuscates the

unique nature of writing applications for Windows CE. Some people would say that the avail

ability of MFC on Windows CE eliminates the need for direct knowledge of the Windows CE

API. I believe the opposite is true. Knowledge of the Windows CE API enables more efficient

use of MFC. I also believe that truly knowing the operating system also dramatically simplifies

the debugging of applications.

What's New in the Fourth Edition
This new edition of the book is updated for the new Windows Embedded 6.0 kernel.

Chapters 7, "Memory Management,'' and 8, "Processes, Modules, and Threads,'' have been

significantly updated to reflect the new kernel. Chapter 9, "The Windows CE File System,''
includes new topics such as the storage manager while Chapter 11, "Windows CE Databases,"

is updated to cover the Embedded Database API. Other parts of the book have been

updated and freshened with better examples and coverage of new APls. Other chapters

have been reorganized to better present the topics.

Readers familiar with the earlier editions of this book will notice that it is shorter. The decision

was made to focus this edition on the core operating system concepts of Windows CE and

not on specific devices. Although it would be great to simply grow and grow the book with

new material, there are limits to the size of the book. For this edition, I have chosen the best
content of the earlier versions while adding and updating the content relevant to today's

embedded programmers.

Windows CE Development Tools
This book is written with the assumption that the reader knows C and is at least familiar with

Microsoft Windows. All native code development was done with Microsoft Visual Studio

2005. To compile the example programs in this book, you need Visual Studio 2005 and a
Windows CE device SDK. The book Web site has a custom SDK that I created that can be

used as a programming target. This SDK includes a device emulator so the examples can be

tested without the need of accompanying hardware.

xxiv Introduction

To compile and run the examples, you will need Visual Studio 2005 or later. While there are

many verisons of Visual Studio, all but the most basic Express editions support device de

velopment. After installing Visual Studio and downloading the SDK from the book Web site,

simply launch the installer for the SDK. The install process will add a device target labeled
ProgWinCE_SDK, and an emulator that will run all the Windows CE-based examples in the

book. In addition, the SDK supports compiling for ARM as well as x86 systems. The ARM CPU

support is necessary for the emulator while the x86 support is convenient given the abun

dance of PC-based hardware.

Each example already has a predefined project set up, but you can also choose to create the

projects from scratch. For almost all the examples, simply create a Visual C++ Smart Device,

Win32 Smart Device project. Select the ProgWinCE_SDK and select an "empty project.'' The

empty project selection prevents Visual Studio from providing its default wizard code. Then
create the files from the book and add them to the project. I have designed the examples not

to need special project settings. For example, any nondefault library files are included using
in-line compiler commands.

Target Systems
You don't need to have a Windows CE target device to experience the sample programs
provided by this book because the example SDK provides an emulator target. This emulator

comes in handy when you don't have an actual device handy. The emulator runs a version of

Windows CE 6.0 inside an ARM emulator, which results in an actual Windows CE operating

system runtime executing. Applications should compile to an ARM CPU target to run in the

emulator.

You should consider a number of factors when deciding which Windows CE hardware to use

for testing. First, if the application is to be a commercial product, you should buy at least one

system for each type of target CPU. You need to test against all the target CPUs because,
although the source code will probably be identical, the resulting executable will be different

in size and so will the memory allocation footprint for each target CPU.

What's on the Web Site
The Web site (http.//www.microsoft.com/mspress/companion/9780735624177)1 contains the

source code for all the examples in the book. I've also provided project files for Microsoft

Visual Studio so that you can open preconfigured projects. In addition, some examples that

were in previous editions of the book are now on the Web site exclusively. These include the

CtlView example from the "Windows and Controls" chapter and the Album DB example from

the "Windows CE Databases" chapter.

1 We select these URLs so they are easy to remember.

Introduction xxv

Other Sources
Although I have attempted to make Programming Microsoft Windows CE a one-stop

shop for Windows CE programming, no one book can cover everything. To learn more

about Windows programming in general, I suggest the classic text Programming Windows

(Microsoft Press, 1998) by Charles Petzold. This is, by far, the best book for learning Windows

programming. Charles presents examples that show how to tackle difficult but common

Windows problems. To learn more about the Win32 kernel API, I suggest Jeff Richter's

Programming Applications for Microsoft Windows (Microsoft Press, 1999). Jeff covers the

techniques of process, thread, and memory management down to the most minute de-

tail. For learning more about MFC programming, there's no better text than Jeff Prosise's

Programming Windows with MFC (Microsoft Press, 1999). This book is the "Petzold" of MFC

programming and simply a required read for MFC programmers. Unfortunately, these last

two books are currently out of print. I advise finding those books on your bookshelf and

guard them carefully. You can also seek out friends who have been in the Windows program

ming business for a number of years; they should have these books. Of course, there is

always Amazon and eBay for buying used books.

Support
Every effort has been made to ensure the accuracy of this book and the contents of the

sample files on the Web site. Microsoft Press provides corrections and additional content for

its books through the World Wide Web at this location:

http./www.microsoft.com/mspress/support/

If you have problems, comments, or ideas regarding this book or the Web site, please send

them to Microsoft Press.

Send e-mail to

mspinput@microsoft.com

Or send postal mail to

Microsoft Press

Attn: Programming Microsoft Windows CE, Fourth Edition, Editor

One Microsoft Way

Redmond, WA 98052-6399

Please note that product support is not offered through these mail addresses. For further

information regarding Microsoft software support options, please go to http.I/support.

microsoft.com/directory/ or call Microsoft Support Network Sales at (800) 936-3500.

xxvi Introduction

Visit the Microsoft Press Web Site

You are also invited to visit the Microsoft Press World Wide Web site at the following

location:

http.//www.microsoft.com/mspress/

You'll find descriptions for the complete line of Microsoft Press books, information about

ordering titles, notice of special features and events, additional content for Microsoft Press

books, and much more.

You can also find out the latest in Microsoft Windows CE software developments and news

from Microsoft Corporation by visiting the following Web site:

http.//www.microsoft.com/windows/embedded

Updates and Feedback
No book about Windows CE can be completely current for any length of time. I maintain a

Web page, http://www.bolingconsulting.com/cebook.htm, where I'll keep a list of errata, along

with updates describing any features found in subsequent versions of Windows CE. Check out

this page to see information on new versions of Windows CE as they're released.

Although I have striven to make the information in this book as accurate as possible, you'll

undoubtedly find errors. If you find a problem with the text or just have ideas about how to

make the next version of the book better, please drop me a note at CEBook@bolingconsulting.
com. I can't promise you that I'll answer all your notes, but I will read every one.

Doug Boling

Tahoe City, California

August 2007

Part I

Windows Programming Basics

1

Chapter 1

Hello Windows CE
Since the classic The C Programming Language, programming books traditionally start with

a "hello, world" program. It's a logical place to begin. Every program has a basic underlying

structure ,that, when not obscured by some complex task it was designed to perform, can be

analyzed to reveal the foundation shared by all programs running on its operating system.

In this programming book, the "hello, world" chapter covers the details of setting up and

using the programming environment. The environment for developing Microsoft Windows

CE applications is somewhat different from that for developing standard Microsoft Windows

applications because Windows CE programs are written on PCs running Microsoft Windows

XP or Windows Vista and debugged mainly on separate Windows CE-based target devices.

While experienced Windows programmers might be tempted to skip this chapter and move
on to meatier subjects, I suggest that they-you-at least skim the chapter to note the dif

ferences between a standard Windows program and a Windows CE program. A number of

subtle and significant differences in both the development process and the basic program

skeleton for Windows CE applications are covered in this first chapter.

What Is Different About Windows CE
Windows CE has a number of unique characteristics that make it different from other

Windows platforms. First, the systems running Windows CE are most likely not using 1:1n Intel

x86-compatible microprocessor. Instead, Windows CE runs on four different CPU families:

SHx, MIPS, ARM, and x86. Fortunately, the development environment isolates the program

mer from almost all of the differences among the various CPUs.

Nor can a Windows CE program be assured of a screen or a keyboard. Windows Mobile de

vices have screens ranging from 176 by 220 to 800 by 600 pixels. Some of the screens have

a landscape orientation, in which the screen is wider than it is tall, while others have portrait

orientation, in which the screen is taller than it is wide. An embedded device might not have

a display at all. The target devices might not support color. And, instead of a mouse, most

Windows CE devices have a touch screen. On a touch-screen device, left mouse button clicks

are achieved by means of a tap on the screen, but no obvious method exists for delivering

right mouse button clicks. To give you some method of delivering a right click, the Windows

CE convention is to tap and hold with the stylus. Although Windows CE has a helper API

to detect this tap and hold gesture, it's up to the Windows CE application to interpret this

sequence as a right mouse click.

3

4 Part I Windows Programming Basics

Fewer Resources in Windows CE Devices
The resources of the target devices vary radically across systems that run Windows CE. When

writing a standard Windows program, the programmer can make a number of assumptions

about the target device, almost always an IBM-compatible PC. The target device will have a

hard drive for mass storage and a virtual memory system that uses the hard drive as a swap

device to emulate an almost unlimited amount of (virtual) RAM. The programmer knows that

the user has a keyboard, a two-button mouse, and a monitor that these days almost assur

edly supports 256 colors and a screen resolution of at least 1024 by 768 pixels.

Windows CE programs run on devices that rarely have hard drives for mass storage. The ab

sence of a hard drive means more than just not having a place to store large files. Without

a hard drive, virtual RAM can't be created by swapping data to the drive. So Windows CE

programs are almost always run in a low-memory environment. Memory allocations can,

and often do, fail because of the lack of resources. A Windows CE shell might be designed to

terminate a program automatically when free memory reaches a critically low level. This RAM

limitation has a surprisingly large impact on Windows CE programs, and is one of the main

challenges involved in porting existing Windows applications to Windows CE.

Unicode
One characteristic that a programmer can count on when writing Windows CE applications

is Unicode. Unicode is a standard for providing a platform-independent method of defin

ing characters. The Unicode standard provides for representing characters in 8-bit, 16-bit,

or 32-bit formats known as UTF8, UTF16, and UTF32, respectively. Windows CE uses UTF16

to represent characters. Unicode allows for fairly simple porting of programs to different in

ternational markets. Dealing with Unicode is relatively painless as long as you avoid the dual

assumptions made by most programmers that strings are represented in ASCII and that char

acters are stored in single bytes.

A consequence of a program using UTF16 is that with each character taking up two bytes

instead of one, strings are now twice as long. A programmer must be careful making assump

tions about buffer length and string length. No longer should you assume that a 260-byte

buffer can hold 259 characters and a terminating zero. Instead of the standard char data type,

you should use the TCHAR data type. TCHAR is defined to be char for ANSI-compatible ap

plication development and unsigned short for Unicode-enabled applications for Microsoft

Windows 2000, Windows XP, Windows Vista, and Windows CE development. These types of

definitions allow source-level compatibility across ASCII-and Unicode-based operating systems.

New Controls

Windows CE includes a number of new Windows controls designed for specific environments.

New controls include the menu bar control that provides menu-and toolbar-like functions all

Chapter 1 Hello Windows CE 5

on one space-saving line, critical on the smaller screens of Windows CE devices. Other con

trols have been enhanced for Windows CE. A version of the edit control in Windows CE can

be set to automatically capitalize the first letter of a word, great for the keyboard less design

of a PDA. Windows CE also supports most of the controls available on desktop versions of
Windows. Some of these controls are even more at home on Windows CE devices than on

the desktop. For example, the date and time picker control and calendar control assist calen

dar and organizer applications suitable for handheld devices, such as Windows Mobile-based

devices. Other standard Windows controls have reduced function, reflecting the compact

nature of Windows CE hardware-specific OS configurations.

Componentization

Another aspect of Windows CE programming to be aware of is that Windows CE can be

broken up and reconfigured by Microsoft or by OEMs so that it can be better adapted to a

target market or device. Windows programmers usually just check the version of Windows.

When they know the version, they can determine what API functions are available. Windows

CE, however, can be configured in countless ways.

By far, the most popular configurations of Windows CE today are in the Windows Mobile

based devices. Microsoft defines the specific set of Windows CE components that are present

in all Windows Mobile-branded devices. However, some OEMs produce PDA devices that use

Windows CE but are not branded as Windows Mobile systems. These devices have a subtly

different API from that of the Windows Mobile devices. If you are unaware of this, you can

easily write a program that works on one platform but not on another. In embedded plat

forms, the OEM decides the components to include and can create a Software Development

Kit (SDK) specialized for its specific platform. If the OEM is interested in third-party devel

opment, it can make available a customized SDK for its device. New platforms are continu

ally being released, with much in common but also with many differences among them.

Programmers need to understand the target platform and to have their programs check

what functions are available on that particular platform before trying to use a set of func
tions that might not be supported on that device.

Win32 Subset

Finally, because Windows CE is so much smaller than Windows XP or Windows Vista, it sim

ply can't support all the function calls that its larger cousins do. For example, Windows CE

removes some redundant functions supported by its larger cousins necessary for backward

compatbility with applications dating back to the days of DOS and Windows 3.x. If Windows

CE doesn't support your favorite function, a different function or set of functions will prob

ably work just as well. Sometimes Windows CE programming seems to consist mainly of fig

uring out ways to implement a feature using the sparse API of Windows CE (if thousands of

functions can be called sparse).

6 Part I Windows Programming Basics

Some functional areas in Windows CE might surprise you. For example, Windows CE supports

its own Web, FTP, and Telnet servers. Although the Windows CE Web server isn't as power

ful as Microsoft's llS behemoth, it does provide significant functionality, including support

for Active Server Pages and for ISAPI filters and extensions. Windows CE also has strong
DirectShow support and even a Voice-over IP (VoIP) stack.

It's Still Windows Programming
Although differences between Windows CE and the other versions of Windows do exist, they

shouldn't be overstated. Programming a Windows CE application is programming a Windows·

application. It has the same message loop, the same windows, and for the most part, the

same resources and the same controls. The differences don't hide the similarities. One of the
key similarities is the tradition of Hungarian notation.

Hungarian Notation

A tradition, and a good one, of almost all Windows programs since Charles Petzold wrote

Programming Microsoft Windows is Hungarian notation. This programming style, developed

years ago by Charles Simonyi at Microsoft, prefixes all variables in the program usually with

one or two letters indicating the variable type. For example, a string array named Name

would instead be named szName, with the sz prefix indicating that the variable type is a

zero-terminated string. The value of Hungarian notation is the dramatic improvement in

readability of the source code. Another programmer (or you after not looking at a piece of

code for a while) won't have to look repeatedly at a variable's declaration to determine its

type. Table 1-1 shows typical Hungarian prefixes for variables.

TABLE 1-1 Hungarian Prefixes for Variables

Variable Type
Integer

Word (16-bit)

Double word (32-bit unsigned)

Long (32-bit signed)

Char

String

Pointer

Long pointer

Handle

Window handle

Struct size

Hungarl!imPrefix ·

ior n

wor s

dw

c

sz

p

Ip

h

hwnd

cb

Chapter 1 Hello Windows CE 7

You can see a few vestiges of the early days of Windows. The Ip, or long pointer, designation

refers to the days when, in the Intel 16-bit programming model, pointers were either short (a

16-bit offset) or long (a segment plus an offset). Other prefixes are formed from the abbre

viation of the type. For example, a handle to a brush is typically specified as hbr. Prefixes can

be combined, as in lpsz, which designates a long pointer to a zero-terminated string. Most

of the structures defined in the Windows API use Hungarian notation in their field names.

Although the use of Hungarian notation has fallen out of vogue, I still use this notation when

programming my Win32 applications as well throughout this book, and I encourage you to
use this notation in your Win32 programs.

Your First Windows CE Application
Enough talk; let's look at your first Windows CE program. Listing 1-1 shows Hellol, a simple

Hello World application written for Windows CE.

LISTING 1-1 Hellol, A simple Windows application

Hellol.cpp

II==
II Hellol - A simple application for Windows CE
II
II Written for the book Programming Windows CE
II Copyright (C) 2007 Douglas Boling
II==
#include <Windows.h>

II
II Program entry point
II
int WINAPI WinMain (HINSTANCE hlnstance, HINSTANCE hPrevlnstance,

LPWSTR lpCmdline, int nCmdShow) {

printf ("Hello World\n");
return O;

As you can see, aside from the entry point of the program, the code looks fairly similar to the

classic Kernighan and Ritchie version. Starting from just below the comments, you have the

line

#include <windows.h>

which is the root of a vast array of include files that define the Windows CE API, as well as the

structures and constants they use.

8 Part I Windows Programming Basics

The entry point of the program is the biggest difference between this program and a stan
dard C program. Instead of the C standard

int main (char **argv, int argc)

the Windows CE build environment expects the standard Windows entry point,1 as in

int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,
LPWSTR lpCmdline, int nCmdShow);

Windows CE differs in some ways from the desktop versions of Windows. The first of the four

parameters passed, hlnstance, identifies the specific instance of the program to other appli
cations and to Windows API functions that need to identify the EXE. The hPrevlnstance pa
rameter is left over from the old Winl6 API (Windows 3.1 and earlier). In all Win32 operating
systems, including Windows CE, hPrevlnstance is always 0 and can be ignored.

The lpCmdline parameter points to a Unicode string that contains the text of the command

line. Applications launched from Microsoft Windows Explorer usually have no command-line
parameters. But in some instances, such as when the system automatically launches a pro
gram, the system includes a command-line parameter to indicate why the program was start
ed. The lpCmdline parameter provides us with one of the first instances in which Windows CE
differs from the desktop versions of Windows. Under Windows CE, the command-line string
is a Unicode string. In all other versions of Windows, the string is always ASCII.

The final parameter, nCmdShow, specifies the initial state of the program's main window. It is

passed by the parent application, usually Explorer, and is a recommendation of how the ap
plication should configure its main window. This parameter might specify that the window
be initially displayed as an icon (SW_SHOWMINIMIZE), maximized (SW_SHOWMAXIMIZED)

to cover the entire desktop, or normal (SW_ RESTORE), indicating that the window is placed
on the screen in the standard resizeable state. Other values specify that the initial state of the
window should be invisible to the user or that the window should be visible but incapable of

becoming the active window. Under Windows CE, the values for this parameter are limited
to only three allowable states: normal (SW_SHOW), hidden (SW_ HIDE), and show without

activate (SW_SHOWNOACTIVATE). Unless an application needs to force its window to a pre
defined state, this parameter is simply passed without modification to the ShowWindow func

,tion after the program's main window has been created.

The next line is the only functioning line of the application.

printf ("Hello World\n");

1 When you're using the Visual Studio 2005 wizard to create a console application, it appears that a more conven
tional "argc I argv" entry point is used. Visual Studio does this by linking a different prologue routine and redirect
ing the application entry point to the custom routine. The prologue routine has the same "Win Main" style entry
point and then generates the conventional "argc I argv" parameters and calls the console application's main entry
point that is shown in the application template.

Chapter 1 Hello Windows CE 9

Windows CE supports most of the standard C library, including print{, getchor, and so forth.

An interesting aspect of this line is that unlike almost everywhere else in Windows CE, the

string is not Unicode but ANSI. There is a logical reason for this. For the C standard library

to be compliant with the ANSI standard, print{ and the other string library functions such as

strcpy use ANSI strings. Of course, Windows CE supports the Unicode versions of the stan

dard functions such as wprintf, getwchar, and wcscpy.

Finally the program ends with

return O;

The value passed in the return line is available to other processes that use the Win32 API

GetExitCodeProcess.

Building Your First Application

To create Hellol from scratch on your system, start Microsoft Visual Studio and create a new

project by choosing the New Project command on the File menu. Select Visual C++ and

then the Smart Device project type in the left-hand tree view pane and Win32 Smart Device

Project in the right-hand pane. Type the name and directory for the project in the edit fields

at the bottom of the New Project dialog box, as shown in Figure 1-1.

~ Se;irch Online Templates ...

Smart Device ActtveX CGntrGI
Smart Device DLL

FIGURE 1-1 The New Project dialog box allows Visual Studio 2005 to target Windows CE devices.

10 Part I Windows Programming Basics

Clicking OK displays the Smart Device Project Wizard, which allows you to select the target

software development kits (SDKs) and the type of application or DLL to create. The Web site

for this book (http://www.microsoft.com/mspress/companion/9780735624177) has a custom

built SOK that targets both the Visual Studio 2005 device emulator and a build of Windows

CE that runs on a PC. Downloading and installing that SOK on your machine provides the

ProgWinCE_SDK target that is selected in Figure 1-2.

FIGURE 1-2 The Platforms page of the Smart Device ProjectWizard allows selection of one or more target
software development kits.

The final page of the Smart Device Project Wizard, the Project Settings page, tells Visual

Studio what to create. Your options are Windows Application, Console Application, DLL, or

Static Library. For the purposes of this example, and indeed for all the examples in this book,

the proper selection is Empty Project, as shown in Figure 1-3.

Now that the project is created, add the file hellol.cpp. Select the Project I Add New Item

menu item. Select a C++ file and type the name Hellol.cpp. In the blank file, type the text

shown in Listing 1-1. Select the ProgWinCE_SDK (ARMV41) as the target CPU and ProgWinCE_

SOK Emulator as the device target. Build the application by selecting the Build I Build

Solution menu item.

If you have a Windows CE system available, such as a Windows Mobile device, attach it to the

PC the same way you would to sync the contents of the device with the PC. Open Microsoft

ActiveSync, and establish a connection between the Windows Mobile device and the PC.

While it's not strictly necessary to have the ActiveSync connection to your Windows CE

device running (eMbedded Visual C++ is supposed to make this connection automatically),

Chapter 1 Hello Windows CE 11

I've found that having it running makes for a more stable connection between the develop
ment environment and the Windows CE system.

Ovl!lrvieW
l'latform&

'~~

Project Settings

FIGURE 1-3 The Project Settings page allows selection of what to create.

Running the Program

Selecting the Debug I Start without Debugging menu item will cause Visual Studio to launch
the Windows CE emulator (if the emulator is the target device), deploy the application, and
automatically launch it.

What's Wrong?

When you start Hellol, nothing seems to happen. In the emulator, the program appears to
make the screen flash. This is because the program starts, writes to the console, and termi
nates. Unless you start the program from an already created console, Windows CE creates
the console window when Hellol executes the print{ statement and closes the console auto
matically when Hellol terminates.

On a Windows Mobile device, the application runs, but Windows Mobile devices don't come

with support to display the console functions such as the output from print{. It's possible
to add console support to a Windows Mobile device by adding a driver, console.dll, to the
Windows directory of the device. That driver must be written to take input from the driver

interface, create a window on the screen, and print the strings. The console driver available in
embedded versions of Windows CE does this.

12 Part I Windows Programming Basics

Hello2
Now that you have the basics_ down, it's time to upgrade Hellol to something you can at

least see. Because many Windows CE systems don't have the console driver, Hello2 creates a

message box with the "Hello CE" text instead of using print{. Hello2 is shown in Listing 1-2.

LISTING 1-2 Hello2, a simple Windows application using the MessageBox function

Hello2.cpp

II Hello2 -·A simple applitation for Windows CE
II .
II Written for the book Programming Windows CE
/I Copyright (C) 2-007 Douglas Boling

#include·<Windows.h>

II
I/ Program entry point
II
int WINAPI .WinMain Cl:IINSJANCE hinstanc:e, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int ncmdShow) {

}

MessageBox (NULL, TEXT ("Hello World"), TEXT ("He1lo2"), MB..:.OK);
return O;

When you compile and run Hello2, you should see a small window like the one shown in

Figure 1-4.

FIGURE 1-4 Hello2 running on a Windows CE desktop

' '
The MessageBox function that replaces print{ provides two features for Hello2. First, and

most obvious, it creates a window and places the "Hello World" text in the window. The sec

ond feature is that the MessageBox function doesn't return until the user closes the message

box window. This feature allows Hello2 to continue running until the user closes the window.

The MessageBox function is prototyped as

int MessageBox (HWND hWnd, LPCTSTR lpText, LPCTSTR lpCaption, UINT uType);

The first parameter of MessageBox is the handle to the top-level window that is the par-

ent of the message box when it is displayed. For now, leave this parameter NULL because

Hello2 doesn't have any other windows. The second parameter is the text that appears in the

Chapter 1 Hello Windows CE 13

window. Notice that the string passed is couched in the TEXT macro, ensuring that it will be

compiled as Unicode. The third parameter, lpCaption, is the text that will appear in the title

bar of the window. The last parameter, uType, is a series of flags that specify how the message

box appears on the screen. The flags specify the number and type of buttons on the mes
sage box; the icon, if any, on the message box; and the settings of style flags for the message

box window.

The flags listed in Table 1-2 are valid under Windows CE.

TABLE 1-2 Default Flags

Flags

For Buttons:

MB_OK

MB_OKCANCEL

MB_RETRYCANCEL

MB_YESNO

MB_ YESNOCANCEL

MB_ABORTRETRYJGNORE

For Icons:

MB_JCONEXCLAMATION, MB_ICONWARNING

MB_ICONINFORMATION, MB_ICONASTERISK

MB_JCONQUESTION

MB_YESNO

MB_JCONSTOP, MB_JCONERROR, MB_JCONHAND

MB DEFBUTTONl
- '

MB_DEFBUTTON2

MB_DEFBUTTON3

For Window Styles:

MB_SETFOREGROUND
,.~"--~-"-·-·~·----·-~-,,.-·~-

MB_ TOPMOST

Button or Icon

OK

OK and Cancel

Retry and Cancel

Yes and No

Yes, No, and Cancel

Abort, Retry, and Ignore

Exclamation point

Lower case i within a circle

Question mark

Yes and No

Stop sign

First button

Second button

Third button

Bring the message box to the foreground.

Make the message box the topmost window.

The return value from MessageBox indicates the button clicked by the user. The return values

are as follows:

/DOK

/DYES

/ONO

IDCANCEL

/DAB ORT

IDRETRY

10/GNORE

OK button pressed

Yes button pressed

No button pressed

Cancel button pressed or Esc key pressed

Abort button pressed

Retry button pressed

Ignore button pressed

14 Part I Windows Programming Basics

MessageBox is a handy function to make an application display a simple but informative dia

log box.

One gotcha to look out for here: If you're debugging and recompiling the program, it can't

be downloaded again if an earlier version of the program is still running on the target sys

tem. That is, make sure Hello2 isn't running on the remote system when you start a new build

in Visual Studio, or the autodownload part of the compile process will fail. If this happens,

close the application and choose the Build I Deploy Solution menu command in Visual Studio

to download the newly compiled file.

Hello2 displays a simple window, but that window is only as configurable as the MessageBox
function allows. How about showing a window that is completely configurable by the appli

cation? Before we can do that, a quick review of how a Windows application really works is in

order.

Anatomy of a Windows-Based Application
Windows-based programming is far different from MS-DOS-based or Unix-based program

ming. An MS-DOS or Unix program uses getc-and putc-style functions to read characters

from the keyboard and write them to the screen whenever the program n'eeds to do so.

This is the classic "pull" style used by MS-DOS and Unix programs, which are procedural. A
Windows program, on the other hand, uses a "push" model, in which the program must be

written to react to notifications from the operating system that a key has been pressed or a

command has been received to repaint the screen.

Windows applications don't ask for input from the operating system; the operating system

notifies the application that input has occurred. The operating system achieves these notifi

cations by sending messages to an application window. All windows are specific instances of

a window class. Before you go any further, be sure you 'understand these terms.

The Window

A window is a region on the screen, rectangular in all but the most contrived of cases, that

has a few basic parameters, such as position-x, y, and z (a window is over or under other

windows on the screen)-visibility, and hierarchy-the window fits into a parent/child win

dow relationship on the system desktop, which also happens to be a window.

Every application that displays itself on the desktop has at least one window. In the preced

ing Hello2 example, the system created the window for the application when the message

box was displayed. The message box is actually composed of two windows: the window that

is the message box and the window that contains the Hello World text.

Chapter 1 Hello Windows CE 15

To create a window that is unique to an application, the application must first tell Windows

CE some of the basic characteristics of the window to be created. These basic characteristics

are shared among all windows of this type, or as Windows refers to it, all windows of a spe

cific window class.

The Window Class

Every window created is a specific instance of a window class. A window class is a template
that defines a number of attributes common to all the windows of that class. In other words,

windows of the same class share the same set of basic attributes.

Windows provides a number of predefined window classes that are used by applications such

as the button class seen on the message box in Hello2. However, the main window of a Win32

application rarely uses one of the predefiend classes. Instead it defines, or rather registers,
a unique window class with the system. This class will define items such as the background

color of the window, some default styles and most importantly the window procedure.

The Window Procedure

The behavior of all windows belonging to a class is defined by the code in its window proce

dure for that class. The window procedure handles all notifications and requests sent to the

window. These notifications are sent either by the operating system, indicating that an event

has occurred to which the window must respond, or by other windows querying the window

for information.

These notifications are sent in the form of messages. A message is nothing more than a call

being made to a window procedure, with a parameter indicating the nature of the notifi

cation or request. Messages are sent for events such as a window being moved or resized

or to indicate a key press. The values used to indicate messages are defined by Windows.

Applications use these predefined constants, such as WM_ CREATE and WM_MOVE, when

referring to messages. Because hundreds of messages can be sent, Windows conveniently

provides a default processing function to which a message can be passed when no special

processing is necessary by the window class for that message.

The Life of a Message

Stepping back for a moment, look at how Windows coordinates all of the messages going to all

of the windows in a system. Windows monitors all the sources of input to the system, such as

the keyboard, mouse, touch screen, and any other hardware that could produce an event that

might interest a window. As an event occurs, a message is composed and directed to a specific

window. Instead of Windows directly calling the window procedure, the system imposes an

16 Part I Windows Programming Basics

intermediate step. The message is placed in a message queue for the application2 that owns
the window. When the application is prepared to receive the message, it pulls it out of the
queue and tells Windows to dispatch that message to the proper window in the application.

If it seems to you that a number of indirections are involved in that process, you're right. You

can break it down as follows:

1. An event occurs, so a message is composed by Windows and placed in a message
queue for the application that owns the destination window. Events can occur, and
therefore messages can be composed, faster than an application can process them. The
queue allows an application to process messages at its own rate, although the applica
tion had better be responsive, or the user will see some jerkiness in the application. The

message queue also allows Windows to set a notification in motion and continue with
other tasks without having to be limited by the responsiveness of the application to

which the message is being sent.

2. The application removes the message from its message queue and calls Windows back

to dispatch the message. While it may seem strange that the application gets a mes
sage from the queue and then simply calls Windows back to process the message,

there's a method to this madness. Having the application pull the message from the
queue allows it to preprocess the message before it asks Windows to dispatch the mes
sage to the appropriate window. In a number of cases, the application might call differ
ent functions in Windows to process specific kinds of messages.

3. Windows dispatches the message; that is, it calls the appropriate window procedure.
Instead of having the application directly call the window procedure, another level of
indirection occurs, allowing Windows to coordinate the call to the window procedure
with other events in the system. The message doesn't stand in another queue at this

point, but Windows might need to make some preparations before calling the window
procedure. In any case, the scheme relieves the application of the obligation to deter
mine the proper destination window-Windows does this instead.

4. The window procedure processes the message. All window procedures have the same

calling parameters: the handle of the specific window instance being called, the mes
sage, and two generic parameters that contain data specific to each message type. The
window handle differentiates each instance of a window for the window procedure.
The message parameter, of course, indicates the event that the window must react to.
The two generic parameters contain data specific to the message being sent. For ex
ample, in a WM_MOVE message indicating that the window is about to be moved, one

of the generic parameters points to a structure containing the new coordinates of the
window.

2 Technically, each thread in a Windows CE application that creates a window has a message queue and it's that
thread that must process the message queue. I'll talk about threads later in the book.

Chapter 1 Hello Windows CE 17

Hello3, shown in Listing 1-3, demonstrates all aspects of a Windows program, from register

ing the window class to the creation of the window to the window procedure. Hello3 has the

same entry point, WinMain,as the first two examples; but because it creates its own window,

it must register a window class for the main window, create the window, and provide a mes

sage loop to process the messages for the window.

LISTING 1-3

Hello3

II==================================~==================================
II Hello3 - A simple application for Windows CE
II
II Written for the book Programming Windows CE
II Copyright CC) 2007 Douglas Boling
//==
#include <Windows.h> II For all that Windows stuff

LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

//==
II Program entry point
II
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) {
WNDCLASS we;
HWND hWnd;
MSG msg;

II Register application main window class.
we.style = O; II Window style
wc.lpfnWndProc = MainWndProc; II Callback function
wc.cbClsExtra = O; II Extra class data
wc.cbWndExtra = O; II Extra window data
wc.hinstance = hinstance; II Owner handle
wc.hicon =NULL, II Application icon
wc.hCursor = LoadCursor (NULL, IDc..ARROW);// Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wc.lpszMenuName = NULL; II Menu name
we. 1 pszCl assName = TEXTC"MyCl ass") ; II Window class name

if (RegisterClass (&we) == 0) return -1;

II Create main window.

'
I

18 Part I Windows Programming Basics

}

hWnd = CreateWindowEx(WS_E)(_NQDRAG,
TEXT("MyCl ass"),
TEXT("Hello"),
11 Style flags

11 Ex style flags
II Window class
II Window title

WS_VISIBLE I WS_CAPTION I WS_SYSMENU,
CW_USEDEFAULT, II x position
CW_USEDEFAULT, II y position
CW_USEDEFAULT, II Initial width
CW_USEDEFAULT, II Initial height
NULL, I I Parent
NULL, 11 Menu, must be nul1
hinstance, II Application instance
NULL); 11 Pointer to create

II parameters
if (!IsWindow (hWnd)) return -2; II Fail code if not created.

II Standard show and update calls
ShowWindow (hwnd, nCmdShow);
UpdateWindow (hWrtd);

II Application message loop
while (GetMessage C&msg, NULL, 0, 0)) { _

TranslateMessage (&nsg);
OispatchMessage (&msg);

}

II Instance cleanup
return msg.wParam;

//======~===
II MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT.wMsg, WPARAM wParam,

LPARAM 1Param) {

}

PAINTSTRUCT ps;
RECT rect;
HOC hdc;

switch (wMsg) {
case WM_PAINT:

II Get the size of the client rectangle
GetClientRect (hWnd, &rect);

hdc = BeginPaint (hWnd, &ps);
DrawText (hdc, TEXT ("Hello Windows CE!"), -1, &rect,

OT_CENTER I DT_VCENTER I DT_SINGLELINE);

EndPaint (hWnd, &ps);
return O;

case WM_OESTROY:
PostQuitMessage (O);
break;

}
return DefWfodowProc (hWnd, wMsg, wParam, lParam);

Chapter 1 Hello Windows CE 19

Registering the Window Class
In WinMain, Hello3 registers the window class for the main window. Registering a window

class is simply a matter of filling out a rather extensive structure describing the class and call

ing the RegisterC/ass function. RegisterC/ass and the WNDCLASS structure are defined as

follows:

ATOM RegisterClass (canst WNDCLASS *lpWndClass);

typedef struct _WNDCLASS {
UINT style;
WNDPROC lpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HANDLE hinstance;
HICON h!con;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCTSTR lpszMenuName;
LPCTSTR lpszClassName;

} WNDCLASS;

The parameters assigned to the fields of the WNDCLASS structure define how all instances of

the main window for Hello3 will behave. The initial field, style, sets the class style for the win

dow. In Windows CE, the class styles are limited to the following:

• CS_GLOBALCLASS Indicates that the class is global. This flag is provided only for

compatibility because all window classes in Windows CE are process global.

• CS_HREDRAW Tells the system to force a repaint of the window if the window is sized

horizontally.

• CS_VREDRAW Tells the system to force a repaint of the window if the window is sized

vertically.

• CS_NOCLOSE Disables the Close button if one is present on the title bar.

• CS_PARENTDC Causes a window to use its parent's device context.

• CS_DBLCLKS Enables notification of double-clicks (or double-taps on a touch screen)

to be passed to the parent window.

The lpfnWndProc field should be loaded with the address of the window's window procedure.

Because this field is typed as a pointer to a window procedure, the declaration to the pro

cedure must be defined in the source code before the field is set. Otherwise, the compiler's

type checker will flag this line with a warning.

The cbC/sExtra field allows the programmer to add extra space in the class structure to store

class-specific data known only to the application. The cbWndExtra field is much handier. This

field adds space to the Windows internal structure responsible for maintaining the state of

20 Part I Windows Programming Basics

each instance of a window. Instead of storing large amounts of data in the window structure

itself, an application should store a pointer to an application-specific structure that contains

the data unique to each instance of the window. Under Windows CE, both the cbC/sExtra and

cbWndExtra fields must be multiples of 4 bytes.

The hlnstance field must be filled with the program's instance handle, which specifies the

owning process of the window. The h/con field is set to the handle of the window's de

fault icon. For Hello3, however, no icon is supplied, and, unlike other versions of Windows,

Windows CE doesn't have any predefined icons that can be loaded.)

Unless the application being developed is designed for a Windows CE system with a mouse,

the next field, hCursor, must be set to NULL. Fortunately, the function call LoadCursor (!DC_
ARROW) returns NULL if the system doesn't support cursors.

The hbrBackground field specifies how Windows CE draws the background of the window.

Windows uses the brush, a small predefined array of pixels, specified in this field to draw the

background of the window. Windows CE provides a number of predefined brushes that you

can load using the GetStockObject function. If the hbrBackground field is NULL, the window
must handle the WM_ERASEBKGND message sent to the window telling it to redraw the

background of the window. In the case of Hello3, the WHITE_ BRUSH stock object sets the

background to white.

The lpszMenuName field must be set to NULL because Windows CE doesn't support windows
directly having a menu. In Windows CE, menus are provided by menu bar, command bar, or

command band controls that the main window can create.

Finally the lpszC/assName parameter is set to a programmer-defined string that identifies the

class name to Windows. Hello3 uses the string MyC/ass.

After the entire WNDCLASS structure has been filled out, the RegisterClass function is called

with a pointer to the WNDCLASS structure as its only parameter. If the function is successful,

a value identifying the window class is returned. If the function fails, the function returns 0.

Creating the Window

After the window class is successfully registered, the main window can be created. All
Windows programmers learn early in their programming lives the CreateWindow and

CreateWindowEx function calls. The prototype for CreateWindowEx is as follows:

HWND CreateWindowEx (DWORD dwExStyle, LPCTSTR lpClassName,
LPCTSTR lpWindowName, DWORD dwStyle,
int x, int y, int nWidth, int nHeight,
HWND hWndParent, HMENU hMenu,
HINSTANCE h!nstance, LPVOID lpParam);

Chapter 1 Hello Windows CE 21

Although the number of parameters looks daunting, the parameters are fairly logical after

you learn them. The first parameter is the extended style flags. The extended style flags sup

ported by Windows CE are as follows:

• WS_EX_TOPMOST Window is topmost.

• WS_EX_WINDOWEDGE Window has a raised edge.

• WS_EX_CLIENTEDGE Window has a sunken edge.

• WS_EX_STATICEDGE 30 look for static windows.

• WS_EX_OVERLAPPEDWINDOW Combines WS_EX_WINDOWEDGE and
WS_EX_ CLI ENTEDG E.

• WS_EX_CAPTIONOKBUTTON Window has an OK button on caption.

• WS_EX_CONTEXTHELP Window has help button on caption.

• WS_EX_NOACTIVATE Window is not activated when clicked.

• WS_EX_NOANIMATION Top-level window will not have exploding rectangles when
created nor have a button on the taskbar.

• WS_EX_NODRAG Prevents window from being moved.

• WS_EX_ABOVESTARTUP Positions a window above the password screen.

• WS_EX_INK Prevents screen tap sound when tapping stylus on window.

The dwExStyle parameter is the only difference between CreateWindowEx and CreateWindow.

In fact, if you look at the declaration of CreateWindow in the Windows CE header files, it's

simply a call to CreateWindowEx with the dwExStyle parameter set to 0.

The second parameter is the name of the window class of which your window will be an

instance. In the case of Hello3, the class name is Myctass, which matches the name of the

class registered in RegisterC/ass.

The next field is referred to as the window text. In other versions of Windows, this is the text

that would appear on the title bar of a standard window. On most embedded systems, main

windows rarely have title bars; this text is used only on the taskbar button for the window.

On the Windows Mobile devices, however, this text is shown on the navigation bar at the top

of the display. The text is couched in a TEXT macro, which ensures that the string will be con

verted to Unicode under Windows CE.

The style flags specify the initial styles for the window. The style flags are used both for gen

eral styles that are relevant to all windows in the system and for class-specific styles, such as

those that specify the style of a button or a list box. In this case, all you need to specify is that

22 Part I Windows Programming Basics

the window be created initially visible with the WS_ VISIBLE flag. The supported style flags are

as follows:

• WS_BORDER The window will have a thin border.

• WS_CAPTION The window will have a title bar.

• WS_CHILD The window is a child window. The menu parameter will contain the han-

dle of the parent window.

• WS_DISABLED The window will not accept any input.

• WS_DLGFRAME The window frame looks like the frame of a dialog box.

• WS_GROUP Defines the first in a group of control windows. All subsuquent windows

will be in this group until another window with the WS_GROUP style is created.

• WS_HSCROLL The window is created with a horizonal scroll bar.

• WS_VSCROLL The window is created with a vertical scroll bar.

• WS_OVERLAPPED The window will have a title bar and a standard border.

• WS_POPUP The window is a top-level window owned by the window whose handle is

passed in the hMenu parameter.

• WS_SYSMENU The window will have a Close box.

• WS_TABSTOP When used on a child window in a dialog box, it indicates that the win

dow would like to be in the chain of windows that receives keyboard focus when the

Tab key is pressed.

• WS_THICKFRAME The window will have a thick border that can be "grabbed" by the

mouse or stylus to resize the window.

• WS_SIZEBOX Same as WS_THICKFRAME.

• WS_VISIBLE The window will be visible to the user if it resides at the top of the

z-order.

In addition, all windows in Windows CE are implicitly set to the WM_CLIPCHILDREN- and

WS_ CLIPSIBLINGS-style flags.

The next four fields specify the initial position and size of the window. Because most ap

plications under Windows CE are full-screen windows, the size and position fields are set to

default values, which are indicated by the CW_USEDEFAULTflag in each of the fields. The

default value settings create a window that is sized to fit the screen work area. The work area

is generally all of the screen not taken up by the shell taskbar. Be careful not to assume any
particular screen size for a Windows CE device because different implementations have dif

ferent screen sizes.

Chapter 1 Hello Windows CE 23

The next field is set to the handle of the parent window. Because this is the top-level window,
the parent window field is set to NULL. The menu field is also set to NULL because Windows
CE does not support menus on top-level windows.

The h/nstance parameter is the same instance handle that was passed to the program.
Creation of windows is one case in which that instance handle, saved at the start of the rou
tine, comes in handy. The final parameter is a pointer that can be used to pass data from the
CreateWindow call to the window procedure during the WM_ CREATE message. In this ex
ample, no additional data needs to be passed, so the parameter is set to NULL.

If successful, the CreateWindow call returns the handle to the window just created, or it re
turns 0 if an error occurred during the function. That window handle is then used in the two
statements (ShowWindow and UpdateWindow) just after the error-checking if statement. The
ShowWindow function modifies the state of the window to conform with the state given in
the nCmdShow parameter passed to WinMain. The UpdateWindow function forces Windows
to send a WM_ PAINT message to the window that has just been created.

The Message Loop

After the main window has been created, WinMain enters the message loop, which is the
heart of every Windows application. Hello3's message loop is shown at the top of the next
page.

while (GetMessage (&msg, NULL, 0, 0)) {
TranslateMessage (&msg);
DispatchMessage (&msg);

}

The loop is simple: GetMessage is called to get the next message in the application's mes
sage queue. If no message is available, the call waits, blocking that application's thread until
a message is available. When a message is available, the call returns with the message data
contained in an MSG structure. The MSG structure itself contains fields that identify the mes
sage, provide any message-specific parameters, and identify the last mouse point recorded
before the message was sent. This location information is different depending on if the
system has a mouse or a touch panel. On mouse-based systems the point returned is the
current mouse position. On touch panel based systems the last mouse point is the last point
tapped by the stylus.

The TranslateMessage function translates appropriate keyboard messages into a charac
ter message. (I'll talk about others of these filter messages, such as lsDialogMsg, later.) The
DispatchMessage function then tells Windows to forward the message to the appropriate
window in the application.

This GetMessage, Trans/ateMessage, DispatchMessage loop continues until GetMessage

receives a WM_ QUIT message, which, unlike all other messages, causes GetMessage to

24 Part I Windows Programming Basics

return 0. As can be seen from the while clause, the return value 0 by GetMessage causes the

loop to terminate.

After the message loop terminates, the program .can do little else but clean up and exit.

In the case of Hello3, the program simply returns from WinMain. The value returned by
WinMain becomes the return code of the program. Traditionally, the return value is the value

in the wParam parameter of the last message (WM_ QUIT). The wParam value of WM_ QUIT is

set when that message is sent in response to a PostQuitMessage call made by the application.

The Window Procedure

The messages sent or posted to the Hello3 main window are sent to the procedure

MainWndProc. MainWndProc, like all window procedures, is prototyped as follows:

LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM l Param);

The LRESULT return type is actually just a long (a long is a 32-bit value under Windows) but ·

is typed this way to provide a level of indirection between the source code and the machine.

While you can easily look into the include files to determine the real type of variables that

are used in Windows programming, this can cause problems when you attempt to move

your code across platforms. Although it can be useful to know the size of a variable type for

memory-use calculations, there is no good reason to use (and plenty of reasons not to use)

the base-type definitions provided by windows.h.

The CALLBACK-type definition specifies that this function is an external entry point into the

EXE, necessary because Windows calls this procedure directly. The CALLBACK-type definition

varies depending on which version of Windows is being targeted, but it typically indicates

that parameters are pushed onto the stack in a right-to-left manner.

The first of the parameters passed to the window procedure is the window handle, which is

useful when you need to define the specific instance of the window. The wMsg parameter
indicates the message being sent to the window. This isn't the MSG structure used in the

message loop in WinMain, but a simple, unsigned integer containing the message value. The

remaining two parameters, wParam and IParam, are used to pass message-specific data to

the window procedure. The names wParam and IParam come to us from the Win16 days,

when wParam was a 16-bit value and IParam was a 32-bit value. In Windows CE, as in other

Win32 operating systems, both the wParam and IParam parameters are 32 bits wide.

Hello3 has a traditional window procedure that consists of a switch statement that parses the

wMsg message ID parameter. The switch statement for Hello3 contains two case statements,

one to parse the WM_PAINT message and one for the WM_ DESTROY message. This is about

as simple as a window procedure can get.

Chapter 1 Hello Windows CE 25

WM_PAINT

Painting the window, and therefore processing the WM_ PAINT message, is one of the critical

functions of any Windows program. As a program processes the WM_ PAINT message, the
look of the window is achieved. Aside from painting the default background with the brush

you specified when you registered the window class, Windows provides no help for process

ing this message. The lines of Hello3 that process the WM_ PAINT messages are shown here:

case WM_PAINT:
II Get the size of the client rectangle
GetClientRect (hWnd, &rect);

hdc = BeginPaint (hWnd, &ps);
DrawText (hdc, TEXT ("Hello Windows CE!"), -1, &rect,

DT_CENTER I DT_VCENTER I DT_SINGLELINE);

EndPaint (hWnd, &ps);
return O;

Before the window can be drawn, the routine must determine its size. In a Windows pro

gram, a standard window is divided into two areas: the nonclient area and the client area. A

window's title bar and its sizing border commonly make up the nonclient area of a window,

and Windows is responsible for drawing it. The client area is the interior part of the window,

and the application is responsible for drawing that. An application determines the size and

location of the client area by calling the GetC/ientRect function. The function returns a RECT

structure that contains left, top, right, and bottom elements that delineate the boundaries

of the client rectangle. The advantage of the client-versus-nonclient area concept is that an

application doesn't have to account for drawing such standard elements of a window as the

title bar.

Other versions of Windows supply a series of WM_NCxxx messages that enable your applica

tions to take over the drawing of the nonclient area. In Windows CE, windows seldom have

title bars. Because there's so little nonclient area, the Windows CE team decided not to send

the nonclient messages to the window procedure. Instead, the nonclient-area messages are

sent directly to the default window procedure.

All drawing performed in a WM_ PAINT message must be enclosed by two functions:

BeginPaint and EndPaint. The BeginPaint function returns an HOC, or handle to a device con
text. A device context is a logical representation of a physical display device such as a video

screen or a printer. Windows programs never modify the display hardware directly. Instead,

Windows isolates the program from the specifics of the hardware with, among other tools,

device contexts.

26 Part I Windows Programming Basics

BeginPaint also fills in a PAINTSTRUCT structure that contains a number of useful parameters:

typedef struct tagPAINTSTRUCT {
HDC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL flncUpdate;
BYTE rgbReserved[32];

} PAINTSTRUCT;

The hdc field is the same handle that's returned by the BeginPaint function. The {Erase field

indicates whether the window procedure needs to redraw the background of the window.

The rcPaint field is a RECT structure that defines the client area that needs repainting. Hello3

ignores this field and assumes that the entire client window needs repainting for every

WM_PAINT message, but this field is quite handy when performance is an issue because only

part of the window might need repainting. Windows actually prevents repainting outside the

rcPaint rectangle, even when a program attempts to do so. The other fields in the structure,

{Restore, flncUpdate, and rgbReserved, are used internally by Windows and can be ignored by

the application.

The only painting that takes place in Hello3 occurs in one line of text in the window. To do

the painting, Hello3 calls the DrawText function. I cover the details of DrawText in Chapter 2,

"Drawing on the Screen," but if you look at the function it's probably obvious to you that this

call draws the string "Hello Windows CE" on the window. After Draw Text returns, EndPaint is

called to inform Windows that the program has completed its update of the window.

Calling EndPaint also validates any area of the window you didn't paint. Windows keeps a list

of areas of a window that are invalid (areas that need to be redrawn) and valid (areas that are

up to date). By calling the BeginPaint and EndPaint pair, you tell Windows that you've taken

care of any invalid areas in your window, whether or not you've actually drawn anything in

the window. In fact, you must call BeginPaint and EndPaint, or validate the invalid areas of the

window by other means, or Windows will simply continue to send WM_ PAINT messages to

the window until those invalid areas are validated.

WM_ DESTROY
The other message processed by Hello3 is the WM_DESTROY message. The WM_DESTROY

message is sent when a window is about to be destroyed. Because this window is the

main window of the application, the application should terminate when the window is

destroyed. To make this happen, the code processing the WM_ DESTROY message calls

PostQuitMessage. This function places a WM_ QUIT message in the message queue. The one
parameter of this function is the return code value that will be passed back to the application

in the wParam parameter of the WM_QU/T message.

Chapter 1 Hello Windows CE 27

As I've mentioned, when the message loop sees a WM_QU/T message, it exits the loop. The

WinMain function then calls Termlnstance, which, in the case of Hello3, does nothing but

return. WinMain then returns, terminating the program.

Hello3 is the classic Windows program. This programming style is sometimes call the Petzold

method of Windows programming in homage to the ultimate guru of Windows program

ming, Charles Petzold. Charles's book Programming Microsoft Windows is currently in its fifth

edition and is still the best book for learning Windows programming.

I prefer a somewhat different layout of my Windows programs. In a sense, it's simply a

method of componentizing the function of a Windows program, which makes it much easier

to copy parts of one program to another. In the final example of this chapter, I introduce

this programming style along with a few extra features that are necessary for Windows CE

applications.

HelloCE
One criticism of the typical SDK style of Windows programming has always been the huge

switch statement in the window procedure. The switch statement parses the message to the

window procedure so that each message can be handled independently. This standard struc

ture has the one great advantage of enforcing a similar structure across almost all Windows

applications, making it much easier for one programmer to understand the workings of

another programmer's code. The disadvantage is that all the variables for the entire window

procedure typically appear jumbled at the top of the procedure.

Over the years, I've developed a different style for my Windows programs. The idea is to
break up the WinMain and WinProc procedures into manageable units that can be eas-

ily understood and easily transferred to other Windows programs. WinMain is broken up

into procedures that perform application initialization, instance initialization, and instance

termination. Also in WinMain is the ubiquitous message loop that's the core of all Windows

programs.

I break the window procedure into individual procedures, with each handling a specific mes

sage. What remains of the window procedure itself is a fragment of code that simply looks
up the message that's being passed to see whether a procedure has been written to handle

that message. If so, that procedure is called. If not, the message is passed to the default win

dow procedure.

This structure divides the handling of messages into individual blocks that can be more eas

ily understood. Also, with greater isolation of one message-handling code fragment from

another, you can more easily transfer the code that handles a specific message from one pro

gram to the next. I first saw this structure described a number of years ago by Ray Duncan

in one of his old "Power Programming" columns in PC Magazine. Ray is one of the legends

28 Part I Windows Programming Basics

in the field of MS-DOS and OS/2 programming. I've since modified the design a bit to fit my

needs, but Ray should get the credit for this program structure.

The Code

The source code for HelloCE is shown in Listing 1-4.

LISTING 1-4 The HelloCE program

HelloCE.h

HelloCE.cpp

II==
II HelloCE - A simple application for Windows CE
II
II Written for the book Programming Windows CE
II Copyright (C) 2007 Douglas Boling
II=='======================
#include <windows.h> II For all thatWindows stuff
#include "helloce.h" 11 Program-specific stuff

11--~-----------------------
I ! Global data
II
const TCHAR szAppName[] = TEXT("HelloCE");
HINSTANCE hinst; II Program instance handle

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {

WM_PAINT, DoPaintMain,
WM__DESTROY, DoDestroyMain,

} ;

II==
II Program entry point
II
int WINAPI WinMain (HINSTANCE hlnstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) {
MSG msg;
int re = O;
HWND hwndMain;

II Initialize this instance.
hwndMain = Initinstance (hinstance, lpCmdLine, nCmdShow);
if (hwndMain == O) return OxlO;

II Application message loop
while (GetMessage (&msg, NULL, O, O)) {

TranslateMessage (&msg};
D.i spatchMessage (&msg);

}

Chapter 1 Hello Windows CE 29

II Instance cleanup
return Terminstance (hinstance, msg.wParam);

}

11--
11 Initinstance - Instance initialization
II
HWND Initinstance (HINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow) {

WNDCLASS we;
HWND hWnd;

II Save program instance handle in global variable.
hinst = hinstance;

#if defined(WIN32_PLATFORM_PSPC) I I defined(WIN32_PLATFORM_WFSP)
II If Windows Mobile, only allow one instance of the application
hWnd = FindWindow (szAppName, NULL);
if (hWnd) {

}

#endif

SetForegroundWindow ((HWND)(((DWORD)hWnd) I OxOl));
return O;

II Register application main window class.
we.style= O; II Window style
wc.lpfnWndProc = MainWndProc; II Callback function
wc.cbClsExtra = O; II Extra class data
wc.cbWndExtra = O; II Extra window data
wc.hinstance = hinstance; II Owner handle
wc.hicon =NULL, II Application icon
wc.hCursor = LoadCursor (NULL, IDC_.ARROW);ll Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wc.lpszMenuName =NULL; II Menu name
wc.lpszClassName = szAppName; II Window class name

if (RegisterClass (&we) == 0) return O;

II Create main window.
hWnd = CreateWindow (szAppName,

TEXT("Hel loCE"),
II Style flags

II Window class
II Window title

WS_VISIBLE I WS_CAPTION I WS_SYSMENU,
CW_USEDEFAULT, II x position
CW_USEDEFAULT, II y position
CW_USEDEFAULT, II Initial width
CW_USEDEFAULT, II Initial height
NULL, I I Parent
NULL, I I Menu, must be nul 1
hinstance, II Application instance
NULL); II Pointer to create

II parameters
if (!IsWindow (hWnd)) return O; II Fail code if not created.

II Standard show and update calls
ShowWindow (hWnd, nCmdShow);
UpdateWindow (hWnd);

30 Part I Windows Programming Basics

return hWnd;
}

11--
11 Term!nstance - Program cleanup
II
int Term!nstance (HINSTANCE h!nstance, int nDefRC) {

return nDefRC;
}

II=========~=~==~==================================~=================
II Message handling procedures for main window
II
11--
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

}

INT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = O; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, lParam);

}

return DefWindowProc (hWnd, wMsg, wParam, lParam);

11--
11 DoPaintMain - Process WM_PAINT message for window.
II
LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

}

PAINTSTRUCT ps;
RECT rect;
HDC hdc;

II Get the size of the client rectangle
GetClientRect (hWnd, &rect);

hdc = BeginPaint (hWnd, &ps);
DrawText (hdc, TEXT ("Hello Windows CEl"), -1, &rect,

DT_CENTER I DT_VCENTER I DT_SINGLELINE);

EndPaint (hWnd, &ps);
return O;

11---·-------------------------
ll DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PostQuitMessage (O);
return O;

}

Chapter 1 Hello Windows CE 31

If you look over the source code for HelloCE, you'll see the standard boilerplate for all pro

grams in this book. A few variables defined globally follow the defines and includes. I know

plenty of good arguments why no global variables should appear in a program, but I use

them as a convenience that shortens and clarifies the example programs in the book. Each

program defines an szAppName Unicode string to be used in various places in that pro

gram. I also use the hlnst variable a number of places, and I'll mention it when I cover the

lnitlnstance procedure. The final global structure is a list of messages along with associated

procedures to process the messages. This structure is used by the window procedure to as
sociate messages with the procedure that handles them.

In HelloCE, WinMain has two basic functions: it calls lnitlnstance (where the applica-

tion initialization code is kept), processes the message in the message loop, and calls

Terminatelnstance when the message loop exits. In this program template, WinMain be

comes a boilerplate routine that almost never changes. In gen~ral, the only changes that are

made to WinMain concern modification of the processing of the message loop to process for

keyboard accelerators, watch for modeless dialog box messages, or other tasks.

lnitlnstance
The main task of lnitlnstance is to register the main window's window class, create the

application's main window, and display it in the form specified in the nCmdShow parameter

passed to WinMain. There is also some conditionally compiled code that, if compiled for a

Windows Mobile device, prevents more than one instance of the program from running at

any one time.

The first task performed by lnitlnstance is to save the program's instance handle hlnstance

in a global variable named hlnst. The instance handle for a program is useful at a number of

points in a Windows application. I save the value here because the instance handle is known,

and this is a convenient place in the program to store it.

When running on a Windows Mobile device, HelloCE uses FindWindow to see whether an
other copy of itself is currently running. This function searches the top-level windows in the

system looking for ones that match the class name or the window title or both. If a match

is found, the window is brought to the foreground with SetForegroundWindow. The routine

then exits with a zero return code, which causes WinMain to exit, terminating the applica

tion. Although this book doesn't cover Windows Mobile specific code, the popularity of the

devices means that they are often used as Windows CE devices during devlopment. Because

so many developers are using Windows Mobile devices, unless otherwise mentioned, all the

examples in this book will run on these devices.

These Windows Mobile-specific lines are enclosed in #if and #endif lines. These lines tell

the compiler to include them only if the condition of the #if statement is true-in this case,

if the constants WIN32_PLATFORM_PSPC or WIN32_PLATFORM_WFSP are defined. These

constants are defined in the Project Settings for the project. A quick look at the C/C++ tab

32 Part I Windows Programming Basics

of the Project Properties dialog box shows an entry field for Preprocessor Definitions. In

this field, one of the definitions is $(CeP/atform), which is a placeholder for a registry value.

Deep in the registry, under the key [HKEY_LOCAL_MACHINE]\Software\Microsoft\Windows

CE Tools\SDK, you can find series of registry keys, one for each target platform installed

in Visual Studio 2005. Each key has a value that points to an XML file that contains in

formation about that platform including the definition for the CePlatform. CePlatform is

defined differently depending on the target project. For Pocket PC projects, CePlatform

is defined as W/N32_PLATFORM_PSPC. For Smartphone projects, the value is defined as

WIN32_PLATFORM_ WFSP.

The registering of the window class and the creation of the main window are quite similar to

those in the Hello3 example. The only difference is the use of the global string szAppName as

the class name of the main window class. Each time I use this template, I change the szApp

Name string to match the program name. This keeps the window class names somewhat

unique for the different applications, enabling the FindWindow code in HelloCE to work.

That completes the lnitlnstance function. At this point, the application's main window has

been created and updated. So even before you have entered the message loop, messages

have been sent to the main window's window procedure. It's about time to look at this part

of the program.

MainWndProc

You spend most of your programming time with the window procedure when you're writing

a Windows program. The window procedure is the core of the program, the place where the

actions of the program's windows create the personality of the program.

It's in the window procedure that my programming style differs significantly from most

Windows programs written without the help of a class library such as MFC. For almost all of

my programs, the window procedure is identical to the one previously shown in HelloCE.

Before continuing, I repeat this program structure isn't specific to Windows CE. I use this

style for all my Win32 applications, whether they are for Windows XP, Windows Vista, or
Windows CE.

This style reduces the window procedure to a simple table lookup function. The idea is to

scan the MainMessages table defined early in the C++ file for the message value in one of
the entries. If the message is found, the associated procedure is then called, passing the

original parameters to the procedure processing the message. If no match is found for the

message, the DefWindowProc function is called. DefWindowProc is a Windows function that

provides a default action for all messages in the system, which frees a Windows program

from having to process every message being passed to a window.

Chapter 1 Hello Windows CE 33

The message table associates message values with a procedure to process it. The table is

listed here:

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {

WM_PAINT, DoPaintMain,
WM_DESTROY, DoDestroyMain,

} ;

The table is defined as a constant, not just as good programming practice, but also because

it's helpful for memory conservation. Because Windows CE programs can be executed .in

place in ROM, data that doesn't change should be marked constant. This allows the Windows

CE program loader to leave such constant data in ROM instead of loading a copy into RAM,

thus saving precious RAM.

The table itself is an array of a simple two-element structure. The first entry is the message

value, followed by a pointer to the function that processes the message. While the functions

could be named anything, I'm using a consistent structure throughout the book to help you

keep track of them. The names are composed of a Do prefix (as a bow to object-oriented

practice), followed by the message name and a suffix indicating the window class associated

with the table. So DoPaintMain is the name of the function that processes WM_ PAINT mes

sages for the main window of the program.

DoPaintMain and DoDestroyMain
The two message-processing routines in HelloCE are DoPaintMain and DoDestroyMain. They

mimic the function of the case clauses in Hello3. The advantage of the separate routines is

that the code and their local variables are isolated to the routine. In Hello3's window proce

dure, the local variables specific to the paint code are bundled at the top of the routine. The

encapsulation of the code makes it easy to cut and paste the code into the next application

you write.

Running HelloCE
After you've entered the program into Visual Studio and built it, you can execute it remotely

from inside VS by choosing Start Without Debugging from the Debug menu or by pressing

Ctrl+FS. The program displays the Hello Windows CE text in the middle of an empty window,

as shown in Figure 1-5. Tapping on the Close button on the title bar causes Windows CE to

send a WM_ CLOSE message to the window. Although HelloCE doesn't explicitly process the

WM_ CLOSE message, the DefWindowProc procedure enables default processing by destroy
ing the main window. As the window is being destroyed, a WM_DESTROY message is sent,

which causes PostQuitMessage to be called.

34 Part I Windows Programming Basics

Hello Windows CE!

FIGURE 1-5 The HelloCE window on an embedded Windows CE system

As I said, HelloCE is a very basic Windows CE program, but it gives you a skeleton applica

tion on which you can build. If you look at the file HelloCE.exe using Explorer, you'll see that

the program is represented by a generic icon. When HelloCE is running, the button on the

taskbar in Figure 1-5 representing HelloCE has no icon displayed next to the text. Adding a

custom icon to a program and how the DrawText function works are a couple of the topics I'll

address in the next few chapters.

Chapter 2

Drawing on the Screen
In Chapter 1, "Hello Windows CE," the example program HelloCE had one task: to display a

line of text on the screen. Displaying that line took only one call to DrawText, with Windows

CE taking care of such details as the font and its color, the positioning of the line of text in

side the window, and so forth. Given the power of a graphical user interface (GUI), however,

an application can do much more than simply print a line of text on the screen. It can craft
the look of the display down to the most minute of details.

Over the life of the Microsoft Windows operating system, the number of functions avail-

able for crafting these displays has expanded dramatically. With each successive version of

Windows, functions have been added that extend the tools available to the programmer.

As functions were added, the old ones remained, so that even if a function had been su

perseded by a new function, old programs would continue to run on the newer versions of
Windows. The approach in which function after function is piled on while the old functions

are retained for backward compatibility was discontinued with the initial version of Windows

CE. Because of the requirement to produce a smaller version of Windows, the CE team took a

hard look at the Win32 API and replicated only the functions absolutely required by applica
tions written for the Windows CE target market.

One of the areas of the Win32 API hardest hit by this reduction was graphical functions. It's

not that you now lack the functions to do the job-it's just that the high degree of redun

dancy in the Win32 API led to some major pruning of the graphical functions. An added

challenge for the programmer is that different Windows CE platforms have subtly different

sets of supported APls. One of the ways in which Windows CE graphics support differs from

that of its desktop cousins is that Windows CE doesn't support the different mapping modes

available under other implementations of Windows. Instead, the Windows CE device contexts

are always set to the MM_ TEXT mapping mode. Coordinate transformations are also not sup

ported under Windows CE. While these features can be quite useful for some types of appli

cations, such as desktop publishing, their necessity in the Windows CE environment of small

portable devices isn't as clear. So when you read about the functions and used in this chapter,

remember that some might not be supported on all platforms. So that a program can deter

mine what functions a~e supported, Windows has always had the GetDeviceCaps function,

which returns the capabilities of the current graphic device .. Throughout this chapter, I'll refer

to GetDeviceCaps when determining what functions are supported on a given device.

This chapter, like the other chapters in Part I of this book, reviews the drawing features support

ed by Windows CE. One of the most important facts to remember is that although Windows CE

doesn't support the full Win32 graphics API, the functions it does support allow developers

35

36 Part I Windows Programming Basics

to write full-featured graphical applications. Where Windows CE doesn't support a function,

you typically can find a workaround. This chapter shows you the functions you can use and

how to work around the areas where certain functions aren't supported under Windows CE.

Painting Basics
Historically, Windows has been subdivided into three main components: the kernel, which

handles the process and memory management; User, which handles the windowing interface

and controls; and the Graphics Device Interface (GDI), which performs the low-level draw

ing. In Windows CE, User and GDI are combined into the Graphics Windowing and Event

Subsystem (GWE). At times, you might hear a Windows CE programmer talk about the GWE.

The GWE is nothing really new-just a different packaging of standard Windows parts. In this
book, the graphics portion of the GWE is usually referred to under its old name, GDI, to be

consistent with standard Windows programming terminology.

But whether you're programming for Windows CE, Windows XP, or Windows Vista, there's

more to drawing than simply handling the WM_ PAINT message. It's helpful to understand

just when and why a WM_ PAINT message is sent to a window.

Valid and Invalid Regions
When, for some reason, an area of a window is exposed to the user, that area, or region, as

it's referred to in Windows, is marked invalid. When no other messages are waiting in an ap

plication's message queue and the application's window contains an invalid region, Windows

sends a WM_ PAINT message to the window. As mentioned in Chapter 1, any drawing per
formed in response to a WM_ PAINT message is couched in calls to BeginPaint and EndPaint.

BeginPaint actually performs a number of actions. BeginPaint starts by hiding the caret-the

text entry cursor-if it's displayed. If needed, a WM_NCPAINT message is sent directly to the

default window procedure.1 It then aquires a device context that is clipped to the invalid

region, sends a WM_ERASEBACKGROUND message, if needed, to redraw the background,

and returns a handle to the device context.

End Paint, which is called by the application after the drawing is completed, validates the

invalid region, releases the device context, and redisplays the caret if necessary. If no other

action is performed by a WM_ PAINT procedure, you must at least call BeginPaint and

EndPaint if only to mark the invalid region as valid.

Alternatively, you can call to ValidateRect to blindly validate the region. But no drawing can
take place in that case, because an application must have a handle to the device context

before it can draw anything in the window.

1 Windows CE supports non-client area messages, but they are sent directly to the default window procedure and
therefore are not seen by the window procedure.

Chapter 2 Drawing on the Screen 37

Often an application needs to force a repaint of its window. An application should never post

or send a WM_ PAINT message to itself or to another window. Instead, you use the following
function:

BOOL InvalidateRect (HWND hWnd, canst RECT *lpRect, BOOL bErase);

Notice that lnvalidateRect doesn't require a handle to the window's device context, only to

the window handle itself. The lpRect parameter is the area of the window to be invalidated.

This value can be NULL if the entire window is to be invalidated. The bErase parameter indi

cates whether the background of the window should be redrawn during the BeginPaint call

as mentioned earlier. Note that unlike other versions of Windows, Windows CE requires that

the hWnd parameter be a valid window handle.

Whenever possible, only invalidate the region of the window that needs updating. Passing

a NULL value for the rectangle parameter in lnvalidateRect causes the entire window to be

redrawn. Because drawing on the screen is one of the slowest actions an application can per

form, limiting the drawing results in improved performance.

Device Contexts

A device context, often referred to simply as a DC, is a tool that Windows uses to manage ac

cess to the display and printer, although I'm covering only the display in this chapter2. Also,
unless otherwise mentioned, the explanation that follows applies to Windows in general and

isn't specific to Windows CE.

Windows applications never write directly to the screen. Instead, they request a handle to a

display device context forthe appropriate window and then, using the handle, draw to the

device context. Windows then arbitrates and manages getting the pixels from the DC to the

screen.

BeginPaint, which should be called only in a WM_PAINT message, returns a handle to the

display DC for the window. An application usually performs its drawing to the screen during

the WM_ PAINT messages. Windows treats painting as a low-priority task, which is appro

priate because having painting at a higher priority would result in a flood of paint messages

for every little change to the display. Allowing an application to complete all its pending

business by processing all waiting messages results in all the invalid regions being painted

efficiently at once. Users don't notice the minor delays caused by the low priority of the

WM_ PAINT messages.

Of course, there are times when painting must be immediate. An example of such a time

might be when a word processor needs to display a character immediately after its key is

2 This book doesn't cover printing under Windows CE. The techniques for printing are similar to those used on the
desktop, which is covered in excellent detail in Programming Windows.

38 Part I Windows Programming Basics

pressed. To draw outside a WM_PAINT message, the handle to the DC can be obtained using

this:

HDC GetDC (HWND hWnd);

GetDC returns a handle to the DC for the client portion of the window. Drawing can then be

performed anywhere within the client area of the window because this process isn't like pro

cessing inside a WM_PAINT message; there's no clipping to restrict you from drawing in an

invalid region.

Windows CE supports another function that can be used to receive the DC. It is

HDC GetDCEx (HWND hWnd, HRGN hrgnClip, DWORD flags);

GetDCEx allows you to have more control over the device context returned. The new param

eter, hrgnC/ip, lets you define the clipping region, which limits drawing to that region of the

DC. The flags parameter lets you specify how the DC acts as you draw on it. The following

flags are supported under Windows CE:

• DCX_WINDOW Returns a DC that conforms the the entire window instead of just the
client area.

• DCX_CLIPCHILDREN Excludes regions of any child windows.

• DCX_CLIPSIBLINGS Excludes regions of any sibling windows overlapping the window.

• DCX_EXCLUDEREGION Excludes the region indicated by the hrgnClip paramter.

• DCX_INTERSECTRGN Defines the clipping region as the intersection of the windows

region and the region indicated by hrgnClip.

• DCX_EXCLUDEUPDATE Excludes the current update region.

• DCX_INTERSECTUPDATE Defines the clipping region as the intersection of the up

date region and the region defined by hrgnClip.

After the drawing is complete, a call must be made to release the device context:

int ReleaseDC (HWND hWnd, HDC hDC);

Device contexts are a shared resource, and therefore an application must not hold the DC for
any longer than necessary.

While GetDC is used to draw inside the client area, sometimes an application needs access to

the nonclient areas of a window, such as the title bar. To retrieve a DC for the entire window,

make the following call:

HDC GetWindowDC (HWND hWnd);

As before, the matching call after the drawing is completed for GetWindowDC is Re/easeDC.

Chapter 2 Drawing on the Screen 39

The DC functions under Windows CE are identical to the device context functions under

the desktop versions of Windows. This should be expected because DCs are the core of the

Windows drawing philosophy. Changes to this area of the API would result in major incom

patibilities between Windows CE applications and their desktop counterparts.

Writing Text
In Chapter 1, the HelloCE example displayed a line of text using a call to DrawText. That line

from the example is shown here:

DrawText (hdc, TEXT ("Hello Windows CE!"), -1, &rect,
DT_CENTER I DT_VCENTER I DT_SINGLELINE);

DrawText is a fairly high-level function that allows a program to display text while having

Windows deal with most of the details. The first few parameters of DrawText are almost self

explanatory. The handle of the device context being used is passed, along with the text to

display couched in a TEXT macro, which declares the string as a Unicode string necessary for
Windows CE. The third parameter is the number of characters to print, or as is the case here,

a -1 indicating that the string being passed is null terminated and Windows should compute
the length.

The fourth parameter is a pointer to a rect structure that specifies the formatting rectangle
for the text. DrawText uses this rectangle as a basis for formatting the text to be printed. How

the text is formatted depends on the function's last parameter, the formatting flags. These

flags specify how the text is to be placed within the formatting rectangle, or in the case of

the DT_ CALCRECT flag, the flags have Draw Text compute the dimensions of the text that is

to be printed. DrawText even formats multiple lines with line breaks automatically computed.

In the case of HelloCE, the flags specify that the text should be centered horizontally (OT_

CENTER) and vertically (DT_ VCENTER). The DT_ VCENTER flag works only on single lines of

text, so the final parameter, DT_SINGLELINE, specifies that the text shouldn't be flowed across

multiple lines if the rectangle isn't wide enough to display the entire string.

Another way to draw text is by employing the following function:

BOOL ExtTextOut (HOC hdc, int X, int Y, UINT fuOptions,
canst RECT *lprc, LPCTSTR lpString,
UINT cbCount, canst int *lpDx);

The ExtTextOut function has a few advantages over DrawText. First, ExtTextOut tends to be

faster for drawing single lines of text. Second, the text isn't formatted inside a rectangle;

instead, x and y starting coordinates are passed, specifying where the text will be drawn.

Generally, the point defined by the coordinates is the upper-left corner of the rectangle, but

this can be changed with the text alignment settings of the DC. The rect parameter that's

40 Part I Windows Programming Basics

passed is used as a clipping rectangle or, if the background mode is opaque, the area where

the background color is drawn. This rectangle parameter can be NULL if you don't want any

clipping or opaquing. The next two parameters are the text and the character count. The last

parameter, ExtTextOut, allows an application to specify the horizontal distance between adja

cent character cells.

Windows CE differs from other versions of Windows in having only these two text drawing

functions for displaying text. You can emulate most of what you can do with the text func

tions typically used in other versions of Windows, such as TextOut and TabbedTextOut, by
using either DrawText or ExtTextOut. This is one of the areas in which Windows CE has broken

with earlier versions of Windows, sacrificing backward compatibility to achieve a smaller op

erating system.

Device Context Attributes

What I haven't mentioned yet about HelloCE's use of DrawText is the large number of as

sumptions the program makes about the DC configuration when displaying the text. Drawing

in a Windows device context takes a large number of parameters, such as foreground and

background color, and how the text should be drawn over the background as well as the font

of the text. Instead of specifying all these parameters for each drawing call, the device con

text keeps track of the current settings, referred to as attributes, and uses them as appro

priate for each call to draw to the device context.

Foreground and Background Colors

The most obvious of the text attributes are the foreground and background color. Two func

tions, SetTextColor and GetTextColor, allow a program to set and retrieve the current color.

These functions work well with both grayscale screens and the color screens supported by

Windows CE devices.

To determine how many colors a device supports, use GetDeviceCaps as mentioned pre

viously. The prototype for this function is the following:

int GetDeviceCaps (HOC hdc, int nlndex);

You need the handle to the DC being queried because different DCs have different capabili

ties. For example, a printer DC would differ from a display DC. The second parameter indi

cates the capability being queried. In the case of returning the colors available on the device,

the NUMCOLORS value returns the number of colors as long as the device supports 256

colors or fewer. Beyond that, the returned value for NUMCOLORS is -1 and the colors can be
returned using the BITSPJXEL value, which returns the number of bits used to represent

Chapter 2 Drawing on the Screen 41

each pixel. This value can be converted to the number of colors by raising 2 to the power of

the BITSPIXEL returned value, as in the following code sample:

nNumColors = GetDeviceCaps (hdc, NUMCOLORS);
if (nNumColors == -1)

nNumColors = 1 << GetDeviceCaps (hdc, BITSPIXEL);

Text Alignment

When displaying text with ExtTextOut, the system uses the text alignment of the DC to deter
mine where to draw the text. The text can be aligned both horizontally and vertically, using
this function:

UINT WINAPI SetTextAlign (HOC hdc, INT fmode);

The alignment flags passed to {mode are as follows:

• TA_LEFT The left edge of the text is aligned with the reference point.

• TA_RIGHT The right edge of the text is aligned with the reference point.

• TA_ TOP The top edge of the text is aligned with the reference point.

• TA_ CENTER The text is centered horizontally with the reference point.

• TA_BOTTOM The bottom edge of the text is aligned with the reference point.

• TA_BASELINE The baseline of the text is aligned with the reference point.

• TA_NOUPDATECP The current point of the DC is not updated after the ExtTextOut call.

• TA_UPDATECP The current point of the DC is updated after the ExtTextOut call.

The reference point in the description refers to the x and y coordinates passed to the
ExtTextOut function. For each call to SetTextA/ign, a flag for vertical alignment and a flag for
horizontal alignment can be combined.

Because it might be difficult to visualize what each of these flags does, Figure 2-1 shows the
results of each flag. In the figure, the Xis the reference point.

"rA_LEFT

TA_RIGHf

"rA_TOP

TA_CtNTER

,[A_BASELINE

,[A_ BOTTOM

FIGURE 2-1 The relationship between the current drawing point and the text alignment flags

42 Part I Windows Programming Basics

Drawing Mode

Another attribute that affects text output is the background mode. When letters are drawn

on the device context, the system draws the letters themselves in the foreground color.

The space between the letters is another matter. If the background mode is set to opaque,

the space is drawn with the current background color. But if the background mode is set to

transparent, the space between the letters is left in whatever state it was in before the text

was drawn. While this might not seem like a big difference, imagine a window background

filled with a drawing or graph. If text is written over the top of the graph and the background

mode is set to opaque, the area around the text is filled, and the background color over

writes the graph. If the background mode is transparent, the text appears as if it had been

placed on the graph, and the graph shows through between the letters of the text.

The TextDemo Example Program

The TextDemo program, shown in Listing 2-1, demonstrates the relationships among the text

color, the background color, and the background mode.

LISTING 2-1

TextDemo.h

II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 2007 Douglas Boling

!!===;======================-==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[O]))

11--
11 Generic defines and data types
II·

· struct decodeUINT {
UINT Code;

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);
};

II Structure associates
II messages
11 with a function ..

ll------------~---
11 Function prototypes
II
HWND Initinstance (HINSTANCE, LPWSTR, int);
int Terminstance (HINSTANCE, int);

II Window procedures
LRESULT CALLBACK Main.WndProc (HWND, UINT, WPARAM, LPARAM);

Chapter 2 Drawing on the Screen 43

II Message handlers
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

TextDemo.cpp

II==
II TextDemo - Text output demo
II
II Written for the book Programming Windows CE
II Copyright (C) 2007 Douglas Boling
II==
#include <Windows.h> II For all that Windows stuff
#include "TextDemo.h" II Program-specific stuff

11--
11 Global data
II
const TCHAR szAppName[] =TEXT ("TextDemo");
HINSTANCE hinst; II Program instance handle

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {

WM_PAINT, DoPaintMain,
WM_DESTROY, DoDestroyMain,

} ;

!!===--=====--==========
II Program Entry Point
II
int.WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) {

}

MSG msg;
int re = O;
HWND hwndMain;

II Initialize this instance.
hwndMain = Initinstance (hinstance, lpCmdline, nCmdShow);
if (hwndMain == O)

return OxlO;

II Application message loop
While (GetMessage (&msg, NULL, 0, 0)) {

TranslateMessage (&msg);
DispatchMessage (&msg);

}
II Instance cleanup
return Tenninstance (hinstance, msg .wParam);

ll----------'--
11 Initinstance - Instance initialization
II

44 Part I Windows Programming Basics

HWND Initinstance (HINSTANCE hinstance, LPWST.R lpCmdLine, int nCmdShow){
WNDCLASS we;
HWND hWnd;

hinst = hinstance; II Save handle in global variable,

#if defined(WIN32-PLATFORM_PSPC) 11 defi ned(WIN32_PLATFORM_WFSP)
II If Windows Mobile, allow only one instance of the application.
hWnd = FindWindow (szAppName, NULL);
if (hWnd) {

SetForegroundWindow ((HWND)(((DWORD)hWnd) I OxOl));
return O;

}
#endif

}

II Register application main window class.
wc.swle = O; II Window swle
wc. lpfnWndProc = MainWndProc; 11 Callback function
wc.cb(lsExtra = O; II Extra c.lass data
we. cbWndExtra = 0; 11 Extra window data
wc.hinstance = hinstance; fl Owner handle
wc.hlcon = NULL, II Application icon
wc.hCursor = LoadCursor (NULL, IDCARROW);ll Default cur:mr

.wc.hbrBackground = (HBRUSH) GetStockObject (WHITE..cBRUSH);
we .1 ps;;:MenuName = NULL; I I Menu name
we. 1 pszCl assName = si!'.AppName; I I Window cl ass name

if (RegisterClass (&we) == O) return 0;

II Create main window.
hWnd.= CreateWindowEx (WS_El<_NODRAG, II Ex swle flags

szAppName,
TEXT(''TextDemo"),
II Style flags

II Window class
11 Wind0w title

ws_vrsrBLE 1 w5-CAPTION 1 ws_svSMENu,
CW_USEDEFAUlT. 11 x position
cw_USEDl:FAULT' II y positi\'.m
CW-USEDEFAULT, I I Initi a 1 width
CW_USEDEFAULT, /1 Initial height
NULL, I I Parent
NULL, j I Menu, must be null
hinst:ance, ·II Application instance
NULL); II Pointer to create

II Parameters
II Return fail· code if window not created.
if ((!hWnd) 11 (!IsWindow (hWnd))) return O;

II Standard show. and update cal 1 s
Sh!lWWindow (hWnd, nCmdShow);
UpdateWindow (hWnd);
return hWnd;

11-----------------------------~------~--------~----------------~-~-~~--
l I Terminst.ance - Program cleanup
II

Chapter 2 Drawing on the Screen 45

int Term!nstance (HINSTANCE hinstance, int nDefRC) {
return nDefRC;

}

II==
II Message handling procedures for MainWindow
II
11--
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

}

INT i;

II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = O; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[i].Code)
return (*MainMessages[i] .Fxn)(hWnd, wMsg, wParam, lParam);

}

return DefWindowProc (hWnd, wMsg, wParam, lParam);

11--~---
ll DoPaintMain - Process WM_PAINT message for window.
II
LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PAINTSTRUCT ps;
RECT rect, rectCli;
HBRUSH hbrOld;
HOC hdc;
INT i, cy;
DWORD dwColorTable[] = {OxOOOOOOOO, Ox00808080,

OxOOcccccc, OxOOffffff};
TCHAR szHello[] =TEXT ("Hello Windows CE");

GetClientRect (hWnd, &rectCli);

hdc = BeginPaint (hWnd, &ps);

II Get the height and length of the string.
DrawText (hdc, szHello, -1, &rect,

DT_CALCRECT I DT_CENTER I DT_SINGLELINE);

cy = rect.bottom - rect.top + 5;

II Draw black rectangle on right half of window.
hbrOld = (HBRUSH)SelectObject (hdc, GetStockObject (BLACK....BRUSH));
Rectangle (hdc, rectCli.left + (rectCli.right - rectCli.left) I 2,

rectCl i . top, rectCl i . right, rectCl i. bottom) ;
SelectObject (hdc, hbrOld);

rectCli.bottom = rectCli.top + cy;
SetBkMode (hdc, TRANSPARENT);

46 Part I Windows Programming Basics

}

for (i • O; i < 4; i++) {

}

SetTextColor (hdc, dwColorTable[i]);
SetBkColor (hdc, dwColorTable[3-iJ);

DrawText .(hdc, szHello, -'.l, &rectCli, DT..:.CENTER I DT..:.SINGLELINE);
rectCli.top - cy;
rectCli.bottom +• cy;

SetBkMode (hdc, OPAQUE);
for Ci • O; i < 4; i++) {

}

SetTextColor (hdc, dwColorTable[i]);
SetBkColor (hdc, dwColorTable[3-i]);

DrawText (hdc, szHello, -1, &rectCli, DT~CENTER I DT_5INGLELINE);
rectCli.top +• cy;
rectCli.bottom += cy;

EndPaint (hWnd, &ps);
return O;

11--~---.
II DQDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PostQuitMessage (0);
return O;

}

The meat of TextDemo is in the DoPaintMain function. The first call to DrawText doesn't draw
anything in the device context. Instead, the DT_CALCRECTflag instructs Windows to store
the dimensions of the rectangle for the text string in rect. This information is used to com
pute the height of the string, which is stored in cy. Next, a black rectangle is drawn on the
right side of the window. I'll talk about how a rectangle is drawn later in the chapter; it's used
in this program to produce two different backgrounds before the text is written. The func
tion then prints out the same string using different foreground and background colors and
both the transparent and opaque drawing modes. The result of this combination is shown in

Figure 2-2.

The first four lines are drawn using the transparent mode. The second four are drawn using
the opaque mode. The text color is set from black to white so that each line drawn uses a dif
ferent color, while at the same time the background color is set from white to black. In trans
parent mode, the background color is irrelevant because it isn't used; but in opaque mode,
the background color is readily apparent on each line.

Chapter 2 Drawing on the Screen 47

~St<irt llrextDemo

FIGURE 2-2 TextDemo shows how the text color, background color, and background mode relate.

Fonts

If the ability to set the foreground and background colors were all the flexibility that

Windows provided, you might as well be back in the days of MS-DOS and character

attributes. Arguably, the most dramatic change from MS-DOS is Windows's ability to change

the font used to display text. All Windows operating systems are built around the concept of

WYSIWYG-what you see is what you get-and changeable fonts are a major tool used to

achieve that goal.

Two types of fonts appear in all Windows operating systems-raster and True Type. Raster

fonts are stored as bitmaps, which are small pixel-by-pixel images, one for each character in

the font. Raster fonts are easy to store and use, but have one major problem: they don't scale

well. Just as a small picture looks grainy when greatly enlarged, raster fonts begin to look

blocky as they are scaled to larger and larger sizes.

TrueType fonts solve the scaling problem. Instead of being stored as images, each TrueType

character is stored as a description of how to draw the character. The font engine, which is

the part of Windows that draws characters on the screen, then takes the description and

draws it on the screen in any size needed. A Windows CE system can support either True Type

or raster fonts, but not both. Fortunately, the programming interface is the same for both

48 Part I Windows Programming Basics

raster and TrueType fonts, relieving Windows developers from worrying about the font tech
nology in all but the most exacting of applications.

The font functions under Windows CE closely track the same functions under other versions
of Windows. Look at the functions used in the life of a font, from creation through selection
in a DC and, finally, to deletion of the font. How to query the current font as well as enumer
ate the available fonts is also covered in the following sections.

Creating a Font

Before an application is able to use a font other than the default font, the font must be
created and then selected into the device context. Any text drawn in a DC after the new font
is selected into the DC uses the new font.

Creating a font in Windows CE can be accomplished this way:

HFONT CreateFontindirect (canst LOGFONT "lplf);

This function is passed a pointer to a LOGFONT structure that must be filled with the descrip
tion of the font you want.

typedef struct tagLOGFONT {
LONG lfHeight;
LONG lfWidth;
LONG lfEscapement;
LONG lfOrientation;
LONG lfWeight;
BYTE 1fita1 i c;
BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQuality;
BYTE lfPitchAndFamily;
TCHAR lfFaceName[LF_FACESIZE];

} LOGFONT;

The /{Height field specifies the height of the font in device units. If this field is 0, the font
manager returns the default font size for the font family requested. For most applications,
however, you want to create a font of a particular point size. The following equation can be
used to convert point size to the /{Height field:

1fHeight = -1 * (PointSize '~ GetDeviceCaps (hdc, LOGPIXELSY) I 72);

Here, GetDeviceCaps is passed a LOGP/XELSY field instructing it to return the number of logi
cal pixels per inch in the vertical direction. The 72 is the number of points (a typesetting unit
of measure) per inch.

Chapter 2 Drawing on the Screen 49

The /{Width field specifies the average character width. Because the height of a font is more

important than its width, most programs set this value to 0. This tells the font manager to

compute the proper width based on the height of the font. The !{Escapement and /{Orienta
tion fields specify the angle in tenths of degrees of the baseline of the text and the x-axis.

The /{Weight field specifies the boldness of the font from 0 through 1000, with 400 being a

normal font and 700 being bold. The next three fields specify whether the font is to be italic,

underline, or strikeout.

The lpCharSet field specifies the character set you have chosen. This field is more important
in international releases of software, where it can be used to request a specific language's

character set. The lfOutPrecision field can be used to specify how closely Windows matches
your requested font. Among a number of flags available, an OUT_ TT_ ONLY_PREC/S flag

specifies that the font created must be a True Type font. The lfC/ipPrecision field specifies how

Windows should clip characters that are partially outside the region being displayed.

The /{Quality field is set to one of the following:

• DEFAULT_QUALITY Default system quality.

• DRAFT_QUALITY Sacrifice quality for speed.

• CLEARTYPE_QUALITY Render text using ClearType technology.

• CLEARTYPE_COMPAT_QUALITY Render text using ClearType. Use the same spacing
as non-ClearType font.

ClearType is a text display technology that provides a sharper look for fonts using the ability

to address the individual red, green, and blue LEDs that make up a pixel on a color LCD

display. Depending on the system, ClearType might not be supported or it might be enabled

for all fonts in the system. For systems that support ClearType but don't enable it globally,

using the CLEARTYPE_QUALITYor CLEARTYPE_COMPAT_QUALITYflags creates a font that is

rendered using ClearType. Because ClearType doesn't improve the look of all fonts, test to see

whether applying ClearType improves the rendering of your chosen font.

The lfPitchAndFamily field specifies the family of the font you want. This field is handy when

you need a family such as Swiss, which features proportional fonts without serifs, or a family

such as Roman, which features proportional fonts with serifs, but you don't have a specific

font in mind. You can also use this field to specify simply a proportional or a monospaced
font and allow Windows to determine which font matches the other specified characteristics

passed into the LOGFONT structure. Finally, the lfFaceName field can be used to specify the

typeface name of a specific font.

When CreateFontlndirect is called with a filled LOGFONT structure, Windows creates a logical

font that best matches the characteristics provided. To use the font, however, the final step of

selecting the font into a device context must be made.

50 Part I Windows Programming Basics

Selecting a Font into a Device Context
You select a font into a DC by using the following function:

HGDIOBJ SelectObject (HDC hdc, HGDIOBJ hgdiobj);

This function is used for more than just setting the default font; you use this function to se

lect other GDI objects, as you soon see. The function returns the previously selected object

(in your case, the previously selected font), which should be saved so that it can be selected

back into the DC when you finish with the new font. The line of code looks like the following:

hOldFont = (HFONT)SelectObject (hdc, hFont);

When the logical font is selected, the system determines the closest match to the logical font

from the fonts available in the system. For devices with bitmap fonts, this match could be a

fair amount off from the specified parameters. Because of this, never assume that just be

cause you request a particular font, the font returned exactly matches the one you request.

For example, the height of the font you asked for might not be the height of the font that's

selected into the device context.

Querying a Font's Characteristics
To determine the characteristics of the font that is selected into a device context, a call to

BOOL GetTextMetrics (HDC hdc, LPTEXTMETRIC lptm);

returns the characteristics of that font. A TEXTMETRIC structure is returned with the informa

tion and is defined as

typedef struct tagTEXTMETRIC {
LONG tmHeight;
LONG tmAscent;
LONG tmDescent;
LONG tminternalLeading;
LONG tmExternalLeading;
LONG tmAveCharWidth;
LONG tmMaxCharWidth;
LONG tmWeight;
LONG tmOverhang;
LONG tmDigitizedAspectX;
LONG tmDigitizedAspectY;
char tmFirstChar;
char tmLastChar;
char tmDefaultChar;
char tmBreakChar;
BYTE tmitalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmPitchAndFamily;
BYTE tmCharSet;

} TEXTMETRIC;

Chapter 2 Drawing on the Screen 51

The TEXTMETRIC structure contains a number of the fields you saw in the LOGFONT struc

ture, but this time the values listed in TEXTMETRIC are the values of the font selected into the
device context. Figure 2-3 shows the relationship of some of the fields to actual characters.

Aside from determining whether you really got the font you wanted, the GetTextmetrics call
has another valuable purpose-determining the height of the font. Recall that in TextDemo,
the height of the line was computed using a call to DrawText. Although that method is con
venient, it tends to be slow. You can use the TEXTMETRIC data to compute this height in a

much more straightforward manner. By adding the tmHeight field, which is the height of the
characters, to the tmExterna/Leading field, which is the distance between the bottom pixel of

one row and the top pixel of the next row of characters, you can determine the vertical dis
tance between the baselines of two lines of text.

tmHeight

tmExterna/Leading
tmlnterna/Leading

T-
~~~~-~~~~-..--~ 

tmAscent 

tmDescent 

FIGURE 2-3 Fields from the TEXTMETRIC structure and how they relate to a font 

Although GetTextMetrics is great for determining the height of a font, it provides only the aver
age and maximum widths of a font. If more detail is needed for a TrueType font, the function 

BOOL GetCharABCWidths (HOC hdc, UINT uFirstChar, UINT ulastChar, 
LPABC lpabc); 

can be used. GetCharABCWidths returns the "ABC" widths of a series of characters delineated 
by the uFirstChar and ulastChar parameters. The font examined is the font currently selected 

in the device context specified by the hdc parameter. The ABC structure is defined as follows: 

typedef struct __ABC { 
int abcA; 
UINT abcB; 
int abcC; 

} ABC; 



52 Part I Windows Programming Basics 

The abcA field is the distance to add to the current position before drawing the character, or 

glyph. The abcB field is the width of the glyph, while the abcC field is the distance to add to 

the current position after drawing the glyph. Both abcA and abcC can be negative to indicate 

underhangs and overhangs. 

To examine the widths of bitmap fonts, GetCharWidth32 can be used. It returns an array of 

character widths for each character in a range of characters. 

Destroying a Font 

Like other GDI resources, fonts must be destroyed after the program finishes using them. 

Failure to delete fonts before terminating a program causes what's known as a resource 

leak-an orphaned graphic resource that takes up valuable memory but is no longer owned 
by an application. 

To destroy a font, first deselect it from any device contexts it has been selected into. Do 

this by calling SelectObject. The font passed is the font that was returned by the original 

SelectObject call made to select the font. After the font has been deselected, a call to 

BOOL DeleteObject (HGDIOBJ hObject); 

(with hObject containing the font handle) deletes the font from the system. 

A word of warning: attempting to delete a font, or any GDI object, while it is still selected in 

a device context will fail. Because most code doesn't check the return code of DeleteObject, 

this creates a classic "leak" situation where an application thinks it has deallocated a resource 

while in fact it still exists. Leaks will quickly bring a Windows CE system, with its limited mem

ory, to its knees. Take care that all GDI objects are truly deleted as intended. 

As you can see from this process, font management is no small matter in Windows. The many 

parameters of the LOGFONT structure might look daunting, but they give an application tre

mendous power to specify a font exactly. 

One problem when dealing with fonts is determining just what types of fonts are available 

on a specific device. Windows CE devices come with a set of standard fonts, but a specific 

system might have been loaded with additional fonts by either the manufacturer or the user. 

Windows CE uses the same font file format as the desktop verisons of Windows, so even 

after a device is shipped it is possible for developers or even users to add additional fonts. 

Fortunately, Windows provides a method for enumerating all the available fonts in a system. 

Enumerating Fonts 

To determine what fonts are available on a system, Windows provides this function: 

int EnumFontFamilies (HOC hdc, LPCTSTR lpszFamily, 
FONTENUMPROC lpEnumFontfamProc, LPARAM lParam); 



Chapter 2 Drawing on the Screen 53 

This function lets you list all the font families as well as each font within a family. The first 
parameter is the obligatory handle to the device context. The second parameter is a string to 
the name of the family to enumerate. If this parameter is null, the function enumerates each 

of the available families. 

The third parameter is something different-a pointer to a function provided by the applica
tion. The function is a callback function that Windows calls once for each font being enu
merated. The final parameter, f Param, is a generic parameter that can be used by the 
application. This value is passed unmodified to the application's callback procedure. 

While the name of the callback function can be anything, the prototype of the callback must 

match the declaration: 

int CALLBACK EnumFontFamProc (LOGFONT *lpelf, TEXTMETRIC *lpntm, 
DWORD FontType, LPARAM lParam); 

The first parameter passed back to the callback function is a pointer to a LOGFONT structure 

describing the font being enumerated. The second parameter, a pointer to a textmetric struc
ture, further describes the font. The font type parameter indicates whether the font is a raster 
or True Type font. 

The Fontlist Example Program 

The Fontlist program, shown in Listing 2-2, uses the EnumFontFamilies function in two ways 

to enumerate all fonts in the system. 

LISTING 2-2 The FontList program enumerates all fonts in the system 

Fontlist.h 

II================================================================ 
11 Header file 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II====================================================================== 
II Returns number of elements 
#define dim(x) (sizeof(x) I sizeof(x[O])) 
11----------------------------------------------------------------------
11 Generic defines and data types 
II 
struct decodeUINT { 

UINT Code; 

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM); 
} ; 

II Structure associates 
II messages 
II with a function. 

11----------------------------------------------------------------------



54 Part I Windows Programming Basics 

II Progra111-specifi.cstructures 

IL 
#define FAMILYMAX 24 
typedef struct { · 

· fot nNumFonts; · . . 
TCHAR szFt>ntFamily[LF..::FACESIZE]; 

} FONTFAMSTRl)CT; 
typedef. FONTFAMSTRUCT *PFONTFAMSTRUCT; 

typedef struct { 
INT ycurrent; 

. HOC hdc; 
} PAINTFONTlNFO: 
typedef PAINTFONTINFO *PPAINTFONTINFO; 

11,. "'-".:..-:.. ,..--::.. '- -.--- --,.. :.._ -,.. "''"'- --,..-..,---------"""" ---_ .... _ --.-;..-:---,.. --- ,.. --.,. ------
II function prototypes 

II .. 
. WNd .. tnit:tnstance (HINSTANCE, LPWSTR, int); 

· . int fermI11stance CHINSTANCE; int); 

II Wind<>W procedures· 
LRESUL T CALLBACK MainWndProc (HWND, UINT oWPARAM; LPARAMJ; 

//.Message handlers 
LRESULT DoCreateMain (HWND, UINT. WPARAM, LPARAM); 
LRESOLT OoPaintMain (HWND, .UINT, WPARAM, LPARAM); 
LRESULT OooestroyMain (HWND; UINT, WPARAM, LPARAM); 

Fontt.ist.cpp 

Ilic:=~~::;=~~~~=====~==?==========="'!""-. ·=#~~;;==-_;;::;;:~::;::;;::--==~=:~:;;i=, 

. j/ FontLfst " Lis.ts the available fonts in the. system 
'V . 

/./ Written for the book P~ogramming Windows CE· 
//. Copyright (CJ 2007 Douglas Boling 

i #.include <windows.h> 
.. #include "FontList.h';. 

II For all that Windows stuff 
II Program.,,specifi.cstuff 

··jj ~ "'"'--;,. ,---- - - _ _,,;..-:- --:-- - -- ;.._ ..__ - - --- ;_ .. - ~;.. .,.- --,- .... ----- ~ - - ------- -·-- - -·--- - -- -· 
// Glo~al ·. data 

//. .. ·. 
c0nst TCtlAR s~APPNam!! [] = TEXT ("FontL i i;t"); 

· ttINSTANCE h:rnst; /I Program instance handle 

.. FONTFAMSTROCT ffs[FAMilYMAx]; 
·· lNT sFami lyent • o: 

tab 1 e.. for Mai nWi ndowProc 



Chapter 2 Drawing on the Screen 55 

canst struct decodeUINT MainMessages[) { 
WM_CREATE, DoCreateMain, 
WM_PAINT, DoPaintMain, 
WM_DESTROY, DoDestroyMain, 

}; 

II====================================================================== 
II Program entry point 
II 
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance, 

LPWSTR lpCmdLine, int nCmdShow) { 

} 

MSG msg; 
int re = 0; 
HWND hwndMain; 

II Initialize this instance. 
hwndMain = Initinstance (hinstance, lpCmdLine, nCmdShow); 
if (hwndMain == 0) 

return OxlD; 
II Application message loop 
While (GetMessage (&msg, NULL, 0, 0)) { 

TranslateMessage {&msg); 
DispatchMessage (&msg)~ 

} 
II Instance cleanup 
return Terminstance (hlnstance, msg.wParam); 

11----------------------------------------------------------------------
11 Initinstance - Instance initialization 
II 
HWND Initlnstance (HINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow) { 

WNDCLASS we; 
HWND hWhd; 

II Save program instance handle in global variable. 
hinst = hinstance; 

#if defined(WIN32_PLATFORM..PSPC) I I defined(WIN32_PLATFORM_WFSP) 
II If Windows Mobile, allow only one instance of the application. 
hWnd = FindWindow (szAppName, NULL); 
if (hWnd) { 

} 
#endif 

SetForegroundWindow ((HWND)(((DWORD)hWnd) I OxOl)); 
return O; 

II Register application main window class. 
we.style= O; II Window style 
wc.lpfnWndProc = MainWndProc; II Callback function 
wc.cbClsExtra = O; II Extra class data 
we. cbW.ndExtra = 0; 11 Extra window data 
wc.hinstance = hinstance; II Owner handle 
wc.hicon =NULL, II Application icon 
wc.hCursor = LoadCursor (NULL, IDc:...ARROW);ll Default cursor 
wc.hbrBackground = (HBRUSH) GetStockObject(WHITE_BRUSH); 



56 Part I Windows Programming Basics 

} 

wc.lpszMenuName = NULL; 
wc.lpszClassName = szAppName; 

II Menu naine 
II Window. class name 

if (RegisterC1ass (&we) == 0) return O; 

// Create main window. 
hWnd = CreateWi ridowEx CWS_EX-NOORAG, I I Ex style f1 ags 

szAppName, ' / / Window cl ass 
TExT("Font Listing"),// Window title 
If Style flags 
WS:...VISIBLE I WS:...CAPTION I WS_SYsMENU, 
CW_USEDEFAULT, // x position 
CW_IJSEDEFAULT, // y position 
CW_USEDEFAULT, // Initial width 
CW_USEDEFAULT, // Initial height 
NULL, I I Parent 
NULL, /I Menu, must be null 
hinstance, // Application instance 
NULL); /I Pointer to create 

II parameters 
II Return fail code if window not created. 
if (!IsWindow (hWnd)) rel:Urt:I O; 

I I Standard show and update ca 11 s 
ShoWWindow (hWnd, nCmdShow); 
UpdateWindow (hWnd); 
return hWnd; 

//-'-----------------------------------------------------------------~-..,:-
// Terminstance - Program cleanup 
II . . 

int'Terminstance (HINSTANCE hiristance, int nDefRC) { 
return nDefRC; 

} 
//-=~-========~~e~~~===~==~~-~~~==~====~===~~~~======~===~~~======== 

II Fo.nt callback. functions 

// FontFamilyCallback ,_ Callback function that enumerates th.e font 
// families 
II . 
int CALLBACK FontFamilyCa1lback (CONST LO(;FONT *lplf, 

CQNST TEXTMETRIC *lpntm, 

} 

DWORD nFontType, LPARAM lParam) { 
intrc=l; 

II Stop enumeration if array filled. 
if (sFamilyCnt >"" FAMILYMAX) 

return o; 
II Copy face name of font. 
lstrcpy (ffs[sFamilyCnt++].szFontFamily, lplf->lfFaceName); 
return. re; 

II- - - - -:· - ..:. _ ... -: :--~- ~ ... ----:-.- --- -:-.- .,., __ .... - - -- - - - - ....... - - --- - - -.-- ... -.---~ - - - --- - - ---



Chapter 2 Drawing on the Screen 57 

II EnumSingleFontFamily - Callback function that enumerates fonts 
II 
int CALLBACK EnumSingleFontFamily (CONST LOGFONT *lplf, 

CONST TEXTMETRIC *lpntm, 
DWORD nFontType, LPARAM lParam) { 

PFONTFAMSTRUCT pffs; 

pffs = (PFONTFAMSTRUCT) lParam; 
pffs->nNumFonts++; II Increment count of fonts in family 
return 1; 

11----------------------------------------------------------------
11 PaintSingleFontFamily - Callback function that draws a font 
II 
int CALLBACK PaintSingleFontFamily (CONST LOGFONT *lplf, 

CONST TEXTMETRIC *lpntm, 

} 

PPAINTFONTINFO ppfi; 
TCHAR sz0ut[256]; 
INT nFontHeight, nPointSize; 
HFONT hFont, hOldFont; 

DWORD nFontType, LPARAM lParam) { 

ppfi = (PPAINTFONTINFO) 1Param; II Translate 1Param into struct 
11 pointer. 

II Create the font from the LOGFONT structure passed. 
hFont = CreateFontindirect (lplf); 

II Select the font into the device context. 
hOldFont = (HFONT)SelectObject (ppfi->hdc, hFont); 

II Compute font size. 
nPointSize = (lplf->lfHeight * 72) I 

GetDeviceCaps(ppfi->hdc,LOGPIXELSY); 

II Format string and paint on display. 
wsprintf (szOut, TEXT ("%s Point:%d"), lplf->lfFaceName, 

nPointSize); 
ExtTextOut (ppfi->hdc, 25, ppfi->yCurrent, 0, NULL, 

stout, lstrlen (stout), NULL); 

II Compute the height of the default font. 
nFontHeight = lpntm->tmHeight + lpntm->tmExternalLeading; 
II Update new draw point. 
ppfi->yCurrent += nFontHeight; 
II Deselect font and delete. 
SelectObject (ppfi->hdc, hOldFont); 
DeleteObject (hFont); 
return 1; 

II================================================================ 
II Message handling procedures for MainWindow 
II 



58 Part I Windows Programming Basics 

l!------~---------------------------~-----------------------------
11 MainWndProc - Callback function for application window 
II 
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

INT i; 

II 
II Search message list to see if we need to handle this 
II message. If in list, call procedure. 
II 
for (i = O; i < dim(MainMessages); i++) { 

if (wMsg == MainMessages[i].Code) 
return (*MainMessages[i].Fxn)(hWnd, wMsg., wParam, lParam); 

} 

return befWindowProc ChWnd, wMsg, wPararn, lParam); 

l!------------------------~---------------------------------------------
11 DoCreateMain - Process WM_CREATE message for window. 
II 
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM 1Param) { 

} 

HDC hdc; 
INT i, re; 

//Enumerate the available fonts. 
hdc = GetDC (hWnd); 
re = EnumFontFamil i es { (HDC) hdc, (LPTSTR) NULL, 

FontFamilyCallback, O); 

for (i = O; i < sFamilyCnt; i++) { 
ffs [i ]. nNumFonts = 0; 

} 

re= EnumFontFamilies ((HDC)hdc, ffs[i] .szFontFamily, 
EnumSingleFontFamily, 
(LPARAM)(PFONTFAMSTRUCT)&ffs[i]); 

R.eleasebC (hWnd, hdc); 
return O; 

!!---------------------------------------------------------------
!/ DoPaintMain - Process WM_PAINT message for window. 
II 
LRESULT .DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
PAINTSTRUCT ps; 
RECT rect; 
HOC hdc; 
TEXTMETRIC tm; 
INT nFontHeight, i; 
TCHAR. s.z0ut[2S.6]; 
PAINTFONTINFO pfi; 

GetClientRect (hWnd, &rect); 



} 

hdc = BeginPaint (hWnd, &ps); 

II Get the height of the default font. 
GetTextMetrics (hdc, &tm); 

Chapter 2 Drawing on the Screen 59 

nFontHeight = tm.tmHeight + tm.tmExternalLeading; 

II Initialize struct that is passed to enumerate function. 
pfi .yCurrent = rect.top; 
pfi.hdc = hdc; 
for Ci = O; i < sFamilyCnt; i++) 

} 

II Format output string, and paint font family name. 
wspri ntf (szOut, TEXT(" Family: %s "), 

ffs[i].szFontFamily); 
ExtTextOut (hdc, 5, pfi .yCurrent, 0, NULL, 

szOut, lstrlen (szOut), NULL); 
pfi .yCurrent += nFontHeight; 

II Enumerate each family to draw a sample of that font. 
EnumFontFamilies ((HDC)hdc, ffs[i].szFontFamily, 

PaintSingleFontFamily, 
(LPARAM)&pfi); 

EndPaint (hWnd, &ps); 
return O; 

11----------------------------------------------------------------
11 DoDestroyMain - Process WM_DESTROY message for window. 
II 
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
PostQuitMessage (0); 
return O; 

Enumerating the different fonts begins when the application is processing the WM_ CREATE 

message in DoCreateMain. Here EnumFontFamilies is called with the FontFamily field set to 

NULL, so that each family is enumerated. The callback function is FontFamilyCal/back, where 

the name of the font family is copied into an array of strings. 

The remainder of the work is performed during the processing of the WM_ PAINT message. 

The DoPaintMain function begins with the standard litany of getting the size of the client 

area and calling BeginPaint, which returns the handle to the device context of the window. 

GetTextMetrics is then called to compute the row height of the default font. A loop is then 

entered in which EnumerateFontFamilies is called for each family name that had been stored 
during the enumeration process in DoCreateMain. The callback process for this callback se

quence is somewhat more complex than the code seen so far. 



60 Part I Windows Programming Basics 

The PaintSingleFontFamily callback procedure, used in the enumeration of the individual 

fonts, employs the /Param parameter to retrieve a pointer to a PAINTFONTINFO structure 

defined in Fontlist.h. This structure contains the current vertical drawing position as well as 

the handle to the device context. By using the /Param pointer, Fontlist avoids having to de

clare global variables to communicate with the callback procedure. 

The callback procedure next creates the font using the pointer to LOGFONT that was passed 

to the callback procedure. The new font is then selected into the device context, while the 

handle to the previously selected font is retained in hO/dFont. The point size of the enu

merated font is computed using the inverse of the equation mentioned earlier in the chap

ter. The callback procedure then produces a line of text showing the name of the font family 

along with the point size of this particular font. Instead of using Draw Text, the callback uses 

ExtTextOut to draw the string. 

After displaying the text, the function computes the height of the line of text just drawn 

using the combination of tmHeight and tmExterna/Leading that was provided in the passed 

TEXTMETRIC structure. The new font is then deselected using a second call to Se/ectObject, 

this time passing the handle to the font that was the original selected font. The new font is 

then deleted using DeleteObject. Finally, the callback function returns a nonzero value to in

dicate to Windows that it is okay to make another call to the enumerate callback. 

Figure 2-4 shows the Font Listing window. Notice that the font names are displayed in that 
font and that each font has a specific set of available sizes. 

Family: Wingdings 

Family: Tahoma 

Tahoma Point:29 
Family: Courier New 

Courier New Point:27 
Family: Arial 

FIGURE 2-4 The Font Listing window shows some of the available fonts for the ProgWinCE Emulator. 

Unfinished Business 
If you look closely at Figure 2-4, you notice a problem with the display. The list of fonts just 

runs off the bottom edge of the Font Listing window. The solution for this problem is to add 
a scroll bar to the window. I'll provide a complete explanation of window controls, including 

scroll bars, in Chapter 4, "Windows, Controls, and Menus." 



Chapter 2 Drawing on the Screen 61 

Bitmaps 
Bitmaps are graphical objects that can be used to create, draw, manipulate, and retrieve 

images in a device context. Bitmaps are everywhere within Windows, from the little Windows 

logo on the Start button to the Close button on the title bar. Think of a bitmap as a picture 

composed of an array of pixels that can be painted onto the screen. Like any picture, a bit

map has height and width. It also has a method for determining what color or colors it uses. 

Finally, a bitmap has an array of bits that describes each pixel in the bitmap. 

Historically, bitmaps under Windows have been divided into two types: device-dependent 

bitmaps (DDBs) and device-independent bitmaps (DIBs). DDBs are bitmaps that are tied to 

the characteristics of a specific DC and can't easily be rendered on DCs with different char

acteristics. DIBs, on the other hand, are independent of any device, and therefore must carry 

around enough information so that they can be rendered accurately on any device. 

Windows CE contains many of the bitmap functions available in other versions of Windows. 

The differences include a four-color bitmap format not supported anywhere but on Windows 
CE and a different method for manipulating DIBs. 

Device-Dependent Bitmaps 

A device-dependent bitmap can be created with this function: 

HBITMAP CreateBitmap (int nWidth, int nHeight, UINT cPlanes, 
UINT cBitsPerPel, CONST VOID *lpvBits); 

The nWidth and nHeight parameters indicate the dimensions of the bitmap. The cP/anes pa

rameter is a historical artifact from the days when display hardware implemented each color 

within a pixel in a different hardware plane. For Windows CE, this parameter must be set to 

1. The cBitspPerPel parameter indicates the number of bits used to describe each pixel. The 

number of colors is 2 to the power of the cBitspPerPel parameter. Under Windows CE, the 

allowable values are 1, 2, 4, 8, 16, 24, and 32. As I said, the four-color bitmap is unique to 

Windows CE and isn't supported under other Windows platforms. 

The final parameter is a pointer to the bits of the bitmap. Under Windows CE, the bits are 
always arranged in a packed pixel format; that is, each pixel is stored as a series of bits within 

a byte, with the next pixel starting immediately after the first. The first pixel in the array of 

bits is the pixel located in the upper left corner of the bitmap. The bits continue across the 

top row of the bitmap, then across the second row, and so on. Each row of the bitmap must 

be double-word (4-byte) aligned. If any pad bytes are required at the end of a row to align 

the start of the next row, they should be set to 0. Figure 2-5 illustrates this scheme, showing a 

126-by-64-pixel bitmap with 8 bits per pixel. 



62 Part I Windows Programming Basics 

The function 

HBITMAP CreateCompatibleBitmap (HDC hdc, int nWidth, int nHeight); 

creates a bitmap whose format is compatible with the device context passed to the function. 
So if the device context is a four-color DC, the resulting bitmap is a four-color bitmap as well. 

This function comes in handy when you manipulate images on the screen because it makes it 

easy to produce a blank bitmap that's directly color compatible with the screen. 

Byte 
Offset Row 0 125 

,--~~...-~~.....--~~-.-~~~ 

0 0 
128 1 
256 2 

7936 63 

FIGURE 2-5 Layout of bytes within a bitmap 

Device-Independent Bitmaps 

The fundamental difference between DIBs and their device-dependent cousins is that the 

image stored in a DIB comes with its own color information. DIB files, with the classic .bmp 

extension, contain color and layout information that can be directly matched with the infor

mation needed to create a DIB in Windows. 

In the early days of Windows, it was a rite of passage for a programmer to write a routine 

that manually read a DIB file and converted the data to a bitmap. These days, the same ardu
ous task can be accomplished with the following function, unique to Windows CE: 

HBITMAP SHLoadDIBitmap (LPCTSTR szFileName); 

It loads a bitmap directly from a bitmap file and provides a handle to the bitmap. On 

the desktop, the same process can be accomplished with Loadlmage using the LR_ 
LOADFROMFILE flag, but this flag isn't supported under the Windows CE implementation of 

Load Image. 



Chapter 2 Drawing on the Screen 63 

DIB Sections 
While Windows CE makes it easy to load a bitmap file, sometimes you must read what is on 

the screen, manipulate it, and redraw the image back to the screen. This is another case in 

which DIBs are better than DDBs. While the bits of a device-dependent bitmap are obtain

able, the format of the buffer is directly dependent on the screen format. By using a DIB, or 

more precisely, something called a DIB section, your program can read the bitmap into a 

buffer that has a predefined format without worrying about the format of the display device. 

While Windows has a number of DIB creation functions that have been added over the 

years, Windows CE carries over only a handful of DIB functions from the desktop versions of 

Windows. Here is the first of these functions: 

HBITMAP CreateDIBSection (HDC hdc, const BITMAPINFO *pbmi, 
UINT iUsage, void *ppvBits, 
HANDLE hSection, DWORD dwOffset); 

DIB sections were invented to improve the performance of applications on Windows NT that 

directly manipulated bitmaps. In short, a DIB section allows a programmer to select a DIB in 

a device context while still maintaining direct access to the bits that compose the bitmap. To 

achieve this, a DIB section associates a memory DC with a buffer that also contains the bits of 

that DC. Because the image is mapped to a DC, other graphics calls can be made to modify 

the image. At the same time, the raw bits of the DC, in DIB format, are available for direct 

manipulation. While the improved performance is all well and good on Windows NT, the rel

evance to the Windows CE programmer is the ease with which an application can work with 

bitmaps and manipulate their contents. 

This call's parameters lead with the pointer to a BITMAPINFO structure. The structure de

scribes the layout and color composition of a device-independent bitmap and is a combina

tion of a BITMAPINFOHEADER structure and, if necessary, an array of RGBQUAD values that 

represent the palette of colors used by the bitmap. 

The BITMAPINFOHEADER structure is defined as the following: 

typedef struct tagBITMAPINFOHEADER{ 
DWORD biSize; 
LONG biWidth; 
LONG biHeight; 
WORD biPlanes; 
WORD biBitCount; 
DWORD biCompression; 
DWORD biSizeimage; 
LONG biXPelsPerMeter; 
LONG biYPelsPerMeter; 
DWORD biClrUsed; 
DWORD biClrimportant; 

} BITMAPINFOHEADER; 



64 Part I Windows Programming Basics 

As you can see, this structure contains much more information than just the parameters 

passed to Create8itmap. The first field is the size of the structure and must be filled in by the 

calling program to differentiate this structure from the similar 8/TMAPCOREINFOHEADER 

structure that's a holdover from the old OS/2 presentation manager. The biWidth, bi-

Height, biP/anes, and bi8itCount fields are similar to their like-named parameters to the 

Create8itmap call-with one exception. The sign of the biHeight field specifies the organiza

tion of the bit array. If biHeight is negative, the bit array is organized in a top-down format, 

as is Create8itmap. If biHeight is positive, the array is organized in a bottom-up format, 
in which the bottom row of the bitmap is defined by the first bits in the array. As with the 

Create8itmap call, the biP/anes field must be set to 1. 

The biCompression field specifies the compression method used in the bit array. Under 

Windows CE, the allowable flags for this field are 8/_RG8, indicating that the buffer isn't com

pressed, and 81_8/TFIELDS, indicating that the pixel format is specified in the first three 

entries in the color table. The biSizelmage parameter is used to indicate the size of the bit 

array; when used with 8/_RG8, however, the biSizelmage field can be set to 0, which means 

that the array size is computed using the dimensions and bits per pixel information provided 

in the 8/TMAPINFOHEADER structure. 

The biXPelsPerMeter and biYPelsPerMeter fields provide information to accurately scale the 

image. For CreateD/8Section, however, these parameters can be set to 0. The biC/rUsed pa

rameter specifies the number of colors in the palette that are actually used. In a 256-color 

image, the palette will have 256 entries, but the bitmap itself might need only 100 or so 

distinct colors. This field helps the palette manager, the part of Windows that manages color 

matching, to match the colors in the system palette with the colors required by the bitmap. 

The biC/rfmportant field further defines the colors that are really required as opposed to 

those that are used. For most color bitmaps, these two fields are set to 0, indicating that all 

colors are used and that all colors are important. 

As I mentioned earlier, an array of RG8QUAD structures immediately follows the 

8/TMAPINFOHEADER structure if the image is formatted with 8 bits per pixel or less. The 

RG8QUAD structure is defined as follows: 

typedef struct tagRGBQUAD { /* rgbq */ 
BYTE rgbBlue; 
BYTE rgbGreen; 
BYTE rgbRed; 
BYTE rgbReserved; 

} RGBQUAD; 

This structure allows for 256 shades of red, green, and blue. Although almost any shade can 
be created using this structure, the color that's actually rendered on the device is, of course, 

limited by what the device can display. 

The array of RG8QUAD structures, taken as a whole, describe the palette of the DIB. The 

palette is the list of colors in the bitmap. If a bitmap has a palette, each entry in the bitmap 



Chapter 2 Drawing on the Screen 65 

array contains not colors, but an index into the palette that contains the color for that pixel. 
While redundant on a monochrome bitmap, the palette is quite important when rendering 

color bitmaps on color devices. For example, a 256-color bitmap has one byte for each pixel, 
but that byte points to a 24-bit value that represents equal parts red, green, and blue. So 
while a 256-color bitmap can contain only 256 distinct colors, each of those colors can be 

one of 16 million colors rendered using the 24-bit palette entry. For convenience in a 32-bit 
world, each palette entry, while containing only 24 bits of color information, is padded out to 
a 32-bit-wide entry-hence the name of the data type: RGBQUAD. 

Of the remaining four CreateDIBSection parameters, only two are used under Windows CE. 
The iUsage parameter indicates how the colors in the palette are represented. If the param
eter is DIB_RGB_COLORS, the bits in the bitmap contain the full RGB color information for 

each pixel. If the parameter is DIB_PAL_COLORS, the bitmap pixels contain indexes into the 
palette currently selected in the DC. The ppvBits parameter is a pointer to a variable that 

eceives the pointer to the bitmap bits that compose the bitmap image. The final two param
eters, hSection and dwOffset, aren't supported under Windows CE and must be set to 0. Other 
versions of Windows allow the bitmap bits to be specified by a memory-mapped file. While 
Windows CE supports memory-mapped files, they aren't supported by CreateDIBSection. 

Two functions exist to manage the palette of the DIB, as follows: 

UINT GetDIBColorTable (HDC hdc, UINT uStartindex, 
UINT cEntries, RGBQUAD *pColors); 

and 

UINT SetDIBColorTable (HDC hdc, UINT uStartindex, 
UINT cEntries, RGBQUAD *pColors); 

For both of these functions, uStartlndex indicates the first entry into the palette array to set 
or query. The cEntries parameter indicates how many palette entries to change. The pointer 
to the RGBQUAD array is the array of colors either being set, for SetDIBColorTab/e, or 
queried, for GetDIBCo/orTab/e. 

Drawing Bitmaps 

Creating and loading bitmaps is all well and good, but there's not much point to it unless the 
bitmaps you create can be rendered on the screen. Drawing a bitmap isn't as straightforward 

as you might think. Before a bitmap can be drawn in a screen DC, it must be selected into a 
DC and then copied over to the screen device context. While this process sounds convoluted, 
there is rhyme to this reason. 

The process of selecting a bitmap into a device context is similar to selecting a logical font 
into a device context; it converts the ideal to the actual. Just as Windows finds the best pos

sible match to a requested font, the bitmap selection process must match the available colors 



66 Part I Windows Programming Basics 

of the device to the colors requested by a bitmap. Only after this is done can the bitmap be 

rendered on the screen. To help with this intermediate step, Windows provides a shadow 

type of DC, a memory device context. 

To create a memory device context, use this function: 

HDC CreateCompatibleDC (HDC hdc); 

This function creates a memory DC that's compatible with the current screen DC. Once cre

ated, the source bitmap is selected into this memory DC using the same Se/ectObject func

tion you used to select a logical font. Finally, the bitmap is copied from the memory DC to 

the screen DC using one of the bit functions, BitB/t or StretchB/t. 

The workhorse of bitmap functions is the following: 

BOOL BitBlt (HDC hdcDest, int nXDest, int nYDest, int nWidth, 
int nHeight, HDC hdcSrc, int nXSrc, int nYSrc, 
DWORD dwRop); 

Fundamentally, the BitB/t function, pronounced "bit blit", is just a fancy memcopy function, but 

because it operates on device contexts, not memory, it's something far more special. The first 

parameter is a handle to the destination device context-the DC to which the bitmap is to be 

copied. The next four parameters specify the location and size of the destination rectangle 

where the bitmap is to end up. The next three parameters specify the handle to the source 
device context and the location within that DC of the upper left corner of the source image. 

The final parameter, dwRop, specifies how the image is to be copied from the source to the 

destination device contexts. The ROP code defines how the source bitmap and the current 

destination are combined to produce the final image. The ROP code for a simple copy of the 

source image is SRCCOPY. The ROP code for combining the source image with the current 

destination is SRCPAINT. Copying a logically inverted image, essentially a negative of the 

source image, is accomplished using SRC/NVERT. Some ROP codes also combine the cur

rently selected brush into the equation to compute the resulting image. A large number of 
ROP codes are available-too many for me to cover here. For a complete list, check out the 

Windows CE programming documentation. 

The following code fragment sums up how to paint a bitmap: 

II Create a DC that matches the device. 
hdcMem = CreateCompatibleDC (hdc); 

II Select the bitmap into the compatible device context. 
hOldSel = SelectObject (hdcMem, hBitmap); 

II Get the bitmap dimensions from the bitmap. 
GetObject (hBitmap, sizeof (BITMAP), &bmp); 

II Copy the bitmap image from the memory DC to the screen DC. 



Chapter 2 Drawing on the Screen 67 

BitBlt (hdc, rect.left, rect.top, bmp.bmWidth, bmp.bmHeight, 
hdcMem, 0, 0, SRCCOPY); 

II Restore original bitmap selection and destroy the memory DC. 
SelectObject (hdcMem, hOldSel); 
DeleteDC (hdcMem); 

The memory device context is created, and the bitmap to be painted is selected into that DC. 

Because you might not have stored the dimensions of the bitmap to be painted, the routine 

makes a call to GetObject. GetObject returns information about a graphics object-in this 
case, a bitmap. Information about fonts and other graphic objects can be queried using this 

useful function. Next, BitB/t is used to copy the bitmap into the screen DC. To clean up, the 

bitmap is deselected from the memory device context and the memory DC is deleted us-

ing DeleteDC. Don't confuse DeleteDC with ReleaseDC, which is used to free a display DC. 

DeleteDC should be paired only with CreateCompatibleDC, and Re/easeDC should be paired 

only with GetDC, GetDCEx, or GetWindowDC. 

Instead of merely copying the bitmap, stretch or shrink it using this function: 

BOOL StretchBlt (HDC hdcDest, int nXOriginDest, int nYOriginDest, 
int nWidthDest, int nHeightDest, HDC hdcSrc, 
int nXOriginSrc, int nYOriginSrc, int nWidthSrc, 
int nHeightSrc, DWORD dwRop); 

The parameters in StretchB/t are the same as those used in BitB/t, with the exception that 

now the width and height of the source image can be specified. Here again, the ROP codes 

specify how the source and destination are combined to produce the final image. Stretching 

or shrinking an image is much slower than simply drawing. Whenever possible, use Bitblt in

stead of StretchB/t. 

Windows CE also has another bitmap function. It is 

BOOL Transparentimage (HDC hdcDest, LONG DstX, LONG DstY, LONG DstCx, 
LONG DstCy, HANDLE hSrc, LONG SrcX, LONG SrcY, 
LONG SrcCx, LONG SrcCy, COLORREF TransparentColor); 

This function is similar to StretchB/t, with two very important exceptions. First, you can specify 

a color in the bitmap to be the transparent color. When the bitmap is copied to the destina

tion, the pixels in the bitmap that are the transparent color are not copied. The second dif

ference is that the hSrc parameter can be either a device context or a handle to a bitmap, 

which allows you to bypass the requirement to select the source image into a device context 

before rendering it on the screen. Transparentlmage is essentially the same function as the 

desktop's TransparentB/t function with the exception that TransparentB/t can't directly use a 
bitmap as the source. Windows CE supports TransparentB/t as well, but a quick look at the 

header files for Windows CE reveals that TransparentB/t is simply aliased to Transparentlmage 

for Windows CE. 



68 Part I Windows Programming Basics 

As in other versions of Windows, Windows CE supports two other blit functions: PatBlt and 

MaskBlt. The PatBlt function combines the currently selected brush with the current image in 

the destination DC to produce the resulting image. I cover brushes later in this chapter. The 

MaskBlt function is similar to BitBlt but encompasses a masking image that provides the abil

ity to draw only a portion of the source image onto the destination DC. 

Alpha Blending 
Modern GUI operating systems have the ability to draw a bitmap so that it appears semi

transparent. In fact, both Apple OS X and Windows Vista use this effect to provide a cool 

look and feel to their shells. Windows CE also supports this translucent drawing known as 

AlphaBlending. The term AlphaBlend comes from the concept of an alpha channel. The alpha 
channel is the fourth property in the pixel of a bitmap that instead of specifying color, speci

fies the transparency level of that pixel. 

The Alpha Blend function combines many of the abilities ofthe other GDI drawing functions 

such as drawing and stretching, with the added ability to draw bitmaps with a semitranspar

ent look. The prototype for the function is 

BOOL AlphaBlend (HDC hdcDest, int nXOriginDest, int nYOriginDest, 

int nWidthDest, int nHeightDest, 

HDC hdcSrc, int nXOriginSrc, int nYOriginSrc, 

int nWidthSrc, int nHeightSrc, 

BLENDFUNCTION blendFunction); 

The first parameter is the handle of the destination DC followed by the location and size of 

the destination rectangle. The next five parameters specify the source DC and rectangle for 

the bitmap. It's the final parameter, blendFunction, that is the difference in AlphaBlend. 

The BLENDFUNCT/ON structure is defined as 

typedef struct _BLENDFUNCTION { 

BYTE BlendOp; 

BYTE BlendFlags; 

BYTE SourceConstantAlpha; 

BYTE AlphaFormat; 

}BLENDFUNCTION, *PBLENDFUNCTION; 



Chapter 2 Drawing on the Screen 69 

The first field, BlendOp, must be set to the only flag currently supported, AC_SRC_OVER. The 

BlendF/ags field must be set to 0. The SourceConstantA/pha field is set to a transparency level 

for the entire source bitmap as it is applied to the destination DC. The resultant formula for a 

pixel becomes 

destPixel = (srcPixel * SCA/255) + (destPixel * (1 - SCA/255)) 

where SCA is the value in the SourceConstantAlpha field. 

In addition to a global transparency constant for the bitmap, AlphaB/end can also apply a 

per-pixel transparency effect to the source bitmap. This is accomplished by setting the AC_ 
SRC_ALPHA flag in the last field in the BLENDFUNCTION structure, AlphaFormat. Windows 

requires that the source bitmap be at least a 32 bit-per-pixel bitmap if the AC_SRC_ALPHA 
flag is set, or the function will fail. Of course alphablending, like transparency, can be quite 

slow. Don't use these features unless you know that the video hardware is designed to accel

erate these operations in hardware. 

Lines and Shapes 
One of the areas in which Windows CE provides substantially less functionality than other 

versions of Windows is in the primitive line-drawing and shape-drawing functions. Gone 
are the Chord, Arc, and Pie functions that created complex circular shapes. Gone, too, are 

most of the functions using the concept of current point. Other than MoveToEx, LineTo, and 

GetCurrentPositionEx, none of the GDI functions dealing with current point is supported 

in Windows CE. So drawing a series of connected lines and curves using calls to ArcTo, 
PolyBezierTo, and so forth is no longer possible. But even with the loss of a number of 

graphic functions, Windows CE still provides the essential functions necessary to draw lines 

and shapes. 

Lines 

Drawing one or more lines is as simple as a call to 

BOOL Polyline (HOC hdc, const POINT *lppt, int cPoints); 

The second parameter is a pointer to an array of POINT structures that are defined as the 

following: 

typedef struct tagPOINT { 
LONG x; 
LONG y; 

} POINT; 



70 Part I Windows Programming Basics 

Each x and y combination describes a pixel from the upper-left corner of the screen. The 

third parameter is the number of point structures in the array. So to draw a line from (0, 0) to 

(50, 100), the code looks like this: 

POINTS pts[2]; 

pts[O].x = O; 
pts[O].y = O; 
pts[l].x = 50; 
pts[l].y = 100; 
Polyline (hdc, &pts, 2); 

Another way to draw the same line is to use the MoveToEx and LineTo functions. They are 

prototyped as follows: 

BOOL WINAPI MoveToEx (HDC hdc, int x, int Y, LPPOINT lpPoint); 
BOOL WINAPI LineTo (HDC hdc, int X, int Y); 

To use the functions to draw a line, first call MoveToEx to move the current point to the start

ing coordinates of the line, and then call Line To, passing the ending coordinates. The calls to 

draw the same line as before using these functions is as follows: 

MoveToEx (hdc, 0, 0, NULL); 
LineTo (hdc, 50, 100); 

To query the current point, call the following function: 

WINGDIAPI BOOL WINAPI GetCurrentPositionEx (HDC hdc, LPPOINT pPoint); 

Just as in the early text examples, these code fragments make a number of assumptions 

about the default state of the device context. For example, just what does the line drawn 

between (0, 0) and (50, 100) look like? What is its width and its color, and is it a solid line? All 

versions of Windows, including Windows CE, allow these parameters to be specified. 

Pens 
The tool for specifying the appearance of lines and the outline of shapes is called, appropri

ately enough, a pen. A pen is another GDI object and, like the others described in this chap

ter, is created, selected into a device context, used, deselected, and then destroyed. Among 

other stock GDI objects, stock pens can be retrieved using the following code: 

HGDIOBJ GetStockObject (int fnObject); 

All versions of Windows provide three stock pens, each 1 pixel wide. The stock pens come in 

three colors: white, black, and null. When you use GetStockObject, the call to retrieve one of 

those pens employs the parameters WHITE_PEN, BLACK_PEN, and NULL_PEN, respectively. 

Unlike standard graphic objects created by applications, stock objects should never be de-



Chapter 2 Drawing on the Screen 71 

leted by the application. Instead, the application should simply deselect the pen from the 

device context when it's no longer needed. 

To create a custom pen under Windows, two functions are available. The first is this: 

HPEN CreatePen (int fnPenStyle, int nWidth, COLORREF crColor); 

The fnPenStyle parameter specifies the appearance of the line to be drawn. For example, the 

PS_DASH flag can be used to create a dashed line. Windows CE supports only PS_ SOLID-, 
PS_DASH-, and PS_ NULL-style flags. The nWidth parameter specifies the width of the pen. 

Finally, the crColor parameter specifies the color of the pen. The crColor parameter is typed 

as COLORREF, which can be constructed using the RGB macro. The RGB macro is as follows: 

COLORREF RGB (BYTE bRed, BYTE bGreen, BYTE bBlue); 

So to create a solid red pen one pixel wide, the code would look like this: 

hPen = CreatePen (PS_SOLID, 1, RGB (Oxff, 0, O)); 

The other pen-creation function is the following: 

HPEN CreatePenindirect (const LOGPEN *lplgpn); 

where the logical pen structure LOGPEN is defined as 

typedef struct tagLOGPEN { 
UINT lopnStyle; 
POINT lopnWidth; 
COLORREF lopnColor; 

} LOGPEN; 

CreatePen/ndirect provides the same parameters to Windows in a different form. To create 

the same one-pixel-wide red pen with CreatePenlndirect, the code would look like this: 

LOGPEN lp; 
HPEN hPen; 
lp.lopnStyle = PS_SOLID; 
lp.lopnWidth.x = 1; 
lp.lopnWidth.y = 1; 
lp.lopnColor = RGB (Oxff, 0, O); 

hPen = CreatePenindirect (&lp); 

Windows CE devices don't support complex pens such as wide (more than 1 pixel wide) 

dashed lines. To determine what's supported, your old friend GetDeviceCaps comes into play, 

taking LINECAPS as the second parameter. Refer to the Windows CE documentation for the 

different flags returned by this call. 



72 Part I Windows Programming Basics 

Shapes 
Lines are useful but Windows also provides functions to draw shapes, both filled and unfilled. 

Here Windows CE does a good job supporting most of the functions familiar to Windows 

programmers. The Rectangle, RoundRect, Ellipse, and Polygon functions are all supported. 

Brushes 
Before I can talk about shapes such as rectangles and ellipses, I need to describe another 

GDI object mentioned only briefly before now-a brush. A brush is a bitmap, typically 8 by 8 

pixels, used to fill shapes. It's also used by Windows to fill the background of a client window. 

Windows CE provides a number of stock brushes and as well as the ability to create a brush 

from an application-defined pattern. A number of stock brushes, each a solid color, can be 

retrieved using GetStockObject. Among the brushes available is one for each of the grays of a 

four-color grayscale display: white, light gray, dark gray, and black. 

To create solid-color brushes, the function to call is the following: 

HBRUSH CreateSolidBrush (COLORREF crColor); 

The crColor parameter specifies the color of the brush. The color is specified using the RGB 
macro. 

To create custom pattern brushes, Windows CE supports the Win32 function: 

HBRUSH CreateDIBPatternBrushPt (canst void *lpPackedDIB, 
UINT iUsage); 

The first parameter to this function is a pointer to a DIB in packed format. This means that 

the pointer points to a buffer that contains a BITMAP/NFO structure immediately fol-

lowed by the bits in the bitmap. Remember that a BITMAPINFO structure is actually a 

B/TMAPINFOHEADER structure followed by a palette in RGBQUAD format, so the buffer 

contains everything necessary to create a DIB-that is, bitmap information, a palette, and the 
bits to the bitmap. If the second parameter is set to DIB_RGB_ COLORS, the palette specified 

contains RGBQUAD values in each entry. For 8-bits-per-pixel bitmaps, the complementary 

flag DIB_PAL_COLORS can be specified, but Windows CE ignores the bitmap's color table. 

The CreateDIBPatternBrushPt function is more important under Windows CE because the 

hatched brushes, supplied under other versions of Windows by the CreateHatchBrush func

tion, aren't supported under Windows CE. Hatched brushes are brushes composed of any 

combination of horizontal, vertical, or diagonal lines. Ironically, they're particularly use-

ful with grayscale displays because you can use them to accentuate different areas of a 

chart with different hatch patterns. You can reproduce these brushes, however, by using 

CreateDIBPatternBrushPt and the proper bitmap patterns. Later in the chapter, the Shapes 

code example demonstrates a method for creating hatched brushes under Windows CE. 



Chapter 2 Drawing on the Screen 73 

By default, the brush origin is in the upper-left corner of the window. This isn't always what 

you want. Take, for example, a bar graph where the bar filled with a hatched brush fills a 

rectangle from (100, 100) to (125, 220). Because this rectangle isn't divisible by 8 (brushes 

typically being 8 by 8 pixels square), the upper left corner of the bar will be filled with a par

tial brush that might not look pleasing to the eye. 

To avoid this situation, you can move the origin of the brush so that each shape can be 

drawn with the brush aligned correctly in the corner of the shape to be filled. The function 

available for this remedy is the following: 

BOOL SetBrushOrgEx (HDC hdc, int nXOrg, int nYOrg, LPPOINT lppt); 

The nXOrg and nYOrg parameters allow the origin to be set between 0 and 7 so that you can 

position the origin anywhere in the 8-by-8 space of the brush. The lppt parameter is filled 

with the previous origin of the brush so that you can restore the previous origin if necessary. 

Rectangles 

The rectangle function draws either a filled or a hollow rectangle; the function is defined as 

the following: 

BOOL Rectangle (HDC hdc, int nleftRect, int nTopRect, 
int nRightRect, int nBottomRect); 

The function uses the currently selected pen to draw the outline of the rectangle and the 

current brush to fill the interior. To draw a hollow rectangle, select the null brush into the de

vice context before calling Rectangle. 

The actual pixels drawn for the border are important to understand. Say you're drawing a 5-

by-7 rectangle at 0, 0. The function call would look like this: 

Rectangle (0, 0, 5, 7); 

Assuming that the selected pen is 1 pixel wide, the resulting rectangle would look like the 

one shown in Figure 2-6. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

0 1 2 3 4 5 6 

FIGURE 2-6 Magnified view of a rectangle drawn with the Rectangle function 



74 Part I Windows Programming Basics 

Notice how the right edge of the rectangle is actually drawn in column 4 and that the bot

tom edge is drawn in row 6. This is standard Windows practice. The rectangle is drawn inside 

the right and bottom boundary specified for the Rectangle function. If the selected pen 

is wider than 1 pixel, the right and bottom edges are drawn with the pen centered on the 

bounding rectangle. (Other versions of Windows support the PS_INSIDEFRAME pen style 

that forces the rectangle to be drawn inside the frame regardless of the pen width.) 

Circles and Ellipses 
Circles and ellipses can be drawn with this function: 

BOOL Ellipse (HDC hdc, int nLeftRect, int nTopRect, 
int nRightRect, int nBottomRect); 

The ellipse is drawn using the rectangle passed as a bounding rectangle, as shown in Figure 

2-7. As with the Rectangle function, while the interior of the ellipse is filled with the current 

brush, the outline is drawn with the current pen. 

(nLeftRect, n TopRect) (nRightRect -1, n TopRect) 

(nLeftRect, nBottomRect-1) (nRightRect-1, nBottomRect-1) 

FIGURE 2-7 The ellipse is drawn within the bounding rectangle passed to the Ellipse function. 

Round Rectangles 

The RoundRect function, 

BOOL RoundRect (HDC hdc, int nLeftRect, int nTopRect, 
int nRightRect, int nBottomRect, 
int nWidth, int nHeight); 

draws a rectangle with rounded corners. The roundedness of the corners is defined by the 

last two parameters that specify the width and height of the ellipse used to round the cor

ners, as shown in Figure 2-8. Specifying the ellipse height and width enables your program to 
draw identically symmetrical rounded corners. Shortening the ellipse height flattens out the 

sides of the rectangle, while shortening the width of the ellipse flattens the top and bottom 

of the rectangle. 



Chapter 2 Drawing on the Screen 75 

(nLeftRect, nTopRect) 

nWidth 

(nRightRect, nBottomRect) 

FIGURE 2-8 The height and width of the ellipse define the round corners of the rectangle drawn by 
RoundRect. 

Polygons 
Finally, the Polygon function, 

BOOL Polygon (HDC hdc, const POINT *lpPoints, int nCount); 

draws a many-sided shape. The second parameter is a pointer to an array of point structures 

defining the points that delineate the polygon. The resulting shape has one more side than 
the number of points because the function automatically completes the last line of the poly
gon by connecting the last point with the first. 

Fill Functions 
The preceding functions use a combination of a brush and a pen to draw shapes in the de
vice context. Functions are available to fill areas without dealing with the pen that would nor

mally outline the shape. The first of these functions is as follows: 

int FillRect (HDC hDC, CONST RECT* lprc, HBRUSH hbr); 

The parameters of Fi/IRect are the handle to the device context, the rectangle to fill, and the 
brush to fill the rectangle. Fi/IRect is a quick and convenient way to paint a solid color or pat

tern in a rectangular area. 

While Fi/IRect is convenient, Gradientfi/I is cool. GradientFi/I fills a rectangular area that starts 
on one side with one color and then has a smooth transition to another color on the other 

side. Figure 2-9 shows a window in which the client area is painted with Gradientfil/. The 
black-and-white illustration doesn't do the image justice, but even in this figure it's easy to 
see the smooth nature of the transition. 



76 Part I Windows Programming Basics 

FIGURE 2-9 A window painted with the GradientFi/I function 

The prototype of GradientFill looks like this: 

BOOL GradientFill (HDC hdc, PTRIVERTEX pVertex, ULONG dwNumVertex, 
PVOID pMesh, ULONG dwNumMesh, ULONG dwMod~); 

The first parameter is the obligatory handle to the device context. The pVertex parameter 
points to an array of TR/VERTEX structures, while the dwNumVertex parameter contains the 

number of entries in the TR/VERTEX array. The TR/VERTEX structure is defined as follows: 

struct _TRIVERTEX { 
LONG x; 
Long 
COLOR16 
COLOR16 
COLOR16 
COLOR16 

} TRIVERTEX; 

y; 
Red; 
Green; 
Blue; 
Alpha;s 

The fields of the TR/VERTEX structure describe a point in the device context and an RGB 
color. The points should describe the upper left and lower right corners of the rectangle be
ing filled. The pMesh parameter of GradientFill points to a GRADIENT_RECT structure defined 
as follows: 

struct _GRADIENT_RECT 
{ 

ULONG UpperLeft; 
ULONG LowerRight; 

} GRADIENT_RECT; 

The GRADIENT_RECT structure simply specifies which of the entries in the TR/VERTEX struc

ture delineates the upper left and lower right corners. Finally, the dwNumMesh parameter of 
GradientFill contains the number of GRADIENT_RECT structures, while the dwMode structure 
contains a flag indicating whether the fill should be left to right (GRADIENT_FILL_RECT_H) or 
top to bottom (GRADIENT_FILL_RECT_ V). The GradientFill function is more complex than is 



Chapter 2 Drawing on the Screen 77 

apparent because on the desktop, it can also perform a triangular fill that isn't supported by 

Windows CE. Here's the code fragment that created the window in Figure 2-9: 

TRIVERTEX vert[2]; 
GRADIENT_RECT gRect; 

vert [O] .x 
vert [O] .y 
vert [O] .Red 
vert [O] .Green 
vert [O] .Blue 
vert [O] .Alpha 

vert [1] .x 
vert [1] .y 
vert [1] .Red 
vert [1] .Green 
vert [1] .Blue 
vert [1] .Alpha 

gRect.Upperleft = O; 
gRect.LowerRight = 1; 

prect->left; 
prect->top; 
OxOOOO; 
OxOOOO; 
OxffOO; 
OxOOOO; 

prect->right; 
prect->bottom; 
OxOOOO; 
OxffOO; 
OxOOOO; 
OxOOOO; 

GradientFill(hdc,vert,2,&gRect,l,GRADIENT_FILL_RECT_H); 

The Shapes Example Program 

The Shapes program, shown in Listing 2-3, demonstrates a number of these functions. In 

Shapes, four figures are drawn, each filled with a different brush. 

LISTING 2-3 The Shapes program 

Shapes.h 

II================================================================ 
11 Header file 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II====================================================================== 
II Returns number of elements 
#define dim(x) (sizeof(x) I sizeof(x(O])) 

11----------------------------------------------------------------------
11 Generic defines and data types 
II 
struct decodeUINT { 

UINT Code; 

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM); 
} ; 

II Structure associates 
II messages 
II with a function. 



78 Part I Windows Programming Basics 

11----------------------------------------------~-----------------------
ll Defines used by MyCreateHatchBrush 
II 
typedef struct { 

BITMAPINFOHEADER bmi; 
COLORREF dwPal[2]; 
BYTE bBits[64]; 

} BRUSHBMP; 

#define HS_HORIZONTAL 0 I* ----- *I 
#define HS_ VERTICAL 1 I* 11111 *I 
#define HS_FDIAGONAL 2 /"\\\\\*I 
#define HS_BDIAGONAL 3 I* 1111/ */ 
#define HS_CROSS 4 I* +++++ *I 
#define HS_DIAGCROSS 5 /* xxxxx */ 

ll-----------------------------~----------------------------------------
11 Function prototypes 
II 
HWND Initinstance (HINSTANCE, LPWSTR, int); 
int .Terminstance (HINSTANCE, int); 

ll Window procedures 
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM); 

ll Message handlers 
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT .DoDestroyMain (HWND, UINT, WPARAM, LPARAM); 

Shapes.cpp 

II====================================================================== 
I/ Shapes- Brush and shapes demo for Windows CE 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II===============,:================================,.===================== 
#include <windows.h> /I For all that Windows stuff 
#include "shapes. h" 11 Program-specific stuff 

!l----~-----------------------------------------------------------
11 Global data 
II 
canst TCHAR szAppName [] = TEXT ("Shapes"); 
HINSTANCE hinst; II Program instance handle 

II Message dispatch table for MainWindowProc 
canst struct decodeUINT MainMessages[] = { 

WM_PAINT, DoPaintMain, 
WM_DESTROY, DoDestroyMain, 

} ; 



Chapter 2 Drawing on the Screen 79 

II====================================================================== 
II 
II Program entry point 
II 
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance, 

LPWSTR lpCmdLine, int nCmdShow) { 

} 

MSG msg; 
HWND hwndMain; 

II Initialize this instance. 
hwndMain = Initinstance(hinstance, lpCmdLine, nCmdShow); 
if (hwndMain == 0) 

return OxlO; 

II Application message loop 
while (GetMessage (&msg, NULL, 0, O)) { 

TranslateMessage (&msg); 
DispatchMessage (&msg); 

} 

II Instance cleanup 
return Terminstance (hinstance, msg.wParam); 

11----------------------------------------------------------------------
11 Initinstance - Instance initialization 
II 
HWND Initinstance (HINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow){ 

WNDCLASS we; 
HWND hWnd; 

II Save program instance handle in global variable. 
hinst = hinstance; 

#if defined(WIN32_PLATFORM_PSPC) I I defined(WIN32_PLATFORM_WFSP) 
II If Windows Mobile, allow only one instance of the application. 
hWnd = FindWindow (szAppName, NULL); 
if (hWnd) { 

SetForegroundWindow ((HWND)(((DWORD)hWnd) I OxOl)); 
return O; 

} 

#endif 
II Register application main window class. 
we.style= O; II Window style 
wc.lpfnWndProc = MainWndProc; II Callback function 
wc.cbClsExtra = O; II Extra class data 
wc.cbWndExtra = O; II Extra window data 
wc.hinstance = hinstance; II Owner handle 
wc.hicon =NULL, II Application icon 
wc.hCursor = LoadCursor (NULL, IDC_ARROW);ll Default cursor 
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH); 
wc.lpszMenuName = NULL; 
wc.lpszClassName = szAppName; 

if (RegisterClass (&we) == 0) return O; 
II Create main window. 

II Menu name 
II Window class name 



80 Part I Windows Programming Basics 

} 

hWnd = CreateWindowEx CWS_EX....NODRAG, 
szAppName, 
TEXT("Shapes"), 
WS_VISIBLE, 
(W_USEOEFAULI, 
CW_USEDEFAULT, 
Ci1LUStDEFAUL T, 
CW_l)SEDEFAULT, 
NULL, 
NULL, 
hinstance, 
NULL); 

fl Return fail code if window not created. 
if ( !IsWi ndow (hWnd)) return 0; 

II Standard show and update calls 
ShowWindow (hWnd, nCmdShow); 
Updatewindow (hWnd); 
return hWnd; 

II Ex Style 
fl Window class 
II Window title 
11 Style flags 
fix position 
II y position 
!/ Initial width 
II Initialhe.ight 
II Parent 
/I Menu, must be null 
fl Application instance 
II Pointer to create 
//.Parameters 

//--- --------- -~ -- -~-~ -',-~- -·- --.~-- - --- - -- "--~ ---- _c ----- ------ --- - -- --,-'--

/I Terminstance -. Program cleanup 
II 
int Terrnins"tance {HINSTANCE hinstance, int nDefRC) { 

return nDefRC; 
} 

II=====================.,================================================ 
fl Message handling.procedures forMail1Window 
II 

11----~------C~~-----~~-~--------------~--------------------"------~---~ 
II MainWndProc :- callback function for application window 
II 
LRESUL T CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
INT i; 
II 
//Search message list to see if we need to handle thi.s 
fl message. If .in list, call procedure. 
II 
for Ci·= O; i < dim(MainMessages); i++) { 

if (wMsg == MainMessages[i] .Code) 
return·· (*MainMessages [iJ; Fxn) (hWnd, wMsg, .wParam, lParam); 

} 
return DefWindowProc (hWnd, wMsg, .wParam, lParam); 

} 

11-~-- -~ -~~.-----" -'--~ -~ ---"------ - -- ---,- ----- - ---~-..,,..-.,_ -,.,~ ---- ~~- -
l/MyCreateHatchBrush - Creates hatched brushes 
II 
HBR.USH MyCreateHatchBrush (INT fnStyle, COLORREF clrref) { 

BRUSHBMP brbmp; 
BYTE<*pBytes; 



Chapter 2 Drawing on the Screen 81 

inti; 
DWORD dwBits[6][2] = { 

{OxOOOOOOff,OxOOOOOOOO}, {Oxl0101010,0xl0101010}, 
{Ox01020408,0xl0204080}, {Ox80402010,0x08040201}, 
{Oxl01010ff,Oxl0101010}, {Ox81422418,0xl8244281}, 

} ; 

if ((fnStyle < O) I I (fnStyle > dim(dwBits))) 
return O; 

memset (&brbmp, 0, sizeof (brbmp)); 

brbmp.bmi.biSize = sizeof (BITMAPINFOHEADER); 
brbmp.bmi.biWidth = 8; 
brbmp.bmi.biHeight = 8; 
brbmp.bmi .bi Planes = l; 
brbmp.bmi.biBitCount = l; 
brbmp.bmi.biClrUsed = 2; 
brbmp.bmi.biClrimportant = 2; 

II Initialize the palette of the bitmap. 
brbmp.dwPal[O] PALETTERGB(Oxff,Oxff,Oxff); 
brbmp.dwPal[l] = PALETTERGB((BYTE)((clrref >> 16) & Oxff), 

CBYTE)((clrref >> 8) & Oxff), 
(BYTE)(clrref & Oxff)); 

II Write the hatch data to the bitmap. 
pBytes = (BYTE *)&dwBits[fnStyle]; 
for (i = O; i < 8; i++) 

brbmp.bBits[i*4] = *pBytes++; 

II Return the handle of the brush created. 
return CreateDIBPatternBrushPt (&brbmp, DIB_RGB_COLORS); 

} 

11----------------------------------------------------------------------
11 DoPaintMain - Process WM_PAINT message for window. 
II 
LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
PAINTSTRUCT ps; 
RECT rect; 
HOC hdc; 
POINT ptArray[6]; 
HBRUSH hBr, hOldBr; 
TCHAR szText[128]; 

GetClientRect (hWnd, &rect); 
hdc = BeginPaint (hWnd, &ps); 

II Draw ellipse. 
hBr = (HBRUSH) GetStockObject (DKGRAY_BRUSH); 
hOldBr = (HBRUSH) SelectObject (hdc, hBr); 
Ellipse (hdc, 10, 50, 90, 130); 
SelectObject (hdc, hOldBr); 



82 Part I Windows Programming Basics 

} 

II Draw round. rectang1e, 
hBr = {HBRUsH) GetS'.tockOb.jei:t (lTGRAY;._f3RUSH); 
hOl dBr = (HBRuSliYselectOb:lect Chdc, hBr); 

.. · RoundRect (hdc, 95; :,'>o; lSO, 130; 30, 30}: · 
· SelectObject (hdc, hOidBr); · 

. JI Draw hex11.9ort us1ng P~lygon; 
hBr "' (HBRUSH) .Get~todcobject. (WHITE,.:.BRUSH); .· 
hOldBr ,,. (HBRuSH) ·. SelectObj~~t Chdc, hBrl; 
ptArrayrof x ;,,; i92; · · · · · · 

ptArray[OJ.y.• so; 
ptArray[lJ .x "' 155; 
ptArray[lJ.y .; 75; 
ptArray[2J.x .. 155; 
ptAr ray en~ Y . .: 10s : · 
ptArray[3] .x = 192; 
ptArray[3].y = 130; 
ptArray[4]>x .. •no; 

··· ptAr~ay [4l ~Y = 10s: 
ptArray[SJ.x = 230; 
ptArray[S].;y = 75; 

Polygol) (hdc, ptArray, 6); 
SeleFtOb.ject • (hdc, .hQldBr); 

• hBr ."- (HBRUSH) f<\y<;:reateHatchl;lru~h (HSi-'.D!AGCROSS; 
. liOldBr = (HBRUSH) Se1ect0bject (hdc, hBr); 

Rectangle (hdc; 10, i4s, 22s, 210); 
SelectObject (bdc, h01dBr): 
Deleteobject ·chsr): 

· SetBkM~d~ Chdc, OPA006 ; . . . · •·· • 
·· · lstrcpy (~zText, TExT ("Opaquf! ·background;'));·.· 

txtTextOut Chdc, 20, 16.0; O; .N'ui.L, · 
· szTeXt~ lstrliW {sztht), 

Sf!tBkMode (hdc; TRANSPARENT,) ; . ··.··. :• . .·· ... ·· . 
lstrcpy (szText; TE)<T ("Transparent background''.)); 
ExtText()iJt (hdc, 20, 1st 0, NULL, .. .. 

szT~xt, lstrleri ($zText), NULL): 

EndPai nt (tiwrid; &i>:S) ; 
~et!lrn Q~ 

II DooestroyMa'in: ,.. :Process UESTROY message fdr ¥,'.iridow 
II. ·. . • .• : ': . ....... ·· •. ·.· 
(RESULT DoDestroyMain .CHWND :hWnd, UINT wMsg., 

... · . . • .. •. > . ····· ... • LP~ l Paralll:> { .. 
PostQuitMt:!ssage (O); 

... return O; · · · 

l:: 



Chapter 2 Drawing on the Screen 83 

In Shapes, DoPaintMain draws the four figures using the different functions discussed ear

lier. For each of the shapes, a different brush is created, selected into the device context, 

and, after the shape has been drawn, deselected from the DC. The first three shapes are 

filled with solid grayscale shades. These solid brushes are loaded with the GetStockObject 

function. The final shape is filled with a brush created with the CreateDIBPatternBrushPt. 

The creation of this brush is segregated into a function called MyCreateHatchBrush that 

mimics the CreateHatchBrush function not available under Windows CE. To create the 

hatched brushes, a black-and-white bitmap is built by filling in a bitmap structure and set
ting the bits to form the hatch patterns. The bitmap itself is the 8-by-8 bitmap specified by 

CreateDIBPatternBrushPt. Because the bitmap is monochrome, its total size, including the 

palette and header, is only around 100 bytes. Notice, however, that because each scan line of 

a bitmap must be double-word aligned, the last three bytes of each 1-byte scan line are left 
unused. 

Finally, the program completes the painting by writing two lines of text into the lower rec

tangle. The text further demonstrates the difference between the opaque and transparent 

drawing modes of the system. In this case, the opaque mode of drawing the text might be 
a better match for the situation because the hatched lines tend to obscure letters drawn in 

transparent mode. A view of the Shapes window is shown in Figure 2-10. 

0 

I J.O: 17 PM ti 

FIGURE 2-10 The Shapes example demonstrates drawing different filled shapes. 

To keep things simple, the Shapes example assumes that it's running on at least a 240-pixel

wide display. This allows Shapes to work equally well on all but the smallest of Smartphone 

screens. I have barely scratched the surface of the abilities of the Windows CE GDI portion 

of GWE. The goal of this chapter wasn't to provide total presentation of all aspects of GDI 

programming. Instead, I wanted to demonstrate the methods available for basic drawing and 

text support under Windows CE. Other chapters in the book extend some of the techniques 

touched on in this chapter. I talk about these new techniques and newly-introduced func-



84 Part I Windows Programming Basics 

tions at the point, generally, where I demonstrate how to use them in code. To further 

your knowledge, I recommend Programming Windows, 5th edition, by Charles Petzold 

(Microsoft Press, 1998), as the best source for learning about the Windows GDL 

Now that you've looked at output, it's time to turn your attention to the input side of the 

system-the keyboard and the touch panel. 



3 

Input: Keyboard, Mouse, and Touch 
Screen 

Traditionally, Microsoft Windows platforms have allowed users two methods of input: the 

keyboard and the mouse. Windows CE continues this tradition but many systems replace 

the mouse with a stylus and touch screen. Programmatically, the change is minor because 

the messages from the stylus are mapped to the mouse messages used in other versions 

of Windows. A more subtle, but also more important, change from versions of Windows 

that run on PCs is that a system running Windows CE might have either a tiny keyboard or 

no keyboard at all. This arrangement makes the stylus input that much more important for 

Windows CE systems. 

The Keyboard 
Although keyboards play a lesser role in Windows CE, they're still the best means of enter

ing large volumes of information. Even on systems without a physical keyboard such as 

some Windows Mobile devices, soft keyboards-controls that simulate keyboards on a touch 

screen-will most likely be available to the user. Given this, proper handling of keyboard 

input is critical to all but the most specialized of Windows CE applications. Although not 

much text is devoted to soft keyboards in the book, one point should be made here. To the 

application, input from a soft keyboard is no different from input from a traditional hard 

keyboard. 

Input Focus 

Under Windows operating systems, only one window at a time has the input focus. The focus 

window receives all keyboard input until it loses focus to another window. The system assigns 

the keyboard focus using a number of rules, but most often the focus window is the current 

active window. The active window, you'll recall, is the top-level window, the one with which 
the user is currently interacting. With rare exceptions, the active window also sits at the top 

of the Z-order; that is, it's drawn on top of all other windows in the system. In the Explorer, 

the user can change the active window by pressing Alt+Esc to switch between programs or 

by tapping on another top-level window's button on the task bar. The focus window is either 

the active window or one of its child windows. 

Under Windows, a program can determine which window has the input focus by calling 

HWND GetFocus (void); 

85 



86 Part I Windows Programming Basics 

The focus can be changed to another window by calling 

HWND SetFocus (HWND hWnd); 

Under Windows CE, the target window of SetFocus is limited. The window being given the 

focus by SetFocus must have been created by the thread calling SetFocus. An exception to 

this rule occurs if the window losing focus is related to the window gaining focus by a parent/ 

child or sibling relationship; in this case, the focus can be changed even if the windows were 

created by different threads. 

When a window loses focus, Windows sends a WM_KILLFOCUS message to that window in

forming it of its new state. The wParam parameter contains the handle of the window that 

will be gaining the focus. The window gaining focus receives a WM_SETFOCUS message. The 

wParam parameter of the WM_SETFOCUS message contains the handle of the window losing 

focus. 

Although it might be stating the obvious, programs shouldn't change the focus window 

without some input from the user. Otherwise, the user can easily become confused. A proper 

use of SetFocus is to set the input focus to a child window (more than likely a control) con

tained in the active window. In this case, a window responds to the WM_SETFOCUS message 

by calling SetFocus with the handle of a child window contained in the window to which the 

program wants to direct keyboard messages. 

Keyboard Messages 
Windows CE practices the same keyboard message processing as its larger desktop relations 

with a few small exceptions, which I cover shortly. When a key is pressed, Windows sends a 
series of messages to the focus window, typically beginning with a WM_KEYDOWN message. 

If the key that is pressed represents a character such as a letter or number, Windows fol-

lows the WM_KEYDOWN with a WM_ CHAR message. (Some keys, such as function keys and 

cursor keys, don't represent characters, so WM_ CHAR messages aren't sent in response to 

those keys. For those keys, a program must interpret the WM_KEYDOWN message to know 

when the keys are pressed.) When the key is released, Windows sends a WM_KEYUP mes

sage. If a key is held down long enough for the auto-repeat feature to kick in, multiple WM_ 

KEYDOWN and WM_ CHAR messages are sent for each auto-repeat until the key is released 

when the final WM_KEYUP message is sent. I used the word typically to qualify this descrip

tion because if the Alt key is being held when another key is pressed, the messages just de

scribed are replaced by WM_SYSKEYDOWN, WM_SYSCHAR, and WM_SYSKEYUP messages. 

For all of these messages, the generic parameters wParam and f Param are used in mostly the 

same manner. For WM_KEYxx and WM_SYSKEYxx messages, the wParam value contains the 

virtual key value, indicating the key being pressed. All versions of Windows provide a level of 

indirection between the keyboard hardware and applications by translating the scan codes 

returned by the keyboard into virtual key values. You see a list of the VK_xx values and their 



Chapter 3 Input: Keyboard, Mouse, and Touch Screen 87 

associated keys in Table 3-1. While the table of virtual keys is extensive, not all keys listed in 

the table are present on Windows CE devices. For example, function keys, a mainstay on PC 

keyboards and listed in the virtual key table, aren't present on most Windows CE keyboards. 

In fact, a number of keys on a PC keyboard are left off the space-constrained Windows CE 
keyboards. 

TABLE 3-1 Virtual Keys 

Constant 

VK_LBUTTON 

VK_RBUTTON 

VK_CANCEL 

VK_RBUTTON 

VK_BACK 

VK_TAB 

VK_CLEAR 

Constant 

VK_RETURN 

VK_SH/FT 

VK_CONTROL 

VK_MENU 

VK_CAPITAL 

VK_SPACE 

VK_PR/OR 

VK_NEXT 

VK_END 

VK_HOME 

VK_LEFT 

VK_UP 

VK_RIGHT 

VK_DOWN 

VK_SELECT 

Value 

01 

02 

03 

04 

05-07 

08 

09 

OA-OB 

oc 
Value 

OD 

OE-OF 

10 

11 

12 

14 

Keyboard Equivalent 

Mouse left button or Stylus tap 

Mouse right buttonl 

Control-break processing 

Mouse middle button1 

Undefined 

Backspace key 

Tab key 

Undefined 

Clear key 

Keyboard equivalent 

Enter key 

Undefined 

Shift key 

Ctrl key 

Alt key 

Caps Lock key 

15-19 Reserved for Kanji systems 

lA Undefined 

26 

27 

28 

29 

2A 

Esc key 

Reserved for Kanji systems 

Spacebar 

Page Up key 

Page Down key 

End key 

Home key 

Left Arrow key 

Up Arrow key 

Right Arrow key 

Down Arrow key 

Select key 

Original equipment manufacturer (OEM)-specific 



88 Part I Windows Programming Basics 

Constant Value Keyboard Equivalent 

VK_EXECUTE 2B Execute key 

VK_SNAPSHOT 2C Print Screen key for Windows 3.0 and later 

VK_INSERT 2D lnsert2 

VK_DELETE 2E Delete3 

VK_HELP 2F Help key 

VK_O-VK_9 30-39 0-9 keys 

3A-40 Undefined 

VK_A-VK_Z 41-SA A through Z keys 

VK_LWIN SB Windows key 

VK_RWIN SC Windows key2 

VK_APPS SD 

SE Undefined 

VK_SLEEP SF Sleep key2 

VK_NUMPAD0-9 60-69 Numeric keypad 0-9 keys 

VK_MULTIPLY 6A Numeric keypad Asterisk(*) key 

VK_ADD Numeric keypad Plus sign (+) key 

VK_SEPARATOR Separator key 

VK_SUBTRACT 60 Numeric keypad Minus sign (-) key 

VK_DECIMAL 6E Numeric keypad Period (.) key 

VK_DIVIDE 6F Numeric keypad Slash mark(/) key 

VK_Fl-VK_F24 70-87 Fl-F242 

88-8F Unassigned 

VK_NUMLOCK 90 Num Lock2 

VK_SCROLL 91 Scroll Lock2 

92-9F Unassigned 

VK_LSH/FT AO Left Shift4 

VK_RSHIFT Al Right Shift4 

VK_LCONTROL A2 Left Control4 

VK_RCONTROL A3 Right Control4 

VK_LMENU A4 Left Alt4 

VK_RMENU AS Right Alt4 

VK_BROWSER_BACK A6 

VK_BROWSER_FORWARD 

VK_BROWSER_REFRESH 

VK_BROWSER_STOP A9 

VK_BROWSER_SEARCH AA 

VK_ BROWSER_FAVOR/TES AB 



Chapter 3 Input: Keyboard, Mouse, and Touch Screen 89 

Constant Value Keyboard Equivalent 

VK_BROWSER_HOME AC 

VK_ VOLUME_MUTE AD 

VK_VOLUME_DOWN AE 

VK_VOLUME_UP AF 

VK_MEDIA_NEXT_ TRACK BO 

VK_MEDIA_PREV_TRACK Bl 

VK_MEDIA_STOP B2 

VK_MEDIA_PLAY_PAUSE B3 

VK_LAUNCH_MAIL 

VK_LAUNCH_MEDIA_SELECT 

VK_LAUNCH_APPl B6 

VK_LAUNCH_APP2 B7 

B7-B9 Unassigned 

BA ; key 

VK_COMMA BC , key 

VK_HYPHEN BD - key 

VK_PER/00 BE . key 

VK_SLASH BF I key 

VK_BACKQUOTE co 'key 

Cl-DA Unassigned5 

VK_LBRACKET DB [key 

VK_BACKSLASH DC \key 

VK_RBRACKET ] key 

VK_APOSTROPHE 'key 

VK_OFF DF Power button 

ES Unassigned 

E6 OEM-specific 

E7~E8 Unassigned 

E9-F5 OEM-specific 

VK_ATTN F6 

VK:._CRSEL F7 

VK_EXSEL F8 

VK_EREOF F9 

VK_PLAY FA 

VK_ZOOM FB 



90 Part I Windows Programming Basics 

Constant 

VK_NONAME 

VK_PAl 

VK_ OEM_ CLEAR 

Value 

FC 

FD 

FE 

Keyboard Equivalent 

1 Mouse right and middle buttons are defined but are relevant only on a Windows CE system equipped with a mouse. 

2 Many Windows CE Systems don't have this key 

3 On some Windows CE systems, Delete is simulated with Shift-Backspace 

4 These constants can be used only with GetKeyState and GetAsyncKeyState. 

5 These codes are used by the application launch keys on systems that have them. 

For the WM_ CHAR and WM_SYSCHAR messages, the wParam value contains the Unicode 

character represented by the key. Most often an application can simply look for WM_ CHAR 

messages and ignore WM_KEYDOWN and WM_ KEYUP. The WM_ CHAR message allows for 

a second level of abstraction so that the application doesn't have to worry about the up or 

down state of the keys and can concentrate on the characters being entered by means of the 

keyboard. 

The /Param value of any of these keyboard messages contains further information about the 
pressed key. The format of the /Param parameter is shown in Figure 3-1. 

The low word, bits 0 through 15, contains the repeat count of the key. On rare occasions, 

keys on a Windows CE device can be pressed faster than Windows CE can send messages 

to the focus application. In these cases, the repeat count contains the number of times the 

key has been pressed. Bit 29 contains the context flag. If the Alt key is held down when the 

key is pressed, the bit will be set. Bit 30 contains the previous key state. If the key was previ

ously down, this bit is set; otherwise, it's 0. Bit 30 can be used to determine whether the key 

message is the result of an auto-repeat sequence. Bit 31 indicates the transition state. If the 

key is in transition from down to up, Bit 31 is set. Bits 16 through 28 are used to indicate the 

key scan code. In many cases, Windows CE doesn't support this field. However, on some of 

the newer Windows CE platforms where scan codes are necessary, this field does contain 

the scan code. You shouldn't plan on the scan code field being available unless you know it's 

supported on your specific platform. 

~----Repeat Code----~ 

Context code, set to 1 if Alt key down. 

Previous key state, set to 1 if key previously down . 

...._ ___ Transition state, set to 1 if key being released. 

*Many Windows CE devices don't support this field. 

FIGURE 3-1 The layout of the f Param value for key messages 

One additional keyboard message, WM_DEADCHAR, can sometimes come into play. It is sent 

by the operating system when the pressed key represents a dead character, such as an 



Chapter 3 Input: Keyboard, Mouse, and Touch Screen 91 

umlaut, that you want to combine with a character to create a different character. In this 

case, the WM_DEADCHAR message can be used to prevent the text entry point (the caret) 

from advancing to the next space until the second key is pressed so that you can complete 

the combined character. 

The WM_DEADCHAR message has always been present under Windows, but under Windows 

CE it takes on a somewhat larger role. With the internationalization of the variety of de-

vices that run Windows CE, programmers should plan for, and if necessary use, the WM_ 

DEADCHAR message that is so often necessary in foreign language systems. 

Keyboard Functions 

You'll find useful a few other keyboard state-determining functions for Windows ap

plications. Among the keyboard functions, two are closely related but often confused: 

GetKeyState and GetAsyncKeyState. 

GetKeyState, prototyped as 

SHORT GetKeyState (int nVirtKey); 

returns the up/down state of the shift keys, Ctrl, Alt, and Shift, as well as the Windows key, 

and indicates whether any of these keys is in a toggled state. If the keyboard has two keys 

with the same function-for example, two Shift keys, one on each side of the keyboard-this 

function can also be used to differentiate which of them is being pressed. (Most keyboards 

have left and right Shift keys, and some include left and right Ctrl and Alt keys.) 

You pass to the function the virtual key code for the key being queried. If the high bit of the 

return value is set, the key is down. If the least significant bit of the return value is set, the 

key is in a toggled state; that is, it has been pressed an odd number of times since the system 

started. The state returned is the state at the time the most recent message was read from 

the message queue, which isn't necessarily the real-time state of the key. An interesting aside: 
notice that the virtual key label for the Alt key is VK_MENU, which relates to the windows 

convention that the Alt key works in concert with other keys to access various menus from 

the keyboard. 

Note that the GetKeyState function is limited under Windows CE to querying the state of the 
shift keys; Ctrl, Alt, Shift, Numlock, and the Windows key. Under other versions of Windows, 

GetKeyState can determine the state of every key on the keyboard. 

To determine the real-time state of a key, use 

SHORT GetAsyncKeyState (int vKey); 

As with GetKeyState, you pass to this function the virtual key code for the key being queried. 

The GetAsyncKeyState function returns a value subtly different from the one returned by 



92 Part I Windows Programming Basics 

GetKeyState. As with the GetKeyState function, the high bit of the return value is set while the 

key is being pressed. Like GetKeyState, the GetAsyncKeyState function can distinguish the left 

and right Shift, Ctrl, and Alt keys. In addition, by passing the VK_LBUTTON virtual key value, 

GetAsyncKeyState determines whether the stylus is currently touching the screen. On systems 

with a mouse, the VK values; VK_LBUTTON, VK_MBUTTON, VK_RBUTTON, VK_XBUTTONl, 

and VK_XBUTTON2 return the state of their respective mouse buttons. 

An application can simulate a keystroke using the keybd_event function: 

VOID keybd_event (BYTE bVk, BYTE bScan, DWORD dwFlags, 
DWORD dwExtralnfo); 

The first parameter is the virtual key code of the key to simulate. The bScan code should 

be set to NULL under Windows CE. The dwFlags parameter can have two possible flags: 
KEYEVENTF_KEYUP indicates that the call is to emulate a key up event, while KEYEVENTF_ 

SILENT indicates that the simulated key press won't cause the standard keyboard click that 

you normally hear when you press a key. So to fully simulate a key press, keybd_event should 

be called twice, once without KEYEVENTF_KEYUP to simulate a key down, and then once 

again, this time with KEYEVENTF_KEYUP to simulate the key release. When simulating a shift 

key, specify the specific left or right VK code, as in VK_LSHIFT or VF_RCONTROL. 

A function unique to Windows CE is 

BOOL PostKeybdMessage (HWND hwnd, UINT VKey, 
KEY_STATE_FLAGS KeyStateFlags, 
UINT cCharacters, UINT *pShiftStateBuffer, 
UINT *pCharacterBuffer ); 

This function sends a series of keys to the specified window. The hwnd parameter is the tar

get window. This window must be owned by the calling thread. The VKey parameter should 

be zero. KeyStateFlags specifies the key state for all the keys being sent. The cCharacters 

parameter specifies the number of keys being sent. The pShiftStateBuffer parameter points 

to an array that contains a shift state for each key sent, while pCharacterBuffer points to the 
VK codes of the keys being sent. Unlike keybd_event, this function doesn't change the global 

state of the keyboard. 

One final keyboard function, MapVirtua/Key, translates virtual key codes to characters. 

MapVirtua/Key in Windows CE doesn't translate keyboard scan codes to and from virtual key 

codes, although it does so in other versions of Windows. The prototype of the function is the 

top of the following page. 

UINT MapVirtualKey (UINT uCode, UINT uMapType); 

Under Windows CE, the first parameter is the virtual key code to be translated, while the sec

ond parameter, uMapType, indicates how the key code is translated. MapVirtua/Key is depen

dent on the keyboard device driver implementing a supporting function. Some OEMs don't 

implement this supporting function, so on their systems, MapVirtua/Key fails. 



Chapter 3 Input: Keyboard, Mouse, and Touch Screen 93 

Testing for the Keyboard 

To determine whether a keyboard is even present in the system, you can call 

DWORD GetKeyboardStatus (VOID); 

This function returns the KBDl_KEYBOARD_PRESENT flag if a hardware keyboard is present 

in the system. This function also returns a KBDl_KEYBOARD_ENABLED flag if the keyboard is 

enabled. To disable the keyboard, a call can be made to 

BOOL EnableHardwareKeyboard (BOOL bEnable); 

with the bEnable flag set to FALSE. You might want to disable the keyboard in a system for 

which the keyboard folds around behind the screen; in such a system, a user could acciden

tally press keys while using the stylus. 

The KeyTrac Example Program 

The following example program, KeyTrac, displays the sequence of keyboard messages. 
Programmatically, KeyTrac isn't much of a departure from the earlier programs in the book. 

The difference is that the keyboard messages described here are all trapped and recorded in 

an array that's then displayed during the WM_ PAINT message. For each keyboard message, 

the message name is recorded along with the wParam and f Param values and a set of flags 

indicating the state of the Shift keys. The key messages are recorded in an array because 

these messages can occur faster than the redraw can occur. Figure 3-2 shows the KeyTrac 

window after a few keys have been pressed. 

WM_KEYlJJ wP:00000041 IP:c09e0001 Shift: 
WM_CHAR wP:OOOCJJ0151 IP:OOleOOOl Shift 
WM_KEYDOWN wP:OOOCIJ041 IP:OOle0001 shift: 
WM_KEYUP wP:OOIIIJ041 P:c09e0001 Shift: 
WM_KEYl.Al wP:OOOOOOlO P:coaaooo1 Shift 
WM_CHAR wP:OOCXJJ041 P:001e0001 Shift IS S 
WM_KE'IDOWN wP:OOOOJ041 l':OOle0001 shift IS S 
WM_l(E'IDOWN wP:00000010 1':002.!0001 shift IS S 

FIGURE 3-2 The KeyTrac window after a Shift+A key combination followed by a lowercase a key press 

The best way to learn about the sequence of the keyboard messages is to run KeyTrac, press 

a few keys, and watch the messages scroll down the screen. Pressing a character key such as 

the a results in three messages: WM_KEYDOWN, WM_ CHAR, and WM_KEYUP. Holding down 

the Shift key while pressing the a and then releasing the Shift key produces a key-down mes
sage for the Shift key followed by the three messages for the a key followed by a key-up 

message for the Shift key. Because the Shift key itself isn't a character key, no WM_ CHAR 
message is sent in response to it. However, the WM_ CHAR message for the a key now con

tains a Ox41 in the wParam value, indicating that an uppercase A was pressed instead of a 

lowercase a. 



94 Part I Windows Programming Basics 

Listing 3-1 shows the source code for the KeyTrac program. 

LISTING 3-1 

KeyTrac.h 

II========================================'"========== 
II Header fi1e · 
If 
11 Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II=========================================================== 
If Returns number of elements 
#define dim(x) (sizeof(x) I sizeof(x[O])) 

11----------------------------------------------------------------------
11 Generic defines and data types 
II 
struct decodeUINT { 

UINT Code; 

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM); 
} ; 

II Structure associates 
II messages 
II with a function. 

lf-------------------~----------------------------~------~--------------
11 Program-specific defines and structures 
II 
typedef struct { 

UINT wKeyMsg; 
INT wParam; 
INT lParam; 
LPCTSTR pszMsgTxt; 
TCHAR szShift[20]; 

} MYKEYARRAY, *PMYKEYARRAY; 

II Structure to associate messages with text name of message 
typedef struct { 

UINT wMsg; 
LPCTSTR pName; 

} KEYNAMESTRUCT; 

11----------------------------~~------------------------------~-~-------
l I function prototypes 
II 
HWND Initinstance (HINSTANCE, LPWSTR, int); 
int Terminstance CHINSTANCE, int); 

II Window procedures 
LRESuLT CALLBACK t'!ainWndProc (HWND, UINT, WPARAM, LPARAM); 
If Message handlers 
LRESULT DoCreateM.ain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoP<J.intMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT. OoKeysMain (HWND, UINT, WPARAM, LPARAM);. 
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM); 



Chapter 3 Input: Keyboard, Mouse, and Touch Screen 95 

KeyTrac.cpp 

II====================================================================== 
II KeyTrac - displays keyboard messages 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II====================================================================== 
#include <Windows.h> 
#include <commctrl.h> 
#include "keytrac.h" 

II For all that Windows stuff 
II Command bar includes 
II Program-specific stuff 

II The include and lib files for the Pocket PC are conditionally 
II included so that this example can share the same project file. This 
II is necessary since this example must have a menu bar on the Pocket 
II PC to have a SIP button. 
#if defined(WIN32_PLATFORM_PSPC) 
#include <aygshell.h> 

I I defined(WIN32_PLATFORM_WFSP) 
II Add Pocket PC includes. 

#pragma comment( lib, "aygshell" ) 
#endif 

II Link Pocket PC lib for menu bar. 

11----------------------------------------------------------------------
11 Global data 
II 
const TCHAR szAppName[) = TEXT ("KeyTrac"); 
HINSTANCE hinst; II Program instance handle 

II Program-specific global data 
MYKEYARRAY ka[16]; 
int nKeyCnt = O; 
int nFontHeight; 

II Array associates key messages with text tags 
KEYNAMESTRUCT knArray[] = {{WM_KEYDOWN, TEXT ("WM..J<EYDOWN")}, 

{WM..J<EYUP, TEXT ("WM_KEYUP")}, 
{WM_CHAR, TEXT ("WM_CHAR")}, 
{WM_SYSCHAR, TEXT ("WM_SYSCHAR")}, 
{WM_SYSKEYUP, TEXT ("WM_SYSKEYUP")}, 
{WM_SYSKEYDOWN, TEXT ("WM_SYSKEYDOWN")}, 
{WM_DEADCHAR, TEXT ("WM_DEADCHAR")}, 
{WM_SYSDEADCHAR, TEXT ("WM_SYSDEADCHAR")}}; 

II Message dispatch table for MainWindowProc 
const struct decodeUINT MainMessages[] = { 

WM_CREATE, DoCreateMain, 
WM_PAINT, DoPaintMain, 
WM_KEYUP, DoKeysMain, 
WM_KEYDOWN, DoKeysMain, 
WM_CHAR, DoKeysMain, 
WM_DEADCHAR, DoKeysMain, 
WM_SYSCHAR, DoKeysMain, 
WM_SYSDEADCHAR, DoKeysMain, 
WM_SYSKEYDOWN, DoKeysMain, 
WM_SYSKEYUP, DoKeysMain, 



96 Part I Windows Programming Basics 

WMJ>EsTRQY, DoDestroyMain, 
}; 

Ii=~.==~=-====-~--~~;=;;~~~-=.=======::=:;;::=;~=~==:=====~~~~-~ 
II Program entry pQi nt Ii . . . 

l 

int WINAPI WinMaiii (H~NSTANCE hinstance, HINSTANCE hPrevinstaMe, 
LPWSTR .1 pCmdL ine, int nCrndShow) . { 

MSC msg: 
int. re "' o; 
HWND. hwndMain; 

II Ini.tialize this instance. 
hwndMai n = !ni tinstance Ch Instance, lpCmdLine, nCmdShOw); 
if. (hwndMain ==. O) · 

return Oic10; 

//Application messa9el-0op 
while (GetMessage (&)nsg; NULL, O., 0)) { 

Transl ateMessage (&!Jsgf; 
[); spatchMessage (&msg) ; 

} 

! I Instance cl eanlJp 
return Jerll\Instance (hiri5tance, msg.wParam); 

Ii- -'""''" ----'.,.·- -"- ---_ _; ___ -~ -"''" ;.·_ ----;""----------·- -,.--------'--- --"'.,-.: '--'---- --.-: 
fl Ioi tinstance - Instance i rri ti a 1 i zation . 
II 
HWND Initinstance (HINSTANCE hinstMce, .LPWSTR JpOndLine; i.nt.nCmdShoW). { 

W.NOCLASS. we; 
!'IWND hWnd; 

#if defined(WIN32_PLATFORILPSPc). I I. defi ned(WIN32_PLATFORM.,WFSP) 
/ / For \tJfodows Mobile .devic¢s, allpwonly one instance .of the app 

.. hWnd = Fi ndWindow · (stAPpNi:lme , NULL) ; 
.:if (hWnd) .{ . .. . . ... · ·· · 

setForegrolindwindQY/ ((HWND) (((DWciR.D)hWnd) · 1 OxOl)); 
return o; 

.} 

#ehdif 
hins(= hinstance; ·/J Save program insti:lnce handle. 

/I Register applfcation main window cli:lss. 
we.style ,.; o; .. ·. . .·. · ·. · · H WilJ!:l<>W style 
wc,TpfnWndPro<: ,;, MainWndProq // callback function 
wc;cbCl.sExtra .; O; · ·· /1 Extra class data 
wc>cbwndEx1::ra "' o; //Extra window .data 
wc.hlnsutice = hit:i.stantef II owner handle 

· we .. hicon = NULL~ // Appl1cati()n icon 
wc.hCursor = .. l,QadCur.$or (NULL, IDURROW) ;/ l Defauh.c1.1rsor 
we: hbrB~tkgrOund ;,,·· (HBRUSH) GetStockObj.ect (WHITE...BR,USll); " 



} 

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 97 

wc.lpszMenuName = NULL; 
wc.lpszClassName = szAppName; 

if (RegisterClass(&wc) == O) return O; 

II Create main window. 

II Menu name 
II Window class name 

hWnd = CreateWindowEx (WS_E)(_NODRAG, szAppName, TEXT ("KeyTrac"), 
WS_VISIBLE I WS_CAPTION I WS_SYSMENU, 
CW_USEDEFAULT, CW_USEDEFAULT, 
CW_USEDEFAULT, CW_USEDEFAULT, 
NULL, NULL, h!nstance, NULL); 

II Fail if window not created 
if (!IsWindow (hWnd)) return O; 

II Standard show and update calls 
ShowWindow (hWnd, nCmdShow); 
UpdateWindow (hWnd); 
return hWnd; 

11----------------------------------------------------------------------
11 Term!nstance - Program cleanup 
II 
int Term!nstance (HINSTANCE hinstance, int nDefRC) { 

return nDefRC; 
} 

II====================================================================== 
II Message handling procedures for MainWindow 
II 
11----------------------------------------------------------------------
11 MainWndProc - Callback function for application window 
II 
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

INT i; 
II 
II Search message list to see if we need to handle this 
II message. If in list, call procedure. 
II 
for (i = O; i < dim(MainMessages); i++) { 

if (wMsg == MainMessages[i].Code) 
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, lParam); 

} 

return DefWindowProc (hWnd, wMsg, wParam, lParam); 

11----------------------------------------------------------------------
11 DoCreateMain - Process WM_CREATE message for window. 
II 
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
HDC hdc; 
TEXIMETRIC tm; 



98 Part I Windows Programming Basics 

#if deffoed(W'IN32_PLATFORM:,.PSPC) && (_WIN32_WCE .>• 300) 
SHMENU13ARINFO n1bi; . . // For ·Pocket PC, create 

·. memset(&nbi , 0, si;Zeof(SHMENUBARINFO)); // menu bar so that we · 
mbi.c:bStze = sizeof(SHMENUBARINFO); // have a sip .but:tl;>ri . 
mbi.hwndParent=hwrid; . 
mbi.dwFlcigs = SHcMBF.:..EMPTvBAR; // No men.u 
SHcreateMeQuBar(&mbi); 

ifendif 

} 

ll Get the heigh'!: 9f the default font. 
hdc = GetDC (hWnd); 
GetTextMetr.i cs (tide, &tm) ; 
nFontHei~ht .; tm.tmlieight + tm.tmExternalLeading; 
ReleaseDC (hWnd, Mc); 
return O; · 

//-.:.-------------------------~------------------------------------------
// DoPaintMain - Process WM:,.PAINT messqge for.window. 

·// . . . . •··· 
lRESULT DoPain~Main (HWND ~Wnd, UINT WM~g. WPARAM wParam, 

LPARAM 1 Param) {. 
PAINTSTRUCT PS; 
;REcT rect, · · ~ectout; 
.TCHAR szQut[256]; 
HOC hdc; 
INT i; j; 
LPCTSTR pKeyText; 

GetClientRect (hWnd, &rect); 

11 Create a drawing rectangle for the top line of the window. 
rectQut = rect; . . 

. rec~Out.bottom = rectOut.top + nFontHeight; 

hdc = Begi.nP,aint (~Wnd,.&ps); 

{nKeyCntJ { 
for (i = O; i <nKeyCnt; i++) { 

. // Create string .containing .. wParam, lParam, and shift data, 
wsprintf (SzOut, TEXT C"wP:%08x 1P:%08>( shift: %J>f');. 

ka[iJ,wParam, ka[i].lParam, ka[ii.szShift); 

fl Look up name of key .message. 
for (f = O; f < dim (knArray); j++) 

if (knArray[j].wMsg ~ ka[i] .wKeyMsg) 
break; 

. // See if we foQnd the message, 
if .(j < dim (knArray)) 

. pJ<eyTex.t .. knArray[j] .pt.lame; 
else · 

pKeyText =TEXT ("Unknown"); 
II Scroll the window 9ne line. 
Scrolli:lC (hd~. 0, nFontHeight, &rect, &re~t, .NUl;l., NULL); 



} 

} 

} 

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 99 

II See if wide or narrow screen. 
if (GetSystemMetrics (SM_CXSCREEN) < 480) { 

} 

II If narrow screen, display info on 2 lines 
ExtTextOut (hdc, 10, rect.top, ETO_OPAQUE, &rectOut, 

szOut, lstrlen (szOut), NULL); 

II Scroll the window another line. 
ScrollDC(hdc, 0, nFontHeight, &rect, &rect, NULL, NULL); 
ExtTextOut (hdc, 5, rect.top, ETO_OPAQUE, &rectOut, 

pKeyText, lstrlen (pKeyText), NULL); 
else { 

II Wide screen, print all on one line. 
ExtTextOut (hdc, 5, rect.top, ETO_OPAQUE, &rectOut, 

pKeyText, lstrlen (pKeyText), NULL); 
ExtTextOut (hdc, 100,, rect.top, 0, NULL, 

szOut, lstrlen (szOut), NULL); 

nKeyCnt = O; 

EndPaint (hWnd, &ps); 
return O; 

//----------------------------------------------------------------------
11 DoKeysMain - Process all keyboard messages for window. 
II 
LRESULT DoKeysMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

if (nKeyCnt >= 16) return O; 

ka[nKeyCnt] .wKeyMsg = wMsg; 
ka[nKeyCnt] .wParam = wParam; 
ka[nKeyCnt].lParam = lParam; 

II Capture the state of the shift flags. 
ka[nKeyCnt].szShift[O] =TEXT ('\O'); 

int siz = dim(ka[nKeyCnt].szShift); //save size of string buffer 

if (GetKeyState (VK_LMENU)) 
_tcscat_s (ka[nKeyCnt].szShift, siz, TEXT ("lA ")); 

if (GetKeyState (VK_RMENU)) 
_tcscat_s (ka[nKeyCnt].szShift, siz, TEXT ("rA ")); 

if (GetKeyState (VK_MENU)) 
_tcscat_s (ka[nKeyCnt].szShift, siz, TEXT ("A ")); 

if (GetKeyState (VK_LCONTROL)) 
_tcscat_s (ka[nKeyCnt].szShift, siz, TEXT ("lC ")); 

if (GetKeyState (VK_RCONTROL)) 
_tcscat_s (ka[nKeyCnt] .szShift, siz, TEXT ("rC ")); 

if (GetKeyState (VK_CONTROL)) 
_tcscat_s (ka[nKeyCnt].szShift, siz, TEXT ("C ")); 



100 Part I Windows Programming Basics 

} 

. . 

i.f (GetKeyState (\IKJ.SHIFT)) 
:.:.tcscat;,,.s .(ka[nKeycntJ•szShift, siz; TEXT ("ls ·~)); 

if (GetKeyState CVK....RSHIFT)) 
· · _:.tcsca,t:..s (ka[n~eycnt}.ScZShift, siz1 TE)IT ("rS")J; 

tf. (GetKeyState (yK_SfllPT)) •. · .... 
· ... ,_.tcscat,...s (ka[nKeycntl~szShlft, .siz, 'rw ("S ")); 

nKey(nt++;· . 
Invali(iateRect .(hWnd., NULL, ... FALSE); 
retur11.o;· 

//-----::----:--.:.-----~---:------'-.,-----~-------.---:-----,-------------------, 
fl DoDestroyMain'- ProcessWM_DESTROYrilessage for win.dow. 
J/·· 
LRESl)LT DoDestroyMain (~ND hWnd, l)INT wMsg, WPAIV\M wParani, 

· · · · I.PA.RAM lflaram) { · 
PostQuttMes.sage (OJ; 

• .. retur~ 0; 
}" 

Here are a few more characteristics of KeyTrac to notice. After each keyboard message is 

recorded, an lnvalidateRect function is called to force a redraw of the window and there

fore also a WM_ PAINT message. As I mentioned in Chapter 2, "Drawing on the Screen," a 

program should never attempt to send or post a WM~PAINT message to a window because 

Windows needs to perform some setup before it calls a window with a WM_PAINT message. 

Another device context function used in KeyTrac is 

BOOL ScrollDC (HOC hDC, int dx, int dy, const RECT *lprcScroll, 
const RECT *lprcClip, HRGN hrgnUpdate, 
LPRECT lprcUpdate); 

which scrolls an area of the device context either horizontally or vertically, but, under 

Windows CE, not both directions at the same time. The three rectangle parameters define 

the area to be scrolled, the area within the scrolling area to. be clipped, and the area to be 

painted after the scrolling ends. Alternatively, a handle to a region can be passed to Scro/ID(. 

That region is defined by Scro/IDC to encompass the region that needs painting after the 

scroll. 

Also notice that if the KeyTrac window is covered up for any reason and then reexposed, the 

message information on the display is lost. This behavior occurs becaus.e a device context 

doesn't store the bit information of the display. The application is responsible for saving any 

information necessary to completely restore the client. area of the screen. Because KeyTrac 
doesn't save this information, it's lost when the window is covered up. 

One last aspect of KeyTrac needs mentioning. In the key message handler, DoKeysMain, 

the program uses _tcscat_s to construct the shift strings. The function is a standard string 



Chapter 3 Input: Keyboard, Mouse, and Touch Screen 101 

concationation function with a secure twist. The second parameter is the size of the destina

tion string. Windows CE now comes with a secure string library that should be used instead 

of the old standard string functions. The secure functions provide buffer checking to prevent 

buffer overrun errors (or attacks) in the code. Although simple example programs such as 
the ones in this book aren't going to be subject to hordes of hackers attempting to break the 

code, they are example programs and therefore should show proper coding techniques. 

The Mouse and the Touch Screen 
Unlike desktop PCs, Windows CE devices don't always have a mouse. Instead, many Windows 

CE devices have a touch screen and stylus combination. For Windows CE systems that do 

have a mouse, the programming interface is identical to the desktop. 

Mouse Messages 
Whenever the mouse cursor moves across the display, the topmost window at that point 
receives a WM_MOUSEMOVE message. If the user clicks the left or right mouse button, the 

window receives a WM_LBUTTONDOWN or WM_RBUTTONDOWN message. When the 

user releases the button, the window receives a WM_LBUTTONUP or WM_RBUTTONUP 

message. If the user presses and releases the mouse wheel, the window receives a WM_ 

MBUTTONDOWN followed by a WM_MBUTTONUP message. 

For all of these messages, the wParam and f Param parameters are loaded with the same 

values. The wParam parameter contains a set of bit flags indicating whether the Ctrl or Shift 

keys on the keyboard are currently held down. As in other versions of Windows, the Alt key 

state isn't provided in these messages. To get the state of the Alt key when the message was 

sent, use the GetKeyState function. 

The f Param parameter contains two 16-bit values that indicate the position on the screen of 

the tap, or mouse click. The low-order 16 bits contain the x (horizontal) location relative to 

the upper-left corner of the client area of the window, while the high-order 16 bits contain 

they (vertical) position. 

If the user double-taps, that is, taps twice on the screen at the same location and within a 

predefined time, Windows sends a WM_LBUTTONDBLCLK message to the double-tapped 

window, but only if that window's class was registered with the CS_DBLCLKS style. The class 

style is set when the window class is registered with RegisterC/ass. 

You can differentiate between a tap and a double-tap by comparing the messages sent to 
the window. When a double-tap occurs, a window first receives the WM_LBUTTONDOWN 

and WM_LBUTTONUP messages from the original tap. Then a WM_LBUTTONDBLCLK is 

sent followed by another WM_LBUTTONUP. The trick is to refrain from acting on a 

WM_LBUTTONDOWN message in any way that precludes action on a subsequent 



102 Part I Windows Programming Basics 

WM_LBUTTONDBLCLK. This is usually not a problem because single taps usually select an 

object, while double-tapping launches the default action for the object. 

If the user rolls the mouse wheel, the window receives WM_MOUSEWHEEL messages. For this 
message, the contents is the same as the other mouse messages, the horizontal and verti-

cal location of the mouse cursor. The low word of the wParam parameter contains the same 

bit flags indicating the the keys currently held down. The high work of wParam contains the 

distance the wheel was rotated expressed in multiples of a constant WHEEL_DELTA. If the 

value is positive, the rotation is away from the user. A negative value indicates the wheel was 

rotated back toward the user. The DOIView example in Chapter 4 demonstrates support for 

the WM_MOUSEWHEEL message. 

Working with the Touch Screen 

The touch screen and stylus combination might be new to Windows programmers, but for

tunately, its integration into Windows CE applications is relatively painless. The best way to 

deal with the stylus is to treat it as a single-button mouse. The stylus creates the same mouse 
messages that are provided by the mouse in other versions of Windows and by Windows CE 

systems that use a mouse. The differences that do appear between a mouse and a stylus are 

due to the different physical realities of the two input devices. 

Unlike a mouse, a stylus doesn't have a cursor to indicate its current position. Therefore, a 
stylus can't hover over a point on the screen in the way that the mouse cursor does. A cursor 

hovers when a user moves it over a window without pressing a mouse button. This concept 

can't be applied to programming for a stylus because the touch screen can't detect the posi

tion of the stylus when it isn't in contact with the screen. 

Another consequence of the difference between a stylus and a mouse is that without a 

mouse cursor, an application can't provide feedback to the user by means of changes in ap

pearance of a hovering cursor. Touch screen-based Windows CE systems support setting 

the cursor for one classic Windows method of user feedback. The busy hourglass cursor, 
indicating that the user must wait for the system to complete processing, is supported under 

Windows CE so that applications can display the busy hourglass in the same manner as appli

cations running under other versions of Windows. 

Stylus Messages 
When the user presses the stylus on the screen, the topmost window under that point re

ceives the input focus if it didn't have it before and then receives a WM_LBUTTONDOWN 
message. When the user lifts the stylus, the window receives a WM_LBUTTONUP message. 

Moving the stylus within the same window while it's down causes WM_MOUSEMOVE mes

sages to be sent to the window. 



Chapter 3 Input: Keyboard, Mouse, and Touch Screen 103 

Inking 

A typical application for a hand held device is capturing the user's writing on the screen and 

storing the result as ink. This process isn't handwriting recognition-simply ink storage. At 

first pass, the best way to accomplish this would be to store the stylus points passed in each 
WM_MOUSEMOVE message. The problem is that sometimes small CE-type devices can't 

send these messages fast enough to achieve a satisfactory resolution. Under Windows CE, a 

function call has been added to assist programmers in tracking the stylus. 

BOOL GetMouseMovePoints (PPOINT pptBuf, UINT nBufPoints, 
UINT *pnPointsRetrieved); 

GetMouseMovePoints returns a number of stylus points that didn't result in WM_MOUSEMOVE 

messages. The function is passed an array of points, the size of the array (in points), and a 

pointer to an integer that will receive the number of points passed back to the application. 

Once received, these additional points can be used to fill in the blanks between the last WM_ 

MOUSEMOVE message and the current one. 

GetMouseMovePoints does have one "gotcha"; it returns points in the resolution of the touch pan
el, not the screen. This touch panel resolution is generally set at four times the screen resolution, 

so you need to divide the coordinates returned by GetMouseMovePoints by 4 to convert them to 

screen coordinates. The extra resolution helps programs such as handwriting recognizers. 

A short example program, PenTrac, illustrates the difference that GetMouseMovePoints can 
make. Figure 3-3 shows the Pen Trac window. Notice the two lines of dots across the window. 

The top line was drawn using points from WM_MOUSEMOVE only. The second line included 

points that were queried with GetMouseMovePoints. The black dots were queried from WM_ 

MOUSEMOVE, while the red (lighter) dots were locations queried with GetMouseMovePoints. 

•' ,, 

!~'J'Start-!IPenTrac 

FIGURE 3-3 The PenTrac window showing three lines drawn 

The source code for PenTrac is shown in Listing 3-2. The program places a dot on the screen 
for each WM_MOUSEMOVE or WM_LBUTTONDOWN message it receives. If the Shift key is 

held down during the mouse move messages, PenTrac also calls GetMouseMovePoints and 

marks those points in the window in red to distinguish them from the points returned by the 

mouse messages alone. 



104 Part I Windows Programming Basics 

PenTrac cheats a little to enhance the effect of GetMouseMovePoints. The DoMouseMain 

routine, which handles WM_MOUSEMOVE and WM_LBUTTONDOWN messages, calls the 

function sleep to kill a few milliseconds. This delay simulates a slow-responding application 

that might not have time to process every mouse move message in a timely manner. 

LISTING 3-2 The PenTrac program 

PenTrac.h 

II Header file 

II 
I/Written for the.book Programming. Windows CE 
II Copyright (C) 2007 Douglas Boling 
//=====~====:i======:======~:;::==========~====~=·=====~==========.============;:= 

II Returns number of elements. 
#define dim(x) (si.zeof(x)./.sizeof(x[O])) 

II--'-- ___ ,,_------- --- --- cc.-~---•~~'---'-- - ---• - -.~:-'- '--- ~'- - - --- - '-- -- - -- - - ~ --

I/ Generic defines and data types 
II 
struct.decode.UINT { 

UINT Code; 

HWND Initinstance (HINSTANCE, LPWSTR, int); 
int Termlnstance (HINSTANCE, int); 

11 Windo1r1 procedures 

II Structure associates 
II messages 
II witha function. 

LRESULT CALLBACK MainWndProc (HWNO, UINT, WPARAM, LPARAM); 

11 Message . handlers 
LRESULT [)oPaintMain (HWNO, UINT, WPARAM., LPARAM); 
LRESULTDoMouseMain (HWNO, UINT, \/IPARAM, LPARAM}; 
LRESULT DoDestroyMain (HWNO, UINT, .WPARAM,. LPARAM); 

ll,,,===="'"'"""=<============7===,.;======;=====,,,===,,,==================="====== 
II penTrac '-.Tracks stylus movement 

II 
I/ Written for the book Programming Windows CE 
II . Copyri.ght (C} 2007 Douglas Bo ling 

//=="============="'="'========;===============.,=========================,;= 



Chapter 3 Input: Keyboard, Mouse, and Touch Screen 105 

#include <Windows.h> 
#include "pentrac.h" 

II For all that Windows stuff 
II Program-specific stuff 

11----------------------------------------------------------------------
11 Global data 
II 
const TCHAR szAppName [] = TEXT ("PenTrac"); 
HINSTANCE hinst; II Program instance handle 

II Message dispatch table for MainWindowProc 
const struct decodeUINT MainMessages[] = { 

WM_LBUTTONDOWN, DoMouseMain, 
WM_MOUSEMOVE, DoMouseMain, 
WM_DESTROY, DoDestroyMain, 

} ; 

II====================================================================== 
II Program entry point 
II 
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance, 

LPWSTR lpCmdLine, int nCmdShow) { 

} 

MSG msg; 
int re = O; 
HWND hwndMain; 

II Initialize this instance. 
hwndMain = Initinstance (hinstance, lpCmdLine, nCmdShow); 
if (hwndMain == 0) 

return OxlO; 

II Application message loop 
while (GetMessage (&msg, NULL, 0, 0)) { 

TranslateMessage C&msg); 
DispatchMessage (&msg); 

} 
II Instance cleanup 
return Terminstance (hinstance, msg.wParam); 

11----------------------------------------------------------------------
11 InitApp - Application initialization 
II 
HWND Initinstance (HINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow) { 

WNDCLASS we; 
HWND hWnd; 

#if defined(WIN32_PLATFORM_PSPC) I I defined(WIN32_PLATFORM_WFSP) 
II If Windows Mobile, allow only one instance of the application. 

hWnd = FindWindow (szAppName, NULL); 
if (hWnd) { 

} 

#endif 

SetForegroundWindow ((HWND)(((DWORD)hWnd) I OxOl)); 
return O; 

II Save program instance handle in global variable. 



106 Part I Windows Programming Basics 

} 

hinst = hinstance; 

II Register application main window class. 
we.style = O; II Window style 
wc.lpfnWndProc = MainWndProc; II Callback function 
wc.cbclsExtra.= 0; II Extra class data 
wc.cbWndExtra = O; II Extra window data 
wc. hinstance = hinstance; II Owner handle 
we. hicon = NULL., I I Appl i ca ti on icon 
wc.hCursor = LoadCursor (NULL, IDCARROW);ll Default cursor 
wc.hbrBackground = (HBRUSH) GetStockObject (WHITLBRUSH); 
we. l pszMenuName = NULL; II Menu name 
wc.lpszC1assName = szAppName; II Window class name 

if (RegisterClass (&we) == O) return O; 

II Create main window. 
hWnd = CreateWindowEx (WS_El<_NQDRAG, szAppName, TEXT ("PenTrac"), 

WS_VTSIBLE I WS_CAPTION I WS_SYSMENU, 
CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDl:FAULT, 
CW_USEDEFAULT, NULL, NULL, hlnstance, NULL); 

II Return fail code if window not created. 
if ( ! IsWi ndow (hWnd)) return O; 

II Standard show and update calls 
ShowWindow (hWnd, nCmdShow); 
UpdateWindow {hWnd); 
return hWnd; 

11,.--~---~--------~--------------------------------------------,---------
11 Terminstance - Program cleanup 
II 
int Terminstance {HINSTANCE hlnstance, int nDefRC) { 

return nOefRC; 
} 

II====================================================================== 
II Message handling procedures for MainWindow 
II 

11---------~---------------------------------------,-------~-------,--~---
l I MainWndProc - Callback function for application window 
II 
LRESULT CALLBACK MainWndProc (HWND hWnd, .UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
INT i ·~ 

II 
II Search message list to see if we need to handle this 
II message. If in list, call procedure. 
II 
for (i = 0; i < di m(Mai nMessages); i ++) { 

if (wMsg == MainMessages[i].Code) 
return (*MainMessages[i],Fxn)(hWnd, WMsg, wParam, lParam); 

} 



Chapter 3 Input: Keyboard, Mouse, and Touch Screen 107 

return DefWindowProc (hWnd, wMsg, wParam, lParam); 
} 

11----------------------------------------------------------------------
11 DoMouseMain - Process WM_LBUTTONDOWN and WM_MOUSEMOVE messages 
II for window. 
II 
LRESULT DoMouseMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

POINT pt[64]; 
POINT ptM; 
UINT i, uPoints O; 
HOC hdc; 

ptM.x = LOWORD (lParam); 
ptM.y = HIWORD (lParam); 
hdc = GetDC (hWnd); 
II If shift and mouse move, see if any lost points. 
if (wMsg == WM_MOUSEMOVE) { 

} 

if (wParam & MK_SHIFT) 
GetMouseMovePoints (pt, 64, &uPoints); 

for Ci = O; i < uPoints; i++) { 

} 

pt[i].x I= 4; II Convert move pts to screen coords 
pt[iJ .y I= 4; 
II Covert screen coordinates to window coordinates 
MapWindowPoints (HWND_DESKTOP, hWnd, &pt[i], 1); 
SetPixel (hdc, pt[i].x, pt[i].y, RGB (255, 0, O)); 
SetPixel (hdc, pt[i] .x+l, pt[i].y, RGB (255, 0, 0)); 
SetPixel (hdc, pt[i].x, pt[i].y+l, RGB (255, 0, O)); 
SetPixel (hdc, pt[i].x+l, pt[i].y+l, RGB (255, 0, 0)); 

II The original point is drawn last in case one of the points 
II returned by GetMouseMovePoints overlaps it. 
SetPixel (hdc, ptM.x, ptM.y, RGB (0, 0, O)); 
SetPixel (hdc, ptM.x+l, ptM.y, RGB (0, 0, O)); 
SetPixel (hdc, ptM.x, ptM.y+l, RGB (0, 0, O)); 
SetPixel (hdc, ptM.x+l, ptM.y+l, RGB (0, 0, O)); 
ReleaseDC (hWnd, hdc); 

II Kill time to make believe we are busy. 
51 eep(25); 
return o; 

11----------------------------------------------------------------------
11 DoDestroyMain - Process WM_DESTROY message for window. 
II 
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
PostQuitMessage (O); 
return O; 

} 



108 Part I Windows Programming Basics 

Input Focus and Mouse Messages 

Here are some subtleties to note about circumstances that rule how and when mouse mes

sages initiated by stylus input are sent to different windows. As mentioned previously, the 
input focus of the system changes when the stylus is pressed against a window. However, 
dragging the stylus from one window to the next doesn't cause the new window to receive 

the input focus. The down tap sets the focus, not the process of dragging the stylus across a 
window. When the stylus is dragged outside the window, that window stops receiving WM_ 

MOUSEMOVE messages but retains input focus. Because the tip of the stylus is still down, no 
other window receives the WM_MOUSEMOVE messages. This is akin to using a mouse and 
dragging the mouse outside a window with a button held down. 

To continue to receive mouse messages even if the stylus moves off its window, an applica
tion can call 

HWND SetCapture (HWND hWnd); 

passing the handle of the window to receive the mouse messages. The function returns the 

handle of the window that previously had captured the mouse or NULL if the mouse wasn't 
previously captured. To stop receiving the mouse messages initiated by stylus input, the win
dow calls 

BOOL ReleaseCapture (void); 

Only one window can capture the stylus input at any one time. To determine whether the 

stylus has been captured, an application can call 

HWND GetCapture (void); 

which returns the handle of the window that has captured the stylus input or 0 if no window 

has captured the stylus input-although please note one caveat: the window that has cap
tured the stylus must be in the same thread context as the window calling the function. This 
limitation means that if the stylus has been captured by a window in another application, 
GetCapture still returns 0. 

If a window has captured the stylus input and another window calls GetCapture, the window 

that had originally captured the stylus receives a WM_CAPTURECHANGED message. The 
/Param parameter of the message contains the handle of the window that gained the cap
ture. You shouldn't attempt to take back the capture by calling GetCapture in response to 
this message. In general, because the stylus is a shared resource, applications should be wary 
of capturing the stylus for any length of time and should be able to handle gracefully any 

loss of capture. 

Another interesting tidbit: just because a window captures the mouse/stylus, that doesn't 
prevent a tap on another window from gaining the input focus for that window. You can use 



Chapter 3 Input: Keyboard, Mouse, and Touch Screen 109 

other methods for preventing the change of input focus, but in almost all cases, it's better to 
let the user, not the applications, decide which top-level window should have the input focus. 

Right-Button Clicks 
When you click the right mouse button on an object in Windows systems, the action typically 
calls up a context menu, a stand-alone menu displaying a set of choices for what you can do 
with that particular object. On a system with a mouse, Windows sends WM_RBUTTONDOWN 
and WM_RBUTTONUP messages indicating a right-button click. When you use a stylus, you 
don't have a right button. 

Windows CE user interface guidelines specify that a tap-and-hold gesture be used to simu
late a right mouse click. The function SHRecognizeGesture can be used during the processing 
of a WM_LBUTTONDOWN message to detect a tap and hold. The function is prototyped as 

WINSHELLAPI DWORD SHRecognizeGesture(SHRGINFO *shrg); 

The only parameter is the address of a SHRGINFO structure defined as 

typedef struct tagSHRGI { 
DWORD cbSize; 
HWND hwndClient; 
POINT ptDown; 
DWORD dwFlags; 

} SHRGINFO, *PSHRGINFO; 

The cbSize field must be filled with the size of the structure. The hwndC/ient field should be 

set to the handle of the window that is calling the function. The ptDown field is a structure 
that should be filled with the point where the gesture is being recognized. The dwF/ags 
can contain a number of flags. The SHRG_RETURNCMD flag causes the function to return 
GN_ CONTEXTMENU if the user properly gestures with a tap and hold or zero otherwise. The 
SHRG_NOTIFYPARENT flag causes a WM_ NOTIFY message to be sent to the parent window 
if the gesture is properly recognized. Finally, the SHRG_LONGDELAYflag requires the user to 
hold the tap for a longer period of time before the gesture is recognized. 

The TicTacl Example Program 

To demonstrate stylus programming, I have written a trivial tic-tac-toe game. The TicTacl 
window is shown in Figure 3-4. The source code for the program is shown in Listing 3-3. This 

program doesn't allow you to play the game against the computer, nor does it determine the 
end of the game-it simply draws the board and keeps track of the X's and O's. Nevertheless, 
it demonstrates basic stylus interaction. 



110 Part I Windows Programming Basics 

x 
oxx 
0 

O's turn 

FIGURE 3-4 The TicTacl window 

LISTING 3-3 The TicTacl program 

Ti:cTacl.h 

,//~=-===·===========.:;::=:====~===::=====~===:=--=====::====m===~==========.==:;== 
II Header file 

II 
I I Written for the book Progrannni ng Windows CE 
II Copyright {C) 2007 Douglas Sqling 

II Ret1,1rns number of elements 
#define dim(x) Cs:i2:eof(xJ I sizeof(x[O])) 
II..;..; ________ -'----"'-----------------,, __________________ ..; _______ _, ___ ,_.;----
// Generic defines and .. data types 
I( 
struct decodeUINT ~ 

UINT Code; 

!..RESULT (*Fxn)(HWNDi UINT, WPARAM, LPARAM); 
}; 

II Structure associates 
II messages 
II with a function. 

. //--- -i-· -.- ----------- - --,.-- - ---- - - - - -- - "'-- .,- - --'- - - ---' - ---- - - - --- - - -' -- - -- -

I l Function prototypes 

fl 
HWND Initinstance CHINSTANCE, LPWSTR, int); 
int Terminstance CHINSTANCE, int); 

II Window proc.edures 
Ll~ESULT.CALLBACK MainWl')dProc (HWND, UINT, WPARAM, LPARAM); 

//Message handlers 
.· lRESULT DoSizeMain (HWND, UINT, WPARAM, LPARAM); 
LRE_SULTDoPaintMai n (HWND, UINT, \fiPARAM, LPARAM); 
l::RESUL T OolSuttonDownMai n CHWNO, UINT, WPARAM, . LPARAM) ; 
LRESULT DoLButtonUpMai n (HWND' UINT' WPARAM.. LPARAM) ; 

"l::RESl:JLT DoDestroyMain (HWND1 UINT' WPARAM, LPARAM); 



Chapter 3 Input: Keyboard, Mouse, and Touch Screen 111 

II Game function prototypes 
void DrawXO (HOC hdc, HPEN hPen, RECT *prect, INT nCell, INT nType); 
void DrawBoard (HOC hdc, RECT *prect); 

TicTacl.cpp 

II====================================================================== 
II TicTacl - Simple tic-tac-toe game 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II 
II====================================================================== 
#include <Windows.h> 
#include <commctrl.h> 
#include "ti ctacl. h" 

II For all that Windows stuff 
II Command bar includes 
II Program-specific stuff 

11----------------------------------------------------------------------
11 Global data 
II 
const TCHAR szAppName [] = TEXT ("Ti cTacl"); 
HINSTANCE hinst; II Program instance handle 

II State data for game 
RECT rectBoard = {O, 0, 0, O}; 
RECT rectPrompt; 
BYTE bBoard[9]; 
BYTE bTurn = O; 

II Used to place game board. 
II Used to place prompt. 
II Keeps track of X's and O's. 
II Keeps track of the turn. 

II Message dispatch table for MainWindowProc 
const struct decodeUINT MainMessages[] = { 

WM_SIZE, DoSizeMain, 

}; 

WM_PAINT, DoPaintMain, 
WM_LBUTTONUP, DoLButtonUpMain, 
WM_DESTROY, DoDestroyMain, 

II==============================~~===================================== 

II 
II Program entry point 
II 
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance, 

LPWSTR lpCmdline, int nCmdShow) { 
MSG msg; 
HWND hwndMain; 

II Initialize this instance. 
hwndMain = Initinstance (hinstance, lpCmdline, nCmdShow); 
if (hwndMain == 0) 

return OxlO; 
II Application message loop 



112 Part I Windows Programming Basics 

} 

while (GetMessage (&msg, NULL, 0, O)) { 
TranslateMessage (&msg); 
DispatchMessage (&msg); 

} 

II Instance cleanup 
return Terminstance (hinstance, msg.wParam); 

11----------------------------------------------------------------------
11 Initinstance ~ Instance initialization 
II 
HWND Initinstance (HINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow) { 

WNDCLASS we; 
HWND hWnd; 

II Save program instance handle in global variable. 
h!nst = hinstance; 

#if defined(WIN32_PLATFORM_PSPC) I I defined(WIN32_PLAtFORM_W~SP) 
II If Windows Mobile, allow only one instance of the application. 
hWnd = FindWindow (szAppName, NULL); 
if ChWnd) { 

} 

SetForegroundWindow ((HWND)(((DWORD)hWnd) I OxOl)); 
return O; 

#endif 

} 

II Register application main window class. 
we.style= O; II Window style 
wc.lpfnWndProc = MainWndProc; II Callback function 
wc.cbClsExtra = O; II Extra class data 
wc.cbWndExtra = 0; II Extra window data 
wc.hlnstance = hlnstance; II Owner handle 
wc.hicon =NULL, II Application icon 
wc.hCursor = LoadCursor (NULL, IDC_ARROW);ll Default cursor· 
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH); 
wc.lpszMenuName = NULL; II Menu name 
wc.1pszClassName = szAppName; 11 Window class name 

if (RegisterClass (&we) == O) return O; 

II Create main window. 
hWnd = CreateWindowEx (WSJ:X._NODRAG, szAppName, TEXT ("TicTacl"), 

WS~VISIBLE I WS_CAPTION I WS_SYSMENU, 
CW_USEDEFAULT, CW_USEDEFAULT, 
CW_USEDEFAULT, CW_USEDEFAULT, 
NULL, NULL, h!nstance, NULL); 

II Re.turn fail code if window not created. 
if (!IsWindow (hWnd)) return O; 

II Standard show and update calls 
ShowWiridow (hWnd, nCmdShow); 
UpdateWindow (hWnd); 
return hWnd; 

. 11---~----------------------------~~-~----------------------------------



Chapter 3 Input: Keyboard, Mouse, and Touch Screen 113 

II Terminstance - Program cleanup 
II 
int Terminstance (HINSTANCE hinstance, int nDefRC) { 

return nDefRC; 
} 

II====================================================================== 
II Message handling procedures for MainWindow 
II 
11----------------------------------------------------------------------
11 MainWndProc - Callback function for application window 
II 
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

INT i; 
II 
II Search message list to see if we need to handle this 
II message. If in list, call procedure. 
II 
for (i = O; i < dim(MainMessages); i++) { 

if (wMsg == MainMessages[i].Code) 
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, lParam); 

} 

return DefWindowProc(hWnd, wMsg, wParam, lParam); 

11----------------------------------------------------------------------
11 DoSizeMain - Process WM_SIZE message for window. 
II 
LRESULT DoSizeMain (HWNO hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
RECT rect; 
INT i; 
II Adjust the size of the client rect to take into account 
II the command bar height. 
GetClientRect (hWnd, &rect); 

II Initialize the board rectangle if not yet initialized. 
if (rectBoard.right == O) { 

} 

II Initialize the board. 
for (i = O; i < dim(bBoard); i++) 

bBoard[i] = O; 

II Define the playing board rect. 
rectBoard = rect; 
rectPrompt = rect; 
II Layout depends on portrait or landscape screen. 
if (rect.right - rect.left > rect.bottom - rect.top) { 

rectBoard.left += 20; 
rectBoard.top += 10; 
rectBoard.bottom -= 10; 
rectBoard.right = rectBoard.bottom - rectBoard.top + 10; 

rectPrompt.left = rectBoard.right + 10; 



114 Part I Windows Programming Basics 

} 

} else { 

} 

rectBoard.left += 20; 
rectBoard.right -= 20; 
rectBoard.top += 10; 
rectBoard.bottom = rectBoard.right - rectBoard.left + 10; 

rectPrompt.top = rectBoard.bottom + 10; 

return O; 

11----------------------------------------------------------------------
11 DoPaintMain - Process WM_PAINT message for window. 
II 
LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

PAINTSTRUCT ps; 
RECT rect; 
HFONT hFont, hOldFont; 
HOC hdc; 

GetClientRect (hWnd, &rect); 

hdc = BeginPaint ChWnd, &ps); 

II Draw the board. 
DrawBoard (hdc, &rectBoard); 

II Write the prompt to the screen. 
hFont = (HFONT)GetStockObject (SYSTEM....FONT); 
hOldFont = (HFONT)SelectObject (hdc, hFont); 
if (bTurn == 0) 

else 

DrawText (hdc, TEXT («X's turn»), -1, &rectPrompt, 
DT_CENTER I DT_VCENTER I DT~SINGLELINE); 

DrawText (hdc, TEXT («O's turn»), -1, &rectPrompt, 
DT_CENTER I DT_VCENTER I DT_SINGLELINE); 

SelectObject (hdc, hOldFont); 
EndPaint (hWnd, &ps); 
return O; 

11----------------------------------------------------------------------
11 DoLButtonUpMain - Process WM....LBUTTONUP message for window. 
II 
LRESULT DoLButtonUpMain CHWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
POINT pt; 
INT ex, cy, nCell = O; 

pt.x = LOWORD (lParam); 
pt.y = HIWORD (lParam); 
II See if pen on board. If so, determine which cell. 



} 

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 115 

if (PtinRect (&rectBoard, pt)){ 

} 

II Normalize point to upper left corner of board. 
pt.x rectBoard.left; 
pt.y -= rectBoard.top; 

II Compute size of each cell. 
ex= (rectBoard.right - rectBoard.left)l3; 
cy = (rectBoard.bottom - rectBoard.top)l3; 

II Find column. 
nCell = (pt.x I ex); 
II Find row. 
nCell += (pt.y I cy) * 3; 

II If cell empty, fill it with mark. 
if (bBoard[nCell] == 0) { 

if (bTurn) { 
bBoard[nCell] = 2; 
bTurn = O; 

} else { 

} 

bBoard[nCell] l; 
bTurn = l; 

InvalidateRect (hWnd, NULL, FALSE); 
} else { 

} 

II Inform the user of the filled cell. 
MessageBeep (O); 

return O; 

return O; 

11----------------------------------------------------------------------
11 DoDestroyMain - Process WM_DESTROY message for window. 
II 
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
PostQuitMessage (O); 

return O; 
} 

//============================================================~========= 
II Game-specific routines 
II 
11----------------------------------------------------------------------
11 DrawXO - Draw a single X or O in a square. 
II 
void DrawXO (HOC hdc, HPEN hPen, RECT *prect, INT nCell, INT nType) { 

POINT pt[2]; 
INT ex, cy; 
RECT rect; 

ex= (prect->right - prect->left)l3; 
cy = (prect->bottom - prect->top)l3; 



116 Part I Windows Programming Basics 

} 

II Compute the dimensions of the target cell. 
rect.left =(ex* (nCell % 3) + preq->left) + 10; 
rect.right = rect.right = rect.left +ex - 20; 
rect,top = cy * (nCell I 3) + prect->top + 10; 
rect.bottom = rect.top + cy - 20; 

II Draw an X ? 
if (nType == 1) { 

pt[O].x = rect.left; 
pt[O] .y = rect.top; 
pt[l],x = rect.right; 
pt[l].y = rect.bottom; 
Polyline (hdc, pt, 2); 

pt[O].x = rect.right; 
pt[l] .x = rect. left; 
Polyline (hdc, pt, 2); 

II How about an 0? 
} else if (nType == 2) 

Ellipse (hdc, rect.Te:ft, rect.top, rect.right, rect.bottom); 
} 

return; 

ll----~---------------------------~-------------------------------------
11 DrawBoard - Draw the tic-tac-toe board. 
II VIC.MENU 
void DrawBoard (HDC hdc, RECT *prect) { 

HPEN hPen, hOldPen; 
POINT pt[2]; 
LOGPEN lp; 
INT i, ex, cy; 

II ~reate a nice thick pen. 
lp.lopnStyle = PS_SOLID; 
lp.lopnWidth.x .= 5; 
lp. lopnWidth.y = 5; 
lp. lopnColor = RGB (0, 0, 0); 
hPen = CreatePenindirect (&lp); 

hOldPen = (HPEN)SelectObject (hdc, hPen); 

ex = (prect->right - prect->left)l3; 
cy = (prect->bottom - prect->top)l3; 

II Draw lines down. 
pt[O].x =ex+ prect->left; 
pt[l].x =ex+ prect->left; 
pt[O].y = prect->top; 
pt[l].y = prect->bottom; 
Polyline (hdc, pt, 2); 
pt(O].x +=ex; 
pt[l].x +=ex; 
Polyline (hdc, pt,. 2); 



} 

II Draw lines across. 
pt[O].x = prect->left; 
pt[l].x = prect->right; 
pt[O].y = cy + prect->top; 
pt[l].y = cy + prect->top; 
Polyline (hdc, pt, 2); 

pt[O].y += cy; 
pt[l].y += cy; 
Polyline (hdc, pt, 2); 

II Fill in X's and O's. 

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 117 

for Ci = O; i < dim (bBoard); i++) 
DrawXO (hdc, hPen, &rectBoard, i, bBoard[i]); 

SelectObject (hdc, hOldPen); 
DeleteObject (hPen); 
return; 

The action in TicTacl is centered around three routines: DrawBoard, DrawXO, and 

DoLButtonUpMain. The first two perform the tasks of drawing the playing board. The routine 

that determines the location of a tap on the board (and therefore is more relevant to your 

current train of thought) is DoLButtonUpMain. As the name suggests, this routine is called in 
response to a WM_LBUTTONUP message. The first action to take is to call 

BOOL PtinRect (const RECT *lprc, POINT pt); 

which determines whether the tap is even on the game board. The program knows the loca
tion of the tap because it's passed in the /Param value of the message. The board rectangle 

is computed when the program starts in DoSizeMain. Once the tap is localized to the board, 

the program determines the location of the relevant cell within the playing board by dividing 

the coordinates of the tap point within the board by the number of cells across and down. 

It was mentioned that the board rectangle was computed during the DoSizeMain routine, 

which is called in response to a WM_SIZE message. While it might seem strange that 

Windows CE supports the WM_SIZE message common to other versions of Windows, it 

needs to support this message because a window is sized frequently: first immediately after 
it's created, and then each time it's minimized and restored. You might think that another 

possibility for determining the size of the window would be during the WM_ CREATE mes

sage. The /Pa ram parameter points to a CREA TESTRUCT structure that contains, among other 

things, the initial size and position of the window. The problem with using those numbers is 

that the size obtained is the total size of the window, not the size of the client area, which is 

what we need. Under Windows CE, most windows have no title bar and no border, but some 

have both, and many have scroll bars, so using these values can cause trouble. 



118 Part I Windows Programming Basics 

Another reason for the WM_ SIZE message is that many Windows CE devices have screens 

that can switch between landscape and portrait orientations. When the screen dimensions 

change, the system resizes the top-level application windows. This resizing results in a WM_ 
SIZE message that gives each application the opportunity to adjust its window contents to fit 
the new configuration. 

So now, with the TicTacl example, you have a simple program that uses the stylus effectively 

but isn't complete. To restart the game, you must exit and restart TicTacl. You can't take 

back a move or have 0 start first. You need a method for sending these commands to the 

program. Sure, using keys would work. Another solution would be to create hot spots on 

the screen that, when tapped, provide the input necessary. Clearly this example needs some 

extra pieces to make it complete. I've taken the discussion of Windows as far as I can without 

a more complete discussion of the basic component of the operating system, the windows 
themselves. It's time to take a closer look at windows, child windows, and controls. 



Chapter 4 

Windows, Controls, and Menus 
Understanding how windows work and relate to each other is the key to understanding the 

user interface of the Microsoft Windows operating system, whether it be Microsoft Windows 

XP, Windows Vista, or Microsoft Windows CE. Everything you see on a Windows display is a 
window. The desktop is a window, the taskbar is a window, even the Start button on the task

bar is a window. Windows are related to one another according to one relationship model 

or another; they may be in parent/child, sibling, or owner/owned relationships. Windows 

supports a number of predefined window classes called controls. These controls simplify the 

work of programmers by providing a range of predefined user interface elements as simple 

as a button or as complex as a multiline text editor. Windows CE supports the same standard 

set of built-in controls as the other versions of Windows. These built-in controls shouldn't be 

confused with the complex controls provided by the common control library. Those controls 

are covered in the next chapter. 

Child Windows 
Each window is connected via a parent/child relationship scheme. Applications create a main 

window with no parent, called a top-level window. That window might (or might not) con

tain windows, called child windows. A child window is clipped to its parent. That is, no part 

of a child window is visible beyond the edge of its parent. Child windows are automatically 

destroyed when their parent windows are destroyed. Also, when a parent window moves, its 

child windows move with it. 

Child windows are programmatically identical to top-level windows. You use the 

CreateWindow or CreateWindowEx function to create them, each has a window procedure 
that handles the same messages as its top-level window, and each can, in turn, contain its 

own child windows. To create a child window, use the WS_CHILD window style in the dwStyle 

parameter of CreateWindow or CreateWindowEx. In addition, the hMenu parameter, unused 

in top-level Windows CE windows, passes an ID value that you can use to reference the 

window. 

In addition to the parent/child relationship, windows also have an owner/ owned relationship. 

Owned windows aren't clipped to their owners. However, they always appear "above" (in z

order) the window that owns them. If the owner window is minimized, all windows it owns 

are hidden. Likewise, if a window is destroyed, all windows it owns are destroyed. 

119 



120 Part I Windows Programming Basics 

Window Management Functions 
Given the windows-centric nature of Windows, it's not surprising that you can choose from 
a number of functions that enable a window to interrogate its environment so that it might 
determine its location in the window family tree. To find its parent, a window can call 

HWND GetParent (HWND hWnd); 

This function is passed a window handle and returns the handle of the calling window's par
ent window. If the window has no parent, the function returns NULL. 

Enumerating Windows 

GetWindow, prototyped as 

HWND GetWindow (HWND hWnd, UINT uCmd); 

is a multi-use function that allows a window to query its children, owner, and siblings. The 
first parameter is the window's handle, while the second is a constant that indicates the re
quested relationship. The GW_CHILD constant returns a handle to the first child window of a 
window. GetWindow returns windows in z-order, so the first window in this case is the child 
window highest in the z-order. If the window has no child windows, this function returns 

NULL. The two constants, GW_HWNDFIRST and GW_HWNDLAST, return the first and last 
windows in the z-order. If the window handle passed is a top-level window, these constants 

return the first and last topmost windows in the z-order. If the window passed is a child win
dow, the GetWindow function returns the first and last sibling window. The GW_HWNDNEXT 

and GW_HWNDPREV constants return the next lower and next higher windows in the z
order. These constants allow a window to iterate through all the sibling windows by get-
ting the next window, then using that window handle with another call to GetWindow to get 

the next, and so on. Finally, the GW_OWNER constant returns the handle of the owner of a 
window. 

Another way to iterate through a series of windows is 

BOOL EnumWindows (WNDENUMPROC lpEnumFunc, LPARAM lParam); 

This function calls the callback function pointed to by lpEnumFunc once for each top-level 
window on the desktop, passing the handle of each window in turn. The /Param value is an 
application-defined value, which is also passed to the enumeration function. This function 
is better than iterating through a GetWindow loop to find the top-level windows because it 

always returns valid window handles. It's possible that a GetWindow iteration loop will get 
a window handle whose window is destroyed before the next call to GetWindow can occur. 

However, because EnumWindows works only with top-level windows, GetWindow still has a 
place when a program is iterating through a series of child windows. 



Chapter 4 Windows, Controls, and Menus 121 

Finding a Window 

To get the handle of a specific window, use the function 

HWND FindWindow (LPCTSTR lpClassName, LPCTSTR lpWindowName); 

This function can find a window either by means of its window class name or by means of a 

window's title text. This function is handy when an application is just starting up; it can de

termine whether another copy of the application is already running. All an application has to 

do is call FindWindow with the name of the window class for the main window of the applica

tion. Because the first job of almost every application is to create its main window, a NULL 

returned by FindWindow indicates that the function can't locate another window with the 

specified window class-therefore, it's almost certain that another copy of the application 
isn't running. 

You can find the handle to the desktop window by using the function 

HWND GetDesktopWindow (void); 

Moving a Window 

SetWindowPos is one of those functions used all the time in Windows. It allows the applica

tion to move, size, change the z-order of, and even cause the system to redraw the nonclient 

area of the window. Its prototype is 

BOOL SetWindowPos (HWND hWnd, HWND hWndinsertAfter, int X, int Y, 
int ex, int cy, UINT uFlags); 

The first parameter is the handle of the window that will be changed. The hWndlnsertAfter 

parameter optionally allows the function to set the z-order of the window. This parameter 

can be either a window handle or one of four flags that position the window either at the top 

or the bottom of the z-order. The flags are shown here: 

• HWND_BOTTOM The window underneath all windows on the desktop 

• HWND_TOP The window on top of all windows 

• HWND_TOPMOST The window to always be placed on top of other windows, even 
when the window is deactivated 

• HWND_NOTTOPMOST The window on top of all other nontopmost windows but 

not marked as a topmost window so that it will be covered when another window is 

activated 



122 Part I Windows Programming Basics 

The X, Y, ex, and cy parameters optionally specify the position and size of the window. The 

flags parameter contains one or more flags that describe the task to accomplish. The flags 

are as follows: 

• SWP_NOMOVE Don't move the window. 

• SWP_NOSIZE Don't resize the window. 

• SWP_NOZORDER Don't set the window's z-order. 

• SWP_NOACTIVATE If the z-order is set, don't activate the window. 

• SWP_DRAWFRAME Redraw the nonclient area. 

• SWP_FRAMECHANGED Recalculate the nonclient area, and then redraw. 

Two other flags, SWP_SHOWWINDOW and SWP_HIDEWINDOW, show and hide the win

dow, but it's easier to call the ShowWindow function to show or hide a window. To use 

SetWindowPos to force the frame to be redrawn after the style bits are changed, the call is 

SetWindowPos (hWnd, 0, 0, 0, 0, 0, 
SWP_NOMOVE I SWP_NOSIZE I SWP_NOZORDER I SWP_FRAMECHANGED); 

Editing the Window Structure Values 

The pair of functions 

LONG GetWindowLong (HWND hWnd, int nlndex); 

and 

LONG SetWindowLong (HWND hWnd, int nlndex, LONG dwNewLong); 

allow an application to edit data in the window structure for a window. Remember that the 

WNDCLASS structure passed to the RegisterC/ass function has a field, cbWndExtra, that con

trols the number of extra bytes that are to be allocated after the structure. If you allocate 

extra space in the window structure when the window class is registered, you can access 

those bytes using the GetWindowLong and SetWindowLong functions. The data must be al

located and referenced in 4-byte (integer-sized and aligned) blocks. So if a window class was 

registered with 12 in the cbWndExtra field, an application can access those bytes by calling 

GetWindowLong or SetWindowLong with the window handle and by setting the values 0, 4, 

and 8 in the nlndex parameter. 

GetWindowLong and SetWindowLong support a set of predefined index values that allow 
an application access to some of the basic parameters of a window. Here is a list of the sup

ported values for Windows CE. 

• GWL_STYLE The style flags for the window 

• GWL_EXSTYLE The extended style flags for the window 



Chapter 4 Windows, Controls, and Menus 123 

• GWL_WNDPROC The pointer to the window procedure for the window 

• GWL_ID The ID value for the window 

• GWL_USERDATA An application-usable 32-bit value 

Dialog box windows support the following additional values: 

• DWL_DLGPROC The pointer to the dialog procedure for the window 

• DWL_MSGRESULT The value returned when the dialog box function returns 

• DWL_USER An application-usable 32-bit value 

Windows CE doesn't support the GWL_HINSTANCE and GWL_HWNDPARENTvalues sup

ported by Windows XP and Windows Vista. 

Changing the Style Flags 

Editing the window structure can be useful in a number of ways. The style bits of a window 
can be changed after the window is created to change its default actions and look. For exam

ple, the title bar of a window can be shown or hidden by toggling the WS_CAPTION style bit. 

After changing any style flag that modifies the look of the window, it's customary to force 

the system to redraw the nonclient area of the window with a call to SetWindowPos. When 

the style or exstyle flags are changed, Windows CE sends a WM_STYLECHANGED message to 

the window. 

Subclassing a Window 

Another use of SetWindowlong is to subclass a window. Subclassing a window allows an ap

plication to essentially derive an instance of a new window class from a preexisting window 

class. The classic use for subclassing is to modify the behavior of a window control, such as an 

edit control. 

The process of subclassing is actually quite simple. A window procedure is created that pro

vides only the new functionality required of the subclassed window. A window is then creat

ed using the base window class. GetWindowlong is called to get and save the pointer to the 

original window procedure for the window. SetWindowlong is then called to set the window 

procedure for this instance of the window to the new window procedure. The new window 

procedure then receives the message sent to the window. Any messages not acted upon by 

the new window procedure are passed on to the old window procedure with the function 

Cal/WindowProc. The following code shows a window being created and then subclassed. 

The subclass procedure then intercepts the WM_LBUTTONDOWN message and beeps the 

speaker when the window receives that message. 

II Prototype of subclass procedure 
LRESULT CALLBACK SCWndProc(HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam); 



124 Part I Windows Programming Basics 

II Variable that holds the pointer to the original WndProc 
WNDPROC lpfnOldProc = O; 
II 
II Routine that subclasses the requested window. 
II 
BOOL SubClassThisWnd (HWND hwndSC) { 

} 

II 

if (lpfnOldProc == 0) { 

} 

II Get and save the pointer to the original window procedure 
lpfnOldProc = (WNDPROC)GetWindowLong (hwndSC, GWL...WNDPROC); 

II Point to new window procedure 
return SetWindowLong (hwndSC, GWL_WNDPROC, (DWORD)SCWndProc); 

return FALSE; 

II Subclass procedure 
II 
LRESULT CALLBACK SCWndProc(HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

switch (wMsg) { 

case WM_LBUTTONDOWN: 
MessageBeep(O); 
break; 

return CallWindowProc (lpfnOldProc, hWnd, wMsg, wParam, lParam); 

To un-subclass the window, the program simply calls SetWindowlong to set the WndProc 

pointer back to the original window procedure. 

Windows Controls 
Were it not for the Windows Control library, programming Windows applications would 
be a slow and arduous process. In addition, every application would have its own look and 

feel. This would force the user to learn a new way of working with each new application. 

Fortunately, this scenario is avoided with an assortment of controls that the operating system 

provides. In short, controls are simply predefined window classes. Each has a custom window 

procedure supplied by Windows that gives each of these controls a tightly defined user and 
programming interface. 

Working with Controls 

Because a control is just another window, it can be created with a call to CreateWindow or 

CreateWindowEx. Controls notify their parent window of events via WM_ COMMAND 

messages encoding events and the ID and window handle of the control encoded in the 

parameters of the message. 



Chapter 4 Windows, Controls, and Menus 125 

Like all messages, WM_ COMMAND contains two generic parameters, wParam and /Param. 

For a WM_ COMMAND message, the high word of wParam contains the notification code, 
the reason for the WM_ COMMAND message being sent. The low word of wParam contains 

the ID value of the control that sent the message. The ID is a word that's typically defined 
when the control is created and, to be useful, should be unique among all the sibling win

dows of the control. The /Param value contains the handle of the child window that sent the 
control. In general, it's easier to track the source of a WM_ COMMAND message though the 
control ID rather than the window handle of the control, but both are available in the mes
sage. The following code is typical of the first few lines of a WM_ COMMAND handler: 

case WM_COMMAND: 
WORD idltem, wNotifyCode; 
HWND hwndCtl ; 

II Parse the parameters. 
iditem = (WORD) LOWORD (wParam); 
wNotifyCode =(WORD) HIWORD(wParam); 
hwndCtl = (HWND) lParam; 

From this point, the WM_ COMMAND handler typically uses the ID of the control and then 
uses the notification code to determine why the WM_ COMMAND message was sent. 

Controls can also be configured and manipulated using predefined messages sent to the 
control. Among other things, applications can set the state of buttons, add items to or delete 
items from list boxes, and set the selection of text in edit boxes, all by sending messages to 
the controls. Controls are typically indentified by their ID, but many Windows functions re
quire the handle of the control. The GetD/gltem function provides a simple conversion. The 

function is prototyped as 

HWND GetDlgitem (HWND hDlg, int nIDDlgitem); 

The two parameters are the handle of the parent window of the control and the ID value for 

the control. Although the name implies that the function can be used only in dialog boxes, 
something discussed in Chapter 6, "Dialog Boxes and Property Sheets," it works quite fine for 
a control in any window. 

Another convenient function you can use to send a message to a control is 
SendD/gltemMessage. This function sends a message to a child window with a specific ID. The 
prototype of the message is shown here: 

LONG SendDlgitemMessage (HWND hParent, int nIDChild, UINT Msg, 
WPARAM wParam, LPARAM lParam); 

The parameters are similar to those for SendMessage. In fact, the following code is function
ally identical to that of SendD/gltemMessage: 

LONG SendMessage (GetDlgitem (hParent, nIDChild), Msg, wParam, lParam); 



126 Part I Windows Programming Basics 

The only difference is the convenience of not having to embed the GetD/gftem call within 
Send Message. 

There are six predefined window control classes. They are: 

• Button A wide variety of buttons 

• Edit A window that can be used to enter or display text 

• List A window that contains a list of strings 

• Combo A combination edit box and list box 

• Static A window that displays text or graphics that a user can't change 

• Scroll bar A scroll bar not attached to a specific window 

Each of these controls has a wide range of function, far too much to cover completely in this 
chapter. But the following is a quick review of these controls, with a mention at least of the 
highlights. 

Button Controls 

Button controls enable several forms of input to the program. Buttons come in many styles, 

including push buttons, check boxes, and radio buttons. Each style is designed for a specific 
use-for example, push buttons are designed for receiving momentary input, check boxes 
are designed for on/off input, and radio buttons allow a user to select one of a number of 

choices. 

Push Buttons 

In general, push buttons are used to invoke some action. When a user presses a push button 
using a stylus, the button sends a WM_ COMMAND message with a BN_CLICKED (for button 

notification clicked) notify code in the high word of the wParam parameter. 

Check Boxes 

Check boxes display a square box and a label that asks the user to specify a choice. A check 
box retains its state, either checked or unchecked, until the user clicks it again or the program 
forces the button to change state. In addition to the standard BS_CHECKBOX style, check 
boxes can come in a three-state style, BS_3STATE, that allows the button to be disabled and 
shown grayed out. Two additional styles, BS_AUTOCHECKBOX and BS_AUT03STATE, auto

matically update the state and look of the control to reflect the checked, the unchecked, and, 
in the case of the three-state check box, the disabled state. 

As with push buttons, check boxes send a BN_CLICKED notification when the button is 

clicked. Unless the check box has one of the automatic styles, it's the responsibility of the 



Chapter 4 Windows, Controls, and Menus 127 

application to manually change the state of the button. This can be done by sending a 

BM_SETCHECK message to the button with the wParam set to 0 to uncheck the button or 1 

to check the button. The three-state check boxes have a third, disabled, state that can be set 

by means of the BM_SETCHECK message with the wParam value set to 2. An application can 

determine the current state using the BM_GETCHECK message. 

Radio Buttons 

Radio buttons allow a user to select from a number of choices. Radio buttons are grouped 

in a set, with only one item of the set ever being checked at a time. If it's using the standard 

BS_RADIOBUTTON style, the application is responsible for checking and unchecking the ra

dio buttons so that only one is checked at a time. However, like check boxes, radio buttons 

have an alternative style, BS_AUTORADIOBUTTON, that automatically maintains the group of 

buttons so that only one is checked. 

Customizing the Appearance of a Button 

You can further customize the appearance of the buttons described so far by using a num

ber of additional styles. The styles, BS_ RIGHT, BS_ LEFT, BS_ BOTTOM, and BS_ TOP, allow 

you to position the button text in a place other than the default center of the button. The 

BS_MULTILINE style allows you to specify more than one line of text in the button. The text 

is flowed to fit within the button. The newline character (\n) in the button text can be used 
to specifically define where line breaks occur. Windows CE doesn't support the BS_ICON and 

BS_ BITMAP button styles supported by other versions of Windows. 

Owner-Draw Buttons 

You can totally control the look of a button by specifying the BS_OWNERDRAW style. When 

a button is specified as owner-draw, its owner window is entirely responsible for drawing the 

button for all the states in which it might occur. When a window contains an owner-draw 

button, it's sent a WM_DRAWITEM message to inform it that a button needs to be drawn. 

For this message, the wParam parameter contains the ID value for the button and the /Param 

parameter points to a DRAWITEMSTRUCT structure defined as 

typedef struct tagDRAWITEMSTRUCT { 
UINT CtlType; 
UINT CtlID; 
UINT itemID; 
UINT itemAction; 
UINT itemState; 
HWND hwndltem; 
HOC hDC; 
RECT rcltem; 
DWORD itemData; 

} DRAWITEMSTRUCT; 



128 Part I Windows Programming Basics 

The Ct/Type field is set to OOT_BUTTON, while the Ct//D field, like the wParam parameter, 

contains the button's ID value. The itemAction field contains flags that indicate what needs to 

be drawn and why. The most significant of these fields is itemState, which contains the state 

(selected, disabled, and so forth) of the button. The hDC field contains the device context 

handle for the button window, while the rcltem RECT contains the dimensions of the button. 

The itemOata field is NULL for owner-draw buttons. 

As you might expect, the WM_ORAWITEM handler contains a number of GDI calls to draw 

lines, rectangles, and whatever else is needed to render the button. An important aspect 

of drawing a button is matching the standard colors of the other windows in the system. 

Because these colors can change, they shouldn't be hard coded. You can query to find out 

which are the proper colors by using the function 

DWORD GetSysColor (int nindex); 

This function returns an RGB color value for the colors defined for different aspects of win

dows and controls in the system. Among a number of predefined index values passed in the 

index parameter, an index of COLOR_BTNFACE returns the proper color for the face of a but
ton, while COLOR_BTNSHAOOW returns the dark color for creating the three-dimensional 

look of a button. 

One function often used in owner-draw buttons is the function 

BOOL DrawFocusRect (HOC hDC, canst RECT" lprc); 

DrawFocusRect draws a dashed-line rectangle that is used by buttons to indicate they have 

the focus. The two paramters are the device context handle and a pointer to a RECT structure 

that delinates the dimensions of the target rectangle. 

The Edit Control 

The edit control is a window that allows the user to type and edit text. As you might imagine, 

the edit control is one of the handiest controls in the Windows control pantheon. The edit 

control is equipped with full editing capability, including cut, copy, and paste interaction 

with the system clipboard, all without assistance from the application. Edit controls display a 

single line or, when the ES_MULTILINE style is specified, multiple lines of text. The Notepad 

accessory, provided with the desktop versions of Windows, is simply a top-level window that 

contains a multiline edit control. 

The edit control has a few other features that should be mentioned. An edit control with the 

ES_PASSWORD style displays an asterisk(*) character by default in the control for each char

acter typed; the control saves the real character. The ES_READONLY style protects the text 

contained in the control so that it can be read or copied into the clipboard, but not modified. 



Chapter 4 Windows, Controls, and Menus 129 

The ES_ LOWERCASE and ES_ UPPERCASE styles force characters entered into the control to 

be changed to the specified case. 

You can add text to an edit control by using the WM_SETTEXT message and retrieve text by 

using the WM_GETTEXT message. Selection can be controlled using the EM_SETSEL mes

sage. This message specifies the starting and ending characters in the selected area. Other 

messages allow the position of the caret (the marker that indicates the current entry point 

in an edit field) to be queried and set. Multiline edit controls contain a number of additional 

messages to control scrolling as well as to access characters by line and column position. 

The List Box Control 

The list box control displays a list of text items so that the user might select one or more of 
the items within the list. The list box stores the text, optionally sorts the items, and manages 

the display of the items, including scrolling. List boxes can be configured to allow selection of 

a single item or multiple items, or to prevent any selection at all. 

You can add an item to a list box by sending an LB_ADDSTRING or LB_INSERTSTRING 
message to the control, passing a pointer to the string to add the f Param parameter. The 

LB_ADDSTRING message places the newly added string at the end of the list of items, while 

LB_INSERTSTR/NG can place the string anywhere within the list of items in the list box. The 

list box can be searched for a particular item using the LB_ FIND message. 

Selection status can be queried using LB_GETCURSEL for single-selection list boxes. For mul

tiple-selection list boxes, LB_ GETSELCOUNT and LB_ GETSEL/TEMS can be used to retrieve 

the items currently selected. Items in the list box can be selected programmatically using the 

LB_SETCURSEL and LB_SETSEL messages. 

Starting with Windows CE 6, the list box control supports owner-draw list boxes. To implement 

an owner-draw list box, use the LBS_OWNERDRAWFIXED or LBS_OWNERDRAWVARIABLE 
style flags depending upon whether the items will all be the same height or varying heights. 

Like owner-draw buttons, the owner window then receives WM_OWNERDRAW messages 

to draw the contents of an individual item in the list box. In addition, the list box sends WM_ 
MEASUREITEM messages to query the height of each item-WM_(OMAREITEM for sorting 

and WM_DELETEITEM to inform the owner that an item was removed from the list box. 

Windows CE supports most of the list box functionality available in other versions of 

Windows with the exception of the LB_DIR family of messages. A new style, LBS_ EX_ 
CONSTSTRINGDATA, is supported under Windows CE. A list box with this style doesn't store 

strings passed to it. Instead, the pointer to the string is stored, and the application is respon

sible for maintaining the string. For large arrays of strings that might be loaded from a re

source, this procedure can save RAM because the list box won't maintain a separate copy of 

the list of strings. 



130 Part I Windows Programming Basics 

The Combo Box Control 

The combo box is (as the name implies) a combination of controls-in this case, a single-line 

edit control and a list box. The combo box is a space-efficient control for selecting one item 
from a list of many or for providing an edit field with a list of predefined suggested entries. 

Under Windows CE, the combo box comes in two styles: drop-down and drop-down list. 

(Simple combo boxes aren't supported.) The drop-down combo box contains an edit field 

with a button at the right end. Clicking on the button displays a list box that might contain 

more selections. Clicking on one of the selections fills the edit field of the combo box with 

the selection. The drop-down list replaces the edit box with a static text control. This allows 

the user to select from an item in the list but prevents the user from entering an item that's 

not in the list. 

Because the combo box combines the edit and list controls, a list of the messages used to 

control the combo box strongly resembles a merged list of the messages for the two base 

controls. CB_AODSTRING, CB_INSERTSTRING, and CB_FINOSTR/NG act like their list box 

cousins. Likewise, the CB_SETEOITSELECT and CB_GETEDITSELECT messages set and query 

the selected characters in the edit box of a drop-down or a drop-down list combo box. To 
control the drop-down state of a drop-down or drop-down list combo box, the messages 

CB_SHOWOROPOOWN and CB_GETDROPPEDSTATE can be used. 

The Windows CE version of the combo box supports the CBS_EX_CONSTSTRINGDATA 
extended style, which instructs the combo box to store a pointer to the string for an item 

instead of the string itself. As with the list box LBS_EX_CONSTSTRINGOATA style, this proce

dure can save RAM if an application has a large array of strings stored in ROM because the 

combo box won't maintain a separate copy of the list of strings. 

Static Controls 

Static controls are windows that display text, icons, or bitmaps not intended for user interac

tion. You can use static text controls to label other controls in a window. What a static control 

displays is defined by the text and the style for the control. Under Windows CE, static con

trols support the following styles: 

• SS_LEFT Displays a line of left-aligned text. The text is wrapped, if necessary, to fit in
side the control. 

• SS_CENTER Displays a line of text centered in the control. The text is wrapped, if nec

essary, to fit inside the control. 

• SS_RIGHT Displays a line of text aligned with the right side of the control. The text is 

wrapped, if necessary, to fit inside the control. 

• SS_LEFTNOWORDWRAP Displays a line of left-aligned text. The text isn't wrapped to 

multiple lines. Any text extending beyond the right side of the control is clipped. 



Chapter 4 Windows, Controls, and Menus 131 

• SS_BITMAP Displays a bitmap. Window text for the control specifies the name of the 

resource containing the bitmap. 

• SS_ICON Displays an icon. Window text for the control specifies the name of the 
resource containing the icon. 

Static controls with the SS_NOTIFY style send a WM_ COMMAND message when the control 

is clicked, enabled, or disabled, although the Windows CE version of the static control doesn't 

send a notification when it's double-clicked. The SS_ CENTER/MAGE style, used in combina
tion with the SS_ BITMAP or SS_ ICON style, centers the image within the control. The SS_ 
NOPREFIX style can be used in combination with the text styles. It prevents the ampersand 

(&) character from being interpreted as indicating that the next character is an accelerator 

character. 

Windows CE doesn't support static controls that display filled or hollow rectangles such as 

those drawn with the SS_ WHITEFRAME or SS_BLACKRECT style. Also, Windows CE doesn't 

support owner-draw static controls. 

The Scroll Bar Control 

The scroll bar control is a somewhat different beast from the other controls. Scroll bars are 

typically seen attached to the sides of windows to control the data being viewed in the win
dow. Indeed, other window controls, such as the edit box and the list box, use the scroll bar 

control internally. Because of this tight relationship to the parent window, the interface of a 

scroll bar is different from that of the other controls. 

Instead of using WM_ COMMAND messages to report actions, scroll bars use WM_VSCROLL 
and WM_HSCROLL messages. WM_ VSCROLL messages are sent by vertically oriented scroll 

bars, whereas WM_HSCROLL messages are sent by horizontally oriented scroll bars. In addi

tion, instead of something like a SB_SETPOSITION message being sent to a scroll bar to set 

its position, there are dedicated functions to do this. Let's look at this unique interface. 

Scroll Bar Messages 

A WM_ VSCROLL message is sent to the owner of a vertical scroll bar any time the user taps 

on the scroll bar to change its position. A complementary message, WM_HSCROLL, is identi
cal to WM_ VSCROLL but is sent when the user taps on a horizontal scroll bar. For both these 

messages, the wParam and f Param assignments are the same. The low word of the wParam 

parameter contains a code indicating why the message was sent. Figure 4-1 shows a diagram of 

horizontal and vertical scroll bars and how tapping on different parts of the scroll bars results 

in different messages. The high word of wParam is the position of the thumb, but this value 

is valid only while you process the SB_ THUMBPOSITION and SB_ THUMBTRACK codes, which 

I'll explain shortly. If the scroll bar sending the message is a stand-alone control and not at

tached to a window, the f Param parameter contains the window handle of the scroll bar. 



132 Part I Windows Programming Basics 

-SB_LINEUP 

-SB_PAGEUP 

-SB THUMBPOSITION 
-SB= THUMBTRACK 

-SB_PAGEDOWN 

!'!jj-SB LINEDOWN 

"'===~~~:!!1l,==========~llJ:~:: -
SB_LINELE'FT I I SB~THUMBPOSITION I SB_LINERIGHT 

SB_PAGELEFT SB_ THUMBTRACK SB_PAGERIGHT 

FIGURE 4-1 Scroll bars and their hot spots 

The scroll bar message codes sent by the scroll bar allow the program to react to all the dif

ferent user actions allowable by a scroll bar. The response required by each code is listed in 

Table 4-1. 

The SB_LINExxx and SB_PAGExxx codes are pretty straightforward. You move the scroll posi

tion either a line or a page at a time. The SB_THUMBPOSITION and SB_THUMBTRACK codes 

can be processed in one of two ways. When the user drags the scroll bar thumb, the scroll 

bar sends SB_THUMBTRACK code so that a program can interactively track the dragging of 

the thumb. If your application is fast enough, you can simply process the SB_ THUMBTRACK 
code and interactively update the display. If you field the SB_ THUMBTRACK code, however, 
your application must be quick enough to redraw the display so that the thumb can be 

dragged without hesitation or jumping of the scroll bar. This can be a problem on the slower 

devices that run Windows CE. 

TABLE 4-1 Scroll Codes 

Codes 
For WM_ VS CROLL 

SB_LINEUP 

SB_PAGEUP 

SB_PAGEDOWN 

For WM_HSCROLL 

SB_LINELEFT 

SB_L/NERIGHT 

SB_PAGELEFT 

SB_PAGERIGHT 

R~s.ponse 

Program should scroll the screen up one line. 

Program should scroll the screen up one screen's worth of data. 

Program should scroll the screen down one screen's worth of data. 

Program should scroll the screen left one character. 

Program should scroll the screen right one character. 

Program should scroll the screen left one screen's worth of data. 

Program should scroll the screen right one screen's worth of data. 



Codes 

SB_ THUMBTRACK 

SB_ THUMBPOSITIO N 

SB_ENDSCROLL 

Chapter 4 Windows, Controls, and Menus 133 

Response 

Programs with enough speed to keep up should update the display 
with the new scroll position. 

Programs that can't update the display fast enough to keep up with 
the SB_THUMBTRACK message should update the display with the 
new scroll position. 

This code indicates that the scroll bar has completed the scroll event. 
No action is required by the program. 

Program should set the display to the top or left end of the data. 

Program should set the display to the bottom or right end of the data. 

If your application (or the system it runs on) is too slow to quickly update the display for 

every SB_ THUMBTRACK code, you can ignore the SB_ THUMBTRACK and wait for the SB_ 
THUMBPOSITION code that's sent when the user drops the scroll bar thumb. Then you have 

to update the display only once, after the user has finished moving the scroll bar thumb. 

Configuring a Scroll Bar 

To use a scroll bar, an application should first set the minimum and maximum values-the 

range of the scroll bar, along with the initial position. Windows CE scroll bars, like their desk

top cousins, support proportional thumb sizes, which provide feedback to the user about the 

size of the current visible page compared with the entire scroll range. To set all these param

eters, Windows CE applications should use the SetScrolllnfo function, prototyped as 

int SetScrollinfo (HWND hwnd, int fnBar, LPSCROLLINFO lpsi, BOOL fRedraw); 

The first parameter is either the handle of the window that contains the scroll bar or the win

dow handle of the scroll bar itself. The second parameter, fnBar, is a flag that determines the 

use of the window handle. The scroll bar flag can be one of three values: SB_HORZ for a win

dow's standard horizontal scroll bar, SB_ VERT for a window's standard vertical scroll bar, or 

SB_CTL if the scroll bar being set is a stand-alone control. Unless the scroll bar is a control, the 
window handle is the handle of the window containing the scroll bar. With SB_ CTL, however, 

the handle is the window handle of the scroll bar control itself. The last parameter is {Redraw, a 

Boolean value that indicates whether the scroll bar should be redrawn after the call is complete. 

The third parameter is a pointer to a SCROLLINFO structure, which is defined as 

typedef struct tagSCROLLINFO { 
UINT cbSize; 
UINT fMask; 
int nMin; 
int nMax; 
UINT nPage; 
int nPos; 
int nTrackPos; 

} SCROLLINFO; 



134 Part I Windows Programming Basics 

This structure allows you to completely specify the scroll bar parameters. The cbSize field 

must be set to the size of the SCROLLINFO structure. The {Mask field contains flags indicating 

what other fields in the structure contain valid data. The nMin and nMax fields can contain 

the minimum and maximum scroll values the scroll bar can report. Windows looks at the 
values in these fields if the {Mask parameter contains the SIF_RANGE flag. Likewise, the nPos 

field sets the position of the scroll bar within its predefined range if the {Mask field contains 

the SIF_POS flag. 

The nPage field allows a program to define the size of the currently viewable area of the 
screen in relation to the entire scrollable area. This allows a user to have a feel for how much 

of the entire scrolling range is currently visible. This field is used only if the {Mask field con

tains the SIF_PAGE flag. The last member of the SCROLLINFO structure, nTrackPos, isn't used 

by the SetScrol/lnfo call and is ignored. 

The {Mask field can contain one last flag. Passing an S/F_DISABLENOSCROLL flag causes the 

scroll bar to be disabled but still visible. This is handy when the entire scrolling range is visible 

within the viewable area and no scrolling is necessary. Disabling the scroll bar in this case is 

often preferable to simply removing the scroll bar completely. 

Those with a sharp eye for detail will notice a problem with the width of the fields in the 

SCROLLINFO structure. The nMin, nMax, and nPos fields are integers and therefore, in the 

world of Windows CE, are 32 bits wide. On the other hand, the WM_HSCROLL and WM_ 

VSCROLL messages can return only a 16-bit position in the high word of the wParam param

eter. If you're using scroll ranges greater than 65,535, use this function: 

BOOL GetScrolllnfo (HWND hwnd, int fnBar, LPSCROLLINFO lpsi); 

As with SetScrolllnfo, the flags in the fnBar field indicate the window handle that should be 

passed to the function. The SCROLL/NFO structure is identical to the one used in SetScrol/lnfo; 

however, before it can be passed to GetScrolllnfo, it must be initialized with the size of the 

structure in cbSize. An application must also indicate what data it wants the function to re

turn by setting the appropriate flags in the {Mask field. The flags used in {Mask are the same 
as the ones used in SetScrolllnfo, with a couple of additions. Now an S/F_TRACKPOS flag can 

be passed to have the scroll bar return its current thumb position. When called during a 

WM_xSCROLL message, the nTrackPos field contains the real-time position, while the nPos 

field contains the scroll bar position at the start of the drag of the thumb. 

The scroll bar is an unusual control in that it can be added easily to windows simply by speci

fying the window style flags WS_ VSCROLL and WS_HSCROLL. It's also unusual in that when 

used this way, the control is placed outside the client area of the window. The reason for this 

assistance is that scroll bars are commonly needed by applications, so the Windows develop

ers made it easy to attach scroll bars to windows. Now look at the other basic Windows con

trols. The DO/View example, presented later in this chapter, demonstrates how a scroll bar is 

used when attached to a window. 



Chapter 4 Windows, Controls, and Menus 135 

Controls and Colors 

Finally, a word about colors. You can change the background color used by the various con

trols by fielding the WM_CTLCOLORxxx messages. These messages are sent to the parent of 
a control to ask the parent which colors to use when drawing the control. Each of the con

trols has a different message. For example, modifying the color of a button by fielding the 

WM_CTLCOLORBUTTON message. Static control background colors are handled by fielding 

the WM_CTLCOLORSTATIC message. 

Other controls send different WM_CTLCOLORxxx messages so that the colors used to draw 

them can be modified by the parent window. 

Menus 
Menus are a mainstay of Windows input. Although each application might have a different 

keyboard and stylus interface, almost all have sets of menus that are organized in a structure 

familiar to the Windows user. 

Windows CE programs use menus a little differently from other Windows programs, the most 

obvious difference being that in Windows CE, menus aren't part of the standard top-level 

window. Instead, menus are attached to a command bar or menu bar control created for 
the window. Other than this change, the functions of the menu and the way menu selec

tions are processed by the application match the other versions of Windows, for the most 

part. Because of this general similarity, I give you only a basic introduction to Windows menu 

management in this section. 

Creating a menu is as simple as calling 

HMENU CreateMenu (void); 

The function returns a handle to an empty menu. To add an item to a menu, two calls can be 
used. The first 

BOOL AppendMenu (HMENU hMenu, UINT fuFlags, UINT idNewitem, 
LPCTSTR lpszNewitem); 

appends a single item to the end of a menu. The fuF!ags parameter is set with a series of 
flags indicating the initial condition of the item. For example, the item might be initially 

disabled (thanks to the MF_ GRAYED flag) or have a check mark next to it (courtesy of the 

MF_ CHECKED flag). Almost all calls specify the MF_STRING flag, indicating that the lpszNew/

tem parameter contains a string that will be the text for the item. The idNewltem parameter 
contains an ID value that will be used to identify the item when it's selected by the user or to 

indicate that the state of the menu item needs to be changed. 

Another call that can be used to add a menu item is this one: 



136 Part I Windows Programming Basics 

BOOL InsertMenu (HMENU hMenu, UINT uPosition, UINT uFlags, 
UINT uIDNewltem, LPCTSTR lpNewitem); 

This call is similar to AppendMenu, with the added flexibility that the item can be inserted 
anywhere within a menu structure. For this call, the uF/ags parameter can be passed one of 
two additional flags: MF_BYCOMMAND or MF_BYPOSIT/ON, which specifies how to locate 
where the menu item is to be inserted into the menu. 

Menus can be nested to provide a cascading effect. To add a cascading menu, or submenu, 
create the menu you want to attach using 

HMENU CreatePopupMenu (void); 

Then use lnsertMenu or AppendMenu to construct the menu, and insert or append the sub
menu to the main menu using either lnsertMenu or AppendMenu with the MF_POPUP flag in 
the flags parameter. In this case, the u/DNewltem parameter contains the handle to the sub

menu, while lpNewltem contains the string that will be on the menu item. 

You can query and manipulate a menu item to add or remove check marks or to enable or 
disable it by means of a number of functions. The function, 

BOOL EnableMenuitem (HMENU hMenu, UINT uIDEnableltem, UINT uEnable); 

can be used to enable or disable an item. The flags used in the uEnable parameter are similar 
to the flags used with other menu functions. Under Windows CE, the flag you use to disable a 
menu item is MF_ GRAYED, not MF_DISABLED. The function 

DWORD CheckMenultem (HMENU hmenu, UINT uIDCheckltem, UINT uCheck); 

can be used to check and uncheck a menu item. Many other functions are available to query 
and manipulate menu items. Check the SDK documentation for more details. 

The following code fragment creates a simple menu structure: 

hMainMenu = CreateMenu (); 

hMenu = CreatePopupMenu (); 
AppendMenu (hMenu, MF_STRING MF_ENABLED, 100, TEXT ("&New")); 
AppendMenu (hMenu, MF_STRING MF_ENABLED, 101, TEXT ("&Open")); 
AppendMenu (hMenu, MF_STRING MF_ENABLED, 101, TEXT ("&Save")); 
AppendMenu (hMenu, MF_STRING MF_ENABLED, 101, TEXT ("E&xit")); 

AppendMenu (hMainMenu, MF_STRING I MF_ENABLED I MF_POPUP, (UINT)hMenu, 
TEXT ("&Fi 1 e")); 

hMenu = CreatePopupMenu (); 
AppendMenu (hMenu, MF_STRING 
AppendMenu (hMenu, MF_STRING 
AppendMenu (hMenu, MF_STRING 

MF_ENABLED, 100, TEXT ("C&ut")); 
MF_ENABLED, 101, TEXT ("&Copy")); 
MF_ENABLED, 101, TEXT ("&Paste")); 



Chapter 4 Windows, Controls, and Menus 137 

AppendMenu (hMainMenu, MF_STRING I MF_ENABLED I MF_POPUP, 
(UINT)hMenu, TEXT ("&Edit")); 

hMenu = CreatePopupMenu (); 
AppendMenu (hMenu, MF_STRING I MF_ENABLED, 100, TEXT ("&About")); 

AppendMenu (hMainMenu, MF_STRING I MF_ENABLED I MF_POPUP, 
(UINT)hMenu, TEXT ("&Help")); 

After a menu is created, it can be displayed with the TrackPopupMenu function, prototyped 

as 

BOOL TrackPopupMenuEx (HMENU hmenu, UINT uFlags, int x, int y, 
HWND hwnd, LPTPMPARAMS lptpm); 

The first parameter is the handle of the menu. The uF/ags parameter sets the alignment for the 
menu in relation to the position parameters x and y Another flag, TPM_RETURNCMD, causes 

the function to return the ID value of the selected menu item instead of generating a WM_ 

COMMAND message. The hwnd parameter is the handle to the window that receives all mes

sages relating to the menu, including the resultant WM_ COMMAND if the user selects a menu 

item. The final item, lptpm, points to a TPMPARAMS structure that contains a size value and a 

rectangle structure. The rectangle structure defines the rectangle on the screen that the menu 

shouldn't cover. This parameter can be null if no exclusion rectangle needs to be specified. 

Handling Menu Commands 

When a user selects a menu item, Windows sends a WM_ COMMAND message to the win

dow that owns the menu. The low word of the wParam parameter contains the ID of the 

menu item that was selected. The high word of wParam contains the notification code. For a 
menu selection, this value is always 0. The /Param parameter is 0 for WM_ COMMAND mes

sages sent due to a menu selection. So to act on a menu selection, a window needs to field 

the WM_ COMMAND message, decode the ID passed, and act according to the menu item 

that was selected. 

Now that I've covered the basics of menu creation, you might wonder where all this menu 

creation code sits in a Windows program. The answer is, it doesn't. Instead of dynamically 

creating menus on the fly, most Windows programs simply load a menu template from a re

source. To learn more about this, let's spend the remainder of this chapter looking at resources. 

Resources 
Resources are read-only data segments of an application or a DLL that are linked to the 

module after it has been compiled. The point of a resource is to give a developer a compiler

independent place for storing content data such as dialog boxes, strings, bitmaps, icons, and 

yes, menus. Because resources aren't compiled in a program, they can be changed without 

your having to recompile the application. 



138 Part I Windows Programming Basics 

You create a resource by building an ASCII file-called a resource script-describing the re

sources. Your ASCII file has the extension RC. You compile this file with a resource compiler, 

which is provided by every maker of Windows development tools, and then you link it into 

the compiled executable again using the linker. These days, these steps are masked by a 

heavy layer of visual tools, but the fundamentals remain the same. For example, Visual Studio 

creates and maintains an ASCII resource (RC) file even though few programmers directly look 

at the resource file text any more. 

It's always a struggle for the author of a programming book to decide how to approach 
tools. Some lay out a very high level of instruction, talking about menu selections and de

scribing dialog boxes for specific programming tools. Others show the reader how to build all 

the components of a program from the ground up, using ASCII files and command-line com

pilers. Resources can be approached the same way: I could describe how to use the visual 
tools or how to create the ASCII files that are the basis for the resources. In this book, I stay 

primarily at the ASCII resource script level since the goal is to teach Windows CE program

ming, not how to use a particular set of tools. I'll show how to create and use the ASCII RC 

file for adding menus and the like, but later in the book in places where the resource file isn't 

relevant, I won't always include the RC file in the listings. The files are, of course, provided 

with the examples on the book Web site. 

Resource Scripts 
Creating a resource script is as easy as using Notepad to create a text file. The language used 

is simple, with C-like tendencies. Comment lines are prefixed by a double slash (//), and files 

can be included using a #include statement. 

Following is an example menu template: 

II 
II A menu template 
II 
ID_MENU MENU DISCARDABLE 
BEGIN 

END 

POPUP "&File" 
BEGIN 

END 

MENUITEM "&Open ... ", 
MENU ITEM "&Save ... ", 
MENUITEM SEPARATOR 
MENUITEM "E&xit", 

POPUP "&Help" 
BEGIN 

MENUITEM "&About", 
END 

100 
101 

120 

200 

The initial ID_MENU is the ID value for the resource. Alternatively, this ID value can be re

placed by a string identifying the resource. The ID value method provides more compact 



Chapter 4 Windows, Controls, and Menus 139 

code, while using a string may provide more readable code when the application loads the 

resource in the source file. The next word, MENU, identifies the type of resource. The menu 

starts with POPUP, indicating that the menu item File is actually a pop-up (cascade) menu 

attached to the main menu. Because it's a menu within a menu, it too has BEGIN and END 

keywords surrounding the description of the File menu. The ampersand (&) character tells 

Windows that the next character should be the key assignment for that menu item. The 

character following the ampersand is automatically underlined by Windows when the menu 

item is displayed, and if the user presses the Alt key along with the character, that menu item 
is selected. Each item in a menu is then specified by the MENUITEM keyword followed by 

the string used on the menu. The ellipsis following the Open and Save strings is a Windows 

UI custom indicating to the user that selecting that item displays a dialog box. The numbers 

following the Open, Save, Exit, and About menu items are the menu identifiers. These values 

identify the menu items in the WM_ COMMAND message. It's good programming practice 

to replace these values with equates that are defined in a common include file so that they 

match the WM_ COMMAND handler code. 

Table 4-2 lists other resource types that you might find in a resource file. The DISCARDABLE 

keyword is optional and tells Windows that the resource can be discarded from memory if 

it's not in use. The remainder of the menu is couched in BEGIN and END keywords, although 

the bracket characters {and} are recognized as well. 

TABLE 4-2 Resource Types Allowed by the Resource Compiler1 

Resource Type 

MENU 

ACCELERATORS 

DIALOG 

BITMAP 

ICON 

FONT 

RCDATA 

STRINGTABLE 

VERSION INFO 

Icons 

Explanation 

Defines a menu 

Defines a keyboard accelerator table 

Defines a dialog box template 

Includes a bitmap file as a resource 

Includes an icon file as a resource 

Includes a font file as a resource 

Defines application-defined binary data block 

Defines a list of strings 

Includes file version information 

Now that you're working with resource files, it's a trivial matter to modify the icon that the 

Windows CE shell uses to display a program. Simply create an icon with your favorite icon 

editor, and add to the resource file an icon statement such as 

ID_ICON ICON "iconname.ico" 

1 The SHMENUBAR resource type used by the Menu Bar control is actually defined as RCDATA inside a wizard
generated include file. 



140 Part I Windows Programming Basics 

When Windows displays a program in Windows Explorer, it looks inside the .exe file for the 

first icon in the resource list and uses it to represent the program. 

Having that icon represent an application's window is somewhat more of a chore. Windows 

CE uses a small 16-by-16-pixel icon on the taskbar to represent windows on the desktop. 

Under the desktop versions of Windows, the RegisterClassEx function can be used to associ

ate a small icon with a window, but Windows CE doesn't support this function. Instead, the 

icon must be explicitly loaded and assigned to the window. The following code fragment 

assigns a small icon to a window: 

hlcon =CHICON) SendMessage (hWnd, WM_GETICON, FALSE, O); 
if (hicon == 0) { 

hlcon = Loadlmage (hlnst, MAKEINTRESOURCE (ID_ICONl), IMAGE_ICON, 
16, 16, O); 

SendMessage (hWnd, WM_SETICON, FALSE, (LPARAM)hlcon); 

The first SendMessage call gets the currently assigned icon for the window. The FALSE value 

in wParam indicates that you're querying the small icon for the window. If this returns 0, 

indicating that no icon is assigned, a call to Load/mage is made to load the icon from the ap

plication resources. The Loadlmage function can take either a text string or an ID value to 

identify the resource being loaded. In this case, the MAKEINTRESOURCE macro is used to 

label an ID value to the function. The icon being loaded must be a 16-by-16 icon because 

under Windows CE, Loadlmage won't resize the icon to fit the requested size. Also under 

Windows CE, Loadlmage is limited to loading icons and bitmaps from resources. Windows CE 

provides the function SHLoadDIBitmap to load a bitmap from a file. 

Accelerators 

Another resource that can be loaded is a keyboard accelerator table. This table is used by 

Windows to enable developers to designate shortcut keys for specific menus or controls in your 

application. Specifically, accelerators provide a direct method for a key combination to result in 
a WM_ COMMAND message being sent to a window. These accelerators are different from the 

Alt+F key combination that, for example, can be used to access a File menu. File menu key com

binations are handled automatically as long as the File menu item string is defined with the && 

character, as in &File. The keyboard accelerators are independent of menus or any other controls, 

although their assignments typically mimic menu operations, as in pressing Ctrl+O to open a file. 

Following is a short resource script that defines a couple of accelerator keys: 

ID_ACCEL ACCELERATORS DISCARDABLE 
BEGIN 

END 

"N", IDM_NEWGAME, VIRTKEY, CONTROL 
"Z", IDM_UNDO, VIRTKEY, CONTROL 



Chapter 4 Windows, Controls, and Menus 141 

As with the menu resource, the structure starts with an ID value. The ID value is followed by 

the type of resource and, again optionally, the discardable keyword. The entries in the table 

consist of the letter identifying the key, followed by the ID value of the command, VIRTKEY, 

which indicates that the letter is actually a virtual key value, followed finally by the CONTROL 

keyword, indicating that Ctrl must be pressed with the key. 

Simply having the accelerator table in the resource doesn't accomplish much. The application 

must load the accelerator table and, for each message it pulls from the message queue, see 

whether an accelerator has been entered. Fortunately, this is accomplished with a few simple 

modifications to the main message loop of a program. Here's a modified main message loop 

that handles keyboard accelerators: 

II Load accelerator table. 
hAccel = LoadAccelerators (hlnst, MAKEINTRESOURCE (ID_ACCEL)); 

II Application message loop 
while (GetMessage (&msg, NULL, 0, 0)) { 

II Translate accelerators 
if (!TranslateAccelerator (hwndMain, hAccel, &msg)) { 

TranslateMessage (&msg); 
DispatchMessage (&msg); 

} 

The first difference in this main message loop is the loading of the accelerator table using the 

LoadAccelerators function. Then, after each message is pulled from the message queue, a call 

is made to TranslateAcce/erator. If this function translates the message, it returns TRUE, which 

skips the standard Trans/ateMessage and DispatchMessage loop body. If no translation was 

performed, the loop body executes normally. 

Bitmaps 
Bitmaps can also be stored as resources. Windows CE works with bitmap resources somewhat 

differently from other versions of Windows. With Windows CE, the call 

HBITMAP LoadBitmap(HINSTANCE hlnstance, LPCTSTR lpBitmapName); 

loads a read-only version of the bitmap. This means that after the bitmap is selected into a 
device context, the image can't be modified by other drawing actions in that DC. To load a 

read/write version of a bitmap resource, use the Load!mage function. 

Strings 
String resources are a good method for reducing the memory footprint of an application while 

keeping language-specific information out of the code to be compiled. An application can call 

int LoadString(HINSTANCE hlnstance, UINT uID, LPTSTR lpBuffer, 
int nBufferMax); 



142 Part I Windows Programming Basics 

to load a string from a resource. The ID of the string resource is u/D, the lpBuffer parameter 

points to a buffer to receive the string, and nBufferMax is the size of the buffer. To conserve 

memory, LoadString has a unique feature under Windows CE. If lpBuffer is NULL, LoadString 

returns a read-only pointer to the string as the return value. Simply cast the return value as 
a pointer and use the string as needed. The length of the string will be located in the word 

immediately preceding the start of the string. Note that by default the resource compiler 

removes terminating zeros from string resources. If you want to read string resources directly 

and have them be zero terminated, invoke the resource compiler with the -r command-line 

switch. Although I'll be covering memory management and strategies for memory conserva

tion in Chapter 7, "Memory Management," one quick note here: it's not a good idea to load a 

number of strings from a resource into memory. This just uses memory both in the resource 

and in RAM. If you need a number of strings at the same time, a better strategy might be 

to use the new feature of LoadString to return a pointer directly to the resource itself. As an 
alternative, you can have the strings in a read-only segment compiled with the program. You 

lose the advantage of a separate string table, but you reduce your memory footprint. 

The DOIView Example Program 
The following example, DOIView, demonstrates the use of resources, keyboard accelerators, 

mouse wheel handling, and pop-up menus. DOIView, short for Declaration of Independence 

View, displays the United States Declaration of Independence in a window. The text for the 

program is stored as a series of string resources. DOIView formats the text to fit the applica

tion window and uses scroll bars to scroll the text. 

Figure 4-3 shows the DOIView window. The keys Ctrl+H and Ctrl+E scroll the document to 

the start (home) and end of the document. You can tap on the window to display a short 

menu that allows you to quickly scroll to the start or end of the document as well as end the 

program. If your Windows CE system supports a mouse with a mouse wheel, DOIView will 

scroll the window as you move the mouse wheel.2 

The source for DOIView is shown in Listing 4-1. Notice the inclusion of a third file, 

DOIView.rc, which contains the resource script for the program. DOIView.rc contains the 

menu resource, a line to include the icon for the program, and a string table that contains 

the text to be displayed. Because string resources are limited to 4092 characters, the text is 

contained in multiple strings. 

2 The mouse wheel won't work inside the emulator since the emulator doesn't translate the PC's mouse wheel 
movement to the software running inside the emulator. 



Chapter 4 Windows, Controls, and Menus 143 

Thti Dtit:laratlon of 1rtdepend1!nca -

IN CONGRESS, July 4, 1776. 

The unanimous Declaration of the thirteen united States of America, 

WHEN in the Course of human Events, it becomes necessary for one People to 
dissolve the Political Bands which have connected them with another, and to assume 
among the Powers of the Earth, the separate and equal Station to which the Laws of 
Nature and of Nature's God entitle them, a decent Respect to the Opinions of Mankind 
requires that they should declare the causes which impel them to the Separation. 

WE hold these Truths to be self-evident, that all Men are created equal, that they are 
endowed by their Creator with certain unalienable Rights, that among these are Life, 
Liberty and the Pursuit of Happiness -- That to · , Governments are 
instituted among Men, deriving their just Powe t of the Governed, 
that whenever any Form of Government becom ese Ends, it is the 
Right of the People to alter or to abolish it, and EKit overnment, laying 
its Foundation on such Principles, and organizing 1 owers 1n such Form, as to them 
shall seem most likely to effect their Safety and Happiness. Prudence, indeed, will 
dictate that Governments long established should not be changed for light and 
transient Causes; and accordingly all Experience hath shewn, that Mankind are more 
disposed to suffer, while Evils are sufferable, than to right themselves by abolishing 
the Forms to which they are accustomed. But when a long Train of Abuses and 

FIGURE 4-2 The DOI View window with the menu displayed 

LISTING 4-1 The DOIView program 

DOIView.rc 

II====================================================================== 
II DOIView - Resource file 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II 
II===============================================================;======= 
#include "DOIView.h" 

11----------------------------------------------------------------------
11 Icon 
II 
ID_ICON ICON "DOIView.ico" 

11----------------------------------------------------------------------
11 Menu 
II 
ID_MENU MENU DISCARDABLE 
BEGIN 

POPUP "&File" 
BEGIN 

MENUITEM "&Goto Start\tCtrl-H", 
MENUITEM "&Goto End\tCtrl-E", 
MENUITEM SEPARATOR 
MENUITEM "E&xit", 

IDM_HOME 
IDM_END 

IDM_EXIT 



144 Part I Windows Programming Basics 

END 
END 
ll--------------------~-------------------------------------------------
11 Accelerator table 
II 
ID_ACCEL ACCELERATORS DISCARDABLE 
BEGIN 

END 

"H", IDM_HOME, VIRTKEY, CONTROL 
"E"~ IOM_END, VIRTKEY, CONTROL 

11----------------------------------------------------------------------
11 String table 
II 
STRINGTABLE DISCARDABLE 
BEGIN 

IDS_DOITEXT, "IN CONGRESS, July 4, 1776.\012The unanimous\ 
Declaration of the thirteen united States of America,\012WHEN in the\ 
Course of human Events, it becomes necessary for one People to\ 
dissolve the Political Bands which have connected them with another, \ 
and to assume among the Powers of the Earth, the separate and equal \ 
Station to which the Laws of Nature and of Nature's God entitle them, \ 
a decent Respect to the Opinions of Mankind requires that they should\ 
declare the causes which impel them to the Separation.\012\ 
WE hold these Truths to be self-evident, that all Men are created \ 
equal, that they are .endowed by their Creator with certain\ 
unalienable Rights, that among these are Life, Liberty and the Pursuit\ 
of Happiness -- That to secure thes.e Rights, Governments are \ 
instituted among Men, deriving their just Powers from the Consent of \ 
the.Governed, that whenever any Form of Government becomes destructive\ 
of these Ends, it is the Right of the People to alter or to abolish \ 
it, and to institute new Government, laying its Foundation on such \ 
Principles., and organizing its Powers in such Form, as to them shall \ 
seem most likely to effect their Safety and Happiness. Prudence, \ 
indeed, will dictate that Govern.ments long established should\ 
not be changed for light and transient Causes; and accordingly all \ 
Experience hath shewn, that Mankind are more disposed .to suffer, while \ 
Evils are sufferabl e, than to right thems.e 1 ves by abolishing the Forms \ 
to which they are accustomed. But when a long Train of Abus.es and \ 
Usurpations, pursuing invariably the same Object, evinces a Design to \ 
reduce them under absolute Despotism, it is their Right, it is their\ 
Duty, to throw off such Government, and to provide new Guards for \ 
their future Security. Such has been the. patient Sufferance of these \ 
Colonies; and \ 
such is now .the Necessity which constrains them to alter their \ 
former Systems of Government. The Hi s.tory of the present King of Great \ 
Britain is a History of repeated Injuries and Usurpations, all having\ 
in direct Object the Establishment of an absolute Tyranny over these \ 
States. To prove this, let Facts be submitted to a candid World.\012\ 
HE has refused his Assent to Laws, the most wholesome and \ 
necessary for the public Good.\012HE ha.s forbidden his Governors to\ 
pass Laws of immediate and pressing Importance, unless suspended in \ 
their Operation till his Assent should be obtained; and when so\ 
suspended, he has utterly neglected to attend to them.\012\ 
HE has refused to pass other Laws for the Accommodation of large \ 



Chapter 4 Windows, Controls, and Menus 145 

Districts of People, unless those People would relinquish the Right of \ 
Representation in the Legislature, a Right inestimable to them, and \ 
formidable to Tyrants only.\012HE has called together Legislative \ 
Bodies at Places unusual, uncomfortable, and distant from the\ 
Depository of their public Records, for the sole Purpose of fatiguing\ 
them into Compliance with his Measures.\012\ 
HE has dissolved Representative Houses repeatedly, for opposing \ 
with manly Firmness his Invasions on the Rights of the People.\012HE \ 
has refused for a long Time, after such Dissolutions, to cause others \ 
to be elected; whereby the Legislative Powers, incapable of the \ 
Annihilation, have returned to the People at large for their exercise; \ 
the State remaining in the mean time exposed to all the Dangers of \ 
Invasion from without, and the Convulsions within.\012\ 
HE has endeavoured to prevent the Population of these States; \ 
for that Purpose obstructing the Laws for Naturalization of Foreigners\ 
; refusing to pass others to encourage their Migrations hither, and\ 
raising the Conditions of new Appropriations of Lands.\012HE has\ 
obstructed the Administration of Justice, by refusing his Assent to \ 
Laws for establishing Judiciary Powers.\012HE has made Judges \ 
dependent on his Will alone, for the Tenure of their Offices, and the\ 
Amount and Payment of their Salaries.\012" 

IDS_DOITEXTl, "HE has erected a Multitude of new Offices, and sent \ 
hither Swarms of Officers to harrass our People, and eat out their\ 
Substance.\012HE has kept among us, in Times of Peace, Standing\ 
Armies, without the consent of our Legislatures.\012HE has affected to\ 
render the Military independent of and superior to the Civil Power.\012\ 
HE has combined with others to subject us to a Jurisdiction \ 
foreign to our Constitution, and unacknowledged by our Laws; giving \ 
his Assent to their Acts of pretended Legislation:\012FOR quartering\ 
large Bodies of Armed Troops among us;\012FOR protecting them, by a \ 
mock Trial, from Punishment for any Murders which they should commit\ 
on the Inhabitants of these States:\012FOR cutting off our Trade with \ 
all Parts of the World:\012\ 
FOR imposing Taxes on us without our Consent:\012FOR depriving \ 
us, in many Cases, of the Benefits of Trial by Jury:\012FOR \ 
transporting us beyond Seas to be tried for pretended Offences:\012\ 
FOR abolishing the free System of English Laws in a neighbouring \ 
Province, establishing therein an arbitrary Government, and enlarging \ 
its Boundaries, so as to render it at once an Example and fit \ 
Instrument for introducing the same absolute Rules into these \ 
Colonies:\012\ 
FOR taking away our Charters, abolishing our most valuable Laws, \ 
and altering fundamentally the Forms of our Governments:\012FOR \ 
suspending our own Legislatures, and declaring themselves invested \ 
with Power to legislate for us in all Cases whatsoever.\012HE has\ 
abdicated Government here, by declaring us out of his Protection and \ 
waging War against us.\012HE has plundered our Seas, ravaged our\ 
Coasts, burnt our Towns, and destroyed the Lives of our People.\012\ 
HE is, at this Time, transporting large Armies of foreign \ 
Mercenaries to compleat the Works of Death, Desolation, and Tyranny, \ 
already begun with circumstances of Cruelty and Perfidy, scarcely\ 
paralleled in the most barbarous Ages, and totally unworthy the Head \ 
of a civilized Nation.\012HE has constrained our fellow Citizens taken \ 



146 Part I Windows Programming Basics 

Captive on the high Seas to bear Arms against their Country, to become\ 
the Executioners of their Friends. and Brethren, or to fall themselves\ 
by their Hands.\012\ 
HE has excited domestic Insurrections amongst us, and has \ 
endeavoured to bring on the Inhabitants of our Frontiers, the \ 
merciless Indian Savages, whose known Rule of Warfare, is an \ 
undistinguished Destruction, of all Ages, Sexes and Conditions.\012IN \ 
every stage of these Oppressions we have Petitioned for Redress in thE'l \ 
most humble Terms: Our repeated Petitions have been answered only by \ 
repeated Injury. A Prince, whose Character is thus marked by every act \ 
which may define a Tyrant, is unfit to be the Ruler of a free People. \ 
NOR have we been wanting in Attentions to our Brittish Brethren. \ 
We have warned them from Time to Time of Attempts by their Legislature\ 
to extend an unwarrantable Juri sdi ct ion over us .. We have reminded them \ 
of the .Circumstances of our Emigration and Settlement here. We have\ 
appealed to their native Justice and Magnanimity, and we have conjured\ 
them by the Ties of our common Kindred to disavow these Usurpations, \ 
which, would inevitably interrupt our Connections and Correspondence. \ 
They too have been deaf to the Voice of Justice and of Consanguinity. \ 
We must, therefore, acquiesce in the Necessity, which denounces our \ 
Separation, and hold them, as we hold the rest of Mankind, Enemies in \ 
War, in Peace, Friends.\012" 

IDS_DOITEXT2, "WE, therefore, the Representatives of the UNIIED \ 
STATES OF AMERICA, in GENERAL CONGRESS, Assembled, appealing to the \ 
Supreme Judge of the World for the Rectitude of our Intentions, do, in \ 
the Name, and by Authority of the good People of these Colonies, \ 
solemnly Publish and Declare, That these United Colonies are, and of\ 
Right ought to be, FREE AND INDEPENDENT STATES; that they are absolved \ 
from all Allegiance to the British Crown, and that all political \ 
Connection between them and the State of Great-Britain, is and ought\ 
to be totally dissolved; and that as FREE AND INDEPENDENT STATES, they \ 
have full Power to levy War, conclude Peace, contract Alliances, \ 
establish Commerce, and to .do all other Acts and Things which \ 
INDEPENDENT STATES may of right do. And for the support of this \ 
Declaration, with a firm Reliance on the Protection of divine\ 
Providence, we mutually pledge to each other our Lives, our Fortunes, \ 
and our sacred Honor." 
END 

DOIView.h 

II====================================================================== 
II Header file 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II================================================================ 
II Returns number of elements 
#define dim(x) (sizeof(x) I sizeof(x[O])) 



Chapter 4 Windows, Controls, and Menus 147 

11----------------------------------------------------------------------
11 Generic defines and data types 
II 
struct decodeUINT 

UINT Code; 

LRESULT (''Fxn) (HWND, UINT, WPARAM, LPARAM); 
} ; 

struct decodeCMD { 
UINT Code; 
LRESULT (*Fxn)(HWND, WORD, HWND, WORD); 

} ; 

#define 
#define 

#define 
#define 
#define 

#define 
#define 
#define 

ID_MENU 
ID_ACCEL 

IDM_HOME 
IDM_END 
IDM_EXIT 

IDS_DOITEXT 
IDS_DOITEXTl 
IDS_DOITEXT2 

10 
11 

100 
101 
102 

1000 
1001 
1002 

II Structure associates 
II messages 
II with a function. 

II Structure associates 
II menu IDs with a 
II function 

II These IDs must be 
II consecutive 

11----------------------------------------------------------------------
11 Function prototypes 
II 
int MyScrollWnd (HWND hWnd, int nNewPos); 
int ShowContextMenu (HWND hWnd, POINT pt); 
LPTSTR WrapStri ng (HOC hdc, LPTSTR pszText, int ''pnLen, int nWi dth, 

BOOL "fEOL); 

HWND Initlnstance (HINSTANCE, LPWSTR, int); 
int Terminstance (HINSTANCE, int); 

II Window procedures 
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM); 

II Message handlers 
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoSizeMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoLButtonDownMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoRButtonDownMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoMouseWheelMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoVScrollMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM); 

II Command functions 
LPARAM DoMainCommandHome (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandEnd (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD); 



148 Part I Windows Programming Basics 

DOIView.cpp 

II================================================~==================== 
II DOIView - Demonstrateswindow scroll bars 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
/I====================================================================== 
#include <windows.h> I/ For all that Windows stuff 
#include "DOIView.h" /I Program-specific stuff 
#include <aygshell .h> I/ Extended shell API 

/I This line forces the linker to add aygshell.lib to the lib list 
#pragma comment( 1 i b, "aygshell" ) I I Link for SHRecognizeGesture 

11----------------------------------------------------------------------
/l Globa 1 data 
/I 
const TCHAR szAppName[] = TEXT("OOIView"); 
HINSTANCE hinst; I/ Program instance handle 

II Message dispatch table for MainWindowProc 
const struct decodeUINT MainMessages[] = { 

WM_CREATE, DoCreateMain, 

}; 

WM_SIZE, DoSizeMain, 
WM_LBUTTONOOWN, DoLButtonOownMain, 
WM_RBUTTONOOWN, DoRButtonDownMain, 
WM_MOUSEWHEEL, DoMouseWheelMain, 
WM_COMMANO, DoCommandMain, 
WM_VSCROLL, DoVScrollMain, 
WM_PAINT, DoPaintMain, 
WM_OESTROY, OoOestroyMain, 

I/ Command Message dispatch for MainWindowProc 
const struct decodeCMD MainCommanditems[] = { 

IDM~HOME, DoMainCommandHome, 
IDM_END, DoMainCommandEnd, 
IOM_EXIT, DoMainCommandExit, 

}; 

typedef struct { 
LPTSTR·pszline; 
int nlen; 

} LINEARRAY, *PLINEARRAY; 

#define MAXLINES 1000 
LINEARRAY laText[MAXLINES]; 
int nNufuLines = O; 
i.nt nFontHei ght = 1; 
int nLinesPerPage = 1; 
int nMWScroll = -1; 



Chapter 4 Windows, Controls, and Menus 149 

LPTSTR pszDeclaration; 
HFONT hFont; 

int nVPos, nVMax; 
BOOL fFirst =TRUE; 
II====================================================================== 
II Program entry point 
II 
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance, 

LPWSTR lpCmdLine, int nCmdShow) { 

} 

MSG msg; 
int re = O; 
HWND hwndMain; 
HACCEL hAccel; 

II Initialize this instance. 
hwndMain = Initinstance (hinstance, lpCmdLine, nCmdShow); 
if (hwndMain == 0) return OxlO; 

II Load accelerator table. 
hAccel = LoadAccelerators (hinst, MAKEINTRESOURCE (ID_ACCEL)); 

II Application message loop 
while (GetMessage (&msg, NULL, 0, 0)) { 

II Translate accelerators 

} 

if (!TranslateAccelerator (hwndMain, hAccel, &msg)) { 
TranslateMessage (&msg); 
DispatchMessage (&msg); 

} 

fl Instance cleanup 
return Terminstance (hinstance, msg.wParam); 

11----------------------------------------------------------------------
1! Initinstance - Instance initialization 
II 
HWND Init!nstance (HINSTANCE h!nstance, LPWSTR lpCmdLine, int nCmdShow) { 

WNDCLASS we; 
HWND hWnd; 
PBYTE pRes, pBuff; 
int nStrLen = O, i = O; 

II Save program instance handle in global variable. 
hinst = hinstance; 

#if defined(WIN32_PLATFORM_PSPC) I I defined(WIN32_PLATFORM_WFSP) 
fl For Windows Mobile devices, allow only one instance of the app 
hWnd = FindWindow (szAppName, NULL); 
if (hWnd) { 

} 

SetForegroundWindow ((HWND)(((DWORD)hWnd) I OxOl)); 
return O; 



150 Part I Windows Programming Basics 

#endif 

} 

//Load text from multiple string resources into one large buffer 
pBuff = (PBYTE)LocalAlloc (LPTR, 8); 
while (pRes = (PBYTE)LoadString (hinst, IDS_DOITEXT + i++, NULL, O)) 
{ 

} 

II Get the length of the string resource 
int nLen = *(PWORD)(pRes-2) * sizeof (TCHAR); 
fl Resize buffer 
pBuff = (PBYTE)LocalReAlloc (pBuff, nStrLen + B + nLen, 

LMEM_MOVEABLE I LMEM_ZEROINIT); 
if (pBuff == NULL) return O; 
fl Copy resource into buffer 
memcpy (pBuff + nStrLen, pRes, nLen); 
nStrLen += nlen; 

*(TCHAR *)(pBuff + nStrLen) =TEXT ('\O'); 
pszDeclaration = (LPTSTR)pBuff; 

//·Register application main window class. 
we.style= O; //Window style 
wc.lpfnWndProc = MainWndProc; //Callback function 
wc.cbClsExtra = O; // Extra class data 
wc.cbWndExtra = O; // Extra window data 
we. hinstance = hlnstance; // Owner handle 
wc.hlcon = NULL, // Applicaticin icon 
wc.hCursor = LoadCursor (NULL, ID<:_ARROW);// Default cursor 
wc.hbrBackground = (HBRUSH) GetStockObject CWHITE_BRUSH); 
wc.lpszMenuName = NULL; //Menu name 
wc.lpszClassName = szAppName; //Window class name 

if. (Regi sterCl ass (&we) == O) return O; 

II Create main window. 
hWnd = CreateWindowEx (WS_E><-.NODRAG, szAppName, 

· TEXTC«The Declaration of Independence»), 
ws_vscROLL 1 ws_vrsIBLE 1 ws_CAPTION 1 

WS_SYSMENU, CW_USEDEFAULT, CW_USEDEFAULT, 
CW_USEDEFAULT, CW_USEDEFAULT, NULL; 
NULL, hlnstance, NULL); 

if ( ! IsWi ndow (hWnd)) return 0; ! I Fail code if not crea.ted. 

/I Standard show and update calls 
ShowWindow (hWnd, nCmdShow); 
UpdateWindow .ChWnd); 
return hWnd; 

!!---------~~~-----------~-----------~----------------------------------
// Terminstance - Program cleanup 
II 
int Termlnstance (HINSTANCE hlnstance, int nDefRC) { 

LocalFree (pszDeclaration); 



Chapter 4 Windows, Controls, and Menus 151 

return nDefRC; 
} 

II====================================================================== 
II Message handling procedures for main window 
II 
11----------------------------------------------------------------------
11 MainWndProc - Callback function for application window 
II 
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

int i; 
II 
II Search message list to see if we need to handle this 
II message. If in list, call procedure. 
II 
for (i = O; i < dim(MainMessages); i++) { 

if (wMsg == MainMessages[i].Code) 
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, lParam); 

} 

return DefWindowProc (hWnd, wMsg, wParam, lParam); 

11----------------------------------------------------------------------
11 DoCreateMain - Process WM_CREATE message for window. 
II 
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

TEXTMETRIC tm; 
HOC hdc = GetDC (hWnd); 
LDGFONT lf; 
HFONT hFontWnd; 

hFontWnd = (HFONT)GetStockObject (SYSTEM_FONT); 
GetObject (hFontWnd, sizeof (LOGFONT), &lf); 

lf.lfHeight = -12 * GetDeviceCaps(hdc, LOGPIXELSY)I 72; 
lf.lfWeight = D; 
hFont = CreateFontindirect (&lf); 
SendMessage (hWnd, WM_SETFONT, (WPARAM)hFont, O); 

II Get the height of the default font. 
hFontWnd = (HFONT)SelectObject (hdc, hFont); 
GetTextMetrics (hdc, &tm); 
nFontHeight = tm.tmHeight + tm.tmExternalLeading; 
SelectObject (hdc, hFontWnd); 
ReleaseDC (hWnd, hdc); 

II Get the mouse scroll wheel line count. 
SystemParametersinfo (SPI_GETWHEELSCROLLLINES, 0, &nMWScroll, 0); 

return 0; 

11----------------------------------------------------------------------
11 DoSizeMain - Process WM_SIZE message for window. 
II 



152 Part I Windows Programming Basics 

LRESULT OoSizeMain (HWNO hWnd, UINT wMsg, WPARAM wParam, 
LPARAM lParam) { 

.} 

RECT r'ect; 
HOC hdc = GetDC (hWnd); 
GetClientRect (hWnd, &rect); 
int i = 0, nChars, nWidth; 
LPTSTR pszWndText = pszOeclaration; 
SCROLLINFO si; 
HFONT hFontWnd; 
BOOL fNewline; 

hFontWnd = (HFONDSelectObj'ect (hdc, hFont); 

II Compute the line breaks 
nWidth .. rect.right - rect.left - 10; 
while (i < MAXLINES){ 

} 

pszWndText = WrapString (hdc, pszWndText, &nChars, nWidth, 
&fNewline); 

if (pszWndText == 0) 
break; 

laText[iJ.pszLine = ps:zWndText; 
laText[iJ.nLen = nChars; 
i++; 
if (fNewline) { 

laText[i] .. nlen = O; 
i++; 

} 
pszWndText += nChars; 

nNumLines = i; 
nLinesPerPage = (rect.bottom - rect.top)/nFontHeight; 

II Compute lines per window and total lenght 
si. cbSi ze = si :zeof (si); 
si.nMin = O; 
si.nMax = nNumLinesi 
si .nPage = nlinesPerPage; 
si.nPos = nVPos; 
si.fMask = SIF....ALL; 
SetScrollinfo (hWnd, SB_VERT, &si, TRUE); 

If Clean up 
SelectObject Chdc, hFontWnd); 
ReleaseDC (hWnd, hdc); 
InvalidateRect (hWnd, NULL, TRUE); 
return O; 

11-----------------------------------~------~-------~----------~--------
l I DoCommandMain - Process WM_COMMAND message for window. 
// 
LRESULT OoCommandMain (HWNO hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
WORD iditem, WNotifyCode; 
HWND hwndCtl; 



} 

int i; 

II Parse the parameters. 
id!tem =(WORD) LOWORD (wParam); 
wNotifyCode = (WORD) HIWORD(wParam); 
hwndCtl = (HWND) lParam; 

Chapter 4 Windows, Controls, and Menus 153 

II Call routine to handle control message. 
for Ci = O; i < dim(MainCommand!tems); i++) { 

if (id!tem == MainCommanditems[i].Code) 
return (*MainCommanditems[i].Fxn)(hWnd, iditem, hwndCtl, 

wNotifyCode); 

return O; 

11----------------------------------------------------------------------
11 DoLButtonDownMain - Process WM_LBUTTONDOWN message for window. 
II 
LRESULT DoLButtonDownMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

POINT pt; 
int re; 

II Display the menu at the point of the tap 
pt.x = LOWORD (lParam); 
pt.y = HIWORD (lParam); 

SHRGINFO sri; 
sri.cbSize = sizeof (sri); 
sri.dwFlags = 1; 
sri.hwndClient = hWnd; 
sri.ptDown =pt; 

II See if tap and hold 
re= SHRecognizeGesture (&sri); 
if (re == O) return O; 

II Display the menu at the point of the tap 
ShowContextMenu (hWnd, pt); 

.return O; 

11----------------------------------------------------------------------
11 DoRButtonDownMain - Process WM_RBUTTONDOWN message for window. 
II 
LRESULT DoRButtonDownMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

POINT pt; 

II Display the menu at the point of the tap 
pt.x = LOWORD (lParam); 
pt.y = HIWORD (lParam); 
ShowContextMenu (hWnd, pt); 

return O; 



154 Part I Windows Programming Basics 

11-----------------------------------------------------------'-----------
ll DoMouseWheelMain - Proc.ess WM...,MOUSEWHEEL message for window. 
II 
LRESULT DoMouseWheelMain CHWND hWnd, UI.NT wMsg, WPARAM wParam, 

LPARM\.lParam) { 

} 

II Get the number of. cliCks the wheel turned 
int nScrollLines = GET_WflEEL.J>ELTA...WPARAM(wParam) I WHEEL.J)ELTA; 

II Compute the new position 
int nNewPos = nVPos - .riScro lll ines; 
II Set the scroll bar and invalidate the window 
MyScro11Wnd ChWnd, nNewPos); 
return O; 

11----------------------------------------------------------------------
11 DoVScrollMain - Process WM....VSCROLL message for window. 
II 
LRESULT DoVScrollMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM l Par am) { 
int nNewPos = nVPos;· · 

switch (LOWORD (wParam)) { 
case SB_LINEUP: 

nNewPos -= l; 
break; 

case SB_LINEDOWN: 
nNewPos += l; 
break; 

case SB_PAGEUP: 
nNewPos -= nlinesPerPage; 
break; 

case Sll.PAGEDOWN: 
nNewPos += nlinesPerPage; 
break; 

case SB_THUMBTRACK: 
case SB_THUMBPOSITION·: 

nNewPos = HIWORD (WParam); 
break; 

} 

MyScrollWnd (hWnd, nNewPos); 
return O; 

} . 
11---- - - - - - - -- - - - - --- - - - ---- - -:.:. .:._•_,. __ :.: _ - --- - - - --- - - - - - - - -.- -- - - --- - ---- - - -
II i>oPaintMain - Process WM....PAINT message for window. 
// 
LRESULT DoPaintMain (HWNDhWnd,. UINT wMsg, WPARAM wParam, 

LPARAM .1Param) { 
PAINTSTRUCT ps; 
HFONT hFontOld; 
RECT rect; 



} 

Chapter 4 Windows, Controls, and Menus 155 

HDC hdc; 
int i, y = 5; 

GetClientRect (hWnd, &rect); 

hdc = BeginPaint (hWnd, &ps); 

II Select our font 
hFontOld = (HFONT)SelectObject (hdc, hFont); 

II Draw the text 
for Ci = nVPos; i < nNumLines; i++) { 

} 

if (y > rect.bottom - nFontHeight - 10) 
break; 

if (laText[i].nLen) 
ExtTextOut (hdc, 5, y, TRANSPARENT, NULL, laText[i].pszLine, 

laText[i].nLen, NULL); 
y += nFontHeight; 

SelectObject (hdc, hFontOld); 
EndPaint (hWnd, &ps); 
return O; 

11----------------------------------------------------------------------
11 DoDestroyMain - Process WM_DESTROY message for window. 
II 
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
PostQuitMessage (0); 
return O; 

} 

II====================================================================== 
II Command handler routines 
II 
11----------------------------------------------------------------------
11 DoMainCommandHome - Process Program Home command. 
II 
LPARAM DoMainCommandHome (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 

} 

SCROLLINFO si; 
if (nVPos I= 0) { 

nVPos = O; 

} 

si .cbSize = sizeof (si); 
si .nPos = nVPos; 
si .fMask = SIF_POS; 
SetScrollinfo (hWnd, SB_VERT, &si, TRUE); 

InvalidateRect (hWnd, NULL, TRUE); 

return O; 

11----------------------------------------------------------------------
11 DoMainCommandEnd - Process End command. 



156 Part I Windows Programming Basics 

II 
LPARAM DoMainCommandEnd (HWND hWnd, WORD idI.tem, HWND hwndCtl, 

WORD wNotifyCode) { 

} 

SCROLLINFO si ; 
int nEndPos = nNumLines - nLinesPerPage + 1; 

if (nVPos I= nEndPos) { 
nVPos = nEndPos; 

} 

si.cbSize = sizeof (si); 
si.nPos =nVPos; 
si.fMask = SIF_POS; 
SetScro11Info (hWnd, SB_VERT, &si, TRUE); 

Inva:li dateRect (hWnd, NULL, TRUE); 

return O; 

11--' -- - - --- - - ---- -- --- - _ _: _ -- - - - -- - - - -- - - - --- -- ---.- - --- - _.;. ____ - - __ ._ - - -- --
II DoMainCommandExit - Process Program' Exit command. 
II 
LPARAM DoMainCommandExit (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 

} 

SendMessage (hWnd, WM~CLOSE, 0, O); 
return O; 

ll---------~---------------------------~-~------------------------------
11 MyScrollWnd - Adjust the scroll bar and invalidate the window to 
11 force a repaint at the new top 1i ne. 
Ii 
int MyScrollWnd (HWND hWnd, int nNewPos) { 

SCROLLINFO si; 

II Check range. 
if (nNewPos < O) 

nNewpos = O; 
if (nNewPos > nNumL i nes,.nli nesPeri>age+l) 

nNewPos = nNumLines-nLinesPerPage+l; 

II If scroll position changed, update scrollbar and 
II force redraw of window. 
if (nVPos I"' nNewPos) { 

} 

nVPos = nNewPos; 
si .cbSize = sizeof (si); 
si.nPos = nVPos; 
si.fMask= SIF_POS; 
SetScrolUnfo (hWnd, SB_VERT, .&si, TRUE); 

II The scrolling is actuallY done by redrawing the wnd at 
II the new position. Not very fast but. fine in this case. 

InvalidateRect (hWnd, NULL, TRUE); 

return 0; 



Chapter 4 Windows, Controls, and Menus 157 

} 

11----------------------------------------------------------------------
11 ShowContextMenu - Display a context menu 
II 
int ShowContextMenu (HWND hWnd, POINT pt) { 

HMENU hMenuMain, hMenu; 

} 

II Display the menu at the point of the tap 
MapWindowPoints (hWnd, HWND_DESKTOP, &pt, 1); 
pt.x += 5; 

hMenuMain = LoadMenu (h!nst, MAKEINTRESOURCE (ID~ENU)); 
hMenu = GetSubMenu (hMenuMain, O); 
TPMPARAMS tpm; 
tpm.cbSize = sizeof (tpm); 
GetClientRect (hWnd, &tpm.rcExclude); 
TrackPopupMenuEx (hMenu, TPM_LEFTALIGN I TPM_TOPALIGN, 

pt.x, pt.y, hWnd, &tpm); 
DestroyMenu (hMenuMain); 
DestroyMenu (hMenu); 
return O; 

11----------------------------------------------------------------------
11 WrapString - Determine a length that will fit with a width 
II 
LPTSTR WrapString (HDC hdc, LPTSTR pszText, int *pnlen, int nWidth, 

BOOL *fEOL) { 
LPTSTR pszStr, pszStart; 
SIZE Size; 

*fEOL = FALSE; 
*pnlen = O; 

II Skip to first non-space char 
for(; (*pszText!=TEXT('\O')) && (*pszText<=TEXT (' ')); pszText++); 

pszStart = pszText; 

if (*pszText == O) 
return O; 

while (1) { 
pszStr = pszText; 
II Find end of the next word 
for (; (*pszText!=TEXT('\0')) && *pszText>TEXT (' ');pszText++); 

II Get length of the string 
GetTextExtentPoint (hdc, pszStart, pszText - pszStart, &Size); 

if (Size.ex > nWidth) 
break; 

if ((*pszText ==TEXT ('\O')) 11 (*pszText ==TEXT ('\r')) 11 
(*pszText == TEXT ('\n'))) { 



158 Part I Windows Programming Basics 

} 

} 

} 

*fEOL = TRUE.; 
pszstr = pszText; 
break; 

II slip past space 
pszText++; 

*pnLen = pszStr ..: pszStart; 
return pszStart; 

When the program launches, it reads the string resources into one large buffer. To reduce the 

memory impact, the string resources are accessed by passing a NULL buffer pointer to the 

LoadString function. That causes LoadString to return a pointer to the resource in its return 

value. Note that these strings aren't zero delimited in this case, so DOIView reads the word 

before the string to get the number of characters. Because the strings are Unicode, the string 

length is then multiplied by the size of TCHAR to get the size of the buffer needed for the 
string. 

The main window of DOIView handles a few extra messages. The WM_SIZE handler refor

mats the text by calling WrapString. This routine measures the length of each line by calling 

GetTextExtentPoint. If the length is less than the width of the window, the routine then adds 
another word to the line and remeasures. This continues until the proper number of words is 

added to the line to fit within the window. 

The WM_ VSCROLL routine handles the messages from the vertical scroll bar. When the noti

fication is a SB_PAGEUP or SB_PAGEDOWN, the routine subtracts or adds the number of lines 

displayed in the window to the current scroll position. The routine then calls MyScrol/Wnd, 
which moves the scrollbar thumb to the correct position and invaidates the window. The 

WM_PAINT handler then draws the lines of text starting with the top line to be displayed, 

defined by the new scroll position. 

The WM_LBUTTONDOWN handler uses the SHRecognizeGesture function to determine if the 

user has performed a successful tap-and-hold gesture to warrant a context menu. If so, the 

routine calls ShowContextMenu to display the menu. The ShowContextMenu function loads 

a menu from a menu resource and calls TrackPopupMenuEx to display the menu. The menu 
has three commands: Home, to scroll to the top of the document; E:nd, to scroll to the bot

tom; and Exit, which quits the program. DOIView also responds to accelerator keys: Ctrl+H 
for Home and Ctrl+E for End. 

In addition to displaying the context menu with a tap-and-hold of the left mouse button, 

DOIView also displays the context menu if the right mouse button is clicked on systems that 

support a mouse. This is accomplished by fielding the WM_RBUTTONDOWN message and 

calling the ShowContextMenu routine to display the menu. 



Chapter 4 Windows, Controls, and Menus 159 

The WM_MOUSEWHEEL message is also monitored so that the user can use a mouse with 

a mouse wheel to scroll the document. When WM_MOUSEWHEEL is received, the handler 

looks at the high word of wParam to determine the mouse wheel delta. This is converted 

into the number of clicks the wheel has rotated by dividing by the system-defined constant 

WHEEL_DELTA. The WM_MOUSEWHEEL handler then calls MyScrolfWnd routine to update 

the window. 

This chapter has covered a huge amount of ground, from basic child windows to controls and 

on to resources and menus. My goal wasn't to teach everything there is to know about these 

topics. Instead, I've tried to introduce these program elements, provide a few examples, and 

point out the subtle differences between the way they're handled by Windows CE and the 

desktop versions of Windows. 

Although the Windows controls are useful and quite handy, the next chapter covers the com

mon controls. These controls are a far more powerful, and more complex, set of controls, 

which Windows CE also supports. 





Chapter 5 

Common Controls and Windows CE 
As Microsoft Windows matured as an operating system, it became apparent that the basic 

controls provided by Windows were insufficient for the sophisticated user interfaces that 

users demanded. Microsoft developed a series of additional controls, called common con

trols, for their internal applications and later made the dynamic-link library (DLL) containing 

the controls available to application developers. Starting with Microsoft Windows 95 and 

Microsoft Windows NT 3.5, the common control library was bundled with the operating 

system (although this didn't stop Microsoft from making interim releases of the DLL as the 

common control library was enhanced). With each release of the common control DLL, new 

controls and new features are added to old controls. As a group, the common controls are 

less mature than the standard Windows controls and therefore show greater differences be

tween implementations across the various versions of Windows. These differences aren't just 

between Microsoft Windows CE and other versions of Windows, but also between the dif

ferent desktop versions of Windows. The functionality of the common controls in Windows 

CE is fairly complete; however, some of the newest features of the common controls are not 

supported. 

It isn't the goal of this chapter to cover in depth all the common controls. That would take an 

entire book. Instead, only the controls and features of controls the Windows CE programmer 

most often needs when writing Windows CE applications are covered. The discussion starts 

with the command bar control and then looks at the month calendar and time and date pick

er controls. It finishes with an overview of the other common controls supported by Windows 
CE. By the end of the chapter, you might not know every common control inside and out, but 

you will be able to see how the common controls work in general. And you'll have the back

ground to look at the documentation and understand the common controls not covered. 

Programming Common Controls 
Because the common controls are separate from the core operating system, the DLL that 

contains them must be initialized before any of the common controls can be used. Under all 

versions of Windows, including Windows CE, you can call the function 

void InitCommonControls (void); 

161 



162 Part I Windows Programming Basics 

to load the library and register many of the common control classes. This call doesn't initial

ize the month calendar, time picker, up/down, tooltip, or other newer common controls. To 

initialize those controls, use the function 

BOOL InitCommonControlsEx (LPINITCOMMONCONTROLSEX lpinitCtrls); 

This function allows an application to load and initialize only selected common controls. This 

function is handy under Windows CE because loading only the necessary controls can reduce 

the memory impact. The only parameter to this function is a two-field structure that contains 

a size field and a field that contains a set of flags indicating which common controls should 

be registered. Table 5-1 shows the available flags and their associated controls. 

TABLE 5-1 Flags for Selected Common Controls 

Flag 

ICC_ BAR_ CLASSES 

ICC_ COOL_ CLASSES 

ICC_ DA TE_ CLASSES 

/CC_LISTVIEW_ CLASSES 

/CC_PROGRESS_ CLASS 

/CC_ TAB_ CLASSES 

/CC_ TREEVIEW_ CLASSES 

ICC_ UPDOWN_ CLASS 

/CC_ TOOLTJP_ CLASSES 

JCC_ CAPEDIT_ CLASS 

Control classes initialized 

Tool bar 

Status bar 

Trackbar 

Command bar 

Rebar 

Date and time picker 

Month calendar control 

List view 

Header control 

Progress bar control 

Tab control 

Tree view control 

Up-Down control 

Tooltip control 

Cap edit control 

After the common control DLL is initialized, these controls can be treated like any other con

trol. But because the common controls aren't formally part of the Windows core functional

ity, an additional include file, CommCtrl.h, must be included. 

The programming interface for the common controls is similar to that for standard Windows 

controls. Each of the controls has a set of custom style flags that configure the look and be

havior of the control. Messages specific to each control are sent to configure and manipulate 

the control and cause it to perform actions. One major difference between the standard 

Windows controls and common controls is that notifications of events or requests for service 

are sent via WM_NOTIFY messages instead of WM_ COMMAND messages as in the standard 



Chapter 5 Common Controls and Windows CE 163 

controls. This technique allows the notifications to contain much more information than al

lowed using WM_ COMMAND message notifications. In addition, the technique allows the 

WM_ NOTIFY message to be extended and adapted for each of the controls that use it. 

At a minimum, the WM_ NOTIFY message is sent with /Param pointing to an NMHDR struc

ture defined as the following: 

typedef struct tagNMHDR { 
HWND hwndFrom; 
UINT idFrom; 
UINT code; 

} NMHDR; 

The hwndFrom field contains the handle of the window that sent the notify message. For 

property sheets, this is the property sheet window. The idFrom field contains the ID of the 

control if a control is sending the notification. Finally, the code field contains the notifica

tion code. While this basic structure doesn't contain any more information than the WM_ 

COMMAND message, it's almost always extended, with additional fields appended to it. The 

notification code then indicates which, if any, additional fields are appended to the notifica
tion structure. 

One additional difference in programming common controls is that most of the control

specific messages that can be sent to the common controls have predefined macros that 

make sending the message look as if your application is calling a function. So instead of 
using an LVM_INSERTITEM message to a list view control to insert an item, as in 

nlndex =(int) SendMessage (hwndLV, LVM_INSERTITEM, 0, (LPARAM)&lvi); 

an application could just as easily have used the line 

nlndex = ListView_Insertltem (hwndLV, &lvi); 

There's no functional difference between the two lines; the advantage of these macros is 

clarity. The macros themselves are defined in CommCtrl.h along with the other definitions 

required for programming the common controls. One problem with the macros is that the 

compiler doesn't perform the type checking on the parameters that normally occurs if the 

macro is an actual function. This is also true of the SendMessage technique, in which the pa

rameters must be typed as WPARAM and LPARAM types, but at least with messages, the lack 
of type checking is obvious. All in all, though, the macro route provides better readability. 

One exception to this system of macros is the calls made to the command bar control and 

the command bands control. Those controls actually have a number of true functions in ad

dition to a large set of macro-wrapped messages. As a rule, I'll talk about messages as mes

sages, not as their macro equivalents. That should help differentiate a message or a macro 

from a true function. 



164 Part I Windows Programming Basics 

The Common Controls 
A prime Windows CE target niche-small personal productivity devices-has driven the re

quirements for the common controls in Windows CE. The frequent need for time and date 

references for schedule and task management applications has led to inclusion of the date 

and time picker control and the month calendar control. The small screens of personal pro

ductivity devices inspired the space-saving command bar. Mating the command bar with the 

rebar control that was created for Internet Explorer has produced the command bands con

trol. The command bands control provides even more room for menus, buttons, and other 

controls across the top of a Windows CE application. 

Starting with Windows CE 4.2, the command bar and command bands controls were sup

plemented with the menu bar control created for Windows Mobile devices. The most ap

parent difference between the menu bar control and the earlier command bar is that the 

menu bar snaps to the bottom of the screen instead of the top of the application's window. 

Functionally, the menu bar is somewhat more limited than the command bands control. 

However, for applications where compatibility between embedded Windows CE systems and 

Windows Mobile systems is important, the application should use the menu bar control. 

The Command Bar 

Briefly, a command bar control combines a menu and a tool bar. This combination is valu
able because the combination of a menu and tool bar on one line saves screen real estate on 

space-constrained Windows CE displays. To the programmer, the command bar looks like 

a toolbar with a number of helper functions that make programming the command bar a 

breeze. In addition to the command bar functions, you can also use most toolbar messages 

when you work with command bars. A window with a command bar is shown in Figure 5-1. 

FIGURE 5-1 A window with a command bar control 

Creating a Command Bar 

You build a command bar in a number of steps, each defined by a particular function. The 

command bar is created, the menu is added, buttons are added, other controls are added, 

tooltips are added, and finally, the Close and Help buttons are appended to the right side of 

the command bar. 

You begin the process of creating a command bar with a call to 

HWND CommandBar_Create (HINSTANCE h!nst, HWND hwndParent, 
int idCmdBar); 



Chapter 5 Common Controls and Windows CE 165 

The function requires the program's instance handle, the handle of the parent window, and 

an ID value for the control. If successful, the function returns the handle to the newly created 

command bar control. But a bare command bar isn't much use to the application. It takes a 

menu and a few buttons to jazz it up. 

Command Bar Menus 

You can add a menu to a command bar by calling the function: 

BOOL CommandBar_InsertMenubarEx (HWND hwndCB, HINSTANCE hinst, 
LPTSTR pszMenu, int iButton); 

The first two parameters of this function are the handle of the command bar and the in

stance handle of the application. The pszMenu parameter is either the name of a menu 

resource or the handle to a menu previously created by the application. If the pszMenu pa

rameter is a menu handle, the hlnst parameter must be NULL. The last parameter is the index 

of the button to the immediate left of the menu. Because the Windows CE guidelines specify 

that the menu should be at the left end of the command bar, this parameter should be set to 
0, which indicates that all the buttons are to the right of the menu. 

After a menu is loaded into a command bar, the handle to the menu can be retrieved at any 

time using 

HMENU CommandBar_GetMenu (HWND hwndCB, int iButton); 

The second parameter, iButton, is the index of the button to the immediate left of the menu. 

This mechanism provides the ability to identify more than one menu on the command bar. 

However, given the Windows CE design guidelines, you should see only one menu on the bar. 

With the menu handle, you can manipulate the structure of the menu using the many menu 

functions available. 

If an application modifies the menu on the command bar, the application must call 

BOOL CommandBar_DrawMenuBar (HWND hwndCB, int iButton); 

which forces the menu on the command bar to be redrawn. Here again, the parameters are 

the handle to the command bar and the index of the button to the left of the menu. Under 

Windows CE, you must use CommandBar_DrawMenuBar instead of DrawMenuBar, which is 

the standard function used to redraw the menu under other versions of Windows. 

Command Bar Buttons 

Adding buttons to a command bar is a two-step process and is similar to adding buttons 

to a tool bar. First, the bitmap images for the buttons must be added to the command bar. 

Second, the buttons are added, with each of the buttons referencing one of the images in 

the bitmap list that was previously added. 



166 Part I Windows Programming Basics 

The command bar maintains its own list of bitmaps for the buttons in an internal image list. 

Bitmaps can be added to this image list one at a time or as a group of images contained in 

a long and narrow bitmap. For example, for a bitmap to contain four 16-by-16-pixel images, 

the dimensions of the bitmap added to the command bar would be 64 by 16 pixels. Figure 

5-2 shows this bitmap image layout. 

FIGURE 5-2 Layout of a bitmap that contains four 16-by-16-pixel images 

Loading an image bitmap is accomplished using 

int CommandBar_AddBitmap (HWND hwndCB, HINSTANCE h!nst, int idBitmap, 
int iNumimages, int iimageWidth, int iimageHeight); 

The first two parameters are, as is usual with a command bar function, the handle to the 

command bar and the instance handle of the executable. The third parameter, idBitmap, is 

the resource ID of the bitmap image. The fourth parameter, iNumlmages, should contain the 

number of images in the bitmap being loaded. Multiple bitmap images can be loaded into 

the same command bar by calling CommandBar_AddBitmap as many times as is needed. The 

last two parameters are the dimensions of the images within the bitmap; set both of these 

parameters to 16. 

Two predefined bitmaps provide a number of images that are commonly used in command 

bars and toolbars. You load these images by setting the hlnst parameter in CommandBar_ 

AddBitmap to HINST_COMMCTRL and setting the idBitmap parameter to either IDB_STD_ 

SMALL_ COLOR or IDB_VIEW_SMALL_COLOR. The images contained in these bitmaps are 

shown in Figure 5-3. There are two groups of bitmaps shown. If the Windows CE system is 
built with the classic Windows "skin," the top group of bitmaps is used. If the system is built 

with the XP "skin" the bottom set of bitmaps is used.1 For each group, the buttons on the top 

line contain the bitmaps from the standard bitmap, while the second-line buttons contain 

the bitmaps from the standard view bitmap. 

1 It is also possible to build a Windows CE system with a custom "skin" that uses bitmaps with a different look than 
either of the two groups shown. 



Chapter 5 Common Controls and Windows CE 167 

FIGURE 5-3 Images in the standard bitmaps provided by the common control DLL. The top set is used with 
the classic "skin" while the bottom set is used with the XP "skin." 

The index values to these images are defined in CommCtrl.h, so you don't need to know the 

exact order in the bitmaps. 

Referencing Images 

The images loaded into the command bar are referenced by their index into the list of im

ages. For example, if the bitmap loaded contains five images, and the image to be referenced 

is the fourth image into the bitmap, the zero-based index value is 3. 

If more than one set of bitmap images is added to the command bar using multiple calls 

to CommandBar_AddBitmap, the images' subsequent lists are referenced according to the 

previous count of images plus the index into that list. For example, if two calls are made to 

CommandBar_AddBitmap to add two sets of images, with the first call adding five images 

and the second adding four images, the third image of the second set is referenced with the 

total number of images added in the first bitmap (5) plus H.e index into the second bitmap 

(2), resulting in an index value of 5 + 2 = 7. 

After the bitmaps are loaded, the buttons can be added using one of two functions. The first 

function is this one: 

BOOL CommandBar_AddButtons (HWND hwndCB, UINT uNumButtons, 
LPTBBUTTON lpButtons); 

CommandBar_AddButtons adds a series of buttons to the command bar at one time. The 

function is passed a count of buttons and a pointer to an array of TBBUTTON structures. 

Each element of the array describes one button. The TBBUTTON structure is defined as the 

following: 

typedef struct { 
int iBitmap; 
int idCommand; 
BYTE fsState; 
BYTE fsStyle; 
DWORD dwData; 
int iString; 

} TBBUTTON; 

The iBitmap field specifies the bitmap image to be used by the button. This is, as I just ex

plained, the zero-based index into the list of images. The second parameter is the command 



168 Part I Windows Programming Basics 

ID of the button. This ID value is sent via a WM_ COMMAND message to the parent when a 

user clicks the button. 

The fsState field specifies the initial state of the button. The allowable values in this field are 
the following: 

• TBSTATE_ENABLED The button is enabled. If this flag isn't specified, the button is dis-

abled and is grayed. 

• TBSTATE_HIDDEN The button isn't visible on the command bar. 

• TBSTATE_PRESSED This button is displayed in a depressed state. 

• TBSTATE_CHECKED The button is initially checked. This state can be used only if the 

button has the TBSTYLE_CHECKED style. 

• TBSTATE_INDETERMINATE The button is grayed. 

The fsStyle field specifies the initial style of the button, which defines how the button acts. 

The button can be defined as a standard push button, a check button, a drop-down button, 

or a check button that resembles a radio button but allows only one button in a group to be 

checked. The possible flags for the fsStyle field are the following: 

• TBSTYLE_BUTTON The button looks like a standard push button. 

• TBSTYLE_CHECK The button is a check button that toggles between checked and un
checked states each time the user clicks the button. 

• TBSTYLE_GROUP Defines the start of a group of buttons. 

• TBSTYLE_CHECKGROUP The button is a member of a group of check buttons that act 
like radio buttons in that only one button in the group is checked at any one time. 

• TBSTYLE_DROPDOWN The button is a drop-down list button. 

• TBSTYLE_AUTOSIZE The button's size is defined by the button text. 

• TBSTYLE_SEP Defines a separator (instead of a button) that inserts a small space be
tween buttons. 

The dwData field of the TBBUTTON structure is an application-defined value. This value 

can be set and queried by the application using the TB_SETBUTTONINFO and TB_ 

GETBUTTONINFO messages. The iString field defines the index into the command bar string 

array that contains the text for the button. The iString field can also be filled with a pointer to 

a string that contains the text for the button. 

The other function that adds buttons to a command bar is this one: 

BOOL CommandBar_InsertButton (HWND hwndCB, int iButton, 
LPTBBUTTON lpButton); 



Chapter 5 Common Controls and Windows CE 169 

This function inserts one button into the command bar to the left of the button refer

enced by the iButton parameter. The parameters in this function mimic the parameters in 

CommandBar_AddButtons with the exception that the lpButton parameter points to a single 

TBBUTTON structure. The iButton parameter specifies the position on the command bar of 

the new button. 

Working with Command Bar Buttons 

When a user presses a command bar button other than a drop-down button, the com

mand bar sends a WM_ COMMAND message to the parent window of the command bar. So 

handling button clicks on the command bar is just like handling menu commands. In fact, 

because many of the buttons on the command bar have menu command equivalents, it's 

customary to use the same command IDs for the buttons and the like-functioning menus, 

thus removing the need for any special processing for the command bar buttons. 

The command bar maintains the checked and unchecked state of check and checkgroup but

tons. After the buttons are added to the command bar, their states can be queried or set us

ing two messages, TB_ISBUTTONCHECKED and TB_CHECKBUTTON. (The TB_ prefix in these 

messages indicates the close relationship between the command bar and the tool bar con

trols.) The TB_ISBUTTONCHECKED message is sent with the ID of the button to be queried 

passed in the wParam parameter this way: 

fChecked = SendMessage (hwndCB, TB_ISBUTTONCHECKED, wID, O); 

where hwndCB is the handle to the command bar containing the button. If the return value 

from the TB_ISBUTTONCHECKED message is nonzero, the button is checked. To place a but

ton in the checked state, send a TB_CHECKBUTTON message to the command bar, as in 

SendMessage (hwndCB, TB_CHECKBUTTON, wID, TRUE); 

To uncheck a checked button, replace the TRUE value in /Param with FALSE. 

Drop-Down Buttons 

The drop-down list button is a more complex animal than the standard button on a com

mand bar. The button looks to the user like a button that, when pressed, displays a list of 
items from which the user can select. To the programmer, a drop-down button is actually 

a combination of a button and a menu that is displayed when the user clicks the button. 

Unfortunately, the command bar does little to support a drop-down button except to modify 

the button appearance to indicate that the button is a drop-down button and to send a spe

cial notification when the button is clicked by the user. It's up to the application to display the 

menu. 

The notification of the user clicking a drop-down button is sent to the parent window of 

the command bar by a WM_ NOTIFY message with the notification value TBN_DROPDOWN. 



170 Part I Windows Programming Basics 

When the parent window receives the TBN_DROPOOWN notification, it must create a pop

up menu immediately below the drop-down button identified in the notification. The menu 

is filled by the parent window with whatever selections are appropriate for the button. When 

one of the menu items is selected, the menu sends a WM_ COMMAND message indicating 

the menu item picked, and the menu is dismissed. The easiest way to understand how to 

handle a drop-down button notification is to look at the following procedure that handles a 

TBN_OROPOOWN notification. 

LRESULT DoNotifyMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

} 

LPARAM lParam) 
LPNMHDR pNotifyHeader; 
LPNMTOOLBAR pNotifyToolBar; 
RECT rect; 
TPMPARAMS tpm; 
HMENU hMenu; 

II Get pointer to notify message header. 
pNotifyHeader = (LPNMHDR)lParam; 

if (pNotifyHeader->code == TBN_DROPDOWN) { 

} 

II Get pointer to toolbar notify structure. 
pNotifyToolBar = (LPNMTOOLBAR)lParam; 

II Get the rectangle of the drop-down button. 
SendMessage (pNotifyHeader->hwndFrom, TB_GETRECT, 

pNotifyToolBar->iitem, (LPARAM)&rect); 

II Convert rect to screen coordinates. The rect is 
II considered here to be an array of 2 POINT structures. 
MapWindowPoints (pNotifyHeader->hwndFrom, HWND_DESKTOP, 

(LPPOINT)&rect, 2); 

II Prevent the menu from covering the button. 
tpm.cbSize = sizeof (tpm); 
CopyRect (&tpm.rcExclude, &rect); 

II Load the menu resource to display under the button. 
hMenu = GetSubMenu (LoadMenu (hinst, TEXT ("popmenu")),O); 

II Display the menu. This function returns after the 
II user makes a selection or dismisses the menu. 
TrackPopupMenuEx (hMenu, TPM_LEFTALIGN I TPM_VERTICAL, 

rect.left, rect.bottom, hWnd, &tpm); 

return O; 

After the code determines that the message is a TBN_OROPDOWN notification, the first task 

of the notification handler code is to get the rectangle of the drop-down button. The rectan

gle is queried so that the drop-down menu can be positioned immediately below the button. 



Chapter 5 Common Controls and Windows CE 171 

To do this, the routine sends a TB_GETRECT message to the command bar with the ID of the 

drop-down button passed in wParam and a pointer to a rectangle structure in f Param. 

Because the rectangle returned is in the coordinate base of the parent window, and pop-up 
menus are positioned in screen coordinates, the coordinates must be converted from one 

basis to the other. You accomplish this using the function 

MapWindowPoints (HWND hwndFrom, HWND hwndTo, 
LPPOINT lppoints, UINT cPoints); 

The first parameter is the handle of the window in which the coordinates are originally based. 

The second parameter is the handle of the window to which you want to map the coordi

nates. The third parameter is a pointer to an array of points to be translated; the last parame

ter is the number of points in the array. In the routine I just showed you, the window handles 

are the command bar handle and the desktop window handle, respectively. 

After the rectangle is translated into desktop coordinates, the pop-up, or context, menu can 

be created. You do this by first loading the menu from the resource and then displaying the 

menu with a call to TrackPopupMenuEx. If you recall the discussion of TrackPopupMenuEx 

from Chapter 4, "Windows, Controls, and Menus," the TPMPARAMS structure contains a rect

angle that isn't covered up by the menu when it's displayed. For your purposes, this rectangle 

is set to the dimensions of the drop-down button so that the button isn't covered by the 

pop-up menu. The fuF/ags field can contain a number of values that define the placement of 
the menu. For drop-down buttons, the only flag needed is TPM_ VERTICAL. If TPM_ VERTICAL 

is set, the menu leaves uncovered as much of the horizontal area of the exclude rectangle 

as possible. The TrackPopupMenuEx function doesn't return until an item on the menu is se

lected or the menu is dismissed by the user tapping on another part of the screen. 

Combo Boxes on the Command Bar 

Combo boxes on a command bar are much easier to implement than drop-down buttons. 

You add a combo box by calling 

HWND CommandBar_InsertComboBox (HWND hwndCB, HINSTANCE h!nst, 
int iWidth, UINT dwStyle, 
WORD idComboBox, 
int iButton); 

This function inserts a combo box on the command bar to the left of the button indicated 

by the iButton parameter. The width of the combo box is specified, in pixels, by the iWidth 

parameter. The dwStyle parameter specifies the style of the combo box. The allowable style 

flags are any valid Windows CE combo box style and window styles. The function automati

cally adds the WS_ CH/LD and WS_ VISIBLE flags when creating the combo box. The idCom

boBox parameter is the ID for the combo box that will be used when WM_ COMMAND 

messages are sent notifying the parent window of a combo box event. Experienced Windows 

programmers will be happy to know that CommandBar_lnsertComboBox takes care of all the 



172 Part I Windows Programming Basics 

"parenting" problems that occur when a control is added to a standard Windows tool bar. 

That one function call is all that is needed to create a properly functioning combo box on the 

command bar. 

After a combo box is created, you program it on the command bar the same way you would 

a stand-alone combo box. Because the combo box is a child of the command bar, you must 

query the window handle of the combo box by passing the handle of the command bar to 

GetD/gltem with the ID value of the combo box, as in the following code: 

hwndCombobox = GetDlgitem (GetDlgitem (hWnd, IDC_CMDBAR), 
IDCCOMBO)); 

However, the WM_ COMMAND messages from the combo box are sent directly to the par

ent of the command bar, so handling combo box events is identical to handling them from a 

combo box created as a child of the application's top-level window. 

Other Command Bar Functions 

A number of other functions assist in command bar management. The CommandBar_Height 

function returns the height of the command bar and is used in all the example programs 

that use the command bar. Likewise, the CommandBar_AddAdornments function is also used 

whenever a command bar is used. This function, prototyped as 

BOOL CommandBar_AddAdornments (HWND hwndCB, DWORD dwFlags, 
DWORD dwReserved); 

places a Close button and, if you want, a Help button and an OK button on the extreme right 

of the command bar. You pass a CM OBAR_ HELP flag to the dwF!ags parameter to add a Help 
button, and you pass a CMDBAR_OKflag to add an OK button. 

The Help button is treated differently from other buttons on the command bar. When the 

Help button is pressed, the command bar sends a WM_ HELP message to the owner of the 

command bar instead of the standard WM_ COMMAND message. The OK button's action is 

more traditional. When you tap it, you send a WM_ COMMAND message with the control ID 

/DOK. The CommandBar_AddAdornments function must be called after all other controls of 

the command bar have been added. 

If your top-level window is resizeable, you must notifiy the command bar of resize during 

the WM_SIZE message by sending a TB_AUTOSIZE message to the command bar and then 
calling 

BOOL CommandBar_AlignAdornments (HWND hwndCB); 

The only parameter is the handle to the command bar. A command bar can be hidden by 

calling 

BOOL CommandBar_Show (HWND hwndCB, BOOL fShow); 



Chapter 5 Common Controls and Windows CE 173 

The {Show parameter is set to TRUE to show a command bar and FALSE to hide a command 

bar. The visibility of a command bar can be queried with this: 

BOOL CommandBar_IsVisible (HWND hwndCB); 

Finally, a command bar can be destroyed using this: 

void CommandBar_Destroy (HWND hwndCB); 

Although a command bar is automatically destroyed when its parent window is destroyed, 

sometimes it's more convenient to destroy a command bar manually. This is often done if 

a new command bar is needed for a different mode of the application. Of course, you can 

create multiple command bars, hiding all but one and switching between them by showing 

only one at a time, but this isn't good programming practice under Windows CE because all 

those hidden command bars take up valuable RAM that could be used elsewhere. The proper 

method is to destroy and create command bars on the fly. You can create a command bar 

fast enough so that a user shouldn't notice any delay in the application when a new com
mand bar is created. 

The CmdBar Example 

The CmdBar example demonstrates the basics of command bar operation. On startup, the 

example creates a bar with only a menu and a Close button. Selecting the different items 
from the view menu creates various command bars showing the capabilities of the command 

bar control. The source code for CmdBar is shown in Listing 5-1. 

LISTING 5-1 

CmdBar.rc 

II====================================================================== 
II Resource file 
II 
II Written for the book Programming Windows CE 
II Copyright CC) 2007 Douglas Boling 
II====================================================================== 
#include "windows.h" 
#include "CmdBar. h" // Program-specific stuff 
11----------------------------------------------------------------------
11 Icons and bitmaps 
II 
ID_ICON 
DisCross 
DisMask 
SortDropBtn 

ICON "cmdbar.ico" 
BITMAP "cross.bmp" 
BITMAP "mask.bmp" 
BITMAP "sortdrop.bmp" 

II Program icon 
II Disabled button image 
II Disabled button image mask 
II Sort drop-down button image 

11----------------------------------------------------------------------
11 Menu 
II 



174 Part I Windows Programming Basics 

ID_MENU MENU DISCARDABLE 
BEGIN 

END 

POPUP "&File" 
BEGIN 

MENUITEM "E&xit", 
i:ND 

POPUP "&View" 
BEGIN 

END 

MENUITEM "&Standard", 
MENUITEM "&View", 
MENU ITEM "&Cambi nation", 

popmenu MENU DISCARDABLE 
BEGIN 

END 

POPUP "&Sort" 
BEGIN 

END 

MENUITEM "&Name", 
MENUITEM "&Type", 
MENUITEM "&Size", 
MENUITEM "&Date", 

CmdBar.h 

IDM_EXIT 

IDM_STDBAR 
IDM_VIEWBAR 
IDM_COMBOBAR 

IDCSNAME 
IDCSTYPE 
IDCSSIZE 
IDCSDATE 

//====================================================================== 
/l Header file 
II 
II Written for the book Programming Windows CE 
//Copyright (C) 2007 Douglas Boling 
//====================================================================== 
II Returns number of elements 
#define dim(x) (si zeof(x) I si zeof Cx [OJ)) 

struc.t decodeUINT 
UINT Code; 

LRESULT (*Fxn) (HWND, UHJT, WPARAM, LPARAM); 
}; 
st:ruct decodeCMD { 

UINT .·Code; 
LRESULT (i'Fxn) (HWND' WORD' HWND, WORD) ; 

}; 

/I Structure associates 
I l messages 
/l with a function. 

II structure associates 
I l menu IDs with a 
II function. 



Chapter 5 Common Controls and Windows CE 175 

II Generic defines used by application 
#define IDCCMDBAR 1 II Command band ID 
#define ID_ICON 10 II Icon resource ID 
#define ID_MENU 11 II Main menu resource ID 
#define IDCCOMBO 12 II Combo box on cmd bar ID 

II Menu item IDs 
#define IDM_EXIT 101 II File menu 
#define IDM_STDBAR 111 II View menu 
#define IDM_VIEWBAR 112 
#define IDM_COMBOBAR 113 
#define IDM_ABOUT 120 II Help menu 
II Command bar button IDs 
#define IDCNEW 201 
#define IDCOPEN 202 
#define ID(_SAVE 203 
#define IDCCUT 204 
#define IDCCOPY 205 
#define IDCPASTE 206 
#define IDCPROP 207 

#define ID(_LICON 301 
#define IDCSICON 302 
#define IDCLIST 303 
#define IDCRPT 304 
#define IDCSNAME 305 
#define IDCSTYPE 306 
#define IDCSSIZE 307 
#define IDCSDATE 308 
#define IDCDPSORT 350 

#define STD_BMPS (STD_PRINT+l) II Number of bmps in 
II std imglist 

#define VIEW_BMPS (VIEW_NEWFOLDER+l) II Number of bmps in 
II view imglist 

11----------------------------------------------------------------------
11 Function prototypes 
II 
HWND Initinstance (HINSTANCE, LPWSTR, int); 
int Terminstance (HINSTANCE, int); 

II Window procedures 
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM); 

II Message handlers 
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoSizeMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoNotifyMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM); 

II Command functions 
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandVStd (HWND, WORD, HWND, WORD); 



176 Part I Windows Programming Basics 

LPARAM DoMainCommandWiew CHWND, WORD, HWND, WORD); 
LPAAAM DoMainColllfllandVCombo(HWND, WoRD, HWND, WORD): 

CmdBar.cpp · 

II CmdBar ""Cominand bar demonstration 

II 
II Written for the book Programming Windows CE 
//Copyright (C) 2007 Douglas .Boling 
//~=='ili:=~~~=-=.--=====~=:==:a=;_==-==::1=-=•===~==:;====i"*~I=~=~=~:===~== 

#include <windciws.h:> //For all that Windows stuff 
#include <cominctrl.h> // Command bar includes 
#include "CmdBar.h" // Program-specific stuff 
II:_ __ .:__ -------------------------- ~ ---------- '- ----- ~ ~-..::. ~ ----·---'---------
/{Global data · . · · 

II 
const TCHAR szAppName [] = TEXT {"CmdBar"); 

. HINSTANCE h!nst; II Program instance handle 

II Message dispatch table for MainWindowProc 
. const struct decodeUINT MainMessages[] = { 

WM..:;CREATE, OoCreateMain, 
WM_SiZE, .DoSi:zeMain, 
WM...:COMMA/.JD, DoCommandMai.n, 
WM_NOTlFY; OONoti fyMai n • 

. wM_DEsTROY; DooestroyMain, 
}; 

II C~n\mand Message dispatch for MainWindowProc 
c<>nst structdecodeCMD MainCommanditemsU·= { 

IDtLEXIT, DoMai nCotnman.dExi t , 

} ; 

lDM,..-STDBAR, DoMainCommal1dVStd, 
IDM,,;.VIEWBAR, DoMainC0111111andyyiew, 
IOM_CQMBOBAR,.DoMainCoinmandVCoril(:>o; 

II S~andard file ba~ button structure 
. Const TBBUTTON tbCBStdBtns[] "' { 
// .. Bitmaplndex C0mmand State Style UserDa:ta Stri11g 

{O,. 0, O, TBSTYLE .. ..SEP, . 0, 0}, 
{STO_FILENEW, IDC;,JlEW, TBSTATE_ENABLED, ... 

{STD..:.FiLEOPEN, 

'{STP-FILESAVE, 

{0, 
{STD_CIH, 

IDCOPEN, 

0, 
IDC;_CUT, 

TBSTYLE_)3UTTON, 
TBSTAT~NABLEO, . 

. · TBSTYLE_BUTTON, 
TBSTATE_ENABLED, . . .. 

T.BSTYL!LBUTTON, 
O, TBSTYLE_SEP, 
TBSTATE_ENABLEO, 

"fBSTYLt...Bl.iTTON, 

0, 0}> 

0, . O}, 

0, 
0, 

.IJ}, 
O}, 

0}, 



Chapter 5 Common Controls and Windows CE 177 

{STD_COPY, IDCCOPY, TBSTATE_ENABLED, 
TBSTYLE_BUTTON, 0, O}, 

{STD_PASTE, IDCPASTE, TBSTATE_ENABLED, 
TBSTYLE_BUTTON, 0, O}, 

{O, 0, 0, TBSTYLE_SEP, 0, O}, 
{STD_PROPERTIES, IDCPROP, TBSTATE_ENABLED, 

TBSTYLE_BUTTON, 0, O} 
} ; 

II Standard view bar button structure 
const TBBUTTON tbCBViewBtns[] = { 
II Bitmaplndex Command State Style UserData String 

{O, 0, 0, TBSTYLE_SEP, 0, O}, 
{VIEW_LARGEICONS, IDC_LICON, TBSTATE_ENABLED I TBSTATE_CHECKED, 

TBSTYLE_CHECKGROUP, 0, O}, 
{VIEW_SMALLICONS, IDC_SICON, TBSTATE_ENABLED, 

TBSTYLE_CHECKGROUP, 0, O}, 
{VIEW_LIST, IDC_LIST, 0, TBSTYLE_CHECKGROUP, 0, O}, 
{VIEW_DETAILS, IDC_RPT, TBSTATE_ENABLED, 

TBSTYLE_CHECKGROUP, 0, O}, 
{O, 0, TBSTATE_ENABLED, 

TBSTYLE_SEP, 0, O}, 
{VIEW_SORTNAME, IDCSNAME, TBSTATE_ENABLED I TBSTATE_CHECKED, 

TBSTYLE_CHECKGROUP, 0, O}, 
{VIEW_SORTTYPE, IDCSTYPE, TBSTATE_ENABLED, 

TBSTYLE_CHECKGROUP, 0, O}, 
{VIEW_SORTSIZE, IDCSSIZE, TBSTATE_ENABLED, 

TBSTYLE_CHECKGROUP, 0, O}, 
{VI EW_SORTDATE, IDCSDATE, TBSTATE_ENABLED, 

TBSTYLE_CHECKGROUP, 0, O}, 
{O, 0, 0, TBSTYLE_SEP, 0, O}, 

} ; 
II Tooltip string list for view bar 
con st TCHAR ''pVi ewTi ps [] = {TEXT (""), TEXT ("Large"), TEXT ("Small"), 

TEXT ("List"), TEXT ("Details"), TEXT (""), 
TEXT ("Sort by Name"), TEXT ("Sort by Type"), 
TEXT ("Sort by Size"), TEXT ("Sort by Date"), 

} ; 

II Combination standard and view bar button structure 
const TBBUTTON tbCBCmboBtns[] = { 

II B.i tmapindex Command State Style UserData String 
{0, 0, 0, TBSTYLE_SEP, 0, O}, 
{STD_FILENEW, ID(_NEW, TBSTATE_ENABLED, 

TBSTYLE_BUTTON, 0, O}, 
{STD_FILEOPEN, ID(_OPEN, TBSTATE_ENABLED, 

TBSTYLE_BUTTON, 0, O}, 
{STD_pROPERTIES, IDCPROP, TBSTATE_ENABLED, 

TBSTYLE_BUTTON, 0, 0}, 
{O, 0, 0, TBSTYLE_SEP, 0, O}, 
{STD_CUT, IDCCUT, TBSTATE_ENABLED, 

TBSTYLE_BUTTON, 0, O}, 

{STD_COPY, IDCCOPY, TBSTATE_ENABLED, 
TBSTYLE_BUTTON, 0, O}, 



178 Part I Windows Programming Basics 

} ; 

{STO_PASTE, IO(._PASTE, TBSTATLENABLED, 
TBSTYLE_BUTTON, 0, O}, 

{O, 0, 0, TBSTYLE_SEP, O, O}, 
{STD_BMPS + V!EW;...LARGE!CONS, 

ID(._LICON, TBSTATE_ENABLED I TBSTATE_CHECKED, 
TBSTYLE_CHECKGROUP, 0, O}, 

{STD_BMPS + VIEW_SMALLICONS, 
ID(._SICON, TBSTATE..;.ENABLED, 

TBSTYLE~CHECKGROUP, 0, O}, 
{STO_BMPS .+ VIEILL!ST, 

IDCLIST, TBSTATE_ENABLED, 
TBSTYLE_CHECKGROUP, 0, O}, 

{STD.._BMPS +VIEW_OETAILS, 
ID(._RPT, TBSTATE_ENABLED, 

TBSTYLLCHECKGROUP, 0, O}, 
{O, 0, 0, TBSTYLLSEP, 0, O}, 
{STD_BMPS + VIEW_BMPS, 

IOCDPSORT,TBSTATLENABLED, 
TBSTYLE_DROPDOWN, 0, O} 

I I ========::;:===~=====~~~~======i===~======.,.========~==~~======~======#==·====== 
ll Program. entry point 
II 
int WINAPI. WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance, 

LPWSTR lpCmdLine, int nCmdShoW) { 

} 

HWND hwndMain; 
MSG msg; 
int re = O; 

11 Ini t.i al i ze application. 

hwndMain =Init!nstance (hinstance, lpCmdLine, nCmdShow); 
if {hwndMain == 0) return OxlO; 

II Application message loop 
while (GetMessage (&msg, NULL, 0, 0)) { 

Trans1ateMessage (&rilsg); 
DispatchMessage (&msg}; 

} 
II Instance cleanup 
return Terminstance (hlnstance, msg.wParam); 

11-----~----'------'--..C-----'------~'-~----------'--'-~------'---~----~~-------
I / Initlnstance - Instance .. i.nitialization 
II 
HWND Initinstanc;e (HINSTANCE hinstance, LPWSTR lpCmcilfoe, int< nCmdSholN){ 

HWND .. hWnd; 
WNDCLASS we; 
INITCOMMONCONTROLSEX icex; 

#if. defined{WIN32::..PLATFORM_:PSPC) 11 defi ned(WIN32_PLATFORM::..WFSP) 
II If Windows Mobile, allow only one instance of the<application. 



Chapter 5 Common Controls and Windows CE 179 

hWnd = FindWindow (szAppName, NULL); 
if (hWnd) { 

SetForegroundWindow ((HWND)(((DWORD)hWnd) I OxOl)); 
return O; 

#end if 

} 

II Register application main window class. 
we.style= O; II Window style 
wc.lpfnWndProc = MainWndProc; II Callback function 
wc.cbClsExtra = O; II Extra class data 
wc.cbWndExtra = O; II Extra window data 
wc.hinstance = hinstance; II Owner handle 
wc.hicon =NULL, II Application icon 
wc.hCursor = LoadCursor (NULL, IDC_ARROW);ll Default cursor 
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH); 
wc.lpszMenuName = NULL; II Menu name 
wc.lpszClassName = szAppName; II Window class name 

if (RegisterClass (&we) == 0) return O; 

II Load the command bar common control class. 
icex.dwSize = sizeof (INITCOMMONCONTROLSEX); 
icex.dwICC = ICC_BAR_CLASSES; 
InitCommonControlsEx (&icex); 

II Save program instance handle in global variable. 
hinst = hinstance; 

II Create main window. 
hWnd = CreateWindow (szAppName, TEXT ("CmdBar Demo"), WS_VISIBLE, 

CW_USEDEFAULT, CW_USEDEFAULT, 
CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL, 
hinstance, NULL); 

II Return fail code if window not created. 
if (!IsWindow (hWnd)) return O; 

II Standard show and update calls 
ShowWindow (hWnd, nCmdShow); 
UpdateWindow (hWnd); 
return hWnd; 

11----------------------------------------------------------------------
11 Termlnstance - Program cleanup 
II 
int Terminstance (HINSTANCE hinstance, int nDefRC) { 

return nDefRC; 
} 

II====================================================================== 
II Message handling procedures for MainWindow 
11----------------------------------------------------------------------
11 MainWndProc - Callback function for application window 
II 
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 



180 Part I Windows Programming Basics 

} 

int i; 
ll 
/I Search message 1i stto see if we need to handle this 
II message. If in list, call procedure. 
fl 
for (i = O; i < dim(MainMessages); i++) { 

if (wMsg == Mai nMessages [i] . Code) 
return ("'MainMessages [i]. Fxn)(hWnd, WMsg, wParam, l Par am); 

} 

return OefWindowProc (hWnd, wMsg, wParam, lParam); 

//---------'-------------------------------------------------------------
// DoCreate..,aln - Process WM_CREATE message for window. 
II 
LRESULT DoCreateMain (HWND hWnd, UOO wMsg, WPARAM wParam, 

LPARAM TParam) { 

} 

HWNO hwndCB; 

// C!'.'.eate a minimal command bar that has only a menu and an 
II exit button. 
bwndCB = CommandBar_Create (hinst, hWnd, !DC...CMDBAR); 

II Insert the :menu. 
·cQ!11111andBar_lnsertMenubar (hwndCB, hinst, ID.Jl1ENU, 0); 

//Add exit button to command bar. 
COJnlllandBar_AddAdornments (hwndCB, o, O); 
return O; 

//------"'.---"----,.---------------------------------------·----'------------
// DoSizeMain - Process WM_SIZEmessage for window. 
II 
LRESULT OoSizeMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPAJWll lParam) { 

} 

//This only needed if the window can be resized 
HWND hwndCB =. GetDl gitem (hWnd, IDC:...CMDBAR) ; 

/I "(ell the command. bar to. resize i :tsel f and reposition Clo.se button. 
SendMessage(hwnd(B, TB_AUTOSIZE, OL, OL)J 
CommandBar_AlignAdornments(hwndCB); 

return O; 

·11~~----------'------------"------'-------------------------------.---------
1 I DoCommandMain - Process WM_COMMAND message for window. 
II 
LRESULT OoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM 1 Pa ram) { 
WORD iditem, wNotifytode; 
HWND hwndCtl; 
INT i; 

I I Parse the paramete:rs. 
iditem .. (WORD) LOWORD (wParam); 
wNotifyCodEi = (WORD) H!WORD (wParam); 



} 

Chapter 5 Common Controls and Windows CE 181 

hwndCtl = (HWND) lParam; 

II Call routine to handle control message. 
for (i = O; i < dim(MainCommand!tems); i++) { 

if (iditem == MainCommanditems[i].Code) 

} 

return (*MainCommanditems[i] .Fxn)(hWnd, iditem, hwndCtl, 
wNotifyCode); 

return O; 

11----------------------------------------------------------------------
11 DoNotifyMain - Process WM_NOTIFY message for window. 
II 
LRESULT DoNotifyMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

} 

LPARAM lParam) { 
LPNMHDR pNotifyHeader; 
LPNMTOOLBAR pNotifyToolBar; 
RECT rect; 
TPMPARAMS tpm; 
HMENU hMenu; 

II Get pointer to notify message header. 
pNotifyHeader = (LPNMHDR)lParam; 

if (pNotifyHeader->code == TBN_DROPDOWN) { 

} 

II Get pointer to toolbar notify structure. 
pNotifyToolBar = (LPNMTOOLBAR)lParam; 

if (pNotifyToolBar->iltem == IDC_DPSORT) { 

} 

II Get the rectangle of the drop-down button. 
SendMessage (pNotifyHeader->hwndFrom, TB_GETRECT, 

pNotifyToolBar->iltem, (LPARAM)&rect); 

II Convert rect to screen coordinates. The rect is 
II considered here to be an array of 2 POINT structures. 
MapWindowPoints (pNotifyHeader->hwndFrom, HWND_DESKTOP, 

(LPPOINT)&rect, 2); 

II Prevent the menu from covering the button. 
tpm.cbSize = sizeof (tpm); 
CopyRect (&tpm.rcExclude, &rect); 

hMenu = GetSubMenu (LoadMenu (hinst, TEXT ("popmenu")),O); 
TrackPopupMenuEx (hMenu, TPM_LEFTALIGN I TPM_VERTICAL, 

rect.left, rect.bottom, hWnd, &tpm); 

return O; 

11----------------------------------------------------------------------
11 DoDestroyMain - Process WM_DESTROY message for window. 
II 



182 Part I Windows Programming Basics 

LRESULT DoDestroyMain (HWND hWnd, U!NT wMsg, WPARAM wParam, 
LPARAM lParam) { 

PostQuitMessage (0); 
return Q; 

} 
11~===:=-====~=1=111,•~=!'~~::z;--~~::i;;i::;c::i;;i:7;r:z;::=;z::::~===~=========:=::==::o==::;r::.===i='.•~=·~~ 

II Command handler routines 
11-----_ _: ____ - -,- --- ,---,------- '- - --------.-- --;-- ~·--- ---------------------- ~ 

II l>oMaincommandExit - process Program Exit command. 
II 
LPARAM DoMainCommandEltit (HWND hWnd, WORD idltem, HWND hwndCtl, 

WORD wNotifyCode) { 

SendMessage (hWnd, WM_CLOSE, O, O); 
return O; 

} 

I I- --- - -- ---- - --- -- ---- -- -·- - - - - -- - - --- - -- --- - -- -- -- - - -- - - ---- - - -- -'- - --""' -
II DoMainCommandViewStd - Displays a standard edit-centric command bar II . . . . 

LPARAM DoMainCommandVStd (HWND hWnd, WORD iditem, HWN.D hwndCtl, 
WORD wNotifyCode) { 

} 

HWND hwndCB; 

.11 If a command bar exis.ts, kill it. 
if (hwndCB - GetDlgitem (hWnd,. IDC.,.CMDBAR)) 

'CommandBar J:iestroy . ChwridCB) ; 

II Create a. command bar. 
hwndCB = CommandBar_Create (htnst, hWnd, IDC...CMDBAR); 
II Insert a menu. 
CommandBarJnsertMenubar (hwndCB, hinst, IDJIENU, 0); 

II Insert buttons. 
Command Bar ...AddBi tmap (hwndCB, HINSLCOMMCTRL, IDILSTD_SMALLCOLOR, 

STDJ3MPS, 0, 0); 

CommandBar...AddButtons (hwndtB, dim(tbCBStdBtns), tbCBStdBtns); 

II .Add exit button to command bar. 
<:ommandBar...AddAdornments ChwndCB, 0, 0); 
return O; 

II---:,,.- - -·--,. -- ---:- - -_:-:- - ----- -- --"'---------- -- -'-,.,..• - ---- - --• - -- -'- - -"'- --.-
fl DoMainCommandWiew - Displays a standard edit-centric command bar 
II . 
L~ARAM DoMainCommandWiew (HWND hWnd, WORD iditem, HWND hwndttl, 

WORD wN()ttfyCode)·{ 
INT i; 
HWNDhwndCB; 
TCHAR siTmp(64]; 
HBlTMAP hBmp; hMask; 
HIMA(iELIST hilDisabled, hilEnabled; 

II I:I' a cqinmand bar exists, kill it. 



} 

Chapter 5 Common Controls and Windows CE 183 

if (hwndCB = GetDlgitem (hWnd, ID(_CMDBAR)) 
CommandBar_Destroy (hwndCB); 

II Create a command bar. 
hwndCB = CommandBar_Create (hinst, hWnd, IDC_CMDBAR); 

II Insert a menu. 
CommandBar_InsertMenubar (hwndCB, hinst, ID_MENU, O); 

II Insert buttons, first add a bitmap and then the buttons. 
CommandBar....AddBitmap (hwndCB, HINST_COMMCTRL, IDB_VIEW_SMALL_COLOR, 

VIEW_BMPS, 0, 0); 

II Load bitmaps for disabled image. 
hBmp = LoadBitmap (hinst, TEXT ("DisCross")); 
hMask = LoadBitmap (hinst, TEXT ("DisMask")); 

II Get the current image list and copy. 
hilEnabled = (HIMAGELIST)SendMessage (hwndCB, TB_GETIMAGELIST, 0, O); 
hilDisabled = Imagelist_Duplicate (hilEnabled); 
II Replace a button image with the disabled image. 
Imagelist_Replace ChilDisabled, VIEW_LIST, hBmp, hMask); 

II Set disabled image list. 
SendMessage (hwndCB, TB_SETDISABLEDIMAGELIST, 0, 

(LPARAM)hilDisabled); 

II Add buttons to the command bar. 
CommandBar....AddButtons (hwndCB, dim(tbCBViewBtns), tbCBViewBtns); 

II Add tooltips to the command bar. 
CommandBar....AddToolTips (hwndCB, dim(pViewTips), pViewTips); 

II Add a combo box between the view icons and the sort icons. 
CommandBar_InsertComboBox (hwndCB, hinst, 75, 

CBS_DROPDOWNLIST I WS_VSCROLL, 
ID(_COMBO, 6); 

II Fill in combo box. 
for (i = O; i < 10; i++) { 

} 

wsprintf (szTmp, TEXT ("Item %d"), i); 
SendDlgitemMessage (hwndCB, IDC_COMBO, CB_INSERTSTRING, -1, 

(LPARAM)szTmp); 

SendDlgitemMessage (hwndCB, ID(_COMBO, CB_SETCURSEL, 0, 0); 

JI Add exit button to command bar. 
CommandBar....AddAdornments (hwndCB, 0, O); 
return O; 

11----------------------------------------------------------------------
11 DoMainCommandVCombo - Displays a combination of file and edit buttons 
II 
LPARAM DoMainCommandVCombo (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 
HWND hwndCB; 



184 Part I Windows Programming Basics 

} 

II If a.command bar exists, kill it. 
if (hwndCB = GetDlgitem (hWnd, lD<:_CMDBAR)) 

CommandBar_Destroy ·chwridCB); 

If Create a command bar. 
hwndCB.=·CommandBar.::.Create (hinst, hWnd, ID<:_CMDBAR); 

11 Insert a menu. . 
CorilmandBar_InsertMenubar Chwnd:CB, hinst, ID.::.MENU, O); 
11 Add two bitmap 1 i sts plus custom bmp fol' dr-Op.-down button. 
Command Bar _,Add Bitmap (hwndCB, lf!NST_COMMCTRL, IDB_STD:_SMALLCOLOR, ·· 

·STD_BMf>S, 0, 0); 
CommandBar...AddBitmap (hWndCB, HINST_COMMCTRL, IDB_VIEW_SMALL_COLOR, 

VIEW~MPS; 0, O); 
Comir!andBar...AddBitmap (hwndCB; NULL, 

(int)LoadBitmap (hinst, TEXT (~SortDropBtn")), 
l, o, 0); 

commandBar...,AddButtons (hwndCB, dim(tbCBCmboBtns); tbcBCmboBtns); 

If Add exit button to command bar. 
commandBar...AddAdornments (hwndCB, o, 0); 
return. O; 

Each of the three command bars created in CmdBar demonstrates different capabilities of the 

command bar control. The first command bar, created in the routine DoMainCommandVStd, 

creates a vanilla command bar with a menu and a set of buttons. The button structure for this 

command bar is defined in the array tbCBStdBtns, which is defined near the top of CmdBar.cpp. 

The second command bar, created in the routine DoMainCommandVView, contains two 

groups of checkgroup buttons separated by a combo box. This command bar also demon

strates the use of a separate image for a disabled button. The list view button, the third but

ton on the bar, is disabled. The image for that button in the image list for disabled buttons is 

replaced with a bitmap that looks like an X. 

The DoMainCommandVCombo routine creates the third command bar. It uses both the stan

dard and view bitmap images as well as a custom bitmap for a drop-down button. This com

mand bar demonstrates the technique of referencing the images in an image list that contains 

multiple bitmaps. The drop-down button is serviced by the DoNotifyMain routine, where a 

pop-up menu is loaded and displayed when a TBN_DROPDOWN notification is received. 

Other Menu Controls 

Over the years, Microsoft has added two other "menu controls" to the operating system that 

support drop-down menus. The first additional menu control is the Command Bands control. 

A command bands control is a rebar control that, by default, contains a command bar in 



Chapter 5 Common Controls and Windows CE 185 

each band of the control. The rebar control is a container of controls that the user can drag 

around the application window. Given that command bands are nothing more than com

mand bars in a rebar control, knowing how to program a command bar is most of the battle 

when learning how to program the command bands control. 

The menu bar control was introduced in the Pocket PC a number of years ago. As mentioned 

earlier, the menu bar differs from the command bar in that it sits on the bottom of the desk

top window, not the top of the application's client window. Not only does the menu bar con

trol look different, but, to the programmer, the menu bar has a vastly different programming 

interface. The menu bar is actually a top-level window, not a child of the window that creates 

it. The menu bar is supported on Windows CE for applications that require compatibility with 

Windows Mobile applications. However, because a menu bar on Windows CE looks signifi

cantly different from a menu bar on a Windows Mobile device, the compatibly is only at a 
programming level, not at a user interface level. Because the menu bar is actually less func

tional than the command bar or the command bands control, only systems absolutely requir

ing binary compatibly with Windows Mobile systems should use this control. 

The remainder of the chapter covers the highlights of some of the other controls. These 

other controls are similar to but have somewhat less function than their counterparts un

der Windows Vista. I'll spend more time on the controls I think you'll need when writing a 

Windows CE application, starting with the month calendar and the time and date picker 

controls. These controls have a direct application to the PIM-like applications that are appro
priate for many Windows CE systems. I'll also spend some time covering the list view control, 

concentrating on features of use to Windows CE developers. I'll cover just briefly the remain

der of the common controls. 

The Month Calendar Control 

The month calendar control gives you a handy month-view calendar that can be manipu

lated by users to look up any month, week, or day as far back as the British adoption of the 
Gregorian calendar in September 1752. The control can display as many months as will fit into 

the size of the control. The days of the month can be highlighted to indicate appointments. The 

weeks can indicate the current week throughout the year. Users can spin through the months 

by tapping on the name of the month or change years by tapping on the year displayed. 

Before using the month calendar control, you must initialize the common control library by 

calling lnitCommonControlsEx with the /CC_DATE_CLASSES flag. You create the control by 

calling CreateWindow with the MONTHCAL_ CLASS flag. The style flags for the control are 

shown here. 

• MCS_MULTISELECT The control allows multiple selection of days. 

• MCS_NOTODAY The control won't display today's date under the calendar. 

• MCS;_NOTODAYCIRCLE The control won't circle today's date. 



186 Part I Windows Programming Basics 

• MCS_WEEKNUMBERS The control displays the week number (1 through 52) to the 

left of each week in the calendar. 

• MCS_DAYSTATE The control sends notification messages to the parent requesting the 

days of the month that should be displayed in bold. You use this style to indicate which 

days have appointments or events scheduled. 

Initializing the Control 

In addition to the styles just described, you can use a number of messages or their cor

responding wrapper macros to configure the month calendar control. You can use an 

MCM_SETFIRSTDAYOFWEEK message to display a different starting day of the week. You 

can also use the MCM_SETRANGE message to display dates within a given range in the con

trol. You can configure date selection to allow the user to choose only single dates or to set 

a limit to the range of dates that a user can select at any one time. The single/multiple date 

selection ability is defined by the MCS_MULTISELECT style. If you set this style, you use the 

MCM_SETMAXSELCOUNT message to set the maximum number of days that can be selected 

at any one time. 

You can set the background and text colors of the control by using the MCM_SETCOLOR 
message. This message can individually set colors for the different regions within the con

trols, including the calendar text and background, the header text and background, and the 

color of the days that precede and follow the days of the month being displayed. This mes

sage takes a flag indicating the part of the control to set and a COLOR REF value to specify 

the color. 

The month calendar control is designed to display months on an integral basis. That is, if the 

control is big enough for one and a half months, it displays only one month, centered in the 

control. You can use the MCM_GETMINREQRECT message to compute the minimum size 

necessary to display one month. Because the control must first be created before the MCM_ 
GETMINREQRECT can be sent, properly sizing the control is a roundabout process. You must 

create the control, send the MCM_ GETMINREQRECT message, and then resize the control 

using the data returned from the message. 

Month Calendar Notifications 

The month calendar control has only three notification messages to send to its parent. Of 

these, the MCN_GETDAYSTATE notification is the most important. This notification is sent 

when the control needs to know what days of a month to display in bold. This is done by 

querying the parent for a series of bit field values encode<;l in a MONTHDAYSTATE variable. 

This value is nothing more than a 32-bit value with bits 1 through 31 representing the days 1 

through 31 of the month. 



Chapter 5 Common Controls and Windows CE 187 

When the control needs to display a month, it sends an MCN_GETDAYSTATE notification with 

a pointer to an NMDAYSTATE structure defined as the following: 

typedef struct { 
NMHDR nmhdr; 
SYSTEMTIME stStart; 
int cDayState; 
LPMONTHDAYSTATE prgDayState; 

} NMDAYSTATE; 

The nmbhdr field is simply the NMHDR structure that's passed with every WM_NOTIFY 
message. The stStart field contains the starting date for which the control is requesting in

formation. This date is encoded in a standard SYSTEMTIME structure used by all versions of 

Windows. It's detailed here: 

typedef struct { 
WORD wYear; 
WORD wMonth; 
WORD wDayOfWeek; 
WORD wDay; 
WORD wHour; 
WORD wMinute; 
WORD wSecond; 
WORD wMilliseconds; 

} SYSTEMTIME; 

For this notification, only the wMonth, wDay, and wYear fields are significant. 

The cDayState field contains the number of entries in an array of MONTHDAYSTATE values. 

Even if a month calendar control is displaying only one month, it could request information 

about the previous and following months if days of those months are needed to fill in the top 

or bottom lines of the calendar. 

The month calendar control sends an MCN_SELCHANGE notification when the user chang

es the days that are selected in the control. The structure passed with this notification, 
NMSELCHANGE, contains the newly highlighted starting and ending days. The MCN_SELECT 
notification is sent when the user double-taps on a day. The same NMSELCHANGE structure 

is passed with this notification to indicate the days that have been selected. The Dig Demo 

example in Chapter 6, "Dialog Boxes and Property Sheets,'' uses a month calendar control in 

its property sheet example. A few minutes working with that example amply demonstrates 

the notification messages sent from the control. 

The Date and Time Picker Control 

The date and time picker control looks deceptively simple but is a great tool for any applica

tion that needs to ask the user to specify a date. Any programmer who has had to parse, vali

date, and translate a string into a valid system date or time will appreciate this control. 



188 Part I Windows Programming Basics 

When used to select a date, the control resembles a combo box, which is an edit field with a 

down-arrow button on the right side. Clicking the arrow, however, displays a month calendar 

control showing the current month. Selecting a day in the month dismisses the month calen

dar control and fills the date and time picker control with that date. When you configure it to 

query for a time, the date and time picker control resembles an edit field with a spin button 

on the right end of the control. 

The date and time picker control has three default formats: two for displaying the date and 

one for displaying the time. The control also allows you to provide a formatting string so that 

users can completely customize the fields in the control. The control even lets you insert ap
plication-defined fields in the control. 

Creating a Date and Time Picker Control 

Before you can create the date and time picker control, the common control library must be 

initialized. If lnitCommonControlsEx is used, it must be passed an ICC_DATE_CLASSES flag. 

The control is created by using CreateWindowwith the class DATETIMEPICK_CLASS. The con

trol defines the following styles: 

• DTS_LONGDATEFORMAT The control displays a date in long format, as in Friday, 

September 14, 2007. The actual long date format is defined in the system registry. 

• DTS_SHORTDATEFORMAT The control displays a date in short format, as in 9/14/07. 
The actual short date format is defined in the system registry. 

• DTS_TIMEFORMAT The control displays the time in a format such as 5:50:28 PM. The 
actual time format is defined in the system registry. 

• DTS_SHOWNONE The control has a check box to indicate that the date is valid. 

• DTS_UPDOWN An up-down control replaces the drop-down button that displays a 

month calendar control in date view. 

• DTS_APPCANPARSE Allows the user to directly type text into the control. The control 
sends a DTN_USERSTRING notification when the user is finished. 

The first three styles simply specify a default format string. These formats are based on the 

regional settings in the registry. Because these formats can change if the user picks different 

regional settings in the Control Panel, the date and time picker control needs to know when 

these formats change. The system informs top-level windows of these types of changes by 

sending a WM_SETT/NGCHANGE message. An application that uses the date and time picker 

control and uses one of these default fonts should forward the WM_SETT/NGCHANGE mes

sage to the control if one is sent. This causes the control to reconfigure the default formats 

for the new regional settings. 

The DTS_APPCANPARSE style enables the user to directly edit the text in the control. If this 

isn't set, the allowable keys are limited to the cursor keys and the numbers. When a field, 



Chapter 5 Common Controls and Windows CE 189 

such as a month, is highlighted in the edit field and the user presses the 6 key, the month 
changes to June. With the DTS_APPCANPARSE style, the user can directly type any char
acter in the edit field of the control. When the user has finished, the control sends a DTN_ 
USERSTRING notification to the parent window so that the text can be verified. 

Customizing the Format 

To customize the display format, all you need to do is create a format string and send it to 
the control using a DTM_SETFORMAT message. The format string can be made up of any of 
the following codes: 

String 
fragment 

Description 

"d" One- or two-digit day. 
"dd" Two-digit day. Single digits have a leading zero. 
"ddd" The three-character weekday abbreviation. As in Sun, Mon ... 
"dddd" The full weekday name. 

"h" One- or two-digit hour (12-hour format). 
"hh" Two-digit hour (12-hour format). Single digits have a leading zero. 
"H" One- or two-digit hour (24-hour format). 
"HH" Two-digit hour (24-hour format). Single digits have a leading zero. 

"m" 
"mm" 

"M" 
"MM" 

"MMM" 
"MMMM" 
"t" 
"tt" 

"X" 

"y" 
"yy" 
"yyy" 

One- or two-digit minute. 
Two-digit minute. Single digits have a leading zero. 

One- or two-digit month. 
Two-digit month. Single digits have a leading zero. 

Three-character month abbreviation. 
Full month name. 
The one-letter AM/PM abbreviation. As in A or P. 
The two-letter AM/PM abbreviation. As in AM or PM. 

Specifies a callback field that must be parsed by the application. 

One-digit year. As in 1 for 2001. 
Two-digit year. As in 01 for 2001. 
Full four-digit year. As in 2001. 

Literal strings can be included in the format string by enclosing them in single quotes. For ex
ample, to display the string Today is: Saturday, December 2, 2006, the format string would be 

'Today is: 'dddd', 'MMMM' 'd', 'yyy 

The single quotes enclose the strings that aren't parsed. That includes the Today is: as well as 
all the separator characters, such as spaces and commas. 

The callback field, designated by a series of X characters, provides for the application the 
greatest degree of flexibility for configuring the display of the date. When the control detects 



190 Part I Windows Programming Basics 

an X field in the format string, it sends a series of notification messages to its owner asking 

what to display in that field. A format string can have any number of X fields. For example, 

the following string has two Xfields. 

'Today 'XX' is: ' dddd', 'MMMM' 'd', 'yyy' and is 'XXX' birthday' 

The number of X characters is used by the application only to differentiate the application

defined fields; it doesn't indicate the number of characters that should be displayed in the 

fields. When the control sends a notification asking for information about an Xfield, it in
cludes a pointer to the X string so that the application can determine which field is being 

referenced. 

When the date and time picker control needs to display an application-defined X field, it 

sends two notifications: DTN_FORMATQUERY and DTN_FORMAT. The DTN_FORMATQUERY 
notification is sent to get the maximum size of the text to be displayed. The DTN_FORMAT 
notification is then sent to get the actual text for the field. A third notification, DTN_ 
WMKEYDOWN, is sent when the user highlights an application-defined field and presses a 

key. The application is responsible for determining which keys are valid and modifying the 

date if an appropriate key is pressed. 

The List View Control 

The list view control is arguably the most complex of the common controls. It displays a list 

of items in one of four modes: large icon, small icon, list, and report. The Windows CE version 

of the list view control supports many, but not all, of the common control library functions 

released with Internet Explorer 4.0. Some of these functions are a great help in the memory

constrained environment of Windows CE. These features include the ability to manage virtual 

lists of almost any size, headers that can have images and be rearranged using drag and 

drop, the ability to indent an entry, and new styles for report mode. The list view control also 

supports the custom draw interface, which allows a fairly easy way of changing the appear

ance of the control. 

You register the list view control either by calling lnitCommonControls or by calling an 

lnitCommonContro/s using an ICC_LISTVIEW_CLASSES flag. You create the control by call

ing CreateWindow using the class filled with WC_LISTVIEW Under Windows CE, the list view 

control supports all the styles supported by other versions of Windows, including the LVS_ 
OWNERDATA style that designates the control as a virtual list view control. 

Styles in Report Mode 

In addition to the standard list view styles that you can use when creating the list view, the 

list view control supports a number of extended styles. This rather unfortunate term doesn't 

refer to the extended styles field in the CreateWindowsEx function. Instead, two messages, 

LVM_GETEXTENDEDLISTVIEWSTYLE and LVM_SETEXTENDEDLISTVIEWSTYLE, are used to get 



Chapter 5 Common Controls and Windows CE 191 

and set these extended list view styles. The extended styles supported by Windows CE are 

listed below. 

• LVS_EX_CHECKBOXES The control places check boxes next to each item in the 

control. 

• LVS_EX_HEADERDRAGDROP The control allows headers to be rearranged by the 

user using drag and drop. 

• LVS_EX_GRIDLINES The control draws grid lines around the items in report mode. 

• LVS_EX_SUBITEMIMAGES The control displays images in the subitem columns in re

port mode. 

• LVS_EX_FULLROWSELECT The control highlights the item's entire row in report mode 

when that item is selected. 

• LVS_EX_ONECLICKACTIVATE The control activates an item with a single tap instead 

of requiring a double tap. 

Aside from the LVS_EX_CHECKBOXES and LVS_EX_ONECLICKACTIVATE extended styles, 
which work in all display modes, these new styles all affect the actions of the list view when 

in report mode. The effort here clearly has been to make the list view control an excellent 

control for displaying large lists of data. 

Note that the list view control under Windows CE doesn't support other extended list view 

styles, such as LVS_EX_INFOTJP, LVS_EX_ONECLICKACTIVATE, LVS_EX_TWOCLICKACTIVATE, 

LVS_EX_TRACKSELECT, LVS_EX_REG/ONAL, or LVS_EX_FLATSB, supported in some versions of 

the common control library. 

Virtual List View 

The virtual list view mode of the list view control is a huge help for Windows CE devices. In 

this mode, the list view control tracks only the selection and focus state of the items. The ap
plication maintains all the other data for the items in the control. This mode is handy for two 

reasons. First, virtual list view controls are fast. The initialization of the control is almost in

stantaneous because all that's required is that you set the number of items in the control. The 

list view control also gives you hints about what items it will be looking for in the near term. 
This allows applications to cache necessary data in RAM and leave the remainder of the data 

in a database or file. Without a virtual list view, an application would have to load an entire 

database or list of items in the list view when it's initialized. With the virtual list view, the ap

plication loads only what the control requires to display at any one time. 

The second advantage of the virtual list view is RAM savings. Because the virtual list view 

control maintains little information on each item, the control doesn't keep a huge data array 

in RAM to support the data. The application manages what data is in RAM with some help 

from the virtual list view's cache hint mechanism. 



192 Part I Windows Programming Basics 

The virtual list view has some limitations. The LVS_OWNERDATA style that designates a vir

tual list view can't be set or cleared after the control has been created. Also, virtual list views 

don't support drag and drop in large icon or small icon mode. A virtual list view defaults to 

LVS_AUTOARRANGE style, and the LVM_SETITEMPOSIT/ON message isn't supported. In ad
dition, the sort styles LVS_SORTASCENDING and LVS_SORTDESCENDING aren't supported. 

Even so, the ability to store large lists of items is handy. 

To implement a virtual list view, an application needs to create a list view control with an 

LVS_OWNERDATA style and handle these three notifications- LVN_GETDISPINFO, LVN_ 

ODCACHEHINT, and LVN_ODFINDITEM. The LVN_GETDISPINFO notification should be fa

miliar to those who have programmed list view controls before. It has always been sent when 

the list view control needed information to display an item. In the virtual list view, it's used in 

a similar manner, but the notification is sent to gather all the information about every item in 
the control. 

The virtual list view lets you know what data items it needs using the LVN_ODCACHEHINT 

notification. This notification passes the starting and ending index of items that the control 

expects to make use of in the near term. An application can take its cue from this set of num

bers to load a cache of those items so that they can be quickly accessed. The hints tend to 

be requests for the items about to be displayed in the control. Because the number of items 

can change from view to view in the control, it's helpful that the control tracks this instead of 

having the application guess which items are going to be needed. Because the control often 

also needs information about the first and last pages of items, it also helps to cache them 

so that the frequent requests for those items don't clear the main cache of items that will be 

needed again soon. 

The final notification necessary to manage a virtual list view is the LVN_ODFINDITEM notifi

cation. This is sent by the control when it needs to locate an item in response to a key press 

or in response to an LVM_FINDITEM message. 

The CapEdit Control 

The Cap Edit control is an edit box that capitalizes the first letter in every word in the control. 

This control is great for edit controls that will receive proper names but are on keyboard less 

devices, where tapping the Shift key isn't convenient for the user. 

To create the CapEdit control, create a window with the WC_CAPEDIT class name. Because 

CapEdit uses the edit control's window procedure for its base function, you can configure the 

control like an edit control by sending it standard edit control messages. The only message 

that's unique to this control is CEM_UPCASEALLWORDS. If wParam isn't 0, the control capi

talizes the first letter in every word. Sending this message with wParam equal to 0 causes the 

control to capitalize only the first word in the control. 



Chapter 5 Common Controls and Windows CE 193 

Other Common Controls 
Windows CE supports a number of other common controls available under the desktop ver

sions of Windows. Most of these controls are supported completely within the limits of the 

capability of Windows CE. Short descriptions of the other supported common controls follow. 

The Status Bar Control 

The status bar is carried over unchanged from the desktop versions of Windows. General 

user interface guidelines advise against using this control on devices with small screens but 

the control is quite useful on devices with larger displays. 

The Tab Control 

Almost all of the standard tab control features are supported under Windows CE. The tab 

control features not supported include the TCS_HOTTRACK style that highlighted tabs under 

the cursor and the TCS_EX_REGISTERDROP extended style. 

The Trackbar Control 

The trackbar control gains the capacity for two "buddy" controls that are automatically up

dated with the trackbar value. The trackbar also supports the custom draw service, providing 
separate item drawing indications for the channel, the thumb, and the tick marks. 

The Progress Bar Control 

The progress bar includes support for vertical progress bars and 32-bit ranges. This control 

also supports the new smooth progression instead of moving the progress indicator in dis
crete chunks. 

The Up-Down Control 

The up-down control under Windows CE supports only edit and list box controls for its 

buddy control. 

The Toolbar Control 

The Windows CE tool bar supports tooltips differently from the way tooltips are supported by 

the desktop versions of this control. You add tool bar support for tooltips in Windows CE the 

same way you do for the command bar, by passing a pointer to a permanently allocated ar

ray of strings. The toolbar also supports the transparent and flat styles that are supported by 

the command bar. 



194 Part I Windows Programming Basics 

The Tree View Control 

The tree view control supports two of the new styles added to the tree view common con

trol: TVS_CHECKBOXES and TVS_SINGLESEL. The TVS_CHECKBOXES style places a check box 

adjacent to each item in the control. The TVS_SINGLESEL style causes a previously expanded 

item to close up when a new item is selected. The tree view control also supports the custom 

draw service. The tree view control doesn't support the TVS_ TRACKSELECT style, which al

lows you to highlight an item when the cursor hovers over it. The treeview control is demon

strated in the RegView example in Chapter 10, "The Windows CE Registry." 

The Animation Control 

The animation control enables a program to display video files in the .avi (Audio/Video 
Interleave) format. The control only supports .avi files without audio. The interface to the 

control is a simple three messages: ACM_ OPEN, ACM_PLAY, and ACM_STOP. ACM_ OPEN 
specifys the .avi file or resource to load into the control. ACM_ PLAY starts the animation, 

which can be set to start and end at specific frames within the animation and can also be set 

to loop the animation. To unload an animation, ACM_ OPEN is sent specifying a file name of 

NULL. 

The animation control has some interesting style flags. The ACS_AUTOPLAY style tells 

the control to immediately begin playing the animation as soon as it is loaded. The ACS_ 
TRANSPARENT flag tells the control to use the color in the upper-left pixel in the first frame 

as the transparent color. Any pixel in the animation that contains that color is replaced with 

the background color for the control. 

Care should be taken when using the animation control on Windows CE systems. Most em

bedded systems are limited by battery life, CPU power, or both. Excessive use of animations 

in an application needlessly slows the device and drains the battery. While the animation 

control provides great eye candy, using it may not be the best choice for an embedded 

system. 

Unsupported Common Controls 
There are some conmmon controls that Windows CE doesn't support. For example, neither 
the drag list control nor the hot key control is supported. The hot key control is problematic 

in that keyboard layouts and key labels, standardized on the PC, vary dramatically on the dif

ferent hardware that runs Windows CE. And the drag list control isn't that big a loss given the 

improved power of the report style of the list view control. 

The rich edit control is an interesting story. Although not formally supported, Riched20.dll is 

on Windows CE platforms that have Pocket Word. On these systems, applications can interact 

with the rich edit control in the same manner as is done on the desktop. To learn how to use 



Chapter 5 Common Controls and Windows CE 195 

the rich edit control, refer to the desktop Windows SDK documentation. The only supported 

alternative to the rich edit control is the rich ink control supported on Windows Mobile sys

tems. This control provides text and ink input. It also converts Rich Text Format (RTF) and 

Pocket Word Ink (PWI) files to ASCII text. 

Windows CE supports fairly completely the common control library seen under other ver

sions of Windows. The date and time picker, month calendar, and command bar are a great 

help given the target audience of Windows CE devices. 

Now that both the basic window controls and the common controls have been covered, it's 

time to look at where they're most often used-dialog boxes. Dialog boxes free you from 

having to create and maintain controls in a window. See how it's done in the next chapter. 





Chapter 6 

Dialog Boxes and Property Sheets 
As discussed in Chapter 4, "Windows, Controls, and Menus," controls can be used to create 

quite complex user interfaces. The problem, however, is that handling controls at the window 

level requires a fair amount of code to create and manage the controls, code that you won't 

find in most Windows applications. Most Windows applications don't manage their child 

controls manually. Instead, dialog boxes are used. Dialog boxes are windows that typically use 

a predefined window class and a different default window procedure. The combination of 

the window class and the default window procedure, along with a set of special dialog box 
creation functions, hides the complexity of creating and managing the control windows. 

Dialog boxes (sometimes simply referred to as dialogs) query data from the user or present 

data to the user-hence the term dialog box. A specialized form of dialog, named a property 

sheet, allows a program to display multiple but related dialog boxes in an overlapping style; 

each box or property sheet is equipped with an identifying tab. Property sheets are particu

larly valuable given the tiny screens associated with many Windows CE devices. 

Windows CE also supports a subset of the common dialog library available under Windows 

Vista. Specifically, Windows CE supports versions of the common dialog boxes File Open, File 
Save, Color, Font, and Print. These dialogs are somewhat different on Windows CE. They're 

reformatted to work well with smaller screens and aren't as extensible as their desktop 

counterparts. 

Dialog Boxes 
Dialog boxes are windows created by Windows using a template provided by an application. 
The template describes the type and placement of the controls in the window. The Dialog 

Manager-the part of Windows that creates and manages dialog boxes-also provides 

default functionality for switching focus between the controls using the Tab key as well as 

default actions for the Enter and Esc keys. In addition, Windows provides a default dialog box 

window class, freeing applications from the necessity of registering a window class for each 
of the dialog boxes it might create. 

Dialog boxes come in two types: modal and modeless. A modal dialog box prevents the 

user from using the application until the dialog box is dismissed. For example, the File Open 

and Print dialog boxes are modal. A modeless dialog box can be used interactively with the 

remainder of the application. The Find dialog box in Microsoft Word is modeless; the user 

doesn't need to dismiss it before typing in the main window. 

197 



198 Part I Windows Programming Basics 

Like other windows, dialog boxes have a window procedure, although the dialog box window 

procedure is constructed somewhat differently from standard windows procedures. Rather 

than passing unprocessed messages to the DefWindowProc procedure for default processing, 

a dialog box procedure returns TRUE if it processes the message and FALSE if it doesn't pro

cess the message. Windows supplies a default procedure, DefDialogProc, for use in specific 

cases-that is, for specialized modeless dialog boxes that have their own window classes. 

Dialog Box Resource Templates 
Most of the time, the description for the size and placement of the dialog box and for the 

controls is provided via a resource called a dialog template. You can create a dialog template 

in memory, but unless a program has an overriding need to format the size and shape of the 
dialog box on the fly, loading a dialog template directly from a resource is a much better 

choice. As is the case for other resources such as menus, dialog templates are contained in 

the resource (RC) file. The template is referenced by the application using either its name or 

its resource ID. 

Figure 6-1 shows a dialog box. This dialog box will be used as an example throughout the 

discussion of how a dialog box works. 

FIGURE 6-1 A simple dialog box 

The dialog template for the dialog box in Figure 6-1 is shown here: 

GetVal DIALOG discardable 10, 10, 90, 70 
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER 
EXSTYLE WS_EX_CAPTIONOKBTN 
CAPTION "Enter Number" 
BEGIN 

LTEXT "Enter &value:" IDD_VALLABEL, 5' 10, 40, 12 
EDITTEXT IDD_VALUE, 50, 10, 30, 12, WS_TABSTOP 
RADIOBUTTON "&Decimal", IDD_DEC, 5' 25, 60, 12, 

WS_TABSTOP I WS_GROUP 
RADIOBUTTON "&Hex", IDD_HEX, 5' 40, 60, 12 
LTEXT "" IDD_ERRMSG, 5' 55, 80, 12 

END 

The syntax for a dialog template follows a simple pattern similar to that for a menu resource. 

First is the name or ID of the resource followed by the keyword DIALOG identifying that what 

follows is a dialog template. The optional discardable keyword is followed by the position and 



Chapter 6 Dialog Boxes and Property Sheets 199 

size of the dialog box. The position specified is, by default, relative to the owner window of 

the dialog box. 

The units of measurement in a dialog box aren't pixels but dialog units. A dialog unit is de

fined as one-quarter of the average width of the characters in the system font for horizontal 
units and one-eighth of the height of one character from the same font for vertical units. The 

goal is to create a unit of measurement independent of the display technology; in practice, 

dialog boxes still need to be tested in all display resolutions in which the box might be dis

played. You can compute a pixel versus dialog unit conversion using the GetDialogBaseUnits 
function, but you'll rarely find it necessary. The visual tools that come with most compilers 

these days isolate a programmer from terms such as dialog units, but it's still a good idea to 

know just how dialog boxes are described in an RC file. 

The STYLE line of code specifies the style flags for the dialog box. The styles include the stan

dard window (WS_xx) style flags used for windows as well as a series of dialog (DS_xx) style 

flags specific to dialog boxes. Windows CE supports the following dialog box styles: 

• DS_ABSALIGN Places the dialog box relative to the upper left corner of the screen 

instead of basing the position on the owner window. 

• OS_ CENTER Centers the dialog box vertically and horizontally on the screen. 

• DS_MODALFRAME Creates a dialog box with a modal dialog box frame that can be 

combined with a title bar and System menu by specifying the WS_CAPTION and WS_ 

SYSMENU styles. 

• DS_SETFONT Tells Windows to use a nondefault font that is specified in the dialog 

template. 

• DS_SETFOREGROUND Brings the dialog box to the foreground after it's created. If an 

application not in the foreground displays a dialog box, this style forces the dialog box 

to the top of the Z-order so that the user will see it. 

Most dialog boxes are created with at least some combination of the WS_POPUP, WS_ 
CAPTION, and WS_SYSMENU style flags. The WS_POPUP flag indicates that the dialog box is 

a top-level window. The WS_CAPTION style gives the dialog box a title bar. A title bar allows 

the user to drag the dialog box around as well as serving as a site for title text for the dialog 

box. The WS_SYSMENU style causes the dialog box to have a Close button on the right end 

of the title bar, thus eliminating the need for a command bar control to provide the Close 

button. Note that Windows CE uses this flag differently from other versions of Windows, in 

which the flag indicates that a system menu is to be placed on the left end of the title bar. 

The EXSTYLE line of code specifies the extended style flags for the dialog box. For Windows 

CE, these flags are particularly important. The WS_EX_CAPTIONOKBTN flag tells the dialog 

manager to place an OK button on the title bar to the immediate left of the Close button. 

Having both OK and Close (or Cancel) buttons on the title bar saves precious space in dialog 



200 Part I Windows Programming Basics 

boxes that are displayed on the small screens typical of Windows CE devices. The WS_EX_ 

CONTEXTHELP extended style places a Help button on the title bar to the immediate left of 

the OK button. Clicking on this button results in a WM_HELP message being sent to the dia

log box procedure. 

The CAPTION line of code specifies the title bar text of the dialog, provided that the WS_ 

CAPTION style is specified so that the dialog box has a title bar. 

The lines describing the type and placement of the controls in the dialog box are enclosed in 
BEGIN and END keywords. Each control is specified either by a particular keyword in the case 

of commonly used controls, or by the keyword CONTROL, which is a generic placeholder 

that can specify any window class to be placed in the dialog box. The LTEXT line of code on 

the previous page specifies a static left-justified text control. The keyword is followed by the 

default text for the control in quotes. The next parameter is the JD of the control, which must 

be unique for the dialog box. In this template, the ID is a constant defined in an include file 

that is included by both the resource script and the C or C++ file containing the dialog box 

procedure. 

The next four values are the location and size of the control, in dialog units, relative to the 

upper-left corner of the dialog box. Following that, any explicit style flags can be specified 

for the control. In the case of the LTEXT line, no style flags are necessary, but as you can see, 

the EDITTEXT and first AUTORADIOBUTTON entries each have style flags specified. Each 

of the control keywords has subtly different syntax. For example, the EDITTEXT line doesn't 

have a field for default text. The style flags for the individual controls deserve notice. The edit 

control and the first of the two radio buttons have a WS_TABSTOP style. The dialog manager 

looks for controls with the WS_TABSTOP style to determine which control gets focus when 

the user presses the Tab key. In this example, pressing the Tab key results in focus being 

switched between the edit control and the first radio button. 

The WS_GROUP style on the first radio button starts a new group of controls. All the con

trols following the radio button are grouped together, up to the next control that has the 
WS_GROUP style. Grouping auto radio buttons allows only one radio button at a time to be 

selected. 

Another benefit of grouping is that focus can be changed among the controls within a group 

by exploiting the cursor keys as well as the Tab key. The first member of a group should have 
a WS_TABSTOP style; this allows the user to tab to the group of controls and then use the 

cursor keys to switch the focus among the controls in the group. 

The CONTROL statement isn't used in this example, but it's important and merits some ex

planation. It's a generic statement that allows inclusion of any window class in a dialog box. It 

has the following syntax: 

CONTROL "text", id, class, style, x, y, width, height 
[, extended-style] 



Chapter 6 Dialog Boxes and Property Sheets 201 

For this entry, the default text and control ID are similar to the other statements, but the 

next field, class, is new. It specifies the window class of the control you want to place in the 

dialog box. The class field is followed by the style flags and then by the location and size of 

your control. Finally, the CONTROL statement has a field for extended style flags. If you use 

Visual Studio to create a dialog box and look at the resulting RC file using a text editor, you'll 

see that it uses CONTROL statements as well as the more readable LTEXT, EDITTEXT, and 

BUTTON statements. There's no functional difference between an edit control created with 

a CONTROL statement and one created with an EDITTEXT statement. The CONTROL state

ment is a generic version of the more specific keywords. The CONTROL statement also allows 

inclusion of controls that don't have a special keyword associated with them. 

Creating a Dialog Box 

Creating and displaying a dialog box is simple; just use one of the many dialog box creation 

functions. The first two are these: 

int DialogBox (HANDLE hlnstance, LPCTSTR lpTemplate, HWND hWndOwner, 
DLGPROC lpDialogFunc); 

int DialogBoxParam (HINSTANCE hlnstance, LPCTSTR lpTemplate, 
HWND hWndOwner, DLGPROC lpDialogFunc, 
LPARAM dwinitParam); 

These two functions differ only in DialogBoxParam's additional LPARAM parameter, so they 

are discussed at the same time. The first parameter to these functions is the instance handle 

of the program. The second parameter specifies the name or ID of the resource containing 

the dialog template. As with other resources, to specify a resource ID instead of a name re

quires the use of the MAKEINTRESOURCE macro. 

The third parameter is the handle of the window that will own the dialog box. The owning 

window isn't the parent of the dialog box because, were that true, the dialog box would be 

clipped to fit inside the parent. Ownership means instead that the dialog box is hidden when 
the owner window is minimized and always appears above the owner window in the z-order. 

The fourth parameter is a pointer to the dialog box procedure for the dialog box. I'll describe 

the dialog box procedure shortly. The DialogBoxParam function has a fifth parameter, which 

is a user-defined value that's passed to the dialog box procedure when the dialog box is to 

be initialized. This helpful value can be used to pass a pointer to a structure of data that can 

be referenced when your application is initializing the dialog box controls. 

Two other dialog box creation functions create modal dialogs. They are the following: 

int DialogBoxindirect (HANDLE hlnstance, LPDLGTEMPLATE lpTemplate, 
HWND hWndParent, DLGPROC lpDialogFunc); 



202 Part I Windows Programming Basics 

int DialogBoxlndirectParam (HINSTANCE hlnstance, 
LPCDLGTEMPLATE DialogTemplate, HWND hWndParent, 
DLGPROC lpDialogFunc, LPARAM dwlnitParam); 

The difference between these two functions and the two previously described is that these 

two use a dialog box template in memory to define the dialog box rather than using a re

source. This allows a program to dynamically create a dialog box template on the fly. The 

second parameter to these functions points to a DLGTEMPLATE structure, which describes 

the overall dialog box window, followed by an array of DLGITEMTEMPLATE structures defin

ing the individual controls. 

When any of these four functions is called, the dialog manager creates a modal dialog box 

using the template passed. The window that owns the dialog box is disabled, and the dialog 

manager enters its own internal GetMessage/DispatchMessage message processing loop; 
this loop doesn't exit until the dialog box is destroyed. Because of this, these functions don't 

return to the caller until the dialog box has been destroyed. The WM_ ENTER/OLE message 

that's sent to owner windows in other versions of Windows while the dialog box is displayed 

isn't supported under Windows CE. 

If an application wanted to create a modal dialog box with the template shown earlier and 

pass a value to the dialog box procedure, it might call this: 

DialogBoxParam (hlnstance, TEXT ("GetVal"), hWnd, GetValDlgProc, 
Ox1234); 

The hlnstance and hWnd parameters would be the instance handle of the application and the 

handle of the owner window. The GetVal string is the name of the dialog box template, while 

GetVa/D/gProc is the name of the dialog box procedure. Finally, Ox1234 is an application

defined value. In this case, it might be used to provide a default value in the dialog box. 

Dialog Box Procedures 

The final component necessary for a dialog box is the dialog box procedure. As in the case 

of a window procedure, the purpose of the dialog box procedure is to field messages sent to 

the window-in this case, a dialog box window-and perform the appropriate processing. 

In fact, a dialog box procedure is simply a special case of a window procedure, although you 

should pay attention to a few differences between the two. 

The first difference, as mentioned in the previous section, is that a dialog box procedure 

doesn't pass unprocessed messages to DefWindowProc. Instead, the procedure returns TRUE 

for messages it processes and FALSE for messages that it doesn't process. The dialog man

ager uses this return value to determine whether the message needs to be passed to the de

fault dialog box procedure. 



Chapter 6 Dialog Boxes and Property Sheets 203 

The second difference from standard window procedures is the addition of a new message, 

WM_INITDIALOG. Dialog box procedures perform any initialization of the controls during 

the processing of this message. Also, if the dialog box was created with DialogBoxParam or 

DialogBoxlndirectParam, the /Param value is the generic parameter passed during the call 

that created the dialog box. While it might seem that the controls could be initialized during 

the WM_ CREATE message, that doesn't work. The problem is that during the WM_ CREATE 

message, the controls on the dialog box haven't yet been created, so they can't be initialized. 

The WM_INITDIALOG message is sent after the controls have been created and before the 

dialog box is made visible, which is the perfect time to initialize the controls. 

Here are a few other minor differences between a window procedure and a dialog box pro

cedure. Most dialog box procedures don't need to process the WM_ PAINT message because 

any necessary painting is done by the controls or, in the case of owner-draw controls, in 

response to control requests. Most of the code in a dialog box procedure is responding to 

WM_ COMMAND messages from the controls. As with menus, the WM_ COMMAND mes

sages are parsed by the control ID values. Two special predefined ID values that a dialog box 

has to deal with are /DOK and IDCANCEL. /DOK is assigned to the OK button on the title bar 
of the dialog box, while IDCANCEL is assigned to the Close button. In response to a click of 

either button, a dialog box procedure should call 

BOOL EndDialog (HWND hDlg, int nResult); 

EndDialog closes the dialog box and returns control to the caller of whatever function cre

ated the dialog box. The hD!g parameter is the handle of the dialog box, while the nResult 

parameter is the value that's passed back as the return value of the function that created the 

dialog box. 

The difference, of course, between handling the /DOK and IDCANCEL buttons is that if the 

OK button is clicked, the dialog box procedure should collect any relevant data from the dia

log box controls to return to the calling procedure before it calls EndDialog. 

A dialog box procedure to handle the GetVal template previously described is shown here: 

II====================================================================== 
II GetVal Dialog procedure 
II 
BOOL CALLBACK GetValDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
TCHAR szText[64]; 
int nVal, nBase; 
WORD idltem, wNotifyCode; 

switch (wMsg) { 
case WM_INITDIALOG: 

SetDlgitemint (hWnd, IDD_VALUE, lParam, FALSE); 
SendDlgltemMessage (hWnd, IDD_VALUE, EM_LIMITTEXT, 

dim (szText)-1, O); 
CheckRadioButton (hWnd, IDD_DEC, IDD_HEX, IDD_DEC); 



204 Part I Windows Programming Basics 

return TRUE; 

case WM_COMMAND: 
II Parse the parameters. 
id!tem =(WORD) LOWORD (wParam); 
wNotifyCode =(WORD) HIWORD (wParam); 

if ((iditem == IDD_HEX) I I (id!tem == IDD_DEC) I I 
(iditem == !DOK)) { 

} 

II Get text from edit control. 
GetDlgltemText (hWnd, IDD_VALUE, szText, dim (szText)); 
if (SendDlgitemMessage (hWnd, IDD_DEC, 

BM_GETSTATE, 0, 0) == BST_CHECKED) 
nBase 10; 

else 
nBase 16; 

II Convert the string to a number. 
if (ConvertValue (szText, nBase, &nVal) == FALSE) { 

SetDlgltemText (hWnd, IDD_ERRMSG, 
TEXT ("Value not valid")); 

SendDlgitemMessage (hWnd, IDD_VALUE, EM_SETSEL, 
0, -1); 

return TRUE; 
} else 

SetDlgitemText (hWnd, IDD_ERRMSG, TEXT("")); 

II Set focus back to the edit control 
SetFocus (GetDlgltem (hWnd, IDD_VALUE)); 

switch (LOWORD (wParam)) { 

case IDD_HEX: 
II See if Hex already checked. 
if (nBase == 16) 

return TRUE; 

II Set new value in hex format 
wsprintf (szText, TEXT ("%X"), nVal); 
SetDlgltemText (hWnd, IDD_VALUE, szText); 
II Set radio button. 
CheckRadioButton (hWnd, IDD_DEC, IDD_HEX, IDD_HEX); 
return TRUE; 

case IDD_DEC: 
II See if Decimal already checked. 
if (nBase == 10) 

return TRUE; 

II Set new value. 
SetDlgitemlnt (hWnd, IDD_VALUE, nVal, FALSE); 
II Set radio button. 
CheckRadioButton (hWnd, IDD_DEC, IDD_HEX, IDD_DEC); 
return TRUE; 

case !DOK: 
EndDialog (hWnd, nVal); 



break; 

case IDCANCEL: 

} 

break; 

EndDialog (hWnd, O); 
return TRUE; 

return FALSE; 

Chapter 6 Dialog Boxes and Property Sheets 205 

This is a typical example of a dialog box procedure for a simple dialog box. The only mes

sages that are processed are the WM_INITDIALOG and WM_ COMMAND messages. The 

WM_INITDIALOG message is used to initialize the edit control using a number passed, via 

DialogBoxParam, through to the /Param value. The radio button controls aren't auto radio 

buttons because the dialog box procedure needs to prevent the buttons from changing if 

the value in the entry field is invalid. The WM_ COMMAND message first parses the wParam 

and IParam parameters and then processes the message depending on the control ID. The 

/DOK and IDCANCEL buttons aren't in the dialog box template; as mentioned earlier, those 

buttons are placed by the dialog manager in the title bar of the dialog box. 

Full-Screen Dialog Boxes 

Many Windows CE systems, such as Windows Moble systems, have small screens. On these 
systems, it can be useful to make dialog boxes fit the entire screen. To assist programmers 

in creating full-size dialog boxes, Windows CE provides a function named SHlnitDialog. As 

the name implies, the function should be called during the handling of the WM_INITDIALOG 

message. The function is prototyped as 

BOOL SHinitDialog (PSHINITDLGINFO pshidi); 

The function takes a single parameter, a pointer to an SH/NITDLG/NFO structure defined as 

typedef struct tagSHINITDIALOG{ 
DWORD dwMask; 
HWND hDlg; 
DWORD dwFlags; 

} SHINITDLGINFO; 

The dwMask field must be set to the single flag currently supported, which is SHIDIM_FLAGS. 

The hD/g field should be set to the window handle of the dialog box. The third parameter, 

dwFlags, specifies a number of different initialization options. The SHIDIF_DONEBUTTON 

specifies that the title bar contain an OK button in addition to the Close button in the upper

right corner. 

On systems with a touch panel-based or "soft" keyboard, the SHID/F_SIPDOWN flag closes 

the soft keyboard (SIP) when the dialog is displayed. This flag should be set for informational 

dialogs that have no text input fields. Note that the absence of this flag doesn't automatically 



206 Part I Windows Programming Basics 

display the SIP. It simply means that the state of the SIP remains unchanged when the dialog 

box is displayed. 

Three other flags can be set in the dwF!ags field: 

• SHIDIF_SIZEDLG 

• SHIDIF_SIZEDLGFULLSCREEN 

• SHIDIF_FULLSCREENNOMENUBAR 

These flags deal with how the dialog box is sized. The SHID/F_SIZEDLG flag tells the system 

to size the dialog box depending on the state of the SIP. If the SIP is displayed, the dialog 

box is sized to fit above the SIP. If the SIP is hidden, the dialog box is sized to fit just above 

the menu bar. If, however, you have a floating SIP, the dialog box doesn't size correctly. The 

SH/DIF_SIZEDLGFULLSCREEN and SHIDIF_FULLSCREENNOMENUBAR flags size the dialog 

box to fit the entire screen regardless of the state of the SIP. The difference between the two 

flags is that SHIDIF_FULLSCREENNOMENUBAR does not leave room for the menu bar at the 

bottom of the screen. 

Modeless Dialog Boxes 

I've talked so far about modal dialog boxes that prevent the user from using other parts of 

the application before the dialog box is dismissed. Modeless dialog boxes, on the other hand, 
allow the user to work with other parts of the application while the dialog box is still open. 

Creating and using modeless dialog boxes require a bit more work. For example, you create 

modeless dialog boxes using different functions than those for modal dialog boxes: 

HWND CreateDialog (HINSTANCE h!nstance, LPCTSTR lpTemplate, 
HWND hWndOwner, DLGPROC lpDialogFunc); 

HWND CreateDialogParam (HINSTANCE h!nstance, LPCDLGTEMPLATE lpTemplate, 
HWND hWndOwner, DLGPROC lpDialogFunc, 
LPARAM lParaminit); 

HWND CreateDialogindirect (HINSTANCE hinstance, 

or 

LPCDLGTEMPLATE lpTemplate, HWND hWndOwner, 
DLGPROC lpDialogFunc); 

HWND CreateDialogindirectParam (HINSTANCE hlnstance, 
LPCDLGTEMPLATE lpTemplate, HWND hWndOwner, 
DLGPROC lpDialogFunc, LPARAM lParamlnit); 

The parameters in these functions mirror the creation functions for the modal dialog boxes 

with similar parameters. The difference is that these functions return immediately after 



Chapter 6 Dialog Boxes and Property Sheets 207 

creating the dialog boxes. Each function returns 0 if the create fails or returns the handle to 

the dialog box window if the create succeeds. 

The handle returned after a successful creation is important because applications that use 

modeless dialog boxes must modify their message loop code to accommodate the dialog 

box. The new message loop should look similar to the following: 

while (GetMessage (&msg, NULL, 0, 0)) { 

} 

if ((hMlDlg == O) I I (!IsDialogMessage (hMlDlg, &msg))) { 
TranslateMessage (&msg); 
DispatchMessage (&msg); 

} 

The difference from a modal dialog box message loop is that if the modeless dialog box 

is being displayed, messages should be checked to see whether they're dialog messages. 

If they're not dialog messages, your application forwards them to TranslateMessage and 

DispatchMessage. The code just shown simply checks to see whether the dialog box exists by 

checking a global variable containing the handle to the modeless dialog box and, if it's not 

0, calls lsDialogMessage. If lsDialogMessage doesn't translate and dispatch the message itself, 

the message is sent to the standard TranslateMessage/DispatchMessage body of the message 

loop. Of course, this code assumes that the handle returned by CreateDialog (or whatever 

function creates the dialog box) is saved in hM/Dlg and that hM/Dlg is set to 0 when the dia

log box is closed. 

Another difference between modal and modeless dialog boxes is in the dialog box pro

cedure. Instead of using EndDialog to close the dialog box, you must call DestroyWindow 

instead. This is because EndDialog is designed to work only with the internal message loop 

processing that's performed with a modal dialog box. Finally, an application usually won't 

want more than one instance of a modeless dialog box displayed at a time. An easy way to 

prevent this is to check the global copy of the window handle to see whether it's nonzero 

before calling CreateDialog. To do this, the dialog box procedure must set the global handle 
to 0 after it calls DestroyWindow. 

Property Sheets 

To the user, a property sheet is a dialog box with one or more tabs across the top that allow 

the user to switch among different "pages" of the dialog box. To the programmer, a property 

sheet is a series of stacked dialog boxes. Only the top dialog box is visible; the dialog man

ager is responsible for displaying the dialog box associated with the tab on which the user 

clicks. However you approach property sheets, they're invaluable given the limited screen 

size of Windows CE devices. 



208 Part I Windows Programming Basics 

Each page of the property sheet, named appropriately a property page, is a dialog box tem
plate, either loaded from a resource or created dynamically in memory. Each property page 
has its own dialog box procedure. The frame around the property sheets is maintained by 
the dialog manager, so the advantages of property sheets come with little overhead to the 
programmer. Unlike the property sheets supported in other versions of Windows, the prop
erty sheets in Windows CE don't support the Apply button. Also, the OK and Cancel buttons 
for the property sheet are contained in the title bar, not positioned below the pages. 

Creating a Property Sheet 

Instead of the dialog box creation functions, use this new function to create a property sheet: 

int PropertySheet (LPCPROPSHEETHEADER lppsph); 

The PropertySheet function creates the property sheet according to the information con
tained in the PROPSHEETHEADER structure, which is defined as the following: 

typedef struct _PROPSHEETHEADER { 
DWORD dwSize; 
DWORD dwFlags; 
HWND hwndOwner; 
HINSTANCE h!nstance; 
union { 

HICON h!con; 
LPCWSTR psz!con; 

} ; 
LPCWSTR pszCaption; 
UINT nPages; 
union { 

} ; 

UINT nStartPage; 
LPCWSTR pStartPage; 

union { 
LPCPROPSHEETPAGE ppsp; 
HPROPSHEETPAGE FAR *phpage; 

} ; 
PFNPROPSHEETCALLBACK pfnCallback; 

} PROPSHEETHEADER; 

Filling in this convoluted structure isn't as imposing a task as it might look. The dwSize field 
is the standard size field that must be initialized with the size of the structure. The dwF/ags 
field contains the creation flags that define how the property sheet is created, which fields 
of the structure are valid, and how the property sheet behaves. Some of the flags indicate 
which fields in the structure are used. (I'll talk about those flags when I describe the other 
fields.) Two other flags set the behavior of the property sheet. The PSH_PROPTITLE flag ap
pends the string "Properties" to the end of the caption specified in the pszCaption field. The 

PSH_MODELESS flag causes the PropertySheet function to create a modeless property sheet 



Chapter 6 Dialog Boxes and Property Sheets 209 

and immediately return. A modeless property sheet is like a modeless dialog box; it allows 
the user to switch back to the original window while the property sheet is still displayed. 

The next two fields are the handle of the owner window and the instance handle of the ap
plication. Neither the hlcon nor the pszlcon field is used in Windows CE, so both fields should 
be set to 0. The pszCaption field should point to the title bar text for the property sheet. The 
nStartPage/pStartPage union should be set to indicate the page that should be initially dis
played. This can be selected either by number or by title if the PSH_USEPSTARTPAGE flag is 
set in the dwF/ags field. 

The ppsp/phpage union points to either an array of PROPSHEETPAGE structures describing 
each of the property pages or handles to previously created property pages. For either of 
these, the nPages field must be set to the number of entries of the array of structures or page 
handles. To indicate that the pointer points to an array of PROPSHEETPAGE structures, set 
the PSH_PROPSHEETPAGE flag in the dwF/ags field. I'll describe both the structure and how 
to create individual pages shortly. 

The pfnCal/Back field is an optional pointer to a procedure that's called with a series of noti
fications indicating events during creation of the property sheet. The callback function allows 

applications to fine-tune the appearance of the property sheet. This field is ignored unless 
the PSP_USECALLBACK flag is set in the dwF/ags field. One place the callback is used is in 
Windows Mobile applications to place the tabs on the bottom of the property sheet. 

The callback procedure should be defined to match the following prototype: 

UINT CALLBACK PropSheetPageProc (HWND hwnd, UINT uMsg, 
LPPROPSHEETPAGE ppsp); 

The parameters sent back to the application are a handle value documented to be reserved, 
the notification code in the uMsg parameter, and, in some notifications, a pointer to a 

PROPSHEETPAGE structure. The notifications supported in Windows CE are as follows: 

• PSCB_NOPRECREATE Sent to query if app wants PSCB_PRECREATE notification. 

• PSCB_PRECREATE Sent just before the property sheet is created. 

• PSCB_INITIALIZED Sent when the property sheet is initialized. 

• PSCB_GETVERSION Sent to query the level of support expected by the application. 

• PSCB_GETTITLE Sent to query property sheet title text. 

• PSCB_GETLINKTEXT On a Windows Mobile device, sent to query the string to place 
below the tabbed pages on the property sheet. 



210 Part I Windows Programming Basics 

Creating a Property Page 

As I mentioned earlier, individual property pages can be specified by an array of 

PROPSHEETPAGE structures or an array of handles to existing property pages. Creating a 

property page is accomplished with a call to the following: 

HPROPSHEETPAGE CreatePropertySheetPage (LPCPROPSHEETPAGE lppsp); 

This function is passed a pointer to the same PROPSHEETPAGE structure and returns a handle 

to a property page. PROPSHEETPAGE is defined as this: 

typedef struct _PROPSHEETPAGE { 
DWORD dwSize; 
DWORD dwFlags; 
HINSTANCE h!nstance; 
union { 

} ; 

LPCSTR pszTemplate; 
LPCDLGTEMPLATE pResource; 

union { 
HICON h!con; 
LPCSTR psz!con; 

} ; 
LPCSTR pszTitle; 
DLGPROC pfnDlgProc; 
LPARAM lParam; 
LPFNPSPCALLBACK pfnCallback; 
UINT FAR * pcRefParent; 

} PROPSHEETPAGE; 

The structure looks similar to the PROPSHEETHEADER structure, leading with a dwSize and a 

dwF/ags field followed by an hlnstance field. In this structure, hlnstance is the handle of the 

module from which the resources are loaded. The dwF/ags field again specifies which fields of 

the structure are used and how they're used, as well as a few flags specifying the characteris

tics of the page itself. 

The pszTemplate/pResource union specifies the dialog box template used to define the page. 

If the PSP_DLGINDIRECT flag is set in the dwF/ags field, the union points to a dialog box 

template in memory. Otherwise, the field specifies the name of a dialog box resource. The 

hlcon/pszlcon union isn't used in Windows CE and should be set to 0. If the dwflags field 

contains a PSP_USETITLE flag, the pszTitle field points to the text used on the tab for the 

page. Otherwise, the tab text is taken from the caption field in the dialog box template. The 

pfnDlgProc field points to the dialog box procedure for this specific page, and the f Param field 

is an application-defined parameter that can be used to pass data to the dialog box procedure. 

The pfnCallback field can point to a callback procedure that's called twice-when the page is 
about to be created and when it's about to be destroyed. Again, like the callback for the prop

erty sheet, the property page callback allows applications to fine-tune the page characteristics. 



Chapter 6 Dialog Boxes and Property Sheets 211 

This field is ignored unless the dwF/ags field contains the PSP_USECALLBACK flag. Finally, 

the pcRefCount field can contain a pointer to an integer that stores a reference count for the 
page. This field is ignored unless the flags field contains the PSP_USEREFPARENT flag. 

Windows CE supports the PSP_PREMATURE flag, which causes a property page to be cre
ated when the property sheet that owns it is created. Normally, a property page isn't created 
until the first time it's shown. This has an impact on property pages that communicate and 
cooperate with each other. Without the PSP_PREMATURE flag, the only property page that's 
automatically created when the property sheet is created is the page that is displayed first. 
So at that moment, that first page has no sibling pages to communicate with. Using the PSP_ 
PREMATURE flag, you can ensure that a page is created when the property sheet is created, 
even though it isn't the first page in the sheet. Although it's easy to get overwhelmed by all 
these structures, simply using the default values and not using the optional fields results in 
a powerful and easily maintainable property sheet that's also as easy to construct as a set of 
individual dialog boxes. 

After a property sheet is created, the application can add and delete pages. The application 
adds a page by sending a PSM_ADDPAGE message to the property sheet window. The mes
sage must contain the handle of a previously created property page in /Param; wParam isn't 
used. Likewise, the application can remove a page by sending a PSM_REMOVEPAGE message 

to the property sheet window. The application specifies a page for deletion either by setting 
wParam to the zero-based index of the page selected for removal or by passing the handle 
to that page in /Param. 

The following code creates a simple property sheet with three pages. Each of the pages 
references a dialog box template resource. As you can see, most of the initialization of the 
structures can be performed in a fairly mechanical fashion. 

PROPSHEETHEADER psh; 
PROPSHEETPAGE psp[3]; 
int i; 
II Initialize page structures with generic information. 
memset (&psp, 0, sizeof (psp)); II Zero out all unused values. 
for Ci = O; i < dim(psp); i++) { 

psp[i].dwSize = sizeof (PROPSHEETPAGE); 
psp[i].dwFlags = PSP_DEFAULT; II No special processing needed 
psp[i].hinstance = hinst; II Instance handle where the 

II dialog templates are located 
II Now do the page-specific stuff. 
psp[O].pszTemplate =TEXT ("Pagel"); II Name of dialog resource for page 1 
psp[O].pfnDlgProc = PagelDlgProc; II Pointer to dialog proc for page 1 

psp[l].pszTemplate =TEXT ("Page2"); II Name of dialog resource for page 2 
psp[l] .pfnDlgProc = Page2DlgProc; II Pointer to dialog proc for page 2 

psp[2] .pszTemplate =TEXT ("Page3"); II Name of dialog resource for page 3 
psp[2] .pfnDlgProc = Page3DlgProc; II Pointer to dialog proc for page 3 



212 Part I Windows Programming Basics 

II !nit property sheet header structure. 
psh.dwSize = sizeof (PROPSHEETHEADER); 
psh.dwFlags = PSH_PROPSHEETPAGE; II We are using templates, not handles. 
psh.hwndParent = hWnd; II Handle of the owner window 
psh.h!nstance = hinst; II Instance handle of the application 
psh.pszCaption =TEXT ("Property sheet title"); 
psh. nPages = dim(psp); 11 Number of pages 
psh.nStartPage = O; II Index of page to be shown first 
psh.ppsp = psp; II Pointer to page structures 
psh.pfnCallback = O; II We don't need a callback procedure. 

II Create property sheet. This returns when the user dismisses the sheet 
II by tapping OK or the Close button. 
i = PropertySheet (&psh); 

While this fragment has a fair amount of structure filling, it's boilerplate code. Everything 

not defined, such as the page dialog box resource templates and the page dialog box pro

cedures, is required for dialog boxes as well as property sheets. So aside from the boilerplate 

stuff, property sheets require little, if any, work beyond simple dialog boxes. 

Property Page Procedures 

The procedures that back up each of the property pages differ in only a few ways from 

standard dialog box procedures. First, as I mentioned earlier, unless the PSP_PREMATURE 
flag is used, pages aren't created immediately when the property sheet is created. Instead, 

each page is created and WM_INITDIALOG messages are sent only when the page is initially 

shown. Also, the /Param parameter doesn't point to a user-defined parameter; instead, it 

points to the PROPSHEETPAGE structure that defines the page. Of course, that structure con

tains a user-definable value that can be used to pass data to the dialog box procedure. 

Also, a property sheet procedure doesn't field the /DOK and IDCANCEL control IDs for the 

OK and Close buttons on a standard dialog box. These buttons instead are handled by the 

system-provided property sheet procedure that coordinates the display and management of 
each page. When the OK or Close button is tapped, the property sheet sends a WM_NOTIFY 
message to each sheet notifying it that one of the two buttons has been tapped and that it 

should acknowledge that it's okay to close the property sheet. 

Switching Pages 
When a user switches from one page to the next, the dialog manager sends a WM_NOTIFY 
message with the code PSN_KILLACTIVE to the page currently being displayed. The dialog 

box procedure should then validate the data on the page. If it's permissible for the user to 

change the page, the dialog box procedure should then set the return value of the window 

structure of the page to PSNRET_NOERROR and return TRUE. You set the PSNRET_NOERROR 



Chapter 6 Dialog Boxes and Property Sheets 213 

return field by calling SetWindowLong with DWL_MSGRESULT, as in the following line of 

code: 

SetWindowLong (hwndPage, DWL_MSGRESULT, PSNRET_NOERROR); 

where hwndPage is the handle of the property sheet page. A page can keep focus by return

ing PSNRET_INVALID_NOCHANGEPAGE in the return field. Assuming a page indicates that 

it's okay to lose focus, the page being switched to receives a PSN_SETACTIVE notification via 

a WM_NOTIFY message. The page can then accept the focus or specify another page that 
should receive the focus. 

Closing a Property Sheet 

When the user taps the OK button, the property sheet procedure sends a WM_NOTIFYwith 
the notification code PSN_KILLACTIVE to the page currently being displayed, followed by a 

WM_ NOTIFY with the notification code PSN_APPLY to each of the pages that has been cre

ated. Each page procedure should save any data from the page controls when it receives the 

PSN_APPLY notification code. 

When the user clicks the Close button, a PSN_QUERYCANCEL notification is sent to the page 

procedure of the page currently being displayed. All this notification requires is that the page 

procedure return TRUE to prevent the close or FALSE to allow the close. A further notifica
tion, PSN_RESET, is then sent to all the pages that have been created, indicating that the 

property sheet is about to be destroyed. 

Common Dialogs 

In the early days of Windows, it was a rite of passage for a Windows developer to write his 

or her own File Open dialog box. A File Open dialog box is complex-it must display a list of 

the possible files from a specific directory, allow file navigation, and return a fully justified file 

name back to the application. While it was great for programmers to swap stories about how 
they struggled with their unique implementation of a File Open dialog box, it was hard on 

the users. Users had to learn a different file open interface for every Windows application. 

Windows now provides a set of common dialog boxes that perform typical functions, such as 

selecting a file name to open or save or picking a color. These standard dialog boxes (called 

common dialogs) serve two purposes. First, common dialogs lift from developers the burden 

of having to create these dialog boxes from scratch. Second, and just as important, common 

dialogs provide a common interface to the user across different applications. (These days, 

real Windows programmers reminisce about the pain of COM.) 

Windows CE provides five common dialogs: File Open, Save As, Page Setup, Choose Font, 

and Choose Color. The Font common dialog box isn't supported under Windows CE. The 

other advantage of the common dialog boxes is that they have a customized look for each 



214 Part I Windows Programming Basics 

platform while retaining the same programming interface. This makes it easy to use, for ex

ample, the File Open dialog box on the Windows Mobile devices and embedded versions of 

Windows CE because the dialog box has the same interface on both systems, even though 

the look of the dialog box is vastly different on the different platforms. Figure 6-2 shows the 

File Open dialog box on an embedded Windows CE system; Figure 6-3 shows the File Open 

dialog box on a Windows Mobile device. 

Application Data 
·· Documents and Settings 

•. ··: My Documents 1::2 Vllindows 
·.: ~Network 
'· profiles 

FIGURE 6-2 The File Open dialog box on an embedded Windows CE system 

Open 

Folder: JAii Folders •J lliBlll 
Type: JAii Documents(*.*) •J 

FIGURE 6-3 The File Open dialog box on a Windows Mobile device 

Instead of showing you how to use the common dialogs here, I'll let the next example program, 

Dig Demo, show you. That program demonstrates all four supported common dialog boxes. 

The DlgDemo Example Program 
The DlgDemo program demonstrates basic dialog boxes, modeless dialog boxes, property 

sheets, and common dialogs. When you start Dig Demo, it displays a window that shows the 

WM_ COMMAND and WM_NOTIFY messages sent by the various controls in the dialogs. The 

different dialogs can be opened using the various menu items. Figure 6-4 shows the Dialog 

Demo window with the property sheet dialog displayed. 



Chapter 6 Dialog Boxes and Property Sheets 215 

The basic dialog box is a simple "about box" launched by selecting the Help About menu. This 

dialog uses the SH/nitDialog function to make the dialog full screen. The property sheet launches 

by choosing the File Property Sheet menu. The property sheet dialog contains two pages. 

The first page contains a Month Calendar control. The second page contains a trackbar control 

and a progress control. The common dialog boxes are launched from the File Open, File Save, File 

Color, Font, and File Print menu items. The DlgDemo source code is shown in Listing 6-1. 

Ble Help 
PropSheetCallback h:70024300 4 0002f7f0 
PropSheetCallback h:70024300 5 0002f7f0 

0 PSN SET ACTIVE 
200 NM_SETFOCUS 
200 MCN SELCHANGE 
200 MCN - SELECT 
200 MCN=SELCHANGE 
200 MCN_SELECT 

0 PSN_KILLACTIVE 
0 PSN SET ACTIVE 

210 NM_CUSTOMDRAW 
200 NM_KILLFOCUS 
210 NM CUSTOMDRAW 
WM_HSCROLL from Trackbar msg 3 
WM_HSCROLL from Trackbar msg 8 
210 NM CUSTOMDRAW 
210 NM-CUSTOMDRAW 

0 PSN KILLACTIVE 
0 PSN - SET ACTIVE 

200 NM SETFOCUS 
200 NM - KILLFOCUS 
200 NM-SETFOCUS 
200 ~JM -KILLFOCUS 
200 MCN_SELCHANGE 
200 MCN_SELCHANGE 
200 NM SETFOCUS 
200 MCN_SELCHANGE 
200 MCN_SELCHANGE 
200 MCN_SELCHANGE 
200 MCN_SELECT 
200 NM_KILLFOCUS 
200 NM_SETFOCUS 

II May 2008 II 
S M T W T F S 
27282930.2 3 
45678910 

11 12 13 14 15 16 17 
18 19 20 21 22 23 24 
25 26 27 28 29 30 31 
1 ,4 

Today: 6/2/2007 

FIGURE 6-4 The Dialog Demo window 

LISTING 6-1 

DlgDemo.rc 

x 

II====================================================================== 
II Resource file 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II====================================================================== 

#include "windows.h" 
#include "DlgDemo.h'' 
#include "commctrl.h" 

II Program Icon 
ID_ICQN ICON "DlgDemo.ico" 

II Program-specific stuff 

II Program icon 

11-------~---~----------------------------------------------------------



216 Part I Windows Programming Basics 

II Menu, the RC data resource is needed by the menu bar 
II 
IO_MENU RCDATA MOVEABLE PURE 
BEGIN 

ID_MENU '. 2' 
-2, 100, TBSTATE_ENABLED, TBSTYLL .. DROPDOWN I TBSTYLE_AUTOSIZE, 5, 0, 0, 
-2, 101, TBSTATE_ENABLED, TBSTYLE;J)ROPDOWN I TBSrYLE_AUTOSIZE, 3., 0 ,l 

END 

ID_MENU MENU DIS(ARDABLE 
BEGIN 

END 

POPUP "&File" 
BEGIN 

END 

MENU ITEM uopen .. .,''' 
MENU ITEM 11 Save . ... "~ 
MENU ITEM SEPARATOR 
MENU ITEM "'Color~ .. ", 
MENU ITEM 'iPrint. ... ", 
MENU ITEM "Font ... H, 

MENUITEM SEPARATOR 
MENUITEM. "Property Sheet", 
MENUITEM "Scrollable. Dialog", 
MENUITEM "Mode less Di a log'', 
MENUITEM SEPARATOR 
MENUITEM "E&)(it", 

POPUP ".&Help" 
BEGIN 

MENUITEM "&About ... ", 
END 

IDM__OPEN 
IDM_SAVE 

IDM_COLOR 
IDM__PRINT 
IDM~FONT 

IDM_SHOWPROPSHEET 
IDM_SHOWSCROLLABLE 
IDM_SHOWMQDELESS 

IDM__EXIT 

IDM__ABOUT 

11--~---~-'------------------------'------------------'--------------'------
11 Property page templates 
II 
IO_PAGElDIALOG discardable 0, O, 125, 95 
CAPTION. "MonthCal" 
BEGIN 

CONTROL "", IDCMONTHCAL, MONTHCALCLASS, WS_VISIBLE, 

END 

ID_PAGE2 DIALOG discardable 0, 0, 125, 80 
CAPTION "Track and Progress" 
BEGIN 

5, 5, 95, 95, 

CONTROL "", IDC--TRACKBAR, TRACK6AR....CLASS, WS_VISIBLE I TBS...AUTOT!CKS, 
5' 5' 115' 20' 

CONTROL "", IDCPROGRESS, PROGRESS..;CLASS, 
WS_BORDER I WS_VISIBLE I PBS_SMOOTH, 5, 30, 115, 20, 

END 

11-----------'--~-------'-----'---------------'-'----'------------------------



Chapter 6 Dialog Boxes and Property Sheets 217 

II Scrollable dialog box template. 
II 
ScrollDlg DIALOG discardable 20, 10, 90, 50 
STYLE WS_POPUP I WS_CAPTION I WS_SYSMENU I WS_VSCROLL 
CAPTION "Scrollable" 
BEGIN 

PUSHBUTION "Button", IDCBUTION, 
WS_TABSTOP 

CHECKBOX "Check Box", IDCCHKBOX, 
WS_TABSTOP 

AUTOCHECKBOX "Auto check box" IDCACHKBOX, 
WS_TABSTOP 

AUT03STATE "Auto 3-state box", IDC.A3STBOX, 
WS_TABSTOP 

AUTORADIOBUTION "Auto radio button 1"' 
IDCRADIOl, 

WS_TABSTOP 
AUTORADIOBUTION "Auto radio button 2"' 

IDCRADI02, 
END 

5. 5, 80, 12. 
I BS_NOTIFY 
5. 20, 80, 12, 
I BS_NOTIFY 
5, 35, 80, 12, 

5' 50, 80, 12, 

5. 65, 80, 12, 
I WS_GROUP 

5, 80, 80, 12 

11--~-------------7-----------------------------------------------------
11 C1ear list; modeless dialog box template. 
II 
Clearbox DIALOG discardable 60, 10, 70, 30 
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_MODALFRAME 
CAPTION "Cl ear" 
BEGIN 

DEFPUSHBUTION "Clear Listbox" IDD_CLEAR, 5' 5. 60, 20 
END 
ll-------~--------------~-----------------------------------------------
11 About box dialog box template 
II 
aboutbox DIALOG discardable 10, 10, 132, 45 
STYLE WS_POPUP I WS_CAPTION I WS_SYSMENU I DS_CENTER 

DS_MODALFRAME 
CAPTION "About" 
BEGIN 

ICON -1, 5, 5. 0, 0 

LTEXT "DlgDemo - Written for the book Programming Windows \ 
CE Copyright 2007 Douglas Boling" 

-1, 28, 5, 100, 35 
END 

DlgDemo.h 

II===================================================================== 
II Header file 



218 Part I Windows Programming Basics 

II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II====================================================================== 
II Returns number of elements 
#definedim(x} (sizeof(x} / sizeof(x[O])) 

ll-------'-----,-------------------------------------------------'---------
11 Generic defines and data types 
II 
struct decodeUINT { 

UINT Code; 

LRESULT (''Fxn) (HWND, UINT, WPARAM, LPARAM); 
} ; 
struct decodeCMD { 

UINT Code; 
LRESULT .(*Fxn)(HWND, WORD, HWND, WORD); 

}; 

II Structure associates 
II messages 
II with a function. 

II Structure associates 
II menu IDs with a 
II function. 

11-~-----"-"-'--------"~--------'----'-------'----------------------~-------
11 Generic defines used by a,pplication 
#define IDCCMDBAR 1 II Command bar ID 
#define IDCRPTLIST 2 II ID for report list box 
#define ID_ICON 10 II Icon resource ID 
#define ID_MENU 11 II Main menu resource ID 

#define IDM_OPEN 100 II Menu item IDs 
#define IDM_SAVE 101 
#define IDM;...COLOR 102 
#define IDM_PRINT 103 
#define IDM_FONT 104 
#define IDM_SHOWPROPSHEET 1.05 
#define IOM_SHOWSCROLLABLE 106 
#define IDM_SHOWMODELESS 107 
#define IDM....EXIT 108 
#define IDM_ABOUT 110 
#define IDLBTNICON 120 

I/ Iden ti fi ers for the property page resources 
#define lD_PAGEl 50 
#define ID_PAGE2 51 

#define lDCMONTHCAL 200 II Page 1. defines 

#define IDCTRACKBAR 210 II Page 2 defines 
#define IDCPROGRE:SS 211 

#define !DC.BUTTON 300 II Scroll dlg defines 
#define IDC.CHKBOX 301 
#define IDC_ACHKBOX 302 
#define IOC_A3STBOX 303 
#define IDC.RAD!Ol 304 
#define IDC.RADI02 305 



Chapter 6 Dialog Boxes and Property Sheets 219 

II Control IDs for modeless dialog box 
#define IDD_CLEAR 500 

II User-defined message to add a line to the window 
#define MYMSG_ADDLINE (WM_USER + 100) 

11----------------------------------------------------------------------
11 Program-specific structures 
II 
typedef struct { 

TCHAR "pszLabel; 
DWORD wNotification; 

} NOTELABELS, "PNOTELABELS; 
11----------------------------------------------------------------------
11 Function prototypes 
II 
HWND Initinstance (HINSTANCE, LPWSTR, int); 
int Terminstance (HINSTANCE, int); 
void RptMessage (DWORD id, LPTSTR lpszFormat, ... ); 
LRESULT PrintNotMessage (LPARAM, PNOTELABELS, int); 
LRESULT PrintCmdMessage (WPARAM, LPARAM, PNOTELABELS, int); 

II Window procedures 
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM); 
II Message handlers 
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoAddLineMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM); 
II Command functions 
LPARAM DoMainCommandOpen (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandSave (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandColor (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandPrint (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandFont (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandShowProp (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandModeless (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandScrollable (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandAbout (HWND, WORD, HWND, WORD); 
II Dialog box procedures 
BOOL CALLBACK PagelDlgProc (HWND, UINT, WPARAM, LPARAM); 
BOOL CALLBACK Page2DlgProc (HWND, UINT, WPARAM, LPARAM); 
BOOL CALLBACK AboutDlgProc (HWND, UINT, WPARAM, LPARAM); 
BOOL CALLBACK ModelessDlgProc (HWND, UINT, WPARAM, LPARAM); 
BOOL CALLBACK ScrollableDlgProc (HWND, UINT, WPARAM, LPARAM); 

DlgDemo.cpp 

II====================================================================== 
II DlgDemo - Dialog box demonstration 



220 Part I Windows Programming Basics 

II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Doug.las Boling 
/!====================,,============"==================================== 
#include <windows.h> 
#include <commctrl .h> 
#include <commdlg.h> 
#include.<prsht.h> 

II For all that Wi.ndows stuff 
II Command bar includes 
II Common dialog box includes 
II Property sheet includes 

I I Program-specific stuff #include "DlgDemo.h" 
#i.nclude <aygshell.h> 
#pragma comment( lib, "aygshell" 

11 Add extended .shell includes 
II Link extended Shell API 

#if defi ned{WIN3;LPLATFORM_PSPL) I I defi ned(WIN32_PLATFORM_WFSP) 
#define WINMOBILE 1 
#end if 
11--~-~-------~--~---------~~---~---------~-----~------~-------~-~~-----
I/ Global data 
II 
con st TCHAR szAppNameIJ =.TEXT ("Dl gDemo"); 
H!NSTANCEhJnst; II Program instance handle 
HWND g_hwndMl Dl g = o; 11 Handle to model ess di alo.g box 

HINSTANCE.hLib = O; II Handle to commDlg lib 
HWND hwndMain; II Handle to main 
window 

#ifdef·WINMOBILE 

typedef BOOL (APIENTRY* LFPRINTDLG) (LPPRINTDLG lppsd); 
LFPRINTDLG lpfnPrintDlg = O; II Ptr to print common dialog fn 

typedef BOOL (APIENTRY* LFCHOOSEFONTPROC) (PVOID) ; 
FARPROC lpfnChooseFontDl g "" 0; //Choose Font 

#else 

typedef BOOL (APIENTRY* LFPAGESETUPDLG).( LPPAGESETUPDLGW )~ 

LFPAGESETUPDLG lpfnPrintDlg = O; // Ptr to print common dialo.g fn 

typedef BOOL (APIENTRY* LFCHOOSEFONTPRO() (LPCHOOSEFONT); 
LFCHOOSEFONTPROC lpfnChooseFontDlg = O; //Choose Font 

#endif 

typedef BOOl (APIENTRY* LFCHOOSECOLORPROC) (LPCHOOSECOLOR ·) .; 
LFCHOOSECOLORPROC lpfnChO.Osi'!Ccilor = O; // Ptr to (;olor common dialog fo 

/I Message dispatch table for MainWindowProc 
const struct decodeUINT MainMessages[] = { 

WM_CREATE, DoCreateMai.n, 
WM_COMMAND, DoCommandMain, 
MYMSG..,.ADDLINE, DoAddlineMain, 



Chapter 6 Dialog Boxes and Property Sheets 221 

WM_DESTROY, DoDestroyMain, 
} ; 

II Command message dispatch for MainWindowProc 
const struct decodeCMD MainCommanditems[] = { 

IDM....OPEN, DoMainCommandOpen, 

}; 

II 

IDM_SAVE, DoMainCommandSave, 
IDM_SHOWPROPSHEET, DoMainCommandShowProp, 
IDM_SHOWSCROLLABLE, DoMainCommandScrollable, 
IDM_SHOWMODELESS, DoMainCommandModeless, 
IDM_COLOR, DoMainCommandColor, 
IDM_PRINT, DoMainCommandPrint, 
IDM_FONT, DoMainCommandFont, 
IDM_EXIT, DoMainCommandExit, 
IDM_ABOUT, DoMainCommandAbout, 

II Labels for WM_NOTIFY notifications 
II 
NOTELABELS nlPropPage[] = {{TEXT ("PSN_SETACTIVE II) t PSN_SETACTIVE } ' 

{TEXT («PSN_KILLACTIVE «), PSN_KILLACTIVE }, 
{TEXT («PSN__APPLY «)' PSN__APPLY }, 

{TEXT («PSN....RESET «)' PSN_RESET }, 

{TEXT («PSN_HELP «)' PSN_HELP }, 

{TEXT («PSN_WIZBACK «)' PSN_WIZBACK } ' 
{TEXT («PSN_WIZNEXI «)' PSN_WIZNEXT }, 

{TEXT («PSN....WIZFINISH «)' PSN_WIZFINISH }, 

{TEXT («PSN_QUERYCANCEL»), PSN_QUERYCANCEL}, 
{TEXT («NM_OUTOFMEMORY «), NM_OUTOFMEMORY }, 
{TEXT («NM_CLICK «)' NM_CLICK }, 

{TEXT («NM_DBLCLK «)' NM_DBLCLK }, 

{TEXT («NM_RETURN «)' NM_RETURN }, 

{TEXT («NM_RCLICK «)' NM_RCLICK }, 

{TEXT («NM_RDBLCLK «)' NM_RDBLCLK }, 

{TEXT («NM_SETFOCUS «)' NM_SETFOCUS }, 

{TEXT («NM_KILLFOCUS «)' NM_KILLFOCUS }, 

{TEXT («NM_CUSTOMDRAW «)' NM_CUSTOMDRAW }, 

{TEXT («NM_HOVER «)' NM_HOVER }, 

{TEXT («NM_NCHITTEST «)' NM_NCHITTEST }, 

{TEXT («NM....KEYDOWN «)' NM_KEYDOWN }, 

} ; 
ll==============d=~==============================~====================== 

II Program entry point 
II 
int WINAPI WinMain (HINSTANCE h!nstance, HINSTANCE hPrevinstance, 

LPWSTR lpCmdLine, int nCmdShow) { 
MSG msg; 
int re = 0; 

II Initialize application. 
hwndMain = Initinstance (hinstance, lpCmdline, nCmdShow); 
if (hwndMain == 0) return OxlO; 



222 Part I Windows Programming Basics 

} 

II Application message loop 
while (GetMessage (&msg, NULL, 0, O)) { 

} 

II If modeless dialog box is created, let it have 
11 the fi.rst crack at the message. 
if ((g_hwndMlDlg == 0) II 

} 

(!IsDialogMessage (g_hwndMlDlg, &msg))) { 
TranslateMessage (&msg); 
Disp:atchMessage (&msg); 

II Instance cleanup 
return Terminstance Chinstance, msg.wParam); 

11----------------------------------------------------------------------
/I Initinstance - Instance initialization 
II 
HWND Initinstance (HINSTANCE hinstance, LPWSTR· lpCmdLine, 

int riCmdShow) { 
HWND hWnd; 
WNDCLASS we; 
INITCOMMONCONTROLSEX iccx; 

II Save program instance handle in global variable. 
hinst = hinstance; 

memset (&iccx, 0, si.zeof (i<;cx)); 
iccx.dwSize =sizeof (iccx); 
iccx.dwICC = ICCDATE_CLASSES I ICCWIN95_CLASSES I ICCCOOLCLASSES; 
Ini tCommonContro l sEx C&i ccx) ; 

#ifdef WINMOBILE 
II For Windows Mobile devices, allow only one instance of the app 
hWnd = FindWindow (sZAppName, NULL); 
if (hWnd) { 

SetForegroundWindow ((HWNO)(((DWORD)hWnd) I OxOl)); 
return O; 

} 
#endif 

II Register application main window class. 
we.style = O; II Window style 
we. 1 pfnWndProc ;= Mai nWndProc; 11 Callback function 
wc.cbClsExtra = O; II Extra class data 
wc.cbWndExtra = O; II Extra window data 
wc.hinstance = hinstance; II owner handle 
wc.hicon = NULL, II Application icon 
we. hCursor = LoadCursor. (NULL, IDCARROW); 11 Default cursor 
we. hbi"Background = (HBRUSH) GetStockObject (WHITE_BRUSH); . 
we. l pszMen1.1Name = NULL; I I. Menu name 
wc. 1 pszCl ass Name = szAppName; 11 Wi nd0w cl ass name 

if {RegisterClass (&we) == 0) return O; 

JI Get the. Color and print dialog function pointers. 



Chapter 6 Dialog Boxes and Property Sheets 223 

hLib = LoadLibrary (TEXT («COMMDLG.DLL»)); 
if (hLib) { 

lpfnChooseColor = (LFCHOOSECOLORPROC)GetProcAddress (hLib, 
TEXT («ChooseColor»)); 

#ifdef WINMOBILE 
lpfnPrintDlg = (LFPRINTDLG)GetProcAddress (hLib, TEXT («PrintDlg»)); 

#else 
lpfnPrintDlg = (LFPAGESETUPDLG)GetProcAddress (hLib, 

TEXT («PageSetupDlgW»)); 
lpfnChooseFontDlg = (LFCHOOSEFONTPROC)GetProcAddress (hLib, 

TEXT («ChooseFontW»)); 
#endif 

} 

} 

II Create main window. 
hWnd = CreateWindow (szAppName, TEXT («Dialog Demo»), WS_VISIBLE, 

CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, 
CW_USEDEFAULT, NULL, NULL, hinstance, NULL); 

II Return fail code if window not created. 
if (!IsWindow (hWnd)) return O; 

II Standard show and update calls 
ShowWindow (hWnd, nCmdShow); 
UpdateWindow (hWnd); 
return hWnd; 

11----------------------------------------------------------------------
11 Terminstance - Program cleanup 
II 
int Terminstance CHINSTANCE hinstance, int nDefRC) { 

if (hL ib) 

} 

FreeLibrary (hLib); 
return nDefRC; 

II===~================================================================ 
II Message-handling procedures for MainWindow 
II 
11----------------------------------------------------------------------
11 MainWndProc - Callback function for application window 
II 
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
INT i; 
II 
II Search message list to see if we need to handle this 
II message. If in list, call procedure. 
II 
for (i = O; i < dim(MainMessages); i++) { 

if (wMsg == MainMessages[i].Code) 
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, lParam); 

} 
return DefWindowProc (hWnd, wMsg, wParam, lParam); 



224 Part I Windows Programming Basics 

} 

11-------:--:-~-'--'----------------------------~--------------'"'--:---""-'-----
IJ DocreateMain - Process WM.-CREATE message for window. 
II 
LRESULT DoCreateMain (HWND hWnd, UINTwMsg, WPARAM wParam, 

LPARAM lParam) { 
. HWND hwndChi 1 d; 
INT i, nHE!ight = O; 
LPCREATESTRUCT lpcs; 
HMENU l!Menu; 

#ifde.f WINMOBILE 
SHMENUBARINFO mbi; 
memset(&mbi, O, sizeof(SHMENUBARINFO)); 
inbi.cbSiz:e.= sizeof(SHMENUBARINFO); 
nibi.hwndParent"' hWnd; 
inbi. nToolBarid = '.ID__MENU; 
mbi.hinstRes = hinst; 
SHCreateMenuBar(&mbi); . . 

II For WinMobile, create 
II menu bar so that we 
II have a sip button 

hMenu = CHMENU)SendMessage(mbi;hwndMB, 
#e1se 

SHCMBM_GETSUBMENU, 0, 100); 

/I Create a command bar •. Add a menu and an exit button. 
HWND hwndCB =CommandBar_Create (h!nst, hWnd, IDCCMDBAR); 

. commandllar~!nsertMenubar (hwndCB, hinst, ID__MENU, O): 
CoriunanclBar.:AddAdorninents. (hwndCB, o, O); 
nHeight = CommandBar_Height (hwndCB); 
hMenu =.CommandBar:...GetMenu (hwndCB, O); 

#endif 
//Convert lParam to. pointer to create structure. 
lpcs i=·(LPCREATESTRUCT) lParam; 

//See co.1or and print functions not found; disable menus .. 
if (!lpfnChooseColor) 

Enabl eMenuitem (hMenu, IDM__COLOR, MF_li!YCOMMAND . MF ~GRAYED}; 
if (! lpfnPrintDl g) 

EnableMenuitem (hMenu' IDM__PRINT' MF c..BYCOMMAND MF -GRAYED); 
if (llpfnChoaseFontDlg)' 

EnableMenuitem (hMenu, IDM_FONT, MF_BYCOMMAND I Mf_GRAYED); 
// 
//<::reate report 1Nindow .. Size it so that it fits under 
/I the command .bar and fi 11 s the remaining client area. 
I/ . . . 
hw!ldChild = CreateWindowEx .(0, TEXT («listboX1>), 

. . TEXT («»), WS_\/ISIBLE I .. WSc..CHILD I ws .... VSCROLL 

. . 

LBS_USETABSTbPS I LBS-NOINTEGRALHEIGHT, O, 
nHe.ight, lpcs,.->cx, lpcs->cy - nHeight, 
hWnd, (HMENU)IDCRPTLIST, 11'.)CS:<:>hinstance. NULL);. 

II Destroy franie if wfodow not created. 
if (lJ;sWindow ChwndChild)) { . 

.• . OestroyWfndow (hWrid); 
re.t.u:rn .. o;. 

II Initialize tab stops for display .list box. 
i .. 8.; 



} 

Chapter 6 Dialog Boxes and Property Sheets 225 

SendMessage (hwndChild, LB_SETTABSTOPS, 1, (LPARAM)&i); 
return O; 

!!----------------------------------------------------------------------
// DoCommandMain - Process WM_COMMAND message for window. 
II 
LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

} 

LPARAM lParam) { 
WORD iditem, wNotifyCode; 
HWND hwndCtl; 
INT i; 

II Parse the parameters. 
iditem =(WORD) LOWORD (wParam); 
wNotifyCode = (WORD) HIWORD (wParam); 
hwndCtl = (HWND) lParam; 

II Call routine to handle control message. 
for Ci = O; i < dim(MainCommanditems); i++) { 

if (iditem == MainCommanditems[i].Code) 

} 

return (*MainCommanditems[i].Fxn)(hWnd, iditem, hwndCtl, 
wNotifyCode); 

return O; 

!!----------------------------------------------------------------------
// OoAddlineMain - Process MYMSG_ADDLINE message for window. 
II 
LRESULT DoAddLineMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
TCHAR sz0ut[128]; 
INT i; 

//If nothing in wParam, just fill in spaces. 
if (wParam == -1) { 

fl Print message only. 
wsprintf (szOut, TEXT («%s»), (LPTSTR)lParam); 

} else { 

} 

//If no ID val, ignore that field. 
if (LOWORD (wParam) == Oxffff) 

else 

II Print prop page and message. 
wsprintf (szOut, TEXT (« \t %s»), 

(LPTSTR)lParam); 

II Print property page, control ID, and message. 
wsprintf (szOut, TEXT («%3d \t %s»), 

wParam, (LPTSTR)lParam); 

= SendDlgitemMessage (hWnd, ID(_RPTLIST, LB__ADDSTRING, 0, 
(LPARAM)(LPCTSTR)szOut); 

if (i != LB_ERR) 
SendDlgitemMessage (hWnd, ID(_RPTLIST, LB_SETTOPINDEX, i, 

(LPARAM)(LPCTSTR)szOut); 
return O; 



226 Part I Windows Programming Basics 

} 
:11---- --i-'-~ - -~--' - -' --- - ~ -'~~-- ---- - - - -- - - - ~-'- - -,---- - - --- - - - ---, - - -- -·~- ,,-- - -

II DoDe$troyMai n ~- Pr-ocess WM_DESTROY message for window. // . .· .... · . 

lRESUL T Dcit>estroyMai n. (HWND hWnd, UINT wMsg, WPARAM wParam, 
LPARAM lParam) { 

PostQuit;Message (-0); 
return O; 

} 

il~~=====~~~---~-=:=~=111=;~-~-==-==:==~~=-~·-·==·~---···· 
II Command handler routines 
:; I-..,:-,_:._'--- -~ ----.,.-----•-'--'----- -,.-'-------------,------- ---..,.-- ---· ------ .,. ,. 
fl DoMaincdmmandopen - .Process File Open command 
ll 

. 1.P~RAM QoMairttonunandOpen (HWND hWnd,. WORD idrtem, HWND hwndCtl, 

} 

WORD wNotifyCode) { 
OPENFILENAME of: 
i:ct:t~R szFileName [MAX...PATHJ = .{O}; 
const. Lf'TsTR psZOpenFilter ;,. TEXT («All Documents (*. *)\ci* .. *\0\0»): rnrrc; ·· · · · · 

szFi1eName[O) = '\O'; 
memset cs;of, 0, sizeof (of)); 

of.istructSize = sizeof Cof); · 
of,hwndOwner • hWnd; 
of., lpstrFile =' szFi1eNami!; 
of.nMaxFile ;. dim(szFifoName}; 
of .1.pstrFilter = pS~OpenFi her; 

. ·, of,Fl(l~S-= 0; 

re=• Get:OpenFileName (&of);· 

JI Initialize filename. 
II Initialize File Open structure. 

·RPtMessage·U·1, TEXT {«GetOpenFileName returned: %x, filename: %s»J, 
· · re; szFileNameJ; 

• . retlJ-rn l); 

; . : i/·.,..·';;...,.. .;;.: ... :-".""- ~:... ;..,...;"'."_ - ""!.- -- !"' -;:--- - -. -.-~ - ..,: ... ,....,,.."":_ - -- - - ':"' ~"."."- -- ..,. __ ._ "."'- --- ~...,, ___ ,_ -- - - .;. .... "" 

J/ DoMairiC,:omlliaiidSilve ~ . Prricess File Save command, Ji.. . ·. . •. . . .. 
LPARAM [loMalnCoinmandSiive . (HWNDJtWnd, WORD i ditem, 

. WORD wNOti fyCode) ( 
HWNDhwndCt1, 

.. OPENFILENAME of;. 
TctiAR. szFileName [MAX.:.PATHl;,. {O}; 
c9nst LPTSTR pszOpenFilter = TEXT («All 
INT; r~; 

Documents (~;"<)\0*.*\0\0»); 

szF11e~ame(O] = '\O'; 
memset (&pf, 0, Si?:e<if (of)); 
of.lStn:ictSize = sizeof (of);· 
of;iJwndOwner = hWiid; . . 
of ;i pstrFil e = szFileName; 
of.;nMaxFile "' dim(szFileNa~); . 
of. lpstrFilter = pszOpenFiiter; 

II Initialize filename:· 
II InitialiZe File Open structure. 



} 

Chapter 6 Dialog Boxes and Property Sheets 227 

of.Flags = O; 
re= GetSaveFileName (&of); 

RptMessage (-1, TEXT («GetSaveFileName returned: %x, filename: %s»), 
re, szFileName); 

return O; 

11----------------------------------------------------------------------
11 DoMainCommandColor - Process File Color command. 
II 
LPARAM DoMainCommandColor (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 

} 

CHOOSECOLOR cc; 
static COLORREF cr[16]; 
INT re; 

II Initialize color structure. 
memset (&cc, 0, sizeof (cc)); 
memset (&er, 0, sizeof (er)); 

cc.lStructSize = sizeof (cc); 
cc.hwndOwner hWnd; 
cc.hinstance = h!nst; 
cc.rgbResult = RGB (0, 0, O); 
cc.lpCustColors =er; 
cc.Flags= CC....ANYCOLOR; 

re= (lpfnChooseColor) (&cc); 
RptMessage (-1, TEXT («Choose Color returned: %x, color: %x»), 

re, cc.rgbResult); 
return O; 

11----------------------------------------------------------------------
11 DoMainCommandFont - Process File Font command. 
II 
LPARAM DoMainCommandFont (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 
#ifndef WINMOBILE 

CHOOSEFONT cfd; 
int re; 

if (lpfnChooseFontDlg == 0) 
RptMessage (-1, TEXT («ChooseFontDlg Not available»)); 

II Initialize print structure. 
memset (&cfd, 0, sizeof (cfd)); 

cfd.lStructSize = sizeof (cfd); 
cfd.hwndOwner = hWnd; 
cfd.Flags = CF_SCREENFONTS; 

re= (lpfnChooseFontDlg) (&cfd); 
RptMessage (-1, TEXT («Choose Font returned: %x»), re); 



228 Part I Windows Programming Basics 

#endif 
return O; 

} . . . 
11--~--------,..~----,--,-----------~----~-------,.;-------,..---------~·----,-,..·---
11 DoMainCommandPrint - Process File .Print command. 

II 
LPARAM OoMai nCom.mandPri nt (HWND hWnd, WORD i ditem, 

WORDwNotifyCode) { 
INT re; 

#ifodef WINMOBILE 
PAGESETUPDLG psd; 

11 Initialize print structure. 
memset C&psd, 0, siz.e.of (psd)); 
psd.1StructSize = sizeof (psd); 
p5d.hwndOwner = hWnd; 

re = (1 pfnPri ntDlg) (/iipsd) ; 
#else 

PRINTDLG·.pd; 
/I Initi.alize print structure. 
memset (&pd, 0, sizeof .(pd)); 

pd.cbStruct = sizeof (pd); 
pd. hwndQwner = hWnd; 
pd. dwFl ags ··= PD_SELECTALl.;PAGES; 

re = (l pfnP rintDl g} {&pd) ; 
#endif II ifndef WIN32_PLATFORM;...PSPC 

RptMessage (-'l, TEXT. {«PrintDlg returned: %x, %x»), 
re., GetLastError()); 

return O; 
} 
11----,----------------------,..,.; ____ ,__,.; __ .,. ____ ,.. _____ ,;,. ___ .. ..;_,.;_..; .. _,.; ________ _ 
//PropSheetProc - Function called when Property sheet created 

// 
int CALLSACK PropSheetProc(HWNO hwndDlg, 

HWND hwndTabs; 
DWORD dwStyle; 

II Get ta.b control. 
hwndTabs = GetD1gitem (hwndDlg,.·.ox3020}; 
dwStyl e = · GetWindowLong .... (hwndTabs, GWL--SJYLE); 
SetWindowlong (hwndTabs, GWLSTYLE, dWStyle I TCS_BOTIOMJ; 
return O; 

.Stri ngCbCopy ((LPTSTR) l Param, 



} 

} 

Chapter 6 Dialog Boxes and Property Sheets 229 

return 1; 

case PSCB_GETVERSION: 
return COMCTL32_VERSION; 

II Add a hyperlink line below the tabs. 
case PSCB_GETLINKTEXT: 

StringCbCopy((LPTSTR)lParam, 256, TEXT («Launch the calculator by «) 
TEXT(«tapping <file:\\windows\\calc.exe{here}>.»)); 

return O; 

return O; 

11----------------------------------------------------------------------
11 DoMainCommandShowProp - Process show property sheet command. 
II 
LPARAM DoMainCommandShowProp(HWND hWnd, WORD id!tem, HWND hwndCtl, 

WORD wNotifyCode) { 
PROPSHEETPAGE psp[2]; 
PROPSHEETHEADER psh; 
INT i; 
II Zero all the property page structures. 
memset (&psp, 0, sizeof (psp)); 
II Fill in default values in property page structures. 
for (i = O; i < dim(psp); i++) { 

} 

psp[i].dwSize = sizeof (PROPSHEETPAGE); 
psp[i].dwFlags = PSP_DEFAULT; 
psp[i].h!nstance = h!nst; 
psp[i].lParam = (LPARAM)hWnd; 

II Set the dialog box templates for each page. 
psp[O].pszTemplate = MAKEINTRESOURCE (ID_PAGEl); 
psp[l].pszTemplate = MAKEINTRESOURCE (ID_PAGE2); 

II Set the dialog box procedures for each page. 
psp[O].pfnDlgProc = PagelDlgProc; 
psp[l].pfnDlgProc = Page2DlgProc; 

II Initialize property sheet structure. 
psh.dwSize = sizeof (PROPSHEETHEADER); 
psh.dwFlags = PSH_PROPSHEETPAGE; 
psh.hwndParent = hWnd; 
psh.h!nstance = hinst; 
psh.pszCaption =TEXT («Property Sheet Demo»); 
psh.nPages = dim(psp); 
psh.nStartPage = O; 
psh.ppsp = psp; 
psh.pfnCallback = PropSheetProc; 
II On Windows Mobile, make property sheets full screen. 

#if WINMOBILE 
psh.dwFlags I= PSH_USECALLBACK I PSH_MAXIMIZE; 

#else 
psh.dwFlags I= PSH_USECALLBACK; 

#endif 



230 Part I Windows Programming Basics 

} 

l/ ere.ate .and. display property sheet. 
PropertySheet (&psh) ; 
return O; 

II- --- - ~ ...... _ - - --- -' - - _. __ --- -- - - ---- '----- - -- -·-- - -· "'-- -'- - "''"" - ---- - -----------
ll DoMainCommandModelessDlg. - Process the File Mode less menu command. 

// 
LPARAM DoMainCommandModeless(HWND hWnd; WORD iditem, HWND·hwndC1:l, 

WORD wNotifyCOde) { 

} 

fl Create dialog box only if not already created. 
if (g..,;hymdMl01g == 0) 

II Use CreateDialog to create modeless dialog box. 
g~hwndMlDlg = CreateDialog (hinst, TEXT («Clearbox»), ·hWnd, 

ModelessOlgProc): 
return O; 

I I- ----------- '"- - ----- ----------·-- --------------------------:- -------"---
II DoMainCoinmandScrollable - Proces.s the File Scrollable menu command. 

II 
LPARAM DoMainCommandScrollable(HWND hWnd, WORD iditem, HWNri hwndCtl; 

WORD wNotifyCode) { 

} 

I/ Create di.alcig box only if not al ready created. 
DialogBox Chinst, TEXT («ScrollDlg»), hWnd, ScrollableDlgProc); 
return O; 

.1 /~--------,,- ..:· __ .;._ --------.--------,----- ... ------------------------'-,.--..;~,,.- -.. 
II DoMainC.ommandExi t - Process Program Exit command. 

II 
LPARAM DoMainCommaudExit (HWND hWnd, WORD id!tem, HWND hWndCtl, 

WORD wNotifyCode) { 
SendMessage (hWnd, WM_CLOSE, 0, O); 
return O; 

} 
. ll- --,- - - -'- -.- ... __ _._ -- - --- - _ ...... -- - - --- ----------'- - --'- - - - --- _..; ___ "'---- -.- -"''"- -
// DoMainCom1t1andAbout - Process the Help. About menu command •. 
II . 
Ll"AAAM DoMa,inCommandAbout(HWND hWnd, WORD iditem, HWNDhwndCtl, 

} 

. .. . WORD. wNotifyCodeJ { 
I/ Use DialogBox to create modal dialog .box. 
[}ialogBox (h!nst, TEXT («aboutbox»), hWnd, AboµtDlgProcJ; 
return O; 

// Modeless ClearList dialog box.procedure ii .· . 
BOOL CALLBACK ModelessDlgProc (HWND hWnd, UINT WMsg, wPARAM. wParam, 

LPARAM lParam) .{ 
swi t,ch · CwMsg) { 

case WM.:..COMMAND: 
.. switch (LOWORD (wParam)) { 

case IOD_CLEAR: 
II Send message to list box. to clear .i.t. 



} 

} 

break; 

Chapter 6 Dialog Boxes and Property Sheets 231 

SendDlgitemMessage (GetWindow (hWnd, GW_OWNER), 
IDCRPTLIST, 
LB_RESETCONTENT, 0, O); 

return TRUE; 

case IDOK: 
case IDCANCEL: 

II Modeless dialog boxes can't use EndDialog. 
DestroyWindow (hWnd); 
g_hwndMlDlg = O; II 0 means dlg destroyed. 
return TRUE; 

return FALSE; 

II====================================================================== 
II About dialog box procedure 
II 
BOOL CALLBACK AboutDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

SHINITDLGINFO idi; 
switch (wMsg) { 

} 

case WM_INITDIALOG: 
idi .dwMask = SHIDIM_FLAGS; 
idi .dwFlags = SHIDIF_DONEBUTTON I SHIDIF_SIZEDLGFULLSCREEN I 

SHIDIF_SIPDOWN; 
idi.hDlg = hWnd; 
SHinitDialog (&idi); 
break; 

case WM_COMMAND: 
switch (LOWORD (wParam)) { 

case IDOK: 

} 

break; 

case IDCANCEL: 
EndDialog (hWnd, O); 
return TRUE; 

return FALSE; 

11---------------------------------------------------------------·------
l 1 PrintCmdMessage - Prints command message ·data to report window 
II 
LRESULT PrintCmdMessage (WPARAM wParam, LPARAM lParam, 

PNOTELABELS lpStruct, int nDim) { 
int .i; 

for Ci = O; i < nDim; i++) { 
if (HIWORD (wParam) == lpStruct[i].wNotification) 

RptMessage (LOWORD(wParam), TEXT(«%S»), 
lpStruct[i].pszlabel); 

break; 
} 



232 Part I Windows Programming Basics 

} 

} 

i f ( i == nDi m) 
RptMessage (wParam, TEXTC«WMJOMMAND notification: %x»}, 

HIWORD (wParam)) ; 
return O; 

11~---------------------------------------------------------------------
11 PrintNotMessage -' Prints notification message data to report window 
II 
LRESULT PrintNotMessage (LPARAM lParam, PNOTELABELS lpStruct, int nDim) { 

int i; 

} 

LPNMHDR phdr = (NMHDR '')l Pa ram; 

for (i = 0; .i < nOim; i++) .{ 

} 

if (phdr->code == lpStruct[i] .wNotification) { 

} 

RptMessage (phdr~>idFrom, TEXT(«%S»), lpStruct[i].pszLabel); 
break; 

if (i == nDim) 
{ 

II If not in local list, check standard notifications 
for Ci = O; i < sizeof (nlPropPage); i++) { 

} 

} 

if (phdr->code == nlPropPage[i].wNotification) { 
RptMessage (phdr->idFrom, TEXT(«%s»), 

nlPropPage[i].pszLabel); 
break; 

if (i == si zeof (nl PropPage)) 
RptMessage (phdr->idFrom, TEXT («Notify code:.%4d»), 

phdr-:>code); 

return o; 

11~~..;-~--'~----------------..:-----------~-----------------~---------------
11 RptMessage - Add string to the report list box. 
II 
voi.d RptMessage CDWORO id, LPTSTR 1 pszFormat, , .. ) { 

T(HAR szBuffer[512]; 

} 

va ... Jist args; 

va_start(args, lpszFormat); 
StringCchVPrintf(szBuffer, dim (szBuffer),lpszFormat, args); 
va_end(args); 
SendMessage (hwndMain, MYMSG_ADDLINE, id,(LPARAM)szBuffer); 

PagelDlg.cpp 

II===================================================~================== 



Chapter 6 Dialog Boxes and Property Sheets 233 

II PagelDlgProc - Button dialog box window code 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II====================================================================== 
#include <Windows.h> 
#include <commctrl.h> 
#include <prsht.h> 
#include "DlgDemo.h" 

II For all that Windows stuff 
II Common Control includes 
II Property sheet includes 
II Program-specific stuff 

II Identification strings for various WM_NOTIFY notifications 
NOTELABELS nlPagel[J = {{TEXT ("MCN_SELCHANGE "), MCN_SELCHANGE}, 

{TEXT ("MCN_GETDAYSTATE "), MCN_GETDAYSTATE}, 
{TEXT ("MCN_SELECT "), MCN_SELECT}, 
{TEXT ("MCN_SELECTNONE "), MCN_SELECTNONE}, 

} ; 

II====================================================================== 
II PagelDlgProc - Pagel dialog box procedure 
II 
BOOL CALLBACK PagelDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

switch (wMsg) { 

} 

case WM_INITDIALOG: 
return TRUE; 

II 
II Reflect WM_COMMAND messages to main window. 
II 
case WM_COMMAND: 

II 

PrintCmdMessage (wParam, lParam, NULL, O); 
return TRUE; 

II Reflect notify message. 
II 
case WM_NOTIFY: 

PrintNotMessage (lParam, nlPagel, sizeof (nlPagel)); 
return FALSE; II Return false to force default processing. 

return FALSE; 

Page2Dlg.cpp 

///=======================================================:;:============== 
II Page2DlgProc - Button dialog box window code 
II 
II Written for the book Programming Windows CE 



234 Part I Windows Programming Basics 

II Copyright (C) 2007 Douglas Boling 
//=============~===::=======--===========~================================ 
#include <Windows.h> 
#include <commctrl.h> 
#include <prsht.h> 
#include "DlgOemo.h" 

11 For all that Windows stuff 
II Common Control includes 
// Property sheet includes 
II Program-specific stuff 

II=========~===================~===~====================~=======~= 
II Page2DlgProc - Button page dialog box procedure 
II 
BOOL CALLBACK Page2DlgProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
int i; 
switch (wMsg) { 

} 

case WM_INITDIALOG: 

II 

i = SendDlgitemMessage (hWnd, ID(_TRACKBAR, 
TBM_GETRANGEMAX, 0, 0); 

SendDlgitemMessage (hWnd, IO(_PROGRESS, 
PBM_$ETRANGE, 0, MAKELPARAM (0, i)); 

return TRUE; 

II Reflect WM~COMMAND messages to main window. 
II 
case WM_COMMAND: 

II 

PrintCmdMessage (wParam, lParam, NULL, 0); 
return TRUE; 

I/ Reflect notify message. 
II 
case WM_NOTIFY: 

PrintNotMessage (lParam, NULL, O); 
return FALSE; // Return false to force default processing. 

II 
// Reflect scroll bar messages that are generated by Trackbar 
II 
case WM_VSCROLL: 

RptMessage (-1, TEXT("WM_VSCROLL from Trackbar msg %d"), 
LOWORD (wParam)); 

return FALSE; 

case WM_HSCROLL: 
RptMessage (-1, TEXT("WM_HSCROLL from Trackbar msg %d"), 

LOWORD (wParam)); 

//·Get the position of the trackbar 
i = SendDlgitemMessage (hWnd, IO(_TRACKBAR, TBM_GETPOS, 0, 0); 

II Set the progress bar control 
SendDlgitemMessage (hWnd, ID(_PROGRESS, PBM_SETPOS, i, O); 
return FALSE; 

return FALSE; 



Chapter 6 Dialog Boxes and Property Sheets 235 

} 

ScrollDlg.cpp 

Ill====================================================================== 
II ScrollDlg - Scrollable dialog box window code 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II====================================================================== 
#include <windows.h> II For all that Windows stuff 
#include <commctrl.h> II Common Control includes 
#include <prsht.h> II Property sheet includes 
#include "DlgDemo.h" II Program-specific stuff 

II Structure labeling the button control WM_COMMAND notifications 
NOTE LABELS nl Btn [] = {{TEXT ("BN_CLICKED "), BN_CLICKED } , 

{TEXT ("BN_PAINT "), BN_PAINT }, 
{TEXT ("BN_SETFOCUS "), BN_SETFOCUS}, 
{TEXT ("BN_KILLFOCUS"), BN_KILLFOCUS} 

} ; 
II Scroll position of dialog 
int nVPos = O; 
ll==========~~=========================i=====================:=;:======== 

II ScrollableDlgProc - Scrollable dialog box procedure 
II 
BOOL CALLBACK ScrollableDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
switch (wMsg) { 

case WM_INITOIALOG: 
return TRUE; 

II 
II Reflect WM_COMMAND messages to main window. 
II 
case WM_COMMAND: 

II 

PrintCmdMessage (wParam, lParam, nlBtn, sizeof(nlBtn)); 
II Close dialog for OK or Cancel 
switch (LOWORD (wParam)) { 

} 

case IDOK: 
case IDCANCEL: 

EndDialog (hWnd, O); 
return TRUE; 

return TRUE; 

II Reflect notify message. 
II 
case WM_NOTIFY: 

PrintNotMessage (lParam, NULL, O); 
return FALSE; II Return false to force default processing. 



236 Part I Windows Programming Basics 

.} 

} 

c;ase WM_VSCROLL: 
{ 

int nNewPos = nVPos; 
int nLinesPerPage = 5; 

switch (1,.0WORD (wParam)) { 
case SB_LINEUP: 

nN~Pos -= 1; 
break; 

case SB_LINEDOWN: 
nNewPos + .. 1; 
break; 

·case SB_PAGEUP: 
nNewPos -= nL i nesPer·Page; 
break; 

case SILPAGEOOWN: 
nNewPos +.= nL i nesPerPage; 
break; 

. case SB_ THUMBTRACK: 
case SB_THUMBPOSITION: 

nNewPos = HIWORD CwParam) ; · 
break; 

} 

11 If scroll posi.tion changed, Scro11 the window and 
II update scrollbar 
if (nVPos !- nNewPos) { 

} 

} 
break; 

ScrollWindowEx (hWnd, O, nVPos - nNewPos, NULL, NULL, 
NULL, NULL, sw_INVALIDATE I sw_SCROLLCHILDREN); 

SCROLLINFO si; 
nVPos = nNewPos; 
si. cbSiz~ .. = si zeof (si); 
si.nPos ~ nVPos; 
si .fM~sk "' SIF_POS; . 
SetScrollinfo Q1Wnd, SB_VERT, &si, TRUE); 

return FALSE; 

The dialog box procedures for each of the property pages report all WM_ COMMAND and 

WM_NOTIFY messages back to the main window, where they're displayed in a list box con

tained in the main window. The property page dialog box procedures are quite simple. They 



Chapter 6 Dialog Boxes and Property Sheets 237 

simply reflect the WM_ COMMAND and WM_ NOTIFY messages back to the main window. 

The Page2DlgProc also fields the WM_ VSCROLL and WM_HSCROLL messages that are sent 

from the Trackbar control. When Page2DlgProc receives a WM_HSCROLL message, it sets the 

progress control to match the position of the trackbar. 

The best way to learn from Dig Demo is to run the program and watch the different WM_ 

COMMAND and WM_ NOTIFY messages that are sent by the controls and the property sheet. 

Opening the property sheet and switching between the pages results in a flood of WM_ 

NOTIFY messages informing the individual pages of what's happening. It's also interesting to 
note that when the OK button is clicked on the property sheet, the PSN_APPLY messages are 

sent only to property pages that have been displayed. 

The menu handlers that display the Print, Font, and Color common dialogs work with a bit 
of a twist. Because some Windows CE systems don't support these dialogs, Dig Demo can't 

call the functions directly. That would result in these two functions being implicitly linked 

at runtime. On systems that did not support these functions, Windows CE wouldn't be able 

to resolve the implicit links to all the functions in the program, and therefore the program 

wouldn't be able to load. So instead of calling the functions directly, you explicitly link these 

functions in lnitApp by loading the common dialog DLL using Loadlibrary and getting point

ers to the functions using GetProcAddress. If DlgDemo is running on a system that doesn't 

support one of the functions, the GetProcAddress function fails and returns 0 for the func

tion pointer. In DoCreateMain, a check is made to see whether these function pointers are 

0, and if so, the Print and Color menu items are disabled. In the menu handler functions 

DoMainCommandColor, DoMainCommandFont, and DoMainCommandPrint, the function 

pointers returned by GetProcAddress are used to call the functions. This extra effort isn't 

necessary if you know your program will run only on a system that supports a specific set of 
functions, but every once in a while, this technique comes in handy. Dealing with DLLs is cov

ered in Chapter 8, "Modules, Processes, and Threads." 

Windows Mobile devices handle the common print dialog differently. Although they export 

the function PageSetupDialog, the function prototype isn't included in the SDK, and the func
tion returns immediately when called. 

One other detail is how this program adapts to Windows Mobile systems. Dig Demo creates a 

menu bar instead of a command bar when compiled for these systems. This provides a place 

for the menu as well as exposing the Soft Keyboard button. 

In addition, on Windows Mobile systems, DlgDemo uses the PSH_MAXIMIZE flag when creat

ing the property sheet. This causes the property sheet to expand to fill the full screen. The 

code in the property sheet callback routine relocates the tabs on the bottom of the sheet 
instead of the top. While this code also executes on embedded systems, it has no effect. I 

made these adaptations to demonstrate how to comply with the Windows Mobile user 



238 Part I Windows Programming Basics 

interface guidelines. To place the tabs on the bottom of the sheet and provide the hyperlink 

text below the pages, Dig Demo provides the property sheet callback function shown here: 

int CALLBACK PropSheetProc(HWND hwndDlg, UINT uMsg, LPARAM lParam) { 

} 

if (uMsg == PSCB_INITIALIZED) { 
II Get tab control 
HWND hwndTabs = GetDlgitem (hwndDlg, Ox3020); 

DWORD dwStyle = GetWindowLong (hwndTabs, GWL_STYLE); 
SetWindowLong (hwndTabs, GWL_STYLE, dwStyle I TCS_BOTTOM); 

} else if (uMsg == PSCB_GETVERSION) 
return COMCTL32_VERSION; 

return 1; 

The source of this rather strange code comes from the MFC source code provided with the 

Windows Mobile SDK. During the PSCB_INITIALIZE notification, the handle of the Tab control 

of the property sheet is queried using the predefined control ID Ox3020. The style bits of the 

Tab control are then modified to have the control place the tabs on the bottom instead of 

the top by setting the TCS_BOTTOM style flag. 

The function also handles the PSCB_GETLINKTEXT notification and returns the following text: 

TEXT ("Launch the calculator by tapping <file:calc.exe{here}>.") 

The hyperlink is enclosed in angle brackets <>.The text displayed for the link is enclosed in 

curly braces{}. When the hyperlink is tapped, the Pocket PC launches calc.exe. The hyperlink 

can also be a data file such as bookl.pxl or memo.pwd. 

Dialog boxes and property sheets are quite often the only user interface a Windows CE pro

gram has. Although sometimes complex in implementation, the help Windows CE provides 

in creating and maintaining dialog boxes and property sheets reduces the workload on the 

program to some extent. 

This chapter also marks the end of the introductory section, "Windows Programming Basics." 

In these first six chapters, I've talked about fundamental Windows programming while also 

using a basic Windows CE application to introduce the concepts of the system message 

queue, windows, and messages. I've given you an overview of how to paint text and graphics 

in a window and how to query the user for input. Finally, I talked about the windows hier

archy, controls, common controls, and dialog boxes. For the remainder of the book, I move 

from description of the elements common to both Windows CE and the desktop versions of 

Windows to the unique nature of Windows CE programming. It's time to turn to the operat

ing system itself. Over the next five chapters, I'll cover memory management, processes and 

threads, the file system, the registry, and databases. These chapters are aimed at the core of 

the Windows CE operating system. 



Part II 

Windows CE Programming 

239 





Chapter 7 

Memory Management 
If you have an overriding concern when you write a Microsoft Windows CE program, it 

should be dealing with memory. A Windows CE machine might have only 16 MB of RAM. 

This is a tiny amount compared with that of a standard personal computer, which typically 
needs 512 MB or more. In fact, memory on a Windows CE machine is so scarce that it's 

sometimes necessary to write programs that conserve memory even to the point of sacrific

ing the overall performance of the application. 

Fortunately, although the amount of memory is small in a Windows CE system, the functions 

available for managing that memory are fairly complete. Windows CE implements almost the 

full Win32 memory management API available under Microsoft Windows XP and Windows 

Vista. Windows CE supports virtual memory allocations, local and separate heaps, and even 

memory-mapped files. 

Like the desktop versions of Windows, Windows CE supports a 32-bit flat address space with 

memory protection between applications. But because Windows CE was designed for differ

ent environments, its underlying memory architecture is different from that of Windows XP 

or Vista. These differences can affect how you design a Windows CE application. This chapter 

describes the basic memory architecture of Windows CE. It also covers the different types of 

memory allocation available to Windows CE programs and how to use each memory type to 

minimize your application's memory footprint. 

Memory Basics 
As with all computers, systems running Windows CE have both ROM (read-only memory) 

and RAM (random access memory). Under Windows CE, however, both ROM and RAM are 

used somewhat differently than they are in a standard personal computer.1 

About RAM 

The RAM in a Windows CE system, like in all operating systems, is used to store the heaps, 

stacks, and sometimes the code for the applications. Unlike other operating sysetms, part of 

the RAM may also be used for the object store. The optional object store can be considered 

something like a permanent virtual RAM disk. Unlike the old virtual RAM disks on a PC, the 

1 On most systems, this read-only memory is implemented as Flash memory so that the operating system can be 
updated in the field. I refer to it as ROM here to distinguish it from read/write flash-based drives that are used for 
file storage. 

241 



242 Part II Windows CE Programming 

object store retains the files stored in it even if the system is reset, as long as the system re

tains the state of the RAM across the reset. This arrangement is the reason some Windows CE 

systems have a main battery and a backup battery. When the user replaces the main batter

ies, the backup battery's job is to provide power to the RAM to retain the files in the object 
store. Even when the user clicks the Reset button, the Windows CE kernel starts up looking 

for a previously created object store in RAM and uses that store if it finds one. 

The boundary between the object store and the program RAM is movable. On systems that 

support the object store, the user can move the dividing line between object store and pro

gram RAM using the System Control Panel applet. Under low-memory conditions, the system 

asks the user for permission to take some object store RAM to use as program RAM to satisfy 

an application's demand for more RAM. 

When the object store file system is not used, it must be replaced by another file system such 

as a read-write flash file system or even a simple read-only ROM file system. On these sys

tems, the RAM is dedicated entirely to the program memory. 

About ROM 

In a personal computer, the ROM is used to store the BIOS (basic input/output system) and 

is typically 64-128 KB. In a Windows CE system, the ROM can range from 4 to 32 MB and 

stores the entire operating system, as well as the applications that are bundled with the sys
tem. In this sense, the ROM in a Windows CE system is like a small read-only hard drive. 

In a Windows CE system, ROM-based programs can be designated as Execute in Place (XIP). 

That is, they're executed directly from the ROM instead of being loaded into program RAM 

and then executed. This capability is a huge advantage for small systems in two ways. The 

fact that the code is executed directly from ROM means that the program code doesn't take 

up valuable program RAM. Also, because the program doesn't have to be copied into RAM 

before it's launched, it takes less time to start an application. Programs that aren't in ROM 

but are contained in the object store, Flash memory storage card, or even a hard drive aren't 

executed in place; they're copied into the RAM and executed. 

About Virtual Memory 

Windows CE implements a virtual memory management system. In a virtual memory sys

tem, applications deal with virtual memory, which is a separate imaginary address space that 

might not relate to the physical memory address space that's implemented by the hardware. 

The operating system uses the memory management unit of the microprocessor to translate 

virtual addresses to physical addresses in real time. 



Chapter 7 Memory Management 243 

The key advantage of a virtual memory system is that applications are independent of the 

physical implementation of the device. Unlike PCs, Windows CE devices vary widely in their 

hardware implementation. With the applications isloated in a virtual memory environment, 

hardware designers are free to implement the physical memory architecture best suited for 
the device. 

Paged Memory 

Windows, as well as most moden virtual memory-based operating systems use a paged-based 

virtual memory system. In a paged memory system, the smallest unit of memory the micro

processor manages is the page. When an application accesses a page, the microprocessor 

translates the virtual address of the page to a physical page in ROM or RAM. A page can 

also be tagged so that accessing the page causes an exception. The operating system then 

determines whether the virtual page is valid and, if so, maps a physical page of memory to the 

virtual page. 

Windows CE systems use a 4096-byte page, the same as the 32-bit implementations of 

Windows XP and Windows Vista. On some very early systems based on Windows CE 2.12 and 
earlier, the page size was 1024 bytes. It's safe to assume that these systems are long gone 

and applications can assume a 4096-byte page size today. 

Virtual pages can be in one of three states: free, reserved, or committed. A free page is, as it 

sounds, free and available to be allocated. A reserved page is a page that has been reserved 

so that its virtual address can't be allocated by the operating system or another thread in the 

process. A reserved page can't be used elsewhere, but it also can't be used by the applica

tion because it isn't mapped to physical memory. To be mapped, a page must be committed. 

A committed page has been reserved by an application and has been directly mapped to a 

physical address. 

All that I've just explained is old hat to experienced Win32 programmers. The important 

thing for the Windows CE programmer is to learn how Windows CE changes the equation. 
While Windows CE implements most of the same memory API set of its bigger Win32 cous

ins, the underlying architecture of Windows CE impacts application design. Before diving into 

the memory architecture of a Windows CE application, let's look at a few of the functions 

that provide information about the global state of the system memory. 

Querying the System Memory 

If an application knows the current memory state of the system, it can better man-

age the available resources. Windows CE implements both the Win32 GetSystemlnfo and 

Globa/MemoryStatus functions. The GetSystemlnfo function is prototyped here: 



244 Part II Windows CE Programming 

VOID GetSysteminfo (LPSYSTEM_!NFO lpSysteminfo); 

It's passed a pointer to a SYSTEM_INFO structure defined as 

typedef struct { 
WORD wProcessorArthitecture; 
WORD wReserved; 
DWORD dwPageSize; 
LPVOID lpMinimumApplicationAddress; 
LPVOID lpMaximumApplicationAddress; 
DWORD dwActiveProcessorMask; 
DWORD dwNumberOfProcessors; 
DWORD dwProcessorType; 
DWORD dwAllocationGranularity; 
WORD wProcessorLevel; 
WORD wProcessorRevision; 

} SYSTEM_INFO; 

The wProcessorArchitecture field identifies the type of microprocessor in the system. 

The value should be compared with the known constants defined in Winnt.h, such as 

PROCESSOR_ARCHITECTURE_INTEL. Windows CE has extended these constants to in-
clude PROCESSOR_ARCH/TECTURE_ARM, PROCESSOR_ARCHITECTURE_SHX, and others. 

Additional processor constants are added as new CPUs are supported by any of the Win32 

operating systems. Skipping a few fields, the dwProcessorType field further narrows the mi

croprocessor from a family to a specific microprocessor. Constants for the Hitachi SHx ar

chitecture include PROCESSOR_HITACHl_SH3 and PROCESSOR_HITACHl_SH4. The last two 

fields, wProcessorlevel and wProcessorRevision, further refine the CPU type. The wProcessor
Level field is similar to the dwProcessorType field in that it defines the specific microprocessor 

within a family. The dwProcessorRevision field tells you the model and the stepping level of 

the chip. 

The dwPageSize field specifies the page size, in bytes, of the microprocessor which these 

days is always 4096. The lpMinimumApplicationAddress and lpMaximumApplicationAd
dress fields specify the minimum and maximum virtual address available to the application. 

The minimum value is OxlOOOO while the maximum value for Windows CE 6 is Ox7FFFFFFF. 

This high value is quite a change from earlier versions of Windows CE where this value was 

Ox04000000. The dwActiveProcessorMask and dwNumberOf Processors fields are used in 

systems that support more than one microprocessor. On these systems, the interesting field 

is dwNumberOf Processors, which indicates how many processors are being used by the op
erating system. The dwAllocationGranularity field specifies the boundaries to which virtual 

memory regions are rounded. Like the desktop versions of Windows, Windows CE rounds 

virtual regions to 64 KB boundaries. 

A second handy function for determining the system memory state is this: 

void GlobalMemoryStatus(LPMEMORYSTATUS lpmst); 



which returns a MEMORYSTATUS structure defined as 

typedef struct { 
DWORD dwlength; 
DWORD dwMemoryload; 
DWORD dwTotalPhys; 
DWORD dwAvailPhys; 
DWORD dwTotalPageFile; 
DWORD dwAvailPageFile; 
DWORD dwTotalVirtual; 
DWORD dwAvailVirtual; 

} MEMORYSTATUS; 

Chapter 7 Memory Management 245 

The dwLength field must be initialized by the application before the call is made to 

Globa/MemoryStatus. The dwMemoryLoad field is of dubious value; it makes available a gen

eral loading parameter that's supposed to indicate the current memory use in the system. 
The dwTota/Phys and dwAvai/Phys fields indicate how many pages of RAM are assigned to 

the program RAM and how many are available. These values don't include RAM assigned to 

the object store. 

The dwTota/PageFile and dwAvai/PageFile fields are used under the desktop versions of 

Windows to indicate the current status of the paging file. Because paging files aren't supported 

under Windows CE, these fields are always 0. The dwTota/Virtual and dwAvai/Virtual fields in

dicate the total and available number of virtual memory pages accessible to the application. 

The information returned by Globa/MemoryStatus provides confirmation of the memory 

architecture of Windows CE. Making this call on an embedded Windows CE device with 128 

MB of RAM returns the following values: 

dwMemoryload OxOe (14) 
dwTotalPhys Ox03581000 (56' 102' 912) 
dwAvail Phys Ox02e11000 (48, 304, 128) 
dwTotalPageFile 0 
dwAvailPageFile 0 
dwTotalVirtual Ox40000000 (1,073,741,824) 
dwAvai lVi rtual Ox3ff80000 (1,073,217,536) 

The dwTota/Phys field indicates that of the 128 MB of RAM in the system, 56 MB is dedicated to 

the program RAM, of which 48.3 MB is still free. Note that there's no way for an application, using 

this call, to know that another 54.7 MB of RAM has been dedicated to the object store. To deter

mine the amount of RAM dedicated to the object store, use the function GetStorelnformation. 

The dwTota/PageFile and dwAvai/PageFile fields are 0, indicating no support for a paging file 

under Windows CE. The dwTota/Virtual field is interesting because it shows a 1024 MB limit 

on virtual memory that Windows CE enforces on an application. Meanwhile, the dwAvai/Vir

tual field indicates that in this application little of that 1 GB of virtual memory is being used. 

The 1 GB total virtual memory value is interesting because the advertised amount of vir

tual address space per application in Windows CE 6 is 2 GB. However, the other 1 GB of an 



246 Part II Windows CE Programming 

application's virtual memory space is dedicated for specific uses by the operating system and 

therefore isn't available for memory allocations by the application. Just what these dedicated 

uses are will be discussed in the following sections. 

An Application's Address Space 

The virtual space available to an application under Windows CE 6 is a vast improvement over 

earlier versions of Windows CE, which were limited to 32 MB of usable virtual space per 

application. In addition to the 1 GB of space available to applications for allocation, another 
1 GB is used for specific purposes. A diagram of the 2 GB total application virtual space is 

shown in Figure 7-1. 

7FFF FFFF 

7000 0000 

6000 0000 

4000 0000 

00010000 
0000 0000 

- Guard region 

Shared System Heap 

RAM backed 
Memory Mapped files 

DLL space 

+ 
I 
I 

Free Virtual Space 

He~ (reserved ~ace) 
Stack (reserved ~ce) 

Resources 
Read write data 
~d on.!Y. Q.g_ta 

c±e 

T 
Reserved 

FIGURE 7-1 Memory map of a Windows CE application 

As with all 32-bit versions of Windows, the application is mapped to a 64 KB region 

boundary starting at OxlOOOO. The lowest 64 KB of the address space for any application 

is reserved by Windows. The image of the file contains the code along with the static data 

segments and the resource segments. The actual code pages are not typically loaded in 

when the application is launched. Instead, each page is loaded on demand as the code in 

those pages is executed. 

The read-only static data segment and the read/write static data areas usually take only a 

few pages. Each of these segments is page aligned. Like the code, these data segments are 



Chapter 7 Memory Management 247 

committed to RAM only as they're read or written by the application. The resources for 

the application are loaded into a separate set of pages. The resources are read only and are 

paged into the RAM only as they're accessed by the application. 

The stack for the application's main thread is mapped above the resource segment. The stack 

segment is easily recognized because the committed pages are at the end of the reserved region, 

indicative of a stack that grows from higher addresses down. If this application had more than 

one thread, more than one stack segment would be reserved in the application's address space. 

Following the stack is the local heap. The loader reserves a large number of pages, on the 

order of hundreds of kilobytes, for the heap to grow but commits pages only as necessary to 

satisfy memory allocations from ma/foe, new, or Loca/Alloc calls. The remaining address space 

up to the 1 GB boundary is available for allocation by the application for stacks, heaps, direct 

virtual allocations and for memory-mapped files. 

The upper 1 GB of the application's virtual space is used by the operating system for dedi

cated purposes. The first 512 MB from Ox4000 0000 to Ox5FFF FFFF are used for loading dy

namic link libraries (DLLs). Unlike earlier versions of Windows CE, the DLLs are loaded bottom up, 

from the base address of Ox4000 0000 up to the limit of the region. The address that the DLL is 

loaded, known as its "base address," is consistent across all applications for a given DLL. So, if a DLL 

named "Bob.di I" is loaded at address Ox40F6000 in one process, it is loaded at that same address 

in all other applications. This is consistent with earlier versions of Windows CE; however, because 

there is so much virtual space available to load DLLs, this isn't the problem it was in earlier versions. 

The 255-MB region from Ox6000 0000 to Ox7FFO 0000 is called the shared system heap. This 

region is used for communication between the operating system and the application. The 

region can be read and written to by the operating system but can only be read by the ap

plication. This provides a convenient place for the kernel to place buffers containing data being 

passed to the application. The final 1 MB of the application address space starting at Ox7FFO 0000 

is a "guard region." The system will throw an exception if any thread that accesses that region. 

The Different Kinds of Memory Allocation 
A Windows CE application has a number of different methods for allocating memory. At the 

bottom of the memory-management food chain are the Virtualxxx functions that directly 

reserve, commit, and free virtual memory pages. Next comes the heap API. Heaps are re

gions of reserved memory space managed by the system for the application. Heaps come in 

two flavors: the default local heap automatically allocated when an application is started, and 

separate heaps that can be manually created by the application. After the heap API is static 

data-data blocks defined by the compiler and that are allocated automatically by the load

er. Finally, you come to the stack, where an application stores variables local to a function. 

The one area of the Win32 memory API that Windows CE doesn't support is the global heap. 

The global heap API, which includes calls such as G/oba/Alloc, Globa!Free, and Globa/Realloc, 



248 Part II Windows CE Programming 

is therefore not present in Windows CE2. The global heap is really just a holdover from the 

Win16 days of Windows 3.x. In Win32, the global and local heaps are quite similar. One 

unique use of global memory, allocating memory for data in the clipboard, is handled by 

using the local heap under Windows CE. 

The key to minimizing memory use in Windows CE is choosing the proper memory-allocation 

strategy that matches the memory-use patterns for a given block of memory. I'll review each 

of these memory types and then describe strategies for minimizing memory use in Windows 

CE applications. 

Virtual Memory 

Virtual memory is the most basic of the memory types. The system uses calls to the virtual 
memory API to allocate memory for the other types of memory, including heaps and stacks. 

The virtual memory API, including the Virtua!Alloc, Virtua!Free, and Virtua!ReSize functions, 

directly manipulates virtual memory pages in the application's virtual memory space. Pages 

can be reserved, committed to physical memory, and freed using these functions. 

Allocating Virtual Memory 

Allocating and reserving virtual memory is accomplished using this function: 

LPVOID VirtualAlloc (LPVOID lpAddress, DWORD dwSize, 
DWORD flAllocationType, 
DWORD flProtect); 

The first parameter to Virtua/Al/oc is the virtual address of the region of memory to allocate. 

The lpAddress parameter is used to identify the previously reserved memory block when you 

use Virtua/Al/oc to commit a block of memory previously reserved. If this parameter is NULL, 
the system determines where to allocate the memory region, rounded to a 64-KB boundary. 

The second parameter is dwSize, the size of the region to allocate or reserve. While this pa

rameter is specified in bytes, not pages, the system rounds the requested size up to the next 

page boundary. 

The {IA/location Type parameter specifies the type of allocation. You can specify a combina

tion of the following flags: MEM_COMMIT; MEM_AUTO_COMMIT; and MEM_RESERVE. 
The MEM_COMMIT flag allocates the memory to be used by the program. MEM_RESERVE 
reserves the virtual address space to be later committed. Reserved pages can't be accessed 

until another call is made to Virtua!Alloc specifying the region and using the MEM_COMMIT 
flag. The flag MEM_TOP_DOWN, which is supported on the desktop and was supported on 

the earliest versions of Windows CE, is ignored by Windows CE 5 and Windows CE 6. 

2 The function GlobalAlloc exists as a macro in the Windows CE include files. It is simply an alias for LocalAlloc. 



Chapter 7 Memory Management 249 

The MEM_AUTO_COMM/Tflag is unique to Windows CE and is quite handy. When this flag 

is specified, the block of memory is reserved immediately, but each page in the block is 

automatically committed by the system when it's accessed for the first time. This allows 

you to allocate large blocks of virtual memory without burdening the system with the ac
tual RAM allocation until the instant each page is first used. The drawback to auto-commit 

memory is that the physical RAM needed to back up a page might not be available when the 

page is first accessed. In this case, the system generates an exception. 

Virtua/Alloc can be used to reserve a large region of memory with subsequent calls commit

ting parts of the region or the entire region. Multiple calls to commit the same region won't 

fail. This allows an application to reserve memory and then blindly commit a page before 

it's written to. While this method isn't particularly efficient, it does free the application from 

having to check the state of a reserved page to see whether it's already committed before 

making the call to commit the page. 

The ff Protect parameter specifies the access protection for the region being allocated. The 

different flags available for this parameter are summarized in the following list. 

• PAGE_READONLY The region can be read. If an application attempts to write to the 
pages in the region, an access violation will occur. 

• PAGE_READWRITE The region can be read from or written to by the application. 

• PAGE_EXECUTE The region contains code that can be executed by the system. 
Attempts to read from or write to the region will result in an access violation. 

• PAGE_EXECUTE_READ The region can contain executable code, and applications can 

also read from the region. 

• PAGE_EXECUTE_READWRITE The region can contain executable code, and applica

tions can read from and write to the region. 

• PAGE_GUARD The first access to this region results in a STATUS_GUARD_PAGE excep

tion. This flag should be combined with the other protection flags to indicate the ac

cess rights of the region after the first access. 

• PAGE_NOACCESS Any access to the region results in an access violation. 

• PAGE_NOCACHE The RAM pages mapped to this region won't be cached by the 
microprocessor. 

The PAGE_ GUARD and PAGE_NOCHACHE flags can be combined with the other flags to 

further define the characteristics of a page. The PAGE_ GUARD flag specifies a guard page, 

a page that generates a one-shot exception when it's first accessed and then takes on the 

access rights that were specified when the page was committed. The PAGE_NOCACHE flag 

prevents the memory that's mapped to the virtual page from being cached by the micro

processor. This flag is handy for device drivers that share memory blocks with devices using 

direct memory access (OMA). 



250 Part II Windows CE Programming 

Regions versus Pages 
Before I go on to talk about the virtual memory API, I need to make a somewhat subtle dis

tinction. Virtual memory is reserved in regions that must align on 64-KB boundaries. Pages 

within a region can then be committed page by page. You can directly commit a page or a 
series of pages without first reserving a region of pages, but the page, or series of pages, 

directly committed will be aligned on a 64-KB boundary. For efficient use of the virtual 

memory space, it's best to reserve blocks of virtual memory in 64-KB chunks or larger and 

then commit the pages within the region as needed. 

For example, examine the following code fragment: 

for Ci = O; i < 512; i++) 
pMem[i] = VirtualAlloc (NULL, PAGESIZE, MEM_RESERVE I MEM_COMMIT, 

PAGE_READWRITE); 

This code will allocate 512 one-page blocks of virtual memory, but will consume 32 MB of 

virtual space. On earlier versions of Windows CE, this code would fail due to the limited 

virtual space available for each process. The code works under Windows CE 6 and later; 

however, it isn't an efficient use of address space. 

A better way to make 512 distinct virtual allocations is to do something like this: 

II Reserve a region first. 
pMemBase = VirtualAlloc (NULL, PAGESIZE * 512, MEM_RESERVE, 

PAGE_NOACCESS); 

for Ci = O; i < 512; i++) 
pMem[i] = VirtualAlloc (pMemBase + (i*PAGESIZE), PAGESIZE, 

MEM_COMMIT, PAGE_READWRITE); 

This code first reserves a region; the pages are committed later. Because the region is first 

reserved, the committed pages aren't rounded to 64 KB boundaries. 

While Windows CE 6 has a much larger virtual space per process than earlier versions of 

the operating system, this simply moves the "limits" of your application to a different place. 

Windows CE does not support a paging file and therefore is limited to the physical memory 

available on the device. An application on Windows CE 6 or later may have plenty of virtual 

memory space but it is still limited by the available RAM on the system. Be sure to check your 

memory allocations! 

Freeing Virtual Memory 
You can decommit, or free, virtual memory by calling Virtua/Free. Decommitting a page 

unmaps the page from a physical page of RAM but keeps the page or pages reserved. The 

function is prototyped as 

BOOL VirtualFree (LPVOID lpAddress, DWORD dwSize, 
DWORD dwFreeType); 



Chapter 7 Memory Management 251 

The lpAddress parameter should contain a pointer to the virtual memory region that's to 

be freed or decommitted. The dwSize parameter contains the size, in bytes, of the region 

if the region is to be decommitted. If the region is to be freed, this value must be 0. The 

dwFreeType parameter contains the flags that specify the type of operation. The MEM_ 

DECOMMIT flag specifies that the region will be decommited but will remain reserved. The 

MEM_RELEASE flag both decommits the region if the pages are committed and also frees the 
region. 

All the pages in a region being freed by means of Virtua/Free must be in the same state. That 
is, all the pages in the region to be freed must either be committed or reserved. Virtua/Free 

fails if some of the pages in the region are reserved while some are committed. To free a 

region with pages that are both reserved and committed, the committed pages should be 

decommitted first, and then the entire region can be freed. 

Changing and Querying Access Rights 

You can modify the access rights of a region of virtual memory, initially specified in 

Virtua!Alloc, by calling Virtua/Protect. This function can change the access rights only on 

committed pages. The function is prototyped as 

BOOL VirtualProtect (LPVOID lpAddress, DWORD dwSize, 
DWORD flNewProtect, PDWORD lpflOldProtect); 

The first two parameters, lpAddress and dwSize, specify the block and the size of the region 

that the function acts on. The f/NewProtect parameter contains the new protection flags 

for the region. These flags are the same ones I mentioned when I explained the Virtua/Alloc 

function. The lpf/OldProtect parameter should point to a DWORD that will receive the old 
protection flags of the first page in the region. 

The current protection rights of a region can be queried with a call to 

DWORD VirtualQuery (LPCVOID lpAddress, 
PMEMORY_BASIC_INFORMATION lpBuffer, 
DWORD dwlength); 

The lpAddress parameter contains the starting address of the region being queried. The 

lpBuffer pointer points to a PMEMORY_BASIC_INFORMATION structure that I'll talk about 
shortly. The third parameter, dwLength, must contain the size of the PM EMORY_ BASIC_ 

INFORMATION structure. 

The PMEMORY_BASIC_/NFORMATION structure is defined as 

typedef struct _MEMORY_BASI(_INFORMATION 
PVOID BaseAddress; 
PVOID AllocationBase; 
DWORD AllocationProtect; 
DWORD RegionSize; 



252 Part II Windows CE Programming 

DWORD State; 
DWORD Protect; 
DWORD Type; 

} MEMORY_BASIC_INFORMATION; 

The first field of MEMORY_BASICINFORMATION, BaseAddress, is the address passed to 

the Virtua/Query function. The AllocationBase field contains the base address of the region 

when it was allocated using the Virtua/Al/oc function. The AllocationProtect field contains 

the protection attributes for the region when it was originally allocated. The RegionSize field 

contains the number of bytes from the pointer passed to Virtua/Query to the end of series 
of pages that have the same attributes. The State field contains the state-free, reserved, 

or committed-of the pages in the region. The Protect field contains the current protection 

flags for the region. Finally, the Type field contains the type of memory in the region. This 

field can contain the flags MEM_PRIVATE, indicating that the region contains private data for 
the application; MEM_MAPPED, indicating that the region is mapped to a memory-mapped 

file; or MEM_IMAGE, indicating that the region is mapped to an EXE or a DLL module. 

The best way to understand the values returned by Virtua/Query is to look at an example. 

Say an application uses Virtua/Alloc to reserve 65,536 bytes (16 pages on a 4 KB page-size 

machine). The system reserves this 64-KB block at address Ox80000. Later the application 

commits 28,672 bytes (7 pages) starting 8192 bytes (2 pages) into the initial region. Figure 

7-2 shows a diagram of this scenario. 

Pages later 
committed 

lpAddress 1 value passed -84000 
to VirtualQuery 

82000 --+------

Pages originally 
reserved by 
VirtualAlloc 

80000 -------~ 

FIGURE 7-2 A region of reserved virtual memory that has nine pages committed 

If a call is made to Virtua/Query with the lpAddress pointer pointing 4 pages into the initial 

region (address Ox84000), the returned values would be the following: 

BaseAddress 
A 11 ocati on Base 
AllocationProtect 
RegionSize 
State 
Protect 
Type 

Ox84000 
Ox80000 
PAGE_NOACCESS 
Ox7000 (28,672 bytes or 7 pages) 
MEM_COMMIT 
PAGE_READWRITE 
MEM_PRIVATE 



Chapter 7 Memory Management 253 

The BaseAddress field contains the address passed to Virtua/Query, Ox84000, 16,384 bytes 

into the initial region. The Al/ocationBase field contains the base address of the original region, 

while AllocationProtect contains PAGE_NOACCESS, indicating that the region was originally 

reserved, not directly committed. The RegionSize field contains the number of bytes from the 
pointer passed to Virtua/Query, Ox7000 to the end of the committed pages at Ox8BOOO. The 

State and Protect fields contain the flags indicating the current state of the pages. The Type 
field indicates that the region was allocated by the application for its own use. 

The VirtualxxxEx API 
Starting with Windows CE 6, the operating system supports the desktop's extended vir

tual memory API. These functions allow an application to manipulate the memory space 

of another application. The functions mirror the standard Virtualxxx API. For example, 

VirtualAl/ocEx performs the same functionality as Virtua/Al/oc but adds a parameter for the 

handle to the process where the memory is to be allocated. The function is prototyped as: 

LPVOID VirtualAllocEx (HANDLE hProcess, LPVOID lpAddress, 
DWORD dwSize, DWORD flAllocationType, 
DWORD flProtect); 

The first parameter is the only difference between this function and Virtua/Alloc. The process 

handle can be acquired by calling the OpenProcess function prototyped as: 

HANDLE OpenProcess (DWORD fdwAccess, BOOL f!nherit, DWORD IDProcess); 

This function is discussed in detail in Chapter 8, "Modules, Processes, and Threads," but to 

summarize, the fdwAccess parameter is the security rights requested. The flnherit paramter 

must be set to FALSE. The final parameter is the ID of the process to open. 

The other extended virtual functions are: 

BOOL VirtualProtectEx (HANDLE hProcess, LPVOID lpAddress, 
DWORD dwSize, DWORD flNewProtect, 
PDWORD lpflOldProtect); 

DWORD VirtualQueryEx (HANDLE hProcess, LPCVOID lpAddress, 
PMEMORY_BASIC_INFORMATION lpBuffer, 
DWORD dwLength); 

BOOL VirtualFreeEx (HANDLE hProcess, LPVOID lpAddress, 
DWORD dwSize, DWORD dwFreeType); 

As you can see, the functions mirror their original functions with the exception of the process 

handle as the first parameter. 

The memory blocks allocated Virtua/AllocEx are no different than memory blocks allo

cated locally by Virtua/Alloc. Blocks allocated by Virtua/AllocEx can be released by calling 

Virtua/Free (in the process where the allocation occurred, of course). To read and write the 



254 Part II Windows CE Programming 

blocks allocated in another process, the ReadProcessMemory and WriteProcessMemory func

tions can be used. 

Of course, there are security implications to Virtua/Al/ocEx. The actual security implications 

reside in OpenProcess. While Windows CE 6.0 does not provide any security to prevent other 

processes from calling OpenProcess, you can expect future versions of the operating system 

to enforce security rights. 

Heaps 
Clearly, allocating memory on a page basis is inefficient for most applications. To optimize 

memory use, an application needs to be able to allocate and free memory on a per-byte, or 

at least a per-32-byte, basis. The system enables allocations of this size through heaps. Using 

heaps also protects an application from having to deal with the inefficiencies of page-based 

allocation. An application can simply allocate a block in a heap, and the system deals with the 

number of pages necessary for the allocation. 

As mentioned before, heaps are regions of reserved virtual memory space managed by the 

system for the application. The system gives you a number of functions that allow you to 

allocate and free blocks within the heap with a granularity much smaller than a page. As 

memory is allocated by the application within a heap, the system automatically grows the 

size of the heap to fill the request. As blocks in the heap are freed, the system looks to see if 
an entire page is freed. If so, that page is decommitted. 

Windows CE supports the allocation of only fixed blocks in the heap. This simplifies the han

dling of blocks in the heap, but it can lead to the heaps becoming fragmented over time as 

blocks are allocated and freed. The result can be a heap being fairly empty but still requiring 

a large number of virtual pages because the system can't reclaim a page from the heap 

unless it's completely free. 

Each application has a default, or local, heap created by the system when the application is 
launched. Blocks of memory in the local heap can be allocated, freed, and resized using the 

Loca/Alloc, Loca/Free, and Loca/Realloc functions. An application can also create any number 

of separate heaps. These heaps have the same properties as the local heap but are managed 

through a separate set of Heapxxxx functions. 

The Local Heap 
Over the years, the various versions of Windows CE have created local heaps of various sizes. 

The initial size of the heap isn't critical to the application developer since RAM will only be 

committed to the heap as needed; and, depending on how the heap is created, the heap is 

grown when allocations exceed the initial reservation. If an application requests a particular 

allocation from the local heap, the memory may be allocated outside the heap's reserved 



Chapter 7 Memory Management 255 

block. In addition, growing the heap might require a separate, disjointed address space 

reserved for the additional space on the heap. Applications shouldn't assume that the local 

heap is contained in one block of virtual address space. Because Windows CE heaps support 

only fixed blocks, Windows CE implements only the subset of the Win32 local heap functions 
necessary to allocate, resize, and free fixed blocks on the local heap. 

Allocating Memory on the Local Heap 

You allocate a block of memory on the local heap by calling 

HLOCAL LocalAlloc (UINT uFlags, UINT uBytes); 

The call returns a value cast as an HLOCAL, which is a handle to a local memory block, but 

because the block allocated is always fixed, the return value can simply be recast as a pointer 
to the block. 

The uF/ags parameter describes the characteristics of the block. The flags supported under 

Windows CE are limited to those that apply to fixed allocations. They are the following. 

• LMEM_FIXED Allocates a fixed block in the local heap. Because all local heap alloca

tions are fixed, this flag is redundant. 

• LMEM_ZEROINIT Initializes memory contents to 0. 

• LPTR Combines the LMEM_FIXED and LMEM_ZEROINIT flags. 

The uBytes parameter specifies the size of the block to allocate in bytes. The size of the block 

is rounded up. The amount rounded up varies depending on the version of Windows CE. 

Windows CE 6 rounds up to the next 32-byte boundary. 

Freeing Memory on the Local Heap 

You can free a block by calling 

HLOCAL LocalFree (HLOCAL hMem); 

The function takes the handle to th~ local memory block and returns NULL if successful. If 

the function fails, it returns the original handle to the block. 

Resizing and Querying the Size of Local Heap Memory 

You can resize blocks on the local heap by calling 

HLOCAL LocalReAlloc (HLOCAL hMem, UINT uBytes, UINT uFlag); 

The hMem parameter is the pointer (handle) returned by Loca/Alloc. The uBytes param

eter is the new size of the block. The uF/ag parameter contains the flags for the new block. 

Under Windows CE, two flags are relevant, LMEM_ZEROINIT and LMEM_MOVEABLE. 



256 Part II Windows CE Programming 

LMEM_ZEROINIT causes the contents of the new area of the block to be set to 0 if the block 

is grown as a result of this call. The LMEM_MOVEABLE flag tells Windows that it can move 

the block if the block is being grown and there's not enough room immediately above the 

current block. Without this flag, if you don't have enough space immediately above the block 

to satisfy the request, Loca/Realloc will fail with an out-of-memory error. If you specify the 

LMEM_MOVEABLE flag, the handle (really the pointer to the block of memory) might change 

as a result of the call. 

The size of the block can be queried by calling 

UINT LocalSize (HLOCAL hMem); 

The size returned will be at least as great as the requested size for the block. As I men

tioned earlier, Windows CE rounds the size of a local heap allocation up to the next 32-byte 

boundary. 

Separate Heaps 
To avoid fragmenting the local heap, it's better to create a separate heap if you need a series 

of blocks of memory that will be used for a set amount of time. An example of this is a text 

editor that might manage a file by creating a separate heap for each file it edits. As files are 

opened and closed, the heaps are created and destroyed. 

Heaps under Windows CE have the same API as those under other Win32 operating systems. 

The only noticeable difference is the lack of support for the HEAP_GENERATE_EXCEPTIONS 
flag. On the desktop, this flag causes the system to generate an exception if an allocation re

quest can't be accommodated. 

Creating a Separate Heap 

You create heaps by calling 

HANDLE HeapCreate (DWORD flOptions, DWORD dwinitialSize, 
DWORD dwMaximumSize); 

Under Windows CE, the first parameter, f/Options, can be NULL, or it can contain the HEAP_ 
NO_SERIAUZE flag. By default, Windows heap management routines prevent two threads 

in a process from accessing the heap at the same time. This serialization prevents the heap 

pointers that the system uses to track the allocated blocks in the heap from being corrupted. 

In other versions of Windows, the HEAP_NO_SERIAUZE flag can be used if you don't want 

this type of protection. Under Windows CE, however, this flag is provided only for compat

ibility, and all heap accesses are serialized. 



Chapter 7 Memory Management 257 

The other two parameters, dwlnitia/Size and dwMaximumSize, specify the initial size and 

maximum size of the heap. The dwlnitia/Size parameter can be used to force the operating 

system to commit that many bytes to the heap when it is created. This value is rounded up 

to the next page size. If dwlnitia/Size is zero, the operating system will default to not com
mitting any RAM. The dwMaximumSize value can be used to cap the size of the heap. When 

set to zero, the operating system initially reserves a region of virtual address space and, if 

subsequent allocations on the heap exceed this initial reservation, the heap is grown to ac

commodate the new requests. If dwMaximumSize is set, the operating system reserves the 

specified amount and will commit no more. When the reserved region is filled, subsequent 

allocation requests will fail. For example, if the dwMaximumSize is specified as 100 KB, the 

heap has 50 KB already allocated, and an application requests a 60 KB block, the allocation 

will fail with the return code ERROR_NOT_ENOUGH_MEMORY. Specifying dwMaximumSize 
also prevents the heap manager from requesting virtual memory outside the heap for very 

large allocations. 

Allocating Memory in a Separate Heap 

You allocate memory on the heap using 

LPVOID HeapAlloc (HANDLE hHeap, DWORD dwFlags, DWORD dwBytes); 

Notice that the return value is a pointer, not a handle as in the Loca/Alloc function. As with 

the local heap, separate heaps always allocate fixed blocks. The first parameter is the handle 

to the heap returned by the HeapCreate call. The dwF/ags parameter can be one of two self

explanatory values: HEAP_NO_SERIALIZE and HEAP_ZERO_MEMORY. The final parameter, 

dwBytes, specifies the number of bytes in the block to allocate. The size is rounded up to the 
nextDWORD. 

Freeing Memory in a Separate Heap 

You can free a block in a heap by calling 

BOOL HeapFree (HANDLE hHeap, DWORD dwFlags, LPVOID lpMem); 

The only flag allowable in the dwF/ags parameter is HEAP_NO_SERIALIZE. The lpMem param

eter points to the block to free, while hHeap contains the handle to the heap. 

Resizing and Querying the Size of Memory in a Separate Heap 

You can resize heap allocations by calling 

LPVOID HeapReAlloc (HANDLE hHeap, DWORD dwFlags, LPVOID lpMem, 
DWORD dwBytes); 



258 Part II Windows CE Programming 

The dwF/ags parameter can be any combination of three flags: HEAP_NO_SERIALIZE, 
HEAP_REALLOC_IN_PLACE_ONLY, and HEAP_ZERO_ MEMORY. The only new flag here is 

HEAP_REALLOC_IN_PLACE_ONLY, which tells the heap manager to fail the reallocation if 
the space can't be found for the block without relocating it. This flag is handy if you already 
have a number of pointers pointing to data in the block and you aren't interested in updat
ing them. The lpMem parameter is the pointer to the block being resized, and the dwBytes 
parameter is the requested new size of the block. Notice that the function of the HEAP_ 
REALLOC_IN_PLACE_ONLYflag in HeapReAl/oc provides the opposite function from the one 
that the LMEM_MOVEABLE flag provides for Loca/ReAl/oc. HEAP_REALLOC_/N_PLACE_ ONLY 
prevents a block from moving that would be moved by default in a separate heap, while 
LMEM_MOVEABLE enables a block to be moved that by default would not be moved in the 

local heap. HeapReAl/oc returns a pointer to the block if the reallocation was successful and 
returns NULL otherwise. Unless you specified that the block not be relocated, the returned 
pointer might be different from the pointer passed in if the block had to be relocated to find 

enough space in the heap. 

To determine the actual size of a block, you can call 

DWORD HeapSize (HANDLE hHeap, OWORD dwFlags, LPCVOID lpMem); 

The parameters are as you expect: the handle of the heap; the single, optional flag, HEAP_ 
NO_SERIALIZE; and the pointer to the block of memory being checked. 

Destroying a Separate Heap 

You can completely free a heap by calling 

BOOL HeapDestroy (HANDLE hHeap); 

Individual blocks within the heap don't have to be freed before you destroy the heap. 

The following heap function is valuable when writing DLLs. The function 

HANDLE GetProcessHeap (VOID); 

returns the handle to the local heap of the process calling the DLL. This allows a DLL to allo
cate memory within the calling process's local heap. All the other heap calls, with the excep
tion of HeapDestroy, can be used with the handle returned by GetProcessHeap. 

Managing a Separate Heap 

There are times when an application needs to control the type and location of the memory 
used by a heap. An example might be where an embedded device has a special type of 
battery-backed physical memory that the application would like to have managed like a 
heap. Windows CE has a specialized function that tells the heap manager to call back to the 



Chapter 7 Memory Management 259 

application when the heap needs to allocate, commit, or free virtual memory for the heap. 

The function is 

HANDLE CeHeapCreate (DWORD flOptions, DWORD dwinitialSize, 
DWORD dwMaximumSize, PFN_AllocHeapMem pfnAlloc, 
PFN_FreeHeapMem pfnFree); 

The first parameter of CeHeapCreate is f/Options, which must be 0. The next two parameters 

mirror the standard HeapCreate. The real difference between this call and HeapCreate is the 
addition of the function pointers to custom allocate and free functions. The function pointed 

to by first of these parameters, pfnAl/oc, is called when the heap manager needs virtual 

memory to support an allocation request. This callback function is prototyped as: 

LPVOID CALLBACK_AllocHeapMem (LPVOID pAddr, DWORD cbSize, 
DWORD fdwAction, LPDWORD pdwUserData); 

What an application does when this callback function is called depends on the third param

eter, fdwAction. This parameter can be one of two self-descriptive values; MEM_RESERVE and 

MEM_COMMIT. For a MEM_RESERVE call, the pAddr value is zero and cbSize contains the 
amount of memory to reserve. The pdwUserData parameter points to an application-defined 

value that can be used for any purpose. When the reserved region is committed, or later 

freed, this user data value is passed back to the application. 

When the callback is called to commit memory, the pAddr parameter points to the block of 

reserved memory to commit. The cbSize parameter provides the size of the region to com

mit, and the pdwUserData parameter points to the value set during the reserve callback. For 

both the reserve and commit actions, the return value for the callback should be a pointer to 

the memory reserved or committed. 

When the heap manager needs to decommit or free memory pages associated with the 

heap, it calls the function pointed to by the pfnFree parameter in CeHeapCreate. The free 

callback function is prototyped as 

BOOL CALLBACK FreeHeapMem (LPVOID pAddr, DWORD cbSize, DWORD fdwAction, 
DWORD dwUserData); 

This function is also called in two situations As with the allocation callback, the reason for 

the callback is indicated by fdwAction. In this case, the operative values are either MEM_ 

DECOMMIT or MEM_FREE. MEM_DECOMMIT is called when the heap manager wants to de

commit pages of RAM, while MEM_FREE is used to free reserved regions of virtual memory. 

The dwUserData value is the data returned by the application during the calls to the alloca

tion callback for the block that is now being released or decommited. 

Although these callbacks talk of reserving, committing, decommitting, and freeing the mem

ory, what actually happens in the callback is under the control of the application. This allows 

the application to use any memory it controls to satisfy the requests of the heap manager. 

How these requests are satisfied is up to the application. 



260 Part II Windows CE Programming 

The Stack 
The stack is the easiest to use (the most self-managing) of the different types of memory 

under Windows CE. The stack under Windows CE, as in any operating system, is the storage 
place for temporary variables that are referenced within a function. The operating system 

also uses the stack to store return addresses for functions and the state of the microproces

sor registers during exception handling. 

Windows CE manages a separate stack for every thread in the system. By default, each stack 

in the system is limited to a maximum size of around 56 KB. Each separate thread within one 

process can grow its stack up to the 56 KB limit. This limit has to do with how Windows CE 

manages the stack. When a thread is created, Windows CE reserves a 64-KB region for the 

thread's stack. It then commits virtual pages from the top down as the stack grows. As the 

stack shrinks, the system, under low-memory conditions, reclaims the unused but still com

mitted pages below the stack. The limit of 56 KB comes from the size of the 64-KB region 

dedicated to the stack minus the number of pages necessary to guard the stack against over

flow and underflow. 

For applications that need a larger stack, the maximum size of the stack for the main thread 

of the application can be specified by a linker switch when an application is linked. When an 

application creates secondary threads, the maximum size of the stack can be specified in the 

Create Thread call that creates the thread. The same guard pages are applied, but the stack 

size can be specified up to the space free in the processes' virtual memory space. Note that 

the size defined for the default stack is also the default size used for all the separate thread 

stacks. That is, if you specify the main stack to be 128 KB, all other threads in the applica

tion have a stack size limit of 128 KB unless you specify a different stack size in each call to 

Create Thread. 

One other consideration must be made when you plan how to use the stack in an applica

tion. When an application calls a function that needs stack space, Windows CE attempts to 

commit the pages immediately below the current stack pointer to satisfy the request. If no 

physical RAM is available, the thread needing the stack space is briefly suspended. If the 

request can't be granted within a short period of time, an exception is raised. Windows CE 

goes to great lengths to free the required pages, but if this can't happen the system raises 

an exception. I'll cover low-memory situations shortly; but for now, just remember that you 

shouldn't try to use large amounts of stack space in low-memory situations. 

Static Data 
C and C++ applications have predefined blocks of memory that are automatically allocated 

when the application loads. These blocks hold statically allocated strings, buffers, and global 
variables as well as buffers necessary for the library functions that are statically linked with 

the application. None of this is new to the C programmer, but under Windows CE, these 

spaces are handy for squeezing the last useful bytes out of RAM. 



Chapter 7 Memory Management 261 

Windows CE allocates two blocks of RAM for the static data of an application, one for the 

read/write data and one for the read-only data. Because these areas are allocated on a per

page basis, you can typically find some space left over from the static data up to the next page 

boundary. The finely tuned Windows CE application can be written to ensure that it has little 

or no extra space left over. If you have space in the static data area, sometimes it's better to 

move a buffer or two into the static data area instead of allocating those buffers dynamically. 

Another consideration is that if you're writing a ROM-based application, you should move as 

much data as possible to the read-only static data area. Windows CE doesn't allocate RAM to 

the read-only area for ROM-based applications. Instead, the ROM pages are mapped directly 

into the virtual address space. This essentially gives you unlimited read-only space with no 

impact on the RAM requirements of the application. 

The best place to determine the size of the static data areas is to look in the map file that's op

tionally generated by the linker. The map file is chiefly used to determine the locations of func

tions and data for debugging purposes, but it also shows the size of the static data if you know 

where to look. Listing 7-1 shows a portion of an example map file generated by Visual Studio. 

LISTING 7-1 The top portion of a map file showing the size of the data segments in an application 

memtest 

Timestamp is 4658889b (Sat May 26 12:20:59 2007) 

Preferred load address is 00010000 

Start Length Name Class 
0001:00000000 00006100H .text CODE 
0002:00000000 00000310H .rdata DATA 
0002:00000310 00000014H .xdata DATA 
0002:00000324 00000028H . idata$2 DATA 
0002:0000034c 00000014H . i data$3 DATA 
0002:00000360 000000f4H . i data$4 DATA 
0002:00000454 000003eeH . i data$6 DATA 
0002:00000842 OOOOOOOOH .edata DATA 
0003:00000000 000000f4H . i data$5 DATA 
0003:000000f4 00000004H .CRT$XCA DATA 
0003:000000f8 00000004H .CRT$XCZ DATA 
0003:000000fc 00000004H .CRT$XIA DATA 
0003:00000100 00000004H .CRT$XIZ DATA 
0003:00000104 00000004H .CRT$XPA DATA 
0003:00000108 00000004H .CRT$XPZ DATA 
0003:0000010c 00000004H .CRT$XTA DATA 
0003:00000110 00000004H .CRT$XTZ DATA 
0003:00000114 000011e8H .data DATA 
0003:000012fc 0000108cH .bss DATA 
0004:00000000 000003e8H .pdata DATA 
0005:00000000 OOOOOOfOH . rsrc$01 DATA 
OOOS:OOOOOOfO 00000334H . rsrc$02 DATA 



262 Part II Windows CE Programming 

Addres.s 

0001:00000000 
OOOl:0000007c 
0001:000000d4 
0001:00000164 
0001:00000248 
0001:000002b0 
0001:00000350 
§ 

Pu bl i CS. by Va 1 UE! 

_WinMain 
_InitApp 
_Initlnstance 
_Terminstance 
...cMainWndProc 
_GetFixedEquiv 
J)oCreateMain 

Rva+Base 

00011000 .f 
0001107cf 
000110d4.f 
00011164 f 
00011248 f 
000112b0 f 
00011350 .f 

Lib: Obj.ect 

memtest.obj 
m!!mtest.obj 
Jllemtest.obj 
memtest.obj 
memtest.obj 
memtest,obj 
m!!mtest.obj. 

The map file in Listing 7-1 indicates that the EXE has five sections. Section 0001 is the text 

segment containing the executable code of the program. Section 0002 contains the read

only static data. Section 0003 contains the read/write static data. Section 0004 contains the 

fix-up table to support calls to other DLLs. Finally, section 0005 is the resource section con

taining the application's resources, such as menu and dialog box templates. 

Examine the .data, .bss, and .rdata lines. The .data section contains the initialized read/write 
data. If you initialize a global variable as in 

static HINST g_hloadlib = NULL; 

the g_loadlib variable ends up in the .data segment. The .bss segment contains the uninitial

ized read/write data. A buffer defined as 

static BYTE g_uc!tems[256]; 

ends up in the .bss segment. The final segment, .rdata, contains the read-only data. Static 
data that you define using the canst keyword ends up in the .rdata segment. An example of 

this are the structures I use for my message lookup tables, as in the following: 

II Message dispatch table for MainWindowProc 
const struct decodeUINT MainMessages[] = { 

WM_CREATE, DoCreateMain, 
WM_SIZE, DoSizeMain, 
WM_COMMAND, DoCommandMain, 
WM_DESTROY, DoDestroyMain, 

}; 

The .data and .bss blocks are folded into the 0003 section, which, if you add the size of all 

blocks in the third section, has a total size of Ox2274, or 8820, bytes. Rounded up to the next 

page size, the read/write section ends up taking three pages, with 3468 bytes not used. So 

in this example, almost a complete page is unused. Placing a buffer or two in the static data 

section of the application would be essentially free. The read-only segment, section 0002, 

including .rdata, ends up being Ox0842, or 2114, bytes, which takes up a single page, with 

1982 bytes, almost half a page, wasted. 



Chapter 7 Memory Management 263 

String Resources 

One often-forgotten area for read-only data is the resource segment of your application. 
While I mentioned a new Windows CE-specific feature of the LoadString function in Chapter 
4, "Windows, Controls, and Menus," it's worth repeating here. If you call LoadString with 0 in 
place of the pointer to the buffer, the function returns a pointer to the string in the resource 

segment. An example would be 

LPCTSTR pString; 

pString = (LPCTSTR)LoadString (h!nst, ID_STRING, NULL, 0) 

The string returned is read only, but it allows you to reference the string without having to 
allocate a buffer to hold the string. Also, be warned that the string won't be zero terminated 
unless you have added the -n switch to the command line of the resource compiler. However, 
the word immediately preceding the string contains the length of the string resource. 

Selecting the Proper Memory Type 

Now that you've looked at the different types of memory, it's time to consider the best use 

of each. For large blocks of memory, directly allocating virtual memory is best. An applica
tion can reserve as much address space but can commit only the pages necessary at any one 
time. While directly allocated virtual memory is the most flexible memory allocation type, it 
shifts to you the burden of worrying about page granularity as well as keeping track of the 
reserved versus committed pages. 

The local heap is always handy. It doesn't need to be created and grows as necessary to 
satisfy a request. Fragmentation is the issue here. Consider that applications on a Windows 
Mobile device might run for weeks or even months at a time. Many systems don't turn "off" 

when the power button is pressed; they simply suspend. So when you're thinking about 
memory fragmentation, don't assume that a user will open the application, change one item, 
and then close it. A user is likely to start an application and keep it running so that the appli

cation is just a quick click away. 

The advantage of separate heaps is that you can destroy them when their time is up, nipping 
the fragmentation problem in the bud. A minor disadvantage of separate heaps is the need 
to manually create and destroy them. 

The static data area is a great place to slip in a buffer or two essentially for free because the 

page is going to be allocated anyway. The key to managing the static data is to make the 
size of the static data segments close to, but over the page size of, your target processor. 

Sometimes it's better to move constant data from the read-only segment to the read/write 
segment if it saves a page in the read-only segment. The only time you wouldn't do this is if 
the application is to be burned into ROM. Then the more constant the data is, the better, 
because it doesn't take up RAM. The read-only segment is handy even for applications 



264 Part II Windows CE Programming 

loaded from the object store because read-only pages can be discarded and reloaded as 

needed by the operating system. 

The stack is, well, the stack-simple to use and always around. The only considerations are 

the maximum size of the stack and the problems of enlarging the stack in a low-memory 

condition. Make sure your application doesn't require large amounts of stack space to shut 

down. If the system suspends a thread in your application while it's being shut down, the user 

will more than likely lose data. That won't help customer satisfaction. 

Managing Low-Memory Conditions 

Even for applications that have been fine-tuned to minimize their memory use, there are 

going to be times when the system runs very low on RAM. Windows CE applications oper

ate in an almost perpetual low-memory environment. Windows Mobile devices are designed 

intentionally to run in a low-memory situation. On these devices, applications are not closed 

until the system needs additional memory. Because of the need to efficiently run in low 

memory situations, Windows CE offers a number of methods to distribute the scarce memo
ry in the system among the running applications. 

The WM_ HIBERNATE Message 

The first and most obvious addition to Windows CE is the WM_HIBERNATE message. Windows 

CE shell sends this message to all top-level windows that have the WS_ OVERLAPPED style 

(that is, have neither the WS_POPUP nor the WS_CHILD style) and have the WS_ VIS/BLE style. 

These qualifications should allow most applications to have at least one window that receives 

a WM_HIBERNATE message. An exception to this would be an application that doesn't really 
terminate but simply hides all its windows. This arrangement allows an application a quick 

start because it only has to show its window, but this situation also means that the applica

tion is taking up RAM even when the user thinks it's closed. While this is exactly the kind of 

application design that should not be used under Windows CE, those that are designed this 

way must act as if they're always in hibernate mode when hidden because they'll never receive 

a WM_ HIBERNATE message. 

The shell sends WM_ HIBERNATE messages to the top-level windows in reverse z-order until 

enough memory is freed to push the available memory above a preset threshold. When an 
application receives a WM_HIBERNATE message, it should reduce its memory footprint as 

much as possible. This can involve releasing cached data; freeing any GDI objects such as 

fonts, bitmaps, and brushes; and destroying any window controls. In essence, the application 

should reduce its memory use to the smallest possible footprint that's necessary to retain its 

internal state. 

If sending WM_HIBERNATE messages to the applications in the background doesn't free 

enough memory to move the system out of a limited-memory state, a WM_HIBERNATE 



Chapter 7 Memory Management 265 

message is sent to the application in the foreground. If part of your hibernation routine is to 

destroy controls on your window, you should be sure that you aren't in the foreground appli

cation. Disappearing controls don't give the user a warm and fuzzy feeling. 

Memory Thresholds 

Windows CE monitors the free RAM in the system and responds differently as less and less 

RAM is available. As less memory is available, Windows CE first sends WM_HIBERNATE mes

sages and then begins limiting the size of allocations possible. Table 7-1 shows the default 

free-memory levels used by the Explorer shell and the system to trigger low-memory events 

in the system. Windows CE defines four memory states: normal, limited, low, and critical. The 

memory state of the system depends on how much free memory is available to the system as 

a whole. 

TABLE 7-1 Memory Thresholds for the Explorer Shell 

Event 

Limited-memory state 

Low-memory state 

Critical-memory state 

Free memory 

160 KB 

96 KB 

48 KB 

Comments 

Send WM_HIBERNATE 
messages to applications in reverse z-order. Free 
stack space reclaimed as needed. 

Limit virtual allocations to 16 KB. Low- memory 
dialog displayed. 

Limit virtual allocations to 
8 KB. 

The effect of these memory states is to share the remaining wealth. First, WM_ HIBERNATE 

messages are sent to the applications to ask them to reduce their memory footprint. After an 

application is sent a WM_HIBERNATE message, the system memory levels are checked to see 

whether the available memory is now above the threshold that caused the WM_HIBERNATE 

messages to be sent. If not, a WM_HIBERNATE message is sent to the next application. This 

continues until all applications have been sent a WM_HIBERNATE message. 

At this point, the low-memory strategies depend on the shell running. If the Explorer shell is 

running, the system displays the OOM, the out-of-memory dialog, and requests that the user 

either select an application to close or reallocate some RAM dedicated to the object store 

to the program memory. If, after the selected application shuts down or program memory is 

increased, you still don't have enough memory, the out-of-memory dialog is displayed again. 

This process repeats until there's enough memory to lift the device above the threshold. 

If an application is requested to shut down and it doesn't, the system purges the application 

after waiting approximately 8 seconds. This is the reason an application shouldn't allocate 
large amounts of stack space. If the application is shutting down due to low-memory con

ditions, it's possible that the stack space can't be allocated and the application will be sus

pended. If this happens after the system has requested that the application close, it could be 

purged from memory without properly saving its state. 



266 Part II Windows CE Programming 

In the low- and critical-memory states, applications are limited in the amount of memory 

they can allocate. In these states, a request for virtual memory larger than what's allowed is 

refused even if there's memory available to satisfy the request. Remember that it isn't just 

virtual memory allocations that are limited; allocations on the heap and stack are rejected if, 

to satisfy the request, those allocations require virtual memory allocations above the allow

able limits. 

I should point out that sending WM_HIBERNATE messages and automatically closing down 

applications is performed by the shell. On embedded systems for which the OEM can write 
its own shell, it is the OEM's responsibility to implement the WM_ HIBERNATE message and 

any other memory management techniques. Fortunately, the Microsoft Windows CE Platform 

Builder provides the source code for the Explorer shell that implements the WM_HIBERNATE 

message. 

It should go without saying that applications should check the return codes of any memory 

allocation call, but because some still don't, I'll say it. Check the return codes from calls 
that allocate memory. There's a much better chance of a memory allocation failing under 

Windows CE than under the desktop versions of Windows. Applications must be written to 

react gracefully to rejected memory allocations. 

Now that you've seen how Windows CE manages memory, it's time to look at the processes 

that use that memory and the threads that run in those proceses. And since those processes 
may have multiple threads, you'll need to know how to coordinate the actions of those 

threads. All of this is covered in the next chapter, "Modules, Processes, and Threads." 



Chapter 8 

Modules, Processes, and Threads 
Like Windows Vista, Windows CE is a fully multitasking and multithreaded operating system. 

What does that mean? In this chapter, I'll present a few definitions and then some explana

tions to answer that question. 

Win32 files that contain executable code are called modules. Windows CE supports two types 

of modules: applications, with the EXE extension; and dynamic-link libraries, with the DLL ex

tension. When Windows CE loads an application module, it creates a process. 

A process is a single instance of an application. If two copies of Microsoft Pocket Word are 

running, two unique processes are running. Every process has its own, protected address 

space as described in Chapter 7. Windows CE 6.0 and later allows virtually an unlimited num

ber of processes. Earlier versions of Windows CE enforced a limit of 32 separate processes 

that can run at any time. 

Each process has at least one thread. A thread executes code within a process. A process can 

have multiple threads running "at the same time." I put the phrase at the same time in quotes 

because, in fact, only one thread executes at any instant in time on a single processor. The 

operating system simulates the concurrent execution of threads by rapidly switching be

tween the threads, alternatively stopping one thread and switching to another. 

Modules 
The format of Windows CE modules is identical to the PE format used by the desktop ver

sions of Windows. Unlike Windows XP or Windows Vista, Windows CE doesn't support the 

SYS file format used for device drivers. Instead, Windows CE device drivers are implemented 

as DLLs. 

The difference between an EXE and a DLL is actually quite subtle. The format of the files is 

identical, save a few bytes in the header of the module. In practice, however, the difference 

is quite pronounced. When Windows launches an EXE, it creates a separate process space for 
that module, resolves any imported functions, initializes the proper static data areas, creates 

a local heap, creates a thread, and then jumps to the entry point of the module. 

DLLs, on the other hand, can't be launched independently. The only way a DLL is loaded is by 

a request from an EXE or another DLL. The request to load a DLL can occur in two ways. The 

first way is implicit loading. In this case, a DLL is loaded automatically when Windows loads 

an EXE that lists the DLL in its import table. The linker generates the import table when the 

EXE is linked, and the table contains the list of DLLs and the functions within those DLLs that 

267 



268 Part II Windows CE Programming 

the EXE might call during the life of the application. When the EXE is loaded, Windows looks 

at the list of DLLs in the EXE's import table and loads those DLLs into the process space of the 

application. DLLs also contain import tables. When a DLL is loaded, Windows also looks at 

the import table of the DLL and loads any DLLs needed by that DLL. 

When a DLL is built, it contains zero or more functions it exports. These are the functions 

that are callable from EXEs or other DLLs. A DLL that has no functions is still useful because it 

might contain resource data needed by the application. 

The other way a DLL can be loaded is through explicit loading. In this case, Windows doesn't 

automatically load the DLL; it's loaded programmatically by the application using one of two 

calls, Loadlibrary or LoadlibraryEx. 

Loadlibrary is prototyped as 

HINSTANCE Loadlibrary (LPCTSTR lpLibFileName); 

The only parameter is the filename of the DLL. If the filename does not have path informa

tion, the system searches for DLLs in the following order: 

1. The image of the DLL that has already been loaded in memory 

2. The directory of the executable loading the library 

3. The Windows directory (\Windows) 

4. The root directory in the object store (\) 

5. The path specified in the SystemPath value in [HKEY_LOCAL_ MACHINEJ\Loader 

If the DLL name is a completely specified path name, the search is as follows: 

1. The image of the DLL that has already been loaded in memory 

2. The completely specified name in the lplibFileName parameter 

Notice in all the earlier search sequences that if the DLL has already been loaded into 

memory, the system uses that copy of the DLL. This behavior is true even if your pathname 

specifies a different file from the DLL originally loaded. Another peculiarity of Loadlibrary is 

that it ignores the extension of the DLL when comparing the library name with what's already 

in memory. For example, if Simple.di! is already loaded in memory and you attempt to load 
the control panel applet Simple.cpl, which under the covers is simply a DLL with a different 

extension, the system won't load Simple.cpl. Instead, the system returns the handle to the 

previously loaded Simple.di!. 

Loadlibrary returns either an instance handle to the DLL that's now loaded or 0 if for some 

reason the function couldn't load the library. Calling GetlastError will return an error code 

specifying the reason for the failure. 



Chapter 8 Modules, Processes, and Threads 269 

Once you have the DLL loaded, you get a pointer to a function exported by that DLL by us

ing GetProcAddress, which is prototyped as 

FARPROC GetProcAddress (HMODULE hModule, LPCWSTR lpProcName); 

The two parameters are the handle of the module and the name of the function you want 

to get a pointer to. The function returns a pointer to the function, or 0 if the function isn't 

found. Once you have a pointer to a function, you can simply call the function as if the loader 

had implicitly linked it. 

When you are finished with the functions from a particular library, you need to call 

Freelibrary, prototyped as 

BOOL FreeLibrary (HMODULE hLibModule); 

Freelibrary decrements the use count on the DLL. If the use count drops to 0 for all processes 

that had loaded the library, it is removed from memory. 

The following routine solves the problem of an application not knowing whether the menu 

bar API is present on a system. 

typedef BOOL (WINAPI *SHCREATEMENUBARPROC) (SHMENUBARINFO *pmbi); 

fMenuBarCreated = FALSE; 

hLib = LoadLibrary (TEXT ("aygshell .dll")); 
if (hLib) { 

lpfn = (SHCREATEMENUBARPROC)GetProcAddress (hLib, 

} 

TEXT ("SHCreateMenuBar")); 
if Cl pfn) { 

} 

memset(&mbi, 0, sizeof(SHMENUBARINFO)); 
mbi.cbSize = sizeof(SHMENUBARINFO); 
mbi .hwndParent = hWnd; 
mbi .hinstRes = hinst; 
mbi.nToolBarid = ID_MENU; 
mbi .dwFlags = SHCMBF_HMENU; 
fMenuBarCreated = (*lpfn) (&mbi); 

if (!fMenuBarCreated) 
II Create a command bar instead 

} 

In this code, the menu bar is created only if the system supports it. If the library AygShell.dll 

or the SHCreateMenuBar function can't be found, a standard command bar is created. 

Windows CE also supports the LoadlibraryEx function, prototyped as 

HMODULE LoadLibraryEx (LPCTSTR lpLibFileName, HANDLE hFile, DWORD dwFlags); 



270 Part II Windows CE Programming 

The first parameter is the name of the DLL to load. The second parameter, hFile, isn't sup

ported by Windows CE and must be set to 0. The last parameter, dwFlags, defines how the 

DLL is loaded. If dwFlags contains the flag DONT_RESOLVE_DLL_REFERENCES, the DLL is 

loaded, but any modules the DLL requires are not loaded. In addition, the entry point of the 
DLL, typically DI/Main, isn't called. If dwFlags contains LOAD_LIBRARY_AS_DATAFILE, the DLL 

is loaded into memory as a data file. The DLL is not relocated or prepared in any way to be 

called from executable code. However, the handle returned can be used to load resources 

from the DLL using the standard resource functions such as LoadString. 

When a DLL is loaded, its entry point, traditionally named DI/Main, is called. DI/Main is proto

typed as 

BOOL APIENTRY DllMain( HANDLE hModule, DWORD ul_reason_for_call, 
LPVOID lpReserved); 

In addition to being called when the DLL is first loaded, DI/Main is also called when it's un

loaded or when a new thread is created or destroyed in the process that loads it. The second 

parameter, ul_reason_for_cafl, indicates the reason for the call to DI/Main. 

DLLs should avoid doing anything more than simple initialization from within DI/Main. An 

action such as loading other DLLs or any other action that might load other DLLs can cause 

problems with the Windows CE loader. This restriction can cause problems for DLLs that have 

been ported from the desktop versions of Windows because those operating systems are 
much more tolerant of actions within DI/Main. 

One last DLL function is handy to know about. The function DisableThreadlibraryCafls tells 

the operating system not to send DLL_THREAD_ ATTACH and DLL_THREAD_DETACH noti

fications to the DLL when threads are created and terminated in the application. Preventing 

these notifications can improve performance and reduce the working set of an application 

because the DLL's LibMain isn't called when threads are created and destroyed. The function 

is prototyped as 

BOOL DisableThreadLibraryCalls (HMODULE hLibModule); 

The only parameter is the handle to the DLL identifying the DLL that doesn't want to be noti

fied of the thread events. 

Processes 
Windows CE diverges from its desktop counterparts in a number of ways. Compared with 

processes under Windows Vista, Windows CE processes contain much less state information. 

Because Windows CE doesn't support the concept of a current directory, the individual pro

cesses don't need to store that information. Windows CE doesn't maintain a set of environ

ment variables, so processes don't need to keep an environment block. Windows CE doesn't 



Chapter 8 Modules, Processes, and Threads 271 

support handle inheritance, so there's no need to tell a process to enable handle inheritance. 

Because of all this, the parameter-heavy CreateProcess function is passed mainly NULLs and 

zeros, with just a few parameters actually used by Windows CE. 

Many of the process and thread-related functions are simply not supported by Windows 

CE because the system doesn't support certain features supported on the desktop. Because 

Windows CE doesn't support an environment, all the Win32 functions dealing with the envi

ronment don't exist in Windows CE. Some functions aren't supported because there's an easy 

way to work around the lack of the function. For example, ExitProcess doesn't exist under 

Windows CE. But as you might expect, there's a workaround that allows a process to close. 

Enough of what Windows CE doesn't do; let's look at what you can do with Windows CE. 

Creating a Process 

The function for creating a new process is 

BOOL CreateProcess (LPCTSTR lpApplicationName, 
LPCTSTR lpCommandLine, 
LPSECURITY_ATTRIBUTES lpProcessAttributes, 
LPSECURITY_ATTRIBUTES lpThreadAttributes, 
BOOL binheritHandles, DWORD dwCreationFlags, 
LPVOID lpEnvironment, 
LPCTSTR lpCurrentDirectory, 
LPSTARTUPINFO lpStartupinfo, 
LPPROCESS_INFORMATION lpProcessinformation); 

Although the list of parameters looks daunting, most of the parameters must be set to NULL 
or 0 because Windows CE doesn't support security or current directories, nor does it handle 

inheritance. This results in a function prototype that looks more like this: 

BOOL CreateProcess (LPCTSTR lpApplicationName, 
LPTSTR lpCommandLine, NULL, NULL, FALSE, 
DWORD dwCreationFlags, NULL, NULL, NULL, 
LPPROCESS_INFORMATION lpProcessinformation); 

The parameters that remain start with a pointer to the name of the application to launch. As 

with DLLs, Windows CE's search for the application depends on whether the name is passed 
with a completely specified path. If so, a module is looked for only in the directory specified 

by the path. For a module without a completely specified path, the search looks like this: 

1. The directory of the executable or DLL launching the process 

2. The Windows directory (\Windows) 

3. The root directory in the object store (\) 

4. The directories in the path specified in the SystemPath value in 

[H KEY_LOCAL_MACH IN E]\Loader 



272 Part II Windows CE Programming 

This action is different from the desktop, where CreateProcess searches for the executable 

only if lpApplicationName is set to NULL and the executable name is passed through the lp

CommandLine parameter. In the case of Windows CE, the application name must be passed 

in the lpApplicationName parameter because Windows CE doesn't support the technique of 

passing a NULL in lpApplicationName with the application name as the first token in the lp

CommandLine parameter. 

The lpCommandLine parameter specifies the command line that will be passed to the new 

process. The only difference between Windows CE and the desktop in this parameter is 
that under Windows CE the command line is always passed as a Unicode string. And as 

I mentioned previously, you can't pass the name of the executable as the first token in 

lpCommandLine. 

The dwCreationF/ags parameter specifies the initial state of the process after it has been 

loaded. Windows CE limits the allowable flags to the following: 

• 0 Creates a standard process. 

• CREATE_SUSPENDED Creates the process and then suspends the primary thread. 

• DEBUG_PROCESS The process being created is treated as a process being debugged 

by the caller. The calling process receives debug information from the process being 

launched. 

• DEBUG_ONLY_THIS_PROCESS When combined with DEBUG_PROCESS, debugs a 

process but doesn't debug any child processes that are launched by the process being 

debugged. 

• CREATE_NEW_CONSOLE Forces a new console to be created. 

• INHERIT_CALLER_PRIORITY The main thread is created with the same priority as the 

thread creating the process 

The only other parameter of the CreateProcess function that Windows CE uses is lpProcess/n

formation. This parameter can be set to NULL, or it can point to a PROCESS_INFORMATION 

structure that's filled by CreateProcess with information about the new process. The 

PROCESS_ INFORMATION structure is defined this way: 

typedef struct _PROCESS_INFORMATION { 
HANDLE hProcess; 
HANDLE hThread; 
DWORD dwProcessid; 
DWORD dwThreadid; 

} PROCESS_INFORMATION; 

The first two fields in this structure are filled with the handles of the new process and the 

handle of the primary thread of the new process. These handles are useful for monitoring the 

newly created process, but with them comes some responsibility. Handles are references to 

data structures maintained by the operating system. As long as a handle is open, Windows 



Chapter 8 Modules, Processes, and Threads 273 

CE must keep that data in memory. When the system creates a process, it creates a handle to 

that process and the main thread of that process and provides duplicates of those handles in 

the PROCESS_INFORMATION structure. Because there are two copies of each handle it sets 

the use count for the handles to two. The system can't free the structures associated with the 
handles until both the newly created process has terminated and the handles returned in the 

PROCESS_INFORMATION structure are closed. Failing to close unneeded handles results in a 

leak of that handle. Leaked handles waste memory, and in a low memory environment typi
cal to Windows CE, leaked handles are trouble. 

Ideally, if you don't need the process and thread handles, they should be closed immediately 

following a successful call to CreateProcess. However, there are times when the handles are 

quite useful. I'll describe some good uses for these handles later in this chapter, in the section 
"Synchronization." 

The other two fields in the PROCESS_ INFORMATION structure are filled with the process ID 

and primary thread ID of the new process. These ID values aren't handles but simply unique 

identifiers that can be passed to Windows functions to identify the target of the function. Be 
careful when using these IDs. If the new process terminates and another new one is created, 

the system can reuse the old ID values. 

Using the create process is simple, as you can see in the following code fragment: 

TCHAR szFileName[MAX_PATH]; 
TCHAR szCmdLine[64]; 
DWORD dwCreationFlags; 
PROCESS_INFORMATION pi ; 
BOOL fSuccess; 

lstrcpy (szFileName, TEXT ("pword")); 
lstrcpy (szCmdLine, TEXT ("")); 
dwCreationFlags = O; 

fSuccess = CreateProcess (szFileName, szCmdLine, NULL, NULL, FALSE, 
dwCreationFlags, NULL, NULL, NULL, &pi); 

if (fSuccess) { 

} 

CloseHandle (pi.hThread); 
CloseHandle (pi.hProcess); 

This code launches the Pocket Word application. Because the file name doesn't specify a 

path, CreateProcess will, using the standard Windows CE search path, find pword.exe in the\ 

Windows directory. Because I didn't pass a command line to Pocket Word, I could have sim

ply passed a NULL value in the /pCmdline parameter. But I passed a null string in szCmdline 

to differentiate the lpCmdline parameter from the many other parameters in CreateProcess 

that aren't used. I used the same technique for dwCreationF/ags. If the call to CreateProcess 

is successful, it returns a nonzero value. The code above checks for this and, if the call was 

successful, closes the process and thread handles returned in the PROCESS_INFORMATION 



274 Part II Windows CE Programming 

structure. Remember that if you don't need these handles, they should be closed to prevent 

memory leaks. 

Terminating a Process 

A process can terminate itself by simply returning from the WinMain procedure. For console 

applications, a simple return from main suffices. On Windows CE, the ExitProcess function is 

mapped to TerminateProcess discussed below. A better way would be to have the primary 

thread of the process call ExitThread. Under Windows CE, if the primary thread terminates, 

the process is terminated as well, regardless of what other threads are currently active in the 

process. The exit code of the process will be the exit code provided by ExitThread. You can 

determine the exit code of a process by calling 

BOOL GetExitCodeProcess (HANDLE hProcess, LPDWORD lpExitCode); 

The parameters are the handle to the process and a pointer to a DWORD that receives the 

exit code that was returned by the terminating process. If the process is still running, the re

turn code is the constant STILL_ACTIVE. 

You can terminate other processes. But while it's possible to do that, you shouldn't be in 

the business of closing other processes. The user might not be expecting that process to 

be closed without his or her consent. If you need to terminate a process (or close a process, 
which is the same thing but a much nicer word), the following methods can be used. 

If the process to be closed is one that you created, you can use some sort of interprocess 

communication to tell the process to terminate itself. This is the most advisable method be

cause you've designed the target process to be closed by another party. Another method of 

closing a process is to send the main window of the process a WM_ CLOSE message. This is 

especially effective on a Windows Mobile device, where applications are designed to respond 

to WM_ CLOSE messages by quietly saving their state and closing. Finally, if all else fails and 

you absolutely must close another process, you can use TerminateProcess. 

TerminateProcess is prototyped as 

BOOL TerminateProcess (HANDLE hProcess, DWORD uExitCode); 

The two parameters are the handle of the process to terminate and the exit code the termi

nating process will return. 

Other Processes 

Of course, to terminate another process, you've got to know the handle to that process. 

You might want to know the handle to a process for other reasons as well. For example, you 

might want to know when the process terminates. Windows CE supports two additional 

functions that come in handy here (both of which are seldom discussed). The first function is 



Chapter 8 Modules, Processes, and Threads 275 

OpenProcess, which returns the handle of an already running process. OpenProcess is proto

typed as 

HANDLE OpenProcess (DWORD dwDesiredAccess, BOOL binheritHandle, 
DWORD dwProcessid); 

Under Windows CE, the first parameter isn't used and should be set to 0. The blnheritHandle 

parameter must be set to FALSE because Windows CE doesn't support handle inheritance. 

The final parameter is the process ID value of the process you want to open. 

The other function useful in this circumstance is 

DWORD GetWindowThreadProcessid (HWND hWnd, LPDWORD lpdwProcessid); 

This function takes a handle to a window and returns the process ID for the process that cre

ated the window. So using these two functions, you can trace a window back to the process 

that created it. 

Two other functions allow you to directly read from and write to the memory space of an

other process. These functions are 

BOOL ReadProcessMemory (HANDLE hProcess, LPCVOID lpBaseAddress, 
LPVOID lpBuffer, DWORD nSize, 
LPDWORD lpNumberOfBytesRead); 

and 

BOOL WriteProcessMemory (HANDLE hProcess, LPVOID lpBaseAddress, 
LPVOID lpBuffer, DWORD nSize, 
LPDWORD lpNumberOfBytesWritten); 

The parameters for these functions are fairly self-explanatory. The first parameter is the han

dle of the remote process. The second parameter is the base address in the other process's 

address space of the area to be read or written. The third and fourth parameters specify the 

name and the size of the local buffer which the data is to be read from or written to. Finally, 
the last parameter specifies the bytes actually read or written. Both functions require that the 

entire area being read to or written from must be accessible. Typically, you use these func

tions for debugging, but there's no requirement that this be their only use. Allocating and 

freeing memory in other processes can be accomplished with the VirtualxxxEx functions dis
cussed in Chapter 7. 

Threads 
A thread is, fundamentally, a unit of execution. That is, it has a stack and a processor context, 

which is a set of values in the CPU internal registers. When a thread is suspended, the registers 

are pushed onto the thread's stack, the active stack is changed to the next thread to be run, 

that thread's CPU state is pulled off its stack, and the new thread starts executing instructions. 



276 Part II Windows CE Programming 

Threads under Windows CE are similar to threads under the desktop versions of Windows. 

Each process has a primary thread. Using the functions that I describe below, a process can 

create any number of additional threads within the process. The only limit to the number of 

threads in a Windows CE process is the memory and process address space available for the 
thread's stack. 

Threads within a process share the address space of the process. Memory allocated by one 

thread is accessible to all threads in the process. Threads share the same access rights for 

handles whether they be file handles, memory object handles, or handles to synchronization 

objects. 

The stack size of the main thread of a process is set by the linker. (The linker switch for set

ting the stack size in Visual Studio is /stack.) Secondary threads are created by default with 
the same stack size as the primary thread, but the default can be overridden when the thread 

is created. 

The System Scheduler 
Windows CE schedules threads in a preemptive manner. Threads run for a quantum, or time 

slice. After that time, if the thread hasn't already relinquished its time slice and if the thread 

isn't a run-to-completion thread, it's suspended and another thread is scheduled to run. 

Windows CE chooses which thread to run based on a priority scheme. Threads of a higher 

priority are scheduled before threads of lower priority. 

The rules for how Windows CE allocates time among the threads are quite different from 

other versions of Windows. Windows CE processes don't have a priority class. On the desktop, 

threads are scheduled based on their priority and on the priority class of their parent pro

cesse. A Windows Vista process with a higher-priority class has threads that run at a higher 

priority than threads in a process with a lower-priority class. Threads within a process can 

refine their priority within a process by setting their relative thread priority. 

Because Windows CE has no priority classes, all processes are treated as peers. Individual 

threads can have different priorities, but the process that the thread runs within doesn't influ

ence those priorities. Also, unlike some of the desktop versions of Windows, the foreground 

thread in Windows CE doesn't get a boost in priority. 

When Windows CE was first developed, the scheduler supported eight priority levels. Starting 

with Windows CE 3.0, that number was increased to 256 priority levels. However, most ap

plications still use the original (now lowest1) eight priority levels. The upper 248 levels are 

typically used by device drivers or other system-level threads. This doesn't mean that an ap
plication can't use the higher levels, but accessing them requires different API calls. 

1 It is possible for the OEM to set the application priority levels to a different location from the bottom 8 of the 256 
system priorities, but this is quite rare. 



Chapter 8 Modules, Processes, and Threads 277 

The eight application priority levels are listed here: 

• THREAD_PRIORITY_TIME_CRITICAL Indicates 3 points above normal priority 

• THREAD_PRIORITY_HIGHEST Indicates 2 points above normal priority 

• THREAD_PRIORITY_ABOVE_NORMAL Indicates 1 point above normal priority 

• THREAD_PRIORITY_NORMAL Indicates normal priority. All threads are created with 
this priority 

• THREAD_PRIORITY_BELOW_NORMAL Indicates 1 point below normal priority 

• THREAD_PRIORITY_LOWEST Indicates 2 points below normal priority 

• THREAD_PRIORITY_ABOVE_IDLE Indicates 3 points below normal priority 

• THREAD_PRIORITY_IDLE Indicates 4 points below normal priority 

All higher-priority threads run before lower-priority threads. This means that before a thread 

set to run at a particular priority can be scheduled, all threads that have a higher prior-

ity must be blocked. A blocked thread is one that's waiting on some system resource or 

synchronization object before it can continue. Threads of equal priority are scheduled in a 

round-robin fashion. Once a thread has voluntarily given up its time slice, is blocked, or has 

completed its time slice, all other threads of the same priority are allowed to run before the 

original thread is allowed to continue. If a thread of higher priority is unblocked and a thread 
of lower priority is currently running, the lower-priority thread is immediately suspended and 

the higher-priority thread is scheduled. Lower-priority threads can never preempt a higher
priority thread. 

There is one exception to the scheduling rules discussed previously: if a low-priority thread 

owns a resource that a higher-priority thread is waiting on. In this case, the low-priority 

thread is temporarily given the higher-priority thread's priority to avoid a problem known 

as a priority inversion deadlock, so that it can quickly accomplish its task and free the needed 

resource. 

Although it might seem that lower-priority threads never get a chance to run in this scheme, 

it works out that threads are almost always blocked, waiting on something to free up before 

they can be scheduled. Threads are always created at THREAD_PRIORITY_NORMAL,2 so, 

unless they proactively change their priority level, a thread is usually at an equal priority to 
most of the other threads in the system. Even at the normal priority level, threads are almost 

always blocked. For example, an application's primary thread is typically blocked waiting on 

messages. Other threads should be designed to block waiting on one of the many synchroni

zation objects available to a Windows CE application. 

2 The exception to this rule is the primary thread of a process created with the INHERIT_CALLER_PRIORITY flag. 



278 Part II Windows CE Programming 

Never Do This! 
What's not supported by the arrangement I just described, or by any other thread-based 

scheme, is code like the following: 

while (bFlag == FALSE) { 
II Read new value for flag. 

} 

II Now do something. 

This kind of code isn't just bad manners; because it wastes CPU power, it's a death sentence 

to a battery-powered Windows CE device. To understand why this is important, I need to di

gress into a quick lesson on Windows CE power management. 

Windows CE is designed so that when all threads are blocked, which happens over 90 percent 
of the time, it calls down to the OEM Abstraction Layer (the equivalent of the BIOS on an MS

DOS machine) to enter a low-power waiting state. Typically, this low-power state means that 

the CPU is halted; that is, it simply stops executing instructions. Because the CPU isn't execut

ing any instructions, no power-consuming reads and writes of memory are performed by the 

CPU. At this point, the only power necessary for the system is to maintain the contents of the 

RAM and light the display. In a well-designed system this low-power mode can reduce power 

consumption by up to 99 percent of what is required when a thread is running. 

As an example of what might happen, consider a Windows Mobile device that is designed 
to run for 10 hours on a fully charged battery. Given that the system turns itself off after a 

few minutes of nonuse, this 10 hours translates into weeks of battery life in the device for 

the user. (I'm basing this calculation on the assumption that the system indeed spends 90 

percent or more of its time in its low-power idle state.) Now the user runs a poorly written 
application containing a thread that spins on a variable instead of blocking. While this appli

cation is running, the system will never enter its low-power state. So, instead of 600 minutes 

of battery time (10 hours x 60 minutes/hour), the system spends 100 percent of its time at 

full power, resulting in a battery life of slightly over an hour, which means that the battery 

would be lucky to last a day's normal use. So as you can see, it's good to have the system in 
its low-power state. 

Fortunately, because Windows applications usually spend their time blocked in a call to 

GetMessage, the system power management works by default. However, if you plan on using 

multiple threads in your application, you must use synchronization objects to block threads 

while they're waiting. First let's look at how to create a thread, and then I'll dive into the syn

chronization tools available to Windows CE programs. 

Creating a Thread 

You create a thread under Windows CE by calling the function CreateThread, which is a de

parture from the desktop versions of Windows in which you're never supposed to call this 



Chapter 8 Modules, Processes, and Threads 279 

API directly. The reason for this change is that on the desktop, calling Create Thread doesn't 

give the C runtime library the chance to create thread-unique data structures. So on the 

desktop, programmers are instructed to use either of the run-time thread creation functions 

_beginthread or _beginthreadex. These functions provide some thread-specific initialization 
and then call CreateThread internally. 

In Windows CE, however, the runtime is written to be thread safe and doesn't require explicit 

thread initialization, so calling CreateThread directly is the norm. The function is prototyped as 

HANDLE CreateThread (LPSECURITY_ATTRIBUTES lpThreadAttributes, 
DWORD dwStackSize, 
LPTHREAD_START_ROUTINE lpStartAddress, 
LPVOID lpParameter, DWORD dwCreationFlags, 
LPDWORD lpThreadid); 

As with CreateProcess, Windows CE doesn't support a number of the parameters in 

CreateThread, so they are set to NULL or 0 as appropriate. For Create Thread, the lpThreadAt

tributes parameter isn't supported and must be set to NULL. The dwStackSize parameter is 

used only if the STACK_SIZE_PARAM_IS_A_RESERVATION flag is set in the dwCreationFlags 
parameter. The size specified in dwStackSize is the maximum size to which the stack can 

grow. Windows CE doesn't immediately commit the full amount of RAM to the stack when 

the thread is created. Instead, memory is committed only as necessary as the stack grows. 

The third parameter, lpStartAddress, must point to the start of the thread routine. The Ip

Parameter parameter in Create Thread is an application-defined value that's passed to the 

thread function as its only parameter. You can set the dwCreationFlags parameter to either 0, 

STACK_SIZE_PARAM_IS_A_RESERVATION, or CREATE_SUSPENDED. If CREATE_SUSPENDED 

is passed, the thread is created in a suspended state and must be resumed with a call to 

ResumeThread. The final parameter is a pointer to a DWORD that receives the newly created 

thread's ID value. If the thread ID isn't needed, lpThreadld can be set to NULL. 

The thread routine should be prototyped this way: 

DWORD WINAPI ThreadFunc (LPVOID lpArg); 

The only parameter is the lpParameter value, passed unaltered from the call to Create Thread. 

The parameter can be an integer or a pointer. Make sure, however, that you don't pass 

a pointer to a stack-based structure that will disappear when the routine that called 
CreateThread returns. 

If Create Thread is successful, it creates the thread and returns the handle to the newly creat

ed thread. As with CreateProcess, the handle returned should be closed when you no longer 

need the handle. Following is a short code fragment that contains a call to start a thread and 
the thread routine. 



280 Part II Windows CE Programming 

11----------------------------------------------------------------------
11 
II 
HANDLE hThreadl; 
DWORD dwThreadlID = O; 
int nParameter = 5; 

hThreadl = CreateThread (NULL, 0, Thread2, (PVOID)nParameter, 0, 
&dwThreadlID); 

CloseHandle (hThreadl); 

11----------------------------------------------------------------------
11 Second thread routine 
II 
DWORD WINAPI Thread2 (PVOID pArg) { 

} 

int nParam = (int) pArg; 

II 
II Do something here. 
II 
II . 
II . 
return OxlS; 

In this code, the second thread is started with a call to CreateThread. The nParameter value 

is passed to the second thread as the single parameter to the thread routine. The second 

thread executes until it terminates, in this case simply by returning from the routine. 

A thread can also terminate itself by calling this function: 

VOID ExitThread (DWORD dwExitCode); 

The only parameter is the exit code that's set for the thread. That thread exit code can be 

queried by another thread using this function: 

BOOL GetExitCodeThread (HANDLE hThread, LPDWORD lpExitCode); 

The function takes the handle to the thread (not the thread ID) and returns the exit code of 

the thread. If the thread is still running, the exit code is STILL_ACTIVE, a constant defined as 

Ox0103. The exit code is set by a thread using ExitThread or the value returned by the thread 

procedure. In the preceding code, the thread sets its exit code to OxlS when it returns. 

All threads within a process are terminated when the process terminates. As I said earlier, a 

process is terminated when its primary thread terminates. 



Chapter 8 Modules, Processes, and Threads 281 

Setting and Querying Thread Priority 

Threads are always created at the priority level THREAD_PRIORITY_NORMAL. The thread pri
ority can be changed either by the thread itself or by another thread using one of two func
tions. The first is 

BOOL SetThreadPriority (HANDLE hThread, int nPriority); 

The two parameters are the thread handle and the new priority level. The level passed can 
be one of the constants described previously, ranging from THREAD_PR/ORITY_IDLE up to 
THREAD_PRIORITY_TIME_CR/TICAL. You must be extremely careful when you're changing a 
thread's priority. Remember that threads of a lower priority almost never preempt threads of 
higher priority. So a simple bumping up of a thread one notch above normal can harm the 
responsiveness of the rest of the system unless that thread is carefully written. 

The other function that sets a thread's priority is 

BOOL CeSetThreadPriority (HANDLE hThread, int nPriority); 

The difference between this function and SetThreadPriority is that this function sets the 
thread's priority to any of the 256 priorities. Instead of using predefined constants, nPriority 
should be set to a value of 0 to 255, with 0 being highest priority and 255 being the lowest. 

A word of caution: SetThreadPriority and CeSetThreadPriority use completely different 
numbering schemes for the nPriority value. For example, to set a thread's priority to 1 
above normal, you could call SetThreadPriority with THREAD_PRIORITY_ABOVE_NORMAL 
or call CeSetThreadPriority with nPriority set to 250 but the constant THREAD_PRIORITY_ 
ABOVE_NORMAL defined as 2, not 250. The rule is that you should use the constants for 
SetThreadPriority and the numeric values for CeSetThreadPriority. To query the priority level 
of a thread, call this function: 

int GetThreadPriority (HANDLE hThread); 

This function returns the priority level of the thread. You shouldn't use the hard-coded prior
ity levels. Instead, use constants, such as THREAD_PRIORITY_NORMAL, defined by the sys
tem. This ensures that you're using the same numbering scheme that SetThreadPriority uses. 
For threads that have a priority greater than THREAD_PRIORITY_ TIMECRITICAL, this function 
returns the value THREAD_PRIORITY_T/MECRITICAL. 

To query the priority of a thread that might have a higher priority than THREAD_PRIORITY_ 
TIMECRIT/CAL, call the function 

int CeGetThreadPriority (HANDLE hThread); 

The value returned by CeGetThreadPriority will be 0 to 255, with 0 being the highest priority 
possible. Here again, Windows CE uses different numbering schemes for the priority query 



282 Part II Windows CE Programming 

functions than it does for the priority set functions. For example, for a thread running at nor

mal priority, GetThreadPriority would return THREAD_PRIORITY_NORMAL, which is defined 

as the value 3. CeGetThreadPriority would return the value 251. 

Setting a Thread's Time Quantum 

Threads can be individually set with their own time quantum. The time quantum is the maxi

mum amount of time a thread runs before it's preempted by the operating system. By 
default, the time quantum is set to 100 milliseconds, although for embedded systems, the 

OEM can change this. 3 For example, some Windows Mobile devices use a default quantum of 

75 milliseconds, while others use the standard 100-millisecond quantum. 

To set the time quantum of a thread, call 

int CeSetThreadQuantum (HANDLE hThread, DWORD dwTime); 

The first parameter is the handle to the thread. The second parameter is the time, in millisec

onds, of the desired quantum. If you set the time quantum to 0, the thread is turned into a 

"run-to-completion thread." These threads aren't preempted by threads of their own priority. 

Obviously, threads of higher priorities preempt these threads. 

You can query a thread's time quantum with the function 

int CeGetThreadQuantum (HANDLE hThread); 

The first parameter is the handle to the thread. The function returns the current quantum of 

the thread. 

Suspending and Resuming a Thread 

You can suspend a thread at any time by calling this function: 

DWORD SuspendThread (HANDLE hThread); 

The only parameter is the handle to the thread to suspend. The value returned is the suspend 
count for the thread. Windows maintains a suspend count for each thread. Any thread with a 

suspend count greater than 0 is suspended. Because SuspendThread increments the suspend 
count, multiple calls to SuspendThread must be matched with an equal number of calls to 

ResumeThread before a thread is actually scheduled to run. ResumeCount is prototyped as 

DWORD ResumeThread (HANDLE hThread); 

3 In early versions of Windows CE, a thread's time quantum was fixed. Typically, the time quantum was set to 25 mil
liseconds, although this was changeable by the OEM. 



Chapter 8 Modules, Processes, and Threads 283 

Here again, the parameter is the handle to the thread, and the return value is the previous 

suspend count. So if ResumeThread returns 1, the thread is no longer suspended. 

At times, a thread simply wants to kill some time. Because I've already explained why simply 

spinning in a while loop is a very bad thing to do, you need another way to kill time. The best 

way to do this is to use this function: 

void Sleep (DWORD dwMilliseconds); 

Sleep suspends the thread for at least the number of milliseconds specified in the dwMilfisec
onds parameter. Because the scheduler timer has a granularity of 1 millisecond, calls to Sleep 
are accurate to 1 millisecond. On systems based on other versions of Windows, the accuracy 

of Sleep depends on the period of the scheduler timer. It is valid to pass a 0 to Sleep. When a 

thread passes a 0 to Sleep, it gives up its time slice but is rescheduled immediately according 

to the scheduling rules I described previously. 

Fibers 
Fibers are threadlike constructs that are scheduled within the application instead of by the 

scheduler. Fibers, like threads, have their own stack and execution context. The difference is 

that the application must manage and manually switch between a set of fibers so that each 

one gets the appropriate amount of time to run. 

An application creates a fiber by first creating a thread. The thread calls a function to turn 

itself into a fiber. The thread, now a single fiber, can then create multiple fibers from itself. 

The operating system schedules all of the fibers as a single thread-the thread that was origi

nally converted to the first fiber. So the system allocates the time scheduled for the original 

thread to whichever fiber the application chooses. When the application chooses, it can stop 

a particular fiber and schedule another. This switch is transparent to Windows CE because all 

it considers is the quantum and the priority of the original thread. Fibers aren't more efficient 
than a well-designed multithreaded application, but they do allow applications to microman

age the scheduling of code execution within the application. 

To create a set of fibers, an application first creates a thread. The thread then calls 

ConvertThreadToFiber, which is prototyped as 

LPVOID ConvertThreadToFiber (LPVOID lpParameter); 

The single parameter is an application-defined value that can be retrieved by the fiber using 

the macro GetFiberData. The value returned is the pointer to the fiber data for this fiber. This 
value will be used when another fiber wants to schedule this fiber. If the return value is 0, the 

call failed. 

Upon return from the function, the thread is now a fiber. One significant restriction on con

verting a thread to a fiber is that the thread must use the default stack size for its stack. 



284 Part II Windows CE Programming 

If the thread has a different stack size from the main thread in the process, the call to 
ConvertThreadToFiber will fail. 

After the original thread has been converted to a fiber, it can spawn additional fibers with the 
following call: 

LPVOID CreateFiber (DWORD dwStackSize, LPFIBEll..START_ROUTINE lpStartAddress, 
LPVOID lpParameter); 

The dwStackSize parameter should be set to 0. The lpStartAddress parameter is the entry 
point of the new fiber being created. The final parameter is an application-defined value that 
is passed to the entry point of the new fiber. The return value from CreateFiber is the pointer 
to the fiber data for this new fiber. This value will be used to switch to the newly created fiber. 

The function prototype of the fiber entry point looks similar to the entry point of a thread. 
It is 

VOID CALLBACK FiberProc (PVOID lpParameter); 

The one parameter is the value passed from the CreateFiber call. This parameter can also be 
retrieved by the fiber by calling GetFiberData. Note that no return value is defined for the 
fiber procedure. A fiber procedure should never return. If it does, the system exits the thread 
that is the basis for all fibers spawned by that thread. 

The new fiber does not immediately start execution. Instead, the fiber calling CreateFiber 
must explicitly switch to the new fiber by calling 

VOID SwitchToFiber (LPVOID lpFiber); 

The single parameter is the pointer to the fiber data for the fiber to be switched to. When 
this call is made, the calling fiber is suspended and the new fiber is enabled to run. 

The DeleteFiber function is used to destroy a fiber. It looks like this: 

VOID DeleteFiber (LPVOID lpFiber); 

The single parameter is the pointer to the fiber data of the fiber to destroy. If a fiber calls 
DeleteFiber on itself, the thread is exited and all fibers associated with that thread are also 

terminated. 

It's critical that fibers clean up after themselves. Each fiber should be deleted by another fiber 
in the set, and then the final fiber can delete itself and properly exit the thread. If the thread 

is exited without deletion of all fibers, the memory committed to support each of the unde
leted fibers will not be freed, resulting in a memory leak for the application. 

Fibers are interesting but are they necessary? The short answer is, not really. Fibers were 
added to Windows CE for two reasons. First, it makes it easier to port applications from Unix 



Chapter 8 Modules, Processes, and Threads 285 

style operating systems where something akin to fibers is used frequently. The second reason 

for adding them was a request from an internal group within Microsoft that wanted to use 

fibers when they ported their Windows desktop application to Windows CE. 

I doubt either of these reasons inspires hoards of developers to start using fibers. There have 

been groups within Microsoft that have decided for example that fibers are not supported 

on Windows Mobile devices. Even so, if your system needs fiber support, Windows CE does 

provide it. 

Thread Local Storage 
Thread local storage is a mechanism that allows a routine to maintain separate instances of 
data for each thread calling the routine. This capability might not seem like much, but it has 

some very handy uses. Take the following thread routine: 

int g_nGlobal; II System global variable 

int ThreadProc (pStartData) { 
int nValuel; 

} 

int nValue2; 

while (unblocked) { 
II 

} 

II Do some work. 
II 

II We're done now; terminate the thread by returning. 
return O; 

For this example, imagine that multiple threads are created to execute the same routine, 

ThreadProc. Each thread has its own copy of nValuel and nValue2 because these are stack

based variables and each thread has its own stack. All threads, though, share the same static 

variable, g_nG/obal. 

Now imagine that the ThreadProc routine calls another routine, WorkerBee. As in 

int g_nGlobal; II System global variable 

int ThreadProc (pStartData) { 
int nValuel; 
int nValue2; 
while (unblocked) { 

WorkerBee(); II Let someone else do the work. 
} 

II We're done now; terminate the thread by returning. 
return O; 

} 



286 Part II Windows CE Programming 

int WorkerBee (void) { 

} 

int nlocall; 
static int nlocal2; 
II 
II Do work here. 
II 
return nlocall; 

Now WorkerBee doesn't have access to any persistent memory that's local to a thread. nlo

call is persistent only for the life of a single call to WorkerBee. nloca/2 is persistent across 

calls to WorkerBee but is static and therefore shared among all threads calling WorkerBee. 

One solution would be to have ThreadProc pass a pointer to a stack-based variable to 

WorkerBee. This strategy works, but only if you have control over the routines calling 

WorkerBee. What if you're writing a DLL and you need to have a routine in the DLL maintain a 
different state for each thread calling the routine? You can't define static variables in the DLL 

because they would be shared across the different threads. You can't define local variables 

because they aren't persistent across calls to your routine. The answer is to use thread local 

storage. 

Thread local storage allows a process to have its own cache of values that are guaranteed to 

be unique for each thread in a process. This cache of values is small because an array must be 

created for every thread created in the process, but it's large enough if used intelligently. To 

be specific, the system constant, TLS_MINIMUM_AVAILABLE, is defined to be the number of 

slots in the TLS array that's available for each process. For Windows CE, this value is defined 

as 64. So each process can have 64 4-byte values that are unique for each thread in that pro

cess. For the best results, of course, you must manage those 64 slots well. 

To reserve one of the TLS slots, a process calls 

DWORD TlsAlloc (void); 

TlsAl/oc looks through the array to find a free slot in the TLS array, marks it as in use, and 

then returns an index value to the newly assigned slot. If no slots are available, the function 
returns -1. It's important to understand that the individual threads don't call TlsAl/oc. Instead, 

the process or DLL calls it before creating the threads that will use the TLS slot. 

Once a slot has been assigned, each instance of the thread can access its unique data in the 
slot by calling this function: 

BOOL TlsSetValue (DWORD dwTlsindex, LPVOID lpTlsValue); 

and 

LPVOID TlsGetValue (DWORD dwTlsindex); 



Chapter 8 Modules, Processes, and Threads 287 

For both of these functions, the TLS index value returned by TlsAl/oc specifies the slot that 

contains the data. Both TlsGetValue and TlsSetValue type the data as a PVOID, but the value 

can be used for any purpose. The advantage of thinking of the TLS value as a pointer is that 

a thread can allocate a block of memory on the heap and then keep the pointer to that data 

in the TLS value. This allows each thread to maintain a block of thread-unique data of almost 

any size. 

One other matter is important to thread local storage. When TlsAl/oc reserves a slot, it zeroes 

the value in that slot for all currently running threads. All new threads are created with their 
TLS array initialized to 0 as well. This means that a thread can safely assume that the value in 

its slot will be initialized to 0. This is helpful for determining whether a thread needs to allo

cate a memory block the first time the routine is called. 

When a process no longer needs the TLS slot, it should call this function: 

BOOL TlsFree (DWORD dwTlsindex); 

The function is passed the index value of the slot to be freed. The function returns TRUE if 
successful. This function frees only the TLS slot. If threads have allocated storage in the heap 

and stored pointers to those blocks in their TLS slots, that storage isn't freed by this function. 

Threads are responsible for freeing their own memory blocks. 

Synchronization 
With multiple threads running around the system, you need to coordinate their activities. 

Fortunately, Windows CE supports almost the entire extensive set of standard Win32 syn

chronization objects. The concept of synchronization objects is fairly simple. A thread waits 
on a synchronization object. When the object is signaled, the waiting thread is unblocked 

and is scheduled (according to the rules governing the thread's priority) to run. 

Windows CE doesn't support some of the synchronization primitives supported by the desk
top. These unsupported elements include spin locks and waitable timers. The lack of waitable 

timer support can easily be worked around using other synchronization objects or, for lon

ger-period timeouts, the more flexible Notification API, unique to Windows CE. 

One aspect of Windows CE unique to it is that the different synchronization objects don't 

share the same namespace. This means that if you have an event named Bob, you can also 
have a mutex named Bob. (I'll talk about mutexes later in this chapter.) This naming conven

tion is different from the rule on the desktop, where all kernel objects (of which synchro

nization objects are a part) share the same namespace. While having the same names in 

Windows CE is possible, it's not advisable. Not only does the practice make your code incom

patible with other versions of Windows, there's no telling whether a redesign of the internals 

of Windows CE might just enforce this restriction in the future. 



288 Part II Windows CE Programming 

Events 

The first synchronization primitive I'll describe is the event object. An event object is a syn
chronization object that can be in a signaled or nonsignaled state. Events are useful to a 
thread to let it be known that, well, an event has occurred. Event objects can either be cre
ated to automatically reset from a signaled state to a nonsignaled state or require a manual 
reset to return the object to its nonsignaled state. Events can be named and therefore shared 
across different processes allowing interprocess synchronization. 

An event is created by means of this function: 

HANDLE CreateEvent (LPSECURITY_ATTRIBUTES lpEventAttributes, 
BOOL bManualReset, BOOL binitialState, 
LPTSTR lpName); 

As with all calls in Windows CE, the security attributes parameter, lpEventAttributes, should 
be set to NULL. The second parameter indicates whether the event being created requires 
a manual reset or will automatically reset to a nonsignaled state immediately after being 
signaled. Setting bManua/Reset to TRUE creates an event that must be manually reset. The 
blnitia/State parameter specifies whether the event object is initially created in the signaled or 
nonsignaled state. Finally, the lpName parameter points to an optional string that names the 
event. Events that are named can be shared across processes. If two processes create event 
objects of the same name, the processes actually share the same object. This allows one 
process to signal the other process using event objects. If you don't want a named event, the 
lpname parameter can be set to NULL. 

To share an event object across processes, each process must individually create the event 
object. You can't just create the event in one process and send the handle of that event to 
another process, because handles are specific to a process. To determine whether a call to 
CreateEvent created a new event object or opened an already created object, you can call 
GetlastError immediately following the call to CreateEvent. If GetlastError returns ERROR_ 
ALREADY_EXISTS, the call opened an existing event. 

Once you have an event object, you'll need to be able to signal the event. You accomplish 
this using either of the following two functions: 

BOOL SetEvent (HANDLE hEvent); 

or 

BOOL PulseEvent (HANDLE hEvent); 

The difference between these two functions is that SetEvent doesn't automatically reset the 
event object to a nonsignaled state. For autoreset events, SetEvent is all you need because 



Chapter 8 Modules, Processes, and Threads 289 

the event is automatically reset once a thread unblocks on the event. For manual reset 

events, you must manually reset the event with this function: 

BOOL ResetEvent (HANDLE hEvent); 

These event functions sound like they overlap, so let's review. An event object can be created 

to reset itself or require a manual reset. If it can reset itself, a call to SetEvent signals the event 

object. The event is then automatically reset to the nonsignaled state when one thread is 

unblocked after waiting on that event. In addition, if no threads are waiting on an auto-reset 
event, the event stays in the signaled state until a thread waits on the event. When the first 

thread waits on the event, it is immediately signaled, and the event is automatically reset. An 

event that resets itself doesn't need Pu/seEvent or ResetEvent. If, however, the event object 

was created requiring a manual reset, the need for ResetEvent is obvious. 

PulseEvent signals the event and then resets the event, which allows all threads waiting on 

that event to be unblocked. So the difference between PulseEvent on a manually resetting 

event and SetEvent on an automatic resetting event is that using SetEvent on an automatic 

resetting event frees only one thread to run, even if many threads are waiting on that event. 
PulseEvent frees all threads waiting on that event. Conversely, if no threads are waiting on a 

manual reset event and PulseEvent is called, no threads would be signaled because the event 

handle typically would return to the unsignaled state before any other thread would get the 
chance to wait on it. 

An application can associate a single DWORD value with an event by calling 

BOOL SetEventData (HANDLE hEvent, DWORD dwData); 

The parameters are the handle of the event and the data to associate with that event. Any 

application can retrieve the data by calling 

DWORD GetEventData (HANDLE hEvent); 

The single parameter is the handle to the event. The return value is the data previously asso
ciated with the event. 

You destroy event objects by calling CloseHandle. If the event object is named, Windows 

maintains a use count on the object, so one call to CloseHandle must be made for every call 

to CreateEvent. 

Waiting ... 

It's all well and good to have event objects; the question is how to use them. Threads wait on 

events, as well as on the soon-to-be-described semaphore and mutex, using one of the fol

lowing functions: WaitForSingleObject, WaitForMultipleObjects, MsgWaitForMultipleObjects, 
or MsgWaitForMultipleObjectsEx. Under Windows CE, the WaitForMultiple functions are lim

ited in that they can't wait for all objects of a set of objects to be signaled. These functions 



290 Part II Windows CE Programming 

support waiting for one object in a set of objects being signaled. Whatever the limitations of 

waiting, I can't emphasize enough that waiting is good. While a thread is blocked with one of 

these functions, the thread enters an extremely efficient state that takes very little CPU pro

cessing power and battery power. 

Another point to remember is that the thread responsible for handling a message loop 

in your application (usually the application's primary thread) shouldn't be blocked by 

WaitForSingleObject or WaitForMultipleObjects because the thread can't be retrieving and 

dispatching messages in the message loop if it's blocked waiting on an object. The function 
MsgWaitForMultipleObjects gives you a way around this problem, but in a multithreaded en

vironment, it's usually easier to let the primary thread handle the message loop and second

ary threads handle the shared resources that require blocking on events. 

Waiting on a Single Object 
A thread can wait on a synchronization object with the function 

DWORD WaitForSingleObject (HANDLE hHandle, DWORD dwMilliseconds); 

The function takes two parameters: the handle to the object being waited on and a timeout 

value. If you don't want the wait to time out, you can pass the value INFINITE in the dwMil

liseconds parameter. The function returns a value that indicates why the function returned. 

Calling WaitForSingleObject blocks the thread until the event is signaled, the synchronization 

object is abandoned, or the timeout value is reached. 

WaitForSingleObject returns one of the following values: 

• WAIT_OBJECT_O The specified object was signaled. 

• WAIT_TIMEOUT The timeout interval elapsed, and the object's state remains 

nonsignaled. 

• WAIT_ABANDONED The thread that owned a mutex object being waited on ended 

without freeing the object. 

• WAIT_FAILED The handle of the synchronization object was invalid. 

You must check the return code from WaitForSingleObject to determine whether the event 

was signaled or simply that the timeout had expired. (The WAIT_ABANDONED return value 

will be relevant when I talk about mutexes soon.) 

Waiting on Processes and Threads 
I've talked about waiting on events, but you can also wait on handles to processes and 

threads. These handles are signaled when their processes or threads terminate. This allows a 

process to monitor another process (or thread) and perform some action when the process 



Chapter 8 Modules, Processes, and Threads 291 

terminates. One common use for this feature is for one process to launch another and then, 

by blocking on the handle to the newly created process, wait until that process terminates. 

The rather irritating routine that follows is a thread that demonstrates this technique by 

launching an application, blocking until that application closes, and then relaunching the 

application: 

DWORD WINAPI KeepRunning (PVOID pArg) { 
PROCESS_INFORMATION pi; 
TCHAR szFileName[MAX_PATH]; 
int re = 0; 

II Copy the filename. 
StringCchCopy(szFileName, dim(szFileName), (LPTSTR)pArg); 
while (1) { 

II Launch the application. 
re = CreateProcess (szFileName, NULL, NULL, NULL, FALSE, 

0, NULL, NULL, NULL, &pi); 
II If the application didn't start, terminate thread. 
if (!re) 

return -1; 
II Close the new process's primary thread handle. 
CloseHandle (pi.hThread); 

II Wait for user to close the application. 
re= WaitForSingleObject (pi .hProcess, INFINITE); 

II Close the old process handle. 
CloseHandle (pi .hProcess); 

II Make sure we returned from the wait correctly. 
if (re != WAIT_OBJECT_O) 

return -2; 

return O; //This should never get executed. 

This code simply launches the application using CreateProcess and waits on the process 

handle returned in the PROCESS_INFORMATION structure. Notice that the thread closes 

the child process's primary thread handle and, after the wait, the handle to the child process 

itself. 

Waiting on Multiple Objects 

A thread can also wait on a number of events. The wait can end when any one of the events 

is signaled. The function that enables a thread to wait on multiple objects is this one: 

DWORD WaitForMultipleObjects (DWORD nCount, CONST HANDLE *lpHandles, 
BOOL bWaitAll, DWORD dwMilliseconds); 



292 Part II Windows CE Programming 

The first two parameters are a count of the number of events or mutexes to wait on and a 

pointer to an array of handles to these events. The bWaitAll parameter must be set to FALSE 

to indicate that the function should return if any of the events are signaled. The final pa

rameter is a timeout value, in milliseconds. As with WaitForSingleObject, passing INFINITE 

in the timeout parameter disables the timeout. Windows CE doesn't support the use of 

WaitForMultipleObjects to enable waiting for all events in the array to be signaled before 

returning. 

Like WaitForSingleObject, WaitForMultipleObjects returns a code that indicates why the 
function returned. If the function returned because of a synchronization object being sig

naled, the return value will be WAIT_OBJECT_O plus an index into the handle array that 

was passed in the lpHandles parameter. For example, if the first handle in the array un

blocked the thread, the return code would be WAIT_OBJECT_O; if the second handle was 
the cause, the return code would be WAIT_OBJECT_O + 1. The other return codes used by 

WaitForSingleObject-WAIT_TIMEOUT, WAIT_ABANDONED, and WAIT_FAILED-are also re

turned by WaitForMultipleObjects for the same reasons. 

Waiting While Dealing with Messages 

The Win32 API provides other functions that allow you to wait on a set of objects as well as 

messages: MsgWaitForMultipleObjects and MsgWaitForMultipleObjectsEx. These functions 

are fairly similar, so I'll describe only MsgWaitForMultipleObjectsEx and then mention where 

MsgWaitForMultipleObjects fits in. This function essentially combines the wait function, MsgW 

aitForMultipleObjects, with an additional check into the message queue so that the function 

returns if any of the selected categories of messages are received during the wait. The proto

type for this function is the following: 

DWORD MsgWaitForMultipleObjectsEx (DWORD nCount, LPHANDLE pHandles, 
DWORD dwMilliseconds, 
DWORD dwWakeMasks, DWORD dwFlags); 

This function has a number of limitations under Windows CE. As with WaitForMultipleObjects, 

MsgWaitForMultipleObjectsEx can't wait for all objects to be signaled. Nor are all the dw

WakeMask flags supported by Windows CE. Windows CE supports the following flags in dw

WakeMask. Each flag indicates a category of messages that, when received in the message 

queue of the thread, causes the function to return. 

• QS_ALLINPUT Any message has been received. 

• QS_INPUT An input message has been received. 

• QS_KEY A key up, key down, or syskey up or down message has been received. 

• QS_MOUSE A mouse move or mouse click message has been received. 

• QS_MOUSEBUTTON A mouse click message has been received. 



Chapter 8 Modules, Processes, and Threads 293 

• QS_MOUSEMOVE A mouse move message has been received. 

• QS_PAINT A WM_PAINT message has been received. 

• QS_POSTMESSAGE A posted message, other than those in this list, has been received. 

• QS_SENDMESSAGE A sent message, other than those in this list, has been received. 

• QS_TIMER A WM_TIMER message has been received. 

The function is used inside the message loop so that an action or actions can take place in 

response to the signaling of a synchronization object while your program is still processing 

messages. The dwFlags value can be zero, or the flag MWMO_INPUTAVAILABLE. This flag 

causes the function to return if there is a message already in the queue when the funciton is 

called. If MWMO_INPUTAVAILABLE is not set, MsgWaitForMultipleObjectsEx will wait until a 

new qualifying message is added to the queue. The function of MsgWaitForMultipleObjects is 

identical to MsgWaitForMultipleObjectsEx with the flags value set to zero. 

The return value is WAIT_OBJECT_O up to WAIT_OBJECT_O + nCount -1 for the objects in the 

handle array. If a message causes the function to return, the return value is WAIT_ OBJECT_O 

+ nCount. An example of how this function might be used follows. In this code, the handle 

array has only one entry, hSyncHandle. 

fContinue =TRUE; 
while (fContinue) { 

re = MsgWaitForMultipleObjects (1, &hSyncHandle, FALSE, 
INFINITE, QS_ALLINPUT); 

if (re == WAIT_OBJECT_O) { 
II 
II Do work as a result of sync object. 
II 

else if (re == WAIT_OBJECT_O + 1) { 
II It's a message; process it. 
PeekMessage (&msg, hWnd, 0, 0, PM_REMOVE); 
if (msg.message == WM_QUIT) 

fContinue = FALSE; 
else { 

} 

TranslateMessage (&msg); 
DispatchMessage (&msg); 

Semaphores 

Earlier I described the event object. That object resides in either a signaled or a nonsignaled 

state. Events are synchronization objects that are all or nothing, signaled or nonsignaled. 

Semaphores, on the other hand, maintain a count. As long as that count is above 0, the 

semaphore is signaled. When the count is 0, the semaphore is nonsignaled. 



294 Part II Windows CE Programming 

Threads wait on semaphore objects as they do events, using WaitForSingleObject or 

WaitForMultipleObjects. When a thread waits on a semaphore, the thread is blocked until 

the count is greater than 0. When another thread releases the semaphore, the count is incre

mented and the thread blocking on the semaphore returns from the wait function. The maxi

mum count value is defined when the semaphore is created so that a programmer can define 

how many threads can access a resource protected by a semaphore. 

Semaphores are typically used to protect a resource that can be accessed only by a set num

ber of threads at one time. For example, if you have a set of five buffers for passing data, you 
can allow up to five threads to grab a buffer at any one time. When a sixth thread attempts 

to access the buffer array protected by the semaphore, it will be blocked until one of the 

other threads releases the semaphore. 

To create a semaphore, call the function 

HANDLE CreateSemaphore (LPSECURITY_ATTRIBUTES lpSemaphoreAttributes, 
LONG linitialCount, LONG lMaximumCount, 
LPCTSTR lpName); 

The first parameter, lpSemaphoreAttributes, should be set to NULL. The parameter llnitial

Count is the count value when the semaphore is created and must be greater than or equal 

to 0. If this value is greater than 0, the semaphore will be initially signaled. The /Maximum

Count parameter should be set to the maximum allowable count value the semaphore will 
allow. This value must be greater than 0. 

The final parameter, lpName, is the optional name of the object. This parameter can point to 

a name or be NULL. As with events, if two threads call CreateSemaphore and pass the same 

name, the second call to CreateSemaphore returns the handle to the original semaphore 

instead of creating a new object. In this case, the other parameters, llnitia/Count and /Maxi

mumCount, are ignored. To determine whether the semaphore already exists, you can call 

GetLastError and check the return code for ERROR_ALREADY_EXISTS. 

When a thread returns from waiting on a semaphore, it can perform its work with the knowl

edge that only /MaximumCount threads or fewer are running within the protection of the 

semaphore. When a thread has completed work with the protected resource, it should re

lease the semaphore with a call to 

BOOL ReleaseSemaphore (HANDLE hSemaphore, LONG lReleaseCount, 
LPLONG lpPreviousCount); 

The first parameter is the handle to the semaphore. The /ReleaseCount parameter contains 

the number by which you want to increase the semaphore's count value. This value must be 

greater than 0. While you might expect this value to always be 1, sometimes a thread might 

increase the count by more than 1. The final parameter, lpPreviousCount, is set to the address 

of a variable that will receive the previous resource count of the semaphore. You can set this 

pointer to NULL if you don't need the previous count value. 



Chapter 8 Modules, Processes, and Threads 295 

To destroy a semaphore, call C/oseHandle. If more than one thread has created the same 

semaphore, all threads must call CloseHandle; or more precisely, CloseHandle must be called 

as many times as CreateSemaphore was called before the operating system destroys the 

semaphore. 

Another function, OpenSemaphore, is supported on the desktop versions of Windows but not 

supported by Windows CE. This function is redundant on Windows CE because a thread that 

wants the handle to a named semaphore can just as easily call CreateSemaphore and check 

the return code from GetLastError to determine whether it already exists. 

Mutexes 

Another synchronization object is the mutex. A mutex is a synchronization object that's 
signaled when it's not owned by a thread and nonsignaled when it is owned. Mutexes are 

extremely useful for coordinating exclusive access to a resource such as a block of memory 

across multiple threads. 

A thread gains ownership by waiting on that mutex with one of the wait functions. When no 

other threads own the mutex, the thread waiting on the mutex is unblocked and implicitly 

gains ownership of the mutex. After the thread has completed the work that requires owner

ship of the mutex, the thread must explicitly release the mutex with a call to ReleaseMutex. 

To create a mutex, call this function: 

HANDLE CreateMutex (LPSECURITY_ATTRIBUTES lpMutexAttributes, 
BOOL blnitialOwner, LPCTSTR lpName); 

The lpMutexAttributes parameter should be set to NULL. The blnitia/Owner parameter lets 

you specify that the calling thread should immediately own the mutex being created. Finally, 

the lpName parameter lets you specify a name for the object so that it can be shared across 

other processes. When calling CreateMutex with a name specified in the lpName parameter, 

Windows CE checks whether a mutex with the same name has already been created. If so, a 

handle to the previously created mutex is returned. To determine whether the mutex already 

exists, call GetLastError. It returns ERROR_ALREADY_EXISTS if the mutex has been previously 

created. 

Gaining immediate ownership of a mutex using the blnitia/Owner parameter works only if 

the mutex is being created. Ownership isn't granted if you're opening a previously created 

mutex. If you need ownership of a mutex, be sure to call GetLastError to determine whether 

the mutex had been previously committed. If so, call WaitForSingleObject to gain ownership 

of the mutex. 

You release the mutex with this function: 

BOOL ReleaseMutex (HANDLE hMutex); 



296 Part II Windows CE Programming 

The only parameter is the handle to the mutex. 

If a thread owns a mutex and calls one of the wait functions to wait on that same mutex, the 

wait call immediately returns because the thread already owns the mutex. Because mutexes 

retain an ownership count for the number of times the wait functions are called, a call to 

ReleaseMutex must be made for each nested call to the wait function. 

To close a mutex, call C/oseHand/e. As with events and semaphores, if multiple threads have 

opened the same mutex, the operating system doesn't destroy the mutex until it has been 

closed the same number of times that CreateMutex was called. 

Duplicating Synchronization Handles 

Event, semaphore, and mutex handles are process specific, meaning that they can't be passed 

from one process to another.4 The ability to name each of these kernel objects makes it easy 

for each process to "create" an event of the same name, which, as we've seen, simply opens 

the same event for both processes. There are times, however, when having to name an event 

is overkill. An example of this situation might be using an event to signal the end of asyn

chronous 1/0 between an application and a driver. The driver shouldn't have to create a new 

and unique event name and pass it to the application for each operation. 

The DuplicateHandle function exists to avoid having to name events, mutexes, and sema

phores all the time. It is prototyped as follows: 

BOOL DuplicateHandle (HANDLE hSourceProcessHandle, HANDLE hSourceHandle, 
HANDLE hTargetProcessHandle, LPHANDLE lpTargetHandle, 
DWORD dwDesiredAccess, BOOL binheritHandle, 
DWORD wOptions); 

The first parameter is the handle of the process that owns the source handle. If a process is 

duplicating its own handle, it can get this handle by using GetCurrentProcess. The second pa

rameter is the handle to be duplicated. The third and fourth parameters are the handle of the 

destination process and a pointer to a variable that will receive the duplicated handle. The 

dwDesiredAccess parameter is ignored, and the blnheritHandle parameter must be FALSE. The 

dwOptions parameter must have the flag DUPLICATE_SAME_ACCESS set. The parameter can 

optionally have the DUPLICATE_ CLOSE_ SOURCE flag set, indicating that the source handle 

should be closed if the handle is successfully duplicated. 

Starting with Windows CE 6, DuplicateHandle can duplicate all types of operating system 

handles including file, process, and thread handles. Earlier versions of Windows CE restricted 

DuplicateHandle to only duplicating event, mutex, and semaphore handles. 

4 In earlier versions of Windows CE, handle sharing across processes was discouraged even though it worked. 
Starting with Windows CE 6, handles can not be shared across processes. 



Chapter 8 Modules, Processes, and Threads 297 

Critical Sections 

Using critical sections is another method of thread synchronization. Critical sections are 

good for protecting sections of code from being executed by two different threads at the 

same time. Critical sections work by having a thread call EnterCritica/Section to indicate 

that it has entered a critical section of code. If another thread calls EnterCritica/Section ref

erencing the same critical section object, it's blocked until the first thread makes a call to 

LeaveCritica/Section. Critical sections can protect more than one linear section of code. All 

that's required is that all sections of code that need to be protected use the same critical sec

tion object. The one limitation of critical sections is that they can only be used to coordinate 

threads within the same process. 

Critical sections are similar to mutexes, with a few important differences. On the downside, 

critical sections are limited to a single process by means of which mutexes can be shared 

across processes. But this limitation is also an advantage. Because they're isolated to a single 

process, critical sections are implemented so that they're significantly faster than mutexes. If 

you don't need to share a resource across a process boundary, always use a critical section 

instead of a mutex. 

To use a critical section, you first create a critical section handle with this function: 

void InitializeCriticalSection (LPCRITICAL_SECTION lpCriticalSection); 

The only parameter is a pointer to a CRITICAL_ SECTION structure that you define some

where in your application. Be sure not to allocate this structure on the stack of a function 

that will be deallocated as soon the function returns. You should also not move or copy the 

critical section structure. Because the other critical section functions require a pointer to this 

structure, you'll need to allocate it within the scope of all functions using the critical sec

tion. While the CRITICAL_SECTION structure is defined in WINBASE.H, an application doesn't 

need to manipulate any of the fields in that structure. So for all practical purposes, think of a 

pointer to a CRITICAL_ SECTION structure as a handle instead of as a pointer to a structure of 

a known format. 

When a thread needs to enter a protected section of code, it should call this function: 

void EnterCriticalSection (LPCRITICAL_SECTION lpCriticalSection); 

The function takes as its only parameter a pointer to the critical section structure initialized 

with lnitializeCritica/Section. If the critical section is already owned by another thread, this 

function blocks the new thread and doesn't return until the other thread releases the critical 

section. If the thread calling EnterCritica/Section already owns the critical section, a use count 

is incremented and the function returns immediately. 



298 Part II Windows CE Programming 

If you need to enter a critical section but can't afford to be blocked waiting for that critical 

section, you can use the function 

BOOL TryEnterCriticalSection (LPCRITICAL_SECTION lpCriticalSection); 

TryEnterCritica/Section differs from EnterCritica/Section because it always returns immediately. 

If the critical section was unowned, the function returns TRUE and the thread now owns the 

critical section. If the critical section is owned by another thread, the function returns FALSE. 

This function allows a thread to attempt to perform work in a critical section without being 
forced to wait until the critical section is free. 

When a thread leaves a critical section, it should call this function: 

void LeaveCriticalSection (LPCRITICAL_SECTION lpCriticalSection); 

As with all the critical section functions, the only parameter is the pointer to the critical sec

tion structure. Because critical sections track a use count, one call to LeaveCritica/Section 

must be made for each call to EnterCritica/Section by the thread that owns the section. 

Finally, when you're finished with the critical section, you should call 

void DeleteCriticalSection (LPCRITICAL_SECTION lpCriticalSection); 

This action cleans up any system resources used to manage the critical section. 

Interlocked Variable Access 
Here's one more low-level method for synchronizing threads-using the functions for inter

locked access to variables. While programmers with multithread experience already know 

this, I need to warn you that Murphy's Law5 seems to come into its own when you're using 

multiple threads in a program. One of the sometimes overlooked issues in a preemptive 

multitasking system is that a thread can be preempted in the middle of incrementing or 
checking a variable. For example, a simple code fragment such as 

if (!i++) { 
II Do something because i was 0. 

} 

can cause a great deal of trouble. To understand why, let's look into how that statement 

might be compiled. The assembly code for that if statement might look something like this: 

load reg!, [addr of i] ;Read variable 
add reg2, reg!, 1 ;reg2 =reg!+ 1 
store reg2, [addr of i] ;Save incremented var 
bne reg!, zero, skipblk ;Branch reg! != zero 

5 Murphy's Law: Anything that can go wrong will go wrong. Murphy's first corollary: When something goes wrong, 
it happens at the worst possible moment. 



Chapter 8 Modules, Processes, and Threads 299 

There's no reason that the thread executing this section of code couldn't be preempted by 

another thread after the load instruction and before the store instruction. If this happened, 

two threads could enter the block of code when that isn't the way the code is supposed to 

work. Of course, I've already described a number of methods (such as critical sections and the 

like) that you can use to prevent such incidents from occurring. But for something like this, a 

critical section is overkill. What you need is something lighter. 

Windows CE supports the full set of interlocked functions from the Win32 API. The first three, 

lnterlockedlncrement, lnterlockedDecrement, and lnterlockedExchange, allow a thread to incre

ment, decrement, and in some cases optionally exchange a variable without your having to 

worry about the thread being preempted in the middle of the operation. The other functions 

allow variables to be added to and optionally exchanged. The functions are prototyped here: 

LONG Interlockedincrement(LPLONG lpAddend); 

LONG InterlockedDecrement(LPLONG lpAddend); 

LONG InterlockedExchange(LPLONG Target, LONG Value); 
LONG InterlockedCompareExchange (LPLONG Destination, LONG Exchange, 

LONG Comperand); 
LONG InterlockedTestExchange (LPLONG Target, LONG OldValue, LONG NewValue);LONG Interlo 
ckedExchangeAdd (LPLONG Addend, LONG Increment); 
PVOID InterlockedCompareExchangePointer (PVOID* Destination, 

PVOID Exchange, PVOID Comperand); 
PVOID InterlockedExchangePointer (PVOID'' Target, PVOID Value); 

For the interlocked increment and decrement, the one parameter is a pointer to the variable 

to increment or decrement. The returned value is the new value of the variable after it has 

been incremented or decremented. The lnterlockedExchange function takes a pointer to the 

target variable and the new value for the variable. It returns the previous value of the vari

able. Rewriting the previous code fragment so that it's thread safe produces this code: 

if (!Interlockedincrement(&i)) { 
II Do something because i was 0. 

} 

The lnterlockedCompareExchange and lnterlockedTestExchange functions exchange a value 

with the target only if the target value is equal to the test parameter. Otherwise, the original 
value is left unchanged. The only difference between the two functions is the order of the 

parameters. 

lnterlockedExchangeAdd adds the second parameter to the LONG pointed to by the first pa

rameter. The value returned by the function is the original value before the add operation. 
The final two functions, lnter/ockedCompareExchangePointer and lnterlockedExchangePointer, 

are identical to the lnterfockedCompareExchange and lnterlockedExchange functions, but the 

parameters have been type cast to pointers instead of longs. 



300 Part II Windows CE Programming 

Interprocess Communication 
Quite often, two Windows CE processes need to communicate. The walls between processes 

that protect processes from one another prevent casual exchanging of data. The memory 

space of one process isn't exposed to another process. Handles to files or other objects can't 

be passed from one process to another. Windows CE doesn't support handle inheritance. 

Some of the other more common methods of interprocess communication, such as named 

pipes, are also not supported under Windows CE. However, you can choose from plenty of 

ways to enable two or more processes to exchange data. 

Finding Other Processes 

Before you can communicate with another process, you have to determine whether it's run

ning on the system. Strategies for finding whether another process is running depend mainly 

on whether you have control of the other process. If the process to be found is a third-party 

application in which you have no control over the design of the other process, the best 

method might be to use the FindWindow function to locate the other process's main window. 
FindWindow can search either by window class or by window title. You can enumerate the 

top-level windows in the system using EnumWindows. You can also use the Tool Help debug

ging functions to enumerate the processes running, but this works only when the Tool Help 

DLL is loaded on the system, and unfortunately, it generally isn't included, by default, on 

most systems. 

If you're writing both processes, however, it's much easier to enumerate them. In this case, 

the best methods include using the tools you'll later use in one process to communicate with 

the other process, such as named mutexes, events, or memory-mapped objects. When you 

create one of these objects, you can determine whether you're the first to create the object 

or you're simply opening another object by calling GetlastError after another call created the 

object. And the simplest method might be the best: call FindWindow. 

The classic case of using FindWindow on a Windows Mobile device occurs when an applica

tion must determine whether another copy of itself is already running. According to the 

Windows Mobile guidelines, an application must allow only one copy of itself to run at a 

time. Following is a code fragment that all the examples in this book use for accomplishing 

this task: 

II If Windows Mobile, allow only one instance of the application. 
HWND hWnd = FindWindow (szAppName, NULL); 
if (hWnd) { 

SetForegroundWindow ((HWND)(((DWORD)hWnd) I OxOl)); 
return -1; 

The first statement uses FindWindow to find a window class of the same name as the class of 

the application's main window. Because this call is made before the main window is 



Chapter 8 Modules, Processes, and Threads 301 

created in the application, the only way the window could have been found, assuming you're 

using a unique name for your window class, is for it to have already been created by another 

copy of your application. An advantage of this technique is that FindWindow returns the 

handle of the main window of the other instance. In the case of a Windows Mobile device, 

we want to set that instance in the foreground, which is what we do with the subsequent call 

to SetForegroundWindow. Setting the least significant bit of the window handle is a hack of 

Windows CE that causes the window being activated to be restored if it was in a minimized 

state. 

WM COPYDATA 

After you find your target process, the conversation can begin. If you're staying at the win

dow level, you can simply send a WM_COPYDATA message. WM_COPYDATA is unique in 

that it's designed to send blocks of data from one process to another. You can't use a stan

dard user-defined message to pass pointers to data from one process to another because a 

pointer isn't valid across processes. WM_COPYDATA gets around this problem by having the 

system translate the pointer to a block of data from one process's address space to another's. 
The recipient process is required to copy the data immediately into its own memory space, 

but this message does provide a quick-and-dirty method of sending blocks of data from one 

process to another. 

Named Memory-Mapped Objects 
The problem with WM_COPYDATA is that it can be used only to copy fixed blocks of data at 

a specific time. Windows CE supports entities referred to as memory-mapped objects. These 

are objects that are backed up by the paging file under other vesions of Windows. Under 

Windows CE, they are simply areas of virtual memory with only physical RAM to back them 

up. Without the paging file, these objects can't be as big as they would be on the desktop, 

but Windows CE does have a way of minimizing the RAM required to back up the memory

mapped object. 

Using a named memory-mapped object, two processes can allocate a shared block of mem

ory that's equally accessible to both processes at the same time. You must use named mem

ory-mapped objects so that both processes will be accessing the same block. The system can 

maintain a proper use count on the object, not freeing it until all processes that opened the 

block have closed it. 

Of course, this level of interaction comes with a price. You need some synchronization be

tween the processes when they're reading and writing data in the shared memory block. The 

use of named mutexes and named events allows processes to coordinate their actions. Using 

these synchronization objects requires the use of secondary threads so that the message 

loop can be serviced, but this isn't an exceptional burden. 



302 Part II Windows CE Programming 

You create such a memory-mapped object by calling CreateFileMapping. This function is de
fined as 

HANDLE CreateFileMapping (HANDLE hFile, 
LPSECURITY_ATTRIBUTES lpFileMappingAttributes, 
DWORD flProtect, DWORD dwMaximumSizeHigh, 
DWORD dwMaximumSizeLow, LPCTSTR lpName); 

This function creates a file-mapping object and optionally ties the opened file to it. The 

first parameter for this function is the handle to the opened file. When creating a mapping 
object without a file, pass the value INVALID_HANDLE_ VALUE. The security attributes pa

rameter must be set to NULL under Windows CE. The ff Protect parameter should be loaded 

with the protection flags for the virtual pages that will contain the file data. These flags were 

described during the discussion of the virtual memory functions in Chapter 7. The maximum 

size parameters should be set to the expected maximum size of the object. The lpName pa

rameter allows you to specify a name for the object. This is handy when you're using a mem

ory-mapped file to share information across different processes. Calling CreateFileMapping 
with the name of an already-opened file-mapping object returns a handle to the object al
ready opened instead of creating a new one. 

After a mapping object has been created, a view into the object is created by calling 

LPVOID MapViewOfFile (HANDLE hFileMappingObject, DWORD dwDesiredAccess, 
DWORD dwFileOffsetHigh, DWORD dwFileOffsetLow, 
DWORD dwNumberOfBytesToMap); 

MapViewOfFile returns a pointer to memory that's mapped to the file. The function takes 

as its parameters the handle of the mapping object just opened as well as the access rights, 

which can be FILE_MAP_READ, FILE_MAP_ WRITE, or FILE_MAP_ALL_ACCESS. The offset 

parameters let you specify the starting point within the file that the view starts, while the 

dwNumberOfBytesToMap parameter specifies the size of the view window. 

These last three parameters are useful when you're mapping large objects. Instead of at

tempting to map the file as one large object, you can specify a smaller view that starts at the 

point of interest in the file. This reduces the memory required because only the view of the 

object, not the object itself, is backed up by physical RAM. 

The following routine creates a 16-MB region by using a memory-mapped file: 

II Create a 16-MB memory-mapped object. 
hNFileMap = CreateFileMapping (INVALID_HANDLE_VALUE, NULL, PAGE_READWRITE, 

0, OxlOOOOOO, NULL); 
if (hNFi 1 eMap) 

II Map in the object. 
pNFileMem = MapViewOfFile (hNFileMap, 

FILE_MAP_WRITE, 0, 0, O); 

The memory object created by this code doesn't actually commit 16 MB of RAM. Instead, only 

the address space is reserved. Pages are autocommitted as they're accessed. This process 



Chapter 8 Modules, Processes, and Threads 303 

allows an application to create a huge, sparse array of pages that takes up only as much 

physical RAM as is needed to hold the data. At some point, however, if you start reading 

or writing to a greater number of pages, you'll run out of memory. When this happens, the 

system generates an exception. I'll talk about how to deal with exceptions later in this chap

ter. The important thing to remember is that if you really need RAM to be committed to a 

memory-mapped object, you need to read each of the pages so that the system will com

mit physical RAM to that object. Of course, don't be too greedy with RAM; commit only the 

pages you absolutely require. 

When you finish with the mapping object, close the view with 

BOOL UnmapViewOfFile (LPCVOID lpBaseAddress); 

The only parameter is the pointer to the base address of the view. Next, a call should be 

made to close the mapping object with a call to CloseHandle. 

Naming a Memory-Mapped Object 

A memory-mapped object can be named by passing a string to CreateFileMapping. This 

isn't the name of a file being mapped. Instead, the name identifies the mapping object be

ing created. In the preceding example, the region was unnamed. The following code creates 

a memory-mapped object named Bob. This name is global so that if another process opens 

a mapping object with the same name, the two processes will share the same memory

mapped object. 

II Create a 16-MB memory-mapped object. 
hNFileMap = CreateFileMapping ((HANDLE)-1, NULL, PAGE_READWRITE, 

0, OxlOOOOOO, TEXT ("Bob")); 
if (hNFi 1 eMap) 

II Map in the object. 
pNFileMem = MapViewOfFile (hNFileMap, 

FILE_MAP_WRITE, 0, 0, O); 

The difference between named and unnamed file mapping objects is that a named object 

is allocated only once in the system. Subsequent calls to CreateFileMapping that attempt to 

create a region with the same name will succeed, but the function will return a handle to the 

original mapping object instead of creating a new one. For unnamed objects, the system cre
ates a new object each time CreateFileMapping is called. 

When you're using a memory-mapped object for interprocess communication, processes 

should create a named object and pass the name of the region to the second process rather 

than pass a pointer. While earlier versions of Windows CE could simply pass a pointer to the 
mapping region from one process to the other, this can't be done on Windows CE 6 and 

later. Instead, the second process must create a memory-mapped object with the same name 

as the initial process. Windows knows to pass a pointer to the same region that was opened 

by the first process. The system also increments a use count to track the number of opens. A 



304 Part II Windows CE Programming 

named memory-mapped object won't be destroyed until all processes have closed the ob

ject. This system assures a process that the object will remain at least until it closes the object 

itself. The XTalk example, presented later in this chapter, provides an example of how to use a 

named memory-mapped object for interprocess communication. 

Point-to-Point Message Queues 

Windows CE supports a method of interprocess communication called point-to-point mes
sage queues. The Message Queue API, as the name suggests, provides data queues for send

ing data from one process to another. 

To communicate with a message queue, a process or pair of processes creates a message 

queue for reading and one for writing. A call to create or open a queue can specify only 
read or write access, not both read and write access. The queue is then opened again for the 

corresponding write or read access. "Messages" are then written to the queue by using the 

write handle to the queue. (In this context, a message is simply a block of data with a defined 

length.) The message can be read by using the read handle to the queue. If a series of mes

sages is written to a queue, they are read in the order they were written in classic first in, first 

out (FIFO) fashion. When a queue is created, the number and the maximum size of messages 

are defined for the queue. If the queue is full and a write occurs, the write function will either 

block (waiting for a free slot in the queue), fail and return immediately, or wait for a specific 
amount of time before failing and returning. Likewise, read functions can block until a mes

sage is in the queue to be read, or they can wait a specific period of time before returning. 

In addition, a message can be marked as an "alert" message. Alert messages are sent to the 

front of the queue so that the next read of the queue will read the alert message regardless 
of the number of messages that have been waiting to be read. Only one alert message can 

be in the queue at any one time. If a second alert message is written to the queue before the 

first one was read, the second alert message replaces the first and the first alert message is 

lost. 

Finally, it's perfectly valid for more than one thread or process to open the same queue for 

read access or for write access. Point-to-point message queues support multiple readers 

and multiple writers. This practice allows, for example, one writer process to send messages 

to mutiple client processes or multiple writer processes to send messages to a single reader 

process. There is, however, no way to address a message to a specific reader process. When a 

process, or a thread, reads the queue, it will read the next available message. There is also no 

way to broadcast a message to multiple readers. 

To create a message queue, call this function: 

HANDLE CreateMsgQueue (LPCWSTR lpszName, LPMSGQUEUEOPTIONS lpOptions); 



Chapter 8 Modules, Processes, and Threads 305 

The first parameter is the name of the queue that will be either opened or created. The name 

is global to the entire system. That is, if one process opens a queue with a name and another 

process opens a queue with the same name, they open the same queue. The name can be up 

to MAX_ PATH characters in length. The parameter can also be set to NULL to create an un

named queue. 

The second parameter of CreateMsgQueue is a pointer to a MSGQUEUEOPTIONS structure 

defined as follows: 

typedef MSGQUEUEOPTIONS_OS { 
DWORD dwSize; 
DWORD dwFlags; 
DWORD dwMaxMessages; 
DWORD cbMaxMessage; 
BOOL bReadAccess 

} MSGQUEUEOPTIONS; 

The dwSize field must be filled in with the size of the structure. The dwF/ags parameter de

scribes how the queue should act. The flags supported are MSGQUEUE_NOPRECOMMIT, 
which tells Windows CE not to allocate the RAM necessary to support messages in the queue 

until the RAM is needed; and MSGQUEUE_ALLOW_BROKEN, which allows writes and reads 

to the queue to succeed even if another call hasn't been made to open the queue for the 

matching read or write of the message. The dwMaxMessages field should be set to the maxi

mum number of messages that are expected to be in the queue at any one time. The cbMax
Message field indicates the maximum size of any single message. Finally, the bReadAccess 
field should be set to TRUE if read access is desired for the queue and FALSE if write access is 

desired. A single call to CreateMsgQueue can only create the queue for either read or write 

access. 

The function returns the handle to the queue if successful, or NULL if the function failed. 

The handle returned by CreateMsgQueue is an event handle that can be waited on with 

WaitForSingleObject and the other related Wait functions. The event is signaled when the 
state of the queue changes, either by a new message being placed in the queue or by an en

try in the queue becoming available. 

CreateMsgQueue will succeed even if a queue of the same name already exists. GetLastError 
will return ERROR_ALREADY_EXISTS if the queue existed before the call to CreateMsgQueue. 

A previously created message queue can be opened with this function: 

HANDLE OpenMsgQueue (HANDLE hSrcProc, HANDLE hMsgQ, 
LPMSGQUEUEOPTIONS pOptions); 

The advantage of OpenMsgQueue is that the queue doesn't have to be named. The param

eters are the process handle of the process that originally opened the message queue. This 

handle is typically obtained with a call to OpenProcess. The second parameter is the handle 

returned by CreateMsgQueue. The last parameter is a pointer to a MSGQUEUEOPTIONS 



306 Part II Windows CE Programming 

structure. The only fields in the MSGQUEUEOPT/ONS structure examined by the function are 

the dwSize field and the bReadAccess field. 

To write a message to the queue, the aptly named WriteMsgQueue function is used. It is pro

totyped as follows: 

BOOL WriteMsgQueue (HANDLE hMsgQ, LPVOID lpBuffer, DWORD cbDataSize, 
DWORD dwTimeout, DWORD dwFlags); 

The initial parameter is the write handle to the message queue. The lpBuffer parameter 
points to the buffer containing the message, whereas cbDataSize should be set to the size of 

the message. If cbDataSize is greater than the maximum message size set when the queue 

was created, the call will fail. 

The dwTimeout parameter specifies the time, in milliseconds, that WriteMsgQueue should 

wait for a slot in the queue to become available before returning. If dwTimeout is set to 0, 

the call will fail and return immediately if the queue is currently full. If dwTimeout is set to 

INFINITE, the call will wait until a slot becomes free to write the message. The dwFlags pa

rameter can be set to MSGQUEUE_MSGALERT to indicate that the message being written is 

an alert message. 

The return value from WriteMsgQueue is a Boolean, with TRUE indicating success. The func

tion will fail if the queue has not been opened for read access and MSGQUEUE_ALLOW_ 
BROKEN was not specified when the queue was created. To determine the reason for failure, 

call GetlastError. 

To read a message from the queue, the function ReadMsgQueue is used. It's prototyped as 

follows: 

BOOL ReadMsgQueue (HANDLE hMsgQ, LPVOID lpBuffer, DWORD cbBufferSize, 
LPDWORD lpNumberOfBytesRead, DWORD dwTimeout, 
DWORD* pdwFlags); 

As with WriteMsgQueue, the first two parameters are the handle to the message queue, the 

pointer to the buffer that, in this case, will receive the message. The cbBufferSize parameter 

should be set to the size of the buffer. If cbBufferSize is less than the size of the message at 
the head of the queue, the read will fail with ERROR_INSUFFICIENT_BUFFER returned by a 

call to GetlastError. 

The lpNumberOfBytesRead parameter should point to a DWORD that will receive the size 

of the message read. The dwTimeout parameter specifies how long the function should wait 

until a message is present in the queue to read. As with WriteMsgQueue, passing 0 in this 
parameter causes ReadMsgQueue to fail and return immediately if there is no message in the 

queue. Passing INFINITE in the dwTimeout parameter causes the call to wait until there is a 

message in the queue before returning. The pdwFlags parameter should point to a DWORD 



Chapter 8 Modules, Processes, and Threads 307 

that will receive the flags associated with the message read. The only flag currently defined is 

MSGQUEUE_MSGALERT, which indicates that the message just read was an alert message. 

You can query the configuration of a message queue with this function: 

BOOL GetMsgQueueinfo (HANDLE hMsgQ, LPMSGQUEUEINFO lpinfo); 

The parameters are the handle to the message queue and a pointer to a MSGQUEUEINFO 
structure defined as follows: 

typedef MSGQUEUEINFO { 
DWORD dwSize; 
DWORD dwFlags; 
DWORD dwMaxMessages; 
DWORD cbMaxMessage; 
DWORD dwCurrentMessages; 
DWORD dwMaxQueueMessages; 
WORD wNumReaders; 
WORD wNumWriters 

} MSGQUEUEINFO; 

The first few fields in this structure match the MSGQUEUEOPTIONS structure used in creat

ing and opening queues. The field dwSize should be set to the size of the structure before 

the call to GetMsgQueuelnfo is made. The remaining fields are filled in by a successful call to 

GetMsgQueuelnfo. 

The dwF/ags field will be set to the queue flags, which are MSGQUEUE_NOPRECOMMIT and 

MSGQUEUE_ALLOW_BROKEN. The dwMaxMessages field contains the maximum number of 

messages the queue can contain, while cbMaxMessage contains the maximum size of any 

single message. 

The dwCurrentMessages field is set to the number of messages currently in the queue wait

ing to be read. The dwMaxQueueMessages field is set to the maximum number of messages 

that were ever in the queue. The wNumReaders field is set to the number of handles opened 

for read access for the queue, while wNumWriters is set to the number of handles opened for 

write access. 

To close a message queue, call this function: 

BOOL CloseMsgQueue (HANDLE hMsgQ); 

The single parameter is the handle to the queue. Because queues must be opened at least 

twice, once for reading and once for writing, this call must be made at least twice per queue. 

Message queues are great for interprocess communication because they are fast and they 

are thread safe. Messages can be almost any size, although for long queues with really huge 

buffers it might be best to allocate data buffers dynamically by using memory-mapped ob

jects and by using message queues to pass pointers to the large data buffers. 



308 Part II Windows CE Programming 

Communicating with Files and Databases 

A more basic method of interprocess communication is the use of files or a custom database. 

These methods provide a robust, if slower, communication path. Slow is relative. Files and 

databases in the Windows CE object store are slow in the sense that the system calls to ac

cess these objects must find the data in the object store, uncompress the data, and deliver 

it to the process. However, because the object store is based in RAM, you see none of the 

extreme slowness of a mechanical hard disk that you'd see under the desktop versions of 
Windows. To improve performance with files in the object store, the FILE_FLAG_RANDOM_ 
ACCESS flag should be used. Of course, when using files for communication, make sure the 

underlying file system is the object store. If it's flash based or hard drive based, the perfor

mance will be quite slow. 

The XTalk Example Program 
The following example program, XTalk, uses events, mutexes, and a shared memory-mapped 

block of memory to communicate among different copies of itself. The example demon

strates the rather common problem of one-to-many communication. In this case, the XTalk 

window has an edit box with a Send button next to it. When a user taps the Send button, 

the text in the edit box is communicated to every copy of XTalk running on the system. Each 
copy of XTalk receives the text from the sending copy and places it in a list box, also in the 

XTalk window. Figure 8-1 shows two XTalk programs communicating. 

FIGURE 8-1 The desktop showing two XTalk windows 



Chapter 8 Modules, Processes, and Threads 309 

To perform this feat of communication, XTalk uses a named memory-mapped object as a 
transfer buffer, a mutex to coordinate access to the buffer, and two event objects to indicate 
the start and end of communication. A third event is used to tell the sender thread to read 

the text from the edit control and write the contents to the shared memory block. Listing 8-1 
shows the source code for XTalk. 

LISTING 8-1 

XTalk.rc 

//====================================================================== 
II Resource file 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
//====================================================================== 
#include "windows.h" 
#include "xtalk.h" II Program-specific stuff 

11----------------------------------------------------------------------
11 Icons and bitmaps 
II 
IO_ICON ICON "xtalk.ico" II Program icon 

11----------------------------------------------------------------------
xtalk DIALOG discardable 10, 10, 120, 87 
STYLE WS_OVERLAPPED I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I 

OS_CENTER I DS_MODALFRAME 
CAPTION "XTal k" 
CLASS "xtalk" 
BEGIN 

END 

LTEXT "&Text" 
EDITTEXT 

PUSHBUTION "&Send", 

LISTBOX 

XTalk.h 

-1, 
IOO_OUTTEXT, 

IOO_SENDTEXT, 

IOD_INTEXT, 

2' 10, 20, 12 
25, 10, 58, 12, 

WS_TABSTOP I ES_AUTOHSCROLL 
88, 10, 30, 12, WS_TABSTOP 

2, 25, 116, 60, 
WS_TABSTOP I WS_VSCROLL 

//=========================================-~=;:=~==~============:;==== 
I I Header file 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
/!========================================-================~============ 
II Returns nu.mber of elements 
#define dim(x) .(sizeof(x) I sizeof(x[O])) 



310 Part II Windows CE Programming 

11----------------------------------------------------------------------
11 Generic defines and data types 
II 
struct decodeUINT { 

UINT Code; 

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM); 
} j 

struct decodeCMD { 
UINT Code; 
LRESULT (*Fxn)(HWND, WORD, HWND, WORD); 

} ; 

II Structure associates 
II messages 
II with a function. 

II Structure associates 
II menu IDs with a 
II function. 

11----------------------------------------------------------------------
11 Generic defines used by application 
#define ID_ICON 1 

#define IDDJNTEXT 10 II Control IDs 
#define IDD_SENDTEXT 11 
#define IDD_OUTTEXT 12 

#define MMBUFFSIZE 1024 II Size of shared buffer 
#define TEXTSIZE 256 

II Interprocess communication structure mapped in shared memory 
typedef struct { 
#if _WIN32_WCE < Ox600 

LONG nAppCnt; 
LONG nReadCnt; 

#else 
LONG volatile nAppCnt; 
LONG volatile nReadCnt; 

#endif 
TCHAR szText[TEXTSIZE]; 

} SHAREBUFF, *PSHAREBUFF; 

11------------------------------------------~------------------------~--
ll Function prototypes 
II 
HWND Initinstance CHINSTANCE, LPWSTR, int); 
int Terminstance (HINSTANCE, int); 

II Window procedures 
LRESULT .CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM); 
II Message handlers 
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoSetFocusMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoDestroyMain (HWND, UINT, WPARAM .• LPARAM); 

II Command functions 
LPARAM DoMainCommandSend (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD); 



Chapter 8 Modules, Processes, and Threads 311 

II Thread functions 
DWORD WINAPI SenderThread (PVOID pArg); 
DWORD WINAPI ReaderThread (PVOID pArg); 

XTalk.cpp 

II====================================================================== 
II XTalk - A simple interprocess communication application for Windows CE 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II====================================================================== 
#include <windows.h> II For all that Windows stuff 
#include <commctrl.h> II Command bar includes 
#include "xtalk.h" II Program-specific stuff 

II The include and lib files for the Windows Mobile are conditionally 
II included so that this example can share the same project file. This 
II is necessary because this example must have a menu bar on the 
II Windows Mobile device to have a SIP button. 
#if defined(WIN32_PLATFORM_PSPC) I I defined(WIN32_PLATFORM_WFSP) 
#include <aygshell.h> II Add Pocket PC includes 
#pragma comment( lib, "aygshell" ) II Link Pocket PC lib for menu bar 
#endif 
11----------------------------------------------------------------------
11 Global data 
II 
const TCHAR szAppName[] =TEXT ("xtalk"); 
HINSTANCE hinst; II Program instance handle 

HANDLE g_hMMObj = O; II Memory-mapped object 
PSHAREBUFF g_pBuff = O; II Pointer to mm object 
HANDLE g_hmWriteOkay = O; II Write mutex 
HANDLE g_hSendEvent = O; II Local 
HANDLE g_hReadEvent = O; II Shared 
HANDLE g_hReadDoneEvent = O; II Shared 
HANDLE g_hSendThread = O; II Sender 
HANDLE g_hReadThread = O; II Sender 

II Message dispatch table for MainWindowProc 
const struct decodeUINT MainMessages[] = { 

WM_CREATE, DoCreateMain, 
WM_SETFOCUS, DoSetFocusMain, 
WM_COMMAND, DoCommandMain, 
WM_DESTROY, DoDestroyMain, 

} ; 
II Command Message dispatch for MainWindowProc 
const struct decodeCMD MainCommanditems[] = { 

!DOK, DoMainCommandExit, 
IDCANCEL, DoMainCommandExit, 
IDD_SENDTEXT, DoMainCommandSend, 

send event 
read data event 
data read event 
thread handle 
thread handle 



312 Part II Windows CE Programming 

}; 

II Program entry point 
II 
int WINAPl.WinMain (HINSIANCE hlnstance, HINSTANCE .hPrevinstance, 

LPWSTR lpCmdLine, intnCrndShow) { 
MSG. msg; 
int re = O; 
HWND · hwndMai n; 

//Initialize application, 
hwndMain·= Initinstaflce (h!nstance, lpCmdLine, nCmdShow); 
if (hwndMai n · .;== O) 

re:turn Terminstance (hinstance, OxlO); 

I l Application message loop 
while (GetMessage (&msg, NULL, 0, O}) { 

if CChwndMain == O) II !lsDialogMessage (hwndMain, &msg)){ 

} 

II 

} 

TranslateMessage (&msg); 
DispatchMessage (&msg); 

cleanup 

HWND Initlnstance (HINSTANCEhinstance, LPWSTR lpCmdLine, int nCmdShow){ 
HWND. hWnd; 
RECT rect; 
in:t re; 
BOOL fFirstApp 
WNDCLASS we; 

II Save program ins:tance handle in 
hinst = hinstance; 

II Register application main window 
!Ne.style =0; 
wc.lpfnWndProc = MainWndProc; 
wc.cbClsExtra = O; 
wc.cbWndExtra•,,,.DLGWINDOWEXTRA; 
wc.hlnstance ·"'· h!nstance; 
wc,hicon •.=.NULL, 

Window style 
II Callback.· function 
I I Extra class dat.a 
// Extra window data 
II OWner handle 
II· App 1 ica:ti on . i con 
II Default cursor 

(COLOR--BTNFACE + 1); 
we. hCursor .. = NULL~ 
wc.hbrBackground = (HBRUSH) 
wc.lps;zMenuName= NULL; 
wc.lpszClassName = szAppName; 

II Menu· name 
// Wi ndolN class 

if (RegisterClass (&\l\lc) == 0) return O; 

II Create mutex used .to share memory~mapped structure .• 
g...:hmWri teOkay = CreateMutex (NULL, !RUE, T.EXI ("XTALKWRT")}; 



re= GetLastError(); 
if (re == ERROR_ALREADY_EXISTS) 

fFirstApp = FALSE; 
else if (re) return O; 

Chapter 8 Modules, Processes, and Threads 313 

II Wait here for ownership to ensure that the initialization is done. 
II This is necessary since CreateMutex doesn't wait. 
re= WaitForSingleObject (g_hmWriteOkay, 2000); 
if (re != WAIT_OBJECT_O) 

return O; 

II Create a file-mapping object. 
g_hMMObj = CreateFileMapping (INVALID_HANDLE_VALUE, NULL, 

PAGE_READWRITE, 0, 
MMBUFFSIZE, TEXT ("XTALKBLK")); 

if (g_hMMObj == 0) return O; 

II Map into memory the file-mapping object. 
g_pBuff = (PSHAREBUFF)MapViewOfFile (g_hMMObj, FILE_MAP_WRITE, 

0, 0, 0); 
if ( ! g_pBuff) 

CloseHandle (g_hMMObj); 

II Initialize structure if first application started. 
if (fFi rstApp) 

memset (g_pBuff, 0, sizeof (SHAREBUFF)); 
II Increment app running count. Interlock not needed due to mutex. 
g_pBuff->nAppCnt++; 

II Release the mutex. We need to release the mutex twice 
II if we owned it when we entered the wait above. 
ReleaseMutex (g_hmWriteOkay); 
if (fFi rstApp) 

ReleaseMutex (g_hmWriteOkay); 

II Now create events for read, and send notification. 
g_hSendEvent = CreateEvent (NULL, FALSE, FALSE, NULL); 
g_hReadEvent = CreateEvent (NULL, TRUE, FALSE, TEXT ("XTALKREAD")); 
g_hReadDoneEvent = CreateEvent (NULL, FALSE, FALSE, 

TEXT ("XTALKDONE")); 
if ( ! g_hReadEvent I I ! g_hSendEvent 11 ! g_hReadDoneEvent) 

return O; 

II Create main window. 
hWnd = CreateDialog (hinst, szAppName, NULL, NULL); 

II Return fail code if window not created. 
if (!IsWindow (hWnd)) return O; 

if (!fFirstApp) { 

} 

GetWindowRect (hWnd, &rect); 
MoveWindow (hWnd, rect.left+lO, rect.top+lO, 

rect.right-rect.left, rect.bottom-rect.top, FALSE); 



314 Part II Windows CE Programming 

} 

// Create secondary threads for interprocess communication. 
g_hSendThread = CreateThread (NULL, o, SenderThread, hWnd, 0., NULL}; 
g_hReadThread = CreateThread (NULL, 0, ReaderThread, hWnd, 0, NULL); 
if ((g_hSendThread == 0) l 1 (g_hReadThread == 0)) .{ 

DestroyWindow (hWnd); 
return O; 

} 

// Standard show and update cans 
ShowWindow (hWnd, nCmdShow); 
UpdateWindow (hWnd); 
return hWnd; 

//-------------'-------------------'-------'---------'---'----"---------------
// Terminstance - Program cleanup 
II 
int.Termlnstance (HINSTANCE hlnstance, int nDefRC) { 

} 

// Close event handles. 
if (g_hReadEvent) 

Cl oseHandl e .· (g_hRe(ldEvent); 

if (g_hReadDoneEvent) 
CloseHandle (g_hReadDoneEvent); 

if (g_hSendEvent) 
CloseHandle (g_hSendEvent); 

II Wait for the threads to terminate. They'll do so when the 
/I handles above are closed since. the waits will fail. 
if (g_hSendTh read) { 

} 

WaitForSingleObject (gc;.hSendThread, 
CloseHandle (g_hSendThread); 

if (g_hReadThread) { 
WaitForSingleObject (g_hReadThread, 
CloseHandle (gc..hReadThread); 

} 
I/ Free. memory-mapped object. 
if (g_pBuff) { 

II Decrement app running count. 
Interl ockedDecrement ·. {&g_pBuff'->nAppCnt); 
UnmapVi ewOfFil e (g_pBuff); 

} 

if (g_hMMObj) 
Closeflandle 

fl Free mutex. 
if (g_hmWriteOkay) 

CloseHandle (g_hmWriteOkay); 
return nDefRC; 

//===·=·===========================================.::dz====:==:::::===;=========r=== 
fl Message handling procedur.es for main window 



Chapter 8 Modules, Processes, and Threads 315 

11----------------------------------------------------------------------
11 MainWndProc - Callback function for application window 
II 
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

inti; 
II 
II Search message list to see if we need to handle this 
II message. If in list, call procedure. 
II 
for (i = O; i < dim(MainMessages); i++) { 

if (wMsg == MainMessages[i] .Code) 
return ("MainMessages[i].Fxn)(hWnd, wMsg, wParam, lParam); 

} 

return DefWindowProc (hWnd, wMsg, wParam, lParam); 

11----------------------------------------------------------------------
11 DoCreateMain - Process WM_CREATE message for window. 
II 
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
#if defined(WIN32_PLATFORM_PSPC) I I defined(WIN32_PLATFORM_WFSP) 

SHMENUBARINFO mbi; II For Pocket PC, create 
memset(&mbi, 0, sizeof(SHMENUBARINFO)); II menu bar so that we 
mbi.cbSize = sizeof(SHMENUBARINFO); II have a sip button. 
mbi.hwndParent = hWnd; 
mbi.dwFlags = SHCMBF_EMPTYBAR; 
SHCreateMenuBar(&mbi); 

II No menu 

#endif 
return O; 

} 

11----------------------------------------------------------------------
11 DoSetFocusMain - Process WM_SETFOCUS message for window. 
II 
LRESULT DoSetFocusMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
SetFocus (GetDlgitem (hWnd, IDD_OUTTEXT)); 
return O; 

} 

11----------------------------------------------------------------------
11 DoCommandMain - Process WM_COMMAND message for window. 
II 
LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
WORD 
HWND 
int 

id!tem, wNotifyCode; 
hwndCtl; 

i ; 

II Parse the parameters. 
iditem = (WORD) LOWORD (wParam); 
wNotifyCode =(WORD) HIWORD (wParam); 
hwndCtl = (HWND) 1Param; 

II Call routine to handle control message. 



316 Part II Windows CE Programming 

} 

for(i = 0; i < dim(MainCommanditems); i++) { 

if(id!tem == MainCommanditems[i].Code) 

} 

return (*Mai nCommanditems [i] . Fxn) (hWnd, i ditem, hwndCtl, 
wNotifyCode); 

return O; 

II""'.--,--~--------------------------,---------------------~--,..---,-~-------~ 
11 DoDestroyMai n - Process WM_DESTROY message for window .. 
II 
LRESULTDoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
PostQuitMessage (O); 
return O; 

} 

II========================="'=========================================== 
II Command handler routines 
11--,----~--------------,-----~------~,..----,-,..-,-~-----------------~-~~,..---,-
ll DoMainCommandExit - Process Program Exit command. 
II 
LPARAM DoMainCommanciExit (HWND hWnd, WORD.iditem, HWND hwndCtl, 

WORD wNotifyCode) { 

} 

SendMessage (hWnd, WM_CLOSE, 0, O); 
return O; 

ll-c--~------------------------c--------------------------.,-----------~---
11 DoMainCommandSend - Process Program Send command. 
II 
LPARAM DoMainCommandSend (HWND hWnd, WORDiditem, HWND hwndCtl, 

WORD wNotify(ode) { 

SetEvent (g_hSendEvent); 
return O; 

II SenderThread - Performs the interprocess 
II 
DWORD WINAPI SenderThread (PVOID pArg} { 

HWND hWnd; 
int nGoCode, re; 
TCHAR szText[TEXTSIZE]; 

hWnd = (HWND)pArg: 
Whi 1 e (1) { 

nGoCode = WaitForSingleObj.ect (g_hSendEvent, INFINITE); 
if (nGoCode == WA!T_OBJ ECLO) { 

SendDlgitemMessage (hWnd, IDD_OUTTEXT, WM_GETTEXT, 
si.zeof (szText), (LPARAM)szText); 

re = WaitForSingleObject (g_hmWriteOkay, 2000); 
if (re== WAIT_OBJECT_O) .{ 

StringCchCopy .(g_pBuff->SZText, TEXTSIZE, 
g_pBuff->nReadCnt = g_pBuff->nAppCnt; 



} 

} else 

Chapter 8 Modules, Processes, and Threads 317 

PulseEvent (g_hReadEvent); 
II Wait while reader threads get data. 
while (g_pBuff->nReadCnt) 

re = WaitForSingleObject (g_hReadDoneEvent, 
INFINITE); 

ReleaseMutex (g_hmWriteOkay); 

return -1; 
} 

return O; 

II====================================================================== 
II ReaderThread - Performs the interprocess communication 
II 
DWORD WINAPI ReaderThread (PVOID pArg) { 

HWND hWnd; 

} 

int nGoCode, re, i; 
TCHAR szText[TEXTSIZE]; 

hWnd = (HWND)pArg; 
while (1) { 

} 

nGoCode = WaitForSingleObject (g_hReadEvent, INFINITE); 
if (nGoCode == WAIT_OBJECT_O) { 

i = SendDlgitemMessage (hWnd, IDD_INTEXT, LB__ADDSTRING, 0, 
(LPARAM)g_pBuff->szText); 

SendDlgitemMessage (hWnd, IDD_INTEXT, LB_SETTOPINDEX, i, O); 

InterlockedDecrement (&g_pBuff->nReadCnt); 
SetEvent (g_hReadDoneEvent); 

} else { 
re= GetLastError(); 
wsprintf (szText, TEXT ("rc:%d"), re); 
MessageBox (hWnd, szText, TEXT ("ReadThread Err"), MB_OK); 

} 

return O; 

The interesting routines in the XTalk example are the lnitlnstance procedure and the two 

thread procedures SenderThread and ReaderThread. The relevant part of lnitlnstance is shown 
below with the error checking code removed for brevity. 

II Create mutex used to share memory-mapped structure. 
g_hmWriteOkay = CreateMutex (NULL, TRUE, TEXT ("XTALKWRT")); 
re= GetLastError(); 
if (re == ERROR__ALREADY_EXISTS) 

fFirstApp =FALSE; 
II Wait here for ownership to ensure that the initialization is done. 
II This is necessary since CreateMutex doesn't wait. 
re= WaitForSingleObject (g_hmWriteOkay, 2000); 
if (re != WAIT_OBJECT_O) 

return O; 



318 Part II Windows CE Programming 

II Create a file-mapping object. 
g_hMMObj = CreateFileMapping (INVALID_HANDLE_VALUE, NULL, 

PAGE_READWRITE, 0, 
MMBUFFSIZE, TEXT ("XTALKBLK")); 

II Map into memory the file-mapping object. 
g_pBuff = (PSHAREBUFF)MapViewOfFile (g_hMMObj, FILE_MAP_WRITE, 

0, 0, O); 

II Initialize structure if first application started. 
if (fFi rstApp) 

memset (g_pBuff, 0, sizeof (SHAREBUFF)); 

II Increment app running count. Interlock not needed due to mutex. 
g_pBuff->nAppCnt++; 

II Release the mutex. We need to release the mutex twice 
II if we owned it when we entered the wait above. 
ReleaseMutex (g_hmWriteOkay); 
if (fFi rstApp) 

ReleaseMutex (g_hmWriteOkay); 

II Now create events for read and send notification. 
g_hSendEvent = CreateEvent (NULL, FALSE, FALSE, NULL); 
g_hReadEvent = CreateEvent (NULL, TRUE, FALSE, TEXT ("XTALKREAD")); 
g_hReadDoneEvent = CreateEvent (NULL, FALSE, FALSE, 

TEXT ("XTALKDONE")); 

This code is responsible for creating the necessary synchronization objects as well as creating 

and initializing the shared memory block. The mutex object is created first with the param

eters set to request initial ownership of the mutex object. A call is then made to GetlastError 

to determine whether the mutex object has already been created. If not, the application as

sumes that the first instance of XTalk is running and later will initialize the shared memory 

block. Once the mutex is created, an additional call is made to WaitForSingleObject to wait 

until the mutex is released. This call is necessary to prevent a late-starting instance of XTalk 

from disturbing communication in progress. Once the mutex is owned, calls are made to 

CreateFileMapping and MapViewO{File to create a named memory-mapped object. Because 

the object is named, each process that opens the object opens the same object and is re

turned a pointer to the same block of memory. 

After the shared memory block is created, the first instance of XTalk zeroes out the block. 

This procedure also forces the block of RAM to be committed because memory-mapped 

objects by default are autocommit blocks. Then nAppCnt, which keeps a count of the running 

instances of XTalk, is incremented. Finally, the mutex protecting the shared memory is re

leased. If this is the first instance of XTalk, Re/easeMutex must be called twice because it gains 

ownership of the mutex twice-once when the mutex is created and again when the call to 

WaitForSingleObject is made. 



Chapter 8 Modules, Processes, and Threads 319 

Finally, three event objects are created. SendEvent is an unnamed event, local to each in

stance of XTalk. The primary thread uses this event to signal the sender thread that the user 

has pressed the Send button and wants the text in the edit box transmitted. ReadEvent is a 

named event that tells the other instances of XTalk that there's data to be read in the transfer 

buffer. ReadDoneEvent is a named event signaled by each of the receiving copies of XTalk to 

indicate that they have read the data. 

The two threads, ReaderThread and SenderThread, are created immediately after the main 

window of XTalk is created. The code for SenderThread is shown here: 

DWORD WINAPI SenderThread (PVOID pArg) { 
HWND hWnd; 

} 

int nGoCode, re; 
TCHAR szText[TEXTSIZE]; 

hWnd = (HWND)pArg; 
while (1) { 

} 

nGoCode = WaitForSingleObject (g_hSendEvent, INFINITE); 
if (nGoCode == WAIT_OBJECT_O) { 

} 

SendDlgitemMessage (hWnd, IDD_OUTTEXT, WM_GETTEXT, 
sizeof (szText), (LPARAM)szText); 

re= WaitForSingleObject (g_hmWriteOkay, 2000); 
if (re == WAIT_OBJECT_O) { 

} 

lstrcpy (g_pBuff->szText, szText); 
g_pBuff->nReadCnt = g_pBuff->nAppCnt; 
PulseEvent (g_hReadEvent); 

II Wait while reader threads get data. 
while (g_pBuff->nReadCnt) 

re = WaitForSingleObject (g_hReadDoneEvent, 
INFINITE); 

ReleaseMutex (g_hmWriteOkay); 

return O; 

The routine waits on the primary thread of XTalk to signal SendEvent. The primary thread of 

XTalk makes the signal in response to a WM_ COMMAND message from the Send button. 

The thread is then unblocked, reads the text from the edit control, and waits to gain owner

ship of the WriteOkay mutex. This mutex protects two copies of XTalk from writing to the 

shared block at the same time. When the thread owns the mutex, it writes the string read 

from the edit control into the shared buffer. It then copies the number of active copies of 

XTalk into the nReadCnt variable in the same shared buffer and pulses ReadEvent to tell the 

other copies of XTalk to read the newly written data. A manual resetting event is used so that 

all threads waiting on the event will be unblocked when the event is signaled. 



320 Part II Windows CE Programming 

The thread then waits for the nReadCnt variable to return to 0. Each time a reader thread 

reads the data, the nReadCnt variable is decremented and the ReadDone event signaled. 

Note that the thread doesn't spin on this variable but uses an event to tell it when to check 

the variable again. This actually would be a great place to use WaitForMultipleObjects and 

have all reader threads signal when they've read the data, but Windows CE doesn't support 

the WaitAll flag in WaitForMultipleObjects. 

Finally, when all the reader threads have read the data, the sender thread releases the mutex 

protecting the shared segment and the thread returns to wait for another send event. 

The ReaderThread routine is even simpler. Here it is: 

DWORD WINAPI ReaderThread (PVOID pArg) { 
HWND hWnd; 

} 

int nGoCode, re, i; 
TCHAR szText[TEXTSIZE]; 

hWnd = (HWND)pArg; 
while (1) { 

} 

nGoCode = WaitForSingleObject (g_hReadEvent, INFINITE); 
if (nGoCode == WAIT_OBJECT_O) { 

} 

i = SendDlgitemMessage (hWnd, IDD_INTEXT, LB_ADDSTRING, 0, 
(LPARAM)g_pBuff->szText); 

SendDlgitemMessage (hWnd, IDD_INTEXT, LB_SETTOPINDEX, i, O); 

InterlockedDecrement (&g_pBuff->nReadCnt); 
SetEvent (g_hReadDoneEvent); 

return 0; 

The reader thread starts up and immediately blocks on ReadEvent. When it's unblocked, 

it adds the text from the shared buffer into the list box in its window. The list box is then 

scrolled to show the new line. After this is accomplished, the nReadCnt variable is decrement

ed using lnterlockedDecrement to be thread safe, and the ReadDone event is signaled to tell 

SenderThread to check the read count. After that's accomplished, the routine loops around 

and waits for another read event to occur. 

Exception Handling 
Windows CE, along with Visual Studio, supports both Microsoft's standard structured exception 
handling extensions to the C language (the __ try, __ except and __ try, __ finally blocks) and the 

ANSI-standard C++ exception handling framework, with keywords such as catch and throw. 

Windows exception handling is complex, and if I were to cover it completely, I could easily write 

another entire chapter. The following review introduces the concepts to non-Win32 pro

grammers and conveys enough information about the subject for you to get your feet wet. 



Chapter 8 Modules, Processes, and Threads 321 

C++ Exception Handling 

The statements, try, catch, and throw are familiar to C++ programmers and work as expected 
in Windows CE. To use C++ exception handling in a Windows CE C++ application, the ap
plication must be compiled with the -GX compiler switch. For those not familiar with the 

operation of these keywords, what follows is a quick introduction. One caution to using C++ 
exception handling: the component that implements C++ exception handling in Windows CE 
is optional. Not all systems, including many embedded systems, will have this component in 
the system. To provide truly cross-platform support for your Windows CE application, don't 
use C++ exception handling. Instead, use Win32 structured exception handling, which is dis

cussed in the following sections. 

Using Exceptions to Report Errors 

It's the vogue in programming circles these days to report errors in a function by throwing 
an exception. Using this scheme, a calling function that doesn't check for errors will have the 
exception automatically passed on to its calling function. If no function ever checks for the 
exception, the exception will be passed to the operating system, which will act appropriately 
on the offending application. Functions that simply report an error code in a return code 
can't enforce error checking because the lack of verification of the error code isn't automati

cally reported up the stack chain. 

A simple example of the different methods of reporting errors is shown in the following code 
fragments. In the first code fragment, the failure of Loca/Alloc in Addltem is reported by re
turning 0. Note how each call to Addltem has to be checked to see whether an error occurred 

inAddltem. 

PMYITEM Additem (PMYITEM pLast, DWORD dwData) { 

} 

II Allocate the item 
PMYITEM p = (PMYITEM)LocalAlloc (LPTR, sizeof (MYITEM)); 
if (p == 0) 

return O; 

II Link the list 
p->pPrev = pLast; 
if (pLast) pLast->pNext = p; 
p->dwData = dwData; 
return p; 

int test (HWND hWnd) { 
PMYITEM pNext; 

pNext = Additem (NULL, 1); 
if (pNext == NULL) 

return ERROR_CODE; 



322 Part II Windows CE Programming 

} 

pNext = Additem (pNext, 2); 
if (pNext == NULL) 

return ERROR_CODE; 

pNext = Additem (pNext, 3); 
if (pNext == NULL) 

return ERROR_CODE; 
return O; 

In the following code fragment, Addltem throws an exception if the memory allocation fails. 
Notice how much cleaner the calling routine testl looks. 

PMYITEM Additem (PMYITEM pLast, DWORD dwData) { 

} 

II Allocate the item 
PMYITEM p = (PMYITEM)LocalAlloc (LPTR, sizeof (MYITEM)); 
if (p == 0) 

throw ("failure to allocate item in Additem"); 

II Link the list 
p->pPrev = pLast; 
if (pLast) pLast->pNext = p; 
p->dwData = dwData; 
return p; 

int testl (HWND hWnd) { 
PMYITEM pNext; 

} 

try { 

} 

pNext = Additem (NULL, 1); 
pNext = Additem (pNext, 2); 
pNext = Additem (pNext, 3); 

catch (char * strException) { 
return ERROR_CODE; 

} 

return O; 

The simple structure of the foregoing routines demonstrates the ease with which C++ excep

tion handling can be added to an application. The try keyword wraps code that might gener
ate an exception. The wrapped code includes any routines called from within the try block. 
If an exception is thrown with a string argument, the exception will be caught by the catch 
block in testl. What happens if some other exception is thrown? Let's look at the basics of the 
try, catch, and throw keywords to see. 



Chapter 8 Modules, Processes, and Threads 323 

The try, catch Block 
The basic structure of the exception keywords is demonstrated in the following pseudocode. 

try 
{ 

} 
throw (arg of type_t); 

catch (type_t arg) 
{ 

II catches all throws with argument of type_t 

Within the try block, if an exception is thrown with an argument, the exception will be caught 

by the catch block that has the matching argument. If no catch block has a matching argu

ment, the exception is passed to the function that called the code containing the try block. If 
no enclosing try, catch block is found, the thread is terminated. If no exception occurs within 

the try block, none of the associated catch blocks are executed. 

For example 

try 
{ 

} 
throw (1); 

would be caught if the try block had an associated catch block with an integer argument such as 

catch (int nExceptionCode) 
{ 

II Exception caught! 
} 

The argument doesn't have to be a simple type; it can be a C++ class. It's also permissible 

to have multiple catch blocks, each with a different argument string associated with the try 
block. Catch blocks are evaluated in the order they appear in the code. Finally, a catch block 

with ellipsis arguments catches all exceptions within the try block. 

try 
{ 

} 

throw (1); 

throw ("This is an asci i string"); 

throw (CMyException cEx); 

catch (int nExCode) 
{ 

II catches all throws with an integer argument 
} 

catch (char * szExCode) 
{ 

II catches all throws with a string argument 



324 Part II Windows CE Programming 

} 

catch (CMyException cEx) 
{ 

II catches all throws with a CMyException class argument 
} 

catch ( ... ) 
{ 

II catches all exceptions not caught above 
} 

Win32 Exception Handling 

Windows CE has always supported the Win32 method of exception handling, using the __ try, 
__ except, and _ _finally keywords. What follows is a brief overview of these statements. In ad
dition, unlike C++ exception handling, Win32 structured exception handling is always sup
ported, regardless of the configuration of the operating system. 

The _try, __ except Block 
The __ try, __ except block looks like this: 

_try { 

II Try some code here that might cause an exception. 

} 

_except (exception filter) { 

II This code is depending on the filter on the except line. 

} 

Essentially, the try-except pair allows you the ability to anticipate exceptions and handle them 
locally instead of having Windows terminate the thread or the process because of an un
handled exception. 

The exception filter is essentially a return code that tells Windows how to handle the excep
tion. You can hard code one of the three possible values or call a function that dynamically 
decides how to respond to the exception. 

If the filter returns EXCEPTION_EXECUTE_HANDLER, Windows aborts the execution in the try 
block and jumps to the first statement in the except block. This is helpful if you're expecting 
the exception and you know how to handle it. In the code that follows, the access to memory 
is protected by a __ try, __ except block. 

BYTE ReadByteFromMemory (LPBYTE pPtr, BOOL *bDataValid) { 
BYTE ucData = O; 

*bDataValid = TRUE; 
_try { 



Chapter 8 Modules, Processes, and Threads 325 

ucData = "pPtr; 
} 

_except (DecideHowToHandleException ()) { 
II The pointer isn't valid; clean up. 
ucData = O; 
''bDataVa lid = FALSE; 

} 

return ucData; 
} 

int DecideHowToHandleException (void) { 
return EXCEPTION_EXECUTE_HANDLER; 

} 

If the memory read line above wasn't protected by a __ try. __ except block and an invalid 

pointer was passed to the routine, the exception generated would have been passed up to 

the system, causing the thread and perhaps the process to be terminated. If you use the 
__ try. __ except block, the exception is handled locally and the process continues with the er

ror handled locally. 

Another possibility is to have the system retry the instruction that caused the exception. You 
can do this by having the filter return EXCEPTION_ CONTINUE_ EXECUTION. On the surface, 

this sounds like a great option-simply fix the problem and retry the operation your program 

was performing. The problem with this approach is that what will be retried isn't the line that 

caused the exception, but the machine instruction that caused the exception. The difference 

is illustrated by the following code fragment that looks okay but probably won't work: 

II An example that doesn't work ... 
int Divide!t (int aVal, int bVal) { 

int cVal; 

} 

_try { 
cVal = aVal I bVal; 

} 

_except (EXCEPTION_CONTINUE_EXECUTION) 
bVal = 1; 

} 

return cVal; 

The idea in this code is noble: protect the program from a divide-by-zero error by ensuring 

that if the error occurs, the error is corrected by replacing bVal with 1. The problem is that 

the line 

cVal = aVal I bVal; 

is probably compiled to something like the following on a MIPS-compatible CPU: 

lw t6,aVal(sp) ; Load aVal 
lw t7,bVal(sp) ;Load bVal 
div t6,t7 ;Perform the divide 
SW t6,cVal(sp) ;Save result into cVal 



326 Part II Windows CE Programming 

In this case, the third instruction, the div, causes the exception. Restarting the code after the 

exception results in the restart beginning with the div instruction. The problem is that the ex

ecution needs to start at least one instruction earlier to load the new value from bVa/ into the 

register. The moral of the story is that attempting to restart code at the point of an exception 
requires knowledge of the specific machine instruction that caused the exception. 

The third option for the exception filter is to not even attempt to solve the problem and to 

pass the exception up to the next, higher, __ try, __ except block in code. The exception filter 

returns EXCEPTION_CONTJNUE_SEARCH. Because __ try, __ except blocks can be nested, it's 

good practice to handle specific problems in a lower, nested, __ try, __ except block and more 

global errors at a higher level. 

Determining the Problem 

With these three options available, it would be nice if Windows let you in on why the excep

tion occurred. Fortunately, Windows provides the function 

DWORD GetExceptionCode (void); 

This function returns a code that indicates why the exception occurred in the first place. 

The codes are defined in WINBASE.H and range from EXCEPTION_ACCESS_VIOLATION to 

CONTROL_C_EXIT, with a number of codes in between. Another function allows even more 

information: 

LPEXCEPTION_POINTERS GetExceptioninformation (void); 

GetExceptionlnformation returns a pointer to a structure that contains pointers to two struc

tures: EXCEPTION_RECORD and CONTEXT. EXCEPTION_RECORD is defined as 

typedef struct _EXCEPTION_RECORD { 
DWORD ExceptionCode; 
DWORD ExceptionFlags; 
struct _EXCEPTION_RECORD "ExceptionRecord; 
PVOID ExceptionAddress; 
DWORD NumberParameters; 
DWORD Exceptionlnformation[EXCEPTION_MAXIMUM_PARAMETERS]; 

} EXCEPTION_RECORD; 

The fields in this structure go into explicit detail about why an exception occurred. To narrow 
the problem down even further, you can use the CONTEXT structure. The CONTEXT structure 

is different for each CPU and essentially defines the exact state of the CPU when the excep

tion occurred. 

There are limitations on when these two exception information functions can be called. 

GetExceptionCode can be called only from inside an except block or from within the excep

tion filter function. The GetExceptionlnformation function can be called only from within the 

exception filter function. 



Chapter 8 Modules, Processes, and Threads 327 

Generating Your Own Exceptions 

There are times when an application might want to generate its own exceptions. The Win32 

method for raising an exception is the function RaiseException, prototyped as follows: 

void RaiseException (DWORD dwExceptionCode, DWORD dwExceptionFlags, 
DWORD nNumberOfArguments, canst DWORD ''l pArguments); 

The first parameter is the exception code, which will be the value returned by 

GetExceptionCode from within the __ except block. The codes understood by the system 

are the same codes defined for GetExceptionCode, discussed earlier. The dwExceptionFlags 

parameter can be EXCEPTION_NONCONTINUABLE to indicate that the exception can't be 

continued or 0 if the exception can be continued. The last two parameters, nNumberOfArgu

ments and lpArguments, allow the thread to pass additional data to the exception handler. 
The data passed can be retrieved with the GetExceptionlnformation function in the __ except 

filter function. 

The __ try, __ finally Block 

Another tool of the structured exception handling features of the Win32 API is the __ try, _ _fi

nally block. It looks like this: 

_try { 

II Do something here. 

} 

_finally { 

II This code is executed regardless of what happens in the try block. 

} 

The goal of the __ try, _ _finally block is to provide a block of code, the finally block, that al

ways executes regardless of how the other code in the try block attempts to leave the block. 

Unfortunately, the current Windows CE C compilers don't support leaving the __ try block by 

a return or a goto statement for many of the CPU types. The Windows CE compilers do sup

port the __ leave statement that immediately exits the __ try block and executes the _ _finally 

block. Using the __ try, __ leave, __ finally combination provides a great way for a sequence of 

code to "leave" the sequence and go straight to the cleanup code if one of the steps fails. 

In this chapter, I've covered the basics for how processes and threads are created, how they 

communicate, and how exceptions are handled. In the next few chapters, I will look at how 

the Windows CE stores data. Windows CE supports a number of different file systems includ

ing a RAM-based file system called the object store. Let's take a look. 





Chapter 9 

The Windows CE File System 
Windows CE provides a fully functional file system stack that supports a variety of file sys

tems and storage media. Unique to Windows CE is a RAM-based file system known as the 

object store. In implementation, the object store more closely resembles a database than it 

does a file allocation system for a disk. In addition to storing files, the object store can store 

the Windows CE registry and database volumes. Fortunately for the programmer, most of 

the unique implementation of the object store is hidden behind standard Win32 functions. 

In addition to the object store, Windows CE supports a variety of file systems including flash

based solutions and even those quaint rotating, ferromagnetic storage devices known as disk 

drives. 

The Windows CE file API is taken directly from Win32, and for the most part, the API is fairly 

complete. There are some differences, however, in the Windows CE implementation. The 

most obvious difference is that Windows CE doesn't use drive letters. Instead, the path of a 

file is defined from the root of the file system. Different storage volumes, such as partitions 

of hard drives or separate flash file systems, are represented as directories off the root of the 

file system. 

In addition to the lack of drive letters, the concept of the current directory, so important in 

other versions of Windows, isn't present in Windows CE. Files are specified by their complete 

path. The command line-based shell, CMD.EXE, maintains its own current directory, but this 

directory is independent of the file system. 

The object store also exposes some additional differences. Execute-in-place files, stored in 

ROM, appear as files in the object store, but these files can't be opened and read as standard 

files. The object store format is undocumented, so there is no way to dig underneath the file 

system API to look at sectors, clusters, or cylinders of data as you could on a FAT-formatted 
disk. 

This chapter covers the Windows CE file system from two perspectives. First, the file system 

API is discussed, showing how applications read, write, move, and copy files. A section follows 

on how to manage the various storage devices attached to the system. This section will cover 
how to talk to the storage manager, the part of Windows CE that loads and manages the vari

ous file systems and storage devices in the system. But before that, lets look at standard file 

1/0. 

329 



330 Part II Windows CE Programming 

The Windows CE File System API 
As should be expected for a Win32-compatible operating system, the file name format for 

Windows CE is the same as that of its larger counterparts. Filenames have the same name.ext 
format as they do in other Windows operating systems. The extension is the three characters 
following the last period in the file name and defines the type of file. The file type is used by 

the shell when determining the difference between executable files and different documents. 

Allowable characters in filenames are the same as for the desktop versions of Windows. 

Windows CE supports long filenames. Filenames and their complete paths can be up to 

MAX_PATH in length, which is currently defined at 260 bytes. However, Windows CE does 

not support the path prefix sequence "\\?\'to extend the path length longer than MAX_ 
PATH. UNC naming convention to reference network servers, as in "\\<server name>\<share 

name> is supported. 

Windows CE files support many of the same attribute flags as other versions of Windows, 

with a few additions. Attribute flags include the standard read-only, system, hidden, com

pressed, and archive flags. A few additional flags have been included to support the special 

RAM/ROM mix of files in the object store. 

Standard File 1/0 

Windows CE supports most of the same file 1/0 functions found in other Win32 operating 

systems. The same Win32 API calls, such as CreateFile, ReadFile, WriteFile, and CloseFi/e, are 

all supported. A Windows CE programmer must be aware of a few differences, however. First 

of all, the old Win16 standards, _/read, _/write, and _I/seek, aren't supported. This isn't really 

a huge problem because all of these functions can easily be implemented by wrapping the 

Windows CE file functions with a small amount of code. Windows CE does support basic con

sole library functions such as fprintf and print{ for console applications if the console is sup

ported on that configuration. 

Windows CE doesn't support the overlapped 1/0 that's supported under the desktop versions 

of Windows. Files or devices can't be opened with the FILE_ FLAG_ OVERLAPPED flag, nor can 

reads or writes use the overlapped mode of asynchronous calls and returns. Programmers 

needing this type of functionality can simply create a separate thread to handle the file 1/0 
asynchronous to the main thread of the application. 

File operations in Windows CE follow the traditional handle-based methodology used on all 

modern operating systems. Files are opened by means of a function that returns a handle. 

Read and write functions are passed the handle to indicate the file to act on. Data is read 

from or written to the offset in the file indicated by a system-maintained file pointer. Finally, 



Chapter 9 The Windows CE File System 331 

when the reading and writing have been completed, the application indicates this by closing 

the file handle. Now on to the specifics. 

Creating and Opening Files 

Creating a file or opening an existing file or device driver is accomplished by means of the 

standard Win32 function: 

HANDLE CreateFile (LPCTSTR lpFileName, DWORD dwDesiredAccess, 
DWORD dwShareMode, 
LPSECURITY_ATTRIBUTES lpSecurityAttributes, 
DWORD dwCreationDistribution, 
DWORD dwFlagsAndAttributes, HANDLE hTemplateFile); 

The first parameter is the name of the file to be opened or created. The filename should have 

a fully specified path. Filenames with no path information are assumed to be in the root direc

tory of the object store. 

The dwDesiredAccess parameter indicates the requested access rights. The allowable flags are 

GENER/(_ READ to request read access to the file and GENERIC_ WRITE for write access. Both 

flags must be passed to get read/write access. You can open a file with neither read nor write 

permissions. This is handy if you just want to get the attributes of a device. The dwShareMode 

parameter specifies the access rights that can be granted to other processes. This parameter 

can be FILE_SHARE_READ and/or FILE_SHARE_ WRITE. The lpSecurityAttributes parameter is 

ignored by Windows CE and should be set to NULL. 

The dwCreationDistribution parameter tells CreateFile how to open or create the file. The fol

lowing flags are allowed: 

• CREATE_NEW Creates a new file. If the file already exists, the function fails. 

• CREATE_ALWAYS Creates a new file or truncates an existing file. 

• OPEN_EXISTING Opens a file only if it already exists. 

• OPEN_ALWAYS Opens a file or creates a file if it doesn't exist. This differs from 

CREATE_ALWAYS because it doesn't truncate the file to 0 bytes if the file exists. 

• TRUNCATE_EXISTING Opens a file and truncates it to 0 bytes. The function fails if the 

file doesn't already exist. 

The dwF/agsAndAttributes parameter defines the attribute flags for the file if it's being cre

ated in addition to flags in order to tailor the operations on the file. The following flags are 

allowed under Windows CE: 

• FILE_ATTRIBUTE_NORMAL This is the default attribute. It's overridden by any of the 

other file attribute flags. 



332 Part II Windows CE Programming 

• FILE_ATTRIBUTE_READONLY Sets the read-only attribute bit for the file. Subsequent 

attempts to open the file with write access will fail. 

• FILE_ATTRIBUTE_ARCHIVE Sets the archive bit for the file. 

• FILE_ATTRIBUTE_SYSTEM Sets the system bit for the file indicating that the file is 

critical to the operation of the system. 

• FILE_ATTRIBUTE_HIDDEN Sets the hidden bit. The file will be visible only to users 

who have the View All Files option set in the Explorer. 

• FILE_FLAG_WRITE_THROUGH Write operations to the file won't be lazily cached in 

memory. 

• FILE_FLAG_RANDOM_ACCESS Indicates to the system that the file will be randomly 

accessed instead of sequentially accessed. This flag can help the system determine the 

proper caching strategy for the file. On the object store file system, the file will not be 

compressed. 

Windows CE doesn't support a number of file attributes and file flags that are supported 

under other versions of Windows. The unsupported flags include, but aren't limited to the 

following: FILE_ATTRIBUTE_ OFFLINE, FILE_ FLAG_ OVERLAPPED, FILE_FLAG_NO_BUFFERING, 
FILE_FLAG_SEQUENTIAL_SCAN, FILE_FLAG_ DELETE_ ON_ CLOSE, FILE_FLAG_BACKUP_ 
SEMANTICS, and F/LE_FLAG_POSIX_ SEMANTICS. On the desktop, the flag FILE_ATTRIBUTE_ 
TEMPORARY is used to indicate a temporary fil;, but, as we'll see later, it's used by Windows 

CE to indicate a directory that is, in reality, a separate drive or network share. 

The final parameter in CreateFile, hTemplate, is ignored by Windows CE and should be set to 

0. CreateFile returns a handle to the opened file if the function was successful. If the func

tion fails, it returns INVALID_HANDLE_ VALUE. To determine why the function failed, call 

GetlastError. If the dwCreationDistribution flags included CREATE_ALWAYS or OPEN_ALWAYS, 
you can determine whether the file previously existed by calling GetlastError to see if it re

turns ERROR_ALREADY_EXISTS. CreateFile will set this error code even though the function 

succeeded. 

In addition to opening files and devices, CreateFile can open storage volumes such as hard 

disks and flash cards. To open a volume, pass the name of the volume appended with \Vol:. 
For example, to open a compact flash card volume represented by the directory name 

Storage Card, the call would be as follows: 

h = CreateFile (TEXT ("\\Storage card\\Vol:"), 
GENERI(_READIGENERIC_WRITE, 
0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); 

The handle returned by the CreateFile call can be used to pass 10 Control (IOCTL) commands 

to the file system driver that mounted the volume. 



Chapter 9 The Windows CE File System 333 

Reading and Writing 

Windows CE supports the standard Win32 functions ReadFile and WriteFile; both functions re

turn TRUE if successful and FALSE otherwise. Reading a file is as simple as calling the following: 

BOOL ReadFile (HANDLE hFile, LPVOID lpBuffer, 
DWORD nNumberOfBytesToRead, 
LPDWORD lpNumberOfBytesRead, LPOVERLAPPED lpOverlapped); 

The parameters are fairly self-explanatory. The first parameter is the handle of the opened 

file to read followed by a pointer to the buffer that will receive the data and the number of 

bytes to read. The fourth parameter is a pointer to a DWORD that will receive the number of 

bytes that were actually read. Finally, the lpOverlapped parameter must be set to NULL be

cause Windows CE doesn't support overlapped file operations. As an aside, Windows CE does 

support multiple reads and writes pending on a device; it just doesn't support the ability to 

return from the function before the operation completes. 

Data is read from the file starting at the file offset indicated by the file pointer. After the read 

has completed, the file pointer is adjusted by the number of bytes read. 

ReadFile won't read beyond the end of a file. If a call to ReadFile asks for more bytes than 

remain in the file, the read will succeed, but only the number of bytes remaining in the file 

will be returned. This is why you must check the variable pointed to by lpNumberOfBytes

Read after a read completes to learn how many bytes were actually read. A call to ReadFile 

with the file pointer pointing to the end of the file results in the read being successful, but 

the number of read bytes is set to 0. 

Writing to a file is accomplished with this: 

BOOL WriteFile (HANDLE hFile, LPCVOID lpBuffer, 
DWORD nNumberOfBytesToWrite, 
LPDWORD lpNumberOfBytesWritten, 
LPOVERLAPPED lpOverlapped); 

The parameters are similar to Read File, with the obvious exception that lpBuffer now points 

to the data that will be written to the file. As in ReadFile, the lpOverlapped parameter must be 

NULL. The data is written to the file offset indicated by the file pointer, which is updated after 

the write so that it points to the byte immediately beyond the data written. 

Moving the File Pointer 

The file pointer can be adjusted manually with a call to the following: 

DWORD SetFilePointer (HANDLE hFile, LONG lDistanceToMove, 
PLONG lpDistanceToMoveHigh, DWORD dwMoveMethod); 

The parameters for SetFilePointer are the handle of the file; 



334 Part II Windows CE Programming 

a signed offset distance to move the file pointer; a second, upper 32-bit, offset parameter; 

and dwMoveMethod, a parameter indicating how to interpret the offset. Although /Distanc

eToMove is a signed 32-bit value, lpDistanceToMoveHigh is a pointer to a signed 32-bit value. 

For file pointer moves of greater than 4 GB, the lpDistanceToMoveHigh parameter should 

point to a LONG that contains the upper 32-bit offset of the move. This variable will receive 

the high 32 bits of the resulting file pointer. For moves of less than 4 GB, simply set lpDistan

ceToMoveHigh to NULL. Clearly, for most Windows CE systems, the lpDistanceToMoveHigh 

parameter is a bit excessive, but there are a growing number of Windows CE platforms that 
need this feature. 

The offset value is interpreted as being from the start of the file if dwMoveMethod contains 

the flag F/LE_BEGIN. To base the offset on the current position of the file pointer, use FILE_ 

CURRENT. To base the offset from the end of the file, use FILE_ END in dwMoveMethod. 

SetFilePointer returns the file pointer at its new position after the move has been accom

plished. To query the current file position without changing the file pointer, simply call 

SetFilePointer with a zero offset and relative to the current position in the file, as shown here: 

nCurrFilePtr = SetFilePointer (hFile, 0, NULL, FILE_CURRENT); 

Closing a File 

Closing a file handle is a simple as calling 

BOOL CloseHandle (HANDLE hObject); 

This generic call, used to close a number of handles, is also used to close file handles. The 

function returns TRUE if it succeeds. If the function fails, a call to GetLastError will return the 
reason for the failure. 

Truncating a File 

When you have finished writing the data to a file, you can close it with a call to CloseHandle 

and you're done. Sometimes, however, you must truncate a file to make it smaller than it cur

rently is. In the days of MS-DOS, the way to set the end of a file was to make a call to write 

zero bytes to a file. The file was then truncated at the current file pointer. This won't work in 

Windows CE. To set the end of a file, move the file pointer to the location in the file where 
you want the file to end and call: 

BOOL SetEndOfFile (HANDLE hFile); 

Of course, for this call to succeed, you need write access to the file. The function returns 
TRUE if it succeeds. 

To insure that all the data has been written to a storage device and isn't just sitting around in 

a cache, you can call this function: 



Chapter 9 The Windows CE File System 335 

BOOL FlushFileBuffers (HANDLE hFile); 

The only parameter is the handle to the file you want to flush to the disk. Take care not to call 

this function too frequently. Writing to flash or disk storage is slow, so calling this function 

excessively can affect system performance. 

Getting File Information 

A number of calls allow you to query information about a file or directory. To quickly get the 

attributes knowing only the file or directory name, you can use this function: 

DWORD GetFileAttributes (LPCTSTR lpFileName); 

In general, the attributes returned by this function are the same ones that I covered for 
CreateFile, with the addition of the attributes listed here: 

• FILE_ATTRIBUTE_COMPRESSED The file is compressed. 

• FILE_ATTRIBUTE_INROM The file is in ROM. 

• FILE_ATTRIBUTE_ROMMODULE The file is an executable module in ROM formatted 

for execute-in-place loading. These files can't be opened with CreateFile. 

• FILE_ATTRIBUTE_DIRECTORY The name specifies a directory, not a file. 

• FILE_ATTRIBUTE_TEMPORARY When this flag is set in combination with FILE_ 

ATTRIBUTE_DIRECTORY, the directory is the root of a secondary storage device, such as 

a PC Card, a hard drive, or the network share folder. 

The attribute FILE_ATTRIBUTE_COMPRESSED is somewhat misleading on a Windows CE de

vice. Files in the RAM-based object store are always compressed, but this flag isn't set for 

those files. On the other hand, the flag does accurately reflect whether a file in ROM is com

pressed. Compressed ROM files have the advantage of taking up less space but the disadvan

tage of not being execute-in-place files. 

An application can change the basic file attributes, such as read only, hidden, system, and 

attribute by calling this function: 

BOOL SetFileAttributes (LPCTSTR lpFileName, DWORD dwFileAttributes); 

This function simply takes the name of the file and the new attributes. Note that you can't 

compress a file by attempting to set its compressed attribute. Under other Windows systems 

that do support selective compression of files, the way to compress a file is to make a call di

rectly to the file system driver. 

A number of other informational functions are supported by Windows CE. All of these func

tions, however, require a file handle instead of a file name, so the file must hav~ been previ

ously opened by means of a call to CreateFile. 



336 Part II Windows CE Programming 

File Times 
The standard Win32 API supports three file times: the time the file was created, the time the 

file was last accessed (that is, the time it was last read, written, or executed), and the last time 

the file was written to. This support, however, is limited to what the underlying file system 

tracks. Many file systems don't support all three file times. One of the ways to query the file 

times for a file is to call this function: 

BOOL GetFileTime (HANDLE hFile, LPFILETIME lpCreationTime, 
LPFILETIME lpLastAccessTime, 
LPFILETIME lpLastWriteTime); 

The function takes a handle to the file being queried and pointers to three Ff LET/ME values 

that will receive the file times. If you're interested in only one of the three values, the other 

pointers can be set to NULL. 

When the file times are queried for a file in the object store, Windows CE copies the last write 

time into all FILETIME structures. This goes against Win32 documentation, which states that 

any unsupported time fields should be set to 0. For the FAT file system used on storage cards, 

two times are maintained: the file creation time and the last write time. When GetFileTime is 

called on a file on a storage card, the file creation and last write times are returned and the 

last access time is set to 0. 

The FILETIME structures returned by GetFileTime and other functions can be converted to 

something readable by calling 

BOOL FileTimeToSystemTime (const FILETIME *lpFileTime, 
LPSYSTEMTIME lpSystemTime); 

This function translates the FILETIME structure into a SYSTEMTIME structure that has docu

mented day, date, and time fields that can be used. One large caveat is that file times are 

stored in coordinated universal time format (UTC), also known as Greenwich Mean Time. This 

doesn't make much difference as long as you're using unreadable FILETIME structures, but 

when you're translating a file time into something readable, a call to 

BOOL FileTimeToLocalFileTime (const FILETIME *lpFileTime, 
LPFILETIME lpLocalFileTime); 

before translating the file time into system time provides the proper time zone translation to 

the user. 

You can manually set the file times of a file by calling 

BOOL SetFileTime (HANDLE hFile, const FILETIME *lpCreationTime, 
const FILETIME *lpLastAccessTime, 
const FILETIME *lpLastWriteTime); 



Chapter 9 The Windows CE File System 337 

The function takes a handle to a file and three times each in Ff LET/ME format. If you want to 

set only one or two of the times, the remaining parameters can be set to NULL. Remember 
that file times must be in UTC time, not local time. 

For files in the Windows CE object store, setting any one of the time fields results in all three 
being updated to that time. If you set multiple fields to different times and attempt to set 

the times for an object store file, lpLastWriteTime takes precedence. Files on storage cards 
maintain separate creation and last-write times. You must open the file with write access for 
SetFileTime to work. 

File Size and Other Information 

You can query a file's size by calling 

DWORD GetFileSize (HANDLE hFile, LPDWORD lpFileSizeHigh); 

The function takes the handle to the file and an optional pointer to a DWORD that's set to 
the high 32 bits of the file size. This second parameter can be set to NULL if you don't expect 
to be dealing with files over 4 GB. GetFileSize returns the low 32 bits of the file size. 

I've been talking about these last few functions separately, but an additional function, GetFile 
lnformationByHandle, returns all this information and more. The function prototyped as 

BOOL GetFile!nformationByHandle (HANDLE hFile, 
LPBY_HANDLE_FILE_INFORMATION lpFileinformation); 

takes the handle of an opened file and a pointer to a BY_HANDLE_FILE_INFORMATION struc
ture. The function returns TRUE if it was successful. 

The BY_HANDLE_FILE_INFORMATION structure is defined this way: 

typedef struct _BY_HANDLE_FILE_INFORMATION { 
DWORD dwFileAttributes; 
FILETIME ftCreationTime; 
FILETIME ftLastAccessTime; 
FILETIME ftLastWriteTime; 
DWORD dwVolumeSerialNumber; 
DWORD nFileSizeHigh; 
DWORD nFileSizeLow; 
DWORD nNumberOfLinks; 
DWORD nFile!ndexHigh; 
DWORD nFile!ndexLow; 
DWORD dwOID; 

} BY_HANDLE_FILE_INFORMATION; 

As you can see, the structure returns data in a number of fields that separate functions re
turn. I'll talk about only the new fields here. 

The dwVolumeSeria/Number field is filled with the serial number of the volume in which the 
file resides. Under Windows CE, the volume refers to disk, partition, or file system, such as the 



338 Part II Windows CE Programming 

object store or a disk on a local area network. For files in the object store, the volume serial 

number is 0. 

The nNumberOflinks field is used by Windows's NTFS file system and can be ignored under 
Windows CE. The nFilelndexHigh and nFilelndexLow fields contain a systemwide unique iden

tifier number for the file. This number can be checked to see whether two different file han

dles point to the same file. The File Index value is used by the desktop, but Windows CE has 

a more useful value, the object ID of the file, which is returned in the dwOID field. The object 

ID is an identifier that can be used to reference directories, files, databases, and individual 

database records. Handy stuff. 

Memory-Mapped Files 

Memory-mapped files give you a completely different method for reading and writing files. 

With the standard file 1/0 functions, files are read as streams of data. To access bytes in dif

ferent parts of a file, the file pointer must be moved to the first byte, the data read, the file 

pointer moved to the other byte, and then the file read again. 

With memory-mapped files, the file is mapped to a region of memory. Then, instead of us

ing FileRead and FileWrite, you simply read and write the region of memory that's mapped 

to the file. Updates of the memory are automatically reflected back to the file itself. Setting 

up a memory-mapped file is a somewhat more complex process than making a simple call to 

CreateFile, but once a file is mapped, reading and writing the file is trivial. 

I discussed memory-mapped objects in Chapter 8. Now with just a couple of extra calls, we 

can use memory-mapped techniques to read and write a file directly. 

Memory-Mapped Files 

In Windows CE 6 and later, to open a file for memory-mapped access, the file is first opened 

with a call to CreateFile just as when opening a file for standard stream access. In Windows 

CE 5 and before, a function, unique to Windows CE, is needed to open the file; it's named 

CreateFileForMapping. The prototype for CreateFileForMapping is the same as CreateFile. 

Windows CE 6 and later maintain compatibility with the earlier versions of the operating sys

tem by defining a macro that maps CreateFileForMapping to CreateFile. 

The handle returned by CreateFile can then be passed in the first parameter to 

CreateFileMapping. This function creates a file-mapping object and ties the opened file to 

it. As with memory-mapped objects, you need to create a view into the object by calling 

MapViewOfFile, which returns a pointer to memory that's mapped to the file. These two 

functions were covered in the "Interprocess Communication" section of Chapter 8. 

As you write to the memory-mapped file, the changes are reflected in the data you read 

back from the same buffer. When you close the memory-mapped file, the.system writes the 



Chapter 9 The Windows CE File System 339 

modified data back to the original file. If you want to have the data written to the file before 
you close the file, you can use the following function: 

BOOL FlushViewOfFile (LPCVOID lpBaseAddress, 
DWORD dwNumberOfBytesToFlush); 

The parameters are the base address and size of a range of virtual pages within the mapped 
view that will be written to the file. The function writes only the pages that have been modi
fied to the file. 

When you're finished with the memory-mapped file, a little cleanup is required. First a call 
should be made to UnmapViewOfFile to unmap the view to the object. Next, a call should be 

made to close the mapping object and the file itself. Both these actions are accomplished by 
means of calls to CloseHandle. The first call should be to close the memory-mapped object, 
and then CloseHandle should be called to close the file. 

The code fragment that follows shows the entire process of opening a file, creating the file
mapping object, mapping the view, and then cleaning up. 

HANDLE hFile, hFileMap; 
PBYTE pFil eMem; 
TCHAR szFileName[MAX_PATH]; 

hFile = CreateFile (szFileName, GENERI(_WRITE, FILE_SHARE_READ, NULL, 
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL 
FILE_FLAG_RANDOM_ACCESS,O); 

if (hFile != INVALID_HANDLE_VALUE) { 

} 

hFileMap = CreateFileMapping (hFile, NULL, PAGE_READWRITE, 0, 0, O); 
if (hFileMap) { 

} 

pFileMem = (PBYTE)MapViewOfFile (hFileMap, FILE_MAP_WRITE, 

if (pFi 1 eMem) { 
II 
II Use the data in the file. 
II 

0, 0, 0); 

II Start cleanup by unmapping view. 
UnmapViewOfFile (pFileMem); 

} 

CloseHandle (hFileMap); 

CloseHandle (hFile); 

Navigating the File System 
Now that we've seen how files are read and written, let's take a look at how the files them

selves are managed in the file system. Windows CE supports most of the convenient file and 
directory management APls, such as CopyFile, MoveFile, and CreateDirectory. 



340 Part II Windows CE Programming 

File and Directory Management 

Windows CE supports a number of functions useful in file and directory management. You 

can move files using MoveFile, copy them using CopyFile, and delete them using DeleteFile. 
You can create directories using CreateDirectory and delete them using RemoveDirectory. 
While most of these functions are straightforward, I should cover a few intricacies here. 

To copy a file, call 

BOOL CopyFile (LPCTSTR lpExistingFileNarne, LPCTSTR lpNewFileNarne, 
BOOL bFailifExists); 

The parameters are the name of the file to copy and the name of the destination directory. 

The third parameter indicates whether the function should overwrite the destination file if 

one already exists before the copy is made. 

When copying a large file, the time for CopyFile to return can be disconcerting to the user. 

Starting with Windows CE 5, CopyFileEx is supported. It is prototyped as 

BOOL CopyFileEx (LPCTSTR lpExistingFileNarne, LPCTSTR lpNewFileNarne, 
LPPROGRESS_ROUTINE lpProgressRoutine, LPVOID lpData, 
LPBOOL pbCancel, DWORD dwCopyFlags); 

CopyFileEx accepts a pointer to a callback routine, lpProgressRoutine, that is called just before 

the copy starts and then periodically while the file is being copied. The callback routine al

lows the application to provide feedback to the user to track the progress of the copy. The 

other new parameters are lpData, which is a user-defined value that is passed to the callback 

routine, and pbCance/ which, on return indicates if the file copy was canceled before it was 

completed. The dwCopyF/ags parameter accepts one flag, COPY_FILE_FAIL_IF_EXISTS, which 

fails the copy if the destination file already exists. 

The callback routine is prototyped as 

DWORD CALLBACK CopyProgressRoutine (LARGE_INTEGER TotalFileSize, 
LARGE_INTEGER TotalBytesTransferred, LARGE_INTEGER StrearnSize, 
LARGE_INTEGER StrearnBytesTransferred, DWORD dwStrearnNurnber, 
DWORD dwCallbackReason, HANDLE hSourceFile, 
HANDLE hDestinationFile, LPVOID lpData); 

The parameters to the callback routine provide information on the progress of the copy. 

The Tota/FileSize parameter is a 64-bit value that indicates the size of the source file. The 

Tota/BytesTransferred parameter indicates the number of bytes already copied. For Windows 

CE, the StreamSize and StreamBytesTransferred parameters contain the same values as the 

Tota/Fi/eSize and Tota/BytesTransferred parameters, respectively. The dwStreamNumber 
parameter is always set to 1. The dwCallbackReason parameter is first set to CALLBACK_ 
STREAM_SW/TCH on the initial callback made just before the copy is started and then is 

set to CALLBACK_CHUNK_FINISHED for the subsequent calls. The hSourceFile and 



Chapter 9 The Windows CE File System 341 

hDestinationFile parameters are the open file handles as the copy is taking place. Finally, Ip

Data is the value passed in the CopyFileEx lpData parameter. 

The return value from the callback routine can be one of the four values listed here. 

• PROGRESS_CONTINUE The copy process should continue. 

• PROGRESS_ CANCEL The copy process is aborted. If the file is partially copied, the 
destination file is deleted. 

• PROGRESS_STOP The copy process is aborted. If the file is partially copied, the par

tially copied destination file remains. 

• PROGRESS_ QUIET Continue the copy process but don't call the callback routine 
anymore. 

Files and directories can be moved and renamed using 

BOOL MoveFile (LPCTSTR lpExistingFileName, LPCTSTR lpNewFileName); 

To move a file, simply indicate the source and destination names for the file. The destination 

file must not already exist. File moves can be made within the object store, from the object 

store to an external drive, or from an external drive to the object store. MoveFile can also be 

used to rename a file. In this case, the source and target directories remain the same; only 

the name of the file changes. 

MoveFi/e can also be used in the same manner to move or rename directories. This practice is 

much faster than calling CopyFile because the file system only has to update directory infor

mation and not move the file data. The only limitation is that MoveFile can't move a directory 

from one volume to another. For that, CopyFile or CopyFileEx is needed. 

Deleting a file is as simple as calling 

BOOL DeleteFile (LPCTSTR lpFileName); 

You pass the name of the file to delete. For the delete to be successful, the file must not be 

currently open. 

You can create and destroy directories using the following two functions: 

BOOL CreateDirectory (LPCTSTR lpPathName, 
LPSECURITY__ATTRIBUTES lpSecurityAttributes); 

and 

BOOL RemoveDirectory (LPCTSTR lpPathName); 

CreateDirectory takes the name of the directory to create and a security parameter that 

should be NULL under Windows CE. RemoveDirectory deletes a directory. The directory must 

be empty for the function to be successful. 



342 Part II Windows CE Programming 

Creating a Temporary File 
At times you will need to create a temporary file. How do you pick a unique filename? You 

can ask Windows for the name of a temporary file by using the following function: 

UINT GetTempFileName (LPCTSTR lpPathName, LPCTSTR lpPrefixString, 
UINT uUnique, LPTSTR lpTempFileName); 

The first parameter is the path of the temporary file. The second parameter, lpPrefixString, is 

the name prefix. The first three characters of the prefix become the first three characters of 

the temporary filename. The uUnique parameter can be any number you want or 0. If you 

pass 0, Windows will generate a number based on the system time and use it as the last four 

characters of the filename. If uUnique is 0, Windows guarantees that the filename produced 

by GetTempFileName will be unique. If you specify a value other than 0 in uUnique, Windows 
returns a filename based on that value but doesn't check to see whether the filename is 

unique. The last parameter is the address of the output buffer to which GetTempFileName re

turns the filename. This buffer should be at least MAX_ PATH characters (not bytes) in length. 

Finding Files 

Windows CE supports the basic FindFirstFile, FindNextFile, FindC/ose procedure for enumerat

ing files that is supported under the desktop versions of Windows. Searching is accomplished 

on a per-directory basis using template filenames with wild card characters in the template. 

Searching a directory involves first passing a file name template to FindFirstFile, which is pro

totyped in this way: 

HANDLE FindFirstFile (LPCTSTR lpFileName, 
LPWIN32_FIND_DATA lpFindFileData); 

The first parameter is the template file name used in the search. This file name can contain a 

fully specified path if you want to search a directory other than the root. Windows CE has no 

concept of Current Directory built into it; if no path is specified in the search string, the root 

directory of the file system is searched. 

As you would expect, the wild cards for the file name template are? and *.The question 

mark(?) indicates that any single character can replace the question mark. The asterisk(*) 

indicates that any number of characters can replace the asterisk. For example, the search 

string \Windows\A/arm?.wavwould return the files \Windows\Alarml.wav, \Windows\Alarm2. 

wav, and \Windows\Alarm3.wav. On the other hand, the search string \Windows\*.wav would 

return all files in the windows directory that have the WAV extension. 

The second parameter of FindFirstFile is a pointer to a WIN32_FIND_DATA structure, as defined 

here: 

typedef struct _WIN32_FIND_DATA { 
DWORD dwFileAttributes; 



FILETIME ftCreationTime; 
FILETIME ftLastAccessTime; 
FILETIME ftLastWriteTime; 
DWORD nFileSizeHigh; 
DWORD nFileSizeLow; 
DWORD dwOID; 
WCHAR cFileName[ MAX_PATH ] ; 

WIN32_FIND_DATA; 

Chapter 9 The Windows CE File System 343 

This structure is filled with the file data for the first file found in the search. The fields shown 

are similar to what we've seen. 

If FindFirstFile finds no files or directories that match the template file name, it returns 

INVALID_HANDLE_ VALUE. If at least one file is found, FindFirstFile fills in the WIN32_FIND_ 

DATA structure with the specific data for the found file, and returns a handle value that you 
use to track the current search. 

To find the next file in the search, call this function: 

BOOL FindNextFile (HANDLE hFindFile, 
LPWIN32_FIND_DATA lpFindFileData); 

The two parameters are the handle returned by FindFirstFile and a pointer to a find data 

structure. FindNextFile returns TRUE if a file matching the template passed to FindFirstFi/e is 

found and fills in the appropriate file data in the W/N32_FIND_DATA structure. If no file is 
found, FindNextFile returns FALSE. 

When you've finished searching, either because FindNextFile returned FALSE or because you 

simply don't want to continue searching, you must call this function: 

BOOL FindClose (HANDLE hFindFile); 

This function accepts the handle returned by FindFirstFile. If FindFirstFile returned INVALID_ 

HANDLE_ VALUE, you shouldn't call FindC/ose. 

The following short code fragment encompasses the entire file search process. This code 

computes the total size of all files in the Windows directory. 

WIN32_FIND_DATA fd; 
HANDLE hFind; 
INT nTotalSize = O; 

II Start search for all files in the windows directory. 
hFi nd = Fi ndFi rstFi le (TEXT ("\\windows\\*.''"), &fd); 

II If a file was found, hFind will be valid. 
if (hFind != INVALID_HANDLE_VALUE) { 

II Loop through found files. Be sure to process file 
II found with FindFirstFile before calling FindNextFile. 
do { 



344 Part II Windows CE Programming 

} 

II If found file is not a directory, add its size to 
II the total. (Assume that the total size of all files 
II is less than 2 GB.) 
if (!(fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)) 

nTotalSize += fd.nFileSizeLow; 

II See if another file exists. 
} while (FindNextFile (hFind, &fd)); 

II Clean up by closing file search handle. 
FindClose (hFind); 

In this example, the Windows directory is searched for all files. If the found "file" isn't a direc

tory; that is, if it's a true file, its size is added to the total. Notice that the return handle from 

FindFirstFile must be checked, not only so that you know whether a file was found, but also 
to prevent FindC/ose from being called if the handle is invalid. 

A more advanced version of the FindxxxFile API is FindFirstFileEx. The advantage of this func

tion is the added ability to enumerate only directories and even to enumerate the device 

drivers currently running. The function is prototyped as 

HANDLE FindFirstFileEx(LPCTSTR lpFileName, 
FINDE)(_INFO_LEVELS finfoLevelid, 
LPVOID lpFindFileData, FINDE)(_SEARCH_OPS fSearchOp, 
LPVOID lpSearchFilter, DWORD dwAdditionalFlags); 

As in FindFirstFile, the first parameter, lpFileName, specifies the search string. The parameter 

flnfoleve/Jd must be set to the constant FindExlnfoStandard. Given that the second param

eter must be FindExlnfoStandard, the third parameter always points to a WIN32_FIND_DATA 
structure. The final two parameters, lpSearchFilter and dwAdditiona/Flags, must be set to 0 on 
Windows CE. 

The fourth parameter, fSearchOp, is what differentiates FindFirstFileEx from FindFirstFile 
on Windows CE. This parameter can be one of three values: FindExSearchNameMatch, 
FindExSearchlimitToDirectories, or FindExSearchlimitToDevices. The value FindExSearchNameMatch 
tells FindFirstFileEx to act just like FindFirstFile, searching for a matching file name. The value 

FindExSearchlimitToDirectories indicates that the function should search only for directories 

matching the search specification. This search should be slightly faster than repeatedly calling 
FindFirstFile and checking for the directory attribute because this check is done inside the file 

system, thereby reducing the number of FindNextFile calls. The final value, FindExSearchlimitTo 
Devices, is the most interesting. It causes the function to search the names of the loaded device 

drivers to find a matching name. You shouldn't provide a path, with the exception of an op

tional leading "\'. 

FindFirstFileEx returns a handle if the search is successful and returns INVALID_HANDLE_ 
VALUE if the search fails. When performing a search, use FindFirstFileEx in place of 

FindFirstFile. To search for the second and all other files, call FindNextFile. When you have 

completed the search, call FindC/ose to close the handle. 



Chapter 9 The Windows CE File System 345 

Distinguishing Drives from Directories 

As I mentioned at the beginning of this chapter, Windows CE doesn't support the concept 

of drive letters so familiar to Windows users. Instead, file storage devices such as Compact 
Flash cards or even hard drives are shown as directories in the root directory. That leads to 

the question, "How can you tell a directory from a drive?" To do this, you need to look at the 

file attributes for the directory. Directories that are actually secondary storage devices-that 

is, they store files in a place other than the root file system-have the file attribute flag 
FILE_ATTRIBUTE_ TEMPORARY set. Windows CE also uses this attribute flag for other "nondi

rectory" directories such as the NETWORK folder. The NETWORK folder lists network shares. 

So finding storage devices on any version of Windows CE is fairly easy, as is shown in the fol

lowing code fragment: 

WIN32_FIND_DATA fd; 
HANDLE hFind; 
TCHAR szPath[MAX_PATH], szName[MAX_PATH]; 
ULARGE_INTEGER lnTotal, lnFree; 

StringCchCopy(szPath, dim(szPath), TEXT("\\*.*")); 
hFind = FindFirstFile (szPath, &fd); 

if (hFind != INVALID_HANDLE_VALUE) { 
do { 

} 

if ((fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) && 
(fd.dwFileAttributes & FILE_ATTRIBUTE_TEMPORARY)) { 

} 

StringCchCopy(szName, dim(szName), fd.cFileName); 
StringCchCat(szName, dim(szName), TEXT ("\\Vol:")); 
HANDLE h = CreateFile (szName, 

GENERIC_READIGENERIC_WRITE, 
0, NULL, OPEN_EXISTING, 
FILE_ATTRIBUTE_NORMAL, NULL); 

if (h != INVALID_HANDLE_VALUE) { 
CloseHandle (h); 

} 

memset (&lnTotal, 0, sizeof (lnTotal)); 
memset (&lnFree, 0, sizeof (lnFree)); 
II Get the disk space statistics for drive. 
GetDiskFreeSpaceEx (fd.cFileName, NULL, &lnTotal, 

&lnFree); 
printf ("External Store %5 total %d Free %d\r\n", 

fd.cFileName, lnTotal .LowPart, lnFree.LowPart); 

} while (FindNextFile (hFind, &fd)); 

FindClose (hFind); 

This code uses the find first/find next functions to search the root directory for all directories 

with the FILE_ATTRIBUTE_TEMPORARY attribute set. It then checks to see whether the 



346 Part II Windows CE Programming 

directory can be opened as a volume. Other directories with the FILE_ATTRIBUTE_ 
TEMPORARY flag can't be opened because they don't represent file system volumes. 

Notice the call to the following function in the code I just showed you: 

BOOL GetDiskFreeSpaceEx (LPCWSTR lpDirectoryName, 
PULARGE_INTEGER lpFreeBytesAvailableToCaller, 
PULARGE_INTEGER lpTotalNumberOfBytes, 
PULARGE_INTEGER lpTotalNumberOfFreeBytes); 

This function provides information about the total size of the drive and the amount of free 

space it contains. The first parameter is the name of any directory on the drive in ques

tion. This doesn't have to be the root directory of the drive. GetDiskFreeSpaceEx returns 

three values: the free bytes available to the caller, the total size of the drive, and the total 
free space on the drive. These values are returned in three ULARGE_INTEGER structures. 

These structures contain two DWORD fields named LowPart and HighPart. This allows 

GetDiskFreeSpaceEx to return 64-bit values. If you aren't interested in one or more of the 

fields, you can pass a NULL in place of the pointer for that parameter. You can also use 

GetDiskFreeSpaceEx to determine the size of the object store. 

Another function that can be used to determine the size of the object store is 

BOOL GetStoreinformation (LPSTORE_INFORMATION lpsi); 

GetStorelnformation takes one parameter, a pointer to a STORE_ INFORMATION structure 

defined as 

typedef struct STORE_INFORMATION { 
DWORD dwStoreSize; 
DWORD dwFreeSize; 

} STORE_INFORMATION, *LPSTORE_INFORMATION; 

As you can see, this structure simply returns the total size and amount of free space in the 

object store. 

Dealing with Storage 
The file system API just discussed is used by applications to access files regardless of the file 

system that is storing the file. As Windows CE has matured, the different file systems sup

ported by the operating system have increased from the original object store file system to a 

variety of file systems from FAT to UDFS to custom flash file systems. Along the way, storage 

capacity has not just grown, but grown exponentially. These developments have prompted 
the need for a way to manage these disparate file systems. The Storage Manager, which 

manages these file systems, provides a series of functions that allow applications to manage 

file systems and file system volumes. 



Chapter 9 The Windows CE File System 347 

The Object Store 
The default file system, and the original Windows CE file system, is the object store. The object 

store is equivalent to the hard drive on a Windows CE device. It's a subtly complex file storage 

system incorporating compressed RAM storage for read/write files and seamless integration 

with ROM-based files. A user sees no difference between a file in RAM in the object store 

and those files based in ROM. Files in RAM and ROM can reside in the same directory, and 

document files in ROM can be opened (although not modified) by the user. In short, the object 
store integrates the default files provided in ROM with the user-generated files stored in RAM. 

To the programmer, the difference between files in the RAM part of the object store and the 

files based in ROM are subtle. The files in ROM can be detected by a special in-ROM file attri

bute flag. Execute-in-place (XIP) modules in ROM are marked by an additional ROM-Module 

attribute indicating their XIP status. XIP files can't be opened using the standard file opening 

functions such as CreateFile. In addition, some files in ROM and almost all files in RAM are 

compressed and therefore marked with the compressed file attribute. 

The object store in Windows CE has some basic limitations. First, the size of the object store 

is currently limited to 256 MB of RAM. Given the compression features of the object store, 

this means that the amount of data that the object store can contain is somewhere around 

512 MB. Individual files in the object store are limited to 32 MB. These file size limits don't 

apply to files in secondary storage such as hard drives, SD cards, and CompactFlash cards. 

Accessing Volumes With the File API 
As just mentioned, it's possible to easily determine which top-level directories are really file 

system volumes. After you discover an external file system, there are a number of ways to 

find out information about that volume. The first is to call the function 

BOOL CeGetVolumeinfo (LPCWSTR pszRootPath, 
CE_VOLUME_INFO_LEVEL Infolevel, 
LPCE_VOLUME_INFO lpVolumeinfo); 

The first parameter is the name of the folder representing the volume. The second pa

rameter specifies the information level for the query. The only valid information level is 

Vo/umelnfoleve/Standard. The final parameter is a pointer to a CE_ VOLUME_ INFO structure 

defined as 

typedef struct _CE_VOLUME_INFO { 
DWORD cbSize; 
DWORD dwAttributes; 
DWORD dwFlags; 
DWORD dwBlockSize; 
TCHAR szStoreName[STORENAMESIZE]; 
TCHAR szPartitionName[PARTITIONNAMESIZE]; 

} CE_VOLUME_INFO; 



348 Part II Windows CE Programming 

The first field of CE_ VOLUME_ INFO is the size of the structure that should be set before call

ing CeGetVolumelnfo. The dwAttributes field contains attribute flags describing the volume. 

The following list details the possible attribute flags. 

• CE_VOLUME_ATTRIBUTE_READONLY The volume is read-only. 

• CE_VOLUME_ATTRIBUTE_HIDDEN The volume is hidden. 

• CE_VOLUME_ATTRIBUTE_REMOVABLE The volume can be removed. 

• CE_VOLUME_ATTRIBUTE_SYSTEM All files and directories on the volume are treated 

as system files and directories. 

• CE_VOLUME_ATTRIBUTE_BOOT The volume is the boot volume and contains the 

registry information. 

The dwflags field contains even more information about the volume: 

• CE_VOLUME_TRANSACTION_SAFE The volume transacts actions on the volume al

location structures. 

• CE_VOLUME_FLAG_TRANSACT_WRITE The volume transacts file write operations. 

• CE_VOLUME_FLAG_WFSC_SUPPORTED The volume supports "scatter gather" reads 
and writes. 

• CE_VOLUME_FLAG_LOCKFILE_SUPPORTED The volume supports the LockFile API. 

• CE_VOLUME_FLAG_NETWORK The volume is a network share. 

• CE_VOLUME_FLAG_STORE The volume is backed up by physical storage. 

• CE_VOLUME_FLAG_RAMFS The volume is a RAM-based file system. 

• CE_VOLUME_FLAG_FILE_SECURITY_SUPPORTED The volume supports security. 

• CE_VOLUME_FLAG_64BIT_FILES_SUPPORTED The volume supports files larger than 

2 GB. 

The dwB/ockSize field contains the smallest unit of allocation on the storage volume. For 

example, on a FAT-based file system this is the cluster size of the file system. 

The szStoreName field contains the name of the block mode device driver for the storage 

hardware. This is typically something like "DSKl:". The szPartitionName is the name of the 

partition on the storage device. While this partition name can be specified when the drive is 

partitioned, most partitions are named by default with something like "PartOO" and "PartOl." 

CeGetVolumelnfo returns a wealth of information on the volume. The attribute and flags 
fields let you find the boot file system, and determine if the file system is RAM based or if it 

supports the LockFileEx function. The final two fields, szStoreName and szPartition, provide 

information on the underlying driver support for the volume. We can use these two names 

with the storage manager to determine even more information. 



Chapter 9 The Windows CE File System 349 

The Storage Manager 

The storage manager provides applications and a method to work with the storage devices 

and their partitions. Devices and partitions can be opened and queried to determine their 
size, attributes, and other useful information. 

The storage manager also provides the ability to repartition devices as well as formatting devices 

and partitions. The formatting at this level consists of clearing the partition table, in the case of 

formatting a device; or setting the partition type, in the case of formatting a partition. Actually 

placing a file system on a partition is accomplished by the driver for a particular file system. 

Opening, Querying a Storage Device 

To work with a storage device, we first need to open it. The function to open a device is the 

appropriately named 

HANDLE OpenStore (LPCSTR szDeviceName); 

The only parameter, szDeviceName, is the name of the block mode driver, for example, 

"DSKl:". The return value is a handle that can be used by various other storage manager 

functions. When you are done with the handle, call CloseHandle to close the handle. 

Once opened, information about the device can be queried with the function 

BOOL GetStoreinfo (HANDLE hStore, PSTOREINFO pStoreinfo); 

The first parameter is the handle returned from OpenStore. The second parameter is a 

pointer to a STOREINFO structure that describes the storage device. The cbSize field of the 

STOREINFO structure should be set before calling GetStorelnfo. 

The STOREINFO structure is defined as 

typedef struct { 
DWORD cbSize; 
TCHAR szDeviceName[DEVICENAMESIZE]; 
TCHAR szStoreName[STORENAMESIZE]; 
DWORD dwDeviceClass; 
DWORD dwDeviceType; 
STORAGEDEVICEINFO sdi ; 
DWORD dwDeviceFlags; 
SECTORNUM snNumSectors; 
DWORD dwBytesPerSector; 
SECTORNUM snFreeSectors; 
SECTORNUM snBiggestPartCreatable; 
FILETIME ftCreated; 
FILETIME ftLastModified; 
DWORD dwAttributes; 
DWORD dwPartitionCount; 
DWORD dwMountCount; 

} STOREINFO, *PSTOREINFO; 



350 Part II Windows CE Programming 

The rather big STOREINFO structure provides some interesting information about the stor

age device. The szDeviceName is the name of the device driver managing the device. The 

name will be something similar to "DSKl:". The szStoreName is a friendly name that can 

be displayed to users. This is not the name of the directory where the device is mounted. 

The dwDeviceClass field can contain either STORAGE_ DEVICE_ CLASS_BLOCK or STORAGE_ 
DEVICE_ CLASS_ MULTIMEDIA. The dwDeviceType field has a series of self-explanatory flags in 

the following list: 

• STORAGE_DEVICE_TYPE_PCllDE 

• STORAGE_DEVICE_TYPE_FLASH 

• STORAGE_DEVICE_TYPE_ATA 

• STORAGE_DEVICE_TYPE_ATAPI 

• STORAGE_DEVICE_ TYPE_PCCARD 

• STORAGE_DEVICE_TYPE_CFCARD 

• STORAGE_DEVICE_TYPE_SRAM 

• STORAGE_DEVICE_TYPE_DVD 

• STORAGE_DEVICE_TYPE_CDROM 

• STORAGE_DEVICE_TYPE_USB 

• STORAGE_DEVICE_TYPE_DOC 

• STORAGE_DEVICE_TYPE_UNKNOWN 

• STORAGE_DEVICE_TYPE_REMOVABLE_DRIVE 

• STORAGE_DEVICE_TYPE_REMOVABLE_MEDIA 

The interesting flags are the removable media and removable drive flags indicating if the 

storage device or media can be removed from the system. These two flags are combined 

with one or more device technology flags such as STORAGE_DEVICE_TYPE_USB to com

plete the field. It's possible a device might report more than one device technology flag. 

For example, an IDE controller might report both the STORAGE_DEVICE_TYPE_PCllDE and 

STORAGE_DEVICE_ TYPE_ATA flags. 

The dwDeviceF/ags field contains flags indicating the support for read-only or read/write ac

cess to the device. In addition, there are flags to indicate if the device is transacted and if it 

needs media sense notifications. The snNumSectors field is a 64-bit field that contains the 

total number of sectors on the device. Multiplying this value by the dwBytesPerSector field 

will provide the total capacity of the device. The snFreeSectors field contains the number of 

sectors currently not allocated to a partiton. The snBiggestPartCreatable field contains the 

number of sectors that can be dedicated to a new partition. 



Chapter 9 The Windows CE File System 351 

The ftCreated and ftLastModified field contains FILETIME values that indicate when the device 
was initially formatted and when the last partition was created. However, many device drivers 
do not record these times, and on these devices, the two fields will be zero. The dwAttributes 
field contains the attribute flags for the volume. The possible values are the same flags dis
cussed in the dwAttribute field of the CE_ VOLUME_ INFO structure. Finally, the dwPartition
Count field contains the number of partitions on the device. The dwMountCount indicates the 

number of the partitions that have been mounted as volumes in the system. 

Enumerating Storage Devices 

To use GetStorelnfo on a storage device, you first have to open the device; to do that you 
need to know the device name. One method of learning about the storage devices on a sys

tem is to enumerate them using the function 

HANDLE FindFirstStore (PSTOREINFO pStoreinfo); 

The only parameter to the function is a pointer to a STOREINFO structure. This is the same 

STOREINFO structure just discussed. As with GetStorelnfo, the cbSize field of this structure 
should be filled with the size of the structure before the call is made to FindFirstStore. If the 
function returns anything but INVALID_HANDLE_ VALUE, the STOREINFO structure contains 

information about the first storage device found. To find other storage devices, repeated calls 
should be made to 

BOOL FindNextStore (HANDLE hSearch, PSTOREINFO pStoreinfo); 

The parameters are the handle returned by FindFirstStore and a pointer to a STOREINFO 
structure. FindNextStore should be called until it returns FALSE indicating there are no more 
storage devices to enumerate. At that point, a call to 

BOOL FindCloseStore (HANDLE hSearch); 

should be made to close the store enumeration handle. 

Enumerating Partitions 

Large storage devices are typically partitioned. As on the desktop, each partition is mounted 
as a separate volume. Like devices, partitions can be opened if you know the name of the 
partition. However, it's usually easier to enumerate the partitions on a particular device with 

the function 

HANDLE FindFirstPartition (HANDLE hStore, PPARTINFO pPartinfo); 

The first parameter is the handle of the open storage device. The second is a pointer to a 
PARTINFO structure. I will discuss the PARTINFO structure below. At this point, its impor

tant to know that the cbSize field of this structure should be filled with the size of the struc
ture before the call is made to FindFirstPartition. If the function returns a valid handle, the 



352 Part II Windows CE Programming 

PARTINFO structure contains information about the first partition found on the device. To 

enumerate the other partitions, repeated calls should be made to 

BOOL FindNextPartition (HANDLE hSearch, PPARTINFO pPartinfo); 

The parameters are the handle returned by FindFirstPartition and a pointer to a PART/NFO 

structure. As with FindNextStore, FindNextPartition should be called until it returns FALSE in

dicating there are no more partitions on the device to enumerate. At that point, a call to 

BOOL FindClosePartition (HANDLE hSearch); 

should be made to close the partition enumeration handle. 

The PARTINFO structure is defined as 

typedef struct tagPARTINFO 
{ 

DWORD cbSize; 
TCHAR szPartitionName[PARTITIONNAMESIZE]; 
TCHAR szFileSys[FILESYSNAMESIZE]; 
TCHAR szVolumeName[VOLUMENAMESIZE]; 
SECTORNUM snNumSectors; 
FILETIME ftCreated; 
FILETIME ftLastModified; 
DWORD dwAttributes; 
BYTE bPartType; 

} PARTINFO, *PPARTINFO; 

The szPartitionName field contains the name of the partition. As just mentioned, most parti

tions are named by default with something like "PartOO" and "PartOl." This is the name that 

would be used to open a partition with OpenPartition. The szFileSys field contains the name 
of the file system driver that is implementing the file system for the partition. For example, 

the FAT file system DLL is typically named FATFS.DLL in earlier versions of Windows CE and 

EXFAT.DLL for Windows CE 6. The szFileSys field is important, because you will use the DLL in 

this field when formatting the partition. The szVolumeName field contains the string that is 

the name of the folder that contains the volume. Typical names for this are "Storage Card" or 

"Hard Disk2." 

The snNumSectors field contains the size of the partition in sectors. The ftCreated and ftlast

Modified fields contain creation and modification times for the partition. Many storage driv

ers do not keep this information. For these systems, the fields are zero. 

The dwAttributes field can have the following flags: 

• PARTITION_ATTRIBUTE_READONLY Partition is read only. 

• PARTITION_ATTRIBUTE_ACTIVE This is a bootable partition. 

• PARTITION_ATTRIBUTE_BOOT Same as PARTITION_ATTRIBUTE_ACTIVE. 

• PARTITION_ATTRIBUTE_MOUNTED Partition is mounted. 



Chapter 9 The Windows CE File System 353 

The bPartType field contains the partition type. The partition type value, like the partition 
scheme itself, has its roots back in the MS-DOS 3.1 days when it originally defined values 
indicating primary and extended partition types. As newer versions of DOS and other oper

ating systems, including OS/2, Windows, and various Unix implementations appeared, each 
added new partition types for its particualar storage format. Ironically, it's variants of the 
original DOS FAT file system and its partition types that are the lingua franca for storage for

mats across operating systems today. For Windows CE, these partition types are listed in the 
registry and provide the file system manager guidance in which file system to load. 

Working with Partitions 

Creating a partition is accomplished with the function 

BOOL CreatePartitionEx (HANDLE hStore, LPCTSTR szPartitionName, 
BYTE bPartType, SECTORNUM snNumSectors); 

The first parameter is the handle to the open storage device. The szPartitionName should be 
set to the name of the partition. Depending on the device, the partition name may not be 
kept if the system is restarted. The bPartType parameter defines the partition type param
eter, which identifies the file system expected to be used when accessing the partition. The 
snNumSectors parameter is a 64-bit parameter that specifies the number of sectors for the 
partition. The storage device must have enough contiguous unallocated sectors to create the 

partition. 

Deleting a partition can be accomplished with the function 

BOOL DeletePartition (HANDLE hStore, LPCTSTR szPartitionName); 

The parameters are the handle to the storage device and the name of the partition. 

On a running system, partitions with FAT partition IDs are typically mounted automatically 
either on boot or when the storage device is inserted. To format a partition or to delete a se
ries of partitions so the device can be repartitioned with differently sized partitions, the par
titions need to be unmounted. Partitions are mounted and unmounted with the functions: 

BOOL MountPartition (HANDLE hPartition); 
BOOL DismountPartition (HANDLE hPartition); 

For both these functions, the only parameter is the handle returned by OpenPartition. 

Formatting Volumes 

One place where the storage manager can't help is in formatting partitions. While there is a 
FormatPartition function, all it does is clear the first sector of the partition. The task of actu

ally formatting a partition so that it can store data is the job of the file system driver that will 
be using the partition to store data. 



354 Part II Windows CE Programming 

The function that will format a partition is 

DWORD FormatVolume (HANDLE hVolume, PDISK_INFO pdi, 
PFORMAT_OPTIONS pfo, PFN_PROGRESS pfnProgress, 
PFN_PROGRESS pfnMessage); 

The first parameter is the handle to the partition to format. The pdi parameter is ignored. 
The pfo parameter points to a FORMAT_ OPTIONS structure that describes the options for 
the format. If pfo is set to NULL, FormatVolume uses the default settings for the format. The 

pfnProgress parameter points to a callback function that will be called to display progress 
feedback to the user. The final parameter pfnMessage points to a callback routine that will be 

called if there is an error during the format process. 

The FORMAT_ OPTIONS structure is defined as 

typedef struct _FORMAT_OPTIONS { 
DWORD dwClusSize; 
DWORD dwRootEntries; 
DWORD dwFatVersion; 
DWORD dwNumFats; 
DWORD dwFlags; 

} FORMAT_OPTIONS *PFORMAT_OPTIONS; 

Notice that this structure is very FAT-centric. The only file system delivered with Windows CE 

that can format a partition is FAT. Third parties can provide file system drivers with their own 
formatting functions. I'll discuss in the next section how this is accomplished. The dwC/usSize 
parameter specifies the number of bytes in each cluster on the volume. In FAT, the cluster is 

the smallest unit of allocation. This value should be zero for a default cluster size or a power 
of two between 512 and 32768. The dwRootEntries field specifies the number of root direc
tory entries to specify for the volume. The dwFatVersion field specifies the version of FAT; 
12, 16, or 32, to be used when formatting the volume. If this field is zero, the file system will 
determine which version of FAT to use depending on the size of the partition. The dwNum
Fats field can be set to 1 or 2 to specify the number of FAT tables to be used in the partition. 

Finally, the dwF/ags value can be set to the following flags: 

• FATUTIL_FULL_FORMAT Perform full format, writing to every sector. 

• FATUTIL_FORMAT_TFAT Format the partition for transacted FAT file system. 

• FATUTIL_DISABLE_MOUNT_CHK Skip check to see if partition mounted before for
matting partition. 

• FATUTIL_SECURE_WIPE When formatting partiton, attempt to zero out all data on 
partition, even if a reboot occurs during format. 

• FATUTIL_FORMAT_EXFAT Format the partition with the extended FAT file system. 

In addition to FormatVolume, Windows CE also supports FormatVolumeU/ prototyped as 

VOID FormatVolumeUI (HANDLE hVolume, HWND hWnd); 



Chapter 9 The Windows CE File System 355 

This function presents a dialog box that provides the ability for the user to select the pa

rameters for the format. The two parameters are the handle of the partition and a window 

handle that will be the owner window of the dialog box. 

Finding the FormatVolume API 

Unlike almost all the functions I discuss in this chapter, you can't just provide and include file, 

link to a library file, and directly call FormatVolume. The problem is that the location of the 

code for FormatVolume is dependent on the file system being formatted. In addition, there is 

a bit of a twist to this tale. The FAT file system driver provided with Windows CE. uses a sepa

rate DLL for the formatting functions. So, if it's FAT that needs to be formatted, a different 

DLL must be loaded. 

To locate the FormatVolume call, use the szFileSys field of the PARTINFO structure. This 

field names the file system DLL for the partition. If the field contains the string FATFSD. 

DLL or EXFAT.DLL, then load FATUTIL.DLL instead. If any other file system driver is speci-

fied, you should load that DLL. The DLL can be opened with Loadlibrary. Once loaded, use 

GetProcAddress to find the FormatVolume entry point. GetProcAddress will return a pointer 
to the function that can then be called. This technique of manually loading a DLL and finding 

an exported function was covered in Chapter 8. 

That covers the Windows CE file system. As you can see, very little Windows CE-unique code 

is necessary when you're working at the file API level. The storage manager, however, is a 

different story with a series of Windows CE unique calls. Regardless of how it's done, the 

file system functionality in Windows CE should provide developers with all they will need 

for dealing with storage at the file or device level. Now let's look at the registry API, where 

Windows CE follows the Win32 API quite closely. 





Chapter 10 

The Registry 
The registry is a system database used to store configuration information for applications 

and for Windows itself. The registry as defined by Windows CE is similar but not identical in 

function and format to the registries under other versions of Windows. In other words, for an 

application, most of the same registry access functions exist, but the layout of the Windows 

CE registry doesn't exactly follow the desktop. 

As in all versions of Windows, the registry is made up of keys and values. Keys can con-

tain keys or values or both. Values contain data in one of a number of predefined formats. 

Because keys can contain keys, the registry is distinctly hierarchical. The highest-level keys, 

the root keys, are specified by their predefined numeric constants. Keys below the root keys 

and values are identified by their text name. Multiple levels of keys can be specified in one 

text string by separating the keys with a backslash (\). 

To query or modify a value, the key containing the value must first be opened, the value 

queried or written, and then the key closed. Keys and values can also be enumerated so that 

an application can determine what a specific key contains. Data in the registry can be stored 

in a number of different predefined data types. Among the available data types are strings, 
32-bit numbers, and free-form binary data. 

Registry Organization 
The Windows CE registry supports three of the high-level, root, keys seen on other Windows 
platforms: HKEY_LOCAL_MACH/NE, HKEY_CURRENT_USER, and HKEY_CLASSES_ROOT. As 

with other Windows platforms, Windows CE uses the HKEY_LOCAL_MACHINE key to store 

hardware and driver configuration data, HKEY_CURRENT_USER to store user-specific con

figuration data, and the HKEY_ CLASSES_ROOT key to store file type matching and OLE 

configuration data. When Windows CE is operating under a multiuser configuration, the 

HKEY_CURRENT_USER will be specific to the user currently logged in. 

As a practical matter, the registry is used by the operating system, drivers, and applications 

to store state information that needs to be saved across invocations. Applications typically 

store their current state when they are requested to close and then restore this state when 

they are launched again. The traditional location for storing data in the registry by an appli

cation is obtained by means of the following structure: 

{ROOT_KEY}\Software\{Company Name}\{Company Product} 

357 



358 Part II Windows CE Programming 

In this template, ROOT_ KEY is either HKEY_LOCAL_MACHINE for machine-specific data, such 

as what optional components of an application can be installed on the machine, or HKEY_ 
CURRENT_ USER for user-specific information, such as the list of the user's last-opened files. 

Under the Software key, the name of the company that wrote the application is used fol

lowed by the name of the specific application. For example, Microsoft saves the user settings 

information for Internet Explorer under the key 

HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer 

While this hierarchy is great for segregating registry values from different applications from 

one another, it's best not to create too deep a set of keys. Because of the way the registry is 

designed, it takes less memory to store a value than it does a key. Because of this, you should 

design your registry storage so that it uses fewer keys and more values. To optimize even 

further, it's more efficient to store more information in one value than to have the same in

formation stored across a number of values. 

The window in Figure 10-1 shows the hierarchy of keys used to store data for Internet 

Explorer. The left pane shows the hierarchy of keys down to the Settings key under the 

Internet Explorer key. In the Settings key, four values are stored: Anchor Color, Anchor Color 

Visited, Background Color, and Text Color. In this case, these values are string values, but they 

could have been DWORDs or other data types. 

r±J .. /-·'"'_: ConMan 
HJ '~''° CoreCon 
Fl · .,: Internet Explorer 

$ : International 
1±1· ,_Main 
~ .,.,. PageSetup 

i!±i'llmlll 
$ : '.· NetShow 
l±J;:·. Windows 
Start 

HKEY _LOCAL_MACHINE 
HKEY _USERS 

FIGURE 10-1 The hierarchy of registry values stored by Internet Explorer 



Chapter 10 The Registry 359 

The Registry API 
Now let's turn toward the Windows CE registry API. In general, the registry API provides all 

the functions necessary to read and write data in the registry as well as enumerate the keys 

and data store within. 

Opening and Creating Keys 

You open a registry key with a call to this function: 

LONG RegOpenKeyEx (HKEY hKey, LPCWSTR lpszSubKey, DWORD ulOptions, 
REGSAM samDesired, PHKEY phkResult); 

The first parameter is the key that contains the second parameter, the subkey. This first key 

must be either one of the root key constants or a previously opened key. The subkey to open 

is specified as a text string that contains the key to open. This subkey string can contain 

multiple levels of subkeys as long as each subkey is separated by a backslash. For example, 

to open the subkey HKEY_LOCAL_MACHINE\Software\Microsoft\Pocket Word, an applica
tion could either call RegOpenKeyEx with HKEY_LOCAL_MACHINE as the key and Software\ 
Microsoft\Pocket Word as the subkey or open the Software\Microsoft key and then make a 

call with that opened handle to RegOpenKeyEx, specifying the subkey Pocket Word. Key and 

value names aren't case specific. 

Windows CE ignores the u/Options and samDesired parameters. To remain compatible with 

future versions of the operating system that might use security features, these parameters 

should be set to 0 for u/Options and NULL for samDesired. The phkResult parameter should 

point to a variable that will receive the handle to the opened key. The function, if successful, 
returns a value of ERROR_SUCCESS and an error code if it fails. 

Another method for opening a key is 

LONG RegCreateKeyEx (HKEY hKey, LPCWSTR lpszSubKey, DWORD Reserved, 
LPWSTR lpszClass, DWORD dwOptions, 
REGSAM samDesired, 
LPSECURITY_.ATTRIBUTES lpSecurityAttributes, 
PHKEY phkResult, LPDWORD lpdwDisposition); 

The difference between RegCreateKeyEx and RegOpenKeyEx, aside from the extra param

eters, is that RegCreateKeyEx creates the key if it didn't exist before the call. The first two 

parameters, the key handle and the subkey name, are the same as in RegOpenKeyEx. The 

Reserved parameter should be set to 0. The lpC/ass parameter points to a string that con

tains the class name of the key if it's to be created. This parameter can be set to NULL if 
no class name needs to be specified. The dwOptions parameter indicates if the newly cre

ated key is to be volatile or nonvolatile. The default is nonvolatile, indicating that the key 

will persist when the system restarts. To create a volatile key, dwOptions should be set to 

REG_ OPTION_ VOLATILE. The samDesired and lpSecurityAttributes parameters should be 



360 Part II Windows CE Programming 

set to NULL. The phkResult parameter points to the variable that receives the handle to the 

opened or newly created key. The lpdwDisposition parameter points to a variable that's set to 

indicate whether the key was opened or created by the call. If the key was created, the pa

rameter will be set to REG_CREATED_NEW_KEY. If the key previously existed, the value will be 
REG_OPENED_EXISTING_KEY. 

Reading Registry Values 

You can query registry values by first opening the key containing the values of interest and 

calling this function: 

LONG RegQueryValueEx (HKEY hKey, LPCWSTR lpszValueName, 
LPDWORD lpReserved, LPDWORD lpType, 
LPBYTE lpData, LPDWORD lpcbData); 

The hKey parameter is the handle of the key opened by RegCreateKeyEx or RegOpenKeyEx. 
The lpszValueName parameter is the name of the value that's being queried. The lpType pa

rameter is a pointer to a variable that receives the variable type. The lpData parameter points 
to the buffer to receive the data, while the lpcbData parameter points to a variable that re

ceives the size of the data. If RegQueryVa/ueEx is called with the lpData parameter equal to 

NULL, Windows returns the size of the data but doesn't return the data itself. This allows ap

plications to first query the size and type of the data before actually receiving it. 

Writing Registry Values 

You set a registry value by calling 

LONG RegSetValueEx (HKEY hKey, LPCWSTR lpszValueName, DWORD Reserved, 
DWORD dwType, const BYTE *lpData, DWORD cbData); 

The parameters here are fairly obvious: the handle to the open key followed by the name of 

the value to set. The function also requires that you pass the type of data, the data itself, and 

the size of the data. The data type parameter is simply a labeling aid for the application that 

eventually reads the data. Data in the registry is stored in a binary format and returned in that 

same format. Specifying a different type has no effect on how the data is stored in the registry 

or how it's returned to the application. However, given the availability of third-party registry 
editors, you should make every effort to specify the appropriate data type in the registry. 

The data types can be one of the following: 

• REG_SZ A zero-terminated Unicode string 

• REG_EXPAND_SZ A zero-terminated Unicode string with embedded environment 
variables 

• REG_MULTl_SZ A series of zero-terminated Unicode strings terminated by two zero 

characters 



Chapter 10 The Registry 361 

• REG_DWORD A 4-byte binary value 

• REG_BINARY Free-form binary data 

• REG_DWORD_BIG_ENDIAN A DWORD value stored in big-endian format 

• REG_DWORD_LITTLE_ENDIAN Equivalent to REG_DWORD 

• REG_LINK A Unicode symbolic link 

• REG_NONE No defined type 

• REG_RESOURCE_LIST A device driver resource list 

You can glean a wealth of information about a key by calling this function: 

LONG RegQuerylnfoKey (HKEY hKey, LPWSTR lpszClass, LPDWORD lpcchClass, 
LPDWORD lpReserved, LPDWORD lpcSubKeys, 
LPDWORD lpcchMaxSubKeyLen, 
LPDWORD lpcchMaxClassLen, 
LPDWORD lpcValues, LPDWORD lpcchMaxValueNameLen, 
LPDWORD lpcbMaxValueData, 
LPDWORD lpcbSecurityDescriptor, 
PFILETIME lpftLastWriteTime); 

The only input parameter to this function is the handle to a key. The function returns the class 

of the key, if any, as well as the maximum lengths of the subkeys and values under the key. The 

last parameter, last write time, is not supported under Windows CE and should be set to NULL. 

Deleting Keys and Values 

You delete a registry key by calling 

LONG RegDeleteKey (HKEY hKey, LPCWSTR lpszSubKey); 

The parameters are the handle to the open key and the name of the subkey you plan to de

lete. For the deletion to be successful, the key must not be currently open. You can delete a 
value by calling 

LONG RegDeleteValue (HKEY hKey, LPCWSTR lpszValueName); 

The function returns 0 to indicate success or a non-zero error code if the function failed to 
delete the value. 

Closing Keys 

You close a registry key by calling 

LONG RegCloseKey (HKEY hKey); 

When a registry key is closed, Windows CE flushes any unwritten key data to the registry be

fore returning from the call. 



362 Part II Windows CE Programming 

Enumerating Registry Keys 

In some instances, you'll find it helpful to be able to query a key to see what subkeys and 

values it contains. You accomplish this with two different functions: one to query the subkeys, 

another to query the values. The first function 

LONG RegEnumKeyEx (HKEY hKey, DWORD dwindex, LPWSTR lpszName, 
LPDWORD lpcchName, LPDWORD lpReserved, 
LPWSTR lpszClass, LPDWORD lpcchClass, 
PFILETIME lpftLastWriteTime); 

enumerates the subkeys of a registry key through repeated calls. The parameters to pass the 

function are the handle of the opened key and an index value. To enumerate the first subkey, 

the dwlndex parameter should be 0. For each subsequent call to RegEnumKeyEx, dwlndex 
should be incremented to get the next subkey. When there are no more subkeys to be enu

merated, RegEnumKeyEx returns ERROR_NO_MORE_ITEMS. 

For each call to RegEnumKeyEx, the function returns the name of the subkey and its class

name. The last write time parameter isn't supported under Windows CE. 

Values within a key can be enumerated with a call to this function: 

LONG RegEnumValue (HKEY hKey, DWORD dwindex, LPWSTR lpszValueName, 
LPDWORD lpcchValueName, LPDWORD lpReserved, 
LPDWORD lpType, LPBYTE lpData, LPDWORD lpcbData); 

Like RegEnumKey, this function is called repeatedly, passing index values to enumerate the 

different values stored under the key. When the function returns ERROR_NO_MORE_ITEMS, 

no more values are under the key. RegEnumValue returns the name of the values and the 

data stored in each value, as well as its data type and the size of the data. 

Flushing the Registry 

Windows CE will flush any changes to the registry to persistent storage when the registry key 

is closed. However, there may be times when you want to keep a key open but persist the 

changes immediately. To force a flush of the registry to persistent storage, call the function 

LONG RegFlushKey (HKEY hKey); 

The only parameter is the open key handle or one of the predefined keys such as 

HKEY_LOCAL_MACHINE. 

A word of warning about RegF/ushKey: although it may seem important to persist registry 

changes immediately, excessive calling of RegF/ushKey can have disastrous effects on the per

formance of the system. When this function is called, the system may write the entire registry 

to the persistent store. If the storage technology is slow, which it typically is relative to the 

other parts of the system, the performance impact is quite noticeable. 



Chapter 10 The Registry 363 

Registry Change Notifications 

Sometimes it is convenient to know when a registry entry has changed. Monitoring changes 

in the registry involves a sequence of calls similar to the FindFirst, FindNext, and FindC/ose call 

sequence for searching the file system. Add to that a bit of event handling logic, and you can 

monitor the registry. The process starts with a call to 

HANDLE CeFindFirstRegChange (HKEY hKey, BOOL bWatchSubTree, 
DWORD dwNotifyFilter); 

The parameters of this call start with the handle of the registry key that you want to monitor. 

This can be an open key handle or one of the top-level keys such as HKEY_LOCAL_MACHINE. 

The bWatchSubTree parameter should be set to TRUE if you want to be notified for changes 

for subkeys to the key indicated in the first parameter. The dwNotifyFilter specifies what 
changes are monitored. The possible flags can be a combination of REG_NOTIFY_CHANGE_ 
NAME and REG_NOTIFY_CHANGE_LAST_SET. The first flag enables monitoring of key 

changes, while the second enables monitoring of value changes. 

The value returned by CeFindFirstRegChange is an event handle. The handle will be in a 

signaled state when a change occurs. To use the handle, the application needs to create a 

nonuser interface thread; call CeFindFirstRegChange, and then call WaitForSingleObject on 

the change handle. The call to WaitForSingleObject won't return until the event is signaled, a 

timeout occurs, or an error occurs. Because this function blocks, it can't be called from a user 
interface thread that must spend its time in the message loop calling GetMessage. 

To monitor subsequent changes to the registry, call 

BOOL CeFindNextRegChange (HANDLE hNotify); 

The only parameter is the change handle returned from CeFindFirstRegChange. After the call 

to CeFindNextRegChange, wait again on the change handle with WaitForSingleObject. When 

you are done monitoring the registry, call the function 

BOOL CeFindCloseRegChange (HANDLE hNotify); 

The only parameter is the change notification handle. 

The RegView Example Program 

The following program is a registry viewer application. It allows a user to navigate the trees 

in the registry and examine the contents of the data stored. RegView doesn't let you edit the 

registry, just view it. However, such an extension wouldn't be difficult to make. Listing 10-1 

contains the code for the RegView program. 



364 Part II Windows CE Programming 

LISTING 10-1 

Reg View.re 

II====================================================================== 
II Resource file 
II 
II Copyright CO 2007 Douglas Boling 
II===================================================================== 
#include "windows.h" 
#include "regview.h" II Program-specific stuff 

ll------·----·--------------------------------------·-------------------
11 Icons and bitmaps 
II 
IO_ICON ICON "regview.ico" 
ID_BMPS BITMAP "TVBmps.bmp" 

II Program icon 

ID_MENU MENU DISCARDABLE 
BECIN 

END 

f'OPUP "&File" 
BEGIN 

MENUITEM "E&xi t", 
END 
POPUP "&Help" 
BEGIN 

MENUITEM "&About ... ", 
END 

IDM_EXIT 

IDM_ABOUT 

11-~-----~--~---"-------"------~-----------"~--~------------------------
11 About box dialog template 
II 
aboutbox DIALOG discardable 10, 10, 135, 40 
STYLE ws_POPUP 1 ws_vISIBLE 1 ws_CAPTION 1 ws_svsMENU I DS_CENTER I 

DS_MODALFRAME 
CAPTION "About" 
BEGIN 

!CON ID_ICON, -1, 3, 5, 10, 10 
LTEXT "RegView - Written for the book Programming Windows CE \ 

Copyright 2007 Douglas Boling" 
-1, 30, 5., 102, 33 

END 

RegVie\/V.h 

II===================================================================,,,== 
II Header file 
II 
II Written for the.book Programrning Windows CE 



Chapter 10 The Registry 365 

II Copyright (C) 2007 Douglas Boling 
II====================================================================== 
II Returns number of elements 
#define dim(x) (sizeof(x) I sizeof(x[O])) 

11----------------------------------------------------------------------
11 Generic defines and data types 
II 
struct decodeUINT { 

UINT Code; 

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM); 
} j 

struct decodeCMD { 
UINT Code; 
LRESULT (*Fxn)(HWND, WORD, HWND, WORD); 

} j 

struct decodeNotify { 
UINT Code; 
LRESULT (*Fxn)(HWND, UINT, HWND, LPNMHDR); 

} j 

II Structure associates 
II messages 
II with a function. 

II Structure associates 
II control IDs with a 
II function. 

II Structure associates 
II control IDs with a 
II notify handler. 

11-----------------~----------------------------------------------------
II Generic defines used by application 
#define IO_ICON 1 II App icon resource ID 
#define ID_BMPS 2 II Bitmap resource ID 
#define IDCCMDBAR 10 II Command band ID 
#define !D_MENU 11 II Main menu resource ID 
#define ID_TREEV 12 II Tree view control ID 
#define ID_LISTV 13 II List view control ID 

II Menu item IDs 
#define IDM_EXIT 101 11 Fi le menu 
#define IDM_ABOUT 150 II Help menu 

11----------------------------------------------------------------------
11 Function prototypes 
II 
HWND Initinstance (HINSTANCE, LPWSTR, int); 
int Terminstance (HINSTANCE, int); 

int EnumChildren (HWND, HTREEITEM, HKEY, LPTSTR, int); 
DWORD CountChildren (HKEY, LPTSTR, LPTSTR); 
int EnumValues (HWND, HKEY, LPTSTR); 
int DisplayValue (HWND, int, LPTSTR, PBYTE, DWORD, DWORD); 
int GetTree (HWND, HTREEITEM, HKEY *, TCHAR *, int*); 
HTREEITEM InsertTV (HWND, HTREEITEM, TCHAR *, LPARAM, DWORD); 
int InsertLV (HWND, int, LPTSTR, LPTSTR); 
HWND CreateLV (HWND, RECT *); 
HWND CreateTV (HWND, RECT *); 

II Window procedures 
LRESULT CALLBACK MainWndProc (HWND, U!NT, WPARAM, LPARAM); 



366 Part II Windows CE Programming 

II Message handlers 
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoSizeMain (HWNO, UINT, WPARAM, l..PARAM); 
LRESULT OoNotifyMain (HWND, UINT, WPARAM, LPARAM); 
L.RESULT DoCoinmandMain (HWND, UINT, WPARAM, LPARAM); 
LRESULI DoDestroyMain (HWNO, UINT, WPARAM, LPARAM); 

II Command functions 
LPARAM DoMainCommandExit (HWNO, WORD, HWND, WORD); 
LPARAM DoMainCommandAbout (HWND, WORD, HWND, WORD); 

II Notify functions 
LPARAM DoMainNotifyTreev (HWND, UINT, HWND, LPNMHDR); 

II Dialog procedures 
BOOL. CALLBACK AboutDlgProc (HWND, UINT, WPARAM, LPARAM); 

RegView.cpp 

II RegView·- Windows CE registry viewer 
II 
II Written for the book Programming Windows .CE 
II Copyright (C) 2()07 Douglas Boling 

#include <windows.h> 
#include <commctrl.h> 
#include "RegVi.eW.h" 

II For all that Windows stuff 
II Common_.control includes 
II Program-specific stuff 

11--------------------------------------------~-------------------------
ll Global data 
11. 
const ICHAR szAppName[] =TEXT ("RegView"); 
HINSTANCE hinst; II Program instance handle 
'int nDivPct = 40; II Divider setting between windows 

II Message dispatchtaple for MainWindowPr.oc 
const struct decodeUINT MainMessages[] = { 

WM~CREATE, DoCreateMain, 
WM_s!ZE, OoSi.zeMain, 
wM_CQMMANO, DoCommandMain, 
WM....NOTIFY, OoNoti.fyMa.in, 
WM_OESTROY, OoDestroyMain, 

}; 
II Command message dispatch for MainWindowProc 
const struct decodeCMD MainConimanditem$0 = { 

IOM....OOT, DoMainCommandExit, 
IDM....ABOUT, DoMainCommandAbout, 

}; 
· 11 Notification message dispatch for Mai nWi ndowP.roc 



Chapter 10 The Registry 367 

const struct decodeNotify MainNotifyitems[J { 
ID_TREEV, DoMainNotifyTreeV, 

} ; 
II====================================================================== 
II 
II Program entry point 
II 
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance, 

LPWSTR lpCmdLine, int nCmdShow) { 

} 

HWND hwndMain; 
MSG msg; 
int re = O; 

II Initialize this instance. 
hwndMain = Initinstance (hinstance, lpCmdLine, nCmdShow); 
if (hwndMain == O) 

return OxlO; 

II Application message loop 
while (GetMessage (&msg, NULL, 0, O)) { 

TranslateMessage C&msg); 
DispatchMessage (&msg); 

} 

II Instance cleanup 
return Terminstance (hinstance, msg.wParam); 

11----------------------------------------------------------------------
11 Initinstance - Instance initialization 
II 
HWND Initinstance (HINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow){ 

WNDCLASS we; 
INITCOMMONCONTROLSEX icex; 
HWND hWnd; 

II Save program instance handle in global variable. 
hinst = hinstance; 

#if defined(WIN32_PLATFORM_PSPC) I I defined(WIN32_PLATFORM_WFSP) 
II For Windows Mobile devices, allow only one instance of the app 
hWnd = FindWindow (szAppName, NULL); 
if (hWnd) { 

SetForegroundWindow ((HWND)(((DWORD)hWnd) I OxOl)); 
return O; 

} 

#endif 
II Register application main 
we.style = O; 

window class. 

wc.lpfnWndProc = MainWndProc; 
wc.cbClsExtra = O; 
wc.cbWndExtra = O; 
wc.hinstance = hinstance; 
wc.hicon = NULL, 
wc.hCursor = LoadCursor (NULL, 

II Window style 
II Callback function 
II Extra class data 
II Extra window data 
II Owner handle 
II Application icon 

ID(_ARROW);ll Default cursor 



368 Part II Windows CE Programming 

} 

lillc.hbrBackjjjround = CHBRUSH) GetStockObject (WH!TLBRUSH); 
wc. lpszMenuName • NULL; ff Menu name 
we .1 pszClassName = szAppName; f I Window cl ass name 

if (Registerclass (&we) - O) return o; 

II .Load the command. bar common control class. 
icex.dwSi ze "" si zeof (INITCOMMONCONTROLSEX); 
icex.dwICC "" IC(_BAR_CLASSES i IC(_TREEVIEW_CLASSES 

ICLLISTVIEW_CLASSES; 
InitCommonControlsEx (&icex); 

II Create main window. 
hWnd "'CreateWindciw (szAppName, TEXT (''RegView"), WS_VISIBLE, 

cw_USEDEFAULT, cw .... USEDEFAULT, cw_usEOEFAULT, 
CW...,USEDl:FAULT, NULL, NULL, hinstance, NULL); 

II Return fail code if window not created. 
if (IIsWindow (hWnd)). return O; 

II .Standard· show and update.calls 
.ShowWindow (hWnd, nCmdShow); 
UpdateWi ndow (hWnd) .; 
return hWnd; 

11---------------------------------------------------------------~------
l I Terminstance - Program cleanup 
II 
int Terminstance (HINSTANCE hinstance, int nDefRC) { 

returnnDefRC; 
} 

11-~=~=.=i=~;;;=i;;:=::i;:~---~=i=~:;;ii==~~·::=:==;ir;:it;:l:!.=a::;i;====-==;c==:;;::=============;===;::z:;:= 

II Message handling procedures forMainWindow 
11-~--------~--~------~-~---------------~----------------~----------~---
I / MainWndProc - Cali back function for application window 
II 
LRESULT' CALLBACK MainwndProc (HWND hWnd, uINT wMsg, WPARAM .wParam, 

LPARAM lParam) { 

} 

int i; 
fl 
11 Search message list to see if we need to handle this 
II message. If·in list, call procedure. 
II 
for Ci = O; i < dim(MainMessages); i++) { 

if (wMsg o== MainMessages[i];cade) 
return {*Mai nMessages[i J. Fxn) (hWnd, wMsg, wParam; 1 Pararri); · 

} 
retu.rn O'efWindowProc (hWnd, . wMsg, wParam, lParam); 

·11------------:---------~~-----------------------~---~------------~--~~-
l I DoCreate.Main - Process WM-CREATE message fur window. 
II 
LRES.ULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LP,ARAM lParam) { 



} 

HWND hwndCB, hwndChild; 
RECT rect; 

Chapter 10 The Registry 369 

II Create a minimal command bar that has only a menu and an 
II exit button. 
hwndCB = CommandBar_Create (hinst, hWnd, ID(_CMDBAR); 
II Insert the menu. 
CommandBar_InsertMenubar (hwndCB, hinst, ID_MENU, O); 
II Add exit button to command bar. 
CommandBar_AddAdornments (hwndCB, 0, O); 

II The position of the child windows will be set in WM_SIZE 
SetRect (&rect, 0, 0, 10, 10); 
II Create the tree view control 
hwndChild = CreateTV (hWnd, &rect); 
if (!IsWindow (hwndChild)) { 

} 

DestroyWindow (hWnd); 
return O; 

II Create the list view control 
hwndChild = CreateLV (hWnd, &rect); 
II Destroy frame if window not created. 
if (!IsWindow (hwndChild)) { 

DestroyWindow ChWnd); 
return O; 

} 

II Insert the base keys. 
InsertTV (hWnd, NULL, TEXT ("HKE¥_CLASSES_ROOT"), 

(LPARAM)HKEY_CLASSES_ROOT, 1); 
InsertTV (hWnd, NULL, TEXT ("HKEY_CURRENT_USER"), 

(LPARAM)HKEY_CURRENT_USER, 1); 
InsertTV (hWnd, NULL, TEXT ("HKE¥_LOCAL_MACHINE"), 

(LPARAM)HKEY_LOCAL_MACHINE, 1); 
InsertTV (hWnd, NULL, TEXT ("HKE¥_USERS"), 

(LPARAM)HKEY_USERS, 1); 
return O; 

11----------------------------------------------------------------------
11 DoSizeMain - Process WM_SIZE message for window. 
II 
LRESULT DoSizeMain (HWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam){ 

HWND hwndLV, hwndTV; 
RECT rect, rectLV, rectTV; 
int nDivPos, ex, cy; 

hwndTV = GetDlgitem (hWnd, ID_TREEV); 
hwndLV = GetDlgitem (hWnd, ID_LISTV); 

II Adjust the size of the client rect to take into account 
fl the command bar height. 
GetClientRect (hWnd, &rect); 
rect.top += CommandBar_Height (GetDlgitem (hWnd, ID(_CMDBAR)); 
ex= rect.right - rect.left; 
cy = rect.bottom - rect.top; 



370 Part II Windows CE Programming 

} 

Ii Narrow screens, stack ,the windows; otherwise, they' re side b)' side. 
if (Get:SysteniMetrics (SM..,..CXSCRE£N) < GetSysteinMetrics <*-(YSCREEff))f 

nDivP<ls ,~ (cy * nDivpct)ilOo; ·•, 
SetRect (&rectT\I, rect;1eft, rect,fop, ex, .n.DiVPos); 
SetR~Ct:··:(~_reC:tLv,~. ·'"~eCt~-left., ·-nofVPo·s ·+ re~t~.t~p~· ·cX, 

, } else, { ' 
nDivPos ,:.,, {ex * otlivPCt)JlOO; 

· SetRect' (&ri!ctT\I,, re ct. left, rect. tOp, noi if P<ls,, <c;y); 
SetRe<:t (&rectl.V, nDivPos, ,rect~top, ex,·- ,nO;vPo!i,,cy); 

l ' ' ' ' 
//The child window positions 
SetWindowPos (hwndtv, NtilL, rectT\I, left, rectT\I. toJ), , 

rectT\l,ri.ght, recttv.bottom, SWP_MOZORDER); 
SetWi ndowPos (hwndLV, NULL, re,ctLV .left; rectLV. top, , . 

rectLV.right, rectLV.bOttom, SWP.J4QZORDER); 
return '0; 

11 ;. -"',-,- ~ -:--;- ~- - -.__ - • -:---- ---- "'---- ---- ,. : ,.-,-,::-- - ... - ------:- - _,_ __ • -----;- ,.~ -'" 
II ooCommandMain - Process WM..,..COMMAND message for, window. 

','II , ·, , '', , , .. 
LRESULT OoCommandMain CHWND, l'lwnd, 'UINT WMsg, WPARAM ~Param, 

' ' ' ' ' ' ', ' ' LPARAM l Par am) { ' 

. /I Pa,rse t:he parameters. 
WORD i.ditem = CWORD) LOWORD (wParam); 
)IORQ wNoti fyCode • .. (WoRD) HIWORD {wParam); 
HWND hwndCtl = (HWND) lParam; . , 
. . . :· . " 

'. :· ' '. ', . ' 

/I Call routine fo handle contr(li message. 
for (int,; = O; { < dim(MainCommandlteins) ;, i++) { 

i.f (iditem "" Maincommandlt:ems[iJ •. Code). 

} 

return C*MainC0mmanditems[i].Fxn)(hWrid, id!tein,hWndCtl, 
wNptifyCode); 

, return o; 

·) 1~~.L-~-~,.--~-.:.--"-~-'-· ... ----~-'-------"'"'-;.c;: ___ ,~ • .:..:~~.,,.-:-~~,.-.,-~-----,---" 
/ i DoNotifyMain - Process WM;..NOTIFY message for window .. n ' . ' . . 

' LRESULT DoNotifyMain (HWND hWrld, UINT wMsg; WP~RAMwParam, 
LPARAM 1 Param) { 

}. 

//Parse the parameters, 
U!NT idltem"" wParam; 
LPNMHOR pHdr .;,TLPNMHDR) lParam; 
HWND httl = pHdr->hwnd.From; 
. ' 

/I Call routine t(l handle .control message. 
for (int i = -O; ; <: dim'{MainNotifyftems); i++) { 

if (idltem '"" Maii!Notifyltems(i].C()de) 
return (*Mai.nNotifyitems[ i J . Fxn) (hwnd,, 

returoo.; 



Chapter 10 The Registry 371 

II DoDestroyMain - Process WM_DESTROY message for window. 
II 
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
PostQuitMessage (O); 
return O; 

} 

II====================================================================== 
II Command handler routines 
11----------------------------------------------------------------------
11 DoMainCommandExit - Process Program Exit command. 
II 
LPARAM DoMainCommandExit (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 

} 

SendMessage (hWnd, WM_CLOSE, 0, O); 
return O; 

11----------------------------------------------------------------------
11 DoMainCommandAbout - Process the Help I About menu command. 
II 
LPARAM DoMainCommandAbout(HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 

} 

II Use DialogBox to create modal dialog box. 
DialogBox (hinst, TEXT ("aboutbox"), hWnd, AboutDlgProc); 
return O; 

II====================================================================== 
II Notify handler routines 
11----------------------------------------------------------------------
11 DoMainNotifyTreeV - Process notify message for list view. 
II 
LPARAM DoMainNotifyTreeV (HWND hWnd, UINT iditem, HWND hwndCtl, 

LPNMHDR pnmh) { 
TCHAR szKey[256]; 
HKEY hRoot; 
HTREEITEM hChild, hNext; 
int nMax; 

LPNM_TREEVIEW pNotifyTV = (LPNM_TREEVIEW) pnmh; 

switch (pnmh->code) { 
case TVN_ITEMEXPANDED: 

if (pNotifyTV->action == TVE_COLLAPSE) { 
II Delete the children so that on next open, they will 
II be reenumerated. 
hChild = TreeView_GetChild (hwndCtl, 

pNotifyTV->itemNew.hitem); 
while (hChild) { 

hNext = TreeView_GetNextitem (hwndCtl, hChild, 
TVGN_NEXT); 

TreeView_Deleteitem (hwndCtl, hChild); 
hChild = hNext; 



372 Part II Windows CE Programming 

} 

} 

} 
} 

break; 

Ca$e TVN-5ELCHANGED:. 
nMax .,; diin(szKey): 
GetTree ChWnd; pNotifyTv->itemNew.hitem, &hRoot, 

· szKey; &nMax).; 
EnumValues (hWnd, hRoot, szKey); 
break;· 

case TVtLlTEM.EXPANDtNG: 
if (pN<itifyTV.>action ...: TVE_EXPAND) { 

nMax .. dim(szKey); . 
GetTree (hWnd, pNotifyTV->itemNew.hitem, &hRtiot, 

szKey, &nMaxJ; 
EnumChildren (hWnd, pNoti fyTV->i temNew. hrtem ,. 

hRoot, · szKey, dim CszKey)); 
TreeVieW..:SortChildren (hwndCtl, 

pNotifyTV->itemNew.hitem; TRUE}; 
} 
break; 

return O; 

I l- .. ---- _:.. ___ -- ---·- -·- ---• - - --'- - - - .,.-,.- - "'-'"'-- - --- - ·----- - ---~ "'--- - - ---- - - --
1 l CreateLV - Create 1 i.st view control. 
II , 
HWND CreateLV (HWND hWnd, ~ECT *prect) { 

HWND hwndLV; 
L VCOLUMN. 1 vc; 

/I Create, report window; Size fr sd that it fits under 
fl the command bar. ancl. fills the remaining client area, 

:hwndLV = cr~ateWindoWEx co. WC...Lisrvr~. TEXT(""), 

I I Addeo 1 umns .• 
if (hwndLV) { , 

ws_vuirBLE I WS~CHILO I w5-VSCIWLL r 
WS:...BOROER I LV5-REP0RT, 
prect-;left, prect->top, 
prect->right -·prect->1eft, 
prect->bottom- pred-:>top,. 
hWnd, · (HMENU) I!LL!STV, 
hinst, NULL); 

lvc.mask = LVCF_;TEXT l LVCF::..WIDTH I LVCLFMT I .LVCF_SUBITEM I 
LVCF-ORDER; 

.. lvc.fmt •.Lvci:MT).EFT; 
lvc.cx = 120; . . 

· lvc ;psztext "' TEXT ("Name''); 
lvc. iOrder = O; 

· lvt, iSubitem = O; 
' SendMessage (hwngtV, LVMJNSERT(OLUMN, 0, (lPARAMJ&lvc); ' 

lvc.mask· .. 1,;; LVtF:.:.SiJSITEM; 



} 

lvc.pszText =TEXT ("Data"); 
lvc.cx = 250; 
lvc.iOrder = l; 
lvc.iSubitem = l; 

Chapter 10 The Registry 373 

SendMessage (hwndLV, LVM_INSERTCOLUMN, 1, (LPARAM)&lvc); 
} 

return hwndLV; 

11----------------------------------------------------------------------
11 InitTreeView - Initialize tree view control. 
II 
HWND CreateTV (HWND hWnd, RECT *prect) { 

HBITMAP hBmp; 

} 

HIMAGELIST himl; 
HWND hwndTV; 

II Create tree view. Size it so that it fits under 
II the command bar and fills the left part of the client area. 
hwndTV = CreateWindowEx (0, WC_TREEVIEW, 

TEXT (""), WS_VISIBLE I WS_CHILD I WS_VSCROLL 
WS_BORDER I TVS_HASLINES I TVS_HASBUTTONS I 
TVS_LINESATROOT, prect->left, prect->top, 
prect->right, prect->bottom, 
hWnd, (HMENU)ID_TREEV, hinst, NULL); 

if (!IsWindow (hwndTV)) 
return O; 

II Create image list control for tree view icons. 
himl = Imagelist_Create (16, 16, IL(_COLOR, 2, O); 
II Load first two images from one bitmap. 
hBmp = LoadBitmap (hinst, MAKEINTRESOURCE (ID_BMPS)); 
Imagelist_Add (himl, hBmp, NULL); 
DeleteObject (hBmp); 

TreeView_SetimageList(hwndTV, himl, TVSIL_NORMAL); 
return hwndTV; 

11----------------------------------------------------------------------
11 InsertLV - Add an item to the list view control. 
II 
int InsertLV (HWND hWnd, int n!tem, LPTSTR pszName, LPTSTR pszData) { 

HWND hwndLV = GetDlgitem (hWnd, ID_LISTV); 
LVITEM lvi; 
int re; 

lvi.mask = LVIF_TEXT I LVIF_IMAGE I LVIF_PARAM; 
lvi.iitem = nitem; 
lvi.iSubitem = O; 
lvi.pszText = pszName; 
lvi. iimage = O; ' 
lvi.lParam = nitem; 



374 Part II Windows CE Programming 

re = SendMessage {hwridLV, LVM...lNSEltrITEM, O; (LPAR/\M'.>&lviJ; 

. lvi .m.ask = LVIF c,,TEXf; 
lvi. :iitem = nl'tem; 

. ivi. iSubltem = li 
lvi.pszrext .. pszData; 

re "' SendMessage (hwridLV.; LVM...SETITEM, 0, (LPARAM)&lvi); 
return O; 

... } ' ' .· . . . . 
11--__ _: _ ------------'-- ...,_: ---------------_: __ ---.--------.-----------~---_·;., __ . 
// InsertTV - Insert jt:em into tree view control. 
// 
HTREEITEM InsertTV (HWND hWnd, HTREEITEM hParent, TCHAR *pszName, 

· LPARAM lParam, DW()RD nChildren){ 
TV:.:.INSERTSTRUCT tvis: 

HWND hwndTV = GetD1gitem (hWnd, Il>..,.TREEV); 
II Initiali2!e the .inse.rtstruct. 

· memset (&tvis; o, sizeof (tvis))> 
tvis;hf>arent ... hParent; 
tvis .• hrnsertAfter ,. 1Vr:..LAST; 
tvis .item.mask = TV!F.:..TEXT l TVIF..:PARAM I TVIF.: . .C:H!LDREN I 
. . . rvli=~rMAGE; . . .. 

tvis.item.pszText = psizName; 
tvis.item.cchTextMax = ls'tr.len CpszName); 
tvis.item.trmaQ'e = 1; 

. tvi s • i tern. i Selectedimage = l; 
.tvis,item.lParam '= 1Param; · · 
"if (nChildren) 

tvis.item.cChild,ren "'l; 
elSe · ·· 

tvis;item.cChildren ;;. O; 

return. Tree\iiewJnsertltem ChwndTV, &tvis);· 
r 
11----,.------:--..,--..,--------------,---------,---------,.--------.-·:: • ..,,.,.,.-.'------
//'.CetTree - Compute .the ful 1 p.:i;th of the tree view item. . . 
// .. . ,. . . 
intGetTree.(HWNDhWnd, liTREflTEM h!tem, l:IKEY "pRoot, TCHAR *pszKey, 

· .int *pnMax) { · 
TVJTEM tvi ; .. . . 

TcHAR szName[256l; 
. HTREEITEM hParent: 
l:IWND ·tiwndTV = GetDlgiteni (h!llnd, Il)_TREEV); 

.mems~t (&tvi, o, sizeof (tvi}); 

hParent. ~·· Treevi ew_GetPa~ent · OnvndTV, ~ItE!in); 
· if '(hParent) ·{ , ·. 

II Get the parent .of the parent of the ... 
Getri-ee • .(hWnd, hParent, pRoo.t; pstl(ey ,u pnMax): 



} 

II Get the name of the item. 
tvi .mask = TVIF_TEXT; 
tvi .hltem = hltem; 
tvi.pszText = szName; 
tvi.cchTextMax = dim(szName); 
TreeView_Getitem (hwndTV, &tvi); 

StringCchCat (pszKey, ''pnMax,, TEXT("\\")); 
(*pnMax)--; 
StringCchCat (pszKey, *pnMax, szName); 
(*pnMax) -= lstrlen(szName); 

} else { 

} 

*pszKey =TEXT ('\O'); 
szName[O] =TEXT ('\O'); 
II Get the name of the item. 
tvi.mask = TVIF_TEXT I TVIF_PARAM; 
tvi.hltem = hltem; 
tvi.pszText = szName; 
tvi.cchTextMax = dim(szName); 
if (TreeView_Getitem (hwndTV, &tvi)) 

*pRoot = (HKEY)tvi .lParam; 
else { 

int re= GetLastError(); 
} 

return O; 

Chapter 10 The Registry 375 

11----------------------------------------------------------------------
11 DisplayValue - Display the data, depending on the type. 
II 
int DisplayValue (HWND hWnd, int nCnt, LPTSTR pszName, PBYTE pbData, 

DWORD dwDSize, DWORD dwType) { 
TCHAR szData[512]; 
int i, len, lenl; 

switch (dwType) { 
case REG_MULTI_SZ: 

len =dim (szData); 
szData[O] = TEXT('\O'); 
while ((*pbData != 0) && (len > 0)) { 

lenl = lstrlen ((LPTSTR)pbData); 
if (FAILED (StringCchCat (szData, len, (LPTSTR)pbData))) 

break; 
len -= lenl; 
pbData += (lenl+l) * sizeof (TCHAR); 
if (*pbData == 0) 

break; 
if (FAILED (StringCchCat (szData, len, TEXT(",")))) 

break; 
len--; 

} 

break; 
case REG_EXPAND_SZ: 



376 Part II Windows CE Programming 

} 

case REG_SZ: 
StringCchCopy (szData, dim (szData), (LPTSTR)pbData); 
break; 

case REG_DWORO: 
wspri ntf (s2Data, TEXT ("%X"), *(int *)pbData); 
break; 

case REG..cBINARY: 
szData[O] =TEXT C'\0'); 
for Ci = O; i < (int)dwDSize; i++) { 

len = lstrlen (szData); 
wsprintf (&szData[l.enl. TEXT ("%02X "), pbData[i]); 
if (len > dim(szData) - 6) 

break; 
} 

break; 
default: 

wsprintf (szQata, TEXT ("Unknown type: %x"), dwType); 
} 

lnsertLV ChWnd, nCnt, pszName, szOata); 
return O; 

11-----""'.--'-------c---'--------------'""'.""'. _______________________________ ~""'.---
ll EnumValues - Enumerate each of the values of a key. 
II 
int EnumValues (HWND hWnd, HKEY hRoot, LPTSTR pszKey) { 

int nCnt = 0, re; 
OWORD dwNSize, dwDSize, dwType; 
TCHAR szName[MAX_PATH]; 
BYTE bData[l024]; 
HKEY hKey; 

if (lstrlen (pszKey)) { 
if (RegOpenKeyEx (hRoot, pszKey, 0, 0, &hKey) != ERROR_SUCCESS) 

return O; 
else 

hK!)y = hRoot; 

II Clean out list view. 
ListView_DeleteAllitems (GetDlgitem (hWnd, ID~L,ISTV)); 

II Enumerate the values in the list view control. 
nCnt = 0; 
dwNSi ze = dim(szName); 
dwDSize = dim{bOata); 
re = RegEnumValue (hKey, nCnt, szName, &dwNSize, 

NULL, &dwType, bData, &dwDSize); 

while (re == ERROR_SUCCESS) { 
II Display the value in the list view control. 
DisplayValue (hWnd, nCnt, szName, bData, dwDSize, dwType); 



} 

dwNSize = dim(szName); 
dwDSize = dim(bData); 
nCnt++; 

Chapter 10 The Registry 377 

re = RegEnumValue (hKey, nCnt, szName, &dwNSize, 
NULL, &dwType, bData, &dwDSize); 

} 

if (hKey != hRoot) 
RegCloseKey (hKey); 

return 1; 

11----------------------------------------------------------------------
11 CountChildren - Count the number of children of a key. 
II 
DWORD CountChildren (HKEY hRoot, LPTSTR pszKeyPath, LPTSTR pszKey, 

int nPathMax) { 

} 

TCHAR *pEnd; 
DWORD dwCnt; 
HKEY hKey; 
size_t dwLen; 

II Safe lstrlen 
if (FAILED(StringCchLength (pszKeyPath, nPathMax, &dwLen))) 

return O; 

pEnd = pszKeyPath + dwLen; 
StringCchCopy (pEnd, nPathMax - dwLen, TEXT("\\")); 
StringCchCopy (pEnd, nPathMax - dwLen - 1, pszKey); 
if (RegOpenKeyEx(hRoot, pszKeyPath, 0, 0, &hKey) == 

} 

ERROR_SUCCESS) { 
RegQueryinfoKey (hKey, NULL, NULL, 0, &dwCnt, NULL, NULL, NULL, 

NULL, NULL, NULL, NULL); 
RegCloseKey (hKey); 

"pEnd = TEXT ('\0'); 
return dwCnt; 

11----------------------------------------------------------------------
11 EnumChildren - Enumerate the child keys of a key. 
II 
int EnumChildren (HWND hWnd, HTREEITEM hParent, HKEY hRoot, 

LPTSTR pszKey, int nKeyMax) { 
int i = 0, re; 
DWORD dwNSize; 
DWORD dwCSize; 
TCHAR szName[MAX_PATH]; 
TCHAR szClass[256]; 
FILETIME ft; 
DWORD nChild; 
HKEY hKey; 
TVITEM tvi; 

II All keys but root need to be opened. 



378 Part II Windows CE Programming 

} 

if (*pszKey != TEXT('\O')) { 
if (RegOpenKeyEx .(hRoot, pszKey, 0, 0, &hKey) ! = ERROR_SUCCESS) { 

re = GetLastError(); 
return 0; 

} 

} else 
hKey = hRoot; 

dwNSize = dim(szName); 
dwCSize = dim(szClass); 
re = RegEnumKeyEx (hKey, i, szName, &dwNSize, NULL, 

szClass, &dwCSize, &ft); 
while (re == ERROR_SUCCESS) { 

} 

nChil d = CountChil dren Ch Root, pszKey, szName, nKeyMax); 
11 Add key to. tree view. 
InsertTV (hWnd, hParent, szName, 0, nChild); 
dwNSize = dim(szName); 
re= RegEnumKeyEx (hKey, ++i, szName, &dwNSize, 

NULL, NULL, 0, &ft); 

II If this wasn't the root key, close it. 
if. (hKey != hRoot) 

RegCloseKey (hKey); 
II If no children, remove expand button. 
if (i == 0) { 

} 

tvi.hitem = hParent; 
tvi.mask = TVIF_CHILDREN; 
tvi.cChildren = O; 
TreeView_Setitem (GetDlgitem (hWnd, ID'"-TREEV}, &tvi); 

return i; 

ll======;o=======================i=o=e=====e================================== 
// About Dialog procedure 
// 
BOOLCALLBACK AboutDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
switch (wMsg) { 

case WM_COMMAND: 

} 

switch (LOWORD (wParam)) { 
case IDOK: 

} 

break; 

case IDCANCEL: 
EndDialog (hWnd, O); 
return TRUE; 

return FALSE; 



Chapter 10 The Registry 379 

The workhorses of this program are the enumeration functions that query what keys and 

values are under each key. As a key is opened in the tree view control, the control sends a 

WM_ NOTIFY message. In response, RegView enumerates the items below that key and fills 

the tree view with the child keys and the list view control with the values. 

The registry provides a central clearinghouse for configuration information for both the 

operating system and the applications that run on it. Knowing how to use but not abuse 

the registry is critical for all Windows programmers. Fortunately, the registry structure and 

interface are quite familiar to Windows programmers and should present no surprises. Now 

it's time to look at one other type of data that can be stored in the file system, Windows CE 

databases. The database API is unique to Windows CE. Let's see how it works. 





Chapter 11 

Windows CE Databases 
Windows CE supports a unique database API for storing and organizing data in the system. 

The database functions provide a simple tool for managing and organizing data. They aren't 

to be confused with the powerful multilevel SQL databases found on other computers. Even 
with its modest functionality, however, the database API is convenient for storing and orga

nizing simple groups of data, such as address lists and mail folders. 

In this chapter, I'll give you an overview of the database API. The database API is one of the 

areas that have experienced a fair amount of change as Windows CE has evolved. Essentially, 
functionality has been added to later versions of Windows CE. Where appropriate, I'll cover 

the differences between the different versions and show workarounds, where possible, for 

maintaining a common code base. 

The Two Databases 
Windows CE has supported native database functionality since its inception. However, in the 
years since Windows CE was introduced, databases have grown in size and complexity and 

the original database engine was not able to keep up. Starting with Windows CE 5, Microsoft 

introduced a new database engine as an option for Windows CE. This new engine is known 

as the embedded database (EDB) while the old engine, which has been kept for backward 

compatibility, is referred to as the CE database (CEDB). 

The embedded database provides significantly better performance for large datasets, sup

port for transactions, and more flexible data type support. For the most part, the new engine 

is backward compatible from the API perspective, although there is some breakage due to 
the characteristics of the implementation. Throughout this discussion, I will refer to the places 

where a particular feature or characteristic is unique to the embedded database or the old 

CE database engine. Regardless of the engine, the database implemented by Windows CE is 

simple, but it serves as an effective tool for organizing uncomplicated data. 

Basic Definitions 
The structure of a Windows CE database consists of database volumes that are typically 

stored as files on a file system. Each database volume contains one or more databases. Each 
database consists of records that contain properties. Properties contain data in of the of the 

predefined datatypes shown in Table 11-1. 

381 



382 Part II Windows CE Programming 

TABLE 11-1 Database Data Types Supported by Windows CE 

\~~~tYPEf 
sVal 

usVal 

iVal 

uiVal 

FILETIME 

· · t>~~at)ase e11g ine 
Both 2-byte signed integer 

···•···•·······•··•········••····· 

Both 2-byte unsigned integer 

Both 4-byte signed integer 

Both 4-byte unsigned integer 

Both A time and date structure 

LPWSTR Both Zero-terminated Unicode string 
.o_, _________ •vv-.-c~o<- ThM==N=----···-•••• '·"-~==-----·,, 

CEBLOB Bothl 

GUID 

Auto iVal 

Auto-Double 

Both 

Both 

EDB only 

EDB only 

EDB only 

EDB only 

--,~--=~-=~--.. -~--~ --·-··-
A collection of bytes 

Boolean 

8-byte floating point value 

Binary stream of data 

128-bit GUID 

Auto-generated 4-byte integer 

Auto-generated 8-byte integer 
""'~.-==------•• ""'"-~~N-~•=-·-·--- '°"- -~---~--~ 

Records can't contain other records. Also, records can reside in only one database. The em

bedded database engine allows one or more databases within a volume to be locked for the 

duration of a transaction. Transactions can include one or more database reads or writes. 

Finally, Windows CE does provide a method of notifying a process that another thread has 

modified a database. 

An embedded database can have up to 16 multilevel sort indexes. (In a multilevel sort index, 

the database sorts by a primary property and then sorts within that property by a second, 

third, and up to a 16th property.) The sort indexes are defined by a schema that is set when 

the database is created. 

The CEDB engine is more limited, allowing only four multilevel sort indexes. Each sort index is 

limited to three properties. These indexes are defined when the database is created but can 
be redefined later, although the restructuring of a database takes a large amount of time. 

Each sort index by itself results in a fair amount of overhead, so you should limit the number 

of sort indexes to what you really need. 

One other difference between an EDB and a CEDB is that an EDB can be created with a 

schema. That is, a specification for the data stored for each record. CEDBs store records with 

whatever properties are specified when a record is written. 

In short, Windows CE gives you a basic database functionality that helps applications orga

nize simple data structures. Windows Mobile devices use the database API to manage the 

address book, the task list, and e-mail messages. So if you have a collection of data, this 

database API might just be the best method of managing that data. 

1 EDB limits blobs to 8 KB while CEDB allows blobs to be up to 64 KB in size. 



Chapter 11 Windows CE Databases 383 

Designing a Database 

Before you can jump in with a call to CeCreateDatabaseEx2, you need to think carefully about 

how the database will be used. While the basic limitations of the Windows CE database struc

ture rule out complex databases, the structure is quite handy for managing collections of relat

ed data on a small personal device, which, after all, is one of the target markets for Windows CE. 

Each record in a database can have as many properties as you need as long as they don't 

exceed the basic limits of the database structure. The limits are fairly loose. An individual 
property can't exceed the constant CEDB_MAXPROPDATASIZE, which is set to 8,192 for an 

embedded database and 65,471 for the CE database. A single record can't exceed CEDB_ 

MAXRECORDSIZE, defined as 8,192 for EDB and 131,072 for CEDB. The maximum number of 

records that can be in a single database is 2,147,483,647 for EDB and 65,535 for CEDB. 

Database Volumes 

Both EDB volumes and CEDB volumes are stored as files in the file system. CEDBs can also 

be stored directly in the object store, which in this case acts as the default database volume. 
When you're working with database volumes, they must be first mounted before a database 

is opened, then unmounted after you close the databases within the volume. Essentially, 

mounting the database creates or opens the file that contains one or more databases along 

with the transaction data for those databases. 

There are disadvantages to database volumes aside from the overhead of mounting and 

unmounting the volumes. Database volumes are actual files and therefore can be deleted by 

means of standard file operations. The volumes are, by default, marked as hidden, but that 

wouldn't deter the intrepid user from finding and deleting a volume in a desperate search 

for more space on the device. CEDBs created directly within the object store aren't files and 

therefore are much more difficult for the user to accidentally delete. 

The Database API 

Once you have planned your database and given the restrictions and considerations neces

sary to it, the programming can begin. 

Mounting a Database Volume 

If your database is on external media, such as a CompactFlash card, you'll need to mount the 

database volume that contains it. To mount a database volume, call 

BOOL CeMountDBVol (PCEGUID pguid, LPWSTR lpszVol, DWORD dwFlags); 

This function performs a dual purpose: it can create a new volume or open an existing volume. 

The first parameter is a pointer to a guid. CeMountDBVol returns a guid that's used by most 

of the database functions to identify the volume. You shouldn't confuse the CEGU/D-type 



384 Part II Windows CE Programming 

guid parameter in the database functions with the GUID type that is used by OLE and parts 

of the Windows shell. A CEGUID is simply a handle that tracks the opened database volume. 

The second parameter in CeMountDBVol is the name of the volume to mount. This isn't a 

database name, but the name of a file that will contain one or more databases. Since the 

parameter is a file name, you should define it in \path\name.ext format. 

The last parameter, dwF/ags, should be loaded with flags that define how this function acts. 

The possible flags are the following: 

• CREATE_NEW Creates a new database volume. If the volume already exists, the func

tion fails. 

• CREATE_ALWAYS Creates a new database volume. If the volume already exists, it 

overwrites the old volume. 

• OPEN_EXISTING Opens a database volume. If the volume doesn't exist, the function fails. 

• OPEN_ALWAYS Opens a database volume. If the volume doesn't exist, a new data

base volume is created. 

• TRUNCATE_EXISTING Opens a database volume and truncates it to 0 bytes. If the 

volume does not exist, the function fails. 

If the flags resemble the action flags for CreateFile, they should. The actions of CeMountDBVol 
essentially mirror CreateFile except that instead of creating or opening a generic file, 

CeMountDBVol creates or opens a file especially designed to hold databases. 

If the function succeeds, it returns TRUE and the guid is set to a value that is then passed to 

the other database functions. If the function fails, a call to GetlastError returns an error code 

indicating the reason for the failure. 

An extended mount function, available only to EDBs is 

BOOL CeMountDBVolEx (PCEGUID pGuid, LPWSTR lpwszDBVol, 
CEVOLUMEOPTIONS* pOptions, DWORD dwFlags); 

The difference between this function and CeMountDBVol is the addition of the pOptions 
parameter that points to a CEVOLUMEOPTIONS structure that fine tunes how the volume is 

managed by the operating system. The structure is defined as 

typedef struct _CEVOLUMEOPTIONS { 
WORD wVersion; 
DWORD cbBufferPool; 
DWORD dwAutoShrinkPercent; 
DWORD dwFlushinterval; 
DWORD cMaxNotifyChanges; 
DWORD dwDefaultTimeout; 
WCHAR wszPassword[CCH_MAX_PASSWORD + 1]; 
DWORD dwFlags; 
DWORD cMaxSize; 

} CEVOLUMEOPTIONS, *PCEVOLUMEOPTIONS; 



Chapter 11 Windows CE Databases 385 

The only fields that must be filled in are the wVersion and dwF/ags. The wVersion field must 

be set to CEVOLUMEOPTIONS_ VERSION for Windows CE 5 and CEVOLUMEOPTIONS_ 
VERSION EX for Windows CE 6 and later. If the application specifies a wVersion of 

CEVOLUMEOPTIONS_ VERS/ON in Windows CE 6, the cMaxSize field will be ignored by the 

operating system. The dwF/ags field should be set with bit flags indicating which of the other 

fields contains valid data. 

The cbBufferPoo/ field can contian the number of bytes in the pool of RAM used to cache 

the database data. The larger the value, the faster the performance of the database with the 

penality of using more RAM. The default buffer pool is 640 KB. The dwAutoShrinkPercent 
field can be set to the free percentage that the volume has to fall below before the operat

ing system triggers its shrink thread that reduces the footprint of the volume on the disk. 

The default auto-shrink percentage is 60. The dwFlushlnterval field can specify the interval, 

in seconds, between the times that the operating system will flush modified data to the vol

ume file. The default interval is 10 seconds. The cMaxNotifyChanges field specifies how many 

changes are queued during a transaction before the individual changes are dropped in lieu 

of a single "volume changed" notification when the transaction commits. The dwDefault
Timeout parameter is the default time, in milliseconds, that the pending database change will 

wait before timing out due to a long transaction. The wszPassword field can specifiy up to a 

40-character password for the volume. The previously mentioned dwF!ags field specifies in 

flags which of the other fields are valid. Finally, the cMaxSize field can specify a limit to the 
size of the database. 

Database volumes can be opened by more than one process at a time. The system maintains 

a reference count for the volume. As the last process unmounts a database volume, the sys

tem unmounts the volume. 

Enumerating Mounted Database Volumes 

You can determine which database volumes are currently mounted by repeatedly calling this 

function: 

BOOL CeEnumDBVolumes (PCEGUID pguid, LPWSTR lpBuf, DWORD dwSize); 

The first time you call CeEnumDBVolumes, set the guid pointed to by pguid to be invalid. You 

use the CREATE_INVALIDGU/D macro to accomplish this. CeEnumDBVolumes returns TRUE if 
a mounted volume is found and returns the guid and name of that volume in the variables 

pointed to by pguid and lpBuff. The dwSize parameter should be loaded with the size of the 

buffer pointed to by lpBuff. To enumerate the next volume, pass the guid returned by the 



386 Part II Windows CE Programming 

previous call to the function. Repeat this process until CeEnumDBVolumes returns FALSE. The 

code below demonstrates this process: 

CEGUID guid; 
TCHAR szVolume[MAX_PATH]; 
INT nCnt = O; 

CREATE_INVALIDGUID (&guid); 
while (CeEnumDBVolumes (&guid, szVolume, sizeof (szVolume))) { 

II guid contains the guid of the mounted volume; 
II szVolume contains the name of the volume. 
nCnt++; II Count the number of mounted volumes. 

} 

Flushing a Database Volume 
To force a flush of changes to the the database volume, call the function 

BOOL CeFlushDBVol (PCEGUID pguid); 

The function's only parameter is the guid of a mounted database volume. To cause a flush 

of all mounted databases, call this function with a pguid value of NULL. Database writes are 

cached until the flush interval for the volume is elapsed, the volume is unmounted, or the 

CeFlushDBVol function is called. 

While it is important that database data be flushed before a reset or power failure to avoid 

loss of data, excessive calling of this function will impact system performance. Take care 

when using this function to balance the needs of data integrity and system performance. 

Unmounting a Database Volume 
When you have completed using the volume, you should unmount it by calling this function: 

BOOL CeUnmountDBVol (PCEGUID pguid); 

The function's only parameter is the guid of a mounted database volume. Calling this func

tion is necessary when you no longer need a database volume and you want to free system 

resources. Database volumes are unmounted only when all applications that have mounted 

the volume have called CeUnmountDBVol. 

Using the Object Store as a Database Volume 
Even though you can store databases in volumes on external media, it is possible to treat 

the object store as a database volume for a CEDB. Because many of the database functions 
require a CEGU/D that identifies a database volume, you need a CEGU/D that references the 

system object store. Fortunately, one can be created using this macro: 

CREATE_SYSTEMGUID (PCEGUID pguid); 



Chapter 11 Windows CE Databases 387 

The parameter is, of course, a pointer to a CEGUID. The value set in the CEGUID by this 

macro can then be passed to any of the database functions that require a separate volume 
CEGUID. 

Creating a Database 

The prefered method for creating an EDB is to call the function 

CEOID CeCreateDatabaseWithProps (PCEGUID pGuid, CEDBASEINFOEX* pinfo, 
DWORD cProps, CEPROPSPEC* prgProps); 

The first parameter is a pguid parameter that identifies the mounted database volume where 

the database is located. The second parameter is a pointer to a CEDBASEINFOEX structure, 

which I will discuss shortly. The cProps parameter indicates the number of properties listed in 

the prgProps array. The prgProps array specifies the properties for the records to be added in 

the newly created database. This structure defines the schema of the database being created. 

The schema is the format for each of the records in the database. 

The key to understanding this function are the two rather complex structures: the 

CEDBASEINFOEX and CEPROPSPEC structures. I'm going to discuss the second of these two 

structures first because it is shorter, specific to this function, and introduces some of the basic 
concepts important to Windows CE databases. 

The CEPROPSPEC structure is defined as 

typedef struct _CEPROPSPEC { 
WORD wVersion; 
CEPROPID propid; 
DWORD dwFlags; 
LPWSTR pwszPropName; 
DWORD cchPropName; 

} CEPROPSPEC, *PCEPROPSPEC; 

The wVersion field should be set to CEPROPSPEC_ VERSION. The propid field describes the 

data type and ID value for the property being specified. A CEPROPID or property ID is 

nothing more than a unique identifier for a property in the database. The property ID is a 

DWORD value with the low 16 bits containing the data type and the upper 16 bits containing 

an application-defined value. A property ID is defined as a constant and is used by various 
database functions to identify the property. For example, the property ID for a property that 

contained the address of a contact might be defined as 

#define PID_ADDRESS MAKELONG (CEVT_LPWSTR, 1) 

The MAKELONG macro simply combines two 16-bit values into a DWORD or LONG. The first 

parameter is the low word or the result, while the second parameter becomes the high word. 

In this case, the CEVT_LPWSTR constant indicates that the property contains a string, while 

the second parameter is simply a value that uniquely identifies the Address property, distin
guishing it from other string properties in the record. 



388 Part II Windows CE Programming 

The dwF/ags field of the CEPROPSPEC structure can optionally contain the flags DB_PROP_ 
NOTNULL, which indicates that all records in the database contain this property, and DB_ 
PROP_ COMPRESSED, which indicates that noninteger property types be compressed. The 

pwszPropName field specifies a name for the property while the cchPropName field is used 
to indicate the length of the buffer pointed to by the name field when this structure is used 

by other functions. 

The CEDBASEINFOEX structure is defined as 

typedef struct _CEDBASEINFOEX { 
WORD wVersion; 
WORD wNumSortOrder; 
DWORD dwFlags; 
WCHAR szDbaseName[CEDB_MAXDBASENAMELEN]; 
DWORD dwDbaseType; 
DWORD dwNumRecords; 
DWORD dwSize; 
FILETIME ftlastModified; 
SORTORDERSPECEX rgSortSpecs[CEDB_MAXSORTORDER]; 

} CEDBASEINFOEX, ''PCEDBASEINFOEX; 

The first field, wVersion, specifies the version of the structure itself. It should be set to 

CEDBASEINFOEX_ VERSION. This constant is defined differently for EDBs and CEDBs. The 

wNumSortOrder parameter should be set to the number of sort order structures in rg
SortSpecsArray. The maximum number of sort indexes that can be specified is 16 for an EDB 
and 4 for a CEDB. 

The dwF/ags field has two uses. First, it contains flags indicating which fields in the structure 

are valid. The possible values for the dwF/ags field are CEDB_ VALIDNAME, CEDB_ VALIDTYPE, 
CEDB_ VALIDSORTSPEC, and CEDB_ VALIDDBFLAGS. When you're creating a database, it's 

easier to set the dwFlags field to CEDB_ VALIDCREATE, which is a combination of the flags I 

just listed. An additional flag, CEDB_ VALIDMODTIME, is used when CeOidGetlnfo uses this 

structure. 

The other use for the dwF/ags parameter is to specify the properties of the database. Two 

flags are currently defined. The first is CEDB_NOCOMPRESS, which can be specified if you 

don't want the database you're creating to be compressed. By default, all databases are 

compressed, which saves storage space at the expense of speed. By specifying the CEDB_ 
NOCOMPRESS flag, the database will be larger but you will be able to read and write to the 

database faster. The second flag that can be defined is CEDB_SYSTEMDB. For versions of 

Windows CE before 6.0, this flag indicates that the database cannot be deleted by an un

trusted application. 

The szDbaseName field specifies the name of the new database. Unlike file names, the data

base name is limited to 128 characters for EDBs and 32 for CEDBs, including the terminating 



Chapter 11 Windows CE Databases 389 

zero. The dwDbaseType field is a user-defined parameter that can be employed to differenti

ate families of databases. For example, you might want to use a common type value for all 

databases that your application creates. This allows them to be easily enumerated. At this 

point, there are no rules for what type values to use. The fields wNumRecords, dwSize, and 
ftLastModified are ignored during the call to CeCreateDatabaseWithProps. They are used by 

other database functions that utilize this same structure. 

The final field, rgSortSpecs, specifies the sort specification for the database. This parameter 

contains an array of SORTORDERSPECEX structures defined as 

typedef struct _SORTORDERSPECEX { 
WORD wVersion; 
WORD wNumProps; 
WORD wKeyFlags; 
WORD wReserved; 
CEPROPID rgPropID[CEDB_MAXSORTPROP]; 
DWORD rgdwFlags[CEDB_MAXSORTPROP]; 

} SORTORDERSPECEX; 

The first field in SORTORDERSPECEX is the wVersion field, which should be set to 

SORTORDERSPECEX_ VERSION. The wNumProps field specifies the number of sort properties 

used in this sort specification. The wKeyFlags field defines characteristics for the specification. 

The only flag currently supported is CEDB_SORT_UNIQUE, which indicates that each record 

in the database must have a unique value in this property. The rgProp/D field is an array of 

property IDs that indicate which properties are to be used for sorting when this sort order 

specification is referenced. 

The final field in SORTORDERSPECEX, rgdwFlags, contains an array of flags that define how the 

sort is to be accomplished. Each entry in the array matches the corresponding entry in the 
rgProplD array. The following flags are defined for this field: 

• CEDB_SORT_DESCENDING The sort is to be in descending order. By default, proper

ties are sorted in ascending order. 

• CEDB_SORT_CASEINSENSITIVE The sort should ignore the case of the letters in the 

string. 

• CEDB_SORT_UNKNOWNFIRST Records without this property are to be placed at the 

start of the sort order. By default, these records are placed last. 

• CEDB_SORT_IGNORENONSPACE The sort should ignore nonspace characters, such as 

accents, during sorting. This flag is valid only for string properties. 

• CEDB_SORT_IGNORESYMBOLS The sort should ignore symbols during sorting. This 
flag is valid only for string properties. 

• CEDB_SORT_IGNOREKANATYPE The sort should not differentiate between Hiragana 

and Katakana characters. This flag is valid only for string properties. 



390 Part II Windows CE Programming 

• CEDB_SORT_IGNOREWIDTH The sort should ignore the difference between single

byte characters and the same character represented by a double-byte value. This flag is 

valid only for string properties. 

• CEDB_SORT_NONNULL This flag specifies that this sort property must be present in 
all records in the database. 

A typical database might have a number of sort orders defined. After a database is created, 

these sort orders can be changed; however, this process is quite resource intensive and can 

take from seconds up to minutes to execute on large databases. 

The value returned by CeCreateDatabaseWithProps is a CEOID. We have seen this kind of 

value a couple of times so far in this chapter. It's an ID value that identifies the newly created 

database. If the value is 0, an error occurred while you were trying to create the database. 

You can call ~etlastError to diagnose the reason the database creation failed. 

The function CeCreateDatabaseWithProps works only for EDBs. To create a CEDB, use 

CeCreateDatabaseEx2, which has similar parameters but does not specify the properties 

within a database. For CEDBs, the properties are specified by the sort orders and when the 

records are written. 

Opening a Session 
How the database is opened depends on whether the database is opened by multiple appli

cations or threads or by a single application or thread. The point is: does the database (or da

tabases) need to contend with multiple reads and writes of the data at the same time? If so, 

the database reads and writes need to be transacted, which can only be accomplished with 

an EDB. If only a single application will be accessing the database, then the process is much 

simpler and either an EDB or CEDB will suffice, and in this case, the portions of the chapter 

dealing with Sessions and Transactions can be skipped. 

Both EDBs and CEDBs are transacted during single operations such as a record read or record 

write. However, if you want to transact multiple reads and writes, such as a read of one 

database and a write to another database within a single volume, then you must first create 

a session with the function 

HANDLE CeCreateSession (CEGUID* pGuid); 

The single parameter to the function is the CEGU/D of a previously mounted database 

volume. The return value from this function is the handle of the newly created session or 

INVALID_HANDLE_VALUE if an error occurred. When you no longer need the session, the 

handle should be closed with a call to CloseHandle. 



Chapter 11 Windows CE Databases 391 

Opening a Database 

A database can be opened with one of two functions, depending on whether transaction 

support is needed and the type of database (EDB or CEDB) being opened. If session support 

isn't needed, the function to call is Ce0penDatabaseEx2. I'll discuss it later, because it's func

tionally a subset of the session-based function 

HANDLE CeOpenDatabaseinSession (HANDLE hSession, PCEGUID pguid, 
PCEOID paid, LPWSTR lpszName, 
SORTORDERSPECEX '' pSo rt, 
DWORD dwFlags, 
CENOTIFYREQUEST "pRequest); 

The first parameter is the session handle previously created. If hSession is null, the data-

base manager creates a session handle for the database. This handle can be queried with 

CeGetDatabaseSession. The second parameter is the address of the CEGUID that indicates the 

database volume that contains the database. If this parameter is CREATE_INVALIDEDBGUJD, 

all mounted volumes will be searched for the database. A database can be opened either by 

referencing its CEOJD value or by referencing its name. To open the database by using its 

name, set the value pointed to by the paid parameter to 0 and specify the name of the data

base using the JpszName parameter. If you already know the CEOID of the database, simply 

put that value in the parameter pointed to by paid. If the CEOID value isn't 0, the function 

ignores the lpszName parameter. 

The pSort parameter specifies which of the sort order specifications should be used to sort 

the database while it's opened. This parameter should point to a SORTORDERSPECEX struc

ture that matches one of the entries in the SORTORDERSPECEX array that was defined when 

the database was created. The pointer doesn't have to point to the exact entry used when 

the database was created. Instead, the data within the SORTORDERSPECEX structure must 

match the data in the original SORTORDERSPECEX array entry. A Windows CE database can 

have only one active sort order. To use a different sort order, you can open a database again, 

specifying a different sort order. 

The dwF!ags parameter can contain either 0 or CEDB_AUTOJNCREMENT. If CEDB_ 

AUTO/NCREMENT is specified, each read of a record in the database results in the database 

pointer being moved to the next record in the sort order. Opening a database without this 

flag means that the record pointer must be manually moved to the next record to be read. 

This flag is helpful if you plan to read the database records in sequential order. 

The final parameter points to a structure that specifies how your application will be noti

fied when another process or thread modifies the database. The scheme is a message-based 

notification that allows you to monitor changes to the database while you have it opened. 

To specify the window that receives the notification messages, you pass a pointer to a 

CENOTJFYREQUEST structure that you have previously filled in. This structure is defined as 



392 Part II Windows CE Programming 

typedef struct _CENOTIFYREQUEST { 
DWORD dwSize; 
HWND hWnd; 
DWORD dwFl ags; 
HANDLE hHeap; 
DWORD dwParam; 

} CENOTIFYREQUEST; 

The first field must be initialized to the size of the structure. The hWnd field should be set to 

the window that will receive the change notifications. The dwF/ags field specifies how you 

want to be notified. For EDBs, put CEDB_EXNOT/FICAT/ON in the dwFlags field. This notifica

tion method passes a structure to the window detailing the change to the database. If you 

specify a handle to a heap in the hHeap field, the structure will be allocated there. If you set 

hHeap to 0, the structure will be allocated in your local heap. The dwParam field is a user

defined value that will be passed back to your application in the notification structure. 

When a change is detected in the database, your window receives a WM_DBNOTIFICAT/ON 

message. The /Param parameter points to a CENOTIFICAT/ON structure defined as 

typedef struct _CENOTIFICATION { 
DWORD dwSize 
DWORD dwParam; 
UINT uType; 
CEGUID guid; 
CEOID oid; 
CEOID oidParent; 

} CENOTIFICATION; 

As expected, the dwSize field fills with the size of the structure. The dwParam field contains 

the value passed in the dwParam field in the CENOT/FYREQUEST structure. This is an applica

tion-defined value that can be used for any purpose. 

The uType field indicates why the WM_DBNOT/FICAT/ON message was sent. It will be set to 

one of the following values: 

• DB_CEOID_CREATED A new file system object was created. 

• DB_CEOID_DATABASE_DELETED The database was deleted from a volume. 

• DB_CEOID_RECORD_DELETED A record was deleted in a database. 

• DB_CEOID_CHANGED An object was modified. 

The guid field contains the guid for the database volume that the message relates to, while 

the oid field contains the relevant database record oid. Finally, the oidParent field contains 

the oid of the parent of the oid that the message references. 

When you receive a WM_DBNOT/FICAT/ON message, the CENOT/FICAT/ON structure is 

placed in a memory block that must be freed. If you specified a handle to a heap in the 

hHeap field of CENOTIFYREQUEST, the notification structure will be placed in that heap; oth

erwise, the system places this structure in your local heap. Regardless of its location, you are 



Chapter 11 Windows CE Databases 393 

responsible for freeing the memory that contains the CENOTIFICATION structure. You do this 

with a call to 

BOOL CeFreeNotification(PCENOTIFYREQUEST pRequest, 
PCENOTIFICATION pNotify); 

The function's two parameters are a pointer to the original CENOTIFYREQUEST structure 

and a pointer to the CENOTIFICATION structure to free. You must free the CENOTIFICATION 

structure each time you receive a WM_DBNOT/FICATION message. 

Seeking (or Searching for) a Record 

Now that the database is opened, you can read and write the records. But before you can 

read a record, you must seek to that record. That is, you must move the database pointer to 

the record you want to read. You accomplish this using 

CEOID CeSeekDatabaseEx (HANDLE hDatabase, DWORD dwSeekType, DWORD dwValue, 
WORD wNumVals, LPDWORD lpdwindex); 

The first parameter for this function is the handle to the opened database. The dwSeekType 
parameter describes how the seek is to be accomplished. The parameter can have one of the 

following values: 

• CEDB_SEEK_CEOID Seek a specific record identified by its object ID. The object 

ID is specified in the dwValue parameter. This type of seek is particularly efficient in 

Windows CE databases. 

• CEDB_SEEK_BEGINNING Seek the nth record in the database. The index is contained 

in the dwValue parameter. 

• CEDB_SEEK_CURRENT Seek from the current position n records forward or backward 

in the database. The offset is contained in the dwValue parameter. Even though dwVal

ue is typed as an unsigned value, for this seek it's interpreted as a signed value. 

• CEDB_SEEK_END Seek backward from the end of the database n records. The num

ber of records to seek backward from the end is specified in the dwValue parameter. 

• CEDB_SEEK_VALUESMALLER Seek from the current location until a record is found 

that contains a property that is the closest to but not equal to or over the value speci

fied. The value is specified by a CEPROPVAL structure pointed to by dwValue. 

• CEDB_SEEK_VALUESMALLEROREQUAL Seek from the current location until a record 

is found that contains a property that is the closest to or equal to but not over the val

ue specified. The value is specified by a CEPROPVAL structure pointed to by dwValue. 

• CEDB_SEEK_VALUEFIRSTEQUAL Starting with the start of the database, seek forward 

until a record is found that contains the property that's equal to the value specified. 

The value is specified by a CEPROPVAL structure pointed to by dwValue. The location 

returned can be the current record. 



394 Part II Windows CE Programming 

• CEDB_SEEK_VALUENEXTEQUAL Starting with the next location after the record 

found with CEDB_SEEK_VALUEFIRSTEQUAL, seek until a record is found that contains a 

property that's equal to the value specified. 

• CEDB_SEEK_VALUEGREATER Seek from the current location until a record is found 
that contains a property that is the closest to, but not equal to, the value specified. The 

value is specified by a CEPROPVAL structure pointed to by dwValue. 

• CEDB_SEEK_VALUEGREATEROREQUAL Seek from the current location until a record 

is found that contains a property that is equal to, or the closest to, the value specified. 

The value is specified by a CEPROPVAL structure pointed to by dwValue. 

As you can see from the available flags, seeking in the database is more than just moving a 

pointer; it also allows you to search the database for a particular record. 

As I just mentioned in the descriptions of the seek flags, the dwValue parameter can either 

be loaded with an offset value for the seeks or point to an array of property values for the 

searches. The values are described in an array of CEPROPVAL structures, each defined as 

typedef struct _CEPROPVAL 
CEPROPID propid; 
WORD wlenData; 
WORD wFlags; 
CEVALUNION val; 

} CEPROPVAL; 

The propid field must match the property ID values of the sort order you specified when 

the database was opened. Remember that the property ID is a combination of a data type 

identifier along with an application-specific ID value that uniquely identifies a property in the 

database. This field identifies the property to examine when seeking. The wLenData field is 

ignored. None of the defined flags for the wF!ags field are used by CeSeekDatabase, so this 

field should be set to 0. The val field is actually a union of the different data types supported 

in the database. 

Following is a short code fragment that demonstrates seeking to the third record in the 

database. 

DWORD dwindex; 
CEOID oid; 

II Seek to the third record. 
oid = CeSeekDatabase (g_hDB, CEDB_SEEK_BEGINNING, 3, &dwindex); 
if (oid == 0) { 

II There is no third item in the database. 
} 

Now say we want to find the first record in the database that has a height property of greater 

than 100. For this example, assume the size property type is a signed long value. 



Chapter 11 Windows CE Databases 395 

II Define pid for height property as a signed long with ID of 1. 
#define PID_HEIGHT MAKELONG (CEVT_I4, 1) 

CEOID oid; 
DWORD dwindex; 
CEPROPVAL Property; 

II First seek to the start of the database. 
oid = CeSeekDatabaseEx (g_hDB, CEDB_SEEK_BEGINNING, 0, 1, &dwindex); 

II Seek the record with height> 100. 
Property.propid = PID_HEIGHT; 
Property.wLenData = O; 
Property.wFlags = O; 
Property.val .lVal = 100; 

II Set property to search. 
II Not used but clear anyway. 
II No flags to set 
II Data for property 

oid = CeSeekDatabaseEx (g_hDB, CEDB_SEEK_VALUEGREATER, (DWORD)&Property, 
1, &dwindex); 

if (oid == O) { 
II No matching property found; db pointer now points to end of db. 

} else { 

} 

II oid contains the object ID for the record, 
II dwindex contains the offset from the start of the database 
II of the matching record. 

Because the search for the property starts at the current location of the database pointer, 

you first need to seek to the start of the database if you want to find the first record in the 

database that has the matching property. 

Changing the Sort Order 

I talked earlier about how CeDatabaseSeekEx depends on the sort order of the opened da

tabase. If you want to choose one of the predefined sort orders instead, you must close the 

database and then reopen it specifying the predefined sort order. But what if you need a sort 

order that isn't one of the four sort orders that were defined when the database was created? 
You can redefine the sort orders using this function: 

BOOL CeSetDatabaseinfoEx (PCEGUID pguid, 
CEOID oidDbase, 
CEDBASEINFOEX ''pNewinfo); 

The function takes the CEGUID of the database volume and the object ID of the database 

you want to redefine and a pointer to a CEDBASEINFOEX structure. This structure is the same 

one used by CeCreateDatabaseWithProps. You can use these functions to rename the data

base, change its type, or redefine the four sort orders. You shouldn't redefine the sort orders 
casually. When the database sort orders are redefined, the system has to iterate through 

every record in the database to rebuild the sort indexes. This can take minutes for large da

tabases. If you must redefine the sort order of a database, you should inform the user of the 

massive amount of time it might take to perform the operation. 



396 Part II Windows CE Programming 

The preceding function CeSetDatabaselnfoEx works for EDBs. To change the sort order of a 

CEDB, the recommended function is CeSetDatabaselnfoEx2. 

Reading a Record 

Once you have the database pointer at the record you're interested in, you can read or write 

that record. You can read a record in a database by calling the following function: 

CEOID CeReadRecordPropsEx (HANDLE hDbase, DWORD dwFlags, 
LPWORD lpcPropID, 
CEPROPID *rgPropID, LPBYTE *lplpBuffer, 
LPDWORD lpcbBuffer, 
HANDLE hHeap); 

The first parameter in this function is the handle to the opened database. The-lpcProplD 
parameter points to a variable that contains the number of CEPROPID structures pointed to 

by the next parameter, rgProplD. These two parameters combine to tell the function which 

properties of the record you want to read. There are two ways to utilize the lpcProplD and rg

Prop/D parameters. If you want only to read a selected few of the properties of a record, you 
can initialize the array of CEPROPID structures with the ID values of the properties you want 

and set the variable pointed to by lpcProp/D with the number of these structures. When you 

call the function, the returned data will be inserted into the CEPROPID structures for data 

types such as integers. For strings and blobs, where the length of the data is variable, the 

data is returned in the buffer indirectly pointed to by lplpBuffer. 

Since CeReadRecordPropsEx has a significant overhead to read a record, it is always best to 

read all the properties necessary for a record in one call.2 To do this, simply set rgProplD to 

NULL. When the function returns, the variable pointed to by lpcProp/D will contain the count 
of properties returned, and the function will return all the properties for that record in the 

buffer. The buffer will contain an array of CEPROPID structures created by the function, im

mediately followed by the data for those properties, such as blobs and strings, where the 

data isn't stored directly in the CEPROPID array. 

One very handy feature of CeReadRecordPropsEx is that if you set CEDB_ALLOWREALLOC in 

the dwF/ags parameter, the function will enlarge, if necessary, the results buffer to fit the data 

being returned. Of course, for this to work, the buffer being passed to the function must not 

be on the stack or in the static data area. Instead, it must be an allocated buffer in the local 

heap or a separate heap. In fact, if you use the CEDB_ALLOWREALLOC flag, you don't even 

need to pass a buffer to the function; instead, you can set the buffer pointer to 0. In this case, 

the function will allocate the buffer for you. 

Notice that the buffer parameter isn't a pointer to a buffer but the address of a pointer to a 

buffer. There actually is a method to this pointer madness. Since the resulting buffer can be 

reallocated by the function, it might be moved if the buffer needs to be reallocated. So the 

2 The exception would be stream properties, which will be discussed below. 



Chapter 11 Windows CE Databases 397 

pointer to the buffer must be modified by the function. You must always use the pointer to 

the buffer returned by the function because it might have changed. Also, you're responsible 

for freeing the buffer after you have used it. Even if the function failed for some reason, the 

buffer might have moved or even have been freed by the function. You must clean up after 

the read by freeing the buffer if the pointer returned isn't 0. 

As you might have guessed from the preceding paragraphs, the hHeap parameter allows 

CeReadRecordPropsEx to use a heap different from the local heap when reallocating the buf

fer. When you use CeReadRecordPropsEx and you want to use the local heap, simply pass a 0 
in the hHeap parameter. 

The following routine reads all the properties for a record and then copies the data into a structure. 

int ReadDBRecord (HANDLE hDB, DATASTRUCT ''pData, HANDLE hHeap) { 
WORD wProps; 
CEOID oid; 
PCEPROPVAL pRecord; 
PBYTE pBuff; 
DWORD dwRecSize; 
int i; 

II Read all properties for the record. 
pBuff = O; II Let the function allocate the buffer. 
oid = CeReadRecordPropsEx (hDB, CEDB_ALLOWREALLOC, &wProps, NULL, 

&(LPBYTE)pBuff, &dwRecSize, hHeap); 
II Failure on read. 
if (oid == 0) 

return O; 

II Copy the data from the record to the structure. The order 
II of the array is not defined. 
memset (pData, 0 , sizeof (DATASTRUCT)); 
pRecord = (PCEPROPVAL)pBuff; 

for (i = O; i < wProps; i++) { 
switch (pRecord->propid) { 
case PID_NAME: 

II Zero return struct 
II Point to CEPROPVAL 
II array. 

lstrcpy (pData->szName, pRecord->val .lpwstr); 
break; 

case PIO_ TYPE: 
lstrcpy (pData->szType, pRecord->val .lpwstr); 
break; 

case PID_SIZE: 
pData->nSize pRecord->val .iVal; 
break; 

} 

pRecord++; 

if (hHeap) 
HeapFree (hHeap, 0, pBuff); 

else 
LocalFree (pBuff); 

return i; 



398 Part II Windows CE Programming 

Because this function reads all the properties for the record, CeReadRecordPropsEx creates 

the array of CEPROPVAL structures. The order of these structures isn't defined, so the func

tion cycles through each one to look for the data to fill in the structure. After all the data has 
been read, a call to either HeapFree or Loco/Free is made to free the buffer that was returned 

by CeReadRecordPropsEx. 

Nothing requires every record to contain all the same properties. You might encounter a 

situation where you request a specific property from a record by defining the CEPROPID ar

ray and that property doesn't exist in the record. When this happens, CeReadRecordPropsEx 

will set the CEDB_PROPNOTFOUND flag in the wF/ags field of the CEPROP/D structure for 

that property. You should always check for this flag if you call CeReadRecordPropsEx and you 

specify the properties to be read. In the example above, all properties were requested, so if a 
property didn't exist, no CEPROPID structure for that property would have been returned. 

Writing a Record 

You can write a record to the database using this function: 

CEOID CeWriteRecordProps (HANDLE hDbase, CEOID oidRecord, WORD cPropID, 
CEPROPVAL '' rgPropVa l); 

The first parameter is the obligatory handle to the opened database. The oidRecord param

eter is the object ID of the record to be written. To create a new record instead of modifying 

a record in the database, set oidRecord to 0. The cProp/D parameter should contain the num

ber of items in the array of property ID structures pointed to by rgPropVal. The rgPropVal ar

ray specifies which of the properties in the record to modify and the data to write. 

Reading and Writing Stream Properties 

The procedures for reading and writing simple property types such as strings and integers 
are fairly straightforward. However, the methods discussed previously for reading and writ

ing properties don't work as well when dealing with huge amounts of data. EDBs support a 

database type called a stream. The stream data type can be read and written, as the name 

suggests, as a stream of data instead of a monolithic block of data. To read or write a stream 

property, the application first seeks the record containing the stream property to be ac

cessed. To access that property, call 

HANDLE CeOpenStream (HANDLE hDatabase, CEPROPID propid, DWORD dwMode); 

The first parameter is the handle to the opened database, while the second parameter is the 

property ID of the stream property to be opened. The dwMode parameter indicates the ac

cess desired. The two flags allowed are GENERIC_READ and GENERIC_ WRITE. 

To read an opened stream, call the function 



Chapter 11 Windows CE Databases 399 

BOOL CeStreamRead (HANDLE hStream, LPBYTE lprgbBuffer, DWORD cbRead, 
LPDWORD lpcbRead); 

The parameters start with the handle to the opened stream. The next two parameters are 

the pointer to the buffer that will receive the data and the size of the data to read. The fi
nal parameter is a pointer to a DWORD that will receive the number of bytes actually read 

during the call. The function returns TRUE if successful. As always, if the function fails, call 

GetLastError for the reason for failure. 

Writing a stream starts with a call to 

BOOL CeStreamWrite (HANDLE hStream, LPBYTE lprgbBuffer, DWORD cbWrite, 
LPDWORD lpcbWritten); 

The parameters mirror the ones for CeStreamRead, with the handle to the stream, the pointer 

to the buffer, the size of the data to write, and a pointer to a DWORD that will be filled with 

the number of bytes actually written. The function returns TRUE if successful. 

After the data has been written, it must be committed to the database with a call to 

BOOL CeStreamSaveChanges (HANDLE hStream); 

The only parameter is the handle to the open stream. If a stream is written to with a call to 

CeStreamWrite or CeStreamSetSize, which is discussed below, and the stream is closed before 

a call is made to CeStreamSaveChanges, the changes will be lost. 

To truncate or extend a stream's length, a call can be made to 

BOOL CeStreamSetSize (HANDLE hStream, DWORD cbSize); 

The first parameter is the stream handle, while the second parameter is the new length of the 

stream. You must have write access to set the length of a stream. As mentioned above, to 

commit this change, a subsequent call must be made to CeStreamSaveChanges. 

You can seek to a different location within the stream with a call to 

BOOL CeStreamSeek (HANDLE hStream, DWORD cbMove, DWORD dwOrigin, 
LPDWORD lpcbNewOffset); 

The first parameter is the stream handle. The second parameter is the number of bytes to 

move in the stream. As with a file seek operation, how cbMove is interpeted depends on the 

next parameter dwOrigin. When dwOrigin is set to STREAM_ SEEK_ SET, cbMove is the number 

of bytes from the start of the stream. When dwOrigin is STREAM_SEEK_CUR, cbMove is rela

tive from the current stream location. Finally, if dwOrigin is STREAM_SEEK_END, cbMove is 

relative from the end of the stream. When the dwOrigin flag is STREAM_SEEK_ CUR, the 

cbMove value is interpeted as a signed value instead of an unsigned value. The final param

eter is the address of a DWORD that receives the new location within the stream. 



400 Part II Windows CE Programming 

When you are finished with the stream property, close the stream handle with a call to 

CloseHandle. Take care not to confuse the handle to a stream property with the handle to the 

database itself. 

Using Transactions 

Any single read or write to a Windows CE database is atomic. That is, the read or write will 

complete before another thread can access the database. However, if you want to perform 
multiple reads or writes on a database or even multiple databases within a single database 

volume, you need to use the EDB engine's transaction support. Before using transactions, a 

session handle needs to be either created with CeCreateSession or queried from an open EDB 

using CeGetDatabaseSession. All databases involved in the transaction must be opened with 

the same session handle. 

To start a transaction, call the function 

BOOL CeBeginTransaction (HANDLE hSession, CEDBISOLATIONLEVEL isoLevel); 

The parameter is the handle to the session. The isolevel parameter provides the isolation 

level for the transaction. The possible values are: 

• CEDB_ISOLEVEL_READCOMMITTED Data being modified by another transaction 

can't be read by another transaction until the data is committed. 

• CEDB_ISOLEVEL_DEFAULT Same as CEDB_ISOLEVEL_READCOMMITTED 

• CEDB_ISOLEVEL_REPEATABLEREAD Data read by a transaction can be read but not 

modified by another transaction. 

• CEDB_ISOLEVEL_SERIALIZABLE Data read by a transaction cannot be read or modi

fied by another transaction. 

Once the transaction is opened, the database queues up each of the reads and writes to the 

various databases opened with the same session handle. To commit the changes, make a call 

to 

BOOL CeEndTransaction (HANDLE hSession, BOOL fCommit); 

The first parameter is the handle to the session. The second parameter allows you to either 

commit the changes made while the transaction was opened or to discard the changes. If the 

data is committed, the changes will be flushed to the database volume at the next flush in

terval or after the next call to CeF/ushDBVol. Although changes to records can be discarded, 

any change to the structure of the database, such as adding properties or changing sort or

ders, cannot be discarded. 



Chapter 11 Windows CE Databases 401 

Deleting Properties, Records, and Entire Databases 

You can delete individual properties in a record using CeWriteRecordProps. To do this, create 

a CEPROPVAL structure that identifies the property to delete and set CEDB_PROPDELETE in 
the wF/ags field. 

To delete an entire record in a database, call 

BOOL CeDeleteRecord (HANDLE hDatabase, CEOID oidRecord); 

The parameters are the handle to the database and the object ID of the record to delete. 

You can delete an entire database using this function: 

BOOL CeDeleteDatabaseEx (PCEGUID pguid, CEOID oid); 

The two parameters are the CEGUID of the database volume and the object ID of the data
base. Of course, you can't delete a database that is currently open. 

Enumerating Databases 

Sometimes you must search the system to determine what databases are on the system. 
Windows CE provides a set of functions to enumerate the databases in a volume. These func
tions are 

HANDLE CeFindFirstDatabaseEx (PCEGUID pguid, DWORD dwDbaseType); 

and 

CEOID CeFindNextDatabaseEx (HANDLE hEnum, PCEGUID pguid); 

These functions act like FindFirstFile and FindNextFile, with the exception that 
CeFindFirstDatabaseEx only opens the search; it doesn't return the first database found. The 
PCEGUID parameter for both functions is the address of the CEGUID of the database volume 
you want to search. You can limit the search by specifying the ID of a specific database type 
in the dwDbaseType parameter. If this parameter is set to 0, all databases are enumerated. 
CeFindFirstDatabaseEx returns a handle that is then passed to CeFindNextDatabaseEx to ac
tually enumerate the databases. 

Here's how to enumerate the databases in the object store: 

HANDLE hDBList; 
CEOID oidDB; 
CEGUID guidVol; 

II Enumerate the databases in the object store. 
CREATE_SYSTEMGUID(&guidVol); 



402 Part II Windows CE Programming 

hDBList = CeFindFirstDatabaseEx (&guidVol, O); 
if (hDBList != INVALID_HANDLE_VALUE) { 

} 

oidDB = CeFindNextDatabaseEx (hDBList, &guidVol); 
whi 1 e (oi dDB) { 

II Enumerated database identified by object ID. 
MyDisplayDatabaseinfo (hCeDB); 

hCeDB = CeFindNextDatabaseEx (hDBList, &guidVol); 

CloseHandle (hDBList); 

The code first creates the CEGUID of the object store using the macro CREATE_SYSTEMGUID. 
That parameter, along with the database type specifier 0, is passed to CeFindFirstDatabaseEx 
to enumerate all the databases in the object store. If the function is successful, the databases 
are enumerated by repeatedly calling CeFindNextDatabaseEx. 

Querying Object Information 

To query information about a database, use this function: 

BOOL CeOidGetinfoEx2 (PCEGUID pguid, CEOID oid, CEOIDINFOEX *oidinfo); 

These functions return information about not just databases, but any object in the object 
store. This includes files and directories as well as databases and database records. The func
tion is passed the database volume and object ID of the item of interest and a pointer to a 
CEOIDINFOEX structure. 

Here's the definition of the CEOIDINFOEX structure: 

typedef struct _CEOIDINFOEX { 
WORD wVersion; 
WORD wObjType; 
union { 

} ; 

CEFILEINFO infFile; 
CEDIRINFO infDirectory; 
CEDBASEINFOEX infDatabase; 
CERECORDINFO infRecord; 

} CEOIDINFOEX; 

This structure starts with a version field that should be set to CEOIDINFOEX_ VERSION. 
The second field indicates the type of the item and a union of four different structures, 
each detailing information about that type of object. The currently supported flags are 
OBJTYPE_FILE, indicating that the object is a file; OBJTYPE_DIRECTORY, for directory objects; 
OBJTYPE_DATABASE, for database objects; and OBJTYPE_RECORD, indicating that the object 
is a record inside a database. The structures in the union are specific to each object type. 

The various structures of the union are defined as 



typedef struct _CEFILEINFO { 
DWORD dwAttributes; 
CEOID oidParent; 
WCHAR szFileName[MAl<_PATH]; 
FILETIME ftlastChanged; 
DWORD dwlength; 

} CEFILEINFO; 

the CEDIRINFO structure is defined as 

typedef struct _CEDIRINFO { 
DWORD dwAttributes; 
CEOID oidParent; 
WCHAR szDirName[MAl<_PATH]; 

} CEDIRINFO; 

and the CERECORD/NFO structure is defined as 

typedef struct _CERECORDINFO { 
CEOID oidParent; 

} CERECORDINFO; 

Chapter 11 Windows CE Databases 403 

You've already seen the CEDBASE/NFOEX structure used in CeCreateDatabaseEx2 and 

CeSetDatabaselnfoEx2. As you can see from the preceding structures, CeGetOidlnfoEx2 re
turns a wealth of information about each object. One of the more powerful bits of informa
tion is the object's parent aid, which will allow you to trace the chain of files and directories 
back to the root. These functions also allow you to convert an object ID to a name of a data
base, directory, or file. 

The object ID method of tracking a file object should not be confused with the PID scheme 

used by the shell. Object IDs are maintained by the file system and are independent of what
ever shell is being used. This would be a minor point under other versions of Windows, but 
with the ability of Windows CE to be built as components and customized for different tar

gets, it's important to know what parts of the operating system support which functions. 

The database API is unique to Windows CE and provides a valuable function for the infor
mation-centric devices that Windows CE supports. Although it doesn't have powerful query 
language like an SQL-based database, its functionality is a handy tool for the Windows CE 
developer. 

In the preceding five chapters, I've covered the basics of the Windows CE kernel from mem
ory to processes and threads to the file system. Now it's time to break from this low-level 

stuff and start looking outward. In the final chapter of this section, I'll cover the Windows CE 
notification API. The notification API frees applications from having to keep running in the 
background to monitor what is going on in the system. 





Chapter 12 

Notifications 
One area in which Microsoft Windows CE exceeds the desktop Windows API is the notifica

tion interface. Windows CE applications can register to be launched at a predetermined time 

or when any of a set of system events occur. Applications can also register a user notification. 

In a user notification, the system notifies the user at a specific time without the application it

self being launched at that time. Another type of notification can display message, or bubble, 

windows in plain text and even formatted HTML text. 

These are the original notification interface that has been supported since the inception of 
Windows CE and the "bubble" notification interface that has its orgins in Windows Mobile 

systems. The original notification interface is based on only a handful of functions, the most 

important of which is CeSetUserNotificationEx. This omnibus function provides all the func

tionality to schedule any of the three types of notifications: user, system, and timer. Bubble 
notifications are a bit more complex, with a series of functions that support a powerful user 

notification interface. 

User Notifications 
A Windows CE application can schedule the user to be notified at a given time using the 

CeSetUserNotificationEx function. When the time of the notification occurs, the system alerts 

the user by displaying a dialog box, playing a wave file, vibrating the device, or flashing an 

external LED. If the system was suspended at the time of the notification, Windows CE turns 

the system on. Because many Windows CE systems have a suspend-resume style power 

scheme, suspended systems will quickly turn themselves back on if the notification fires while 

the system is unattended. Figure 12-1 shows the notification dialog box on an embedded 

Windows CE device. 

Windows CE also displays the icon of the application that set the notification on the taskbar. 

The user has the option of acknowledging the notification by clicking OK on the notification 

dialog box, pressing the Notify button on the system case (if one is present), or on some sys
tems, tapping the application's taskbar annunciator icon, which launches the application that 

registered the notification. After a user notification has been set, you can modify it by mak

ing another call to CeSetUserNotificationEx. 

405 



406 Part II Windows CE Programming 

FIGURE 12-1 The notification dialog box on an embedded Windows CE device 

Setting a User Notification 

CeSetUserNotificationEx is prototyped as 

HANDLE CeSetUserNotificationEx (HANDLE hNotification, 
CE_NOTIFICATION_TRIGGER *pent, 
CE_USER_NOTIFICATION *pceun); 

The hNotification parameter is set to 0 to create a new notification. To modify a notification 
already registered, you should set hNotification to the handle of the notification that you 
want to modify. 

The CE_NOT/F/CAT/ON_TR/GGER structure defines the type and detail of the notification be
ing set. This structure is defined as 

typedef struct UserNotificationTrigger { 
DWORD dwSize; 
DWORD dwType; 
DWORD dwEvent; 
WCHAR *lpszApplication; 
WCHAR *lpszArguments; 
SYSTEMTIME stStartTime; 
SYSTEMTIME stEndTime; 

} CE_NOTIFICATION_TRIGGER, *PCE_NOTIFICATION_TRIGGER; 

The first field should be set to the size of the structure. The second field, dwType, should be 
filled with a flag indicating the type of notification being set. For user notifications, set this 
field to either CNT_PERIOD or CNT_TIME. The CNT_PERIOD flag creates a notification that 
will dismiss itself after a set time, while a CNT_TIME notification will not dismiss itself without 
user action. For user notifications, the dwEvent field isn't used. I'll talk about that field when I 

discuss event notifications. 

The next field, lpszApplication, specifies the application that will be launched if the user re
quests more detail from the notification. If the application is launched, its command line is 
specified by the next field, lpszArguments. 



Chapter 12 Notifications 407 

Another use for the lpszApplication field is to specify an event to be signaled when the notifi

cation fires. To specify an event, the field should be formatted as 

\\.\Notifications\NamedEvents\<Event Name> 

where <Event Name> is any name chosen for the event. Remember that when you specify 

this string in C, the backslash character must be replicated because it's used as the escape 

character. So to have a notification trigger an event named Bob, the string pointed to by the 

lpszApplication field would look like this: 

TEXT ("\\\\.\\Notifications\\NamedEvents\\Bob") 

To be notified using an event, an application must create a named event with the same name 

as <Event Name> by using the CreateEvent function and wait on the handle returned, as in 

hEvent = CreateEvent (NULL, FALSE, FALSE, TEXT ("Bob")); 

The final two fields, stStartTime and stEndTime, specify the starting time and ending time of 

the notice. The starting time, of course, is when the system first notifies the user by means of 
a number of different methods I'll talk about in a moment. You use the ending time only in 

a CNT_PERIOD-style user notification; the CeSetUserNotificationEx function ignores the end

ing time for CNT_ TIME notifications. stEndTime designates the time the system is to remove 

the notice if the user doesn't acknowledge the notification. This time must be later than the 
starting time. 

How the system notifies the user is specified by the third parameter of CeSetUserNotificationEx, 

which points to a CE_USER_NOTIFICATION structure. This structure is defined as 

typedef struct UserNotificationType { 
DWORD ActionFlags; 
TCHAR *pwszDialogTitle; 
TCHAR *pwszDialogText; 
TCHAR ''pwszSound; 
DWORD nMaxSound; 
DWORD dwReserved; 

} CE_USER_NOTIFICATION; 

The ActionF/ags field of this structure contains a set of flags that define how the user is noti

fied. The flags can be any combination of the following: 

• PUN_LED Flash the external LED. 

• PUN_ VIBRATE Vibrate the device. 

• PUN_DIALOG Display a dialog box. 

• PUN_SOUND Play a wave file. 

• PUN_REPEAT Repeat the wave file for 10 to 15 seconds. 



408 Part II Windows CE Programming 

The fact that these flags are defined doesn't mean that all systems implement all these ac

tions. Most Windows CE devices can't vibrate and many don't even have an external LED. 

There isn't a defined method for determining the notification capabilities of a device, but as 

I'll presently show you, the system provides a dialog box that's customized by the OEM for 
the capabilities of each device. 

The remainder of the fields in the structure depend on the flags set in the ActionFlags field. If the 

PUN_ DIALOG flag is set, the pwszDialogTitle and pwszDialogText fields specify the title and text 

of the dialog that's displayed. The pwszSound field is loaded with the file name of a wave file to 
play if the PUN_ SOUND flag is set. The nMaxSound field defines the size of the pwszSound field. 

Configuring a User Notification 

To give you a consistent user interface for choosing the method of notification, Windows CE 

provides a dialog box to query the user about how he wants to be notified. To display the 

user configuration dialog box, you call this function: 

BOOL CeGetUserNotificationPreferences (HWND hWndParent, 
PCE_USER_NOTIFICATION lpNotification); 

This function takes two parameters-the window handle of the parent window for the dialog 

box and a pointer to a CE_USER_NOTIFICATION structure. You can initialize the CE_ USER_ 
NOTIFICATION structure with default settings for the dialog before CeGetUserNotification 
Preferences is called. When the function returns, this structure is filled with the changes the 

user made. CeGetUserNotificationPreferences returns TRUE if the user clicked the OK button 

to accept the changes and FALSE if an error occurred or the user canceled the dialog box. 

Figure 12-2 shows the notification preferences dialog box opened through the CeGetUser
NotificationPreferences function on an embedded device. 

This function gives you a convenient method for configuring user notifications. The dialog 

box lets you have check boxes for playing a sound, displaying another dialog box, and flash

ing the LED. It also contains a combo box that lists the available wave files that the user can 

choose from if he wants sound. The dialog box doesn't have fields to allow the user to specify 

the text or title of the dialog box if one is to be displayed. That text must be provided by the 

application. 

FIGURE 12-2 The dialog box opened by CeGetUserNotificationPreferences 



Chapter 12 Notifications 409 

Acknowledging a User Notification 

A user notification can be cleared by the application before it times out by calling 

BOOL CeClearUserNotification (HANDLE hNotification); 

Once a user notification has occurred, it must be acknowledged by the user unless the user 

notification's end time has passed. The user can tap the Dismiss button on the notification 

dialog box or press the notification button on the device case. Or the user can tap the 

Snooze button, which automatically reschedules the notification for a later time. On an 

embedded Windows CE system, the user can tap the Open button to launch the application 
specified when the notification was scheduled. 

If the user taps the Open button, the notification isn't automatically acknowledged. Instead, 

an application should programmatically acknowledge the notification by calling this function: 

BOOL CeHandl eAppNoti fi cations (TCHAR ''pwszAppName); 

The one parameter is the name of the application that was launched because the user 
tapped the Open button. Calling this function removes the dialog box; stops the sound; turns 

off the flashing LED; and on systems with the Windows CE Explorer shell, removes the appli

cation's annunciator icon from the taskbar. This function doesn't affect any notifications that 

are scheduled but haven't fired. 

When the system starts an application because of a notification, it passes a command line 

argument to indicate why the application was started. For a user notification, this argument 

is the command line string specified in the lpszArguments field of the CE_NOTIFICATION_ 

TRIGGER structure. If you scheduled the notification using the CNT_ CLASSICTIME flag, the 

command line is the predefined string constant APP_RUN_ TO_HANDLE_NOTIFICATION. If 

the event notification method is specified, the application won't be started. Instead, an event 

of the specified name will be signaled. 

As a general rule, an application started by a notification should first check to see whether 
another instance of the application is running. If so, the application should communicate to 

the first instance that the notification occurred and terminate. This saves memory because 

only one instance of the application is running. The following code fragment shows how this 

can be easily accomplished. 

INT i ; 
HWND hWnd; 
HANDLE hNotify; 
TCHAR szText[128]; 
TCHAR szFileName[MAX_PATH]; 

if (*lpCmdLine) { 
pPtr = lpCmdLine; 
II Parse the first word of the command line. 



410 Part II Windows CE Programming 

} 

for (i = O; i < dim(szText) && *lpCmdLine >TEXT(' '); i++) 
szText[i] = *pPtr++; 

szText[i] =TEXT ('\0'); 

II Check to see if app started due to notification. 
if (lstrcmp (szText, TEXT("My Notification cmdline")) == O) { 

II Acknowledge the notification. 

} 

GetModuleFileName (hinst, szFileName, sizeof (szFileName)); 
CeHandleAppNotifications (szFileName); 

II Get handle off the command line. 
hNotify = (HANDLE)~wtol (pPtr); 

II Look to see if another instance of the app is running. 
hWnd = FindWindow (NULL, szAppName); 
if (hWnd) { 

} 

SendMessage (hWnd, MYMSG_TELLNOTIFY, 0, (LPARAM)hNotify); 
II This app should terminate here. 
return O; 

This code first looks to see whether a command line parameter exists and, if so, whether the 
first word is the keyword indicating that the application was launched by the system in re
sponse to a user notification. If so, the notification is acknowledged and the application looks 

for an instance of the application already running, using FindWindow. If found, the routine 
sends an application-defined message to the main window of the first instance and termi

nates. Otherwise, the application can take actions necessary to respond to the user's tap of 
the Open button on the alert dialog. 

Timer Event Notifications 
To run an application at a given time without user intervention, use a timer event notification. 

To schedule a timer event notification, use CeSetUserNotificationEx just as you do for the user 
notification, but pass a NULL value in the pceun parameter, as you see on the following page. 

CE_NOTIFICATION_TRIGGER cnt; 
TCHAR szArgs[] =TEXT ("This is a timer notification."); 
TCHAR szExeName[MAX_PATH]; 

memset (&nt, 0, sizeof (CE_NOTIFICATION_TRIGGER)); 
nt.dwSize = sizeof (CE_NOTIFICATION_TRIGGER); 
nt.dwType = CNT_TIME; 
nt.lpszApplication = szExeName; 
nt.lpszArguments = szArgs; 
nt.stStartTime = st; 
GetModuleFileName (hinst, szExeName, sizeof (szExeName)); 
hNotify = CeSetUserNotificationEx (0, &nt, NULL); 



Chapter 12 Notifications 411 

When the timer notification is activated, the system powers on if currently off, and launches 

the application with a command line parameter specified in the lpszArguments field of the no

tification trigger structure. As with the user notification, if the application is started, it should 

check to see whether another instance of the application is running and, if so, pass the notifica

tion on if one is running. Also, an application should be careful about creating a window and 

taking control of the machine during a timer event. The user might object to having his game 

of solitaire interrupted by another application popping up because of a timer notification. 

System Event Notifications 
Sometimes, you might want an application to be automatically started. Windows CE supports 

a third type of notification, known as a system event notification. This notification starts an 

application when one of a set of system events occurs, such as after the system has complet

ed synchronizing with its companion PC. To set a system event notification, you again use the 

omnibus CeSetUserNotificationEx function. This time, you specify the type of event you want 

to monitor in the dwEvent field of the notification trigger structure, as in 

CE_NOTIFICATION_TRIGGER nt; 
TCHAR szExeName[MAX_PATH]; 
TCHAR szArgs[128] = TEXT("This is my event notification string."); 

memset (&nt, 0, sizeof (CE_NOTIFICATION_TRIGGER)); 
nt.dwSize = sizeof (CE_NOTIFICATION_TRIGGER); 
nt.dwType = CNT_EVENT; 
nt.dwEvent = dwMyEventFlags; 
nt.lpszApplication = szExeName; 
nt.lpszArguments = szArgs; 
GetModuleFileName (hinst, szExeName, sizeof (szExeName)); 
CeSetUserNotificationEx (0, &nt, NULL); 

The event flags are the following: 

• NOTIFICATION_EVENT_SYNC_END Notify when sync is complete. 

• NOTIFICATION_EVENT_DEVICE_CHANGE Notify when a device driver is loaded or 
unloaded. 

• NOTIFICATION_EVENT_RS232_DETECTED Notify when an RS232 connection is 
detected. 

• NOTIFICATION_EVENT_TIME_CHANGE Notify when the system time is changed. 

• NOTIFICATION_EVENT_TZ_CHANGE Notify when time zone is changed.l 

• NOTIFICATION_EVENT_RESTORE_END Notify when a device restore is complete. 

• NOTIFICATION_EVENT_WAKEUP Notify when a device wakes up. 

1 The NOTIFICATION_EVENT_TZ_CHANGE notification flag isn't supported on some Windows Mobile devices. 



412 Part II Windows CE Programming 

• NOTIFICATION_EVENT_MACHINE_NAME_CHANGE Notify when a device name 
changes. 

• NOTIFICATION_EVENT_RNDIS_FN_DETECTED Notify when an RNDIS connection is 
detected. 

• NOTIFICATION_EVENT_INTERNET_PROXY_CHANGE Notify when proxy server 
changes. 

For each of these events, the application is launched with a specific command line parameter 
indicating why the application was launched. In the case of a device change notification, the 
specified command line string is followed by either /ADD or /REMOVE and the name of the 
device being added or removed. For example, if the user inserts a modem card, the com
mand line for the notification would look like this: 

My event command line string /ADD COM3: 

A number of additional system events are defined in Notify.h, but OEMs must provide sup
port for these additional notifications, and at this point few, if any, of the additional notifica
tion events are supported. 

Once an application has registered for a system event notification, Windows CE will start or 
signal the application again if the event that caused the notification is repeated. 

Clearing out system event notifications is best done with what might be thought of as an ob
solete function, the old CeRunAppAtEvent function, prototyped as 

BOOL CeRunAppAtEvent (TCHAR *pwszAppName, LONG lWhichEvent); 

The parameters are the application to run and the event flag for the event of which you want 
to be notified. While the function has been superseded by CeSetUserNotificationEx, it does 
still have one use-clearing out all the system notifications for a specific application. If you 
pass your application name along with the flag NOTIF/CAT/ON_EVENT_NONE in the /Which
Event parameter, Windows CE clears out all event notifications assigned to that application. 
While you would think you could pass the same flag to CeSetUserNotificationEx to clear out 
the events, it doesn't unless you pass the original handle returned by that function when you 
originally scheduled the notification. 

The NoteDemo Example Program 
The following program, NoteDemo, demonstrates each of the notification functions that al
low you to set user notifications, system notifications, and timer notifications. The program 

presents a simple dialog box equipped with five buttons. The first two buttons allow you 
to configure and set a user notification. The second two buttons let you set system and 
timer notifications. The last button clears out all the notifications you might have set us-
ing NoteDemo. The gap above the buttons is filled with the command line, if any, that was 



Chapter 12 Notifications 413 

passed when the application started. That space also displays a message when another in

stance of NoteDemo starts because of a user notification. Figure 12-3 shows two NoteDemo 

windows. The one in the foreground was launched because of a user notification, with the 

command-line parameter, "This is my user notification string." 

NoteDemo ':K 

Th~ is my event notification string. 

I Set !J.ser Notification I 
I !;;onfigure User, Notification I 
[ Set s_ystem Notification ) 
[ Set Dmer Notification l 
[ aear all mi ~tifications I 
FIGURE 12-3 The NoteDemo window 

The source code for NoteDemo appears in Listing 12-1. The notification code is confined to 

the button handler routines. The code is fairly simple: for each type of notification, the ap

propriate Windows CE function is called. When asked to configure a user notification, the 

application calls CeGetUserNotificationPreferences. The program gives you one additional 

dialog box with which to configure the system notifications. 

LISTING 12-1 

NoteDemo.rc 

II Resource file 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II====~~==================================~====================~==== 
#include "windows.h" 
#include "NoteDemo.h" II Program-specific stuff 

11----------------------------------------------------------------------
11 Icons and bitmaps 
II 
ID_ICON ICON "NoteDemo.ico" II Program icon 

11----------------------------------------------------------------------
11 Main window dialog template 
II 
NoteDemo DIALOG discardable 25, 5, 120, 98 
STYLE WS_OVERLAPPED I WS_VISIBLE WS_CAPTION I WS_SYSMENU I 

DS_CENTER I DS_MODALFRAME 
CAPTION "NoteDemo" 
BEGIN 

LTEXT "", IDD_OUTPUT, 2, 2, 115, 21 



414 Part II Windows CE Programming 

PUSttBUITON "Set &user Notification", 
IOD..ADDUSERNOT, 2, 25, 115, 12, ws...:TABSTOP 

PUSHBUTION "&Configure User Notification", 
IOD_CFGUSERNOT, 2, 39, 115, 12, WS_TABSTOP 

PUSHBUTION "Set &System Notification", 
IOD..AODSYSNOT, 2, 53, 115, 12, WS_TABSTOP 

PUSHBUTION "Set &Timer Notification", 
IDD..ADDT!MENOT, 2, 67, 115, 12, ws_TABSTOP 

PUSHBUTTON "Clear all my Notificatfons", 
IDD_CLEARNOT, 2, 81, 115, 12, WS_TABSTOP 

ENO 
11----------------------------------------------------------------------
1/ Set system event notification dialog box dialog template. 
// 
SysNotifyConfig DIALOG DISCARDABLE O, 0, 130, 125 
STYLE DS_MODALFRAME I WS_POPUP I WS_CAPTION I WS_SYSMENU 
EXSTYLE WS_EX...:CAPT!ONOKBTN 
CAPTION "Notify On ... " 
BEGIN 

AUTOCHECKBOX "Sync End", IDC...:SYNC...:END, 7, 5, 121, 10, 
WS_TABSTOP 

AUTOCHECKBOX "Device Change",IDC...:DEVICE_CHANGE, 7, i7, 121. 10, 
WS_TABSTOP 

AUTOCHECKBOX "Serial Connection Detected", 
IDC...SERIAL_DETECT, 7, 29, 121, 10, 

WS_TAB$TOP 
AUTOCHECKBOX "System Time Change", 

IDC_TIME_CHANGE, 7, 41, 121, 10, 
ws_TABSTOP 

AUTOCHECKBOX "Restore End", IDC_RESTORE_END, 7, 53, 121, 10, 
ws_TABSTOP 

AUTOCHECKBOX "System Wake Up", IDC...:POWER_UP, 7, 65, 121, 10, 
WS_TABSTOP 

AUTOCHECKBOX "Time Zorie Change", IDC...: TZ_CHANGE, 7, 77, 121, 10, 
WS_TABSTOP 

AUTOCHECKBOX "Name Change", IDC_NAME_CHANGE, 7, 89, 121, 10, 
WS_TABSTOP 

AUTOCHECKBOX "RNDIS Detected",IDC...:RNDIS_CHANGE, 7, 101, 121, 10, 
11/S.:.TABSTOP 

AUTOCHECKBOX "Proxy Change", IOC_PROXY_CHANGE, 7, 113, 121, 10, 
WS_TABSTOP 

ENO 

Note.Demo.h 



Chapter 12 Notifications 415 

II====================================================================== 
II Header file 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II====================================================================== 
II Returns number of elements 
#define dim(x) (sizeof(x) I sizeof(x[O])) 

11----------------------------------------------------------------------
11 Generic defines and data types 
II 
struct decodeUINT { 

UINT Code; 

BOOL (*Fxn)(HWND, UINT, WPARAM, LPARAM); 
} ; 
struct decodeCMD { 

UINT Code; 
LRESULT (*Fxn)(HWND, WORD, HWND, WORD); 

} ; 

struct decodeBtn { 
DWORD dwID; 
DWORD dwFlag; 

} ; 

II Structure associates 
II messages 
II with a function. 

II Structure associates 
II menu IDs with a 
II function. 

II Structure associates 
II btn IDs with 
II notification flags 

II Define function not supported under Windows CE. 
#ifndef IsDlgButtonChecked 
#define IsDlgButtonChecked(a, b)\ 

SendDlgitemMessage (a, b, BM_GETCHECK, 0, 0) 
#endif 
!!----------------------------------------------------------------------
II Generic defines used by application 

#define ID_ICON 1 

#define IDD__ADDUSERNOT 10 II Control IDs 
#define IDD_CFGUSERNOT 11 
#define IDD__ADDSYSNOT 12 
#define IDD__ADDTIMENOT 13 
#define IDD_OUTPUT 14 
#define IDD_CLEARNOT 15 

#define ID(_SYN(_END 20 
#define ID(_DEVICE_CHANGE 21 
#define IDC_SERIAL__DETECT 22 
#define ID(_ TIME_CHANGE 23 
#define ID(_RESTORE_END 24 
#define ID(_POWEILUP 25 
#define ID(_TZ_CHANGE 26 
#define IDc_NAME_CHANGE 27 
#define IDC_RNDIS_CHANGE 28 
#define ID(_PROXY_CHANGE 29 



416 Part II Windows CE Programming 

#define ·MYMSG,_TELLNOTIFY (WM..USER + 100) 

11.,. ~ •,--'-,---'-'--- --'-:----------- .;. _ --- '."- ---- "'"- ------•-'- ---------- ~ ----• -- -,.-
1 l Function prototypes 

11.. . . 
voi.d Add2l.ist (HWND hWnd, LPTSTR lpszFormat, ••• ); 
// Window procedures .. .. 
BOOL CALLBACK Mainl;llgProc CHWND, UINT, WPARAM, LPARAM); 
BOOL CALLBACK SetEventNotifyDlgProc (HWND, UINT, WPARAM, LPARAM); 

II Message handlers 
BOOL DoinitDialogMain (HWND, UINT, WPARAM, LPARAM); 
BOOL DoCommandMai n (HWND, UINT, WPARAM ,. LPARAM); 
BOOL DoTellNotifyMain (HWND, UINT, WPARAM, LPARAM); 

11 Command functions 
LPARAM DoMainCommandExit CHWND, WORD, HWND, WORD); 
LPARAM OoM11inCommandAddUserNotification (HWNO, WO~, HWNO, WORD); 
LF~ARAM QoMainCommandConfigUserNotification (HWND, WORD, HWND, WORD); 
l.PARAM OoMai nCommandAddSysNoti fi cation ·cHWNO, WORD, HWND' .WORD) ; 

.LPARAM DoMainCommandAddTimerNotification (HWND, WORD, HWNO, WORD); 
LPAfWtOoMainCommandClearNotifications (HWND, wORE>, HWND, WORD); 

. // Th r~ad prototype . . 
OWORD.WINAPI MonitorThread (PVOID pArg); 

NoteDemo.cpp 

/ /======:;r::i:;i:::=;;i;;p=;=~=.===-==~==~=i===:;:::=;:::=~====~-""':=""."--"-*'=~======:;:=====~===:;= 

II NoteDemo • oemonstrates the Windows CE Notification API 

fl 
// Wri:tten for the book Programming Windows CE 
//Jopypight (C) 2007 Douglqs Boling 

#inc1ude <Windows.h> 
#iric1ude <tiotify •. h> 
#include "NoteE>emo.h" 

II For all that windows stuff. 
I/ For l'loti fi cat.ion defines 
If Program-specific stuff 

f 1--.,,----.;- '"-- :- - ---- .,. -----·--'- -- --------- .,.- --.,.- -- -."'- -- ------:--- '- ----'- -'---
11 Global data 

II 
. const TCHAR szAppNameIJ 
HINSTANCE hln$t; 

=.TEXT C''NoteDemo"); 
II Program instance handle 

ttWND ·. g_hMai n; 

Ci:_USElt,.NOTlFICATION g~ceun; . . 11 User noti fi ca ti on structure 
TCHAR szDlgTit1e[l =TEXT ("Notification Demo"); 
TCHAR szDtgtext [] = TEXT ("Ti mes Up!"); 
T(HAR szSound[MA>LPATHJ "' TEXT ("alarm:i.wav"); 

//Used for timer event riotificatiori 
TCHAR szEventName [) = TEXT ("Bob"); 



HANDLE g_hNoteEvent = O; 
BOOL g_fContinue = TRUE; 

II Message dispatch table for MainWindowProc 
const struct decodeUINT MainMessages[] = { 

WM_INITDIALOG, DoinitDialogMain, 
WM_COMMAND, DoCommandMain, 
MYMSG_TELLNOTIFY, DoTellNotifyMain, 

} ; 
II Command Message dispatch for MainWindowProc 
const struct decodeCMD MainCommanditems[] = { 

} ; 

!DOK, DoMainCommandExit, 
IDCANCEL, DoMainCommandExit, 
IDD_ADDUSERNOT, DoMainCommandAddUserNotification, 
IDD_CFGUSERNOT, DoMainCommandConfigUserNotification, 
IDD_ADDSYSNOT, DoMainCommandAddSysNotification, 
IDD_ADDTIMENOT, DoMainCommandAddTimerNotification, 
IDD_CLEARNOT, DoMainCommandClearNotifications, 

II Used by Set System Notification dialog 
const struct decodeBtn SysTypeBtns[] = { 

IDC_SYNC_END , NOTIFICATION_EVENT_SYNC_END, 
IDCDEVICE_CHANGE, NOTIFICATION_EVENT_DEVICJ:_CHANGE, 
IDCSERIAL_DETECT, NOTIFICATION_EVENLRS232_DETECTED, 
IDC_TIME_CHANGE , NOTIFICATION_EVENT_TIME_CHANGE, 
IDCRESTORE_END , NOTIFICATION_EVENT_RESTORE_END, 
IDC_POWER_UP , NOTIFICATION_EVENT_WAKEUP, 
IDC_TZ_CHANGE , NOTIFICATION_EVENT_TZ_CHANGE, 

Chapter 12 Notifications 417 

IDC_NAME_CHANGE , NOTIFICATION_EVENT_MACHINE_NAME_CHANGE, 
IDC_RNDIS_CHANGE , NOTIFICATION_EVENT_RNDIS_FN_DETECTED, 
IDC_PROXY_CHANGE , NOTIFICATION_EVENT_INTERNET_PROXY_CHANGE, 

} ; 

II====================================================================== 
II Program entry point 
II 
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance, 

LPWSTR lpCmdLine, int nCmdShow) { 
INT i; 
TCHAR szText[MAl<_PATH]; 
WCHAR *pPtr; 
HANDLE hNotify; 
HWND hWnd; 
HANDLE hThread; 

hinst = hinstance; 

if (*lpCmdline) { 
pPtr = lpCmdLine; 
II Parse the first word of the command line. 
for (i = O; (i < dim(szText)-1) && (*pPtr >TEXT (' ')); i++) 

szText[i] = *pPtr++; 
szText[i] =TEXT ('\0'); 



418 Part II Windows CE Programming 

} 

// Check to see if app st.arted due to notifi cqti on, 
if (lstrcmp (szText, APP..cRUN_TO_HANOLE_NOTIFICATION) == .0) { 

II Acknowledge the notification. 

} 

GetModuleFfleName .(hinst, szText, sizeof (szText)}; 
CeHandleAppNotificattons (szText); 

/l Get handle.of command line. 
hNotify·=·(fiANDLE)_wtol (pPtr); 

// Look to see if another instance of the app is running, 
hWnd =.·Fi ndWi ndow {NULL, szAppName); 
if (llWnd} •{ 

} 

SendMessage (hWnd, MYMSG_TELLNOTIFY, 0, 
(LPARAM) hNoti fy); 

//I should terminate this app here, but 
II can see what happens. 
return 0; 

II Do a little initialization ofCE_USER_NOTIFICATIQN, 
memset (&g_ceun, 0, sizeof {g_ceun)); 
g_ceun .• Action.FTags = PON..:.DIALOG; 
g_ceun.pwszDialogTitle = szDlgTi.tle; 
g_ceun.pwszE>ialogText = szDlgText; 
9..cCeun,pwszSound = szSound; 
g_ceun.nMaxSound =. siZeof (sz5out1d}; 

//Create secondary thread for timer event notification. 
g_hNoteEvent ·. = CreateE\fent (NULL' FALSE' FALSE., szEllentName); 
hTllread = CreateThread (NULi.., 0,. MonitorThread, hWnd, 0, (DWORD *)&i); 
if (hThread == O) 

return 

II D.isplay dialog box as m<1in window, 
OialogBoxParam Chinstance, szAppName, 

( L;PARAM) 1 p(mdL i ne) ; 
//Signalnotiffcation thread 
g~fContinue =.FALSE; 
SetEvent.(g..;.hNoteEvent); 
Wai tF<lrSingleQbject (llThread., 1000}; 
CloseHandle (hThread); 

(g_hNoteEvent); 

II Mess<1ge handling procedures for main window 

//'-'-'-.--·'---~--~----'-~---·---'--~-:...-------------~"------~-~--.,,,,..,_~---·'----~-" 
// .. MainDlgProc - ·Callback function •for application window 

// 
BQOLCALLBACK MainE>lgProc (HWND hWnd, UINT.wMsg, WPARAM.wParam, 

LPARAM lParam} { 



} 

INT i; 
II 

Chapter 12 Notifications 419 

II Search message list to see if we need to handle this 
II message. If in list, call procedure. 
II 
for (i = O; i < dim(MainMessages); i++) 

if (wMsg == MainMessages[i] .Code) 
return ("MainMessages[i].Fxn)(hWnd, wMsg, wParam, lParam); 

return FALSE; 

11----------------------------------------------------------------------
11 DoinitDialogMain - Process WM_INITDIALOG message for window. 
II 
BOOL DoinitDialogMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

g_hMain = hWnd; 
if ('' (LPTSTR) l Par am) 

Add2List (hWnd, (LPTSTR)lParam); 
return FALSE; 

11----------------------------------------------------------------------
11 DoCommandMain - Process WM_COMMAND message for window. 
II 
BOOL DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam){ 

WORD iditem, wNotifyCode; 

} 

HWND hwndCtl; 
INT i; 

II Parse the parameters. 
iditem = (WORD) LOWORD (wParam); 
wNotifyCode =(WORD) HIWORD (wParam); 
hwndCtl = (HWND) lParam; 

II Call routine to handle control message. 
for (i = O; i < dim(MainCommanditems); i++) { 

if (iditem == MainCommanditems[i].Code) { 
(*MainCommanditems[iJ.Fxn)(hWnd, iditem, hwndCtl, 

wNotifyCode); 
return TRUE; 

return FALSE; 

11----------------------------------------------------------------------
11 DoTellNotifyMain - Process MYMSG_TELLNOTIFY message for window. 
II 
BOOL DoTellNotifyMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

} 

LPARAM lParam) { 
Add2List (hWnd, TEXT ("Notification %x reported"), lParam); 
SetForegroundWindow ((HWND)((DWORD)hWnd I OxOl)); 
return O; 



420 Part II Windows CE Programming 

I/=====================================:======================'""'.======:;;:; 
II Comma.nd handler routines 
ll-----~-~--------------------------------'------------------·-----------
11 DoMainCommandExit - Process Program Exit command. 
II 
LPARAM DoMainCommandExit (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORDWNotifyCode) { 

} 

EndDialog (hWnd, 0); 
return O; 

11------------------------------------------------------------~---------
ll DoMai nCommandAddUserNotifi cation. - Process Add User Notify button. 
II 
LPARAM DoMainCommandAddUserNotification CHWND hWnd, WORD id!tem, 

HWNDhwndCtl, .WORD wNotifyCode) { 
SY$TEMTIME st, ste; 
TCHAR szExeName[MAX_PATH], szText[128]; 
TCHAR. szArgs [128] = TEXT("Thi s is my user notificatfon string."}; 
CE_NOTIFICATION_TRIGGER nt; 
HANDLE hNotify; 

II Initialize time structure with local time. 
GetLocalTime {&st)~ 
II Do a trivial amount of error checking. 
st.wMinute++; 
if (st.WMinute > 59) { 

st.wHour++; 
st. wMi nute. -= 60; 

} 

II Set end time 10 minutes past start. 
ste.= st; 
II Do a trivial amount of·error checking. 
ste.wMinute+= 10; 
if (ste.wMinute > 59} { 

ste.wHour++; 
ste.wMinute -= 60; 

} 

memset (&nt, 0, sizeof (CE_NOTIFIC:ATION_TRIGGER)); 
nt.dwSize = sizeof (CE_NOTIFICATION_TRIGGER); 
nt.dwType = tNLPERIOD; 
nt.lpszApplication = szExeName; 
nt .1 pszArguments = szArgs; 
nt.stStartTime = st; 
nt.stEndTime = ste; 
GetModuleFi 1 eName (hlnst, szExeNam.e, sizeof (szExeName}); 

hNoti fy •· = CeSetUserNotifi cati.onEx .(0, &nt, &g_ceun); 
II Tell the user the notification was. set. 
if (hNotify) 

wsprintf (szText, TEXT ("Usernotification set for %d:%02d:%02d"), 
st.wHour, st.wMinute, st.wSecond); 



} 

Chapter 12 Notifications 421 

else 
wsprintf (szText, TEXT ("User notification failed. re= %d"), 

GetlastError()); 

MessageBox (hWnd, szText, szAppName, MB_OK); 
return O; 

11----------------------------------------------------------------------
11 DoMainCommandConfigUserNotification - Process Config user 
II notification button. 
II 
LPARAM DoMainCommandConfigUserNotification (HWND hWnd, WORD iditem, 

} 

HWND hwndCtl, WORD wNotifyCode) 

II Display the system-provided configuration dialog. 
CeGetUserNotificationPreferences (hWnd, &g_ceun); 
return O; 

11----------------------------------------------------------------------
11 DoMainCommandAddSysNotification - Process Add Sys notify button. 
II 
LPARAM DoMainCommandAddSysNotification (HWND hWnd, WORD iditem, 

} 

HWND hwndCtl, WORD wNotifyCode) { 

DialogBox (hinst, TEXT ("SysNotifyConfig"), hWnd, 
SetEventNotifyDlgProc); 

return O; 

11----------------------------------------------------------------------
11 DoMainCommandAddTimerNotification - Process add timer notify button. 
II 
LPARAM DoMainCommandAddTimerNotification (HWND hWnd, WORD id!tem, 

SYSTEMTIME st; 
HANDLE hNotify; 
CE_NOTIFICATION_TRIGGER nt; 

HWND hwndCtl, WORD wNotifyCode) { 

TCHAR szExeName[MAX_PATH], szText[128]; 
TCHAR szArgs (128] = TEXT("Thi s is my ti mer noti fi ca ti on string."); 

II Initialize time structure with local time. 
GetLocalTime (&st); 
II Do a trivial amount of error checking. 
if (st.wMinute == 59) { 

st.wHour++; 
st.wMinute = O; 

} else 
st.wMinute++; 

memset (&nt, 0, sizeof (CE_NOTIFICATION_TRIGGER)); 
nt.dwSize = sizeof (CE_NOTIFICATION_TRIGGER); 
nt.dwType = CNT_TIME; 
nt.lpszApplication = szExeName; 
nt.lpszArguments = szArgs; 
nt.stStartTime = st; 



422 Part II Windows CE Programming 

} 

StringCchCopy (szExeName, dim(szExeName), NAMEO_EVENT...:PREFI)(_TEXT); 
StringCchCat (szExeName, dim(szExeName), szEventName); 
II Set the notification. 
hNotify = CeSetUserNotificationEx (0, &nt, NULL}; 
if (hNoti fy) 

else 

wsprintf (szText, TEXT {"Timer notification set for .%d:%02d:%02d"), 
st.wHour, st.wMinute, st.wSecond); 

wsprintf (szText, TEXT ("Timer noti fi cation failed. re= %d"), 
GetLastError()); 

MessageBox (hWnd, szText, szAppName, MB_OK); 
return O; 

I I DoMai nCommandClearNoti fi cations - Clear all .notifications pointing 
II to this application. Note:. this is a fairly 1 arge stack frame. 
II 
LPARAM DoMainCommandClearNotifications (HWND hWnd, .WORD iditem, 

HWND hwndCtl, WORD wNotifyCode) { 
PBYTE pBuff = NULL; 
PCLNOTIFI(ATION_INFO_HEADER pnih; 
HANOl,.E hNotHandles[l28]; II Assume this is large enough. 
int rt, nCnt = O; 
TCHAR szExeName[MAJLPATH], szText[l28]; 
DWORD i , dwSi ze, nHan.dCnt = 0; 

I I Get our filename. 
GetModuleFileName (hinst, szExeName, sizeof (szExeName)); 

pBuff = (PBYTE)LocalAlloc (LPTR, 8192); 
if C !.pBufi') { 

} 

MessageBox (hWnd, TEXT ("Out of memory"), szAppName, MB_OK); 
return O; 

re= CeGetUserNotificationHandles (hNotHandles, dim (hNotHandles), 
&nHandCnt); 

if (re) { 
for Ci = O; i < nHandCnt;. i++) { 

II Query info on a single handle. 
re = CeGetUserNoti fi cation (hNotHandl es[ 1], 8:J.92, 

&dwSize, pBuff); 
if (re) { 

} 

pnih = (PCE_NOTIFICATION_INFO_HEADER)pBuff; 
if (!lstrcmp (pnih->pcent~>lpszApplication, szExeName)){ 

if (CeClearUserNotification (pnih->hNotifitation)) 
nCnt++; 

} 

wsprintf (szTeJ<t, TEXT ("Cleared %d notifications"), nCnt); 
MessageBox (hWnd, szText, szAppName, MB_OK); 

} els!! 
MessageBox (hWnd., TEXT ("Could not query handles"), 

szAppName, MB_OK); 



} 

LocalFree (pBuff); 
return O; 

Chapter 12 Notifications 423 

11----------------------------------------------------------------------
11 MySetEventNotification - Sets event notifications 
II 
int MySetEventNotification (HWND hWnd, DWORD dwEvent) { 

} 

TCHAR szArgs[] = TEXT("This is my event notification string."); 
CE_NOTIFICATION_TRIGGER nt; 
HANDLE hNotify; 
TCHAR szExeName[MAX_PATH], szText[128]; 

memset (&nt, 0, sizeof (CE_NOTIFICATION_TRIGGER)); 
nt.dwSize = sizeof (CE_NOTIFICATION_TRIGGER); 
nt.dwType = CNT_EVENT; 
nt.dwEvent = dwEvent; 
nt.lpszApplication = szExeName; 
nt.lpszArguments = szArgs; 
GetModuleFileName (hinst, szExeName, sizeof (szExeName)); 

II Set the notification. 
hNotify = CeSetUserNotificationEx (0, &nt, NULL); 
if (hNotify) 

else 

wsprintf (szText, TEXT ("Event notification set for %08x"), 
dwEvent); 

wsprintf (szText, TEXT("Set Event notification failed re: %d"), 
GetLastError()); 

MessageBox (hWnd, szText, szAppName, MB_OK); 
return O; 

11----------------------------------------------------------------------
11 Add2List - Add string to the report list box. 
II 
void Add2List (HWND hWnd, LPTSTR lpszFormat, ... ) { 

int i, nBuf; 

} 

TCHAR szBuffer[512]; 

va_list args; 
va_start(args, lpszFormat); 

nBuf = _vstpri ntf_s (szBuffer, dim (szBuffer), 1 pszFormat, args); 
i = SendDlgitemMessage (hWnd, IDD_OUTPUT, WM_SETTEXT, 0, 

(LPARAM)(LPCTSTR)szBuffer); 
va_end(args); 

II====================================================================== 
II SetEventNotifyDlgProc - Callback function for Event dialog box 
II 
BOOL CALLBACK SetEventNotifyDlgProc (HWND hWnd, UINT wMsg, 

DWORD dwEvent; 
int i; 

WPARAM wParam, LPARAM lParam) { 



424 Part II Windows CE Programming 

} 

switch (wMsg) { 
case WM_COMMAND: 

{ 

} 

WORD iditem = LOWORD (wParam); 
switch {iditem) { 
caseIOOK: 

(i = O; .. i < dim (SystypeBtns); i++) { 
if (IsDlgButtonChecked {hWnd, 

SystypeBtns[i].dwID) 
dwEvent . I= $ysTypeBtns [i J. dwFlag; 

my set event notification funttion above: 
MySetEventNoti fi cation (hWnd, · dwEvent) ; 
EndDialog (hWnd, 1); 
return TRUE; 

Ca.Se ID.CANCEL: 

break; 

EndDi.alog (hWnd, O); 
return TRUE; 

11=;=============--..,.i======"'="'===;:=="'=======,,,============================= 
II Monitorthread - Monitors event for timer notificaiton 
II 
DWORo.WINAPl.MonitorThread (PVOID pArg) { 

int re; 

while (g_fContinue) { 
re = WaitForSi.ngleObject 
if { ! g_fContinue) 

break; 
if(rc == WAIT..cOBJECT_O) 

(g_hMain, MYMSG_tELLNOTIFY, 0, (LPARAM)g..chNoteEvent); 

When NoteDemo starts, it examines the command line to determine whether it was started 

by a user notification. If so, the program attempts to find another instance of the application 

already running. If the program finds one, a message is sent to the first instance, informing 

it of the user notification. Because t.his is an example program, the second instance doesn't 

terminate itself as it would if it were a commercial application. 

The timer notification uses a named event as its signal instead of launching a second copy 

of the application. To monitor the event, NoteDemo creates a second thread before the 



Chapter 12 Notifications 425 

main window is created. This routine, MonitorThread, simply waits on the event handle that 

was created for the timer notification. When NoteDemo terminates, it sets a quit flag for the 

thread and signals the event itself. This causes MonitorThread to terminate. 

The last button that clears all the notifications scheduled for the NoteDemo application has an 

interesting task. How does it know what is scheduled? Does it keep a record of every notification 

it has scheduled? Fortunately, that's not necessary. NoteDemo simply queries the notifications 

scheduled for all applications, finds the ones for itself, and clears them. Let's see how that's done. 

Querying Scheduled Notifications 
While scheduling the different notifications is often all that applications need, additional 

functions allow applications to query the notifications currently scheduled in the system. 

Here's the function that queries the notifications: 

BOOL CeGetUserNotificationHandles (HANDLE *rghNotifications, 
DWORD cHandles, LPDWORD pcHandlesNeeded); 

This function returns an array filled with handles to all notifications currently scheduled in the 

system. The first parameter is the pointer to a handle array. The second parameter, cHandles, 

should be filled with the number of entries in the array. The third parameter should contain 

the address of a DWORD that will be filled with the number of entries in the array filled with 

valid notification handles. 

If the array is large enough to hold all the handles, the function returns TRUE and provides 

the number of handles returned in the variable pointed to by pcHandlesNeeded. If the array 

is too small, the function fails. You can query the number of handles the system will return by 

passing NULL in the rghNotifications parameter and 0 in the cHandles parameter. The func

tion will then return the number of handles in the variable pointed to by pcHandlesNeeded. 

After you have queried all the handles, you can determine the details of each notification by 

passing each handle to the function: 

BOOL CeGetUserNotification (HANDLE hNotification, DWORD cBufferSize, 
LPDWORD pcBytesNeeded, LPBYTE pBuffer); 

The first parameter is the handle to the notification in which you're interested. The second 

parameter is the size of the buffer you're providing the function to return the data about 

the notification. The third parameter is the address of a DWORD that will receive the size of 

the data returned. The final parameter is the address of a buffer that will receive the details 

about the notification. 

The size of the required buffer changes depending on the notification. The buffer begins 

with a CE_NOTIFICATION_INFO_HEADER structure. The buffer also contains a CE_ 
NOTIFICATION_TRIGGER structure and, depending on the type of notification, an optional 



426 Part II Windows CE Programming 

CE_USER_NOTIFICATION structure. Because these structures contain pointers to strings for 

application names and command lines, these strings must also be stored in the buffer. 

To determine how big the buffer needs to be, you can call CeGetUserNotification with cBuf

ferSize set to 0 and pBuffer set to NULL. The function returns the number of bytes required 
by the buffer in the variable that pcBytesNeeded points to. However, calling the function this 

way takes just as much time as retrieving the data itself, so it would be better to assume a 

size for the buffer and call the function. Only if the call fails because the buffer is too small 

do you then reallocate the buffer so that it's large enough to hold the data. 

Now on to the data returned. The CE_NOTIFICATION_INFO_HEADER structure is defined this 

way: 

typedef struct UserNotificationinfoHeader { 
HANDLE hNotification; 
DWORD dwStatus; 
CE_NOTIFICATION_TRIGGER *pcent; 
CE_USER_NOTIFICATION *pceun; 

} CE_NOTIFICATION_INFO_HEAOER; 

The first field is the handle of the event you are querying. The second field contains the sta

tus of the notification. This field contains 0 if the notification hasn't fired or CNS_SIGNALLED 
if it has. The next two fields are pointers to the same structures discussed earlier in the chap

ter. The pointer to the CE_NOTIFICATION_TR/GGER structure points to an address in the buf
fer in which that structure is defined. Depending on the type of notification, the pointer to 

the CE_USER_NOT/FICAT/ON structure could be NULL. 

The combination of the two structures, CE_NOTIFICATION_TRIGGER and CE_ USER_ 
NOTIFICATION along with the status flag, completely describes the notification. By exam
ining the trigger structure, you can determine the application that's scheduled to run as a 

result of the notification, its command line, and of course, the type of notification itself. 

The Notification API is a handy way to monitor events in a Windows CE system. The ability to 

have the operating system launch your application instead of having to lurk around in mem

ory waiting for the event significantly reduces the memory requirements for a well-designed 

system. User notifications give you a convenient and uniform way to alert the user of events 

that need attention. 

Bubble Notifications 
Originally developed for Windows Mobile devices, bubble notifications provide a method of 
notifying users with pop-up windows. Bubble notifications can display an icon on the taskbar, 

optionally display an information bubble with HTML text, and even beep the user as neces

sary. The user can respond by tapping on hyperlinks or buttons within the bubble. These 

responses are then sent back to the originating application. Unlike the standard Windows CE 



Chapter 12 Notifications 427 

notifications, the bubble notifications require the application be running and manually set 

the notification as needed. After the notification is set, the application can stay running and 

receive feedback from the notification via window messages or terminate and specify that a 

COM in-proc server receives the feedback. Figure 12-4 shows the desktop with a notification 
bubble being displayed. 

Hello 

FIGURE 12-4 A notification bubble 

The bubble is anchored to the application-defined icon on the taskbar. Notice that the look 

of the "bubble" isn't that appealing. The code in the operating system that displays bubble 
notifications, along with other user interface elements taken from Windows Mobile systems, 

is intentially "uglyfied" on embedded systems by default to differentiate them from Windows 

Mobile systems. Fortunately, the code that displays bubble notifications is available to OEMs 

for modification to change the look and feel of the bubble notifications. While Figure 12-4 

shows what the unmodified code presents, you might expect that embedded systems and, 

of course, Windows Mobile systems, will look much better. 

Adding a Notification 

To display a notification, the SHNotificationAdd function is used. Its rather simple prototype is 

LRESUL T SHNoti fi ca ti onAdd (SHNOTIFICATIONDATA '' pndAdd); 

The single parameter is a pointer to a not-so-simple SHNOTIFICATIONDATA structure 

defined as 

typedef struct _SHNOTIFICATIONDATA { 
DWORD cbStruct; 
DWORD dwID; 
SHNP npPriority; 
DWORD csDuration; 
HICON hicon; 
DWORD grfFlags; 
CLSID clsid; 
HWND hwndSink; 
LPCTSTR pszHTML; 
LPCTSTR pszTitle; 
LPARAM lParam; 

} SHNOTIFICATIONDATA; 



428 Part II Windows CE Programming 

The initial field, cbStruct, is the obligatory size field that must be initialized to the size of 

the structure. The dw/D field will be the ID value for the notification. The ID value will be 

used to identify any user responses to the notification. The npPriority field is set to either 

SH NP_ ICONIC to have the notification simply display an icon on the navigation bar or to 
SH NP_ INFORM if the notification is to display the bubble text immediately. In the case of 

SH NP_ ICONIC, if the user taps the icon, the bubble text is then displayed. The csDuration 
field specifies how long the notification should be displayed before the system automatically 

removes the icon and bubble. Unlike almost every other time parameter in Windows, this 

csDuration is measured in seconds, not milliseconds. The hlcon field should be set to a 16-by-

16 icon that will be displayed on the taskbar during the notification. 

The gr{Flags flags field can be set with a series of flags that configure the notification. The 

SHNF_CRITICAL flag changes the color of the title and border of the bubble. The SHNF_ 
FORCEMESSAGE flag displays the bubble even if the registry settings of the device are con

figured to not display notification bubbles. The SHNF_DISPLAYON flag turns on the display if 

it's off when the notification is displayed. 

The clsid field has two uses. First, it's an identifier for the notification. It should be set to a GUID 
defined by the application. The second use is to identify a COM in-proc server. The in-proc server 

is one way the shell can provide feedback to the application. The hwndSink field can also be 

used in the feedback mechanism. If the hwndSink field is set to a valid window handle, the 

shell will provide feedback via WM_ NOTIFY messages to that window. Feedback is sent when 

the text bubble is displayed, when it is closed, and when the user taps on any hyperlinks in 

the HTML text in the bubble. If the clsid field is set to the CLSID of a COM in-proc server that 

exposes an /Shel/NotificationCal/back interface, the feedback is delivered using calls to the 

interface's OnShow, OnDismiss, OnCommandSe/ected, and OnLinkSe/ected methods. The dif

ference between OnCommandSe/ected and OnLinkSe/ected will be explained momentarily. 

The pszHTML field can be NULL, in the case of an icon-only notification or either unformat

ted Unicode text or HTML Unicode text. The HTML text allows for surprisingly elaborate 

formatting of the text in the bubble. Paragraph breaks, links, and even simple controls can 
be displayed in the bubble. The following HTML was used to display the bubble shown in 

Figure 12-5: 

<html><body><p>This is a list</p> 
<Ul> 

<li>Item 1</li> 
<li>Item 2</li> 
<li>Item 3</li> 

</Ul> 
<input type=\"button\" value=\"Yes\" name=\"cmd:200\"> 
<input type=\"button\" value=\"No\" name=\"cmd:201\"> 
<input type=\"button\" value=\"Cancel\" name=\"cmd:202\"></p> 

<p>&nbsp;</p> 
<p>Click <a href=\"http://www.msnbc.com\">here</a> to follow a link.</P> 
</body></html>"; </html> 



Chapter 12 Notifications 429 

This is a list 

• Item 1 
• Item 2 
• Item 3 

FIGURE 12-5 Complex HTML displayed in a notification bubble 

The pszTit/e field should point to a text string that will be the title of the bubble. The final 

field, /Param, is an application-defined value that will be passed back in the feedback WM_ 

NOTIFY messages or in the callback to the in-proc server. 

The feedback received by the application depends on how the user responds to the notifica

tion. When the user clicks on the notification icon, the system sends a WM_ NOTIFY to the 

window specified in the hwndSink field. If the application returns a zero, the text bubble will 

be displayed. If the application returns a nonzero value, the bubble will not be displayed. In 

this case, the application needs to provide whatever feedback it deems necessary to the user. 

The HTML text can contain two types of feedback elements. The first is the standard hyper

link, as shown below. 

Click <a href="http://www.msnbc.com\">here</a> to go to MSNBC 

If the user clicks on a hyperlink, the notification system sends a WM_ NOTIFY message to the 

window with a notification code of SHNN_LINKSEL. The notification structure provides the 

text of the URL as well as the data defined in the /Param field of SHNOTIF/CATIONDATA. If 
the HREF is in the format CMD:n, as in 

Click <a href=\"cmd:205\''>here</a> to go to MSNBC 

the system sends a WM_ COMMAND message instead of a WM_NOTIFYto the window. In 

this case, the value n is the ID value of the message, and the ID of the notification is returned 

in /Param. For the in-proc server, clicking the standard hyperlink results in a call to the in

terface's OnLinkSelected method while clicking on links with the CMD:n format results in the 

OnCommandSelected method being called. The CMD value 0 is reserved, a value of 1 sends 
a notification, but does not dismiss the bubble; and a command value of 2 does not dismiss 

the bubble, nor does it result in a WM_ COMMAND message being sent. Applications should 

generally use CMD values greater than 2. 

When the user dismisses the bubble either by clicking a hyperlink or by clicking on the bub

ble itself, a final notification that the bubble is being dismissed is sent either by message or 

to the in-proc server. 



430 Part II Windows CE Programming 

Modifying a Notification 

Configuration data can be queried from a notification by calling the SHNotificationGetData 

function. Its prototype is shown here: 

LRESULT SHNatificatianGetData (canst CLSID * pclsid, 
DWORD dwID, SHNOTIFICATIONDATA * pndBuffer); 

The first two parameters are pclsid, which points to the CLSID of the notification, and dwlD, 

which specifies the ID of the notification. The function fills in the SHNOTIFICATIONDATA 

structure pointed to by the third parameter, pndBuffer. 

The notification can then be modified by changing the relevant data in the 
SHNOTIFICATIONDATA structure and calling SHNotificationUpdate, prototyped as 

LRESULT SHNatificatianUpdate (DWORD grnumUpdateMask, 
SHNOTIFICATIONDATA *pndNew); 

The grnumUpdateMask parameter is a set of flags that indicate which of the fields in the 

SHNOTIFICATIONDATA structure pointed to by pndNew should be used to update the noti
fication. The flags are SHNUM_PRIORITY to change the priority of the notification, SHNUM_ 

DURATION to change the duration, SHNUM_ICON to change the icon, SHNUM_HTML to 

change the bubble text, and SHNUM_ TITLE to change the bubble title text. 

Removing a Notification 

If the notification is simply an icon, it will be automatically removed when the notification 

times out. However, if the notification displays a bubble, the timeout value of the notification 
is used to automatically dismiss the bubble, not the icon. If the bubble text doesn't have a 

link or command, the user can dismiss the text bubble, but the icon remains. In this case and 
in the case where the timeout is set to infinite, there needs to be a way for the application 
to remove the notification. Removing the notification is accomplished with the aptly named 
SHNotificationRemove function defined as 

LRESULT SHNatificatianRemave (canst CLSID * pclsid, DWORD dwID); 

The two parameters are the CLSID and ID value of the notification. 

Now that we've looked at the Notification API, we've covered the basics of Windows CE 
applications. The next section of this book turns from the basics to the advanced areas 
of Windows CE programming. This next section covers everything from networking to 

Bluetooth and even device drivers. 



Part Ill 

Advanced Windows CE 

431 





Chapter 13 

Windows CE Networking 
Networks are at the heart of modern computer systems. Over the years, Microsoft Windows 

has supported a variety of networks and networking APls. The evolving nature of network

ing APls, along with the need to keep systems backward compatible, have resulted in a huge 

array of overlapping functions and parallel APls. As in many places in Windows CE, the net

working API is a subset of the vast array of networking functions supported under the desk

top versions of Windows. This chapter covers the networking from two perspectives: first, 

the Windows Networking API that supports basic network connections so that a Windows CE 
device can access disks and printers on a network; then TCP/IP networking through a presen

tation of WinSock,Windows's socket APL 

Windows Networking Support 
The WNet API is a provider-independent interface that allows Windows applications to ac

cess network resources without regard for the network implementation. The Windows CE 

version of the WNet API has fewer functions but provides the basics so that a Windows CE 

application can gain access to shared network resources, such as disks and printers. The 

WNet API is implemented by a "redirector" DLL that translates the WNet functions into net

work commands for a specific network protocol. 

By default, the only network supported by the WNet API is Windows Networking. Support, 

for even this network is limited by the fact that redirector files that implement Windows 

Networking aren't bundled with some Windows CE devices. For the WNet API to work, the 

redirector DLLs must be installed in the \windows directory. In addition, the network control 

panel, also a supplementary component on some systems, must be used to configure the 
network card so that it can access the network. If the redirector DLLs aren't installed, or an 

error occurs when you're configuring or initializing the network adapter, the WNet functions 

return the error code ERROR_NO_NETWORK. 

WNet Functions 

As with other areas in Windows CE, the WNet implementation under Windows CE is a subset 

of the same API on the desktop, but support is provided for the critical functions, while the 

overlapping and obsolete functions are eliminated. For example, the standard WNet API con

tains four different and overlapping WNetAddConnection functions, while Windows CE sup

ports only one, WNetAddConnection3. 

433 



434 Part Ill Advanced Windows CE 

Conventions of UNC 

Network drives can be accessed in one of two ways. The first method is to explicitly name 

the resource using the Universal Naming Convention (UNC) naming syntax, which is a com

bination of the name of the server and the shared resource. An example of this is \\BIGSRVR\ 

DRVC, where the server name is BIGSRVR and the resource on the server is named DRVC. The 

leading double backslashes immediately indicate that the name is a UNC name. Directories 

and file names can be included in the UNC name, as in \\bigsrvr\drvc\dir2\filel.ext. Notice 

that I changed case in the two names. That doesn't matter because UNC paths are case 

insensitive. 

As long as the WNet redirector is installed, you can use UNC names wherever you use stan

dard file names in the Windows CE API. You'll have problems, though, with some programs, 

which might not understand UNC syntax. 

Mapping a Remote Drive 

To get around applications that don't understand UNC names, you can map a network drive 

to a local name. When a network drive is mapped on a Windows CE system, the remote drive 

appears as a folder in the \network folder in the file system. The \network folder isn't a stan

dard folder; in fact, in early versions of Windows CE, it didn't even show up in the Explorer. 

(For current systems, the visibility of the \network folder depends on a registry setting that's 
usually enabled.) Instead, it's a placeholder name by which the local names of the mapped 

network drives can be addressed. For example, the network drive \\BigSrvr\DrvC could be 

mapped to the local name JoeBob. Files and directories on \\BigSrvr\DrvC would appear 

under the folder \network\joebob. The local name can't be represented as a drive letter, such 

as G:, because Windows CE doesn't support drive letters. 

I mentioned that the \network folder is a virtual folder; this needs further explanation. If you 

use the FindFirstFile/FindNextFile process to enumerate the directories in the root directory, 

the \network directory might not be enumerated. However, FindFirstFile/ FindNextFile enu

merates the mapped resources contained in the \network folder. So if the search string is\*.* 

to enumerate the root directory, the \network folder might not be enumerated, but if you 

use \network\*.* as the search string, any mapped drives will be enumerated. 

In Windows CE, the visibility of the \network folder is controlled by a registry setting. The 

\network folder is visible if the DWORD value RegisterFSRoot under the key [HKEY_LOCAL_ 

MACHINE]\comm\redir exists and is set to a nonzero value. Deleting this value or setting it to 

0 hides the \network folder. 

The most direct way to map a remote resource is to call this function: 

DWORD WNetAddConnection3 (HWND hwndOwner, LPNETRESOURCE lpNetResource, 
LPTSTR lpPassword, LPTSTR lpUserName, 
DWORD dwFlags); 



Chapter 13 Windows CE Networking 435 

The first parameter is a handle to a window that owns any network support dialogs that 

might need to be displayed to complete the connection. The window handle can be NULL if 

you don't want to specify an owner window. This effectively turns the WNetAddConnection3 

function into the WNetAddConnection2 function supported under other versions of 

Windows. 

The second parameter, lpNetResource, should point to a NETRESOURCE structure that defines 

the remote resource being connected. The structure is defined as 

typedef struct _NETRESOURCE { 
DWORD dwScope; 
DWORD dwType; 
DWORD dwDisplayType; 
DWORD dwUsage; 
LPTSTR lpLocalName; 
LPTSTR lpRemoteName; 
LPTSTR lpComment; 
LPTSTR lpProvider; 

} NETRESOURCE; 

Most of these fields aren't used for the WNetAddConnection3 function and should be set to 

0. All you need to do is specify the UNC name of the remote resource in a string pointed to 

by lpRemoteName and the local name in a string pointed to by lpLoca/Name. The local name 

is limited to 99 characters in length. The other fields in this structure are used by the WNet 
enumeration functions that I'll describe shortly. 

You use the next two parameters in WNetAddConnection3, lpPassword and lpUserName, 

when requesting access from the server to the remote device. If you don't specify a user 

name and Windows CE can't find user information for network access already defined in the 

registry, the system displays a dialog box requesting the user name and password. Finally, the 

dwF/ags parameter can be either 0 or the flag CONNECT_UPDATE_PROFILE. When this flag is 

set, the connection is dubbed persistent. Windows CE stores the connection data for persis

tent connections in the registry. Unlike other versions of Windows, Windows CE doesn't re
store persistent connections when the user logs on. Instead, the local name to remote name 

mapping is tracked only in the registry. If the local folder is later accessed after the original 

connection was dropped, a reconnection is automatically attempted when the local folder is 

accessed. 

If the call to WNetAddConnection3 is successful, it returns NO_ERROR. Unlike most Win32 

functions, WNetAddConnection3 returns an error code in the return value if an error occurs. 

This is a nod to compatibility that stretches back to the Windows 3.1 days. You can also call 

GetLastError to return the error information. As an aside, the function WNetGetLastError is 

supported under Windows CE, but it's just an alias for GetLastError, so you can call that func

tion if compatibility with other platforms is important. 



436 Part Ill Advanced Windows CE 

The other function you can use under Windows CE to connect a remote resource is 

WNetConnectionDialogl. This function presents a dialog box to the user requesting the re

mote and local names for the connection. The function is prototyped as 

DWORD WNetConnectionDialogl (LPCONNECTDLGSTRUCT lpConnectDlgStruc); 

The one parameter is a pointer to a CONNECTDLGSTRUCT structure defined as the following: 

typedef struct { 
DWORD cbStructure; 
HWND hwndOwner; 
LPNETRESOURCE lpConnRes; 
DWORD dwFlags; 
DWORD dwDevNum; 

} CONNECTDLGSTRUCT; 

The first field in the structure is the size field and must be set with the size of the 

CONNECTDLGSTRUCT structure before you call WNetConnectionDialogl. The hwndOwner 
field should be filled with the handle of the owner window for the dialog box. The lpConnRes 
field should point to a NETRESOURCE structure. This structure should be filled with zeros ex

cept for the lpRemoteName field, which may be filled to specify the default remote name in 

the dialog. You can leave the lpRemoteName field 0 if you don't want to specify a suggested 

remote path. 

The dwF/ags field can either be 0 or be set to the flag CONNDLG_RO_PATH. When this flag is 

specified, the user can't change the remote name field in the dialog box. Of course, this re

quirement means that the lpRemoteName field in the NETRESOURCE structure must contain 

a valid remote name. Windows CE ignores the dwDevNum field in the CONNECTDLGSTRUCT 
structure. 

When the function is called, it displays a dialog box that allows the user to specify a local 

name and, if not invoked with the CONNDLG_RO_PATH flag, the remote name as well. If the 

user taps on the OK button, Windows attempts to make the connection specified. The con

nection, if successful, is recorded as a persistent connection in the registry. 

If the connection is successful, the function returns NO_ERROR. If the user presses the Cancel 

button in the dialog box, the function returns -1. Other return codes indicate errors process

ing the function. 

If you are running software specifically on Windows Embedded CE 6, be aware that there is 

a bug in the initial versions of CE 6 that causes this function to fail. Microsoft will release a 

fix for this problem, but for systems released without the fix you will need to programatically 
create your own dialog box and use WNetAddConnection3 to make the network connection. 

I've added just such a dialog in the ListNet example later in this chapter. 



Chapter 13 Windows CE Networking 437 

Disconnecting a Remote Resource 

You can choose from three ways to disconnect a connected resource. The first method is to 
delete the connection with this function: 

DWORD WNetCancelConnection2 (LPTSTR lpName, DWORD dwFlags, 
BOOL fForce); 

The lpName parameter points to either the local name or the remote network name of the 

connection you want to remove. The dwF/ags parameter should be set to 0 or CONNECT_ 
UPDATE_PROFILE. If CONNECT_UPDATE_PROFILE is set, the entry in the registry that refer
ences the connection is removed; otherwise, the call won't change that information. Finally, 

the {Force parameter indicates whether the system should continue with the disconnect, even 
if there are open files or print jobs on the remote device. If the function is successful, it re
turns NO_ERROR. 

You can prompt the user to specify a network resource to delete using this function: 

DWORD WNetDisconnectDialog (HWND hwnd, DWORD dwType); 

This function brings up a system-provided dialog box that lists all connections currently 
defined. The user can select one from the list and tap on the OK button to disconnect 
that resource. The two parameters for this function are a handle to the window that owns 

the dialog box and dwType, which is supposed to define the type of resources-printer 
(RESOURCETYPE_PRINT) or disk (RESOURCETYPE_DISK)-enumerated in the dialog box. 

However, some systems ignore this parameter and enumerate both disk and print devices. 
This dialog, displayed by WNetDisconnectDialog, is actually implemented by the network 

driver. So it's up to each OEM to get this dialog to work correctly. 

A more specific method to disconnect a network resource is to call 

DWORD WNetDisconnectDialogl (LPDISCDLGSTRUCT lpDiscDlgStruc); 

This function is misleadingly named in that it won't display a dialog box if all the parameters 
in DISCDLGSTRUCT are correct and point to a resource not currently being used. The dialog 

part of this function appears when the resource is being used. 

D/SCDLGSTRUCT is defined as 

typedef struct { 
DWORD cbStructure; 
HWND hwndOwner; 
LPTSTR lplocalName; 
LPTSTR lpRemoteName; 
DWORD dwFlags; 

} DISCDLGSTRUCT; 

As usual, the cbStructure field should be set to the size of the structure. The hwndOwner 
field should be set to the window that owns any dialog box displayed. The lploca/Name and 



438 Part Ill Advanced Windows CE 

lpRemoteName fields should be set to the local and remote names of the resource that's to 

be disconnected. Under current implementations, lploca/Name is optional, while the lpRe
moteName field must be set for the function to work correctly. The dwF/ags parameter can 

be either 0 or DISC_NO_FORCE. If this flag is set and the network resource is currently being 

used, the system simply fails the function. Otherwise, a dialog appears asking the user if he 

or she wants to disconnect the resource even though the resource is being used. Under the 

current implementations, the DISC_NO_FORCE flag is ignored. 

Enumerating Network Resources 

It's all very well and good to connect to a network resource, but it helps if you know what 

resources are available to connect to. Windows CE supports three WNet functions used to 

enumerate network resources: WNetOpenEnum, WNetEnumResource, and WNetC/oseEnum. 
The process is similar to enumerating files with FileFindFirst, FileFindNext, and FileFindC/ose. 

To start the process of enumerating network resources, first call the function 

DWORD WNetOpenEnum (DWORD dwScope, DWORD dwType, DWORD dwUsage, 
LPNETRESOURCE lpNetResource, 
LPHANDLE lphEnum); 

The first parameter, dwScope, specifies the scope of the enumeration. It can be one of the 

following flags: 

• RESOURCE_CONNECTED Enumerate the connected resources. 

• RESOURCE_REMEMBERED Enumerate the persistent network connections. 

• RESOURCE_GLOBALNET Enumerate all resources on the network. 

The first two flags, RESOURCE_ CONNECTED and RESOURCE_REMEMBERED, simply enumer

ate the resources already connected on your machine. The difference is that RESOURCE_ 
CONNECTED returns the network resources that are connected at the time of the call, while 
RESOURCE_REMEMBERED returns those that are persistent regardless of whether they're cur

rently connected. When either of these flags is used, the dwUsage parameter is ignored and 

the lpNetResource parameters must be NULL. 

The third flag, RESOURCE_GLOBALNET, allows you to enumerate resources-such as servers, 
shared drives, or printers out on the network-that aren't connected. The dwType parameter 

specifies what you're attempting to enumerate-shared disks (RESOURCETYPE_DISK), shared 

printers (RESOURCETYPE_PRINT), or both (RESOURCETYPE_ANY). 

You use the third and fourth parameters only if the dwScope parameter is set to RESOURCE_ 
GLOBALNET. The dwUsage parameter specifies the usage of the resource and can be 0 to 



Chapter 13 Windows CE Networking 439 

enumerate any resource, RESOURCEUSAGE_CONNECTABLE to enumerate only connectable 

resources, or RESOURCEUSAGE_CONTAINER to enumerate only containers such as servers. 

If the dwScope parameter is set to RESOURCE_GLOBALNET, the fourth parameter, lpNetRe

source, must point to a NETRESOURCE structure; otherwise, the parameter must be NULL. 

The NETRESOURCE structure should be initialized to specify the starting point on the net

work for the enumeration. The starting point is specified by a UNC name in the lpRemote

Name field of NETRESOURCE. The dwUsage field of the NETRESOURCE structure must be 

set to RESOURCETYPE_CONTAINER. For example, to enumerate the shared resources on the 

server BIGSERV, the lpRemoteName field would point to the string \\BIGSERV. To enumer-

ate all servers in a domain, lpRemoteName should simply specify the domain name. For the 

domain EntireNet, the lpRemoteName field should point to the string EntireNet. Because 

Windows CE doesn't allow you to pass a NULL into lpRemoteName when you use the 

RESOURCE_GLOBALNET flag, you can't enumerate all resources in the network namespace as 

you can under other versions of Windows. This restriction exists because Windows CE doesn't 

support the concept of a Windows CE device belonging to a specific network context. 

The final parameter of WNetOpenEnum, lphEnum, is a pointer to an enumeration handle that 

will be passed to the other functions in the enumeration process. WNetOpenEnum returns a 

value of NO_ERROR if successful. If the function isn't successful, you can call GetLastError to 

query the extended error information. 

Once you have successfully started the enumeration process, you actually query data by call

ing this function: 

DWORD WNetEnumResource (HANDLE hEnum, LPDWORD lpcCount, 
LPVOID l pBuffer, 
LPDWORD lpBufferSize); 

The function takes the handle returned by WNetOpenEnum as its first parameter. The second 

parameter is a pointer to a variable that should be initialized with the number of resources 

you want to enumerate in each call to WNetEnumResource. You can specify -1 in this variable 

if you want WNetEnumResource to return the data for as many resources as will fit in the re

turn buffer specified by the lpBuffer parameter. The final parameter is a pointer to a DWORD 

that should be initialized with the size of the buffer pointed to by lpBuffer. If the buffer is too 

small to hold the data for even one resource, WNetEnumResource sets this variable to the 
required size for the buffer. 

The information about the shared resources returned by data is returned in the form of an 

array of NETRESOURCE structures. While this is the same structure I described when I talked 

about the WNetAddConnection3 function, I'll list the elements of the structure here again for 
convenience: 



440 Part Ill Advanced Windows CE 

typedef struct _NETRESOURCE { 
DWORD dwScope; 
DWORD dwType; 
DWORD dwDisplayType; 
DWORD dwUsage; 
LPTSTR lpLocalName; 
LPTSTR lpRemoteName; 
LPTSTR lpComment; 
LPTSTR lpProvider; 

NETRESOURCE; 

The interesting fields in the context of enumeration start with the dwType field, which 

indicates the type of resource that was enumerated. The value can be RESOURCETYPE_ 
DISK or RESOURCETYPE_PRINT. The dwDisplayType field provides even more informa

tion about the resource, demarcating domains (RESOURCEDISPLAYTYPE_DOMAIN) 
from servers (RESOURCEDISPLAYTYPE_SERVER) and from shared disks and printers 

(RESOURCEDISPLAYTYPE_SHARE). A fourth flag, RESOURCEDISPLAYTYPE_GENERIC, is re

turned if the display type doesn't matter. 

The lpLoca/Name field points to a string containing the local name of the resource if the re

source is currently connected or is a persistent connection. The lpRemoteName field points 

to the UNC name of the resource. The lpComment field contains the comment line describing 

the resource that's provided by some servers. 

WNetEnumResource either returns NO_ERROR, indicating that the function succeeded but you 

need to call it again to enumerate more resources, or ERROR_NO_MORE_ITEMS, indicating 

that you have enumerated all resources matching the specification passed in WNetOpenEnum. 
With any other return code, you should call GetLastError to further diagnose the problem. 

You have few strategies when enumerating the network resources. You can specify a huge buffer 

and pass -1 in the variable pointed to by lpcCount, telling WNetEnumResource to return as much 

information as possible in one shot. Or you can specify a smaller buffer, and ask for only one or 

two resources for each call to WNetEnumResource. The one caveat on the small buffer approach 

is that the strings that contain the local and remote names are also placed in the specified buffer. 

The name pointers inside the NETRESOURCE structure then point to those strings. This means 

that you can't specify the size of the buffer to be exactly the size of the NETRESOURCE struc

ture and expect to get any data back. A third possibility is to call WNetEnumResource twice, 

the first time with the lpBuffer parameter 0, and have Windows CE tell you the size necessary 

for the buffer. Then you allocate the buffer and call WNetEnumResource again to actually 

query the data. However you use WNetEnumResource, you'll need to check the return code 

to see whether it needs to be called again to enumerate more resources. 

When you have enumerated all the resources, you must make one final call to the function: 

DWORD WNetCloseEnum (HANDLE hEnum); 

The only parameter to this function is the enumeration handle first returned by WNetOpenEnum. 
This function cleans up the system resources used by the enumeration process. 



Chapter 13 Windows CE Networking 441 

Following is a short routine that uses the enumeration functions to query the network for 

available resources. You pass to a function a UNC name to use as the root of the search. The 

function returns a buffer of zero-delimited strings that designate the local name, if any, and 

the UNC name of each shared resource found. 

Ill Helper routine 
int AddToL i st (LPTSTR ''pPtr, INT ''pnl i stSi ze, LPTSTR pszStr) { 

int nlen = lstrlen (pszStr) + 1; 

} 

if (FAILED(StringCchCopy ("pPtr, ''pnlistSize, pszStr))) 
return -1; 

*pPtr += nlen; 
*pnlistSize nlen; 
return O; 

11----------------------------------------------------------------------
11 EnumNetDisks - Produces a list of shared disks on a network 
II 
int EnumNetDisks (LPTSTR pszRoot, LPTSTR pszNetList, int nNetSize){ 

int i = 0, re, nBuffSize = 1024; 
DWORD dwCnt, dwSize; 
HANDLE hEnum; 
NETRESOURCE nr; 
LPNETRESOURCE pnr; 
PBYTE pPtr, pNew; 

II Allocate buffer for enumeration data. 
pPtr = (PBYTE) LocalAlloc (LPTR, nBuffSize); 
if (!pPtr) 

return -1; 

II Initialize specification for search root. 
memset (&nr, 0, sizeof (nr)); 
nr.lpRemoteName = pszRoot; 
nr.dwUsage = RESOURCEUSAGE_CONTAINER; 

II Start enumeration. 
re = WNetOpenEnum (RESOURCE_GLOBALNET, RESOURCETYPE_DISK, 0, &nr, 

&hEnum); 
if (re != NO_ERROR) 

return -1; 

II Enumerate one item per loop. 
do 

dwCnt = 1; 
dwSize = nBuffSize; 
re= WNetEnumResource (hEnum, &dwCnt, pPtr, &dwSize); 

II Process returned data. 
if (re == NO_ERROR) { 

pnr = (NETRESOURCE *)pPtr; 
if (pnr->lpRemoteName) 

re = AddTolist (&pszNetlist, &nNetSize, 
pnr->lpRemoteName); 



442 Part Ill Advanced Windows CE 

} 

II If our buffer was too small, try again. 
} else if (re == ERROR_MORE_DATA) { 

} 

pNew = LocalReAlloc (pPtr, dwSize, LMEM_MOVEABLE); 
if (pNew) { 

pPtr = pNew; 
nBuffSize = LocalSize (pPtr); 
re = O; 

} 

} while (re== O); 

II If the loop was successful, add extra zero to list. 
if (re == ERROR_NO_MORE_ITEMS) { 

re= AddToList (&pszNetlist, &nNetSize, TEXT("")); 
re = O; 

II Clean up. 
WNetCloseEnum (hEnum); 
LocalFree (pPtr); 
return re; 

Although the enumeration functions work well for querying what's available on the net, you 

can use another strategy for determining the current connected resources. At the simplest 

level, you can use FileFindFirst and FileFindNext to enumerate the locally-connected network 

disks by searching the folders in the \network directory. Once you have the local name, a few 
functions are available to you for querying just what that local name is connected to. 

Querying Connections and Resources 

The folders in the \network directory represent the local names of network-shared disks that 

are persistently connected to network resources. To determine which of the folders are cur

rently connected, you can use the function 

DWORD WNetGetConnection (LPCTSTR lpLocalName, 
LPTSTR lpRemoteName, 
LPDWORD lpnlength); 

WNetGetConnection returns the UNC name of the network resource associated with a local 

device or folder. The lpLoca!Name parameter is filled with the local name of a shared folder 

or printer. The lpRemoteName parameter should point to a buffer that can receive the UNC 

name for the device. The lpnLength parameter points to a DWORD value that initially contains 

the length in characters of the remote name buffer. If the buffer is too small to receive the name, 

the length value is loaded with the number of characters required to hold the UNC name. 

One feature (or problem, depending on how you look at it) of WNetGetConnection is that it 

fails unless the local folder or device has a current connection to the remote shared device. 

This allows us an easy way to determine which local folders are currently connected and 

which are just placeholders for persistent connections that aren't currently connected. 



Chapter 13 Windows CE Networking 443 

Sometimes you need to transfer a file name from one system to another and you 

need a common format for the file name that would be understood by both systems. 

The WNetGetUniverso/Nome function translates a file name that contains a local net-

work name into one using the UNC name of the connected resource. The prototype for 
WNetGetUniverso/Nome is the following: 

DWORD WNetGetUniversalName (LPCTSTR lplocalPath, DWORD dwlnfolevel, 
LPVOID lpBuffer, LPDWORD lpBufferSize); 

Like WNetGetConnection, this function returns a UNC name for a local name. There are 

two main differences between WNetGetConnection and WNetGetUniverso/Nome. First, 

WNetGetUniverso/Nome works even if the remote resource isn't currently connected. Second, 

you can pass a complete file name to WNetGetUniverso/Nome instead of simply the local 
name of the shared resource, which is all that is accepted by WNetGetConnection. 

WNetGetUniverso/Nome returns the remote information in two different formats. If the dw/n

foLevel parameter is set to UNIVERSAL_NAME_INFO_LEVEL, the buffer pointed to by lpBuffer 

is loaded with the following structure: 

typedef struct _UNIVERSAL_NAME_INFO { 
LPTSTR lpUniversalName; 

} UNIVERSAL_NAME_INFO; 

The only field in the structure is a pointer to the UNC name for the shared resource. The 

string is returned in the buffer immediately following the structure. So if a server \\BigServ\ 

DriveC was attached as LocC and you pass WNetGetUniverso/Nome the file name \Network\ 

LocC\Win32\Filenome.ext, the function returns the UNC name \\BigServ\DriveC\win32\fi/e

nome.ext. 

If the dwlnfoLevel parameter is set to REMOTE_NAME_INFO_LEVEL, the buffer is filled with 

the following structure: 

typedef struct _REMOTE_NAME_INFO 
LPTSTR lpUniversalName; 
LPTSTR lpConnectionName; 
LPTSTR lpRemainingPath; 

REMOTE_NAME_INFO; 

This structure not only returns the UNC name but also parses the UNC name into the share 

name and the remaining path. So, using the same file name as in the previous example, \net

work\LocC\win32\filenome.ext, the REMOTE_NAME_INFO fields would point to the following 

strings: 

lpUniverso/Nome: \\BigServ\DriveC\win32\filename.ext 

lpConnectionNome: \\BigServ\DriveC 

lpRemoiningPoth: \win32\filename.ext 



444 Part Ill Advanced Windows CE 

One more thing: you don't have to prefix the local share name with \network. In the 

preceding example, the file name \LocC\Win32\filename.ext would have produced the 

same results. 

One final WNet function supported by Windows CE is 

DWORD WNetGetUser (LPCTSTR lpName, LPTSTR lpUserName, 
LPDWORD lpnlength); 

This function returns the name the system used to connect to the remote resource. 
WNetGetUser is passed the local name of the shared resource and returns the user name the 

system used when connecting to the remote resource in the buffer pointed to by lpUser

Name. The lpnLength parameter should point to a variable that contains the size of the 

buffer. If the buffer isn't big enough to contain the user name, the variable pointed to by lpn

Length is filled with the required size for the buffer. 

The ListNet Example Program 

ListNet is a short program that lists the persistent network connections on a Windows CE 

machine. The program's window is a dialog box with three controls: a list box that displays 

the network connections, a Connect button that lets you add a new persistent connection, 

and a Disconnect button that lets you delete one of the connections. Double-clicking on a 
connection in the list box opens an Explorer window to display the contents of that network 

resource. Figure 13-1 shows the ListNet window, while Listing 13-1 shows the ListNet source 

code. 

FIGURE 13-1 The ListNet window containing a few network folders 



Chapter 13 Windows CE Networking 445 

LISTING 13-1 

ListNet.rc 

II====================================================================== 
II Resource file 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II====================================================================== 
#include "windows.h" 
#include "ListNet.h" II Program-specific stuff 

11----------------------------------------------------------------------
11 Icons and bitmaps 
II 
ID_ICON ICON "ListNet.ico" II Program icon 

11----------------------------------------------------------------------
11 Main window dialog template 
II 
ListNet DIALOG discardable 10, 10, 120, 65 
STYLE WS_OVERLAPPED I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I 

DS_CENTER I DS_MODALFRAME 
CAPTION "ListNet" 
BEGIN 

LISTBOX IDD_NETLIST, 2, 2, 116, 46, 
WS_TABSTOP I WS_VSCROLL I 
LBS_NOINTEGRALHEIGHT I LBS_USETABSTOPS 

PUSHBUTION "&Connect ... ", IDD_CNCT, 2, 50, 55, 12, WS_TABSTOP 

END 

PUSHBUTION "&Disconnect ... ", 
IDD_DCNCT, 61, 50, 55, 12, WS_TABSTOP 

11-~--------------------------------------------------------------------
11 Custom Add Connection dialog 
II 
MyConnDlg DIALOG discardable 10, 10, 140, 69 
STYLE WS_OVERLAPPED I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I 

DS_CENTER I DS_MODALFRAME 
EXSTYLE WS_EX_CAPTIONOKBTN 

CAPTION "Connect To Share" 
BEGIN 

LTEXT "Remote path:", -1, 
EDITIEXT IDD_SHARENAME, 

WS_TABSTOP 

L TEXT "Loca 1 Name", -1, 
EDITTEXT IDD_LOCALNAME, 

7, 7, 128, 8 
7, 18, 128, 14, 
ES_AUTOHSCROLL 

7, 37, 128, 8 
7, 48, 128, 14, 

WS_TABSTOP ES_AUTOHSCROLL 
END 



446 Part Ill Advanced Windows CE 

ListNet.h 

!!====================================================================== 
I/ Header file 
II 
11 Written for th.e book Programming Windows CE 
II Copyright (CJ 2007 Douglas Boling 
II====================================================================== 
II Returns number of elements 
#define dim(x) (sizeof(x) / sizeof(x[O])) 

11~-'------'----~--~------------------~----------------------------~------
11 Generic defines and data types 
II 
struct decodeUINT // Structure assocfates 

UINT Code; //.messages 

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM); 
} ; 
struct decod.eCMD { 

UINT Code; 
LRfSULT (*Fxn}(HWND, WORD, HWND, WORD); 

} ; 

II with a function. 

II Structure associates 
II menu .I.Os with a 
11 function, 

II---~---------------------'-----,-'---------,---------------------,---------
II Generic defines used by application 

#define ID_ICON 1 

#define IDD~NETLIST 100 II Control.IDs 
#define IDD_CNCT 101 
#define IOO_DCNCT 102 

#define IDD_SHARENAME 200 
#define IDD_LOCALNAME 201 

11---------~-----~----,---'---------'-7------~---------------------------'--
ll F'unction prototypes 
II 
INT RefreshloC:alNetDrives (HWND hWnd); 
int CheckErrorCod.e (HWND hWnd,. int re, LPTSTR lpText); 
DWORD.MyWNetConnectionDialogl (LPCONNECTDLGSTRUCTW lpConnDlgStruct); 

II Dialog window procedure 
BOOL CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM); 

II Dialog window Message handlers 
BOOL DoCommandMain (HWND, UINT, WPARAM, LPARAM); 
II Command. functions 
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD); 
LPARAM DoMainComrnandViewDrive (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandMapDrive (HWND, WORD,HWND, WORD); 
LPARAf/I DoMainCommandFreeDrive (HWND, WORD, HWND, WORD): 



Chapter 13 Windows CE Networking 447 

ListNet.cpp 

II====================================================================== 
II ListNet - A network demo application for Windows CE 
II 
II Written for the book Programming Windows CE 
II Copyright CC) 2007 Douglas Boling 
II====================================================================== 
#include <windows.h> II For all that Windows stuff 
#include <winnetwk.h> II Network includes 
#include "ListNet.h" II Program-specific stuff 

#if defined(WIN32_PLATFORM_PSPC) 
#include <aygshell.h> 
#pragma comment( lib, "aygshell" ) 
#endif 

II Add new shell includes. 
II Link new shell lib for menu bar. 

II Work around bug in initial version of CE 6 
#if _WIN32_WCE == Ox600 
#define CE6_BUGFIX 
#endif 
11----------------------------------------------------------------------
11 Global data 
II 
const TCHAR szAppName[] =TEXT ("ListNet"); 
HINSTANCE hinst; II Program instance handle 
BOOL fFirst =TRUE; 

II Command Message dispatch for MainWindowProc 
const struct decodeCMD MainCommanditems[] = { 

!DOK, DoMainCommandExit, 

}; 

IDCANCEL, DoMainCommandExit, 
IDD_NETLIST, DoMainCommandViewDrive, 
IDD_CNCT, DoMainCommandMapDrive, 
IDD_OCNCT, OoMainCommandFreeDrive, 

//====================================================================== 
II 
II Program entry point 
II 
int WINAPI WinMain (HINSTANCE h!nstance, HINSTANCE hPrevinstance, 

} 

LPWSTR lpCmdLine, int nCmdShow) { 
fl Save program instance handle in global variable. 
h!nst = h!nstance; 
II Create main window. 
DialogBox (hinst, szAppName, NULL, MainWndProc); 
return O; 

II====================================================================== 
II Message handling procedures for main window 
11----------------------------------------------------------------------
11 MainWndProc - Callback function for application window 
II 



448 Part Ill Advanced Windows CE 

BOOL CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam, 
LPARAM lParam) { 

INT i; 
II With only two messages, do it the old-fashioned way. 
switch (wMsg) { 
case WM_INITDIALOG: 

#if defined(WIN32_PLATFORM.:_PSPC) I I defined(WIN32_PLATFORM_WFSP) 
II For Windows Mobile devices, allow only one instance of the app 

SHINITDLGINFO di; 
SHMENUBARINFO mbi; 
memset(&rnbi, 0, sizeof(SHMENUBARINFO)); 
mbi.cbSize = sizeof(SHMENUBARINFO); 
mbi.hwndParent = hWnd; 
mbi.dwFlags = SHCMBF_EMPTYBAR; 
SHCreateMenuBar(&rnbi); 

di.dwMask = SHIDIM_FLAGS; 
di.hDlg = hWnd; 

II For Win Mobile, create 
II menu bar so that we 
II have a sip button. 

di.dwFlags = SHIDIF_DONEBUTION I SHID!F_SIZEDLG; 
SHinitDialog (&di); 

#endif 

} 

i = 75; 
SendDlgitemMessage ChWnd, IDD_NETLIST, LB_SETIABSTOPS, l, 

(LPARAM)&i); 
RefreshLocalNetDrives (hWnd); 
break; 

case WM_COMMAND: 
return DoCommandMain (hWnd, wMsg, wParam, lParam); 

} 
return FALSE; 

11----------------------------------------------------------------------
11 DoCommandMain - Process WM_COMMAND message for window. 
II 
BOOL DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam){ 

WORD iditem, wNotifyCode; 
HWND hwndCtl; 
INT i; 

II Parse the parameters. 
iditem = (WORD) LOWORD (wParam); 
wNotifyCode = (WORD) HIWORD (wParam); 
hwndttl = (HWND) lParam; 

II Call routine to handle control message. 
for (i =.0; i < dim(MainCommanditems); i++) { 

if (iditem == MainCommanditems[i].Code) { 
(*MainCommanditems[i].Fxn)(hWnd, iditem, hwndCtl, 

wNotifyCode); 
return TRUE; 

} 



Chapter 13 Windows CE Networking 449 

} 

return FALSE; 
} 

II====================================================================== 
II Command handler routines 
11----------------------------------------------------------------------
11 DoMainCommandExit - Process Program Exit command. 
II 
LPARAM DoMainCommandExit (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 

} 

EndDialog (hWnd, O); 
return O; 

11----------------------------------------------------------------------
11 DoMainCommandViewDrive - Process list box double clicks. 
II 
LPARAM DoMainCommandViewDrive (HWND hWnd, WORD id!tem, HWND hwndCtl, 

} 

WORD wNotifyCode) { 
TCHAR szCmdLine[128], szFolder[MAX__PATH]; 
PROCESS_INFORMATION pi; 
HCURSOR hOld; 
INT i, re, nLen; 

II We're interested only in list box double-clicks. 
if (wNotifyCode != LBN_DBLCLK) 

return O; 

i = SendMessage (hwndCtl, LB_GETCURSEL, 0, O); 
if (i == LB_ERR) return O; 
nLen = SendMessage (hwndCtl, LB_GETTEXT, i, (LPARAM)szFolder); 
if (nLen == LB_ERR) 

return O; 
II Trim off description of share. 
for (i = O; i < nlen; i++) 

if (szFolder[i] == TEXT ('\t')) 
break; 

szFolder[i] =TEXT ('\O'); 

hOld = SetCursor (LoadCursor (NULL, IDC_WAIT)); 
wsprintf (szCmdLine, TEXT("\\network\\%s"), szFolder); 

re= CreateProcess (TEXT ("Explorer"), szCmdline, NULL, NULL, 
FALSE, 0, NULL, NULL, NULL, &pi); 

if (re) { 

} 

CloseHandle (pi.hProcess); 
CloseHandle (pi.hThread); 

SetCursor (hOld); 
return TRUE; 

11-----------------------------------~----------------------------------
ll DoMainCo,mmandMapDrive - Process map network drive command. 
II 



450 Part Ill Advanced Windows CE 

LPARAM DoMainCommandMapDrive (HWND hWnd, WORD iditem, HWND hwndCtl, 
WORD wNotifyCode) { 

DWORD re = WS_ElC_CONTEXTHELP; 
CONNECTDLGSTRUCT eds; 
NETRESOURCE nr; 
TCHAR szRmt[256]; 

memset (&nr, 0, sizeof (nr)); 
nr.dwType = RESOURCETYPE_DISK; 
memset (szRmt, O, sizeof (szRmt)); 

memset (&eds, O, sizeof (eds)); 
cds.cbStructure = sizeof (eds); 
cds.hwndOwner = hWnd; 
cds.lpConnRes = &nr; 
cds.dwFlags = CONNDLG_PERSIST; 

II Display dialog box. 
#ifdef CE6_BUGFIX 

're= MyWNetConnectionDialogl (&eds); 
#else 

re= WNetConnectionDialogl (&eds); 
#en di f 

} 

if (re == NO_ERROR) 
RefreshLocalNetDrives ChWnd); 

else 
CheckErrorCode (hWnd, re, TEXT ("WNetConnectionDi al ogl")); 

return O; 

11----------------------------------------------------------------------
11 DoMainCommandFreeDrive - Process disconnect network drive command. 
II 
LPARAM DoMainCommandFreeDrive (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 

} 

int re= WNetDisconnectDialog (hWnd, RESOURCETYPEJJISK); 
if (re == NO_ERROR) 

RefreshLocalNetDrives (hWnd); 
else 

Check!OrrorCode ChWnd, re, TEXT ("WnetDisconnectDialog")); 
'return O; 

II Network browsing functions 
11----------------------------------------------------------------------
11 EnumerateLocalNetDrives - Add an item to the list view control. 
II 
INT RefreshLocalNetDrives (HWND hWnd) { 

HWND hwndCtl = GetDlgitem (hWnd, IDD_NETLIST); 
INT re, nBuffSize = 1024; 
OWORD dwCnt, dwSize; 
HANDLE hEnum; 
LPNETRESOURCE pnr; 
PBYTE pPtr, pNew; 
TCHAR szText[256]; 



} 

Chapter 13 Windows CE Networking 451 

SendMessage (hwndCtl, LB_RESETCONTENT, 0, O); 

II Allocate buffer for enumeration data. 
pPtr = (PBYTE) LocalAlloc (LPTR, nBuffSize); 
if (!pPtr) 

return -1; 

II Start enumeration. 
re = WNetOpenEnum (RESOURCE_REMEMBERED, RESOURCETYPE_ANY, 0, O, 

&hEnum); 
if (re != NO_ERROR) return -1; 

II Enumerate one item per loop. 
do { 

dwCnt = 1; 
dwSize = nBuffSize; 
re= WNetEnumResource (hEnum, &dwCnt, pPtr, &dwSize); 
if (re == NO_ERROR) { 

} 

pnr = (NETRESOURCE *)pPtr; 
StringCchCopy (szText, dim (szText), pnr->lplocalName); 
II Process returned data. 
if (re == NO_ERROR) { 

switch (pnr->dwType) { 
case RESOURCETYPE_ANY: 

StringCchCat (szText, dim (szText), TEXT ("\t Share")); 
break; 

case RESOURCETYPE_PRINT: 
StringCchCat (szText, dim (szText), 

TEXT ("\t Printer")); 
break; 

case RESOURCETYPE_DISK: 
StringCchCat (szText, dim (szText), TEXT ("\t Disk")); 
break; 

} 
SendMessage (hwndCtl, LB_ADDSTRING, 0, (LPARAM)szText); 

II If our buffer was too small, try again. 
} else if (re == ERROR_MORE_DATA) { 

} 

pNew = (PBYTE)LocalReAlloc (pPtr, dwSize, LMEM_MOVEABLE); 
if (pNew) { 

pPtr = pNew; 
nBuffSize = LocalSize (pPtr); 
re = O; 

} else 
break; 

} while (re== O); 
II Clean up. 
WNetCloseEnum (hEnum); 
LocalFree (pPtr); 
return O; 

11----------------------------------------------------------------------



452 Part Ill Advanced Windows CE 

II CheckErrorCode - Print error messages as necessary. 
II 
int CheckErrorCode CHY/ND hWnd .• int re, LPTSTR lpText) f 

TCHAR szTxt[128]; 

} 

II If good or dialog can<:eled, just return. 
if ((re == NO_ERROR) I I (re """ -1)) 

return re; 
if (re == ERROR_NO_NETWORK) 

Str.i ngCchCat (szTxt, dim (szTxt); TEXT ("No network detected.")); 
else 

wsprintf (szTxt, TEXT ("%s failed re= %d"), lpText, re); 

MessageBox (hWnd, szTxt, szAppName, ·Ms_OK); 
return re; 

II My Network Connection Dialog procedure 
v . . 
BOOL CALLBACK MyNetConnDlgProc(HWND·hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
LPCONNECTDLGSTRVCT lpCDS; 
LPNETRESOURCE lpNR; 
BOOL bReadQnly = FALSE; 

switch (~sg) { 
case WM_INITDIALOG: 

if (11Param) { 
EndDialog (hWnd, -2); 
return O; 

} 

II Save the structure ptr 
SetWindowLong (hWnd, GWLUSERDAtA, 1Param); 

II Get what we need from the structure 
bReadOnly = (CLPCONNECTDLGSTRUCT)lPa:ram)~>dwFlags & 

CONNDLG_RO_PATH; 
lpNR ~· ((LPCONNECTDLGSTRUCT)lParam)->lpConnRes; 

.11 Inh the fields in the dialog bOX 
SetDlgitemText (hWnd, IDD_SHARENAME, lpNR.:>lpRemoteName); 
SetDlgitemText (hWnd, IDD'-LOCALNAME, lpNR->lplocalName); 

II If remote name specified, make that field read-only 
if (lpNR~>lpRemoteName[OJ && bReadOnly) .{ 

SendDlgitemMessage (hWnd, IDD_SHARENAME, EM_5ETREADONLY, 
1, 0); 

SetFocus (GetDlgitem (hWnd, IDD_LOCALNAME)); 
} 
else 

SetFocus (GetDlgitem (hWnd, IDD-5HARENAME)); 
return FALSE; 



} 

} 

Chapter 13 Windows CE Networking 453 

case WM_COMMAND: 
switch (LOWORD (wParam)) { 

case !DOK: 

} 

break; 

lpCDS = (LPCONNECTDLGSTRUCT)GetWindowLong (hWnd, 
GWL_USERDATA); 

lpNR = lpCDS->lpConnRes; 
GetDlgitemText (hWnd, IDD_SHARENAME, 

lpNR->lpRemoteName, MAX,_PATH); 

GetDlgitemText (hWnd, IDD_LOCALNAME, 
lpNR->lpLocalName, MAX,_PATH); 

II Unlike CE's version, I don't auto-create a 
II local share name. 
if ((lpNR->lpLocalName[O] == TEXT('\O')) I I 

(lpNR->lpLocalName[O] ==TEXT('*'))) { 

} 

MessageBox (hWnd, TEXT("Enter a local name"), 
TEXT("Network"), MB_OK); 

return TRUE; 

EndDialog (hWnd, 0); 
return TRUE; 

case IDCANCEL: 
EndDialog (hWnd, -1); 
return TRUE; 

return FALSE; 

11----------------------------------------------------------------------
11 MyWNetConnectionDialogl - My version of the network connection dlg 
II 
DWORD MyWNetConnectionDialogl (LPCONNECTDLGSTRUCT lpConnDlgStruct) { 

DWORD rt, dwFlags = O; 
HWND hParent = NULL; 
TCHAR szLocal[MAX,_PATH]; 
TCHAR szRmt[MAX,_PATH]; 

II Parameter checking 
if ((lpConnDlgStruct == O) I I 

} 

(lpConnDlgStruct->cbStructure != sizeof (CONNECTDLGSTRUCT)) I I 
(lpConnDlgStruct->lpConnRes == O) I I 
(lpConnDlgStruct->lpConnRes->dwType != RESOURCETYPE_DISK) I I 
II can't have both persist and non-persist flags set 

(((lpConnDlgStruct->dwFlags & CONNDLG_PERSIST) && 
(lpConnDlgStruct->dwFlags & CONNDLG_NOT_PERSIST)))) { 

return ERROR_INVAL!D_PARAMETER; 

szlocal[OJ = TEXT('\O'); 
szRmt[O] = TEXT('\0'); 



454 Part Ill Advanced Windows CE 

} 

lp(onnOlgStruct->lpconnRes->lpRemoteName = szRmt; 
lpConnDlgStruct->lpConnRes->lpLocalName = szLocal; 

II If specified, copy over strings 
if ((1 pConnDlgStruct-> lpConnRes-> l pRemoteName ! = 0) && 

(lpConnDlgStruct->lpConnRes->lpRemoteName(O] !• TEXTC'\0'))) 
StringCchCopy (szRmt, dim (szRmt), 

lpConnOlgStruct->lpConnRes->lpRemoteName); 

if ((lpConnDlgStruct->lpConnRes~>lpLocalName != O) && 
(lpConnDlgStruct->lpConnRes->lpLocalName[O] != TEXT('\0'))) 
StringCchCopy (szLocal, dim (szLocal), 

lpConnDlgStruct->lpConnRes->lpLocalName); 

II Display the dialog box 
re= DialogBoxParam (hinst, TEXT("MyConnDlg"), hParent, 

MyNetConnDlgProc, (LPARAM)lpConnDlgStruct); 
if (re == O) { 

} 

II The 'real' function always persists the link 
if (lpConnDlgStruct->dwFlags & CONNDLG_pERSIST) 

dwFlags = CONNECT_UPOATE_PROFILE; 

II Make the connection 
re =·WNetAddConnection3 (lpConnDlgStruct->hwndOWner, 

lpConnDlgStruct->lpConnRes, NULL, NULL, 
dwFlags); 

return re; 

The heart of the networking code is at the end of ListNet, in the routine 
RefreshlocalNetDrives. This routine uses the WNet enumerate functions to determine the 

persistent network resources mapped to the system. Network connections and disconnec

tions are accomplished with calls to WNetConnectionDialogl and WNetDisconnectDialog 
respectively. You open an Explorer window containing the shared network disk by launching 

Explorer.exe with a command line that's the path of the folder to open. 

For Windows Embedded CE 6 systems where WNetConnectionDialogl is failing, ListNet pro
vides a replacement routine that displays a dialog to query the connection parameters and 
then uses WNetAddConnection3 to make the connection. 

TCP/IP Programming 
As with all modern operating systems, Windows CE uses TCP/IP as its basic networking pro

tocol. Also, like other operating systems, the programming interface to the TCP/IP network 

is the "socket" application programming interface. In the case of Windows, the name of the 

TCP/IP networking stack and the socket API is Winsock. The Windows CE implementation of 



Chapter 13 Windows CE Networking 455 

Winsock doesn't support everything provided on the desktop, but what it does support pro

vides plenty of functionality to create robust network applications. 

Windows CE supports two different Winsock stacks, one based on Winsock 1.1 and the other 
based on Winsock 2.0. The Winsock 2 stack is more functional, closely matching the func
tionality of the desktop winsock stack but also much larger than its Winsock 1.1 counterpart. 
Most new devices will support the Winsock 2.0 stack, although some designers might choose 

the size advantage of the smaller Winsock 1.1 stack over the greater functionality of the 
Winsock 2.0 stack. 

Socket Programming 

Like all socket implementations, Winsock under Windows CE supports both stream and data
gram connections. In a stream connection, a socket is basically a data pipe. Once two points 
are connected, data is sent back and forth without the need for additional addressing. In a 
datagram connection, the socket is more like a mailslot, with discrete packets of data being 

sent to specific addresses. In describing the Winsock functions, I'm going to cover the pro
cess of creating a stream connection (sometimes called a connection-oriented connection) 
between a client application and a server application. I'll leave the explanation of the data

gram connection to other, more network-specific, books. 

The life of a stream socket is fairly straightforward: it's created, bound, or connected to an 
address; read from or written to; and finally closed. A few extra steps along the way, however, 
complicate the story slightly. Sockets work in a client/server model. A client initiates a conver
sation with a known server. The server, on the other hand, waits around until a client requests 

data. When setting up a socket, you have to approach the process from either the client side 
or the server side. This decision determines which functions you call to configure a socket. 
Table 13-1 illustrates the process from both the client and the server side. For each step in 
the process, the corresponding Winsock function is shown. 

TABLE 13-1 Process for Producing a Connection-Oriented Socket Connection 

Server Function Client Function 

Create socket socket Create socket socket 

Bind socket to an address bind Find desired server (many functions) 

Listen for client connections listen Connect to server connect 

Accept client's connection accept 

Receive data from client recv Send data to server send 

Send data to client send Receive data from server recv 

Both the client and the server must first create a socket. After that, the process diverges. 
The server must attach or, to use the function name, bind, the socket to an address so that 

another computer or even a local process can connect to the socket. Once an address has 
been bound, the server configures the socket to listen for a connection from a client. The 



456 Part Ill Advanced Windows CE 

server then waits to accept a connection from a client. Finally, after all this, the server is ready 

to converse. 

The client's job is simpler: the client creates the socket, connects the socket to a remote 

address, and then sends and receives data. This procedure, of course, ignores the sometimes 
not-so-simple process of determining the address to connect to. I'll leave that problem for a 

few moments while I talk about the functions behind this process. 

ASCII versus Unicode One issue that you'll have to be careful of is that almost all the string 

fields used in the socket structures are char fields, not Unicode. Because of this, you'll find 

yourself using the functions 

int WideCharToMultiByte(UINT CodePage, DWORD dwFlags, 
LPCWSTR lpWideCharStr, int cchWideChar, 
LPSTR lpMultiByteStr, int cchMultiByte, 
LPCSTR lpDefaultChar, LPBOOL lpUsedDefaultChar); 

to convert Unicode strings to multibyte strings and 

int MultiByteToWideChar (UINT CodePage, DWORD dwFlags, 
LPCSTR lpMultiByteStr, int cchMultiByte, 
LPWSTR lpWideCharStr, int cchWideChar); 

to convert multibyte characters to Unicode. The functions refer to multibyte characters in

stead of ASCII because on double-byte coded systems, they convert double-byte characters 
to Unicode. As with all string-related functions, take care to size the buffers approperriately. 

Initializing the Winsock DLL 
Like other versions of Winsock, the Windows CE version should be initialized before you use 

it. You accomplish this by calling WSAStartup, which initializes the Winsock DLL. It's proto

typed as 

int WSAStartup (WORD wVersionRequested, LPWSADATA lpWSAData); 

The first parameter is the version of Winsock you're requesting to open. For all current 

versions of Windows CE, you should indicate version 2.0. An easy way to do this is to use 

the MAKEWORD macro, as in MAKEWORD (2,0). The second parameter must point to a 

WSAData structure. 

struct WSAData { 

}; 

WORD wVersion; 
WORD wHighVersion; 
char szDescription[WSADESCRIPTION_LEN+l]; 
char szSystemStatus[WSASYSSTATUS_LEN+l]; 
unsigned short iMaxSockets; 
unsigned short iMaxUdpDg; 
char FAR * lpVendorinfo; 



Chapter 13 Windows CE Networking 457 

This structure is filled in by WSAStortup, providing information about the specific implemen

tation of this version of Winsock. Currently the first two fields return either Ox0101, indicating 

support for version 1.1, or Ox0202, indicating that the system supports the Winsock 2.0 stack. 

The szDescription and szSystemStotus fields can be used by Winsock to return information 

about itself. In the current Windows CE version of Winsock, these fields aren't used. The 

iMoxSockets parameter suggests a maximum number of sockets that an application should 

be able to open. This number isn't a hard maximum, but rather a suggested maximum. The 

iMoxUdpDg field indicates the maximum size of a datagram packet. A 0 indicates no maxi

mum size for this version of Winsock. Finally, lpVendorlnfo points to optional vendor-specific 

information. 

WSAStortup returns 0 if successful; otherwise, the return value is the error code for the func

tion. Don't call WSAGetLostError in this situation because the failure of this function indicates 
that Winsock, which provides WSAGetLostError, wasn't initialized correctly. 

Windows CE also supports WSAC/eonup, which is traditionally called when an application has 

finished using the Winsock DLL. The prototype is 

int WSACleanup (); 

For Windows CE, this function performs no action but is provided for compatibility. 

Creating a Socket You create a socket with the function 

SOCKET socket (int af, int type, int protocol); 

The first parameter, of, specifies the addressing family for the socket. Windows CE supports 

three addressing formats: AF_INET, AF_IRDA, and AF_BT. You use the AF_BT constant when 

you're creating a socket for Bluetooth use, AF_ I RDA for an lrDA socket, and AF_ I NET for TCP/ 

IP communication. The type parameter specifies the type of socket being created. For a 

TCP/IP socket, this can be either SOCK_STREAM for a stream socket or SOCK_DGRAM for a 

datagram socket or SOCK_ RAW for a raw socket. Raw sockets are sockets that allow you to 

interact with the IP layer of the TCP/IP. Raw sockets are used to send an echo request to other 

servers, in the process known as pinging. Windows CE provides another method of send-

ing an Internet Control Message Protocol (ICMP) echo request through the IP Helper API. 

Windows CE supports raw sockets for only the 1Pv4 network stack. Raw sockets are not sup

ported on the 1Pv6 stack. 

The protocol parameter specifies the protocol used by the address family specified by the of 

parameter. The function returns a handle to the newly created socket. If an error occurs, the 

socket returns INVALID_SOCKET. You can call WSAGetLostError to query the extended error 

code. 



458 Part Ill Advanced Windows CE 

Server Side: Binding a Socket to an Address 

For the server, the next step is to bind the socket to an address. You accomplish this with the 

function 

int bind (SOCKET s, const struct sockaddr FAR *addr, int namelen); 

The first parameter is the handle to the newly created socket. The second parameter is de

pendent on whether you're dealing with a TCP/IP socket, an lrDA socket, or a Bluetooth sock

et. For a standard TCP/IP socket, the structure pointed to by addr should be SOCKADDR_IN, 

which is defined as 

struct sockaddr_in { 

} ; 

short sin_family; 
unsigned short sin_port; 
IN_ADDR sin_addr; 
char sin_zero[8]; 

The first field, sin_family, must be set to AF_INET. The second field is the IP port, while 

the third field specifies the IP address. The last field is simply padding to fit the standard 

SOCKADDR structure. The last parameter of bind, name/en, should be set to the size of the 

SOCKADDR_IN structure. 

Listening for a Connection 

Once a socket has been bound to an address, the server places the socket in listen mode so 

that it will accept incoming communication attempts. You place the socket in listen mode by 

using the aptly named function 

int listen (SOCKET s, int backlog); 

The two parameters are the handle to the socket and the size of the queue that you're creat

ing to hold the pending connection attempts. This size value can be set to SOMAXCONN to 

set the queue to the maximum supported by the socket implementation. 

Accepting a Connection 
When a server is ready to accept a connection to a socket in listen mode, it calls this function: 

SOCKET accept (SOCKET s, struct sockaddr FAR *addr, 
int FAR *addrlen); 

The first parameter is the socket that has already been placed in listen mode. The next pa

rameter should point to a buffer that receives the address of the client socket that has initi

ated a connection. The format of this address is dependent on the protocol used by the 

socket. For Windows CE, this is a SOCKADDR_IN, a SOCKADDR_IRDA, or a SOCKADDR_BTH 

structure. The final parameter is a pointer to a variable that contains the size of the buffer. 



Chapter 13 Windows CE Networking 459 

This variable is updated with the size of the structure returned in the address buffer when the 

function returns. 

The accept function returns the handle to a new socket that's used to communicate with the 

client. The socket that was originally created by the call to socket will remain in listen mode 

and can potentially accept other connections. If accept detects an error, it returns INVALID_ 

SOCKET. In this case, you can call WSAGetLastError to get the error code. 

The accept function is the first function I've talked about so far that blocks. That is, it won't 

return until a remote client requests a connection. You can set the socket in nonblocking 

mode so that, if no request for connection is queued, accept will return INVALID_SOCKET 

with the extended error code WSAEWOULDBLOCK. I'll talk about blocking vs. nonblocking 

sockets shortly. 

Client Side: Connecting a Socket to a Server 

On the client side, things are different. Instead of calling the bind and accept functions, the 

client simply connects to a known server. I said simply, but as with most things, we must note 
a few complications. The primary one is addressing-knowing the address of the server you 

want to connect to. I'll put that topic aside and assume the client knows the address of the 

server. 

To connect a newly created socket to a server, the client uses the function 

int connect (SOCKET s, const struct sockaddr FAR *name, 
int namelen); 

The first parameter is the socket handle that the client created with a call to socket. The other 

two parameters are the address and address length values we've seen in the bind and accept 

functions. 

If connect is successful, it returns 0. Otherwise, it returns SOCKET_ERROR, and you should call 

WSAGetLastError to get the reason for the failure. 

Sending and Receiving Data 

At this point, both the server and the client have socket handles they can use to communi
cate with one another. The client uses the socket originally created with the call to socket, 

while the server uses the socket handle returned by the accept function. 

All that remains is data transfer. You write data to a socket this way: 

int send (SOCKET s, con st char FAR ''buf, int 1 en, int flags); 

The first parameter is the socket handle to send the data. You specify the data you want to 

send in the buffer pointed to by the buf parameter, while the length of that data is specified 

in fen. The flags parameter must be 0. 



460 Part Ill Advanced Windows CE 

You receive data by using the function 

int recv (SOCKET s, char FAR *buf, int 1 en, int flags); 

The first parameter is the socket handle. The second parameter points to the buffer that re

ceives the data, while the third parameter should be set to the size of the buffer. The flags 

parameter can be 0, or it can be MSG_ PEEK if you want to have the current data copied into 

the receive buffer but not removed from the input queue or, if this is a TCP/IP socket (MSG_ 
008), for receiving any out-of-band data that has been sent. 

Two other functions can send and receive data; they are the following: 

int sendto (SOCKET s, const char FAR *buf, int len, int flags, 
const struct sockaddr FAR *to, int token); 

and 

int recvfrom (SOCKET s, char FAR *buf, int len, int flags, 
struct sockaddr FAR *from, int FAR *fromlen); 

These functions enable you to direct individual packets of data using the address param

eters provided in the functions. They're used for connectionless sockets, but I mention them 

now for completeness. When used with connection-oriented sockets such as those I've just 

described, the addresses in sendto and recvfrom are ignored and the functions act like their 
simpler counterparts, send and recv. 

Closing a Socket 

When you have finished using the sockets, call this function: 

int shutdown (SOCKET s, int how); 

The shutdown function takes the handle to the socket and a flag indicating the part of the 

connection you want to shut down. The how parameter can be SD_RECEIVE to prevent any 

further recv calls from being processed, SD_SEND to prevent any further send calls from be

ing processed, or SD_BOTH to prevent either send or recv calls from being processed. The 

shutdown function affects the higher-level functions send and recv but doesn't prevent data 

previously queued from being processed. Once you have shut down a socket, it can't be used 

again. It should be closed and a new socket created to restart a session. 

After a connection has been shut down, you should close the socket with a call to this 

function: 

int closesocket (SOCKET s); 

The action of closesocket depends on how the socket is configured. If you've properly shut 

down the socket with a call to shutdown, no more events will be pending and closesocket 



Chapter 13 Windows CE Networking 461 

should return without blocking. If the socket has been configured into linger mode and con

figured with a timeout value, c/osesocket will block until any data in the send queue has been 

sent or the timeout expires. 

A Simple Example 
The following code demonstrates a simple client-server connection. The code is divided into 

three routines: the server routine, the receive routine, and the transmit routine. The first code 

fragment is the server code. 

II 
II ServerThread - Waits for a client to connect. Spins a new thread 
II 
BOOL fCont = TRUE; 
DWORD WINAPI ServerThread (PVOID pArg) { 

INT re, nSize; 
HANDLE hTh; 

SOCKET t_sock, s_sock; 
SOCKADDR_IN sadr, t_sadr; 
WORD wPort = LOWORD(pArg); 

II Open a socket. 
s_sock =socket (AF_INET, SOCK_STREAM, O); 
if (s_sock == INVALID_SOCKET) 

return -1; 

II Fill in socket address structure. 
memset (&sadr, 0, sizeof (sadr)); 
sadr.sin_family = AF_INET; 
sadr.sin_port = htons(wPort); 

_try { 
II Bind address to socket. 
re= bind (s_sock, (struct sockaddr *)&sadr, sizeof(sadr)); 
if (re == SOCKET_ERROR) _leave; 

II Set socket into listen mode. 
re= listen (s_sock, SOMAXCONN); 
if (re == SOCKET_ERROR) _leave; 

II Block on accept. 
while (fCont) { 

nSize = sizeof (t_sadr); 
t_sock = accept(s_sock, (struct sockaddr *)&t_sadr, &nSize); 
if (t_sock == INVALID_SOCKET) 

break; 

hTh = CreateThread (NULL, 0, ReceiveThread, 
(PVOID)t_sock, 0, NULL); 

CloseHandle (hTh); 



462 Part Ill Advanced Windows CE 

} 
_finally { 

closesocket (s_sock); 
} 
return re; 

} 

The previous code is presented as thread routine because it can't be on the main thread of the 

application because of the call to accept blocks. The routine starts by opening a socket and 

binding an address. In this case, the bind call binds to whatever port number was passed in the 

argument to the thread. Next, the thread sets the socket to listen mode and calls accept. The 

accept call only returns when there is a connection made from a client. The code then starts yet 

another thread to handle the conversation between the client and the server. Meanwhile, the 

server thread loops back and calls accept again to wait for another connection. 

The conversation the server has with the client is handled by the following routine. Here again, 

the routine is presented as a thread because it was created by the previous server thread. 

II 
// Receive Thread - Receives a string and send another back 
// 
DWORD WINAP! R.eceiveThread (PVOID pArg) { 

SOCKET t_sock = CSOCKET)pArg; 
int nCnt, re, rcResp; 
char szSt ring [2 56] ; 
char. szSend[] = "A response stringw; 

~try { 
II Readthe number of bytes in the string. 
re= recv (t:,..soek, {LPSTR)&nCnt, siZeof (nCnt), O); 
if (re ! = SOCKELERROR) 

re = O; 

II Check .for buffer overrun 
if (nCnt > sizeof (szString)) 

re = ERROR_INSUFFICIENLBUFFER; 
if (re) _leave; 

I I Send response 
re = send. (t:,..sock, (char *)&re, si zeof (re}, 0); 
if (re. == SOCKET_ERROR) _leave; 

11. Read the. st ring. 
re = recv (t_sock, szString, nCnt, O); 
if (re == SOCKELERROR) 

_leave; 

I I Send · r.esponse 



} 

} 

Chapter 13 Windows CE Networking 463 

re = send (t_sock, (char *)&re, sizeof (re), O); 
if (re == SOCKET_ERROR) 

_leave; 

II Send our string length 
nCnt = strlen (szSend) + 1; 
re = send (t_sock, (char '')&nCnt, si zeof (nCnt), O); 
if (re == SOCKET_ERROR) 

_leave; 

II Recv response code 
re= recv (t_sock, (char *)&rcResp, sizeof (rcResp), 0); 
if ((re == SOCKET_ERROR) I I (rcResp != 0)) 

_leave; 

II Send our string 
re= send (t_sock, szSend, nCnt, O); 
if (re == SOCKET_ERROR) 

_leave; 

II Recv response code 
re= recv (t_sock, (char *)&rcResp, sizeof (rcResp), O); 

_finally { 
if (re == SOCKET_ERROR) 

re= WSAGetlastError (); 
send (t_sock, (char *)&re, sizeof (re), O); 
closesocket (t_sock); 

return O; 

Although the server code is generic, this code is specific to the example because the data 

sent and received by the client and server is application specific. The previous code, which is 

still part of the server, demonstrates sending and receiving data by receiving a string from 

the client and responding by sending a string back. It's not quite that simple, because there 

is some handshaking involved to insure that both client and server stay coordinated. Still, the 

previous code demonstrates the sending and receving of data. 

The final section of code, which follows, would be the client code. 

II 
II Client code. 
II 
int Client (char *szIPAddr, WORD wPort) { 

SOCKET sock; 
SOCKADDR_IN dest_sin; 
int nCnt, re, rcResp; 
char szString[256]; 
char szSend [] = "A string to Send"; 



464 Part Ill Advanced Windows CE 

II Create socket 
sock = socket ( AF _INET, SOCK . ..STREAM, O) ; 
if (sock == INVALID_SOCKET) 

return INVALID_SOCKET; 

:_try { 
II Set up IP address to access 
memset (&dest_sin, 0, sizeof (dest_sin)); 
dest_sin.sin_family = AF_INET; 
dest_sin.sin_addr.Sc..un.S_addr = inet_addr (szIPAddr); 
dest_sin.sin_port = htons(wPort); 

II Connect to the device 
re = connect(sock, (PSOCKADDR) &dest_sin, sizeof( dest_sin)); 
if (re == SOCKET_ERROR) { 

} 

printf («Err in connect. %d\r\n», WSAGetLastError()); 
closesocket( sock ); 
_leave; 

II Send our string length 
nCnt = strl en (szSend) + 1; 
re = send (sock, (char *)&nCnt, sizeof (nCnt), .0); 
if (re == SOCKET_ERROR) 

_leave; 

II Recv response code 
re= recv (sock, (char *)&rcResp, sizeof (rcResp), O); 
if ((re == SOCKET_ERROR) I I (rcResp != 0)) 

_leave; 

I I Send our string 
re= send (sock, szSend, nCnt, 0); 
i f (re == SOCKELERROR) 

_leave; 

II Recv response code 
re= recv (sock, (char *)&rcResp, sizeof (rcResp), O); 
if (re == SOCKET_ERROR) _leave; 

II Now read the string back ... 

II Read the number of bytes in the string. 
re= recv (sock, (LPSTR}&nCnt, sizeof (nCnt), O); 
if (re != SOCKELERROR) 

re = O; 

II Check for buffer overrun 
if (nCnt > sizeof (szString)) 

re = ERROR_INSUFFICIENLBUFFER; 
if (re) _leave; 

II Send response 



} 

} 

Chapter 13 Windows CE Networking 465 

re= send (sock, (char *)&re, sizeof (re), 0); 
if (re == SOCKET_ERROR) _leave; 

II Read the string. 
re= recv (sock, szString, nCnt, O); 
if (re == SOCKET_ERROR) 

_leave; 

II Send response 
re= send (sock, (char *)&re, sizeof (re), O); 
if (re == SOCKET_ERROR) 

_leave; 

_finally { 

} 

if (re == SOCKET_ERROR) 
re= WSAGetlastError (); 

send (sock, (char *)&re, sizeof (re), O); 
closesocket (sock); 

Add2List (hwndMain, TEXT(«client thread exit»)); 
return O; 

The previous code creates a socket, but instead of binding the socket like the server, at

tempts to connect to the server. The IP address of the server and the port to connect to are 

passed to the routine. After the call to connect, the remainder of the routine is the comple

ment of the ReceiveThread routine. In this case, a string is first sent and then one is received. 

After completing the work, each of the previous routines closes its respective sockets. This 

is ensured by using a __ try _ _finally block with the _ _finally block containing the call to 

closesocket. 

Blocking versus Nonblocking Sockets 
One issue I briefly touched on as I was introducing sockets is blocking. Windows program

mers are used to the quite handy asynchronous socket calls that are an extension of the stan

dard Berkeley socket API. By default, a socket is in blocking mode so that, for example, if you 

call recv to read data from a socket and no data is available, the call blocks until some data 

can be read. This isn't the type of call you want to be making with a thread that's servicing 

the message loop for your application. 

The WSAAsync calls that provide asynchronious socket convenience aren't available on 

Windows CE systems using the Winsock 1.1 stack. All is not lost, however, because you can 

switch a standard socket from its default blocking mode to nonblocking mode. In nonblock

ing mode, any socket call that might need to wait to successfully perform its function instead 

returns immediately with the error code WSAEWOULDBLOCK. You are then responsible for 

calling the would-have-blocked function again at a later time to complete the task. 



466 Part Ill Advanced Windows CE 

To set a socket into blocking mode, use this function: 

int ioctlsocket (SOCKET s, long cmd, u_long *argp); 

The parameters are the socket handle, a command, and a pointer to a variable that either 

contains data or receives data depending on the value in cmd. The allowable commands 

for ioctlsocket depend on the type of socket. However, a couple of typical commands are 

FIONBIO, which sets or clears a socket's blocking mode, and FIONREAD, which returns the 

number of bytes that can be read from the socket with one call to the recv function. 

So to set a socket in nonblocking mode, you should make a call like this one: 

fBlocking = FALSE; 
re= ioctlsocket (sock, FIONBIO, &fBlocking); 

Of course, after you have a socket in nonblocking mode, the worst thing you can do is 

continually poll the socket to see whether the nonblocked event occurred. On a battery

powered system, this can dramatically lower battery life. Instead of polling, you can use the 

select function to inform you when a socket or set of sockets is in a nonblocking state. The 

prototype for this function is 

int select (int nfds, fd_set FAR *readfds, fd_set FAR *writefds, 
fd_set FAR *exceptfds, 
const struct timeval FAR *timeout); 

The parameters for the select function look somewhat complex, which, in fact, they are. Just 

to throw a curve, the function ignores the first parameter. The reason it exists at all is for 

compatibility with the Berkeley version of the select function. The next three parameters are 

pointers to sets of socket handles. The first set should contain the sockets that you want to 
be monitored for a nonblocking read state. The second set contains socket handles of sock

ets that you want checked for a nonblocking write state. Finally, the third set, pointed to by 

exceptfds, contains the handles of sockets that you want monitored for error conditions in 

that socket. 

The final parameter is a timeout value. In keeping with the rather interesting parameter for

mats for the select function, the timeout value isn't a simple millisecond count. Rather, it's a 

pointer to a TIMEVAL structure defined as 

struct timeval { 
long tv_sec; 
long tv_usec; 

} ; 

If the two fields in TIMEVAL are 0, the select call returns immediately, even if none of the 

sockets has had an event occur. If the pointer, timeout, is NULL instead of pointing to a 

TIMEVAL structure, the select call won't time out and returns only when an event occurs in 



Chapter 13 Windows CE Networking 467 

one of the sockets. Otherwise, the timeout value is specified in seconds and microseconds in 

the two fields provided. 

The function returns the total number of sockets for which the appropriate events occur-0 
if the function times out or SOCKET_ ERROR if an error occurs. If an error does occur, you can 

call WSAGetLastError to get the error code. The function modifies the contents of the sets so 

that, on returning from the function, the sets contain only the socket handles of sockets for 

which events occur. 

The sets that contain the events should be considered opaque. The format of the sets doesn't 

match their Berkeley socket counterparts. Each of the sets is manipulated by four macros de

fined in WINSOCK.H. These are the four macros: 

• FD_CLR Removes the specified socket handle from the set 

• FD_ISSET Returns TRUE if the socket handle is part of the set 

• FD_SET Adds the specified socket handle to the set 

• FD_ZERO Initializes the set to 0 

To use a set, you have to declare a set of type fd_set, then initialize the set with a call to FD_ 

ZERO, and add the socket handles you want with FD_SET. An example would be 

fd_set fdReadSocks; 

FD_ZERO (&fdReadSocks); 
FD_SET (hSockl, &fdReadSocks); 
FD_SET (hSock2, &fdReadSocks); 

re= select (0, &fdReadSocks, NULL, NULL, NULL); 
if (re != SOCKET_ERROR) { 

} 

if (FD_ISSET (hSockl, &fdReadSocks)) 
II A read event occurred in socket 1. 

if (FD_ISSET (hSock2, &fdReadSocks)) 
II A read event occurred in socket 2. 

In this example, the select call waits on read events from two sockets with the handles hSockl 

and hSock2. The write and error sets are NULL, as is the pointer to the timeout structure, so 

the call to select won't return until a read event occurs in one of the two sockets. When the 

function returns, the code checks to see whether the socket handles are in the returned set. If 

so, that socket has a nonblocking read condition. 

The last little subtlety concerning the select function is just what qualifies as a read, write, and 
error condition. A socket in the read set is signaled when one of the following events occurs: 

• There is data in the input queue, so recv can be called without blocking. 

• The socket is in listen mode and a connection has been attempted, so a call to accept 

won't block. 



468 Part Ill Advanced Windows CE 

• The connection has been closed, reset, or terminated. If the connection was gracefully 

closed, recv returns with 0 bytes read; otherwise, the recv call returns SOCKET_ ERROR. If 

the socket has been reset, the recv function returns the error WSACONNRESET. 

A socket in the write set is signaled under the following conditions: 

• Data can be written to the socket. A call to send still might block if you attempt to write 

more data than can be held in the outgoing queue. 

• A socket is processing a connect and the connect has been accepted by the server. 

• A socket in the exception set is signaled under the following condition: 

• A socket is processing a connect and the connect failed. 

This chapter has given you a basic introduction to some of the networking features of 

Windows CE. Next on our plate is networking from a different angle: peer-to-peer commu

nication. In Chapter 14, we look at how a Windows CE device can communicate with another 

Windows CE device using infrared and Bluetooth communication. Let's take a look. 



Chapter 14 

Device-to-Device Communication 
The personal nature of mobile devices requires that a new type of network be supported by 

these systems. Embedded systems also are increasingly in need of communication services 

for data transfer and diagnostic queries. Wide area and local area networks supported by 

Windows CE devices must share time with personal area networks-those networks that link 

devices over a short distance perhaps for only a short time. Windows CE supports personal 

area networking (PAN) over two transport technologies: infrared and radio frequency. The 

infrared transport conforms to the Infrared Data Association (lrDA) standard, while Windows 

CE uses the Bluetooth standard for radio-frequency networking. 

Applications interact with both the lrDA communications stack and the Bluetooth stack using 

the Winsock API. The basics of Winsock were covered in Chapter 13. In this chapter, I'll refer 

to Winsock in relation to how you need to program it differently for lrDA and Bluetooth. Let's 

start by diving into the specifics of lrDA. 

Infrared Communication 
Like all systems today, Windows CE supports the lrDA standard. As mentioned earlier, both 

Windows desktop and Windows CE use Winsock as the programming interface for lrDA com

muncation. The extensions to the standard Winsock programming model involve two items: 

publication of a service and discovery of that service by another device. These additions, 
along with the accompanying limitations of the IR communication medium, are collectively 

known as lrSock. 

Some of the major differences between lrSock and Winsock are that lrSock doesn't support 

datagrams, it doesn't support security, and the method used for addressing it is completely 

different from that used for Winsock. What lrSock does provide is a method to query the 

devices ready to talk across the infrared port, as well as arbitration and collision detection 

and control. 

IR Basics 

From the programming perspective, communicating over IR is very similar to communicat

ing over a TCP/IP network. The server creates a socket, binds to an address, sets the socket to 

listen mode and calls accept. On the client side, the client creates a socket and connects to 

the server. The major differences are the extensions that allow the server to publish the fact 

that the device is ready to receive IR communication and how the client device descovers the 

server. Before all that can happen, though, a socket has to be created. Creating an IR socket is 

469 



470 Part Ill Advanced Windows CE 

accomplished through a call to socket, but with a few different parameters. First, the address 

format needs to be AF_IRDA. Second, the socket type must be SOCK_STREAM. Finally, the 

protocol needs to be null. This results in a call that looks like this: 

SOCKET irSoc =socket (AF_IRDA, SOCK_STREAM, O); 

As with any socket call, the function returns a handle to the newly created socket. If an error 

occurs, the socket returns /NVALID_SOCKET. You can call WSAGetlastError to query the 

extended error code. 

Discovery 
Now that we have a socket, we need to find other devices that we might want to connect to. 
This is a process called discovery. Discovering a device that is expecting IR communication is 

accomplished using Winsock's getsockopt function. prototyped as 

int getsockopt (SOCKET s, int level, int optname, 
char FAR* optval, int FAR* optlen); 

The first parameter is the socket created by a call to socket. The level parameter indicates 

the socket protocol you wish to work with. For lrDA discovery, the level parameter should be 

SOL_IRLMP. The optname parameter is the specific option to query. For an IR device discov

ery, this parameter should be set to IRLMP_ENUMDEVICES. The optval and opt/en parameters 

specify the location and size of the buffer to receive the information. For our discovery call, 

this buffer will be filled with a DEVICEL/ST structure. So, for IR device discovery, the call would 

look like the following: 

dwBuffSize = sizeof (buffer); 
re = getsockopt (hirSock, SOL_IRLMP, IRLMP_ENUMDEVICES, 

buffer, &dwBuffSize); 
The resulting DEVICELIST structure is defined as 
typedef struct _DEVICELIST { 

ULONG numDevice; 
IRDA_DEVICE_INFO Device[l]; 

} DEVICELIST; 

The DEVICELIST structure is simply a count followed by an array of IRDA_DEVICE_INFO struc

tures, one for each device found. The IRDA_DEVICE_INFO structure is defined as 

typedef struct _IRDA_DEVICE_INFO { 
u_char irdaDeviceID[4]; 
char irdaDeviceName[22]; 
u_char Reserved[2]; 

} IRDA_DEVICE_INFO; 

The two fields in the IRDA_DEVICE_INFO structure are a device ID and a string that can be 

used to identify the remote device. 



Chapter 14 Device-to-Device Communication 471 

Following is a routine that opens an IR socket and uses getsockopt to query the remote 

devices that are in range. If any devices are found, their names and IDs are printed to the 

debug port. 

II 
II Poll for IR devices. 
II 
DWORD WINAPI IrPoll (HWND hWnd) { 

INT re, nSize, i, j; 
char cDevice[256]; 
TCHAR szName[32], sz0ut[256]; 
DEVICELIST *pDL; 
SOCKET irsock; 

II Open an infrared socket. 
irsock =socket (AF_IRDA, SOCK_STREAM, O); 
if (i rsock == INVALID_SOCKET) 

return -1; 

II Search for someone to talk to; try 10 times over 5 seconds. 
for (i = O; < 10; i++) { 

II Call getsockopt to query devices. 
memset (cDevice, 0, sizeof (cDevice)); 
nSize = sizeof (cDevice); 
re= getsockopt (irsock, SOL_IRLMP, IRLMP_ENUMDEVICES, 

cDevice, &nSize); 
if (re) 

break; 

pDL = (DEVICELIST *) cDevice; 
if (pDL->numDevice) { 

for (j = O; j < (int)pDL->numDevice; j++) { 
II Convert device ID. 

} 

wsprintf (szOut, 
TEXT ("DeviceID \t%02X.%02X.%02X.%02X"), 
pDL->Device[j].irdaDeviceID[O], 
pDL->Device[j] .irdaDeviceID[l], 
pDL->Device[j] .irdaDeviceID[2], 
pDL->Device[j] .irdaDeviceID[3]); 

OutputDebugString (szOut); 

II Print the ASCII device name. 
wsprintf (szOut, TEXT («irdaDeviceName \t%s»), 

pDL->Device[j].irdaDeviceName); 
OutputDebugString (szOut); 

} 

Sleep(SOO); 

closesocket (irsock); 
return O; 



472 Part Ill Advanced Windows CE 

Just having a device with an IR port in range isn't enough; the remote device must have an 

application running that has opened an IR socket, bound it, and placed it into listen mode. 

This requirement is appropriate because these are the steps any server using the socket API 

would perform to configure a socket to accept communication. 

Publishing an IR Service 

I just talked about the client, but what about the server? How does the serving device publish 
the fact that it wants IR communication? Publishing an IR service is actually quite simple and 

is implicit in the call to bind. Let's look into it. 

The call to bind for an IR socket differs in the sockaddr structure passed to the function. 

When you're using lrSock, the address structure pointed to by sockaddr is SOCKADDR_IRDA, 
which is defined as 

struct sockaddr_irda { 

}; 

u_short irdaAddressFamily; 
u_char irdaDeviceID[4]; 
char irdaServiceName[25]; 

The first field, irdaAddressFamily, should be set to AF_ I RDA to identify the structure. The sec

ond field, irdaDevice!D, is a 4-byte array that defines the address for this IR socket. This can 
be set to 0 for an lrSock server. The last field should be set to a string to identify the server. 

You can also use a special predefined name in the irdaServiceName field to bypass the lrDA 

address resolution features. If you specify the name LSAP-SELxxx, where xxx is a value from 

001 through 127, the socket will be bound directly to the Logical Service Access Point (LSAP) 

selector defined by the value. Applications should not, unless absolutely required, bind 

directly to a specific LSAP selector. Instead, by specifying a generic string, the lrDA address 

resolution code determines a free LSAP selector and uses it. 

The code that follows demonstrates a server thread that publishes an IR service. Notice that 

aside from the different address formats and sockaddr structure, the code is quite similar to 

the standard TCP/IP server code shown in Chapter 13. 

DWORD WINAPI ServerThread (PVOID pArg) { 
int re, nSize; 
SOCKADDR_IRDA iraddr, t_iraddr; 
SOCKET t_sock, s_sock; 
char SOCKET t_sock, s_sock; 
char chzAppName[] = "My IR service name"; 
II Open an infrared socket. 
s_sock = socket (AF_IRDA, SOCK_STREAM, O); 
if (s_sock == INVALID_SOCKET) 

return -1; 
_try { 

II Fill in irda socket address structure. 



} 

Chapter 14 Device-to-Device Communication 473 

memset (&iraddr, 0, sizeof (iraddr)); 
iraddr.irdaAddressFamily = AF_IRDA; 
memcpy (iraddr.irdaServiceName, chzServiceName, 

sizeof (chzAppName) + 1); 

II Bind address to socket. 
re= bind (s_sock, (struct sockaddr *)&iraddr, sizeof (iraddr)); 
if (re) _leave; 

II Set socket into listen mode. 
re= listen (s_sock, SOMAXCONN); 
if (re) _leave; 

II Wait for remote requests. 
while (fContinue) { 

nSize = sizeof (t_iraddr); 
t_sock =accept (s_sock, (struct sockaddr *)&t_iraddr, &nSize); 
if (t_sock == INVALID_SOCKET) 

_leave; 
CreateThread (NULL, 0, ReceiveThread, (PVOID)t_sock, 0, NULL); 

re = O; 

_finally { 
closesocket (s_sock); 

return re; 

The preceding code creates a socket with the AF_ I RDA address format. It then initializes a 

SOCKADDR_IDRA structure identifying the address format and the name of the service. 

Aside from that, the code has nothing special, with subsequent calls to bind, listen, and 

accept. As with other server loops like this, the code spins a separate thread when a connec

tion is detected. 

Querying and Setting IR Socket Options 

lrSock supports the getsockopt and setsockopt functions for getting and setting the socket 

options, but the options supported have little overlap with the socket options supported for 

a standard TCP/IP socket. To query socket options, use this function: 

int getsockopt (SOCKET s, int level, int optname, 
char FAR *optva 1 , int FAR ''optl en); 

The first parameter is the handle to the socket, while the second parameter is the level in 

the communications stack for the specific option. The level can be at the socket level, SOL_ 
SOCKET, or a level unique to lrSock, SOL_/RLMP. The options supported for lrSock are shown 

in the following lists. 

For the SOL_ SOCKET level, your option is 



474 Part Ill Advanced Windows CE 

• SO_LINGER Queries the linger mode 

For the SOL_/RLMP level, your options are 

• IRLMP_ENUMDEVICES Enumerates remote lrDA devices 

• IRLMP_IAS_QUERY Queries IAS attributes 

• IRLMP_SEND_PDU_LEN Queries the maximum size of send packet for lrLPT mode 

The corresponding function with which to set the options is 

int setsockopt (SOCKET s, int level, int optname, 
const char FAR *optval, int optlen); 

The parameters are similar to getsockopt. A list of the allowable options follows. 

For the SOL_ SOCKET level, your single option is 

• SO_LINGER Delays the close of a socket if unsent data remains in the outgoing queue 

For the SOL_IRLMP level, your options are 

• IRLMP_IAS_SET Sets IAS attributes 

• IRLMP_IRLPT_MODE Sets the lrDA protocol to lrLPT 

• IRLMP_9WIRE_MODE Sets the lrDA protocol to 9-wire serial mode 

• IRLMP_SHARP_MODE Sets the lrDA protocol to Sharp mode 

The MySquirt Example Program 

To demonstrate lrSock, the following program, MySquirt, shows how to transfer files from 

one Windows system to another. It's similar to the lrSquirt program provided with the 

Windows Mobile devices. The difference is that this program is designed to be compiled 
for and run on Windows CE and desktop Windows systems.1 So by running the program on 

these systems, you can send, that is, squirt, files from one system to another. MySquirt has 

a window that displays a list of status messages as the handshaking takes place between 

the two Windows systems. To use MySquirt, you'll need to have it running on two Windows 

systems. To transfer a file, enter the name of the file you want to send and press the Send 

button. The system transmits the name and size of the file to the receiving system, and, if it's 

accepted, the file data is subsequently sent. Figure 14-1 shows MySquirt after it has sent a 

file. The source code for the example is shown in Listing 14-1. 

1 To build MySquirt for Windows XP or Windows Vista, useMicrosoft Visual Studio with a project target of Win32 
application. 



Chapter 14 Device-to-Device Communication 475 

Monitor thread entered 
File o~en failed. re 3 
No infrared devices found in range. 
1 devices found. 
Found: Pocket_PC 
connected ... 
sent 5058 bytes 
File sent successfully. 

FIGURE 14-1 The MySquirt window after a file has been sent 

LISTING 14-1 

MySquirt.rc 

II====================================================================== 
II Resource file 
II 
II Written for the book Programming Windows CE 
II Copyright CC) 2007 Douglas Boling 
II====================================================================== 
#include "windows.h" 
#include "MySquirt.h" II Program-specific stuff 

11----------------------------------------------------------------------
11 Icons and bitmaps 
II 
ID_ICON ICON "MySquirt.ico" II Program icon 

11----------------------------------------------------------------------
11 Main window dialog template 
II 
MySquirt DIALOG discardable 10, 10, 135, 110 
STYLE WS_OVERLAPPED I WS_VISIBLE WS_CAPTION I WS_SYSMENU I 

DS_CENTER I DS_MODALFRAME 
CAPTION "MySquirt" 
CLASS "MySquirt" 
BEGIN 

LTEXT "&File:" -1, 
EDITTEXT IDD_OUTTEXT, 

WS_TABSTOP I 
PUSHBUTTON "&Send File" IDD_SENDFILE, 

2' 11, 15' 
17, 10, 71, 

ES_AUTOHSCROLL 
92' 10, 38, 

12 
12, 

12, WS_TABSTOP 

LISTBOX IDD_INTEXT, 2, 25, 128, 80, 
WS_TABSTOP I WS_VSCROLL 

END 



476 Part Ill Advanced Windows CE 

MySquirt.h 

//============================================================== .. ======= 
/ / Header file 
// 
// Written for the book Programming Windows CE 
//.Copyright (C) 2007 Douglas Boling 
//====================================~================================ 
//Returns number of elements 
#define dim(x) (Si zeof(x) / si zeof(x [OJ)) 

//Defines that are different between Windows CE and Desktop Windows 
#ifdef _WIN32_WCE 
//Windows CE-specific defines 
#define LPCMDLINE LPWSTR 
//On Windows CE, we call begin thread directly. 
#defineMyCreateThread CreateThread 

// Desktop Windows defines 
#else 
#define LPCM.DLINE LPSTR 
//This macro calls .beginthreadex when this program is compiled 
// for the desktop. 
typedef unsigned (_stdcall *PTHREAD_START)(void *); 

#define MyCreateThread(psa, cbStack, pfoStartAddr, pvParam, fdwCreate,\ 
pdwThreadID)((HANDLE) _beginthreadex ((void *)(psa), \ 
(unsigned) (cbStack), (PTHREAD.c.START) (pfnStartAddr) ,\ 
(void *)(pvParam), (unsigned)(fdwCreate), (unsigned *)(pdwThreadID))) 

#define StringCchVPrintfvswprintf_s 
#define StringCchCopy wcscpy_s 
#eridif 

;;~--~----------~~-----~------------------------------------------------
//Generic defines and data types 
// 
struct decodeUINT { 

UINTCode; 

LRESULT (*Fxn) CHWND, UINT. .WPARAM, 
}; 
struct decodeCMD { 

UINT Code.; 
LRESULT (*Fxn)(HWND, WORD, HWND, WORD); 

}; 

// Structure associates 
//menu IDs with a 
//function. 

ll---------------------------------~--------------------------~---------
11 Generic defines used by application 

#define ID_ICON 1 

#define lDD_INTEXT .10 II Control IDs 
#define lDD_SENDFI[E 11 
#define lDD_OUTiEXT 12 



Chapter 14 Device-to-Device Communication 477 

II Error codes used by transfer protocol 
#define GOOD_)(FER 0 
#define BAD_FILEOPEN -1 
#define BAD_FILEMEM -2 
#define BAD_FILEREAD -3 
#define BAD_FILEWRITE -3 
#define BAD_SOCKET -4 
#define BAD_SOCKETRECV -5 
#define BAD_FILESIZE -6 
#define BAD_MEMORY -7 

#define BLKSIZE 8192 II Transfer block size 

11----------------------------------------------------------------------
11 Function prototypes 
II 
HWND Init!nstance (HINSTANCE, LPCMDLINE, int); 
int Term!nstance (HINSTANCE, int); 

II Window procedures 
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM); 

II Message handlers 
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoSizeMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoPocketPCShell (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM); 

II Command functions 
LPARAM DoMainCommandSend (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD); 

II Thread functions 
DWORD WINAPI MonitorThread (PVOID pArg); 
DWORD WINAPI ReceiveThread (PVOID pArg); 
DWORD WINAPI SendFileThread (PVOID pArg); 

MySquirt.cpp 

II=====~==~====~==============================~==================== 
II MySquirt - A simple IrSock application for Windows CE 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II==========~=========================~==========~=================== 
#ifndef _WIN32_WCE 
#define _UNICODE 
#define UNICODE 
#end if 
#include <Windows.h> 

II Force Unicode compile on desktop 

II For all that Windows stuff 



478 Part Ill Advanced Windows CE 

#include <stdlib.h> 
#include <stdio.h> 
.#include <aLi rda.h> 
#include <winsock.h> 
#in.elude «MySqui rt. h» 
#ifodef _WIN32-WCE 
#include <process.h> 
#include <tchar.h> 
#endif 
#if defi ned(WIN32_PLATFORM_PSPC) 
#include <aygshell.h> 
#pragma comment( lib, «aygshell» J 
#end if 

#ifdef ~wIN32_WCE 

II IrDA includes 
II .Socket includes 
II Program..:specific stuff 

II Desktop mu1tithrea:d includes 

II Add Pocket PC includes. 
II Link Pocket PC lib for menu bar. 

#pragma comment( lib, «Winsock.lib») II Winsock lib for CE 
#else 
#pragma comment(1ib, «WsZ:...32.lib») 
#end if 

11 Wi nsoi;;k 1 ib for desktop 

11------ - -- -- - - ---- - .,. ,---'- ~ ----- - - -- - - - -- ---'-- - - - --- - - - -'-- - -.--- - - --- -"'- - .., 
II Global data 
II . 
const TCHAR szAppName [J = TEXT ( «MySqui rt»); 
const char chzAppName[] 
HINSTANCE hinst; 
HWND hMain; 

= «MySqui rt»; 
II Program instance handle 
II Main window handle 

BOOL fContinue =TRUE; II Server thread continue flag 
BOOL fFi rstSi ze = TRUE; I I Fi rst WM_SIZE flag 
#if defined(WIN32_PLATFORM_PSPC) && LWIN32_WCE >= 300) 
SHACTIVATEINFO sai; . 11 Needed for PIPC helper fonctions 
#endif 
wchar_t bob; 
II Message dispatch table for MainWindowProc 
const struct decodeUINT MainMessages[J = { 

WM_CREATE, DoCreateMain, 
WM_SIZE, DoSizeMain, 

·WM_COMMAND, DoCommandMai n, 
WM_SETTINGCHANGE, D<iPocketPCShell, 
WM_ACTIVATE, DoPocketPCShell, 
WM~DESTROY, DoDestroyMain, 

} ; . 
II Command Message dispatch for MainWindowProc 
const struct decodeCMD MainCommanditems[] = { 
#if defined(WIN32_PLATFORM~PSPC) && (_WIN32..WCE >= 300) 

!DOK, DoMaincommandExit, 
#else 

IDOi(, DOMairiCommandSend, 
#endif 

}; 

![)CANCEL, DoMainCommandExit, 
IDD_SENDFILE, DoMainCoinmandSend, 

11===~=·===;==.===================•===~=================::;:=i========:;:== 

II Program entry point 
II .. 



Chapter 14 Device-to-Device Communication 479 

int WINAPI WinMain (HINSTANCE hlnstance, HINSTANCE hPrevlnstance, 
LPCMDLINE lpCmdLine, int nCmdShow) { 

} 

MSG msg; 
int re = O; 

II Initialize application. 
hMain = Initlnstance (hlnstance, lpCmdLine, nCmdShow); 
if (hMain == O) 

return Termlnstance (hlnstance, OxlO); 

II Application message loop 
while (GetMessage (&msg, NULL, O, 0)) { 

} 

if ((hMain == 0) I I !IsDialogMessage (hMain, &msg)) { 
TranslateMessage (&msg); 
DispatchMessage (&msg); 

} 

II Instance cleanup 
return Termlnstance (hlnstance, (int)msg.wParam); 

11----------------------------------------------------------------------
11 Initlnstance - Instance initialization 
II 
HWND Initlnstance (HINSTANCE hlnstance, LPCMDLINE lpCmdLine, 

int nCmdShow){ 
HWND hWnd; 
HANDLE hThread; 
WNDCLASS we; 
WSADATA wsaData; 
int re; 

hlnst = hlnstance; II Save program instance handle. 

II For all systems, if previous instance exists, activate it instead 
II of starting a new one. 
hWnd = FindWindow (szAppName, NULL); 
if (hWnd) { 

SetForegroundWindow ((HWND)((DWORD)hWnd I OxOl)); 
return O; 

} 

II !nit Winsock 
re= WSAStartup (1, &wsaData); 
if (re) { 

MessageBox (NULL, TEXT(«Error in WSAStartup»), szAppName, MB_OK); 
return O; 

} 

II Register application 
we.style = O; 

main window class. 

wc.lpfnWndProc = MainWndProc; 
wc.cbClsExtra = O; 
wc.cbWndExtra = DLGWINDOWEXTRA; 
wc.hlnstance = hlnstance; 
wc.hlcon = NULL; 
wc.hCursor = LoadCursor (NULL, 

II Window style 
II Callback function 
II Extra class data 
II Extra window data 
II Owner handle 
II Application icon 

ID(_ARROW);ll Default cursor 



480 Part Ill Advanced Windows CE 

} 

wc.hbrBackground = (HBRUSH) GetStockObject (LTGRAY_BRUSH); 
wc.lpszMenuName =NULL; 
wc.lpszClassName = szAppName; 
if (RegisterClass (&we) == O) return O; 

II Create main window. 

II Menu name 
II Window class name 

hWnd = CreateDialog (hinst, szAppName, 
II Return O if window not created. 

NULL, NULL); 

if (!IsWindow (hWnd)) return O; 

II Create secondary threads for interprocess communication. 
hThread = MyCreateThread (NULL, 0, MonitorThread, hWnd, 0, O); 
if (hThread == O) { 

} 

DestroyWindow (hWnd); 
return O; 

CloseHandle (hThread); 

ShowWindow (hWnd, nCmdShow); II Standard show and update calls 
UpdateWindow (hWnd); 
SetFocus (GetDlgitem (hWnd, IDD_OUTTEXT)); 
return hWnd; 

11----------------------------------------------------------------------
11 Terminstance_ - Program cleanup 
II 
int Terminstance (HINSTANCE hinstance, int nDefRC) { 

return nDefRC; 
} 

II==============================~======================================= 
II Message handling procedures for main window 
TCHAR szTitle[128]; 
11----------------------------------------------------------------------
11 MainWndProc - Callback function for application window 
II 
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

INT i; 
II 
II Search message list to see if we need to handle this 
II message. If in list, call procedure. 
II 
for Ci = O; i < dim(MainMessages); i++) { 

if CwMsg == MainMessages[i].Code) 
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, 1Param); 

} 
return DefWindowProc (hWnd, wMsg, wParam, lParam); 

11----------------------------------------------------------------------
11 DoCreateMain - Process WM_CREATE message for window. 
II 
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM 1Param) { 



Chapter 14 Device-to-Device Communication 481 

#if defined(WIN32_PLATFORM_PSPC) 
SHINITDLGINFO shidi; 
SHMENUBARINFO mbi; II For Pocket PC, create 

II menu bar so that we memset(&mbi, 0, sizeof(SHMENUBARINFO)); 
mbi.cbSize = sizeof(SHMENUBARINFO); II have a sip button. 
mbi.dwFlags = SHCMBF_EMPTYBAR; 
mbi.hwndParent = hWnd; 
SHCreateMenuBar(&mbi); 
SendMessage(mbi.hwndMB, SHCMBM_GETSUBMENU, 0, 100); 

II For WinMobile, make dialog box full screen. 
shidi.dwMask = SHIDIM_FLAGS; 
shidi.dwFlags = SHIDIF_DONEBUTTON I SHIDIF_SIZEDLG I SHIDIF_SIPDOWN; 
shidi .hDlg = hWnd; 
SHinitDialog(&shidi); 

sai.cbSize = sizeof (sai); 
SHHandleWMSettingChange(hWnd, wParam, lParam, &sai); 

#endif 

} 

GetWindowText (hWnd, szTitle, dim (szTitle)); 
return O; 

11----------------------------------------------------------------------
11 DoSizeMain - Process WM_SIZE message for window. 
II 
LRESULT DoSizeMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
#if defined(WIN32_PLATFORM_PSPC) 

static RECT rectlistbox; 
RECT rect; 

GetClientRect (hWnd, &rect); 
if (fFirstSize) { 

} 

II ·First time through, get the position of the list box for 
II resizing later. Store the distance from the sides of 
II the list box control to the side of the parent window. 
if (IsWindow (GetDlgitem (hWnd, IDD_INTEXT))) { 

} 

fFirstSize =FALSE; 
GetWindowRect (GetDlgitem (hWnd, IDD_INTEXT), &rectlistbox); 
MapWindowPoints (HWND_DESKTOP, hWnd, (LPPOINT)&rectlistbox, 2); 
rectlistbox.right = rect.right - rectlistbox.right; 
rectlistbox.bottom = rect.bottom - rectlistbox.bottom; 

SetWindowPos (GetDlgitem (hWnd, IDD_INTEXT), 0, rect.left + 5, 
rectlistbox.top, rect.right - 10, 
rect.bottom - rectlistbox.top - 5, 
SWP_NOZORDER); 

#endif 
return O; 

} 

11----------------------------------------------------------------------
11 DoCommandMain - Process WM_COMMAND message for window. 
II 



482 Part Ill Advanced Windows CE 

LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

} 

LPARAM lParam) { 
WORD iditem, wNotifyCode; 
HWND hwndCtl; 
INT i; 

II Parse the parameters. 
iditem = (WORD) LOWORD (wParam); 
wNotifyCode = (WORD) HIWORD (wParam); 
hwndCtl = (HWND) lParam; 

II Call routine to handle control message. 
for (i = O; i < dim(MainCommanditems); i++) { 

if (iditem == MainCommanditems[i].Code) 

} 

return (*MainCommanditems[i].Fxn)(hWnd, iditem, hwndCtl, 
wNotifyCode); 

return O; 

11----------------------------------------------------------------------
11 DoPocketPCShe11 - Process Pocket PC-required messages. 
II 
LRESULT DoPocketPCShe11 (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
#if defined(WIN32_PLATFORM_PSPC) 

if (wMsg == WM_SETTINGCHANGE) 
return SHHandleWMSettingChange(hWnd, wParam, lParam, &sai); 

if CwMsg = WM..ACTIVATE) 
return SHHandleWMActivate(hWnd, wParam, lParam, &sai, O); 

#endif 
return O; 

} 

ll---~------------------------------------------------------------------
11 DoDestroyMain - Process WM_DESTROY message for window. 
II 
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

fContinue = FALSE; 
Sleep (0); 
PostQuitMessage (0); 
return O; 

/I Shut down server thread. 
II Pass on timeslice. 

//======::=================~===================================~========= 
II Command handler routines 
11----------------------------------------------------------------------
11 DoMainCommandExit - Process Program Exit command. 
II 
LPARAM DoMainCommandExit (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 

} 

SendMessage (hWnd, WM_CLOSE, 0, O); 
return O; 

11----------------------------------------------------------------------



Chapter 14 Device-to-Device Communication 483 

II DoMainCommandSend - Process Program Send File command. 
II 
LPARAM DoMainCommandSend (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 

} 

HANDLE hTh; 
static TCHAR szName[MAl<_PATH]; 

GetDlgitemText (hWnd, IDD_OUTTEXT, szName, dim(szName)); 
hTh = MyCreateThread (NULL, 0, SendFileThread, (PVOID)szName, 0, 

NULL); 
CloseHandle (hTh); 
return O; 

11----------------------------------------------------------------------
11 Add2List - Add string to the report list box. 
II 
void Add2List (HWND hWnd, LPTSTR lpszFormat, ... ) { 

int i, nBuf; 

} 

wchar_t szBuffer[S12]; 

va_-1 i st args; 
va_start(args, lpszFormat); 

nBuf = StringCchVPrintf(szBuffer, dim (szBuffer), 
(wchar_t *)lpszFormat, args); 

(int)SendDlgitemMessage (hWnd, IDD_INTEXT, LB....ADDSTRING, 0, 
(LPARAM)(LPCTSTR)szBuffer); 

if (i != LB_ERR) 
SendDlgitemMessage (hWnd, IDD_INTEXT, LB_SETTOPINDEX, i, 

(LPARAM)(LPCTSTR)szBuffer); 
va...end(args); 

11----------------------------------------------------------------------
11 MySetWindowText - Set window title to passed printf style string. 
II 
void MySetWindowText (HWND hWnd, LPTSTR lpszFormat, ... ) { 

int nBuf; 

} 

wchar_t szBuffer[S12]; 

va...list args; 
va...start(args, lpszFormat); 

nBuf = StringCchVPrintf(szBuffer, dim (szBuffer), 
(wchar_t *)lpszFormat, args); 

SetWindowText (hWnd, (LPCWSTR)szBuffer); 
va_end(args); 

II====================================================================== 
II MonitorThread - Monitors for connections; connects and notifies 
II user when a connection occurs. 
II 



484 Part Ill Advanced Windows CE 

DWORD W!NAPI MonitorThread (PVOID pAi'g) { 
HWND hWnd = (HWND)pArg; 

} 

INT re, nSize, i; 
SOCKADDR...IRDA . i radd r, . Li radd r; 
SOCKET t_sock, s_sock; 

Add2List (hWnd, TEXT(«Monitor thread entered»)); 

II Open an infrared socket. 
s_sock =socket (AF_IRDA, SOCK:.STREAM, O); 
if (s_sock == INVALIO_SOCKET) { 

} 

Add2Li st (hWnd, TEXT(«Socket failed. re %d»), WSAGetLastError()); 
return O; 

II Fill in irda socket address structure; 
iraddr.irdaAddressFamily = AF_IRDA; 
for (i = O; i <dim (iraddr.irdaOeviceID); i++) 

iraddr.irdaDeviceID[i] = O; 
memcpy (iraddr.irdaServiceName, chzAppName, sizeof (chzAppName) + l); 

II Bind address to socket. 
re= bind (s_sock, (struct sockaddr *)&iraddr, sizeof· (iraddr)); 
if (re) { 

} 

Add2List (hWnd, TEXT(« bind failed»)); 
closesocket (s_sock); 
return O; 

I/ Set socket in1:o listen mode. 
re= listen (s_sock, SOMAXCDNN); 
if (re == SOCKET_ERROR) { 

} 

Add2List (hWnd, TEXT(« listen failed %d»), GetLastError()); 
closesocket (s_sock); 
return O; 

II Wait for remote requests. 
/I Block on accept. 
while (fContinue) { 

} 

nSize = sizeof (Liraddr); 
t...sock = accept (s_sock, (struct sockaddr *)&t_iraddr, &nSize}; 
if (t_sock == INVALlD...;$ClCKET) { 

Add2List (hWnd, TEXT(« accept failed %d»), GetLastError()); 
} 

.Add2List CbWnd, TEXi(«sock accept ... »)); 
HANDLE hTh = MyCreateThread (NULL, 0, ReceiveThread, 

(PVOID)t...,so.ck, 0, NULL); 
CloseHandle (hTh); 

closesocket (s_sock); 
Adj:l2List (hWnd, TEXT(«Monitor thread exit»)); 
return 0; 

//=====~===~=-=====~===?=====~-·============-=·====~=~========-==::=== 
II ReceiveThread - Receives the file requested by the remote device 
II 



Chapter 14 Device-to-Device Communication 485 

DWORD WINAPI ReceiveThread (PVOID pArg) { 
SOCKET t_sock = (SOCKET)pArg; 
HWND hWnd = hMain; //I'm cheating here. 
int nCnt, nFileSize, re; 
TCHAR szFileName[MAX_PATH]; 
PBYTE pBuff; 
inti, nSize, nTotal; 
DWORD dwBytes; 
HANDLE hFile; 
Add2List (hWnd, TEXT(«receive thread entered»)); 
SetThreadPriority (GetCurrentThread (), THREAD_PRIORITY_ABOVE_NORMAL); 

II Read the number of bytes in the filename. 
re= recv (t_sock, (LPSTR)&nCnt, sizeof (nCnt), 0); 
if ((re == SOCKET_ERROR) I I (nCnt > MAl<_PATH)) { 

} 

Add2List (hWnd, TEXT(«failed receiving name size»)); 
closesocket (t_sock); 
return O; 

II Read the filename. If Win Mobile, put file in my documents. 
#if defined(WIN32_PLATFORM__PSPC) 

StringCchCopy (szFileName, dim (szFileName), L»\\my documents\\»); 
#else 

StringCchCopy (szFileName, dim (szFileName), L»\\»); 
#endif //defined(WIN32_PLATFORM_PSPC) 

i = Ci nt) wcsl en (szFi l eName); 
re= recv (t_sock, (LPSTR)&szFileName[i], nCnt, O); 
if (re == SOCKELERROR) { 

} 

Add2List (hWnd, TEXT(«failed receiving name»)); 
closesocket (t_sock); 
return O; 

Add2List (hWnd, TEXT(«name: %s»), szFileName); 

pBuff = (PBYTE)LocalAlloc (LPTR, BLKSIZE); //Create buff for file. 
II 
II Receive file size. 
II 
re= recv (t_sock, (LPSTR)&nFileSize, sizeof (nFileSize), O); 
Add2List (hWnd, TEXT(«received file size of %d bytes»), nFileSize); 

if ((re != SOCKET_ERROR) && (nFileSize > 0)) { 
// We should really check here to see if there is enough 
II free space to receive the file. 

II Create the file. Overwrite if user says so. 
re = O; 
hFile = CreateFile (szFileName, GENERIC....WRITE, 0, NULL, 

CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); 
if (hFile == INVALID_HANDLE_VALUE) { 

} 

Add2List (hWnd, TEXT(«File Open failed. re %d»), 
GetLastError()); 

re = BAD_FILEWRITE; 



486 Part Ill Advanced Windows CE 

} 

II Send ack code. 
Add2List (hWnd, TEXT(«Sending size ack.»)); 
send (t_sock, (LPSTR)&rc, sizeof (re), 0); 
II 
II Receive file. 
II 
nTota1 = nFileSize.; 
while ((!re) && (nFileSize > 0)) { 

} 

MySetWindowText (hWnd, TEXT («%02d%% received»), 
(nTotal-nFileSize)*lOOlnTotal); 

nCnt =min (BLKSIZE, nFileSize); 
for (nSize = O; nSize < nCnt;) { 

} 

i = recv (Lsock, (LPSTR)pBuff+nSize, nCnt-nSize, 0); 
if (i == SOCKET_ERROR) { 

} 

Add2List (hWnd, TEXT(«recv socket err %d»), 
GetLastError()); 

re = BAD_SOCKETRECV; 
break; 

nSize += i; 

Add2List (hWnd, TEXT(«recv'd %d bytes.»), nSize); 
if (i) { 

if ( ! Wri teFil e Ch File, pBuff, nSi ze, &dWBytes, 0)) 
re = BAD_FILEWRITE; 

nFi1eSize -= dwBytes; 
} else 

Sleep(SO); 
II Send ack of packet. 
send (t_sock, (LPSTR)&rc, sizeof (re), O); 

} else if (re == BAD_f!LEOPEN) 
Add2List ChWnd, TEXT(«File not found.»)); 

Add2List (hWnd, TEXT(«receive finished»)); 
SetWindowText (hWnd, szTitle); 
LocalFree (pBuff); 
CloseHand1e (hFile); 
Add2List (hWnd, TEXT(«receive thread exit»)); 
return O; 

11----------------------------------------------------------------------
11 SendFile - Sends a file to the remote device 
II 
DWORD WINAPI SendFileThread (PVOID pArg) { 

TCHAR *szFileName = (LPTSTR)pArg; 
HWND hwnd = hMain; 
SOCKET c_sock; 
HANDLE hFile; 
INT re, nSize, i, nFileSize, nTotal, nCnt; 
char t:Device[25()]; 
SOCKADDR_IRDA iraddr; 
DEVICELIST *pDL; 
LPSTR pPtr; 



Chapter 14 Device-to-Device Communication 487 

PBYTE pBuff; 

II Open the file. 
hFile = CreateFile (szFileName, GENERIC_READ, FILE_SHARE_READ, 

NULL, OPEN_EXISTING, 0, NULL); 
if (hFile == INVALID_HANDLE_VALUE) { 

} 

Add2List (hWnd, TEXT(" File open failed. re %d"), 
GetLastError()); 

return -1; 

II Open an infrared socket. 
c_sock =socket (AF_IRDA, SOCK_STREAM, 0); 
if (c_sock == INVALID_SOCKET) { 

} 

Add2List (hWnd, TEXT("Sock failed. re %d"), WSAGetLastError()); 
CloseHandle (hFile); 
return 0; 

II Search for someone to talk to. 
for Ci = O; i < 5; i++) { 

} 

memset (cDevice, 0, sizeof (cDevice)); 
nSize = sizeof (cDevice); 
re = getsockopt (c_sock, SOL_IRLMP, IRLMP_ENUMDEVICES, 

cDevice, &nSize); 
if (re) 

Add2List (hWnd, TEXT("Getsockopt failed. re %d"), 
WSAGetLastError()); 

pOL = (DEVICELIST *) cDevice; 
if (pDL->numDevice) { 

Add2List (hWnd, TEXT("%d devices found."), pDL->numDevice); 
break; 

} 

Sleep(SOO); 

II If no device found, exit. 
if (pDL->numDevice == 0) { 

} 

II 

closesocket (c_sock); 
CloseHandle (hFile); 
Add2List (hWnd, TEXT("No infrared devices found in range.")); 
return -2; 

II Copy address of found device. 
II 
memset (&iraddr, 0, sizeof (iraddr)); 
i raddr. i rdaAddressFami 1 y = AF _!RDA; 
memcpy (i raddr. i rdaDevi ceID, pDL->Devi ce [OJ. i rdaDevi ceID, 4); 
II 
II Now initialize the specific socket we're interested in. 
II 
memcpy (iraddr.irdaServiceName, chzAppName, sizeof (chzAppName)+l); 
Add2List (hWnd, TEXT("Found: %hs"), pDL->Device[O].irdaDeviceName); 



488 Part Ill Advanced Windows CE 

II 
// Connect to remote socket. 
II 
re = connect (c_sock, (struct sockaddr *)&i raddr, .sizeof (iraddr)J; 
i.f (re) { 

} 

Add2L ist (hWnd, TEXT("Connect failed. re %d"), WSAGetLastError()); 
closesocket (c_soek); 
return ~4; 

Add2List (hWnci, TEXTC"connected ... ")); 

re = O; 
nFileSize = GetFileSize (hFile, NULL); 

II Allocate buffer and read file. 
pBuff = (LPBYTE)LoealAlloc (LPTR, nFileSize); 
if (pBuff) { 

Read File (hFil e, pBuff, nFil eSi ze, (DWORD *}&nCnt, NULL}; 
if (nCnt I= nFileSize) 

re = BAD..cFILEREAD; 
} else 

re = BAD_MEMORY; 

if (re) { 

} 

elosesocket (c_sock); 
CloseHand1e (hFile); 
Add2List (hWnd, TEXT("Error allocating buffer or reading file.")); 
return re; 

II Start .transfer. First send size and get ack. 

II Strip off any leading path, assume len > 1 since we've opened file. 
for Ci = lstrler) (szFileName)-1; (i > ()) && 

(szFileName[i] !=.TEXT ('\\')) ; i--); 
if (szFileName[i] ==TEXT ('\\')) i++; 
II Send name size. 
nCnt = ((lstrlen (&szFileName[i]) + 1) " sizeof (WCHAR)); 
re = send (c_sock, (LPSTR)&nCnt, sizeof (nCnt), O); 

I I Send filename. 
if (re ! = SOCKET _ERROR) 

re = send (c_sock, (LPSTR)szFileName, nCnt, O); 

if (re != SOCKET_ERROR) { 
II Send file size. Size will always be< 2 gig, 
re =· send. (c_sock, {LPSTR)&nFil eSize, sizeof (nFi lesize), 0); 
if (re== SOCkELERROR) 

re = BAD_SOCKET; 
else 

II Recv ac.k of.file size. 
recv (c'""sock, (LPSTR)&rc, sizeof (re), O); 

II .Send the file. 
nTotal = nFileSize; 



} 

} 

Chapter 14 Device-to-Device Communication 489 

pPtr = (LPSTR)pBuff; 
while ((!re) && nFileSize) { 

} 

MySetWindowText (hWnd, TEXT ("%02d%% sent"), 
(nTotal-nFileSize)*lOOlnTotal); 

II Send up to the block size. 
nCnt =min (BLKSIZE, nFileSize); 
re= send (c_sock, pPtr, nCnt, O); 
if (re == SOCKET_ERROR) { 

Add2List (hWnd, TEXT("send error %d "), GetLastError()); 
re = BAD_SOCKET; 

} else 
Add2List (hWnd, TEXT("sent %d bytes"), re); 

pPtr += re; 
nFileSize -= re; 

II Receive ack. 
recv (c_sock, (LPSTR)&rc, sizeof (re), O); 

SetWindowText (hWnd, szTitle); 

II Send close code. 
if (re != BAD_SOCKET) 

send (c_sock, (LPSTR)&rc, sizeof (re), O); 

closesocket (c_sock); 
II Clean up. 
CloseHandle (hFile); 
LocalFree (pBuff); 
if (re) 

Add2List ChWnd, TEXT("SendFile Exit re= %d"), re); 
else 

Add2List (hWnd, TEXT("File sent successfully.")); 
return O; 

From a Windows standpoint, MySquirt is a simple program. It uses a dialog box as its main 
window. When the program is first launched, it creates a thread to monitor for other devices 

that creates an infrared socket, binds it to a service name, puts the socket into listen mode, 

and blocks on a call to accept. When a remote device connects, the monitor thread creates 

another thread to handle the actual receiving of the file while it loops back and waits for 
another connection. 

A transmission is initiated when another device running MySquirt sends a file. This process 

begins when the user on the sending device presses the Send button. If text exists in the edit 

box, the application reads it and calls the SendFile routine. In this routine, a socket is created, 

and any remote devices are enumerated using repeated calls to getsockopt. If a device is 

found, a connection is attempted with a call to connect. Connect succeeds only if the remote 

device has bound an IR socket using the same service name, which happens to be defined as 



490 Part Ill Advanced Windows CE 

the string contained in chzAppName, an ASCII representation of the program name. This 

addressing scheme ensures that if a connection is made, the remote device is running 

MySquirt. Once a connection is made, the sending device sends over the filename, which it 

does in two steps: first it sends the byte length of the filename and then the name itself. This 

process allows the server to know how many characters to receive before continuing. The 

device then sends the file size. If the file sent by the server device fits in the object store, the 

routine creates the file on the client side, notifying the user if the file already exists. If all has 

gone well to this point, the data is received and written to the file. The application closes the 
socket and frees the buffer created to read the data into. 

On the receiving side, a transmission is initiated when the monitor thread's call to accept 

returns. The monitor thread creates a receiving thread and loops back looking for other 

sending devices. The receiving thread receives the name and size of the file and determines 
whether the file is acceptable. If so, it sends an acknowledgment back to the sending device. 

From then on, the receiving thread reads the data from the socket and writes it to the newly 

created file. When the transmission is complete, the receiving thread closes the file, closes the 

receiving socket, and terminates. 

The other interesting aspect of MySquirt is that I wrote the program to be compiled on both 

Windows CE and the desktop. There are a few adjustments to the program to handle the dif

ferent declarations for the lpCmdLine parameter of WinMain and a macro to hide the differ

ences between calling Create Thread in Windows CE and beginthreadex on the desktop. The 
example on this book's companion Web site has two projects within the Visual Studio solu

tion. One targets Windows CE, and the other project compiles for the desktop. Both projects 
use the same source files. 

Bluetooth 
Bluetooth is the name of a wireless interface standard that uses radio frequency (RF) as its 

medium instead of infrared frequency, as is used with lrDA. Bluetooth is designed to be a 
successor to lrDA, providing the file transfer capabilities of lrDA along with a number of other 

capabilities centering on cableless connections. 

Bluetooth is named for Harald Blatand (Bluetooth), who was king of Denmark from 940 

to 985. Harald was the grandson of King Ethelred of England and the grandfather of King 

Canute, famous for demonstrating the limits of kingly power by commanding the tide not 

to come in.2 Harald's claim to fame is the unification of Denmark and Norway during his 

rule. One thousand, ten years later, following an Ericsson-initiated feasibility study of using 

a low-power radio frequency network to link peripherals, a special interest group (SIG) was 

formed with Ericsson, IBM, Toshiba, Nokia, and Intel to organize and form a standard under 

2 For those wondering, the tide came in anyway. 



Chapter 14 Device-to-Device Communication 491 

the code name Bluetooth. That catchy code name was soon chosen as the actual name of the 

standard. 

Although it took longer than expected for Bluetooth-enabled devices to reach the main

stream, the number of devices supporting Bluetooth has grown. Following this trend, most 

Windows Mobile devices and a number of other Windows CE devices now include support 

for Bluetooth. Windows CE has supported Bluetooth since 4.0 and Windows Mobile systems 

have supported it since the Pocket PC 2003. Some Windows Mobile OEMs use third-party 

Bluetooth software on their devices instead of the Windows CE stack. This Bluetooth discus

sion covers only the Windows CE Bluetooth API. To program third-party Bluetooth stacks, 

developers should contact the device manufacturers for information. 

Bluetooth functionality is centered on profiles that define services provided to the user. 
Profiles include Cordless Telephony, Intercom, Headset, Fax, Dial-Up Networking, LAN 

Access, Object Push, Synchronization, and File Transfer. Not all profiles are supported by all 

devices. In fact, most devices support only a very few profiles relevant to the device. 

Windows CE provides the Dial-up Networking, LAN Access, Object Push and File Transfer 

profiles out of the box, although OEMs are free to add support for other profiles in their 

products. Windows Mobile devices typically provide support for Object Push, File Transfer 

profiles, and, of course, hands-free or headset profiles for wireless headsets. 

The applications, such as Pocket lnbox and Pocket Outlook, that are bundled with the devices 

support Bluetooth for file transfer, business card exchange, and synchronization. Working 

with these applications is preferable to writing code to work directly with the Bluetooth API 

because of the complexity of that API. 

For those who are interested in working directly with the Bluetooth API, the task isn't easy, 

clean, or quick. Part of the problem is the flexibility of the Bluetooth standard and the com

plexity of the discovery protocol that communicates which services are available from a 

device. Before we can dive into this code, a bit of background is necessary. 

Stack 
A diagram of the Bluetooth stack is shown in Figure 14-2. The lower three layers-Baseband, 
Link Manager Protocol, and the first Host Controller Interface (HCI) layer-are implemented 

in the Bluetooth hardware. The layers above the hardware and below the application are pro

vided by Windows CE, although it's possible for third parties to extend the Bluetooth stack 

by providing additional profiles above the HCI layer. 

Applications interact with the Bluetooth stack through one of two interfaces. The preferred 

method is for applications to use the Winsock API to access the Bluetooth stack. Just as 

with lrDA, applications use standard Winsock functions to open sockets associated with the 

Bluetooth stack. Control is accomplished through various WSAxxxfunctions. Data transfer is 

accomplished through the standard socket send and recv functions. 



492 Part Ill Advanced Windows CE 

Applications 

I OBEX I l COM 

I WinSock I Port 
Emulation 

I TOI I Audio 

~@JODI RFCOMM I 
I L2CAP I 
I HCI (Software) 

HCI (Hardware) 

Link Manager Protocol 

Base Band 

FIGURE 14-2 A diagram of the Bluetooth stack on Windows CE 

Winsock support for Bluetooth depends on the Winsock stack installed on the device. If the 

system has Winsock 2.0 installed, such as Windows Mobile devices, Bluetooth functionality 

is accessed directly through Winsock calls such as setsockopt. For systems with Winsock 1.1 

installed, the Bluetooth stack needs to be configured through a dedicated Bluetooth API. For 

example, to query the current mode of an asynchronous connection, an application can use 

the dedicated function BthGetCurrentMode or, if Winsock 2.0 is on the system, a call to get

sockopt with the option name SO_BTH_GET_MODE. 

The other way applications can work with Bluetooth is through virtual serial ports. With 

this method, applications load a Bluetooth-dedicated serial driver. Control of the stack is 

accomplished through DeviceloControl calls to the COM driver. Calling Writefile and 

Readfile to write and read the COM port sends and receives data across the Bluetooth 

connection. 

Discovery 
Before devices can communicate across a Bluetooth connection, devices and the services 

those devices provide must be discovered. The discovery process is quite complex because of 
the flexible nature of the Bluetooth feature set. Devices and services on particular devices can 

be queried in a general way-all printers, for example-or they can be specifically queried

for example, whether a particular device supports a particular service, such as the Headset 

profile-Audio-Gateway service. 

Both device discovery and service discovery are accomplished through the same series of 

functions, albeit with significantly different parameters. The discovery process is accom

plished through a series of three functions: WSALookupServiceBegin, WSALookupServiceNext, 



Chapter 14 Device-to-Device Communication 493 

and WSALookupServiceEnd. These functions aren't specific to Winsock 2.0, but in the 

discussion that follows, I'm providing information only about using them in Bluetooth appli

cations. A parallel series of functions-BthNslookupServiceBegin, BthNslookupServiceNext, 
and BthNslookupServiceEnd-are functionally identical and can be used for systems with 

Winsock 1.1. Although the function names imply a simple iterative search, the parameters 

required for the search are daunting. 

Device Discovery 
To find local devices, an application first calls WSALookupServiceBegin, which is prototyped as 

INT WSALookupServiceBegin (LPWSAQUERYSET pQuerySet, DWORD dwFlags, 
LPHANDLE lphlookup); 

The first parameter is a pointer to a WSAQUERYSET structure, which I'll discuss shortly. For 

device searches, the dwFlags parameter should contain the flag WP_ CONTAINERS. The other 

allowable flags for this parameter will be covered in the upcoming discussion about service 

queries. The final parameter should point to a handle value that will be filled in with a search 

handle; this search handle will be used for the other calls in the search. The return value is an 

HRESULTwith 0, indicating success. 

The WSAQUERYSET structure is defined as 

typedef struct _WSAQuerySet { 
DWORD dwSize; 
LPTSTR lpszServiceinstanceName; 
LPGUID lpServiceClassid; 
LPWSAVERSION lpVersion; 
LPTSTR lpszComment; 
DWORD dwNameSpace; 
LPGUID lpNSProviderid; 
LPTSTR lpszContext; 
DWORD dwNumberOfProtocols; 
LPAFPROTOCOLS lpafpProtocols; 
LPTSTR lpszQueryString; 
DWORD dwNumberOfCsAddrs; 
LPCSADDR_INFO lpcsaBuffer; 
DWORD dwOutputFlags; 
LPBLOB lpBlob; 

} WSAQUERYSET, *PWSAQUERYSET; 

The dwSize field should be set to the size of the structure. For device queries, the only other 

fields that need to be used are the dwNameSpace field, which must be set to NS_BT, and the 

lpB/ob field, which should point to a BLOB structure. The remaining fields should be set to 0. 

The BLOB structure pointed to by the lpB/ob field is actually optional for the initial device 

query call, but it's recommended so that the time the Bluetooth stack spends looking for 

devices can be defined. If the query time isn't specified, the Bluetooth stack defaults to 



494 Part Ill Advanced Windows CE 

a rather long 15 to 20 seconds waiting for devices to respond. To define the query time, 

lpBlob points to a container BLOB structure that, in turn, points to a blob of a specific type. 

The container BLOB structure is defined as 

typedef struct _BLOB { 
ULONG cbSize; 
BYTE* pBlobData; 

} BLOB, LPBLOB; 

The two fields are the size of the specific BLOB structure being pointed to the specific BLOB 
data. For device queries, the blob we're interested in is an inquiry blob defined as 

typedef struct _BTHNS_INQUIRYBLOB { 
ULONG LAP; 
unsigned char length; 
unsigned char num_responses; 

} BTHNS_INQUIRYBLOB, *PBTHNS_INQUIRYBLOB; 

The first field should be set to BT_ADDR_GIAC, which is the general inquiry access code 

(GIAC), defined as Ox9e8b33. The length field should be set to the time the stack should wait 

for devices to respond. The unit of time for this field is 1.28 seconds,3 so if you want to wait 

approximately 5 seconds, the value 4 in the field will produce a wait of 4 x 1.28, or 5.12, 

seconds. The final field, num_responses, specifies the maximum number of devices that need 

to respond to end the query before the timeout value. 

So before a call to WSALookupServiceBegin is made to query the available devices, the 

WSAQUERYSET, BLOB, and BTHNS_INQUIRYBLOB structures should be initialized with the 

WSAQUERYSET structure's lpBlob field pointing to the BLOB structure. The BLOB structure 

should be initialized so that the cbSize field contains the size of the BTHNS_INQUIRYBLOB 
structure and the pBlobData field points to the BTHNS_INQUIRYBLOB structure. The BTHNS_ 
INQUIRYBLOB structure should be filled in with the search criteria. 

When the call to WSALookupServiceBegin returns successfully, a call to WSALookupServiceNext 
is made. Whereas the WSALookupServiceBegin call can take a number of seconds, the 

WSALookupServiceNext call can return immediately as long as the data being requested has 

been cached in the stack by the WSALookupServiceBegin call. The WSALookupServiceNext 
call is defined as 

INT WSALookupServiceNext (HANDLE hLookup, DWORD dwFlags, 
LPDWORD lpdwBufferLength, 
LPWSAQUERYSET pResults); 

3 1.28 seconds is the polling interval used by discoverable devices. 



Chapter 14 Device-to-Device Communication 495 

The first parameter is the handle returned by WSALookupServiceBegin. The dwF/ags param
eter contains a number of different flags that define the data returned by the function. The 

possible flags are 

• LUP_RETURN NAME Return the name of the remote device. 

• LUP_RETURN_ADDRESS Return the address of the remote device. 

• LUP_RETURN_BLOB Return BTHINQUIRYRESULT structure with information about the 

remote device. 

• BTHNS_LUP_RESET_ITERATOR Reset the enumeration so that the next call to 
WSALookupServiceNext will return information about the first device in the list. 

• BTHNS_LUP_NO_ADVANCE Return information about a device but don't increment 
the device index so that the next call to WSALookupServiceNext returns information 

about the same device. 

The final two parameters are the address of a variable that contains the size of the output 

buffer and a pointer to the output buffer. Although the output buffer pointer is cast as a 
pointer to a WSAQUERYSET structure, the buffer passed to WSALookupServiceNext should 

be significantly larger than the structure so that the function can marshal any strings into the 
buffer beyond the end of the structure itself. 

When the function returns without error, the WSAQUERYSET structure pointed to by pResults 
contains information about a Bluetooth device. The name of the device, if requested with the 
WP_ RETURN_ NAME flag, is pointed to by the lpszServicelnstanceName field. The address 
of the remote device is contained in the CSADDR_INFO structure pointed to by lpcsaBuffer. 
CSADDR_INFO provides information about the local and remote device addresses and is 
defined as 

typedef struct _CSADDR_INFO { 
SOCKET_ADDRESS LocalAddr; 
SOCKET_ADDRESS RemoteAddr; 
INT iSocketType; 
INT iProtocol; 

} CSADDR_INFO; 

The SOCKET_ADDRESS fields are filled in with Bluetooth-specific SOCKADDR_BTH addresses, 
so to get the remote address, the RemoteAddr field should be properly cast, as in 

bt = ((SOCKADDR_BTH *) 

pQueryResult->lpcsaBuffer->RemoteAddr.lpSockaddr)->btAddr; 

Each call to WSALookupServiceNext returns information about a single device. The function 
should be called repeatedly until it returns SOCKET_ERROR. If GetLastError returns 
WSA_E_NO_MORE, there was no error; there are simply no more devices to be found. 



496 Part Ill Advanced Windows CE 

After completing the WSALookupServiceNext loop, the program should call 

WSALookupServiceEnd to clean up any resources the Winsock stack has maintained 

during the search. The function is prototyped as 

INT WSALookupServiceEnd (HANDLE hLookup); 

The single parameter is the handle returned by WSALookupServiceBegin. 
I 

The following routine queries the Bluetooth devices that are in range and returns their names 

and addresses in an array. 

#define MYBUFFSIZE 16384 
typedef struct { 

TCHAR szName[256]; 
BT_ADDR btaddr; 

} MYBTDEVICE, *PMYBTDEVICE; 
II 
II FindDevices - Find devices in range. 
II 
int FindDevices (PMYBTDEVICE pbtDev, int *pnDevs) { 

DWORD dwFlags, dwLen; 
HANDLE hLookup; 
int i , re; 

II Create inquiry blob to limit time of search 
BTHNS_INQUIRYBLOB inqblob; 
memset (&inqblob, 0, sizeof (inqblob)); 
inqblob.LAP = BT_ADDR_GIAC; II Default GIAC 
inqblob.length = 4; II 4 * 1.28 = 5 seconds 
inqblob.num_responses = *pnDevs; 

II Create blob to point to inquiry blob 
BLOB blob; 
blob.cbSize = sizeof (BTHNS_INQUIRYBLOB); 
blob.pBlobData = (PBYTE)&inqblob; 

II !nit query 
WSAQUERYSET QuerySet; 
memset (&QuerySet,0,sizeof (WSAQUERYSET)); 
QuerySet.dwSize = sizeof (WSAQUERYSET); 
QuerySet.dwNameSpace = NS_BTH; 
QuerySet.lpBlob =&blob; 

II Start query for devices 
re= WSALookupServiceBegin (&QuerySet, LUP_CONTAINERS, &hLookup); 
if (re) return re; 

II Allocate output buffer 
PBYTE pOut = (PBYTE)LocalAlloc (LPTR, MYBUFFSIZE); 
if (!pOut) return -1; 
WSAQUERYSET *pQueryResult = (WSAQUERYSET *)pOut; 

II Loop through the devices by repeatedly calling WSALookupServiceNext 
for Ci = O; i < *pnDevs; i++) { 



} 

} 

Chapter 14 Device-to-Device Communication 497 

dwlen = MYBUFFSIZE; 
dwFlags = LUP_RETURN_NAME LUP_RETURN__ADDR; 
re= WSALookupServiceNext (hlookup, dwFlags, &dwlen, pQueryResult); 
if (re == SDCKET_ERROR) { 

} 

re= GetLastError(); 
break; 

II Copy device name 
StringCchCopy (pbtDev[i].szName, dim(pbtDev[i].szName), 

pQueryResult->lpszServiceinstanceName); 
II Copy Bluetooth device address 
SOCKADDR_BTH *pbta; 
pbta = (SOCKADDR_BTH *) 

pQueryResult->lpcsaBuffer->RemoteAddr.lpSockaddr; 
pbtDev[i].btaddr = pbta->btAddr; 

II See if we left the loop simply because there were no more devices 
if (re == WSA_E_NO_MORE) re = O; 

II Return the number of devices found 
*pnDevs = i; 

II Clean up 
WSALookupServiceEnd (hlookup); 
LocalFree (pOut); 
return re; 

The preceding routine uses WSALookupServiceBegin, WSALookupServiceNext, and 

WSALookupServiceEnd to iterate through the Bluetooth devices in range. The routine could 

query other information about the remote devices by passing the LUP_RETURN_BLOB flag in 

WSALookupServiceNext, but the information returned isn't needed to connect to the device. 

Service Discovery 

Once the device of interest is found, the next task is to discover whether that device supplies 

the service needed. Services are identified in a multilevel fashion. The service can publish 
itself under a generic service, such as printer or fax service, or publish itself under a specific 

unique identifier, or GUID. 

If you know the specific service as well as its documented GUID, there is no need for ser
vice discovery. Simply connect a Bluetooth socket to the specific service as discussed in the 

"Bluetooth Communication with Winsock" section on page 504. If, however, you don't know 

the exact service GUID, you must take on the task of service discovery. 

Querying services is accomplished through the same WSALookupServiceBegin, 
WSALookupServiceNext, and WSALookupServiceEnd functions discussed earlier in the de

vice discovery section. As with device discovery, the initial query is accomplished with a 

call to WSALookupServiceBegin. To query the services on a remote device, set the dwFlags 
parameter to 0 instead of using the LUP_CONTAINERS flag. To query the service provided 



498 Part Ill Advanced Windows CE 

by the local system instead of remote devices, set the LUP_RES_SERVICE flag in the dwF/ags 
parameter. 

When you're querying the services of another device, the WSAQUERYSET structure needs to 

specify the target device that's being queried. This is accomplished by referencing a restric
tion blob in the WSAQUERYSET structure. The restriction blob is defined as 

typedef struct _BTHNS_RESTRICTIONBLOB { 
ULONG type; 
ULONG serviceHandle; 
SdpQueryUuid uuids[l2]; 
ULONG numRange; 
SdpAttributeRange pRange[l]; 

} BTHNS_RESTRICTIONBLOB; 

The type field specifies whether the query should check for services, attributes of the services, 

or both attributes and services by specifying the flags SDP_SERVICE_SEARCH_REQUEST, 
SDP_SERVICE_ATTR/BUTE_REQUEST, and SDP_SERVICE_SEARCH_ATTRIBUTE_REQUEST, 
respectively. The serviceHandle parameter is used in attribute-only searches to specify the 

service being queried. If the services are being queried, the uuids array contains up to 12 

service IDs to check. The service IDs are specified in an SdpQueryUuid structure defined as 

typedef struct _SdpQueryUuid { 
SdpQueryUuidUnion u; 
USHORT uuidType; 

} SdpQueryUuid; 

The SdpQueryUuid structure allows the service IDs to be specified as 16-, 32-, or 128-bit 

ID values. The ID values for documented services provided in the Bluetooth include file 

Bt_sdp.h in the SDK. 

When you're querying attributes for a service or services, the pRange array can specify the 

minimum and maximum attribute range to query. The size of the pRange array is specified in 

the numRange parameter. In the following code, a specific service is queried to see whether 

it exists on the device. If it does, the query also returns the attributes associated with the 

service. 

int QueryService (HWND hWnd, BT....ADDR bta, GUID *pguid) { 
DWORD dwFlags, dwlen; 
HANDLE hlookup; 
TCHAR szDeviceName[256]; 
LPWSAQUERYSET pQuerySet; 
PBYTE pQuery; 
int i, re; 

pQuery = (PBYTE)LocalAlloc (LPTR, MYBUFFSIZE); 
if (!pQuery) return O; 

pQuerySet = (LPWSAQUERYSET)pQuery; 
memset (pQuerySet, 0, MYBUFFSIZE); 



Chapter 14 Device-to-Device Communication 499 

pQuerySet->dwSize = sizeof (WSAQUERYSET); 
pQuerySet->dwNameSpace = NS_BTH; 

II Specify device 
CSADDR_INFO csi ; 
memset (&csi, 0, sizeof (csi)); 

SOCKADDR_BTH sa; 
memset (&sa, 0, sizeof (sa)); 
sa.btAddr = bta; 
sa.addressFamily = AF_BT; 

II Specify the remote device address 
csi.RemoteAddr.lpSockaddr = (LPSOCKADDR) &sa; 
csi .RemoteAddr.iSockaddrlength = sizeof(SOCKADDR_BTH); 
pQuerySet->lpcsaBuffer = &csi; 
pQuerySet->dwNumberOfCsAddrs = 1; 

II Form query based on service class being checked 
BTHNS_RESTRICTIONBLOB btrblb; 
memset (&btrblb, 0, sizeof (btrblb)); 
btrblb.type = SDP_SERVICE_SEARCH_ATTRIBUTE_REQUEST; 
btrblb.numRange = 1; 
btrblb.pRange[O].minAttribute = O; 
btrblb.pRange[O].maxAttribute = Oxffff; 
btrblb.uuids[O] .uuidType = SDP_ST_UUID128; //Define search type 
memcpy (&btrblb.uuids[O].u.uuid128, pguid, sizeof (GUID)); 

II Create blob to point to restriction blob 
BLOB blob; 
blob.cbSize = sizeof (BTHNS_RESTRICTIONBLOB); 
blob.pBlobData = (PBYTE)&btrblb; 
pQuerySet->lpBlob =&blob; 
dwFlags = O; 

re= WSALookupServiceBegin (pQuerySet, dwFlags, &hlookup); 
if (re) return re; 

II Setup query set for ServiceNext call 
pQuerySet->dwNumberOfCsAddrs = 1; 
pQuerySet->lpszServiceinstanceName = szDeviceName; 
memset (szDeviceName, 0, sizeof (szDeviceName)); 

dwFlags = LUP_RETURN_NAME I LUP_RETURN_ADDR; 
dwlen = MYBUFFSIZE; 
while ((re = WSALookupServiceNext (hlookup, dwFlags, &dwlen, 

pQuerySet)) == O) { 
ISdpRecord **pRecordArg; 
int cRecordArg = O; 

II Setup attribute query 
HRESULT hr = ParseBlobToRecs (pQuerySet->lpBlob->pBlobData, 

pQuerySet->lpBlob->cbSize, 
&pRecordArg, (ULONG *)&cRecordArg); 

if (hr == ERROR_SUCCESS) { 
//Parse the records 



500 Part Ill Advanced Windows CE 

} 

} 

} 

II Clean up records 
for (i = O; i < cRecordArg; i++) 

pRecordArg[i]->Release(); 
CoTaskMemFree(pRecordArg); 

dwLen = MYBUFFSIZE; 
i++; 

re= WSALookupServiceEnd (hLookup); 
LocalFree (pQuery); 
return re; 

Notice that in this code, the Service Discovery Protocol (SDP) data for the service is returned 

in the buffer pointed to by the lpB!ob structure. This data isn't parsed in the routine. Instead, 

a routine named ParseB/obToRecs is called to parse the data. The routine ParseB!obToRecs, 
shown here, returns a series of /SdpRecord interface pointers, one for each record in the SDP 

data. 

II 
II ParseBlobToRecs - Use ISdpStream object to parse the response 
II from the SDP server. 
II 
HRESULT ParseBlobToRecs (UCHAR *pbData, DWORD cbStream, 

ISdpRecord ***pppSdpRecords, ULONG *pcbRec) { 
HRESULT hr; 
ULONG ul Error; 
ISdpStream *pIStream = NULL; 
*pppSdpRecords = NULL; 
*pcbRec = O; 

hr= CoCreateinstance C~uuidof(SdpStream), NULL, 
CLSCTl<_INPRQ(_SERVER, ~uuidof(ISdpStream), 
(LPVOID *)&pIStream); 

if (FAILED(hr)) return hr; 
II Validate SDP data blob 
hr= pIStream->Validate (pbData, cbStream, &ulError); 

if (SUCCEEDED(hr)) { 
hr = pIStream->VerifySequenceOf (pbData, cbStream, 

SDP_TYPE__SEQUENCE, NULL, pcbRec); 
if (SUCCEEDED(hr) && *pcbRec > 0) { 

*pppSdpRecords = (ISdpRecord **)CoTaskMemAlloc ( 
sizeof (ISdpRecord*) * 

(*pcbRec)); 
if (pppSdpRecords != NULL) { 

} 

hr = pIStream->RetrieveRecords (pbData, cbStream, 
*pppSdpRecords, pcbRec); 

if (!SUCCEEDED(hr)) { 
CoTaskMemFree (*pppSdpRecords); 
*pppSdpRecords = NULL; 
*pcbRec = O; 

} 



} 

else 
hr = E_OUTOFMEMORY; 

} 

} 

if (pIStream != NULL) { 
pIStream->Release(); 
pIStream = NULL; 

} 

return hr; 

Chapter 14 Device-to-Device Communication 501 

The routine returns the data in an array of /SdpRecord pointers. It's left to the reader to parse 

the record data using the other interfaces provided in the Bluetooth API. 

Publishing a Service 
The other side of service discovery is service publication. Bluetooth applications that want to 

provide a service to other applications must do more than simply create a Bluetooth socket, 

bind the socket, and call accept as would an lrDA service. In addition to the socket work, the 

service must publish the details of the service through the SDP API. 

The actual publication of a service is actually quite simple. All that's necessary is to call 

WSASetService, which is prototyped as 

INT WSASetService (LPWSAQUERYSET lpqsReginfo, 
WSAESETSERVICEOP essoperation, 
DWORD dwControlFlags); 

The three parameters are a pointer to a WSAQUERYSET structure; a service operation flag, 

which needs to be set to RNRSERVICE_REGISTER; and a dwContro/Flags parameter set to 0. 

If only registration were that simple. The problem isn't calling the function; it's composing 

the SDP data that's placed in the WSAQUERYSET structure. The dwNameSpace field should 

be set to NS_BTH. And, as with the discovery process, the blobs are involved. The blob used 

in setting the service is a BTHNS_SETBLOB structure defined as 

typedef struct _BTHNS_SETBLOB { 
ULONG* pRecordHandle; 
ULONG fSecurity; 
ULONG fOptions; 
ULONG ulRecordLength; 
UCHAR pRecord[l]; 

} BTHNS_SETBLOB, *PBTHNS_SETBLOB; 

The first parameter points to a ULONG that will receive a handle for the SDP record being 
created. The {Security and {Options fields are reserved and should be set to 0. The u/Record
Length parameter should be set to the length of the SDP record to publish, whereas pRecord 
is the starting byte of the byte array that is the SDP record to publish. 



502 Part Ill Advanced Windows CE 

The following code demonstrates publishing an SOP record. The routine is passed an SOP 

record and its size. It then initializes the proper structures and calls WSASetService to publish 

the record. 

int PublishRecord (HWND hWnd, PBYTE pSDPRec, int nRecSize, 

} 

ULONG *pRecord) { 
BTHNS_SETBLOB *pSetBlob; 
ULONG ulSdpVersion = BTH_SDP_VERSION; 
int re; 

II Zero out the record handle that will be returned by the call 
*pRecord = O; 

II Allocate and init the SetBlob 
pSetBlob = (BTHNS_SETBLOB *)LocalAlloc (LPTR, 

sizeof (BTHNS_SETBLOB) + nRecSize); 
if (!pSetBlob) return -1; 

pSetBlob->pRecordHandle = pRecord; 
pSetBlob->pSdpVersion = &ulSdpVersion; 
pSetBlob->fSecurity = O; 
pSetBlob->fOptions = O; 
pSetBlob->ulRecordlength = nRecSize; 
memcpy (pSetBlob->pRecord, pSDPRec, nRecSize); 

II !nit the container blob 
BLOB blob; 
blob.cbSize = sizeof(BTHNS_SETBLOB) + SDP_RECORD_SIZE - 1; 
blob.pBlobData = (PBYTE) pSetBlob; 

II !nit the WSAQuerySet struct 
WSAQUERYSET Service; 
memset (&Service, 0, sizeof(Service)); 
Service.dwSize = sizeof(Service); 
Service.lpBlob =&blob; 
Service.dwNameSpace = NS_BTH; 

II Publish the service 
re= WSASetService(&Service, RNRSERVICE_REGISTER, O); 
if (re== SOCKET_ERROR) re= GetlastError(); 
II Clean up 
LocalFree ((PBYTE)pSetBlob); 
return re; 

When the application no longer wants to support the service, it needs to remove the record 

from the SOP database. Removing the record is accomplished by using WSASetService, speci

fying the record handle of the service and the flag RNRSERVICE_DELETE. The record handle 

is passed in the BTHNS_SETBLOB structure. The other fields of this structure are ignored. The 
following code shows a routine that unregisters a service. 

int UnpublishRecord (ULONG hRecord) { 
ULONG ulSdpVersion = BTH_SDP_VERSION; 
int re; 



} 

BTHNS_SETBLOB SetBlob; 
memset (&SetBlob, 0, sizeof (SetBlob)); 
SetBlob.pRecordHandle = &hRecord; 
SetBlob.pSdpVersion = &ulSdpVersion; 

II Init the container blob 
BLOB blob; 
blob.cbSize = sizeof(BTHNS_SETBLOB); 
blob.pBlobData = (PBYTE) &SetBlob; 

II Init the WSAQuerySet struct 
WSAQUERYSET Service; 
memset (&Service, 0, sizeof(Service)); 
Service.dwSize = sizeof(Service); 
Service.lpBlob =&blob; 
Service.dwNameSpace = NS_BTH; 

II Unpublish the service 

Chapter 14 Device-to-Device Communication 503 

re= WSASetService(&Service, RNRSERVICE_DELETE, O); 
return re; 

SDP Records 

The format of the SDP information that's published is so complex that Windows CE provides 

a special COM control to construct and deconstruct SDP records. Even with the control, pars

ing SDP records isn't easy. The first problem is knowing what's required in the SDP record. 

The information in the SDP record is defined by the Bluetooth specification, and a complete 

explanation of this data far exceeds the space available in this book for such an explanation. 

As a shortcut, many Bluetooth applications compose a generic record, either hand-assembling 

the record or using an example tool named BthNsCreate that's provided in the Platform 

Builder. These hand-generated records are saved as a byte array in the application. The 

known offsets where the GUID and the RFCOMM channel are stored are known and are 

updated in the array at run time. The record is then published using WSASetService, as shown 
earlier. 

The following code shows a routine that uses a canned SDP record with the GUID of the ser

vice and the channel stuffed into the appropriate places in the record. 

int RegisterService (HWND hWnd, GUID *pguid, byte bChannel, 
ULONG *pRecord) { 

II SOP dummy record 
II GUID goes at offset 8 
II Channel goes in last byte of record. 
static BYTE bSDPRecord[] = { 
Ox35, Ox27, Ox09, OxOO, OxOl, Ox35, Oxll, OxlC, OxOO, OxOO, OxOO, 
OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, 
OxOO, OxOO, Ox09, OxOO, Ox04, Ox35, OxOC, Ox35, Ox03, Oxl9, OxOl, 
OxOO, Ox35, OxOS, Ox19, OxOO, Ox03, Ox08, OxOO}; 



504 Part Ill Advanced Windows CE 

} 

II Translate guid into net byte order for SDP record 
GUID *p = (GUID *)&bSDPRecord[8]; 
p->Datal = htonl (pguid->Datal); 
p->Data2 = htons (pguid->Data2); 
p->Data3 = htons (pguid->Data3); 
memcpy (p->Data4, pguid->Data4, sizeof (pguid->Data4)); 

II Copy channel value into record 
bSDPRecord[sizeof (bSDPRecord)-1] = bChannel; 

return PublishRecord (hWnd, bSDPRecord, sizeof (bSDPRecord), pRecord); 

Bluetooth Communication with Winsock 

The hard part of Bluetooth communication is the setup. Once a service is published, the com

munication with remote devices is simple regardless of the method, Winsock or virtual COM 

port, used by the application. 

As with lrDA, using Winsock to communicate over Bluetooth consists of implementing a 

client/server design with the server creating a socket that's bound to an address and a client 

that connects to the server socket by specifying the address and port of the server. 

Server Side 
A Bluetooth application providing a service first must set up a server routine that creates a 

socket and performs all the necessary calls to support the server side of a socket communica

tion. The task starts with creating a socket with the standard socket call. The address format 

of the socket should be set to AF_BT, indicating a socket bound to the Bluetooth transport. 

Once created, the socket needs to be bound with a call to bind. The following code shows a 

socket being created followed by a call to bind the socket. The address the socket is bound 

to is left blank, indicating that the system will provide the proper settings. The address for

mat for the Bluetooth address used in the bind call is set to AF_BT. 

II Open a bluetooth socket 
s_sock =socket (AF_BT, SOCK_STREAM, BTHPROTO_RFCOMM); 
if (s_sock == INVALID_SOCKET) 

return -1; 

II Fill in address stuff 
memset (&btaddr, 0, sizeof (btaddr)); 
btaddr.addressFamily = AF_BT; 
btaddr.port = O; II Let driver assign a channel 

II Bind to socket 
re= bind (s_sock, (struct sockaddr *)&btaddr, sizeof (btaddr)); 
if (re) { 

closesocket (s_sock); 
return -2; 



} 

II Get information on the port assigned 
len = sizeof (btaddr); 

Chapter 14 Device-to-Device Communication 505 

re = getsockname (s_sock, (SOCKADDR '')&btaddr, &len); 
if (re) { 

closesocket (s_sock); 
return O; 

II Tell the world what we've bound to. 
printf ("Addr %04x.%08x, port %d", GELNAP(btaddr.btAddr), 

GET_SAP(btaddr.btAddr), btaddr.port) 

Once the call to bind succeeds, the code calls getsockname, which fills in the details of the 

address of the device and, more important, the Bluetooth RFCOMM channel the socket was 

bound to. This RFCOMM channel is important since it will need to be published with the SDP 

record so that other devices will know which port to connect to when connecting to the ser

vice. The macros in the printf statement in the preceding code demonstrate the division of 

the Bluetooth device address into its two parts: the NAP, or nonsignificant address portion, 

and the SAP, or significant address portion. 

Once the RFCOMM channel is known, the SDP record can be constructed and published as 

shown earlier in this section. The socket is then placed in listen mode, and a call to accept is 

made, which blocks until a client application socket connects to the address. When the client 

does connect, the accept call returns with the handle of a new socket that's connected with 
the client. This new socket is then used to communicate with the client device. 

Client Side 

On the client side, the task of connecting starts with device discovery. Once the Bluetooth 
address of the client is discovered, the client can create a thread that will communicate with 

the server. The process mirrors any socket-based client with calls to create the socket, and the 

client connects the socket to the remote server by specifying the address of the server. In the 

case of a Bluetooth client, the address of the server must include either the RFCOMM chan
nel or the GUID of the service being connected to. In the following code, a client connects to 

a remote service knowing the remote device's Bluetooth address and the GUID of the client. 

II Open a bluetooth socket 
t_sock =socket (AF_BT, SOCK_STREAM, BTHPROTO_RFCOMM); 
if (t_sock == INVALID_SOCKET) 

return O; 

II Fill in address stuff 
memset (&btaddr, 0, sizeof (btaddr)); 
btaddr.btAddr = btaddrTarget; 
btaddr.addressFamily = AF_BT; 
btaddr.port = O; II Let driver assign a channel 
memcpy (&btaddr.serviceClassid, &guidbthello, sizeof (GUID)); 



506 Part Ill Advanced Windows CE 

II Connect to remote socket 
re= connect (t_sock, (struct sockaddr *)&btaddr, sizeof (btaddr)); 
if (re) { 

closesocket (t_sock); 
return -4; 

} 

I I Connected ... 

After the client is connected, data can be exchanged with the server with the standard socket 

routines send and recv. When the conversation is concluded, both client and server should 

close their respective sockets with a call to closesocket. 

Bluetooth Communication with Virtual COM Ports 

If using Winsock for communication isn't to your liking, the Windows CE Bluetooth stack 

can also be accessed by using a serial driver that can be loaded. This method has a number 

of shortcomings, but some developers prefer it to using Winsock because of the familiar

ity of using a simple serial port compared with the complexity of Winsock. In any case, be

fore I show you how to use the virtual serial port method, a few of the problems should be 
discussed. 

The first problem is that the Bluetooth driver name is already the most used driver name in 

Windows CE. The Windows CE stream driver architecture is such that the operating system 

is limited to 10 instances of a given driver name in the standard namespace, such as COM 

or WAV. Since typically 2 to 4 instances of serial drivers are already in a Windows CE system, 

the available number of virtual COM ports is limited. Also, since the Bluetooth stack typically 

exposes some of its profiles through COM ports, the 2 to 4 number quickly increases to 6 to 

8 ports, leaving only 2 to 4 available COM driver instances for Bluetooth applications that 
want to use virtual COM ports. An intrepid programmer could register the Bluetooth driver 

under a different name, such as BTC for Bluetooth COM, but this nonstandard name wouldn't 

be expected if it were to be passed on to other applications. Another option would be to use 

the bus driver-style driver naming, but here again this is unusual and wouldn't be expected. 

The second problem is that although the virtual COM port method is used on a number of 

platforms, the implementation on Windows CE is unique. At least with the Winsock method, 

an application can be written to be fairly source-code compatible with the desktop. That isn't 

the case with the virtual COM port method. 

Finally, creating COM ports using this method is accomplished using the RegisterDevice func

tion. Although perfectly functional, this function has been deprecated for quite a while under 

newer versions of Windows CE. Drivers loaded with RegisterDevice aren't listed in the active 

device list maintained in the registry by the system. RegisterDevice requires that the application 

provide the index value for the driver being loaded. Because there's no simple method for 

determining which instance values are in use, the application must try all 10 instance values 

until one doesn't fail because it's used by another COM driver. Still, in some circumstances

when legacy support is needed, for example-using a virtual COM port is necessary. 



Chapter 14 Device-to-Device Communication 507 

Creating a virtual COM port is accomplished with the function RegisterDevice, which is proto

typed as 

HANDLE RegisterDevice (LPCWSTR lpszType, DWORD dwindex, LPCWSTR lpszlib, 
DWORD dwinfo); 

The first parameter is a three-character name of the driver, such as COM or WAV. The sec

ond parameter is the instance value from 1 through 9, or 0 for instance 10. This value can't 

already be in use by another driver of the same name. The third parameter is the name of 

the DLL that implements the driver. The final parameter is a DWORD that's passed to the /nit 
entry point of the driver.4 

When used to load a Bluetooth virtual COM port, RegisterDevice is used as follows: 

hDev = RegisterDevice (TEXT("COM"), dwindex, TEXT("btd.dll"), 
(DWORD) &pp); 

where pp is the address of a PORTEMUPortParams structure defined as 

typedef struct _portemu_port_params { 
int channel; 
int flocal; 
BD_ADDR device; 
int imtu; 
int iminmtu; 
int imaxmtu; 
int isendquota; 
int irecvquota; 
GUID uuidService; 
unsigned int uiportflags; 

PORTEMUPortParams; 

The first field is the RFCOMM channel to be used for this port. If the channel is to be as

signed automatically, the field can be set to RFCOMM_CHANNEL_MULTIPLE. The {Local field 

should be set to TRUE for the server application and FALSE for the client application. The 

device field is used by client applications to specify the Bluetooth address of the remote serv

er. This field must be 0 for server applications. 

The next three parameters allow the application to specify the maximum transaction unit 

(MTU). The first field in this series, imtu, is the suggested value, while iminmtu is the minimum 

acceptable MTU and imaxmtu is the maximum acceptable MTU. If all three of these fields 

are 0, the driver uses default values for the MTU. The isendquota and irecvquota fields set the 

buffer sizes for send and receive operations. Setting these fields to 0 indicates that the driver 

should use the default values. 

4 RegisterDevice is a deprecated function but quite useful in this situation. In almost all other cases, an application 
would use Activate Device to load a driver. 



508 Part Ill Advanced Windows CE 

The uuidService field is used by the client application to specify the service being connected 

to on the server. If the channel field is 0, this field must be set. If the uuidService is nonzero, 

the Bluetooth stack will perform an SDP search to determine the proper channel for the 

service. The actual SDP search will take place when the COM port is opened, not when it's 

loaded with RegisterDevice. 

The upportflags field can contain a combination of the following flags: 

• RFCOMM_PORT_FLAGS_AUTHENTICATE Perform authentication with the remote 

device when connecting. 

• RFCOMM_PORT_FLAGS_ENCRYPT Encrypt the stream. 

• RFCOMM_PORT_FLAGS_REMOTE_DCB When this flag is specified, changing the DCB 

settings of the port results in a negation with the peer device DCB settings. 

• RFCOMM_PORT_FLAGS_KEEP_DCD If this flag is set, the emulated DCD line will al

ways be set. 

Server Side 

As when using Winsock to talk to the Bluetooth stack, using virtual COM ports requires that 

one device be the server and the other the client. The server's responsibility includes loading 

the driver, opening the driver, determining the RFCOMM channel assigned to the port, and 
advertising the port using the SDP process discussed earlier. 

The following code fragment demonstrates a server registering a virtual COM port driver. 

Notice that the routine makes multiple attempts at registering the driver, starting with 

instance value 9 and going down. Because the upper instance values are typically less used, 

this results in a quicker registration process. Notice that as soon as the registration loop com

pletes, the code saves the instance value because that value forms the name of the driver. 

The driver name is then used to open the driver with CreateFile. Once the driver is opened, 

the server uses one of the two special 1/0 Control (IOCTL) commands available on a virtual 
COM port to query the RFCOMM channel. The server then calls its RegisterService routine to 

advertise the service through an SDP record. 

II 
II Server process for opening a virtual COM port 
II 
inti, re; 
PORTEMUPortParams pp; 
TCHAR szDrvName[6]; 

memset (&pp, 0, sizeof (pp)); 
pp.channel = RFCOMM_CHANNEL_MULTIPLE; 
pp.flocal = TRUE; 
pp.uiportflags = O; 



Chapter 14 Device-to-Device Communication 509 

II Find free instance number and load Bluetooth vi rt serial driver 
for (i = 9; i >= O; i--) { 

hDev = RegisterDevice (L"COM", i, L"btd.dll", (DWORD)&pp); 
if (hDev) 

break; 
} 

II See if driver registered 
if (hDev == 0) return -1; 

II Form the driver name and save it. 
wspri ntf (szDrvName, TEXT("COM%d: "), i); 

II Open the driver 
hDevOpen = CreateFile (szDrvName, GENERIC_READ I GENERIC_WRITE, 0, 

NULL, OPEN_ALWAYS, 0, O); 
if (hDevOpen == INVALID_HANDLE_VALUE) { 

DeregisterDevice (hDev); 
return -2; 

DWORD port = O; 
DWORD dwSizeOut; 
re = DeviceioControl (hDevOpen, IOCTL_BLUETOOTH_GET_RFCOMM_CHANNEL, 

NULL, 0, &port, sizeof(port), &dwSizeOut, NULL); 
printf ("re= %d Port value is %d", re, port); 

re= RegisterService (hWnd, &guidbthello, (unsigned char) port, &hService); 

The IOCTL command used in the preceding code, IOCTL_BLUETOOTH_GET_RFCOMM_ 

CHANNEL, returns the RFCOMM channel of the COM port. For the call to DeviceloControl, 

the output buffer points to a DWORD value that will receive the port number. The output 

buffer size must be set to the size of a DWORD. Once the port is determined, the routine 

simply calls the RegisterService routine, shown earlier in this chapter. 

Client Side 
The client side of the process is similar to the server side, with the exception that the client 

needs to know the Bluetooth address of the server and the GUID of the service on the server. 

Both of these parameters are specified in the PORTEMUPortParams structure when the 

device is registered. The following code shows the COM port initialization process from the 

client perspective. 

II 
II Client side 
II 
int i , re; 
PORTEMUPortParams pp; 
TCHAR szDrvName[6]; 

int nDevs2 = MAX_DEVICES; 
MYBTDEVICE btd2[MA)(_DEVICES]; 



510 Part Ill Advanced Windows CE 

II Find the server's Bluetooth address 
re= FindDevices (btaServ); 
if (re) return -1; 

memset (&pp, 0, sizeof (pp)); 
pp.channel = O; 
pp.flocal = FALSE; 
pp.device = btaServ; 
pp.uuidService = guidbtService; 
pp.uiportflags = O; 

II Find free instance number and load Bluetooth vi rt serial driver 
for Ci = 9; i >= O; i--) { 

} 

hDev = RegisterDevice (L"COM", i, L"btd.dll", (DWORD)&pp); 
if (hDev) 

break; 

II See if driver registered 
if (hDev == 0) return -1; 

II Form the driver name and save it. 
wsprintf (szDrvName, TEXT("COM%d:"), i); 

II Open the driver 
hDevOpen = CreateFile (szDrvName, GENERIC_READ I GENERIC_WRITE, 0, 

NULL, OPEN_ALWAYS, 0, O); 
if (hDevOpen == INVALID_HANDLE_VALUE) { 

DeregisterDevice (hDev); 
return -2; 

} 

BT_ADDR bt; 
DWORD dwSizeOut; 
re = DeviceloControl (hDevOpen, IOCTL_BLUETOOTH_GET_PEER_DEVICE, 

NULL, 0, &bt, sizeof(bt), &dwSizeOut, NULL); 
printf ("Connection detected with %04x%08x\r\n", GET_NAP(bt), GET_SAP(bt)); 

Notice the use of the second IOCTL command provided for Bluetooth support, IOCTL_ 

BLUETOOTH_GET_PEER_DEVICE. This command returns the Bluetooth address of the device 

on the other end of the connected virtual serial port. 

Communication between the client and the server is accomplished through the standard 

Win32 file functions ReadFile and WriteFile. When the conversation has been concluded, 

the driver should be closed with a call to CloseHandle and the driver unloaded with a call to 

DeregisterDevice, prototyped here: 

BOOL DeregisterDevice (HANDLE hDevice); 

The only parameter is the handle returned by RegisterDevice. 



Chapter 14 Device-to-Device Communication 511 

The BtSquirt Example Program 

The BtSquirt example demonstrates a fairly complete Bluetooth application that can act as 

both a client and a server. BtSquirt must be running on two Windows CE devices that use 

the Windows CE Bluetooth stack for it to work. When started, BtSquirt searches for other 

Bluetooth devices in the area and lists them in the device list. The user can then select a des

tination device and send a file to it by clicking Send. BtSquirt connects to the BtSquirt service 

on the other device. Once connected, the client sends filename, file size, and then the file 
data. After the file transfer is complete, BtSquirt closes the connection. The server reads the 

file information and saves the file in the root directory of the device. Figure 14-3 shows the 

BtSquirt example after it has received the message from the other device. 

thread entered 
uette.mid 

eived file size of 13561 bytes 
nding ack. O 
v'd 8192 bytes. 
v'd 5369 bytes. 
eive finished 
eive thread exit 

FIGURE 14-3 The BtSquirt example after it has received a message from another device 

The source code for BtSquirt is shown in Listing 14-2. The application is a simple dialog
based application. The source code is divided into two .cpp files and their associated include 

files: BtSquirt.cpp, which contains the majority of the source code; and MyBtUtil.cpp, which 

contains handy Bluetooth routines for finding devices and for registering service GU IDs with 

the SDP service. 

LISTING 14-2 

MyBtUtil.rc 

II===~==========================================~=========~========== 
II Resource file 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
!/====================================================================== 

#include "windows.h" 
#include "BtSquirt.h" II Program-specific stuff 

11----------------------------------------------------------------------



512 Part Ill Advanced Windows CE 

II icons and bitmaps 
I/ 
tD-Il:;ON ICON "BtSquirt.ico" JI Program kon 

j/:.-:.-~~-,..-_, ___ :..:.--~.,;;_:.,..,7-'-':"'----~---------;-----------.:. _____ .,. ___ ;_,__~-~---··· 
II .Main window dialog.template 
II 
.btsquirt DIALOG discardable .lo~ 10; l3S1 .150 
STYLE WS~OYERLAPPEQ i W5..:.ViSIBLE WS_CAPTION I ws_sySMENU I 

. DS--CENTER J OSJIODALFRAME 
cAPTION "Bl uetooth Squirt'; 
CLASS "btsquirt" 
BEGIN 

PUSHB91TON "Serid File ... "IDD ... SENDFILE, 67, 5, 65, 12, W$_TABSTOP 
PUSHBUiroN u &Scaii'' . IDD_SCAN' 2 ' s • 65' 12. WS_ TABSTOP 

COMBOBOX 

LiSTBOX 

END 

MyBtlltil.h 

IDD ... DEYICES, 

IOO.;..INTEXT;· 

2, 20, 128, 100, 
ws_ TABSTOP I. WS_ VScROLL 

.2, 40, 128, 100, 
WS.c...TABSTOP I WS_YSC~OLL 

. . 
I /=~::;~--~·~·==~-.:.-=;.••i!=!i--. ••• :=;= •• ~ •. ~~=:=======~=====*==~=.=-======= 
II Header file 
// 
// Wrinen. for the book Programmfog Win~ows CE 
//Copyr'i.ght (C) 2007 Do,uglas Boling 
. //~~~~~1i11;•••m::l::l~:=i::::!i:1:~,~~=-:--~====~=~====:=~=======:=~=======;=;;;:==ii=========• 
. . 

• #i fndef .;..MYBTUTIL_H_ 
•· #define _MvsTUTIL-tt.;.. 

· #if • defi ned (-:..cp lusp 1 us) 
extern '.'C" . { . · 
#endif 

typedef strtict { 
·· TCHAR szNanie[256J; 

BT..:.ADDR btad(lr; . 
. } MY!ffDEVICE, "'l'MVBTDEYICE; 

//Finds B1uetooth devices . 
int Fi ndDevices (PMYB"J"OEYICI;. pbtDev, int. "pnPevs); 

//.Registers a BT servi~e 
int RegisterBtSer\tice (GUio· *pguid, byte bChannel, 

ULONG *pRecord); 



Chapter 14 Device-to-Device Communication 513 

II Clears a BT service from the SOP database 
int UnregisterBtService (HWND hWnd, ULONG hRecord); 

#if defined C~cplusplus) 
} 

#endif 

#endif II _MYBTUTIL_H_ 

MyBtUtil.cpp 

II====================================================================== 
II MyBtUtil - Handy Bluetooth routines 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II====================================================================== 
#include <Windows.h> 
#include <Winsock2.h> 
#include <Ws2bth.h> 
#include <bthapi.h> 

#include "MyBtUtil .h" 

II Returns n.umber of elements 
#define dim(x) (sizeof(x) I sizeof(x[O])) 

#define MYBUFFSIZE 16384 
11----------------------------------------------------------------------
11 FindDevices - Find devices in range. 
II 
int FindDevices (PMYBTDEVICE pbtDev, int *pnDevs) { 

DWORD dwFlags, dwlen; 
HANDLE hlookup; 
inti, re, nMax = *pnDevs; 
*pnDevs = O; 

II Create inquiry blob to limit time of search 
BTHNS_INQUIRYBLOB inqblob; 

Cinqblob)); memset C&inqblob, 0, sizeof 
inqblob.LAP = BT_ADDR_GIAC; 
inqblob.length = 4; 
inqblob.num_responses = nMax; 

II Default GIAC 
II 4 * 1.28 = 5 seconds 

II Create blob to point to inquiry blob 
BLOB blob; 
blob .. cbSize = sizeof (BTHNS_INQUIRYBLOB); 
blob.pBlobData = (PBYTE)&inqblob; 

II Init query 
WSAQUERYSET QuerySet; 



514 Part Ill Advanced Windows CE 

} 

memset (&Que ryse.t, o, si zeof (WSAQUERYSEn) ; 
QuerySet. dwSi :ze . "" si zeof (WSAQUERYSET) ; 
QuerySet.dwNameSpace = NS_BTH; · 
QuerySet~lpBlob =&blob; 

// Start query for devices 
re= WSALookupServiceBegin (&QuerySet, LUP_CONTAINERS, &hLookup); 
if (re) reforri re; 

PBvtE pOut =.(PBYrE)LocalAlloc (LPTR, MYBUFFSI:ZE); 
if (!pOut) re.turn -1; 
WSAQUERYSET *pQueryResult = (WSAQUERYSET *)pOut; 

for Ci = Q; i < nMax; i++) { 
dwLen = MYBUFFSIZE; . 
dwFl ags = · LUP _RETURN__NAME I .LUP _RETURN.:.ADDR; 
re = WSALookupServiceNext (hLookup, dwFlags, &dwlen, pQueryResult); 
if (re ==' SOCKET_ERROR) { 

r.c = Getlast:Error(); 
brf;lak; ·· 

} 
II ·Copy device name 

·if (pQueryResult-> lpszServiceinstanceNaml;l) 
StringCchCopy (pbtDev[i] .s:zName, dim (pbtoev[i] .szName), 

pQueryResul t"'> l pszServiceinst<l.nceName); 
else 

pbtriev[i].szName[OJ = TEXT('\0'); 
II Copy bllletooth device add~ess 
SOCKADDR_BTH *pbta; 
pbta = (50CKAPDR_8TH *} 

pQueryResult-,> lpcsaBuffer->RemoteAddr. lpSockaddr; 
pbt:Dev[i].btaddr = pbta->btAddr; 

if (re WSA.;.~No_MORE) re .. 0; 
*pnDevs ,.; i; 
WSALookupServiceEnd (hLookup); 
• Local.Free (pOut:) ; 
return re; 

I 1-.,.----.-------:- --·- ------..,-., - - --,.. .,. - --- '" - -__ ... ---_._ ------------ -·---~ -------
II .PublishRecord - Helper routine that: actually does the registering 
II of the sop. record. 
II 
int Pub1ishRecord (!>BYTE pSDPRec, int nRecSize, ULONG *pRecord) { 

BTHNS..;$ETBLOB *pSetBlob.; · 
.ULONG ulSdpVersion = BTH_SDP:...VERSION; 
int re; 

fl Zero out the record handle that will be returned by the can 
*pRecord = O; 

!/Allocate and infr the SetBlob 
. pSetBfob = (BTHNS_$ET8LOB *)LocalAlloc (LPTR, 

si zeof (BTHf.lS...SET!MB) t nRecSize-lJ; .· 



} 

Chapter 14 Device-to-Device Communication 515 

if (!pSetBlob) return -1; 

pSetBlob->pRecordHandle = pRecord; 
pSetBlob->pSdpVersion = &ulSdpVersion; 
pSetBlob->fSecurity = O; 
pSetBlob->fOptions = O; 
pSetBlob->ulRecordLength nRecSize; 
memcpy (pSetBlob->pRecord, pSDPRec, nRecSize); 

II Init the container blob 
BLOB blob; 
blob.cbSize sizeof(BTHNS_SETBLOB) + nRecSize - 1; 
blob.pBlobData = (PBYTE) pSetBlob; 

II !nit the WSAQuerySet struct 
WSAQUERYSET Service; 
memset (&Service, 0, sizeof(Service)); 
Service.dwSize = sizeof(Service); 
Service.lpBlob =&blob; 
Service.dwNameSpace = NS_BTH; 

II Publish the service 
re= WSASetService(&Service, RNRSERVICE_REGISTER, O); 
if (re == SOCKET_ERROR) 

re= GetLastError(); 

II Clean up 
LocalFree ((PBYTE)pSetBlob); 
return re; 

11----------------------------------------------------------------------
11 UnregisterBtService - Remove service from SOP database 
II 
int UnregisterBtService (HWND hWnd, ULONG hRecord) { 

ULONG ulSdpVersion = BTH_SOP_VERSION; 
int re; 

BTHNS_SETBLOB SetBlob; 
memset (&SetBlob, 0, sizeof (SetBlob)); 
SetBlob.pRecordHandle = &hRecord; 
SetBlob.pSdpVersion = &ulSdpVersion; 

II Init the container blob 
BLOB blob; 
blob.cbSize = sizeof(BTHNS_SETBLOB); 
blob.pBlobData = (PBYTE) &SetBlob; 

II !nit the WSAQuerySet struct 
WSAQUERYSET Service; 
memset (&Service, 0, sizeof(Service)); 
Service.dwSize = sizeof(Service); 
Service.lpBlob =&blob; 
Service.dwNameSpace = NS_BTH; 



516 Part Ill Advanced Windows CE 

} 

II Unpublish the service 
rc,.WSASetService(&Service, RNRSERVICE....DELETE, Q); 
.if. (re = SOCKET...;ERROR) 

re = GetLastError(); 
return· re; 

I!-- ---,---------~ ---------.,._. ___ -~ --.,.-----------~ ------·-.------"'"----'----'- --
II. RegisterBtService " Register::; a service with a guid and RFChanne1 
II 
int RegisterBtService (GUID *pguid, byte bChannel, ULONG *llRecord) { 

} 

II SDP dummy record 
II GUID goes at offset 8 
II Channel goes in last byte of record. 
St.atic BYTE bSDPRecord[] = { 
Ox35, Ox27, Ox09, OxOO; Ox01, Ox::!S, Ox11, OxlC, OxOO, OxOO, OxOO, 
OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, 
OxOO, OxOO, Ox09, OxOO, Ox04, Ox35, OxOC, Ox35., .Ox03, Oxl~ .. OxOl, 
OxOO, Ox35, Ox0.5 .• Ox19, OxOO, Ox03, OxOS .• OxO(}}; 

II Update the SDP .record 

//.Translate guid into net byte order for SOP record 
GUID *p = (GUID *)&bSOPRecord[SJ; 
p->Datal.= htonl (pguid->Datal); 
p->Data2 = htons (pguid->Data2); 
p->Data3 = htons (pguid->Datd); 
memcpy (p->Data4, pguid->Data4, sizeof (pguid->Data4)}; 

/I Copy channel value into record 
bSD~Record[sizeof (bSDPRecord)-:1] = bChannel; 

· return Publi shRecord CbSDPRecord, si zeof (bSDPRecord), · pReco.rd); 

BtSquirt.h 

II Header file 
II 
/I Wri.tten for the book Programming Windows CE 
II Copyright (C). 2007. Douglas Boling · 

II Returns number of elements 
#define dim(x) (sizeof(x) I sizeof(x[Ol)) 

II Windows ce· Specific· defines 
#define LPCMDLINE LPWSTR . 



Chapter 14 Device-to-Device Communication 517 

II Generic defines and data types 
II 
struct decodeUINT { 

UINT Code; 

LRESULT (*Fxn)(HWND, UINT, WPARAM, 
}; 
struct decodeCMD { 

UINT Code; 

LPARAM); 

LRESULT (*Fxn)(HWND, WORD, HWND, WORD); 
} ; 

II Structure associates 
II messages 
II with a function. 

II Structure associates 
II menu IDs with a 
II function. 

11----------------------------------------------------------------------
11 Defines used by application 

typedef struct { 
HANDLE hFile; 
int nDevice; 
TCHAR szName[MAx_PATH]; 

} SENDTHSTRUCT, *PSENDTHSTRUCT; 

#define ID_ICON 1 

#define IDD_INTEXT 10 
#define IDD_SENDFILE 11 
#define IDD_SCAN 12 
#define IDD_DEVICES 13 

II Error codes used by transfer protocol 
#define BAD_TEXTLEN -1 
#define BAD_SOCKET -2 

#define MYMSG....ENABLESEND 
#define MYMSG....PRINTF 
#define MYMSG_NEWDEV 

(WM_USER+lOOO) 
(WM_USER+lOOl) 
(WM_USER+1002) 

II Error codes used by transfer protocol 
#define GOOD_)(FER 0 
#define BAD_FILEOPEN -1 
#define BAD_FILEMEM -2 
#define BAD_FILEREAD -3 
#define BAD_FILEWRITE -3 
#define BAD_SOCKETRECV -5 
#define BAD_FILESIZE -6 
#define BAD__MEMORY -7 

#define BLKSIZE 
#define BUFFSIZE 

8192 
8192 

II Control IDs 

II Transfer block size 
II Buff size (>=BLKSIZE) 

11-------------------------------------------------------------------~--
ll Function prototypes 
II 
HWND Initinstance (HINSTANCE, LPCMDLINE, int); 
int Terminstance (HINSTANCE, int); 



518 Part Ill Advanced Windows CE 

void Add2List (HWND hWnd, LPTSTR lpszFormat, , .. ): 

II Window procedures 
LRESUL T CALLBACK MainWndProc (HWND, UINT, WPARAM 1 LPAltl\M); 

II Message·handlers 
LRESULT OoCreateMain (HWND, UINT, WPARAM, LPARAM); 
LRESUL T Do Si zeMail'l CHWND, UINT, WPARAM' LPAAAM) ; 
LRESULT. DoCharMain (HWND. !JINT, WPARAM, LPARAM); 
LRESULT DoComtnandMain (HWND; UINT; WPARAM, LPARAM); 
LRESULT DoPocketPCShell (HWND, UINT, WPAAAM, LPARAM); 
LRESULT DoDestroyMain .(HWND, UINT, WPARAM, LPARAM); 
LRESULT DoEnableSendMain (HWND, UINT, WPARAM, LPARAM); 
l,RESULT DoPrintfNotifyMain (HWND, UINT, WPARAM, LPAAf\M); 
LRESULT DoAddoeviceMain (HWND, UINT, WPARAM,. LPARAM); 

II Command functions 
LPARAM.DoMainCommandSend (HWND, WORD, HWND, WORD); 
LPARAM DoMainConunandExit CHWNP, WORD, HWND, WORD}; 
LPARAM DoMainCommandScan (HWNO, WORD, HWNo, WORD); · 

II Thread functions 
DWORD WINAPI SearchThread (PVOJ:D pArg); 
owORD WINAPI .ServerThread (PVOID pArg); 
DWOR!> W;INAPI ReceiveThread (PVOID pArg); 
DWORD WINAPI SendFileThread (PVOID pArg); 

BtSquirt.cpp 

/I BtSqui rt - A demonstration of a Bl uetooth appl i ca ti on 
II 
II written for. the book Programming Windows CE 
II Copyright (C} 2007.Douglas BoJing · 

#include <windows.h> 
#include <commdlg.h> 
#include <Winsock2.h> 
#include <Ws2bth.h> 
#include <Msgqueue.h> 
#include <C!,ygshell.h> 

#incl.ude "BtSqufrt. h" 
#include '.'MyBTUtil .h" 

#pragma comment( lib, "aygshelT") 
#pragma comment( lib, "ws2" ) 
#if defined(WIN32-PLATFORM.:.PSPC) JI 
#include <bthuti 1 • h> 
#pragma comment( lib, "bthutil") 
#endif 

//.For: all that Windows stuff 
I/ For common dialogs 
II ~cket .fuJK:t.ions 
II Bluetooth extensions 

II Add Wi nMobil e includes. 

II Program-specific stuff 
/ / My · Bluetooth routines 

II Link winMobi1e lib for menubar 
II Link WinSock 2.0 lib 

defi ned(WIN32-PLATFORM.:.WFSP) 
II Bluetooth Util API 
II Link BT util lib 



Chapter 14 Device-to-Device Communication 519 

11----------------------------------------------------------------------
11 Global data 
II 
const TCHAR szAppName[] =TEXT ("BtSquirt"); 
TCHAR szTitleText[128]; 

II Be sure to create your own GUID with GuidGen! 
II {23EABC54-6923-480c-AC59-CDD83C154D87} 
static GUID guidBtSquirt = 
{ Ox23eabc54, Ox6923, Ox480c, { Oxac, Ox59, Oxcd, Oxd8, 

Ox3c, OxlS, Ox4d, Ox87 } }; 

HINSTANCE hlnst; II Program instance handle 
HWND hMain; II Main window handle 
BOOL fContinue = TRUE; II Server thread cont. flag 
BOOL fFirstSize = TRUE; II First WM_SIZE flag after 
BOOL fFirstTime = TRUE; II First WM_SIZE flag 
SOCKET s_sock; 

#if defined(WIN32_PLATFORM_PSPC) && (_WIN32_WCE >= 300) 

lb 

SHACTIVATEINFO sai; II Needed for PPC helper funcs 
#endif 

HANDLE hQRead = O; 
HANDLE hQWrite = O; 
CRITICAL_SECTION csPrintf; 

#define MA)(_DEVICES 32 
MYBTDEVICE btd[MA)(_DEVICES]; 
int nDevs = O; 

II Used for thread safe print 

II List of BT devices 
II Count of BT devices 

II Message dispatch table for MainWindowProc 
const struct decodeUINT MainMessages[] = { 

WM_CREATE, DoCreateMain, 

} ; 

WM_SIZE, DoSizeMain, 
WM_CHAR, DoCharMain, 
WM_COMMAND, DoCommandMain, 
MYMSG_ENABLESEND, DoEnableSendMain, 
MYMSG_PRINTF, DoPrintfNotifyMain, 
MYMSG_NEWDEV, DoAddDeviceMain, 
WM_SETIINGCHANGE, DoPocketPCShell, 
WM_ACTIVATE, DoPocketPCShell, 
WM_DESTROY, DoDestroyMain, 

II Command Message dispatch for MainWindowProc 
const struct decodeCMD MainCommanditems[] = { 
#if defined(WIN32_PLATFORM_PSPC) I I defined(WIN32_PLATFORM_WFSP) 

!DOK, DoMainCommandExit, 
#else 

!DOK, DoMainCommandSend, 
#endif 

IDCANCEL, DoMainCommandExit, 
IDD_SENDFILE, DoMainCommandSend, 
IDD_SCAN, DoMainCommandScan, 



520 Part Ill Advanced Windows CE 

} ; 

!!=========="'===================================================='===== 
II Program entry point 
II 
intWINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance, 

LPCMDLINE l pCmdli ne, int nCmdShow) { 

} 

MSG msg; 
int re= O; 

II Initialize this instance. 
hMain = Initinstance (hinstarlce, lpCmdline, nCmdShow); 
if (hMai n == O) 

return Te.rmlnstance (hlnstance, OxlO); 

/I Application message loop 
While (GetMessage (&msg, NULL, 0, 0)) { 

} 

if ((hMain == O) 11 !IsDialogMessage (hMain, &msg)) { 
TranslateMessage (&msg); 
DispatchMessage (&msg); 

} 

II Instance cleanup 
return·Te.rrnlnstance (hlnstance, msg.wParam); 

ll------'----------------------~--------------'--------------------~------
11 Initinstance - Instance initialization 
II 
HWND Init!nstance (HINSTANCE hlnstance, LPCMDL!NE lpCmdLine, 

int nCmdShow) { 
WNDCLASS we; 
HWND hWnd; 
HANDLE hThread; 
int re; 

hinst = hlnstance; /I Save program instance handle. 

//.For all systems, if previous instance, activate it instead of us. 
hWnd = Fi ndWi ndow .(szAppName, NULL) ; 
if (hWnd) { 

} 

SetForegroundWindow ((HWND)((DWORD)hWnd I OxOl)); 
return O; 

II Init·Winsock 
WSADATA wsaData.; 
re =WSAStartup.(Ox0202, &wsaData); 
if (re) { 

} 

MessageBox (NULL ,TEXT("Error in WSAStartup"}, szAppName, MB-OK); 
return O; 

InitializeCriticalSection (&csPrintf); 

/I .Create message queue. First for read access 
MSGQUEUEOPTIONS mqo; 
mqo .. dwSi ze = sizeof (mqo); 



Chapter 14 Device-to-Device Communication 521 

mqo.dwFlags = MSGQUEUE_ALLOW_BROKEN; 
mqo.dwMaxMessages = 16; 
mqo.cbMaxMessage = 512; 
mqo.bReadAccess = TRUE; 
hQRead = CreateMsgQueue (NULL, &mqo); 
II Open it again for write access 
mqo.bReadAccess = FALSE; 
hQWrite = OpenMsgQueue (GetCurrentProcess(), hQRead, &mqo); 

II Register application main window class. 
we.style= O; II Window style 
wc.lpfnWndProc = MainWndProc; II Callback function 
wc.cbClsExtra = O; II Extra class data 
wc.cbWndExtra = DLGWINDOWEXTRA; II Extra window data 
wc.hinstance = h!nstance; II Owner handle 
wc.hicon = NULL; II Application icon 
wc.hCursor = LoadCursor (NULL, IDC_ARROW);ll Default cursor 
wc.hbrBackground = (HBRUSH) GetStockObject (LTGRAY_BRUSH); 
wc.lpszMenuName = NULL; 
wc.lpszClassName = szAppName; 

if (RegisterClass (&we) == 0) return O; 

II Create main window. 

II Menu name 
II Window class name 

hWnd = CreateDialog (h!nst, szAppName, NULL, NULL); 

II Return fail code if window not created. 
if (!IsWindow (hWnd)) return O; 

GetWindowText (hWnd, szTitleText, dim (szTitleText)); 

#if defined(WIN32_PLATFORM_PSPC) I I defined(WIN32_PLATFORM_WFSP) 
II See if Bluetooth radio on. 
DWORD dwBTStatus; 
re= BthGetMode (&dwBTStatus); 
if (re != ERROR_SUCCESS) 

Add2List (hWnd, TEXT("Error querying BT radio status %d"), 
GetLastError()); 

else { 
if (dwBTStatus == BTH_POWER_OFF) { 

} 

re = MessageBox (hWnd, 
TEXT("The Bluetooth radio is currently off. ") 
TEXT("do you want to turn it on?"), szAppName, 
MB_YESNO); 

if (re == !DYES) { 
BthSetMode (BTH_DISCOVERABLE); II Make discoverable 
BthGetMode (&dwBTStatus); II Update status 

} 

if (dwBTStatus == BTH_POWER_OFF) 
Add2List (hWnd, TEXT("Bluetooth radio **'' off ***")); 

else if (dwBTStatus == BTH_CONNECTABLE) 
Add2List (hWnd, TEXT("Bluetooth radio on, not discoverable!")); 



522 Part Ill Advanced Windows CE 

else if (dwBTStatus == BTH_DISCOVERABLE) 
Add2List (hWnd, TEXT("Bluetooth radio on and discoverable")); 

#end if 

} 

II Create secondary thread for server function. 
hThread = Creat.eThread (NULL, 0, ServerThread, hWnd, O, 0); 
if (hThread == 0). { 

DestroyWindow (hWnd); 
return 0; 

CloseHandle (hThread); 

II Post a message to have device discovery start 
PostMes.sage (hWnd, WM_COMMAND, MAKEWPARAM. (IDD_SCAN, BN_CLICKED),O); 

ShowWindow (hWnd, nCmdShow); /I Standard show and update calls 
UpdateWindow (hWnd); 
SetFocus (GetDlgitem (hWnd, IDD_SENDFILE)); 
return hWnd; 

ll-----------------~----------------------------------------------------
/1 Terminstance c Program cleanup 
II 
int Term!nstance (HINSTANCE h!nstance, int nDefRC) { 

WSACleanup (); 
Sleep (O); 
CloseMsgQueue (hQRead); 
CloseMsgQueue (hQWrite); 
return nDefRC; 

} 

II====="'================================================================ 
II Message handling procedures for main window 
11------------------------C----------------------------~----------------
l 1 MainWndProc - Callback function for application window 
II 
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

INT i; 
II 
II Search message list to see if we need to handle this 
II message. If in list, call procedure. 
II 
for Ci = O; i < dim(MainMessages); i++) { 

if (wMsg == MainMessages[i] .Code) 
return (*MainMessages[i];Fxn)(hWnd, wMsg, wParam, lParam); 

return DefWindowProc(hWnd, wMsg, wParam, 1 Param); 

ll----•--C---•--------•------------------------•---•---•----------------
11 DoCreateMain - Process WM_,_CREATE message for window. 
II 
LRESULTDoCreateMain (HWND hWnd, UINT wMsg, WPMAM wi>aram, 

LPARAM·lParam) { 



Chapter 14 Device-to-Device Communication 523 

#if defined(WIN32_PLATFORM_PSPC) I I defined(WIN32_PLATFORM_WFSP) 
SHINITDLGINFO shidi; 
SHMENUBARINFO mbi; II For Pocket PC, create 
memset(&mbi, 0, sizeof(SHMENUBARINFO)); II menu bar so that we 
mbi .cbSize = sizeof(SHMENUBARINFO); 
mbi .dwFlags = SHCMBF_EMPTYBAR; 
mbi.hwndParent = hWnd; 
SHCreateMenuBar(&mbi); 

II have a sip button 

SendMessage(mbi .hwndMB, SHCMBM_GETSUBMENU, 0, 100); 

II For Pocket PC, make dialog box full screen with PPC 
II specific call. 
shidi .dwMask = SHIDIM_FLAGS; 
shidi .dwFlags = SHIDIF_DONEBUTTON I SHIDIF_SIZEDLG I SHIDIF_SIPDOWN; 
shidi .hDlg = hWnd; 
SHinitDialog(&shidi); 

sai.cbSize = sizeof (sai); 
SHHandleWMSettingChange(hWnd, wParam, lParam, &sai); 

#endif 
return O; 

} 

11----------------------------------------------------------------------
11 DoCharMain - Process WM_CHAR message for window. 
II 
LRESULT DoCharMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

if (wParam == '1') 
PostMessage (hWnd, WM_COMMAND, MAKELONG (IDD_SCAN, 0), 

(LPARAM)GetDlgitem (hWnd, IDD_SCAN)); 
else if (wParam == '2') 

PostMessage (hWnd, WM_COMMAND, MAKELONG (IDD_SENDFILE, 0), 
(LPARAM)GetDlgitem (hWnd, IDD_SENDFILE)); 

else if (wParam == '9') 
PostMessage (hWnd, WM_COMMAND, MAKELONG (IDCANCEL, 0), 

(LPARAM)GetDlgitem (hWnd, IDCANCEL)); 
return O; 

ll------------------------------~---------------------------------------
11 DoSizeMain - Process WM_SIZE message for window. 
II 
LRESULT DoSizeMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

#if defined(WIN32_PLATFORM_PSPC) 
static RECT rectlistbox; 
RECT rect; 

GetClientRect (hWnd, &rect); 
if C fFi rstTi me) { 

II First time through, get the position of the listbox for 
II resizeing later. Store the distance from the sides of 
II the listbox control to the side of the parent window 



524 Part Ill Advanced Windows CE 

} 

#enciif 

if (IsWi ridow (GetDl gitem (hWnd, IDO_INTEXT))) { 
GetWi ndowRect (GetDlgitem (hWnd, IDD_INTEXT), &re.ctl i stbox); 
MapWi ndowPoi nts CHWND_DESKTOP, hWnd, (LPPOINT)&rectl i stbox,2); 
rectLi st box.right = re ct.right - rectlistbox. right; 
rectlistbox.bottom = rect.bottom ~ rectlistbox.bottom; 

SetWindowPos (GetDlgitem (hWnd, IDD_INTEXT), O, rect.left+S, 
rectlistbox.top, rect.dght-10, 
re ct. bottom - rectL i st box. top - 5, 
SWP_NOZORDER); 

fFirstTime = FALSE; 

if (fFirstSize) { 

} 

EnableWindow (GetDlgitem (hWnd, IDD_SENDFILE), FALSE); 
EnableWindow (GetDlgitem (hWnd, IDD_SCAN), FALSE); 
fFi rstSi ze = FALSE; 

//SetFocus (hWnd); 
return O; 

LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam, 
LPARAM lParam) { 

WORD iditem, wNot;fyCode; 
HWND hwndCtl; 
INT i; 

/l Parse the parameters. 
iditem = (WORD) LOWOR() (wParam); 
wNotifyCode= (WORD) HIWORD (wParam); 
hwndCtl = (HWND) 1 Pa ram; 

I/ Call routine to h.andle control message. 
for (i = O;. i < dim(MafnCommanditeiTis}; i++) 

if (iditem == MainCommanciiterns[i] ,code) 

} 

return (*MainCommanditems[i].Fxn) (hWnd, iditem, hwndCtl, 
wNotifyCode); 

return O.; 

DoEnableSendMain - Process user message to .enable. send button 

LRESU.LT DoEnableSenciMain CHWND hWnd, UINT wMsg, WPARAM wParam, 
LPARAM TParam) { 

int i; 
EnableWinci.ow (GetDlgitern (hWnd, IDD.;..SENDFILE}, lParam); 
EnableWindow (GetDlgitem (hWnd, TDD_SCANJ, TRUE); 
i = (int)SendDlgitemMessage (hWnd, IDD.,.DEVICES, CB_GETCURSEL, 0, O); 



} 

Chapter 14 Device-to-Device Communication 525 

if (i == -1) 
SendDlgitemMessage (hWnd, IDD_DEVICES, CB_SETCURSEL, 0, O); 

SetWindowText (hWnd, szTitleText); 
return O; 

11----------------------------------------------------------------------
11 DoAddDeviceMain - Process user message to add to device list 
II 
LRESULT DoAddDeviceMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

SendDlgitemMessage (hWnd, IDD_DEVICES, CB_ADDSTRING, 0, lParam); 
return O; 

11----------------------------------------------------------------------
11 DoPrintfNotifyMain - Process printf notify message 
II 
LRESULT DoPrintfNotifyMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

TCHAR szBuffer[512]; 
int re; 
DWORD dwlen = O; 
DWORD dwFlags = O; 

memset (szBuffer, 0, sizeof (szBuffer)); 
re= ReadMsgQueue (hQRead, (LPBYTE)szBuffer, sizeof (szBuffer), 

&dwlen, 0, &dwFlags); 
if (re) { 

} 

if (dwFlags & MSGQUEUE_MSGALERT) 
SetWindowText (hWnd, szBuffer); 

else { 

} 

re= SendDlgitemMessage (hWnd, IDO_INTEXT, LB_ADDSTRING, 0, 
(LPARAM)(LPCTSTR)szBuffer); 

if (re != LB_ERR) 
SendOlgitemMessage (hWnd, IDD_INTEXT, LB_SETTOPINDEX,rc, 

(LPARAM)(LPCTSTR)szBuffer); 

return O; 

11----------------------------------------------------------------------
/I DoPocketPCShell - Process Pocket PC required messages 
II 
LRESULT DoPocketPCShell (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
#if defined(WIN32_PLATFORM_PSPC) 

if (wMsg == WM_SETTINGCHANGE) 
return SHHandleWMSettingChange(hWnd, wParam, lParam, &sai); 

if (wMsg == WM_ACTIVATE) 
return SHHandleWMActivate(hWnd, wParam, lParam, &sai, O); 

#endif 
return O; 

} 

11----------------------------------------------------------------------
// DoDestroyMain - Process WM_DESTROY message for window. 



526 Part Ill Advanced Windows CE 

II 
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

fConti.nue = FALSE; 
closesocket (s_sock); 
Sleep (O}; 
PostQuitMessage (O); 
return O; 

fl Shut down server thread. 

II Pass on times.lice. 

II Command handler routines 
ll------~---------------------------------------------------'------------
11 DoMainCommandExit - Process Program Exit command. 
II 
LPARAM DoMainCommandExit (HWND. hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 

SendMes5age (hWnd, WM_CLOSE, 0, O}; 
return O; 

} 

11------,---------------------'-----------------------~-----------'-------'--
ll DoMainCommandSend - Process Program Send File command. 
II 
LPARAM DoMainCommandSend (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 
canst LPTSTR pszOpenFilter = TEXT ("All Documents (*. *)\O*. "\0\0"); 
OPENFILENAME of; 
HANDLE hTh; 

PSENDTH$TRUCT psfs = (PSENDTHSTRUCT) malloc (sizeof (SENDTHSTRUCT)); 
if (psfs == 0) { 

Add2List (hWnd, TEXT("Out of memory.")); 
return 0; 

} 

memset (&of, 0, sizeof (of)); 
oLlStructSize = sizeof (of); 
of.lpstrTitle = TEXT("Selett file to send"); 
of. 1ps.trFi le = · psfs->szName; 
of. nMaxFile = dim (psfs->szName); 
of. lpstrFilter = pszOpenFilter; 
if (!GetOpenFileName (&of)) 

return O; 

If Open the file. 
psfs->hFile = CreateFile (psfs->szName, GENERI(_READ, 

FILLSHARE_READ, NULL, OPEN_EXISTING, 
0, NULL); 

if (psfs~>hFile == INVALID..c.HANDLE_VALUE) { 

} 

Add2L.ist (hWnd, TEXT(" File open failed. re %d"), 
GetlastError()); 

return -1; 



} 

Chapter 14 Device-to-Device Communication 527 

psfs->nDevice = (int)SendDlg!temMessage (hWnd, IDD_DEVICES, 
CB_GETCURSEL, 0, O); 

II Send the file on another thread. 
hTh = CreateThread (NULL, 0, SendFileThread, (PVOID)psfs, 0, NULL); 
CloseHandle (hTh); 
return O; 

11----------------------------------------------------------------------
11 DoMainCommandScan - Process Device Scan command. 
II 
LPARAM DoMainCommandScan (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 

} 

HANDLE hTh; 
SetWindowText (hWnd, TEXT("Scanning ... ")); 
EnableWindow (GetDlg!tem (hWnd, IDD_SENDFILE), FALSE); 
EnableWindow (GetDlgitem (hWnd, IDD_SCAN), FALSE); 
SendDlgitemMessage (hWnd, IDD_DEVICES, CB_RESETCONTENT, 0, 0); 
hTh = CreateThread (NULL, 0, SearchThread, (PVOID)hWnd, 0, NULL); 
CloseHandle (hTh); 
return O; 

11----------------------------------------------------------------------
11 Add2List - Add string to the report list box. 
II 
void Add2List (HWND hWnd, LPTSTR lpszFormat, ... ) { 

int nBuf, nLen; 

} 

TCHAR szBuffer[512]; 
va_list args; 
if (hWnd == 0) 

hWnd = hMain; 

EnterCriticalSection (&csPrintf); 
va_start(args, lpszFormat); 
nBuf = StringCchVPrintf (szBuffer, dim(szBuffer), lpszFormat, args); 
va_end(args); 

nLen = (lstrlen (szBuffer)+l) * sizeof (TCHAR); 
WriteMsgQueue (hQWrite, (LPBYTE)szBuffer, nLen, 0, O); 
PostMessage (hWnd, MYMSG_PRINTF, 0, O); 
leaveCriticalSection (&csPrintf); 

11----------------------------------------------------------------------
11 MySetWindowText - Set Window title to passed printf style string. 
II 
void MySetWindowText (HWND hWnd, LPTSTR lpszFormat, ... ) { 

int nBuf, nLen; 
TCHAR szBuffer[512]; 
va_list args; 

EnterCriticalSection (&csPrintf); 
va_start(args, lpszFormat); 
nBuf = StringCchVPrintf (szBuffer, dim (szBuffer), lpszFormat, args); 
va_end(args); 



528 Part Ill Advanced Windows CE 

} 

nlen = (lstrlen (szBuffer)+l) * sizeof CTCHAR); 
WriteMsgQueue (hQWrite, (LPBYTE)szBuffer, nlen, 0,MSGQUEUE_MSGALERTJ; 
PostMessage (hWnd, MYMSG_PRINTF, 0, O); 
LeaveCriticalSection (&csl'rintf); 

//===================================================================== 
fl SearchThread - Monitors for other devices. 
II 
DWORD W!NAPI SearchThread CPVOID pArg) { 

HWND hWnd = (HWND) pArg; 

} 

int i, re, Channel = O; 

Add2L i st (hWnd, TEXT("Search thread entered")); 

II !nit COM for the thread. 
CoinitializeEx(NULL,COINIT_MULTITHREADED); 

II Find the Bluetooth devices 
nDevs = MA)(__DEVI(ES; 
re= FindDevices (btd, &nDevs); 

/1 List them. 
for (i = O; i < nDevs; i++) { 

} 

PostMes.sage (hWnd, MYMSG_NEWDEV, i, (LPARAM)btd[i].szName); 
Add2List (hWnd, TEXT(«%d. dev:>%S< «), i, btd[iJ.szName); 

PostMes.sage (hWnd, MYMSG'-ENABLESEND, 0, 1); 
CoUninitialize(); 
Add2Li st {hWnd, TEXT( «Search thread exit»)); 
return O; 

//==,,,=================================================================== 
II ServerThread - Monitors for connections, connnects and notifies 
fl user .when a connection. occurs. 
II 
DWORD WINAPI ServerThread (PVOID pArg) { 

HWND hWnd = (HWND)pArg; 
INT re, len, nSize; 
SOCKADDILBTH btaddr, t_btadd r; 
SOCKET r_sock; 
uLONG.RecordHandle; 
HRESU.LT hr; 

Add2Li st (hWnd, TEXT(«Server thread entered»)); 
CoinitializeEx(NULL,COINILMULTITHREADED); 

II Printout our name 
char sz [256]; 
gethostname (sz, 256); 
Add2List (hWnd, TEXT(«This device name: %5»), sz}; 

fl Open a bluetooth socket 
s_sock = socket (AF_BT, SOCK .. 5TREAM, BTHPROTO_RFCOMM); 
if (s'-sock == INVALID_SOCKET) { 



} 

Chapter 14 Device-to-Device Communication 529 

Add2List (hWnd, TEXT(«socket failed. re %d»),WSAGetlastError()); 
return O; 

II Fill in address stuff 
memset (&btaddr, 0, sizeof (btaddr)); 
btaddr.addressFamily = AF_BT; 
btaddr.port = O; II Let driver assign a channel 

II Bind to socket 
re= bind (s_sock, (struct sockaddr *)&btaddr, sizeof (btaddr)); 
if (re) { 

} 

Add2List (hWnd, TEXT(«bind failed»)); 
closesocket (s_sock); 
return O; 

II Get information on the port assigned 
len = sizeof (btaddr); 
re= getsockname (s_sock, (SOCKADDR *)&btaddr, &len); 
if (re) { 

} 

Add2List (hWnd, TEXT(«getsockname failed»)); 
closesocket (s_sock); 
return O; 

Add2List (hWnd, TEXT(«Addr %04x.?'o08x, port %d»), 
GELNAP(btaddr.btAddr), GET_SAP(btaddr.btAddr), btaddr.port); 

II Register our service 
re= RegisterBtService (&guidBtSquirt, (unsigned char) btaddr.port, 

&RecordHandle); 
if (re) { 

} 

Add2List (hWnd, TEXT(«RegisterService fail %d %d»), re, 
GetLastError()); 

closesocket (s_sock); 
return O; 

II Set socket into listen mode 
re= listen (s_sock, SOMAXCONN); 
if (re == SOCKET_ERROR) { 

} 

Add2List (hWnd, TEXT(« listen failed %d»), GetLastError()); 
closesocket (s_sock); 
return O; 

II Wait for remote requests 
while (fContinue) { 

Add2List (hWnd, TEXT(«waiting ... »)); 
nSize = sizeof (t_btaddr); 
II Block on accept 
r_sock =accept (s_sock, (struct sockaddr *)&t_btaddr, &nSize); 
if (r_sock == INVALID_SOCKET) { 

} 

Add2L i st (hWnd, TEXT(« accept failed %d») , GetlastError ()); 
break; 

Add2List (hWnd, TEXT(«sock accept ... »)); 



530 Part Ill Advanced Windows CE 

} 

} 

HANDLE h = CreateThread (NULL, 0, ReceiveThread, (PVOID)r_sock, 
0, NULL); 

CloseHandle (h); 

closesocket (s_sock); 

II Deregister the service 
hr= UnregisterBtService (hWnd, RecordHandle); 
CoUniniti alize(); 
Add2List (hWnd, TEXT(«Server thread exit»)); 
return O; 

II ReceiveThread ~ Receives. the file requested by the remote device 
II 
DWORD WINAPI ReceiveThread (PVOID pArg} { 

SOCKET. t_sock = (SOCKET) pArg; 
HWND hWnd =. hMain; II I'm cheating here. 
int nCnt, nFileSize, re; 
TCHAR szFileName[MAX_PATH]; 
PBYTE pBuff; 
inti, nSize, nTotal; 
OWORO.dwBytes; 
HANDLE hFile: 
Add2.List (hWnd, TEXT(«receive thread entered»)); 
SetThreadPriority .(GetCurrentThread (), THREAO_PRIORIT¥_ABOVE_NORMAL); 

/I . Read the number of bytes in the filename. 
re = recv (t_sock, (LPSTR)&nCnt, · si zeof (nCnt), 0); 
if ((re == SOCKET_ERROR) 11 (nCnt > MA)(_PATH)) { 

} 

Add2list (hWnd, TEXT(«failed receiving name size»)); 
closesocket (t_sock); 
return O; 

//Read the filename. Place the file in the root of the file system 
Stri ngCch(opy (szFi l eName, dim.· (sz Fil eName)., L» \ \») ; 
i = (int) wcslen CszFileName); 
re = recv (t_sock, (LPSTR)&szFileName[iJ, nCnt, O); 
i f (re == SOCKET_ERROR) { 

Add2List.(hWnd, TEXT(«failed receiving name»}}; 
closesocket (t_sock); 
return O; 

Add2Lis.t (hWnd, TEXT(«Fi le: %s»), szFileName); 

pBuff = (PBYTE)LocalAlloc (L,PTR, BLKSIZE); //Create buff for file·. 
II 
II Receive file size. 
II 
re = recv (t_sock, (LPSTR)&nFil eSi ze, si zeof (nFileSi ze)., ... 0); 
Add2Li.st. (hWnd, TEXT(«received file s.ize of %d bytes»), nFileSize); 

if ((re != SOCKET_ERROR) && (nFileSize > 0)) { 
II Create the fi1e. Overwrite if user says so. 



Chapter 14 Device-to-Device Communication 531 

re = O; 
hFile = CreateFile (szFileName, GENERIC_WRITE, 0, NULL, 

CREATE__ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); 
if (hFile == INVALID_HANDLE_VALUE) { 

} 

Add2List (hWnd, TEXT(«File Open failed. re %d»), 
GetLastError()); 

re = BAD_FILEWRITE; 

II Send ack code. 
Add2List (hWnd, TEXT(«Sending ack. %d»), re); 
send (t_sock, (LPSTR)&rc, sizeof (re), O); 
II 
II Receive file. 
II 
nTotal = nFileSize; 
while ((!re) && (nFileSize > O)) { 

MySetWindowText (hWnd, TEXT («%02d%% received»), 
(nTotal-nFileSize)*lOOlnTotal); 

nCnt =min (BLKSIZE, nFileSize); 
for (nSize = O; nSize < nCnt;) { 

i = recv (t_sock, (LPSTR)pBuff+nSize, nCnt-nSize, O); 
if (i == SOCKET_ERROR) { 

} 

Add2List (hWnd, TEXT(«recv socket err %d»), 
GetLastError()); 

re = BAD_SOCKETRECV; 
break; 

nSize += i; 

Add2List (hWnd, TEXT(«recv'd %d bytes.»), nSize); 
if (i) { 

if (!WriteFile (hFile, pBuff, nSize, &dwBytes, 0)) 
re = BAD_FILEWRITE; 

nFileSize -= dwBytes; 
else 

Sleep(SO); 
II Send ack of packet. 
send (t_sock, (LPSTR)&rc, sizeof (re), O); 

else if (re == BAD_FILEOPEN) 
Add2List (hWnd, TEXT(«File not found.»)); 

Add2List (hWnd, TEXT(«receive finished»)); 
LocalFree (pBuff); 
CloseHandle (hFile); 
SetWindowText (hWnd, szTitleText); 
Add2List (hWnd, TEXT(«receive thread exit»)); 
return O; 

11----------------------------------------------------------------------
11 SendThread - Sends a file to the remote device 
II 



532 Part Ill Advanced Windows CE 

DWORD WINAPI SendFileThread (PVOID pArg) { 
PSENDTHSTRUCT psfs = (PSENDTHSTRUCT) pArg; 
HWND hWnd = hMain; 
SOCKET Lsock; 
inti, re, nCnt, nBYtes, nTotal = o; 
SOCKADDILBTH btaddr; 
BOOL fSuccess = FALSE; 
char *pBuff; 

II Open a bluetooth socket 
t_sock =socket (AF_BT, SOC~STREAM, BTHPROTO_RFCOMM); 
i.f (t_sock == INVALID~SOCKET) { 

} 

Add2List (hWnd, TEXT(«socket failed. re %d»),WSAGetLastError()); 
return O; 

Add2List (hWnd, TEXT(«Trying device %s»), btd[psfs->nDevice].szName); 

ll Fill in.address stuff 
memset (&btaddr, O, sizeof (btaddr}); 
btaddr.btAddr = btd[psfs~>nDevice].btaddr; 
btaddr.addressFamily = AF_BT; 
btaddr.port = O; II Let driver find the channel 
memcpy (&btaddr.serviceClassid, &guidBtSquirt, sizeof CGUID)); 
II 
11 Connect to remote sock.et 
II 
rt = connect (t_sock, (struct sockaddr *)&btaddr, sizeof (btaddr)); 
if (re) { 

} 

Add2Li st ChWnd, TEXT(«Conneeted failed %d»), re); 
closesocket (t_sock); 
return O; 

Add2Li st (hWnd, TEXT(«connected ... »)); 

II Allocate a buffer 
pBuff "' (char *)LocalAlloc (LPTR, BUFFSIZE); 

//Send the file name 
II Strip off any leading path, assume len > 1 since we've opened file. 
for {i = lstrlen (psfs->szName)-1; 

Ci > O) && .(psfs~>SZName[i] !=TEXT ('\\')) ; i--); 
if (psfs->szName[i] ==.TEXT ('\\')) i++; 
LPTSTR pszNameOnly = &psfs->szName[i]; 
II Send name size. 
nCnt = ((lstr.len (pszNameOnly) + l} * sizeof CWCHAR)); 
re= send (t_soek, (LPSTR)&nCnt, sizeof (nCnt), O); 

II Send fi.l ename. 
if (re != SOCKET_ERROR) 

re= send (t_sock, (LPSTR)pszNameOnly, nCnt, O); 

if (re != SOCKET_ERROR) { 
int nFil eSi ze = Get Fil eSi ze (psfs->hFi le, NULL); 



} 

} 

Chapter 14 Device-to-Device Communication 533 

II Send file size. Size will always be< 2 gig. 
re= send (t_soek, (LPSTR)&nFileSize, sizeof (nFileSize), O); 
if (re == SOCKET_ERROR) 

re = BAD_SOCKET; 
else 

II Recv ack of file size. 
recv (t_sock, (LPSTR)&rc, sizeof (re), O); 

II Send the file. 
nTotal = nFileSize; 
while ((!re) && nFileSize) { 

} 

MySetWindowText (hWnd, TEXT («%02d%% sent»), 
(nTotal-nFileSize)*lOOlnTotal); 

II Read up to the block size. 
nCnt =min (BLKSIZE, nFileSize); 
ReadFi 1 e (psfs->hFi le, pBuff, nCnt, (DWORD '')&nBytes, NULL) ; 
if (nCnt != nBytes) { 

} 

re = BAD_FILEREAD; 
break; 

II Send the block 
re= send (t_sock, pBuff, nCnt, O); 
if (re == SOCKET_ERROR) { 

Add2List (hWnd, TEXT(«send error %d «), GetLastError()); 
re = BAD_SOCKET; 

} else 
Add2List (hWnd, TEXT(«sent %d bytes»), re); 

nFileSize -= re; 

II Receive ack. 
recv (t_sock, (LPSTR)&rc, sizeof (re), O); 

SetWindowText (hWnd, szTitleText); 

II Send close code. 
if (re != BAD_SOCKET) 

send (t_sock, (LPSTR)&rc, sizeof (re), O); 

II Clean up. 
closesocket (t_sock); 
CloseHandle (psfs->hFile); 
LocalFree (pBuff); 
LocalFree (psfs); 
if (re) 

Add2List (hWnd, TEXT(«SendFile Exit re= %d»), re); 
else 

Add2List (hWnd, TEXT(«File sent successfully.»)); 
return O; 



534 Part Ill Advanced Windows CE 

The interesting routines are the search thread routine Search Thread and the server thread 

routine ServerThread. The Search Thread calls the FindDevice routine to enumerate the 

Bluetooth devices in the immediate area. The search is set to take approximately 5 seconds. 

Once found, the device names are listed in the device list combo box. The names and the 

addresses of all the devices are saved in an array. 

The server routine, ServerThread, creates a socket and binds it to an address. The routine 

then queries Winsock for the RFCOMM channel assigned to the socket. The RegisterBtService 
routine is then called to advertise the bthel/oBtSquirt service. The RegisterBtService routine 

uses a prebuilt SDP record and inserts the GUID for the service and the RFCOMM channel 

in the appropriate parts of the record. Once constructed, the SDP packet is registered in the 

PublishRecord routine. 

When the user taps Send, BtSquirt displays a File Open dialog box so the user can select a 

file. Once the file is selected, the program attempts to connect to the device currently select

ed in the combo box. If the connection is successful, the file is sent to the other device. 

Accessing Bluetooth through either Winsock or virtual COM ports provides the most flexible 

way to wirelessly communicate with another device. The problem is that with either of these 

methods, the custom application, such as BtSquirt, has to be on both machines unless the 

application communicates through one of the public services. Public services are handy, but 

for linking two machines with a custom stream, sometimes you have to bite the bullet and 
write a custom Bluetooth application. 

This chapter has given you a basic introduction to some of the ways Windows CE devices can 

communicate with other devices. In the next chapter, we look at the the Windows CE from 

a systems perspective, diving into such topics as the how the system manages memory and 

power management. 



Chapter 15 

System Programming 
This chapter takes a slightly different tack from the previous chapters of the book. Instead of 

touring the API of a particular section of Windows CE, I'll show you Windows CE from a sys

tems perspective. 

Windows CE presents standard Windows programmers with some unique challenges. First, be

cause Windows CE supports a variety of different microprocessors and system architectures, 

you can't count on the tried and true IBM/Intel PC-compatible design that can be directly 

traced to the IBM PC/AT released in 1984. Windows CE runs on devices that are more differ

ent than alike. Different CPUs use different memory layouts, and while the sets of peripherals 

are similar, they have totally different designs. 

In addition to using different hardware, Windows CE itself changes, depending on how it's 

ported to a specific platform. While all Windows Mobile devices of a particular version have 
the same set of functions, that set is slightly different from the functions provided by dif

ferent configurations of Windows CE. In addition, Windows CE is designed as a collection of 

components so that OEMs using Windows CE in embedded devices can remove unneeded 

sections of the operating system, such as the Fiber API. 

All of these conditions make programming Windows CE unique and, I might add, fun. This 

chapter describes some of these cross-platform programming issues. I'll begin the chapter by 

describing the system memory architecture. 

The Windows CE Memory Architecture 
In operating system circles, much is made of the extent to which the operating system goes 

to protect one application's memory from other applications. The old Microsoft Windows Me 

used a single address space that provides minimal protection between applications and the 

Windows operating system code. Windows XP and Windows Vista, on the other hand, imple

ment completely separate address spaces for each Win32 application. 

From its inception in 1996 until the relase of Windows Embedded CE 6.0 in November 2006, 

Windows CE implemented a single 2-GB virtual address space for all applications. Even 

with the single address space, the memory space of an application was protected so that it 

couldn't be accessed by another application. This architecture served Windows CE well, but 
the design imposed the famous (or infamous) 32/32 limts of 32 MB per virtual machine and 

32 concurrent processes. 

535 



536 Part Ill Advanced Windows CE 

The release of Windows CE 6 brought a completely redesigned kernel and operating system 
architecture to Windows CE. Gone was the single address space, replaced by separate virtual 
address spaces for each application. Each application address space ranges from virtual ad
dress zero to the 2-GB boundary. The upper half of the address space from 2 GB to the top 
at 4 GB is addressable only in kernel mode and therefore only addressable by the kernel and 
the other parts of the operating system running in kernel mode. Figure 15-1 illustrates this 
memory architecture. When a thread in an application is executing, the application that the 
thread is executing in is enabled by the operating system. This user address space is mated 
to a common kernel address space. Of course, the application doesn't know that the kernel 
address space is consistent across applications because application threads that run in user 
mode threads can't access any address above the 2-GB boundary.1 

FFFF FFFF 

8000 0000 

System Reserved 
(Kernel Mode Space) 

Application 
Space 

J 
1-
t-; 

0000 0000 ,__ __________ ..... ~!,,. 
FIGURE 15-1 A diagram of the entire 4-GB Windows CE address space 

Application Space 
The application address space is shown in Figure 15-2. This address space is divided into a 
number of regions, each with a specific purpose. The first region is the lower gigabyte of the 
address space that contains the application code and all memory allocations. As with other ver
sions of Windows, the application code is loaded at a base address of 0001 0000 and is loaded 
upward. Above the code, the operating system places the static data areas for the application, 

1 Unlike earlier versions of Windows CE, this new architecture does not support a "kernel mode only" configuration 
where every thread in the system runs in kernel mode. 



Chapter 15 System Programming 537 

the resource data for the application, and the local heap. There is at least one stack, which is 

the stack for the main thread of the application, and there are subsequent stacks for all other 

threads created by the application. All memory allocations, whether they be stack, heap, or 

direct virtual allocations, will be placed in this first gigabyte of the application's address space. 

7FFF FFFF 

7000 0000 

6000 0000 

4000 0000 

00010000 
0000 0000 

Shared System Heap 

Memory Mapped 
Objects 

Shared User Mode 
DLLs 

DLLs • I 
I 

Per process 
virtual space 

Memory Allocations 

• I 

C~e 
T 

Reserved 

FIGURE 15-2 A diagram of the application virtual memory space 

The 512-MB region from address 4000 0000 to SFFF FFFF is reserved for the code and data 

for DLLs loaded by the various applications. When an application loads a DLL, either because 

it was loaded when the application was loaded or by a call to Loadlibrary, Windows CE will 

map the DLL to this region. Each DLL in the system is loaded at a unique address within this 

region. For a given DLL, the address of that DLL is consistent across all applications. So for 

example, if application "A" loaded BOB.DLL and application "B" also loaded Bob, the base 

address for the DLL would be the same in the virtual address spaces for both applications 

"A" and "B". To application "C", which hadn't loaded Bob, the virtual address where Bob was 

loaded in the other applications would appear as an unallocated region. Departing from the 

methodology used in earlier versions of Windows CE, DLLs in this region are loaded "bot

tom up" with the first DLL loaded at 4000 0000 and subsequent DLLs loaded at successively 

higher addresses. 

The region from 6000 0000 to 6FFF FFFF is reserved for memory-mapped objects, some

times called RAM-based memory mapped files. As mentioned in Chapter 7, these memory 



538 Part Ill Advanced Windows CE 

mapped "files" don't have any real files behind them. Instead, they are temporary memory 

buffers that are primarily used for interprocess communication. The reason for this special 

region for RAM-based memory mapped files is to allow the operating system the ability to 

map the same object at the same address for each appliation that opens that object. This 

allows the backward compatibility with earlier versions of Windows CE that allocated 

memory-mapped files in the shared Large Memory Area, which doesn't exist in the new 

design. While the operating system places memory mapped objects in this region, if an 

application opens an actual file for memory mapped access, that mapping will occur in the 
bottom 1 GB of the application's address space. 

The region from 7000 0000 to 7FFF 0000 is called the shared system heap. This region is 

used by the operating system to pass data down to the applications. Applications can only 

read the region, while operating system components running in kernel mode can both 

read and write the region. At the very top of the application space is a 1-MB region that is a 

"guard" region. Any access to this region by the application or by components in the operat

ing system will result in an exception. 

Kernel Space 

The address space above the 2-GB boundary, addresses 8000 0000 through FFFF FFFF, is reserved 

for the operating system and isn't accessible to applications and drivers running in user mode. 
This address space is used by the operating system and the kernel mode drivers loaded by 

the operating system. A diagram of the kernel mode address space is shown in figure 15-3. 

FFFF FFFF 

FOOO 0000 

0000 0000 

CBOO 0000 

cooo 0000 

AOOO 0000 

8000 0000 

CPU Specific Area 

Kernel VM 

Object Store 

Kernel XIP DLLs 

Uncached access 
to physical memory 

Cached access 
to physical memory 

FIGURE 15-3 A diagram of the upper half of the Windows CE memory map 



Chapter 15 System Programming 539 

Like the application space, the upper 2 GB of kernel space are divided into a number of re

gions. The first 512-MB memory region, from addresses 8000 0000 to 9FFF FFFF, is mapped 

to the physical address space. On some CPUs, this region is a linear map to the first 512 MB 

of the physical address space. On other CPUs, there is a table created by the OEM when the 
system is designed that maps this region to various areas in the physical address space. This 

table is read when the system boots and does not change. Memory accesses through this 

window are cached in the CPU's data cache to improve performance. 

The second 512-MB region, from AOOO 0000 through BFFF to the window starting at 8000 

0000. The difference between this window and the window at 8000 0000 is that accesses 

through the AOOO 0000 window are not cached. While the performance is slower through 

this window, the noncached access is necessary when you read registers in devices that might 

change independently of the execution of the CPU. 

The area between COOO 0000 and C7FF FFFF is used for the kernel execute-in-place DLLs. 

This generally includes almost all of the operating system code as well as the kernel mode 

device drivers. The area between C800 0000 and CFFF FFFF is used for the object store. 

The region from DOOO 0000 to EFFF FFFF is used by the kernel for virtual allocations and 

other memory needs. All but SHx CPUs can utilize this entire region. The SHx is limited to the 

bottom half of the region ending at DFFF FFFFF. Finally, the region from FOOO 0000 to the top 

of the memory space at FFFF FFFF is used by the kernel for system-related functions. 

Writing Cross-Platform Windows CE Applications 
Over the years, Windows programmers have had to deal concurrently with different versions 

of the operating system. Part of the solution to the problem this situation posed was to call 

GetVersion or GetVersionEx and to act differently depending on the version of the operating 

system you were working with. You can't do that under Windows CE. Because of the flex

ible nature of Windows CE, two builds of the same version of Windows CE can have different 
APls. The questions remain, though. How do you support multiple platforms with a common 

code base? How does the operating system version relate to the different platforms? 

Platforms and Operating System Versions 

To understand how the different platforms relate to the different versions of Windows CE, 

it helps to know how the Windows CE development team is organized within Microsoft. 

Windows CE is supported by a core operating system group within Microsoft. This team is 
responsible for developing the operating system, including the file system and the various 

communication stacks. 

Coordinating efforts with the operating system team are the various platform teams, work

ing on Windows Mobile devices, the Microsoft Zune media player, and many other platforms. 



540 Part Ill Advanced Windows CE 

Each team is responsible for defining a suggested hardware platform, defining applications 

that will be bundled with the platform, and deciding which version of the operating system 

the platform will use. Because the operating system team works continually to enhance 

Windows CE, planning new versions over time, each platform team generally looks to see 
what version of Windows CE will be ready when that team's platform ships. 

The individual platform teams also develop the shells for their platforms. Because each team 

develops its own shell, many new functions or platform-specific functions first appear as part 

of the shell of a specific platform. Then if the newly introduced functions have a more gen
eral applicability, they're moved to the base operating system in a later version. You can see 

this process in both the Notification API and the Cellcore driver. Both these sets of features 

started in their specific platform group and have now been moved out of the shell and into 

the base operating system. 

Table 15-1 shows some of the different platforms that have been released and the version of 
Windows CE that each platform uses. 

TABLE 1s-1 Versions for Windows CE Platforms 

wl~d:d~tEVE!t~0:11, · 
Original Handheld PC 

Japanese release of H/PC 

Handheld PC 2.0 

Original Palm-size PC 

Handheld PC Pro 3.0 

Palm-size PC 1.2 

Pocket PC 

Handheld PC Pro 2000 

Pocket PC 2002 

Smartphone 2002 

1.00 

2.11 

2.11 

3.0 

Smart Display 1.0 4.1 
·--··-••-··••· ••••••• •• •• • •• •• ·•··•·••·•'"•'°' "'· •·=• .. •oo ... ~ ............ ••• ••• ••••••• ••••••••••••• •••••••• ••••••-'••••••••••••••••-' ••••••••·-•-··•·-····•••···-•• 

Pocket PC 2003 4.2 

Smartphone 2003 4.2 

Pocket PC 2003 2nd Ed. 4.21 

Smartphone 2003 2nd Ed. 4.21 

WM 5 Pocket PC 5.01 

WM 5 Smartphone 5.01 

WM 6 Professional 5.02 

WM 6 Standard 

WM 6 Classic 

5.02 

5.02 

, ' ' ' ' ' ' • ;, :' -~ ; : ' 0 '. 

........................................................ , ... ,, ..................................................... ---

You can choose from a number of ways to deal with the problem of different platforms and 

different versions of Windows CE. Let's look at a few. 



Chapter 15 System Programming 541 

Compile-Time Versioning 

The version problem can be tackled in a couple of places in the development process of 

an application. At compile time, you can use the preprocessor definition_ WIN32_ WCE to 

determine the version of the operating system you're currently building for. By enclosing 

code in a #if preprocessor block, you can cause code to be compiled for specific versions of 

Windows CE. 

Following is an example of a routine that's tuned to use the AlphaBlend API on Windows CE 

6, but a simple StretchB/t call on earlier versions of Windows CE. 

int DrawBackground (HWND hWnd, HDC hdcDest, int ex, int cy) 
{ 

RECT rt; 
GetClientRect (hWnd, &rt); 

#if (_WIN32_WCE >= Ox600) 
BLENDFUNCTION blend; 
blend.BlendOp = AC_SRC_OVER; 
blend.BlendFlags = O; 
blend.AlphaFormat = O; 
blend.SourceConstantAlpha = 200; 
AlphaBlend (hdcDest, 0, 0, rt.right, rt.bottom, 

m_hSrcDc, 0, 0, rt.right, rt.bottom, blend); 
#else 

StretchBlt (hdcDest, 0, 0, rt.right, rt.bottom, 

#endif 
return O; 

} 

m_hSrcDc, 0, 0, rt.right, rt.bottom, SRCCOPY); 

A virtue of this code is that the linker links the appropriate function for the appropriate 

platform. Without this sort of compile-time code, you couldn't simply put a run-time if state

ment around the call to AlphaBlend because the program would never load on anything 

running versions of Windows CE before 6.0. The loader wouldn't be able to find the exported 

function AlphaB/end in Coredll.dll because it's not present on earlier versions of Windows CE. 

The SDKs Windows Mobile systems have additional defines. Windows Mobile Classic and 

Windows Mobile Professional (Pocket PC) SDKs set a defined named WIN32_PLATFORM_ 
PSPC. Windows Mobile Standard (Smartphone) SDKs define WIN32_PLATFORM_WFSP. So 
you can block Pocket PC-specific code in the following way: 

#ifdef WIN32_PLATFORM_PSPC 
II Insert Pocket PC code here. 

#endif 

There are platform-specific defines for other Windows CE platforms. Table 15-2 shows some 

of these defines. 



542 Part Ill Advanced Windows CE 

TABLE 15-2 Defines for Windows CE Platforms 

~\1)rifi; 
Windows Mobile 6 Standard 

Windows Mobile 6 Professional/Classic 

Windows Mobile 5 Smartphone 

Windows Mobile 5 Pocket PC 

Smartphone 2003 Second Edition 

Pocket PC 2003 Second Edition 

Pocket PC 2003 

Smartphone 2003 
=oo '"" , ....... =·"··"·· ''" o ......... ,M. '"·'·"······· ··=o .. M ••• Mo ••• o.M 

Pocket PC 2002 

Smartphone 2002 

Handheld PC 2000 

Pocket PC 2000 

Palm-size PC 

.......................................... 

· · ·oer.~~ •.. , . 
WIN32_PLATFORM_WFSP (= 1) 

WIN32_PLATFORM_PSPC (= 1) 

W/N32_PLATFORM_WFSP (= 1) 

WIN32_PLATFORM_PSPC (= 1) 

WIN32_PLATFORM_WFSP (= 1) 

WIN32_PLATFORM_PSPC (= 1) 

WIN32_PLATFORM_PSPC (= 400) 

W/N32_PLATFORM_WFSP (= 200) 

WIN32_PLATFORM_PSPC (= 310) 

WIN32_PLATFORM_WFSP (= 100) 

WIN32_PLATFORM_HPC2000 

WIN32_PLATFORM_PSPC 
............ ......•. .. ' ...... _ ...... 

WIN32_PLATFORM_PSPC --· ··-··--·--~·-·--·--····-· ............. ·---·-···- ·············- ··- ..................... . 

Handheld PC Professional W/N32_PLATFORM_HPCPRO 

Early Pocket PCs could be detected using the value assigned to WIN32_PLATFORM_PSPC, 
but lately Microsoft has simply defined the value to 1. To distinguish between the different 
versions of the Pocket PC, you must now provide a check of the target Windows CE version 

using the _WIN32_WCE definition, as in 

#if defined(WIN32_PLATFORM_PSPC) 
#if (_WIN32_WCE == Ox502) 

II Windows Mobile 6 Professional I Classic 
#elif (_WIN32_WCE == Ox501) 

II Windows Mobile 5 Pocket PC 
#elif (_WIN32_WCE == Ox421) 

II Pocket PC 2003 Second Edition 
#elif (_WIN32_WCE == Ox420) 

II Pocket PC 2003 
#else 

II Earlier Pocket PC 
#endif 
#endif II ifdef WIN32_PLATFORM_PSPC 

The only issue with using conditional compilation is that while you still have a common 

source file, the resulting executable will be different for each platform. 

Explicit Linking 
You can tackle the version problem other ways. Sometimes one platform requires that you 

call a function different from one you need for another platform you're working with, but 

you want the same executable file for both platforms. A way to accomplish this is to explicitly 



Chapter 15 System Programming 543 

link to a DLL using LoadLibrary, GetProcAddress, and FreeLibrary. These functions were cov

ered in Chapter 8. 

Run-Time Version Checking 

When you're determining the version of the Windows CE operating system at run time, you 

use the same function as under other versions of Windows-GetVersionEx, which fills in an 

OSVERSIONINFO structure defined as 

typedef struct _OSVERSIONINFO{ 
DWORD dwOSVersioninfoSize; 
DWORD dwMajorVersion; 
DWORD dwMinorVersion; 
DWORD dwBuildNumber; 
DWORD dwPlatformid; 
TCHAR szCSDVersion[ 128 ]; 

} OSVERSIONINFO; 

Upon return from GetVersionEx, the major and minor version fields are filled with the 
Windows CE version. This means, of course, that you can't simply copy desktop Windows 

code that branches on classic version numbers like 3.5 or 5.0. The dwP/atformld field contains 

the constant VER_PLATFORM_WIN32_CE under Windows CE. 

Although you can differentiate platforms by means of their unique Windows CE version 

numbers, you shouldn't. For example, you can identify a Windows Mobile 6 platform by its 

unique Windows CE version, 5.02; but to test for any Windows Mobile Classic (Pocket PC) sys

tem, you should call SystemParameterslnfo with the SPl_GETPLATFORMTYPE constant, as in 

TCHAR szPlat[256]; 
INT re; 

re= SystemParametersinfo (SPI_GETPLATFORMTYPE, sizeof (szPlat), 
szPlat, O); 

if (lstrcmp (szPlat, TEXT ("PocketPC")) == 0) { 
II Running on a Pocket PC 

Aside from the differences in their shells, though, the platform differences aren't really that 

important. The base operating system is identical in all but some fringe cases. The best 
strategy for writing cross-platform Windows CE software is to avoid differentiating among 

the platforms at all-or at least differentiate among them as little as possible. 

For the most part, discrepancies among the user interfaces for the different consumer 

Windows CE devices can be illustrated by the issue of screen dimension and input methods. 

A portrait-mode screen requires a completely different layout for most windows compared 

with landscape-mode screens. So instead of looking at the platform type to determine 

what screen layout to use, you'd do better to simply check the screen dimensions using 

GetDeviceCaps. Also remember that many Windows CE devices can rotate the screen, so 



544 Part Ill Advanced Windows CE 

applications need to detect this and respond correctly. Different input methodologies also 

drive the user interface. Systems with touch screens require different designs from systems 

with mice or systems with no pointer-style input. 

Power Management 
Managing power is critical to almost all Windows CE systems. Even systems that are not 

battery driven still must deal with power consumption and heat-generation issues that are 
driven by power consumption. 

Most Windows CE systems use the optional Power Manager component for this task. When 

the power manager isn't used, GWES takes over and performs some rudimentary power 

management tasks. Because power management is so important, I'll cover power manage

ment from both perspectives, first using the power manager and then using the older GWES 

methodology. However, before I discuss how to manage the power, we need to agree on one 

seemingly straightforward question: "What is off?" 

Defining the Meaning of "Off" 

When the user powers down a battery-powered Windows CE device, the power system may 

not turn off the way a PC powers off. Instead, the system may be placed in a suspended state. 
When the system is suspended and the user powers up the device, the device doesn't reboot 

like a PC; it resumes, returning to the same state it was in before it was suspended. As a 

result, an application running before the system was suspended is still running when the 

system resumes. In fact, on systems that support suspend/resume, the application won't 

know that it was suspended at all unless it explicitly requested to be notified when the 

system was suspended. 

Other Windows CE systems truly turn off, shutting down the system completely. These sys

tems reboot the operating system when powered on. On these systems, all the applications 
were either asked to close nicely or were terminated during shutdown and need to be re

started after the system boots. 

The OEM, when designing the system, decides whether a system is designed to suspend/re
sume or shutdown/reboot.2 Windows CE has complete support for both methodologies. 

For good or bad, there is no documented method for an application to know if a device is 

designed for suspend/resume or shutdown/reboot. However, the applcation can monitor the 

power state and can control that state. Let's look at power management from three perspec

tives: querying the power state, changing the power state, and preventing the power state 

from changing. 

2 The suspend vs. power off decision is made by Microsoft for Windows Mobile systems. 



Chapter 15 System Programming 545 

Querying the Power State 

Regardless of whether the power manager is supported on a particular device, applications 

can always query the current power state of the system by calling 

DWORD GetSystemPowerStatusEx2 ( 
PSYSTEM_POWER_STATUS_EX2 pSystemPowerStatusEx2, 
DWORD dwlen, BOOL fUpdate); 

This function takes three parameters: a pointer to a SYSTEM_POWER_STATUS_EX2 structure, 

the length of that structure, and a Boolean value that tells the operating system if it should 

query the battery driver during the call to get the latest information or to return the cached 

battery information. The system queries the battery approximately every 5 seconds, so if this 

third parameter is FALSE, the data is still not too stale. The SYSTEM_POWER_STATUS_EX2 
structure is defined as 

typedef struct _SYSTEM_POWER_STATUS_EX2 
BYTE ACLineStatus; 
BYTE BatteryFlag; 
BYTE BatterylifePercent; 
BYTE Reserved!; 
DWORD BatterylifeTime; 
DWORD BatteryFullLifeTime; 
BYTE Reserved2; 
BYTE BackupBatteryFlag; 
BYTE BackupBatteryLifePercent; 
BYTE Reserved3; 
DWORD BackupBatterylifeTime; 
DWORD BackupBatteryFullLifeTime; 
WORD BatteryVoltage; 
DWORD BatteryCurrent; 
DWORD BatteryAverageCurrent; 
DWORD BatteryAverageinterval; 
DWORD BatterymAHourConsumed; 
DWORD BatteryTemperature; 
DWORD BackupBatteryVoltage; 
BYTE BatteryChemistry; 

SYSTEM_POWER_STATUS_EX2; 

Before I describe this rather large structure, I must warn you that the data returned in this 

structure is only as accurate as the system's battery driver. This same structure is passed to 

the battery driver to query its status. Windows CE doesn't validate the data returned by the 

battery driver. The data returned by this function depends on the battery driver and there

fore varies across different systems. For example, many systems won't report an accurate 

value for the battery level when the system is on AC power; other systems will. Applications 

using GetSystemPowerStatusEx2 should program defensively and test on all systems that 
might run the application. 

The first field, ACLineStatus, contains a flag indicating whether the system is connected to AC 

power. The possible values are AC_L/NE_ OFFLINE, indicating that the system isn't on AC power; 



546 Part Ill Advanced Windows CE 

AC_LINE_ONLINE, indicating that the system is on AC power; AC_LINE_BACKUP_POWER; and 

AC_LINE_UNKNOWN. The BatteryF/ag field, which provides a gross indication of the current 

state of the battery, can have one of the following values: 

• BATTERY_FLAG_HIGH The battery is fully or close to fully charged. 

• BATTERY_FLAG_LOW The battery has little charge left. 

• BATTERY_FLAG_CRITICAL The battery charge is at a critical state. 

• BATTERY_FLAG_CHARGING The battery is currently being charged. 

• BATTERY_FLAG_NO_BATTERY The system has no battery. 

• BATTERV_FLAG_UNKNOWN The battery state is unknown. 

The BatteryLifePercent field contains the estimated percentage of charge remaining in the 
battery. Either the value will be between 0 and 100 or it will be 255, indicating that the per

centage is unknown. The BatteryLifeTime field contains the estimated number of seconds 

remaining before the battery is exhausted. If this value can't be estimated, the field contains 

BATTERY_LIFE_UNKNOWN. The BatteryFul/LifeTime field contains the estimated life in sec

onds of the battery when it is fully charged. If this value can't be estimated, the field contains 

BATTERY_LIFE_UNKNOWN. Note that on many systems, these lifetime values are difficult, if 

not impossible, to accurately measure. Many OEMs simply fill in BATTERY_LIFE_UNKNOWN 

for both fields. 

The next four fields (not counting the reserved fields) replicate the fields previously described 

except that they contain values for the system's backup battery. Again, because many of 

these values are difficult to measure, many systems simply return an "unknown" value for 

these fields. 

The remaining fields describe the electrical state of the battery and backup battery. Because 

many systems lack the capacity to measure these values, these fields are simply filled with 

the default "unknown" values. The final field, BatteryChemistry, contains a flag indicating the 

type of battery in the system. The currently defined self-describing values are 

• BATTERY_CHEMISTRY_ALKALINE 

• BATTERY_CHEMISTRY_NICD 

• BATTERY_CHEMISTRY_NIMH 

• BATTERY_CHEMISTRY_LION 

• BATTERY_CHEMISTRY_LIPOLY 

• BATTERY_CHEMISTRY_UNKNOWN 



Chapter 15 System Programming 547 

The Power Manager 

The Power Manager component provides a central clearinghouse for all things related to 

power. It notifies the system when power conditions change, it can be told to change the 
power state, and applications can request it not to automatically change power states. The 

power manager can even control the power states of individual drivers. 

The power manager is quite flexible. In fact, OEMs can redesign it from the ground up or 

simply modify the default power state definitions. By default, Windows CE provides a series 

of power states and then maps them to typical use conditions. All of this ends up meaning 

that it's almost imposible to define the power manager because it is so flexible. So in this sec

tion I'm going to define the default power management API with the hope that you will be 

able to use this knowledge with whatever Windows CE-based system you have. 

The Power Manager defines a series of power states as DO, 01, 02, and 03. These rather 

cryptic names are then mapped to more friendly names at the system level. For embed

ded systems, OEMs define the system power states. Examples of power states might be 

something like On, Idle, and Suspend. Other power states can be defined, such as ScreenOff, 

lnCradle, and OnBattery. 

From an application perspective, the Power Manager provides the ability to be notified when 

the power state changes as well as a uniform method of changing the power state of the sys

tem through a series of functions. 

The power states for the system are defined in the registry. The SOK defines PWRMGR_REG_ 

KEY so that you don't have to know the registry string, but for the times when the constant 

isn't defined, the Power Manager's registry data is kept at HKEY_LOCAL_MACHINE\System\ 

CurrentControlSet\Control\Power. The power states are then defined as subkeys under the 

key State. 

Power Notifications 

One of the nice features of the Power Manager is its ability to notify an application when the 

power state of the system changes. This ability frees the application from polling the battery 

state manually to monitor the power. An application can request that the Power Manager 

send a notification to the application when the power state of the system changes by calling 

RequestPowerNotifications. The Power Manager then sends the notifications through a mes

sage queue that has been previously created by the application. 

RequestPowerNotifications is prototyped as 

HANDLE RequestPowerNotifications (HANDLE hMsgQ, DWORD Flags); 

The first parameter is the handle to a message queue that the application has previously cre

ated. The second parameter is a series of flags indicating which notifications the application 

wants to receive. The flags, which can be ORed together, are as follows: 



548 Part Ill Advanced Windows CE 

• PBT_TRANSITION Receive notifications when the power state changes-for example, 

when the system goes from On to Suspend. 

• PBT_RESUME Receive notifications when the system resumes. 

• PBT_POWERSTATUSCHANGE Receive notifications when the system transitions be

tween AC and battery power. 

• PBT_POWERINFOCHANGE Receive notifications when the power information, such as 

the battery level, changes. 

• POWER_NOTIFY_ALL Receive all power notifications. 

The RequestPowerNotifications function returns a handle to the power notification, or NULL if 

the function fails. The message queue should be created with read access by the application, 

since it will be reading the power notifications from the queue. 

To receive the notifications, an application should block on the queue handle by using 

WaitForSingleObject. As discussed in Chapter 8, the handle will be signaled when a notifi

cation is placed in the queue. The actual notification is received in the form of a POWER_ 

BROADCAST structure defined as follows: 

typedef struct _POWER__BROADCAST { 
DWORD Message; 
DWORD Flags; 
DWORD Length; 
WCHAR SystemPowerState[l]; 

} POWER_BROADCAST, ''PPOWER__BROADCAST; 

First, note that this structure is a variable-length structure. The last field, SystemPowerState, 

is defined as an array of WCHARs but can be filled with other, nonstring, data. The first field 
is the identifier of the notification itself. This field is filled with one of the PBT_ flags listed 

earlier. The Flags field can contain the following flags, depending on the notification being 
received. 

• POWER_STATE_ON The system is on. 

• POWER_STATE_OFF The system is off. 

• POWER_STATE_CRITICAL The system is performing a critical off. 

• POWER_STATE_BOOT The system is booting. 

• POWER_STATE_IDLE The system is idle. 

• POWER_STATE_SUSPEND The system is suspended. 

• POWER_STATE_RESET The system is starting after a reset. 

The final two parameters are related. The Length field is the length of the data in the 

SystemPowerState field. The data contained in the SystemPowerState field depends on the 

notification being sent. For the PBT_ TRANSIT/ON notification, the SystemPowerState field 



Chapter 15 System Programming 549 

contains a string that identifies the new power state. This string is not zero terminated. To 
terminate the string, use the Length field to determine the length of the string. Note that the 

Length field is in bytes, while the characters are 2-byte Unicode characters, so to obtain the 
length of the string in characters, divide the Length field by the size of TCHAR. 

For the PBT_POWERINFOCHANGE notification, the SystemPowerState field contains a 
PPOWER_BROADCAST_POWER_INFO structure defined as follows: 

typedef struct _POWER_BROADCAST_POWER_INFO { 
DWORD dwNumlevels; 
DWORD dwBatterylifeTime; 
DWORD dwBatteryFulllifeTime; 
DWORD dwBackupBatterylifeTime; 
DWORD dwBackupBatteryFulllifeTime; 
BYTE bACLineStatus; 
BYTE bBatteryFlag; 
BYTE bBatterylifePercent; 
BYTE bBackupBatteryFlag; 
BYTE bBackupBatterylifePercent; 

} POWER_BROADCAST_POWER_INFO, *PPOWER_BROADCAST_POWER_INFO; 

Notice that the fields are similar in name and function to many of the fields previously dis
cussed in the SYSTEM_POWER_STATUS_EX2 structure. 

Setting the Power State 

Functions provided by the Power Manager also allow applications to control the power state. 

There are two methods for controlling the power. The first method has the application de
mand a given power setting. The second method has the application request that the power 
not drop below a given level. 

An application can request a specific power state by calling the function 
SetSystemPowerState. This function is prototyped as 

DWORD SetSystemPowerState (LPCWSTR psState, DWORD StateFlags, 
DWORD Options); 

The power state being requested can be specified in either the first or the second param
eter of the function. If the first parameter is nonzero, it points to a string that identifies the 
state being requested. The string should match one of the power states enumerated in the 
registry. 

If psState is NULL, the second parameter, StateFlags, defines the requested power state. This 
parameter is one of the same power states, from POWER_STATE_ON to POWER_ STATE_ 
RESET, that were described in the POWER_BROADCAST structure earlier. 

Of particular interest is the flag POWER_STATE_RESET. This flag requests that the system 

reset. This method of resetting the system using SetSystemPowerState is much better than 



550 Part Ill Advanced Windows CE 

directly calling KernelloControl with the IOCTL command IOCTL_HAL_REBOOT, since using 

SetSystemPowerState will cause the system to flush any buffered data to the file system 

before the function resets the device. 

Although calling SetSystemPowerState is a direct method of changing the power state, a 

more subtle method is to request that the system maintain the minimal power state needed 

by the application by calling SetPowerRequirement. Using SetSystemPowerState assumes the 

application knows best, while calling SetPowerRequirement allows the system to optimize the 

power settings while still meeting the needs of the application. An example of a situation in 
which SetPowerRequirement is handy occurs when an application is using a serial port and 

needs the port to stay powered while communication is active. SetPowerRequirement is 

defined as 

HANDLE SetPowerRequirement (PVOID pvDevice, 
CEDEVICE_POWER__STATE DeviceState, 
ULONG DeviceFlags, PVOID pvSystemState, 
ULONG StateFlags); 

The first parameter specifies the device that the application needs to remain at a given power 

state. The DeviceState parameter defines the power state for the device. The enumeration 

CEDEVICE_POWER_STATE specifies the state, ranging from DO (meaning that the device must 

remain fully powered) to 04 (meaning that the device is powered off). The Deviceflags pa

rameter can be a combination of two flags: POWER_NAME, indicating that the device name 
is valid; and POWER_FORCE, indicating that the device should remain in that state even if the 

system suspends. If the pvSystemState is not NULL, it indicates that the power requirement 

is valid only for the power state named in pvSystemState. The device might not be able to 

change to the requested state. 

As soon as possible, the application should remove the power requirement with a call to 

ReleasePowerRequirement, prototyped as 

DWORD ReleasePowerRequirement (HANDLE hPowerReq); 

The only parameter is the handle returned from SetPowerRequirement. 

Managing Power without the Power Manager 

Even without the power manager, there is rudimentary power management support provid

ed by Windows CE. GWES provides a method of powering down or suspending the system 

and a way to automatically power down the system after a time of no user input. The follow

ing techniques, while quite useful, should be employed only on systems without the power 
manager. If the system supports the power manager, use it. The power manager coordinates 

your request with those of the other applications, and frankly, it's typically easier. 



Chapter 15 System Programming 551 

Powering Down 

An application can power down the system by calling the little-documented 

GwesPowerOffSystem function. This function has been available for many versions of 

Windows CE but is little known. In fact, many SDKs don't include the prototype for the 

function, so you might have to provide the prototype. The function is defined as 

void GwesPowerOffSystem(void); 

The use of GwesPowerOffSystem is simple: simply call, and the system suspends. 

If you prefer to avoid little-documented functions, you can also power off the system by sim

ulating the action of a user pressing the Off button. You can easily enable your application to 

suspend the system by using the keybd_event function, as in 

keybd_event (VK_OFF, 0, KEYEVENTF_SILENT, O); 
keybd_event (VK_OFF, 0, KEYEVENTF_SILENT I KEYEVENTF_KEYUP, O); 

The two calls to keybd_event simulate the press and release of the power button, which has 

the virtual key code of VK_OFF. Executing the preceding two lines of code will suspend the 

system. Because the virtual key code has to be seen and acted on by GWES, the two func

tions probably will both return, and a few more statements will be executed before the 

system actually suspends. If it is important that your program stop work after calling the 

keybd_event functions, add a call to Sleep to cause the application to pause for a number of 
milliseconds, allowing time for GWES to truly suspend the system. 

Turning Off the Screen 

On systems with color backlit displays, the main power drain on the system isn't the CPU

it's the backlight. In some situations, an application needs to run, but doesn't need the 

screen. An example of this might be a music player application when the user is listening to 

the music, not watching the screen. In these situations, the ability to turn off the backlight 

can significantly improve battery life. 

Of course, any application that turns off the backlight needs to have a simple and user

friendly way of reenabling the screen when the user wants to look at the screen. Also, re

member that users typically think the unit is off if the screen is black, so plan accordingly. 

For example, a user might attempt to power on the system when it is already running, and 

in doing so, accidentally turn off the device. Also, when the system powers down the display 

in this fashion, it also disables the touch screen. This means that you can't tell the user to 

tap the screen to turn it back on. Instead, you need to use some other event such as a set 

time, the completion of a task, or the user pressing a button. Finally, the method discussed 

here has been superseded by the method provided by the Power Manager. Before using 

this method, check to see whether the Power Manager is available, and control the screen 

through it. If that fails, the ExtEscape method might work. 



552 Part Ill Advanced Windows CE 

On Windows CE, the control of the display is exposed through the ExtEscape function, which 

is a back door to the display and printer device drivers. Windows CE display drivers support a 

number of device escape codes, which are documented in the Platform Builder. For our pur

poses, only two escape codes are needed: SETPOWERMANAGEMENT to set the power state 
of the display and QUERYESCSUPPORT to query if the SETPOWERMANAGEMENT escape is 

supported by the driver. The following routine turns the display on or off on systems with 

display drivers that support the proper escape codes. 

II 
II Defines and structures taken from pwingdi .h in the Platform Builder 
II 
#define QUERYESCSUPPORT 
#define SETPOWERMANAGEMENT 
#define GETPOWERMANAGEMENT 

typedef enum _VIDEO_POWER_STATE { 
VideoPowerOn = 1, 
VideoPowerStandBy, 
VideoPowerSuspend, 
VideoPowerOff 

8 
6147 
6148 

} VIDEO_POWER_STATE, *PVIDEO_POWER_STATE; 

typedef struct _VIDEO_POWER_MANAGEMENT { 
ULONG Length; 
ULONG DPMSVersion; 
ULONG PowerState; 

VIDEO_POWER_MANAGEMENT, *PVIDEO_POWER_MANAGEMENT; 

11----------------------------------------------------------------------
11 SetVideoPower - Turns on or off the display 
II 
int SetVideoPower (BOOL fOn) { 

VIDEO_POWER_MANAGEMENT vpm; 
int re, fQueryEsc; 
HOC hdc; 

II Get the display de. 
hdc = GetDC (NULL); 
II See if supported. 
fQueryEsc = SETPOWERMANAGEMENT; 
re= ExtEscape (hdc, QUERYESCSUPPORT, sizeof (fQueryEsc), 

(LPSTR)&fQueryEsc, 0, O); 
if (re == O) { 

} 

II No support, fail. 
ReleaseDC (NULL, hdc); 
return -1; 

II Fill in the power management structure. 
vpm.Length = sizeof (vpm); 
vpm.DPMSVersion = 1; 
if (fOn) 

vpm.PowerState = VideoPowerOn; 



Chapter 15 System Programming 553 

else 
vpm.PowerState = VideoPowerOff; 

II Tell the driver to turn on or off the display. 
re= ExtEscape (hdc, SETPOWERMANAGEMENT, sizeof (vpm), 

(LPSTR)&vpm, 0, O); 

II Always release what you get. 
ReleaseDC (NULL, hdc); 
return O; 

The preceding code queries to see whether the escape is supported by calling ExtEscape with 

the command QUERYESCSUPPORT. The command being queried is passed in the input buf

fer. If the SETPOWERMANAGEMENT command is supported, the routine fills in the VIDEO_ 
POWER_ MANAGEMENT structure and calls ExtEscape again to set the power state. 

Although these escape codes allow applications to turn the display on and off, Windows CE 

has no uniform method to control the brightness of the backlight. Each system has its own 

OEM-unique method of backlight brightness control. If there's a standard method of bright

ness control in the future, it will probably be exposed through the power manager. 

Powering Up the System 

If the system is suspended, applications aren't running, so it seems that an application would 

have no control on when the system resumes. However, there are a few methods for waking 

a suspended device. First, an application can schedule the system to resume at a given time 

by using the Notification API discussed in Chapter 12. In addition, OEMs can assign some in

terrupt conditions so that they power up (or in power management talk, resume) the system. 
An example of this behavior is a system that resumes when it is placed in a synchronization 

cradle. 

Preventing the System from Powering Down 

The opposite problem-preventing the system from suspending-can also be an issue. 

Windows CE systems are usually configured to automatically suspend after some period of 

no user input. To prevent this automatic suspension, an application can periodically call the 

following function: 

void WINAPI SystemidleTimerReset (void); 

This function resets the timer that Windows CE maintains to monitor user input. If the timer 

reaches a predefined interval without user input, the system automatically suspends itself. 
Because the suspend timeout value can be changed, an application needs to know the tim

eout value so that it can call SystemldfeTimerReset slightly more often. The system maintains 

three timeout values, all of which can be queried using the SystemParameterslnfo function. 



554 Part Ill Advanced Windows CE 

The different values, represented by the constant passed to SystemParameterslnfo, are shown 

here: 

• SPl_GETBATTERYIDLETIMEOUT Time from the last user input when the system is run

ning on battery power 

• SPl_GETEXTERNALIDLETIMEOUT Time from the last user input when the system is 

running on AC power 

• SPl_GETWAKEUPIDLETIMEOUT Time from the system auto-powering before the sys

tem suspends again 

To prevent the system from suspending automatically, you need to query these three values 

and call SystemldleTimerReset before the shortest time returned. If any timeout value is 0, 

that specific timeout is disabled. 

In the next chapter, I'll take a swing back into communication with a discussion of serial 

ports. Many devices in the embedded world communicate with serial communication, so 

knowing how to use Windows CE's serial API is quite handy at times. Let's see how it's done. 



Chapter 16 

Serial Communications 
If there's one area of the Win32 API where Windows CE doesn't skimp, it's in communication. 

It makes sense. Either systems running Windows CE are mobile, requiring extensive commu

nication functionality, or they're devices generally employed to communicate with remote 

servers or as remote servers. In this chapter, I introduce the low-level serial communication 

A Pis. 

Talking to a serial port involves opening and conversing with a serial device driver. Talking to 

a device driver isn't a complicated process. In fact, in the tradition of most modern operating 
systems, applications in Windows CE access device drivers through the file system API, using 

functions such as CreateFi/e, ReadFi/e, WriteFi/e, and CloseHandle. In addition, there are times, 

and the serial driver occasions one of those times, when an application needs to talk to the 

device, not just send data through the device. To do this, use the Device/oControl function. 
We'll use all these functions in this chapter. 

Basic Serial Communication 
The interface for a serial device is a combination of generic driver 1/0 calls and specific 

communication-related functions. The serial device is treated as a generic, installable stream 

device for opening, closing, reading from, and writing to the serial port. For configuring the 

port, the Win32 API supports a set of Comm functions. Windows CE supports most of the 

Comm functions supported on the desktop. 

A word of warning: programming a serial port under Windows CE isn't like programming one 

under MS-DOS. You can't simply find the base address of the serial port and program the 

registers directly. While there are ways for a program to gain access to the physical memory 

space, every Windows CE device has a different physical memory map. Even if you solved 

the access problem by knowing exactly where the serial hardware resided in the memory 

map, there's no guarantee the serial hardware is going to be compatible with the 16550-
compatible serial interface we've all come to know and love in the PC world. In fact, the 

implementation of the serial port on some Windows CE devices looks nothing like a 16550. 

But even if you know where to go in the memory map and the implementation of the se

rial hardware, you still don't need to "hack down to the hardware." The serial port drivers in 

Windows CE are interrupt-driven designs and are written to support its specific serial hard

ware. If you have any special needs not provided by the base serial driver, you can purchase 

the Microsoft Windows CE Platform Builder and write a serial driver yourself. Aside from that 

extreme case, there's just no reason not to use the published Win32 serial interface under 

Windows CE. 

555 



556 Part Ill Advanced Windows CE 

Opening and Closing a Serial Port 

As with all stream device drivers, a serial port device is opened using CreateFile. The name 

used needs to follow a specific format the three letters COM followed by the number of the 
COM port to open and then a colon. The colon is required under Windows CE and is a de

parture from the naming convention used for device driver names used on the desktop ver

sions of Windows. 

The traditional driver naming convention allowed only 10 instances of a COM port. Windows 

CE also supports an extended naming convention that allows instance values other than 

0 to 9. This convention prefixes the string "\$device\" in front of the driver name and 

omits the trailing colon. A driver name in this format would look like "\$device\COM1" or 

"\$device\COM24". 

The following line opens COM port 1 for reading and writing: 

hSer = CreateFile (TEXT ("COMl:"), GENERI(_READ I GENERI(_WRITE, 
0, NULL, OPEN_EXISTING, 0, NULL); 

You must pass a 0 in the sharing parameter as well as in the security attributes and the tem

plate file parameters of CreateFife. Windows CE doesn't support overlapped 1/0 for devices, 

so you can't pass the FILE_FLAG_OVERLAPPED flag in the dwFlagsAndAttributes parameter. 

The handle returned is either the handle to the opened serial port or INVALID_HANDLE_ 
VALUE. Remember that unlike many of the Windows functions, CreateFile doesn't return a 0 

for a failed open. 

You close a serial port by calling CloseHandle, as in the following: 

CloseHandle (hSer); 

You don't do anything differently when using CloseHandle to close a serial device than when 

you use it to close a file handle. 

Reading from and Writing to a Serial Port 

Just as you use the CreateFile function to open a serial port, you use the functions ReadFile 
and WriteFile to read and write to that serial port. Reading data from a serial port is as simple 

as making this call to ReadFile: 

INT re; 
DWORD cBytes; 
BYTE ch; 

re= ReadFile(hSer, &ch, 1, &cBytes, NULL); 



Chapter 16 Serial Communications 557 

This call assumes the serial port has been successfully opened with a call to CreateFile. If the 

call is successful, one byte is read into the variable ch, and cBytes is set to the number of 

bytes read. 

Writing to a serial port is just as simple. The call would look something like the following: 

INT re; 
DWORD cBytes; 
BYTE ch; 

ch= TEXT ('a'); 
re= WriteFile(hSer, &ch, 1, &cBytes, NULL); 

This code writes the character a to the serial port previously opened. As you may remember 

from Chapter 9, both ReadFile and WriteFile return TRUE if successful. 

Because overlapped 1/0 isn't supported under Windows CE, you should be careful not to at

tempt to read or write a large amount of serial data from your primary thread or from any 

thread that has created a window. Because those threads are also responsible for handling 

the message queues for their windows, they can't be blocked waiting on a relatively slow se

rial read or write. Instead, you should use separate threads for reading from and writing to 

the serial port. 

You can also transmit a single character using this function: 

BOOL TransmitCommChar (HANDLE hFile, char cChar); 

The difference between the TransmitCommChar and WriteFile functions is that 

TransmitCommChar puts the character to be transmitted at the front of the transmit queue. 

When you call WriteFile, the characters are queued up after any characters that haven't yet 

been transmitted by the serial driver. TransmitCommChar allows you to insert control charac

ters quickly in the stream without having to wait for the queue to empty. 

Asynchronous Serial 1/0 

While Windows CE doesn't support overlapped 1/0, there's no reason why you can't use mul

tiple threads to implement the same type of overlapped operation. All that's required is that 

you launch separate threads to handle the synchronous 1/0 operations while your primary 
thread goes about its business. In addition to using separate threads for reading and writing, 

Windows CE supports the Win32 WaitCommEvent function that blocks a thread until one of 

a group of preselected serial events occurs. I'll demonstrate how to use separate threads for 

reading and writing a serial port in the CeChat example program later in this chapter. 



558 Part Ill Advanced Windows CE 

You can make a thread wait on serial driver events by means of the following three functions: 

BOOL SetCommMask (HANDLE hFile, DWORD dwEvtMask); 
BOOL GetCommMask (HANDLE hFile, LPDWORD lpEvtMask); 

and 

BOOL WaitCommEvent (HANDLE hFile, LPDWORD lpEvtMask, 
LPOVERLAPPED lpOverlapped); 

To wait on an event, you first set the event mask using SetCommMask. The parameters for this 

function are the handle to the serial device and a combination of the following event flags: 

• EV_BREAK A break was detected. 

• EV_CTS The Clear to Send (CTS) signal changed state. 

• EV_DSR The Data Set Ready (DSR) signal changed state. 

• EV_ERR An error was detected by the serial driver. 

• EV_RLSD The Receive Line Signal Detect (RLSD) line changed state. 

• EV_RXCHAR A character was received. 

• EV_RXFLAG An event character was received. 

• EV_TXEMPTY The transmit buffer is empty. 

You can set any or all of the flags in this list at the same time using SetCommMask. You can 

query the current event mask using GetCommMask. 

To wait on the events specified by SetCommMask, you call WaitCommEvent. The parameters 

for this call are the handle to the device; a pointer to a DWORD that will receive the reason 

the call returned; and lpOverlapped, which under Windows CE must be set to NULL. The code 

fragment that follows waits on a character being received or an error. The code assumes that 

the serial port has already been opened and that the handle is contained in hComPort. 

DWORD dwMask; 
II Set mask and wait. 
SetCommMask (hComPort, EV_RXCHAR I EV_ERR); 
if (WaitCommEvent (hComPort, &dwMask, 0) { 

} 

II Use the flags returned in dwMask to determine the reason 
II for returning. 
Switch (dwMask) { 
case EV_RXCHAR: 

//Read character. 
break; 

case EV_ERR: 
II Process error. 
break; 



Chapter 16 Serial Communications 559 

Configuring the Serial Port 
Reading from and writing to a serial port is fairly straightforward, but you also must config
ure the port for the proper baud rate, character size, and so forth. The masochist could con
figure the serial driver through device 1/0 control (IOCTL) calls, but the loCtl codes necessary 
for this are exposed only in the Platform Builder, not the Software Development Kit. Besides, 

there's a simpler method. 

You can go a long way in configuring the serial port using two functions, GetCommState and 
SetCommState, prototyped here: 

BOOL SetCommState (HANDLE hFile, LPDCB lpDCB); 
BOOL GetCommState (HANDLE hFile, LPDCB lpDCB); 

Both these functions take two parameters: the handle to the opened serial port and a pointer 
to a DCB structure. The extensive DCB structure is defined as follows: 

typedef struct _DCB { 
DWORD DCBlength; 
DWORD BaudRate; 
DWORD fBinary: 1; 
DWORD fParity: 1; 
DWORD fOutxCtsFlow:l; 
DWORD fOutxDsrFlow:l; 
DWORD fDtrControl:2; 
DWORD fDsrSensitivity:l; 
DWORD fTXContinueOnXoff:l; 
DWORD fOutX: 1; 
DWORD finX: 1; 
DWORD fErrorChar: 1; 
DWORD fNull: 1; 
DWORD fRtsControl:2; 
DWORD fAbortOnError:l; 
DWORD fDummy2:17; 
WORD wReserved; 
WORD Xonlim; 
WORD XoffLim; 
BYTE ByteSize; 
BYTE Parity; 
BYTE StopBits; 
char XonChar; 
char XoffChar; 
char ErrorChar; 
char EofChar; 
char EvtChar; 
WORD wReservedl; 

} DCB; 

As you can see from the structure, SetCommState can set a fair number of states. Instead of 

attempting to fill out the entire structure from scratch, you should use the best method of 
modifying a serial port, which is to call GetCommState to fill in a DCB structure, modify the 
fields necessary, and then call SetCommState to configure the serial port. 



560 Part Ill Advanced Windows CE 

The first field in the DCB structure, DCB/ength, should be set to the size of the structure. 

This field should be initialized before the call to either GetCommState or SetCommState. The 

BaudRate field should be set to one of the baud rate constants defined in Winbase.h. The 

baud rate constants range from CBR_llO for 110 bits per second to CBR_256000 for 256 

kilobits per second (Kbps). Just because constants are defined for speeds up to 256 Kbps 

doesn't mean that all serial ports support that speed. To determine what baud rates a serial 

port supports, you can call GetCommProperties, which I'll describe later. Windows CE devices 

generally support speeds up to 115 Kbps, although some support faster speeds. The {Binary 
field must be set to TRUE because no Win32 operating system currently supports a non bi

nary serial transmit mode familiar to MS-DOS programmers. The {Parity field can be set to 

TRUE to enable parity checking. 

The fOutxCtsF/ow field should be set to TRUE if the output of the serial port should be con

trolled by the port CTS line. The fOutxDsrF/ow field should be set to TRUE if the output of the 

serial port should be controlled by the DSR line of the serial port. The fDtrControl field can be 

set to one of three values: DTR_ CONTROL_DISABLE, which disables the DTR (Data Terminal 

Ready) line and leaves it disabled; DTR_CONTROL_ENABLE, which enables the DTR line; or 

DTR_CONTROL_HANDSHAKE, which tells the serial driver to toggle the DTR line in response 

to how much data is in the receive buffer. 

The fDsrSensitivity field is set to TRUE, and the serial port ignores any incoming bytes un

less the port DSR line is enabled. Setting the fTXContinueOnXoff field to TRUE tells the driver 
to stop transmitting characters if its receive buffer has reached its limit and the driver has 

transmitted an XOFF character. Setting the fOutX field to TRUE specifies that the XON/XOFF 

control is used to control the serial output. Setting the flnX field to TRUE specifies that the 
XON/XOFF control is used for the input serial stream. 

The fErrorChar and ErrorChar fields are ignored by the default implementation of the 

Windows CE serial driver, although some drivers might support these fields. Likewise, the 

fAbortOnError field is also ignored. Setting the {Null field to TRUE tells the serial driver to 

discard null bytes received. 

The fRtsControl field specifies the operation of the RTS (Request to Send) line. The field can 

be set to one of the following: RTS_CONTROL_DISABLE, indicating that the RTS line is set to 

the disabled state while the port is open; RTS_CONTROL_ENABLE, indicating that the RTS line 

is set to the enabled state while the port is open; or RTS_CONTROL_HANDSHAKE, indicating 

that the RTS line is controlled by the driver. In this mode, the RTS line is enabled if the serial 

input buffer is less than half full; it's disabled otherwise. Finally, RTS_CONTROL_TOGGLE in

dicates that the driver enables the RTS line if there are bytes in the output buffer ready to be 

transmitted and disables the line otherwise. 

The Xonlim field specifies the minimum number of bytes in the input buffer before an XON 

character is automatically sent. The Xofflim field specifies the maximum number of bytes in 

the input buffer before the XOFF character is sent. This limit value is computed by taking the 



Chapter 16 Serial Communications 561 

size of the input buffer and subtracting the value in Xofflim. In the sample Windows CE im

plementation of the serial driver provided in the Platform Builder, the Xonlim field is ignored 

and XON and XOFF characters are sent based on the value in Xofflim. However, this behavior 

might differ in some systems. 

The next three fields, ByteSize, Parity. and StopBits, define the format of the serial data 

word transmitted. The ByteSize field specifies the number of bits per byte, usually a value 

of 7 or 8, but in some older modes the number of bits per byte can be as small as 5. 

The Parity field can be set to the self-explanatory constant EVEN PARITY, MARKPARITY, 
NOPARITY, ODDPARITY, or SPACEPARITY. The StopBits field should be set to ONESTOPBIT, 
ONESSTOPBITS, or TWOSTOPBITS, depending on whether you want one, one and a half, or 
two stop bits per byte. 

The next two fields, XonChar and XoffChar, let you specify the XON and XOFF characters. 

Likewise, the EvtChar field lets you specify the character used to signal an event. If an event 

character is received, an EV_RXFLAG event is signaled by the driver. This "event" is what trig

gers the WaitCommEvent function to return if the EV_RXFLAG bit is set in the event mask. 

Setting the Port Timeout Values 

As you can see, SetCommState can fine-tune, to almost the smallest detail, the operation of 

the serial driver. However, one more step is necessary-setting the timeout values for the 
port. The timeout is the length of time Windows CE waits on a read or write operation before 

ReadFile or WriteFile automatically returns. The functions that control the serial timeouts are 

the following: 

BOOL GetCommTimeouts (HANDLE hFile, LPCOMMTIMEOUTS lpCommTimeouts); 

and 

BOOL SetCommTimeouts (HANDLE hFile, LPCOMMTIMEOUTS lpCommTimeouts); 

Both functions take the handle to the open serial device and a pointer to a COMMTIMEOUTS 
structure, defined as the following: 

typedef struct _COMMTIMEOUTS { 
DWORD ReadintervalTimeout; 
DWORD ReadTotalTimeoutMultiplier; 
DWORD ReadTotalTimeoutConstant; 
DWORD WriteTotalTimeoutMultiplier; 
DWORD WriteTotalTimeoutConstant; 

} COMMTIMEOUTS; 

The COMMTIMEOUTS structure provides for a set of timeout parameters that time both 

the interval between characters and the total time to read and write a block of characters. 

Timeouts are computed in two ways. First, Readlnterva/Timeout specifies the maximum interval 

between characters received. If this time is exceeded, the ReadFile call returns immediately. 



562 Part Ill Advanced Windows CE 

The other timeout is based on the number of characters you're waiting to receive. The value 

in ReadTota/TimeoutMultiplier is multiplied by the number of characters requested in the call 
to Readfile and is added to ReadTota/TimeoutConstant to compute a total timeout for a call 

to Readfile. 

The write timeout can be specified only for the total time spent during the Writefile call. This 
timeout is computed the same way as the total read timeout: by specifying a multiplier value, 

the time in WriteTota/TimeoutMultiplier, and a constant value in WriteTota/TimeoutConstant. 

All of the times in this structure are specified in milliseconds. 

In addition to the basic timeouts that I just described, you can set values in the 
COMMTIMEOUTS structure to control whether and exactly how timeouts are used in calls to 
Readfile and Writefile. You can configure the timeouts in the following ways: 

• Timeouts for reading and writing as well as an interval timeout: set the fields in the 

COMMTIMEOUTS structure for the appropriate timeout values. 

• Timeouts for reading and writing with no interval timeout: set Readlnterva/Timeout to 
0. Set the other fields for the appropriate timeout values. 

• The Readfile function returns immediately regardless of whether there is data to be 
read. Set Readlnterva/Timeout to MAXDWORD. Set ReadTota/TimeoutMultiplier and 

ReadTota/TimeoutConstant to 0. 

• ReadFile doesn't have a timeout. The function doesn't return until the proper 
number of bytes is returned or an error occurs. Set the Readlnterva!Timeout, 

ReadTota/TimeoutMultiplier, and ReadTota/TimeoutConstant fields to 0. 

• WriteFile doesn't have a timeout. Set WriteTota/TimeoutMultiplier and 
WriteTota/TimeoutConstant to 0. 

The timeout values are important because the worst thing you can do is to spin in a loop 
waiting on characters from the serial port. While the calls to Readfile and Writefile are wait
ing on the serial port, the calling threads are efficiently blocked on an event object internal 
to the driver. This saves precious CPU and battery power during the serial transmit and re
ceive operations. Of course, to block on ReadFile and Writefile, you'll have to create second

ary threads because you can't have your primary thread blocked waiting on the serial port. 

Another call isn't quite as useful-SetupComm, prototyped this way: 

BOOL SetupComm (HANDLE hFile, DWORD dwinQueue, DWORD dwOutQueue); 

This function lets you specify the size of the input and output buffers for the driver. However, 
the sizes passed in SetupComm are only recommendations, not requirements to the serial 
driver. For example, the example implementation of the serial driver in the Platform Builder 

ignores these recommended buffer sizes. 



Chapter 16 Serial Communications 563 

Querying the Capabilities of the Serial Driver 

The configuration functions enable you to configure the serial driver, but with varied imple
mentations of serial ports, you need to know just what features a serial port supports before 
you configure it. The function GetCommProperties provides just this service. The function is 
prototyped this way: 

BOOL GetCommProperties (HANDLE hFile, LPCOMMPROP lpCommProp); 

GetCommProperties takes two parameters: the handle to the opened serial driver and a 

pointer to a COMM PROP structure defined as 

typedef struct _COMMPROP { 
WORD wPacketlength; 
WORD wPacketVersion; 
DWORD dwServiceMask; 
DWORD dwReservedl; 
DWORD dwMaxTxQueue; 
DWORD dwMaxRxQueue; 
DWORD dwMaxBaud; 
DWORD dwProvSubType; 
DWORD dwProvCapabilities; 
DWORD dwSettableParams; 
DWORD dwSettableBaud; 
WORD wSettableData; 
WORD wSettableStopParity; 
DWORD dwCurrentTxQueue; 
DWORD dwCurrentRxQueue; 
DWORD dwProvSpecl; 
DWORD dwProvSpec2; 
WCHAR wcProvChar[l]; 

} COMMPROP; 

As you can see from the fields of the COMMPROP structure, GetCommProperties returns 

generally enough information to determine the capabilities of the device. Of immediate 
interest to speed demons is the dwMaxBaud field that indicates the maximum baud rate of 
the serial port. The dwSettableBaud field contains bit flags that indicate the allowable baud 
rates for the port. Both these fields use bit flags that are defined in WinBase.h. These con

stants are expressed as BAUD_xxxx, as in BAUD_19200, which indicates that the port is ca
pable of a speed of 19.2 kbps. Note that these constants are not the constants used to set the 
speed of the serial port in the DCB structure. Those constants are numbers, not bit flags. To 

set the speed of a COM port in the DCB structure to 19.2 kbps, you would use the constant 
CBR_19200 in the BaudRate field of the DCB structure. 

Starting back at the top of the structure are the wPacketlength and wPacketVersion fields. 
These fields allow you to request more information from the driver than is supported by the 

generic call. The dwServiceMask field indicates what services the port supports. The only ser
vice currently supported is SP_SERIALCOMM, indicating that the port is a serial communica
tion port. 



564 Part Ill Advanced Windows CE 

The dwMaxTxQueue and dwMaxRxQueue fields indicate the maximum size of the output and 

input buffers internal to the driver. The value 0 in these fields indicates that you'll encounter 

no limit in the size of the internal queues. The dwCurrentTxQueue and dwCurrentRxQueue 
fields indicate the current size for the queues. These fields are 0 if the queue size can't be 

determined. 

The dwProvSubType field contains flags that indicate the type of serial port supported by the 

driver. Values here include PST_RS232, PST_RS422, and PST_RS423, indicating the physical 

layer protocol of the port. PST_ MODEM indicates a modem device, and PST_FAX tells you 
the port is a fax device. Other PST_ flags are defined as well. This field reports what the driver 

thinks the port is, not what device is attached to the port. For example, if an external modem 

is attached to a standard RS-232 serial port, the driver returns the PST_RS232 flag, not the 

PST_MODEM flag. 

The dwProvCapabilities field contains flags indicating the handshaking the port supports, 

such as XON/XOFF, RTS/CTS, and DTR/DSR. This field also shows you whether the port sup

ports setting the characters used for XON/XOFF, parity checking, and so forth. The dwSet
tableParams, dwSettableData, and dwSettableStopParity fields give you information about 

how the serial data stream can be configured. Finally, the fields dwProvSpecl, dwProvSpec2, 
and wcProvChar are used by the driver to return driver-specific data. 

Controlling the Serial Port 

You can stop and start a serial stream using the following functions: 

BOOL SetCommBreak (HANDLE hFile); 

and 

BOOL ClearCommBreak (HANDLE hFile); 

The only parameter for both these functions is the handle to the opened COM port. When 

SetCommBreak is called, the COM port stops transmitting characters and places the port in a 

break state. Communication is resumed with the ClearCommBreak function. 

You can clear out any characters in either the transmit or the receive queue internal to the 

serial driver using this function: 

BOOL PurgeComm (HANDLE hFile, DWORD dwFlags); 

The dwFlags parameter can be a combination of the flags PURGE_TXCLEAR and PURGE_ 
RXCLEAR. These flags terminate any pending writes and reads and reset the queues. In the 
case of PURGE_RXCLEAR, the driver also clears any receive holds due to any flow control 

states, transmitting an XON character if necessary, and setting RTS and DTR if those flow 

control methods are enabled. Because Windows CE doesn't support overlapped 1/0, the flags 



Chapter 16 Serial Communications 565 

PURGE_ TXABORT and PURGE_RXABORT, used under the desktop versions of Windows, are 

ignored. 

The EscapeCommFunction provides a more general method of controlling the serial driver. It 

allows you to set and clear the state of specific signals on the port. On Windows CE devices, 

it's also used to control serial hardware that's shared between the serial port and the lrDA 

port. The function is prototyped as 

BOOL EscapeCommFunction (HANDLE hFile, DWORD dwFunc); 

The function takes two parameters: the handle to the device and a set of flags in dwFunc. The 

flags can be one of the following values: 

• SETDTR Sets the DTR signal 

• CLRDTR Clears the DTR signal 

• SETRTS Sets the RTS signal 

• CLRRTS Clears the RTS signal 

• SETXOFF Tells the driver to act as if an XOFF character has been received 

• SETXON Tells the driver to act as if an XON character has been received 

• SETBREAK Suspends serial transmission and sets the port in a break state 

• CLRBREAK Resumes serial transmission from a break state 

• SETIR Tells the serial port to transmit and receive through the infrared transceiver 

• CLRIR Tells the serial port to transmit and receive through the standard serial 
transceiver 

The SETBREAK and CLRBREAK commands act identically to SetCommBreak and 

ClearCommBreak and can be used interchangeably. For example, you can use 

EscapeCommFunction to put the port in a break state and ClearCommBreak to restore 

communication. 

Clearing Errors and Querying Status 
The function 

BOOL ClearCommError (HANDLE hFile, LPDWORD lpErrors, LPCOMSTAT lpStat); 

performs two functions. As you might expect from the name, it clears any error states within 

the driver so that 1/0 can continue. The serial device driver is responsible for reporting the 

errors. The default serial driver returns the following flags in the variable pointed to by lpErrors: 
CE_ OVERRUN, CE_RXPARITY, CE_FRAME, and CE_TXFULL. ClearCommError also returns the 



566 Part Ill Advanced Windows CE 

status of the port. The third parameter of ClearCommError is a pointer to a COMSTAT struc

ture defined as 

typedef struct _COMSTAT { 
DWORD fCtsHold : 1; 
DWORD fDsrHold : 1; 
DWORD fRlsdHold 1; 
DWORD fXoffHold 
DWORD fXoffSent 
DWORD fEof : 1; 
DWORD fTxim : 1; 
DWORD fReserved 
DWORD cbinQue; 
DWORD cbOutQue; 

} COMSTAT; 

1; 
1; 

25; 

The first five fields indicate that serial transmission is waiting for one of the following reasons; 

it's waiting for a CTS signal, waiting for a DSR signal, waiting for a Receive Line Signal Detect 

(also known as a Carrier Detect), waiting because an XOFF character was received, or waiting 

because an XOFF character was sent by the driver. The ffor field indicates that an end-of-file 

character has been received. The {Txim field is TRUE if a character placed in the queue by the 

TransmitCommChar function (instead of a call to WriteFile) is queued for transmission. The 

final two fields, cblnQue and cbOutQue, return the number of characters in the input and 

output queues of the serial driver. 

The function 

BOOL GetCommModemStatus (HANDLE hFile, LPDWORD lpModemStat); 

returns the status of the modem control signals in the variable pointed to by lpModemStat. 

The flags returned can be any of the following: 

• MS_CTS_ON Clear to Send (CTS) is active. 

• MS_DSR_ON Data Set Ready (DSR) is active. 

• MS_RING_ON Ring Indicate (RI) is active. 

• MS_RLSD_ON Receive Line Signal Detect (RLSD) is active. 

Stayin' Alive 

One of the issues with serial communication is preventing the system from powering down 

while a serial link is active. A Windows CE system has a power management scheme that 

may automatically suspend the system if the user hasn't interacted with the device within 

a predetermined time. Because a communication program can run unattended, the pro

gram might need to prevent the auto-suspend feature of Windows CE from suspending the 

system. I covered this topic in the "Preventing the System from Powering Down" section in 

Chapter 15. 



Chapter 16 Serial Communications 567 

The CeChat Example Program 
The CeChat program is a simple point-to-point chat program that connects two Windows CE 

devices using any of the available serial ports on the device. The CeChat window is shown in 
Figure 16-1. Most of the window is taken up by the receive text window. Text received from 

the other device is displayed here. Along the bottom of the screen is the send text window. If 

you type characters here and either hit the Enter key or tap the Send button, the text is sent 

to the other device. The combo box on the command bar selects the serial port to use. 

Ble !:lelP COM1: 

t COM1: opened 
:>How are you daiig? 
am quite fine thank you! 

lrhat is good to hear. 

FIGURE 16-1 The CeChat window 

x 

The source code for CeChat is shown in Listing 16-1. CeChat uses three threads to accomplish 

its work. The primary thread manages the window and the message loop. The two secondary 

threads handle reading from and writing to the appropriate serial port. 

LISTING 16-1 

CeChat.rc 

II====================================================================== 
II Resource file 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II====================================================================== 
#include "windows.h" 
#include "CeChat. h" 11 Program-specific stuff 
11----------------------------------------------------------------------
11 Icons and bitmaps 
II 
ID_ICON ICON "CeChat.ico" II Program icon 



568 Part Ill Advanced Windows CE 

I I- ---------------------:. ---- ..,--...; __ ------"'------------,..- ---__ ,:._ ----------
II Menu 
II 
ID_MENU ·MENU DIS<;ARi:>ABLE 
BEGIN 

POPUP "&File" 
BEGIN 

MENUITEM "E&xit", 
END 
POPI.JP "&Help" 
BEGIN 

MENUITEM "&About ... ", 
END 

I l Accelerator table 
II 
IO-ACCEL ACCELERATORS DISCARDABLE 
BEGIN 

IDM_EXIT. 

IDM....ABOUT 

I I 1-------------------·------------~---------------------- ---"---'--------·-' 
II About box dialog template 
II 
aboutbox DIALOG discardable 10, 10, 135, 40 
STYLE WS_POPUP I ws_VISIBLE I WS_CAPTION I WS..:SYSMENU I os_CEITTER I 

DS_MODALFRAME 
CAPTION "About" 
BEGIN 

ICoN IO_ICON, -1, 3, 5, 10, · 10 
L TEXT "CeChat - Written for the . book Programni.i ng Windows \ 

CE Copyright 2007 JiouglC!,s Boljng;, 
. . -1, 30; 5, 102, 37 

END 

CeChat.h 

I I l=========:=========.==::i=·~=============~====~==========!=:=~::::i:f=::::;:::== 
II Header file 
II 
/I Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas :Boling ·· · 

II Returns number. of elements 
#define dim(x) (si zeof(x) I si zeof(x [OJ)) 

I I-- - - - - -.,.-- - .,- ---- - ---- - ---- - - ---- -:-,.. ..:-. .. - - - --·- - --- - -,- -- - ..:.- -.-..:- - --- - - -'---
11 Gene.ric defines and data types 



II 
struct decodeUINT { 

UINT Code; 

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM); 
} ; 
struct decodeCMD { 

UINT Code; 
LRESULT (*Fxn)(HWND, WORD, HWND, WORD); 

} ; 

Chapter 16 Serial Communications 569 

II Structure associates 
II messages 
II with a function. 

II Structure associates 
II menu IDs with a 
II function. 

11----------------------------------------------------------------------
II Generic defines used by 
#define ID_ICON 
#define ID_MENU 
#define ID_ACCEL 
#define ID(_CMDBAR 
#define ID_RCVTEXT 
#define ID_SENDTEXT 
#define ID_SENDBTN 
II Menu item IDs 
#define IDM_EXIT 

#define IDM_USECOM 
#define IDM_ABOUT 

II Command bar IDs 
#define ID(_ COMPORT 
#define ID(_BAUDRATE 

#define TEXTSIZE 256 

application 
1 
2 
3 
4 
5 
6 
7 

1 

110 
120 

150 
151 

II App icon resource ID 
II Menu resource ID 
II Accel table ID 
II Command band ID 
II Receive text box 
II Send text box 
II Send button 

II Use COM. 
II Help menu 

II COM port combo box 
II Baud rate combo box 

11----------------------------------------------------------------------
11 Function prototypes 
II 
DWORD WINAPI ReadThread (PVOID pArg); 
DWORD WINAPI SendThread (PVOID pArg); 
HANDLE InitCommunication (HWND, LPTSTR); 
int FillComComboBox (HWND); 

HWND Initinstance (HINSTANCE, LPWSTR, int); 
int Terminstance (HINSTANCE, int); 

II Window procedures 
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM); 

II Message handlers 
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoSizeMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoSetFocusMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoPocketPCShell (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM); 
II Command functions 
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandComPort (HWND, WORD, HWND, WORD); 



570 Part Ill Advanced Windows CE 

LPARAM OoMainCommandSendText (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandAbout (HWND, WORD, HWND., WORD); 

II Dialog procedures 
BOOL CALLBACK AboutDlgProc (HWNO, UINT, WPARAM, LPARAM); 
BOOL CALLBACK EditAlbumDlgProc (HWND, UINT, WPARAM, LPARAM); 

CeChat.cpp 

II=============================~======================================= 
II CeChat - A windows CE communication demo 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II==================,.=================================================== 
#.include <windows. h> 
#include <commctrl.h> 
#include "CeChat.h" 

#if defined(WIN32_PLATFORM_PSPC) 

II For all that Windows stuff 
II Command bar includes 
II Program-specific stuff 

#include <aygshe 11. h> 11 Add Pocket PC includes. 
#pragma comment( lib, "aygshell" ) II Link Pocket PC lib for menu bar. 
#endif 
ll---------------------------'------.,-------------------------------------
11 Global data 
II 
const TCHAR szAppName[] = TEXT ("CeChat"); 
HINSTANCE hinst; II Program instance handle. 

BOOL fConti nue = TRUE; 
HANDLE hComPort = INVALID_HANOLE_VALUE; 
int nSpeed = CBR_l9200; 
int nLastDev = -1; 

#if defi ned(WIN3LPLATFOR.M_PSPC) && CWIN3:LWCE >= 300) 
SHACTIVATEINFO sai; 
#end if 

HANDLE gjiSendEvent = INVALID....HANDLLVALUE; 
HANDLE hReadThread = INVALID_HANDLE_VALUE; 

II Message dispatch table for Ma.inWindowProc 
conststruct decodeUINT.MainMessages[] = { 

WM_CREATE, DoCreateMain, 

} ; 

WM.....SIZE, DoSizeMain, 
WM_COMMAND, DoCommandMain, 
WM_SETIINGCHANGE,. OoJ'ocketPCShe 11 , 
WM__ACTIVATE, DoPocketPCShell, 
WM_SETFOCUS, DoSetFocusMain, 
WM_DESTROY, DoDestroyMain, 



Chapter 16 Serial Communications 571 

II Command Message dispatch for MainWindowProc 
const struct decodeCMD MainCommanditems[] = { 

ID(_COMPORT, DoMainCommandComPort, 
ID_SENDBTN, DoMainCommandSendText, 
IDM_EXIT, DoMainCommandExit, 
IDM....ABOUT, DoMainCommandAbout, 

} ; 

II====================================================================== 
II Program entry point 
II 
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance, 

LPWSTR lpCmdLine, int nCmdShow) { 

} 

HWND hwndMain; 
HACCEL hAccel; 
MSG msg; 
int re = O; 

II Initialize this instance. 
hwndMain = Initinstance (hinstance, lpCmdLine, nCmdShow); 
if (hwndMain == 0) 

return OxlO; 

II Load accelerator table. 
hAccel = LoadAccelerators (hinst, MAKEINTRESOURCE (ID_ACCEL)); 

II Application message loop 
while (GetMessage (&msg, NULL, 0, 0)) { 

} 

if (!TranslateAccelerator (hwndMain, hAccel, &msg)) { 
TranslateMessage (&msg); 
DispatchMessage (&msg); 

} 

II Instance cleanup 
return Terminstance (hinstance, msg.wParam); 

11----------------------------------------------------------------------
11 Initinstance - Instance initialization 
II 
HWND Initinstance (HINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow){ 

HWND hWnd; 
HANDLE hThread; 
WNDCLASS we; 
INITCOMMONCONTROLSEX icex; 

II Save program instance handle in global variable. 
hinst = hinstance; 

#if defined(WIN32_PLATFORM_PSPC) 
II If Win Mobile, allow only one instance of the application. 
hWnd = FindWindow (szAppName, NULL); 
if (hWnd) { 

} 

SetForegroundWindow ((HWND)(((DWORD)hWnd) I OxOl)); 
return O; 



572 Part Ill Advanced Windows CE 

#endif 
II Register application main window class. 

} 

we.style= 6; II Window style 
wc.lpfnWndProc = MainWndProc; II Callback function 
wccbClsExtra = O; II Extra class data 
wc.cbWndExtra,;. O; II Extra win.dow data 
wc~hinstarice = hinstance; II Owner handle 
wc.hicon =NULL; II Application icon 
wchCursor .;,,; LoadCursor (NULL, IDURROW) ;I/ Default cursor 
wc.hbrBackgrourid = (HBRUSH) GetStockObject (WHITE...BRUSH); 
we. 1 pszMenuName = NULL; 11 Menu name 
wc. lpszClassName = szAppName; II Window class name 

if (Regi sterCl ass (&we) == O) return O; 

II Load the command bar common control class. 
i cex. dwSi ze "' si zeof (INITCOMMONCONTROLSEX); 
icex.dwICC = ICC..:..BAR...CLASSES; 
InitCommonControlsEx (&icex); 

. II Create unnamed auto-reset event initially false. 
g_hSendEvent = CreateEvent (NULL; FALSE, FALSE, NULL); 

II Create main window. 
hWnd =CreateWindow (szAppName, TEXT ("CeChat"), 

ws_VISIBLE, CW~USEDEFAULT, CW_USEDEFAULT, 
CW_USEDEFAULT, . CW..;..USEDEFAUL T, NULL, 
NULL, hinstance, NULL); 

II Return fail code if window not created. 
if (IIsWindow (hWnd)) return O; 

II Create write thread. Read th.read created when port opened. 
hfhread= CreateThread (NULL, o, SendThread, hWnd, O, NULL); 
if ChThread) 

ClaseHaridl e (hTh read); 
else { 

Destr~yWindow (hWnd); 
return O; 

} 

II Standard show and. update calls 
ShowWindow (hWnd, nCmdShow); 
UpdateWindow (hWnd); 
returnhWnd; 

I I- --- .,. -·"' '"- -------"'·---- --'"'"--"'"'-----'---------"- --------- -."..:---- ~ -----,----
II Terminstance- Program cleanup 
II 
int Term:i:nstance (HINSTANCEhinstance, int nDefRC) { 

HANDLEhPort = hComPort; 

fContinue = FALSE; 

hCOmPort .. INVALID_HANDLLVALUE; 



} 

if (hPort != INVALID_HANDLE_VALUE) 
CloseHandle (hPort); 

if (g_hSendEvent != INVALID_HANDLE_VALUE) 
PulseEvent (g_hSendEvent); 
Sl eep(lOO); 
CloseHandle (g_hSendEvent); 

} 

return nDefRC; 

Chapter 16 Serial Communications 573 

II====================================================================== 
II Message handling procedures for MainWindow 
11----------------------------------------------------------------------
11 MainWndProc - Callback function for application window 
II 
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

int i ; 
II 
II Search message list to see if we need to handle this 
II message. If in list, call procedure. 
II 
for (i = O; i < dim(MainMessages); i++) { 

if (wMsg == MainMessages[i].Code) 
return (*MainMessages[i] .Fxn)(hWnd, wMsg, wParam, lParam); 

} 

return DefWindowProc (hWnd, wMsg, wParam, lParam); 

11----------------------------------------------------------------------
11 DoCreateMain - Process WM_CREATE message for window. 
II 
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
HWND hwndCB, hCl, hC2, hC3; 
int i; 
TCHAR szFirstDev[32]; 
LPCREATESTRUCT lpcs = (LPCREATESTRUCT) lParam; 

#if defined(WIN32_PLATFORM_PSPC) 
memset (&sai, 0, sizeof (sai)); 
sai.cbSize = sizeof (sai); 

SHMENUBARINFO mbi; II For WinMobile, create 
memset(&mbi, 0, sizeof(SHMENUBARINFO)); II menu bar so that we 
mbi.cbSize = sizeof(SHMENUBARINFO); II have a sip button. 
mbi.hwndParent = hWnd; 
mbi.dwFlags = SHCMBF_EMPTYBAR; 
SHCreateMenuBar(&mbi); 
SetWindowPos (hWnd, 0, 0, 0, lpcs->cx, lpcs->cy-26, 

SWP_NOZORDER I SWP_NOMOVE); 
} 

#end if 

II Create a command bar. 



574 Part Ill Advanced Windows CE 

} 

hwndCB = CommandBaLCreate Chinst, hWnd, IDCCMDBAR); 
CommandBar_InsertMenubar {hwndCB, hin.st, ID_MENU, .0); 

II Insert the COM port combo box, 
CommandBar_InsertComboBox (hwndCB, hinst, 140, CBS_DROPDOWNLIST, 

IDC_COMPORT, l); 
Fi 11 ComComboBox (hWnd) ; 

I I Ad.d exi.t button to. command bar. 
CommandBar...AddAdornments (hwndCB, 0, O); 

I I Create child windows.. They . wi 11 be positioned in WM_SIZE. 
II Create receive text window. 
hC1 = CreateWindowEx (WS_E)(_CLIENTEDGE, TEXT ("edit"), 

TEXT(""), WS_VISIBLE l WS_CHILD 
WS_VSCROLL I ES_MULTILINE I ES...AUTOHSCROLL 
ES_READONLY, 0, 0, 10, 10, hWnd, 
(HMENU)ID_RCVTEXT, hinst, NULL); 

II Create send text window. 
hC2 = CreateWi ndowEx (WS_E)(_CLIENTEDGE,. TEXT ("edit"), 

TEXT ('"')' WS_VISIBLE I ws_CHILD, 
0, 0, 10, 10, hWnd, (HMENU)ID_SENDTEXT, 

hlnst, NULL}; 
II create send text window. 
hC3 = CreateWindowEx (WS_E)(_(LIENTEDGE, TEXT ("button"), 

TEXT ("&Send''), WS_VIS!i3LE I WS_CHILD 
BS_DEFPUSHBUTTON, 0, 0, 10, 10, 
hWnd, (HMENU)ID_SENDBTN, hinst, NULL); 

II Destroy frame if window not created. 
if ( ! IsWi ndow (hCl} I I !IsWi.ndow (hC2) 1 l ! IsWi.ndow (hC3)) { 

DestroyWindow (hWnd); 
return O; 

} 

II Open a COM port. 
for (i = o; i < 10; i ++) { 

} 

if (SendDlgitemMessage (hwndCB, ID(_COMPORT, CB_GETLBTEXT, i, 
(LPARAM)szFi rstDev) ="' CB_ERR) 

break; 
if (Ini tCommuni ca ti on (hWnd, szFi r.stDev) .! = 

!NVALIO_HANDLE_VALUE) { 
SendDlgitem(vlessage (hwndCB, ID(_COMPORT, CB_SETCURSEL, i, 

(LPARAM)szFirstDev); 
break; 

} 

return O; 

1/------------------------------------------------------------,-~-------.,-
/I OoSizeMain - Process WM_SIZE message for. window. 
II 
LRESULT DoSizeMain (HWND hWnd, UINTwMsg, WPARAM wParam, LPARAM lParam){ 

RECT rect; 

II Adjust >the size of the. client rect to take into account 



} 

II the command bar height. 
GetClientRect (hWnd, &rect); 

Chapter 16 Serial Communications 575 

rect.top += CommandBar_Height (GetDlgitem (hWnd, IDC_CMDBAR)); 

SetWindowPos (GetDlgitem (hWnd, ID_RCVTEXT), NULL, rect.left, 
rect.top, (rect.right - rect.left), 
rect.bottom - rect.top - 25, SWP_NOZORDER); 

SetWindowPos (GetDlgitem (hWnd, ID_SENDTEXT), NULL, rect.left, 
rect.bottom - 2S, (rect.right - rect.left) - SO, 
2S, SWP_NOZORDER); 

SetWindowPos (GetDlgitem (hWnd, ID_SENDBTN), NULL, 

return O; 

(rect.right - rect.left) - SO, rect.bottom - 25, 
SO, 2S, SWP_NOZORDER); 

11----------------------------------------------------------------------
11 DoPocketPCShell - Process Pocket PC required messages. 
II 
LRESULT DoPocketPCShell (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
#if defined(WIN32_PLATFORM_PSPC) 

if (wMsg == WM_SETTINGCHANGE) 
return SHHandleWMSettingChange(hWnd, wParam, lParam, &sai); 

if (wMsg == WM_ACTIVATE) 
return SHHandleWMActivate(hWnd, wParam, lParam, &sai, O); 

#endif 
return O; 

} 

11----------------------------------------------------------------------
11 DoFocusMain - Process WM_SETFOCUS message for window. 
II 
LRESULT DoSetFocusMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
SetFocus (GetDlgitem (hWnd, ID_SENDTEXT)); 
return O; 

} 

11----------------------------------------------------------------------
11 DoCommandMain - Process WM_COMMAND message for window. 
II 
LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
WORD id!tem, wNotifyCode; 
HWND hwndCtl; 
int i · 

II Parse the parameters. 
id!tem =(WORD) LOWORD (wParam); 
wNotifyCode =(WORD) HIWORD (wParam); 
hwndCtl = (HWND) lParam; 

II Call routine to handle control message. 
for (i = O; i < dim(MainCommanditems); i++) { 

if (id!tem == MainCommanditems[i].Code) 



576 Part Ill Advanced Windows CE 

return O; 
} 

return ("Mai nCommanditems [i] . Fxn) (hWnd, i ditem, hwndCtl, 
wNotifyCode); 

11----------------------------------------------------------------------
11 DoDestroyMain - Process WM_DESTROY message for window. 
II 
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
PostQuitMessage (O); 
return O; 

} 

II====================================================================== 
II Command handler routines 
11----------------------------------------------------------------------
11 DoMainCommandExit - Process Program Exit command. 
II 
LPARAM DoMainCommandExit (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 
SendMessage (hWnd, WM_CLOSE, O, O); 
return O; 

} 

11----------------------------------------------------------------------
11 DoMainCommandComPort - Process the COM port combo box commands. 
II 
LPARAM DoMainCommandComPort (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 

} 

inti; 
TCHAR szDev[32]; 

if (wNotifyCode == CBN_SELCHANGE) { 
i = SendMessage (hwndCtl, CB_GETCURSEL, 0, 0); 
if (i l= nlastDev) { 

} 

SendMessage (hwndCtl, CB_GETLBTEXT, i, (LPARAM)szDev); 
InitCommunication (hWnd, szDev); 
SetFocus (GetDlgitem (hWnd, ID_SENDTEXT)); 

return O; 

11----------------------------------------------------------------------
11 DoMainCommandSendText - Process the Send text button. 
II 
LPARAM DoMainCommandSendText (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 

} 

II Set event so that sender thread will send the text. 
SetEvent (g_hSendEvent); 
SetFocus (GetDlgitem (hWnd, ID_SENDTEXT)); 
return O; 

11----------------------------------------------------------------------
11 DoMainCommandAbout - Process the Help I About menu command. 



Chapter 16 Serial Communications 577 

II 
LPARAM DoMainCommandAbout(HWND hWnd, WORD id!tem, HWND hwndCtl, 

} 

WORD wNotifyCode) { 
II Use DialogBox to create modal dialog. 
DialogBox (h!nst, TEXT ("aboutbox"), hWnd, AboutDlgProc); 
return O; 

II====================================================================== 
II About Dialog procedure 
II 
BOOL CALLBACK AboutDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

} 

switch (wMsg) { 

} 

case WM_COMMAND: 
switch (LOWORD (wParam)) { 

case !DOK: 

break; 

case IDCANCEL: 
EndDialog (hWnd, O); 
return TRUE; 

return FALSE; 

11----------------------------------------------------------------------
11 FillComComboBox - Fills the COM port combo box 
II 
int FillComComboBox (HWND hWnd) { 

int re; 

} 

WIN32_FIND_DATA fd; 
HANDLE hFind; 

hFi nd = Fi ndFi rstFil eEx (TEXT ("COM?:"), Fi ndExinfoStandard, &fd, 
FindExSearchLimitToDevices, NULL, 0); 

if (hFind != INVALID_HANDLE_VALUE) { 

} 

do { 
SendDlgitemMessage (GetDlgitem (hWnd, IDC_CMDBAR), 

IDC_COMPORT, CB_INSERTSTRING, 
-1, (LPARAM)fd.cFileName); 

re = FindNextFile (hFind, &fd); 
} while (re); 

re= FindClose (hFind); 

SendDlgitemMessage (GetDlgitem (hWnd, IDC_CMDBAR), IDC_COMPORT, 
CB_SETCURSEL, 0, O); 

return O; 

11----------------------------------------------------------------------
11 InitCommunication - Open and initialize selected COM port. 
II 
HANDLE InitCommunication (HWND hWnd, LPTSTR pszDevName) { 

DCB deb; 
TCHAR szDbg[128]; 



578 Part Ill Advanced Windows CE 

} 

COMMTIMEOUTS cto; 
HANDLE hLocal; 
DWORO.dwTStat; 
hLocal = hComPort; 
hComPort = INVALID_HANDLE_VALUE; 

if (hLocal '"' INVALID_HANDLE_VALUE) 
CloseHandle (hLocal); II This causes WaitCommEvent to return; 

hLocal = CreateFile (pszDevName, GENERICREAD I GENERICWRITE, 
0, NULL, OPEN_EXISTING, 0, NULL); 

if (hLocal != INVALID_HANDLE_VALUE) { 
11 Configure. port. 
dcb.DCBlength = sizeof (deb); 
GetCommState (hLocal, &deb); 
dcb.BaudRate = nSpeed; 
dcb.fParity = FALSE; 
dcb.fNull = FALSE; 
dcb.StopBits = ONESTOPBIT; 
deb.Parity = NOPARITY; 
dcb.ByteSize = 8; 
SetCommState (hLocal, &deb); 

II Set the timeouts. Set infinite read timeout. 
cto.ReadintervalTimeout = 0; 
cto.ReadTotalTimeoutMultiplier = O; 
cto.ReadTotalTimeoutConstant = O; 
cto.WriteTotalTimeoutMUltiplier = O; 
cto. Wri teTota.lTi meoutConstant = 0; 
SetCommTimeouts (hLocal, &cto); 

wsprintf (szDbg, TEXT ("Port %s opened\r\n"), pszDevName); 
SendDlgitemMessage (hWnd, ID_RCVTEXT, EM_REPLACESEL, 0, 

(LPARAM}szDbg); 

II Start read thread if not already started. 
hComPort = hLocal; 
if (!GetExitCodeThread (hReadThread, &dwTStat) 11 

(dwTStat != STILL.ACTIVE)) { 
hReadThread = CreateThread (NULL, 0, ReadThread, hWnd, 

0, &dwTStat); 
if (hReadThread) 

CloseHandle ChReadThread); 

} else { 

} 

wsprintf (szDbg, TEXT ("Couldn\' t open port %s .. rc=%d\r\n"), 
pszDevName, GetLastError()); 

SendDlgitemMessage (hWnd, ID_RCVTEXT, EM_REPLACESEL, 
0, (LPARAM)szDbg); 

return hComPort; 

II====================================================================== 



Chapter 16 Serial Communications 579 

II SendThread - Sends characters to the serial port 
II 
DWORD WINAPI SendThread (PVOID pArg) { 

HWND hWnd, hwndSText; 

} 

int re; 
DWORD cBytes; 
WCHAR szText[TEXTSIZE]; 
char szAnsi[TEXTSIZE]; 
size_t siz; 

hWnd ; (HWND)pArg; 
hwndSText; GetDlgitem (hWnd, ID_SENDTEXT); 
while (1) { 

} 

re; WaitForSingleObject (g_hSendEvent, INFINITE); 
if (re ;; WAIT_OBJECT_O) { 

if ( ! fConti nue) 
break; 

II Disable send button while sending. 
EnableWindow (GetDlgitem (hWnd, ID_SENDBTN), FALSE); 

II Get the text, terminate the line and convert to ansi 
GetWindowText (hwndSText, szText, dim(szText)); 
StringCchCat (szText, dim(szText), TEXT ("\r\n")); 
wcstombs_s (&siz, szAnsi, sizeof (szAnsi), szText, _TRUNCATE); 

II Write to the serial port 
re ; WriteFile (hComPort, szText, 

lstrlen (szText)*sizeof (TCHAR),&cBytes, 0); 
if (re) { 

II Copy sent text to output window. 
SendDlgitemMessage (hWnd, ID_RCVTEXT, EM_REPLACESEL, 0, 

(LPARAM)TEXT (" >")); 
SetWindowText (hwndSText, TEXT("")); II Clear text box 

} else { 

} 

II Else, print error message. 
wsprintf (szText, TEXT ("Send failed rc;%d\r\n"), 

GetLastError()); 
DWORD dwErr ; O; 
COMSTAT Stat; 

if (ClearCommError (hComPort, &dwErr, &Stat)) { 
printf ("fail\n"); 

} 

II Put text in receive text box. 
SendDlgitemMessage (hWnd, ID_RCVTEXT, EM_REPLACESEL, 0, 

(LPARAM)szText); 
EnableWindow (GetDlgitem (hWnd, ID_SENDBTN), TRUE); 

} else 
break; 

return O; 

!/======================================================================= 



580 Part Ill Advanced Windows CE 

II ReadThread - Receives characters from the serial port 
II 
DWORD WINAPI ReadThread (PVOID pArg) { 

} 

HWND hWnd; 
DWORD cBytes, i; 
WCHAR szText[TEXTSIZE]; 
char szAnsi[TEXTSIZE]; 
size_t siz; 

hWnd = (HWND)pArg; 
while CfContinue) { 

} 

for (i = O; i < sizeof (szAnsi)-1; i++) { 

} 

while (!ReadFile (hComPort, &szAnsi [i], l, &cBytes, 0)) 
if (hCoinPort == INVALID7 HANDLE..;VALUE) 

return O; 

if (szAnsi [i] ='7 '\n '.) { 
szAnsi[i+l] = '\O'; 
break; 

} 

I l Conve.rt to Uni code 
mbstowcs_s (&siz, szText, dim (szText), szAnsi, _TRUNCATE); 

SendDlgitemMessage (hWnd, ID_RCVTEXT, EM_REPLA(ESEL, 0, 
(LPARAM)szText); 

return o; 

When the CeChat window is created, it sniffs out the COM port names using FindFileEx. The 

combo box is then filled, and an attempt is made to open each of the COM ports. The pro

cess stops when the first COM port is opened. Once a port is opened, the read thread is cre

ated to wait on characters. 

The send thread is actually quite simple. All it does is block on an event that was created 

when CeChat was started. When the event is signaled, it reads the text from the send text 

edit control and calls WriteFile. Once that has completed, the send thread clears the text from 

the edit control and loops back to where it blocks again. 

The serial API provides applications with a hardware agnostic method of accessing these

rial hardware. But how does the operating system know how to talk to the serial hardware? 

It doesn't. Instead, the operating system talks to a device driver that hides the specifics of 

the serial port implementation. Perhaps it's time to look at how a driver is implemented. In 

the final chapter of this book, we will look at how to write a Windows CE device driver and 

a Windows CE service. Writing a service or even a driver isn't that hard in Windows CE. Let's 

dive in and check it out. 



Chapter 17 

Device Drivers and Services 
Device drivers are modules that provide the interface between the operating system and the 

hardware. Device drivers take on an air of mystery because they're a mix of operating sys

tem-specific code and hardware customization. Most application developers are quite happy 
to let the real operating system junkies handle writing device drivers. This chapter shows you 

that while dealing with hardware can be a pain, the basic structure of a Windows CE driver 

is actually quite simple. An application developer might even have reason to write a driver 

every now and then. 

Real operating system junkies also know about services. On the desktop, a service is a back

ground application that typically runs in the background. Services can be automatically 

started when the operating system boots, or they can be manually started. They can also be 

stopped and restarted as needed. Windows CE supports services, although not with the same 
architecture as Windows XP and Vista services. Instead, Windows CE services are quite similar 

to Windows CE drivers, as we will see. In this chapter, I'll first introduce drivers, because the 

basics of that discussion are important to both drivers and services, and then I'll dive into 

how to write a Windows CE service. 

Basic Drivers 
Before I dive into how to write a device driver, we must take a brief look at how Windows CE 
handles drivers in general. Before Windows CE 6, most Windows CE drivers were loaded by 

the device manager process. Three drivers-the display, keyboard, and touch panel drivers

were loaded by the Graphics, Windowing, and Event Subsytem (GWES) process. Starting with 

CE 5, the file system process (FileSys) could directly load block mode disk drivers. All drivers, 

regardless of the process that loaded them, ran in user mode. 

The kernel redesign of Windows CE 6 dramatically changed the management of device 

drivers. Drivers can be loaded in either kernel mode, with the other parts of the operating 

system, or in user mode by what is known as the User Mode Device Manager. Device driv

ers loaded by the kernel (kernel mode drivers) provide the best performance, while drivers 

loaded by the User Mode Device Manager (user mode drivers) are more secure because they 

can't corrupt the operating system either accidentally or intentionally. 

Most drivers expose a stream interface to the operating system. These drivers, appropriately 

known as stream drivers, provide the same entry points to the driver regardless of their 

underlying hardware. There are a few nonstream drivers in the operating system. The display 

581 



582 Part Ill Advanced Windows CE 

driver, keyboard, and touch screen drivers have different operating system interfaces and are 

sometimes referred to as native drivers. 

Stream interface device drivers can be supplied by third-party manufacturers to support 

hardware added to the system. Although some Windows CE systems have a PCI bus for 

extra cards, the additional hardware is usually installed via a Personal Computer Memory 

Card International Association (PCMCIA), a CompactFlash, or a Secure Digital 1/0 (SDIO) slot. 

In this case, the device driver would use functions provided by the bus driver to access the 

hardware. 

Bus drivers manage the system buses such as a PCI bus. PCMCIA, CompactFlash, and SDIO 

slots are also considered buses. Bus drivers are in charge of interrogating the hardware on 

the bus to determine what hardware is installed and allocating resources. The bus driver also 

asks the Device Manager to load the proper drivers for the hardware on the bus and pro

vides a system-independent method of accessing the hardware registers without the device 

drivers having to know the physical memory map of the system. 

In addition, a device driver might be written to extend the functionality of an existing driver. 

For example, you might write a driver to provide a compressed or encrypted data stream 

over a serial link. In this case, an application would access the encryption driver, which would 

in turn use the serial driver to access the serial hardware. 

Driver Names 

Historically, stream interface device drivers have been identified by a three-character name 

followed by a single digit, as in COM2. This scheme allows for 10 device drivers of one name 

to be installed on a Windows CE device at any one time. Instance values are numbered from 

one to nine, with the tenth instance having an instance number of zero. When referencing a 

stream interface driver, an application uses the three-character name, followed by the single 

digit, followed by a colon (:).The colon is required under Windows CE for the system to rec

ognize the driver name. 

Drivers can also be referenced through an extended namespace. In this form, the driver 

name begins with \$device\. For example, a driver normally referenced as COM3: would be 

referenced as \$device\COM3. The advantage of this scheme is that the instance value isn't 
limited to a single digit. So, in this naming scheme, the driver could be COMlS, as in \$de

vice\COM15. Note that in this naming method, the trailing colon is not used. 

A third naming method involves referencing the driver in relation to the bus driver that loads 

it. The name begins with \$bus\ followed by the bus name, its bus number, device number, 
and function number as in \$bus\PCMCA_l_2_3. 



Chapter 17 Device Drivers and Services 583 

Regardless of the naming scheme, stream drivers are always referenced by their three

character name. Here are a few examples of some names currently in use: 

• COM Serial driver 

• ACM Audio compression manager 

• WAV Audio wave driver 

• CON Console driver 

The Device Driver Load Process 

When the device manager loads, it looks in the registry under [HKEY_LOCAL_ MACHINE]\ 

Drivers for a string value named RootKey. This value points to the registry key that lists the 
drivers that should be loaded when the system boots. Traditionally, this key is named Bui/tin. 

In addition, an optional key named DLL can be present listing the bus enumerator, the DLL 

that actually reads and interprets the registry structure. If no DLL key is found, the default 

enumerator BusEnum.dll is used. 

The Device Manager then uses the bus enumerator to read the key specified by RootKey for 

the list of the drivers it must load when it initializes. This list is contained in a series of keys. 

The names of the keys don't matter-it's the values contained in the keys that define which 

drivers to load and the order in which to load them. Figure 17-1 shows the contents of the 
WaveDev key. The Wave driver is the audio driver. 

CJ autoras 

Cl Button 

Cl Ethman 
Cl FlshDrv 

Si ipv6hlp 

CJ IrCOMM 

CJ NDIS 
Q NdisPower 

CJ NDISUIO 
QOHCI 

CJ PCMCIA 

Si PWRBUTTON 

0 

FIGURE 17-1 The registry key for the Wave driver 



584 Part Ill Advanced Windows CE 

The four values under this key are the basic four entries used by a device driver under 

Windows CE. The DLL key specifies the name of the DLL that implements the driver. This is 

the DLL that the registry enumerator loads. The Order value ranges from 0 through 255 and 

specifies the order in which the drivers are loaded. The registry enumerator loads drivers with 

lower Order values before drivers with higher Order values in the registry. 

The Prefix value defines the three-letter name of the driver. This value is mandatory for 

stream drivers but typically not used for bus drivers. Applications that want to open this driv

er use the three-letter key with the number that Windows CE appends to create the device 

name. The Index value is the number that will be appended to the device name. 

As the bus enumerator reads each of the registry keys, it calls ActivateDeviceEx to have the 

device manager load the driver listed in that key. ActivateDeviceEx creates a new key under 
[HKEY_LOCAL_MACHINE\Drivers\Active and initializes it. It then finds a free index for the 

driver if one wasn't specified in the original registry key. ActivateDeviceEx then loads the 

driver in memory using the LoadDevice function.1 LoadDevice is similar to LoadLibrary but 

loads the entire DLL into memory and locks the pages so they can't be discarded. Next, 

the DLL is queried to get function pointers to the 12 external entry points in the driver. For 

named, stream, drivers, the entry points /nit, Deinit, Open, Close, and at least one of the Read, 

Write, Seek, or IOControl entry points must exist or the driver load fails. If the driver exports 

a PreC/ose entry point, it must also export a PreDeinit entry point. For unnamed drivers, 

ActivateDeviceEx tries to get all 12 entry points, but fails only if the /nit and Deinit functions 

can't be found. 

Once the entry points have been saved, the device manager calls the driver's /nit function, 

passing the name of the Active key created in the registry for the driver. If /nit returns a non

zero value, the driver is added to the device chain and ActivateDeviceEx returns. If /nit returns 

zero, the driver is unloaded and the driver initialization fails. 

Although this is the standard load procedure, another registry value can modify the load 

process. If the driver key contains a Flags value, the load process can change in a number of 
ways. The following values are currently valid for the Flags value: 

• DEVFLAGS_UNLOAD Unload the driver after the call to I nit returns. 

• DEVFLAGS_LOADLIBRARY Use Load library to load the driver instead of Load Driver. 

• DEVFLAGS_NOLOAD Don't load the driver at all. 

• DEVFLAGS_NAKEDENTRIES The driver entry points aren't prefixed by the driver 

name. 

• DEVFLAGS_LOAD_AS_USERPROC The driver is loaded in user mode instead of kernel 

mode. 

1 Depending on the registry setting for the driver, the device manager may load the DLL with the Load Library func
tion. 



Chapter 17 Device Drivers and Services 585 

• DEVFLAGS_NOUNLOAD The driver cannot be unloaded. 

• DEVFLAGS_BOOTPHASE_l The driver is only loaded during boot phase 1. 

• DEVFLAGS_IRQ_EXCLUSIVE The driver loads only if it has exclusive access to an 
interrupt. 

Another way the driver load process can be modified depends on the now-deprecated reg

istry value named Entry. If this value is found, the DLL is loaded, and then, instead of calling 

ActivateDeviceEx, the system calls the entry point in the driver named in Entry. The driver 

itself is then responsible for calling the ActivateDeviceEx function if it's to be registered as a 

driver with the system. 

If the Entry value is present, another value, Keep, can also be specified. Specifying the Keep 

value tells the system not to unload the driver after it calls the driver's entry point. This ar
rangement allows the driver DLL to avoid calling ActiveDeviceEx and thereby avoid being a 

driver at all. Instead, the DLL is simply loaded into the process space of Device.exe. 

Device drivers can also be loaded manually by applications. The preferred function for load

ing a device driver is ActivateDeviceEx, prototyped as 

HANDLE ActivateDeviceEx (LPCWSTR lpszDevKey, LPCVOID lpRegEnts, 
DWORD cRegEnts, LPVOID lpvParam); 

The first parameter is the name of a registry key under [HKEY_LOCAL_ MACHINE] where 

the driver information is saved. The format of the registry key is identical to the format dis

cussed earlier. The next two parameters, lpRegEnts and cRegEnts, describe an array of REG/NI 

structures that define a series of registry values that will be added to the device's Active key. 

Generally, adding values is done only for bus drivers. The final parameter is a pointer that is 
passed to the device driver's /nit function when the driver is loaded. This pointer can point to 

any device-specific information. 

The return value from ActivateDeviceEx is the handle to the instance of the device. If the re

turn value is zero, the load failed. In this case, use GetLastError to determine why the function 

failed. The returned handle can't be used to read or write to the device; instead, the driver 

should be opened with CreateFi/e. The handle should be saved in case the driver needs to be 

unloaded in the future. 

An older method of loading a driver is RegisterDevice. RegisterDevice is dangerous because 

drivers loaded with this function will not have an Active key associated with the driver. The 

only reason for discussing the function at all is that it doesn't require a registry key to load 

the driver, which can be handy when writing a quick and simple test program that loads and 
later unloads the driver. 

RegisterDevice is prototyped as 

HANDLE RegisterDevice (LPCWSTR lpszType, DWORD dw!ndex, 
LPCWSTR lpszLib, DWORD dw!nfo); 



586 Part Ill Advanced Windows CE 

The first two parameters are the three-character prefix of the driver and the instance number 

of the device. To load COM3, for example, lpszType would point to the string COM and 

dwlndex would have a value of 3. If an instance of the driver is already loaded, the function 

will fail, so it's important to check the return value to see whether the function fails and 

determine why the failure occurred. 

The lpszlib parameter identifies the name of the DLL that implements the driver. The final 

parameter, dwlnfo, is passed to the driver in the /nit call in the dwContext value. Because 

most drivers expect the dwContext value to point to a string naming a registry key, this value 
should at least point to a zero-terminated null string. RegisterDevice returns the handle to the 

instance of the driver if the load was successful and zero otherwise. 

A driver can be unloaded with 

BOOL DeactivateDevice (Handle hDevice); 

The only parameter is the handle that was returned with ActivateDeviceEx or RegisterDevice. 

Loading a Driver in User Mode 

A device driver is loaded in user mode using the same process that is used to load a kernel 

mode driver. The only difference is setting the DEVFLAGS_LOAD_AS_USERPROC flag in the 

driver's registry entry. This entry alone will cause the operating system to launch a new in
stance of the user mode driver manager, which will then load the driver. 

If you want to load a number of drivers in the same user mode driver manager, you can tell 

Windows CE to load a driver in a specific instance of the user mode driver manager. To do 

this, specify a ProcGroup by creating a registry key under HKEY_LOCAL_MACHINE\Drivers 

named ProcGroup_xxxx where xxxx is a unique number. For example, the following registry 

entry declares a ProcGroup. 

[HKEY_LOCAL_MACHINE\Drivers\ProcGroup_0003] 
"ProcName"="udevice.exe 
"ProcVol Prefi x"="$udevi ce" 

In the entry for the drivers you want to be loaded by this instance of the user mode driver 

manager, specify the registry key UserProcGroup and set it to the number specified in 

the declaration of the ProcGroup. For the previous example, the process group name is 
ProcGroup_0003, so the registry value would be set to 3. The following example shows the 

registry entry to load a driver into the user mode driver manager instance 3. 

[HKEY_LOCAL_MACHINE\Drivers\Builtin\MyDriver] 
"DLL"="MyDriver.DLL" 
"Prefix"="DRV" 
"Fl ags"=dword: 10 
"Index"=dword:l 
"ProcGroup"=dword:3 



Chapter 17 Device Drivers and Services 587 

In the previous example, the flags value of 10 specifies the DEVFLAGS_LOAD_AS_USERPROC 

flag telling Windows CE to load the driver in user mode and the ProcGroup value set to 

3 indicates the instance of the user mode driver manager to use. 

Enumerating the Active Drivers 

The most reliable way to find a device driver is to use FindFirstFileEx and set the fSearchOp 

parameter to FindExSearchLimitToDevices. Using the search string * and repeatedly calling 

FindNextFile results in a list of the stream drivers loaded. 

The more general method for determining what drivers are loaded onto a Windows CE 

system is to look in the registry under the key \Drivers\Active under HKEY_LOCAL_MACHINE. 

The Device Manager dynamically updates the subkeys contained here as drivers are loaded 
and unloaded from the system. Contained in this key is a list of subkeys, one for each ac-

tive driver loaded with ActivateDevice. The contents of these subkeys might change in future 

versions of Windows CE, but knowing what these subkeys contain can be helpful in some 

situations. 

The name of the key is simply a placeholder; the values inside the keys are what indicate the 

active drivers. Figure 17-2 shows the registry key for the COMl serial driver. 

r;' ~ ;;i:~~;;;:,;~tAO-HNE ~ ~~-=--~"'"~'""'al~ue_n....,ot-se..,.,.t)----~----!I 
,,,.CJ Comm 378576 
ffi·Ci'l ControlPITTel COM!: 
2 .CJ Drivers 

r+CJ Active 
:·801 

802 
003 
304 

' CJ 05 
u06 

' CJ 07 

Drivers\Builtln\Serial 
4294967295 

FIGURE 17-2 The registry's active list values for the serial device driver for COMl 

In Figure 17-2, the Name value contains the official five-character name (four characters plus 

a colon) of the device. The Hnd value is a handle used internally by Windows CE. The interest

ing entry is the Key value. This value points to the registry key where the device driver stores 

its configuration information. This second key is necessary because the active list is dynamic, 

changing whenever a device is installed. Instead, the driver should open the registry key 



588 Part Ill Advanced Windows CE 

specified by the Key value in the active list to determine the driver's permanent configuration 

data. The configuration data for the serial driver is shown in Figure 17-3. 

"'·iii! ControlPanel (Default) (value not set) 
e; 8i1 Drivers . l!i!JDll Serial.DH 

' . ~11lii Active I l!i!JTsp Unimodem.dll 

: • + .... ilil• •..... Bu. iltln L!!l!oBase 2818768896 : · : llii:I AFD l:mrrq 16 
' ; llil Battery , lll!ol~n 36 

• ..'"'CODEC Gs·~10 • i:mDev1ceArraylrdex 0 . ·"" - ,.u ...... ~Prefix COM 
, ; ·llil Ethman . lllOrder 3 

· · ·Gll GSM610 illirdex 1 
;. Gil ipv6hlp l!ilDeviceType O 
l~· !l!l IrCOrvM l!i!JFriendlyName Serial caile on COM!: 
; lilil NDIS l!ii!IDevConftg 20 00 00 00 05 00 00 00 10 01 00 00 00 48 00 00 00 00 08 00 00 00 00 00 00 
: litllNDISUIO 
: ll'iiPCMCIA 

FIGURE 17-3 The registry entry for the serial driver 

You can look in the serial driver registry key for such information as the name of the DLL that 

actually implements the driver, the three-letter prefix defining the driver name; the order in 

which the driver wants to be loaded; and something handy for user interfaces, the friendly 
name of the driver. Not all drivers have this friendly name, but when they do, it's a much 

more descriptive name than COM2 or NDSl. 

Drivers for PCMCIA or CompactFlash cards have an additional value in their active list key. 

The Pnpld value contains the Plug and Play ID string that was created from the card's ID 

string. Some PCMCIA and CompactFlash cards have their Pnpld strings registered in the sys

tem if they use a specific device driver. If so, a registry key for the Pnpld value is located in 

the Drivers\PCMC/A key under HKEY_LOCAL_MACHINE. For example, a PCMCIA card that 

had a Pnpld string This_is_a_pc_card would be registered under the key \Drivers\PCMC/A\ 
This_is_a_pc_card. That key may contain a FriendlyName string for the driver. Other PCMCIA 

cards use generic drivers. For example, most CompactFlash storage cards use the ATADISK 

driver registered under \Drivers\PCMCIA\ATADISK. 

Reading and Writing Device Drivers 

Applications access device drivers under Windows CE through the file 1/0 functions, 

CreateFile, ReadFile, WriteFile, and CloseHandle. The application opens the device using 
CreateFile, with the name of the device being the five-character (three characters plus digit 

plus colon) name of the driver. Drivers can be opened with all the varied access rights: read 

only, write only, read/write, or neither read nor write access. 



Chapter 17 Device Drivers and Services 589 

Once a device is open, data can be sent to it using WriteFile and can read from the 

device using ReadFile. As is the case with file operations, overlapped 1/0 isn't supported for 

devices under Windows CE. The driver can be sent control characters using the function 

DeviceloControl. The function is prototyped this way: 

BOOL DeviceloControl (HANDLE hDevice, DWORD dwloControlCode, 
LPVOID lplnBuffer, DWORD nlnBufferSize, 
LPVOID lpOutBuffer, DWORD nOutBufferSize, 
LPDWORD lpBytesReturned, 
LPOVERLAPPED lpOverlapped); 

The first parameter is the handle to the opened device. The second parameter, dwloControl

Code, is the IOCTL (pronounced eye-OC-tal) code. This value defines the operation of the call 

to the driver. The next series of parameters are generic input and output buffers and their 

sizes. The use of these buffers is dependent on the IOCTL code passed in dwloContro/Code. 

The lpBytesReturned parameter must point to a DWORD value that will receive the number 

of bytes returned by the driver in the buffer pointed to by lpOutBuffer. 

Each driver has its own set of IOCTL codes. If you look in the source code for the example 
serial driver provided in the Platform Builder, you'll see that the following IOCTL codes are 

defined for the COM driver. Note that these codes aren't defined in the Windows CE SOK 

because an application doesn't need to directly call DeviceloControl using these codes. 

/OCTL_SERIAL_SET_BREAK_ O N 

IOCTL_SERIAL_SET_DTR 

/OCTL_SERIAL_SET_RTS 

IOCTL_SERIAL_SET_XOFF 

IOCTL_SERIAL_ GET_ WA/T_MA SK 

IOCTL_SERIAL_ WAIT_ ON_MAS K 

/OCTL_SERIAL_ GET_MODEMS TATUS 

IOCTL_SERIAL_SET_ TIMEOUTS 

/OCTL_SERIAL_PURGE 

IOCTL_SERIAL_IMMEDIATE_C HAR 

IOCTL_ SERIAL_ SET_ DCB 

/OCTL_SERIAL_DISABLE_IR 

/OCTL_SERIAL_SET_BREAK_ OFF 

/OCTL_SERIAL_ CLR_DTR 

/OCTL_SERIAL_ CLR_RTS 

/OCTL_SERIAL_SET_XON 

/OCTL_SERIAL_SET_ WAIT_MA SK 

/OCTL_SERIAL_GET_COMMST ATUS 

IOCTL_SERIAL_ GET_PROPERT /ES 

/OCTL_SERIAL_ GET_ TIMEOUTS 

IOCTL_SERIAL_SET_QUEUE_S IZE 

IOCTL_ SERIAL_ GET_ DCB 

/OCTL_SERIAL_ENABLE_IR 

As you can see from the fairly self-descriptive names, the serial driver IOCTL functions expose 

significant function to the calling process. Windows uses these IOCTL codes to control some 

of the specific features of a serial port, such as the handshaking lines and timeouts. Each 

driver has its own set of IOCTL codes. I've shown the preceding ones simply as an example of 

how the DeviceloControl function is typically used. Under most circumstances, an application 

has no reason to use the DeviceloControl function with the serial driver. Windows provides its 

own set of functions that then call down to the serial driver using DeviceloControl. 



590 Part Ill Advanced Windows CE 

Okay, we've talked enough about generic drivers. It's time to sit down to the meat of the 

chapter-writing a driver. 

Writing a Windows CE Stream Device Driver 
As I mentioned earlier, Windows CE device drivers are simply DLLs. So on the surface, writing 

a device driver would seem to be a simple matter of writing a Windows CE DLL with specific 

exported entry points. For the most part, this is true. You have only a few issues to deal with 

when writing a Windows CE device driver. 

A device driver isn't loaded by the application communicating with the driver. Instead, the 

Device Manager loads most drivers, including all stream drivers. This state of affairs affects the 

driver in two ways. First, an application can't simply call private entry points in a driver as it can 

in a DLL. The only way an application could directly call an entry point would be if it called 

Loadlibrary and GetProcAddress to get the address of the entry point so the entry point could 

be called. This situation would result in the DLL (notice I'm not calling it a driver anymore) 

that implemented the driver being loaded in the process space of the application, not in the 
process space of the Kernel or User Mode Device Manager. The problem is that this second 

copy of the DLL isn't the driver-it's the DLL that implemented the driver. The difference is 

that the first copy of the DLL (the driver)-when properly loaded by the Device Manager

has some state data associated with it that isn't present in the second copy of the DLL loaded 

by the application. Perversely, the calls to Loadlibrary and GetProcAddress will succeed be

cause the driver is a DLL. In addition, calling the entry points in the driver results in calling 

the correct code. The problem is that the code will be acting on data present only in the sec

ond copy of the DLL, not in the proper data maintained by the driver. This situation can, and 
usually does, result in subtle bugs that can confuse and even lock up the hardware the driver 

is managing. In short, never interact with a driver by calling Loadlibrary and GetProcAddress. 

The second effect of the driver being loaded by the Device Manager is that if the driver is 

loaded as a kernel mode driver and a driver DLL is used for more than one instance of a 

piece of hardware; for example, on a serial driver being used for both COMl and COM2, the 

Device Manager will load the DLL only once. When the driver is "loaded" a second time, the 

driver's initialization entry point, COM_lnit, is simply called again. 

The reason for this dual use of the same DLL instance is that under Windows CE a DLL is nev

er loaded twice by the same process. Instead, if an application asks to load a DLL again, the origi

nal DLL is used and a call is made to DI/Main to indicate that a second thread has attached to the 

DLL. So if the Device Manager, which is simply a DLL loaded by the kernel, loads the same driver 

for two different pieces of hardware, the same DLL is used for both instances of the hardware. 

It is possible to load a driver DLL twice, but only if it is loaded in user mode. If the driver DLL 

is loaded by more than one User Mode Device Manger, the DLL will be loaded in each pro

cess seperately. 



Chapter 17 Device Drivers and Services 591 

Drivers written to handle multiple instances of themselves must not store data in global 

variables because the second instance of the driver would overwrite the data from the first 

instance. Instead, a multi-instance driver must store its state data in a structure allocated in 

memory. If multiple instances of the driver are loaded, the driver will allocate a separate state 

data structure for each instance. The driver can keep track of which instance data structure to 

use by passing the pointer to the instance data structure back to the Device Manager as its 

"handle," which is returned by the device driver's /nit function. 

One final issue with Windows CE device drivers is that they can be re-entered by the operating 

system, which means that a driver must be written in a totally thread-safe manner. References to 

state data must be protected by critical sections, interlock functions, or other thread-safe methods. 

The Stream Driver Entry Points 

A stream driver exposes 12 external entry points-summarized in the following list-that the 

Device Manager calls to talk to the driver. I'll describe each entry point in detail in the follow

ing sections. 

• xxx_lnit Called when an instance of the driver is loaded. 

• xxx_PreDeinit Called just before a driver is unloaded. At this point, the driver is still 
considered a loaded driver by the operating system. 

• xxx_Deinit Called when an instance of the driver is unloaded. 

• xxx_Open Called when a driver is opened by an application with CreateFile. 

• xxx_PreClose Called just before a driver's xxx_Close entry point is called. At this point, 
the driver is technically still open. 

• xxx_Close Called when a driver is closed by the application with Closehandle. 

• xxx_Read Called when the application calls ReadFile. 

• xxx_Write Called when the application calls WriteFile. 

• xxx_Seek Called when the application calls SetFilePointer. 

• xxx_IOControl Called when the application calls DeviceloControl. 

• xxx_PowerDown Called just before the system suspends. 

• xxx_PowerUp Called just before the system resumes. 

The xxx preceding each function name is the three-character name of the driver, if the driver 

has a name. For example, if the driver is a COM driver, the functions are named COM_lnit, 

COM_Deinit, and so on. For unnamed drivers (those without a prefix value specified in the reg

istry), the entry points are the name without the leading xxx, as in /nit and Deinit. Also, although 

the preceding list describes applications talking to the driver, there's no reason one driver can't 

open another driver by calling CreateFile and communicate with it just as an application can. 



592 Part Ill Advanced Windows CE 

xxx_lnit 

When the Device Manager first loads an instance of the driver, the Device Manager calls the 

driver's /nit function. The prototype is 

DWORD Xl<X_Init (LPCTSTR pContext, LPCVOID lpvBusContext); 

The first parameter, pContext, typically contains a pointer to a string identifying the Active 
key created by the Device Manager for the driver. I say typically because an application using 

RegisterDevice can load the device to pass any value, including 0, in this parameter. The mor

al of the story is to look for a string but plan for the dwContext value to point to anything. 

The second parameter is a pointer to driver specific data structure. This pointer is actually 

the fourth parameter to ActivateDeviceEx, so it can be used for whatever data needs to be 

passed from the caller of ActivateDeviceEx to the driver. 

Drivers may use a legacy prototype of the /nit function, which is prototyped as 

DWORD Xl<X_Init (DWORD dwContext); 

Here again, the first, and this time only, parameter almost always contains a pointer to the 

name of the Active key in the registry. Although the newer function prototype is recom

mended, drivers using the old /nit prototype work just as well. 

The driver should respond to the /nit call by verifying that any hardware that the driver accesses 

functions correctly. The driver should initialize the hardware, initialize its state, and return a nonzero 

value. If the driver detects an error during its initialization, it should set the proper error code with 

SetLastError and return 0 from the /nit function. If the Device Manager sees a 0 return value from 

the /nit function, it unloads the driver and removes the Active key for the driver from the registry. 

The device driver can pass any nonzero value back to the Device Manager. The typical use 

of this value, which is referred to as the device context handle, is to pass the address of a 

structure that contains the driver's state data. For drivers that can be multi-instanced (loaded 

more than once to support more than one instance of a hardware device), the state data of 
the driver must be independently maintained for each instance of the driver. 

xxx_PreDeinit 

The PreDeinit entry point is called just before the driver is removed from the list of loaded 

drivers kept by the operating system. This means that during the call, the driver is still consid

ered a "driver" by the operating system. This entry point must be prototyped as 

BOOL Xl<X_PreDeinit (DWORD hDeviceContext); 

The single parameter is the device-context value the driver returned from the /nit call. This 

value allows the driver to determine which instance of the driver is about to be unloaded. 

The driver can use this call to notify other drivers that it is about to be unloaded and to sig

nal other threads within the driver that it is about to be unloaded. 



Chapter 17 Device Drivers and Services 593 

xxx_Deinit 

The Deinit entry point is called when the driver is unloaded. This entry point must be prototyped as 

BOOL XXl<_Deinit (DWORD hDeviceContext); 

The single parameter is the device-context value the driver returned from the /nit call. This 

value allows the driver to determine which instance of the driver is being unloaded. The 

driver should respond to this call by powering down any hardware it controls and freeing any 

memory and resources it owns. The driver will be unloaded following this call. 

xxx_Open 

The Open entry point to the driver is called when an application or another driver calls 
CreateFile to open the driver. The entry point is prototyped as 

DWORD XXl<_Open (DWORD hDeviceContext, DWORD AccessCode, DWORD ShareMode); 

The first parameter is the device context value returned by the /nit call. The AccessCode and 

ShareMode parameters are taken directly from CreateFile's dwDesiredAccess and dwShare
Mode parameters and indicate how the application wants to access (read/write or read only) 

and share (FILE_SHARE_READ or FILE_SHARE_WRITE) the device. The device driver can refuse 

the open for any reason by simply returning 0 from the function. If the driver accepts the 

open call, it returns a nonzero value. 

The return value is traditionally used, like the device context value returned by the /nit call, as 

a pointer to an open context data structure. If the driver allows only one application to open 

it at a time, the return value is usually the device context value passed in the first parameter. 

This arrangement allows all the functions to access the device context structure directly, 

because one of these two values-the device context or the open context value-is passed 

in every call to the driver. The open context value returned by the Open function is not the 

handle returned to the application when the CreateFile function returns. 

Windows CE typically runs on hardware that's designed so that individual components in the 

system can be separately powered. Windows CE drivers that are designed to work without the 

Power Manager typically power the hardware they control only when the device is opened. The 

driver then removes power when the Close notification is made. This means that the device will 
be powered on only when an application or another driver is actually using the device. 

xxx_PreC/ose 

The PreC/ose entry point is called when an application or driver that has previously opened 

the driver closes it by calling CloseHandle but before the operating system actually removes 

the driver from the list of opened drivers. The entry point is prototyped as 

BOOL XXl<_PreClose (DWORD hOpenContext); 



594 Part Ill Advanced Windows CE 

The single parameter is the open context value that the driver returned from the Open call. 

The driver can use this call to notify other threads in the driver that is is about to be closed so 

that they can exit before this call returns. Upon return of this call, the device manager will call 

the xxx_Close entry point. 

xxx_Close 

The Close entry point is called after xxx_Close, or for drivers that don't implement 

xxx_PreClose, when the driver is closed with a call to CloseHandle. The entry point is 

prototyped as 

BOOL XX)(_Close (DWORD hOpenContext); 

The single parameter is the open context value that the driver returned from the Open call. 
The driver should power down any hardware and free any memory or open context data 

associated with the open state. 

xxx_Read 

The Read entry point is called when an application or another driver calls ReadFile on the 

device. This entry point is prototyped as 

DWORD XX)(_Read (DWORD hOpenContext, LPVOID pBuffer, DWORD Count); 

The first parameter is the open context value returned by the Open call. The second param

eter is a pointer to the calling application's buffer, where the read data is to be copied. The 

final parameter is the size of the buffer. The driver should return the number of bytes 

read into the buffer. If an error occurs, the driver should set the proper error code using 

SetlastError and return -1. A return code of 0 is valid and indicates that the driver read no 

data. 

A device driver should program defensively when using any passed pointer. The following 

series of functions tests the validity of a pointer: 

BOOL IsBadWritePtr (LPVOID lp, UINT ucb); 
BOOL IsBadReadPtr (const void *lp, UINT ucb); 
BOOL IsBadCodePtr (FARPROC lpfn); 

The parameters are the pointer to be tested and, for the Read and Write tests, the size of the 

buffer pointed to by the pointer. Each of these functions verifies that the pointer passed is 

valid for the use tested. However, the access rights of a page can change during the process

ing of the call. For this reason, always couch any use of the pBuffer pointer in a __ try, __ except 



Chapter 17 Device Drivers and Services 595 

block. This will prevent the driver from causing an exception when the application passes a 
bad pointer. For example, you could use the following code: 

DWORD xxx_Read (DWORD dwOpen, LPVOID pBuffer, DWORD dwCount) { 
DWORD dwBytesRead; 

} 

II Test the pointer. 
if (IsBadReadPtr (pBuffer, dwCount)) { 

SetlastError (ERROR_INVALID_PARAMETER); 
return -1; 

_try { 
dwBytesRead = InternalRead (pBuffer, dwCount); 

} 

_except (EXCEPTION_EXECUTE_HANDLER) { 
SetlastError (ERROR_INVALID_PARAMETER); 
return -1; 

} 

return dwBytesRead; 

In the preceding code, the pointer is initially tested by using lsBadReadPtr to see whether 
it's a valid pointer. The code that actually performs the read is hidden in an internal routine 

named lnterna/Read. If that function throws an exception, presumably because of a bad 
pBuffer pointer or an invalid dwCount value, the function sets the error code to ERROR_ 

INVALID_PARAMETER and returns -1 to indicate that an error occurred. 

xxx_Write 

The Write entry point is called when the application that has opened the device calls 
WriteFile. The entry point is prototyped as 

DWORD X)()(_Write (DWORD hOpenContext, LPCVOID pBuffer, DWORD Count); 

As with the Read entry point, the three parameters are the open context value returned by 
the Open call, the pointer to the data buffer containing the data, and the size of the buffer. 
The function should return the number of bytes written to the device or -1 to indicate an 

error. 

xxx_Seek 

The Seek entry point is called when an application or driver that has opened the driver calls 
SetFilePointer on the device handle. The entry point is prototyped as 

DWORD XXX_Seek (DWORD hOpenContext, long Amount, WORD Type); 

The parameters are what you would expect: the open context value returned from the Open 

call, the absolute offset value that is passed from the SetFilePointer call, and the type of seek. 



596 Part Ill Advanced Windows CE 

There are three types of seek: FILE_BEG/N seeks from the start of the device, FILE_ CURRENT 
seeks from the current position, and FILE_END seeks from the end of the device. The Seek 
function has limited use in a device driver but it is provided for completeness. 

xxx_PowerDown 

The PowerDown entry point is called when the system is about to suspend. For legacy drivers 

without a power management interface, the device driver should power down any hardware 

it controls and save any necessary hardware state. The entry point is prototyped as 

void XXl<_PowerDown (DWORD hDeviceContext); 

The single parameter is the device context handle returned by the /nit call. The driver, if it 

supports the legacy power management scheme, should prepare its hardware for the sys
tem's suspend state. 

xxx_PowerUp 

The PowerUp entry point is called when the system resumes. Legacy drivers without a power 

management interface can use this notification to know when to power up and restore the 

state to the hardware it controls. The PowerUp notification is prototyped as 

void XXl<_PowerUp (DWORD hDeviceContext); 

The hDeviceContext parameter is the device context handle returned by the /nit call. 

Although the PowerUp notification allows the driver to restore power to the hardware it 

manages, well-written drivers restore only the minimal power necessary for the device. 

Typically, the driver will power the hardware only on instruction from the Power Manager. 

xxx_IOControl 

Because many device drivers don't use the Read, Write, Seek metaphor for their interface, the 

/OControl entry point becomes the primary entry point for interfacing with the driver. The 

IOControl entry point is called when a device or application calls the Device/OControl func

tion. The entry point is prototyped as 

BOOL XXl<_IOControl (DWORD hOpenContext, DWORD dwCode, PBYTE pBufin, 
DWORD dwLenin, PBYTE pBufOut, DWORD dwlenOut, 
PDWORD pdwActualOut); 

The first parameter is the open context value returned by the Open call. The second param

eter, dwCode, is a device-defined value passed by the application to indicate why the call is 

being made. Unlike the desktop versions of Windows, Windows CE does very little processing 

before the IOCTL code is passed to the driver. This means that the device driver developer 

ought to be able to pick any values for the codes. However, this behavior might change in 
the future so it's prudent to define IOCTL codes that conform to the format used by the 



Chapter 17 Device Drivers and Services 597 

desktop versions of Windows. Basically, this means that the IOCTL codes are created with the 

CTL_CODE macro, which is defined identically in the Windows Driver Development Kit and 

the Windows CE Platform Builder. The problem with application developers creating con

forming IOCTL code values is that the CTL_CODE macro might not be defined in some SDKs. 

So, developers are sometimes forced to define CTL_CODE manually to create conforming 

IOCTL codes. 

The next two parameters describe the buffer that contains the data being passed to the de

vice. The pBufln parameter points to the input buffer that contains the data being passed to 

the driver; the dwlenln parameter contains the length of the data. The next two parameters 

are pBufOut and dwlenOut. The parameter pBufOut contains a pointer to the output buffer, 

and dwlenOut contains the length of that buffer. These parameters aren't required to point 

to valid buffers. The application calling DeviceloControl might possibly pass Os for the buffer 

pointer parameters. It's up to the device driver to validate the buffer parameters given the 

IOCTL code being passed. 

The final parameter is the address of a DWORD value that receives the number of bytes writ

ten to the output buffer. The device driver should return TRUE if the function was successful 
and FALSE otherwise. If an error occurs, the device driver should return an error code using 

SetlastError. 

The input and output buffers of Device/oControl calls allow for any type of data to be sent 
to the device and returned to the calling application. Typically, the data is formatted using a 

structure with fields containing the parameters for the specific call. 

The serial driver makes extensive use of Device/oControl calls to configure the serial hard

ware. For example, one of the many IOCTL calls is one to set the serial timeout values. 

To do this, an application allocates a buffer, casts the buffer pointer to a pointer to a 

COMMTIMEOUTS structure, fills in the structure, and passes the buffer pointer as the input 

buffer when it calls DeviceloControl. The driver then receives an IOControl call with the input 

buffer pointing to the COMMTIMEOUTS structure. I've taken the serial driver's code for pro

cessing this IOCTL call and shown a modified version here: 

BOOL COM_IOControl (PHW_OPEN_INFO pOpenHead, DWORD dwCode, 
PBYTE pBufin, DWORD dwLenin, 
PBYTE pBufOut, DWORD dwLenOut, 
PDWORD pdwActualOut) { 

BOOL RetVal = TRUE; // assume success 
COMMTIMEOUTS *pComTO; 

switch (dwCode) { 
case IOCTL._SERIAL_SET_TIMEOUTS 

if ((dwLenin < sizeof(COMMTIMEOUTS)) I I (NULL == pBufin)) { 
SetLastError (ERROR_INVALID_PARAMETER); 
RetVal = FALSE; 
break; 

} 



598 Part Ill Advanced Windows CE 

} 

} 

pComTO = (COMMTIMEOUTS *)pBufin; 
ReadintervalTimeout = pComTO->ReadintervalTimeout; 
ReadTotalTimeoutMultiplier = pComTO->ReadTotalTimeoutMultiplier; 
ReadTotalTimeoutConstant = pComTO->ReadTotalTimeoutConstant; 
WriteTotalTimeoutMultiplier = pComTO->WriteTotalTimeoutMultiplier; 
WriteTotalTimeoutConstant = pComTO->WriteTotalTimeoutConstant; 
break; 

return RetVal; 

Notice how the serial driver first verifies that the input buffer is at least the size of the tim

eout structure and that the input pointer is nonzero. If either of these tests fails, the driver 

sets the error code to ERROR_INVALID_PARAMETER and returns FALSE. Otherwise, the driver 

assumes that the input buffer points to a COMMTIMEOUTS structure and uses the data in 
that structure to set the timeout values. Although the preceding example doesn't enclose the 
pointer access in __ try, __ except blocks, a more robust driver might. 

The preceding scheme works fine as long as the data being passed to or from the driver is all 

contained within the structure. However, if you pass a pointer in the structure and the driver 

attempts to use the pointer, an exception will occur. To understand why, you have to re

member how Windows CE manages memory protection across processes. (At this point, you 

might want to review the first part of Chapter 15.) 

Managing Buffers 

The biggest difference between Windows Embedded CE 6.0 and the earlier versions of 

Windows CE is the way the operating system manages memory. As I discussed in Chapter 

15, gone is the old slot model, with its eccentric 32-MB divisions of virtual space. Now the 

operating system places applications in their own 2-GB address spaces and places the kernel 

in the top 2 GB of the address space. This change to memory management has its greatest 

impact on developers in the device driver area. What is interesting is that for drivers loaded 

in kernel mode, the changes to memory management scheme actually make things easier for 

the developer. 

Figure 17-4 illustrates that when an application is running, the application's address space is 

in the lower 2 GB of the address space while the kernel mode address space remains inacces

sible. When the application calls a kernel mode device driver, the calling thread transitions 

into kernel mode and calls the device driver code. During the life of the call, the right side 

of the code in the device driver has access to the kernel mode address space and the calling 

processes' address space. This means that any buffers in the application that are referenced 

by pointers passed to the driver are visible to the driver. This is a change to earlier versions of 

Windows CE where any pointer not passed as a parameter needed to be mapped back to the 

calling processes' slot. 



Before Call 

Kernel 
space hidden 

from application 

Application 
space visible 

to application 

During Call 

Chapter 17 Device Drivers and Services 599 

Kernel 
space visible 

to driver 

Application 
space visible 

to driver 

FIGURE 17-4 The memory configuration when calling a kernel mode driver 

While managing buffers for kernel mode drivers is simpler in Windows CE 6 than earlier ver

sions, managing buffers for user mode drivers is much more complex. The problem is 

illustrated in Figure 17-5. This shows the address space when an application calls a user mode 

driver. Notice that when the device driver code is executing, the calling application's address 

space isn't accessible because the user mode driver manager is now in the lower 2 GB of the 

address space instead of the calling process. 

To manage this issue, Windows CE 6.0 has new functions that device drivers can use to 

marshal data across process boundaries. These functions are designed to "do the right thing" 

for a given situation so that calling them won't hurt performance when there is no marshal

ling necessary. These functions come in pairs: one for marshalling a buffer, and a matching 

one for freeing the marshalled buffer. This is a change from earlier versions of Windows CE 

where drivers only had to map a pointer but didn't have to "unmap" it. There are a number 

of reasons, aside from the needs of user mode drivers, to use these marshalling functions. 

Just like in earlier versions of the operating system, any buffer pointed to by a pointer passed 

in the parameter list is marshalled by the operating system, so no other action is necessary. 

This means that the buffers pointed to by pBufln and pBufOut in the DeviceloControl call are 

marshalled automatically by Windows CE, while any buffers referenced from within a struc
ture passed to the driver must be marshalled by the driver. 



600 Part Ill Advanced Windows CE 

Before Call 

Kernel 
space hidden 

Application 
space visible 

to application 

During Call 

FIGURE 17-5 The memory configuration when calling a user mode driver 

Kernel 
space hidden 

Driver Manager 
Space visible 

to driver 

As just mentioned, the operating system provides the marshalling for buffers referenced by 
function parameters. However, if the driver is going to reference the buffers asynchronously 
after the original call to the driver returns, they must be marshalled by the driver even for 
kernel mode drivers. The mapping scheme shown earlier in Figure 17-4 is only valid while the 
original call is being processed by the driver. Once the driver call returns to the application, 

the memory map will change depending on the thread currently running. 

Finally, sometimes it is useful to marshal a buffer not because it is technically necessary, but 
because it is more secure to work with data inaccessable to the application. If a driver directly 
accesses a buffer that is in the application's address space, there is nothing to prevent anoth
er thread from within the application from modifying the buffer during the driver call. This 
can happen unintentionally due to a programming mistake or intentionally due to malicious 

code. So, if you are worried about security or bad application code, it is sometimes wise to 
marshal buffers for kernel mode drivers even though they don't absolutely require it. 

To marshal a buffer passed to a driver, the function to use is 

HRESULT CeOpenCallerBuffer (PVOID * ppDestMarshalled, 
PVOID pSrcUnmarshalled, DWORD cbSrc, 
DWORD ArgumentDescriptor, BOOL ForceDuplicate); 



Chapter 17 Device Drivers and Services 601 

The first parameter is the address of a pointer that will be set to point to the newly marshalled 
buffer. The second paramter is the pointer to the original buffer. The third parameter is the 
size of the buffer being marshalled. 

The ArgumentDescriptor parameter is interesting in that this parameter is used to describe 
the data being passed in the buffer. This information is useful to the operating system to op
timize the marshalling. For example, if the application is passing down a string that is only 20 

characters long in a buffer; only the first 20 characters plus the terminating zero need to be 
copied. The allowable values for the ArgumentDescriptor parameters are 

• ARG_l_PTR Input only pointer to binary data 

• ARG_l_WSTR Input only pointer to a Unicode string 

• ARG I ASTR Input only pointer to a ANSI string 

• ARG_O_PTR Output only pointer to binary data 

• ARG_O_Pl64 Output only pointer to a 64-bit value 

• ARG_IO_PTR Input and output only pointer to binary data 

• ARG_IO_Pl64 Input and output only pointer to a 64-bit value 

The final parameter to CeOpenCallerBuffer is ForceDuplicate, which tells the operating 
system to duplicate the buffer in the driver's protected address space even if it isn't tech
nically necessary. This allows the marshalled buffer to be accessed only by the driver. Of 
course, unless you need this for security or other reasons, you should not force buffers to 

be duplicated because there is a performance hit to copying the data. The return code from 
CeOpenCallerBuffer is an HRESULT that should be checked for success before working with 
the marshalled data. 

When the driver has completed work on the marshalled data and before the driver returns, it 
should call 

HRESULT CeCloseCallerBuffer (PVOID pDestMarshalled, 
PVOID pSrcUnmarshalled, DWORD cbSrc, 
DWORD ArgumentDescriptor); 

The parameters closely follow the parmaters of CeOpenCallerBuffer with pointers to the 
marshalled and original unmarshalled buffers followed by the size of the buffer and the 

argument descriptor parameter. Here, too, you should check the return code to ensure that 
the function succeeded. 

One limitation of CeOpenCa/lerBuffer is that it should not be called on pointers passed in the 
parmeter list of a function. For example, the call to a drivers XXX_Write function contains the 

paramter pBuffer, which points to the data to be written to the device. Because this pointer is 
passed in the parameter list, the buffer has already been marshalled by the operating system. 



602 Part Ill Advanced Windows CE 

However, what if you want that buffer to be duplicated for security reasons? In this specific 

case, use the function 

HRESULT CeAllocDuplicateBuffer (PVOID *ppDestDuplicate, 
PVOID pSrcMarshalled, DWORD cbSrc, 
DWORD ArgumentDescriptor); 

Here again, the parameters closely follow the parmaters of CeOpenCal/erBuffer. The differ

ence is that this function can be called on buffers referenced by function parameters. Don't 

call this function unless you need to duplicate a buffer. Nor should you call this function for 
buffers referenced by pointers embedded in structures. Those buffers should be marshalled 

by CeOpenCallerBuffer with the ForceDuplicate flag set to TRUE. 

If you do use CeAl/ocDuplicateBuffer, the buffer should be freed with a call to 

HRESULT CeFreeDuplicateBuffer (PVOID pDestDuplicate, 
PVOID pSrcMarshalled, DWORD cbSrc, 
DWORD ArgumentDescriptor); 

Any data in the copy of the buffer will be written back to the original buffer if the 

ArgumentDescriptor parameters indicate that the data is an output or input/output 

parameter. 

While CeOpenCal/erBuffer and CeCloseCallerBuffer are required for user mode drivers, they 
are also required for kernel mode drivers if the driver needs asynchronous access to the buf

fer after the original driver call returns. To access buffers asynchronously, another set of func

tions must be called on the marshalled buffer. This second set starts with the function 

HRESULT CeAllocAsynchronousBuffer (PVOID *ppDestAsyncMarshalled, 
PVOID pSrcSyncMarshalled, DWORD cbSrc, 
DWORD ArgumentDescriptor); 

The parameters should now be quite familiar to you as they closely follow the 

CeOpenCallerBuffer and CeAl/ocDuplicateBuffer. This function can only be called on buffers 

previously marshalled by CeOpenCal/erBuffer. 

To free an asynchronous buffer, call the function 

HRESULT CeFreeAsynchronousBuffer (PVOID pDestAsyncMarshalled, 
PVOID pSrcSyncMarshalled, DWORD cbSrc, 
DWORD ArgumentDescriptor); 

As before, the parameter list is similar to the other calls. 

All these functions are used in slightly different ways for sightly different reasons depending 

on whether the driver is operating in kernel mode or user mode, whether the buffer is to be 

accessed synchronously or asynchronously, and whether the pointer is passed on the param

eter list or embedded in a structure that is passed to the driver. Table 17-1 summarizes the 

various situations and the appropriate functions to use. 



Chapter 17 Device Drivers and Services 603 

TABLE 17-1 Table showing the proper buffer mapping calls for a given situation 

Kernel Mode Driver User Mode Driver 

Synchronous Asynchronous Synchronous Asynchronous 

Pointer in No action CeAllocDuplicateBuffer No action CeAllocDuplicateBuffer 
parameter necessary CeFreeDuplicateBuffer necessary CeFreeDuplicateBuffer 
list 

Pointer No action CeOpenCallerBuffer CeOpenCaller- CeOpenCallerBuffer 
embedded required CeAllocAsynchronousBuffer Buffer CeAllocAsynchronousBuffer 
in structure CeFreeAsynchronousBuffer CeCloseCaller- CeFreeAsynchronousBuffer 

CeCloseCallerBuffer Buffer CeCloseCallerBuffer 

For some conditions, such as kernel mode drivers asynchronously accessing a buffer ref

erenced in a structure, there are multiple functions that must be called. In these cases, the 

functions are listed in the order they need to be called. 

While the table is helpful, the best illustration is an example. Assume a driver has an IOCTL 

function to checksum a series of buffers. Because the buffers are disjointed, the pointers to 

the buffers are passed to the driver in a structure. The driver must map each pointer in the 

structure, checksum the data in the buffers, and return the result, as in the following code: 

#define IOCTL_CHECKSUM 2 
#define MAX_BUFFS 5 
typedef struct { 

int nSize; 
PBYTE pData; 

} BUFDAT, ''PBUFDAT; 

typedef struct { 
int nBuffs; 
BUFDAT bd[MAX_BUFFS]; 

} CHKSUMSTRUCT, ''PCHKSUMSTRUCT; 

DWORD xxx_IOControl (DWORD dwOpen, DWORD dwCode, PBYTE pln, DWORD dwln, 
PBYTE pOut, DWORD dwOut, DWORD ''pdwBytesWri tten) { 

switch (dwCode) { 

case IOCTL_CHECKSUM: 
{ 

PCHKSUMSTRUCT pchs; 
DWORD dwSum = O; 
HRESUL T hr; 
PBYTE pData; 
int i , j; 

II Verify the input parameters. 
if (!pin I I (dwin < sizeof (CHKSUMSTRUCT)) I I 

!pOut 11 (dwOut < sizeof (DWORD))) { 
SetlastError (ERROR_INVALID_PARAMETER); 
return FALSE; 



604 Part Ill Advanced Windows CE 

} 

} 

} 

} 

II Perform the checksum. Protect against bad pointers. 
pchs = (PCHKSUMSTRUCT)pin; 
_try { 

} 

for Ci = O; Ci < pchs->nBuffs) && Ci < MAX_BUFFS); i++) { 

} 

II Marshal the buffer 
hr = CeOpenCallerBuffer ((PVOID *)&pData, 

pchs->bd[i].pData, 
pchs->bd[i].nSize, 
ARG_I_PTR, FALSE); 

if (SUCCEEDED (hr)) { 

} 

II Checksum the buffer. 
for (j = O; j < pchs->bd[i].nSize; j++) 

dwSum += *pData++; 

CeCloseCallerBuffer (pData, pchs->bd[i].pData, 
pchs->bd[i].nSize, ARG_I_PTR); 

II Write out the result. 
*(DWORD *)pOut = dwSum; 
*pdwBytesWritten = sizeof (DWORD); 

_except (EXCEPTION_EXECUTE_HANDLER) { 
SetLastError (ERROR_INVALID_PARAMETER); 
return FALSE; 

} 

SetLastError (O); 
break; 

default: 
SetLastError (ERROR_INVALID_PARAMETER); 
return FALSE; 

return TRUE; 

In the preceding code, the driver has one IOCTL command, IOCTL_ CHECKSUM. When this 

command is received, the driver uses the structures passed in the input buffer to locate the 

data buffers. Each of the buffers needs to be marshalled if the driver is loaded as a user 

mode driver. Once marshalled with CeOpenCallerBuffer, the driver can perform the check

sum on the buffers. Then the buffers are closed using CeC/oseCallerBuffer. Note that the 
ArgumentDescriptor parameter is ARG_l_PTR indicating that the data is only read and not 

written. This allows Windows CE to optimize the marshalling of the data. 

Device Interface Classes 

In a generic sense, the driver is free to define any set of commands to respond to in the 

/OControl function. However, it would be nice if drivers that implement similar functions 



Chapter 17 Device Drivers and Services 605 

agreed on a set of common IOCTL commands that would be implemented by all the com

mon drivers. In addition, there is additional functionality that all drivers may optionally 

implement. For drivers that implement this common functionality, it would be convenient if 

they all responded to the same set of IOCTL commands. 

Driver interface classes are a way to organize and describe these common IOCTL commands. 

For example, Windows CE defines a set of IOCTL commands that are used by the Power 

Manager to control the power use of a driver. Drivers that respond to these power manage

ment IOCTLs are said to support the power management interface class. The list of driver 

interface classes grows with each release of Windows CE, but here is a short summary: 

• Power Management interface 

• Block Driver interface 

• Card services interface 

• Keyboard interface 

• Camera and Camera Pin interfaces 

• Battery interface 

• NDIS miniport interface 

• Generic Stream interface 

In addition to grouping like sets of IOCTL commands, device drivers can advertise their sup

port of one or more interfaces. Other drivers, or even applications, can be informed when a 

driver is loaded that supports a given interface. Interface classes are uniquely identified with 

a GUID defined in the Platform Builder include files. Unfortunately, the GUID definitions are 
distributed across the different include files relevant to the different driver types related to 

the specific interface, so finding them can be a challenge. 

Advertising an Interface 

Drivers that support a given interface need to tell the system that they support it. Advertising 

support for an interface can be accomplished in a couple of ways. First, the registry key 

specifying the driver can contain an /Class value that specifies one or more GU IDs identifying 
the interface classes the driver supports. For drivers that support a single interface, the /Class 

value is a string. For drivers that support multiple interfaces, the /Class value is a multi-z 

string with each individual string containing a GUID. 

A driver can manually advertise an interface by calling Advertiselnterface defined as 

BOOL Adverti se!nterface (con st GUID'' devcl ass, LPCWSTR name, BOOL fAdd); 

The first parameter is the GUID for the interface being advertised. The second parameter 

is a string that uniquely identifies the name of the driver. The easiest way to do this is to 



606 Part Ill Advanced Windows CE 

provide the name of the driver, such as DSKl:. Recall that the name of a driver can be found 

in its Active key. The last parameter, {Add, should be TRUE if the interface is now available and 

FALSE if the interface is no longer available. It is important to advertise the removal of the 

interface if the driver is being removed. Otherwise the Device Manager won't free the mem

ory used to track the interface. 

Monitoring for an Interface 

Applications or drivers can ask to be notified when a driver advertises an interface being 

either created or removed. To be notified, a message queue should be created with read ac

cess. Set the maximum message length to MAX_DEVCLASS_NAMELEN. The message queue 

handle is then passed to the RequestDeviceNotifications function defined as 

HANDLE RequestDeviceNotifications (canst GUID* devclass, HANDLE hMsgQ, 
BOOL fAl 1); 

The first parameter is a string representing the GUID of the interface that the application or 

driver wants to monitor. The string PMCLASS_GENERIC_DEVICE provides a method for being 

notified when any power-managed stream device is loaded or unloaded. This parameter can 

be set to NULL to receive all notifications. However, monitoring all interfaces isn't recom

mended for performance reasons. The second parameter is the handle to the previously cre

ated message queue. The final parameter is a Boolean that should be set to TRUE to receive 
all past notifications or FALSE to receive notifications only from the time of the call forward. 

After the call, the application or driver should create a thread to block on the message queue 

handle that will be signaled when a message is inserted in the queue. The message format 

depends on the specific notification being sent. 

To stop the notifications, call the function StopDeviceNotifications prototyped as 

BOOL StopDeviceNotifications (HANDLE h); 

The only parameter is the handle returned by RequestDeviceNotifications. 

The interface class scheme provides a handy way for a developer to know what IOCTL com

mands to support for a given driver. The classic example of this system is power manage

ment. The power management methodology was radically redesigned with the release of 
Windows CE 4.0. However, the stream interface couldn't be changed without causing all the 

drivers to be redesigned. Instead, the new power management support was exposed through 

a newly defined power management interface class. 

Device Driver Power Management 

The basics of this power manager are discussed in Chapter 15. Device drivers support the 

Power Manager by exposing a power management interface that allows the Power Manager 



Chapter 17 Device Drivers and Services 607 

to query the power capabilities of the device and to control its state. The control of the 

Power Manager is tempered by the actual response of the driver, which might not be in posi

tion to change its power state at the time of the request. 

Power Management Functions for Devices 

The power state of a device is defined to be one of the following: 

• DO Device is fully powered. All devices are fully powered and running. 

• Dl Device is fully functional, but in a power-saving mode. 

• D2 Device is in standby. 

• D3 Device is in sleep mode. 

• D4 Device is unpowered. 

These power states are defined in CEDEVICE_POWER_STATE enumeration, which also defines 

additional values for PwrDeviceUnspecified and PwrDeviceMaximum. 

When a device wants to set its own power state, it should call the DevicePowerNotify function 

defined as 

DWORD DevicePowerNotify (PVOID pvDevice, CEDEVICE_POWER_STATE DeviceState, 
DWORD Flags); 

The pvDevice parameter points to a string naming the device driver to change. The second 

parameter is CEDEVICE_POWER_STATE enumeration. The dwDeviceF/ags parameter should 

be set to POWER_ NAME. 

When changing its own power state, the device should not immediately change to the state 

requested in the SetDevicePower call. Instead, the device should wait until it is instructed to 

change its power state through an IOCTL command sent by the Power Manager. The driver 

should not assume that just because it requests a given state that the Power Manager will 
set the device to that state. There might be system reasons for leaving the device in a higher 

power state. 

Now let's look at the IOCTL commands that are sent to a device driver that supports the 

power management interface class. 

IOCTL_ POWER_ CAPABILITIES 

This IOCTL command is sent to query the power capabilities of the device. The input buffer 
of the loControl function is filled with a POWER_ RELATIONSHIP structure that describes any 

parent-child relationships between the driver and a bus driver. The output buffer contains a 



608 Part Ill Advanced Windows CE 

POWER_ CAPABILITIES structure that should be filled in by the driver. The structure is 

defined as 

typedef struct _POWER_CAPABILITIES { 
UCHAR DeviceDx; 
UCHAR WakeFromDx; 
UCHAR InrushDx; 
DWORD Power[S]; 
DWORD Latency[S]; 
DWORD Flags; 

POWER_CAPABILITIES, *PPOWER_CAPABILITIES; 

The DeviceDx field is a bitmask that indicates which of the power states, from DO to Dn, the 

device driver supports. The WakeFromDx field is also a bitmask. This field indicates which of 

the device states the hardware can wake from if an external signal is detected by the 

device. The lnrunshDx field indicates which entries of the Power array are valid. The Power 

array contains entries that specify the amount of power used by the device, in milliwatts, for 

each given power state. The Latency array describes the amount of time, in milliseconds, that 

it takes the device to return to the DO state from each of the other power states. Finally, the 

Flags field should be set to TRUE if the driver wants to receive an IOCTL_ REGISTER_ POWER_ 

RELATIONSHIP command to manage other child devices. 

The level of detail involved in filling out the POWER_ CAPABILITIES structure can be intimi

dating. Many drivers only fill out the first field, DeviceDx, to at least indicate to the system 

which power levels the device supports and set the remaining fields to zero. 

IOCTL_REGISTER_POWER_RELATIONSHIP 

This command is sent to a driver that wants to control the power management of any child 
drivers. During this call, the parent driver can inform the Power Manager of any devices it 

controls. 

IOCTL_ POWER_ GET 

This command is sent to the device to query the current power state of the device. The out

put buffer points to a DWORD that should be set to one of the CEDEVICE_POWER_STATE 

enumeration values. 

IOCTL_ POWER_ QUERY 

This command is sent to ask the device whether it will change to a given power state. The 

input buffer points to a POWER_RELATIONSHIP structure while the output buffer con

tains a CEDEVICE_POWER_STATE enumeration containing the power state that the Power 

Manager wants the device to enter. If the device wishes to reject the request, it should 

set the CEDEVICE_POWER_STATE enumeration to PwrDeviceUnspecified. Otherwise, the 

Power Manager assumes the driver is willing to enter the requested power state. The driver 



Chapter 17 Device Drivers and Services 609 

shouldn't enter the state on this command. Instead it should wait until it receives an IOCTL_ 
POWER_SET command. Be warned that the simple implementation of the Power Manager in 

Windows CE doesn't call this IOCTL, so a driver shouldn't depend on receiving this command 

before an /OCTL_POWER_SET command is received. 

IOCTL_POWER_SET 

This command is sent to instruct the device to change to a given power state. The input 
buffer points to a POWER_RELATIONSHIP structure whereas the output buffer contains a 

CEDEVICE_POWER_STATE enumeration containing the power state that the device should 

enter. The device should respond by configuring its hardware to match the requested power 

state. 

Building a Device Driver 
Building a device driver is as simple as building a DLL. Although you can use the Platform 

Builder and its more extensive set of tools, you can easily build stream drivers by using Visual 

Studio, even if you don't have Platform Builder. All you need to do is create a Smart Device 

DLL project, export the proper entry points, and write the code. The most frequently made 

mistake I see is in not declaring the entry points as extern C so that the C++ compiler doesn't 

mangle the exported function names. 

Debug Zones 

Debug zones allow a programmer or tester to manipulate debug messages from any mod
ule, EXE or DLL, in a Windows CE system. Debug zones are typically used by developers who 

use Platform Builder because debug zones allow developers to access the debug shell that 

allows them to interactively enable and disable specific groups, or zones, of debug mes

sages. Another feature of debug zone messages is that the macros that are used to declare 
the messages insert the messages only when compiling a debug build of the module. When 

a release build is made, the macros resolve to 0 and don't insert any space-hogging Unicode 

strings. The value of debug zones isn't just that developers can use them; it's that all the 

modules that make up Windows CE have debug builds that are packed full of debug mes
sages that can be enabled. 

Using debug zones in applications or DLLs is a fairly straightforward process. First, up to 

16 zones can be assigned to group all the debug messages in the module. The zones are 

declared using the DEBUGZONE macro, as in 

#define ZONE__ERROR 
#define ZONE_WARNING 
#define ZONE_INIT 

DEBUGZONE(O) 
DEBUGZONE(l) 
DEBUGZONE(2) 



610 Part Ill Advanced Windows CE 

Then debug messages are inserted in the code. Instead of directly calling OutputDebugString, 

which was the old way of sending strings to a debug port, the messages should be enclosed 

in a DEBUGZONE macro, defined as 

DEBUGMSG (zone, (printf expression)); 

The zone parameter is one of the 16 zones declared. The print{ expression can be any print{ 

style string plus the parameters. Note the additional parentheses around the print{ expres

sion. These are needed because DEBUGMSG is a macro and requires a fixed number of pa

rameters. The following is an example of using DEBUGMSG: 

DEBUGMSG (ZONE_ERROR, (TEXT("Read fai 1 ed. rc=%d\r\n"), GetlastError())); 

In addition to inserting the debug messages, a module must declare a structure named 

dpCurSettings of type DBGPARAM, defined as 

typedef struct _OBGPARAM { 
WCHAR lpszName[32]; 
WCHAR rglpszZones[16][32]; 
ULONG ulZoneMask; 

} DBGPARAM, *LPDBGPARAM; 

The first field is the debug name of the module. Typically, but not always, this is the name of 

the file. The second field is an array of strings. Each string identifies a particular zone. These 

names can be queried by the system to tell the programmer what zones are in a module. The 

final field, u/ZoneMask, is a bitmask that sets the zones that are enabled by default. Although 

this field is a 32-bit value, only the first 16 bits are used. 

The only action a module must take at run time to enable debug zones is to initialize the 

zones with the following macro: 

DEBUGREGISTER(HANDLE hinstance); 

The only parameter is the instance handle of the EXE or DLL. Typically this call is made early 
in WinMain for applications and in the process attach call to LibMain for DLLs. The Gen Driver 

example shown in Listing 17-1 demonstrates the use of debug zones. 

Unfortunately for application developers, the debug messages produced by debug zones are 

sent to the debug port, which is generally not available on shipping systems. Some systems, 

however, do allow the primary serial port on the system to be redirected so that it's used as a 

debug port, instead of as COMl. Because each OEM will have a different method of enabling 

this redirection, you will need to contact the specific OEM for information on how to redirect 

the serial port. Nonetheless, debug zones are a powerful tool for debugging Windows CE 

systems. 



Chapter 17 Device Drivers and Services 611 

The Generic Driver Example 

The following example, GenDriver, is a simple stream driver. Although it doesn't talk to 

any hardware, it exports the proper 12 entry points and can be loaded by any Windows 
CE system. To have a system load GenDriver, you can add an entry under [HKEY_LOCAL_ 

MACHINE]\Drivers\Builtin to have the driver loaded when the system boots, or you can write 

an application that creates the proper driver keys elsewhere and calls ActivateDevice. 

LISTING 17-1 The GenDriver example 

GenDriver.h 

II====================================================================== 
II Header file 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II====================================================================== 

II 
II Declare the external entry points here. Use declspec so we don't 
II need a .def file. Bracketed with extern C to avoid mangling in C++. 
II 
#ifdef ~cplusplus 
extern "C" { 
#endif ll~cplusplus 
~declspec(dllexport) DWORD GEN_Init (DWORD dwContext); 
~declspec(dllexport) BOOL GEN_PreDeinit (DWORD dwContext); 
~declspec(dllexport) BOOL GEN_Deinit (DWORD dwContext); 
~declspec(dllexport) DWORD GEN_Open (DWORD dwContext, DWORD dwAccess, 

DWORD dwShare); 
~declspec(dllexport) BOOL GEN_PreClose (DWORD dwOpen); 
~declspec(dllexport) BOOL GEN_Close (DWORD dwOpen); 
~declspec(dllexport) DWORD GEN_Read (DWORD dwOpen, LPVOID pBuffer, 

DWORD dwCount); 
~declspec(dllexport) DWORD GEN_Write (DWORD dwOpen, LPVOID pBuffer, 

DWORD dwCount); 
~declspec(dllexport) DWORD GEN_Seek (DWORD dwOpen, long lDelta, 

WORD wType); 
~declspec(dllexport) DWORD GEN_IOControl (DWORD dwOpen, DWORD dwCode, 

PBYTE pln, DWORD dwln, 
PBYTE pOut, DWORD dwOut, 
DWORD "pdwBytesWritten); 

~declspec(dllexport) void GEN_PowerDown (DWORD dwContext); 
~declspec(dllexport) void GEN_PowerUp (DWORD dwContext); 
#ifdef ~cplusplus 
} II extern "C" 
#endif ll~cplusplus 

II Suppress warnings by declaring the undeclared. 



612 Part Ill Advanced Windows CE 

DWORD GetConfigData (DWORD); 
II 
II Driver instance structure 
II 
typ.edef struct { 

DWORD dwSi.ze; 
INT nNumOpens; 

} DRVCONTEXT, * PDRVCONTEXT; '"'"" 

Gen Driver.cpp 

!l===e====================="'===============o========"'========="'====;======= 
II GenDriver - Generic stream device driver for Windows CE 
II 
II Written for the book Programming Windows CE 
// Copyright (C) 2007 Douglas Bo 1 ing 
!/="'==========='========="========"'===================================== 
#include <windows.h> // For all that Windows stuff 
#include "GenDriver.h" 

II 
II Globals 
II 
HINSTANCE hlnst; 

II 
II Debug zone support 
II 
#ifdef DEBUG 

// Local program includes 

II DLLinstance handle 

II Used as a prefix string for all debug zone messages. 
#define DTAG TEXT ("GENDrv: ") 

II Debug zone constants 
#define ZONE_ERROR DEBUGZONE(O) 

DEBUGZONE(l) 
DE.BUGZONE (2) 
DEBUGZONE(3) 
DEBUGZONE(4) 

#define ZONLWARNING 
#define ZONE_FUNC 
#define ZONLINIT 
#define· ZONE_DRVCALLS 
#define ZONE_EXENTRY (ZONE_FUNC f ZONE_DRVCALLS) 
II Debug zone structure 
DBGPARAM dpCurSettings = { 

TEXT("GenDriver"), { 

}; 

TEXT(" Errors"), TEXT("Warni ngs"), TEXT("Functions"), 
TEXT("Init"), TEXT("Driver Calls"), TEXT("UncJefi ned"), 
TEXT("Undefi ned"). TEXT(''Undefi ned"). TEXT("Undefi ned"). 
TEXT("Undefi ned"), TEXT(" Undefined") ,TEXT("Undefi.ned"), 
TEXT("Undefined"),TEXT("Undefined"),TEXT("Undefined"), 
TEXT("Undefined") } , 
Ox0003 

#endif //DEBUG 



Chapter 17 Device Drivers and Services 613 

II====================================================================== 
II DllMain - DLL initialization entry point 
II 
BOOL WINAPI DllMain (HANDLE hinstDLL, DWORD dwReason, 

LPVOID lpvReserved) { 

} 

h!nst = (HINSTANCE)hinstDLL; 

switch (dwReason) { 

} 

case DLL_PROCESS_ATTACH: 
DEBUGREGISTER(hinst); 
II Improve performance by passing on thread attach calls 
DisableThreadLibraryCalls (hlnst); 

break; 

case DLL_PROCESS_DETACH: 
DEBUGMSG(ZONE_INIT, (DTAG TEXT("DLL_PROCESS_DETACH\r\n"))); 
break; 

return TRUE; 

//====================================================================== 
II GEN_Init - Driver initialization function 
II 
DWORD GEN_Init (DWORD dweontext, LPCVOID lpvBusContext) { 

PDRVCONTEXT pDrv; 

} 

DEBUGMSG (ZONE_INIT I ZONE_EXENTRY, 
(DTAG TEXTC"GEN_Init++ dwContex:%x\r\n"), dwContext)); 

II Allocate a device instance structure. 
pDrv = CPDRVCONTEXT)LocalAlloc (LPTR, sizeof (DRVCONTEXT)); 
if (pDrv) { 

II Initialize structure. 
memset ((PBYTE) pDrv, 0, sizeof CDRVCONTEXT)); 
pDrv->dwSize = si.zeof (DRVCONTEXT); 

fl Read registry to determine the size of the disk. 
GetConfigData (dWContext); 

} else 
DEBUGMSG (ZONE_INIT I ZONE_ERROR, 

(DTAG TEXT("GEN_Ini t failure. Out of memory\r\n") )) ; 
DEBUGMSG (ZONE_FUNC, (DTAG TEXT("GEN_Init-- pDrv: %x\r\n"), pDrv)); 
return (DWORD)pDrv; 

!/===~================================================================== 
ll'GEN_PreDeinit - Driver de-initialization notification function 
II , 
BOOL GEN_PreDeinit (DWORD dwContext) { 

DEBUGMSG (ZONE_EXENTRY, 
(DTAG TEXT("GEN_PreDeinit++ dweontex:%x\r\n"), dwContext)); 

DEBUGMSG (ZONE_FUNC, (DTAG TEXTC"GEN_PreDeinit--\r\n"))); 
return TRUE; 



614 Part Ill Advanced Windows CE 

} 
I /===============l;lil=lll;ll=m;;:::=::.=i;;.=~====;::===============.====::========== 
II GEN_Oeinit - Driver de~initialization function 
II 
BOOL GEN_Dei n.i t (DWORD dwContext) { 

PORVCONTEXT pOrv = (PORVCONTEXT) dwContext; 

} 

DEBUGMSG (ZONE_EXENTRY, 
(DTAG TEXT("GEN_Deinit++ dwContex:%x\r\n"), dwContext)); 

if (pDrv && (pDrv->dwSize == sizeof (DRVCONTEXT))) { 

} 

II Free the driver state buffer. 
LocalFree ((PBYTE)pDrv); 

DEBUGMSG (ZONE....FUNC, (DTAG TEXT("GEN_Deinit--\r\n"))); 
return TRUE; 

//=============================================~======================= 
II GEN_Open - Called when driver opened 
II 
DWORD GEN_Open (DWORD dwContext, DWORD dwAccess, DWORO dwShare) { 

PORVCONTEXT pOrv = (PDRVCONTEXT) dwContext; 

} 

DEBUGMsc· (ZONE_EXENTRY, 
(DTAG TEXT("GEN_Open++ dwContext: %x\r\n"), dwContel<t)); 

II Verify that the context handle is valid. 
if (pDrv && (pDrv->dwSize I= sizeof (DRVCONTEXT))) { 

} 

DEBl,JGMSG (ZONE....ERROR, (DTAG TEXT("GEN_Open failed\r\n"))); 
return O; 

II Count the number of opens. 
Interlockedincrement ((long *)&pOrv->nNumOpens); 
DEBUGMSG (ZONLFUNC, (DTAG TEXT("GEN_Open--\r\n"))); 
return (DWORD)pDrv; 

II GEN_PreClose - Called when the driver is about to be closed 
II 
BOOL GEN_PreClose (DWORD dwOpen) { 

} 

DEBUGMSG (ZONE_EXENTRY, 
(DTAG TEXT("GEN_PreClose++ dWOpen: %x\r\n"), dwOpen)); 

DEBUGMSG (ZONE....FUNC, (DTAG TEXT("GEN_PreClose--\r\n"))); 
return TRUE; 

I I =~::;::11================.===~=,==========================i=====i======i===-=:=== 
II GEN_Close - Called when driver closed 
II 



Chapter 17 Device Drivers and Services 615 

BOOL GEN_Close (DWORD dwOpen) { 

} 

PDRVCONTEXT pDrv = (PDRVCONTEXT) dwOpen; 

DEBUGMSG (ZONE_EXENTRY, 
(DTAG TEXT("GEN_Close++ dwOpen: %x\r\n"), dwOpen)); 

if (pDrv && (pDrv->dwSize != sizeof (DRVCONTEXT))) { 
DEBUGMSG (ZONE_FUNC I ZONE_ERROR, 

(DTAG TEXT("GEN_Close failed\r\n"))); 
return O; 

} 

if (pDrv->nNumOpens) 
pDrv->nNumOpens--; 

DEBUGMSG (ZONE_FUNC, (DTAG TEXT("GEN_Close--\r\n"))); 
return TRUE; 

II====================================================================== 
II GEN_Read - Called when driver read 
II 
DWORD GEN_Read (DWORD dwOpen, LPVOID pBuffer, DWORD dwCount) { 

DWORD dwBytesRead = O; 

} 

DEBUGMSG (ZONE_EXENTRY, 
(DTAG TEXT("GEN_Read++ dwOpen: %x\r\n"), dwOpen)); 

DEBUGMSG (ZONE_FUNC, (DTAG TEXT("GEN_Read--\r\n"))); 
return dwBytesRead; 

II====================================================================== 
II GEN_Write - Called when driver written 
II 
DWORD GEN_Write (DWORD dwOpen, LPVOID pBuffer, DWORD dwCount) { 

DWORD dwBytesWritten = O; 

} 

DEBUGMSG (ZONE_EXENTRY, 
(DTAG TEXT("GEN_Write++ dwOpen: %x\r\n"), dwOpen)); 

DEBUGMSG (ZONE_FUNC, (DTAG TEXT("GEN_Write--\r\n"))); 
return dwBytesWritten; 

II====================================================================== 
II GEN_Seek - Called when SetFilePtr called 
II 
DWORD GEN_Seek (DWORD dwOpen, long lDelta, WORD wType) { 

} 

DEBUGMSG (ZONE_EXENTRY,(DTAG TEXT("GEN_Seek++ dw0pen:%x %d %d\r\n"), 
dwOpen, lDelta, wType)); 

DEBUGMSG (ZONE_EXENTRY, (DTAG TEXT("GEN_Seek--\r\n"))); 
return O; 

II====================================================================== 
II GEN_IOControl - Called when DeviceIOControl called 
II 



616 Part Ill Advanced Windows CE 

DWORDGEN_IOControl (DWORD dWOpen, DWORD dwCode, PBYTE pin, DWORD dw!n, . 

} 

PBYTE pOut, DWORD dWOut, DWORD *pdwBytesWritten) { 
PDRVCONTEXT pState; 
DWORD err = ERROR__INVALID_PARAMETER; 

DESUGMSG (ZONE_EXENTRY, 
(DTAG TEXT("GEN:....IOControl++ dWOpen: 
dwOpen, .dwCode)); 

pState = (PDRVCONTEXT) dWOpen; 
switch (dwCode) . { 

} 

II Insert IOCTL codes here. 

default: 
DEBUGMSG (ZONE..:ERROR, 

(DTAG TEXT("GEN_IOControl: unknown code %x\r\n"), dwCodEi)); 
return FALSE; 

SetLastError (err); 
DEBUGMSG (ZONE_FUNC, ([)TAG TEXT("GEN_IOControl ~-\r\n'')}); 
return .TRUE; 

II===,,,===================.,============================================== 
II GEN_PowerDown '." Called when system suspends 
II 
void GEN_PowerDown (DWORD dwContext) { 

return; 
} 

It GEN_PowerUp - Called when resumes 
II 
void GEN_PowerUp (DWORD · dWContext) ·. { 

return; 
} 

11-~--------------'-------'-'--'--------"------------'------------'-~---------

11.GetConfigData - Get the configuration 
II 
DWORD GetConfig[)ata. (DWORD .dwContext) { 

int. nlen, re; 
DwOR.D dWLen, dwTyp.e, dwSi ze = O; 
HKEY.hKey; 
TCHAR szKeyName[256], szPrefix[8]; 

nLen ·.,., O; 
II I.f ptr < fiSK, it's a value, 
if {dwContext•<OxlOOOO) { 

return '-1; 
} else. { 

_try { 
nLen 

} 

_except (EXCEPTION_EXECUTE_HANDLER) 
nLen = O; 

} 



Chapter 17 Device Drivers and Services 617 

if (!nLen) { 

} 

DEBUGMSG (ZONE_ERROR, (DTAG TEXT("dwContext not a ptr\r\n"))); 
return -2; 

II Open the Active key for the driver. 
re= RegOpenKeyEx(HKEY_LOCAL_MACHINE,(LPTSTR)dwContext,0, 0, &hKey); 

if (re == ERROR_SUCCESS) { 
II Read the key value. 
dwLen = sizeof(szKeyName); 
re= RegQueryValueEx (hKey, TEXT("Key"), NULL, &dwType, 

(PBYTE)szKeyName, &dwLen); 

RegCloseKey(hKey); 
if (re == ERROR_SUCCESS) 

re = RegOpenKeyEx (HKEY_LOCAL_MACHINE, (LPTSTR) 
dwContext, 0, 0, &hKey); 

if (re == ERROR_SUCCESS) { 
II This driver doesn't need any data from the key, so as 
II an example, it just reads the Prefix value, which 
II identifies the three-char prefix (GEN) of this driver. 
dwLen = sizeof (szPrefix); 
re= RegQueryValueEx (hKey, TEXT("Prefix"), NULL, 

&dwType, (PBYTE)szPrefix, &dwLen); 
RegCloseKey(hKey); 

} else 
DEBUGMSG (ZONE_ERROR, (TEXT("Error opening key\r\n"))); 

} else 
DEBUGMSG (ZONE_ERROR, (TEXT("Error opening Active key\r\n"))); 

DEBUGMSG (ZONE_FUNC, (DTAG TEXT("GetConfigData--\r\n"))); 
return O; 

} H !I H It" H H H tJ" H JJ" H",, H HI! !l !l II l! II H ti JJ ll H ll "H H !I !l II ll H II JJ n Jl H fl" H II ll !! !l" H" ""JI JJ II !l "H !l H ,, ti" !I II !l" II I• H !! !! JI" H" !l II ll !! !I !l 

"""H!lll!!HH 

The majority of the lines of code in Gen Driver are DEBUGZONE macros. The messages are 
handy for learning exactly when and how the different entry points of the driver are called. 

The GetConfigData routine at the end of the code shows how to test the Context value to 

determine whether the value passed to the /nit function was a pointer to a string or merely a 

number. 

The preceding driver template is a good starting point for any stream driver you want to 

write. Simply change the three-character name GEN to whatever your driver is named and go 

from there. 



618 Part Ill Advanced Windows CE 

Services 
Before Windows CE 4.0, Windows CE did not have the concept of a service. To make up for 

the lack of service support, so-called device drivers were written, not to interface with hard

ware, but rather to manage some software interface such as a telnet server. The problem 

with this design was that these services ran in the same process as most of the other device 

drivers. If there was a bug in the service code, the service could corrupt a device driver, 

some of which are critical to the operation of the system. To solve this problem, the Services 

Manager was added in Windows CE 4.0. 

The Services Manager is quite similar in design to the User Mode Device Manager; it loads 

services when the operating system boots by looking at a list in the registry. The manager 

can also load services upon request from an application, and finally, it expects the service to 
be implemented as a DLL with the 8 of the 12 external entry points expected of a Windows 

CE device driver.2 

In addition to the similarities, the Services Manager has a quite convenient capability beyond 

the Device Manager. The Services Manager implements a super service that monitors, upon 

request connections to TCP/IP ports on the device. Because many of the services imple

mented for Windows CE are server related, such as a telnet server or Web server, the super 

service alleviates the need for a number of services to create a thread and open a socket just 

to monitor a port. Instead, the super service does this and notifies the service that has re

quested monitoring when the port is connected. 

Service Architecture 

The architecture of a Windows CE service belies the history of using device drivers as service 

providers under Windows CE. A Windows CE service is a DLL that is constructed almost iden

tically to a stream device driver. Like a stream driver, a Windows CE service exports most of 

the same entry points, from xxx_lnit to xxx_/oControl. Also, like a stream driver, a service has 
a three-character prefix that, along with an instance number, is used to identify the loaded 

service. 

One convenient characteristic of a service is that the Services Manager doesn't require that 

all the stream functions be exported from a service. If the service isn't intended to be ex

posed as an interface by the standard stream functions, the service only needs to export 

xxx_lnit, xxx_Deinit, xxx_Open, xxx_Close, and xxx_IOControl. Although this arrangement gen

erally just saves writing and exporting a handful of null functions, it's still a handy feature. 

2 The entry points not in a service are PowerUp, PowerDown, PreDeinit and PreClose. 



Chapter 17 Device Drivers and Services 619 

The Life of a Service 

Services are always in one of two basic states, started or stopped, or transitioning between 

these two states. When stopped, the service should not respond to net connections or per

form any local processing that the service was designed to support. The service can be pro

grammatically started and stopped by applications with an IOCTL command. 

Services can be loaded on reset or manually loaded by an application. To load a service au

tomatically on reset, add a registry key under the key [HKEY_LOCAL_MACHINE]\Services. The 
name of the key created is used by the Services Manager to identify the service. The contents 

of the key are quite similar to the contents of a device driver key for a user mode driver. 

Most of the same values used in device keys-DLL, Prefix, Index, and so forth-are used 

in the Services key. One change for Windows CE 6 is that the registry value ServiceContext 
replaces the old Context value. In fact, if a legacy service uses the Context value in the reg

istry, Windows CE 6.0 will not load that service. Figure 17-6 shows the registry key for the 

Bluetooth service. 

[OOuserPmcGroup 2 
I»] Flags 115 

§jD11 8TSVC.D11 
I»] order 9 
I»] Keep l 

[~Prefix BTS 

tJ:i'.l1ndex 

FIGURE 17-6 The registry key for the Bluetooth service 

There are a few differences between a registry entry for a device and a service. The service 

entry must contain the Index value that is optional for a device. Also, the ServiceContext value 

in the registry has a defined use. It's used to determine what state the service is in when it 

loads. ServiceContext can be one of the following values: 

• 0 Indicates that the service should auto-start itself. 

• 1 Indicates that the service is initially stopped. If a Super Service key is present, the 
super service is automatically started. 



620 Part Ill Advanced Windows CE 

These values correspond to the values SERVICE_IN/T_STARTED, SERVICE_INIT_STOPPED 

discussed in the service /nit routine later in this chapter. 

However the service is loaded, the Services Manager will load the DLL implementing the 

service into its process space. Using the information gathered from the registry or the 

RegisterService function, the Services Manager uses the prefix to generate the names of the 

entry points to the service and uses GetProcAddress to get their addresses. Aside from the 

required /nit, Deinit, and IOControl entry points, pointers to any of the other entry points 

that aren't found are simply redirected to a dummy routine that returns the error code 

ERROR_ NOT_ SUPPORTED. 

Once the DLL is loaded, the service's /nit function is called. The single parameter is the 

Context value either read from the registry or passed in the RegisterService function. If the 
service returns a nonzero value, the /nit call is deemed to be a success and the service is then 

added to the chain of active services. 

The service can be started and stopped by sending it IOCTL commands using 

DeviceloControl. If the service receives a start command and it's currently stopped, it should 

start any processing that is the task of the service. If running, the service can be stopped by 

another IOCTL command. A stopped service isn't unloaded. Instead, it waits in memory 

until restarted or unloaded. Aside from stopping super service support, the Services Manager 

doesn't prevent a stopped service from performing any action. It's up to the service to heed 

the start and stop commands. 

When the service is requested to be unloaded, the Services Manager calls the Deinit function 

of the service, and the DLL is unloaded from the process space of the Services Manager. 

Application Control of a Service 

Applications can load, unload, and communicate to a service using a series of dedicated func

tions. An application can load a service using one of two calls. If the service has a registry key 
defined, the function ActivateService function can be used. ActivateService is defined as 

HANDLE ActivateService (LPCWSTR lpszDevKey, DWORD dwClientinfo); 

The first parameter is the name of the registry key that provides load information on the ser

vice. The registry key must be located under [HKEY_LOCAL_ MACHINE]\Services. The format 

of the key must be the same as mentioned earlier for service registry keys. The second pa

rameter is reserved and must be set to zero. 

An application can also load a service with the function RegisterService. Like RegisterDevice, 

RegisterService doesn't require a registry entry for the service to load. The function is defined as 

HANDLE RegisterService (LPCWSTR lpszType, DWORD dwlndex, LPCWSTR lpszLib, 
DWORD dwlnfo); 



Chapter 17 Device Drivers and Services 621 

The parameters are quite similar to RegisterDevice: the prefix string of the service is passed 

in the first parameter; the index value in the second; the name of the DLL implementing 

the service in the third; and the context value, passed to the /nit function, in the fourth 

parameter. 

The return value for RegisterService as well as ActivateService is the handle to the instance of 

the service. This value can be used later to unload the service. 

To communicate to with the service, an application uses the standard file 1/0 functions just 
as if the application were talking to a device driver. The application should call CreateFile in

dicating the name of the service, as in BTHl, and the type of access: read or read/write. Once 

the service is opened, the application can call ReadFile, WriteFile, and Device/oControl to talk 

to the service. When the conversation is complete, the application should call CloseHandle to 

close the service handle returned by CreateFile. 

A list of the currently running services can be obtained with the EnumServices function. 

EnumServices is defined as 

BOOL EnumServices (PBYTE pBuffer, DWORD *pdwServiceEntries, 
DWORD *pdwBufferlen); 

The pBuffer parameter points to a buffer that will be filled with an array of ServiceEnumlnfo 

structures combined with a series of strings containing the names of the DLLs implementing 

the services. The function places one ServiceEnumlnfo structure for each service managed by 

the Services Manager. The pdwServiceEntries parameter points to a DWORD that will be filled 

with the number of ServiceEnumlnfo structures placed in the buffer by the function. The 

pdwBufferlen parameter points to a DWORD that should be initialized with the size of the 
buffer pointed to by pBuffer. When the function returns, the value is set to the number of 

bytes placed in the buffer. 

The ServiceEnumlnfo structure is defined as 

typedef struct_ServiceEnuminfo { 
WCHAR szPrefix[6]; 
WCHAR szDllName; 
HANDLE hServiceHandle; 
DWORD dwServiceState; 

} ServiceEnuminfo; 

Each instance of the structure describes one service. The somewhat misnamed szPrefix field 

contains the complete name of the service, as in SRVO:, which is a combination of the three

character service prefix along with its instance number and a trailing colon. The szDllName 

field points to a string naming the DLL implementing the service. The hServiceHandle field 



622 Part Ill Advanced Windows CE 

contains the handle of the service, whereas the dwServiceState field contains the current state 

(running, stopped, and so forth) of the service. 

A service can be unloaded with the function DeregisterService defined as 

BOOL DeregisterService (HANDLE hDevice); 

The only parameter is the handle to the service. The Services Manager will first ask the ser

vice if it can be unloaded. If the service assents, the service will be unloaded; otherwise, the 

function will fail. 

The Service DLL Entry Points 

Because the architecture of the services is so similar to a device driver, I'm only going to 
discuss the differences between the service and the driver. The first difference is in how the 

service is initialized, so let's look at the /nit function. 

xxx_lnit 

The /nit function follows the legacy /nit prototype as in 

DWORD xxx_Init (DWORD dwData); 

The only parameter is a flag indicating the initial state of the service. The parameter can con

tain one of the following flags: SERVICE_INIT_STARTED indicates the service should provide 

its own initialization to start the service and SERVICE_IN/T_STOPPED indicates that the ser

vice is currently stopped but may be started by the super service. 

Like a device driver, a service should perform any necessary initialization during the call to 

the /nit function. If an error is discovered, the /nit function should return a zero indicating 

that the service should fail to load. The Services Manager will then unload the DLL imple

menting the service. The Services Manager interprets any nonzero value as a successful ini

tialization. Also, as with a driver, the service isn't really a service until the /nit function returns. 

This means that the /nit function can't make any call that expects the service to be up and 

running. 

xxx_Deinit 

The Deinit function is called when the service is unloaded. The prototype of Deinit shown 

here matches the device driver Deinit function. 

DWORD xxx_Deinit (DWORD dwContext); 

The only parameter is the value that was returned from the /nit function. 



Chapter 17 Device Drivers and Services 623 

xxx_Open 

The Open entry point to the service is called when an application or the services manager 

opens the service by calling CreateFile. The entry point is prototyped as 

DWORD XXX_Open (DWORD hDeviceContext, DWORD AccessCode, DWORD ShareMode); 

The first parameter is the device context value returned by the /nit call. The AccessCode and 

ShareMode parameters are taken directly from CreateFile's dwDesiredAccess and dwShare

Mode parameters and indicate how the application wants to access (read/write or read only) 

and share (FILE_SHARE_READ or FILE_SHARE_WRITE) the device. The services can refuse to 

open for any reason by simply returning 0 from the function. 

xxx_Close 

The Close function is called when the service is closed. The prototype of Close is 

DWORD xxx_Deinit (DWORD dwContext); 

The only parameter is the value that was returned from the Open function. 

xxx_IOControl 

The IOControl function is much more structured than the similarly named counterpart in a 

device driver. Instead of being a generic call that the driver can use as it pleases, in a service 

the IOControl call must support a series of commands used by both the Services Manager 

and by applications communicating with the service. 

The prototype of the /OControl entry point is shown here. 

DWORD xxx_IOControl (DWORD dwData, DWORD dwCode, PBYTE pBufin, DWORD dwlenln, 
PBYTE pBufOut, DWORD dwlenOut, PDWORD pdwActualOut); 

The parameters are the same as the ones used in xxx_IOControl for the device driver. The 

dwData parameter can either contain the value returned by the service's Open function or 

the value returned by the /nit function. The service must be written to accept the value 

returned by /nit or the values returned by both /nit and Open if it implements an Open func

tion. Because there is an extensive list of commands, they are discussed individually in the 

following section. The other entry points to the driver, Read, Write, and Seek, are optional. 

The Service IOCTL Commands 

A Windows CE service must field a series of IOCTL commands sent through the IOControl 

function. These commands can be grouped into a series of categories such as commands 

used to control the service, those used to query the state of the service, those commands 

used to help debug the service, and those commands used for super service support. 



624 Part Ill Advanced Windows CE 

For each of the following commands, the service should return TRUE if the command was 
successful and FALSE if an error occurred. Extended error information should be sent by call
ing SetlastError before returning. 

IOCTL_ SERVICE_ START 

The first command, /OCTL_SERVICE_START, is sent to the service to start it. This command 
isn't sent by the system when the service is loaded. Instead, it's only sent by an application 
that wants to start a stopped service. If not already running, the service should make any 
connections or perform any initialization necessary to provide the service for which it was 
designed. 

If the service has registry entries that tell the super service to automatically start port moni
toring, the super service will start and bind to the specified ports if this IOCTL command re
turns a nonzero value. 

IOCTL_ SERVICE_ STOP 
The IOCTL_ SERVICE_ STOP command is sent by applications to stop a currently running ser

vice. The service won't be unloaded from memory just because it was stopped. 

If the service has a super service running and the registry entry for the service is configured 
to auto-start a super service, the super service will be shut down if the service returns a non
zero value from this command. 

IOCTL_SERVICE_REFRESH 
The /OCTL_SERVICE_REFRESH command is sent by an application or the Services Manager to 
tell the service to reread its configuration data from the registry. Any changes in the configu
ration read should immediately be reflected in the service. 

IOCTL_ SERVICE_ INSTALL 
This optional command is sent to have the service modify the registry so that the service 

automatically starts on reset. This command is similar in action to the Dl/RegisterServer func
tion of a COM in-proc server. Although optional, the command is convenient to have be
cause any installation program for the service will not have to have knowledge of the registry 
entries required by the service. The registry entries needed for auto-load are described later 
in the "Super Service" section. 

IOCTL_SERVICE_ UNINSTALL 

The complement to the /OCTL_SERVICE_INSTALL command, also optional, is the IOCTL_ 

SERVICE_UNINSTALL command, which removes the registry entries that cause the driver to 

load on boot. An install/remove application can use this command to make a service remove 



Chapter 17 Device Drivers and Services 625 

its own registry entries so that the application need not enumerate the registry to find the 

installation entries. 

This completes the list of IOCTL commands sent by applications; now let's look at the queries 

that are sent by both applications and the Services Manager to query the state of the service. 

IOCTL_SERVICE_STATUS 

The IOCTL_SERV/CE_STATUS command is sent to query the state of the service. The state 

is returned in the output buffer pointed to by the pOut parameter of the IOControl call. 

The service should verify that pOut is nonzero and that dwOut indicates the buffer is large 

enough to hold a OWORD. 

The service state can be one of the following, rather self-explanatory, values. 

• SERVICE_STATE_OFF 

• SERVICE_STATE_ON 

• SERVICE_STATE_STARTING_UP 

• SERVICE_STATE_SHUTTING_DOWN 

• SERVICE_STATE_UNLOADING 

• SERVICE_STATE_UNINITIALIZED 

• SERVICE_STATE_UNKNOWN 

IOCTL_ SERVICE_ CONSOLE 
This optional command is sent to have the service display a service console. A service does 

not have to implement this command, but it can be handy in some situations. 

The command is sent with a string in the input buffer. If the string is "On", or if the input buf

fer pointer is NULL, the service should display a service console. If the input buffer contains 

the string "Off", the service should remove the service console. 

IOCTL_ SERVICE_ CONTROL 
This command is basically the IOCTL of the IOCTL commands. That is, it's a generic command 

that can be used by the applications to communicate custom commands to the service. The 

format of the input and output buffers is defined by the service-defined command. 

IOCTL_ SERVICE_ DEBUG 

This command is sent to set the debug zone bitmask for the service. The first DWORD of the 

input buffer contains the new state for the zone bitmap. The service should verify that the 

input buffer exists and is at least a DWORO in size. 



626 Part Ill Advanced Windows CE 

Because the debug zone structure dpCurrParams is typically only defined for debug builds of 

the service, the code fielding this command is typically couched in an #ifdef block to prevent 

it from being compiled in a nondebug build. 

There are examples of where this command has been extended to perform debug duties be

yond the settings of the zone mask. To extend the functionality, the service can use the size 

of the input buffer, specified in dwln, to determine the meaning of the input buffer data. To 

be compatible, the service should default to setting the debug zone mask if dwln is set to the 

size of a DWORD. 

IOCTL_ SERVICE_ SUPPORTED_ OPTIONS 
This command queries the currently supported options of the service. The option flags are 
returned in a DWORD in the output buffer. 

Super Service 
The super service provides all services with a convenient method for monitoring TCP/IP ports 

without requiring customized code to monitor the port inside the service. The super service 

can either work automatically, if the proper registry settings are in place for the service, or 

manually through a series of function calls. It's more convenient to use the registry method 

for configuring the super service, so I will cover that method first. 

If the service wants the super service to start automatically when the service is loaded, a 

subkey, named Accept, must be present under the service's key. Under the Accept key, there 

should be one or more subkeys each providing the IP address of a port to monitor. The 
Services Manager doesn't use the name of the subkey under the Accept key, although the key 

is traditionally named TCP-xxx, where xxx is the port number to be monitored. Each subkey 

should contain a binary value named SockAddr. The data in SockAddr should comprise bytes 

that make up a SOCKADDR structure that describes the port being monitored. The sub-

key can optionally contain a Protocol value that specifies the protocol for the socket. If this 

value isn't present, the protocol value is assumed to be zero. The following code initializes a 

SOCKADDR structure and then writes it to the registry. 

int AddRegSuperServ (HKEY hKey, WORD wPort, DWORD dwProtocol) 
SOCKADDR_IN sa; 
HKEY hSubKey; 
TCHAR szKeyName[128]; 
DWORD dw; 
int re; 

memset (&sa, 0, sizeof (sa)); 
sa.sin_family = AF_INET; 
sa.sin_port = htons(wPort); 
sa.sin_addr.s_addr = INADDR_ANY; 



Chapter 17 Device Drivers and Services 627 

II Create accept key for this service 
wsprintf (szKeyName, TEXT("Accept\\TCP-%d"), wPort); 
re = RegCreateKeyEx (hKey, szKeyName, 0, NULL, 0, NULL, 

NULL, &hSubKey, &dw); 
if (re == ERROR__SUCCESS) 

re= RegSetValueEx (hSubKey, TEXT("SockAddr"), 0, REG_BINARY, 
(PBYTE)&sa, sizeof (sa)); 

re = RegSetVal ueEx (hSubKey, TEXT("Protocol "), 0, REG_DWORD, 
(PBYTE)&dwProtocol, sizeof (DWORD)); 

return re; 

As we will soon see, the ServiceAddPort function has the capability to create this registry key 

as well. It's still handy to be able to write the key manually in the case in which the service 

doesn't want to start the super service when it's writing the key. 

In addition to the Accept keys, the registry entry for the service must have a ServiceContext 

value of 1. If the ServiceContext value is 0, the super service will not start, nor will it start if 

the service is loaded in a standalone copy of the Services Manager. 

When a service is started, either during system startup or with the ActivateService function, 
the service is loaded, its /nit function is called, and then, if the ServiceContext value is 1, the 

super service queries the service through an IOCTL command to determine whether it wants 

super service support. If so, the super service enumerates the Accept keys and creates sock

ets to monitor the ports described in the keys. As each socket is opened and bound to the 

appropriate address, the service is notified, through an IOCTL command, that the socket is 

being monitored. Then, once all sockets are opened, and if the service is first being loaded, it 

sends a final IOCTL indicating that all the sockets are listening. 

When a connection is made to one of the listening sockets, another IOCTL command is sent 

to the service along with the socket handle of the connection. The service then must create a 

new thread to handle the communication with the socket. The IOCTL call must return quickly 

because the calling thread is necessary for monitoring other ports. After the communication 

is complete, the service should close the socket handle passed during the connection noti

fication. When the service shuts down, IOCTL commands are sent to the service notifying it 

that the sockets monitoring the ports have been closed. 

Programmatically Controlling the Super Service 

It's possible to have super service support without entries in the registry, but it's more com

plicated. In this scheme, the service must tell the super service about each port to be moni

tored. This can be done with the function ServiceAddPort, defined as 

ServiceAddPort (HANDLE hService, SOCKADDR pSockAddr, INT cbSockAddr, 
INT iProtocol, WCHAR szRegWritePath); 

The first parameter is the handle to the service, which, ironically, is somewhat difficult for the 

service to get. The SOCKADDR structure should be initialized with the address information 



628 Part Ill Advanced Windows CE 

for the listening socket. The iProtocol value should contain the protocol to be used by the 

socket. The szRegWritePath parameter can optionally specify a registry key name where this 

information will be written so that the next time the service is started, the super service will 

start automatically. 

The issue with a service getting its own handle is that GetServiceHandle requires not just the 

three-character prefix of the service but also the instance number of the service. If the ser

vice was loaded with RegisterService, determining the service instance isn't easy. If, however, 

the service was loaded because of a registry key entry, the instance value is specified in the 
registry. Of course, if the service was loaded due to a registry entry, it's just as convenient to 

have the registry key also specify that the super service automatically start. 

A specific port can be closed for monitoring by calling the ServiceC/osePort function. Its pro

totype is 

BOOL ServiceClosePort (HANDLE hService, SOCKADDR* pSockAddr, 
int cbSockAddr, int iProtocol, BOOL fRemoveFromRegistry); 

The parameters are identical to the ServiceAddPort function with the exception of the last 

parameter, fRemoveFromRegistry, which is a Boolean flag that tells the function whether the 

corresponding registry entry should be removed for the port. 

To close all the ports being monitored by a service, ServiceUnbindPorts can be used. 

BOOL ServiceUnbindPorts (HANDLE hService); 

The only parameter is the handle to the service. 

SuperService IOCTLs 

Services that use the super service must respond to a series of additional IOCTL commands. 

These commands are either queries to check for support or are notifications indicating an 

event has occurred within the super service. 

/OCTL_SERVICE_REGISTER_SOCKADDR 
This command is sent at least twice during the initialization of the super service. The super 

service first sends this command to query whether the service will accept super service sup
port. In this case, the input buffer pointer, pin, is NULL. 

The super service next sends this command again, once for each port the service is monitor

ing to verify the socket has been created to monitor the requested address. During these 

subsequent calls to verify the individual addresses, pin points to a SOCKADDR structure that 

describes the socket address being monitored. 



Chapter 17 Device Drivers and Services 629 

IOCTL_ SERVICE_ STARTED 
This notification is sent when the super service completes its initialization after the service is 

first loaded. When this notification has been received, the service can assume that the super 

service is listening on all the ports requested. This notification isn't sent when the service is 

restarted after it has been stopped. 

IOCTL_SERVICE_DEREGISTER_SOCKADDR 
This notification is sent after the super service has closed the socket monitoring a given sock

et address. The pin parameter points to the SOCKADDR structure that describes the socket 

address. This notification can be sent if the service is being stopped or because the service is 

being unloaded. 

IOCTL_ SERVICE_ CONNECTION 
The IOCTL_SERVICE_CONNECTION notification is sent when another application connects 

to the socket address being monitored by the super service. The input parameter pin points 
to a socket handle for the connected socket. It's the responsibility of the service to spawn a 

thread to handle communication on this socket. The service must also close the socket when 

communication is complete. 

IOCTL_SERVICE_NOT/Fy_ADDR_ CHANGE 
This notification is sent if the system's IP address changes. The input buffer is filled with an 

IP_ADAPTER_ INFO structure defined as 

typedef struct _IP_ADAPTER__INFO { 
struct _IP_ADAPTER__INFO* Next; 
DWORD Comboindex; 
Char AdapterName[MAX_ADAPTER__NAME_LENGTH + 4]; 
char Description[MAX_ADAPTER__DESCRIPTION_LENGTH + 4]; 
UINT Addresslength; 
BYTE Address[MAX_ADAPTER_ADDRESS_LENGTH]; 
DWORD Index; 
UINT Type; 
UINT DhcpEnabled; 
PIP_ADDR__STRING CurrentipAddress; 
IP_ADDR__STRING IpAddresslist; 
IP_ADDR__STRING Gatewaylist; 
IP_ADDR__STRING DhcpServer; 
BOOL HaveWins; 
IP_ADDR_STRING PrimaryWinsServer; 
IP_ADDR_STRING SecondaryWinsServer; 
time_t LeaseObtained; 
time_t LeaseExpires; 

} IP_ADAPTER__INFO, *PIP_ADAPTER_INFO; 



630 Part Ill Advanced Windows CE 

The fairly self-explanatory IP_ADDRESS_INFO structure contains everything from the IP ad

dress of the system to gateway, Dynamic Host Configuration Protocol (DHCP), and Windows 

Internet Naming Service (WINS) information. 

Services.exe Command Line 

In addition to being the Services Manager for the system, the application services.exe also 

has a command-line interface. For systems with a console, simply type 

services help 

This command produces a list of the available commands. Services can list the current servic

es, start them and stop them, load them and unload them, and even add and remove them 

from from the registry. 

For systems without console support, services can be launched with an -f command-line 

switch and the name of a file to send the output to, as in 

services -f Outfile.txt 

Other command-line parameters include -d to send the output to the debug serial port and 

- q to suppress output entirely. 

TickSrv Example Service 

The TickSrv example demonstrates a service that uses the super service. TickSrv monitors 

port 1000 on a Windows CE device and, for any application that connects, provides the cur
rent tick count and the number of milliseconds the system has been running since it was 

reset. TickSrv is implemented as a standard Windows CE service. Because there is no reason 

for a local application to use the service, it doesn't implement the standard stream exports, 

Read, Write, or Seek. The source code for TickSrv is shown in Listing 17-2. 

LISTING 17-2 The TickSrv example 

TickSrv.h 

II====;================================================================== 
II Header file 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2007 Douglas Boling 
II======,.,.============================================================== 
#define di m(a) (si zeof (a) /si zeof (a[O])) 
II 



Chapter 17 Device Drivers and Services 631 

II Declare the external entry points here. Use declspec so we don't 
II need a .def file. Bracketed with extern C to avoid mangling in C++. 
II 
#ifdef _cplusplus 
extern "C" { 
#endif ll_cplusplus 
....,.declspec(dllexport) DWORD TCK_Init (DWORD dwContext); 
_declspec(dllexport) BOOL TCK_Deinit (DWORD dwContext); 

-...;.declspec(dllexport) DWORD TCK_Open (DWORD dwContext, DWORD dwAccess, 
DWORD dwShare); 

_declspec(dllexport) BOOL TCK_Close (DWORD dwOpen); 
_declspec(dllexport) DWORD TCK_IOControl (DWORD dwOpen, DWORD dwCode, 

PBYTE p!n, DWORD dw!n, 
PBYTE pOut, DWORD dwOut, 
DWORD *pdwBytesWritten); 

#ifdef _cplusplus 
} II extern "C" 
#endif //_cplusplus 

int RegisterService (void); 
int DeregisterService (void); 
DWORD WINAPI AcceptThread (PVOID pArg); 
II 
II Service state structure 
II 
typedef struct { 

DWORD dwSize; 
CRITICAL_SECT!ON csData; 
_int servState; 

} SRVCONTEXT, *PSRVCONTEXT; 

Tick.Srv,cpp 

II .Size of structure 
II Crit Section protecting this struct 
JI Service state 

11--~==============~=~==~======================================== 
II TickSrv - Simple example service for Windows CE 
II 
II Written for the book Progratnming Windows CE 
II Copyright (C) 2007 Douglas Boling 
//=====:;========================-=~=======~============================== 
#include <Windows.h> 
#include <Winsock.h> 
#include "service.h" 

#include "TickSrv.h" 

II For all that Windows stuff 
II Socket support 
II Service includes 

II Local program includes 

11.lhis links in the Winsock library without having to adjust the 
11 pro.ject settings. 
#pragma comment( lib, "ws2" ) II Link WinSock 2.0 lib 



632 Part Ill Advanced Windows CE 

#define REGNAME 
. #defi ne PORTNUM 

TEXT(''Ti.tkSrv") II Reg name under services key 
1000 · · 11. Port humber ·to monitOr 

II 
11 Globals 

. II 
HINSTANCE hinst; 

II 
/I Debug .zone support 
II 
#ifdef DEBUG 

II DLL instance handle 

II Used.as a prefix string for all debug zone messages. 
#define DTAG . TEXT C"TickSrv: ") 

/I Debug zone constants 
#define ZONE~ERROR pEBUGZONE(O) 
#define ZONE_WARNING DEBUGZONE(l) 
#clefine·zONE_FUNC DEBUGZONE(2) 
#define ZQNE_IN:ET . DEBUG:WNEO) 
#define ZONE::..DRVCALLS DEBUGZONE(4) 
#defi.ne ZONEJOCTLS DEBUGZONE(S) 
.#define ZONE-TH.READ DEBUGZONE{6) 
#define ZONE::..EXENTRY (ZONE_FUNC I ZONLDRVCALLS) 
J( Debug zone structure 
D.BGPARAM . dl)Cu rSE!tti ngs =. { 

TEXT("Ti ckSrv"'); { 
· TEXT{'' Errors") ,TEXTC"Warnings"), TEXTC"F1.1ncti ons"), 
TEXT("Init"), TEXT(''Service Cal1s") ,TEXT("Undefined"), 
TEXTC"IOCtl s"), TEXTC'Thread"J, TEXT("Undefined"), 
TEXT('' Undefined"): TEXT(''Undefi ned"), TOOC"Undefi ned"), · 
TEXT("Undefi ned") ,TEXT("Undefined"), TEXT(''Undefined"), 
TEXTC"Undefined") }; 
Ox0003 

}; 

#endif./IDEBUG 

II DllMain ~ DLL initialization entry point 
II 
BOOL WINAPI DllMain (HANDLE hinstDLL, DWORD dWReason, 

LPVOID lpvReserved) { 
hlhSt = (HIN:STANCE)htnstDLL; 

swi.tch (dwRea$on) { 
case DLL_PRDCESS_ATTACH: 

. DEBUGREG!STER(hlnst); . 
II Improve performance by pa$sing on thread attach calls 
DisableJhreadLi.braryCa11s Ch;Inst); 

break; 



} 

} 

Chapter 17 Device Drivers and Services 633 

case DLL_PROCESS_DETACH: 
DEBUGMSG(ZONE_INIT, (DTAG TEXT("DLL_PROCESS_DETACH\r\n"))); 
break; 

return TRUE; 

II====================================================================== 
II TCK_Init - Service initialization function 
II 
DWORD TCK_Init (DWORD dwContext) { 

PSRVCONTEXT pSrv; 

} 

DEBUGMSG (ZONLINIT I ZONE_EXENTRY, 
(DTAG TEXT("TCK_Init++ dwContext:%x\r\n"), dwContext)); 

II Init WinSock 
WSADATA wsaData; 
WSAStartup(OxlOl,&wsaData); 

II Allocate a drive instance structure. 
pSrv = (PSRVCONTEXT)LocalAlloc (LPTR, sizeof (SRVCONTEXT)); 
if (pSrv) { 

II Initialize structure. 
memset ((PBYTE) pSrv, 0, sizeof (SRVCONTEXT)); 
pSrv->dwSize = sizeof (SRVCONTEXT); 
pSrv->servState = SERVICE_STATE_UNKNOWN; 
InitializeCriticalSection (&pSrv->csData); 

switch (dwContext) { 
case SERVICE_INIT_STARTED: 

pSrv->servState = SERVICE_STATE_ON; 
break; 

case SERVICE_INIT_STOPPED: 
pSrV->ServState = SERVICE_STATE_OFF; 
break; 

default: 

} 

} else 

break; 

DEBUGMSG (ZONE_INIT I ZONE_ERROR, 
(DTAG TEXT("TCK_Init failure. Out of memory\r\n"))); 

DEBUGMSG (ZONE_FUNC, (DTAG TEXT("TCK_Ini t-- pSrv: %x\r\n"), pSrv)); 
return (DWORD)pSrv; 

!!====================================================================== 
II TCK_Deinit - Service de-initialization function 
II 



634 Part Ill Advance.d Windows CE 

BOOL TCK_Dei nit (DWORD dwContext) { 

} 

PSRVt;:ONH;XT pSrv = (PSRVCQNTEXT) dwContext; 

DEBUGMSG (ZONE_EXENTRY, 
(DTAG TEXT("TCK.._Deinit++ dwContex:%x\r\n"), dwContext)); 

if (pSrv && (pSrv->dwSize == siz.eof (SRVCONTEXT))) { 
II Free the Service state buffer. 
LocalFree ((PBYTE)psrv); 

} 
DEBUGMSG (ZONE_FUNC, (DTAG TEXTC"TCK_Deinit--\r\n"))); 
return TRUE; 

II TCK_Open - Service Open. function 
II 
DWORD TCK.._Open (DWORD dwContext, DWORD dwAccess, DWORD dwshare) { 

PSRVCONTEXT pSrv = (PSRVCONTEXT) dwContext; 

} 

DEBUGMSG (ZONE_EXENTRY, 
(DTAG TEXT("TCK_Open++ dwContex:%x\r\n"), dwContext)); 

DEBUGMSG (zONE_FUNC, (DTAGTEXT("TCK_Open--\r\n"))); 
return (owORD)pSrv; 

I I TCK_Cl ose - Service Close .function 
II 
BOOL TCK_Close (DWORD· dwContext) { 

} 

PSRVCONTEXT pSrv = (PSRVCONTEXT) dwContext; 

DEBUGMSG (ZONE_EXENTRY, 
(DTAG TEXT("TCiLClose++ dwContex;%x\r\n"), dwContext)); 

DEBUGMSG (ZONLFUNC, (DTAG TEXT("TCILClose--\r\n"))); 
return O; 

II TCK_IOControl - Called when DeviceIOControl called 
II serviceEnuminfo 
DWORD JCK_IOControl (DWORD dwOpen, DWORO dwCode, PBYTE p!n, DWORD dw!n, 

PBYTE pOut; OWORD dwOut, ()WORD *pdwBytesWritten) { 
PSRVCONTEXT pSrv; 
DWORD err = ERROR_INVALID~PARAMETER; 

HANDLE hThrd; 
pSrv = (PSRVCONTEXT) dwOpen; 

OEBUGMSG (ZONE_EXENTRY, 
(DTAG TEXT("TCiLIOControl++ dwOpen: %x dwCode: %x 'Jlld\r\n''.), 
dwOPen, dwCode, pSrv->servState)); 



switch (dwCode) { 
II ------------
// Commands 
II -------------

II Cmd to start service 
case IOCTL_SERVICE_START: 

Chapter 17 Device Drivers and Services 635 

DEBUGMSG (ZONE_IOCTLS, (DTAG TEXT("IOCTL_SERVICE_START\r\n"))); 
EnterCriticalSection (&pSrv->csData); 
if ((pSrv->servState == SERVICE_STATE_OFF) I 

(pSrv->servState == SERVICE_STATE_UNKNOWN)) { 

pSrv->servState = SERVICE_STATE_ON; 
err = O; 

} else 
err = ERROR_SERVICE_ALREADY_RUNNING; 

LeaveCriticalSection (&pSrv->csData); 
break; 

II Cmd to stop service 
case IOCTL_SERVICE_STOP: 

DEBUGMSG (ZONE_IOCTLS, (DTAG TEXT("IOCTL_SERVICE_STOP\r\n"))); 
Entercri ti ca lSecti on (&pSrv->csData); 
if ((pSrv->servState == SERVICE_STATE_ON)) { 

pSrv->servState = SERVICE_STATE_SHUTTING_DOWN; 
} else 

err = ERROR_SERVICE_NOT_ACTIVE; 
LeaveCriticalSection (&pSrv->csData); 
break; 

//Reread service reg setting 
case IOCTL_SERVICE_REFRESH: 

DEBUGMSG (ZONE_IOCTLS, (DTAG TEXT("IOCTL_SERVICE_REFRESH\r\n"))); 
/I No settings in example service to read 
break; 

//Config registry for auto load on boot 
case IOCTL_SERVICE_INSTALL: 

DEBUGMSG (ZONE_IOCTLS, (DTAG TEXT("IOCTL_SERVICE_INSTALL\r\n"))); 
err= RegisterService(); 
break; 

//Clear registry of auto load stuff 
case IOCTL_SERVICE_UNINSTALL: 

DEBUGMSG (ZONE_IOCTLS, (DTAG TEXT("IOCTL_SERVICE_UNINSTALL\r\n"))); 
err = DeregisterService(); 
break; 

//Clear registry of auto load stuff 
case IOCTL_SERVICE_CONTROL: 

DEBUGMSG (ZONE_IOCTLS, (DTAG TEXT("IOCTL_SERVICE_CONTROL\r\n"))); 
err = O; 
break; 



636 Part Ill Advanced Windows CE 

#ifdef DEBUG 
II Set debug zones 
case IOCTL_SERVI(E_OEBUG: 

#endif 

DEBUGMSG (ZONE_IOCTLS, (DTAG TEXT("IOCTL_SERVICE~DEBUG\r\n"))); 
if (!pin 11 (dwin < sizeof (DWORD))) 

break; 
_try { 

dp(urSettings .ulZoneMask = ''(DWORD '')pin; 
err = O; 

_except (EXCEPTION_EXECUTE_HANDLER) { 

} 

II----~-~-~----
// Queries 
II -------------

JI Query for current service state 
case IOCTL_SERVICE_STATUS: 

DEBUGMSG· (ZONE_IOCTLS, (DTAG TEXT("IOCTL_SERVICE_STATUS\r\n"))); 
if (!pOut II (dwOut < sizeof CDWORD))) 

break; 
-'try { 

} 

*(DWORD *)pQut = pSrv->servState; 
if (pdwBytesWritten) 

*pdwBytesWritten = sizeof (OWORD); 
err = O; 

_except (EXCEPTION_EXECUTE_HANDLER) { 

} 

break; 

// IOCTL_SERVICE_QUERY...;CAN_DEINIT was depri cated for CE 6. To 
// prevent unload, use DEVFLAGS_NOUNLOAD in Flags val in registry 
#if (_WIN32_WCE < Ox600) 

//Query for unload. 
case IOCTL_SERVICE..:.QUERY_CAN_DEINIT: 

DEBUGMSG. (ZONE_IOCTLS, 
(DTAG TEXT("IOCTL_SERVICE_QUER¥_CAN_DEIN!T\r\n"))); 

if (!pOut 11 (dwOut < sizeof (OWORD))) 
break; 

_try { 

} 

*(DWORD *}pOut = 1; // non-zero== Yes, can be unloaded. 
if (pdwBytesWri tten) 

''pdwBytesWritten = sizeof (DWORD); 
err = O; 

~except (EXCEPTION_EXECUTE_HANDLER) { 

break; 



Chapter 17 Device Drivers and Services 637 

#endif 
II Query to see if sock address okay for monitoring 
case IOCTL_SERVICE_REGISTER_SOCKADDR: 

DEBUGMSG (ZONE_IOCTLS, 
(DTAG TEXT (''IOCTL_SERVICE_REGISTER_SOCKADDR\r\n"))) ; 

II Calling to see if service can accept super service help 
if (!p!n I I (dw!n < sizeof (DWORD))) { 

} 

if ((pSrv->servState == SERVICE_STATE_QFF) 
(pSrv->servState == SERVICE_STATE_UNKNOWN)) 

pSrv->servState = SERVICE_STATE_STARTING_UP; 
err = O; 
break; 

II Confirming a specific sock address 
DEBUGMSG (ZONE_IOCTLS, (DTAG TEXT("Socket:%x\r\n"), *pln)); 
err = O; 
break; 

II -------------
11 Notifications 
II -------------

II Notify that sock address going away 
case IOCTL_SERVICE_DEREGISTER_SOCKADDR: 

DEBUGMSG (ZONE_IQCTLS, 
(DTAG TEXT("IOCTL_SERVICE_DEREGISTER_SOCKADDR\r\n"))); 

EnterCriticalSection (&pSrv->csData); 
if (pSrv->servState == SERVICE_STATE_SHUTTING_DQWN) 

pSrv->servState = SERVICE_STATE_OFF; 

LeaveCriticalSection (&pSrv->csData); 
err = O; 
break; 

II All super service ports open 
case IOCTL_SERVICE_5TARTED: 

DEBUGMSG (ZONE_IOCTLS, (DTAG TEXT("IOCTL_SERVICE_STARTED\r\n"))); 
EnterCriticalSection (&pSrv->csData); 
if ((pSrv->servState == SERVICE_STATE_STARTING_UP) 

(pSrv->servState == SERVICE_STATE_UNKNOWN)) 
pSrv->servState = SERVICE_STATE_ON; 

LeaveCriticalSection (&pSrv->csData); 
err = O; 
break; 

II Notification that connect has occurred 
case IOCTL_SERVICE_CONNECTION: 

DEBUGMSG (ZONE_IOCTLS, 
(DTAG TEXT("IOCTL_SERVICE_CONNECTION\r\n"))); 

if (!p!n I I (dwin < sizeof (DWORD))) 
break; 



638 Part Ill Advanced Windows CE 

} 

II Cr¢ate thread to .handle the socket 
hThrd = CreateThread (NULL, O, AcceptThread, (PVOID)*(DWORD*)pin, 0, 

t.IULL); 
if (hThrd) { 

} 
else 

CloseHandle (hThrd); 
err = O; 

err = GetLastErrorO; 
break; 

default: 

} 

DEBUGMSG (ZONE_ERROR I ZONE_IOCTLS, 
CDTAG TEXT("Unsupported IOCTL code %x (%d)\r\n"), 
dwCode, (dwCode & OxOOff) I 4)); 

return FALSE; 

SetLastError (err); 
DEBUGMSG (ZONE_FUNC, (DTAG TEXTC"TCK_IOControl-- %d\r\n"), err}); 
return (err == 0) ? TRUE : FALSE; 

II===================~~==============-~====---========================= 
II External entry point to make it easy to init the registry 
11====~~=====;;==~==========~~==========~=~====--=====:;==~==i====--=~==~==== 

int ExternReg.i sterServer () { 

return Regi sterServi ce(); 
} 

ll---------'-------------------------------------------------------------
11 AddRegString. - Helper routine 
II 
int AddRegString (HKEY hKey, LPTSTR lpName, LPTSTR lpStr) { 

return RegSetValueEx (hKey, lpName, 0, REG ... .:SZ, (PBYTE)lpStr, 
(lstrlen (lpStr) + 1) * sizeof (TCHAR)); 

} 

11----..:-----------------------------------------------------------------
11 AddRegDW - Helper routine 
II . 
int AddRegDW (HKEY hKey, LPJ:STR lpName,. DWORD dw) { 

return RegSetValueEx (hKey, lpName, 0, REG_DWORD, (PBYTE)&dw, 4); 
} 

ll-------------------~~--'-------------'--'---------'-----------------------
11 AddRegSuperServ - Helper routine 
II . 
int AddRegSuperServ (HKEY hKey, WORD wPort) { 

SOCKADDILIN sa; 
HK.EV hSubKey; 
TCHAR szKeyName[l28]; 
DWORD dw; 
int re; 



} 

Chapter 17 Device Drivers and Services 639 

DEBUGMSG (ZONLFUNC, (DTAG TEXT("AddRegSuperServ++ %d\r\n"), wPort)); 

memset (&sa, 0, sizeof (sa)); 
sa.sin_family = AF_INET; 
sa.sin_port = htons(wPort); 
sa.sin_addr.s_addr = INADDR_ANY; 

II Create key for this service 
wsprintf (szKeyName, TEXT("Accept\\TCP-%d"), wPort); 
re = RegCreateKeyEx (hKey, szKeyName, 0, NULL, 0, NULL, 

NULL, &hSubKey, &dw); 
DEBUGMSG (1, (TEXT("RegCreateKeyEx %d %d\r\n"), re, GetLastError())); 
if (re == ERROR__SUCCESS) 

re= RegSetValueEx (hSubKey, TEXT("SockAddr"), 0, REG_BINARY, 
(PBYTE)&sa, sizeof (sa)); 

DEBUGMSG (ZONE_FUNC, (DTAG TEXT("AddRegSuperServ-- %d\r\n"),rc)); 
return re; 

11----------------------------------------------------------------------
11 RegisterService - Add registry settings for auto load 
II 
int RegisterService () { 

HKEY hKey, hSubKey; 
TCHAR szModName[MAX,_PATH], *pName; 
DWORD dw; 
int re; 

II Open the Services key 
re= RegOpenKeyEx(HKEY_LOCAL_MACHINE,TEXT("Services"),0, 0, &hKey); 
if (re == ERROR__SUCCESS) { 

II Create key for this service 
re = RegCreateKeyEx (hKey, REGNAME, 0, NULL, 0, NULL, 

NULL, &hSubKey, &dw); 
if (re == ERROR__SUCCESS) { 

GetModuleFileName (h!nst, szModName, dim (szModName)); 
II Scan to filename 
pName = szModName + lstrlen (szModName); 
while ((pName > szModName) && (*pName != TEXT('\\'))) 

pName--; 
if (*pName == TEXT('\\')) pName++; 
AddRegString (hSubKey, TEXT ("DLL"), pName); 

AddRegString (hSubKey, TEXT ("Prefix"), TEXT("TCK")); 

AddRegDW (hSubKey, TEXT("Index"), O); 
#if (_WIN32_WCE >= Ox600) 

AddRegDW (hSubKey, TEXT("ServiceContext"), SERVICE_INIT_STOPPED); 
#else 

AddRegDW (hSubKey, TEXT("Context"), SERVICLINILSTOPPED); 



640 Part Ill Advanced Windows CE 

#endif 

} 

AddRegString (hSubKey, TEXT("DisplayName"), 
TEXT("Ti ck Service")); 

AddRegString (hSubKey, TExt("Description"), 
TEXT("Returns system tick cnt on Port 1000")}; 

AddRegSuperServ (hSubKey, PORTNUM); 

} else 
DEBUGMSG (ZONLERROR, (TEXT("Error treating key\r\n"))); 

RegCloseKey(hKey); 
} else 

DEBUGMSG (ZONLERROR, (TEXT(" Error opening key\r\n"))); 

return (re == ERROR_SUCCESS) ? 0 : -1; 

11----------------------------------------------------------------------
11 DeregisterService - Remove auto load settings from registry 
II 
int Deregi sterService () { 

HKEY hKey; 

} 

int re; 

II Open the Services key 
re= RegOpenKeyEx(HKEY_LOCALJ!ACHINE,TEXT("Services"),0, 0, &hKey); 
if (re == ERROR_SUCCESS) { 

II Delete key for this service 
re= RegDeleteKey (hKey, REGNAME); 
if (re != ERROR_SUCCESS) 

DEBUGMSG(ZONE_ERROR, CDTAG TEXT("Error deleting key %d\r\n"), 
GetLastError())); 

Reg(loseKey(hKey); 
} else 

DEBUGMSG (ZONE_ERROR, (TEXT("Error opening key\r\n"})); 
return (re == ERROR_SUCCESS) ? 0 : -1; 

/!===================•=============================•============--=~====== 
II AcceptThread - Thread for managing connected sockets 
II 
DWORD WINAPI AcceptThread (PVOID pArg) { 

SOCKET sock; 
int re; 
DWORD dwCmd, dwTicks; 

sock = (SOCKET)pArg; 

DEBUGMSG (ZONE_THREAD, (TExt("AcceptThread++ %x\r\n"), pArg)); 

/I Simple task, for any nonzero received byte, sent tick count; back 
re= recv (sock, (char *)&dwCmd, sizeof (DWORD), O); 



Chapter 17 Device Drivers and Services 641 

while ((re != SOCKET_ERROR) && (dwCmd != 0)) { 

} 

DEBUGMSG (ZONE_THREAD, (TEXT("Recv cmd %x\r\n"), dwCmd)); 

dwTicks = GetTickCount (); 
DEBUGMSG (ZONE_THREAD, (TEXT("sending %d\r\n"), dwTicks)); 
re= send (sock, (char *)&dwTicks, 4, O); 

II Read next cmd 
re= recv (sock, (char *)&dwCmd, sizeof (DWORD), O); 

closesocket (sock); 
DEBUGMSG (ZONE_ THREAD, (TEXT("AcceptThread-- %d %d\r\n"), re, GetlastError())); 
return O; 

The service interface is quite simple. Applications can query the tick count of the device by 

sending a nonzero DWORD to the device. The service will disconnect when the DWORD 

received is zero. 

To make it easy to initialize the registry for TickSrv, the service exports an additional function, 

ExternRegisterServer. The trivial program, shown following this paragraph, will load TickSrv as 

a DLL, find the entry point and call it. 

#include "stdafx.h" 
int WINAPI WinMain( HINSTANCE hinstance, HINSTANCE hPrevinstance, 

LPTSTR lpCmdline, int nCmdShow) { 
HINSTANCE hlib; 
FARPROC lpfn; 
hl i b = Loadl i brary (TEXT("Ti ckSrv. DLL")); 
if (hlib == 0) { 

} 

printf ("Error loading TickSrv. re= %d\r\n", GetlastError()); 
return -1; 

lpfn = GetProcAddress (hlib, TEXT("ExternRegisterServer")); 
if (lpfn == 0) { 

} 

printf ("Error finding entry point. re= %d\r\n", GetlastError()); 
return -2; 

II Call the install routine 
("l pfn) () ; 
return O; 

The install application uses LoadLibrary and GetProcAddress to have TickSrv update the reg

istry. TickSrv will load on the next system reset, but it can also be loaded manually using the 

Services Manager. Run the following command line to load TickSrv manually: 

services load TickSrv 



642 Part Ill Advanced Windows CE 

Listing 17-3 is a simple PC-based client that will open port 1000 on a specified device, send it 

a command to receive the tick count, wait a few milliseconds, ask again, and then terminate 

the connection and quit. 

LISTING 17-3 The PCClient example 

PCClient,cpp 

II===========================;=========================================== 
II PCClient.cpp : Simple client for the tick server example 
II 
JI Written for the book Programming Windows CE 
JI Copyright (C} 2007 Douglas Boling 
II=============================.,======================================= 
#include "stdafx.h'' 

int _tmain(int argc, _TCHAR" argv[]) 
{ 

SOCKET sock; 
SOCl<ADDR_IN dest_sin; 
WORD wPort = 1000; 
int re; 

if (argc < 2) { 

} 

printf ("Syntax: %s <IP Addr> %d\r\n", argv[OJ, argc); 
return 0; 

II Ini.t winsock 
WSADATA wsaData; 
if ((re = WSAStartup(Ox101,&wsaData)) != O) { 

printf ("WSAStartup failed\r\n"); 
WSACleanup(); 
return O; 

} 

II Create socket 
sock = socket( AF _INET, SOCK_STREAM, O); 
if (sock == INVALID_SOCKET) { 

return INVALID_SOCKET; 
} 

II Set up IP addre.ss. to access 
memset (&dest_sin, 0, sizeof (dest_sin)); 
dest_sin.sin: ... family = AF_tNET; 
dest_sin.sin_addr.S_un.S_addr = .ineLaddr (argv[l]); 
dest_sin.sin_port = htons(wPort); 

printf ("Connecting to %s Port %d\r\h", 
inet_ntoa (dest_sin.sin_addr)., wPort); 



Chapter 17 Device Drivers and Services 643 

II Connect to the device 
re== connect( sock, (PSOCKADDR) &dest_sin, sizeof( dest_sin)); 
if (re == SOCKET_ERROR) { 

} 

printf ("Err in connect. %d\r\n", WSAGetLastError()); 
closesocket( sock); 
return INVALID_SOCKET; 

DWORD dwCmd = 1, dwTicks = D; 

II Ask for ticks 
send (sock, (char '')&dwCmd, 4, 0); 
recv (sock, (char *)&dwTicks, 4, 0); 
printf ("Ticks: %d\r\n", dwTicks); 

II Wait 114 second and ask again 
Sleep(250); 
send (sock, (char *)&dwCmd, 4, O); 
recv (sock, (char *)&dwTicks, 4, O); 
printf ("Ticks: %d\r\n", dwTicks); 

II Terminate connection and close socket 
dwCmd = O; 
send (sock, (char *)&dwCmd, 4, O); 
Sleep(lOO); 
closesocket (sock); 
return O; 

The Services Manager is quite useful. It provides support for those background tasks that 

are so often needed in embedded systems. Using a service instead of writing a standalone 

application also reduces the memory used by the system. In addition, a service can be talked 

to by applications simply by using the File API. 

In this book I have attempted to guide you through the many features of Windows CE, from 

its base threading API to the peer-to-peer support of the operating system. The compo
nentized design of Windows CE, coupled with a Win32-standard API, provides a unique com

bination of flexibility and familiarity that is unmatched among today's operating systems. All 

in all, it's not a bad operating system. Have fun programming Windows CE. I do. 





Index 

Symbols 
O flag, 272, 391 
32-bit flat address space, 241 
32-bit ranges, 193 
#include statement, 138 

A 
ABC structure, 51 
abcA field, 52 
abcB field, 52 
abcC field, 52 
accelerator keys, 158 
accelerators, 140-141 
ACCELERATORS resource type, 139 
accept function, 458-459, 490 
Accept key, 626 
access rights, changing and querying for region, 

251-253 
AccessCode parameter, 593, 623 
AC_LINE_BACKUP_POWER value, 546 
AC_LINE_OFFLINE value, 545 
AC_LINE_ONLINE value, 546 
ACLineStatus field, 545-546 
AC_LINE_UNKNOWN value, 546 
ACMAudio compression manager, 582 
ACM_OPEN message, 194 
ACM_PLAY message, 194 
ACM_STOP message, 194 
ACS_AUTOPLAY style, 194 
AC_SRC_ALPHA flag, 69 
ACS_ TRANSPARENT flag, 194 
ActionFlags field, 407 
ActivateDevice function, 585 
ActivateDeviceEx function, 584-595 
ActivateService function, 620-621, 627 
Active Server Pages, 6 
active window, 85 
Addltem, 321-322 
Address property, 387 
address space, 246-247, 536-537 
Advertiselnterface function, 605-606 
AF_BT constant, 457 
AF_INET constant, 457 
AF_IRDA constant, 457, 470, 473 
alert messages, 304 
AllocationBase field, 251, 253 
AllocationProtect field, 251 
alpha channel, 68 
AlphaBlend function, 68-69, 541 
AlphaBlending, 68-69 
Alt key, 91 

keys and, 86 
state, 101 

ampersand (&) character, 139 
animation, 194 
animation control, 194 
Append Menu function, 135, 136 
application space, 536-538 
applications, 267 

accessing page, 243 
address space, 246-247 
application-specific structure, 20 
automatically closing down, 266 
building, 9 
calling entry points, 590 
constructs scheduled within, 283-285 
controlling service, 620-622 
debug zones, 609-610 
directly manipulating bitmaps, 63 
heaps, 254 
hiding windows, 264 
initialization, 27 
main window, 119, 121 
message queue, 16 
name of, 271, 358 
not knowing menu bar API is present, 269 
not shutting down, 265 
opening services, 623 
querying notifications, 425-426 
read-only data, 263 
reducing memory footprint, 264, 265 
requiring compatibility with Windows Mobile 

applications, 184 
running user intervention, 410-411 
stack, 260 
starting because of notification, 409-410 
storing state, 357 
type to create, 10 
user notifications, 405-410 
virtual address available to, 244 
virtual address space, 535 
virtual address spaces, 536 
WM_HIBERNATE message, 264-265 

APP_RUN_TO_HANDLE_NOTIFICATION constant, 409 
argc / argv entry point, 8 
ArgumentDescriptor parameters, 601-602, 604 
ARM, 3 
ASCII 

resource (RC) file, 138 
sockets, 456 

asterisk(*) wild card, 342 
asynchronous buffer, 602 
asynchronous serial 1/0, 557-558 
a __ try __ finally block, 465 

645 



646 audio driver 

audio driver, 583 
Auto iVal data type, 382 
auto-commit memory, 249 
Auto-Double data type, 382 
automatic resetting event, 289 
auto-repeat keys, 86, 90 
autoreset events, 288-289 
.avi (Audio/Video Interleave) format, 194 
AygShell.dll library, 269 

B 
background, 20 
background color 

controls, 135 
text, 40-42, 46 

background mode, 42 
backlight, 551-553 
backup battery, 242 
BaseAddress field, 252-253 
battery driver, 545 
BatteryChemistry field, 546 
BATTERY_CHEMISTRY_ALKALINE value, 546 
BATTERY_CHEMISTRY_LION value, 546 
BATTERY_CHEMISTRY_LIPOLY value, 546 
BATTERY_CHEMISTRY_NICD value, 546 
BATTERY_CHEMISTRY_NIMH value, 546 
BATTERY_CHEMISTRY_UNKNOWN value, 546 
BatteryFlag field, 546 
BATTERY_FLAG_CHARGING value, 546 
BATTERY_FLAG_CRITICAL value, 546 
BATTERY_FLAG_HIGH value, 546 
BATTERY_FLAG_LOW value, 546 
BATTERY_FLAG_NO_BATTERY value, 546 
BATTERY_FLAG_UNKNOWN value, 546 
BatteryFullLifeTime field, 546 
BatteryLifePercent field, 546 
BatteryLifeTime field, 546 
BATTERY_LIFE_UNKNOWN value, 546 
baud rate constants, 560 
BaudRate field, 560, 563 
BEGIN keyword, 139, 200 
BeginPaint function, 25-26, 36-37, 59 
beginthread function, 279 
beginthreadex function, 279 
bErase parameter, 37 
biBitCount field, 64 
Bl_BITFIELDS flag, 64 
biClrlmportant field, 64 
biClrUsed parameter, 64 
biCompression field, 64 
biHeight field, 64 
bind function, 458 
blnheritHandle parameter, 275, 296 
blnitialOwner parameter, 295 
blnitialState parameter, 288 
biPlanes field, 64 
Bl_RGB flag, 64 
biSizelmage parameter, 64 

bit array, 64 
BitBlt function, 66-67 
bitmap fonts, 52 
BITMAP resource type, 139 
BITMAPCOREINFOHEADER structure, 64 
BITMAPINFO structure, 63, 72 
BITMAPINFOHEADER structure, 63-64, 72 
bitmaps, 47, 61 

applications directly manipulating, 63 
brushes, 72 
buttons, 165-167 
color, 62, 64-65 
command bar referencing, 167-169 
compatible with device context, 62 
destination rectangle, 66 
device context, 65-66 
device~dependent, 61-62 
device-independent, 61, 62-65 
dimensions, 61 
drawing, 65-68 
four-color, 61 
global transparency constant, 69 
loading,62, 140, 166 
palette, 64-65 
per-pixel transparency effect, 69 
pointer to bits, 61 
predefined, 166 
predefined buffer format, 63-65 
read-only version, 141 
read/write version, 141 
resource ID, 166 
resources, 141 
ROP codes, 66 
scaling, 64 
semi-transparent, 68-69 
stretching or shrinking, 67 
transparent color, 67 
user interaction with, 130-131 

BITSPIXEL value, 40-41 
biWidth field, 64 
biXPelsPerMeter field, 64 
biYPelsPerMeter field, 64 
Blatand, Harald, 490 
Black_PEN parameter, 70 
BLENDFUNCTION structure, 68-69 
BLOB structure, 493-494 
block mode device driver, 348-349 
blocked threads, 277 
blocking versus nonblocking sockets, 465-468 
Bluetooth, 469, 490 

client side, 509-510 
COM ports, 506 
device discovery, 492-493 
discovery process, 492-493 
driver name, 506 
growth, 491 
profiles, 491 
publishing service, 501-503 
RFCOMM channel, 504 



SDP records, 503-504 
server side, 508-509 
service discovery, 492, 497-501 
sockets, 458 
stack, 491-492 
third-party, 491 
virtual COM ports, 507, 508-509 
virtual COM ports communication, 506-510 
virtual serial ports, 492 
Winsock communication, 504-506 
Winsock support, 492 

Bluetooth applications 
client side, 505-506 
server side, 504-505 

Bluetooth devices, 496-497 
Bluetooth stack, 491 
Bluetooth-specific SOCKADDR_BTH addresses, 495 
bManualReset parameter, 288 
BM_GETCHECK message, 127 
.bmp extension, 62 
BM_SETCHECK message, 127 
BN_CLICKED notification, 126 
BOOL data type, 382 
bPartType parameter, 353 
bReadAccess field, 305 
brushes, 72-73 

combining with current image, 68 
custom pattern, 72 
hatched, 72, 83 
shapes, 83 

BS_3STATE style, 126 
BS_AUT03STATE style, 126 
BS_AUTOCHECKBOX style, 126 
BS_AUTORADIOBUTTON style, 127 
BS_BITMAP style, 127 
BS_BOTTOM style, 127 
bScan code, 92 
BS_CHECKBOX style, 126 
BS_ICON style, 127 
BS_LEFT style, 127 
BS_MULTILINE style, 127 
BS_OWNERDRAW style, 127 
BS_RADIOBUTTON style, 127 
BS_RIGHT style, 127 
BS_TOP style, 127 
bthello service, 534 
BthGetCurrentMode function, 492 
BthNsCreate, 503 
BTHNS_INQUIRYBLOB structure, 494 
BthNsLookupServiceBegin function, 493 
BthNsLookupServiceEnd function, 493 
BthNsLookupServiceNext function, 493 
BTHNS_LUP_NO_ADVANCE flag, 495 
BTHNS_LUP_RESET_ITERATOR flag, 495 
BTHNS_SETBLOB structure, 501, 502-503 
BtSquirt program, 511-534 
BtSquirt.cpp file, 518-533 
BtSquirt.h file, 516-518 
bubble notifications, 426 

adding, 427-429 
dismissing, 429 

The C Programming Language 647 

icon-only notification, 428 
manually setting, 427 
modifying, 430 
removing, 430 
requiring application running, 427 
Unicode text or HTML Unicode text, 428 

buf parameter, 459 
buffers 

asynchronous access, 602 
checksum series, 603-604 
closing, 601-602 
describing data passed in, 601 
duplicating for security, 602 
duplicating in driver's protected address space, 601 
freeing, 602 
length, 4 
managing, 598-604 
mapping calls, 603 
marshalling passed to driver, 600-601 
static data area, 263 

Build, Build Solution command, 10 
Build, Deploy Solution command, 14 
Buildln key, 583 
bus drivers, 582, 585 
bus enumerator, 583 
BusEnum.dll enumerator, 583 
buses, 582 
busy hourglass cursor, 102 
button class, 15, 126 
button controls 

check boxes, 126-127 
customizing appearance of button, 127 
owner-draw buttons, 127-128 
push buttons, 126 
radio buttons, 127 

BUTTON statement, 201 
buttons 

adding to command bar, 167 
bitmap images, 165-167 
command bars, 165-167 
customizing appearance, 127 
ID command, 168-169 
initial state, 168 
owner-draw, 127-128 
positioning text, 127 
pressing, 169 
style, 168 

bWatchSubTree parameter, 363 
BY_HANDLE_FILE_INFORMATION structure, 337 
ByteSize field, 561 

c 
C++ exception handling, 320-321 
C library, 9 
The C Programming Language, 3 



648 C standard structured exception handling extensions 

C standard structured exception handling extensions, 
320 

calc.exe file, 238 
calendar applications, 5 
calendar control, 5 
callback function, 53 
callback procedure, 210 
CALLBACK_AllocHeapMem function, 259 
CALLBACK_CHUNK_FINISHED, 340 
CALLBACK_STREAM_SWITCH, 340 
CALLBACK-type definition, 24 
CallWindowProc function, 123 
CapEdit control, 192 
caret, hiding, 36 
cascading menus creation, 136 
catch blocks, 323 
catch statement, 321 
CB_ADDSTRING message, 130 
cbBufferPool field, 385 
cbBufferSize parameter, 306 
cbClsExtra field, 19-20 
cbDataSize parameter, 306 
CB_FINDSTRING message, 130 
CB_GETDROPPEDSTATE message, 130 
CB_GETEDITSELECT message, 130 
cblnQue field, 566 
CB_INSERTSTRING message, 130 
cBitspPerPel parameter, 61 
cbMaxMessage field, 305, 307 
cbMove parameter, 399 
cbOutQue field, 566 
CB_SETEDITSELECT message, 130 
CBS_EX_CONSTSTRINGDATA extended style, 130 
CB_SHOWDROPDOWN message, 130 
cbSize field, 134, 259, 349, 351, 494 
cbStruct field, 428 
cbStructure field, 437 
cBufferSize field, 426 
cbWndExtra field, 19-20, 122 
cCharacters parameter, 92 
cchPropName field, 388 
cDayState field, 187 
CeAllocAsynchronousBuffer function, 602-603 
CeAllocDuplicateBuffer function, 602-603 
CeBeginTransaction function, 400 
CEBLOB data type, 382 
CeChat program, 567-580 
CeChat.cpp file, 570-580 
CeChat.h file, 568-570 
CeChat.rc script file, 567-568 
CeClearUserNotification function, 409 
CeCloseCallerBuffer function, 601-604 
CeCreateDatabaseEx2 function, 390 
CeCreateDatabaseWithProps function, 387-390 
CeCreateSession function, 390, 400 
CEDB engine, 382 
CEDB_ALLOWREALLOC flag, 396 
CEDB_AUTOINCREMENT value, 391 
CEDB_ISOLEVEL_DEFAULT value, 400 

CEDB_ISOLEVEL_READCOMMITTED value, 400 
CEDB_ISOLEVEL_REPEATABLEREAD value, 400 
CEDB_ISOLEVEL_SERIALIZABLE value, 400 
CEDB_MAXPROPDATASIZE constant, 383 
CEDB_MAXRECORDSIZE, 383 
CEDB_NOCOMPRESS flag, 388 
CEDB_PROPNOTFOUND flag, 398 
CEDBASEINFOEX structure, 387, 388-389, 395, 403 
CEDBs (CE databases), 381 

blobs, 403 
CEDBASEINFOEX_VERSION constant, 388 
changing sort order, 396 
name of, 388-389 
object store, 383 
object store as database value, 386-387 
sorting indexes, 388 
storing records with properties, 382 
volumes, 383 

CEDB_SEEK_BEGINNING value, 393 
CEDB_SEEK_CEOID value, 393 
CEDB_SEEK_CURRENT value, 393 
CEDB_SEEK_END value, 393 
CEDB_SEEK_VALUEFIRSTEQUAL value, 393 
CEDB_SEEK_VALUEGREATER value, 394 
CEDB_SEEK_VALUEGREATEROREQUAL value, 394 
CEDB_SEEK_VALUENEXTEQUAL value, 394 
CEDB_SEEK_VALUESMALLER value, 393 
CEDB_SEEK_VALUESMALLEROREQUAL value, 393 
CEDB_SORT_CASEINSENSITIVE flag, 389 
CEDB_SORT_DESCENDING flag, 389 
CEDB_SORT_IGNOREKANATYPE flag, 389 
CEDB_SORT_IGNORENONSPACE flag, 389 
CEDB_SORT_IGNORESYMBOLS flag, 389 
CEDB_SORT_IGNOREWIDTH flag, 390 
CEDB_SORT_NONNULL flag, 390 
CEDB_SORT_UNIQUE flag, 389 
CEDB_SORT_UNKNOWNFIRST flag, 389 
CEDB_SYSTEMDB flag, 388 
CEDB_VALIDCREATE flag, 388 
CEDB_VALIDDBFLAGS flag, 388 
CEDB_VALIDMODTIME flag, 388 
CEDB_VALIDNAME flag, 388 
CEDB_VALIDSORTSPEC flag, 388 
CEDB_VALIDTYPE flag, 388 
CeDeleteDatabaseEx function, 401 
CeDeleteRecord function, 401 
CEDEVICE_POWER_STATE enumeration, 550, 607-608 
CEDIRINFO structure, 403 
CeEndTransaction function, 400 
CeEnumDBVolumes function, 385-386 
CEFILEINFO structure, 403 
CeFindCloseRegChange function, 363 
CeFindFirstDatabaseEx function, 401-402 
CeFindFirstRegChange function, 363 
CeFindNextDatabaseEx function, 401-402 
CeFindNextRegChange function, 363 
CeFlushDBVol function, 386, 400 
CE_FRAME flag, 565 
CeFreeAsynchronousBuffer function, 602-603 



CeFreeDuplicateBuffer function, 602-603 
CeGetDatabaseSession function, 391, 400 
CeGetThreadPriority function, 281-282 
CeGetThreadQuantum function, 282 
CeGetUserNotification function, 425 
CeGetUserNotificationHandles function, 425-426 
CeGetUserNotificationPreferences function, 408, 413 
CeGetVolumelnfo function, 347-348 
CEGUID, address of, 401 
CeHandleAppNotifications function, 409 
CeHeapCreate function, 259 
CeMountDBVol function, 383-385 
CeMountDBVolEx function, 384-385 
CEM_UPCASEALLWORDS message, 192 
CENOTIFICATION structure, 392-393 
CE_NOTIFICATION_INFO_HEADER structure, 425-426 
CE_NOTIFICATION_TRIGGER structure, 406, 409, 

425-426 
CENOTIFYREQUEST structure, 391-392 
cEntries parameter, 65 
CEOID value, 390-391 
CeOidGetlnfoEx2 function, 402 
CEOIDINFOEX structure, 402 
CEOIDINFOEX_VERSION value, 402 
CeOpenCallerBuffer function, 600-601, 603-604 
Ce0penDatabaseEx2 function, 391 
CeOpenDatabaselnSession function, 391-393 
CeOpenStream function, 398 
CE_ OVERRUN flag, 565 
CePlatform, 32 
CEPROPID structure, 396, 398 
CEPROPSPEC structure, 387-388 
CEPROPSPEC_VERSION value, 387 
CEPROPVAL structure, 394, 398, 401 
CeReadRecordPropsEx function, 396-398 
CERECORDINFO structure, 403 
CeRunAppAtEvent function, 412 
CE_RXPARITY flag, 565 
CeSeekDatabaseEx function, 393-395 
CeSetDatabaselnfoEx function, 395-396 
CeSetDatabaselnfoEx2 function, 396 
CeSetThreadPriority function, 281 
CeSetThreadQuantum function, 282 
CeSetUserNotificationEx function, 405, 406-408, 

410-412 
CeStreamRead function, 399 
CeStreamSaveChanges function, 399 
CeStreamSeek function, 399 
CeStreamSetSize function, 399 
CeStreamWrite function, 399 
CE_TXFULL flag, 565 
CeUnmountDBVol function, 386 
CE_USER_NOTIFICATION structure, 407-408, 426 
CE_VOLUME_ATTRIBUTE_BOOT flag, 348 
CE_VOLUME_ATTRIBUTE_HIDDEN flag, 348 
CE_VOLUME_ATTRIBUTE_READONLY flag, 348 
CE_VOLUME_ATTRIBUTE_REMOVABLE flag, 348 
CE_VOLUME_ATTRIBUTE_SYSTEM flag, 348 
CE_VOLUME_FLAG_64BIT_FILES_SUPPORTED flag, 348 

Close button 649 

CE_VOLUME_FLAG_FILE_SECURITY_SUPPORTED flag, 
348 

CE_VOLUME_FLAG_LOCKFILE_SUPPORTED flag, 348 
CE_VOLUME_FLAG_NETWORK flag, 348 
CE_VOLUME_FLAG_RAMFS flag, 348 
CE_VOLUME_FLAG_STORE flag, 348 
CE_VOLUME_FLAG_TRANSACT_WRITE flag, 348 
CE_VOLUME_FLAG_WFSC_SUPPORTED flag, 348 
CE_VOLUME_INFO structure, 347-348 
CEVOLUMEOPTIONS structure, 384-385 
CEVOLUMEOPTIONS_VERSION value, 385 
CEVOLUMEOPTIONS_VERSIONEX value, 385 
CE_VOLUME_TRANSACTION_SAFE flag, 348 
CEVT_LPWSTR constant, 387 
CeWriteRecordProps function, 401 
cHandles parameter, 425 
char data type, 4 
character cells, 40 
character count, 40 
character set, 49 
character widths, 49, 51-52 
characters, 86 

clipping, 49 
combined, 91 
representing, 4 
translating virtual key codes to, 92 
transmitting single, 557 

check boxes, 126 
check buttons, 168-169 
checkgroup buttons, 169 
CheckMenultem function, 136 
child drivers power management, 608 
child windows, 22, 119-120 
Choose Color dialog box, 213 
Choose Font dialog box, 213 
chzAppName field, 490 
circles, 74 
class field, 201 
classes 

identifying name, 20 
storing class-specific data, 19 
window procedure, 15 

class-specific styles, 21 
ClearCommBreak function, 564 
ClearCommError function, 565-566 
ClearType technology, 49 
CLEARTYPE_COMPAT_QUALITY flag, 49 
CLEARTYPE_QUALITY flag, 49 
client area, drawing inside, 38 
client side 

Bluetooth, 509-510 
Bluetooth applications, 505-506 

client window, filling background, 72 
client-server connection 

receive routine, 462-463 
server routine, 461-462 
transmit routine, 463-465 

clipping region, defining, 38 
Close button, 19 



650 Close entry point 

Close entry point, 584, 594 
Close function, 623 
CloseFile function, 330 
CloseHandle function, 289, 295-296, 303, 334, 339, 349, 

390, 510, 556, 588,621 
CloseMsgQueue function, 307 
closesocket function, 460-461, 465, 506 
CLRBREAK value, 565 
CLRDTR value, 565 
CLRIR value, 565 
CLRRTS value, 565 
clsid field, 428 
CltlD field, 128 
clusters, 354 
cMaxNotifyChanges field, 385 
cMaxSize field, 385 
CmdBar example program, 173-184 
CmdBar.cpp file, 176-184 
CmdBar.h file, 174-176 
CMDBAR_HELP flag, 172 
CMDBAR_OK flag, 172 
CmdBar.rc script file, 173-174 
CMD.EXE command line-based shell, 329 
CNS_SIGNALLED, 426 
CNT_CLASSICTIME flag, 409 
CNT_PERIOD flag, 406 
CNT_PERIOD-style user notification, 407 
CNT_TIME notification, 406 
code keys, 90 
Color common dialog, 237 
Color dialog box, 197 
color matching, 64 
COLOR_BTNFACE, 128 
COLOR_BTNSHADOW, 128 
COLORREF value, 186 
colors 

bitmaps, 64-65 
controls, 135 
number device supports, 40 
pens, 71 
shades, 64 

COM ports 
Bluetooth, 506 
initialization process, 509-510 
virtual, 507 

combined characters, 91 
combo boxes, 130, 171-172 
Combo class, 126 
command bands control, 163-164, 184-185 
command bar control, 163 
command bars, 173 

adding buttons, 167 
in band of control, 184-185 
button clicks, 169 
buttons, 165-167 
buttons with menu command equivalents, 169 
checkgroup buttons, 184 
Close button, 172 

combo boxes, 171-172, 184 
creation, 164-165 
custom bitmap, 184 
destroying, 173 
disabled buttons, 184 
drop-down buttons, 169-171, 184 
functions, 172-173 
height, 172 
Help button, 172 
hiding, 172-173 
index of button, 165 
list view button, 184 
listing bitmaps for buttons, 166 
loading image bitmap, 166 
manipulating struture of menu, 165 
menu and toolbar, 164 
menus, 135, 165, 184 
notifying of resize, 172 
OK button, 172 
predefined bitmaps, 166 
redrawing menu, 165 
referencing bitmap images, 167-169 
set of buttons, 184 
space-saving, 164 
standard bitmap image, 184 
toolbar messages, 164 
vanilla, 184 
view bitmap image, 184 

command line 
passed as Unicode string, 272 
text of, 8 

CommandBar_AddAdornments function, 172 
CommandBar_AddBitmap function, 166-167 
CommandBar_AddButtons function, 167, 169 
CommandBar_AlignAdornments function, 172 
CommandBar_Create function, 164-165 
CommandBar_Destroy function, 173 
CommandBar_DrawMenuBar function, 165 
CommandBar_GetMenu function, 165 
CommandBar_Height function, 172 
CommandBar_lnsertButton function, 168-169 
CommandBar_lnsertComboBox function, 171-172 
CommandBar_lnsertMenubarEx function, 165 
CommandBar_lsVisible function, 173 
CommandBar_Show function, 172-173 
CommCtrl.h file, 162-163, 167 
committed pages, 243 
common control library, initializing, 161-162, 185, 188 
common controls, 161 

See also controls 
animation control, 194 
CapEdit control, 192 
command bands control, 184-185 
command bar control, 164-184 
control-specific messages, 163 
date and time picker control, 187-190 
events or requests for service notification, 162-163 
indicating which should be registered, 162 



list view control, 190-192 
menu bar control, 184 
menu controls, 184-185 
month calendar control, 185-187 
predefined macros, 163 
programming, 161-163 
progress bar control, 193 
requirements for, 164 
status bar control, 193 
tab control, 193 
tool bar control, 193 
trackbar control, 193 
tree view control, 194 
unsupported, 194-195 
up-down control, 193 

common dialog DLL, loading, 237 
common dialog library, 197 
common dialogs, 213-215 
COMMPROP structure, 563-564 
COMMTIMEOUTS structure, 561-562, 597-598 
CompactFlash cards, 345, 588 
CompactFlash slot, 582 
compile-time versioning, 541-542 
componentization, 5 
COMSerial driver, 582 
COMSTAT structure, 566 
CONConsole driver, 582 
CONNDLG_RO_PATH flag, 436 
connect function, 459, 489 
CONNECTDLGSTRUCT structure, 436 
connection-oriented socket connection, 455 
connections 

accepting, 458-459 
querying, 442-444 
sockets listening, 458 

CONNECT_UPDATE_PROFILE flag, 435, 437 
console applications, 8, 10, 274 

console library functions, 330 
console.di! driver, 11 
constants, 7 
container BLOB structure, 494 
context flag, 90 
context menus, 109, 158, 171 
CONTEXT structure, 326 
Context value, 617, 619-620 
CONTEXT.EXCEPTION_RECORD structure, 326 
CONTROL keyword, 141, 200 
CONTROL statement, 200-201 
control windows, 22 
CONTROL_C_EXIT, 326 
controls, 119 

See also common controls 
background color, 135 
button controls, 126-128 
colors, 135 
combo box control, 130 
creation, 124 
designating shortcut keys, 140-141 

dialog boxes, 197, 200 
edit control, 128-129 
focus, 200 
groups, 200 
handle, 125 
identifying, 125 
list box control, 129 
location, 201 
location and size, 200 
new, 4-5 

CREATE_NEW flag 651 

notifying parent window of events, 124 
placements, 200 
predefined messages, 125 
reduced function, 5 
scroll bar control, 131-134 
sending message to, 125-126 
simulating keyboards, 85 
size, 201 
static controls, 130-131 
style flags, 200 
tabbing, 200 
type, 200 
window class, 201 
windows, 124-135 

control-specific messages, 163 
ConvertThreadToFiber function, 283-284 
coordinate transformations, 35 
CopyFile function, 339-340 
CopyFileEx function, 340 
COPY_FILE_FAIL_IF_EXISTS flag, 340 
cPlanes parameter, 61 
cProplD parameter, 398 
cProps parameter, 387 
CPU families, 3 
CREATE_ALWAYS flag, 331, 384 
CreateCompatibleBitmap function, 62 
CreateCompatibleDC function, 66-67 
CreateDialog function, 206-207 
CreateDialoglndirect function, 206-207 
CreateDialoglndirectParam function, 206-207 
CreateDialogParam function, 206-207 
CreateDIBPatternBrushPt function, 83 
CreateDIBSection function, 63-65 
CreateDIPPatternBrushPt function, 72 
CreateDirectory function, 339, 341 
CreateEvent function, 288, 407 
CreateFiber function, 284 
CreateFile function, 330, 331-332, 338, 508, 556, 585, 

588, 591, 593,621,623 
CreateFileForMapping function, 338 
CreateFileMapping function, 302-303, 318 
CreateFontlndirect function, 48-49 
CREATE_INVALIDEDBGUID value, 391 
CREATE_INVALIDGUID macro, 385 
CreateMenu function, 135 
CreateMsgQueue function, 304-305 
CreateMutex function, 295 
CREATE_NEW flag, 331, 384 



652 CREATE_NEW_CONSOLE flag 

CREATE_NEW_CONSOLE flag, 272 
CreatePartitionEx function, 353 
CreatePen function, 71 
CreatePenlndirect function, 71 
CreatePopupMenu function, 136 
CreateProcess function, 271-274, 291 
CreatePropertySheetPage function, 210 
CreateSolidBrush function, 72 
CREATESTRUCT structure, 117 
CREATE_SUSPENDED flag, 272, 279 
CREATE_SYSTEMGUID macro, 386-387, 402 
CreateThread function, 260, 278-280 
CreateWindow function, 20-23, 119, 124, 185, 188, 190 
CreateWindowEx function, 20-23, 119, 124, 190 
creation main window, 31-32 
cRegEnts parameter, 585 
critical sections, 297 
critical state, 265 
critical-memory state, 265-266 
CRITICAL_SECTION structure, 297 
cross-platform Windows CE applications, 539-544 
CSADDR_INFO structure, 495 
CS_DBLCLKS class style, 19, 101 
csDuration field, 428 
CS_GLOBALCLASS class style, 19 
CS_HREDRAW class style, 19 
CS_NOCLOSE class style, 19 
CS_PARENTDC class style, 19 
CS_VREDRAW class style, 19 
CTL_CODE macro, 597 
CtlType field, 128 
Ctrl key 

state, 101 
up/down state, 91 

current directory, 271, 329 
cursors, 20, 102 
custom draw service, 194 
custom pattern brushes, 72 
custom pens, 71 
custom-built SDK, 10 
CW_USEDEFAULT flag, 22 
CW_VOLUME_INFO structure, 351 
ex parameter, 122 
cy parameter, 122 

D 
DODevice power state, 607 
DlDevice power state, 607 
D2Device power state, 607 
D3Device power state, 607 
D4Device power state, 607 
data, machine-specific, 358 
data files, DLL file as, 270 
data queues, 304 
data structures 

references to, 272 
thread-unique, 279 

data types, 360 
databases, 382, 394 

database API, 381 
changing sort order, 395-396 
database creation, 387-390 
enumerating mounted database volumes, 385-386 
flushing database volume, 386 
mounting database volumes, 383-385 
object store as database volume, 386-387 
opening database, 391-393 
opening session, 390 
reading and writing stream properties, 398-400 
reading records, 396-398 
seeking or searching for records, 393-395 
transactions, 400 
unmounting database volume, 386 
writing record, 398 

database engine, 381 
database volumes, 383 

enumerating mounted, 385-386 
flushing, 386 
guid, 392 
mounting, 383-385 
object store as, 386-387 
unmounting, 386 

databases, 381 
changing sort order, 395-396 
communicating with, 308 
creation, 387-390 
data types, 382, 394 
deleting, 401 
designing, 383 
enumerating, 401-402 
name of, 388-389 
opening, 390, 391-393 
querying object information, 402-403 
records, 381-382 
session handle, 391-393 
sort order specifications, 391 
sorting, 389-390 
transactions, 382, 400 
volumes, 381 

datagram connection, 455 
datagram socket, 457 
date, 187-190 
date and time picker control, 5, 188-190 
DATETIMEPICK_CLASS class, 188 
DB_CEOID_CHANGED value, 392 
DB_CEOID_CREATED value, 392 
DB_CEOID_DATABASE_DELETED value, 392 
DB_CEOID_RECORD_DELETED value, 392 
DB_PROP_COMPRESSED flag, 388 
DB_PROP_NOTNULL flag, 388 
DCB structure, 559-561 
DCBlength field, 560 
DCX_CLIPCHILDREN flag, 38 
DCX_CLIPSIBLINGS flag, 38 
DCX_EXCLUDEREGION flag, 38 
DCX_EXCLUDEUPDATE flag, 38 



DCX_INTERSECTRGN flag, 38 
DCX_INTERSECTUPDATE flag, 38 
DCX_WINDOW flag, 38 
DDBs (device-dependent bitmaps), 61-62 
DeactivateDevice function, 586 
dead character, 90-91 
Debug, Start Without Debugging command, 

11, 33 
debug port, 610 
debug zone messages, 609 
debug zones, 609-610 
DEBUG_ONLY_THIS_PROCESS flag, 272 
DEBUGREGISTER macro, 610 
DEBUGZONE macro, 609-610, 617 
DEBUT_PROCESS flag, 272 
Declaration of Independence, displaying, 142-159 
default dialog box window class, 197 
default window procedure and dialog boxes, 197 
DefDialogProc procedure, 198 
defining meaning of off, 544 
DefWindowProc function, 32-33 
Deinit entry point, 584, 593 
Deinit function, 620, 622 
DeleteCriticalSection function, 297 
DeleteDC function, 67 
DeleteFiber function, 284 
DeleteFile function, 341 
DeleteObject function, 52, 60 
DeletePartition function, 353 
DeregisterDevice function, 510 
DeregisterService function, 622 
desktop 

finding handle to, 121 
searching for executables, 272 

DestroyWindow function, 207 
DEVFLAGS_BOOTPHASE_l flag, 585 
DEVFLAGS_IRQ_EXCLUSIVE flag, 585 
DEVFLAGS_LOAD_AS_USERPROC flag, 584, 586, 587 
DEVFLAGS_LOADLIBRARY flag, 584 
DEVFLAGS_NAKEDENTRIES flag, 584 
DEVFLAGS_NOLOAD flag, 584 
DEVFLAGS_NOUNLOAD flag, 584 
DEVFLAGS_UNLOAD flag, 584 
device context value, 593 
device contexts, 25, 36, 37, 62 

actions of when drawing, 38 
assumptions about, 40 
attributes, 40-42 
bitmaps selected into, 67 
conforming to entire window, 38 
control over type returned, 38 
copying bitmap, 66 
DDBs (device-dependent bitmaps), 61 
default state, 70 
for entire window, 38 
excluding regions, 38 
functions, 39 
handle, 37-39, 66 
MM_ TEXT mapping mode, 35 

not storing bit information of display, 100 
releasing, 38 
scrolling, 100 
selecting bitmap into, 65-66 
selecting font into, 50 
sharing, 38 
text alignment, 39, 41 
Windows applications, 37 

device drivers, 581, 618 
See also drivers 
accessing, 588 
building, 609-617 
corruption, 618 
enumerating, 344 
extending functionality of drivers, 582 
finding, 587 
implemented as DLLs, 267 
instance values, 582-583 
load process, 583-587 
loading, 581, 590 
managing buffers, 598-604 
manually loading, 585 

devices 653 

marshalling data across process boundaries, 599 
names, 582-583 
power management, 606-609 
priority levels, 276 
reading, 588-590 
as service providers, 618 
sharing memory blocks, 249 
storing configuration information, 587 
SYS file format, 267 
user mode, 586-587 
validating buffer parameters, 597 
Windows CE and, 581-582 
writing, 588-609 

device field, 507 
device interface classes, 604-606 
Device Manager, 583-584, 587, 590 
DeviceDx field, 608 
Device.exe file, 585 
DeviceFlags parameter, 550 
DeviceloControl function, 509, 589, 596, 597, 599, 

620-621 
DEVICELIST structure, 470 
DevicePowerNotify function, 607 
devices 

Bluetooth discovery, 493-497 
changing power state, 607 
changing to power state, 609 
DMA (direct memory access), 249 
infrared communication, 470-472 
notification button, 409 
number of colors supported, 40 
power management functions, 607-609 
power state, 607 
querying current power state, 608 
querying power capabilities, 607-608 
registry entry, 619 
setting power state, 607 



654 DeviceState parameter 

DeviceState parameter, 550 
dialog box procedures, 202-205, 236 

initialization of controls, 203 
pointer to, 201 
property pages, 210, 236-237 
unprocessed messages and DefWindowProc, 202 
WM_PAINT message, 203 

dialog box templates, 198-201 
name, 202 
name or ID of resource, 198, 201 
property pages, 208, 210 

dialog boxes, 214, 238 
Cancel button, 203 
Close button, 199, 205 
closing, 203 
common, 197 
creation, 201-202 
default window procedure, 197 
dialog templates, 198-201 
dialog units, 199 
dynamically creating, 202 
extended style flags, 199-200 
full-screen, 205-206 
Help button, 200 
ID of control, 200 
inclusion of window class in, 200-201 
informative, 14 
modal, 197 
modeless, 197-198, 206-207 
multiple but related, 197 
OK button, 199, 203, 205 
owning window, 201 
pointer to procedure, 201 
position, 198-199 
predefined index values, 123 
predefined window class, 197 
property sheets, 197, 207-213 
size, 199 
sizing, 206 
special predefined ID values, 203 
standard, 213-214 
static left-justified text control, 200 
style flags, 199 
switching focus between controls, 197 
templates, 197 
testing in display resolutions, 199 
title bar, 199-200, 205 
top-level window, 199 
type and placement of controls, 200 
units of measurement, 199 
window procedure, 198 

Dialog Demo window, 214-215 
DIALOG keyword, 198 
Dialog Manager, 197 
dialog messages, 207 
DIALOG resource type, 139 
dialog units, 199 
DialogBox function, 201 

DialogBoxlndirect function, 201-202 
DialogBoxlndirectParam function, 202-203 
DialogBoxParam function, 201-203, 205 
DIB sections, 63-65 
DIB_PAL_COLORS parameter, 65 
DIB_RGB_COLORS parameter, 65 
DIBs (device-independent bitmaps), 61 

buffer, 63 
creation, 63 
describing palette, 64-65 
layout and color composition, 63 
packed format, 72 

directories 
creation, 341 
destroying, 341 
distinguishing drives from, 345-346 
enumerating, 344 
file attributes, 345 
FILE_ATTRIBUTE_TEMPORARY flag, 346 
getting attributes, 335 
management, 340-341 
moving, 341 
querying information about, 335 
renaming, 341 
searching, 342 

DirectShow support, 6 
DisableThreadlibraryCalls function, 270 
discardable keyword, 141, 198 
DISCDLGSTRUCT structure, 437-438 
DISC_NO_FORCE flag, 438 
disconnecting remote resource, 437-438 
DismountPartition function, 353 
Dispatch Message function, 23, 141, 202, 207 
display 

freeing device context, 67 
managing access, 37-39 

display driver, 581-582 
div instruction, 326 
divide-by-zero error, 325 
DlgDemo program, 214-238 
DlgDemo.cpp file, 219-232 
DlgDemo.h file, 217-219 
DlgDemo.rc script file, 215-217 
DLGITEMTEMPLATE structures, 202 
DLGTEMPLATE structure, 202 
DLL extension, 267 
DLL key, 583, 584 
DllMain function, 270 
DllRegisterServer function, 624 
DLLs (dynamic-link libraries), 10, 161, 267 

allocating memory, 258 
code and data, 537 
as data file, 270 
debug zones, 609-610 
decrementing use count, 269 
entry point, 270 
versus EXE file, 267 
explicit loading, 268 



exporting functions, 268 
implementing driver, 590 
implicit loading, 267-268 
initializing, 270 
loading, 247, 269-270 
loading by request, 267-268 
loading resources from, 270 
never loaded twice by same process, 590 
not notifying of thread events, 270 
pointer to function exported by, 269 
ported from desktop versions of Windows, 270 
reason for failing to load, 268 
resource data needed by application, 268 
state data associated with, 590 
system searching for, 268 
thread local storage, 286 
type to create, 10 

DLL_THREAD_ATTACH notification, 270 
DLL_THREAD_DETACH notification, 270 
DMA (direct memory access), 249 
DoDestroyMain function, 33 
DOIView program, 102, 142-159 
DOIView.cpp file, 148-158 
DOIView.h file, 146-147 
DOIView.rc script file, 142, 143-146 
DoKeysMain key message handler, 100 
DoLButtonUpMain function, 117 
DoMainCommandColor function, 237 
DoMainCommandFont function, 237 
DoMainCommandPrint function, 237 
DoMainCommandVCombo routine, 184 
DoMainCommandVStd routine, 184 
DoMainCommandVView routine, 184 
DoMouseMain routine, 104 
DoNotifyMain routine, 184 
DONT_RESOLVE_DLL_REFERENCES flag, 270 
DoPaintMain function, 33 
dpCurrParams structure, 626 
dpCurSettings structure, 610 
drag list control, 194 
DrawBoard function, 117 
DrawFocusRect function, 128 
drawing 

bitmaps, 65-68 
lines, 69-70 
opaque mode, 46 
text, 42 
transparent mode, 46 

DRAWITEMSTRUCT structure, 127 
DrawMenuBar function, 165 
DrawText function, 26, 39, 46, 51 
DrawXO function, 117 
drive letters, 329, 345 
drivers 

See also device drivers 
about to be unloaded, 592 
about to suspend, 596 
applications calling entry points, 590 

DTR_CONTROL_ENABLE value 655 

COM_lnit initialization entry point, 590 
common IOCTL commands, 605 
configuration data, 357 
defining three-letter name, 584 
device interface classes, 604-606 
duplicating buffer in protected address 

space,601 
entry point for interfacing with, 596-598 
enumerating active, 587-588 
extended naming convention, 556 
friendly name, 588 
function pointers to external entry points, 584 
I nit function, 592 
instance number of device, 586 
IOCTL codes, 589, 596-597 
loaded as kernel mode driver, 590 
loading when system boots, 582 
marshalling buffer passed to, 600-601 
modifying load process, 584-585 
monitoring for interface, 606 
name of DLL implementing, 584, 586 
naming convention, 556 
not to unload, 585 
number appended to, 584 
opening, 585, 588, 593 
opening another driver, 591 
order of loading, 584 
powering down hardware and freeing memory, 594 
preclosing, 593-594 
referenced through extended namespace, 582 
referencing bus driver, 582 
before removing from list of loaded drivers, 592 
sending control characters to, 589 
storing data in global variables, 591 
storing state data in structure allocated in 

memory, 591 
subtle bugs confusing and locking up, 590 
supporting interface, 605-606 
three-character prefix, 586 
uniquely identifying name, 605-606 
unloading, 586, 593 

Drivers key, 587, 588 
drop-down buttons, 168, 169-171 
drop-down combo boxes, 130 
drop-down menu, 170 
DS_ABSALIGN style, 199 
DS_CENTER style, 199 
DS_MODALFRAME style, 199 
DS_SETFONT style, 199 
DS_SETFOREGROUND style, 199 
DT_CALCRECT flag, 39, 46 
DTM_SETFORMAT message, 189 
DTN_FORMAT notification, 190 
DTN_FORMATQUERY notification, 190 
DTN_USERSTRING notification, 189 
DTN_WMKEVDOWN notification, 190 
DTR_CONTROL_DISABLE value, 560 
DTR_CONTROL_ENABLE value, 560 



656 DTR_CONTROL_HANDSHAKE value 

DTR_CONTROL_HANDSHAKE value, 560 
DTS_APPCANPARSE style, 188-189 
DT_SINGLELINE flag, 39 
DTS_LONGDATEFORMAT style, 188 
DTS_SHORTDATEFORMAT style, 188 
DTS_SHOWNONE style, 188 
DTS_TIMEFORMAT style, 188 
DTS_UPDOWN style, 188 
DT_VCENTER flag, 39 
Duncan, Ra~27-28 
DUPLICATE_CLOSE_SOURCE flag, 296 
DuplicateHandle function, 296 
DUPLICATE_SAME_ACCESS flag, 296 
dwActiveProcessorMask field, 244 
dwAdditionalFlags parameter, 344 
dwAllocationGranularity field, 244 
dwAttributes field, 348, 351-352 
dwAutoShrinkPercent field, 385 
dwAvailPageFile field, 245 
dwAvailPhys field, 245 
dwAvailVirtual field, 245 
dwBlockSize field, 348 
dwBytes parameter, 257-258 
dwBytesPerSector field, 350 
dwCallbackReason parameter, 340 
dwClusSize parameter, 354 
dwCode parameter, 596 
dwContext value, 586, 592 
dwControlFlags parameter, 501 
dwCopyFlags parameter, 340 
dwCreationDistribution parameter, 331 
dwCreationFlags parameter, 272-273, 279 
dwCurrentMessages field, 307 
dwCurrentRxQueue field, 564 
dwCurrentTxQueue field, 564 
dwData field, 168 
dwData parameter, 623 
dwDbaseType parameter, 389, 401 
dwDefaultTimeout parameter, 385 
dwDesiredAccess parameter, 296, 331, 623 
dwDeviceClass field, 350 
dwDeviceFlags field, 350, 607 
dwDeviceType field, 350 
dwDevNum field, 436 
dwDisplayType field, 440 
dwEvent field, 406, 411 
dwExceptionFlags parameter, 327 
dwExStyle parameter, 21 
dwFlags field, 92, 109, 172, 206, 209-211, 257-258, 

270, 305-30~ 348,354, 384-385, 388, 391,396, 
435-438,493,495,497-498, 564 

dwFlagsAndAttributes parameter, 331-332, 556 
dwFlushlnterval field, 385 
dwFreeType parameter, 251 
dwlD field, 428 
dwlndex parameter, 362, 586 
dwlnfo parameter, 586 
dwlnfolevel parameter, 443 

dwlnitialSize parameter, 257 
dwloControlCode parameter, 589 
DWL_DLGPROC value, 123 
dwlength parameter, 245, 251 
dwlenln parameter, 597 
dwlenOut parameter, 597 
DWL_MSGRESULT value, 123, 213 
DWL_USER value, 123 
dwMask field, 205 
dwMaxBaud field, 563 
dwMaximumSize parameter, 257 
dwMaxMessages field, 305, 307 
dwMaxQueueMessages field, 307 
dwMaxRxQueue field, 564 
dwMaxTxQueue field, 564 
dwMemoryload field, 245 
dwMilliseconds parameter, 283, 290 
dwMode parameter, 398 
dwMode structure, 76 
dwMountCount field, 351 
dwMoveMethod parameter, 333-334 
dwNameSpace field, 493, 501 
dwNotifyFilter parameter, 363 
dwNumberOfProcessors field, 244 
dwNumFats field, 354 
dwNumVertex parameter, 76 
dwOffset parameter, 65 
dwOID field, 338 
dwOptions parameter, 359 
dwOrigin parameter, 399 
dwPageSize field, 244 
dwParam field, 392 
dwPartitionCount field, 351 
dwPlatformld field, 543 
dwProcessorType field, 244 
dwProvCapabilities field, 564 
dwProvSpecl field, 564 
dwProvSpec2 field, 564 
dwProvSubType field, 564 
dwRootEntries field, 354 
dwRop parameter, 66 
dwScope parameter, 438-439 
dwSeekType parameter, 393-394 
dwServiceMask field, 563 
dwServiceState field, 622 
dwSettableBaud field, 563 
dwSettableData field, 564 
dwSettableParams field, 564 
dwSettableStopParity field, 564 
dwShareMode parameter, 331, 623 
dwSize field, 210, 248, 251, 305, 307, 385, 389, 392, 493 
dwStackSize parameter, 279, 284 
dwStyle parameter, 119, 171 
dwTimeout parameter, 306 
dwTotalPageFile field, 245 
dwTotalPhys field, 245 
dwTotalVirtual field, 245 
dwType field, 406, 440 



dwType parameter, 437-438 
dwUsage parameter, 438-439 
dwValue parameter, 394 
dwVolumeSerialNumber field, 337 
dwWakeMase flags, 292 
dzDllName field, 621 

E 
EDB engine transaction support, 400 
EDBs (embedded databases), 381 

blobs, 403 
CEDBASEINFOEX_VERSION constant, 388 
CEDB_EXNOTIFICATION notification, 392 
changing sort order, 396 
creation, 387-390 
name of, 388-389 
schema, 382 
sort indexes, 388 
volumes, 383 

Edit class, 126 
edit controls, 5, 200-201 

adding text, 129 
asterisk(*) character, 128 
combo boxes, 130 
initializing, 205 
position of caret, 129 

EDITTEXT statement, 201 
Ellipse function, 72, 74 
ellipses, 74 
embedded database engine, 382 
embedded databases, 382 
embedded platforms and SDK (Software Development 

Kit), 5 
Empty Project, 10 
EM_SETSEL message, 129 
EnableHardwareKeyboard function, 93 
EnableMenultem function, 136 
END keyword, 139, 200 
End of Document (Ctrl+E) keyboard shortcut, 142, 158 
EndDialog function, 203, 207 
EndPaint function, 26, 36 
EnterCriticalSection function, 297 
entry points and services, 622-626 
enumerating 

fonts, 52-60 
network resources, 438-442 
windows, 120 

EnumFontFamilies function, 52-60 
EnumServices function, 621-622 
EnumWindows function, 120, 300-301 
environment variables, 270 
Ericsson, 490 
ERROR_ALREADY_EXISTS error code, 288, 294-295, 305, 

332 
ErrorChar field, 560 
ERROR_INSUFFICIENT_BUFFER error code, 306 
ERROR_NO_MORE_ITEMS error code, 362 

executable code 657 

ERROR_NO_NETWORK error code, 433 
ERROR_NOT_ENOUGH_MEMORY error code, 257 
ERROR_NOT_SUPPORTED error code, 620 
ERROR_SUCCESS value, 359 
EscapeCommFunction function, 565 
ES_LOWERCASE style, 129 
ES_MULTILINE style, 128 
ES_PASSWORD style, 128 
ES_READONLY style, 128 
ES_UPPERCASE style, 129 
EV_BREAK event flag, 558 
EV_CTS event flag, 558 
EV_DSR event flag, 558 
EVEN PARITY constant, 561 
event handle, 363 
event mask, 558 
event objects, 288-289, 309, 319 
events, 16, 293 

associating DWORD value, 289 
creation, 288 
duplicating handles, 296 
manually reset, 288 
named, 301 
naming, 288, 296 
notifying parent window, 124 
number to wait on, 292 
process specific, 296 
resetting, 289 
signalling, 288-289 
threads, 288 
waiting on multiple, 291-292 

EV_ERR event flag, 558 
EV_RLSD event flag, 558 
EV_RXCHAR event flag, 558 
EV_RXFLAG event flag, 558 
EvtChar field, 561 
EV_TXEMPTY event flag, 558 
except block, 327 
except keyword, 324 
exception filter, 324 
exception handling, 320 

(++, 321 
Win32, 324-327 

EXCEPTION_ACCESS_VIOLATION, 326 
EXCEPTION_CONTINUE_SEARCH, 326 
EXCEPTION_EXECUTE_HANDLER, 324 
EXCEPTION_RECORD structure, 326 
exceptions, 303 

anticipating, 324 
determining problem, 326 
handling locally, 324, 325 
reporting errors, 321-322 
retrying instruction causing, 325 
try, catch block, 323-324 
user-generated, 327 

EXE extension, 267 
EXE files versus DLL files, 267 
executable code, 267 



658 execute-in-place files 

execute-in-place files, 329, 539 
EXFAT.DLL, 355 
ExitProcess function, 274 
ExitThread function, 274, 280 
explicit linking, 542-543 
Explorer 

changing active window, 85 
shell, 265 

extended naming convention, 556 
extended style flags, 21, 199-201 
ExternRegisterServer function, 641 
ExtEscape function, 551-553 
ExtTextOut function, 39-40, 41, 60 

F 
fAbortOn Error field, 560 
fAdd parameter, 606 
FAT file system 

clusters, 354 
file creation time, 336 
formatting, 355 
last write time, 336 
partition IDs, 353 
version, 354 

FATFSD.dll, 355 
FATUTIL_DISABLE_MOUNT_CHK flag, 354 
FATUTIL.DLL, 355 
FATUTIL_FORMAT_EXFAT flag, 354 
FATUTIL_FORMAT_TFAT flag, 354 
FATUTIL_FULL_FORMAT flag, 354 
FATUTIL_SECURE_WIPE flag, 354 
fBinary field, 560 
FD_CLR macro, 467 
FD_ISSET macro, 467 
FD_SET macro, 467 
fDsrSensitivity field, 560 
fDtrControl field, 560 
fdwAccess parameter, 253 
fdwAction parameter, 259 
FD_ZERO macro, 467 
fEor field, 566 
fErrorChar field, 560 
fiber procedure, 284 
fibers, 283-285 
FIFO (first in, first out), 304 
File, New Project command, 9 
file API, 329, 347-348 
File Color menu item, 215 
file mapping objects, 303 
File menu key combinations, 140 
File Open dialog box, 197, 213-214 
File Open menu item, 215 
file pointer, moving, 333-334 
File Print menu item, 215 
File Property Sheet menu, 215 
File Save dialog box, 197 
File Save menu item, 215 
file storage devices, 345 

file system API, 330-346 
file system driver, 352 
file systems, 329 

file times, 336 
navigating, 339-346 
supported by operating system, 346 

file times, 336-337 
file type matching, 357 
FILE_ATTRIBUTE_ARCHIVE flag, 332 
FILE_ATTRIBUTE_COMPRESSED flag, 335 
FILE_ATTRIBUTE_DIRECTORY flag, 335 
FILE_ATTRIBUTE_HIDDEN flag, 332 
FILE_ATTRIBUTE_INROM flag, 335 
FILE_ATTRIBUTE_NORMAL flag, 331 
FILE_ATTRIBUTE_OFFLINE flag, 332 
FILE_ATTRIBUTE_R'EADONLY flag, 332 
FILE_ATTRIBUTE_ROMMODULE flag, 335 
FILE_ATTRIBUTE_SYSTEM flag, 332 
FILE_ATTRIBUTE_TEMPORARY flag, 332, 335, 345-346 
FILE_BEGIN flag, 334 
FILE_BEGIN seeks, 596 
FILE_ CURRENT flag, 334 
FILE_ CURRENT seeks, 596 
FILE_END flag, 334 
Fl LE_EN D seeks, 596 
FileFindFirst function, 442 
FileFindNext function, 442 
FILE_FLAG_BACKUP_SEMANTICS flag, 332 
FILE_FLAG_DELETE_ON_CLOSE flag, 332 
FILE_FLAG_NO_BUFFERING flag, 332 
FILE_FLAG_OVERLAPPED flag, 330, 332, 556 
FILE_FLAG_POSIX_SEMANTICS flag, 332 
FILE_FLAG_RANDOM_ACCESS flag, 308, 332 
FILE_FLAG_SEQUENTIAL_SCAN flag, 332 
FILE_FLAG_WRITE_THROUGH flag, 332 
FILE_MAP_ALL_ACCESS access rights, 302 
FILE_MAP_READ access rights, 302 
FILE_MAP_WRITE access rights, 302 
filenames, 330-331 
files 

access rights, 331 
attribute flags, 330-332 
changing attributes, 335 
closing, 334 
communicating with, 308 
compressed, 335 
copying, 340 
creation, 331-332 
deleting, 341 
execute-in-place, 329 
file times, 336-337 
finding, 342-344 
getting attributes, 335 
information about, 337-338 
management, 340-341 
memory-mapped, 338-339 
moving, 341 
object ID, 338 
opening, 331-332 



path of, 329 
querying information about, 335 
in RAM, 347 
reading, 333 
read/write access, 331 
renaming, 341 
in ROM, 347 
selective compression, 335 
serial number of volume, 337-338 
size, 337 
standard 1/0, 330-331 
tailoring operations, 331-332 
truncating, 334-335 
type of, 330 
unique identifier, 338 
unsupported flags, 332 
updates of memory, 338 
writing, 333 

FileSys (file system process), 581 
FILETIME data type, 382 
FILETIME structures, 336-337 
FileTimelocalFileTime function, 336 
FileTimeToSystemTime function, 336 
filled rectangles, 73 
filling rectangles, 75 
filling shapes, 72-73 
FillRect function, 75 
finally block, 327, 465 
finally keyword, 324 
fincUpdate field, 26 
FindClose function, 343-344 
FindClosePartition function, 352 
FindCloseStore function, 351 
FindDevice routine, 534 
FindExlnfoStandard parameter, 344 
FindExSearchlimitToDevices value, 344 
FindExSearchlimitToDirectories value, 344 
FindExSearchNameMatch value, 344 
FindFileEx function, 580 
FindFirstFile function, 342-344, 434 
FindFirstFileEx function, 344, 587 
FindFirstPartition function, 351 
FindFirstStore function, 351 
finding 

files, 342-344 
other processes, 300-301 
window, 121 

FindNextFile function, 343-344, 434 
FindNextPartition function, 352 
FindNextStore function, 351 
FindWindow function, 31, 121, 300, 410 
flnfolevelld parameter, 344 
flnherit parameter, 253 
flnX field, 560 
fix-up table, 262 
flags, valid, 13 
Flags field, 548 
flags parameter, 38, 459-460 

foreground application and WM_HIBERNATE message 659 

flAllocationType parameter, 248 
Flash memory, 241 
flNewProtect parameter, 251 
Float data type, 382 
flocal field, 507 
flOptions parameter, 256, 259 
fl Protect parameter, 249 
FlushFileBuffers function, 334-335 
flushing 

database volume, 386 
registry, 362 

FlushViewOfFile function, 339 
fMask field, 134 
fnBar parameter, 133 
focus window, 85-86 
Font dialog box, 197, 237 
font engine, 47 
font families, 53 
Font Listing window, 60 
Font menu item, 215 
FONT resource type, 139 
FontFamily field, 59 
FontFamilyCallback function, 59 
Fontlist program, 53-60 
Fontlist.cpp file, 54-59 
Fontlist.h file, 53-54, 60 
fonts 

boldness, 49 
character set, 49 
character width, 49 
character widths, 51-52 
ClearType technology, 49 
creation, 48-49 
describing, 48 
destroying, 52 
enumerating, 52-60 
family, 49 
height, 48, 51 
information about, 67 
italic, 49 
matching, 49 
monospaced, 49 
points, 48 
proportional, 49 
quality, 49 
querying characteristics, 50-52 
raster, 47 
scaling, 47-48 
selecting into device context, 50 
setting default, 50 
strikeout, 49 
TrueType, 47 
typeface, 49 
underline, 49 
x-axis, 49 

fOptions field, 501 
ForceDuplicate parameter, 601-602 
foreground application and WM_HIBERNATE message, 

265 



660 foreground color and text 

foreground color and text, 40-41 
foreground thread, 276 
foreign languages, 91 
format string, 189-190 
FORMAT_OPTIONS structure, 354 
FormatPartition function, 353 
formatting 

FAT,355 
partitions, 353-355 
volumes, 353-355 

FormatVolume API, 355 
FormatVolume function, 354-355 
FormatVolumeUI function, 354-355 
fOutX field, 560 
fOutxCtsFlow field, 560 
fOutxDsrFlow field, 560 
fParity field, 560 
fprintf function, 330 
fRedraw parameter, 133 
free pages, 243 
FreeHeapMem function, 259 
Freelibrary function, 269, 543 
fRemoveFromRegistry parameter, 628 
fRestore field, 26 
fRtsControl field, 560 
fSearchOp parameter, 344, 587 
fSecurity field, 501 
fShow parameter, 173 
fsState field, 168 
fsStyle field, 168 
ftCreated field, 351-352 
ftlastModified field, 351-352, 389 
FTP servers, 6 
fTxContinueOnXoff field, 560 
fTxim field, 566 
fuFlags parameter, 135, 171 
full-screen dialog boxes, 205-206 
functions 

command bar, 172-173 
device contexts, 39 
DLLs exporting, 268 
identifying target, 273 
implicit links, 237 
interlocked, 299 
pointers to custom allocate and free, 259 
retained for backward compatibility, 35 
storing return addresses, 260 
Windows CE, 35 
WNet API, 433 

G 
GDI (Graphics Device Interface), 36 
GDI objects, selecting, 50 
GenDriver program, 611-617 
GenDriver.cpp file, 612-617 
GenDriver.h file, 611-612 
general styles, 21 
GENERIC_READ flag, 331, 398 

GENERIC_WRITE flag, 331, 398 
GetAsyncKeyState function, 91-92 
GetCapture function, 108 
GetCharABCWidths function, 51 
GetCharWidth32 function, 52 
GetClientRect function, 25 
GetCommMask function, 558 
GetCommModemStatus function, 566 
GetCommProperties function, 563-564 
GetCommState function, 559-561 
GetCommTimeouts function, 561-562 
GetConfigData routine, 617 
getc-style functions, 14 
GetCurrentPositionEx function, 70 
GetCurrentProcess function, 296 
GetDC function, 38, 67 
GetDCEx function, 38, 67 
GetDeviceCaps function, 35, 40, 48, 71, 543 
GetDialogBaseUnits function, 199 
GetDIBColorTable function, 65 
GetDiskFreeSpaceEx function, 346 
GetDlgltem function, 125, 172 
GetEventData function, 289 
GetExceptionCode function, 326-327 
GetExceptionlnformation function, 326-327 
GetExitCodeProcess function, 9, 274 
GetExitCodeThread function, 280 
GetFiberData macro, 283-284 
GetFileAttributes function, 335 
GetFilelnformationByHandle function, 337 
GetFileSize function, 337 
GetFileTime function, 336 
GetFocus function, 85 
GetKeyboardStatus function, 93 
GetKeyState function, 91 
GetlastError function, 268, 288, 294-295, 300, 306, 318, 

332,399,435 
GetMessage function, 23-24, 202, 278 
GetMouseMovePoints function, 103-107 
GetMsgQueuelnfo function, 307 
GetObject function, 67 
GetParent function, 120 
GetProcAddress function, 237, 269, 355, 543, 590, 620, 

641 
GetProcessHeap function, 258 
GetScrolllnfo function, 134 
GetServiceHandle function, 628 
getsockname function, 505 
getsockopt function, 470-471, 473-474, 489, 492 
GetStockObject function, 20, 70, 72, 83 
GetStorelnfo function, 349 
GetStorelnformation function, 346 
GetSysColor function, 128 
GetSystemlnfo function, 243-244 
GetSystemPowerStatusEx2 function, 545-546 
GetTempFileName function, 342 
GetTextColor function, 40 
GetTextExtendPoint function, 158 
GetTextMetrics function, 50-51, 59 



GetThreadPriority function, 281-282 
GetVal template, 203-205 
GetValDlgProc dialog box procedure, 202, 203-205 
GetVersionEx function, 543 
getwchar function, 9 
GetWindow function, 120 
GetWindowDC function, 67 
GetWindowlong function, 122-124 
GetWindowThreadProcessld function, 275 
global heap, 247-248 
global variables, 31 
GlobalAlloc function, 247 
GlobalFree function, 247 
GlobalMemoryStatus function, 244-245 
GlobalRealloc function, 247 
GN_CONTEXTMENU, 109 
g_nGlobal static variable, 285 
goto statement, 327 
GradientFill function, 75-77 
GRADIENT_FILL_RECT_H flag, 76 
GRADIENT_FILL_RECT_V flag, 76 
GRADIENT_RECT structure, 76 
gradients and rectangles, 75-77 
graphic devices capabilities, 35 
graphical functions, 35 
graphics objects, information about, 67 
Greenwich Mean Time, 336 
grfFlags flags field, 428 
grnumUpdateMask parameter, 430 
guard page, 249 
GUI (graphical user interface), 35 
GUID data type, 382, 384 
guid field, 392 
GW_CHILD constant, 120 
GWES (Graphics Windowing, and Event Subsystem) 

process, 581 
GwesPowerOffSystem function, 551 
GW_HWNDFIRST constant, 120 
GW_HWNDLAST constant, 120 
GW_HWNDNEXT constant, 120 
GW_HWNDPREV constant, 120 
GWL_EXSTYLE value, 122 
GWL_ID value, 123 
GWL_STYLE value, 122 
GWL_USERDATA value, 123 
GWL_WNDPROC value, 123 
GW_OWNER constant, 120 
-GX compiler switch, 321 

H 
handheld devices capturing user's writing on screen, 

103-107 
handles, 272-273 
handling top-level window, 12 
hard drives, 329 

distinguishing from directories, 345-346 
Windows CE devices, 4 

Hitachi SHx architecture 661 

hardware configuration data, 357 
hatched brushes, 72, 83 
hbrBackground field, 20 
hCursor field, 20 
HDC, 25 
hDC field, 128 
hdc field, 26, 51 
hDlg field, 203, 205 
heap API, 247 
HeapAlloc function, 257 
HeapCreate function, 256-257 
HeapDestroy function, 258 
HeapFree function, 257, 398 
HEAP_GENERATE_EXCEPTIONS flag, 256 
HEAP_NO_SERIALIZE flag, 256-258 
HeapReAlloc, 257-258 
HEAP_REALLOC_IN_PLACE_ONLY flag, 258 
heaps, 247 

allocation of fixed blocks, 254 
becoming fragmented, 254 
limiting allocation, 266 
management routines, 256 

HeapSize function, 258 
Heapxxxx functions, 254 
HEAP_ZERO_MEMORY flag, 257-258 
hello world program, 3 
"Hello World" text, 12 
Hellol program, 7-9, 11 
hellol.cpp file, 10 
Hello2 program, 12-14 
Hello3 program, 17-18 

case statements, 24 
main window creation, 20-23 
message loop, 23-24 
registering window class, 19-20 
return value, 24 
window procedures, 24-27 
WM_DESTROY message, 26-27 
WM_PAINT messages, 25 

HelloCE program, 27 
checking for another instance of, 31 
displaying text on screen, 35 
lnitlnstance procedure, 31-32 
MainWndProc window procedure, 32-33 
message-processing routines, 33 
running, 33-34 
source code, 28-31 

hFile parameter, 270 
hHeap field, 392, 397 
hlcon field, 20, 209, 428 
hlcon/pszlcon union, 210 
hiding windows, 264 
HighPart field, 346 
hlnst global variable, 31 
hlnst parameter, 31, 165-166 
hlnstance instance handle, 31 
hlnstance parameter, 8, 20, 23, 210 
Hitachi SHx architecture, 244 



662 hKey parameter 

hKey parameter, 360 
HKEY_CLASSES_ROOT key, 357 
HKEY_CURRENT_USER key, 357-358 
HKEY_LOCAL_MACHINE key, 357-359 
[HKEY_LOCAL_MACHINE]key, 434 
[HKEY_LOCAL_MACHINE]key, 583 
HKEV_LOCAL_MACHINEnamed ProcGroup_xxx key, 586 
HKEY_LOCAL_MACHINEWord subkey, 359 
HKEY_LOCAL_MACHINEkey, 547 
HLOCAL value, 255 
hMem parameter, 255 
hMenu parameter, 119 
Hnd value, 587 
hNotification parameter, 406 
hOldFont, 60 
hollow rectangles, 73 
Home (Ctrl+H) keyboard shortcut, 142, 158 
horizontal scroll bars, 131 
hot key control, 194 
how parameter, 460 
hPrelnstance parameter, 8 
hrgnClip parameter, 38 
hSection parameter, 65 
hServiceHandle field, 621-622 
hSourceFile, 340-341 
hTemplate parameter, 332 
Hungarian notation, 6-7 
hWnd field, 392 
hwnd parameter, 92, 137 
HWND_BOTTOM flag, 121 
hwndClient field, 109 
hwndFrom field, 163 
hWndlnsertAfter parameter, 121 
HWND_NOTTOPMOST flag, 121 
hwndOwner field, 436-437 
hwndSink field, 428-429 
HWND_TOP flag, 121 
HWND_TOPMOST flag, 121 
hyperlinks, 238, 429 

IBM, 490 
iButton parameter, 165, 169, 171 
ICC_BAR_CLASSES flag, 162 
ICC_CAPEDIT_CLASS flag, 162 
ICC_COOL_CLASSES flag, 162 
ICC_DATE_CLASSES flag, 162, 185, 188 
ICC_LISTVIEW_CLASSES flag, 162, 190 
ICC_PROGRESS_CLASS flag, 162 
ICC_TAB_CLASSES flag, 162 
ICC_TOOLTIP_CLASSES flag, 162 
ICC_TREEVIEW_CLASSES flag, 162 
ICC_UPDOWN_CLASS flag, 162 
IClass value, 605 
ICMP (Internet Control Message Protocol), 457 
ICON resource type, 139 

icons 
intended for user interaction, 130-131 
representing program, 140 
resources, 139-140 
windows, 140 

ID value, 138-139, 390 
idBitmap parameter, 166 
IDCANCEL control ID, 212 
IDCANCEL value, 203 
idComboBox parameter, 171 
idFrom field, 163 
ID_MENU value, 138 
idNewltem parameter, 135 
IDOK control ID, 172 
IDOK value, 203 
#if preprocessor, 541 
lfClipPrecision field, 49 
#ifdef block, 626 
lfEscapement field, 49 
lfFaceName field, 49 
lfHeight field, 48 
lfOrientation field, 49 
lfOutPrecision field, 49 
If PitchAndFamily field, 49 
lfQuality field, 49 
ifWeight field, 49 
lfWidth field, 49 
IKOK control ID, 212 
imaxmtu field, 507 
iMaxSockets parameter, 457 
iMaxUdpDg field, 457 
iminmtu field, 507 
imtu field, 507 
include files, 7 
Index value, 619 
INFINITE value, 290 
information, user-specific, 358 
informative dialog box, 14 
infrared communication, 469 

basics, 469-470 
devices, 470-472 
discovery, 470-472 
publishing IR service, 472-473 
querying and setting IR socket options, 473-474 

inheritance and processes, 271 
INHERIT_CALLER_PRIORITY flag, 272 
lnit entry point, 584 
lnit function, 584-585, 592, 617, 620, 622, 627 
lnitApp function, 237 
lnitCommonControls function, 161-162, 190 
lnitCommonControlsEx function, 162, 185, 188 
lnitlnstance procedure, 31-32, 317-318 
inking, 103-107 
in-proc server, 428 
input 

keyboards, 85-101 
menus, 135-137 



mouse, 101-118 
touch screens, 101-118 

input focus, 85-86 
down tap, 108 
mouse messages, 108-109 

windows, 102 
inquiry blob, 494 
lnrunshDx field, 608 
lnsertMenu function, 136 
instance initalization, 27 
instance termination, 27 
Intel, 490 
lnternalRead function, 595 
interface classes, 604-606 
interfaces, 605-606 
interlocked functions, 299 
lnterlockedCompareExchange function, 299 
lnterlockedCompareExchangePointer function, 299 
Interlocked Decrement function, 299, 320 
lnterlockedExchange function, 299 
lnterlockedExchangeAdd function, 299 
lnterlockedExchangePointer function, 299 
lnterlockedlncrement function, 299 
lnterlockedTestExchange function, 299 
interprocess communications 

files or custom database, 308 
finding other processes, 300-301 
named memory-mapped objects, 301-304 
point-to-point message queues, 304-307 
WM_COPYDATA message, 301 

iNumlmages parameter, 166 
invalid regions, 36-38 
lnvalidateRect function, 37, 100 
INVALID_HANDLE_VALUE value, 302, 343, 390 
IOControl entry point, 584, 596-598 
IOControl function, 604, 607, 623 
IOCTL codes, 589, 596-597 
IOCTL commands, 509-510 
IOCTL (10 Control) commands, 332, 605 

programmatically starting and stopping 
services, 619 

services, 623-626 
super service, 627, 628-630 
supported by driver, 606 

IOCTL_ CHECKSUM IOCTL command, 604 
IOCTL_POWER_CAPABILITIES IOCTL command, 607-608 
IOCTL_POWER_GET IOCTL command, 608 
IOCTL_POWER_QUERY IOCTL command, 608-609 
IOCTL_POWER_SET IOCTL command, 609 
IOCTL_REGISTER_POWER_RELATIONSHIP IOCTL 

command, 608 
IOCTL_SERVICE_CONNECTION IOCTL command, 629 
IOCTL_SERVICE_CONTROL IOCTL command, 625 
IOCTL_SERVICE_DEBUG IOCTL command, 625-626 
IOCTL_SERVICE_DEREGISTER_SOCKADDR IOCTL 

command, 629 
IOCTL_SERVICE_INSTALL IOCTL command, 624 
IOCTL_SERVICE_NOTIFY_ADDR_CHANGE IOCTL 

command, 629-630 

kernel mode 663 

IOCTL_SERVICE_REFRESH IOCTL command, 624 
IOCTL_SERVICE_REGISTER_SOCKADDR IOCTL 

command, 628 
IOCTL_SERVICE_START IOCTL command, 624 
IOCTL_SERVICE_STARTED IOCTL command, 629 
IOCTL_SERVICE_STATUS IOCTL command, 625 
IOCTL_SERVICE_STOP IOCTL command, 624 
IOCTL_SERVICE_SUPPORTED_OPTIONS IOCTL 

command, 626 
IOCTL_SERVICE_UNINSTALL IOCTL command, 624-625 
ioctlsocket function, 466-467 
IP_ADAPTER_INFO structure, 629-630 
iProtocol value, 628 
IR device discovery, 470 
IR service, publishing, 472-473 
IR socket 

creation, 469-470 
querying and setting options, 473-474 

lrDA discovery, 470 
lrDA socket, 457, 458 
lrDA (Infrared Data Association) standard, 469 
irdaAddressFamily field, 472 
irdaDevicelD field, 472 
IRDA_DEVICE_INFO structure, 470 
irdaServiceName field, 472 
irecvquota field, 507 
IRLMP_9WIRE_MODE option, 474 
IRLMP_ENUMDEVICES option, 474 
IRLMP_IAS_QUERY option, 474 
IRLMP_IAS_SET option, 474 
IRLMP_IRLPT_MODE option, 474 
IRLMP_SEND_PDU_LEN option, 474 
IRLMP_SHARP_MODE option, 474 
irSoc function, 469-470 
ISAPI filters and extensions, 6 
lsBadCodePtr function, 594 
lsBadReadPtr function, 594-595 
lsBadWritePtr function, 594 
lsDialogMessage function, 207 
isendquota field, 507 
isoLevel parameter, 400 
iString field, 168 
itemAction field, 128 
itemData field, 128 
itemState parameter, 128 
iUsage parameter, 65 
iVal data type, 382 
iWidth parameter, 171 

K 
KBDl_KEYBOARD_ENABLED flag, 93 
KBDl_KEYBOARD_PRESENT flag, 93 
kernel, 36 

address space, 536 
kernel mode 

address space, 538 
device driver, 598 
loading device drivers, 581 



664 kernel mode drivers 

kernel mode drivers, 581 
asynchronously accessing buffer, 603 
managing buffers, 599 

kernel space, 538-539 
Key value, 587-588 
keybd_event function, 92, 551 
keyboard, 3, 85 

characters, 86 
disabling, 93 
focus, 85 
key pressed, 86 
releasing keys, 86 
testing for, 93 
virtual key values, 86-90 

keyboard accelerator table, 140-141 
keyboard driver, 581-582 
keyboard functions, 91-93 
keyboard messages, 86-91 

displaying sequence of, 93-101 
translating into character message, 23 

KEYEVENTF_KEYUP flag, 92 
KEYEVENTF_SILENT flag, 92 
keys 

Alt key and, 86 
assignment for menu item, 139 
auto-repeat, 86, 90 
closing, 361 
creation, 359-360 
dead character, 90-91 
deleting, 361 
enumerating, 362 
handle, 359 
hierarchical, 357 
information about, 90, 361 
nonvolatile, 359 
opening, 359-360 
pressing, 86 
previous state, 90 
real-time state, 91-92 
registry, 357 
releasing, 86 
repeat count, 90 
with same function, 91 
scan code, 90 
subkeys, 362 
toggling, 91 
transition state, 90 
Unicode character, 90 
volatile, 359 

KeyStateFlags parameter, 92 
keystrokes, simulating, 92 
KeyTrac program, 93-101 
KeyTrac.cpp file, 95-100 
KeyTrac.h file, 94 
King Canute, 490 
King Ethelred of England, 490 

L 
landscape-mode screen, 543 
Laodlmage function, 141 
large icon, 190 
Latency array, 608 
LB_ADDSTRING message, 129 
LB_DIR messages, 129 
LB_FIND message, 129 
LB_GETCURSEL message, 129 
LB_GETSELCOUNT message, 129 
LB_GETSELITEMS message, 129 
LB_INSERTSTRING message, 129 
LB_SETCURSEL message, 129 
LB_SETSEL message, 129 
LBS_EX_CONSTSTRINGDATA style flag, 129 
LBS_OWNERDRAWFIXED style flag, 129 
LBS_OWNERDRAWVARIABLE style flag, 129 
IDistanceToMove, 334 
leave statement, 327 
LeaveCriticalSection function, 297 
Length field, 501, 548-549 
length field, 494 
level parameter, 470 
limited state, 265 
limited-memory state, 265 
lines, 69-71 
LineTo function, 70 
llnitialCount parameter, 294 
linker map file, 261-262 
linker switch, 276 
list box control, 129 
list boxes, 129 
List class, 126 
list controls and combo boxes, 130 
list icon, 190 
list view control, 190-192 
listen function, 458 
listening sockets, 627 
ListNet program, 444-454 
ListNet.cpp file, 447-454 
ListNet.h file, 446 
ListNet.rc script file, 445 
ListView_lnsertltem function, 163 
llseek function, 330 
IMaximumCount parameter, 294 
LMEM_FIXED flag, 255 
LMEM_MOVEABLE flag, 255-256, 258 
LMEM_ZEROINIT flag, 255-256 
LoadAccelerators function, 141 
LoadBitmap function, 141 
LoadCursor function, 20 
LoadDevice function, 584 
Load Image function, 62, 140 
LoadLibrary function, 237, 268, 355, 537, 543, 584, 590, 

641 
LOAD_LIBRARY_AS_DATAFILE, 270 
LoadLibraryEx function, 268, 269-270 



LoadString function, 142, 158, 263, 270 
localheap,24~248 

allocating memory, 254-255 
fragmentation, 263 
freeing memory, 255 
initial size, 254 
out-of-memory error, 256 
querying size of block, 256 
resizing blocks, 255-256 

LocalAlloc function, 247, 254-255, 321 
LocalFree function, 254-255, 398 
LocalReAlloc function, 254-256, 258 
LocalSize function, 256 
LockFileEx function, 348 
LOGFONT structure, 48-49, 52-53 
logical font, 50 
LOGPEN logical pen structure, 71 
LOGPIXELSY field, 48 
long filenames, 330 
low state, 265 
low-memory environment, 4 
low-memory events, 265 
low-memory state, 265-266 
LowPart field, 346 
low-power waiting state, 278 
lpAddress parameter, 248, 251 
lpApplicationName parameter, 272 
IParam field, 210, 429 
LPARAM parameter, 201 
IParam parameter, 24, 53, 60, 86, 90, 101-102, 120, 125, 

12~ 131, 13~ 163, 212, 392 
lpArguments parameter, 327 
lpBlob field, 493-494 
lpBlob structure, 500 
lpBuff parameter, 385 
lpBuffer parameter, 142, 306, 333, 439-440 
lpBuffer pointer, 251 
lpButton parameter, 169 
lpBytesReturned parameter, 589 
lpCaption parameter, 13 
lpcbData parameter, 360 
lpcCount field, 440 
lpCharSet field, 49 
lpClass parameter, 359 
lpCmdline parameter, 8, 273 
lpCommandline parameter, 272 
lpComment field, 440 
lpConnRes field, 436 
lpcProplD parameter, 396 
lpcsaBuffer field, 495 
lpData parameter, 340, 360 
lpDistanceToMoveHigh parameter, 334 
lpdwDisposition parameter, 360 
lpEventAttributes parameter, 288 
lpFileName parameter, 344 
lpflOldProtect parameter, 251 
lpfnWndProc field, 19 
lpHandles parameter, 292 
lphEnum parameter, 439 

LVM_INSERTITEM message 665 

lplocalName field, 435, 437-438, 440, 442 
lplpBuffer parameter, 396 
lpMaximumApplicationAddress field, 244 
lpMem parameter, 257-258 
lpMinimumApplicationAddress field, 244 
lpMutexAttributes parameter, 295 
lpName parameter, 288, 294-295, 302, 437 
lpNetResource parameter, 435, 438-439 
lpNewltem parameter, 136 
lpnlength parameter, 442, 444 
lpNumberOfBytesRead parameter, 306, 333 
lpOverlapped parameter, 333 
lpParameter parameter, 279 
lpPassword parameter, 435 
lpPrefixString parameter, 342 
lpPreviousCount parameter, 294 
lpProcesslnformation parameter, 272 
lpProgressRoutine routine, 340-341 
lpRect parameter, 37 
lpRegEnts parameter, 585 
lpRemoteName field, 435-436, 438-440, 442 
lpSearchFilter parameter, 344 
lpSecurityAttributes parameter, 331, 359-360 
lpSemaphoreAttributes parameter, 294 
lpStartAddress parameter, 279, 284 
lpszApplication field, 406-407 
lpszArguments field, 406, 409, 411 
lpszClassName parameter, 20 
lpszlib parameter, 586 
lpszMenuName field, 20 
lpszName parameter, 391 
lpszNewsltem parameter, 135 
lpszServicelnstanceName field, 495 
lpszType parameter, 586 
lpszValueName parameter, 360 
lpThreadAttributes parameter, 279 
lpThreadld, 279 
lptpm parameter, 137 
LPTR flag, 255 
lpType parameter, 360 
lpUserName parameter, 435 
lpVendorlnfo field, 457 
LPWSTR data type, 382 
lread function, 330 
IReleaseCount parameter, 294 
LRESULT return type, 24 
LR_LOADFROMFILE flag, 62 
LSAP (Logical Service Access Point) selector, 472 
ISdpRecord interface pointers, 500-501 
IShellNotificationCallback interface, 428 
LTEXT statement, 201 
LUP_CONTAINERS flag, 493, 497 
LUP_RES_SERVICE flag, 498 
LUP_RETURN_ADDRESS flag, 495 
LUP_RETURN_BLOB flag, 495, 497 
LUP_RETURN_NAME flag, 495 
LVM_FINDITEM message, 192 
LVM_GETEXTENDEDLISTVIEWSTYLE message, 190-191 
LVM_INSERTITEM message, 163 



666 LVM_SETEXTENDEDLISTVIEWSTYLE message 

LVM_SETEXTENDEDLISTVIEWSTYLE message, 190-191 
LVM_SETITEMPOSITION message, 192 
LVN_GETDISPINFO notification, 192 
LVN_ODCACHEHINT notification, 192 
LVN_ODFINDITEM notification, 192 
LVS_AUTOARRANGE style, 192 
LVS_EX_CHECKBOXES extended style, 191 
LVS_EX_FLATSB extended style, 191 
LVS_EX_FULLROWSELECT extended style, 191 
LVS_EX_GRIDLINES extended style, 191 
LVS_EX_HEADERDRAGDROP extended style, 191 
LVS_EX_INFOTIP extended style, 191 
LVS_EX_ONECLICKACTIVATE extended style, 191 
LVS_EX_REGIONAL extended style, 191 
LVS_EX_SUBITEMIMAGES extended style, 191 
LVS_EX_TTRACKSELECT extended style, 191 
LVS_EX_TWOCLICKACTIVATE extended style, 191 
LVS_OWNERDATA style, 190, 192 
LVS_SORTASCENDING style, 192 
LVS_SORTDESCENDING style, 192 
IWhichEvent parameter, 412 
!write function, 330 

M 
machine-specific data, 358 
macros and declaring debug zone messages, 609 
main battery, 242 
main thread stack size, 276 
main window, 119, 121 

creation, 20-23, 31-32 
as icon SW_SHOWMINIMIZE state, 8 
initial state, 8 
maximized SW_SHOWMAXIMIZED state, 8 
normal SW_RESTORE state, 8 
registering window class, 31-32 
text on taskbar button, 21 

MainMessages table, 32 
MainWndProc window procedure, 24-27, 32-33 
MAKEINTRESOURCE macro, 140, 201 
MAKELONG macro, 387 
MAKEWORD macro, 456 
malloc function, 247 
manual reset events, 289 
manual resetting event, 319 
map file, 261-262 
mapping remote drive, 434-436 
MapViewOfFile function, 302, 318, 338 
MapVirtualKey function, 92 
MapWindowPoints function, 171 
MARKPARITY constant, 561 
MaskBlt function, 68 
masking image, 68 
MCM_GETMINREQRECT message, 186 
MCM_SETCOLOR message, 186 
MCM_SETFIRSTDAYOFWEEK message, 186 
MCM_SETMAXSELCOUNT message, 186 
MCM_SETRANGE message, 186 

MCN_GETDAYSTATE notification, 186-187 
MCN_SELCHANGE notification, 187 
MCN_SELECT notification, 187 
MCS_DAYSTATE style flag, 186 
MCS_MULTISELECT style flag, 185-186 
MCS_NOTODAY style flag, 185 
MCS_NOTODAYCIRCLE style flag, 185 
MCS_WEEKNUMBERS style flag, 186 
MEM_AUTO_COMMIT flag, 248-249 
MEM_COMMIT flag, 248, 259 
MEM_DECOMMIT flag, 251, 259 
MEM_FREE value, 259 
MEM_IMAGE flag, 251 
MEM_MAPPED flag, 251 
memory, 241 

access protection for region allocated, 249 
basics, 241-247 
current use, 245 
fragmentation, 263 
heaps, 254 
large blocks, 263 
localheap,254-256 
low-memory conditions, 264-266 
managing, 241 
paged memory, 243 
pages, 243 
predefined blocks, 260-262 
RAM (random access memory), 241-242 
reserving large region, 249 
ROM (read-only memory), 241, 242 
selecting proper type, 263-264 
separate heaps, 256-259 
size of region to allocate or reserve, 248 
stacks, 260 
states, 265 
static data, 260-262 
virtual address of region to allocate, 248 
virtual memory, 242-243, 248-254 

memory allocation, 4 
checking return codes, 266 
heap API, 247 
local heap,254-255 
separate heaps, 257, 259 
threads, 276 
type, 248 
virtual memory, 248-249 
Virtualxxx functions, 247 

memory architecture, 535 
application space, 536-538 
kernel space, 538-539 

memory blocks 
allocating, 253 
describing characteristics, 255 
handle to, 255 
identifying reserved, 248 
immediately reserving, 249 
reading and writing, 253-254 
releasing, 253 



memory device context, 66-67 
memory management changes, 598 
memory protection between applications, 241 
memory thresholds, 265-266 
memory-mapped files, 65, 302, 338-339 
memory-mapped objects 

application space, 537-538 
creation, 302 
destroying, 304 
named object, 303 
naming, 303-304 
processes sharing, 303 
RAM committed to, 303 
RAM required to back up, 301 
view into, 302 

MEM_PRIVATE flag, 251 
MEM_RELEASE flag, 251 
MEM_RESERVE flag, 248, 259 
MEM_TOP_DOWN flag, 248 
menu bar 

application not knowing present, 269 
as top-level window, 184 

menu bar control, 4-5, 135, 164, 184 
menu commands, 137 
menu identifiers, 139 
menu items, 139 
MENU resource type, 139 
menu template, 138-139 
menu-and toolbar-like functions, 4-5 
MENUITEM keyword, 139 
menus, 20 

adding item, 135-136 
aligning, 137 
checking and unchecking menu item, 136 
command bars, 135, 165 
creation, 135 
designating shortcut keys, 140-141 
enabling or disabling item, 136 
handle to, 165 
manipulating structure, 165 
menu bar control, 135 
nesting, 136 
pop-up, 139 
redrawing, 165 
structure creation, 136-137 

message box, 13-14 
message box window, 12-13 
message loop, 18, 23-24, 27 
message queues, 16 

alert messages, 304 
behavior, 305 
closing, 307 
communicating with, 304 
creation, 304-305 
getting next message, 23 
maximum number of messages, 305 
name, 305 
opening, 305-306 

querying configuration, 307 
read or write acess, 304 
reading messages, 306-307 
WM_QUIT message, 26 
writing message to, 306 

message table, 32-33 
MessageBox function, 12-14 
MessageQueue API, 304 
messages, 15 

alert messages, 304 
default action, 32 

MountPartition function 667 

default processing function, 15 
dispatching, 16 
FIFO (first in, first out), 304 
forwarding to appropriate window, 23 
getting next, 23 
handling in blocks, 27 
life of, 15-18 
maximum size, 305 
message queue, 16 
pointer to function processing, 33 
predefined constants, 15 
preprocessing, 16 
processing, 16, 18 
reading, 304 
sending to control, 125-126 
sending to windows, 14 
sent for events, 15 
value of, 33 
wating while dealing with, 292-293 
writing, 304 

MF_BYCOMMAND flag, 136 
MF_BYPOSITION flag, 136 
MF_CHECKED flag, 135 
MF_GRAYED flag, 135-136 
MF_POPUP flag, 136 
MF_STRING flag, 135 
microprocessor, identifying type, 244 
Microsoft ActiveSync, 10 
Microsoft Visual Studio, 9 
Microsoft Windows 95 common control library, 161 
Microsoft Windows CE applications, 3 
Microsoft Windows CE Platform Builder, 266 
Microsoft Windows NT 3.5 common control library, 161 
MIPS, 3 
MM_TEXT mapping mode, 35 
modal dialog boxes, 197, 201-202 
modeless dialog boxes, 197-198, 206-207, 214 
modeless property sheets, 208-209 
modules, 267, 271 
MonitorThread routine, 424-425 
month calendar, 185-186 
Month Calendar control, 215 
month calendar control, 185-188 
MONTHCAL_CLASS flag, 185 
MONTHDAYSTATE variable, 186-187 
month-view calendar, 185-187 
MountPartition function, 353 



668 mouse 

mouse, 101-102, 109 
mouse cursor, 102 
mouse messages, 101-102, 108-109 
mouse wheel, 142 
mouse-based systems, 23 
MoveFile function, 339, 341 
MoveToEx function, 70 
moving window, 121-122 
MS_CTS_ON flag, 566 
MS-DOS programs, 14 
MS-DOS-based programming, 14 
MS_DSR_ON flag, 566 
MSG structure, 23 
MSGQUEUE_ALLOW_BROKEN flag, 305-307 
MSGQUEUEINFO structure, 307 
MSGQUEUE_MSGALERT flag, 306-307 
MSGQUEUE_NOPRECOMMIT flag, 305, 307 
MSGQUEUEOPTIONS structure, 305-306 
MsgWaitForMultipleObjects function, 289, 292-293 
MsgWaitForMultipleObjectsEx function, 289, 292-293 
MS_RING_ON flag, 566 
MS_RLSD_ON flag, 566 
MTU (maximum transaction unit), 507 
MultiByteToWideChar function, 456 
multilevel sort indexes, 382 
multiple objects, waiting on, 291-292 
multiple-selection list boxes, 129 
multitasking operating system, 267 
multithreaded operating system, 267 
Murphy's Law, 298 
mutex object, 318 
mutexes, 287, 295-296, 309 

named, 301 
number to wait on, 292 
ownership, 318 

MWMO_INPUTAVAILABLE flag, 293 
MyBtUtil.cpp file, 513-516 
MyBtUtil.h file, 512-513 
MyBtUtil.rc script file, 511-512 
MyCreateHatchBrush function, 83 
MyScrollWnd function, 158-159 
MySquirt program, 474-490 
MySquirt.cpp file, 477-489 
MySquirt.h file, 476-477 
MySquirt.rc script file, 475 

N 
Name value, 587 
named events, 407, 424 
named memory-mapped objects, 301-304, 309, 318 
name.ext format, 330 
namelen parameter, 458 
namespace synchronization objects, 287 
nAppCnt, 318 
native drivers, 582 
nBufferMax parameter, 142 
nCmdShow parameter, 8, 31 

nesting menus, 136 
NETRESOURCE structure, 435-436, 436, 439-440 
network directory, 442 
network drives, mapping, 434-436 
network folder, 434 
network resources 

deleting, 437 
enumerating, 438-442 

networking 
disconnecting remote resource, 437-438 
enumerating network resources, 438-442 
mapping remote drive, 434-436 
querying connections and resources, 442-444 
support, 433-454 
UNC (Universal Naming Convention), 434 

networking APls, 433 
networks, 433 
new function, 247 
New Project dialog box, 9 
newline character (In), 127 
nFilelndexHigh field, 338 
nHeight parameter, 61 
nlndex parameter, 122 
nlocall value, 285-286 
nlocal2 value, 285-286 
nMax field, 134 
nMaxSound field, 408 
nmbhdr field, 187 
NMDAYSTATE structure, 187 
NMHDR structure, 163, 187 
nMin field, 134 
NMSELCHANGE structure, 187 
nNumberOfArguments parameter, 327 
nNumberOflinks field, 338 
Nokia, 490 
non-client area messages, 36 
nonstream drivers, 581 
NOPARITY constant, 561 
normal state, 265 
NoteDemo program, 412-425 
NoteDemo.cpp file, 416-424 
NoteDemo.h file, 414-416 
NoteDemo.rc script file, 413-414 
Notepad multiline edit control, 128 
Notification API, 287, 426 
notification bubble, 427 
notification dialog box, 409 
notification interface, 405 
NOTIFICATION_EVENT_DEVICE_CHANGE event flag, 411 
NOTIFICATION_EVENT_INTERNET_PROXY_CHANGE 

event flag, 412 
NOTI FICATION_EVENT _MACH IN E_NAME_ CHANGE 

event flag, 412 
NOTIFICATION_EVENT_NONE flag, 412 
NOTIFICATION_EVENT_RESTORE_END event flag, 411 
NOTIFICATION_EVENT_RNDIS_FN_DETECTED event 

flag,412 
NOTIFICATION_EVENT_RS232_DETECTED event flag, 411 



NOTIFICATION_EVENT_SYNC_END event flag, 411 
NOTIFICATION_EVENT_TIME_CHANGE event flag, 411 
NOTIFICATION_EVENT_TZ_CHANGE event flag, 411 
NOTIFICATION_EVENT_WAKEUP event flag, 411 
notifications 

acknowledging, 405 
bubble windows, 405 
clearing, 425 
creation, 406 
detail, 406 
details of, 425 
modifying, 406 
querying scheduled, 425-426 
signalling event, 407 
type, 406 

Notify.h file, 412 
nPage field, 134 
nPages field, 209 
nParameter value, 280 
nPos field, 134 
npPriority field, 428 
nPriority field, 281 
nReadCnt variable, 319-320 
nResult parameter, 203 
nStartPage/pStartPage union, 209 
NTFS file system, 338 
nTrackPos field, 134 
NULL buffer pointer, 158 
NULL_PEN parameter, 70 
NUMCOLORS value, 40 
numRange parameter, 498 
num_responses field, 494 
nWidth parameter, 61 

0 
object IDs, 403 
object store, 241-242, 329, 347 

folder, 434 
CEDBs, 383 
compressed files, 335 
as database volume, 386-387 
enumerating databases, 401-402 
execute-in-place files, 329 
file size limits, 347 
format, 329 
limitations, 347 
moving boundary with program RAM, 242 
setting time fields, 337 
size, 346-347 
storing files, 329 
storing registry and database volumes, 329 

objects 
autocommit blocks, 318 
backed up by paging file, 301 
synchronization, 287-299 

OBJTYPE_DATABASE flag, 402 
OBJTYPE_DIRECTORY flag, 402 
OBJTYPE_FILE flag, 402 

paged-based virtual memory system 669 

OBJTYPE_RECORD flag, 402 
ODDPARITY constant, 561 
OEM Abstraction Layer, 278 
OEMs and WM_HIBERNATE message, 266 
OFF, defining meaning of, 544 
oidParent field, 392 
oidRecord parameter, 398 
OLE configuration data, 357 
OnCommandSelected method, 428-429 
OnCreateMain function, 59, 237 
OnDismiss method, 428 
ONE5STOPBITS constant, 561 
ONESTOPBIT constant, 561 
ONETWOSTOPBITS constant, 561 
one-to-many communication, 308 
OnlinkSelected method, 428-429 
OnPaintMain function, 46, 59, 83 
OnShow method, 428 
QOM (out-of-memory) dialog, 265 
opaque drawing mode, 83 
opaque mode, 46 
Open button, 409 
Open entry point, 584, 593, 623 
OPEN_ALWAYS flag, 331, 384 
OPEN_EXISTING flag, 331, 384 
OpenMsgQueue function, 305-306 
OpenProcess function, 253-254, 275, 305 
OpenSemaphore function, 295 
OpenStore function, 349 
operating systems, 284-285 

marshalling for buffers referenced by function 
parameters, 600 

processors used by, 244 
stream interface, 581 
versions and platforms, 539-540 

optlen parameter, 470 
optname parameter, 470 
optval parameter, 470 
organization, 64 
organizer applications, 5 
OSVERSIONINFO structure, 543 
OUT_TT_ONLY_PRECIS flag, 49 
overlapped 1/0, 330 
owner-draw buttons, 127-128 
owner-draw list boxes, 129 
owner-draw static controls, 131 
owner/owned relationship, 119 

p 
packed format, 72 
pAddr parameter, 259 
Page Setup dialog box, 213 
PagelDlg.cpp file, 232-233 
Page2Dlg.cpp file, 233-235 
Page2DlgProc procedure, 237 
paged memory, 243 
paged-based virtual memory system, 243 



670 PAGE_EXECUTE flag 

PAGE_EXECUTE flag, 249 
PAGE_EXECUTE_READ flag, 249 
PAGE_EXECUTE_READWRITE flag, 249 
PAGE_GUARD flag, 249 
PAGE_NOACCESS flag, 249 
PAGE_NOCACHE flag, 249 
PAGE_READONLY flag, 249 
PAGE_READWRITE flag, 249 
pages, 243, 250 

autocommitted as accessed, 302-303 
available number, 245 
decommitting, 250-251 
directly committing, 250 
further defining characteristics, 249 
loaded on demand, 246 
local heap, 247 
size, 244 
state, 252 

PageSetupDialog function, 237 
paging files, 245, 250 
PAINTFONTINFO structure, 60 
painting 

basics, 36-39 
device contexts, 37-39 
immediate, 37-38 
as low-priority task, 37 
valid and invalid regions, 36-37 
windows, 25-26 

PaintSingleFontFamily function, 60 
PAINTSTRUCT structure, 26 
palette manager, 64 
palettes, 64-65, 72 
PAN (personal area networking), 469 
parent windows, 22 

finding, 120 
handle, 23 
notification of double-clicks or double-taps, 19 
notifying of events, 124 
scroll bars, 131 

parent/child relationship, 119 
Parity field, 561 
ParseBlobToRecs routine, 500-501 
PARTINFO structure, 351-353, 355 
PARTITION_ATTRIBUTE_ACTIVE flag, 352 
PARTITION_ATTRIBUTE_BOOT flag, 352 
PARTITION_ATTRIBUTE_MOUNTED flag, 352 
PARTITION_ATTRIBUTE_READONLY flag, 352 
partitions, 349 

creation, 353 
creation time, 352 
deleting, 353 
enumerating, 351-353 
FAT partition IDs, 353 
FAT tables used in, 354 
formatting, 352, 353-355 
modification time, 352 
mounting, 353 
name of, 352 

number of sectors dedicated, 350 
size of, 352 
types, 353 
unmounting, 353 

passwords and volumes, 385 
PatBlt function, 68 
paths, length, 330 
pbCancel parameter, 340 
pBlobData field, 494 
PBT_NOTIFY_ALL flag, 548 
PBT_POWERINFOCHANGE notification, 548-549 
PBT_POWERSTATUSCHANGE flag, 548 
PBT_RESUME flag, 548 
PBT_TRANSITION flag, 548 
pBuffer parameter, 426, 621 
pBuffer point, 594-595 
pBufln parameter, 597 
pBufOut parameter, 597 
pcBytesNeeded field, 426 
PCClient program, 642-643 
PCClient.cpp file, 642-643 
PCEGUID parameter, 401 
pceun parameter, 410 
pcHandlesNeeded parameter, 425 
pCharacterBuffer parameter, 92 
PCMCIA card drivers, 588 
PCMCIA (Personal Computer Memory Card 

International Association) slot, 582 
pContext parameter, 592 
pcRefCount field, 211 
pdi parameter, 354 
pdwBufferlen parameter, 621 
pdwFlags parameter, 306-307 
pdwServiceEntries parameter, 621 
pdwUserData parameter, 259 
pens, 70-71, 73 
PenTrac program, 103-107 
PenTrac.cpp file, 104-107 
PenTrac.h file, 104 
Petzold, Charles, 6, 27, 83 
Petzold method of Windows programming, 27 
pfnAlloc parameter, 259 
pfnCallBack field, 209-210 
pfnDlgProc field, 210 
pfnFree parameter, 259 
pfnMessage parameter, 354 
pfnProgress parameter, 354 
pfo parameter, 354 
pguid parameter, 387 
phkResult parameter, 359-360 
physical address space, 539 
pin parameter, 629 
pixels, 61 
Platform Builder debug zones, 609-610 
platforms 

information about, 32 
operating system versions, 539-540 

PMCLASS_GENERIC_DEVICE string, 606 



PMEMORY_BASIC_INFORMATION structure, 251-252 
pMesh parameter, 76 
pndBuffer parameter, 430 
Pnpld value, 588 
Pocket lnbox, 491 
Pocket Outlook, 491 
Pocket PC projects, 32 
Pocket\Nord, 194,273 
poid parameter, 391 
POINT structures, 69-70 
pointers, functions testing validity, 594-595 
points, 48 
point-to-point message queues, 304-307 
Polygon function, 72, 75 
polygons, 75 
Polyline function, 69-70 
pOptions parameter, 384 
pop-up menus, 139, 170-171 
pop-up windows, 426-430 
PORTEMUPortParams structure, 507, 509 
portrait-mode screen, 543 
ports, closed for monitoring, 628 
PostKeybdMessage function, 92 
PostQuitMessage function, 26, 33 
pOut parameter, 625 
Power array, 608 
power management, 278, 544, 608 

defining meaning of off, 544 
device drivers, 606-609 
device functions, 607-609 
Power Manager, 547-550 
powering down, 551 
powering up system, 553 
preventing system from powering down, 553-554 
querying power state, 545-546 
turning off screen, 551-553 
without Power Manager, 550-554 

Power Manager, 544, 547-550 
device drivers, 606-607 
flexibility, 547 
IOCTL commands, 605 
notification of power state changes, 547-549 
power states, 547 
setting power state, 549-550 

power state 
querying, 545-546 
setting, 549-550 

POINER_BROADCAST structure, 548 
POINER_CAPABILITIES structure, 608 
PowerDown entry point, 596 
POINER_FORCE flag, 550 
powering down, 551 
powering up system, 553 
POINER_NAME flag, 550 
POINER_RELATIONSHIP structure, 607-608 
POINER_STATE_BOOT flag, 548 
POINER_STATE_CRITICAL flag, 548 
POINER_STATE_IDLE flag, 548 

POINER_STATE_OFF flag, 548 
POINER_STATE_ON flag, 548-549 
POINER_STATE_RESET flag, 548-549 
POINER_STATE_SUSPEND flag, 548 
PowerUp entry point, 596 

processes 671 

PowerUp notification, 596 
PPOINER_BROADCAST_POINER_INFO structure, 549 
ppsp/ppage union, 209 
ppvBits parameter, 65 
pRange array, 498 
PreClose entry point, 593-594 
pRecord parameter, 501 
predefined bitmaps, 166 
predefined icons, 20 
predefined window class dialog boxes, 197 
predefined window classes, 15, 119, 124 
predefined window control classes, 126 
PreDeinit entry point, 584, 592 
pResults field, 495 
prgProps array, 387 
primary thread, 274, 276, 319 
primary thread ID, 273 
Print common dialog, 237 
Print dialog box, 197 
printf function, 9, 330, 610 
printf statement, 11, 504 
priority class, 276 
priority inversion deadlock, 277 
process ID, 273 
processes, 267, 270 

acquiring handle, 253 
allocating shared block of memory, 301 
base address in address space, 275 
cache of values, 286 
command line passed to, 272 
communicating, 300-308 
creation, 271-274 
current directory, 270 
directly reading from and writing to memory space, 

275 
enumerating, 300 
environment block, 270 
exit code, 274 
finding other, 300-301 
handles, 272-273, 275 
higher-priority class, 276 
ID,253 
information about, 272 
inheritance, 271 
initial state, 272 
launching another process, 291 
less state information, 270 
locating main window, 300-301 
lower-priority class, 276 
monitoring, 290 
notifying of thread database modifications, 382 
performing action when terminating, 290-291 
primary thread, 272-273, 276 



672 processes, continued 

process ID, 273 
protected address space, 267 
sending blocks of data between, 301 
sending data between, 304-307 
sharing event object, 288 
sharing memory-mapped object, 303 
synchronization, 301 
telling to terminate itself, 274 
terminating, 274 
threads, 267 
treated as peers, 276 
waiting on, 290-291 
window creation, 275 

PROCESS_INFORMATION structure, 272-274, 291 
processor context threads, 275 
PROCESSOR_ARCHITECTURE_ARM constant, 244 
PROCESSOR_ARCHITECTURE_INTEL constant, 244 
PROCESSOR_ARCHITECTURE_SHX constant, 244 
PROCESSOR_HITACHl_SH3 constant, 244 
PROCESSOR_HITACHl_SH4 constant, 244 
ProcGroup, 586 
program RAM, 242, 245 
programmer-defined string, 20 
programming 

common controls, 161-163 
sockets, 455-456 

Programming Microsoft Windows (Petzold), 6, 27 
programming TCP/IP and initializing Winsock DLL, 

456-457 
Programming Windows, 5th edition (Petzold), 83 
programs 

basic underlying structure, 3 
command-line parameter, 8 
defining instance of, 8 
executable code, 262 
icons representing, 140 
initial state of main window, 8 
instance handle, 20 
running, 11 
XIP (Execute in Place), 242 

progress bar, 193 
progress bar control, 193 
progress control, 215 
PROGRESS_CONCEL value, 341 
PROGRESS_CONTINUE value, 341 
PROGRESS_QUIET value, 341 
PROGRESS_STOP value, 341 
ProgWinCE_SDK Emulator device target, 10 
ProgWinCE_SDK (ARMV41) target CPU, 10 
Project, Add New Item command, 10 
Project Properties dialog box, 32 
Project Settings page, 10 
projects, 9 
properties, 381, 401 
property ID, 387, 394 
property pages, 208 

adding and deleting, 211 
application-defined parameter, 210 

callback procedure, 210 
characteristics, 210 
communicating and cooperating with each other, 211 
creation, 210-212 
describing, 209 
dialog box procedures, 210, 236-237 
dialog box templates, 210 
handles, 209-210 
keeping focus, 213 
name of dialog box resource, 210 
procedures, 212 
property page procedures, 212 
reference count, 211 
referencing dialog box template resource, 211-212 
switching, 212-213, 237 
tab text, 210 

property sheets, 197, 207-213, 214, 238 
adding and deleting pages, 211 
Apply button, 208 
behavior, 208 
Cancel button, 208 
closing, 213 
creation, 208-209 
creation flags, 208 
expanding to fill full screen, 237 
frame around, 208 
modeless, 208-209 
OK button, 208, 213, 237 
property pages, 208, 210-213 
switching between pages, 237 

PropertySheet function, 208-209 
propid field, 387, 394 
PROPSHEETHEADER structure, 208 
PROPSHEETPAGE structure, 210, 212 
PROPSHEETPAGE structures, 209 
PropSheetPageProc callback procedure, 209 
PropSheetProc callback function, 238 
Protect field, 251, 253 
protocol parameter, 457 
Protocol value, 626 
PSCB_GETLINKTEXT notification, 209, 238 
PSCB_GETTITLE notification, 209 
PSCB_GETVERSION notification, 209 
PSCB_INITIALIZE notification, 238 
PSCB_INITIALIZED notification, 209 
PSCB_NOPRECREATE notification, 209 
PSCB_PRECREATE notification, 209 
pShiftStateBuffer parameter, 92 
PSH_MAXIMIZE flag, 237 
PSH_MODELESS flag, 208 
PSH_PROPSHEETPAGE flag, 209 
PSH_PROPTITLE flag, 208 
PSH_USEPSTARTPAGE flag, 209 
PS_INSIDEFRAME pen style, 74 
PSM_ADDPAGE message, 211 
PSM_REMOVEPAGE message, 211 
PSN_APPLY notification code, 213, 237 
PSN_KILLACTIVE notification code, 212-213 



PSN_QUERVCANCEL notification, 213 
PSN RESET notification, 213 
PSNRET_INVALID_NOCHANGEPAGE, 213 
PSNRET_NOERROR return field, 212-213 
PSN_SETACTIVE notification, 213 
pSort parameter, 391 
PSP_DLGINDIRECT flag, 210 
PSP_PREMATURE flag, 211-212 
PSP_USECALLBACK flag, 209, 211 
PSP_USEREFPARENT flag, 211 
PSP_USETITLE flag, 210 
pszCaption field, 208-209 
pszHTML field, 428 
pszlcon field, 209 
pszMenu parameter, 165 
pszTemplate/pResource union, 210 
pszTitle field, 210, 429 
ptDown field, 109 
PtlnRect function, 117 
publishing 

IR service, 472-473 
SDP record, 502 

PublishRecord routine, 534 
PulseEvent function, 288-289 
PUN_DIALOG flag, 407-408 
PUN_LED flag, 407 
PUN_REPEAT flag, 407 
PUN_SOUND flag, 407-408 
PUN_ VIBRATE flag, 407 
PurgeComm function, 564 
PURGE_RXABORT flag, 565 
PURGE_RXCLEAR flag, 564 
PURGE_TXABORT flag, 565 
PURGE_TXCLEAR flag, 564 
push buttons, 126 
putc-style functions, 14 
pvDevice parameter, 607 
pVertex parameter, 76 
PWI (Pocket Word Ink) files, 195 
pword.exe file, 273 
PWRMGR_REG_KEV, 547 
pwszDialogText field, 408 
pwszDialogTitle field, 408 
pwszPropName field, 388 
pwszSound field, 408 

Q 
QS_ALLINPUT flag, 292 
QS_INPUT flag, 292 
QS_KEV flag, 292 
QS_MOUSE flag, 292 
QS_MOUSEBUTTON flag, 292 
QS_MOUSEMOVE flag, 293 
QS_PAINT flag, 293 
QS_POSTMESSAGE flag, 293 
QS_SENDMESSAGE flag, 293 
QS_TIMER flag, 293 

quantum, 276 
QUERVESCSUPPORT escape codes, 552-553 
querying 

font characteristics, 50-52 
scheduled notifications, 425-426 
system memory, 243-245 

question mark (?) wild card, 342 

R 
radio button controls, 205 
radio buttons, 127, 200 
radio-frequency networking, 469 
RaiseException function, 327 
RAM (random access memory), 241-242 

files in, 347 
object store, 241-242 

RAM-based file system, 329 
RAM-based memory mapped files, 537-538 
raster fonts, 47 
raw sockets, 457 
RC extension, 138 
RC (resource) file, 198 
RCDATA resource type, 139 
rcltem RECT, 128 
Read entry point, 594-595 
ReadDone event, 320 
ReadDoneEvent named event, 319 
ReaderThread procedure, 317, 319-320 
ReadEvent named event, 319-320 

rectangles 673 

ReadFile function, 330, 333, 510, 556-557, 561-562, 
588-589, 594 

reading files, 333 
ReadlntervalTimeout function, 561-562 
ReadMsgQueue function, 306-307 
read-only data string resources, 263 
read-only segment, 263-264 
read-only static data, 262 
ReadProcessMemory function, 254, 275 
ReadTotalTimeoutConstant function, 562 
ReadTotalTimeoutMultiplier function, 562 
read-write flash file system, 242 
read/write segment, 263 
read/write static data, 262 
rebar control, 164, 184-185 
ReceiveThread routine, 465 
records, 381-382 

deleting, 401 
maximum number, 383 
properties, 381, 383 
reading, 396-398 
seeking or searching for, 393-395 
writing, 398 

rect parameter, 39-40 
RECT structure, 25-26, 39 
rectangle function, 72, 73-74 
rectangles, 73-77 



674 recv function 

recv function, 460, 506 
recvfrom function, 460 
redundant functions, 5 
RefreshlocalNetDrives routine, 454 
REG_BINARY format, 361 
RegCloseKey function, 361 
REG_CREATED_NEW_KEY value, 360 
RegCreateKeyEx function, 359-360 
RegDeleteKey function, 361 
RegDeleteValue function, 361 
REG_DWORD data format, 361 
REG_DWORD_BIG_ENDIAN data format, 361 
REG_DWORD_LITTLE_ENDIAN data format, 361 
RegEnumKeyEx function, 362 
RegEnumValue function, 362 
REG_EXPAND_SZ data type, 360 
Reg Flush Key function, 362 
REGINI structures, 585 
regions, 250 

base address, 251 
base address of original, 253 
blindly-validating, 36 
block and size, 251 
changing and querying access rights, 251-253 
current protection flags, 251 
current protection rights, 251-252 
decommited, 251 
pages, 250 
versus pages, 250 
protection attributes, 251 
protection flags, 251 
size, 251 
starting address of queried, 251 
type of memory, 251 
valid and invalid, 36-37 

RegionSize field, 251, 253 
register state, 260 
RegisterBtService routine, 534 
RegisterClass function, 19, 101 
RegisterClassEx function, 140 
RegisterDevice function, 506-508, 510, 585-586, 592 
registering window class, 31-32 
RegisterService function, 508-509, 620-621, 628 
registry, 357 

binary format, 360 
change notifications, 363 
closing keys, 361 
deleting keys and values, 361 
enumerating keys, 362 
fewer keys and more values, 358 
flushing, 362 
hierarchical, 357 
hierarchy of keys, 358 
[HKEY_LOCAL_MACHINE]CE Toolskey, 32 
key creation, 359-360 
keys, 357 
opening keys, 359-360 
organization, 357-358 

power states, 547 
reading values, 360 
setting value, 360 
storing data in, 357-358 
storing state information, 357 
updating, 641 
values, 357 
writing values, 360-361 

registry API, 359-379 
registry enumerator, 584 
REG_LINK data format, 361 
REG_MULTl_SZ data type, 360 
REG_NONE data format, 361 
REG_NOTIFY_CHANGE_LAST_SET flag, 363 
REG_NOTIFY_CHANGE_NAME flag, 363 
REG_OPENED_EXISTING_KEY value, 360 
RegOpenKeyEx function, 359-360 
REG_OPTION_VOLATILE value, 359 
RegQueryValueEx function, 360 
REG_RESOURCE_LIST data format, 361 
RegSetValueEx function, 360 
REG_SZ data type, 360 
RegView program, 363-379 
RegView.cpp file, 366-378 
RegView.h file, 364-366 
RegView.rc source file, 364 
ReleaseCapture function, 108 
ReleaseDC function, 38, 67 
ReleaseMutex function, 295-296, 318 
ReleasePowerRequirement function, 550 
ReleaseSemaphore function, 294 
remote drives, mapping, 434-436 
remote resources, disconnecting, 437-438 
RemoteAddr field, 495 
REMOTE_NAME_INFO structure, 443-444 
REMOTE_NAME_INFO_LEVEL flag, 443 
removable media, removing, 350 
RemoveDirectory function, 341 
report icon, 190 
reporting errors and exceptions, 321-322 
RequestDeviceNotifications function, 606 
RequestPowerNotifications function, 547-549 
reserved pages, 243 
Reserved parameter, 359 
ResetEvent function, 289 
resource compiler, 138 
resource leak, 52 
resource scripts 

comment lines(//), 138 
creation, 138-139 
defining accelerator keys, 140-141 
DOIView.rc script file, 142 
#include statement, 138 
menu template, 138-139 

RESOURCE_CONNECTED flag, 438 
RESOURCEDISPLAYTYPE_DOMAIN flag, 440 
RESOURCEDISPLAYTYPE_GENERIC flag, 440 
RESOURCEDISPLAYTYPE_SERVER flag, 440 



RESOURCEDISPLAYTYPE_SHARE flag, 440 
RESOURCE_GLOBALNET flag, 438, 439 
RESOURCE_REMEMBERED flag, 438 
resources, 137-138, 262 

accelerators, 140-141 
bitmaps, 141 
coordinated exclusive access to, 295 
creation, 138 
dialog templates, 198-201 
icons, 139-140 
ID value, 138-139 
loading from DLL string, 270 
protecting, 294 
querying, 442-444 
strings, 141-142 
types, 139 
UNC (Universal Naming Convention), 434 

RESOURCETYPE_DISK flag, 440 
RESOURCETYPE_PRINT flag, 440 
ResumeThread function, 279, 282 
RFCOMM channel, 504, 507 
RFCOMM_PORT_FLAGS_AUTHENTICATE flag, 508 
RFCOMM_PORT_FLAGS_ENCRYPT flag, 508 
RFCOMM_PORT_FLAGS_KEEP_DCD flag, 508 
RFCOMM_PORT_FLAGS_REMOTE_DCB flag, 508 
RGB color information, 65 
RGB macro, 71 
RGBQUAD array, 65 
RGBQUAD structure, 64 
RGBQUAD values, 63 
rgbReserved field, 26 
rgdwFlags field, 389 
rghNotifications parameter, 425 
rgProplD parameter, 396 
rgPropVal array specifies, 398 
rgSortSpecs field, 389 
rich edit control, 194-195 
rich ink control, 195 
right click, 3 
right-button clicks, 109 
RNRSERVICE_DELETE flag, 502 
ROM (read-only memory), 241, 242 

compressed files, 335 
files in, 347 
Flash memory, 241 
storing operations sytem and applications, 242 
XIP (execute-in-place) modules, 347 

ROM-based programs, 242 
root directory, 434 
ROOT_KEY key, 358 
ROP codes, 66-67 
round rectangles, 74-75 
RoundRect function, 72, 74-75 
RTF (Rich Text Format) files, 195 
RTS_CONTROL_DISABLE value, 560 
RTS_CONTROL_ENABLE value, 560 
RTS_CONTROL_HANDSHAKE value, 560 
RTS_CONTROL_TOGGLE value, 560 
run-time version checking, 543-544 

s 
samDesired parameter, 359-360 
Save As dialog box, 213 
SB_CTL value, 133 
SB_HORZ value, 133 
SB_LINExxx scroll code, 132 
SB_PAGEDOWN, 158 
SB_PAGEUP, 158 

SendEvent function 675 

SB_PAGExxx scroll code, 132 
SB_THUMBPOSITION scroll code, 131-133 
SB_THUMBTRACK scroll code, 131-133 
SB_ VERT value, 133 
schema, 382 
screen coordinates, 103 
screens, 3 

dimensions, 543-544 
displaying line of text, 35 
drawing to, 37 
landscape orientation, 3 
portrait orientation, 3 
scrolling range, 134 
switching between orientations, 118 
turning off, 551-553 

Scroll bar class, 126 
scroll bar control, 131-134 
scroll bar messages, 131-133 
scroll bars, 60, 131-134 
ScrollDC function, 100 
ScrollDlg.cpp file, 235-236 
SCROLLINFO structure, 133-134 
SDIO (Secure Digital 1/0) slot, 582 
SDKs (software development kits) 

embedded platforms, 5 
target, 10 

SDP records, 502-504 
SdpQueryUuid structure, 498 
SDP_SERVICE_ATTRIBUTE_REQUEST flag, 498 
SDP_SERVICE_SEARCH_ATTRIBUTE_REQUEST flag, 498 
SDP_SERVICE_SEARCH_REQUEST flag, 498 
searching 

discontinuing, 343 
list boxes, 129 

SearchThread routine, 534 
secondary threads, 276 
secure functions, 101 
secure string library, 101 
security and Windows CE, 271 
security rights, 253 
Seek entry point, 584, 595-596 
select function, 466 
SelectObject function, 50, 52, 60, 66 
semaphore objects, waiting on, 294 
semaphores, 293-296 
send function, 459, 506 
SendDlgltemMessage function, 125 
SenderThread procedure, 317 
SenderThread thread, 319 
SendEvent function, 319 



676 Sendfile function 

Send File function, 489 
SendMessage function, 125-126, 140, 163, 169 
sendto function, 460 
separate heaps, 247, 254, 256 

allocating memory, 257, 259 
committing memory, 259 
controlling type and location of memory, 258-259 
creation, 256-257 
destroying, 258, 263 
freeing memory, 257 
freezing memory, 259 
initial size, 257 
managing, 258-259 
manually creating and destroying, 263 
maximum size, 257 
querying size, 258 
resizing, 257-258 

serial communications, 555 
asynchronous serial 1/0, 557-558 
clearing errors, 565-566 
configuring serial port, 559-561 
controlling serial port, 564-565 
opening and closing serial port, 556 
preventing system from powering down, 566 
querying capabilities of serial driver, 563-564 
querying status, 565-566 
reading from and writing to serial port, 556-557 
setting port timeout values, 561-562 

serial devices, 555 
serial driver, 563-564, 589 
serial port drivers, 555 
serial ports 

configuring, 559-561 
controlling, 564-565 
controlling features, 589 
opening and closing, 556 
reading from and writing to, 556-557 
setting timeout values, 561-562 

servers and connecting sockets, 459 
ServerThread routine, 534 
service IDs, 498 
ServiceAddPort function, 627-628 
ServiceClosePort function, 628 
ServiceContext value, 619, 627 
ServiceEnumlnfo structure, 621-622 
serviceHandle parameter, 498 
SERVICE_INIT_STARTED flag, 622 
SERVICE_INIT_STOPPED flag, 622 
services, 618 

applications controlling, 620-622 
architecture, 618 
attributes associated with existing, 498-500 
automatically starting on reset, 624 
Bluetooth discovery, 497-501 
Bluetooth publishing, 501-503 
closing, 623 
closing ports being monitored by, 628 
commands used by Services Manager and 

applications, 623 

communicating custom commands to, 625 
communicating with, 621 
entry points, 618, 622-626 
initial state, 622 
IOCTL commands, 623-626 
life of, 619-620 
listing available commands, 630 
listing currently running, 621 
loading, 619 
loading DLL implementing, 620 
opening, 623 
querying state, 625 
registry entry, 619 
removing registry entries, 625 
rereading configuration data from registry, 624 
SDP (Service Discovery Protocol) data, 500-501 
setting debug zone bitmask, 625-626 
started state, 619-620 
starting, 624 
starting during system startup, 627 
stopped state, 619-620 
stopping, 624 
stream functions exported from, 618 
three-character prefix, 618 
unloading, 622 
unregistering, 502-503 

Services key, 619 
Services Manager, 618 

generating names of entry points to service, 620 
opening services, 623 

services.exe command-line interface, 630 
SERVICE_STATE_CONSOLE state, 625 
SERVICE_STATE_OFF state, 625 
SERVICE_STATE_ON state, 625 
SERVICE_STATE_STARTING_DOWN state, 625 
SERVICE_STATE_STARTING_UP state, 625 
SERVICE_STATE_UNINITIALIZED state, 625 
SERVICE_STATE_UNKNOWN state, 625 
SERVICE_STATE_UNLOADING state, 625 
ServiceUnbindPorts function, 628 
session, opening, 390 
SETBREAK function, 565 
SetBrushOrgEx function, 73 
SetCapture function, 108 
SetCommBreak function, 564 
SetCommMask function, 558 
SetCommState function, 559-561 
SetCommTimeouts function, 561-562 
SetCursor function, 102 
SetDevicePower function, 607 
SetDIBColorTable function, 65 
SETDTR value, 565 
SetEndOfFile function, 334 
SetEvent function, 288-289 
SetEventData function, 289 
SetFileAttributes function, 335 
SetFilePointer function, 333-334, 595 
SetFileTime function, 336-337 
SetFocus function, 86 



SetForegroundWindow function, 31, 301 
SETIR value, 565 
SETPOWERMANAGEMENT escape codes, 552-553 
SetPowerRequirement function, 550 
SETRTS value, 565 
SetScrolllnfo function, 133 
setsockopt function, 474, 492 
SetSystemPowerState function, 549-550 
SetTextAlign function, 41 
SetTextColor function, 40 
SetThreadPriority function, 281 
SetupComm function, 562 
SetWindowlong function, 122-124, 213 
SetWindowPos function, 121-122 
SETXOFF value, 565 
SETXON value, 565 
shapes 

brushes, 72-73, 83 
circles, 74 
ellipses, 74 
fill functions, 75-77 
filling, 72-73 
pens, 70-71 
polygons, 75 
rectangles, 73-74 
round rectangles, 74-75 

Shapes program, 77-83 
Shapes window, 83 
Shapes.cpp file, 78-82 
Shapes.h file, 77-78 
shared memory block, 318 
shared system heap, 247, 538 
ShareMode parameter, 593, 623 
SHCreateMenuBar function, 269 
shell and PID scheme, 403 
SHIDIF_DONEBUTTON flag, 205 
SHIDIF_FULLSCREENNOMENUBAR flag, 206 
SHIDIF_SIPDOWN flag, 205 
SHIDIF_SIZEDLG flag, 206 
SHIDIF_SIZEDLGFULLSCREEN flag, 206 
SHIDIM_FLAGS flag, 205 
Shift key, 93 

simulating, 92 
state, 101 
up/down state, 91 

shift strings, constructing, 100-101 
SHlnitDialog function, 205, 215 
SHINITDLGINFO structure, 205 
SHLoadDIBitmap function, 62, 140 
SHMENUBAR resource type, 139 
SHNF_CRITICAL flag, 428 
SHNF_DISPLAYON flag, 428 
SHNF_FORCEMESSAGE flag, 428 
SHNN_LINKSEL notification, 429 
SHNotificationAdd function, 427-429 
SHNOTIFICATIONDATA structure, 427-429, 430 
SHNotificationGetData function, 430 
SHNotificationRemove function, 430 
SHNotificationUpdate function, 430 

SHNP_ICONIC value, 428 
SHNP_INFORM value, 428 
SHNUM_DURATION flag, 430 
SHNUM_HTML flag, 430 
SHNUM_ICON flag, 430 
SHNUM_PRIORITY flag, 430 
SHNUM_TITLE flag, 430 
ShowContextMenu function, 158 
ShowWindow function, 8, 23, 122 
SHRecognizeGesture function, 109, 158 
SHRGINFO structure, 109 
SHRG_LONGDELAY flag, 109 
SHRG_NOTIFYPARENT flag, 109 
SHRG_RETURNCMD flag, 109 
shutdown function, 460 
SHx,3 
sibling windows, 120 
SIF_DISABLENOSCROLL flag, 134 
SIF_PAGE flag, 134 
SIF_POS flag, 134 
SIF_RANGE flag, 134 
SIF_TRACKPOS flag, 134 
SIG (special interest group), 490 
sin_family field, 458 
single objects, waiting, 290 
single-selection list boxes, 129 
SIP (soft keyboard), 205-206 
sleep function, 104, 283 
small icon, 190 
Smart Device project type, 9 
Smart Device Project Wizard, 10 
Smartphone projects, 32 
snBiggestPartCreatable field, 350 
snFreeSectors field, 350 
snNumSectors field, 350, 352 
snNumSectors parameter, 353 
Snooze button, 409 
SOCKADDR structure, 626-629 
sockaddr structure, 472 
SockAddr value, 626 
SOCKADDR_BTH structure, 458 
SOCKADDR_IDRA structure, 473 
SOCKADDR_IN structure, 458 
SOCKADDR_IRDA structure, 458 
sockets 

accepting connection, 458-459 
ASCII, 456 
binding to address, 458 
blocking versus nonblocking, 465-468 
Bluetooth, 457-458 
closing, 460-461 
connecting to server, 459 
connection-oriented connection, 455 
creation, 457 
datagram connection, 455 
listening for connection, 458 
monitoring ports, 627 
programming, 455-456 
in read set, 467-468 

sockets 677 



678 SOCK_STREAM socket 

sending and receiving data, 459-460 
stream connection, 455 
structures char fields, 456 
TCP/IP communication, 457 
Unicode, 456 
in write set, 468 

SOCK_STREAM socket, 470 
soft keyboards, 85 
Software\Microsoft key, 359 
Software\Microsoft\Pocket Word subkey, 359 
solid-color brushes, 72 
SO_LINGER option, 474 
SOL_IRLMP level, 474 
SOL_RILMP level, 474 
SOL_SOCKET level, 473-474 
sort indexes, 382, 388 
sorting databases, 389-390 
SORTORDERSPECEX structures, 389-391 
SORTORDERSPECEX_VERSION value, 389 
source code 

critical sections, 297-298 
Hungarian notation, 6-7 

SPACEPARITY constant, 561 
SPl_GETBATTERYIDLETIMEOUT value, 554 
SPl_GETEXTERNALIDLETIMEOUT value, 554 
SPl_GETPLATFORMTYPE constant, 543 
SPl_GETWAKEUPIDLETIMEOUT value, 554 
spin locks, 287 
SS_BITMAP style, 131 
SS_BLACKRECT style, 131 
SS_CENTER style, 130 
SS_CENTERIMAGE style, 131 
SS_ICON style, 131 
SS_LEFT style, 130 
SS_LEFTNOWORDWRAP style, 130 
SS_NOPREFIX style, 131 
SS_NOTIFY style, 131 
SS_RIGHT style, 130 
SS_WHITEFRAME style, 131 
stack, 260 

application space, 537 
applications, 260 
enlarging in low-memory condition, 264 
limiting allocation, 266 
maximum size, 260, 264, 279 
parameters pushed onto, 24 
size and main thread, 276 
threads, 260, 275 

STACK_SIZE_PARAM_IS_A_RESERVATION flag, 279 
standard C library, 9 
standard dialog boxes, 213-214 
standard file 1/0, 330-331 
standard push button, 168 
standard Windows entry point, 8 
Start Without Debugging (Ctrl+F5) keyboard shortcut, 

33 
started state, 619-620 
state, storing information about, 357-358 
State field, 251, 253 

StateFlags parameter, 549 
Static class, 126 
static controls, 130-131 
static data, 260-263 
static data area buffers, 263 
Static Library, 10 
status bar control, 193 
stEndTime field, 407 
STI LL_ACTIVE constant, 274, 280 
stock brushes, 72 
stock pens, 70-71 
StopBits field, 561 
StopDeviceNotifications function, 606 
stopped state, 619-620 
storage, 346 
storage devices, 349-353 
storage hardware, 348 
storage manager, 329, 346, 349 
storage media, 329 
storage volumes, 332, 348 
STORAGE_DEVICE_TYPE_ATA flag, 350 
STORAGE_DEVICE_TYPE_ATAPI flag, 350 
STORAGE_DEVICE_TYPE_CDROM flag, 350 
STORAGE_DEVICE_TYPE_CFCARD flag, 350 
STORAGE_DEVICE_TYPE_DOC flag, 350 
STORAGE_DEVICE_TYPE_DVD flag, 350 
STORAGE_DEVICE_TYPE_FLASH flag, 350 
STORAGE_DEVICE_TYPE_PCCARD flag, 350 
STORAGE_DEVICE_TYPE_PCllDE flag, 350 
STORAGE_DEVICE_TYPE_REMOVABLE_DRIVE flag, 350 
STORAGE_DEVICE_TYPE_REMOVABLE_MEDIA flag, 350 
STORAGE_DEVICE_TYPE_SRAM flag, 350 
STORAGE_DEVICE_TYPE_UNKNOWN flag, 350 
STORAGE_DEVICE_TYPE_USB flag, 350 
STOREINFO structure, 349-351 
STORE_INFORMATION structure, 346 
stream, 398-400 
stream connection, 455 
Stream data type, 382 
stream data type, 398-400 
stream device drivers, 581, 618 

entry points, 591-598 
referenced by three-character name, 582 
writing, 590-609 

stream interface, 581 
stream interface device drivers, 582 
stream socket, 455, 457 
StreamBytesTransferred parameter, 340 
STREAM_SEEK_CUR flag, 399 
STREAM_SEEK_END flag, 399 
STREAM_SEEK_SET flag, 399 
StreamSize parameter, 340 
StretchBit function, 66-67 
StretchBlt function, 541 
string resources, 158, 263 
strings 

compiled as Unicode, 13 
drawing-on-screen, 26 
length, 4, 142, 158 



null terminated, 39 
number of characters, 39, 158 
read-only pointer, 142 
removing terminating zeros, 142 
resources, 141-142 
Unicode, 39, 158 

STRINGTABLE resource type, 139 
structures, 7 
stStart field, 187 
stStartTime field, 407 
style flags, 21-22, 123-124 
stylus, 102-103 

currently touching screen, 92 
interaction, 109-118 
receiving mouse messages, 108 
simulating right mouse click, 109 
stopping mouse messages, 108 
tap-and-hold gesture, 109 

subclassing windows, 123-124 
subkeys, 359, 362 
submenu creation, 136 
super services, 618, 626 

application connecting to socket address monitored 
by, 629 

automatically starting, 626-627 
closed socket monitoring given socket address, 629 
completing initialization, 629 
IOCTL commands, 627, 628-630 
programmatically controlling, 627-628 
querying whether service will accept, 628 
starting, 624 

supportflags field, 508 
suspend count, 282 
suspended state, 544 
suspend-resume style power scheme, 405 
SuspendThread function, 282 
sVal data type, 382 
SW_HIDE state, 8 
switch statement, 27 
SwitchToFiber function, 284 
SWP_DRAWFRAME flag, 122 
SWP_FRAMECHANGED flag, 122 
SWP_HIDEWINDOW flag, 122 
SWP_NOACTIVATE flag, 122 
SWP_NOMOVE flag, 122 
SWP_NOSIZE flag, 122 
SWP_NOZORDER flag, 122 
SWP_SHOWWINDOW flag, 122 
SW_SHOW state, 8 
SW_SHOWNOACTIVATE state, 8 
synchronization 

critical sections, 297-298 
duplicating handles, 296 
events, 288-289 
interlocked variable access, 298-299 
Notification API, 287 
objects, 287-299 
processes, 301 

threads, 287 
waiting, 289-293 

TB_AUTOSIZE message 679 

synchronization objects, 278, 287 
creation, 318 
events, 293 
mutexes, 295-296 
namespaces, 287 
waiting on, 290 

synchronization primitives, 287-288 
SYS file format, 267 
system 

default free-memory, 265 
suspending and resuming, 596 

system buses, managing, 582 
System Control Panel applet, 242 
system event notifications, 411-412 
system IP address change, 629-630 
system memory, querying, 243-245 
system notifications, setting, 412-425 
system scheduler, 276-277 
SystemldleTimerReset function, 553-554 
SYSTEM_INFO structure, 244 
system-level threads priority levels, 276 
SystemParameterslnfo function, 543, 553-554 
SystemPowerState field, 548-549 
SYSTEM_POWER_STATUS_EX2 structure, 545-546 
SYSTEMTIME structure, 187, 336 
szAppName global string, 32 
szAppName Unicode string, 31 
szCmdline, 273 
szDbaseName field, 388-389 
szDescription field, 457 
szDeviceName parameter, 349-350 
szFileSys field, 352, 355 
szPartition field, 348 
szPartitionName field, 348, 352-353 
szPrefix field, 621 
szRegWritePath parameter, 628 
szStoreName field, 348, 350 
szSystemStatus field, 457 
szVolumeName field, 352 

T 
tab control, 193, 238 
TA_BASELINE alignment flag, 41 
TA_BOTTOM alignment flag, 41 
TA_ CENTER alignment flag, 41 
TA_LEFT alignment flag, 41 
TA_NOUPDATECP alignment flag, 41 
tap-and-hold, 158 
target device resources, 4 
target platform, 5 
target window, 86 
TA_RIGHT alignment flag, 41 
TA_TOP alignment flag, 41 
TA_UPDATECP alignment flag, 41 
TB_AUTOSIZE message, 172 



680 TBBUTTON structure 

TBBUTTON structure, 167-169 
TB_CHECKBUTTON message, 169 
TB_GETBUTTONINFO message, 168 
TB_GETRECT message, 171 
TB_ISBUTTONCHECKED message, 169 
TBN_DROPDOWN notification, 169-170, 184 
TB_SETBUTTONINFO message, 168 
TCHAR data type, 4, 158 
TCP/IP ports, monitoring, 626-627 
TCP/IP programming, 454 

binding socket to address, 458 
blocking versus nonblocking sockets, 465-468 
client side, 459-460 
closing socket, 460-461 
listening for connection, 458 
server side, 458-459 
socket programming, 455-456 

TCP/IP socket, 457-458 
TCS_BOTTOM style flag, 238 
_tcscat_s function, 100-101 
TCS_EX_REGISTERDROP extended style, 193 
TCS_HOTTRACK style, 193 
tdCBStdBtns array, 184 
Telnet servers, 6 
templates and dialog boxes, 197 
temporary files, 342 
temporary variables, storing, 260 
TerminateProcess function, 274 
Termlnstance, 27 
testl routine, 322 
text 

aligning, 41 
background color, 40, 46 
background mode, 42 
ClearType technology, 49 
clipping rectangle, 40 
count, 40 
displaying, 39 
displaying on-screen, 35 
drawing mode, 42 
fonts, 47-53 
foreground and background color, 40-41 
formatting rectangle, 39 
intended for user interaction, 130-131 
multiple lines with line breaks, 39 
opaque drawing mode, 83 
reformatting, 158 
title bar, 13 
transparent drawing mode, 83 
windows, 12-13 
writing, 39-61 
x and y starting coordinates, 39-40 

text entry cursor, 36 
TEXT macro, 13, 21, 39 
TextDemo program, 42-46 
TextDemo.cpp file, 43-46 
TextDemo.h file, 42-43 
TEXTMETRIC structure, 50-51, 60 
textmetric structure, 53 

thread local storage, 285-287 
THREAD_PRIORITY_ABOVE_IDLE priority level, 277 
THREAD_PRIORITY_ABOVE_NORMAL priority level, 277, 

281 
THREAD_PRIORITY_BELOW_NORMAL priority level, 277 
THREAD_PRIORITY_HIGHEST priority level, 277 
THREAD_PRIORITY_IDLE priority level, 277, 281 
THREAD_PRIORITY_LOWEST priority level, 277 
THREAD_PRIORITY_NORMAL priority level, 277, 281-282 
THREAD_PRIORITY_TIME_CRITICAL priority level, 277, 

281 
ThreadProc routine, 285-286 
threads, 267, 275 

allocating memory, 276 
becoming fibers, 283-284 
blocked, 277-278 
creation, 278-280 
default stack size, 283-284 
events, 288 
freeing, 289 
gaining ownership on mutex, 295 
handle to, 279 
higher-priority, 277 
input focus and, 86 
limit to, 276 
lower-priority, 277 
main, 276 
monitoring, 290 
multiple, 267, 278, 298 
preempting, 298-299 
preventing simultaneous access by, 256 
priority, 276-277, 281-282 
priority inversion deadlock, 277 
processor context, 275 
quantum, 276 
querying exit code, 280 
querying time quantum, 282 
responsible for handling message loop, 290 
resuming, 282-283 
scheduling in preemptive manner, 276 
secondary, 276 
separate instances of data, 285-287 
setting and querying priority, 281-282 
setting time quantum, 282 
sharing address space of process, 276 
sleeping, 283 
stacks, 260, 275 
start of routine, 279 
suspend count, 282 
suspending,275,279,282 
synchronization, 287 
terminating, 280 
thread local storage, 285-287 
TLS array initialized to 0, 287 
TLS index value, 286-287 
unblocking, 289 
user mode, 536 
waiting, 289-291 
waiting on multiple events, 291-292 



waiting on semaphore objects, 294 
waiting on serial driver events, 558 
waiting on synchronization object, 290 

thread-unique data structures, 279 
throw statement, 321 
TickSrv service, 630-641 
TickSrv.cpp file, 631-641 
TickSrv.h file, 631-632 
TicTacl program, 109-118 
TicTacl.cpp file, 111 
TicTacl.h file, 110-111 
time, 187-190 
time quantum, 282 
time slice, 276-277 
timeout structure, 467 
timer event notifications, 410-411 
timer notifications, 425 

named event, 424 
setting, 412-425 

TIMEVAL structure, 466-467 
title bar text, 13 
TLS index value, 286-287 
TlsAlloc function, 286 
TlsFree function, 287 
TlsGetValue function, 286-287 
TLS_MINIMUM_AVAILABLE system constant, 286 
TlsSetValue function, 286-287 
tmain entry point, 8 
tmExternalleading field, 51, 60 
tmHeight field, 51, 60 
toolbar control, 193 
toolbars, 166, 193 
ToolHelp debugging functions, 300 
tooltips, 193 
top-level windows, 21-22, 85, 119 

enumerating, 300 
handling, 12 
WM_HIBERNATE message, 264-265 
WS_OVERLAPPED style, 264 
WS_VISJBLE style, 264 

Toshiba, 490 
TotalBytesTransferred parameter, 340 
TotalFileSize parameter, 340 
touch panel, 103, 581 
touch panel-based systems, 23 
touch screens, 3 

soft keyboards, 85 
stylus, 102 

TPMPARAMS structure, 137, 171 
TPM_RETURNCMD flag, 137 
TPM_VERTICAL flag, 171 
trackbar, 193 
trackbar control, 193, 215 
TrackPopupMenuEx function, 158, 171 
transactions, 382, 400 
TranslateAccelerator function, 141 
TranslateMessage function, 23, 141, 207 
TransmitCommChar function, 557, 566 
transparent color, 67 

user mode and loading device drivers 681 

Transparent Image function, 67 
transparent mode, 46 
TransparentBlt function, 67 
tree view control, 194 
TRIVERTEX structures, 76 
TrueType fonts, 47-48 
TRUNCATE_EXJSTING flag, 331, 384 
__ try, __ except blocks 

nesting, 326 
pBuffer point, 594-595 

__ try, __ finally block, 327 
try block, 323, 327 
__ try keyword, 324 
try statement, 321 
TryEnterCriticaJSection function, 298 
__ try, __ except block, 324-326 
turning off screen, 551-553 
TVS_CHECKBOXES style, 194 
TVS_SINGLESEL style, 194 
TWOSTOPBITS constant, 561 
type field, 251, 498 
type parameter, 457 

u 
uBytes parameter, 255 
uEnable parameter, 136 
uFirstChar parameter, 51 
uFlag parameter, 255 
uFlags parameter, 136, 137, 255 
ulD resource ID, 142 
ulDNEWltem parameter, 136 
uiVal data type, 382 
ULARGE_INTEGER structures, 346 
ulastChar parameter, 51 
ulOptions parameter, 359 
ul_reason_for_call parameter, 270 
ulZoneMask field, 610 
uMapType parameter, 92 
UNC (Universal Naming Convention), 330, 434 
Unicode, 4 

character keys, 90 
command-line string, 8 
converting multibyte characters, 456 
converting to multibyte strings, 456 
sockets, 456 
strings, 39, 158 
text of command line, 8 

UNIVERSAL NAME INFO structure, 443 
UNIVERSAL_'NAME_INFO_LEVEL flag, 443 
Unix programs, 14 
UnmapViewOfFile function, 303, 339 
unsupported common controls, 194-195 
UpdateWindow function, 23 
up-down control, 193 
User component, 36 
user configuration dialog box, 408 
user interface discrepancies, 543 
user mode and loading device drivers, 581, 586-587 



682 User Mode Device Manager 

User Mode Device Manager, 581, 590 
user mode driver manager, 586 
user mode drivers, 581, 599 
user mode threads, 536 
user notifications, 405, 424 

acknowledging, 409-410 
clearing, 409 
configuring, 408 
methods, 407 
setting, 406-108, 412-425 
starting time and ending time, 407 

UserProcGroup key, 586 
user-specific configuration data, 357 
user-specific information, 358 
uStartlndex parameter, 65 
usVal data type, 382 
UTC (universal time format), 336 
UTF8, 4 
UTF16,4 
UTF32, 4 
uType field, 13, 392 
uuidService field, 508 
uUnique parameter, 342 

v 
val field, 394 
valid regions, 36-37 
ValidateRect function, 36 
values 

deleting, 361 
enumerating, 362 
registry, 357 

variables, 298-299 
base-type definitions, 24 
global, 31 
prefixes, 6-7 

VER_PLATFORM_WIN32_CE constant, 543 
VERSIONINFO resource type, 139 
vertical progress bars, 193 
vertical scroll bars, 131, 158 
VF_RCONTROL virtual key value, 92 
video files and .avi (Audio/Video Interleave) format, 194 
VIDEO_POWER_MANAGEMENT structure, 553 
VIRTKEY ID value, 141 
virtual COM port driver, registering, 508-509 
virtual COM ports and Bluetooth communication, 

506-510 
virtual key codes, 92 
virtual key values, 86-90 
virtual list view, 191-192 
virtual memory, 242-243, 248 

allocating large blocks, 249 
areas of, 301 
boundaries of regions, 244 
directly allocating, 263 
freeing, 250-251 
limiting allocation, 266 

memory allocation, 248-249 
pointer to region, 251 
regions, 250 
reserved, 254 
reserving, 248, 250 

virtual memory API, 248 
virtual RAM disks, 241 
virtual RAM limitations, 4 
virtual serial ports, 492 
virtual space, 246-247, 250 
VirtualAlloc function, 248-249, 251 
VirtualAllocEx function, 253-254 
VirtualFree function, 248, 250-251, 253 
VirtualFreeEx function, 253 
VirtualProtect function, 251-253 
VirtualProtectEx functions, 253 
VirtualQuery function, 251-253 
VirtualQueryEx functions, 253 
VirtualReSize function, 248 
Virtualxxx functions, 247 
VirtualxxxEx API, 253-254 
Visual C++, 9 
Visual Studio 2005 

device emulator, 10 
dialog boxes, 201 

Visual Studio 2005 wizard, 8 
VKey parameter, 92 
VK_LBUTTON virtual key value, 92 
VK_LSHIFT virtual key value, 92 
VK_MBUTTON virtual key value, 92 
VK_MENU virtual key value, 91 
VK_RBUTTON virtual key value, 92 
VK_XBUTTONl virtual key value, 92 
VK_XBUTTON2 virtual key value, 92 
VoIP (Voice over IP) stack, 6 
VolumelnfolevelStandard level, 347 
volumes 

accessing with file API, 347-348 
attribute flags, 351 
creation, 383-385 
databases, 381 
describing, 348 
folder containing, 352 
formatting, 353-355 
information about, 348 
mounting, 383 
name, 384 
number of bytes in cluster, 354 
number of bytes used to cache data, 385 
number of root directory entries, 354 
opening existing, 383-385 
passwords, 385 
unmounting, 383 

w 
WAIT_ABANDONED value, 290, 292 
waitable timers, 287 



WaitAll flag, 320 
WaitCommEvent function, 557-558 
WAIT_FAILED value, 290, 292 
WaitForMultipleObjects function, 289-292, 294, 320 
WaitForSingleObject function, 289-290, 294, 305, 318, 

363,548 
WAIT_OBJECT_O value, 290, 292 
WAIT_TIMEOUT value, 290, 292 
WakeFromDx field, 608 
WAVAudio wave driver, 582 
Wave driver, 583 
WaveDev key, 583 
WC_CAPEDIT class, 192 
wcProvChar field, 564 
wcscpy function, 9 
wDay field, 187 
Web servers, 6 
wFlags field, 394, 398 
WHEEL_DELTA constant, 102, 159 
WHITE_BRUSH stock object, 20 
WHITE_PEN parameter, 70 
WideCharToMultiByte function, 456 
Win32 API, 35, 299 
Win32 exception handling, 324-327 
Win32 files executable code, 267 
Win32 functions, 271 
Win32 Smart Device Project, 9 
Win32 subset, 5-6 
WIN32_FIND_DATA structure, 342-344 
WIN32_PLATFORM_PSPC constant, 31-32, 541-542 
WIN32_PLATFORM_WFSP constant, 31-32 
WIN32_PLATFORM_WFSP define, 541 
_WIN32-WCE preprocessor definition, 541-542 
WINBASE.H file, 297, 326 
Winbase.h file, 560 
window class name, 121 
window classes, 15 

class style, 101 
controls, 201 
global, 19 
instances, 15 
name, 21 
predefined,15, 119, 124 
registering, 15, 18-20, 31-32 

window controls, 123, 126 
window handle, 16, 24 
window management, 122-124 
window management functions, 120-124 
window procedures, 15, 24-27, 123 

address of, 19 
breaking into individual procedures, 27 
calling, 16 
dialog boxes, 198 
passing data to, 23 
passing message-specific data to, 24 
redrawing background of window, 26 
as simple table lookup function, 32-33 
special case, 202 
window handle, 24 

window structure, 122-124 
window text, 21 
Windows 

font engine, 47 
GDI (Graphics Device Interface), 36 
kernel, 36 
monitoring all sources of input, 15 
networking support, 433-454 
standard entry point, 8 
User component, 36 

windows, 14-15, 119 
3D look, 21 
active, 85 
background, 20 
basic parameters, 14 
behavior, 15, 19-20 
bringing to foreground, 31 
captured stylus input, 108 
changing default actions and look, 123-124 
characteristics, 15 
child windows, 119 
Close box, 22 
common characteristics, 15 
controls, 124-135 
creation, 12, 18, 20-23 
default icon handle, 20 
default value settings, 22 
defining specific instance, 24 
destroying, 26-27 
determining size, 25 
enumerating, 120 
finding, 121 
finding parent, 120 
forcing repaint, 19, 37 
gaining focus, 86 
handle, 23, 120 
help button on caption, 21 
hiding, 122, 264 
hierarchy, 14 
horizontal scroll bar, 22 
icons, 140 
initial position, 22 
initial styles, 21-22 
input focus, 85-86, 102 
iterating through, 120 
keyboard focus, 22 
losing focus, 86 
menus, 20 
message box, 14 
modifying state, 23 
moving, 121-122 
nonclient area, 25 
not accepting input, 22 
not activated when clicked, 21 
notifications and requests sent to, 15 
OK button, 14, 21 
owner-draw buttons, 127-128 
owner/owned relationship, 119 
owning process, 20 

windows 683 



684 Windows 2000 

painting, 25-26 
parent/child relationship, 119 
parent's device context usage, 19 
position, 14, 122 
positioning above password screen, 21 
preventing from moving, 21 
preventing screen tap sound, 21 
process ID for process that created, 275 
processing messages, 18 
querying children, owner, and siblings, 120 
raised edge, 21 
receiving mouse messages if stylus moves off, 108 
relationships, 119 
repainting, 26 
scroll bars, 131 
sending series of keys to, 92 
sending WM_PAINT message, 36-37 
showing, 122 
size, 22, 122 
sizing border, 25 
standard border, 22 
stop receiving mouse messages, 108 
subclassing, 123-124 
sunken edge, 21 
text, 12-13 
thick border, 22 
thin border, 22 
title bar, 22, 25 
title bar text, 13 
title text, 121 
top-level, 21, 85, 119 
topmost, 21 
typing and editing text, 128-129 
updating, 26 
valid and invalid regions, 26, 36-37 
vertical scroll bar, 22 
visibility, 14 
visible to user at top of z-order, 22 
window class name, 121 
z-order, 85, 120-121 

Windows 2000, 4 
Windows applications, 10 

device contexts, 37 
message loop, 23-24 
not asking for input from operating system, 14 

Windows CE 
Bluetooth API, 491 
build environment, 8 
build running on PC, 10 
classic Windows skin, 166 
configurations, 5 
console driver, 11 
coordinate transformations, 35 
CPU families, 3 
current directories, 271 
differences in, 3-6 
differing from desktop versions, 8 
drawing features, 35-36 
edit control, 5 

file system API, 329-346 
flags, 13 
FTP servers, 6 
functions, 35 
GWE (Graphics Windowing and Event Subsystem), 36 
kernel redesign, 581 
keyboard, 3 
memory architecture, 535-539 
menus, 20 
naming conventions, 287 
native database functionality, 381 
new controls, 4-5 
non-client area messages, 36 
not supporting different mapping modes, 35 
not using drive letters, 329 
platforms have different sets of supported APls, 35 
platform-specific defines, 541-542 
power management, 278 
predefined brushes, 20 
predefined icons, 20 
raster fonts, 47-48 
redundant functions, 5 
right click, 3 
screens, 3 
security, 271 
standard C library, 9 
suspend-resume style power scheme, 405 
TCHAR data type, 4 
Telnet servers, 6 
TrueType fonts, 47-48 
UTF16, 4 
Web servers, 6 
XP skin, 166 

Windows CE applications 
compile-time versioning, 541-542 
constants, 7 
cross-platform, 539-544 
explicit linking, 542-543 
Hellol program, 7-9 
include files, 7 
programming similarities with Windows applications, 

6-7 
run-time version checking, 543-544 
structures, 7 
Unicode, 4 

Windows CE devices 
fewer resources, 4 
hard drives, 4 
screens switching between orientations, 118 
standard fonts, 52 
suspended state, 544 
touch screen, 3 
truly turn off, 544 

Windows CE emulator, 11 
Windows CE Platform Builder, 597 
Windows CE programs, 4-5 
Windows Control library, 124 
Windows controls, 4-5 
Windows Driver Development Kit, 597 



Windows key, 91 
Windows Mobile applications, 185 
Windows Mobile Classic SDK, 541 
Windows Mobile devices, 3 

adding console support, 11 
FindWindow function, 300 
low-power waiting state, 278 
text shown on navigation bar, 21 

Windows Mobile Professional (Pocket PC) SDK, 541 
Windows Mobile specific code, 31-32 
Windows Mobile Standard (Smartphone) SDK, 541 
Windows Mobile systems 

Dig Demo menu bar, 237 
rich ink control, 195 

Windows Mobile-based devices, 5 
Windows Networking, 433 
Windows programming, Petzold method of, 27 
Windows programs, 14 
Windows Studio Windows CE emulator, 11 
Windows Vista, 4 
Windows XP, 4 
Windows-based applications, 14-17 
WinMain procedure, 27, 31 
WinMain style entry point, 8 
Winnt.h file, 244 
Winsock, 454-455 

Bluetooth communication, 504-506 
initializing, 456-457 

Winsock 1.1, 455 
Winsock 2, 455 
Winsock API, 491 
WINSOCK.H file, 467 
wKeyFlags field, 389 
wlenData field, 394 
WM_CAPTURECHANGED message, 108 
WM_CHAR message, 86, 90, 93 
WM_CLOSE message, 33, 274 
WM_COMAAREITEM message, 129 
WM_COMMAND message, 124-126, 131, 137, 139, 162-

163, 168-172,203,205,214,236-23~319,429 
WM_COPYDATA message, 301 
WM_CREATE message, 15, 23, 59, 203 
WM_CTLCOLORBUTTON message, 135 
WM_CTLCOLORSTATIC message, 135 
WM_CTLCOLORxxx messages, 135 
WM_DBNOTIFICATION message, 392-393 
WM_DEADCHAR message, 90-91 
WM_DELETEITEM message, 129 
WM_DESTROY message, 24, 26-27 
WM_DRAWITEM message, 127 
WM_ENTERIDLE message, 202 
WM_ERASEBACKGROUND message, 36 
WM_ERASEBKGND message, 20 
WM_GETTEXT message, 129 
WM_HELP message, 172, 200 
WM_HIBERNATE message, 264-266 
WM_HSCROLL message, 131, 134, 237 
WM_INITDIALOG message, 203, 205, 212 
WM_KEYDOWN message, 86, 90, 93 

wPacketVersion field 685 

WM_KEYUP message, 86, 90, 93 
WM_KILLFOCUS message, 86 
WM_LBUTTONDBLCLK message, 101-102 
WM_LBUTTONDOWN handler, 158 
WM_LBUTTONDOWN message, 101-104, 109, 123 
WM_LBUTTONUP message, 101-102, 117 
WM_MBUTTONDOWN message, 101 
WM_MBUTTONUP message, 101 
WM_MEASUREITEM message, 129 
WM_MOUSEMOVE message, 101-104, 108 
WM_MOUSEWHEEL message, 102, 159 
WM_MOVE message, 15-16 
WM_NCxxx messages, 25 
WM_NOTIFY message, 109, 162-163, 169, 187, 212-214, 

236-23~ 379,428-429 
wMonth field, 187 
WM_OWNERDRAW message, 129 
WM_PAINT handler, 158 
WM_PAINT message, 23-26, 33, 37, 59, 93, 100, 203 
WM_QUIT message, 23-24 
WM_RBUTTONDOWN message, 101, 158 
WM_RBUTTONUP message, 101 
WM_SETFOCUS message, 86 
WM_SETTEXT message, 129 
WM_SETTINGCHANGE message, 188 
wMsg parameter, 24 
WM_SIZE message, 117-118, 172 
WM_STYLECHANGED message, 123 
WM_SYSCHAR message, 86, 90 
WM_SYSKEYDOWN message, 86 
WM_SYSKEYUP message, 86 
WM_VSCROLL message, 131, 134, 158, 237 
WM_xSCROLL message, 134 
WN DC LASS structure, 19-20, 122 
WNet AP! functions, 433 
WNetAddConnection2 function, 435 
WNetAddConnection3 function, 433-435 
WNetCancelConnection2 function, 437 
WNetCloseEnum function, 440 
WNetConnectionDialogl function, 436, 454 
WNetDisconnectDialog function, 437, 454 
WNetDisconnectDialogl function, 437-438 
WNetEnumResource function, 439-440 
WNetGetConnection function, 442 
WNetGetlastError function, 435 
WNetGetUniversalName function, 443 
WNetGetUser function, 444 
WNetOpenEnum function, 438-439 
wNumProps field, 389 
wNumReaders field, 307 
wNumRecords field, 389 
wNumSortOrder parameter, 388 
wNumWriters field, 307 
words 

automatically capitalizing first letter, 5 
capitalizing first letter, 192 

WorkerBee routine, 285-286 
wPacketlength field, 563 
wPacketVersion field, 563 



686 wParam parameter 

wParam parameter, 24, 86, 90, 93, 101-102, 125, 127, 
131, 137 

wProcessorArchitecture field, 244 
wProcessorlevel field, 244 
wProcessorRevision field, 244 
WrapString function, 158 
Write entry point, 584, 595 
WriteFile function, 330, 333, 510, 557, 562, 580, 588-589, 

595, 621 
WriteMsgQueue function, 306 
WriteOkay mutex, 319 
WriteProcessMemory function, 254, 275 
WriteTotalTimeoutMultiplier function, 562 
writing files, 333 
writing text, 39-61 
WSAAsync function, 465 
WSACleanup function, 457 
WSAData structure, 456-457 
WSAEWOULDBLOCK error code, 465 
WSAGetlastError function, 457, 459, 467 
WSALookupServiceBegin function, 492-494, 497 
WSALookupServiceEnd function, 493, 496-497 
WSALookupServiceNext function, 492, 494-495, 497 
WSAQUERYSET structure, 493-495, 498, 501 
WSASetService function, 501-503 
WSAStartup function, 456-457 
WS_BORDER style flag, 22 
WS_CAPTION style flag, 22, 123, 199-200 
WS_CHILD style flag, 22, 119, 171 
WS_CLJPCHJLDREN style flag, 22 
WS_CLIPSIBLINGS style flag, 22 
WS_DISABLED style flag, 22 
WS_DLGFRAME style flag, 22 
WS_EX_ABOVESTARTUP extended style flag, 21 
WS_EX_CAPTIONOKBTN flag, 199 
WS EX CAPTIONOKBUTTON extended style flag, 21 
WS-EX-CLIENTEDGE extended style flag, 21 
WS-EX-CONTEXTHELP extended style, 200 
WS=EX=CONTEXTHELP extended style flag, 21 
WS_EX_INK extended style flag, 21 
WS_EX_NOANIMATJON extended style flag, 21 
WS EX NODRAG extended style flag, 21 
WS-EX-OVERLAPPEDWINDOW extended style flag, 21 
WS=EX=STATICEDGE extended style flag, 21 
WS EX TOPMOST extended style flag, 21 
WS=EX=WINDOWEDGE extended style flag, 21 
WS_GROUP style, 200 
WS_HSCROLL style flag, 22, 134 
WS_OVERLAPPED style flag, 22, 264 

WS_POPUP style flag, 22, 199 
WS_SJZEBOX style flag, 22 
WS_SYSMENU style flag, 22 
WS_TABSTOP style flag, 22, 200 
WS_THICKFRAME style flag, 22 
WS_VISIBLE style flag, 22, 171, 264 
WS_VSCROLL style flag, 22, 134 
wszPassword field, 385 
wVersion field, 385, 387-389 
wYear field, 187 
WYSIWYG (what you see is what you get), 47 

x 
X parameter, 122 
x86,3 
XIP (Execute in Place), 242 
XIP (execuite-in-place) modules, 347 
XoffChar field, 561 
Xofflim field, 560-561 
XonChar field, 561 
Xonlim field, 560-561 
XTalk program, 308-320 
XTalk.cpp file, 311-317 
XTalk.rc script file, 309-311 
xxx_Close entry point, 594 
xxx_Close function, 623 
xxx_Deinit entry point, 593 
xxx_Deinit function, 622 
xxx_lnit function, 592, 622 
xxx_IOControl entry point, 596-598 
xxx_JOControl function, 623 
xxx_Open entry point, 593, 623 
xxx_PowerDown entry point, 596 
xxx_PowerUp entry point, 596 
xxx_PreClose entry point, 593-594 
xxx_PreDeinit entry point, 592 
xxx_Read entry point, 594-595 
xxx_Seek entry point, 595-596 
xxx_Write entry point, 595 

y 
Y parameter, 122 

z 
zero-terminated string, 6 



Douglas Boling 

Douglas Boling has been working with small computers 

since hanging out after school at the Byte Shop in Knoxville, 

Tennessee, in the mid-1970s. After graduating from single

board computers to Apples to IBM PCs, he has now returned 

to his roots in embedded systems. He conceived the idea of 

Vadem Clio and worked on its core design team. Doug teach

es classes on Microsoft Windows CE application development 
and OAL and driver development and has taught many of the 

leading companies in the Windows CE market. His consulting 

service assists companies developing Windows CE products. 

Both his teaching and consulting are done through his com
pany, Boling Consulting (www.bolingconsulting.com). Doug has degrees in electrical engi

neering from the University of Tennessee and the Georgia Institute of Technology. When not 

sitting in front of a computer monitor or speaking, Doug likes to play with his children, go 

out on dates with his wife, and drive his convertible on a sunny day. 



Windows® CE Developers... l!l Iii CJ 

You've read the book, 
now get trained by the guy who wrote it! 

Doug Boling has been consulting and teaching Windows CE to engineers 
for close to 10 years. He's trained engineers at many leading 
companies including: 

•Microsoft 
•Symbol 
•Motorola 
• and many, many more! 

Course titles include: 

• Windows CE Application Development 
• OAL and Driver Development 
• .NET Compact Framework application development 

Each course can be customized for the needs of the students by 
combining topics from multiple courses into one, or adding new 
topics specific to your company needs. 

Email training@bolingconsulting.com or check out the web site at 
www.bolingconsulting.com to start on the road to training that 
will quickly bring your engineers up to speed and shorten your 
development schedule. 



hat do you think 
this book? 

We want to hear 
from you! 
Do you have a few minutes to participate in a brief online survey? 

Microsoft is interested in hearing your feedback so we can continually improve our books 
and learning resources for you. 

To participate in our survey, please visit: 

www.microsoft.com/learning/booksurvey/ 

... and enter this book's ISBN-10 number (appears above barcode on back cover*). 
As a thank-you to survey participants in the United States and Canada, each month we'll 
randomly select five respondents to win one of five $100 gift certificates from a leading 
online merchant. At the conclusion of the survey, you can enter the drawing by providing 
your e-mail address, which will be used for prize notification only. 

Thanks in advance for your input. Your opinion counts! 

*Where to find the ISBN-10 on back cover 

~~~~~ 

Microsoft®
· Press

0 000000 000000

Example only. Each book has unique ISBN.

No purchase necessary. Void where prohibited. Open only to residents of the 50 United States (includes District of
Columbia) and Canada (void in Quebec). For official rules and entry dates see:

More Great Developer Resources from Microsoft Press

Developer Step by Step
• Hands-on tutorial covering

fundamental techniques and
features

• PracticeJiles on CD

• Prepares and informs new-to-topic
programmers

Developer Reference
• fx13el't-c-0verage of core topics

•Extensive; pragmatic coding
examples

• Builds professional-level proficiency
with a Microsoft technology

Focused Topics
• Deep coverage of advanced

techniques and capabilities

• Extensive, adaptable coding
examples

• Promotes full mastery of a
Microsoft technology

See even more titles
on our Web ·site!

I
Micr'osofto
Visual Basie" 2005
Step by Step
Michael
Halvorson
978-0-735~-2131-2

Programming
Microsoft

· Visual lla$t 2005:
The· Language
Francesco Salena
978-0-7356-2183-1

I
CLR via CIJ,
Second Edition
Jeffrey Richter
978-0-7356'2163-3

•• Micr0soft
Visual Cir 2005
Step by Step
John Sharp
978-0-7356-2129-9

··--. _:

. '

• • •• •• • • •

Microsoft
ADO.NET2.0
Step by Step
Rebecca M. Riordan
978-0-7356-2164-0

Programming l'Wgramming
MicroSoft Microsoft

· Visuar<;1r200s: - - -· Ailo.111£T·2:0 ·
The Language Cole Reference
Donis Marshah David Sceppa
978-0-73S6-2181-7 978-0-7356-2206-7

Debugging
Microsoft .NET 2.0
Applications
John Robbins
978-0-7356-2202-9

• .

Programming
Microsoft
ADO.NET2.0
Applicati9ns
Advanced Topics
Glenn Johnson
978-0-7356-2141-1

Microsoft
ASP.NET 2.0
Step by Step
George Shepherd
978-0-7356-2201-2

Programming·
Microsoft
ASP.NET 2.0
Core Reference
Dino Esposito
978-0-7356-2176-3

Programming·
Microsoft
ASP.NET2.0
Applications
Advanaid Topics
Dino Esposito
978-0·7356-2177-0

Explore our full line of learning resources at: microsoft.com/mspress and microsoft.com/learning

Your authoritative guide to developing applications
for embedded and mobile devices.

Get the popular, practical reference to developing small footprint

applications-now updated for the Windows Embedded CE 6.0 kernel.

Written by an authority on embedded application development, this

book focuses in on core operating system concepts and the Win32® API.

It delivers extensive code samples and sample projects-helping you .

build proficiency creating innovative applications for a new generation

of devices.

Discover how to:

> Create complex applications designed for the unique requirements
of embedded devices

> Manage virtual memory, heaps, and the stack to minimize your
memory footprint

> Create multithreaded processes and handle events

> Use the Storage Manager to manage disparate file systems and
volumes

> Store simple groups of data with the database API

> Read and write registry data, and enumerate keys and values

> Schedule user, timer event, system event, and bubble notifications

> Connect to wired and wireless networks, PCs, and other devices

"' C1I
C1I

"' 0

~ x
ci
z
t
&.

Companion Web site includes:
•Code samples in Microsoft• Visual C++•
• Files for sample projects

For system requirements, see the Introduction.

ISBN-13: 978-0-7356-2417-7

I
9 780735 624177 Programming/Windows

90000 U.S.A. $69.99
[Recommended]

• Hands-on tutorial covering fundamental
techniques and features

• Practice files on CD

• Prepares and informs new-to-topic programmers

Developer Reference

