\ L
\A_{'z‘aia
L
-

a

w

"
'

ONININVYSOO0YUd

ddualajay 4adojanag
09 30 d3dd3idiNg SMOANIM

v

Boling

1JOSOIIIN

Fourth Edition

A

veloper Reference

iy

£ 0
; Dé"
4"- e

3 3 J
SR »‘#
S S,

Douglas Boling

Additional Resources for Developers from Microsoft Press

=% \Visual Basic 2005

Microsoft Visual Basic® 2005
Express Edition:

Build a Program Now!
Patrice Pelland
978-0-7356-2213-5

Microsoft Visual Basic 2005
Step by Step

Michael Halvorson
978-0-7356-2131-2

Programming Microsoft
Visual Basic 2005:

The Language
Francesco Balena
978-0-7356-2183-1

=» Visual C# 2005

Microsoft Visual C#* 2005
Express Edition:

Build a Program Now!
Patrice Pelland
978-0-7356-2229-6

Microsoft Visual C# 2005
Step by Step

John Sharp
978-0-7356-2129-9

Programming Microsoft
Visual C# 2005:

The Language

Donis Marshall
978-0-7356-2181-7

Programming Microsoft
Visual C# 2005:

The Base Class Library
Francesco Balena
978-0-7356-2308-8

CLR via C#,

Second Edition
Jeffrey Richter
978-0-7356-2163-3

Microsoft .NET
Framework 2.0 Poster Pack
Jeffrey Richter
978-0-7356-2317-0

=» Web Development

Microsoft Visual Web
Developer™ 2005
Express Edition:

Build a Web Site Now!
Jim Buyens
978-0-7356-2212-8

Microsoft ASPNET 2.0
Step by Step

George Shepherd
978-0-7356-2201-2

Programming Microsoft
ASPNET 2.0

Core Reference

Dino Esposito
978-0-7356-2176-3

Programming Microsoft
ASPNET 2.0 Applications
Advanced Topics

Dino Esposito
978-0-7356-2177-0

Developing More-Secure
Microsoft ASPNET 2.0
Applications

Dominick Baier
978-0-7356-2331-6

=) Data Access

Microsoft ADO.NET 2.0
Step by Step

Rebecca M. Riordan
978-0-7356-2164-0

Programming Microsoft
ADO.NET 2.0

Core Reference

David Sceppa
978-0-7356-2206-7

Programming Microsoft
ADO.NET 2.0 Applications
Advanced Topics

Glenn Johnson
978-0-7356-2141-1

=) SQL Server 2005

Microsoft SQL Server 2005
Database Essentials

Step by Step

Solid Quality Learning
978-0-7356-2207-4

Microsoft SQL Server 2005
Applied Techniques

Step by Step

Solid Quality Learning
978-0-7356-2316-3

Microsoft SQL Server 2005
Analysis Services

Step by Step

Reed Jacobson,

Stacia Misner,

and Hitachi Consulting
978-0-7356-2199-2

Microsoft SQL Server 2005
Reporting Services

Step by Step

Stacia Misner

Hitachi Consulting
978-0-7356-2250-0

Microsoft SQL Server 2005
Integration Services

Step by Step

Paul Turley

Hitachi Consulting
978-0-7356-2405-4

Programming Microsoft
SQL Server 2005
Andrew J. Brust

Stephen Forte
978-0-7356-1923-4

Inside Microsoft
SQL Server 2005:
The Storage Engine
Kalen Delaney
978-0-7356-2105-3

Inside Microsoft

SQL Server 2005:

T-SQL Programming

Itzik Ben-Gan, Dejan Sarka,
and Roger Wolter
978-0-7356-2197-8

Inside Microsoft

SQL Server 2005:

T-SQL Querying

Itzik Ben-Gan, Lubor Kollar,
and Dejan Sarka
978-0-7356-2313-2

Inside Microsoft
SQL Server 2005:
Query Tuning and
Optimization

Kalen Delaney, et al.
978-0-7356-2196-1

=» Other
Developer Topics

Debugging Microsoft
.NET 2.0 Applications
John Robbins
978-0-7356-2202-9

Hunting Security Bugs

Tom Gallagher, Bryan Jeffries,
and Lawrence Landauer
978-0-7356-2187-9

Software Estimation:
Demystifying the Black Art
Steve McConnell
978-0-7356-0535-0

The Security
Development Lifecycle
Michael Howard

Steve Lipner
978-0-7356-2214-2

Writing Secure Code,
Second Edition
Michael Howard
David LeBlanc
978-0-7356-1722-3

Code Complete,
Second Edition
Steve McConnell
978-0-7356-1967-8

Software Requirements,
Second Edition

Karl E. Wiegers
978-0-7356-1879-4

More About Software
Requirements: Thorny
Issues and Practical Advice
Karl E. Wiegers
978-0-7356-2267-8

microsoft.com/mspress

Microsoft

Programming Windows'
Embedded CE 6.0
Developer Reference

Douglas Boling

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2008 by Douglas Boling

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2007934742

Printed and bound in the United States of America.

123456789 QWT 210987

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the Britisﬁ Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, DirectX, Internet Explorer, MS-DOS, Outlook, Visual C++, Visual Studio,
Win32, Windows, Windows Media, Windows Mobile, Windows NT, Windows Server, Windows Vista,
and Zune are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries. Other product and company names mentioned herein may be the trademarks of
their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan

Developmental Editor: Devon Musgrave

Project Editor: Kathleen Atkins

Editorial Production: Abshier House

Technical Reviewer: Rob Miles; Technical Review services provided by Content Master, a member
of CM Group, Ltd.

Body Part No. X14-06995

To Nancy Jane

Contents at a Glance

Part |

U1 h WIN K

Part Il
7

8

9

10
11
12

Part 1l
13
14
15
16
17

Windows Programming Basics

Hello Windows CE. i, 3
DrawingontheScreen......... il 35
Input: Keyboard, Mouse, and Touch Screen................. 85
Windows, Controls,andMenus 119
Common Controls and Windows CE 161
Dialog Boxes and Property Sheets........................ 197

Windows CE Programming

Memory Management. i, 241
Modules, Processes,and Threads......................... 267
The Windows CE File System. 329
The Registry.ooiii i i 357
Windows CEDatabasesciiiiiiiiiin.n. 381
Notifications ittt 405
Advanced Windows CE

Windows CE Networking., 433
Device-to-Device Communication........................ 469
System Programming.c.coiiiiiiiennennnnennnn. 535
Serial Communications. i 555
Device Driversand Services.coiiiiiiniinennnnn. 581

Table of Contents

Acknowledgments. XV

INtrodUCtion . ..o e e Xvii

part| Windows Programming Basics

1 HelloWindows CE....... ittt 3
What Is Different About Windows CE.ciiiiiiiiiieann. 3
Fewer Resources in Windows CE Devicescooiiinnnnn. 4
Unicode . ..o 4

New Controlso 4
Componentization.ttt 5
WiNn32 Subset 5

It's Still Windows Programming. 6
Hungarian Notation i 6

Your First Windows CE Application.o 7
Building Your First Application oo i, 9
Running the Program i 11
What's Wrong?. 11
Hello2. .o 12
Anatomy of a Windows-Based Application.............................. 14
The WINdow e 14

The Window Classo 15

The Window Procedure i 15
TheLifeofaMessage ..ot 15
Registering the Window Class 19
Creating the Window i 20

The Message Loop. e 23

The Window Procedure o i 24
HelloCE. . . oo 27

t do you think of this book? We want to hear from you!

soft is interested in hearing your feedback so we can continually improve our books and
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

viii Table of Contents

2 DrawingontheScreen............ ... iiiiiiiiiiiia... 35
Painting Basics i 36
Valid and Invalid Regions o i i 36
Device CoNtextSottt e 37
WtINg TeXt. . .ot e 39
Device Context Attributes o i 40

The TextDemo Example Program........, 42
Fonts. ..o 47

The FontList Example Programo i, 53
BitmMaps ..o 61
Device-Dependent Bitmaps. ..ot 61
Device-Independent Bitmaps oL 62

DIB SECHIONSttt et 63
Drawing Bitmapso it 65
AlphaBlending 68
Linesand Shapes 69
LiNeS . o e 69
Shapes . .o e 72

Fill Functions. 75

The Shapes Example Program. i 77

3 Input: Keyboard, Mouse, and Touch Screen................. 85
The Keyboard e 85
Input Focus oo 85
Keyboard Messages. B 86
Keyboard Functions. o i 91

The KeyTrac Example Program oo i ... 93

The Mouse and the Touch Screen. o it 101
Mouse MeSSageso vt 101
Working with the Touch Screen 102

The TicTacl Example Program.......... P 109

4 Windows, Controls,and Menus 119
Child WINdOWSot e 119
Window Management Functionso i 120
Enumerating Windows L 120
FindingaWindow i 121
Moving aWindowt 121

Editing the Window Structure Values. 122

Table of Contents

CWINAOWS CONOIS . .. o oottt 124
Working with Controls i i 124
Button Controls 126
The Edit Control. 128
The List Box Control. 129
The Combo Box Control. ... 130
Static CoNtrols. 130
The Scroll Bar Control 131
Controlsand Colors. . ..o e 135

MenNUS. .. 135
Handling Menu Commands. ...ttt 137
RESOUICES. . o o oo 137
ReSOUICe SCripts. . oottt 138

CONS . 139
Accelerators 140
BItMaADS . .o 141
SHINGS 141

The DOIView Example Programc.coiiiiiiiiiiiinnean.. 142
-5 Common Controls and WindowsCE 161
Programming Common Controls, 161
The Common Controls 164
The Command Bar.ouuiiiii i 164
Other Menu Controlsot 184

The Month Calendar Control................coo i, 185

The Date and Time Picker Controlccoiiiiiin, 187

The List View Control e 190

The CapEdit Control 192
Other Common Controlst e 193
Unsupported Common Controls.ouii i, 194
6 Dialog Boxes and Property Sheets........................ 197
Dialog BOXES oottt e 197
Dialog Box Resource Templatescooviiiiviiniennnn.. 198
CreatingaDialog Box. ... 201
Dialog Box Proceduresot 202
Modeless Dialog BOXES.erre e 206
Property SREELS . . . o e 207
Common Dialogs. vvv e 213

The DigDemo Example Program. ..., 214

'

Table of Contents

Part I Windows CE Programming

7 MemoryManagement........... i, 241
MEMOTY BasiCS . o v vt oottt ettt et e e 241
ABOUt RAM . .. 241
ABOUt ROM. .. o 242
About Virtual Memory 242

An Application’s Address Space. o 246

The Different Kinds of Memory Allocation 247
Virtual Memory ... 248
Heaps . . .o e 254

The Local Heap.ot 254
Separate Heaps ...t 256

The Stack. 260
Static Data. e 260
String ReSOUrCes. . ..o i 263
Selecting the Proper Memory Type 263
Managing Low-Memory Conditionsccoiieoa... 264

8 Modules, Processes,and Threads............ccovuuuiu. ... 267
Modules. e 267
PrOCESSS . o oo 270
Creating @ Process.ouiiiiii i 271
Terminatinga Process. ... 274
Other ProCessesottt 274
TRreads. . . .o 275
The System Scheduler. i 276
CreatingaThread e 278
Setting and Querying Thread Priority 281
Setting a Thread's Time Quantum, 282
Suspending and ResumingaThread 282
RIS . 283
Thread Local Storage. 285
Synchronization 287
Events. ... 288
Waiting... . oo 289
SeMaphores i e 293
MUEEXES . . o oottt e 295

Duplicating Synchronization Handles 296

Table of Contents

Critical Sections 297
Interlocked Variable Accesso 298
Interprocess Communication. ittt 300
Finding Other Processes.ttt 300

WM _COPYDATA . . e 301
Named Memory-Mapped Objects. ..., 301
Point-to-Point Message Queues. ..., 304
Communicating with Files and Databases. 308

The XTalk Example Program.t i 308
Exception Handlingo 320
C++ ExceptionHandling. 321
Win32 Exception Handling.o o i i 324

9 The Windows CE File System. 329
The Windows CE File System APl e 330
Standard File 1/O o 330
Memory-Mapped Files 338
Navigating the File System. i i 339
Dealing with Storage. b e 346
The Object Storet 347
Accessing Volumes With the File APl 347

The Storage Manager ..ottt 349

10 TheRegistry........ooiniiiniii it 357
Registry Organizationc.oiiii i,357
The Registry APlo 359
Opening and Creating Keys....... ..o 359
Reading Registry Values 360

A Writing Registry Values. 360
Deleting Keysand Values., 361
Enumerating Registry Keys. oo 362
Flushing the Registry i i 362
Registry Change Notifications................ e 363

The RegView Example Programc i, 363

11 Windows CEDatabasesl 381
The Two Databases 381
Basic Definitions. i 381

The Database AP, 383

xii Table of Contents

12 Notifications i, 405
User Notifications.o e 405
Setting a User Notification.......... o it 406
Timer Event Notifications i 410
System Event Notifications. 411
The NoteDemo Example Program ..., 412
Querying Scheduled Notifications oo ... 425
Bubble Notificationso 426
Adding a Notification 427
Modifying a Notification i i 430
Removing a Notification..............o, 430

Part Il Advanced Windows CE

13 Windows CE Networking. i, 433
Windows Networking SUpport ... 433

WNet FUNCLIONS 433

The ListNet Example Program.t 444

TCP/IP Programmingcooe e 454

Socket Programming.t 455

Blocking versus Nonblocking Sockets, 465

14 Device-to-Device Communication....................c.... 469
Infrared CommuNiICation.oiiii e e 469

IR BaSICS . . ettt 469

DISCOVRIY . . oot 470

Publishingan IR Service i, 472

Querying and Setting IR Socket Options. 473

The MySquirt Example Program i, 474

Bluetooth. 490

StaCK. . oo 491

DISCOVEIY. .ot R 492

Publishing a Service. 501

Bluetooth Communication with Winsock 504

Bluetooth Communication with Virtual COM Ports................. 506

The BtSquirt Example Program....... i, 511

Table of Contents

15 System Programming...............coiiiiiiiiiiennnnn.. 535
The Windows CE Memory Architecture................ ... i, 535
Application Space 536
Kernel Space. 538
Writing Cross-Platform Windows CE Applications....................... 539
Platforms and Operating System Versions 539
Compile-Time Versioning.t .. 541
Explicit Linking 542
Run-Time Version Checking......... ..., 543
Power Management i 544
Defining the Meaning of "Off" L. 544
Querying the Power State il 545

The Power Manager 547
Managing Power without the Power Manager..................... 550

16 Serial Communications.......... 555
Basic Serial Communication.......... ... 555
Opening and Closing a Serial Port 556
Reading from and Writing to a Serial Port 556
Asynchronous Serial I/O. ... 557
Configuring the Serial Port. i, 559
Setting the Port Timeout Values.........., 561
Querying the Capabilities of the Serial Driver 563
Controlling the Serial Port i, 564
Clearing Errors and Querying Status 565
Stayin’ Alive. 566

The CeChat Example Program.t 567
17 Device Driversand Services.ccoviiiiiiinnn... 581
BasiC DFIVEIS . ..ot 581
Driver Nameso 582

The Device Driver Load Processcooviiiiiiiiiiinnn.. 583
Enumerating the Active Drivers.o it 587
Reading and Writing Device Drivers. 588
Writing a Windows CE Stream Device Driver, 590
The Stream Driver Entry Pointso 591
Managing Buffers 598
Device Interface Classesot 604

Device Driver Power Management............. ..., 606

xiii

xiv Table of Contents

Buildinga Device Driver 609
Debug Zones 609

The Generic Driver Example.o i 611

SBIVICES vttt e e e e e e 618
Service Architecture. 618

The LifeofaService. 619
Application Control of a Service........ i 620

The Service DLLEntry Points 622

The Service IOCTL Commandsviiiiiiiinnienn.. 623

SUPEI SEIVICE . .ottt et e e e 626
Services.exe Command Line.o 630

TickSrv Example Service . ..ot 630

14T 1= G PR 645

o do you think of this book? We want to hear from you!

ft is interested in hearing your feedback so we can continually improve our books and
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

Acknowledgments

Books are produced by diverse teams of talented people. My name appears on the cover, but
countless others were involved in this book's creation. The teams of people who worked on
this edition all pushed themselves to the max to complete this revision.

First, there’s the talented team at Microsoft Press. Kathleen Atkins is the project leader and
editor of all four editions of this book. Kathleen’s continued stewardship of this book over
the years has provided a level of quality that wouldn't have been possible without her. Devon
Musgrave was the content development manager. Ben Ryan was the acquisitions editor for
this edition of the book and deserves credit for getting this revision released.

The technical editor was Rob Miles of Content Master. Rob not only caught some potentially
embarrassing errors, his British perspective pointed out some of my more “colonial” expres-
sions. Other editoral and production duties were performed by Abshier House.

Thanks also to the various Microsoft development and marketing teams. Over the years, they
have tolerated my endless questions. Thanks to Mike Thomson, Chip Schnarel, and Mike Hall
for answering questions and providing support to make this book better.

A special thanks goes to my agent, Claudette Moore, and the team at Moore Literary
Agency. Claudette handled all the business details, freeing me to deal with the fun stuff.

This edition of Programming Windows Embedded CE builds on the foundation of the three
earlier editions, so what you read is based on work from a much larger team. In addition

to the people already mentioned, other folks from Microsoft Press have helped immensely
in the editing and production of the earlier editions of the book. They include Jim Fuchs,
Shawn Peck, Brian Johnson, Julie Xiao, Rebecca McKay, Rob Nance, Cheryl Penner, Elizabeth
Hansford, and Michael Victor.

My personal support team is headed by my wife, Nancy. Thanks, Nancy, for the support,
help, and love. The team also includes our boys, Andy, Sam, and Jake. They make sure |
always remember what is important in life. Finally, | acknowledge my parents, Ronald and
Jane Boling. They are my role models.

Introduction

I've been working with Microsoft Windows CE for almost as long as it's been in existence. A
Windows programmer for many years, I'm amazed by the number of different, typically quite
small, systems to which | can apply my Windows programming experience. These Windows
CE systems run the gamut from PC-like mini-laptops to cellular phones to embedded de-
vices buried deep in some large piece of industrial equipment. The use of the Win32 APl in
Windows CE enables tens of thousands of Windows programmers to write applications for
an entirely new class of systems. The subtle differences, however, make writing Windows CE
code somewhat different from writing for the desktop versions of Windows. It's those differ-
ences that I'll address in this book.

Just What Is Windows CE?

Windows CE is the smallest and arguably the most interesting of the Microsoft Windows
operating systems. Windows CE was designed from the ground up to be a small, power-
efficient operating system with a Win32 subset API. Windows CE extends the Windows API
into the markets and machines that can't support the larger footprints of the Windows Vista
or even the Windows Embedded XP kernel.

The now-defunct Windows 95/98/Me line was a great operating system for users who
needed backward compatibility with MS-DOS and Windows 2.x and 3.x programs. Although
it had shortcomings, that operating system series succeeded amazingly well at this difficult
task. The Windows NT/2000/XP/Vista line, on the other hand, is written for the enterprise. It
sacrifices compatibility and size to achieve its high level of reliability and robustness.

Windows CE isn't backward compatible with MS-DOS or Windows. Nor is it an all-powerful

operating system designed for enterprise computing. Instead, Windows CE is a lightweight,

multithreaded operating system with an optional graphical user interface. Its strength lies in
its small size, its Win32 subset API, and its multiplatform support.

A Little Windows CE History

To understand the history of Windows CE, you need to understand the differences between
the operating system and the products that use it. The Windows CE operating system is
developed by a core group of programmers inside Microsoft. Their product is the operat-
ing system itself. Other groups, who develop devices such as the Windows Mobile line, use
the most appropriate version of Windows CE that’s available at the time their product is to
be released and add their own code. This dichotomy has created some confusion about how

Xvii

xviii

Introduction

Windows CE has evolved. Let's examine the history of each, the devices and the operating
system itself.

The Devices

The first products designed for Windows CE were handheld “organizer” devices with
480-by-240 or 640-by-240 screens and chiclet keyboards. These devices, dubbed Handheld
PCs, were first introduced in late 1996. Fall Comdex 97 saw the release of a dramatically
upgraded version of the operating system, Windows CE 2.0, with newer hardware in a
familiar form—this time the box came with a 640-by-240 landscape screen, sometimes in
color, and a somewhat larger keyboard.

In January 1998 at the Consumer Electronics Show, Microsoft announced two new platforms,
the Palm-size PC and the Auto PC. The Palm-size PC was aimed directly at the pen-based
organizer market dominated by Palm OS-based systems. The Palm-size PC featured a
portrait mode and a 240-by-320 screen, and it used stylus-based input. Unfortunately for
Windows CE fans, the public reception of the original Palm-size PC was less than enthusiastic.

Later that year, a new class of mini-laptop—style Windows CE machines with touch-typable
keyboards and VGA or Super VGA screens made their appearance. These machines, called
H/PC Professionals, provided 10 hours of battery life combined with improved versions of
Microsoft’s Pocket Office applications. Many of these machines had built-in modems, and
some even diverged from the then-standard touch screen, sporting track pads or IBM's
TrackPoint devices.

In April 2000, Microsoft introduced the Pocket PC, a greatly enhanced version of the old
Palm-size PC. The original Pocket PC used a prerelease of the more full-featured Windows CE
3.0 operating system under the covers. The user interface of the Pocket PC was also differ-
ent, with a cleaner, 2D look and a revised home page, the Today screen. The most important
feature of the Pocket PC, however, was the greatly improved performance of Windows CE.
Much work had been done to tune Windows CE for better performance. That improvement,
coupled with faster CPUs, allowed the system to run with the zip expected from a pocket
organizer. With the Pocket PC, the inevitability of Moore’s Law enabled Windows CE devices
to cross over the line: the hardware at this point was now capable of providing the comput-
ing power that Windows CE required.

The Handheld PC was updated in 2000 to use Windows CE 3.0. Although these systems
(dubbed the Handheld PC 2000) weren't a consumer success, they did find a home in the
industrial market, where their relative low cost, large screens, and great battery life satisfy a
unique niche market.

The Pocket PC was updated in late 2001 with a release named Pocket PC 2002. This release
was based on the final released version of Windows CE 3.0 and contained some user in-
terface improvements. An exciting development was the addition of the Pocket PC Phone

Introduction Xix

Edition, which integrated cellular phone support into a Pocket PC device. These devices com-
bined the functionality of a Pocket PC with the connectivity of a cellular phone, enabling a
new generation of mobile but always connected software.

Another group within Microsoft released the Smart Display, a Windows CE .NET 4.1-based
system that integrated a tablet form factor device with wireless networking and a base connected
to a PC. When the Smart Display is in its base, it's a second monitor; when removed, it becomes a
mobile display for the PC. The Smart Display didn’t gain much traction, but the remote desk-
top technology perfected for the device found its way into later versions of Windows CE.

In the spring of 2003, the Pocket PC team released an update of the Pocket PC called the
Pocket PC 2003. This system, while not providing much of a change to the user interface, did
provide a huge increase in stability and performance because it was based on Windows CE
.NET 4.2. The Pocket PC 2003 also added integrated Bluetooth support for those OEMs that
chose to include it.

At the same time, Microsoft was working with OEMs to produce cellular phones based on
Windows CE. A smattering of these phones, called Smartphones, were released in late 2002
and were initially based on Windows CE 3.0. An upgrade in 2003 moved the Smartphone to
Windows CE 4.2 and increased the feature set of the device to include the .NET runtime.

An update to the Pocket PC and Smartphone platforms, called Pocket PC/Smartphone 2003
Second Edition, was released in March 2004. These devices supported different screen reso-
lutions, screen rotation, and updated communication support. These systems continued to
be based on a slightly modified Windows CE .NET 4.2 kernel.

In May 2005, the Pocket PC and Smartphone platforms were updated and renamed with
the umbrella term, Windows Mobile. These new systems took advantage of an updated
Windows CE 5 kernel and featured a change from a RAM-based file system to a flash-based
file system. This change prevented data loss on the systems due to run-down batteries with
a tradeoff of a noticable drop in performance. The platforms updated their multimedia
credentials with Windows Media Player 10 and Direct Show capture support. Later updates
to this line provided push e-mail support.

The Windows Mobile team followed in February 2007 with Windows Mobile 6. Interestingly,
this release was based on a tweaked Windows CE 5 kernel, not Windows CE 6, which had
been released a few months before. Nomenclature also changed with the Pocket PC now
referred to as Windows Mobile Classic, the Pocket PC Phone Edition referred to as Windows
Mobile Professional, and the Smartphone referred to as Windows Mobile Standard.

New devices are being introduced all the time. An example is the Zune media device from
Microsoft. While not a programmable device like the Pocket PC or Smartphone, the device is
based on Windows CE. The power of the Windows CE operating system enables applications
that are beyond the capability of systems with simpler operating systems to run on these
devices and yet smaller than devices needed to run Windows Vista.

Introduction
The Operating System

Although these consumer-oriented products made the news, more important development
work was going on in the operating system itself. The Windows CE operating system has
evolved from the days of 1.0, when it was a simple organizer operating system with high
hopes. Starting with Windows CE 2.0 and continuing to this day, Microsoft has released
embedded versions of Windows CE that developers can use on their custom hardware.
Although consumer platforms such as the Windows Mobile series get most of the publicity,
the improvements to the base operating system are what provide the foundation to these
new consumer devices.

Windows CE 2.0 was released with the introduction of the Handheld PC 2.0 at Fall Comdex
1997. Windows CE 2.0 added networking support, including Windows standard network
functions, a Network Driver Interface Specification (NDIS) miniport driver model, and a ge-
neric NE2000O network card driver. Added COM support allowed scripting, although the sup-
port was limited to in-proc servers. A display driver model was also introduced that allowed
for pixel depths other than the original 2-bits-per-pixel displays of Windows CE 1.0. Windows
CE 2.0 was also the first version of the operating system to be released separately from a prod-
uct such as the H/PC. Developers could purchase the Windows CE Embedded Toolkit (ETK),
which allowed them to customize Windows CE to unique hardware platforms. Developers who
used the ETK, however, soon found that the goal of the product exceeded its functionality.

With the release of the original Palm-size PC in early 1998, Windows CE was improved yet
again. Although Windows CE 2.01 wasn't released in an ETK form, it was notable for its effort
to reduce the size of the operating system and applications. In Windows CE 2.01, the C run-
time library, which includes functions such as strcpy to copy strings, was moved from a stati-
cally linked library attached to each EXE and DLL into the operating system itself. This change
dramatically reduced the size of both the operating system and the applications themselves.

In August 1998, Microsoft introduced the H/PC Professional with a new version of the operating
system, 2.11. Windows CE 2.11 was a service pack update to Windows CE 2.1, which was never
formally released. Later in the year, Windows CE 2.11 was released to the embedded community
as Microsoft Windows CE Platform Builder version 2.11. This release included support for an im-
proved object store that allowed files in the object store to be larger than 4 MB. This release also
added support for a console and a Windows CE version of CMD.exe, the classic MS-DOS-style
command shell. Windows CE 2.11 also included Fast IR to support IrDA's 4-MB infrared standard,
as well as some specialized functions for IP multicast. An initial hint of security was introduced in
Windows CE 2.11: a device could now examine and reject the loading of unrecognized modules.

Windows CE 2.12 was also a service pack release to the 2.1, or Birch, release of Windows CE.
The big news in this release was a greatly enhanced set of Platform Builder tools that included
a graphical front end. The operating system was tweaked with a new notification interface
that combined the disparate notification functions. The notification user interface was exposed
in the Platform Builder to allow embedded developers to customize the notification dialog

Introduction XXi

boxes. A version of Microsoft's PC-based Internet Explorer 4.0 was also ported to Windows
CE as the Genie, or Generic IE control. This HTML browser control complements the simpler
but smaller Pocket Internet Explorer. Microsoft Message Queue support was added as well.
The "go/no go” security of Windows CE 2.11 was enhanced to include a “go, but don't trust”
option. Untrusted modules could run—but not call—a set of critical functions, nor could they
modify parts of the registry.

The long-awaited Windows CE 3.0 was finally released in mid-2000. This release followed the
April release of the Pocket PC, which used a slightly earlier internal build of Windows CE 3.0.
The big news for Windows CE 3.0 was its kernel, which was optimized for better real-time
support. The enhanced kernel support includes 256 thread priorities (up from 8 in earlier
versions of Windows CE), an adjustable thread quantum, nested interrupt service routines,
and reduced latencies within the kernel.

The improvements in Windows CE 3.0 didn't stop at the kernel. A new COM component
was added to complement the in-proc COM support available since Windows CE 2.0. This
new component included full COM out-of-proc and DCOM support. The object store was
also improved to support up to 256 MB of RAM. File size limits within the object store were
increased to 32 MB per file. An Add-On Pack for the Platform Builder 3.0 added even more
features, including improved multimedia support though a media player control; improved
networking support (and XML support) with PPTP, ICS, and remote desktop display support;
and a formal introduction of the DirectX API.

The next release of Windows CE involved more than just new features; the name of the prod-
uct was also changed. Windows CE .NET 4.0, released in early 2001, changed the way virtual
memory was organized, effectively doubling the virtual memory space per application.
Windows CE .NET 4.0 also added a new driver loading model, services support, a new file-
based registry option, Bluetooth, 802.11, and 1394 support. Ironically, while .NET was added
to the name, Windows CE .NET 4.0 didn't support the .NET Compact Framework.

Late in 2001, Windows CE 4.1 was a follow-on to Windows CE 4.0, adding IP v6, Winsock 2, a
bunch of new supporting applets, and an example Power Manager. Windows CE 4.1 also sup-
ports the .NET Compact Framework. The final bits of the .NET Compact Frameworkruntime
were released as a quick fix engineering (QFE) package after the operating system shipped.

The second quarter of 2003 saw the release of Windows CE .NET 4.2. This update provided
cool new features for OEMs wanting to support Pocket PC applications on embedded sys-
tems. The Pocket PC—specific APIs that support menu bars, the soft input panel (SIP), and
other shell features were moved to the base operating system. The Explorer shell was rewrit-
ten to support namespace extensions. The performance of the kernel was improved by di-
rectly supporting hardware paging tables on some CPUs.

In July 2004, Microsoft released Windows CE 5.0. This release focused as much on improved
performance as new features. The kernel retained the familiar 32 process and 32 Meg VM
limits that had been in place since the Windows CE 1.0. However, the network stack and file

xxii

Introduction

system were modified for better performance. The tools set used by OEMs, Platform Builder,
was dramatically updated in an attempt to easy porting of the operating system to new
hardware. Some of these efforts were successful, others were not as successful in easing the
burden on OEMs. ‘

The most significant update to Windows CE since its inception was provided with the release
of Windows Embedded 6.0 in November 2006. The kernel of Windows CE 6 was completely
rewritten eliminating the 32 process limit and the 32-MB VM limit that had started to bur-
den embedded developers. The new kernel boasts a “limit” of 32K processes and a 2-GB VM
space per process. In addition to the new kernel, Windows Embedded CE 6 brought some of
the Windows Mobile 5 features such as Direct Show capture, a cellular radio stack, and sup-
port for EXFAT, an improved version of the venerable FAT file system.

Because Windows CE is a work in progress, the next version of Windows CE is being devel-
oped. I'll be updating my Web site, www.bolingconsulting.com, with information about this
release as it becomes available.

Why You Should Read This Book

Programming Microsoft Windows CE is written for anyone who will be writing applications for
Windows CE. Embedded systems programmers using Windows CE for a specific application,
Windows programmers interested in writing or porting an existing Windows application, and
even developers of managed code can use the information in this book to make their tasks
easier.

The embedded systems programmer, who might not be as familiar with the Win32 API as
the Windows programmer, can read the first section of the book to become familiar with
Windows programming. Although this section isn't the comprehensive tutorial that can be
found in books such as Programming Windows, by Charles Petzold, it does provide a base
that will carry the reader through the other chapters in the book. It can also help the embed-
ded systems programmer develop fairly complex and quite useful Windows CE programs.

The experienced Windows programmer can use the book to learn about the differences
among the Win32 APIs used by Windows CE and the desktop versions of Windows. The differ-
ences between Windows CE and the desktop are significant. The small footprint of Windows
CE means that many of the overlapping APIs in the Win32 model aren't supported. Some sec-
tions of the Win32 API aren't supported at all. On the other hand, because of its unique set-
ting, Windows CE extends the Win32 APl in a number of areas that are covered in this text.

Although no .NET Compact Framework material is covered in this edition, the book remains
useful for the developer using the .NET Compact Framework. The Compact Framework
currently has gaps in its functionality: it requires managed applications to make calls to the
operating system to perform certain tasks. The book is a great guide to what’s available in
the operating system.

Introduction xxiii

The method used by Programming Windows CE is to teach by example. | wrote numerous
Windows CE example programs specifically for this book. The source for each of these exam-
ples is printed in the text. Both the source and the final compiled programs for a number of the
processors supported by Windows CE are also provided on the book Web site. In addition,
examples that “didn’t make the cut” when the final edits were made are also on the Web site.

The examples in this book are all written directly to the API, the so-called “Petzold” method
of programming. Since the goal of this book is to teach you how to write programs for
Windows CE, the examples avoid using a class library such as MFC, which obfuscates the
unique nature of writing applications for Windows CE. Some people would say that the avail-
ability of MFC on Windows CE eliminates the need for direct knowledge of the Windows CE
API. | believe the opposite is true. Knowledge of the Windows CE API enables more efficient
use of MFC. | also believe that truly knowing the operating system also dramatically simplifies
the debugging of applications.

What’'s New in the Fourth Edition

This new edition of the book is updated for the new Windows Embedded 6.0 kernel.
Chapters 7, "Memory Management,” and 8, “Processes, Modules, and Threads,” have been
significantly updated to reflect the new kernel. Chapter 9, “The Windows CE File System,”
includes new topics such as the storage manager while Chapter 11, “Windows CE Databases,”
is updated to cover the Embedded Database API. Other parts of the book have been
updated and freshened with better examples and coverage of new APIs. Other chapters
have been reorganized to better present the topics.

Readers familiar with the earlier editions of this book will notice that it is shorter. The decision
was made to focus this edition on the core operating system concepts of Windows CE and
not on specific devices. Although it would be great to simply grow and grow the book with
new material, there are limits to the size of the book. For this edition, | have chosen the best
content of the earlier versions while adding and updating the content relevant to today’s
embedded programmers.

Windows CE Development Tools

This book is written with the assumption that the reader knows C and is at least familiar with
Microsoft Windows. All native code development was done with Microsoft Visual Studio
2005. To compile the example programs in this book, you need Visual Studio 2005 and a
Windows CE device SDK. The book Web site has a custom SDK that | created that can be
used as a programming target. This SDK includes a device emulator so the examples can be
tested without the need of accompanying hardware.

Introduction

To compile and run the examples, you will need Visual Studio 2005 or later. While there are
many verisons of Visual Studio, all but the most basic Express editions support device de-
velopment. After installing Visual Studio and downloading the SDK from the book Web site,
simply launch the installer for the SDK. The install process will add a device target labeled
ProgWinCE_SDK, and an emulator that will run all the Windows CE-based examples in the
book. In addition, the SDK supports compiling for ARM as well as x86 systems. The ARM CPU
support is necessary for the emulator while the x86 support is convenient given the abun-
dance of PC-based hardware.

Each example already has a predefined project set up, but you can also choose to create the
projects from scratch. For almost all the examples, simply create a Visual C++ Smart Device,
Win32 Smart Device project. Select the ProgWinCE_SDK and select an “empty project.” The
empty project selection prevents Visual Studio from providing its default wizard code. Then
create the files from the book and add them to the project. | have designed the examples not
to need special project settings. For example, any nondefault library files are included using
in-line compiler commands.

Target Systems

You don't need to have a Windows CE target device to experience the sample programs
provided by this book because the example SDK provides an emulator target. This emulator
comes in handy when you don't have an actual device handy. The emulator runs a version of
Windows CE 6.0 inside an ARM emulator, which results in an actual Windows CE operating
system runtime executing. Applications should compile to an ARM CPU target to run in the
emulator.

You should consider a number of factors when deciding which Windows CE hardware to use
for testing. First, if the application is to be a commercial product, you should buy at least one
system for each type of target CPU. You need to test against all the target CPUs because,
although the source code will probably be identical, the resulting executable will be different
in size and so will the memory allocation footprint for each target CPU.

What's on the Web Site

The Web site (http.//www.microsoft.com/mspress/companion/9780735624177)! contains the
source code for all the examples in the book. I've also provided project files for Microsoft
Visual Studio so that you can open preconfigured projects. In addition, some examples that
were in previous editions of the book are now on the Web site exclusively. These include the
CtlView example from the “"Windows and Controls” chapter and the AlbumDB example from
the "Windows CE Databases” chapter.

1 We select these URLs so they are easy to remember.

Introduction XXV

Other Sources

Although | have attempted to make Programming Microsoft Windows CE a one-stop

shop for Windows CE programming, no one book can cover everything. To learn more
about Windows programming in general, | suggest the classic text Programming Windows
(Microsoft Press, 1998) by Charles Petzold. This is, by far, the best book for learning Windows
programming. Charles presents examples that show how to tackle difficult but common
Windows problems. To learn more about the Win32 kernel API, | suggest Jeff Richter’s
Programming Applications for Microsoft Windows (Microsoft Press, 1999). Jeff covers the
techniques of process, thread, and memory management down to the most minute de-

tail. For learning more about MFC programming, there’s no better text than Jeff Prosise’s
Programming Windows with MFC (Microsoft Press, 1999). This book is the “Petzold” of MFC
programming and simply a required read for MFC programmers. Unfortunately, these last
two books are currently out of print. | advise finding those books on your bookshelf and
guard them carefully. You can also seek out friends who have been in the Windows program-
ming business for a number of years; they should have these books. Of course, there is
always Amazon and eBay for buying used books.

Support

Every effort has been made to ensure the accuracy of this book and the contents of the
sample files on the Web site. Microsoft Press provides corrections and additional content for
its books through the World Wide Web at this location:

http:/www.microsoft.com/mspress/support/

If you have problems, comments, or ideas regarding this book or the Web site, please send
them to Microsoft Press.

Send e-mail to

mspinput@microsoft.com

Or send'postal mail to

Microsoft Press

Attn: Programming Microsoft Windows CE, Fourth Edition, Editor
One Microsoft Way

Redmond, WA 98052-6399

Please note that product support is not offered through these mail addresses. For further
information regarding Microsoft software support options, please go to http://support.
microsoft.com/directory/ or call Microsoft Support Network Sales at (800) 936-3500.

xXxvi

Introduction

Visit the Microsoft Press Web Site

You are also invited to visit the Microsoft Press World Wide Web site at the following
location: ‘

http.//www.microsoft.com/mspress/

You'll find descriptions for the complete line of Microsoft Press books, information about
ordering titles, notice of special features and events, additional content for Microsoft Press
books, and much more.

You can also find out the latest in Microsoft Windows CE software developments and news
from Microsoft Corporation by visiting the following Web site:

http://www.microsoft.com/windows/embedded

Updates and Feedback

No book about Windows CE can be completely current for any length of time. | maintain a
Web page, http.//www.bolingconsulting.com/cebook.htm, where I'll keep a list of errata, along
with updates describing any features found in subsequent versions of Windows CE. Check out
this page to see information on new versions of Windows CE as they're released.

Although | have striven to make the information in this book as accurate as possible, you'll
undoubtedly find errors. If you find a problem with the text or just have ideas about how to
make the next version of the book better, please drop me a note at CEBook@bolingconsulting.
com. | can't promise you that I'll answer all your notes, but | will read every one.

Doug Boling
Tahoe City, California

August 2007

Part |
Windows Programming Basics

Chapter 1

Hello Windows CE

Since the classic The C Programming Language, programming books traditionally start with
a "hello, world” program. It's a logical place to begin. Every program has a basic underlying
structure that, when not obscured by some complex task it was designed to perform, can be
analyzed to reveal the foundation shared by all programs running on its operating system.

In this programming book, the “hello, world” chapter covers the details of setting up and
using the programming environment. The environment for developing Microsoft Windows
CE applications is somewhat different from that for developing standard Microsoft Windows
applications because Windows CE programs are written on PCs running Microsoft Windows
XP or Windows Vista and debugged mainly on separate Windows CE-based target devices.

While experienced Windows programmers might be tempted to skip this chapter and move
on to meatier subjects, | suggest that they—you—at least skim the chapter to note the dif-
ferences between a standard Windows program and a Windows CE program. A number of
subtle and significant differences in both the development process and the basic program
skeleton for Windows CE applications are covered in this first chapter.

What Is Different About Windows CE

Windows CE has a number of unique characteristics that make it different from other
Windows platforms. First, the systems running Windows CE are most likely not using an Intel
x86—compatible microprocessor. Instead, Windows CE runs on four different CPU families:
SHx, MIPS, ARM, and x86. Fortunately, the development environment isolates the program-
mer from almost all of the differences among the various CPUs.

Nor can a Windows CE program be assured of a screen or a keyboard. Windows Mobile de-
vices have screens ranging from 176 by 220 to 800 by 600 pixels. Some of the screens have
a landscape orientation, in which the screen is wider than it is tall, while others have portrait
orientation, in which the screen is taller than it is wide. An embedded device might not have
a display at all. The target devices might not support color. And, instead of a mouse, most
Windows CE devices have a touch screen. On a touch-screen device, left mouse button clicks
are achieved by means of a tap on the screen, but no obvious method exists for delivering
right mouse button clicks. To give you some method of delivering a right click, the Windows
CE convention is to tap and hold with the stylus. Although Windows CE has a helper API

to detect this tap and hold gesture, it's up to the Windows CE application to interpret this
sequence as a right mouse click.

Part| Windows Programming Basics

Fewer Resources in Windows CE Devices

The resources of the target devices vary radically across systems that run Windows CE. When
writing a standard Windows program, the programmer can make a number of assumptions
about the target device, almost always an IBM-compatible PC. The target device will have a
hard drive for mass storage and a virtual memory system that uses the hard drive as a swap
device to emulate an almost unlimited amount of (virtual) RAM. The programmer knows that
the user has a keyboard, a two-button mouse, and a monitor that these days almost assur-
edly supports 256 colors and a screen resolution of at least 1024 by 768 pixels.

Windows CE programs run on devices that rarely have hard drives for mass storage. The ab-
sence of a hard drive means more than just not having a place to store large files. Without

a hard drive, virtual RAM can't be created by swapping data to the drive. So Windows CE
programs are almost always run in a low-memory environment. Memory allocations can,

and often do, fail because of the lack of resources. A Windows CE shell might be designed to
terminate a program automatically when free memory reaches a critically low level. This RAM
limitation has a surprisingly large impact on Windows CE programs, and is one of the main
challenges involved in porting existing Windows applications to Windows CE.

Unicode

One characteristic that a programmer can count on when writing Windows CE applications

is Unicode. Unicode is a standard for providing a platform-independent method of defin-
ing characters. The Unicode standard provides for representing characters in 8-bit, 16-bit,

or 32-bit formats known as UTF8, UTF16, and UTF32, respectively. Windows CE uses UTF16
to represent characters. Unicode allows for fairly simple porting of programs to different in-
ternational markets. Dealing with Unicode is relatively painless as long as you avoid the dual
assumptions made by most programmers that strings are represented in ASCll and that char-
acters are stored in single bytes.

A consequence of a program using UTF16 is that with each character taking up two bytes
instead of one, strings are now twice as long. A programmer must be careful making assump-
tions about buffer length and string length. No longer should you assume that a 260-byte
buffer can hold 259 characters and a terminating zero. Instead of the standard char data type,
you should use the TCHAR data type. TCHAR is defined to be char for ANSI-compatible ap-
plication development and unsigned short for Unicode-enabled applications for Microsoft
Windows 2000, Windows XP, Windows Vista, and Windows CE development. These types of
definitions allow source-level compatibility across ASCll-and Unicode-based operating systems.

New Controls

Windows CE includes a number of new Windows controls designed for specific environments.
New controls include the menu bar control that provides menu-and toolbar-like functions all

Chapter 1 Hello Windows CE 5

on one space-saving line, critical on the smaller screens of Windows CE devices. Other con-
trols have been enhanced for Windows CE. A version of the edit control in Windows CE can
be set to automatically capitalize the first letter of a word, great for the keyboardless design
of a PDA. Windows CE also supports most of the controls available on desktop versions of
Windows. Some of these controls are even more at home on Windows CE devices than on
the desktop. For example, the date and time picker control and calendar control assist calen-
dar and organizer applications suitable for handheld devices, such as Windows Mobile-based
devices. Other standard Windows controls have reduced function, reflecting the compact
nature of Windows CE hardware-specific OS configurations.

Componentization

Another aspect of Windows CE programming to be aware of is that Windows CE can be
broken up and reconfigured by Microsoft or by OEMs so that it can be better adapted to a
target market or device. Windows programmers usually just check the version of Windows.
When they know the version, they can determine what API functions are available. Windows
CE, however, can be configured in countless ways.

By far, the most popular configurations of Windows CE today are in the Windows Mobile—
based devices. Microsoft defines the specific set of Windows CE components that are present
in all Windows Mobile-branded devices. However, some OEMs produce PDA devices that use
Windows CE but are not branded as Windows Mobile systems. These devices have a subtly
different API from that of the Windows Mobile devices. If you are unaware of this, you can
easily write a program that works on one platform but not on another. In embedded plat-
forms, the OEM decides the components to include and can create a Software Development
Kit (SDK) specialized for its specific platform. If the OEM is interested in third-party devel-
opment, it can make available a customized SDK for its device. New platforms are continu-
ally being released, with much in common but also with many differences among them.
Programmers need to understand the target platform and to have their programs check
what functions are available on that particular platform before trying to use a set of func-
tions that might not be supported on that device.

Win32 Subset

Finally, because Windows CE is so much smaller than Windows XP or Windows Vista, it sim-
ply can't support all the function calls that its larger cousins do. For example, Windows CE
removes some redundant functions supported by its larger cousins necessary for backward
compatbility with applications dating back to the days of DOS and Windows 3.x. If Windows
CE doesn't support your favorite function, a different function or set of functions will prob-
ably work just as well. Sometimes Windows CE programming seems to consist mainly of fig-
uring out ways to implement a feature using the sparse API of Windows CE (if thousands of
functions can be called sparse).

6 Part| Windows Programming Basics

Some functional areas in Windows CE might surprise you. For example, Windows CE supports
its own Web, FTP, and Telnet servers. Although the Windows CE Web server isn't as power-
ful as Microsoft’s 1IS behemoth, it does provide significant functionality, including support
for Active Server Pages and for ISAPI filters and extensions. Windows CE also has strong
DirectShow support and even a Voice-over IP (VolP) stack.

It's Still Windows Programming

Although differences between Windows CE and the other versions of Windows do exist, they
shouldn’t be overstated. Programming a Windows CE application is programming a Windows’
application. It has the same message loop, the same windows, and for the most part, the
same resources and the same controls. The differences don't hide the similarities. One of the
key similarities is the tradition of Hungarian notation.

Hungarian Notation

A tradition, and a good one, of almost all Windows programs since Charles Petzold wrote
Programming Microsoft Windows is Hungarian notation. This programming style, developed
years ago by Charles Simonyi at Microsoft, prefixes all variables in the program usually with
one or two letters indicating the variable type. For example, a string array named Name
would instead be named szName, with the sz prefix indicating that the variable type is a
zero-terminated string. The value of Hungarian notation is the dramatic improvement in
readability of the source code. Another programmer (or you after not looking at a piece of
code for a while) won't have to look repeatedly at a variable's declaration to determine its
type. Table 1-1 shows typical Hungarian prefixes for variables.

TABLE 1-1 Hungarian Prefixes for Variables

Variable Type Hungarian Prefix

Integer iorn

‘W_érd (16-bit) i ‘ w oré »

ouble word (32‘-‘bit u,ns,ign;e,a)‘ e
Lo}\g(32—b|ts|gned) S
P R o

S‘t-ring i ‘ ‘ sz ‘

onter : B ,

Long po‘inté‘r ‘ Ip

nghdolwlh‘and/@” . hwnd S

Struct size cb

Chapter1 Hello Windows CE 7

You can see a few vestiges of the early days of Windows. The Ip, or long pointer, designation
refers to the days when, in the Intel 16-bit programming model, pointers were either short (a
16-bit offset) or long (a segment plus an offset). Other prefixes are formed from the abbre-
viation of the type. For example, a handle to a brush is typically specified as hbr. Prefixes can
be combined, as in Ipsz, which designates a long pointer to a zero-terminated string. Most
of the structures defined in the Windows API use Hungarian notation in their field names.
Although the use of Hungarian notation has fallen out of vogue, | still use this notation when
programming my Win32 applications as well throughout this book, and | encourage you to
use this notation in your Win32 programs.

Your First Windows CE Application

Enough talk; let’s look at your first Windows CE program. Listing 1-1 shows Hellol, a simple
Hello World application written for Windows CE.

LISTING 1-1 Hellol, A simple Windows application

Hellol.cpp

//
// Hellol - A simple application for Windows CE
//

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

//

#include <windows.h>

//

// Program entry point

//

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPWSTR T1pCmdLine, int nCmdShow) {

printf (“Hello World\n”);
return 0;

As you can see, aside from the entry point of the program, the code looks fairly similar to the
classic Kernighan and Ritchie version. Starting from just below the comments, you have the
line

#include <windows.h>

which is the root of a vast array of include files that define the Windows CE API, as well as the
structures and constants they use.

Part| Windows Programming Basics

The entry point of the program is the biggest difference between this program and a stan-
dard C program. Instead of the C standard

int main (char **argv, int argc)
the Windows CE build environment expects the standard Windows entry point,! as in

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPWSTR TpCmdLine, int nCmdShow) ;

Windows CE differs in some ways from the desktop versions of Windows. The first of the four
parameters passed, hinstance, identifies the specific instance of the program to other appli-
cations and to Windows API functions that need to identify the EXE. The hPrevinstance pa-
rameter is left over from the old Win16 APl (Windows 3.1 and earlier). In all Win32 operating
systems, including Windows CE, hPrevinstance is always 0 and can be ignored.

The IpCmdLine parameter points to a Unicode string that contains the text of the command
line. Applications launched from Microsoft Windows Explorer usually have no command-line
parameters. But in some instances, such as when the system automatically launches a pro-
gram, the system includes a command-line parameter to indicate why the program was start-
ed. The IpCmdLine parameter provides us with one of the first instances in which Windows CE
differs from the desktop versions of Windows. Under Windows CE, the command-line string
is a Unicode string. In all other versions of Windows, the string is always ASCII.

The final parameter, nCmdShow, specifies the initial state of the program’s main window. It is
passed by the parent application, usually Explorer, and is a recommendation of how the ap-
plication should configure its main window. This parameter might specify that the window
be initially displayed as an icon (SW_SHOWMINIMIZE), maximized (SW_SHOWMAXIMIZED)
to cover the entire desktop, or normal (SW_RESTORE), indicating that the window is placed
on the screen in the standard resizeable state. Other values specify that the initial state of the
window should be invisible to the user or that the window should be visible but incapable of
becoming the active window. Under Windows CE, the values for this parameter are limited

to only three allowable states: normal (SW_SHOW), hidden (SW_HIDE), and show without
activate (SW_SHOWNOACTIVATE). Unless an application needs to force its window to a pre-
defined state, this parameter is simply passed without modification to the ShowWindow func-
tion after the program’s main window has been created. ‘

The next line is the only functioning line of the application.

printf (“Hello World\n”);

1 When you're using the Visual Studio 2005 wizard to create a console application, it appears that a more conven-
tional “argc / argv” entry point is used. Visual Studio does this by linking a different prologue routine and redirect-
ing the application entry point to the custom routine. The prologue routine has the same “WinMain" style entry
point and then generates the conventional “argc / argv"” parameters and calls the console application’s main entry
point that is shown in the application template.

Chapter 1 Hello Windows CE

Windows CE supports most of the standard C library, including printf, getchar, and so forth.
An interesting aspect of this line is that unlike almost everywhere else in Windows CE, the
string is not Unicode but ANSI. There is a logical reason for this. For the C standard library
to be compliant with the ANSI standard, printf and the other string library functions such as
strcpy use ANSI strings. Of course, Windows CE supports the Unicode versions of the stan-
dard functions such as wprintf, getwchar, and wcscpy.

Finally the program ends with
return 0;

The value passed in the return line is available to other processes that use the Win32 API
GetExitCodeProcess.

Building Your First Application

To create Hellol from scratch on your system, start Microsoft Visual Studio and create a new
project by choosing the New Project command on the File menu. Select Visual C++ and
then the Smart Device project type in the left-hand tree view pane and Win32 Smart Device
Project in the right-hand pane. Type the name and directory for the project in the edit fields
at the bottom of the New Project dialog box, as shown in Figure 1-1.

New Project

W%\cd ows Visual Studio installed templates
- Office
- Smart Device TIATL Smart Device Project £ MFC Smart Device ActiveX Control
-~ Database 43 MFC Smart Device Applicatiol 4% MFC Smart Device DLL
i Starter Kits Project
L Web My Templates
- Other Languages
£ Visual C++ 2 Search Online Templates...
~ATL

FIGURE 1-1 The New Project dialog box allows Visual Studio 2005 to target Windows CE devices.

9

10

Part| Windows Programming Basics

Clicking OK displays the Smart Device Project Wizard, which allows you to select the target
software development kits (SDKs) and the type of application or DLL to create. The Web site
for this book (http.//www.microsoft.com/mspress/companion/9780735624177) has a custom-
built SDK that targets both the Visual Studio 2005 device emulator and a build of Windows
CE that runs on a PC. Downloading and installing that SDK on your machine provides the
ProgWinCE_SDK target that is selected in Figure 1-2.

ocket PC 2003

FIGURE 1-2 The Platforms page of the Smart Device ProjectWizard allows selection of one or more target
software development kits.

The final page of the Smart Device Project Wizard, the Project Settings page, tells Visual
Studio what to create. Your options are Windows Application, Console Application, DLL, or
Static Library. For the purposes of this example, and indeed for all the examples in this book,
the proper selection is Empty Project, as shown in Figure 1-3.

Now that the project is created, add the file hellol.cpp. Select the Project | Add New Item
menu item. Select a C++ file and type the name Hellol.cpp. In the blank file, type the text
shown in Listing 1-1. Select the ProgWinCE_SDK (ARMVA4I) as the target CPU and ProgWinCE_
SDK Emulator as the device target. Build the application by selecting the Build | Build
Solution menu item.

If you have a Windows CE system available, such as a Windows Mobile device, attach it to the
PC the same way you would to sync the contents of the device with the PC. Open Microsoft
ActiveSync, and establish a connection between the Windows Mobile device and the PC.
While it's not strictly necessary to have the ActiveSync connection to your Windows CE
device running (eMbedded Visual C++ is supposed to make this connection automatically),

Chapter 1 Hello Windows CE 11

I've found that having it running makes for a more stable connection between the develop-
ment environment and the Windows CE system.

rt Device Project Wizard - Hellol

FIGURE 1-3 The Project Settings page allows selection of what to create.

Running the Program

Selecting the Debug | Start without Debugging menu item will cause Visual Studio to launch
the Windows CE emulator (if the emulator is the target device), deploy the application, and
automatically launch it.

What's Wrong?

When you start Hellol, nothing seems to happen. In the emulator, the program appears to
make the screen flash. This is because the program starts, writes to the console, and termi-
nates. Unless you start the program from an already created console, Windows CE creates
the console window when Hellol executes the printf statement and closes the console auto-
matically when Hellol terminates.

On a Windows Mobile device, the application runs, but Windows Mobile devices don't come
with support to display the console functions such as the output from printf. It's possible

to add console support to a Windows Mobile device by adding a driver, console.dll, to the
Windows directory of the device. That driver must be written to take input from the driver
interface, create a window on the screen, and print the strings. The console driver available in
embedded versions of Windows CE does this.

12

Part1 Windows Programming Basics

Hello2

Now that you have the basics down, it's time to upgrade Hellol to something you can at
least see. Because many Windows CE systems don't have the console driver, Hello2 creates a
message box with the “Hello CE" text instead of using printf. Hello2 is shown in Listing 1-2.

LISTING 1-2 Hello2, a simple Windows application using the MessageBox function
Hello2.cpp

//
// Hello2 - A simple application for Windows CE
//

// Written for the ‘book Programm1 ng Windows CE
// Copyright (C) 2007 Douglas Boling

//

#include ‘<wi ndows h>

//

// Program entry point

// ’ :

int WINAPI WmMa'm (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPWSTR 1pCmdLine, int nCmdShow) {

MessageBox (NULL, TEXT ("He'l'lo WOr'Id") TEXT (“Hello2”), MB_0K);
return 0;

When you compile and run Hello2, you should see a small window like the one shown in
Figure 1-4.

FIGURE 1-4 Hello2 running on a Windows CE desktop

The MessageBox function that replaces priﬁtf provides two features for Hello2. First, and

most obvious, it creates a window and places the “Hello World" text in the window. The sec-
ond feature is that the MessageBox function doesn't return until the user closes the message
box window. This feature allows Hello2 to continue running until the user closes the window.

The MessageBox function is prototyped as

int MessageBox (HWND hWnd, LPCTSTR T1pText, LPCTSTR 1pCaption, UINT uType);

The first parameter of MessageBox is the handle to the top-level window that is the par-
ent of the message box when it is displayed. For now, leave this parameter NULL because
Hello2 doesn’t have any other windows. The second parameter is the text that appears in the

-

Chapter 1 Hello Windows CE 13

window. Notice that the string passed is couched in the TEXT macro, ensuring that it will be
compiled as Unicode. The third parameter, IpCaption, is the text that will appear in the title
bar of the window. The last parameter, uType, is a series of flags that specify how the message
box appears on the screen. The flags specify the number and type of buttons on the mes-
sage box; the icon, if any, on the message box; and the settings of style flags for the message

box window.

The flags listed in Table 1-2 are valid under Windows CE.

TABLE 1-2 Default Flags

Flags

For Buttons:
MB_OK
MB_OKCANCEL
MB_RETRYCANCEL
MB_YESNO
MB_YESNOCANCEL

Button or Icon

OK

OK and Cancel
Retry and Cancel
Yes and No

Yes, No, and Cancel

MB_ABORTRETRYIGNORE

For Icons:

MB_ICONEXCLAMATION, MB_ICONWARNING
MB_ICONINFORMATION, MB_ICONASTERISK
MB_ICONQUESTION

MB_YESNO

MB_ICONSTOP, MB_ICONERROR, MB_ICONHAND

MB_DEFBUTTONI
MB_DEFBUTTON2
MB_DEFBUTTON3
For Window Styles:

Abort, Retry, and Ignore

Exclamation point

Lower case i within a circle
Question mark

Yes and No

Stop sign

First button

Second button
Third button

'MB_SETFOREGROUND
MB_TOPMOST

Bring the message box to the foreground.

Make the message box the topmost window.

The return value from MessageBox indicates the button clicked by the user. The return values

are as follows:

IDOK OK button pressed

IDYES Yes button pressed

IDNO No button pressed

IDCANCEL Cancel button pressedkor Esc key'pressedk -
IDABORT ‘Abort button pressed

IDRETRY Retry button pressed

/D/GNORE Ignore button pressed

14 Part| Windows Programming Basics

MessageBox is a handy function to make an application display a simple but informative dia-
log box.

One gotcha to look out for here: If you're debugging and recompiling the program, it can't
be downloaded again if an earlier version of the program is still running on the target sys-
tem. That is, make sure Hello2 isn't running on the remote system when you start a new build
in Visual Studio, or the autodownload part of the compile process will fail. If this happens,
close the application and choose the Build | Deploy Solution menu command in Visual Studio
to download the newly compiled file.

Hello2 displays a simple window, but that window is only as configurable as the MessageBox
function allows. How about showing a window that is completely configurable by the appli-
cation? Before we can do that, a quick review of how a Windows application really works is in |
order.

Anatomy of a Windows-Based Application

Windows-based programming is far different from MS-DOS-based or Unix-based program-
ming. An MS-DOS or Unix program uses getc-and putc-style functions to read characters
from the keyboard and write them to the screen whenever the program needs to do so.
This is the classic “pull” style used by MS-DOS and Unix programs, which are procedural. A
Windows program, on the other hand, uses a “push” model, in which the program must be
written to react to notifications from the operating system that a key has been pressed or a
command has been received to repaint the screen.

Windows applications don't ask for input from the operating system; the operating system
notifies the application that input has occurred. The operating system achieves these notifi-
cations by sending messages to an application window. All windows are specific instances of
a window class. Before you go any further, be sure you understand these terms.

The Window

A window is a region on the screen, rectangular in all but the most contrived of cases, that
has a few basic parameters, such as position—yx, y, and z (@ window is over or under other
windows on the screen)—uvisibility, and hierarchy—the window fits into a parent/child win-
dow relationship on the system desktop, which also happens to be a window.

Every application that displays itself on the desktop has at least one window. In the preced-
ing Hello2 example, the system created the window for the application when the message
box was displayed. The message box is actually composed of two windows: the window that
is the message box and the window that contains the Hello World text.

Chapter 1 Hello Windows CE 15

To create a window that is unique to an application, the application must first tell Windows
CE some of the basic characteristics of the window to be created. These basic characteristics
are shared among all windows of this type, or as Windows refers to it, all windows of a spe-
cific window class.

The Window Class

Every window created is a specific instance of a window class. A window class is a template
that defines a number of attributes common to all the windows of that class. In other words,
windows of the same class share the same set of basic attributes.

Windows provides a number of predefined window classes that are used by applications such
as the button class seen on the message box in Hello2. However, the main window of a Win32
application rarely uses one of the predefiend classes. Instead it defines, or rather registers,

a unique window class with the system. This class will define items such as the background
color of the window, some default styles and most importantly the window procedure.

The Window Procedure

The behavior of all windows belonging to a class is defined by the code in its window proce-
dure for that class. The window procedure handles all notifications and requests sent to the
window. These notifications are sent either by the operating system, indicating that an event
has occurred to which the window must respond, or by other windows querying the window
for information.

These notifications are sent in the form of messages. A message is nothing more than a call
being made to a window procedure, with a parameter indicating the nature of the notifi-
cation or request. Messages are sent for events such as a window being moved or resized
or to indicate a key press. The values used to indicate messages are defined by Windows.
Applications use these predefined constants, such as WM_CREATE and WM_MOVE, when
referring to messages. Because hundreds of messages can be sent, Windows conveniently
provides a default processing function to which a message can be passed when no special
processing is necessary by the window class for that message.

The Life of a Message

Stepping back for a moment, look at how Windows coordinates all of the messages going to all
of the windows in a system. Windows monitors all the sources of input to the system, such as
the keyboard, mouse, touch screen, and any other hardware that could produce an event that
might interest a window. As an event occurs, a message is composed and directed to a specific
window. Instead of Windows directly calling the window procedure, the system imposes an

16

Part] Windows Programming Basics

intermediate step. The message is placed in a message queue for the application? that owns
the window. When the application is prepared to receive the message, it pulls it out of the
queue and tells Windows to dispatch that message to the proper window in the application.

If it seems to you that a number of indirections are involved in that process, you're right. You
can break it down as follows:

1. Anevent occurs, so a message is composed by Windows and placed in a message
queue for the application that owns the destination window. Events can occur, and
therefore messages can be composed, faster than an application can process them. The
queue allows an application to process messages at its own rate, although the applica-
tion had better be responsive, or the user will see some jerkiness in the application. The
message queue also allows Windows to set a notification in motion and continue with
other tasks without having to be limited by the responsiveness of the application to
which the message is being sent.

2. The application removes the message from its message queue and calls Windows back
to dispatch the message. While it may seem strange that the application gets a mes-
sage from the queue and then simply calls Windows back to process the message,
there's a method to this madness. Having the application pull the message from the
queue allows it to preprocess the message before it asks Windows to dispatch the mes-
sage to the appropriate window. In a number of cases, the application might call differ-
ent functions in Windows to process specific kinds of messages.

3. Windows dispatches the message; that is, it calls the appropriate window procedure.
Instead of having the application directly call the window procedure, another level of
indirection occurs, allowing Windows to coordinate the call to the window procedure
with other events in the system. The message doesn’t stand in another queue at this
point, but Windows might need to make some preparations before calling the window
procedure. In any case, the scheme relieves the application of the obligation to deter-
mine the proper destination window—Windows does this instead.

4. The window procedure processes the message. All window procedures have the same
calling parameters: the handle of the specific window instance being called, the mes-
sage, and two generic parameters that contain data specific to each message type. The
window handle differentiates each instance of a window for the window procedure.
The message parameter, of course, indicates the event that the window must react to.
The two generic parameters contain data specific to the message being sent. For ex-
ample, in a WM_MOVE message indicating that the window is about to be moved, one
of the generic parameters points to a structure containing the new coordinates of the
window.

2 Technically, each thread in a Windows CE application that creates a window has a message queue and it's that
thread that must process the message queue. I'll talk about threads later in the book.

Chapter 1 Hello Windows CE 17

Hello3, shown in Listing 1-3, demonstrates all aspects of a Windows program, from register-

ing the window class to the creation of the window to the window procedure. Hello3 has the
same entry point, WinMain,as the first two examples; but because it creates its own window,
it must register a window class for the main window, create the window, and provide a mes-

sage loop to process the messages for the window.

LISTING 1-3

Hello3

//
// Hello3 - A simple application for Windows CE
//

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

//
#include <windows.h> // For all that Windows stuff

LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

// '
// Program entry point i
//
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPWSTR TpCmdLine, int nCmdShow) {

WNDCLASS wc;
HWND hWnd;
MSG msg;

// Register application main window class.

wc.style = 0; // Window style

wc. TpfnWndProc = MainWndProc; // Callback function
wc.cbClsExtra = 0; // Extra class data
wc.cbWndExtra = 0; // Extra window data
wc.hInstance = hInstance; // Owner handle
wc.hIcon = NULL, // Application icon

wc.hCursor = LoadCursor (NULL, IDC_ARROW);// Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wc.lpszMenuName = NULL; // Menu name
wc.IpszClassName = TEXT(“MyClass™); // Window class name

if (RegisterClass (&wc) == 0) return -1;

// Create main window.

18 Part] Windows Programming Basics

hWnd = CreateWindowEx(WS_EX_NODRAG, // Ex style flags
TEXT(“MyClass™), ‘ // Window class
TEXT(“Hell0™), // Window title

// Style flags
WS_VISIBLE | WS_CAPTION | WS_SYSMENU,

CW_USEDEFAULT, // X position
CW_USEDEFAULT, // y position
CW_USEDEFAULT, // Initial width
CW_USEDEFAULT, // Initial height

NULL, // Parent

NULL, // Menu, must be null
hInstance, // Application instance
NULL); // Pointer to create

// parameters
if (!IsWindow (hwnd)) return -2; // Fail code if not created.

// Standard show and update calls
ShowWindow (hWnd, nCmdShow);
UpdateWindow (hWnd);

// Application message Tloop
while (GetMessage (&msg, NULL, 0, 0)) {
TranslateMessage (&msg);
DispatchMessage (&msg);
}
// Instance cleanup
return msg.wParam;
}
//

// MainWndProc - Callback function for application window
//
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
PAINTSTRUCT ps;
RECT rect;
HDC hdc;

switch (wMsg) {

case WM_PAINT:
// Get the size of the client rectangle
GetClientRect (hwnd, &rect);

hdc = BeginPaint (hWnd, &ps);
DrawText (hdc, TEXT (“Hello Windows CE!”), -1, &rect,
DT_CENTER | DT_VCENTER | DT_SINGLELINE);

EndPaint (hWnd, &ps);
return 0;

case WM_DESTROY:
PostQuitMessage (0);
break;

1

return DefWindowProc (hWnd, wMsg, wParam, 1Param);

Chapter 1 Hello Windows CE 19

Registering the Window Class

In WinMain, Hello3 registers the window class for the main window. Registering a window
class is simply a matter of filling out a rather extensive structure describing the class and call-
ing the RegisterClass function. RegisterClass and the WNDCLASS structure are defined as
follows:

ATOM RegisterClass (const WNDCLASS *1pWndClass);

typedef struct _WNDCLASS {
UINT style;
WNDPROC 1pfnWndProc;
int cbClsExtra;
int cbWndExtra;
HANDLE hInstance;
HICON hIcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCTSTR 1pszMenuName;
LPCTSTR 1pszClassName;
} WNDCLASS;

The parameters assigned to the fields of the WNDCLASS structure define how all instances of
the main window for Hello3 will behave. The initial field, style, sets the class style for the win-
dow. In Windows CE, the class styles are limited to the following:

B CS_GLOBALCLASS Indicates that the class is global. This flag is provided only for
compatibility because all window classes in Windows CE are process global.

B CS_HREDRAW Tells the system to force a repaint of the window if the window is sized
horizontally.

® CS_VREDRAW Tells the system to force a repaint of the window if the window is sized
vertically.

® CS_NOCLOSE Disables the Close button if one is present on the title bar.
® CS_PARENTDC Causes a window to use its parent’s device context.

® CS_DBLCLKS Enables notification of double-clicks (or double-taps on a touch screen)
to be passed to the parent window.

The IpfnaWndProc field should be loaded with the address of the window's window procedure.
Because this field is typed as a pointer to a window procedure, the declaration to the pro-
cedure must be defined in the source code before the field is set. Otherwise, the compiler’s
type checker will flag this line with a warning.

The cbClsExtra field allows the programmer to add extra space in the class structure to store
class-specific data known only to the application. The cbWndExtra field is much handier. This
field adds space to the Windows internal structure responsible for maintaining the state of

20

Part| Windows Programming Basics

each instance of a window. Instead of storing large amounts of data in the window structure
itself, an application should store a pointer to an application-specific structure that contains
the data unique to each instance of the window. Under Windows CE, both the cbClsExtra and
cbWhndExtra fields must be multiples of 4 bytes.

The hinstance field must be filled with the program’s instance handle, which specifies the
owning process of the window. The hlcon field is set to the handle of the window's de-
fault icon. For Hello3, however, no icon is supplied, and, unlike other versions of Windows,
Windows CE doesn’t have any predefined icons that can be loaded.)

Unless the application being developed is designed for a Windows CE system with a mouse,
the next field, hCursor, must be set to NULL. Fortunately, the function call LoadCursor (IDC_
ARROW) returns NULL if the system doesn’t support cursors.

The hbrBackground field specifies how Windows CE draws the background of the window.
Windows uses the brush, a small predefined array of pixels, specified in this field to draw the
background of the window. Windows CE provides a number of predefined brushes that you
can load using the GetStockObject function. If the hbrBackground field is NULL, the window
must handle the WM_ERASEBKGND message sent to the window telling it to redraw the
background of the window. In the case of Hello3, the WHITE_BRUSH stock object sets the
background to white.

The IpszMenuName field must be set to NULL because Windows CE doesn't support windows
directly having a menu. In Windows CE, menus are provided by menu bar, command bar, or
command band controls that the main window can create.

Finally the IpszClassName parameter is set to a programmer-defined string that identifies the
class name to Windows. Hello3 uses the string MyClass.

After the entire WNDCLASS structure has been filled out, the RegisterClass function is called
with a pointer to the WNDCLASS structure as its only parameter. If the function is successful,
a value identifying the window class is returned. If the function fails, the function returns 0. .

Creating the Window

After the window class is successfully registered, the main window can be created. All
Windows programmers learn early in their programming lives the CreateWindow and
CreateWindowEx function calls. The prototype for CreateWindowEx is as follows:

HWND CreateWindowEx (DWORD dwExStyle, LPCTSTR 1pClassName,
LPCTSTR 1pWindowName, DWORD dwStyle,
int x, int y, int nWidth, int nHeight,
HWND hWndParent, HMENU hMenu,
HINSTANCE hInstance, LPVOID 1pParam);

Chapter1 Hello Windows CE 21

Although the number of parameters looks daunting, the parameters are fairly logical after
you learn them. The first parameter is the extended style flags. The extended style flags sup-
ported by Windows CE are as follows:

B WS_EX_TOPMOST Window is topmost.

® WS_EX_ WINDOWEDGE Window has a raised edge.
B WS_EX_CLIENTEDGE Window has a sunken edge.
®m WS_EX_STATICEDGE 3D look for static windows.

® WS_EX_OVERLAPPEDWINDOW Combines WS_EX_WINDOWEDGE and
WS_EX_CLIENTEDGE.

® WS_EX_CAPTIONOKBUTTON Window has an OK button on caption.
m WS_EX_CONTEXTHELP Window has help button on caption.
® WS_EX_NOACTIVATE Window is not activated when clicked.

m WS_EX_NOANIMATION Top-level window will not have exploding rectangles when
created nor have a button on the taskbar.

®m WS_EX_NODRAG Prevents window from being moved.
m WS_EX_ABOVESTARTUP Positions a window above the password screen.

m WS_EX_INK Prevents screen tap sound when tapping stylus on window.

The dwExStyle parameter is the only difference between CreateWindowEx and CreateWindow.
In fact, if you look at the declaration of CreateWindow in the Windows CE header files, it's
simply a call to CreateWindowEx with the dwExStyle parameter set to 0.

The second parameter is the name of the window class of which your window will be an
instance. In the case of Hello3, the class name is MyClass, which matches the name of the
class registered in RegisterClass.

The next field is referred to as the window text. In other versions of Windows, this is the text
that would appear on the title bar of a standard window. On most embedded systems, main
windows rarely have title bars; this text is used only on the taskbar button for the window.
On the Windows Mobile devices, however, this text is shown on the navigation bar at the top
of the display. The text is couched in a TEXT macro, which ensures that the string will be con-
verted to Unicode under Windows CE.

The style flags specify the initial styles for the window. The style flags are used both for gen-
eral styles that are relevant to all windows in the system and for class-specific styles, such as
those that specify the style of a button or a list box. In this case, all you need to specify is that

22 Part| Windows Programming Basics

the window be created initially visible with the WS_VISIBLE flag. The supported style flags are

as follows:

m WS _BORDER The window will have a thin border.

® WS_CAPTION The window will have a title bar.

B WS_CHILD The window is a child window. The menu parameter will contain the han-
dle of the parent window.

® WS_DISABLED The window will not accept any input.

® WS_DLGFRAME The window frame looks like the frame of a dialog box.

m WS_GROUP Defines the first in a group of control windows. All subsuquent windows
will be in this group until another window with the WS_GROUP style is created.

®m WS _HSCROLL The window is created with a horizonal scroll bar.

B WS _ VSCROLL The window is created with a vertical scroll bar.

m WS_OVERLAPPED The window will have a title bar and a standard border.

B WS_POPUP The window is a top-level window owned by the window whose handle is
passed in the hMenu parameter.

m WS _SYSMENU The window will have a Close box.

® WS_TABSTOP When used on a child window in a dialog box, it indicates that the win-
dow would like to be in the chain of windows that receives keyboard focus when the
Tab key is pressed.

m WS_THICKFRAME The window will have a thick border that can be “grabbed” by the
mouse or stylus to resize the window.

® WS_SIZEBOX Same as WS_THICKFRAME.

® WS_VISIBLE The window will be visible to the user if it resides at the top of the

z-order.

In addition, all windows in Windows CE are implicitly set to the WM_CLIPCHILDREN- and
WS_CLIPSIBLINGS-style flags.

The next four fields specify the initial position and size of the window. Because most ap-
plications under Windows CE are full-screen windows, the size and position fields are set to
default values, which are indicated by the CW_USEDEFAULT flag in each of the fields. The
default value settings create a window that is sized to fit the screen work area. The work area
is generally all of the screen not taken up by the shell taskbar. Be careful not to assume any
particular screen size for a Windows CE device because different implementations have dif-
ferent screen sizes.

Chapter 1 Hello Windows CE 23

The next field is set to the handle of the parent window. Because this is the top-level window,
the parent window field is set to NULL. The menu field is also set to NULL because Windows
CE does not support menus on top-level windows.

The hinstance parameter is the same instance handle that was passed to the program.
Creation of windows is one case in which that instance handle, saved at the start of the rou-
tine, comes in handy. The final parameter is a pointer that can be used to pass data from the
CreateWindow call to the window procedure during the WM_CREATE message. In this ex-
ample, no additional data needs to be passed, so the parameter is set to NULL.

If successful, the CreateWindow call returns the handle to the window just created, or it re-
turns 0 if an error occurred during the function. That window handle is then used in the two
statements (ShowWindow and UpdateWindow) just after the error-checking if statement. The
ShowWindow function modifies the state of the window to conform with the state given in
the nCmdShow parameter passed to WinMain. The UpdateWindow function forces Windows
to send a WM_PAINT message to the window that has just been created.

The Message Loop

After the main window has been created, WinMain enters the message loop, which is the
heart of every Windows application. Hello3's message loop is shown at the top of the next

page.

while (GetMessage (&msg, NULL, 0, 0)) {
TranslateMessage (&msg);
DispatchMessage (&msg);

}

The loop is simple: GetMessage is called to get the next message in the application’s mes-
sage queue. If no message is available, the call waits, blocking that application’s thread until
a message is available. When a message is available, the call returns with the message data
contained in an MSG structure. The MSG structure itself contains fields that identify the mes-
sage, provide any message-specific parameters, and identify the last mouse point recorded
before the message was sent. This location information is different depending on if the
system has a mouse or a touch panel. On mouse-based systems the point returned is the
current mouse position. On touch panel based systems the last mouse point is the last point
tapped by the stylus.

The TranslateMessage function translates appropriate keyboard messages into a charac-
ter message. (I'll talk about others of these filter messages, such as IsDialogMsg, later.) The
DispatchMessage function then tells Windows to forward the message to the appropriate
window in the application.

This GetMessage, TranslateMessage, DispatchMessage loop continues until GetMessage
receives a WM_QUIT message, which, unlike all other messages, causes GetMessage to

24

Part| Windows Programming Basics

return 0. As can be seen from the while clause, the return value 0 by GetMessage causes the
loop to terminate.

After the message loop terminates, the program can do little else but clean up and exit.
In the case of Hello3, the program simply returns from WinMain. The value returned by
WinMain becomes the return code of the program. Traditionally, the return value is the value
in the wParam parameter of the last message (WM_QUIT). The wParam value of WM_QUIT is
set when that message is sent in response to a PostQuitMessage call made by the application.

The Window Procedure

The messages sent or posted to the Hello3 main window are sent to the procedure
MainWndProc. MainWndProc, like all window procedures, is prototyped as follows:

LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param);

The LRESULT return type is actually just a long (a long is a 32-bit value under Windows) but
is typed this way to provide a level of indirection between the source code and the machine.
While you can easily look into the include files to determine the real type of variables that
are used in Windows programming, this can cause problems when you attempt to move
your code across platforms. Although it can be useful to know the size of a variable type for
memory-use calculations, there is no good reason to use (and plenty of reasons not to use)
the base-type definitions provided by windows.h.

The CALLBACK-type definition specifies that this function is an external entry point into the
EXE, necessary because Windows calls this procedure directly. The CALLBACK-type definition
varies depending on which version of Windows is being targeted, but it typically indicates
that parameters are pushed onto the stack in a right-to-left manner.

The first of the parameters passed to the window procedure is the window handle, which is
useful when you need to define the specific instance of the window. The wMsg parameter
indicates the message being sent to the window. This isn't the MSG structure used in the
message loop in WinMain, but a simple, unsigned integer containing the message value. The
remaining two parameters, wParam and IParam, are used to pass message-specific data to
the window procedure. The names wParam and IParam come to us from the Win16 days,
when wParam was a 16-bit value and /Param was a 32-bit value. In Windows CE, as in other
Win32 operating systems, both the wParam and IParam parameters are 32 bits wide.

Hello3 has a traditional window procedure that consists of a switch statement that parses the
wMsg message ID parameter. The switch statement for Hello3 contains two case statements,
one to parse the WM_PAINT message and one for the WM_DESTROY message. This is about
as simple as a window procedure can get.

Chapter 1 Hello Windows CE 25

WM_PAINT

Painting the window, and therefore processing the WM_PAINT message, is one of the critical
functions of any Windows program. As a program processes the WM_PAINT message, the
look of the window is achieved. Aside from painting the default background with the brush
you specified when you registered the window class, Windows provides no help for process-
ing this message. The lines of Hello3 that process the WM_PAINT messages are shown here:

case WM_PAINT:
// Get the size of the client rectangle
GetClientRect (hWnd, &rect);

hdc = BeginPaint (hWnd, &ps);
DrawText (hdc, TEXT (“Hello Windows CE!”), -1, &rect,
DT_CENTER | DT_VCENTER | DT_SINGLELINE);

EndPaint (hWnd, &ps);
return 0;

Before the window can be drawn, the routine must determine its size. In a Windows pro-
gram, a standard window is divided into two areas: the nonclient area and the client area. A
window’s title bar and its sizing border commonly make up the nonclient area of a window,
and Windows is responsible for drawing it. The client area is the interior part of the window,
and the application is responsible for drawing that. An application determines the size and
location of the client area by calling the GetClientRect function. The function returns a RECT
structure that contains left, top, right, and bottom elements that delineate the boundaries
of the client rectangle. The advantage of the client-versus-nonclient area concept is that an
application doesn't have to account for drawing such standard elements of a window as the
title bar.

Other versions of Windows supply a series of WM_NCxxx messages that enable your applica-
tions to take over the drawing of the nonclient area. In Windows CE, windows seldom have
title bars. Because there’s so little nonclient area, the Windows CE team decided not to send
the nonclient messages to the window procedure. Instead, the nonclient-area messages are
sent directly to the default window procedure.

All drawing performed in a WM_PAINT message must be enclosed by two functions:
BeginPaint and EndPaint. The BeginPaint function returns an HDC, or handle to a device con-
text. A device context is a logical representation of a physical display device such as a video
screen or a printer. Windows programs never modify the display hardware directly. Instead,
Windows isolates the program from the specifics of the hardware with, among other tools,
device contexts.

26

Part | Windows Programming Basics

BeginPaint also fills in a PAINTSTRUCT structure that contains a number of useful parameters:

typedef struct tagPAINTSTRUCT {
HDC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL fIncUpdate;
BYTE rgbReserved[32];
} PAINTSTRUCT;

The hdc field is the same handle that’s returned by the BeginPaint function. The fErase field
indicates whether the window procedure needs to redraw the background of the window.
The rcPaint field is a RECT structure that defines the client area that needs repainting. Hello3
ignores this field and assumes that the entire client window needs repainting for every
WM_PAINT message, but this field is quite handy when performance is an issue because only
part of the window might need repainting. Windows actually prevents repainting outside the
rcPaint rectangle, even when a program attempts to do so. The other fields in the structure,
fRestore, fIncUpdate, and rgbReserved, are used internally by Windows and can be ignored by
the application.

The only painting that takes place in Hello3 occurs in one line of text in the window. To do
the painting, Hello3 calls the DrawText function. | cover the details of DrawText in Chapter 2,
“Drawing on the Screen,” but if you look at the function it's probably obvious to you that this
call draws the string “Hello Windows CE” on the window. After DrawText returns, EndPaint is
called to inform Windows that the program has completed its update of the window.

Calling EndPaint also validates any area of the window you didn’t paint. Windows keeps a list
of areas of a window that are invalid (areas that need to be redrawn) and valid (areas that are
up to date). By calling the BeginPaint and EndPaint pair, you tell Windows that you've taken
care of any invalid areas in your window, whether or not you've actually drawn anything in
the window. In fact, you must call BeginPaint and EndPaint, or validate the invalid areas of the
window by other means, or Windows will simply continue to send WM_PAINT messages to
the window until those invalid areas are validated.

WM_DESTROY

The other message processed by Hello3 is the WM_DESTROY message. The WM_DESTROY
message is sent when a window is about to be destroyed. Because this window is the

main window of the application, the application should terminate when the window is
destroyed. To make this happen, the code processing the WM_DESTROY message calls
PostQuitMessage. This function places a WM_QUIT message in the message queue. The one
parameter of this function is the return code value that will be passed back to the application
in the wParam parameter of the WM_QUIT message.

Chapter 1 Hello Windows CE 27

As I've mentioned, when the message loop sees a WM_QUIT message, it exits the loop. The
WinMain function then calls Terminstance, which, in the case of Hello3, does nothing but
return. WinMain then returns, terminating the program.

Hello3 is the classic Windows program. This programming style is sometimes call the Petzold
method of Windows programming in homage to the ultimate guru of Windows program-
ming, Charles Petzold. Charles's book Programming Microsoft Windows is currently in its fifth
edition and is still the best book for learning Windows programming.

| prefer a somewhat different layout of my Windows programs. In a sense, it's simply a
method of componentizing the function of a Windows program, which makes it much easier
to copy parts of one program to another. In the final example of this chapter, | introduce
this programming style along with a few extra features that are necessary for Windows CE
applications.

HelloCE

One criticism of the typical SDK style of Windows programming has always been the huge
switch statement in the window procedure. The switch statement parses the message to the
window procedure so that each message can be handled independently. This standard struc-
ture has the one great advantage of enforcing a similar structure across almost all Windows
applications, making it much easier for one programmer to understand the workings of
another programmer’s code. The disadvantage is that all the variables for the entire window
procedure typically appear jumbled at the top of the procedure.

Over the years, I've developed a different style for my Windows programs. The idea is to
break up the WinMain and WinProc procedures into manageable units that can be eas-

ily understood and easily transferred to other Windows programs. WinMain is broken up
into procedures that perform application initialization, instance initialization, and instance
termination. Also in WinMain is the ubiquitous message loop that's the core of all Windows
programs.

| break the window procedure into individual procedures, with each handling a specific mes-
sage. What remains of the window procedure itself is a fragment of code that simply looks
up the message that's being passed to see whether a procedure has been written to handle
that message. If so, that procedure is called. If not, the message is passed to the default win-
dow procedure.

This structure divides the handling of messages into individual blocks that can be more eas-
ily understood. Also, with greater isolation of one message-handling code fragment from
another, you can more easily transfer the code that handles a specific message from one pro-
gram to the next. | first saw this structure described a number of years ago by Ray Duncan

in one of his old "Power Programming” columns in PC Magazine. Ray is one of the legends

28

Partl Windows Programming Basics

in the field of MS-DOS and OS/2 programming. |'ve since modified the design a bit to fit my
needs, but Ray should get the credit for this program structure.

The Code

The source code for HelloCE is shown in Listing 1-4.

LISTING 1-4 The HelloCE program
HelloCE.h
HelloCE.cpp

//
// HelloCE - A simple application for Windows CE
//

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

//

#include <windows.h> // For all that Windows stuff
#include “helloce.h” // Program-specific stuff

/=
// Global data

/7

const TCHAR szAppName[] = TEXT(“Hel1oCE”);

HINSTANCE hInst; // Program instance handle

// Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {
WM_PAINT, DoPaintMain,
WM_DESTROY, DoDestroyMain,
}

//

// Program entry point

//

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPWSTR TpCmdLine, int nCmdShow) {

MSG msg;
int rc = 0;
HWND hwndMain;

// Initialize this instance.
hwndMain = InitInstance (hInstance, 1pCmdLine, nCmdShow);
if (hwndMain == 0) return 0x10;

// Application message loop

while (GetMessage (&msg, NULL, 0, 0)) {
TranslateMessage (&msg); -
DispatchMessage (&msg);

Chapter 1 Hello Windows CE

// Instance cleanup
return TermInstance (hInstance, msg.wParam);

// InitInstance - Instance initialization

//

HWND InitInstance (HINSTANCE hInstance, LPWSTR 1pCmdLine, int nCmdShow) {
WNDCLASS wc;
HWND hWnd;

// Save program instance handle in global variable.
hInst = hInstance;

#if defined (WIN32_PLATFORM_PSPC) || defined(WIN32_PLATFORM_WFSP)
// If Windows Mobile, only allow one instance of the application
hWwnd = FindWindow (szAppName, NULL);
if (hwnd) {
SetForegroundwindow ((HWND) (((DWORD)hWnd) | 0x01));
return 0;
}
#endif

// Register application main window class.

wc.style = 0; // Window style

wc. TpfnWndProc = MainWndProc; // Callback function
wc.cbClsExtra = 0; // Extra class data
wc.cbWndExtra = 0; // Extra window data
wc.hInstance = hlnstance; // Owner handle
wc.hIcon = NULL, // Application icon

wc.hCursor = LoadCursor (NULL, IDC_ARROW);// Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);

wc. TpszMenuName = NULL; // Menu name
wc.1pszClassName = szAppName; // Window class name

if (RegisterClass (&wc) == 0) return 0;

// Create main window.

hWnd = CreateWindow (szAppName, // Window class
TEXT(“He11oCE™), // Window title
// Style flags
WS_VISIBLE | WS_CAPTION | WS_SYSMENU,

CW_USEDEFAULT, // X position
CW_USEDEFAULT, // y position
CW_USEDEFAULT, // Initial width
CW_USEDEFAULT, // Initial height

NULL, // Parent

NULL, // Menu, must be null
hInstance, // Application instance
NULL); // Pointer to create

// parameters
if (1IsWindow (hWnd)) return 0; // Fail code if not created.

// Standard show and update calls
ShowWindow (hWnd, nCmdShow);
UpdatewWindow (hwnd);

29

30 Part] Windows Programming Basics
return hWnd;

// TermInstance - Program cleanup
/7
int TermInstance (HINSTANCE hInstance, int nDefRC) {
return nDefRC;
}
//
// Message hand11ng procedures for main window

// MainWndProc - Callback function for application window
/7
LRESULT CALLBACK MainWndProc (HWND hWnd, -UINT wMsg, WPARAM wParam,
LPARAM TParam) {
INT i;
/7
// Search message list to see if we need to handle this
// message. - If +in Tist, call procedure.
//
for (i = 0; i < dim(MainMessages); i++) {
if (wMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, 1Param);

}

‘return DefWindowProc (hWnd, wMsg, wParam, 1Param);
}
et
// DoPaintMain - Process WM_PAINT message for window.
//

LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {
PAINTSTRUCT ps;
RECT rect;
HDC hdc;

// Get the size of the client rectangle
GetClientRect (hWnd, &rect);

hdc = BeginPaint. (hWnd, &ps);
DrawText (hdc, TEXT (“Hello Windows CE!”), -1, &rect,
DT_CENTER ‘| DT_VCENTER | DT_SINGLELINE);

EndPaint (hWnd, &ps);
_return. 0;

// DoDestroyMa1n - Process WM“DESTROY message for w1ndow

/7

LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {

PostQuitMessage (0);

return 0;

Chapter 1 Hello Windows CE 31

If you look over the source code for HelloCE, you'll see the standard boilerplate for all pro-
grams in this book. A few variables defined globally follow the defines and includes. | know
plenty of good arguments why no global variables should appear in a program, but | use
them as a convenience that shortens and clarifies the example programs in the book. Each
program defines an szAppName Unicode string to be used in various places in that pro-
gram. | also use the hinst variable a number of places, and I'll mention it when | cover the
Initinstance procedure. The final global structure is a list of messages along with associated
procedures to process the messages. This structure is used by the window procedure to as-
sociate messages with the procedure that handles them.

In HelloCE, WinMain has two basic functions: it calls InitInstance (where the applica-

tion initialization code is kept), processes the message in the message loop, and calls
Terminatelnstance when the message loop exits. In this program template, WinMain be-
comes a boilerplate routine that almost never changes. In general, the only changes that are
made to WinMain concern modification of the processing of the message loop to process for
keyboard accelerators, watch for modeless dialog box messages, or other tasks.

Initinstance

The main task of InitInstance is to register the main window’s window class, create the
application’s main window, and display it in the form specified in the nCmdShow parameter
passed to WinMain. There is also some conditionally compiled code that, if compiled for a
Windows Mobile device, prevents more than one instance of the program from running at
any one time.

The first task performed by Initinstance is to save the program’s instance handle hinstance

in a global variable named hinst. The instance handle for a program is useful at a number of
points in a Windows application. | save the value here because the instance handle is known,
and this is a convenient place in the program to store it.

When running on a Windows Mobile device, HelloCE uses FindWindow to see whether an-
other copy of itself is currently running. This function searches the top-level windows in the
system looking for ones that match the class name or the window title or both. If a match

is found, the window is brought to the foreground with SetForegroundWindow. The routine
then exits with a zero return code, which causes WinMain to exit, terminating the applica-
tion. Although this book doesn’t cover Windows Mobile specific code, the popularity of the
devices means that they are often used as Windows CE devices during devilopment. Because
so many developers are using Windows Mobile devices, unless otherwise mentioned, all the
examples in this book will run on these devices.

These Windows Mobile-specific lines are enclosed in #if and #endif lines. These lines tell
the compiler to include them only if the condition of the #if statement is true—in this case,
if the constants WIN32_PLATFORM_PSPC or WIN32_PLATFORM_WEFSP are defined. These
constants are defined in the Project Settings for the project. A quick look at the C/C++ tab

32

Part| Windows Programming Basics

of the Project Properties dialog box shows an entry field for Preprocessor Definitions. In
this field, one of the definitions is $(CePlatform), which is a placeholder for a registry value.
Deep in the registry, under the key [HKEY LOCAL_MACHINE]\Software\Microsoft\Windows
CE Tools\SDK, you can find series of registry keys, one for each target platform installed

in Visual Studio 2005. Each key has a value that points to an XML file that contains in-
formation about that platform including the definition for the CePlatform. CePlatform is
defined differently depending on the target project. For Pocket PC projects, CePlatform

is defined as WIN32_PLATFORM_PSPC. For Smartphone projects, the value is defined as
WIN32_PLATFORM_WEFSP.

The registering of the window class and the creation of the main window are quite similar to
those in the Hello3 example. The only difference is the use of the global string szAppName as
the class name of the main window class. Each time | use this template, | change the szApp-
Name string to match the program name. This keeps the window class names somewhat
unique for the different applications, enabling the FindWindow code in HelloCE to work.

That completes the Initinstance function. At this point, the application’s main window has
been created and updated. So even before you have entered the message loop, messages
have been sent to the main window’s window procedure. It's about time to look at this part
of the program.

MainWndProc

You spend most of your programming time with the window procedure when you're writing
a Windows program. The window procedure is the core of the program, the place where the
actions of the program’s windows create the personality of the program.

It's in the window procedure that my programming style differs significantly from most
Windows programs written without the help of a class library such as MFC. For almost all of
my programs, the window procedure is identical to the one previously shown in HelloCE.
Before continuing, | repeat: this program structure isn't specific to Windows CE. | use this
style for all my Win32 applications, whether they are for Windows XP, Windows Vista, or
Windows CE.

This style reduces the window procedure to a simple table lookup function. The idea is to
scan the MainMessages table defined early in the C++ file for the message value in one of
the entries. If the message is found, the associated procedure is then called, passing the
original parameters to the procedure processing the message. If no match is found for the
message, the DefWindowProc function is called. DefWindowProc is a Windows function that
provides a default action for all messages in the system, which frees a Windows program
from having to process every message being passed to a window.

Chapter1 Hello Windows CE 33

The message table associates message values with a procedure to process it. The table is
listed here:

// Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {
WM_PAINT, DoPaintMain,
WM_DESTROY, DoDestroyMain,
I

The table is defined as a constant, not just as good programming practice, but also because
it's helpful for memory conservation. Because Windows CE programs can be executed .in
place in ROM, data that doesn’t change should be marked constant. This allows the Windows
CE program loader to leave such constant data in ROM instead of loading a copy into RAM,
thus saving precious RAM.

The table itself is an array of a simple two-element structure. The first entry is the message
value, followed by a pointer to the function that processes the message. While the functions
could be named anything, I'm using a consistent structure throughout the book to help you
keep track of them. The names are composed of a Do prefix (as a bow to object-oriented
practice), followed by the message name and a suffix indicating the window class associated
with the table. So DoPaintMain is the name of the function that processes WM_PAINT mes-
sages for the main window of the program.

DoPaintMain and DoDestroyMain

The two message-processing routines in HelloCE are DoPaintMain and DoDestroyMain. They
mimic the function of the case clauses in Hello3. The advantage of the separate routines is
that the code and their local variables are isolated to the routine. In Hello3's window proce-
dure, the local variables specific to the paint code are bundled at the top of the routine. The
encapsulation of the code makes it easy to cut and paste the code into the next application
you write.

Running HelloCE

After you've entered the program into Visual Studio and built it, you can execute it remotely
from inside VS by choosing Start Without Debugging from the Debug menu or by pressing
Ctrl+F5. The program displays the Hello Windows CE text in the middle of an empty window,
as shown in Figure 1-5. Tapping on the Close button on the title bar causes Windows CE to
send a WM_CLOSE message to the window. Although HelloCE doesn't explicitly process the
WM_CLOSE message, the DefWindowProc procedure enables default processing by destroy-
ing the main window. As the window is being destroyed, a WM_DESTROY message is sent,
which causes PostQuitMessage to be called.

34

Part] Windows Programming Basics

Hello Windows CE!

#/start freloce] [123pm |3
FIGURE 1-5 The HelloCE window on an embedded Windows CE system

As | said, HelloCE is a very basic Windows CE program, but it gives you a skeleton applica-
tion on which you can build. If you look at the file HelloCE.exe using Explorer, you'll see that
the program is represented by a generic icon. When HelloCE is running, the button on the
taskbar in Figure 1-5 representing HelloCE has no icon displayed next to the text. Adding a
custom icon to a program and how the DrawText function works are a couple of the topics I'll
address in the next few chapters.

Chapter 2
Drawing on the Screen

In Chapter 1, “Hello Windows CE,” the example program HelloCE had one task: to display a

line of text on the screen. Displaying that line took only one call to DrawText, with Windows
CE taking care of such details as the font and its color, the positioning of the line of text in-

side the window, and so forth. Given the power of a graphical user interface (GUI), however,
an application can do much more than simply print a line of text on the screen. It can craft

the look of the display down to the most minute of details.

Over the life of the Microsoft Windows operating system, the number of functions avail-
able for crafting these displays has expanded dramatically. With each successive version of
Windows, functions have been added that extend the tools available to the programmer.

As functions were added, the old ones remained, so that even if a function had been su-
perseded by a new function, old programs would continue to run on the newer versions of
Windows. The approach in which function after function is piled on while the old functions
are retained for backward compatibility was discontinued with the initial version of Windows
CE. Because of the requirement to produce a smaller version of Windows, the CE team took a
hard look at the Win32 API and replicated only the functions absolutely required by applica-
tions written for the Windows CE target market.

One of the areas of the Win32 API hardest hit by this reduction was graphical functions. It's
not that you now lack the functions to do the job—it's just that the high degree of redun-
dancy in the Win32 API led to some major pruning of the graphical functions. An added
challenge for the programmer is that different Windows CE platforms have subtly different
sets of supported APIs. One of the ways in which Windows CE graphics support differs from
that of its desktop cousins is that Windows CE doesn't support the different mapping modes
available under other implementations of Windows. Instead, the Windows CE device contexts
are always set to the MM_TEXT mapping mode. Coordinate transformations are also not sup-
ported under Windows CE. While these features can be quite useful for some types of appli-
cations, such as desktop publishing, their necessity in the Windows CE environment of small
portable devices isn't as clear. So when you read about the functions and used in this chapter,
remember that some might not be supported on all platforms. So that a program can deter-
mine what functions are supported, Windows has always had the GetDeviceCaps function,
which returns the capabilities of the current graphic device. Throughout this chapter, I'll refer
to GetDeviceCaps when determining what functions are supported on a given device.

This chapter, like the other chapters in Part | of this book, reviews the drawing features support-
ed by Windows CE. One of the most important facts to remember is that although Windows CE
doesn’t support the full Win32 graphics API, the functions it does support allow developers

35

36

Part| Windows Programming Basics

to write full-featured graphical applications. Where Windows CE doesn't support a function,
you typically can find a workaround. This chapter shows you the functions you can use and
how to work around the areas where certain functions aren’t supported under Windows CE.

Painting Basics

Historically, Windows has been subdivided into three main components: the kernel, which
handles the process and memory management; User, which handles the windowing interface
and controls; and the Graphics Device Interface (GDI), which performs the low-level draw-
ing. In Windows CE, User and GDI are combined into the Graphics Windowing and Event
Subsystem (GWE). At times, you might hear a Windows CE programmer talk about the GWE.
The GWE is nothing really new—ijust a different packaging of standard Windows parts. In this
book, the graphics portion of the GWE is usually referred to under its old name, GDI, to be
consistent with standard Windows programming terminology.

But whether you're programming for Windows CE, Windows XP, or Windows Vista, there's
more to drawing than simply handling the WM_PAINT message. It's helpful to understand
just when and why a WM_PAINT message is sent to a window.

Valid and Invalid Regions

When, for some reason, an area of a window is exposed to the user, that area, or region, as
it's referred to in Windows, is marked invalid. When no other messages are waiting in an ap-
plication’s message queue and the application’s window contains an invalid region, Windows
sends a WM_PAINT message to the window. As mentioned in Chapter 1, any drawing per-
formed in response to a WM_PAINT message is couched in calls to BeginPaint and EndPaint.
BeginPaint actually performs a number of actions. BeginPaint starts by hiding the caret—the
text entry cursor—if it's displayed. If needed, a WM_NCPAINT message is sent directly to the
default window procedure.! It then aquires a device context that is clipped to the invalid
region, sends a WM_ERASEBACKGROUND message, if needed, to redraw the background,
and returns a handle to the device context.

EndPaint, which is called by the application after the drawing is completed, validates the
invalid region, releases the device context, and redisplays the caret if necessary. If no other
action is performed by a WM_PAINT procedure, you must at least call BeginPaint and
EndPaint if only to mark the invalid region as valid.

Alternatively, you can call to ValidateRect to blindly validate the region. But no drawing can
take place in that case, because an application must have a handle to the device context
before it can draw anything in the window.

1 windows CE supports non-client area messages, but they are sent directly to the default window procedure and
therefore are not seen by the window procedure.

Chapter 2 Drawing on the Screen 37

Often an application needs to force a repaint of its window. An application should never post
or send a WM_PAINT message to itself or to another window. Instead, you use the following
function:

BOOL InvalidateRect (HWND hWnd, const RECT *1pRect, BOOL bErase);

Notice that /nvalidateRect doesn’t require a handle to the window's device context, only to
the window handle itself. The JpRect parameter is the area of the window to be invalidated.
This value can be NULL if the entire window is to be invalidated. The bErase parameter indi-
cates whether the background of the window should be redrawn during the BeginPaint call
as mentioned earlier. Note that unlike other versions of Windows, Windows CE requires that
the hWnd parameter be a valid window handle.

Whenever possible, only invalidate the region of the window that needs updating. Passing

a NULL value for the rectangle parameter in InvalidateRect causes the entire window to be
redrawn. Because drawing on the screen is one of the slowest actions an application can per-
form, limiting the drawing results in improved performance.

Device Contexts

A device context, often referred to simply as a DC, is a tool that Windows uses to manage ac-
cess to the display and printer, although I'm covering only the display in this chapter2. Also,
unless otherwise mentioned, the explanation that follows applies to Windows in general and
isn't specific to Windows CE.

Windows applications never write directly to the screen. Instead, they request a handle to a
display device context for the appropriate window and then, using the handle, draw to the
device context. Windows then arbitrates and manages getting the pixels from the DC to the
screen.

BeginPaint, which should be called only in a WM_PAINT message, returns a handle to the
display DC for the window. An application usually performs its drawing to the screen during
the WM_PAINT messages. Windows treats painting as a low-priority task, which is appro-
priate because having painting at a higher priority would result in a flood of paint messages
for every little change to the display. Allowing an application to complete all its pending
business by processing all waiting messages results in all the invalid regions being painted
efficiently at once. Users don't notice the minor delays caused by the low priority of the
WM_PAINT messages.

Of course, there are times when painting must be immediate. An example of such a time
might be when a word processor needs to display a character immediately after its key is

2 This book doesn't cover printing under Windows CE. The techniques for printing are similar to those used on the
desktop, which is covered in excellent detail in Programming Windows.

38

Part| Windows Programming Basics

pressed. To draw outside a WM_PAINT message, the handle to the DC can be obtained using
this:

HDC GetDC (HWND hwnd);

GetDC returns a handle to the DC for the client portion of the window. Drawing can then be
performed anywhere within the client area of the window because this process isn't like pro-
cessing inside a WM_PAINT message; there’s no clipping to restrict you from drawing in an
invalid region.

Windows CE supports another function that can be used to receive the DC. It is

HDC GetDCEx (HWND hWnd, HRGN hrgnClip, DWORD flags);

GetDCEXx allows you to have more control over the device context returned. The new param-
eter, hrgnClip, lets you define the clipping region, which limits drawing to that region of the
DC. The flags parameter lets you specify how the DC acts as you draw on it. The following
flags are supported under Windows CE:

® DCX_WINDOW Returns a DC that conforms the the entire window instead of just the
client area.

® DCX_CLIPCHILDREN Excludes regions of any child windows.
® DCX_CLIPSIBLINGS Excludes regions of any sibling windows overlapping the window.
® DCX_EXCLUDEREGION Excludes the region indicated by the hrgnClip paramter.

® DCX_INTERSECTRGN Defines the clipping region as the intersection of the windows
region and the region indicated by hrgnClip.

® DCX_EXCLUDEUPDATE Excludes the current update region.

m DCX_INTERSECTUPDATE Defines the clipping region as the intersection of the up-
date region and the region defined by hrgnClip.

After the drawing is complete, a call must be made to release the device context:
int ReleaseDC (HWND hwWwnd, HDC hDC);

Device contexts are a shared resource, and therefore an application must not hold the DC for
any longer than necessary.

While GetDC is used to draw inside the client area, sometimes an application needs access to
the nonclient areas of a window, such as the title bar. To retrieve a DC for the entire window,
make the following call:

HDC GetWindowDC (HWND hWnd);

As before, the matching call after the drawing is completed for GetWindowDC is ReleaseDC.

Chapter 2 Drawing on the Screen 39

The DC functions under Windows CE are identical to the device context functions under
the desktop versions of Windows. This should be expected because DCs are the core of the
Windows drawing philosophy. Changes to this area of the APl would result in major incom-
patibilities between Windows CE applications and their desktop counterparts.

Writing Text

In Chapter 1, the HelloCE example displayed a line of text using a call to DrawText. That line
from the example is shown here:

DrawText (hdc, TEXT (“Hello Windows CE!”), -1, &rect,
DT_CENTER | DT_VCENTER | DT_SINGLELINE);

DrawText is a fairly high-level function that allows a program to display text while having
Windows deal with most of the details. The first few parameters of DrawText are almost self-
explanatory. The handle of the device context being used is passed, along with the text to
display couched in a TEXT macro, which declares the string as a Unicode string necessary for
Windows CE. The third parameter is the number of characters to print, or as is the case here,
a -1 indicating that the string being passed is null terminated and Windows should compute
the length.

The fourth parameter is a pointer to a rect structure that specifies the formatting rectangle
for the text. DrawText uses this rectangle as a basis for formatting the text to be printed. How
the text is formatted depends on the function’s last parameter, the formatting flags. These
flags specify how the text is to be placed within the formatting rectangle, or in the case of
the DT_CALCRECT flag, the flags have DrawText compute the dimensions of the text that is

to be printed. DrawText even formats multiple lines with line breaks automatically computed.
In the case of HelloCE, the flags specify that the text should be centered horizontally (DT_
CENTER) and vertically (DT_VCENTER). The DT_VCENTER flag works only on single lines of
text, so the final parameter, DT_SINGLELINE, specifies that the text shouldn't be flowed across
multiple lines if the rectangle isn’t wide enough to display the entire string.

Another way to draw text is by employing the following function:

BOOL ExtTextOut (HDC hdc, int X, int Y, UINT fuOptions,
const RECT *1prc, LPCTSTR 1pString,
UINT cbCount, const int *1pDx);

The ExtTextOut function has a few advantages over DrawText. First, ExtTextOut tends to be
faster for drawing single lines of text. Second, the text isn't formatted inside a rectangle;
instead, x and y starting coordinates are passed, specifying where the text will be drawn.
Generally, the point defined by the coordinates is the upper-left corner of the rectangle, but
this can be changed with the text alignment settings of the DC. The rect parameter that’s

40

Part| Windows Programming Basics

passed is used as a clipping rectangle or, if the background mode is opaque, the area where
the background color is drawn. This rectangle parameter can be NULL if you don’t want any
clipping or opaquing. The next two parameters are the text and the character count. The last
parameter, ExtTextOut, allows an application to specify the horizontal distance between adja-
cent character cells.

Windows CE differs from other versions of Windows in having only these two text drawing
functions for displaying text. You can emulate most of what you can do with the text func-
tions typically used in other versions of Windows, such as TextOut and TabbedTextOut, by
using either DrawText or ExtTextOut. This is one of the areas in which Windows CE has broken
with earlier versions of Windows, sacrificing backward compatibility to achieve a smaller op-
erating system.

Device Context Attributes

What | haven't mentioned yet about HelloCE's use of DrawText is the large number of as-
sumptions the program makes about the DC configuration when displaying the text. Drawing
in a Windows device context takes a large number of parameters, such as foreground and
background color, and how the text should be drawn over the background as well as the font
of the text. Instead of specifying all these parameters for each drawing call, the device con-
text keeps track of the current settings, referred to as attributes, and uses them as appro-
priate for each call to draw to the device context.

Foreground and Background Colors

The most obvious of the text attributes are the foreground and background color. Two func-
tions, SetTextColor and GetTextColor, allow a program to set and retrieve the current color.
These functions work well with both grayscale screens and the color screens supported by
Windows CE devices.

To determine how many colors a device supports, use GetDeviceCaps as mentioned pre-
viously. The prototype for this function is the following:

int GetDeviceCaps (HDC hdc, int nIndex);

You need the handle to the DC being queried because different DCs have different capabili-
ties. For example, a printer DC would differ from a display DC. The second parameter indi-
cates the capability being queried. In the case of returning the colors available on the device,
the NUMCOLORS value returns the number of colors as long as the device supports 256
colors or fewer. Beyond that, the returned value for NUMCOLORS is -1 and the colors can be
returned using the BITSPIXEL value, which returns the number of bits used to represent

Chapter 2 Drawing on the Screen 41
each pixel. This value can be converted to the number of colors by raising 2 to the power of
the BITSPIXEL returned value, as in the following code sample:

nNumColors = GetDeviceCaps (hdc, NUMCOLORS);
if (nNumColors == -1)
nNumColors = 1 << GetDeviceCaps (hdc, BITSPIXEL);

Text Alignment

When displaying text with ExtTextOut, the system uses the text alignment of the DC to deter-
mine where to draw the text. The text can be aligned both horizontally and vertically, using
this function:

UINT WINAPI SetTextAlign (HDC hdc, INT fmode);
The alignment flags passed to fmode are as follows:

® TA_LEFT The left edge of the text is aligned with the reference point.

® TA_RIGHT The right edge of the text is aligned with the reference point.

B TA_TOP The top edge of the text is aligned with the reference point.

B TA_CENTER The text is centered horizontally with the reference point.

® TA_BOTTOM The bottom edge of the text is aligned with the reference point.

® TA_BASELINE The baseline of the text is aligned with the reference point.

® TA_NOUPDATECP The current point of the DC is not updated after the ExtTextOut call.
® TA_UPDATECP The current point of the DC is updated after the ExtTextOut call.

The reference point in the description refers to the x and y coordinates passed to the
ExtTextOut function. For each call to SetTextAlign, a flag for vertical alignment and a flag for
horizontal alignment can be combined.

Because it might be difficult to visualize what each of these flags does, Figure 2-1 shows the
results of each flag. In the figure, the X is the reference point.

TA_LEFT
TA_RIGHT®
TA_ToP
TA_CENTER
JA_BASELINE
JA_BOTTOM

FIGURE 2-1 The relationship between the current drawing point and the text alignment flags

42

Part| Windows Programming Basics

Drawing Mode

Another attribute that affects text output is the background mode. When letters are drawn
on the device context, the system draws the letters themselves in the foreground color.

The space between the letters is another matter. If the background mode is set to opaque,
the space is drawn with the current background color. But if the background mode is set to
transparent, the space between the letters is left in whatever state it was in before the text
was drawn. While this might not seem like a big difference, imagine a window background
filled with a drawing or graph. If text is written over the top of the graph and the background
mode is set to opaque, the area around the text is filled, and the background color over-
writes the graph. If the background mode is transparent, the text appears as if it had been
placed on the graph, and the graph shows through between the letters of the text.

The TextDemo Example Program

The TextDemo program, shown in Listing 2-1, demonstrates the relationships among the text
color, the background color, and the background mode.

LISTING 2-1

TextDemo.h

//
// Header file

//

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

//
// Returns number of elements
#define dim(x) (sizeof(x) / sizeof(x[0]))

// Generic defines and data types
//
struct decodeUINT { // Structure associates
UINT Code; // messages
// with a function.
LRESULT (*Fxn) (HWND, UINT, WPARAM, LPARAM);

// Function prototypes

//

HWND InitInstance (HINSTANCE, LPWSTR, 1int);
int TermInstance (HINSTANCE, int);

// Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

Chapter 2 Drawing on the Screen

// Message handlers
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

TextDemo.cpp

//

// TextDemo - Text output demo
//

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

//

#include <windows.h> // For all that Windows stuff
#include “TextDemo.h” // Program-specific stuff

/= m e -
// Global data

//

const TCHAR szAppName[] = TEXT (“TextDemo”);

HINSTANCE hlInst; // Program instance handle

// Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {
WM_PAINT, DoPaintMain,
WM_DESTROY, DoDestroyMain,
1
//
// Program Entry Point
//
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPWSTR 1pCmdLine, int nCmdShow) {

MSG msg;
int rc = 0;
HWND hwndMain;

// Initialize this instance.
hwndMain = InitInstance (hInstance, TpCmdLine, nCmdShow);
if (hwndMain == 0)

return 0x10;

// Application message loop

while (GetMessage (&msg, NULL, 0, 0)) {
TranslateMessage (&msg);
DispatchMessage (&msg);

}

// Instance cleanup

return TermInstance (hInstance, msg.wParam);

// InitInstance - Instance initialization

//

43

44 Part] Windows Programming Basics

HWND InitInstance (HINSTANCE hInstance, LPWSTR 1pCmdLine, +int nCmdShow){
WNDCLASS wc;
HWND hwnd;

hInst = hInstance; // Save handle in global variable.
#if defined(WIN32_PLATFORM_PSPC) || defined(WIN32_PLATFORM_WFSP)

// If Windows Mobile, allow only one instance of the application.
hWnd = FindWindow (szAppName, NULL);

if (hwnd) {

SetForegroundwWindow ((HWND) (((DWORD)hWnd) | 0x01));

return 0;
}

#endif

// Register application main window class.
wc.style = 0; // Window style
wc.1pfnWndProc = MainWndProc; // Callback function
wc.cbClsExtra = 0; // Extra class data
wc. cbWndExtra = 0; // Extra window data
wc.hInstance = hInstance; // Owner handle
wc.hIcon = NULL, // Application icon

wc.hCursor = LoadCursor (NULL, IDC_ARROW);// Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);

wc. 1pszMenuName = NULL; // Menu name
wc.TpszClassName = szAppName; // Window class name

if (RegisterClass (&wc) == 0) return 0;

// Create main window.

hWnd = CreateWindowEx (WS_EX_NODRAG, // Ex Style flags
szAppName, // Window class
TEXT (“TextDemo”), // Window title

// Style flags
WS_VISIBLE | WS_CAPTION | WS_SYSMENU,

CW_USEDEFAULT, // X position
CW_USEDEFAULT, // Yy position
CW_USEDEFAULT, // Initial width
CW_USEDEFAULT, // Initial height

NULL, // Parent

NULL, // Menu, must be null
hInstance, // Application instance
NULL); // Pointer to create

// Parameters
// Return fail code if window not created.
if (Cthwnd) || (1IsWindow (hWnd))) return 0;

// Standard show and update calls
ShowWindow Chwnd, nCmdShow);
UpdateWindow (hWnd);

return hwnd;

// TermInstance - Program cleanup

1/

Chapter 2 Drawing on the Screen
int TermInstance (HINSTANCE hInstance, int nDefRC) {

return nDefRC;

}
//
// Message handling procedures for MainWindow

// MainWndProc - Callback function for application window
//
LRESULT CALLBACK MainWndProc (HWND hwWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {

INT i;

//

// Search message 1ist to see if we need to handle this

// message. If in Tlist, call procedure.

//

for (i = 0; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, 1Param);

}

return DefWindowProc (hWnd, wMsg, wParam, 1Param);
}
e e
// DoPaintMain - Process WM_PAINT message for window.
//

LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {

PAINTSTRUCT ps;

RECT rect, rectCli;

HBRUSH hbro1d;

HDC hdc;

INT 1, cy;

DWORD dwColorTable[] = {0x00000000, 0x00808080,
0x00cccccc, OxQO0FFFfff};

TCHAR szHello[] = TEXT (“Hello Windows CE”);

GetClientRect (hWnd, &rectCli);
hdc = BeginPaint (hwnd, &ps);

// Get the height and length of the string.
DrawText (hdc, szHello, -1, &rect,
DT_CALCRECT | DT_CENTER | DT_SINGLELINE);

cy = rect.bottom - rect.top + 5;

// Draw black rectangle on right half of window.

hbrO1d = (HBRUSH)SelectObject (hdc, GetStockObject (BLACK_BRUSH));

Rectangle (hdc, rectCli.left + (rectCli.right - rectCli.left) / 2,
rectCli.top, rectCli.right, rectCli.bottom);

SelectObject (hdc, hbrOld);

rectCli.bottom = rectCli.top + cy;
SetBkMode (hdc, TRANSPARENT);

45

46

Part! Windows Programming Basics

for (i =0; 1 < 4; i++) {
SetTextColor (hdc, dwColorTable[i]);
SetBkColor (hdc, dwColorTable[3-i1);

DrawText (hdc, szHello, -1, &rectCli, DT_CENTER | DT_SINGLELINE);
rectCli.top += cy;
rectCli.bottom += cy;

}

SetBkMode (hdc, OPAQUE);

for (i =0; 1 < 4; i++) {
SetTextColor Chdc, dwColorTable[i]);
SetBkColor (hdc, dwColorTable[3-i]);

DrawText (hdc, szHello, -1, &rectCli, DT_CENTER | DT_SINGLELINE);
rectCli.top += cy;
rectCli.bottom += cy;

}
EndPaint (hWnd, &ps);
return 0;
}
A e e i
// DoDestroyMain - Process WM_DESTROY message for window.
//

LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {
PostQuitMessage (0);
return 0;

The meat of TextDemo is in the DoPaintMain function. The first call to DrawText doesn’'t draw
anything in the device context. Instead, the DT_CALCRECT flag instructs Windows to store
the dimensions of the rectangle for the text string in rect. This information is used to com-
pute the height of the string, which is stored in cy. Next, a black rectangle is drawn on the
right side of the window. I'll talk about how a rectangle is drawn later in the chapter; it's used
in this program to produce two different backgrounds before the text is written. The func-
tion then prints out the same string using different foreground and background colors and
both the transparent and opaque drawing modes. The result of this combination is shown in
Figure 2-2.

The first four lines are drawn using the transparent mode. The second four are drawn using
the opaque mode. The text color is set from black to white so that each line drawn uses a dif-
ferent color, while at the same time the background color is set from white to black. In trans-
parent mode, the background color is irrelevant because it isn't used; but in opaque mode,
the background color is readily apparent on each line.

Chapter 2 Drawing on the Screen 47

TextDema

#7start_ || Textbemo 120 Put (3]

FIGURE 2-2 TextDemo shows how the text color, background color, and background mode relate.

Fonts

If the ability to set the foreground and background colors were all the flexibility that
Windows provided, you might as well be back in the days of MS-DOS and character
attributes. Arguably, the most dramatic change from MS-DOS is Windows's ability to change
the font used to display text. All Windows operating systems are built around the concept of
WYSIWYG—what you see is what you get—and changeable fonts are a major tool used to
achieve that goal.

Two types of fonts appear in all Windows operating systems—raster and TrueType. Raster
fonts are stored as bitmaps, which are small pixel-by-pixel images, one for each character in
the font. Raster fonts are easy to store and use, but have one major problem: they don't scale
well. Just as a small picture looks grainy when greatly enlarged, raster fonts begin to look
blocky as they are scaled to larger and larger sizes.

TrueType fonts solve the scaling problem. Instead of being stored as images, each TrueType
character is stored as a description of how to draw the character. The font engine, which is
the part of Windows that draws characters on the screen, then takes the description and
draws it on the screen in any size needed. A Windows CE system can support either TrueType
or raster fonts, but not both. Fortunately, the programming interface is the same for both

48

Partl Windows Programming Basics

raster and TrueType fonts, relieving Windows developers from worrying about the font tech-
nology in all but the most exacting of applications.

The font functions under Windows CE closely track the same functions under other versions
of Windows. Look at the functions used in the life of a font, from creation through selection
in a DC and, finally, to deletion of the font. How to query the current font as well as enumer-
ate the available fonts is also covered in the following sections.

Creating a Font

Before an application is able to use a font other than the default font, the font must be
created and then selected into the device context. Any text drawn in a DC after the new font
is selected into the DC uses the new font.

Creating a font in Windows CE can be accomplished this way:

HFONT CreateFontIndirect (const LOGFONT *1p1f);

This function is passed a pointer to a LOGFONT structure that must be filled with the descrip-
tion of the font you want.

typedef struct tagLOGFONT {
LONG 1fHeight;
LONG 1fWidth;
LONG 1fEscapement;
LONG 1fOrientation;
LONG T1fWeight;
BYTE 1fItalic;
BYTE 1fUnderline;
BYTE 1fStrikeOut;
BYTE 1fCharSet;
BYTE 1fOutPrecision;
BYTE 1fClipPrecision;
BYTE 1fQuality;
BYTE 1fPitchAndFamily;
TCHAR TfFaceName[LF_FACESIZE];
} LOGFONT;

The IfHeight field specifies the height of the font in device units. If this field is 0, the font
manager returns the default font size for the font family requested. For most applications,
however, you want to create a font of a particular point size. The following equation can be
used to convert point size to the IfHeight field:

I1fHeight = -1 * (PointSize * GetDeviceCaps (hdc, LOGPIXELSY) / 72);

Here, GetDeviceCaps is passed a LOGPIXELSY field instructing it to return the number of logi-
cal pixels per inch in the vertical direction. The 72 is the number of points (a typesetting unit
of measure) per inch.

Chapter 2 Drawing on the Screen 49

The IfWidth field specifies the average character width. Because the height of a font is more
important than its width, most programs set this value to 0. This tells the font manager to
compute the proper width based on the height of the font. The IfEscapement and IfOrienta-
tion fields specify the angle in tenths of degrees of the baseline of the text and the x-axis.
The IfWeight field specifies the boldness of the font from 0 through 1000, with 400 being a
normal font and 700 being bold. The next three fields specify whether the font is to be italic,
underline, or strikeout.

The IpCharSet field specifies the character set you have chosen. This field is more important
in international releases of software, where it can be used to request a specific language’s
character set. The IfOutPrecision field can be used to specify how closely Windows matches
your requested font. Among a number of flags available, an OUT_TT_ONLY_PRECIS flag
specifies that the font created must be a TrueType font. The IfClipPrecision field specifies how
Windows should clip characters that are partially outside the region being displayed.

The IfQuality field is set to one of the following:

m DEFAULT QUALITY Default system quality.
B DRAFT_QUALITY Sacrifice quality for speed.
m CLEARTYPE_QUALITY Render text using ClearType technology.

m CLEARTYPE_COMPAT QUALITY Render text using ClearType. Use the same spacing
as non-ClearType font.

ClearType is a text display technology that provides a sharper look for fonts using the ability
to address the individual red, green, and blue LEDs that make up a pixel on a color LCD
display. Depending on the system, ClearType might not be supported or it might be enabled
for all fonts in the system. For systems that support ClearType but don't enable it globally,
using the CLEARTYPE_QUALITY or CLEARTYPE_COMPAT_QUALITY flags creates a font that is
rendered using ClearType. Because ClearType doesn't improve the look of all fonts, test to see
whether applying ClearType improves the rendering of your chosen font.

The IfPitchAndFamily field specifies the family of the font you want. This field is handy when
you need a family such as Swiss, which features proportional fonts without serifs, or a family
such as Roman, which features proportional fonts with serifs, but you don’t have a specific
font in mind. You can also use this field to specify simply a proportional or a monospaced
font and allow Windows to determine which font matches the other specified characteristics
passed into the LOGFONT structure. Finally, the /fFaceName field can be used to specify the
typeface name of a specific font.

When CreateFontindirect is called with a filled LOGFONT structure, Windows creates a logical
font that best matches the characteristics provided. To use the font, however, the final step of
selecting the font into a device context must be made.

50

Part| Windows Programming Basics

Selecting a Font into a Device Context

You select a font into a DC by using the following function:

HGDIOB] SelectObject (HDC hdc, HGDIOB] hgdiobj);

This function is used for more than just setting the default font; you use this function to se-
lect other GDI objects, as you soon see. The function returns the previously selected object
(in your case, the previously selected font), which should be saved so that it can be selected
back into the DC when you finish with the new font. The line of code looks like the following:

hO1dFont = (HFONT)SelectObject (hdc, hFont);

When the logical font is selected, the system determines the closest match to the logical font
from the fonts available in the system. For devices with bitmap fonts, this match could be a
fair amount off from the specified parameters. Because of this, never assume that just be-
cause you request a particular font, the font returned exactly matches the one you request.
For example, the height of the font you asked for might not be the height of the font that's
selected into the device context.

Querying a Font's Characteristics

To determine the characteristics of the font that is selected into a device context, a call to
BOOL GetTextMetrics (HDC hdc, LPTEXTMETRIC 1ptm);

returns the characteristics of that font. A TEXTMETRIC structure is returned with the informa-
tion and is defined as

typedef struct tagTEXTMETRIC {
LONG tmHeight;
LONG tmAscent;
LONG tmDescent;
LONG tmInternallLeading;
LONG tmExternalleading;
LONG tmAveCharWidth;
LONG tmMaxCharWidth;
LONG tmWeight;
LONG tmOverhang;
LONG tmDigitizedAspectX;
LONG tmDigitizedAspectY;
char tmFirstChar;
char tmLastChar;
char tmDefaultChar;
char tmBreakChar;
BYTE tmItalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmPitchAndFamily;
BYTE tmCharSet;

} TEXTMETRIC;

Chapter 2 Drawing on the Screen 51

The TEXTMETRIC structure contains a number of the fields you saw in the LOGFONT struc-
ture, but this time the values listed in TEXTMETRIC are the values of the font selected into the
device context. Figure 2-3 shows the relationship of some of the fields to actual characters.

Aside from determining whether you really got the font you wanted, the GetTextmetrics call
has another valuable purpose—determining the height of the font. Recall that in TextDemo,
the height of the line was computed using a call to DrawText. Although that method is con-
venient, it tends to be slow. You can use the TEXTMETRIC data to compute this height in a
much more straightforward manner. By adding the tmHeight field, which is the height of the
characters, to the tmExternalLeading field, which is the distance between the bottom pixel of
one row and the top pixel of the next row of characters, you can determine the vertical dis-
tance between the baselines of two lines of text.

tmHeight

: tmExternalLeading

'y

tminternalLeading

tmAscent

y

tmDescent

y

FIGURE 2-3 Fields from the TEXTMETRIC structure and how they relate to a font

Although GetTextMetrics is great for determining the height of a font, it provides only the aver-
age and maximum widths of a font. If more detail is needed for a TrueType font, the function

BOOL GetCharABCWidths (HDC hdc, UINT uFirstChar, UINT ulLastChar,
LPABC 1pabc);

can be used. GetCharABCWidths returns the "ABC" widths of a series of characters delineated
by the uFirstChar and ulLastChar parameters. The font examined is the font currently selected
in the device context specified by the hdc parameter. The ABC structure is defined as follows:

typedef struct _ABC {

int abcA;
UINT abcB;
int abcC;

} ABC;

52

Part| Windows Programming Basics

The abcA field is the distance to add to the current position before drawing the character, or
glyph. The abcB field is the width of the glyph, while the abcC field is the distance to add to
the current position after drawing the glyph. Both abcA and abcC can be negative to indicate
underhangs and overhangs.

To examine the widths of bitmap fonts, GetCharWidth32 can be used. It returns an array of
character widths for each character in a range of characters.

Destroying a Font

Like other GDI resources, fonts must be destroyed after the program finishes using them.
Failure to delete fonts before terminating a program causes what'’s known as a resource
leak—an orphaned graphic resource that takes up valuable memory but is no longer owned
by an application.

To destroy a font, first deselect it from any device contexts it has been selected into. Do
this by calling SelectObject. The font passed is the font that was returned by the original
SelectObject call made to select the font. After the font has been deselected, a call to

BOOL DeleteObject (HGDIOBJ hObject);
(with hObject containing the font handle) deletes the font from the system.

A word of warning: attempting to delete a font, or any GDI object, while it is still selected in
a device context will fail. Because most code doesn't check the return code of DeleteObject,
this creates a classic “leak” situation where an application thinks it has deallocated a resource
while in fact it still exists. Leaks will quickly bring a Windows CE system, with its limited mem-
ory, to its knees. Take care that all GDI objects are truly deleted as intended.

As you can see from this process, font management is no small matter in Windows. The many
parameters of the LOGFONT structure might look daunting, but they give an application tre-
mendous power to specify a font exactly.

One problem when dealing with fonts is determining just what types of fonts are available
on a specific device. Windows CE devices come with a set of standard fonts, but a specific
system might have been loaded with additional fonts by either the manufacturer or the user.
Windows CE uses the same font file format as the desktop verisons of Windows, so even
after a device is shipped it is possible for developers or even users to add additional fonts.
Fortunately, Windows provides a method for enumerating all the available fonts in a system.

Enumerating Fonts

To determine what fonts are available on a system, Windows provides this function:

int EnumFontFamilies (HDC hdc, LPCTSTR lpszFamily,
FONTENUMPROC TpEnumFontFamProc, LPARAM TParam);

Chapter 2 Drawing on the Screen 53

This function lets you list all the font families as well as each font within a family. The first
parameter is the obligatory handle to the device context. The second parameter is a string to
the name of the family to enumerate. If this parameter is null, the function enumerates each
of the available families.

The third parameter is something different—a pointer to a function provided by the applica-
tion. The function is a callback function that Windows calls once for each font being enu-
merated. The final parameter, [Param, is a generic parameter that can be used by the
application. This value is passed unmodified to the application’s callback procedure.

While the name of the callback function can be anything, the prototype of the callback must
match the declaration:

int CALLBACK EnumFontFamProc (LOGFONT *1pelf, TEXTMETRIC *1pntm,
DWORD FontType, LPARAM 1Param);

The first parameter passed back to the callback function is a pointer to a LOGFONT structure
describing the font being enumerated. The second parameter, a pointer to a textmetric struc-
ture, further describes the font. The font type parameter indicates whether the font is a raster
or TrueType font.

The FontList Example Program

The FontList program, shown in Listing 2-2, uses the EnumFontFamilies function in two ways
to enumerate all fonts in the system.

LISTING 2-2 The FontList program enumerates all fonts in the system
FontlList.h

//
// Header file

//

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

//
// Returns number of elements

#define dim(x) (sizeof(x) / sizeof(x[0]))

D A
// Generic defines and data types
//
struct decodeUINT { // Structure associates
UINT Code; // messages
// with a function.
LRESULT (*Fxn) (HWND, UINT, WPARAM, LPARAM);
};

54 Part| Windows Programming Basics

// Program-specific structures

// e
#define FAMILYMAX = 24

typedef struct {

int nNumFonts;.
" -TCHAR' szFontFamily[LF_FACESIZE];

} FONTFAMSTRUCT;

. typedef FONTFAMSTRUCTf*PFONTFAMSTRUCT;’

typedef struct {
INT yCurrent;
" "HDC hdc;
} PAINTFONTINFO;
typedef PAINTFONTINFO *PPAINTFONTINFO;

// Function prototypes
/1 ; , ,
* . HWND InitInstance (HINSTANCE, LPWSTR, int);
“int TermInstance (HINSTANCE, int);

// Window procedures

LRESULT CALLBACK-MainWndProc (HWND, UINT, WPARAM; LPARAM);
//,Messagé‘handTers
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM);

LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM);
* LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

 FontList.cpp

/-

- // FontList - Lists'the'avai1ab1e fonts in. the system
o T ~ ,
s Written for the book Programming Windows CE

1/ Cgpyright (C). 2007 Douglas Boling

//=
“#include <windows.h> // For-all that Windows stuff
" #include “FontList.h” // Program-specific stuff
o i e e o o e e o i o o
// Global data
AR ‘ o :
const. TCHAR 'szAppName[] = TEXT (“FontlList”);

HINSTANCE “hInst; '// Program instance handle

FONTFAMSTRUCT ffs [FAMILYMAX] ;
INT sFamilyCnt = 0;

//[MesSagé dispatch table for MainWindowProc

Chapter 2 Drawing on the Screen

const struct decodeUINT MainMessages[] = {
WM_CREATE, DoCreateMain,
WM_PAINT, DoPaintMain,
WM_DESTROY, DoDestroyMain,

};

//

// Program entry point

//

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPWSTR TpCmdLine, int nCmdShow) {

MSG msg;
int rc = 0;
HWND hwndMain;

// Initialize this instance.
hwndMain = InitInstance (hInstance, TpCmdLine, nCmdShow);
if (hwndMain == 0)
return 0x10;
// Application message loop
while (GetMessage (&msg, NULL, 0, 0)) {
TranslateMessage (&msg);
DispatchMessage (&msg);
}
// Instance cleanup
return TermInstance (hInstance, msg.wParam);

// InitInstance - Instance initialization

//

HWND InitInstance (HINSTANCE hInstance, LPWSTR 1pCmdLine, int nCmdShow) {
WNDCLASS wc;
HWND hWnd;

// Save program instance handle in global variable.
hInst = hInstance;

#if defined(WIN32_PLATFORM_PSPC) || defined(WIN32_PLATFORM_WFSP)
// If Windows Mobile, allow only one instance of the application.
hWwnd = FindWindow (szAppName, NULL);

if (hwnd) {

SetForegroundWindow ((HWND) (((DWORD)hWnd) | 0x01));

return 0;
}

#endif

// Register application main window class.
wc.style = 0; // Window style
wc. IpfnWndProc = MainWndProc; // Callback function
wc.cbClsExtra = 0; // Extra class data
wc.cbWndExtra = 0; // Extra window data
wc.hInstance = hInstance; // Owner handle
wc.hIcon = NULL, // Application icon

wc.hCursor = LoadCursor (NULL, IDC_ARROW);// Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject(WHITE_BRUSH);

55

56 Part] Windows Programming Basics

wc.1pszMenuName = NULL; // Menu name
wc.1pszClassName = szAppName; // Window class name

if (RegisterClass (&wc) == 0) return 0;

// Create main window.

hWnd = CreateWindowEx (WS_EX_NODRAG, // Ex style flags
szAppName, ° // Window class
TEXT(“Font Listing”),// Window title
// Style flags
WS_VISIBLE | WS_CAPTION | WS_SYSMENU,

CW_USEDEFAULT, // x position
CW_USEDEFAULT, // y position
CW_USEDEFAULT, // Initial width
CW_USEDEFAULT, // Initial height

NULL, // Parent

NULL, // Menu, must be null
hInstance, // Application instance
NULL); // Pointer to create

// parameters
// Return fail code if window not created.
if (!IsWindow (hwnd)) return O;

// Standard show and update calls
ShowWindow (hWnd, nCmdShow);
UpdateWindow (hwWnd);

return hWnd;

// TermInstance - Program cleanup

//

int TermInstance (HINSTANCE hInstance, int nDefRC) {
return nDefRC;

1

//

// Font callback functions

// FontFamilyCallback - Callback function that enumerates the font
// families
//)
int CALLBACK FontFamilyCallback (CONST LOGFONT *1p1f,
CONST TEXTMETRIC *1pntm,
DWORD nFontType, LPARAM 1Param) {
int rc = 1;

// Stop enumeration if array filled.
if (sFamilyCnt >= FAMILYMAX)
return 0;
// Copy face name of font.
Istrcpy (ffs[sFamilyCnt++].szFontFamily, 1plf->1fFaceName);
return rc;

Chapter 2 Drawing on the Screen

// EnumSingleFontFamily - Callback function that enumerates fonts
//
int CALLBACK EnumSingleFontFamily (CONST LOGFONT *1p1f,
CONST TEXTMETRIC *1pntm,
DWORD nFontType, LPARAM 1Param) {
PFONTFAMSTRUCT pffs;

pffs = (PFONTFAMSTRUCT) 1Param;
pffs->nNumFonts++; // Increment count of fonts in family
return 1;

// PaintSingleFontFamily - Callback function that draws a font
//
int CALLBACK PaintSingleFontFamily (CONST LOGFONT *1pl1f,
CONST TEXTMETRIC *Tpntm,
DWORD nFontType, LPARAM 1Param) {
PPAINTFONTINFO ppfi;
TCHAR szOut[256];
INT nFontHeight, nPointSize;
HFONT hFont, hOldFont;

ppfi = (PPAINTFONTINFO) 1Param; // Translate 1Param into struct
// pointer.

// Create the font from the LOGFONT structure passed.
hFont = CreateFontIndirect (1p1f);

// Select the font into the device context.
hOldFont = (HFONT)SelectObject (ppfi->hdc, hFont);

// Compute font size.
nPointSize = (1p1f->1fHeight * 72) /
GetDeviceCaps (ppfi->hdc, LOGPIXELSY) ;

// Format string and paint on display.
wsprintf (szOut, TEXT (“%s Point:%d”), 1pl1f->1fFaceName,
nPointSize);
ExtTextOut (ppfi->hdc, 25, ppfi->yCurrent, 0, NULL,
szOut, TIstrlen (szOut), NULL);

// Compute the height of the default font.

nFontHeight = Tpntm->tmHeight + Tpntm->tmExternalLeading;

// Update new draw point.

ppfi->yCurrent += nFontHeight;

// Deselect font and delete.

SelectObject (ppfi->hdc, hOldFont);

DeleteObject (hFont);

return 1;
}
//
// Message handling procedures for MainWindow

//

57

58 Partl Windows Programming Basics

// MainWndProc - Callback function for application window
//
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {

INT 1i;

//

// Search message 1ist to see if we need to handle this

// message. If in Tist, call procedure.

//

for (i = 0; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, 1Param);

}
return DefWindowProc (hWnd, wMsg, wParam, TParam);
}
/= s
// DoCreateMain - Process WM_CREATE message for window.
//

LRESULT DoCreateMain (HWND hwnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {
HDC hdc;
INT i, rc;

//Enumerate the available fonts.

hdc = GetDC (hwWnd);

rc = EnumFontFamilies ((HDC)hdc, (LPTSTR)NULL,
FontFamilyCallback, 0);

for (i = 0; i < sFamilyCnt; i++) {
ffs[i].nNumFonts = 0;
rc = EnumFontFamilies ((HDO)hdc, ffs[i].szFontFamily,
EnumSingleFontFamily,
(LPARAM) (PFONTFAMSTRUCT)&ffs[i1);

}
ReleaseDC (hWnd, hdc);
return 0;
}
[
// DoPaintMain - Process WM_PAINT message for window.
1/

LRESULT DoPaintMain (HWND hwWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
PAINTSTRUCT ps;
RECT rect;
HDC hdc;
TEXTMETRIC tm;
INT nFontHeight, i;
TCHAR szOut[256];
PAINTFONTINFO pfi;

GetClientRect (hWnd, &rect);

Chapter 2 Drawing on the Screen 59

hdc = BeginPaint (hWnd, &ps);

// Get the height of the default font.
GetTextMetrics (hdc, &tm);
nFontHeight = tm.tmHeight + tm.tmExternallLeading;

// Initialize struct that is passed to enumerate function.
pfi.yCurrent = rect.top;

pfi.hdc = hdc;

for (i = 0; i < sFamilyCnt; i++) {

// Format output string, and paint font family name.
wsprintf (szOut, TEXT(“Family: %s),
ffs[i].szFontFamily);
ExtTextOut (hdc, 5, pfi.yCurrent, 0, NULL,
sz0ut, Tstrlen (szOut), NULL);
pfi.yCurrent += nFontHeight;

// Enumerate each family to draw a sample of that font.
EnumFontFamilies ((HDOhdc, ffs[i].szFontFamily,
PaintSingleFontFamily,

(LPARAM) &pfi);

}

EndPaint (hWnd, &ps);

return 0;
}
f/m e e e e
// DoDestroyMain - Process WM_DESTROY message for window.
//

LRESULT DoDestroyMain (HWND hwWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {
PostQuitMessage (0);
return 0;

Enumerating the different fonts begins when the application is processing the WM_CREATE
message in DoCreateMain. Here EnumFontFamilies is called with the FontFamily field set to
NULL, so that each family is enumerated. The callback function is FontFamilyCallback, where
the name of the font family is copied into an array of strings.

The remainder of the work is performed during the processing of the WM_PAINT message.
The DoPaintMain function begins with the standard litany of getting the size of the client
area and calling BeginPaint, which returns the handle to the device context of the window.
GetTextMetrics is then called to compute the row height of the default font. A loop is then
entered in which EnumerateFontFamilies is called for each family name that had been stored
during the enumeration process in DoCreateMain. The callback process for this callback se-
quence is somewhat more complex than the code seen so far.

60

Part | Windows Programming Basics

The PaintSingleFontFamily callback procedure, used in the enumeration of the individual
fonts, employs the /Param parameter to retrieve a pointer to a PAINTFONTINFO structure
defined in FontList.h. This structure contains the current vertical drawing position as well as
the handle to the device context. By using the /Param pointer, FontList avoids having to de-
clare global variables to communicate with the callback procedure.

The callback procedure next creates the font using the pointer to LOGFONT that was passed
to the callback procedure. The new font is then selected into the device context, while the
handle to the previously selected font is retained in hOldFont. The point size of the enu-
merated font is computed using the inverse of the equation mentioned earlier in the chap-
ter. The callback procedure then produces a line of text showing the name of the font family -
along with the point size of this particular font. Instead of using DrawText, the callback uses
ExtTextOut to draw the string.

After displaying the text, the function computes the height of the line of text just drawn
using the combination of tmHeight and tmExternalLeading that was provided in the passed
TEXTMETRIC structure. The new font is then deselected using a second call to SelectObject,
this time passing the handle to the font that was the original selected font. The new font is
then deleted using DeleteObject. Finally, the callback function returns a nonzero value to in-
dicate to Windows that it is okay to make another call to the enumerate callback.

Figure 2-4 shows the Font Listing window. Notice that the font names are displayed in that
font and that each font has a specific set of available sizes.

Font Listing

Family: Wingdings

PHEY 2 HE Yo R-O0XMeEEE

Family: Tahoma

Tahoma Point:29

Family: Courier New

Courier New Point:27
Family: Arial
__Arial Dnint-27 _
#start Font Listing ‘ : [1139em (@]

FIGURE 2-4 The Font Listing window shows some of the available fonts for the ProgWinCE Emulator.

Unfinished Business

If you look closely at Figure 2-4, you notice a problem with the display. The list of fonts just
runs off the bottom edge of the Font Listing window. The solution for this problem is to add
a scroll bar to the window. I'll provide a complete explanation of window controls, including
scroll bars, in Chapter 4, "Windows, Controls, and Menus.”

Chapter 2 Drawing on the Screen 61
Bitmaps

Bitmaps are graphical objects that can be used to create, draw, manipulate, and retrieve
images in a device context. Bitmaps are everywhere within Windows, from the little Windows
logo on the Start button to the Close button on the title bar. Think of a bitmap as a picture
composed of an array of pixels that can be painted onto the screen. Like any picture, a bit-
map has height and width. It also has a method for determining what color or colors it uses.
Finally, a bitmap has an array of bits that describes each pixel in the bitmap.

Historically, bitmaps under Windows have been divided into two types: device-dependent
bitmaps (DDBs) and device-independent bitmaps (DIBs). DDBs are bitmaps that are tied to
the characteristics of a specific DC and can't easily be rendered on DCs with different char-
acteristics. DIBs, on the other hand, are independent of any device, and therefore must carry
around enough information so that they can be rendered accurately on any device.

Windows CE contains many of the bitmap functions available in other versions of Windows.
The differences include a four-color bitmap format not supported anywhere but on Windows
CE and a different method for manipulating DIBs.

Device-Dependent Bitmaps

A device-dependent bitmap can be created with this function:

HBITMAP CreateBitmap (int nWidth, int nHeight, UINT cPlanes,
UINT cBitsPerPel, CONST VOID *T1pvBits);

The nWidth and nHeight parameters indicate the dimensions of the bitmap. The cPlanes pa-
rameter is a historical artifact from the days when display hardware implemented each color
within a pixel in a different hardware plane. For Windows CE, this parameter must be set to
1. The cBitspPerPel parameter indicates the number of bits used to describe each pixel. The
number of colors is 2 to the power of the cBitspPerPel parameter. Under Windows CE, the
allowable values are 1, 2, 4, 8, 16, 24, and 32. As | said, the four-color bitmap is unique to
Windows CE and isn't supported under other Windows platforms.

The final parameter is a pointer to the bits of the bitmap. Under Windows CE, the bits are
always arranged in a packed pixel format; that is, each pixel is stored as a series of bits within
a byte, with the next pixel starting immediately after the first. The first pixel in the array of
bits is the pixel located in the upper left corner of the bitmap. The bits continue across the
top row of the bitmap, then across the second row, and so on. Each row of the bitmap must
be double-word (4-byte) aligned. If any pad bytes are required at the end of a row to align
the start of the next row, they should be set to 0. Figure 2-5 illustrates this scheme, showing a
126-by-64-pixel bitmap with 8 bits per pixel.

62

Part| Windows Programming Basics

The function

HBITMAP CreateCompatibleBitmap (HDC hdc, int nWidth, int nHeight);

creates a bitmap whose format is compatible with the device context passed to the function.
So if the device context is a four-color DC, the resulting bitmap is a four-color bitmap as well.
This function comes in handy when you manipulate images on the screen because it makes it
easy to produce a blank bitmap that's directly color compatible with the screen.

Byte
Offset Row 0 1 2 gy 125

0 o //
128 1 //
256 2 //

4

7936 63 [
I

FIGURE 2-5 Layout of bytes within a bitmap

Device-Independent Bitmaps

The fundamental difference between DIBs and their device-dependent cousins is that the
image stored in a DIB comes with its own color information. DIB files, with the classic .omp
extension, contain color and layout information that can be directly matched with the infor-
mation needed to create a DIB in Windows.

In the early days of Windows, it was a rite of passage for a programmer to write a routine
that manually read a DIB file and converted the data to a bitmap. These days, the same ardu-
ous task can be accomplished with the following function, unique to Windows CE:

HBITMAP SHLoadDIBitmap (LPCTSTR szFileName);

It loads a bitmap directly from a bitmap file and provides a handle to the bitmap. On

the desktop, the same process can be accomplished with LoadImage using the LR_
LOADFROMFILE flag, but this flag isn't supported under the Windows CE implementation of
LoadImage.

Chapter 2 Drawing on the Screen 63

DIB Sections

While Windows CE makes it easy to load a bitmap file, sometimes you must read what is on
the screen, manipulate it, and redraw the image back to the screen. This is another case in
which DIBs are better than DDBs. While the bits of a device-dependent bitmap are obtain-
able, the format of the buffer is directly dependent on the screen format. By using a DIB, or
more precisely, something called a DIB section, your program can read the bitmap into a
buffer that has a predefined format without worrying about the format of the display device.

While Windows has a number of DIB creation functions that have been added over the
years, Windows CE carries over only a handful of DIB functions from the desktop versions of
Windows. Here is the first of these functions:

HBITMAP CreateDIBSection (HDC hdc, const BITMAPINFO *pbmi,
UINT iUsage, void *ppvBits,
HANDLE hSection, DWORD dwOffset);

DIB sections were invented to improve the performance of applications on Windows NT that
directly manipulated bitmaps. In short, a DIB section allows a programmer to select a DIB in
a device context while still maintaining direct access to the bits that compose the bitmap. To
achieve this, a DIB section associates a memory DC with a buffer that also contains the bits of
that DC. Because the image is mapped to a DC, other graphics calls can be made to modify
the image. At the same time, the raw bits of the DC, in DIB format, are available for direct
manipulation. While the improved performance is all well and good on Windows NT, the rel-
evance to the Windows CE programmer is the ease with which an application can work with
bitmaps and manipulate their contents.

This call's parameters lead with the pointer to a BITMAPINFO structure. The structure de-
scribes the layout and color composition of a device-independent bitmap and is a combina-
tion of a BITMAPINFOHEADER structure and, if necessary, an array of RGBQUAD values that
represent the palette of colors used by the bitmap.

The BITMAPINFOHEADER structure is defined as the following:

typedef struct tagBITMAPINFOHEADER{
DWORD biSize;
LONG biWidth;
LONG biHeight;
WORD biPlanes;
WORD biBitCount;
DWORD biCompression;
DWORD b1iSizeImage;
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrImportant;
} BITMAPINFOHEADER;

64

Part1 Windows Programming Basics

As you can see, this structure contains much more information than just the parameters
passed to CreateBitmap. The first field is the size of the structure and must be filled in by the
calling program to differentiate this structure from the similar BITMAPCOREINFOHEADER
structure that's a holdover from the old OS/2 presentation manager. The biWidth, bi-

Height, biPlanes, and biBitCount fields are similar to their like-named parameters to the
CreateBitmap call—with one exception. The sign of the biHeight field specifies the organiza-
tion of the bit array. If biHeight is negative, the bit array is organized in a top-down format,
as is CreateBitmap. If biHeight is positive, the array is organized in a bottom-up format,

in which the bottom row of the bitmap is defined by the first bits in the array. As with the
CreateBitmap call, the biPlanes field must be set to 1.

The biCompression field specifies the compression method used in the bit array. Under
Windows CE, the allowable flags for this field are BI_RGB, indicating that the buffer isn't com-
pressed, and BI_BITFIELDS, indicating that the pixel format is specified in the first three
entries in the color table. The biSizelmage parameter is used to indicate the size of the bit
array; when used with BI_RGB, however, the biSizelmage field can be set to 0, which means
that the array size is computed using the dimensions and bits per pixel information provided
in the BITMAPINFOHEADER structure.

The biXPelsPerMeter and biYPelsPerMeter fields provide information to accurately scale the
image. For CreateDIBSection, however, these parameters can be set to 0. The biClrUsed pa-
rameter specifies the number of colors in the palette that are actually used. In a 256-color
image, the palette will have 256 entries, but the bitmap itself might need only 100 or so
distinct colors. This field helps the palette manager, the part of Windows that manages color
matching, to match the colors in the system palette with the colors required by the bitmap.
The biClrimportant field further defines the colors that are really required as opposed to
those that are used. For most color bitmaps, these two fields are set to 0, indicating that all
colors are used and that all colors are important.

As | mentioned earlier, an array of RGBQUAD structures immediately follows the
BITMAPINFOHEADER structure if the image is formatted with 8 bits per pixel or less. The
RGBQUAD structure is defined as follows:

typedef struct tagRGBQUAD { /* rgbq */
BYTE rgbBlue;
BYTE rgbGreen;
BYTE rgbRed;
BYTE rgbReserved;
} RGBQUAD;

This structure allows for 256 shades of red, green, and blue. Although almost any shade can
be created using this structure, the color that's actually rendered on the device is, of course,
limited by what the device can display.

The array of RGBQUAD structures, taken as a whole, describe the palette of the DIB. The
palette is the list of colors in the bitmap. If a bitmap has a palette, each entry in the bitmap

Chapter 2 Drawing on the Screen 65

array contains not colors, but an index into the palette that contains the color for that pixel.
While redundant on a monochrome bitmap, the palette is quite important when rendering
color bitmaps on color devices. For example, a 256-color bitmap has one byte for each pixel,
but that byte points to a 24-bit value that represents equal parts red, green, and blue. So
while a 256-color bitmap can contain only 256 distinct colors, each of those colors can be
one of 16 million colors rendered using the 24-bit palette entry. For convenience in a 32-bit
world, each palette entry, while containing only 24 bits of color information, is padded out to
a 32-bit-wide entry—hence the name of the data type: RGBQUAD.

Of the remaining four CreateDIBSection parameters, only two are used under Windows CE.
The iUsage parameter indicates how the colors in the palette are represented. If the param-
eter is DIB_RGB_COLORS, the bits in the bitmap contain the full RGB color information for
each pixel. If the parameter is DIB_PAL_COLORS, the bitmap pixels contain indexes into the
palette currently selected in the DC. The ppvBits parameter is a pointer to a variable that
eceives the pointer to the bitmap bits that compose the bitmap image. The final two param-
eters, hSection and dwOffset, aren't supported under Windows CE and must be set to 0. Other
versions of Windows allow the bitmap bits to be specified by a memory-mapped file. While
Windows CE supports memory-mapped files, they aren’t supported by CreateDIBSection.

Two functions exist to manage the palette of the DIB, as follows:

UINT GetDIBColorTable (HDC hdc, UINT uStartIndex,
UINT cEntries, RGBQUAD *pColors);

and

UINT SetDIBColorTable (HDC hdc, UINT uStartIndex,
UINT cEntries, RGBQUAD *pColors);

For both of these functions, uStartindex indicates the first entry into the palette array to set
or query. The cEntries parameter indicates how many palette entries to change. The pointer
to the RGBQUAD array is the array of colors either being set, for SetD/IBColorTable, or
queried, for GetDIBColorTable.

Drawing Bitmaps

Creating and loading bitmaps is all well and good, but there’s not much point to it unless the
bitmaps you create can be rendered on the screen. Drawing a bitmap isn't as straightforward
as you might think. Before a bitmap can be drawn in a screen DC, it must be selected into a
DC and then copied over to the screen device context. While this process sounds convoluted,
there is rhyme to this reason.

The process of selecting a bitmap into a device context is similar to selecting a logical font
into a device context; it converts the ideal to the actual. Just as Windows finds the best pos-
sible match to a requested font, the bitmap selection process must match the available colors

66

Part] Windows Programming Basics

of the device to the colors requested by a bitmap. Only after this is done can the bitmap be
rendered on the screen. To help with this intermediate step, Windows provides a shadow
type of DC, a memory device context.

To create a memory device context, use this function:

HDC CreateCompatibleDC (HDC hdc);

This function creates a memory DC that’s compatible with the current screen DC. Once cre-
ated, the source bitmap is selected into this memory DC using the same SelectObject func-
tion you used to select a logical font. Finally, the bitmap is copied from the memory DC to

the screen DC using one of the bit functions, BitBIt or StretchBlt.

The workhorse of bitmap functions is the following:

BOOL BitBTt (HDC hdcDest, int nXDest, int nYDest, int nWidth,
int nHeight, HDC hdcSrc, int nXSrc, 1int nYSrc,
DWORD dwRop) ;

Fundamentally, the BitBlt function, pronounced “bit blit", is just a fancy memcopy function, but
because it operates on device contexts, not memory, it's something far more special. The first
parameter is a handle to the destination device context—the DC to which the bitmap is to be
copied. The next four parameters specify the location and size of the destination rectangle
where the bitmap is to end up. The next three parameters specify the handle to the source
device context and the location within that DC of the upper left corner of the source image.

The final parameter, dwRop, specifies how the image is to be copied from the source to the
destination device contexts. The ROP code defines how the source bitmap and the current
destination are combined to produce the final image. The ROP code for a simple copy of the
source image is SRCCOPY. The ROP code for combining the source image with the current
destination is SRCPAINT. Copying a logically inverted image, essentially a negative of the
source image, is accomplished using SRCINVERT. Some ROP codes also combine the cur-
rently selected brush into the equation to compute the resulting image. A large number of
ROP codes are available—too many for me to cover here. For a complete list, check out the
Windows CE programming documentation.

The following code fragment sums up how to paint a bitmap:

// Create a DC that matches the device.
hdcMem = CreateCompatibleDC (hdc);

// Select the bitmap into the compatible device context.
h01dSel = SelectObject (hdcMem, hBitmap);

// Get the bitmap dimensions from the bitmap.
GetObject (hBitmap, sizeof (BITMAP), &bmp);

// Copy the bitmap image from the memory DC to the screen DC.

Chapter 2 Drawing on the Screen 67

BitB1t (hdc, rect.left, rect.top, bmp.bmwWidth, bmp.bmHeight,
hdcMem, 0, 0, SRCCOPY);

// Restore original bitmap selection and destroy the memory DC.
SelectObject (hdcMem, hOl1dSel);
DeleteDC (hdcMem);

The memory device context is created, and the bitmap to be painted is selected into that DC.
Because you might not have stored the dimensions of the bitmap to be painted, the routine
makes a call to GetObject. GetObject returns information about a graphics object—in this
case, a bitmap. Information about fonts and other graphic objects can be queried using this
useful function. Next, BitBIt is used to copy the bitmap into the screen DC. To clean up, the
bitmap is deselected from the memory device context and the memory DC is deleted us-

ing DeleteDC. Don't confuse DeleteDC with ReleaseDC, which is used to free a display DC.
DeleteDC should be paired only with CreateCompatibleDC, and ReleaseDC should be paired
only with GetDC, GetDCEXx, or GetWindowDC.

Instead of merely copying the bitmap, stretch or shrink it using this function:

BOOL StretchB1t (HDC hdcDest, int nXOriginDest, int nYOriginDest,
int nWidthDest, int nHeightDest, HDC hdcSrc,
int nX0OriginSrc, int nYOriginSrc, int nWidthSrc,
int nHeightSrc, DWORD dwRop);

The parameters in StretchBlt are the same as those used in BitBIt, with the exception that
now the width and height of the source image can be specified. Here again, the ROP codes
specify how the source and destination are combined to produce the final image. Stretching
or shrinking an image is much slower than simply drawing. Whenever possible, use Bitblt in-
stead of StretchBlt.

Windows CE also has another bitmap function. It is

BOOL TransparentImage (HDC hdcDest, LONG DstX, LONG DstY, LONG DstCx,
LONG DstCy, HANDLE hSrc, LONG SrcX, LONG SrcY,
LONG SrcCx, LONG SrcCy, COLORREF TransparentColor);

This function is similar to StretchBlIt, with two very important exceptions. First, you can specify
a color in the bitmap to be the transparent color. When the bitmap is copied to the destina-
tion, the pixels in the bitmap that are the transparent color are not copied. The second dif-
ference is that the hSrc parameter can be either a device context or a handle to a bitmap,
which allows you to bypass the requirement to select the source image into a device context
before rendering it on the screen. Transparentimage is essentially the same function as the
desktop’s TransparentBIt function with the exception that TransparentBlt can't directly use a
bitmap as the source. Windows CE supports TransparentBlt as well, but a quick look at the
header files for Windows CE reveals that TransparentBlt is simply aliased to Transparentimage
for Windows CE.

68

Part| Windows Programming Basics

As in other versions of Windows, Windows CE supports two other blit functions: PatB/t and
MaskBIt. The PatBlt function combines the currently selected brush with the current image in
the destination DC to produce the resulting image. | cover brushes later in this chapter. The
MaskBIt function is similar to BitBlt but encompasses a masking image that provides the abil-
ity to draw only a portion of the source image onto the destination DC.

AlphaBlending

Modern GUI operating systems have the ability to draw a bitmap so that it appears semi-
transparent. In fact, both Apple OS X and Windows Vista use this effect to provide a cool
look and feel to their shells. Windows CE also supports this translucent drawing known as
AlphaBlending. The term AlphaBlend comes from the concept of an alpha channel. The alpha
channel is the fourth property in the pixel of a bitmap that instead of specifying color, speci-
fies the transparency level of that pixel.

The AlphaBlend function combines many of the abilities of the other GDI drawing functions
such as drawing and stretching, with the added ability to draw bitmaps with a semitranspar-
ent look. The prototype for the function is

BOOL AlphaBlend (HDC hdcDest, int nXOriginDest, int nYOriginDest,
int nWidthDest, int nHeightDest,
HDC hdcSrc, int nXOriginSrc, int nYOriginSrc,
int nWidthSrc, int nHeightSrc,
BLENDFUNCTION blendFunction);

The first parameter is the handle of the destination DC followed by the location and size of
the destination rectangle. The next five parameters specify the source DC and rectangle for
the bitmap. It's the final parameter, blendFunction, that is the difference in AlphaBlend.

The BLENDFUNCTION structure is defined as
typedef struct _BLENDFUNCTION {

BYTE BlendOp;

BYTE BlendFlags;

BYTE SourceConstantAlpha;

BYTE AlphaFormat;

}BLENDFUNCTION, *PBLENDFUNCTION;

Chapter 2 Drawing on the Screen 69

The first field, BlendOp, must be set to the only flag currently supported, AC_SRC_OVER. The
BlendFlags field must be set to 0. The SourceConstantAlpha field is set to a transparency level
for the entire source bitmap as it is applied to the destination DC. The resultant formula for a
pixel becomes

destPixel = (srcPixel * SCA/255) + (destPixel * (1 - SCA/255))
where SCA is the value in the SourceConstantAlpha field.

In addition to a global transparency constant for the bitmap, AlphaBlend can also apply a
per-pixel transparency effect to the source bitmap. This is accomplished by setting the AC_
SRC_ALPHA flag in the last field in the BLENDFUNCTION structure, AlphaFormat. Windows
requires that the source bitmap be at least a 32 bit-per-pixel bitmap if the AC_SRC_ALPHA
flag is set, or the function will fail. Of course alphablending, like transparency, can be quite
slow. Don't use these features unless you know that the video hardware is designed to accel-
erate these operations in hardware.

Lines and Shapes

One of the areas in which Windows CE provides substantially less functionality than other
versions of Windows is in the primitive line-drawing and shape-drawing functions. Gone
are the Chord, Arc, and Pie functions that created complex circular shapes. Gone, too, are
most of the functions using the concept of current point. Other than MoveToEXx, LineTo, and
GetCurrentPositionEx, none of the GDI functions dealing with current point is supported

in Windows CE. So drawing a series of connected lines and curves using calls to ArcTo,
PolyBezierTo, and so forth is no longer possible. But even with the loss of a number of
graphic functions, Windows CE still provides the essential functions necessary to draw lines
and shapes.

Lines
Drawing one or more lines is as simple as a call to

BOOL Polyline (HDC hdc, const POINT *1ppt, int cPoints);

The second parameter is a pointer to an array of POINT structures that are defined as the
following:

typedef struct tagPOINT {
LONG x;
LONG vy;

} POINT;

70

Part| Windows Programming Basics

Each x and y combination describes a pixel from the upper-left corner of the screen. The
third parameter is the number of point structures in the array. So to draw a line from (0, 0) to
(50, 100), the code looks like this:

POINTS pts[2];

pts[0].x = 0;

pts[0].y = O;

pts[1].x = 50;

pts[1].y = 100;

PolyLine (hdc, &pts, 2);

Another way to draw the same line is to use the MoveToEx and LineTo functions. They are
prototyped as follows:

BOOL WINAPI MoveToEx (HDC hdc, int X, int Y, LPPOINT 1pPoint);
BOOL WINAPI LineTo (HDC hdc, int X, int Y);

To use the functions to draw a line, first call MoveToEx to move the current point to the start-
ing coordinates of the line, and then call LineTo, passing the ending coordinates. The calls to
draw the same line as before using these functions is as follows:

MoveToEx (hdc, 0, 0, NULL);
LineTo (hdc, 50, 100);

To query the current point, call the following function:

WINGDIAPI BOOL WINAPI GetCurrentPositionEx (HDC hdc, LPPOINT pPoint);

Just as in the early text examples, these code fragments make a number of assumptions
about the default state of the device context. For example, just what does the line drawn
between (0, 0) and (50, 100) look like? What is its width and its color, and is it a solid line? All
versions of Windows, including Windows CE, allow these parameters to be specified.

Pens

The tool for specifying the appearance of lines and the outline of shapes is called, appropri-
ately enough, a pen. A pen is another GDI object and, like the others described in this chap-
ter, is created, selected into a device context, used, deselected, and then destroyed. Among
other stock GDI objects, stock pens can be retrieved using the following code:

HGDIOBJ GetStockObject (int fnObject);

All versions of Windows provide three stock pens, each 1 pixel wide. The stock pens come in
three colors: white, black, and null. When you use GetStockObject, the call to retrieve one of
those pens employs the parameters WHITE_PEN, BLACK_PEN, and NULL_PEN, respectively.
Unlike standard graphic objects created by applications, stock objects should never be de-

Chapter 2 Drawing on the Screen 71

leted by the application. Instead, the application should simply deselect the pen from the
device context when it's no longer needed.

To create a custom pen under Windows, two functions are available. The first is this:

HPEN CreatePen (int fnPenStyle, int nWidth, COLORREF crColor);

The fnPenStyle parameter specifies the appearance of the line to be drawn. For example, the
PS_DASH flag can be used to create a dashed line. Windows CE supports only PS_SOLID-,
PS_DASH-, and PS_NULL-style flags. The nWidth parameter specifies the width of the pen.
Finally, the crColor parameter specifies the color of the pen. The crColor parameter is typed
as COLORREF, which can be constructed using the RGB macro. The RGB macro is as follows:

COLORREF RGB (BYTE bRed, BYTE bGreen, BYTE bBlue);

So to create a solid red pen one pixel wide, the code would look like this:

hPen = CreatePen (PS_SOLID, 1, RGB (Oxff, 0, 0));

The other pen-creation function is the following:

HPEN CreatePenlIndirect (const LOGPEN *1plgpn);

where the logical pen structure LOGPEN is defined as

typedef struct tagLOGPEN {
UINT TopnStyle;
POINT lopnWidth;
COLORREF TopnColor;

} LOGPEN;

CreatePenindirect provides the same parameters to Windows in a different form. To create
the same one-pixel-wide red pen with CreatePenindirect, the code would look like this:

LOGPEN 1p;
HPEN hPen;
1p.TopnStyle = PS_SOLID;
Tp.TopnWidth.x = 1;
1p.lopnWidth.y = 1;
1p.lopnColor = RGB (Oxff, 0, 0);

hPen = CreatePenIndirect (&1p);

Windows CE devices don't support complex pens such as wide (more than 1 pixel wide)
dashed lines. To determine what's supported, your old friend GetDeviceCaps comes into play,
taking LINECAPS as the second parameter. Refer to the Windows CE documentation for the
different flags returned by this call.

72

Part| Windows Programming Basics

Shapes

Lines are useful but Windows also provides functions to draw shapes, both filled and unfilled.
Here Windows CE does a good job supporting most of the functions familiar to Windows
programmers. The Rectangle, RoundRect, Ellipse, and Polygon functions are all supported.

Brushes

Before | can talk about shapes such as rectangles and ellipses, | need to describe another
GDI object mentioned only briefly before now—a brush. A brush is a bitmap, typically 8 by 8
pixels, used to fill shapes. It's also used by Windows to fill the background of a client window.
Windows CE provides a number of stock brushes and as well as the ability to create a brush
from an application-defined pattern. A number of stock brushes, each a solid color, can be
retrieved using GetStockObject. Among the brushes available is one for each of the grays of a
four-color grayscale display: white, light gray, dark gray, and black.

To create solid-color brushes, the function to call is the following:

HBRUSH CreateSolidBrush (COLORREF crColor);

The crColor parameter specifies the color of the brush. The color is specified using the RGB
macro.

To create custom pattern brushes, Windows CE supports the Win32 function:

HBRUSH CreateDIBPatternBrushPt (const void *1pPackedDIB,
UINT iUsage);

The first parameter to this function is a pointer to a DIB in packed format. This means that
the pointer points to a buffer that contains a BITMAPINFO structure immediately fol-

lowed by the bits in the bitmap. Remember that a BITMAPINFO structure is actually a
BITMAPINFOHEADER structure followed by a palette in RGBQUAD format, so the buffer
contains everything necessary to create a DIB—that is, bitmap information, a palette, and the
bits to the bitmap. If the second parameter is set to DIB_RGB_COLORS, the palette specified
contains RGBQUAD values in each entry. For 8-bits-per-pixel bitmaps, the complementary
flag DIB_PAL_COLORS can be specified, but Windows CE ignores the bitmap's color table.

The CreateDIBPatternBrushPt function is more important under Windows CE because the
hatched brushes, supplied under other versions of Windows by the CreateHatchBrush func-
tion, aren’t supported under Windows CE. Hatched brushes are brushes composed of any
combination of horizontal, vertical, or diagonal lines. Ironically, they're particularly use-

ful with grayscale displays because you can use them to accentuate different areas of a
chart with different hatch patterns. You can reproduce these brushes, however, by using
CreateDIBPatternBrushPt and the proper bitmap patterns. Later in the chapter, the Shapes
code example demonstrates a method for creating hatched brushes under Windows CE.

Chapter 2 Drawing on the Screen 73

By default, the brush origin is in the upper-left corner of the window. This isn't always what
you want. Take, for example, a bar graph where the bar filled with a hatched brush fills a
rectangle from (100, 100) to (125, 220). Because this rectangle isn't divisible by 8 (brushes
typically being 8 by 8 pixels square), the upper left corner of the bar will be filled with a par-
tial brush that might not look pleasing to the eye.

To avoid this situation, you can move the origin of the brush so that each shape can be
drawn with the brush aligned correctly in the corner of the shape to be filled. The function
available for this remedy is the following:

BOOL SetBrushOrgEx (HDC hdc, int nXOrg, int nYOrg, LPPOINT Tppt);

The nXOrg and nYOrg parameters allow the origin to be set between 0 and 7 so that you can
position the origin anywhere in the 8-by-8 space of the brush. The Ippt parameter is filled
with the previous origin of the brush so that you can restore the previous origin if necessary.

Rectangles
The rectangle function draws either a filled or a hollow rectangle; the function is defined as

the following:

BOOL Rectangle (HDC hdc, int nLeftRect, int nTopRect,
int nRightRect, int nBottomRect);

The function uses the currently selected pen to draw the outline of the rectangle and the
current brush to fill the interior. To draw a hollow rectangle, select the null brush into the de-
vice context before calling Rectangle.

The actual pixels drawn for the border are important to understand. Say you're drawing a 5-
by-7 rectangle at 0, 0. The function call would look like this:

Rectangle (0, 0, 5, 7);

Assuming that the selected pen is 1 pixel wide, the resulting rectangle would look like the
one shown in Figure 2-6.

9123456
c INEEN |
1 1l
2
3
4
5
6
7
8

FIGURE 2-6 Magnified view of a rectangle drawn with the Rectangle function

74

Part] Windows Programming Basics

Notice how the right edge of the rectangle is actually drawn in column 4 and that the bot-
tom edge is drawn in row 6. This is standard Windows practice. The rectangle is drawn inside
the right and bottom boundary specified for the Rectangle function. If the selected pen

is wider than 1 pixel, the right and bottom edges are drawn with the pen centered on the
bounding rectangle. (Other versions of Windows support the PS_INSIDEFRAME pen style
that forces the rectangle to be drawn inside the frame regardless of the pen width.)

Circles and Ellipses

Circles and ellipses can be drawn with this function:

BOOL E1lipse (HDC hdc, int nLeftRect, int nTopRect,
int nRightRect, 1int nBottomRect);

The ellipse is drawn using the rectangle passed as a bounding rectangle, as shown in Figure
2-7. As with the Rectangle function, while the interior of the ellipse is filled with the current
brush, the outline is drawn with the current pen.

(nLeftRect, nTopRect) (nRightRect -1, nTopRect)

(nLeftRect, nBottomRect -1) (nRightRect -1, nBottomRect -1)

FIGURE 2-7 The ellipse is drawn within the bounding rectangle passed to the Ellipse function.

Round Rectangles

The RoundRect function,

BOOL RoundRect (HDC hdc, int nLeftRect, int nTopRect,
int nRightRect, int nBottomRect,
int nWidth, int nHeight);

draws a rectangle with rounded corners. The roundedness of the corners is defined by the
last two parameters that specify the width and height of the ellipse used to round the cor-
ners, as shown in Figure 2-8. Specifying the ellipse height and width enables your program to
draw identically symmetrical rounded corners. Shortening the ellipse height flattens out the
sides of the rectangle, while shortening the width of the ellipse flattens the top and bottom
of the rectangle.

Chapter 2 Drawing on the Screen 75

(nLeftRect, nTopRect)

1
(]
i L
§= nHelghg
! .
1]

nWidth

(nRightRect, nBottomRect)

FIGURE 2-8 The height and width of the ellipse define the round corners of the rectangle drawn by
RoundRect.

Polygons
Finally, the Polygon function,

BOOL Polygon (HDC hdc, const POINT *1pPoints, int nCount);

draws a many-sided shape. The second parameter is a pointer to an array of point structures
defining the points that delineate the polygon. The resulting shape has one more side than
the number of points because the function automatically completes the last line of the poly-
gon by connecting the last point with the first.

Fill Functions

The preceding functions use a combination of a brush and a pen to draw shapes in the de-
vice context. Functions are available to fill areas without dealing with the pen that would nor-
mally outline the shape. The first of these functions is as follows:

int FillRect (HDC hDC, CONST RECT* Tprc, HBRUSH hbr);

The parameters of FillRect are the handle to the device context, the rectangle to fill, and the
brush to fill the rectangle. FillRect is a quick and convenient way to paint a solid color or pat-
tern in a rectangular area.

While FillRect is convenient, GradientFill is cool. GradientFill fills a rectangular area that starts
on one side with one color and then has a smooth transition to another color on the other
side. Figure 2-9 shows a window in which the client area is painted with GradientFill. The
black-and-white illustration doesn’t do the image justice, but even in this figure it's easy to
see the smooth nature of the transition.

76

Part | Windows Programming Basics

Gradient Fill

FIGURE 2-9 A window painted with the GradientFill function
The prototype of GradientFill looks like this:

BOOL GradientFi1l (HDC hdc, PTRIVERTEX pVertex, ULONG dwNumVertex,
PVOID pMesh, ULONG dwNumMesh, ULONG dwMode) ;

The first parameter is the obligatory handle to the device context. The pVertex parameter
points to an array of TRIVERTEX structures, while the dwNumVertex parameter contains the
number of entries in the TRIVERTEX array. The TRIVERTEX structure is defined as follows:

struct _TRIVERTEX {

LONG X
Long 'H
COLOR16 Red;

COLOR16 Green;

COLOR16 Blue;

COLOR16 Alpha;s
} TRIVERTEX;

The fields of the TRIVERTEX structure describe a point in the device context and an RGB
color. The points should describe the upper left and lower right corners of the rectangle be-
ing filled. The pMesh parameter of GradientFill points to a GRADIENT_RECT structure defined
as follows:

struct _GRADIENT_RECT
{
ULONG UpperLeft;
ULONG LowerRight;
} GRADIENT_RECT;

The GRADIENT_RECT structure simply specifies which of the entries in the TRIVERTEX struc-
ture delineates the upper left and lower right corners. Finally, the dwNumMesh parameter of
GradientFill contains the number of GRADIENT_RECT structures, while the dwMode structure
contains a flag indicating whether the fill should be left to right (GRADIENT_FILL_RECT_H) or
top to bottom (GRADIENT_FILL_RECT_V). The GradientFill function is more complex than is

Chapter 2 Drawing on the Screen 77
apparent because on the desktop, it can also perform a triangular fill that isn’t supported by
Windows CE. Here's the code fragment that created the window in Figure 2-9:

TRIVERTEX vert[2];
GRADIENT_RECT gRect;

vert [0] .x = prect->left;
vert [0] .y = prect->top;
vert [0] .Red = 0x0000;

vert [0] .Green = 0x0000;

vert [0] .Blue = O0xff00;

vert [0] .Alpha = 0x0000;

vert [1] .x = prect->right;
vert [1] .y = prect->bottom;
vert [1] .Red = 0x0000;

vert [1] .Green = Oxff00;

vert [1] .Blue = 0x0000;

vert [1] .Alpha = 0x0000;

gRect.UpperLeft = 0;
gRect.LowerRight = 1;

GradientFi11(hdc,vert,2,&gRect,1,GRADIENT_FILL_RECT_H);

The Shapes Example Program

The Shapes program, shown in Listing 2-3, demonstrates a number of these functions. In
Shapes, four figures are drawn, each filled with a different brush.

LISTING 2-3 The Shapes program
Shapes.h

//
// Header file

//

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

//
// Returns number of elements

#define dim(x) (sizeof(x) / sizeof(x[0]))

// Generic defines and data types
//
struct decodeUINT { // Structure associates
UINT Code; // messages
// with a function.
LRESULT (*Fxn) (HWND, UINT, WPARAM, LPARAM);
};

78 Part| Windows Programming Basics

// Defines used by MyCreateHatchBrush
//
typedef struct {
BITMAPINFOHEADER bmi;
COLORREF dwPal[2];
BYTE bBits[64];
} BRUSHBMP;

#define HS_HORIZONTAL 0 * mdeee */

#define HS_VERTICAL 1 /5 LT/

#define HS_FDIAGONAL 2 /% \\\\\ */

#define HS_BDIAGONAL 3 /% 11117 %/

#define HS_CROSS 4 /% 4+ttt ¥/

#define HS_DIAGCROSS 5 /¥ XXXXX */
i
// Function prototypes

//

HWND InitInstance (HINSTANCE, LPWSTR, int);
int TermInstance (HINSTANCE, int);

// Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

// Message handlers
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

Shapes.cpp

//
// Shapes- Brush and shapes demo for Windows CE
//

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

//

#include <windows.h> // For all that Windows stuff
#include “shapes.h” // Program-specific stuff

Y et ettt Ll S bt b D LD
// Global data

//

const TCHAR szAppName[] = TEXT (“Shapes”);

HINSTANCE hInst; // Program instance handle

// Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {
WM_PAINT, DoPaintMain,
WM_DESTROY, DoDestroyMain,
}

Chapter 2 Drawing on the Screen

//
//
// Program entry point
//
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPWSTR TpCmdLine, int nCmdShow) {
MSG msg;
HWND hwndMain;

// Initialize this instance.
hwndMain = InitInstance(hInstance, 1pCmdLine, nCmdShow) ;
if ChwndMain == 0)

return 0x10;

// Application message loop

while (GetMessage (&msg, NULL, 0, 0)) {
TranslateMessage (&msg);
DispatchMessage (&msg);

}

// Instance cleanup

return TermInstance (hInstance, msg.wParam);

// InitInstance - Instance initialization

//

HWND InitInstance (HINSTANCE hInstance, LPWSTR 1pCmdLine, int nCmdShow) {
WNDCLASS wc;
HWND hWnd;

// Save program instance handle in global variable.
hInst = hInstance;

#if defined (WIN32_PLATFORM_PSPC) || defined(WIN32_PLATFORM_WFSP)
// If Windows Mobile, allow only one instance of the application.
hwnd = FindWindow (szAppName, NULL);

if (hwnd) {

SetForegroundWindow ((HWND) (((DWORD)hWnd) | 0x01));

return 0;
}

#endif

// Register application main window class.
wc.style = 0; // Window style
wc.1pfnWndProc = MainWndProc; // Callback function
wc.cbClsExtra = 0; // Extra class data
wc.cbWndExtra = 0; // Extra window data
wc.hInstance = hInstance; // Owner handle
wc.hIcon = NULL, // Application icon

wc.hCursor = LoadCursor (NULL, IDC_ARROW);// Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wc.TpszMenuName = NULL; // Menu name
wc.1pszClassName = szAppName; // Window class name

if (RegisterClass (&wc) == 0) return 0;
// Create main window.

79

80 Part] Windows Programming Basics

hWnd = CreateWindowEx (WS_EX_NODRAG, // Ex Style
szAppName, // Window class
TEXT(“Shapes™), // Window title
WS_VISIBLE, // Style flags
CW_USEDEFAULT, // x.position
CW_USEDEFAULT, // y position
CW_USEDEFAULT, // Initial width
CW_USEDEFAULT, // Initial height
‘NULL,) // Parent
NULL, // Menu, must be null
hInstance, // Application instance
NULL) ; // Pointer to create

// parameters
// Return fail code if window not created.
if (1IsWindow (hWnd)) return 0;

// Standard show and update calls
ShowWindow (hwWnd, nCmdShow) ;
UpdateWindow ChWnd);

return hwnd;

// TermInstance - Program cleanup
/7
int TermInstance (HINSTANCE hInstance, int nDefRC) {

return nDefRC;
}
7/
// Message 'handling procedures for MainWindow
//

// MainWndProc - Callback function for application window
/7
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,
) LPARAM 1Param) {

INT 43

1/

//- Search message list to see if we need to handle this

// message. If in Tist, call procedure.

//

for (i = 0; i < dim(MainMessages); i++) {

if (WwMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxn)(hwWnd, wMsg, wParam, 1Param);

}

return: DefWindowProc .ChWnd, wMsg, wParam, TParam);
}
e
// MyCreateHatchBrush - Creates hatched brushes
1/

HBRUSH MyCreateHatchBrush (INT fnStyle, COLORREF clrref) {
BRUSHBMP brbmp;
BYTE *pBytes;

Chapter 2 Drawing on the Screen

int 1i;

DWORD dwBits[6][2] = {
{0x000000ff,0x00000000}, {0x10101010,0x10101010},
{0x01020408,0x10204080}, {0x80402010,0x08040201},
{0x101010ff,0x10101010}, {0x81422418,0x18244281},

}

if ((fnStyle < 0) || (fnStyle > dim(dwBits)))
return 0;
memset (&brbmp, 0, sizeof (brbmp));

brbmp.bmi.biSize = sizeof (BITMAPINFOHEADER);
brbmp.bmi.biWidth = 8;
brbmp.bmi.biHeight = 8;
brbmp.bmi.biPlanes = 1;
brbmp.bmi.biBitCount = 1;

brbmp.bmi.biClrUsed = 2;

brbmp.bmi.biClrImportant = 2;

// Initialize the palette of the bitmap.

brbmp.dwPal[0] = PALETTERGB(Oxff,0xff,0xff);

brbmp.dwPal[1] = PALETTERGB((BYTE) ((clrref >> 16) & Oxff),
(BYTE) ((cTrref >> 8) & Oxff),
(BYTE) (clrref & Oxff));

I

// Write the hatch data to the bitmap.

pBytes = (BYTE *)&dwBits[fnStyle];

for (i =0; i < 8; i++)
brbmp.bBits[i*4] = *pBytes++;

// Return the handle of the brush created.
return CreateDIBPatternBrushPt (&brbmp, DIB_RGB_COLORS);

// DoPaintMain - Process WM_PAINT message for window.
//
LRESULT DoPaintMain (HWND hwWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
PAINTSTRUCT ps;
RECT rect;
HDC hdc;
POINT ptArray[6];
HBRUSH hBr, hOl1dBr;
TCHAR szText[128];

GetClientRect (hWnd, &rect);
hdc = BeginPaint (hWnd, &ps);

// Draw ellipse.

hBr = (HBRUSH) GetStockObject (DKGRAY_BRUSH);
hO1dBr = (HBRUSH) SelectObject (hdc, hBr);
E1lipse (hdc, 10, 50, 90, 130);

SelectObject (hdc, hO1dBr);

81

82

Part| Windows Programming Basics

// Draw round rectang1e :

hBr =" (HBRUSH) GetStockObject (LTGRAY_] BRUSH),
hO]dBr =" (HBRUSH) Se]ectObJect (hdc, hBr);
RoundRect (hdc, 95, 50, 150, 130, 30, 30),
‘SeTectObJect (hdc, h01dBr),

/7 Draw hexagon using Po]ygon.

hBr = (HBRUSH) GetStockObject (WHITE_BRUSH);
“h01dBr = (HBRUSH) SeTectObject (hdc, hBr),
ptArray[0].x = 192; .
_ptArray[0].y = 50;

ptArray[1].x = 155;

ptArray[1].y = 75;

‘ptArray[2].x = 155;
ptArray[2].y = 105;
ptArray[3].x = 192;

ptArray[3].y = 130;
ptArray[4].x = 230;
ptArray[4].y = 105;
ptArray[5].x = 230;
ptArray[5].y = 75;

I

Polygon (hdc;’ptArray, 6);
SelectObject (hdc, hQl1dBr);

hBr = (HBRUSH) MyCreateHatchBrush (HS_DIAGCROSS, RGB (0, 0, 0));
hOTdBr = (HBRUSH)SelectObject (hdc, hBr); .
Rectangle (hdc, 10,145, 225, 210);

SelectObject (hdc; hOldBr); -

DeleteObject (hBr);

SetBkMode (hdc, OPAQUE),
Istrcpy (szText, TEXT (“Opaque background”)),
- ExtTextOut: (hdc, 20, 160, 0, NULL,
szText, Tstrlen (szText), NULL);

~SetBkMode (hdc, TRANSPARENT),
Tstrepy (szText, TEXT (“Transparent background)),
ExtTextOut: Chdc, 20, 185, 0, NULL,

szText, lstrlen (szText) NULL),

EndPaint ChWnd, &ps);
“return 0;

// DoDestroyMa1n - Process WM_DESTROY message for w1ndow

/1

LRESULT DoDestroyMa1n (HWND ‘hWnd, UINT stg, WPARAM wParam,4 b
K LPARAM 1Param) {

PostQu1tMessage 0);

return 0;

Chapter 2 Drawing on the Screen 83

In Shapes, DoPaintMain draws the four figures using the different functions discussed ear-
lier. For each of the shapes, a different brush is created, selected into the device context,
and, after the shape has been drawn, deselected from the DC. The first three shapes are
filled with solid grayscale shades. These solid brushes are loaded with the GetStockObject
function. The final shape is filled with a brush created with the CreateDIBPatternBrushPt.
The creation of this brush is segregated into a function called MyCreateHatchBrush that
mimics the CreateHatchBrush function not available under Windows CE. To create the
hatched brushes, a black-and-white bitmap is built by filling in a bitmap structure and set-
ting the bits to form the hatch patterns. The bitmap itself is the 8-by-8 bitmap specified by
CreateDIBPatternBrushPt. Because the bitmap is monochrome, its total size, including the
palette and header, is only around 100 bytes. Notice, however, that because each scan line of
a bitmap must be double-word aligned, the last three bytes of each 1-byte scan line are left
unused.

Finally, the program completes the painting by writing two lines of text into the lower rec-
tangle. The text further demonstrates the difference between the opaque and transparent
drawing modes of the system. In this case, the opaque mode of drawing the text might be
a better match for the situation because the hatched lines tend to obscure letters drawn in
transparent mode. A view of the Shapes window is shown in Figure 2-10.

Femfr [wom]

FIGURE 2-10 The Shapes example demonstrates drawing different filled shapes.

To keep things simple, the Shapes example assumes that it's running on at least a 240-pixel-
wide display. This allows Shapes to work equally well on all but the smallest of Smartphone
screens. | have barely scratched the surface of the abilities of the Windows CE GDI portion

of GWE. The goal of this chapter wasn't to provide total presentation of all aspects of GDI
programming. Instead, | wanted to demonstrate the methods available for basic drawing and
text support under Windows CE. Other chapters in the book extend some of the techniques
touched on in this chapter. | talk about these new techniques and newly-introduced func-

84

Part| Windows Programming Basics

tions at the point, generally, where | demonstrate how to use them in code. To further
your knowledge, | recommend Programming Windows, 5th edition, by Charles Petzold
(Microsoft Press, 1998), as the best source for learning about the Windows GDI.

Now that you've looked at output, it's time to turn your attention to the input side of the
system—the keyboard and the touch panel.

3
Input: Keyboard, Mouse, and Touch
Screen

Traditionally, Microsoft Windows platforms have allowed users two methods of input: the
keyboard and the mouse. Windows CE continues this tradition but many systems replace
the mouse with a stylus and touch screen. Programmatically, the change is minor because
the messages from the stylus are mapped to the mouse messages used in other versions
of Windows. A more subtle, but also more important, change from versions of Windows
that run on PCs is that a system running Windows CE might have either a tiny keyboard or
no keyboard at all. This arrangement makes the stylus input that much more important for
Windows CE systems.

The Keyboard

Although keyboards play a lesser role in Windows CE, they're still the best means of enter-
ing large volumes of information. Even on systems without a physical keyboard such as
some Windows Mobile devices, soft keyboards—controls that simulate keyboards on a touch
screen—will most likely be available to the user. Given this, proper handling of keyboard
input is critical to all but the most specialized of Windows CE applications. Although not
much text is devoted to soft keyboards in the book, one point should be made here. To the
application, input from a soft keyboard is no different from input from a traditional hard
keyboard.

Input Focus

Under Windows operating systems, only one window at a time has the input focus. The focus
window receives all keyboard input until it loses focus to another window. The system assigns
the keyboard focus using a number of rules, but most often the focus window is the current
active window. The active window, you'll recall, is the top-level window, the one with which
the user is currently interacting. With rare exceptions, the active window also sits at the top
of the Z-order; that is, it's drawn on top of all other windows in the system. In the Explorer,
the user can change the active window by pressing Alt+Esc to switch between programs or
by tapping on another top-level window'’s button on the task bar. The focus window is either
the active window or one of its child windows.

Under Windows, a program can determine which window has the input focus by calling

HWND GetFocus (void);
85

86

Part] Windows Programming Basics

The focus can be changed to another window by calling

HWND SetFocus (HWND hwnd);

Under Windows CE, the target window of SetFocus is limited. The window being given the
focus by SetFocus must have been created by the thread calling SetFocus. An exception to
this rule occurs if the window losing focus is related to the window gaining focus by a parent/
child or sibling relationship; in this case, the focus can be changed even if the windows were
created by different threads.

When a window loses focus, Windows sends a WM_KILLFOCUS message to that window in-
forming it of its new state. The wParam parameter contains the handle of the window that
will be gaining the focus. The window gaining focus receives a WM_SETFOCUS message. The
wParam parameter of the WM_SETFOCUS message contains the handle of the window losing
focus.

Although it might be stating the obvious, programs shouldn’t change the focus window
without some input from the user. Otherwise, the user can easily become confused. A proper
use of SetFocus is to set the input focus to a child window (more than likely a control) con-
tained in the active window. In this case, a window responds to the WM_SETFOCUS message
by calling SetFocus with the handle of a child window contained in the window to which the
program wants to direct keyboard messages. '

Keyboard Messages

Windows CE practices the same keyboard message processing as its larger desktop relations
with a few small exceptions, which | cover shortly. When a key is pressed, Windows sends a
series of messages to the focus window, typically beginning with a WM_KEYDOWN message.
If the key that is pressed represents a character such as a letter or number, Windows fol-
lows the WM_KEYDOWN with a WM_CHAR message. (Some keys, such as function keys and
cursor keys, don't represent characters, so WM_CHAR messages aren’t sent in response to
those keys. For those keys, a program must interpret the WM_KEYDOWN message to know
when the keys are pressed.) When the key is released, Windows sends a WM_KEYUP mes-
sage. If a key is held down long enough for the auto-repeat feature to kick in, multiple WM_
KEYDOWN and WM_CHAR messages are sent for each auto-repeat until the key is released
when the final WM_KEYUP message is sent. | used the word typically to qualify this descrip-
tion because if the Alt key is being held when another key is pressed, the messages just de-
scribed are replaced by WM_SYSKEYDOWN, WM_SYSCHAR, and WM_SYSKEYUP messages.

For all of these messages, the generic parameters wParam and IParam are used in mostly the
same manner. For WM_KEYxx and WM_SYSKEYxx messages, the wParam value contains the
virtual key value, indicating the key being pressed. All versions of Windows provide a level of
indirection between the keyboard hardware and applications by translating the scan codes
returned by the keyboard into virtual key values. You see a list of the VK_xx values and their

Chapter 3

Input: Keyboard, Mouse, and Touch Screen

87

associated keys in Table 3-1. While the table of virtual keys is extensive, not all keys listed in
the table are present on Windows CE devices. For example, function keys, a mainstay on PC
keyboards and listed in the virtual key table, aren't present on most Windows CE keyboards.

In fact, a number of keys on a PC keyboard are left off the space-constrained Windows CE

keyboards.

TABLE 3-1 Virtual Keys

Constant
VK_LBUTTON
VK_RBUTTON
VK_CANCEL

VK_RBUTTON

VK_BACK
VK_TAB

VK_CLEAR

Constant

VK RETURN

VK_SHIFT
VK_CONTROL
VK_MENU
VK_CAPITAL

VK_ESCAPE
VK_SPACE
VK_PRIOR
VK_NEXT
VK_END
VK_HOME
VK_LEFT
VK_UP
VK_RIGHT
VK_DOWN
VK_SELECT

0D
OE-OF

Value
01
02
03

04

05-07
08
09
0A-0B
0cC

Value

10
11

12

14

© 15-19
1A

1B
1C-1F
20
21
22
23

24

25
26

27

28
29
2A

Keyboard Equivalent
Mouse left button or Stylus tap
Mouse right button!

Control-break processing

Mouse middle button?!

Undefined
Backspace key
Tab key
Undefined
Clear key

Keyboard equivalent

B Enter key

Undefined

Shift key
v Ctrl keyv

Alt key

Céps Lock key

Rg;erved forwl‘(anji systems

Undefined

Esc key

Reserved for Kanji systems
Spacebar

Page Up key
Page Down key
End key

Home key

Left vArrdw”k‘eyw '
Up Arrow key
Right Arrow key
Down Arrow keyv

Select key

Original eqUipment manufacturer (OEM)—spééiﬁc

88

Part| Windows Programming Basics
‘Constant Value Keyboard Equivalent
VK_EXECUTE 2B Execute key
VK SI\;«A;’S”HOT - 2& - W’Prlnt Screen key for Wmdows 3. O and Iater4
VK_INSERT P Insert?
VK_DELETE 2E Deletes
VK_HELP 2F Help key
VK_0-VK_9 30-39 0-9 keys
— 3A-40 Undefined
B
NVK LW/N ‘ ‘ 5B i ‘ Windows key - '
VK_RWIN 5C Windows key?
VK_APPS 5D
-- - S5E Undeﬁned
VK_ SLEEP 5F » Sleep key?
VK.NUMPADO-9 60-69 Numeric keypad 0-9 keys
“ ’VK MULTIPLY - A H’Numerlc keypad Asterlsk()key
VK_ADD M6B ~~ . NLlr”r'\’eI;i‘c’kVé’ypadw P’lus sig“n k+) key
VK_SEPARATOR 6C Separator> key »
VK_SUBTRACT 6D Numeric keypad Minus sign (-) key
VK_DECIMAL 6E Numeric keypad Period () key
VK_DIVIDE 6F Numeric keypad Slash mark (/) key
VK_FI-VK_F24 70-87 PP B
— SVQLSF ’ Una55|gned4
VK_NUMLOCK 90 © Num Lock?
VK_SCROLL 91 Scroll Lock?
- 92-9F Unassigned
VK_LSHIFT A0 Left Shift4
VK_RSHIFT Al Right Shift*
VK_LCONTROL A2 Left Control*
VK_RCONTROL A3 Right Control*
VK_LMENU A4 Left Alts
VK_RMENU AS Right Alt4
VK_BROWSER_BACK A6 2
VK_BROWSER_FORWARD A7 2
VK_BROWSER_REFRESH A8 2
VK_BROWSER_STOP A9 2
'VK_BROWSER_SEARCH A 2
VK_BROWSER_FAVORITES ~ AB 2

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 89
Constant Value Keyboard Equivalent
VK_BROWSER_ HOME AC 2
VK_VOLUME_MUTE AD 2
VK_VOLUME_DOWN AE 2
VK_VOLUME_UP AF 2
VK_MEDIA_NEXT TRACK BO 2
VK_MEDIA_PREV. TRACK B1 2
VK_MEDIA_STOP B2 2
VK_MEDIA_PLAY PAUSE B3 2
VK_LAUNCH_MAIL B4 2
VK_LAUNCH_MEDIA_SELECT -~ BS 2
VK_LAUNCH_APP1 B6 2
VK_LAUNCH_APP2 B7 2
-- B7-B9 Unassigned
VK_SEMICOLON BA key
o e e
‘VK_COMMA BC key
VK_HYPHEN BD “key
VK_PERIOD BE key
VK_SLASH BF / key
VK_BACKQUOTE C0 key
C1-DA Unassigneds
e e
VK_BACKSLASH DC \key
VK_RBRACKET DD] key
VK_APOSTROPHE DE "key
VK_OFF k DF v Power button
- E5 " Unassigned
-- E6 * ‘O’EM‘—‘sp‘ecifi'c
- e ol
- " E9-F5 ~ OEM-specific
VK_ATTN F6
VK_CRSEL F7
VK_EXSEL F8
VK_EREOF F9
VK_PLAY FA
VK_ZOOM FB

90

Part! Windows Programming Basics

Constant : Value Keyboard Equivalent
VK_NONAME FC

B

VK_OEM_CLEAR FE

1 Mouse right and middle buttons are defined but are relevant only on a Windows CE system equipped with a mouse.
2 Many Windows CE Systems don't have this key

3 On some Windows CE systems, Delete is simulated with Shift-Backspace

4 These constants can be used only with GetKeyState and GetAsyncKeyState.

5 These codes are used by the application launch keys on systems that have them.

For the WM_CHAR and WM_SYSCHAR messages, the wParam value contains the Unicode
character represented by the key. Most often an application can simply look for WM_CHAR
messages and ignore WM_KEYDOWN and WM_ KEYUP. The WM_CHAR message allows for
a second level of abstraction so that the application doesn’t have to worry about the up or
down state of the keys and can concentrate on the characters being entered by means of the
keyboard.

The IParam value of any of these keyboard messages contains further information about the
pressed key. The format of the /Param parameter is shown in Figure 3-1.

The low word, bits 0 through 15, contains the repeat count of the key. On rare occasions,
keys on a Windows CE device can be pressed faster than Windows CE can send messages
to the focus application. In these cases, the repeat count contains the number of times the
key has been pressed. Bit 29 contains the context flag. If the Alt key is held down when the
key is pressed, the bit will be set. Bit 30 contains the previous key state. If the key was previ-
ously down, this bit is set; otherwise, it's 0. Bit 30 can be used to determine whether the key
message is the result of an auto-repeat sequence. Bit 31 indicates the transition state. If the
key is in transition from down to up, Bit 31 is set. Bits 16 through 28 are used to indicate the
key scan code. In many cases, Windows CE doesn't support this field. However, on some of
the newer Windows CE platforms where scan codes are necessary, this field does contain
the scan code. You shouldn't plan on the scan code field being available unless you know it's
supported on your specific platform.

2131/30/29/2827 26:25 24 23222120119 1817 16/1514 131211109 8 7 6 5 4 3 2 1 0/

‘-I———- Scan Code* | | Repeat Code ——J

Context code, set to 1 if Alt key down.
Previous key state, set to 1 if key previously down.
Transition state, set to 1 if key being released.

W

*Many Windows CE devices don’t support this field.

FIGURE 3-1 The layout of the /Param value for key messages

One additional keyboard message, WM_DEADCHAR, can sometimes come into play. It is sent
by the operating system when the pressed key represents a dead character, such as an

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 91

umlaut, that you want to combine with a character to create a different character. In this
case, the WM_DEADCHAR message can be used to prevent the text entry point (the caret)
from advancing to the next space until the second key is pressed so that you can complete
the combined character.

The WM_DEADCHAR message has always been present under Windows, but under Windows
CE it takes on a somewhat larger role. With the internationalization of the variety of de-

vices that run Windows CE, programmers should plan for, and if necessary use, the WM_
DEADCHAR message that is so often necessary in foreign language systems.

Keyboard Functions

You'll find useful a few other keyboard state—determining functions for Windows ap-
plications. Among the keyboard functions, two are closely related but often confused:
GetKeyState and GetAsyncKeyState.

GetKeyState, prototyped as

SHORT GetKeyState (int nVirtKey);

returns the up/down state of the shift keys, Ctrl, Alt, and Shift, as well as the Windows key,
and indicates whether any of these keys is in a toggled state. If the keyboard has two keys
with the same function—for example, two Shift keys, one on each side of the keyboard—this
function can also be used to differentiate which of them is being pressed. (Most keyboards
have left and right Shift keys, and some include left and right Ctrl and Alt keys.)

You pass to the function the virtual key code for the key being queried. If the high bit of the
return value is set, the key is down. If the least significant bit of the return value is set, the

key is in a toggled state; that is, it has been pressed an odd number of times since the system
started. The state returned is the state at the time the most recent message was read from
the message queue, which isn't necessarily the real-time state of the key. An interesting aside:
notice that the virtual key label for the Alt key is VK_MENU, which relates to the windows
convention that the Alt key works in concert with other keys to access various menus from
the keyboard.

Note that the GetKeyState function is limited under Windows CE to querying the state of the
shift keys; Ctrl, Alt, Shift, Numlock, and the Windows key. Under other versions of Windows,
GetKeyState can determine the state of every key on the keyboard.

To determine the real-time state of a key, use

SHORT GetAsyncKeyState (int vKey);

As with GetKeyState, you pass to this function the virtual key code for the key being queried.
The GetAsyncKeyState function returns a value subtly different from the one returned by

92

Part1 Windows Programming Basics

GetKeyState. As with the GetKeyState function, the high bit of the return value is set while the
key is being pressed. Like GetKeyState, the GetAsyncKeyState function can distinguish the left
and right Shift, Ctrl, and Alt keys. In addition, by passing the VK_LBUTTON virtual key value,
GetAsyncKeyState determines whether the stylus is currently touching the screen. On systems
with a mouse, the VK values; VK_LBUTTON, VK_MBUTTON, VK_RBUTTON, VK_XBUTTON1,
and VK_XBUTTON_Z return the state of their respective mouse buttons.

An application can simulate a keystroke using the keybd_event function:

VOID keybd_event (BYTE bVk, BYTE bScan, DWORD dwFlags,
DWORD dwExtraInfo);

The first parameter is the virtual key code of the key to simulate. The bScan code should

be set to NULL under Windows CE. The dwFlags parameter can have two possible flags:
KEYEVENTF_KEYUP indicates that the call is to emulate a key up event, while KEYEVENTF_
SILENT indicates that the simulated key press won't cause the standard keyboard click that
you normally hear when you press a key. So to fully simulate a key press, keybd_event should
be called twice, once without KEYEVENTF_KEYUP to simulate a key down, and then once
again, this time with KEYEVENTF_KEYUP to simulate the key release. When simulating a shift
key, specify the specific left or right VK code, as in VK_LSHIFT or VF_RCONTROL.

A function unique to Windows CE is

BOOL PostKeybdMessage (HWND hwnd, UINT VKey,
KEY_STATE_FLAGS KeyStateFlags,
UINT cCharacters, UINT *pShiftStateBuffer,
UINT *pCharacterBuffer);

This function sends a series of keys to the specified window. The hwnd parameter is the tar-
get window. This window must be owned by the calling thread. The VKey parameter should
be zero. KeyStateFlags specifies the key state for all the keys being sent. The cCharacters
parameter specifies the number of keys being sent. The pShiftStateBuffer parameter points
to an array that contains a shift state for each key sent, while pCharacterBuffer points to the
VK codes of the keys being sent. Unlike keybd_event, this function doesn’t change the global
state of the keyboard.

One final keyboard function, MapVirtualKey, translates virtual key codes to characters.
MapVirtualKey in Windows CE doesn't translate keyboard scan codes to and from virtual key
codes, although it does so in other versions of Windows. The prototype of the function is the
top of the following page.

UINT MapVirtualKey (UINT uCode, UINT uMapType);

Under Windows CE, the first parameter is the virtual key code to be translated, while the sec-
ond parameter, uMapType, indicates how the key code is translated. MapVirtualKey is depen-
dent on the keyboard device driver implementing a supporting function. Some OEMs don't
implement this supporting function, so on their systems, MapVirtualKey fails.

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 93

Testing for the Keyboard

To determine whether a keyboard is even present in the system, you can call

DWORD GetKeyboardStatus (VOID);

This function returns the KBDI_KEYBOARD_PRESENT flag if a hardware keyboard is present
in the system. This function also returns a KBDI_KEYBOARD_ENABLED flag if the keyboard is
enabled. To disable the keyboard, a call can be made to

BOOL EnableHardwareKeyboard (BOOL bEnable);

with the bEnable flag set to FALSE. You might want to disable the keyboard in a system for
which the keyboard folds around behind the screen; in such a system, a user could acciden-
tally press keys while using the stylus.

The KeyTrac Example Program

The following example program, KeyTrac, displays the sequence of keyboard messages.
Programmatically, KeyTrac isn't much of a departure from the earlier programs in the book.
The difference is that the keyboard messages described here are all trapped and recorded in
an array that's then displayed during the WM_PAINT message. For each keyboard message,
the message name is recorded along with the wParam and IParam values and a set of flags
indicating the state of the Shift keys. The key messages are recorded in an array because
these messages can occur faster than the redraw can occur. Figure 3-2 shows the KeyTrac
window after a few keys have been pressed.

WH_KEYUP wP:00000041 IP:c09e0001 shift:
wP:00000061 1P:001e0001 shift:

i3
i
:
:
8
:
g

wP:00000041 IP:c09e0001 shift:
wP:00000010 1P:c0aa0001 shift:
wP:00000041 IP:001e0001 shift: IS S
WM_KEYDOWN wP;00000041 IP:001e0001 shift: ISS
WM_KEYDOWN wP:00000010 IP;002a0001 shift: ISS

WM_KEYUP
WM_KEYUP
WM_CHAR

D

FIGURE 3-2 The KeyTrac window after a Shift+A key combination followed by a lowercase a key press

The best way to learn about the sequence of the keyboard messages is to run KeyTrac, press
a few keys, and watch the messages scroll down the screen. Pressing a character key such as
the a results in three messages: WM_KEYDOWN, WM_CHAR, and WM_KEYUP. Holding down
the Shift key while pressing the a and then releasing the Shift key produces a key-down mes-
sage for the Shift key followed by the three messages for the a key followed by a key-up
message for the Shift key. Because the Shift key itself isn't a character key, no WM_CHAR
message is sent in response to it. However, the WM_CHAR message for the a key now con-
tains a 0x41 in the wParam value, indicating that an uppercase A was pressed instead of a
lowercase a.

94 Part] Windows Programming Basics

Listing 3-1 shows the source code for the KeyTrac program.

LISTING 3-1
KeyTrac.h

//
// Header file

//

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

//
// Returns number of elements

#define dim(x) (sizeof(x) / sizeof(x[0]))

// Generic defines and data types
//
struct decodeUINT { // Structure associates
UINT Code; // messages
// with a function.
LRESULT (*Fxn) (HWND, UINT, WPARAM, LPARAM);

// Program-specific defines and structures
//
typedef struct {
UINT wKeyMsg;
INT wParam;
INT 1Param;
LPCTSTR pszMsgTxt;
TCHAR szShift[20];
} MYKEYARRAY, *PMYKEYARRAY;

// Structure to associate messages with text name of message
typedef struct {

UINT wMsg;

LPCTSTR pName;
} KEYNAMESTRUCT;

// Function prototypes

//

HWND InitInstance (HINSTANCE, LPWSTR, int);
int TermInstance (HINSTANCE, int);

// Window procedures)
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);
// Message handlers

LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM);

LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM);

LRESULT DoKeysMain (HWND, UINT, WPARAM, LPARAM);

LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

Chapter 3 Input: Keyboard, Mouse, and Touch Screen

KeyTrac.cpp

//
// KeyTrac - displays keyboard messages

//

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

//

#include <windows.h> // For all that Windows stuff
#include <commctrl.h> // Command bar includes
#include “keytrac.h” // Program-specific stuff

// The 1include and 1ib files for the Pocket PC are conditionally

// included so that this example can share the same project file. This
// is necessary since this example must have a menu bar on the Pocket
// PC to have a SIP button.

#if defined(WIN32_PLATFORM_PSPC) || defined(WIN32_PLATFORM_WFSP)
#include <aygshell.h> // Add Pocket PC includes.

#pragma comment(Tib, “aygshell1”) // Link Pocket PC 1ib for menu bar.
#endif

/= e
// Global data

//

const TCHAR szAppName[] = TEXT (“KeyTrac™);

HINSTANCE hInst; // Program instance handle

// Program-specific global data
MYKEYARRAY ka[16];

int nKeyCnt = 0;

int nFontHeight;

// Array associates key messages with text tags

KEYNAMESTRUCT knArray[] = {{WM_KEYDOWN, TEXT (“WM_KEYDOWN”)},
{WM_KEYUP, TEXT (“WM_KEYUP™)},
{WM_CHAR, TEXT (“WM_CHAR™)},
{WM_SYSCHAR, TEXT (“WM_SYSCHAR™)},

{WM_SYSKEYUP, TEXT (“WM_SYSKEYUP")},
{WM_SYSKEYDOWN, TEXT (“WM_SYSKEYDOWN"”)},
{WM_DEADCHAR, TEXT (“WM_DEADCHAR”)},
{WM_SYSDEADCHAR, TEXT (“WM_SYSDEADCHAR™)}};
// Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {
WM_CREATE, DoCreateMain,
WM_PAINT, DoPaintMain,
WM_KEYUP, DoKeysMain,
WM_KEYDOWN, DoKeysMain,
WM_CHAR, DoKeysMain,
WM_DEADCHAR, DoKeysMain,
WM_SYSCHAR, DoKeysMain,
WM_SYSDEADCHAR, DoKeysMain,
WM_SYSKEYDOWN, DoKeysMain,
WM_SYSKEYUP, DoKeysMain,

95

926 Part| Windows Programming Basics

WM_DESTROY;, DoDestroyMain,
}; ‘

/7
1/ Program entry point
I/)
int WINAPI W1nMa1n (HINSTANCE hInstance HINSTANCE hPrevInstance,
: : LPWSTR TpCmdLine, 1int nCmdShow) {
MSG msg;
int rc = 0;
HWND hwndMain;

/7 Initialize this instance.
hwndMain = InitInstance (hInstance, TpCmdLine, nCmdShow),
if (hwndMain == 0)" -

return 0x10;

// Application message loop

while (GetMessage (&msg, NULL, 0, 0)) {
TranslateMessage (&msg);
DispatchMessage (&msg) ;

}

// Instance cleanup
return. TermInstance (hInstance msg. wParam),

1/ In1tInstance ~ Instance 1n1t1a11zat1on

//

HWND InitInstance (HINSTANCE hInstance, LPWSTR TpCmdLine, int nCmdShow) {
WNDCLASS wc;
HWND hwnd;

#if defined (WIN32_PLATFORM_PSPC) || defined(WINBZ_PLATFORM,WFSP)
// For Windows Mobile devices, allow only one instance of the app
hwnd. = FindWindow‘QszAppName, NULL) ;
if ChWnd) {
SetForegroundwindow ((HWND)(((DWORD)hWnd) | 0x01)),
return 0; :
. 3
#endif : L :
hInst,=thnstance; // Save program instance handle

// Register app11cat1on main window class.

wc.style = 0; : ' , /7 Window style ,
wc. TpfnWndProc' = MaiandProc; SR // Callback function
‘wc.cbClsExtra = 0; ... // Extra class data
‘we. cbWndExtra = 0; ' " // Extra window data
wc.hInstance = hInstance; « - ' - // Owner:handle
wc.hIcon = NULL, - ; - // hpplication icon

-wc.hCursor = LoadCursor (NULL IDC._ARROW);// Default cursor
wc. hbrBackground = (HBRUSH) GetStockObject (WHITEmBRUSH),

Chapter 3 Input: Keyboard, Mouse, and Touch Screen

wc.lpszMenuName = NULL; // Menu name
wc.TpszClassName = szAppName; // Window class name

if (RegisterClass(&wc) == 0) return 0;

// Create main window.

hWnd = CreateWindowEx (WS_EX_NODRAG, szAppName, TEXT (“KeyTrac”),
WS_VISIBLE | WS_CAPTION | WS_SYSMENU,
CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,
NULL, NULL, hInstance, NULL);

// Fail if window not created
if (!IsWindow (hWnd)) return 0;

// Standard show and update calls
ShowWindow (hWnd, nCmdShow) ;
UpdateWindow (hWnd);

return hWnd;

// TermInstance - Program cleanup

//

int TermInstance (HINSTANCE hInstance, int nDefRC) {
return nDefRC;

}

//

// Message handling procedures for MainWindow

// MainWndProc - Callback function for application window
//
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {

INT 1;

//

// Search message list to see if we need to handle this

// message. If in Tist, call procedure.

//

for (i = 0; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, T1Param);

}
return DefWindowProc (hWnd, wMsg, wParam, 1Param);
}
==
// DoCreateMain - Process WM_CREATE message for window.
//

LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {
HDC hdc;
TEXTMETRIC tm;

97

98 Part| Windows Programming Basics

#if defined(WIN32_PLATFORM_PSPC) &% (_WIN32_WCE >= 300)

SHMENUBARINFO mbi;: // For -Pocket PC, create
memset (&mbi, 0, sizeof(SHMENUBARINFO)); // menu bar so that we
mbi.cbSize = sizeof (SHMENUBARINFO) ; // have a sip button
mbi.hwndParent = hWnd;
mbi.dwFlags = SHCMBF_EMPTYBAR; // No menu
SHCreateMenuBar (&mbi);

#endif i

// Get the height of the default. font.

hdc = GetDC (hWnd);

GetTextMetrics. (hdc, &tm);

nFontHeight = tm.tmHeight + tm.tmExternalLeading;
ReleaseDC (hWnd, hdc);

return 0;

~--// DoPaintMain - Process WM_PAINT message for window.
=7/ .
LRESULT ‘DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {
PAINTSTRUCT ps; .
RECT rect, rectOut;
TCHAR szOut[256];
HDC hdc;
INT 45 33
LPCTSTR pKeyText;

GetClientRect (hWnd, &rect);

// Create a drawing rectangle for the top line of the window.
rectOut = rect;
rectOut.bottom = rectOut.top + nFontHeight;

hdc = BeginPaint (hWnd, &ps);

if (nKeyCnt) {
for (i = 0; i < nKeyCnt; i++) { . .
// Create string containing wParam, 1Param, and shift data.
wsprintf. (szOut, TEXT (“wP:%08x 1P:%08x shift: %s”), -
ka[i].wParam, ka[i].]Param,;ka[ij.szShift);

// Look up name of key message.
for (j = 0; j < dim (knArray); j++)
if (knArray[j].wMsg == ka[i].wKeyMsg)
“‘break;
// See if we found the message.
if (j < dim (knArray)) R
pKeyText = knArray[j].pName;
else : :
pKeyText = TEXT (“Unknown™);
// Scroll the window one line.
Scro11DC (hdc, 0, nFontHeight, &rect, &rect, NULL, NULL);

Chapter 3 Input: Keyboard, Mouse, and Touch Screen

// See if wide or narrow screen.
if (GetSystemMetrics (SM_CXSCREEN) < 480) {
// If narrow screen, display info on 2 lines
ExtTextOut (hdc, 10, rect.top, ETO_OPAQUE, &rectOut,
szOut, Istrlen (szOut), NULL);

// Scroll the window another Tine.

Scrol1DC(hdc, 0, nFontHeight, &rect, &rect, NULL, NULL);

ExtTextOut (hdc, 5, rect.top, ETO_OPAQUE, &rectOut,
pKeyText, 1strlen (pKeyText), NULL);

} else {

// Wide screen, print all on one Tine.

ExtTextOut (hdc, 5, rect.top, ETO_OPAQUE, &rectOut,
pKeyText, Tstrlen (pKeyText), NULL);

ExtTextOut (hdc, 100, rect.top, 0, NULL,
sz0ut, Istrlen (szOut), NULL);

}

nKeyCnt = 0;
}
EndPaint (hWnd, &ps);
return 0;

// DoKeysMain - Process all keyboard messages for window.

//

LRESULT DoKeysMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {

if (nKeyCnt >= 16) return 0;

ka[nKeyCnt] .wKeyMsg = wMsg;
ka[nKeyCnt] .wParam = wParam;
ka[nKeyCnt].1Param = 1Param;

// Capture the state of the shift flags.
ka[nKeyCnt].szShift[0] = TEXT (‘\0’);

int siz = dim(ka[nKeyCnt].szShift); //save size of string buffer

if (GetKeyState (VK_LMENU))

_tcscat_s (ka[nKeyCnt].szShift, siz, TEXT (“T1A “));
if (GetKeyState (VK_RMENU))

_tcscat_s (ka[nKeyCnt].szShift, siz, TEXT (“rA “));
if (GetKeyState (VK_MENU))

_tcscat_s (ka[nKeyCnt].szShift, siz, TEXT (“A “));
if (GetKeyState (VK_LCONTROL))

_tcscat_s (ka[nKeyCnt].szShift, siz, TEXT (“1C “));
if (GetKeyState (VK_RCONTROL))

_tcscat_s (ka[nKeyCnt].szShift, siz, TEXT (“rC “));
if (GetKeyState (VK_CONTROL))

_tcscat_s (ka[nKeyCnt].szShift, siz, TEXT (“C “));

99

100

Part| Windows Programming Basics

if (GetKeyState (VK-LSHIFT))
_tcscat_s (ka[nKeyCnt].szShift, siz, TEXT (“1S "));
if - (GetKeyState (VK_RSHIFT)) .
_tecscatos (ka[nKeyCnt].szShift, siz, TEXT (“rS “));
if (GetKeyState (VK_SHIFT)) :
_tcscat_s (ka[nKeyCnt].szShift, siz, TEXT (“S “));

nKeyCnt++;
InvalidateRect (hWnd, NULL, FALSE);
return 0;
1
[l e i i L o e e g i e s e e e S
// DoDestroyMain - Process WM_DESTROY message for window.
/7

LRESULT DoDestroyMain (HWND- hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
PostQuitMessage (0);
return 0;

Here are a few more characteristics of KeyTrac to notice. After each keyboard message is
recorded, an InvalidateRect function is called to force a redraw of the window and there-
fore also a WM_PAINT message. As | mentioned in Chapter 2, “Drawing on the Screen,” a
program should never attempt to send or post a WM_PAINT message to a window because
Windows needs to perform some setup before it calls a window with a WM_PAINT message.

Another device context function used in KeyTrac is

BOOL Scrol11DC (HDC hDC, int dx, int dy, const RECT *1prcScroll,
const RECT *T1prcClip, HRGN hrgnUpdate,
LPRECT TprcUpdate);

which scrolls an area of the device context either horizontally or vertically, but, under
Windows CE, not both directions at the same time. The three rectangle parameters define
the area to be scrolled, the area within the scrolling area to be clipped, and the area to be
painted after the scrolling ends. Alternatively, a handle to a region can be passed to Scro/lDC.
That region is defined by ScrolIDC to encompass the region that needs painting after the
scroll.

Also notice that if the KeyTrac window is covered up for any reason and then reexposed, the
message information on the display is lost. This behavior occurs because a device context
doesn't store the bit information of the display. The application is responsible for saving any
information necessary to completely restore the client area of the screen. Because KeyTrac
doesn't save this information, it's lost when the window is covered up.

One last aspect of KeyTrac needs mentioning. In the key message handler, DoKeysMain,
the program uses _tcscat_s to construct the shift strings. The function is a standard string

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 101

concationation function with a secure twist. The second parameter is the size of the destina-
tion string. Windows CE now comes with a secure string library that should be used instead
of the old standard string functions. The secure functions provide buffer checking to prevent
buffer overrun errors (or attacks) in the code. Although simple example programs such as

the ones in this book aren't going to be subject to hordes of hackers attempting to break the
code, they are example programs and therefore should show proper coding techniques.

The Mouse and the Touch Screen

Unlike desktop PCs, Windows CE devices don't always have a mouse. Instead, many Windows
CE devices have a touch screen and stylus combination. For Windows CE systems that do
have a mouse, the programming interface is identical to the desktop.

Mouse Messages

Whenever the mouse cursor moves across the display, the topmost window at that point
receives a WM_MOUSEMOVE message. If the user clicks the left or right mouse button, the
window receives a WM_LBUTTONDOWN or WM_RBUTTONDOWN message. When the
user releases the button, the window receives a WM_LBUTTONUP or WM_RBUTTONUP
message. If the user presses and releases the mouse wheel, the window receives a WM_
MBUTTONDOWN followed by a WM_MBUTTONUP message.

For all of these messages, the wParam and IParam parameters are loaded with the same
values. The wParam parameter contains a set of bit flags indicating whether the Ctrl or Shift
keys on the keyboard are currently held down. As in other versions of Windows, the Alt key
state isn't provided in these messages. To get the state of the Alt key when the message was
sent, use the GetKeyState function.

The IParam parameter contains two 16-bit values that indicate the position on the screen of
the tap, or mouse click. The low-order 16 bits contain the x (horizontal) location relative to
the upper-left corner of the client area of the window, while the high-order 16 bits contain
the y (vertical) position.

If the user double-taps, that is, taps twice on the screen at the same location and within a
predefined time, Windows sends a WM_LBUTTONDBLCLK message to the double-tapped
window, but only if that window's class was registered with the CS_DBLCLKS style. The class
style is set when the window class is registered with RegisterClass.

You can differentiate between a tap and a double-tap by comparing the messages sent to
the window. When a double-tap occurs, a window first receives the WM_LBUTTONDOWN
and WM_LBUTTONUP messages from the original tap. Then a WM_LBUTTONDBLCLK is
sent followed by another WM_LBUTTONUP. The trick is to refrain from acting on a
WM_LBUTTONDOWN message in any way that precludes action on a subsequent

102

Part| Windows Programming Basics

WM_LBUTTONDBLCLK. This is usually not a problem because single taps usually select an
object, while double-tapping launches the default action for the object.

If the user rolls the mouse wheel, the window receives WM_MOUSEWHEEL messages. For this
message, the contents is the same as the other mouse messages, the horizontal and verti-

cal location of the mouse cursor. The low word of the wParam parameter contains the same
bit flags indicating the the keys currently held down. The high work of wParam contains the
distance the wheel was rotated expressed in multiples of a constant WHEEL_DELTA. If the
value is positive, the rotation is away from the user. A negative value indicates the wheel was
rotated back toward the user. The DOIView example in Chapter 4 demonstrates support for
the WM_MOUSEWHEEL message.

Working with the Touch Screen

The touch screen and stylus combination might be new to Windows programmers, but for-
tunately, its integration into Windows CE applications is relatively painless. The best way to
deal with the stylus is to treat it as a single-button mouse. The stylus creates the same mouse
messages that are provided by the mouse in other versions of Windows and by Windows CE
systems that use a mouse. The differences that do appear between a mouse and a stylus are
due to the different physical realities of the two input devices.

Unlike a mouse, a stylus doesn't have a cursor to indicate its current position. Therefore, a
stylus can't hover over a point on the screen in the way that the mouse cursor does. A cursor
hovers when a user moves it over a window without pressing a mouse button. This concept
can't be applied to programming for a stylus because the touch screen can't detect the posi-
tion of the stylus when it isn't in contact with the screen.

Another consequence of the difference between a stylus and a mouse is that without a
mouse cursor, an application can't provide feedback to the user by means of changes in ap-
pearance of a hovering cursor. Touch screen-based Windows CE systems support setting

the cursor for one classic Windows method of user feedback. The busy hourglass cursor,
indicating that the user must wait for the system to complete processing, is supported under
Windows CE so that applications can display the busy hourglass in the same manner as appli-
cations running under other versions of Windows.

Stylus Messages

When the user presses the stylus on the screen, the topmost window under that point re-
ceives the input focus if it didn't have it before and then receives a WM_LBUTTONDOWN
message. When the user lifts the stylus, the window receives a WM_LBUTTONUP message.
Moving the stylus within the same window while it's down causes WM_MOUSEMOVE mes-
sages to be sent to the window.

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 103

Inking

A typical application for a handheld device is capturing the user’s writing on the screen and
storing the result as ink. This process isn't handwriting recognition—simply ink storage. At
first pass, the best way to accomplish this would be to store the stylus points passed in each
WM_MOUSEMOVE message. The problem is that sometimes small CE-type devices can't
send these messages fast enough to achieve a satisfactory resolution. Under Windows CE, a
function call has been added to assist programmers in tracking the stylus.

BOOL GetMouseMovePoints (PPOINT pptBuf, UINT nBufPoints,
UINT *pnPointsRetrieved);

GetMouseMovePoints returns a number of stylus points that didn't result in WM_MOUSEMOVE
messages. The function is passed an array of points, the size of the array (in points), and a
pointer to an integer that will receive the number of points passed back to the application.
Once received, these additional points can be used to fill in the blanks between the last WM_
MOUSEMOVE message and the current one.

GetMouseMovePoints does have one “gotcha”; it returns points in the resolution of the touch pan-
el, not the screen. This touch panel resolution is generally set at four times the screen resolution,
so you need to divide the coordinates returned by GetMouseMovePoints by 4 to convert them to
screen coordinates. The extra resolution helps programs such as handwriting recognizers.

A short example program, PenTrac, illustrates the difference that GetMouseMovePoints can

make. Figure 3-3 shows the PenTrac window. Notice the two lines of dots across the window.
The top line was drawn using points from WM_MOUSEMOVE only. The second line included
points that were queried with GetMouseMovePoints. The black dots were queried from WM_
MOUSEMOVE, while the red (lighter) dots were locations queried with GetMouseMovePoints.

& Start I[PenTrac (27 @j

FIGURE 3-3 The PenTrac window showing three lines drawn

The source code for PenTrac is shown in Listing 3-2. The program places a dot on the screen
for each WM_MOUSEMOVE or WM_LBUTTONDOWN message it receives. If the Shift key is
held down during the mouse move messages, PenTrac also calls GetMouseMovePoints and
marks those points in the window in red to distinguish them from the points returned by the
mouse messages alone.

104

Part| Windows Programming Basics

PenTrac cheats a little to enhance the effect of GetMouseMovePoints. The DoMouseMain
routine, which handles WM_MOUSEMOVE and WM_LBUTTONDOWN messages, calls the
function sleep to kill a few milliseconds. This delay simulates a slow-responding application
that might not have time to process every mouse move message in a timely manner.

LISTING 3-2 The PenTrac program
PenTrac.h

//
// Header file

// ~

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

1/
// Returns number of elements.

#define dim(x) (sizeof(x) / sizeof(x[01))

//. Generic defines and data types
//
struct decodeUINT { // Structure associates
UINT Code; // messages
// with a function.
LRESULT (*Fxn) (HWND, UINT, WPARAM, LPARAM);

// Function prototypes

//

HWND InitInstance (HINSTANCE, LPWSTR, int);
int TermInstance (HINSTANCE, int);

// - Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

// Message handlers

LRESULT DoPaintMain: (HWND, UINT, WPARAM, LPARAM);
LRESULT DoMouseMain- (HWND, UINT, WPARAM, - LPARAM);
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

PenTrac.cpp

//
// PenTrac - Tracks stylus movement

1/

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

/L

Chapter 3 Input: Keyboard, Mouse, and Touch Screen

#include <windows.h> // For all that Windows stuff
#include “pentrac.h” // Program-specific stuff

[s
// Global data

//

const TCHAR szAppName[] = TEXT (“PenTrac”);

HINSTANCE hInst; // Program instance handle

// Message dispatch table for MainWindowProc

const struct decodeUINT MainMessages[] = {
WM_LBUTTONDOWN, DoMouseMain,
WM_MOUSEMOVE, DoMouseMain,
WM_DESTROY, DoDestroyMain,

}

//

// Program entry point

//

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPWSTR TpCmdLine, int nCmdShow) {

MSG msg;
int rc = 0;
HWND hwndMain;

// Initialize this instance.
hwndMain = InitInstance (hInstance, 1pCmdLine, nCmdShow);
if (hwndMain == 0)

return 0x10;

// Application message loop

while (GetMessage (&msg, NULL, 0, 0)) {
TranslateMessage (&msg);
DispatchMessage (&msg);

}

// Instance cleanup

return TermInstance (hInstance, msg.wParam);

// InitApp - Application initialization

//

HWND InitInstance (HINSTANCE hInstance, LPWSTR 1pCmdLine, int nCmdShow) {
WNDCLASS wc;
HWND hwnd;

#if defined(WIN32_PLATFORM_PSPC) || defined(WIN32_PLATFORM_WFSP)
// If Windows Mobile, allow only one instance of the application.
hWnd = FindWindow (szAppName, NULL);
if (hwnd) {
SetForegroundWindow ((HWND) (((DWORD)hWnd) | 0x01));
return 0;
}
#endif
// Save program instance handle in global variable.

105

106 Part| Windows Programming Basics

hInst = hInstance;

// Register application main window class.

wc.style = 0; // Window style
wc. 1pfnWndProc = MainWndProc; // Callback function
wc.chClsExtra. = 0; // Extra class data
wc.chWndExtra = 0; // Extra window data
wc.hInstance = hInstance; // Owner handle
wc.hIcon = NULL, // Application icon

wc.hCursor = LoadCursor (NULL, IDC_ARROW);// Default cursor
wc. hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wc.1pszMenuName = NULL; // Menu name
wc.1pszClassName = szAppName; // Window class name

if (RegisterClass (&wc) == 0) return 0;

// Create main window.

hWnd = CreateWindowEx (WS_EX_NODRAG, szAppName, TEXT (“PenTrac”),
WS_VISIBLE | WS_CAPTION | WS_SYSMENU,
CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, NULL, NULL, hInstance, NULL);

// Return fail code if window not created.

if (!IsWindow (hWnd)) return 0;

// Standard show and update calls
Showwindow (hWnd, nCmdShow);
UpdateWindow (hWnd);

return hWnd;

// TermInstance - Program cleanup

//

int TermInstance (HINSTANCE hInstance, int nDefRC) {
return nDefRC;

}

//

// Message handling procedures for MainWindow

/7

// MainWndProc - Callback function for application window
//
LRESULT CALLBACK MainWndProc (HWND hwnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {

INT 43

//

//-Search message list to see if we need to handle this

// message. If in list, call procedure.

//

for (i = 0; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxn) (ChWnd, wMsg, wParam, TParam);

Chapter 3 Input: Keyboard, Mouse, and Touch Screen

return DefWindowProc (hWnd, wMsg, wParam, 1Param);

// DoMouseMain - Process WM_LBUTTONDOWN and WM_MOUSEMOVE messages
// for window.
//
LRESULT DoMouseMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {
POINT pt[64];

POINT ptM;

UINT i, uPoints = 0;

HDC hdc;

ptM.x = LOWORD (TParam);

X
ptM.y = HIWORD (1Param);
hdc = GetDC (hwnd);
// If shift and mouse move, see if any lost points.
if (WMsg == WM_MOUSEMOVE) {
if (wParam & MK_SHIFT)
GetMouseMovePoints (pt, 64, &uPoints);

for (i = 0; i < uPoints; i++) {
pt[il.x /= 4; // Convert move pts to screen coords
ptlil.y /= 4;
// Covert screen coordinates to window coordinates
MapWindowPoints (HWND_DESKTOP, hWnd, &pt[i], 1);
SetPixel (hdc, pt[i]l.x, pt[il.y, RGB (255, 0, 0));
SetPixel (hdc, pt[i]l.x+1, pt[il.y, RGB (255, 0, 0));
SetPixel (hdc, pt[i].x, pt[i].y+1, RGB (255, 0, 0));
SetPixel (hdc, pt[i].x+1, pt[il.y+1, RGB (255, 0, 0));
}
}
// The original point is drawn Tlast in case one of the points
// returned by GetMouseMovePoints overlaps it.
SetPixel (hdc, ptM.x, ptM.y, RGB (0, 0, 0));
SetPixel (hdc, ptM.x+1, ptM.y, RGB (0, 0, 0));
SetPixel (hdc, ptM.x, ptM.y+1, RGB (0, 0, 0));
SetPixel (hdc, ptM.x+1, ptM.y+1, RGB (0, 0, 0));
ReleaseDC (hwWnd, hdc);

// Kill time to make believe we are busy.
Sleep(25);
return 0;

// DoDestroyMain - Process WM_DESTROY message for window.
//
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {
PostQuitMessage (0);
return 0;

107

108

Part | Windows Programming Basics

Input Focus and Mouse Messages

Here are some subtleties to note about circumstances that rule how and when mouse mes-
sages initiated by stylus input are sent to different windows. As mentioned previously, the
input focus of the system changes when the stylus is pressed against a window. However,
dragging the stylus from one window to the next doesn’t cause the new window to receive
the input focus. The down tap sets the focus, not the process of dragging the stylus across a
window. When the stylus is dragged outside the window, that window stops receiving WM_
MOUSEMOVE messages but retains input focus. Because the tip of the stylus is still down, no
other window receives the WM_MOUSEMOVE messages. This is akin to using a mouse and
dragging the mouse outside a window with a button held down.

To continue to receive mouse messages even if the stylus moves off its window, an applica-
tion can call

HWND SetCapture (HWND hWnd);

passing the handle of the window to receive the mouse messages. The function returns the
handle of the window that previously had captured the mouse or NULL if the mouse wasn't
previously captured. To stop receiving the mouse messages initiated by stylus input, the win-
dow calls

BOOL ReleaseCapture (void);

Only one window can capture the stylus input at any one time. To determine whether the
stylus has been captured, an application can call

HWND GetCapture (void);

which returns the handle of the window that has captured the stylus input or 0 if no window
has captured the stylus input—although please note one caveat: the window that has cap-
tured the stylus must be in the same thread context as the window calling the function. This
limitation means that if the stylus has been captured by a window in another application,
GetCapture still returns 0.

If a window has captured the stylus input and another window calls GetCapture, the window
that had originally captured the stylus receives a WM_CAPTURECHANGED message. The
IParam parameter of the message contains the handle of the window that gained the cap-
ture. You shouldn't attempt to take back the capture by calling GetCapture in response to
this message. In general, because the stylus is a shared resource, applications should be wary
of capturing the stylus for any length of time and should be able to handle gracefully any
loss of capture.

Another interesting tidbit: just because a window captures the mouse/stylus, that doesn't
prevent a tap on another window from gaining the input focus for that window. You can use

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 109

other methods for preventing the change of input focus, but in almost all cases, it's better to
let the user, not the applications, decide which top-level window should have the input focus.

Right-Button Clicks

When you click the right mouse button on an object in Windows systems, the action typically
calls up a context menu, a stand-alone menu displaying a set of choices for what you can do
with that particular object. On a system with a mouse, Windows sends WM_RBUTTONDOWN
and WM_RBUTTONUP messages indicating a right-button click. When you use a stylus, you
don’t have a right button.

Windows CE user interface guidelines specify that a tap-and-hold gesture be used to simu-
late a right mouse click. The function SHRecognizeGesture can be used during the processing
of a WM_LBUTTONDOWN message to detect a tap and hold. The function is prototyped as

WINSHELLAPI DWORD SHRecognizeGesture(SHRGINFO *shrg);

The only parameter is the address of a SHRGINFO structure defined as

typedef struct tagSHRGI {
DWORD cbSize;
HWND hwndClient;
POINT ptDown;
DWORD dwFlags;

} SHRGINFO, *PSHRGINFO;

The cbSize field must be filled with the size of the structure. The hwndClient field should be
set to the handle of the window that is calling the function. The ptDown field is a structure
that should be filled with the point where the gesture is being recognized. The dwFlags

can contain a number of flags. The SHRG_RETURNCMD flag causes the function to return
GN_CONTEXTMENU if the user properly gestures with a tap and hold or zero otherwise. The
SHRG_NOTIFYPARENT flag causes a WM_NOTIFY message to be sent to the parent window
if the gesture is properly recognized. Finally, the SHRG_LONGDELAY flag requires the user to
hold the tap for a longer period of time before the gesture is recognized.

The TicTacl Example Program

To demonstrate stylus programming, | have written a trivial tic-tac-toe game. The TicTacl
window is shown in Figure 3-4. The source code for the program is shown in Listing 3-3. This
program doesn't allow you to play the game against the computer, nor does it determine the
end of the game—it simply draws the board and keeps track of the X's and O’s. Nevertheless,
it demonstrates basic stylus interaction.

110 Part! Windows Programming Basics

X
OIX|X
O

st [T [10:28pm (2]

FIGURE 3-4 The TicTacl window

LISTING 3-3 The TicTacl program

TicTacl.h

1/
// Header file

1/

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

1/
// Returns number of elements

#define dim(x) (sizeof(x) / sizeof(x[0]))

// Generic defines and data types
//
struct decodeUINT { // Structure associates
UINT Code; // messages
// with a function.
LRESULT ..(*Fxn) (HWND, UINT, WPARAM, LPARAM);

//- Function prototypes

/7

HWND InitInstance (HINSTANCE, LPWSTR, int);
int TermInstance (HINSTANCE, int);

// Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

// Message handlers

LRESULT DoSizeMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DolLButtonDownMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoLButtonUpMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

Chapter 3 Input: Keyboard, Mouse, and Touch Screen

// Game function prototypes
void DrawXO (HDC hdc, HPEN hPen, RECT *prect, INT nCell, INT nType);
void DrawBoard (HDC hdc, RECT *prect);

TicTacl.cpp

//
// TicTacl - Simple tic-tac-toe game

//

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

//

//

#include <windows.h> // For all that Windows stuff
#include <commctrl.h> // Command bar includes

#include “tictacl.h” // Program-specific stuff

/== e e e e e
// Global data

//

const TCHAR szAppName[] = TEXT (“TicTacl™);

HINSTANCE hInst; // Program instance handle

// State data for game

RECT rectBoard = {0, 0, 0, 0}; // Used to place game board.
RECT rectPrompt; // Used to place prompt.

BYTE bBoard[9]; // Keeps track of X’s and 0’s.
BYTE bTurn = 0; // Keeps track of the turn.

// Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {
WM_SIZE, DoSizeMain,
WM_PAINT, DoPaintMain,
WM_LBUTTONUP, DolLButtonUpMain,
WM_DESTROY, DoDestroyMain,
};

//

//

// Program.entry point

//

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPWSTR TpCmdLine, 1int nCmdShow) {

MSG msg;
HWND hwndMain;

// Initialize this instance.
hwndMain = InitInstance (hInstance, lpCmdLine, nCmdShow);
if (hwndMain == 0)
return 0x10;
// Application message loop

111

112 Part| Windows Programming Basics

while (GetMessage (&msg, NULL, 0, 0)) {
TranslateMessage (&msg);
DispatchMessage (&msg);

}

// Instance cleanup

return TermInstance (hInstance, msg.wParam);

// InitInstance - Instance initialization

//

HWND InitInstance (HINSTANCE hInstance, LPWSTR 1pCmdLine, int nCmdShow) {
WNDCLASS wc;
HWND hWnd;

// Save program instance handle in global variable.
hInst = hInstance;

#if defined(WIN32_PLATFORM_PSPC) || defined(WIN32_PLATFORM_WFSP)
// If Windows Mobile, allow only one instance of the application.
hWnd = FindwWindow (szAppName, NULL); '

if (hWnd) {

SetForegroundWindow. ((HWND) (((DWORD)hWnd) | 0x01));

return 0;
}

#endif

// Register application main window class.
wc.style = 0; // Window style
wc. 1pfnWndProc = MainWndProc; // Callback function
wc.cbClsExtra = 0; // Extra class data
wc.cbWndExtra = 0; // Extra window data
wc.hInstance = hInstance; // Owner handle
wc.hIcon = NULL, // Application icon

wc.hCursor = LoadCursor (NULL, IDC_ARROW);// Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wc.TpszMenuName = NULL; // Menu name
wc.TpszClassName = szAppName; // Window class name

if (RegisterClass (&wc) == 0) return 0;

// Create main window.

hWnd = CreateWindowEx (WS_EX_NODRAG, szAppName, TEXT (“TicTacl”),
WS_VISIBLE | WS_CAPTION | WS_SYSMENU,
CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,
NULL, NULL, hInstance, NULL);

// Return fail code if window not created.

if (1IsWindow (hWnd)) return 0;

// Standard show and update calls
ShowWindow (hWnd, nCmdShow) ;
UpdateWindow (hWnd);

return hwnd;

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 113

// TermInstance - Program cleanup

//
int TermInstance (HINSTANCE hInstance, int nDefRC) {

return nDefR(;
}
//

// Message handling procedures for MainWindow

// MainWndProc - Callback function for application window
//
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {

INT 1;

//

// Search message list to see if we need to handle this

// message. If in list, call procedure.

//

for (i = 0; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, 1Param);

}
return DefWindowProc(hWnd, wMsg, wParam, 1Param);
}
=
// DoSizeMain - Process WM_SIZE message for window.
//

LRESULT DoSizeMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {
RECT rect;
INT i;
// Adjust the size of the client rect to take into account
// the command bar height.
GetClientRect (hWnd, &rect);

// Initialize the board rectangle if not yet initialized.
if (rectBoard.right == 0) {

// Initialize the board.

for (i = 0; i < dim(bBoard); i++)
bBoard[i] = 0;

})

// Define the playing board rect.

rectBoard = rect;

rectPrompt = rect;

// Layout depends on portrait or landscape screen.

if (rect.right - rect.left > rect.bottom - rect.top) {
rectBoard.left += 20;
rectBoard.top += 10;
rectBoard.bottom -= 10;
rectBoard.right = rectBoard.bottom - rectBoard.top + 10;

rectPrompt.left = rectBoard.right + 10;

114 Part| Windows Programming Basics

} else {
rectBoard.left += 20;
rectBoard.right -= 20;
rectBoard.top += 10;
rectBoard.bottom = rectBoard.right - rectBoard.left + 10;

rectPrompt.top = rectBoard.bottom + 10;
}

return 0;

// DoPaintMain - Process WM_PAINT message for window.
// E
LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
PAINTSTRUCT ps;
RECT rect;
HFONT hFont, hOldFont;
HDC hdc;

GetClientRect (hWnd, &rect);

hdc = BeginPaint (hWnd, &ps);
// Draw the board.
DrawBoard (hdc, &rectBoard);

// Write the prompt to the screen.
hFont = (HFONT)GetStockObject (SYSTEM_FONT);
hOldFont = (HFONT)SelectObject (hdc, hFont);
if (bTurn == 0)
DrawText (hdc, TEXT (« X’s turn»), -1, &rectPrompt,
DT_CENTER | DT_VCENTER | DT_SINGLELINE);
else
DrawText (hdc, TEXT (« O’s turn»), -1, &rectPrompt,
DT_CENTER | DT_VCENTER | DT_SINGLELINE);

SelectObject (hdc, hOldFont);
EndPaint (hWnd, &ps);
return 0;

// DolLButtonUpMain - Process WM_LBUTTONUP message for window.
//
LRESULT DolButtonUpMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {
POINT pt;
INT cx, cy, nCell = 0;

pt.x = LOWORD (1Param);
pt.y = HIWORD (1Param);
// See if pen on board. If so, determine which cell.

]

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 115

if (PtInRect (&rectBoard, pt)){
// Normalize point to upper left corner of board.
pt.x -= rectBoard.left;
pt.y -= rectBoard.top;

// Compute size of each cell.
cx = (rectBoard.right - rectBoard.left)/3;
cy = (rectBoard.bottom - rectBoard.top)/3;

// Find column.

nCell = (pt.x / cx);

// Find row.

nCell += (pt.y / cy) * 3;

// If cell empty, i1l it with mark.
if (bBoard[nCell] == 0) {
if (bTurn) {

bBoard[nCell] = 2;
bTurn = 0;
} else {
bBoard[nCell] = 1;
bTurn = 1;
}
InvalidateRect (hWnd, NULL, FALSE);
} else {

// Inform the user of the filled cell.
MessageBeep (0);

return 0;
}

}

return 0;
}
/e
// DoDestroyMain - Process WM_DESTROY message for window.
//

LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {
PostQuitMessage (0);
return 0;
}
//

// Game-specific routines

// DrawX0 - Draw a single X or O in a square.

//

void DrawXO (HDC hdc, HPEN hPen, RECT *prect, INT nCell, INT nType) {
POINT pt[2];
INT cx, cy;
RECT rect;

cx
cy

(prect->right - prect->left)/3;
(prect->bottom - prect->top)/3;

]

116 Part| Windows Programming Basics

// Compute the dimensions of the target cell.
rect.left = (cx * (nCell % 3) + prect->left) + 10;
rect.right = rect.right = rect.left + cx - 20;
rect.top = cy * (nCell / 3) + prect->top + 10;
rect.bottom = rect.top + cy - 20;

// Draw an X ?

if (nType == 1) {
pt[0].x = rect.left;
pt[0].y rect.top;
pt[1].x = rect.right;
pt[1l].y = rect.bottom;
Polyline (hdc, pt, 2);

pt[0].x = rect.right;

pt[1].x = rect.left;

Polyline (hdc, pt, 2);
// How about an O ?
} else if (nType == 2) {

Ellipse (hdc, rect.left, rect.top, rect.right, rect.bottom);
}

return;

// DrawBoard - Draw the tic-tac-toe board.
// - VK_MENU
void DrawBoard (HDC hdc, RECT *prect) {
HPEN hPen, hOldPen;
POINT pt[2];
LOGPEN Tp;
INT i, cx, cy;

// Create a nice thick pen.
1p.TlopnStyle = PS_SOLID;

I

Tp.TopnWidth.x = 5;
1p.TopnWidth.y = 5;
1p.TopnColor = RGB (0, 0, 0);

hPen = CreatePenIndirect (&l1p);
hO1dPen = (HPEN)SelectObject (hdc, hPen);

cx
cy

(prect->right - prect->left)/3;
(prect->bottom - prect->top)/3;

// Draw lines down.
pt[0].x = cx + prect->left;
pt[l].x = cx + prect->Teft;
pt[0].y = prect->top;
ptll]l.y = prect->bottom;
Polyline Chdc, pt, 2);
pt[0].x += cX;

Copt[l].x 4= cx;
Polyline (hdc, pt, 2);

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 117

// Draw lines across.
pt[0].x = prect->Tleft;

pt[1l].x = prect->right;
pt[0].y = cy + prect->top;
pt[1l].y = cy + prect->top;

Polyline (hdc, pt, 2);

pt[0].y += cy;
ptll]l.y += cy;
Polyline (hdc, pt, 2);

// Fill in X’s and 0’s.
for (i = 0; i < dim (bBoard); 1i++)
DrawX0 (hdc, hPen, &rectBoard, i, bBoard[i]);

SelectObject (hdc, hOldPen);
DeleteObject (hPen);
return;

The action in TicTacl is centered around three routines: DrawBoard, DrawXO, and

Dol ButtonUpMain. The first two perform the tasks of drawing the playing board. The routine
that determines the location of a tap on the board (and therefore is more relevant to your
current train of thought) is DoLButtonUpMain. As the name suggests, this routine is called in
response to a WM_LBUTTONUP message. The first action to take is to call

BOOL PtInRect (const RECT *1prc, POINT pt);

which determines whether the tap is even on the game board. The program knows the loca-
tion of the tap because it's passed in the /Param value of the message. The board rectangle
is computed when the program starts in DoSizeMain. Once the tap is localized to the board,
the program determines the location of the relevant cell within the playing board by dividing
the coordinates of the tap point within the board by the number of cells across and down.

It was mentioned that the board rectangle was computed during the DoSizeMain routine,
which is called in response to a WM_SIZE message. While it might seem strange that
Windows CE supports the WM_SIZE message common to other versions of Windows, it
needs to support this message because a window is sized frequently: first immediately after
it's created, and then each time it's minimized and restored. You might think that another
possibility for determining the size of the window would be during the WM_CREATE mes-
sage. The /Param parameter points to a CREATESTRUCT structure that contains, among other
things, the initial size and position of the window. The problem with using those numbers is
that the size obtained is the total size of the window, not the size of the client area, which is
what we need. Under Windows CE, most windows have no title bar and no border, but some
have both, and many have scroll bars, so using these values can cause trouble.

118

Part| Windows Programming Basics

Another reason for the WM_SIZE message is that many Windows CE devices have screens
that can switch between landscape and portrait orientations. When the screen dimensions
change, the system resizes the top-level application windows. This resizing results in a WM_
SIZE message that gives each application the opportunity to adjust its window contents to fit
the new configuration.

So now, with the TicTacl example, you have a simple program that uses the stylus effectively
but isn't complete. To restart the game, you must exit and restart TicTacl. You can't take
back a move or have O start first. You need a method for sending these commands to the
program. Sure, using keys would work. Another solution would be to create hot spots on

the screen that, when tapped, provide the input necessary. Clearly this example needs some
extra pieces to make it complete. |'ve taken the discussion of Windows as far as | can without
a more complete discussion of the basic component of the operating system, the windows
themselves. It's time to take a closer look at windows, child windows, and controls.

Chapter 4
Windows, Controls, and Menus

Understanding how windows work and relate to each other is the key to understanding the
user interface of the Microsoft Windows operating system, whether it be Microsoft Windows
XP, Windows Vista, or Microsoft Windows CE. Everything you see on a Windows display is a
window. The desktop is a window, the taskbar is a window, even the Start button on the task-
bar is a window. Windows are related to one another according to one relationship model
or another; they may be in parent/child, sibling, or owner/owned relationships. Windows
supports a number of predefined window classes called controls. These controls simplify the
work of programmers by providing a range of predefined user interface elements as simple
as a button or as complex as a multiline text editor. Windows CE supports the same standard
set of built-in controls as the other versions of Windows. These built-in controls shouldn't be
confused with the complex controls provided by the common control library. Those controls
are covered in the next chapter.

Child Windows

Each window is connected via a parent/child relationship scheme. Applications create a main
window with no parent, called a top-level window. That window might (or might not) con-
tain windows, called child windows. A child window is clipped to its parent. That is, no part
of a child window is visible beyond the edge of its parent. Child windows are automatically
destroyed when their parent windows are destroyed. Also, when a parent window moves, its
child windows move with it.

Child windows are programmatically identical to top-level windows. You use the
CreateWindow or CreateWindowEx function to create them, each has a window procedure
that handles the same messages as its top-level window, and each can, in turn, contain its
own child windows. To create a child window, use the WS_CHILD window style in the dwStyle
parameter of CreateWindow or CreateWindowEx. In addition, the hMenu parameter, unused
in top-level Windows CE windows, passes an ID value that you can use to reference the
window.

In addition to the parent/child relationship, windows also have an owner/ owned relationship.
Owned windows aren't clipped to their owners. However, they always appear “above” (in z-
order) the window that owns them. If the owner window is minimized, all windows it owns
are hidden. Likewise, if a window is destroyed, all windows it owns are destroyed.

119

120 Part] Windows Programming Basics

Window Management Functions

Given the windows-centric nature of Windows, it's not surprising that you can choose from
a number of functions that enable a window to interrogate its environment so that it might
determine its location in the window family tree. To find its parent, a window can call

HWND GetParent (HWND hWnd);

This function is passed a window handle and returns the handle of the calling window's par-
ent window. If the window has no parent, the function returns NULL.

Enumerating Windows

GetWindow, prototyped as

HWND GetWindow (HWND hwnd, UINT uCmd);

is a multi-use function that allows a window to query its children, owner, and siblings. The
first parameter is the window's handle, while the second is a constant that indicates the re-
quested relationship. The GW_CHILD constant returns a handle to the first child window of a
window. GetWindow returns windows in z-order, so the first window in this case is the child
window highest in the z-order. If the window has no child windows, this function returns
NULL. The two constants, GW_HWNDFIRST and GW_HWNDLAST, return the first and last
windows in the z-order. If the window handle passed is a top-level window, these constants
return the first and last topmost windows in the z-order. If the window passed is a child win-
dow, the GetWindow function returns the first and last sibling window. The GW_HWNDNEXT
and GW_HWNDPREYV constants return the next lower and next higher windows in the z-
order. These constants allow a window to iterate through all the sibling windows by get-
ting the next window, then using that window handle with another call to GetWindow to get
the next, and so on. Finally, the GW_OWNER constant returns the handle of the owner of a
window.

Another way to iterate through a series of windows is

BOOL EnumWindows (WNDENUMPROC TpEnumFunc, LPARAM 1Param);

This function calls the callback function pointed to by IpEnumFunc once for each top-level
window on the desktop, passing the handle of each window in turn. The /Param value is an
application-defined value, which is also passed to the enumeration function. This function
is better than iterating through a GetWindow loop to find the top-level windows because it
always returns valid window handles. It's possible that a GetWindow iteration loop will get
a window handle whose window is destroyed before the next call to GetWindow can occur.
However, because EnumWindows works only with top-level windows, GetWindow still has a
place when a program is iterating through a series of child windows.

Chapter 4 Windows, Controls, and Menus 121
Finding a Window
To get the handle of a specific window, use the function
HWND FindWindow (LPCTSTR 1pClassName, LPCTSTR 1pWindowName);

This function can find a window either by means of its window class name or by means of a
window’s title text. This function is handy when an application is just starting up; it can de-
termine whether another copy of the application is already running. All an application has to
do is call FindWindow with the name of the window class for the main window of the applica-
tion. Because the first job of almost every application is to create its main window, a NULL
returned by FindWindow indicates that the function can't locate another window with the
specified window class—therefore, it's almost certain that another copy of the application
isn't running.

You can find the handle to the desktop window by using the function

HWND GetDesktopWindow (void);

Moving a Window

SetWindowPos is one of those functions used all the time in Windows. It allows the applica-
tion to move, size, change the z-order of, and even cause the system to redraw the nonclient
area of the window. Its prototype is

BOOL SetWindowPos (HWND hWnd, HWND hWndInsertAfter, int X, int Y,
int cx, int cy, UINT uFlags);

The first parameter is the handle of the window that will be changed. The hWndinsertAfter
parameter optionally allows the function to set the z-order of the window. This parameter
can be either a window handle or one of four flags that position the window either at the top
or the bottom of the z-order. The flags are shown here:

® HWND_BOTTOM The window underneath all windows on the desktop
® HWND_TOP The window on top of all windows

® HWND_TOPMOST The window to always be placed on top of other windows, even
when the window is deactivated

® HWND_NOTTOPMOST The window on top of all other nontopmost windows but
not marked as a topmost window so that it will be covered when another window is
activated

122 Part| Windows Programming Basics

The X, Y, cx, and cy parameters optionally specify the position and size of the window. The
flags parameter contains one or more flags that describe the task to accomplish. The flags
are as follows:

® SWP_NOMOVE Don't move the window.

B SWP_NOSIZE Don't resize the window.

m SWP_NOZORDER Don't set the window's z-order.

B SWP_NOACTIVATE If the z-order is set, don't activate the window.

m SWP_DRAWFRAME Redraw the nonclient area.

B SWP_FRAMECHANGED Recalculate the nonclient area, and then redraw.

Two other flags, SWP_SHOWWINDOW and SWP_HIDEWINDOW, show and hide the win-
dow, but it's easier to call the ShowWindow function to show or hide a window. To use
SetWindowPos to force the frame to be redrawn after the style bits are changed, the call is

SetWindowPos (hwnd, 0, 0, 0, 0, O,
SWP_NOMOVE | SWP_NOSIZE | SWP_NOZORDER | SWP_FRAMECHANGED);

Editing the Window Structure Values

The pair of functions

LONG GetWindowLong (HWND hWnd, int nIndex);

and

LONG SetWindowLong (HWND hWnd, int nIndex, LONG dwNewLong);

allow an application to edit data in the window structure for a window. Remember that the
WNDCLASS structure passed to the RegisterClass function has a field, coWndExtra, that con-
trols the number of extra bytes that are to be allocated after the structure. If you allocate
extra space in the window structure when the window class is registered, you can access
those bytes using the GetWindowLong and SetWindowLong functions. The data must be al-
located and referenced in 4-byte (integer-sized and aligned) blocks. So if a window class was
registered with 12 in the cbWndExtra field, an application can access those bytes by calling
GetWindowLong or SetWindowLong with the window handle and by setting the values 0, 4,
and 8 in the nindex parameter.

GetWindowLong and SetWindowLong support a set of predefined index values that allow
an application access to some of the basic parameters of a window. Here is a list of the sup-
ported values for Windows CE.

® GWL_STYLE The style flags for the window
B GWL_EXSTYLE The extended style flags for the window

Chapter 4 Windows, Controls, and Menus 123
B GWL_WNDPROC The pointer to the window procedure for the window
B GWL_ID The ID value for the window
B GWL_USERDATA An application-usable 32-bit value

Dialog box windows support the following additional values:

® DWL_DLGPROC The pointer to the dialog procedure for the window
® DWL_MSGRESULT The value returned when the dialog box function returns
B DWL_USER An application-usable 32-bit value

Windows CE doesn't support the GWL_HINSTANCE and GWL_HWNDPARENT values sup-
ported by Windows XP and Windows Vista.

Changing the Style Flags

Editing the window structure can be useful in a number of ways. The style bits of a window
can be changed after the window is created to change its default actions and look. For exam-
ple, the title bar of a window can be shown or hidden by toggling the WS_CAPTION style bit.
After changing any style flag that modifies the look of the window, it's customary to force
the system to redraw the nonclient area of the window with a call to SetWindowPos. When
the style or exstyle flags are changed, Windows CE sends a WM_STYLECHANGED message to
the window.

Subclassing a Window

Another use of SetWindowLong is to subclass a window. Subclassing a window allows an ap-
plication to essentially derive an instance of a new window class from a preexisting window
class. The classic use for subclassing is to modify the behavior of a window control, such as an
edit control.

The process of subclassing is actually quite simple. A window procedure is created that pro-
vides only the new functionality required of the subclassed window. A window is then creat-
ed using the base window class. GetWindowLong is called to get and save the pointer to the
original window procedure for the window. SetWindowLong is then called to set the window
procedure for this instance of the window to the new window procedure. The new window
procedure then receives the message sent to the window. Any messages not acted upon by
the new window procedure are passed on to the old window procedure with the function
CallWindowProc. The following code shows a window being created and then subclassed.
The subclass procedure then intercepts the WM_LBUTTONDOWN message and beeps the
speaker when the window receives that message.

// Prototype of subclass procedure
LRESULT CALLBACK SCWndProc(HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param);

124 Part| Windows Programming Basics

// Variable that holds the pointer to the original WndProc
WNDPROC TpfnOldProc = 0;

//

// Routine that subclasses the requested window.

//

BOOL SubClassThisWnd (HWND hwndSC) {

if (1pfn01dProc == 0) {
// Get and save the pointer to the original window procedure
Tpfn01dProc = (WNDPROC)GetWindowLong (hwndSC, GWL_WNDPROC);

// Point to new window procedure
return SetWindowLong (hwndSC, GWL_WNDPROC, (DWORD)SCWndProc);
}
return FALSE;
}
//
// Subclass procedure
//
LRESULT CALLBACK SCWndProc(HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
switch (wMsg) {

case WM_LBUTTONDOWN:
MessageBeep(0);
break;
}
return CallWindowProc (1pfnOl1dProc, hWnd, wMsg, wParam, 1Param);

}

To un-subclass the window, the program simply calls SetWindowLong to set the WndProc
pointer back to the original window procedure.

Windows Controls

Were it not for the Windows Control library, programming Windows applications would

be a slow and arduous process. In addition, every application would have its own look and
feel. This would force the user to learn a new way of working with each new application.
Fortunately, this scenario is avoided with an assortment of controls that the operating system
provides. In short, controls are simply predefined window classes. Each has a custom window
procedure supplied by Windows that gives each of these controls a tightly defined user and
programming interface.

Working with Controls

Because a control is just another window, it can be created with a call to CreateWindow or
CreateWindowEx. Controls notify their parent window of events via WM_COMMAND
messages encoding events and the ID and window handle of the control encoded in the
parameters of the message.

Chapter 4 Windows, Controls, and Menus 125

Like all messages, WM_COMMAND contains two generic parameters, wParam and IParam.
For a WM_COMMAND message, the high word of wParam contains the notification code,
the reason for the WM_COMMAND message being sent. The low word of wParam contains
the ID value of the control that sent the message. The ID is a word that’s typically defined
when the control is created and, to be useful, should be unique among all the sibling win-
dows of the control. The /Param value contains the handle of the child window that sent the
control. In general, it's easier to track the source of a WM_COMMAND message though the
control ID rather than the window handle of the control, but both are available in the mes-
sage. The following code is typical of the first few lines of a WM_COMMAND handler:

case WM_COMMAND:
WORD idItem, wNotifyCode;
HWND hwndCt1;

// Parse the parameters.

jdItem = (WORD) LOWORD (wParam);
wNotifyCode = (WORD) HIWORD(wParam) ;
hwndCt1 = (HWND) TParam;

From this point, the WM_COMMAND handler typically uses the ID of the control and then
uses the notification code to determine why the WM_COMMAND message was sent.

Controls can also be configured and manipulated using predefined messages sent to the
control. Among other things, applications can set the state of buttons, add items to or delete
items from list boxes, and set the selection of text in edit boxes, all by sending messages to
the controls. Controls are typically indentified by their ID, but many Windows functions re-
quire the handle of the control. The GetDIg/tem function provides a simple conversion. The
function is prototyped as

HWND GetDlgItem (HWND hD1g, int nIDDI1gItem);

The two parameters are the handle of the parent window of the control and the ID value for
the control. Although the name implies that the function can be used only in dialog boxes,
something discussed in Chapter 6, “Dialog Boxes and Property Sheets,” it works quite fine for
a control in any window.

Another convenient function you can use to send a message to a control is
SendDlgltemMessage. This function sends a message to a child window with a specific ID. The
prototype of the message is shown here:

LONG SendD1gItemMessage (HWND hParent, int nIDChild, UINT Msg,
WPARAM wParam, LPARAM TParam);

The parameters are similar to those for SendMessage. In fact, the following code is function-
ally identical to that of SendDIgltemMessage:

LONG SendMessage (GetDlgItem (hParent, nIDChild), Msg, wParam, TParam);

126

Part| Windows Programming Basics
The only difference is the convenience of not having to embed the GetDIgitem call within
SendMessage.

There are six predefined window control classes. They are:

B Button A wide variety of buttons

® Edit A window that can be used to enter or display text

® List A window that contains a list of strings

B Combo A combination edit box and list box

W Static A window that displays text or graphics that a user can't change

®m Scroll bar A scroll bar not attached to a specific window

Each of these controls has a wide range of function, far too much to cover completely in this
chapter. But the following is a quick review of these controls, with a mention at least of the
highlights.

Button Controls

Button controls enable several forms of input to the program. Buttons come in many styles,
including push buttons, check boxes, and radio buttons. Each style is designed for a specific
use—for example, push buttons are designed for receiving momentary input, check boxes
are designed for on/off input, and radio buttons allow a user to select one of a number of
choices.

Push Buttons

In general, push buttons are used to invoke some action. When a user presses a push button
using a stylus, the button sends a WM_COMMAND message with a BN_CLICKED (for button
natification clicked) notify code in the high word of the wParam parameter.

Check Boxes

Check boxes display a square box and a label that asks the user to specify a choice. A check
box retains its state, either checked or unchecked, until the user clicks it again or the program
forces the button to change state. In addition to the standard BS_CHECKBOX style, check
boxes can come in a three-state style, BS_3STATE, that allows the button to be disabled and
shown grayed out. Two additional styles, BS_AUTOCHECKBOX and BS_AUTO3STATE, auto-
matically update the state and look of the control to refiect the checked, the unchecked, and,
in the case of the three-state check box, the disabled state.

As with push buttons, check boxes send a BN_CLICKED notification when the button is
clicked. Unless the check box has one of the automatic styles, it's the responsibility of the

Chapter 4 Windows, Controls, and Menus 127

application to manually change the state of the button. This can be done by sending a
BM_SETCHECK message to the button with the wParam set to 0 to uncheck the button or 1
to check the button. The three-state check boxes have a third, disabled, state that can be set
by means of the BM_SETCHECK message with the wParam value set to 2. An application can
determine the current state using the BM_GETCHECK message.

Radio Buttons

Radio buttons allow a user to select from a number of choices. Radio buttons are grouped

in a set, with only one item of the set ever being checked at a time. If it's using the standard
BS_RADIOBUTTON style, the application is responsible for checking and unchecking the ra-
dio buttons so that only one is checked at a time. However, like check boxes, radio buttons
have an alternative style, BS_AUTORADIOBUTTON, that automatically maintains the group of
buttons so that only one is checked.

Customizing the Appearance of a Button

You can further customize the appearance of the buttons described so far by using a num-
ber of additional styles. The styles, BS_RIGHT, BS_LEFT, BS_BOTTOM, and BS_TOP, allow

you to position the button text in a place other than the default center of the button. The
BS_MULTILINE style allows you to specify more than one line of text in the button. The text
is flowed to fit within the button. The newline character (\n) in the button text can be used
to specifically define where line breaks occur. Windows CE doesn't support the BS_ICON and
BS_BITMAP button styles supported by other versions of Windows.

Owner-Draw Buttons

You can totally control the look of a button by specifying the BS_OWNERDRAW style. When
a button is specified as owner-draw, its owner window is entirely responsible for drawing the
button for all the states in which it might occur. When a window contains an owner-draw
button, it's sent a WM_DRAWITEM message to inform it that a button needs to be drawn.
For this message, the wParam parameter contains the ID value for the button and the /Param
parameter points to a DRAWITEMSTRUCT structure defined as

typedef struct tagDRAWITEMSTRUCT {
UINT Ctl1Type;
UINT Ct1ID;
UINT dtemID;
UINT dtemAction;
UINT iJtemState;
HWND hwndItem;
HDC hDC;
RECT rcItem;
DWORD itemData;

} DRAWITEMSTRUCT;

128

Partl] Windows Programming Basics

The CtlType field is set to ODT_BUTTON, while the Ct/ID field, like the wParam parameter,
contains the button’s ID value. The itemAction field contains flags that indicate what needs to
be drawn and why. The most significant of these fields is itemState, which contains the state
(selected, disabled, and so forth) of the button. The hDC field contains the device context
handle for the button window, while the rcitem RECT contains the dimensions of the button.
The itemData field is NULL for owner-draw buttons.

As you might expect, the WM_DRAWITEM handler contains a number of GDI calls to draw
lines, rectangles, and whatever else is needed to render the button. An important aspect
of drawing a button is matching the standard colors of the other windows in the system.
Because these colors can change, they shouldn’t be hard coded. You can query to find out
which are the proper colors by using the function

DWORD GetSysColor (int nIndex);

This function returns an RGB color value for the colors defined for different aspects of win-
dows and controls in the system. Among a number of predefined index values passed in the
index parameter, an index of COLOR_BTNFACE returns the proper color for the face of a but-
ton, while COLOR_BTNSHADOW returns the dark color for creating the three-dimensional
look of a button.

One function often used in owner-draw buttons is the function

BOOL DrawFocusRect (HDC hDC, const RECT* lprc);

DrawFocusRect draws a dashed-line rectangle that is used by buttons to indicate they have
the focus. The two paramters are the device context handle and a pointer to a RECT structure
that delinates the dimensions of the target rectangle.

The Edit Control

The edit control is a window that allows the user to type and edit text. As you might imagine,
the edit control is one of the handiest controls in the Windows control pantheon. The edit
control is equipped with full editing capability, including cut, copy, and paste interaction
with the system clipboard, all without assistance from the application. Edit controls display a
single line or, when the ES_MULTILINE style is specified, multiple lines of text. The Notepad
accessory, provided with the desktop versions of Windows, is simply a top-level window that
contains a multiline edit control.

The edit control has a few other features that should be mentioned. An edit control with the
ES_PASSWORD style displays an asterisk (*) character by default in the control for each char-
acter typed; the control saves the real character. The ES_READONLY style protects the text
contained in the control so that it can be read or copied into the clipboard, but not modified.

Chapter 4 Windows, Controls, and Menus 129

The ES_LOWERCASE and ES_UPPERCASE styles force characters entered into the control to
be changed to the specified case.

You can add text to an edit control by using the WM_SETTEXT message and retrieve text by
using the WM_GETTEXT message. Selection can be controlled using the EM_SETSEL mes-
sage. This message specifies the starting and ending characters in the selected area. Other
messages allow the position of the caret (the marker that indicates the current entry point
in an edit field) to be queried and set. Multiline edit controls contain a number of additional
messages to control scrolling as well as to access characters by line and column position.

The List Box Control

The list box control displays a list of text items so that the user might select one or more of
the items within the list. The list box stores the text, optionally sorts the items, and manages
the display of the items, including scrolling. List boxes can be configured to allow selection of
a single item or multiple items, or to prevent any selection at all.

You can add an item to a list box by sending an LB_ADDSTRING or LB_INSERTSTRING
message to the control, passing a pointer to the string to add the /Param parameter. The
LB_ADDSTRING message places the newly added string at the end of the list of items, while
LB_INSERTSTRING can place the string anywhere within the list of items in the list box. The
list box can be searched for a particular item using the LB_FIND message.

Selection status can be queried using LB_GETCURSEL for single-selection list boxes. For mul-
tiple-selection list boxes, LB_GETSELCOUNT and LB_GETSELITEMS can be used to retrieve
the items currently selected. Items in the list box can be selected programmatically using the
LB_SETCURSEL and LB_SETSEL messages.

Starting with Windows CE 6, the list box control supports owner-draw list boxes. To implement
an owner-draw list box, use the LBS_OWNERDRAWFIXED or LBS_OWNERDRAWVARIABLE
style flags depending upon whether the items will all be the same height or varying heights.
Like owner-draw buttons, the owner window then receives WM_OWNERDRAW messages

to draw the contents of an individual item in the list box. In addition, the list box sends WM_
MEASUREITEM messages to query the height of each item—WM_COMAREITEM for sorting
and WM_DELETEITEM to inform the owner that an item was removed from the list box.

Windows CE supports most of the list box functionality available in other versions of
Windows with the exception of the LB_DIR family of messages. A new style, LBS_EX_
CONSTSTRINGDATA, is supported under Windows CE. A list box with this style doesn't store
strings passed to it. Instead, the pointer to the string is stored, and the application is respon-
sible for maintaining the string. For large arrays of strings that might be loaded from a re-
source,-this procedure can save RAM because the list box won't maintain a separate copy of
the list of strings.

130

Part| Windows Programming Basics

The Combo Box Control

The combo box is (as the name implies) a combination of controls—in this case, a single-line
edit control and a list box. The combo box is a space-efficient control for selecting one item
from a list of many or for providing an edit field with a list of predefined suggested entries.
Under Windows CE, the combo box comes in two styles: drop-down and drop-down list.
(Simple combo boxes aren't supported.) The drop-down combo box contains an edit field
with a button at the right end. Clicking on the button displays a list box that might contain
more selections. Clicking on one of the selections fills the edit field of the combo box with
the selection. The drop-down list replaces the edit box with a static text control. This allows
the user to select from an item in the list but prevents the user from entering an item that’s
not in the list.

Because the combo box combines the edit and list controls, a list of the messages used to
control the combo box strongly resembles a merged list of the messages for the two base
controls. CB_ADDSTRING, CB_INSERTSTRING, and CB_FINDSTRING act like their list box
cousins. Likewise, the CB_SETEDITSELECT and CB_GETEDITSELECT messages set and query
the selected characters in the edit box of a drop-down or a drop-down list combo box. To
control the drop-down state of a drop-down or drop-down list combo box, the messages
CB_SHOWDROPDOWN and CB_GETDROPPEDSTATE can be used.

The Windows CE version of the combo box supports the CBS_EX_CONSTSTRINGDATA
extended style, which instructs the combo box to store a pointer to the string for an item
instead of the string itself. As with the list box LBS_EX_CONSTSTRINGDATA style, this proce-
dure can save RAM if an application has a large array of strings stored in ROM because the
combo box won't maintain a separate copy of the list of strings.

Static Controls

Static controls are windows that display text, icons, or bitmaps not intended for user interac-
tion. You can use static text controls to label other controls in a window. What a static control
displays is defined by the text and the style for the control. Under Windows CE, static con-
trols support the following styles:

B SS_LEFT Displays a line of left-aligned text. The text is wrapped, if necessary, to fit in-
side the control.

m SS_CENTER Displays a line of text centered in the control. The text is wrapped, if nec-
essary, to fit inside the control.

B SS_RIGHT Displays a line of text aligned with the right side of the control. The text is
wrapped, if necessary, to fit inside the control.

® SS_LEFTNOWORDWRAP Displays a line of left-aligned text. The text isn't wrapped to
multiple lines. Any text extending beyond the right side of the control is clipped.

Chapter 4 Windows, Controls, and Menus 131

B SS_BITMAP Displays a bitmap. Window text for the control specifies the name of the
resource containing the bitmap.

® SS_ICON Displays an icon. Window text for the control specifies the name of the
resource containing the icon.

Static controls with the SS_NOTIFY style send a WM_COMMAND message when the control
is clicked, enabled, or disabled, although the Windows CE version of the static control doesn’t
send a notification when it's double-clicked. The SS_CENTERIMAGE style, used in combina-
tion with the SS_BITMAP or SS_ICON style, centers the image within the control. The SS_
NOPREFIX style can be used in combination with the text styles. It prevents the ampersand
(&) character from being interpreted as indicating that the next character is an accelerator
character.

Windows CE doesn’t support static controls that display filled or hollow rectangles such as
those drawn with the SS_WHITEFRAME or SS_BLACKRECT style. Also, Windows CE doesn't
support owner-draw static controls.

The Scroll Bar Control

The scroll bar control is a somewhat different beast from the other controls. Scroll bars are
typically seen attached to the sides of windows to control the data being viewed in the win-
dow. Indeed, other window controls, such as the edit box and the list box, use the scroll bar
control internally. Because of this tight relationship to the parent window, the interface of a
scroll bar is different from that of the other controls.

Instead of using WM_COMMAND messages to report actions, scroll bars use WM_VSCROLL
and WM_HSCROLL messages. WM_VSCROLL messages are sent by vertically oriented scroll
bars, whereas WM_HSCROLL messages are sent by horizontally oriented scroll bars. In addi-
tion, instead of something like a SB_SETPOSITION message being sent to a scroll bar to set

its position, there are dedicated functions to do this. Let's look at this unique interface.

Scroll Bar Messages

A WM_VSCROLL message is sent to the owner of a vertical scroll bar any time the user taps
on the scroll bar to change its position. A complementary message, WM_HSCROLL, is identi-
cal to WM_VSCROLL but is sent when the user taps on a horizontal scroll bar. For both these
messages, the wParam and IParam assignments are the same. The low word of the wParam
parameter contains a code indicating why the message was sent. Figure 4-1 shows a diagram of
horizontal and vertical scroll bars and how tapping on different parts of the scroll bars results
in different messages. The high word of wParam is the position of the thumb, but this value
is valid only while you process the SB_THUMBPOSITION and SB_THUMBTRACK codes, which
I'll explain shortly. If the scroll bar sending the message is a stand-alone control and not at-
tached to a window, the /Param parameter contains the window handle of the scroll bar.

132

Part] Windows Programming Basics

+|—SB_LINEUP
—SB_PAGEUP

—SB_THUMBPOSITION
i 1I—SB_THUMBTRACK

—SB_PAGEDOWN

—SB_LINEDOWWN

&
SB_LNELEFT | | SB_THUMBPOSITION SB_LINERIGHT
SB_PAGELEFT SB_THUMBTRACK SB_PAGERIGHT

FIGURE 4-1 Scroll bars and their hot spots

The scroll bar message codes sent by the scroll bar allow the program to react to all the dif-
ferent user actions allowable by a scroll bar. The response required by each code is listed in
Table 4-1.

The SB_LINExxx and SB_PAGExxx codes are pretty straightforward. You move the scroll posi-
tion either a line or a page at a time. The SB_THUMBPOSITION and SB_THUMBTRACK codes
can be processed in one of two ways. When the user drags the scroll bar thumb, the scroll
bar sends SB_THUMBTRACK code so that a program can interactively track the dragging of
the thumb. If your application is fast enough, you can simply process the SB_THUMBTRACK
code and interactively update the display. If you field the SB_THUMBTRACK code, however,
your application must be quick enough to redraw the display so that the thumb can be
dragged without hesitation or jumping of the scroll bar. This can be a problem on the slower
devices that run Windows CE.

TABLE 4-1 Scroll Codes

Codes ' Response k
For WM_VSCROLL
>SB_LINEUP B » Program should scroll the scfeen up one line.
SB_LINEDOWN Program- should scroll the screen down one hne
’SB PAGEUP - Program should scroII the screen up one screen’s w0rth of data -
”SB PAGEDOWN ﬂ i Program should scroII the screen down one screen’s worth of data. o
For WM_HSCROLL
SB_LINELEFT » Program éhould scroll the screen left one character.
SB_ L/NER/GHT v Program should scroll the screen right one character.
SB_PAGELEFT . ‘ v Program s should scroll the screen left one screen’s worth of data

SB PAGERIGHT Program should scroll the screen rlght one screen’s worth of data.

Chapter 4 Windows, Controls, and Menus 133

Codes Response

SB_THUMBTRACK Programs with enough speed to keep up should update the display
with the new scroll position.

SB_THUMBPOSITIO N Programs that can't update the display fast enough to keep up with

the SB_.THUMBTRACK message should update the display with the
new scroll position.

SB_ENDSCROLL This code indicates that the scroll bar has completed the scroll event.
No action is required by the program.

SB_TOP Program should set the display to the top or left end of the data.

SB_BOTTOM Program should set the display to the bottom or right end of the data.

If your application (or the system it runs on) is too slow to quickly update the display for
every SB_THUMBTRACK code, you can ignore the SB_THUMBTRACK and wait for the SB_
THUMBPOSITION code that's sent when the user drops the scroll bar thumb. Then you have
to update the display only once, after the user has finished moving the scroll bar thumb.

Configuring a Scroll Bar

To use a scroll bar, an application should first set the minimum and maximum values—the
range of the scroll bar, along with the initial position. Windows CE scroll bars, like their desk-
top cousins, support proportional thumb sizes, which provide feedback to the user about the
size of the current visible page compared with the entire scroll range. To set all these param-
eters, Windows CE applications should use the SetScrollinfo function, prototyped as

int SetScrol1Info (HWND hwnd, int fnBar, LPSCROLLINFO 1psi, BOOL fRedraw);

The first parameter is either the handle of the window that contains the scroll bar or the win-
dow handle of the scroll bar itself. The second parameter, fnBar, is a flag that determines the
use of the window handle. The scroll bar flag can be one of three values: SB_HORZ for a win-
dow'’s standard horizontal scroll bar, SB_VERT for a window's standard vertical scroll bar, or
SB_CTL if the scroll bar being set is a stand-alone control. Unless the scroll bar is a control, the
window handle is the handle of the window containing the scroll bar. With SB_CTL, however,
the handle is the window handle of the scroll bar control itself. The last parameter is fRedraw, a
Boolean value that indicates whether the scroll bar should be redrawn after the call is complete.

The third parameter is a pointer to a SCROLLINFO structure, which is defined as

typedef struct tagSCROLLINFO {
UINT cbSize;
UINT fMask;
int nMin;
int nMax;
UINT nPage;
int nPos;
int nTrackPos;
} SCROLLINFO;

134

Part| Windows Programming Basics

This structure allows you to completely specify the scroll bar parameters. The cbSize field
must be set to the size of the SCROLLINFO structure. The fMask field contains flags indicating
what other fields in the structure contain valid data. The nMin and nMax fields can contain
the minimum and maximum scroll values the scroll bar can report. Windows looks at the
values in these fields if the fMask parameter contains the SIF_RANGE flag. Likewise, the nPos
field sets the position of the scroll bar within its predefined range if the fMask field contains
the SIF_POS flag.

The nPage field allows a program to define the size of the currently viewable area of the
screen in relation to the entire scrollable area. This allows a user to have a feel for how much
of the entire scrolling range is currently visible. This field is used only if the fMask field con-
tains the SIF_PAGE flag. The last member of the SCROLLINFO structure, nTrackPos, isn't used
by the SetScrollinfo call and is ignored.

The fMask field can contain one last flag. Passing an SIF_DISABLENOSCROLL flag causes the
scroll bar to be disabled but still visible. This is handy when the entire scrolling range is visible
within the viewable area and no scrolling is necessary. Disabling the scroll bar in this case is
often preferable to simply removing the scroll bar completely.

Those with a sharp eye for detail will notice a problem with the width of the fields in the
SCROLLINFO structure. The nMin, nMax, and nPos fields are integers and therefore, in the
world of Windows CE, are 32 bits wide. On the other hand, the WM_HSCROLL and WM_
VSCROLL messages can return only a 16-bit position in the high word of the wParam param-
eter. If you're using scroll ranges greater than 65,535, use this function:

BOOL GetScrollInfo (HWND hwnd, int fnBar, LPSCROLLINFO Tpsi);

As with SetScrollinfo, the flags in the fnBar field indicate the window handle that should be
passed to the function. The SCROLLINFO structure is identical to the one used in SetScrollinfo;
however, before it can be passed to GetScrollinfo, it must be initialized with the size of the
structure in cbSize. An application must also indicate what data it wants the function to re-
turn by setting the appropriate flags in the fMask field. The flags used in fMask are the same
as the ones used in SetScrollinfo, with a couple of additions. Now an SIF_TRACKPOS flag can
be passed to have the scroll bar return its current thumb position. When called during a
WM_xSCROLL message, the nTrackPos field contains the real-time position, while the nPos
field contains the scroll bar position at the start of the drag of the thumb.

The scroll bar is an unusual control in that it can be added easily to windows simply by speci-
fying the window style flags WS_VSCROLL and WS_HSCROLL. It's also unusual in that when
used this way, the control is placed outside the client area of the window. The reason for this
assistance is that scroll bars are commonly needed by applications, so the Windows develop-
ers made it easy to attach scroll bars to windows. Now look at the other basic Windows con-
trols. The DOIView example, presented later in this chapter, demonstrates how a scroll bar is
used when attached to a window.

Chapter 4 Windows, Controls, and Menus 135

Controls and Colors

Finally, a word about colors. You can change the background color used by the various con-
trols by fielding the WM_CTLCOLORxxx messages. These messages are sent to the parent of
a control to ask the parent which colors to use when drawing the control. Each of the con-
trols has a different message. For example, modifying the color of a button by fielding the
WM_CTLCOLORBUTTON message. Static control background colors are handled by fielding
the WM_CTLCOLORSTATIC message.

Other controls send different WM_CTLCOLORxxx messages so that the colors used to draw
them can be modified by the parent window.

Menus

Menus are a mainstay of Windows input. Although each application might have a different
keyboard and stylus interface, almost all have sets of menus that are organized in a structure
familiar to the Windows user.

Windows CE programs use menus a little differently from other Windows programs, the most
obvious difference being that in Windows CE, menus aren't part of the standard top-level
window. Instead, menus are attached to a command bar or menu bar control created for

the window. Other than this change, the functions of the menu and the way menu selec-
tions are processed by the application match the other versions of Windows, for the most
part. Because of this general similarity, | give you only a basic introduction to Windows menu
management in this section.

Creating a menu is as simple as calling

HMENU CreateMenu (void);

The function returns a handle to an empty menu. To add an item to a menu, two calls can be
used. The first

BOOL AppendMenu (HMENU hMenu, UINT fuFlags, UINT +idNewItem,
LPCTSTR TpszNewItem);

appends a single item to the end of a menu. The fuFlags parameter is set with a series of
flags indicating the initial condition of the item. For example, the item might be initially
disabled (thanks to the MF_GRAYED flag) or have a check mark next to it (courtesy of the
MF_CHECKED flag). Almost all calls specify the MF_STRING flag, indicating that the [pszNew!-
tem parameter contains a string that will be the text for the item. The idNewltem parameter
contains an ID value that will be used to identify the item when it’s selected by the user or to
indicate that the state of the menu item needs to be changed.

Another call that can be used to add a menu item is this one:

136

Part| Windows Programming Basics

BOOL InsertMenu (HMENU hMenu, UINT uPosition, UINT uFlags,
UINT uIDNewItem, LPCTSTR TpNewItem);

This call is similar to AppendMenu, with the added flexibility that the item can be inserted
anywhere within a menu structure. For this call, the uFlags parameter can be passed one of
two additional flags: MF_BYCOMMAND or MF_BYPOSITION, which specifies how to locate
where the menu item is to be inserted into the menu.

Menus can be nested to provide a cascading effect. To add a cascading menu, or submenu,
create the menu you want to attach using

HMENU CreatePopupMenu (void);

Then use InsertMenu or AppendMenu to construct the menu, and insert or append the sub-
menu to the main menu using either InsertMenu or AppendMenu with the MF_POPUP flag in
the flags parameter. In this case, the uIDNewltem parameter contains the handle to the sub-
menu, while [pNewltem contains the string that will be on the menu item.

You can query and manipulate a menu item to add or remove check marks or to enable or
disable it by means of a number of functions. The function,

BOOL EnableMenuItem (HMENU hMenu, UINT uIDEnableItem, UINT uEnable);

can be used to enable or disable an item. The flags used in the uEnable parameter are similar
to the flags used with other menu functions. Under Windows CE, the flag you use to disable a
menu item is MF_GRAYED, not MF_DISABLED. The function

DWORD CheckMenuItem (HMENU hmenu, UINT uIDCheckItem, UINT uCheck);

can be used to check and uncheck a menu item. Many other functions are available to query
and manipulate menu items. Check the SDK documentation for more details.

The following code fragment creates a simple menu structure:

hMainMenu = CreateMenu Q) ;

hMenu = CreatePopupMenu Q);

AppendMenu (hMenu, MF_STRING | MF_ENABLED, 100, TEXT (“&New”));
AppendMenu (hMenu, MF_STRING | MF_ENABLED, 101, TEXT (“&0pen”));
AppendMenu (hMenu, MF_STRING | MF_ENABLED, 101, TEXT (“&Save”));
AppendMenu (hMenu, MF_STRING | MF_ENABLED, 101, TEXT (“E&xit”));

AppendMenu (hMainMenu, MF_STRING | MF_ENABLED | MF_POPUP, (UINT)hMenu,
TEXT (“&File™));

hMenu = CreatePopupMenu ();

AppendMenu (hMenu, MF_STRING | MF_ENABLED, 100, TEXT (“C&ut™));
AppendMenu (hMenu, MF_STRING | MF_ENABLED, 101, TEXT (“&Copy”));
AppendMenu (hMenu, MF_STRING | MF_ENABLED, 101, TEXT (“&Paste”));

Chapter 4 Windows, Controls, and Menus 137

AppendMenu (hMainMenu, MF_STRING | MF_ENABLED | MF_POPUP,
(UINT)hMenu, TEXT (“&Edit”));

hMenu = CreatePopupMenu ();
AppendMenu (hMenu, MF_STRING | MF_ENABLED, 100, TEXT (“&About™));

AppendMenu (hMainMenu, MF_STRING | MF_ENABLED | MF_POPUP,
(UINT)hMenu, TEXT (“&Help”));

After a menu is created, it can be displayed with the TrackPopupMenu function, prototyped
as

BOOL TrackPopupMenuEx (HMENU hmenu, UINT uFlags, int x, int vy,
HWND hwnd, LPTPMPARAMS Tptpm);

The first parameter is the handle of the menu. The uFlags parameter sets the alignment for the
menu in relation to the position parameters x and y. Another flag, TPM_RETURNCMD, causes
the function to return the ID value of the selected menu item instead of generating a WM_
COMMAND message. The hwnd parameter is the handle to the window that receives all mes-
sages relating to the menu, including the resultant WM_COMMAND if the user selects a menu
item. The final item, Iptpm, points to a TPMPARAMS structure that contains a size value and a
rectangle structure. The rectangle structure defines the rectangle on the screen that the menu
shouldn’t cover. This parameter can be null if no exclusion rectangle needs to be specified.

Handling Menu Commands

When a user selects a menu item, Windows sends a WM_COMMAND message to the win-
dow that owns the menu. The low word of the wParam parameter contains the ID of the
menu item that was selected. The high word of wParam contains the notification code. For a
menu selection, this value is always 0. The /Param parameter is 0 for WM_COMMAND mes-
sages sent due to a menu selection. So to act on a menu selection, a window needs to field
the WM_COMMAND message, decode the ID passed, and act according to the menu item
that was selected.

Now that I've covered the basics of menu creation, you might wonder where all this menu
creation code sits in a Windows program. The answer is, it doesn't. Instead of dynamically
creating menus on the fly, most Windows programs simply load a menu template from a re-
source. To learn more about this, let's spend the remainder of this chapter looking at resources.

Resources

Resources are read-only data segments of an application or a DLL that are linked to the
module after it has been compiled. The point of a resource is to give a developer a compiler-
independent place for storing content data such as dialog boxes, strings, bitmaps, icons, and
yes, menus. Because resources aren't compiled in a program, they can be changed without
your having to recompile the application.

138

Part| Windows Programming Basics

You create a resource by building an ASCII file—called a resource script—describing the re-
sources. Your ASCII file has the extension RC. You compile this file with a resource compiler,
which is provided by every maker of Windows development tools, and then you link it into
the compiled executable again using the linker. These days, these steps are masked by a
heavy layer of visual tools, but the fundamentals remain the same. For example, Visual Studio
creates and maintains an ASCII resource (RC) file even though few programmers directly look
at the resource file text any more.

It's always a struggle for the author of a programming book to decide how to approach
tools. Some lay out a very high level of instruction, talking about menu selections and de-
scribing dialog boxes for specific programming tools. Others show the reader how to build all
the components of a program from the ground up, using ASCI! files and command-line com-
pilers. Resources can be approached the same way: | could describe how to use the visual
tools or how to create the ASCII files that are the basis for the resources. In this book, | stay
primarily at the ASCII resource script level since the goal is to teach Windows CE program-
ming, not how to use a particular set of tools. I'll show how to create and use the ASCII RC
file for adding menus and the like, but later in the book in places where the resource file isn't
relevant, | won't always include the RC file in the listings. The files are, of course, provided
with the examples on the book Web site.

Resource Scripts

Creating a resource script is as easy as using Notepad to create a text file. The language used
is simple, with C-like tendencies. Comment lines are prefixed by a double slash (//), and files
can be included using a #include statement.

Following is an example menu template:

//
// A menu template
//
ID_MENU MENU DISCARDABLE
BEGIN
POPUP “&File”
BEGIN
MENUITEM “&O0pen...”", 100
MENUITEM “&Save...”, 101
MENUITEM SEPARATOR
MENUITEM “E&xit”, 120
END
POPUP “&Help”
BEGIN
MENUITEM “&About”, 200
END
END

The initial ID_MENU is the ID value for the resource. Alternatively, this ID value can be re-
placed by a string identifying the resource. The ID value method provides more compact

Chapter 4 Windows, Controls, and Menus 139

code, while using a string may provide more readable code when the application loads the
resource in the source file. The next word, MENU, identifies the type of resource. The menu
starts with POPUP, indicating that the menu item File is actually a pop-up (cascade) menu
attached to the main menu. Because it's a menu within a menu, it too has BEGIN and END
keywords surrounding the description of the File menu. The ampersand (&) character tells
Windows that the next character should be the key assignment for that menu item. The
character following the ampersand is automatically underlined by Windows when the menu
item is displayed, and if the user presses the Alt key along with the character, that menu item
is selected. Each item in a menu is then specified by the MENUITEM keyword followed by
the string used on the menu. The ellipsis following the Open and Save strings is a Windows
Ul custom indicating to the user that selecting that item displays a dialog box. The numbers
following the Open, Save, Exit, and About menu items are the menu identifiers. These values
identify the menu items in the WM_COMMAND message. It's good programming practice
to replace these values with equates that are defined in a common include file so that they
match the WM_COMMAND handler code.

Table 4-2 lists other resource types that you might find in a resource file. The DISCARDABLE
keyword is optional and tells Windows that the resource can be discarded from memory if
it's not in use. The remainder of the menu is couched in BEGIN and END keywords, although
the bracket characters { and } are recognized as well.

TABLE 4-2 Resource Types Allowed by the Resource Compiler!

Resource Type Explanation

MENU Defines a menu

ACCELERATORS Defines a keyboard accelerator table
DIALOG Defines a dialog box template
BITMAP Includes a bitmap file as a resource
ICON Includes an icon file as a resource
FONT Includes a font file as a resource
RCDATA Defines application-defined binary data block
STRINGTABLE Defines a list of strings
VERSIONINFO Includes file version information
Icons

Now that you're working with resource files, it's a trivial matter to modify the icon that the
Windows CE shell uses to display a program. Simply create an icon with your favorite icon
editor, and add to the resource file an icon statement such as

ID_ICON ICON “iconname.ico”

1 The SHMENUBAR resource type used by the Menu Bar control is actually defined as RCDATA inside a wizard-
generated include file.

140

Part| Windows Programming Basics

When Windows displays a program in Windows Explorer, it looks inside the .exe file for the
first icon in the resource list and uses it to represent the program.

Having that icon represent an application’s window is somewhat more of a chore. Windows
CE uses a small 16-by-16-pixel icon on the taskbar to represent windows on the desktop.
Under the desktop versions of Windows, the RegisterClassEx function can be used to associ-
ate a small icon with a window, but Windows CE doesn't support this function. Instead, the
icon must be explicitly loaded and assigned to the window. The following code fragment
assigns a small icon to a window:

hIcon = (HICON) SendMessage (hWnd, WM_GETICON, FALSE, 0);
if (hIcon == 0) {
hIcon = LoadImage (hInst, MAKEINTRESOURCE (ID_ICON1), IMAGE_ICON,
16, 16, 0);
SendMessage (hWnd, WM_SETICON, FALSE, (LPARAM)hIcon);
}

The first SendMessage call gets the currently assigned icon for the window. The FALSE value
in wParam indicates that you're querying the small icon for the window. If this returns 0,
indicating that no icon is assigned, a call to Loadlmage is made to load the icon from the ap-
plication resources. The LoadImage function can take either a text string or an ID value to
identify the resource being loaded. In this case, the MAKEINTRESOURCE macro is used to
label an ID value to the function. The icon being loaded must be a 16-by-16 icon because
under Windows CE, LoadImage won't resize the icon to fit the requested size. Also under
Windows CE, LoadIlmage is limited to loading icons and bitmaps from resources. Windows CE
provides the function SHLoadDIBitmap to load a bitmap from a file.

Accelerators

Another resource that can be loaded is a keyboard accelerator table. This table is used by
Windows to enable developers to designate shortcut keys for specific menus or controls in your
application. Specifically, accelerators provide a direct method for a key combination to result in

a WM_COMMAND message being sent to a window. These accelerators are different from the
Alt+F key combination that, for example, can be used to access a File menu. File menu key com-
binations are handled automatically as long as the File menu item string is defined with the &&
character, as in &File. The keyboard accelerators are independent of menus or any other controls,
although their assignments typically mimic menu operations, as in pressing Ctrl+O to open a file.

Following is a short resource script that defines a couple of accelerator keys:

ID_ACCEL ACCELERATORS DISCARDABLE
BEGIN
“N”, IDM_NEWGAME, VIRTKEY, CONTROL
“Z”, IDM_UNDO, VIRTKEY, CONTROL
END

Chapter 4 Windows, Controls, and Menus 141

As with the menu resource, the structure starts with an ID value. The ID value is followed by
the type of resource and, again optionally, the discardable keyword. The entries in the table
consist of the letter identifying the key, followed by the ID value of the command, VIRTKEY,
which indicates that the letter is actually a virtual key value, followed finally by the CONTROL
keyword, indicating that Ctrl must be pressed with the key.

Simply having the accelerator table in the resource doesn’t accomplish much. The application
must load the accelerator table and, for each message it pulls from the message queue, see
whether an accelerator has been entered. Fortunately, this is accomplished with a few simple
modifications to the main message loop of a program. Here's a modified main message loop
that handles keyboard accelerators:

// Load accelerator table.
hAccel = LoadAccelerators (hInst, MAKEINTRESOURCE (ID_ACCEL));

// Application message Toop
while (GetMessage (&msg, NULL, 0, 0)) {
// Translate accelerators
if (!TransTlateAccelerator (hwndMain, hAccel, &msg)) {
TranslateMessage (&msg);
DispatchMessage (&msg);

}

The first difference in this main message loop is the loading of the accelerator table using the
LoadAccelerators function. Then, after each message is pulled from the message queue, a call
is made to TranslateAccelerator. If this function translates the message, it returns TRUE, which
skips the standard TranslateMessage and DispatchMessage loop body. If no translation was
performed, the loop body executes normally.

Bitmaps

Bitmaps can also be stored as resources. Windows CE works with bitmap resources somewhat
differently from other versions of Windows. With Windows CE, the call

HBITMAP LoadBitmap(HINSTANCE hInstance, LPCTSTR 1pBitmapName) ;

loads a read-only version of the bitmap. This means that after the bitmap is selected into a
device context, the image can't be modified by other drawing actions in that DC. To load a
read/write version of a bitmap resource, use the LoadImage function.

Strings

String resources are a good method for reducing the memory footprint of an application while
keeping language-specific information out of the code to be compiled. An application can call

int LoadString(HINSTANCE hInstance, UINT uID, LPTSTR TpBuffer,
int nBufferMax);

142

Part| Windows Programming Basics

to load a string from a resource. The ID of the string resource is ulD, the IpBuffer parameter
points to a buffer to receive the string, and nBufferMax is the size of the buffer. To conserve
memory, LoadString has a unique feature under Windows CE. If IpBuffer is NULL, LoadString
returns a read-only pointer to the string as the return value. Simply cast the return value as

a pointer and use the string as needed. The length of the string will be located in the word
immediately preceding the start of the string. Note that by default the resource compiler
removes terminating zeros from string resources. If you want to read string resources directly
and have them be zero terminated, invoke the resource compiler with the —r command-line
switch. Although I'll be covering memory management and strategies for memory conserva-
tion in Chapter 7, “"Memory Management,” one quick note here: it's not a good idea to load a
number of strings from a resource into memory. This just uses memory both in the resource
and in RAM. If you need a number of strings at the same time, a better strategy might be

to use the new feature of LoadString to return a pointer directly to the resource itself. As an
alternative, you can have the strings in a read-only segment compiled with the program. You
lose the advantage of a separate string table, but you reduce your memory footprint.

The DOIView Example Program

The following example, DOIView, demonstrates the use of resources, keyboard accelerators,
mouse wheel handling, and pop-up menus. DOIView, short for Declaration of Independence
View, displays the United States Declaration of Independence in a window. The text for the
program is stored as a series of string resources. DOIView formats the text to fit the applica-
tion window and uses scroll bars to scroll the text.

Figure 4-3 shows the DOIView window. The keys Ctrl+H and Ctrl+E scroll the document to
the start (home) and end of the document. You can tap on the window to display a short
menu that allows you to quickly scroll to the start or end of the document as well as end the
program. If your Windows CE system supports a mouse with a mouse wheel, DOIView will
scroll the window as you move the mouse wheel.?

The source for DOIView is shown in Listing 4-1. Notice the inclusion of a third file,
DOIView.rc, which contains the resource script for the program. DOIView.rc contains the
menu resource, a line to include the icon for the program, and a string table that contains
the text to be displayed. Because string resources are limited to 4092 characters, the text is
contained in multiple strings.

2 The mouse wheel won't work inside the emulator since the emulator doesn't translate the PC's mouse wheel
movement to the software running inside the emulator.

Chapter 4 Windows, Controls, and Menus 143

The Declaration aflndependehte

IN CONGRESS, July 4, 1776.
The unanimous Declaration of the thirteen united States of America,

WHEN in the Course of human Events, it becomes necessary for one People to
dissolve the Political Bands which have connected them with another, and to assume
among the Powers of the Earth, the separate and equal Station to which the Laws of
Nature and of Nature's God entitle them, a decent Respect to the Opinions of Mankind
requires that they should declare the causes which impel them to the Separation.

WE hold these Truths to be self-evident, that all Men are created equal, that they are
endowed by their Creator with certain unallenable R|ghts that among these are Life,
Liberty and the Pursuit of Happiness -- That to ¢ Richts, Governments are
instituted among Men, deriving their just Powel t of the Governed,
that whenever any Form of Government becom ese Ends, it is the
Right of the People to alter or to abolish it, and| exit overnment, laving
its Foundation on such Principles, and organizing its Powers n such Form, as to them
shall seem most likely to effect their Safety and Happiness. Prudence, indeed, will
dictate that Governments long established should not be changed for light and
transient Causes; and accordingly all Experience hath shewn, that Mankind are more
disposed to suffer, while Evils are sufferable, than to right themselves by abolishing
the Forms to which they are accustorned. But when a long Train of Abuses and

FIGURE 4-2 The DOI View window with the menu displayed

LISTING 4-1 The DOIView program

DOlView.rc

//
// DOIView - Resource file

//

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

//
//
#include “DOIView.h”

ID_MENU MENU DISCARDABLE
BEGIN
POPUP “&File”
BEGIN
MENUITEM “&Goto Start\tCtrl-H”, IDM_HOME
MENUITEM “&Goto End\tCtri-E”, IDM_END
MENUITEM SEPARATOR
MENUITEM “E&xit”, IDM_EXIT

144 Part| Windows Programming Basics

END
END
[e
// Accelerator table
//
ID_ACCEL ACCELERATORS DISCARDABLE
BEGIN
“H”, IDM_HOME, VIRTKEY, CONTROL
“E”, IDM_END, VIRTKEY, CONTROL
END
/e
// String table
//
STRINGTABLE DISCARDABLE
BEGIN

IDS_DOITEXT, “IN CONGRESS, July 4, 1776.\012The unanimous \
Declaration of the thirteen united States of America,\012WHEN in the \
Course of human Events, it becomes necessary for one People to \
dissolve the Political Bands which have connected them with another, \
and to assume among the Powers of the Earth, the separate and equal \
Station to which the Laws of Nature and of Nature’s God entitle them, \
a decent Respect to the Opinions of Mankind requires that they should \
declare the causes which impel them to the Separation.\012\

WE hold these Truths to be self-evident, that all Men are created \
equal, that they are endowed by their Creator with certain \

unalienable Rights, that among these are Life, Liberty and the Pursuit \
of Happiness -- That to secure these Rights, Governments are \
instituted among Men, deriving their just Powers from the Consent of \
the Governed, that whenever any Form of Government becomes destructive \
of these Ends, it is the Right of the People to alter or to abolish \
it, and to institute new Government, laying its Foundation on such \
Principles, and organizing its Powers in such Form, as to them shall \
seem most likely to effect their Safety and Happiness. Prudence, \
indeed, will dictate that Governments Tlong established should \

not be changed for Tight and transient Causes; and accordingly all \
Experience hath shewn, that Mankind are more disposed to suffer, while \
Evils are sufferable, than to right themselves by abolishing the Forms \
to which they are accustomed. But when a long Train of Abuses and \
Usurpations, pursuing invariably the same Object, evinces a Design to \
reduce them under absolute Despotism, it is their Right, it is their \
Duty, to throw off such Government, and to provide new Guards for \
their future Security. Such has been the patient Sufferance of these \
Colonies; and \

such is now the Necessity which constrains them to alter their \

former Systems of Government. The History of the present King of Great \
Britain is a History of repeated Injuries and Usurpations, all having \
in direct Object the Establishment of an absolute Tyranny over these \
States. To prove this, let Facts be submitted to a candid World.\012\

HE has refused his Assent to Laws, the most wholesome and \

necessary for the public Good.\012HE has forbidden his Governors to \
pass Laws of immediate and pressing Importance, unless suspended in \
their Operation till his Assent should be obtained; and when so \
suspended, he has utterly neglected to attend to them.\012\

HE has refused to pass other Laws for the Accommodation of large \

Chapter 4 Windows, Controls, and Menus

Districts of People, unless those People would relinquish the Right of \
Representation in the Legislature, a Right inestimable to them, and \
formidable to Tyrants only.\012HE has called together Legislative \
Bodies at Places unusual, uncomfortable, and distant from the \
Depository of their public Records, for the sole Purpose of fatiguing \
them into Compliance with his Measures.\012\

HE has dissolved Representative Houses repeatedly, for opposing \

with manly Firmness his Invasions on the Rights of the People.\012HE \
has refused for a long Time, after such Dissolutions, to cause others \
to be elected; whereby the Legislative Powers, incapable of the \
Annihilation, have returned to the People at large for their exercise; \
the State remaining in the mean time exposed to all the Dangers of \
Invasion from without, and the Convulsions within.\012\

HE has endeavoured to prevent the Population of these States; \

for that Purpose obstructing the Laws for Naturalization of Foreigners\
; refusing to pass others to encourage their Migrations hither, and \
raising the Conditions of new Appropriations of Lands.\O012HE has \
obstructed the Administration of Justice, by refusing his Assent to \
Laws for establishing Judiciary Powers.\012HE has made Judges \
dependent on his Will alone, for the Tenure of their Offices, and the \
Amount and Payment of their Salaries.\012”

IDS_DOITEXT1, “HE has erected a Multitude of new Offices, and sent \
hither Swarms of Officers to harrass our People, and eat out their \
Substance.\012HE has kept among us, in Times of Peace, Standing \
Armies, without the consent of our Legislatures.\012HE has affected to \
render the Military independent of and superior to the Civil Power.\012\
HE has combined with others to subject us to a Jurisdiction \
foreign to our Constitution, and unacknowledged by our Laws; giving \
his Assent to their Acts of pretended Legislation:\012FOR quartering \
Targe Bodies of Armed Troops among us;\012FOR protecting them, by a \
mock Trial, from Punishment for any Murders which they should commit \
on the Inhabitants of these States:\012FOR cutting off our Trade with \
all Parts of the World:\012\

FOR imposing Taxes on us without our Consent:\012FOR depriving \

us, in many Cases, of the Benefits of Trial by Jury:\012FOR \
transporting us beyond Seas to be tried for pretended Offences:\012\
FOR abolishing the free System of English Laws in a neighbouring \
Province, establishing therein an arbitrary Government, and enlarging \
its Boundaries, so as to render it at once an Example and fit \
Instrument for introducing the same absolute Rules into these \
Colonies:\012\

FOR taking away our Charters, abolishing our most valuable Laws, \

and altering fundamentally the Forms of our Governments:\012FOR \
suspending our own Legislatures, and declaring themselves invested \
with Power to Tegislate for us in all Cases whatsoever.\012HE has \
abdicated Government here, by declaring us out of his Protection and \
waging War against us.\O12HE has plundered our Seas, ravaged our \
Coasts, burnt our Towns, and destroyed the Lives of our People.\012\

HE is, at this Time, transporting large Armies of foreign \
Mercenaries to compleat the Works of Death, Desolation, and Tyranny, \
already begun with circumstances of Cruelty and Perfidy, scarcely \
paralleled in the most barbarous Ages, and totally unworthy the Head \
of a civilized Nation.\012HE has constrained our fellow Citizens taken \

145

146 Part1 Windows Programming Basics

Captive on the high Seas to bear Arms against their Country, to become \
the Executioners of their Friends and Brethren, or to fall themselves \
by their Hands.\012\

HE has excited domestic Insurrections amongst us, and has \

endeavoured to bring on the Inhabitants of our Frontiers, the \
merciless Indian Savages, whose known Rule of Warfare, is an \
undistinguished Destruction, of all Ages, Sexes and Conditions.\012IN \
every stage of these Oppressions we have Petitioned for Redress in the \
most humble Terms: Our repeated Petitions have been answered only by \
repeated Injury. A Prince, whose Character is thus marked by every act \
which may define a Tyrant, is unfit to be the Ruler of a free People. \
NOR have we been wanting in Attentions to our Brittish Brethren. \

We have warned them from Time to Time of Attempts by their Legislature \
to extend an unwarrantable Jurisdiction over us. We have reminded them \
of the Circumstances of our Emigration and Settlement here. We have \
appealed to their native Justice and Magnanimity, and we have conjured \
them by the Ties of our common Kindred to disavow these Usurpations, \
which, would inevitably interrupt our Connections and Correspondence. \
They too have been deaf to the Voice of Justice and of Consanguinity. \
We must, therefore, acquiesce in the Necessity, which denounces our \
Separation, and hold them, as we hold the rest of Mankind, Enemies in \
War, in Peace, Friends.\012”

IDS_DOITEXT2, “WE, therefore, the Representatives of the UNITED \
STATES OF AMERICA, 1in GENERAL CONGRESS, Assembled, appealing to the \
Supreme Judge of the World for the Rectitude of our Intentions, do, in \
the Name, and by Authority of the good People of these Colonies, \
solemnly Publish and Declare, That these United Colonies are, and of \
Right ought to be, FREE AND INDEPENDENT STATES; that they are absolved \
from all Allegiance to the British Crown, and that all political \
Connection between them and the State of Great-Britain, is and ought \
to be totally dissolved; and that as FREE AND INDEPENDENT STATES, they \
have full Power to levy War, conclude Peace, contract Alliances, \
establish Commerce, and to do all other Acts and Things which \
INDEPENDENT STATES may of right do. And for the support of this \
Declaration, with a firm Reliance on the Protection of divine \
Providence, we mutually pledge to each other our Lives, our Fortunes, \
and our sacred Honor.”

END

DOIView.h

//
// Header file

//

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

//
// Returns number of elements

#define dim(x) (sizeof(x) / sizeof(x[0]))

Chapter 4 Windows, Controls, and Menus

[/ e o

// Generic defines and data types

//

struct decodeUINT { // Structure associates
UINT Code; // messages

// with a function.

LRESULT (*Fxn) (HWND, UINT, WPARAM, LPARAM);

};

struct decodeCMD { // Structure associates
UINT Code; // menu IDs with a
LRESULT (*Fxn) (HWND, WORD, HWND, WORD); // function

};

#define ID_MENU 10

#define ID_ACCEL 11

#define IDM_HOME 100

#define IDM_END 101

#define IDM_EXIT 102

#define IDS_DOITEXT 1000 // These IDs must be

#define IDS_DOITEXT1 1001 // consecutive

#define IDS_DOITEXT2 1002

// Function prototypes

//

int MyScrollwnd (HWND hwWnd, int nNewPos);

int ShowContextMenu (HWND hWnd, POINT pt);

LPTSTR WrapString (HDC hdc, LPTSTR pszText, int *pnLen, int nWidth,
BOOL *fEOL);

HWND InitInstance (HINSTANCE, LPWSTR, int);
int TermInstance (HINSTANCE, int);

// Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

// Message handlers

LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoSizeMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoLButtonDownMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoRButtonDownMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoMouseWheelMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoVScrol1Main (HWND, UINT, WPARAM, LPARAM);
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

// Command functions

LPARAM DoMainCommandHome (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandEnd (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD);

147

148 Part| Windows Programming Basics

DOIView.cpp

/7
// DOIView - Demonstrates window scroll bars
//

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

//

#include <windows.h> // For all that Windows stuff
#include “DOIView.h” // Program-specific stuff
#include <aygshell.h> // Extended shell API

// This 1ine forces the linker to add aygshell.lib to the 1ib list
#pragma comment(1ib, “aygshel1”) // Link for SHRecognizeGesture

[e e
// Global data

//

const TCHAR szAppName[] = TEXT(“DOIView”);

HINSTANCE hInst; // Program instance handle

// Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {
WM_CREATE, DoCreateMain,
WM_SIZE, DoSizeMain,
WM_LBUTTONDOWN, DolLButtonDownMain,
WM_RBUTTONDOWN, DoRButtonDownMain,
WM_MOUSEWHEEL, DoMouseWheelMain,
WM_COMMAND, DoCommandMain,
WM_VSCROLL, DoVScrollMain,
WM_PAINT, DoPaintMain,
WM_DESTROY, DoDestroyMain,
};

// Command Message dispatch for MainWindowProc
const struct decodeCMD MainCommandItems[] = {
IDM_HOME, DoMainCommandHome,
IDM_END, DoMainCommandEnd,
IDM_EXIT, DoMainCommandExit,
}

typedef struct {
LPTSTR pszLine;
int nLen;
} LINEARRAY, *PLINEARRAY;

#define MAXLINES 1000
LINEARRAY TaText[MAXLINES];
int nNumLines = 0;

int nFontHeight = 1;

int nLinesPerPage = 1;

int nMWScroll = -1;

Chapter 4 Windows, Controls, and Menus

LPTSTR pszDeclaration;
HFONT hFont;

int nVPos, nVMax;

BOOL fFirst = TRUE;

//

// Program entry point

//

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPWSTR TpCmdLine, int nCmdShow) {

MSG msg;

int rc = 0;
HWND hwndMain;
HACCEL hAccel;

// Initialize this instance.
hwndMain = InitInstance (hInstance, TpCmdLine, nCmdShow);
if (hwndMain == 0) return 0x10;

// Load accelerator table.
hAccel = LoadAccelerators (hInst, MAKEINTRESOURCE (ID_ACCEL));

// Application message loop
while (GetMessage (&msg, NULL, 0, 0)) {
// Translate accelerators
if (!TranslateAccelerator (hwndMain, hAccel, &msg)) {
TranslateMessage (&msg);
DispatchMessage (&msg);
}
}
// Instance cleanup
return TermInstance (hInstance, msg.wParam);

// InitInstance - Instance initialization
//
HWND InitInstance (HINSTANCE hInstance, LPWSTR TpCmdLine, int nCmdShow) {
WNDCLASS wc;
HWND hWnd;
PBYTE pRes, pBuff;
int nStrlen = 0, i = 0;

// Save program instance handle in global variable.
hInst = hInstance;

#if defined(WIN32_PLATFORM_PSPC) || defined(WIN32_PLATFORM_WFSP)
// For Windows Mobile devices, allow only one instance of the app
hWnd = FindWindow (szAppName, NULL);
if (hWnd) {
SetForegroundWindow ((HWND) (((DWORD)hWnd) | 0x01));
return 0;

149

150 Part| Windows Programming Basics

#endif

// Load text from multiple string resources into one large buffer
pBuff = (PBYTE)LocalAlloc (LPTR, 8);
while (pRes = (PBYTE)LoadString (hInst, IDS_DOITEXT + i++, NULL, 0))
{

// Get the length of the string resource

int nLen = *(PWORD) (pRes-2) * sizeof (TCHAR);

// Resize buffer

pBuff = (PBYTE)LocalReAlloc (pBuff, nStrLen + 8 + nLen,

LMEM_MOVEABLE | LMEM_ZEROINIT);

if (pBuff == NULL) return 0;

// Copy resource into buffer

memcpy (pBuff + nStrLen, pRes, nLen);

nStrLen += nlLen;

3

*(TCHAR *) (pBuff + nStrLen) = TEXT (‘\0’);
pszDeclaration = (LPTSTR)pBuff;

// Register application main window class.

wc.style = 0; // Window style

wc. 1pfnWndProc = MainWndProc; // Callback function
wc.cbClsExtra = 0; // Extra class data
wc.cbWndExtra = 0; // Extra window data
wc.hInstance = hInstance; // Owner handle
wc.hIcon = NULL, // Application icon

wc.hCursor = LoadCursor (NULL, IDC_ARROW);// Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wc.TpszMenuName = NULL; // Menu name
wc.TpszClassName = szAppName; // Window class name

if (RegisterClass (&wc) == 0) return 0;

// Create main window.

hWnd = CreateWindowEx (WS_EX_NODRAG, szAppName,
TEXT(«The Declaration of Independence»),
WS_VSCROLL | WS_VISIBLE | WS_CAPTION |
WS_SYSMENU, CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT, NULL,
NULL, hInstance, NULL);

if (1IsWindow ChWnd)) return 0; // Fail code if not created.

// Standard show and update calls
ShowWindow (hWnd, nCmdShow) ;
UpdateWindow (hWnd);

return hWnd;

// TermInstance - Program cleanup

//
int TermInstance (HINSTANCE hInstance, int nDefRC) {
LocalFree (pszDeclaration);

Chapter 4 Windows, Controls, and Menus

return nDefRC;
}
//

// Message handling procedures for main window

// MainWndProc - Callback function for application window
//
LRESULT CALLBACK MainWndProc (HWND hwWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {

int i;

//

// Search message Tist to see if we need to handle this

// message. If in 1list, call procedure.

//

for (i = 0; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxn) (hWnd, wMsg, wParam, 1Param);

}
return DefWindowProc (hWnd, wMsg, wParam, 1Param);
}
J
// DoCreateMain - Process WM_CREATE message for window.
//

LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
TEXTMETRIC tm;
HDC hdc = GetDC (hwWnd);
LOGFONT 1f;
HFONT hFontWnd;

hFontWnd = (HFONT)GetStockObject (SYSTEM_FONT);
GetObject (hFontWnd, sizeof (LOGFONT), &1f);

1f.1fHeight = -12 * GetDeviceCaps(hdc, LOGPIXELSY)/ 72;
1f.1fWeight = 0;

hFont = CreateFontIndirect (&1f);

SendMessage (hWnd, WM_SETFONT, (WPARAM)hFont, 0);

// Get the height of the default font.

hFontWnd = (HFONT)SelectObject (hdc, hFont);
GetTextMetrics (hdc, &tm);

nFontHeight = tm.tmHeight + tm.tmExternalLeading;
SelectObject (hdc, hFontWnd);

ReleaseDC (hWnd, hdc);

// Get the mouse scroll wheel Tine count.
SystemParametersInfo (SPI_GETWHEELSCROLLLINES, 0, &MWScroll, 0);
return 0;

// DoSizeMain - Process WM_SIZE message for window.

/7

151

152

Part| Windows Programming Basics

LRESULT DoSizeMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM TParam) {
RECT rect;
HDC hdc = GetDC (hWnd);
GetClientRect (hWnd, &rect);
int i = 0, nChars, nWidth;
LPTSTR pszWndText = pszDeclaration;
SCROLLINFO si;)
HFONT hFontWnd;
BOOL fNewLine;

hFontWnd = (HFONT)SelectObject (hdc, hFont);

// Compute the 1line breaks
nWidth = rect.right - rect.left - 10;
while (i < MAXLINES){
pszWndText = WrapString Chdc, pszWndText,
&fNewLine);
if (pszWndText == 0) '
break;
laText[i].pszLine = pszWndText;
TaText[i].nLen = nChars;
AE=H
if (fNewLine) {
TaText[i].nLen = 0;
i+
}
pszWndText += nChars;
1

nNumLines = i3

&nChars, nWidth,

nLinesPerPage = (rect.bottom - rect.top)/nFontHeight;

// Compute lines per window and total Tenght
si.cbSize = sizeof (s1);
si.nMin = 0;
si.nMax = nNumlLines;
si.nPage = nLinesPerPage;
si.nPos = nVPos;
si.fMask = SIF_ALL;
. SetScrollInfo (hWnd, SB_VERT, &si, TRUE);

// Clean up

SelectObject (hdc, hFontWnd);
ReTeaseDC (hwWnd, hdc);
InvalidateRect (hWnd, NULL, TRUE);
return 0;

// DoCommandMain - Process WM_COMMAND message for window.

/7

LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM TParam) {
WORD idItem, wNotifyCode;
HWND hwndCt1;

Chapter 4 Windows, Controls, and Menus

int i;

// Parse the parameters.

jdItem = (WORD) LOWORD (wParam);
wNotifyCode = (WORD) HIWORD(wParam);
hwndCt1 = (HWND) T1Param;

// Call routine to handle control message.
for (i = 0; i < dim(MainCommandItems); i++) {
if (idItem == MainCommandItems[i].Code)
return (*MainCommandItems[i].Fxn)(hWwnd, idItem, hwndCt1,
wNotifyCode) ;
}

return 0;

// DolLButtonDownMain - Process WM_LBUTTONDOWN message for window.
//
LRESULT DoLButtonDownMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {
POINT pt;
int rc;

// Display the menu at the point of the tap
pt.x LOWORD (1Param);
pt.y = HIWORD (TParam);

L]

SHRGINFO sri;

sri.cbSize = sizeof (sri);
sri.dwFlags = 1;
sri.hwndClient = hWnd;
sri.ptDown = pt;

// See if tap and hold
rc = SHRecognizeGesture (&sri);
if (rc == 0) return 0;

// Display the menu at the point of the tap
ShowContextMenu (hWnd, pt);
return 0;

// DoRButtonDownMain - Process WM_RBUTTONDOWN message for window.
//
LRESULT DoRButtonDownMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
POINT pt;

// Display the menu at the point of the tap
pt.x = LOWORD (1Param);

pt.y = HIWORD (1Param);

ShowContextMenu (hWnd, pt);

return 0;

153

154 Part] Windows Programming Basics

// DoMouseWheelMain - Process WM_MOUSEWHEEL message for window.
//
LRESULT DoMouseWheelMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM. TParam) {
// Get the number of clicks the wheel turned
int nScrollLines = GET_WHEEL.DELTA_WPARAM(wParam) / WHEEL_DELTA;

// Compute the new position

int nNewPos = nVPos - nScrolllLines;

// Set the scroll bar and invalidate the window
MyScroliWnd (hWnd, nNewPos);

return 0;

// DoVScrollMain - Process WM_VSCROLL message for window.
//
LRESULT DoVScrol1Main (HWND hWnd, UINT wMsg, WPARAM wParam,
"LPARAM TParam) {
int nNewPos = nVPos;

switch (LOWORD (wParam)) {
case SB_LINEUP:

nNewPos -= 1;

break;

case SB_LINEDOWN:
nNewPos += 1;
break;

case SB_PAGEUP:
nNewPos -= nLinesPerPage;
break;

case SB_PAGEDOWN: !
nNewPos += nLinesPerPage;
break; :

case SB_THUMBTRACK:
case SB_THUMBPOSITION:
nNewPos = HIWORD (wParam);

break;

}

MyScrollwnd (hwnd, nNewPos);

return 0; T
¥ :
R et
// DoPaintMain - Process WM_PAINT message for window.
//

LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,
: LPARAM TParam) {

PAINTSTRUCT ps;

HFONT hFontOl1d;

RECT rect;

Chapter 4 Windows, Controls, and Menus

HDC hdc;
int i, y = 5;

GetClientRect (hWnd, &rect);
hdc = BeginPaint (hWnd, &ps);

// Select our font
hFont01d = (HFONT)SelectObject (hdc, hFont);

// Draw the text
for (i = nVPos; i < nNumLines; i++) {
if (y > rect.bottom - nFontHeight - 10)
break;
if (laText[i].nLen)
ExtTextOut (hdc, 5, y, TRANSPARENT, NULL, TaText[i].pszLine,
TaText[i].nLen, NULL);
y += nFontHeight;
}
SelectObject (hdc, hFontO1d);
EndPaint (hwnd, &ps);
return 0;

// DoDestroyMain - Process WM_DESTROY message for window.
//
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {

PostQuitMessage (0);

return 0;
}
//

// Command handler routines

// DoMainCommandHome - Process Program Home command.
//
LPARAM DoMainCommandHome (HWND hWnd, WORD idItem, HWND hwndCt1,
WORD wNotifyCode) {
SCROLLINFO si;
if (nVPos != 0) {
nVPos = 0;

si.cbhSize = sizeof (si);

si.nPos = nVPos;

si.fMask = SIF_POS;

SetScrollInfo (hwnd, SB_VERT, &si, TRUE);

InvalidateRect (hWnd, NULL, TRUE);
}

return 0;

// DoMainCommandEnd - Process End command.

155

156 Part! Windows Programming Basics

//
LPARAM DoMainCommandEnd (HWND hWnd, WORD idItem, HWND hwndCtT,

WORD wNotifyCode) {
SCROLLINFO si;
int nEndPos = nNumLines - nLinesPerPage + 1;

if (nVPos != nEndPos) {
nVPos = nEndPos;

si.cbSize = sizeof (si);

si.nPos = nVPos;

si.fMask = SIF_POS;

SetScrollInfo (hWnd, SB_VERT, &si, TRUE);

InvalidateRect (hWnd, NULL, TRUE);
}

return 0;

// DoMainCommandExit - Process Program Exit command.

/o ;

LPARAM DoMainCommandExit (HWND hWnd, WORD idItem, HWND hwndCt1,
WORD wNot1ifyCode) {

SendMessage (hWnd, WM_CLOSE, 0, 0);
return 0;

/7 MyScrollwWnd - Adjust the scroll bar and invalidate the window to
// force a repaint at the new top line.
/7
int MyScrollWnd (HWND hwnd, int nNewPos) {
SCROLLINFO si;

// Check range.

if (nNewPos < 0)

. nNewPos = 0;
if (nNewPos > nNumLines-nLinesPerPage+1)
nNewPos = nNumLines-nLinesPerPage+1;

// If scroll position changed, update scrollbar and
// force redraw of window.
if (nVPos != nNewPos) {
nVPos = nNewPos;

si.cbSize = sizeof (si);

si.nPos = nVPos;

si.fMask = SIF_POS; } :

SetScrol1Info (hWnd, SB_VERT, &si, TRUE);

// The scrolling is actually done by redrawing the wnd at
//. the new position. Not very fast but fine in this case.
InvalidateRect (hWnd, NULL, TRUE);
}

return 0;

Chapter 4 Windows, Controls, and Menus

// ShowContextMenu - Display a context menu

//

int ShowContextMenu (HWND hwWnd, POINT pt) {
HMENU hMenuMain, hMenu;

// Display the menu at the point of the tap
MapWindowPoints (hWnd, HWND_DESKTOP, &pt, 1);
pt.x += 5;

hMenuMain = LoadMenu (hInst, MAKEINTRESOURCE (ID_MENU));

hMenu = GetSubMenu (hMenuMain, 0);

TPMPARAMS tpm;

tpm.chSize = sizeof (tpm);

GetClientRect (hWnd, &tpm.rcExclude);

TrackPopupMenuEx (hMenu, TPM_LEFTALIGN | TPM_TOPALIGN,
pt.x, pt.y, hWnd, &tpm);

DestroyMenu (hMenuMain);

DestroyMenu (hMenu);

return 0;

// WrapString - Determine a length that will fit with a width
//
LPTSTR WrapString (HDC hdc, LPTSTR pszText, int *pnLen, int nWidth,
BOOL *fEOL) {
LPTSTR pszStr, pszStart;
SIZE Size;

*fEOL = FALSE;
*pnLen = 0;

// Skip to first non-space char
for (5 (*pszText!=TEXT(‘\0’)) && (*pszText<=TEXT (‘ ‘)); pszText++);

pszStart = pszText;

if (*pszText == 0)
return 0;

while (1) {
pszStr = pszText;
// Find end of the next word
for (; (*pszText!=TEXT(‘\0’)) && *pszText>TEXT (¢ ‘);pszText++);

// Get length of the string
GetTextExtentPoint (hdc, pszStart, pszText - pszStart, &Size);

if (Size.cx > nWidth)
break;

if ((*pszText == TEXT (“\0’)) || (*pszText == TEXT (‘\r’)) ||
(*pszText == TEXT (‘\n’))) {

157

158

Part! Windows Programming Basics

*fEOL = TRUE;
pszStr = pszText;
break;

}

// slip past space

pszText++;

}
*pnLen = pszStr - pszStart;
return pszStart;

When the program launches, it reads the string resources into one large buffer. To reduce the
memory impact, the string resources are accessed by passing a NULL buffer pointer to the
LoadString function. That causes LoadString to return a pointer to the resource in its return
value. Note that these strings aren’t zero delimited in this case, so DOIView reads the word
before the string to get the number of characters. Because the strings are Unicode, the string
length is then multiplied by the size of TCHAR to get the size of the buffer needed for the
string.

The main window of DOIView handles a few extra messages. The WM_SIZE handler refor-
mats the text by calling WrapString. This routine measures the length of each line by calling
GetTextExtentPoint. If the length is less than the width of the window, the routine then adds
another word to the line and remeasures. This continues until the proper number of words is
added to the line to fit within the window.

The WM_VSCROLL routine handles the messages from the vertical scroll bar. When the noti-
fication is a SB_PAGEUP or SB_PAGEDOWN, the routine subtracts or adds the number of lines
displayed in the window to the current scroll position. The routine then calls MyScrollWnd,
which moves the scrollbar thumb to the correct position and invaidates the window. The
WM_PAINT handler then draws the lines of text starting with the top line to be displayed,
defined by the new scroll position.

The WM_LBUTTONDOWN handler uses the SHRecognizeGesture function to determine if the
user has performed a successful tap-and-hold gesture to warrant a context menu. If so, the
routine calls ShowContextMenu to display the menu. The ShowContextMenu function loads

a menu from a menu resource and calls TrackPopupMenuEx to display the menu. The menu
has three commands: Home, to scroll to the top of the document; End, to scroll to the bot-
tom; and Exit, which quits the program. DOIView also responds to accelerator keys: Ctrl+H
for Home and Ctrl+E for End.

In addition to displaying the context menu with a tap-and-hold of the left mouse button,
DOlIView also displays the context menu if the right mouse button is clicked on systems that
support a mouse. This is accomplished by fielding the WM_RBUTTONDOWN message and
calling the ShowContextMenu routine to display the menu.

Chapter 4 Windows, Controls, and Menus 159

The WM_MOUSEWHEEL message is also monitored so that the user can use a mouse with
a mouse wheel to scroll the document. When WM_MOUSEWHEEL is received, the handler
looks at the high word of wParam to determine the mouse wheel delta. This is converted
into the number of clicks the wheel has rotated by dividing by the system-defined constant
WHEEL_DELTA. The WM_MOUSEWHEEL handler then calls MyScrollWnd routine to update
the window.

This chapter has covered a huge amount of ground, from basic child windows to controls and
on to resources and menus. My goal wasn't to teach everything there is to know about these
topics. Instead, I've tried to introduce these program elements, provide a few examples, and
point out the subtle differences between the way they're handled by Windows CE and the
desktop versions of Windows.

Although the Windows controls are useful and quite handy, the next chapter covers the com-
mon controls. These controls are a far more powerful, and more complex, set of controls,
which Windows CE also supports.

Chapter 5
Common Controls and Windows CE

As Microsoft Windows matured as an operating system, it became apparent that the basic
controls provided by Windows were insufficient for the sophisticated user interfaces that
users demanded. Microsoft developed a series of additional controls, called common con-
trols, for their internal applications and later made the dynamic-link library (DLL) containing
the controls available to application developers. Starting with Microsoft Windows 95 and
Microsoft Windows NT 3.5, the common control library was bundled with the operating
system (although this didn't stop Microsoft from making interim releases of the DLL as the
common control library was enhanced). With each release of the common control DLL, new
controls and new features are added to old controls. As a group, the common controls are
less mature than the standard Windows controls and therefore show greater differences be-
tween implementations across the various versions of Windows. These differences aren't just
between Microsoft Windows CE and other versions of Windows, but also between the dif-
ferent desktop versions of Windows. The functionality of the common controls in Windows
CE is fairly complete; however, some of the newest features of the common controls are not
supported.

It isn't the goal of this chapter to cover in depth all the common controls. That would take an
entire book. Instead, only the controls and features of controls the Windows CE programmer
most often needs when writing Windows CE applications are covered. The discussion starts
with the command bar control and then looks at the month calendar and time and date pick-
er controls. It finishes with an overview of the other common controls supported by Windows
CE. By the end of the chapter, you might not know every common control inside and out, but
you will be able to see how the common controls work in general. And you'll have the back-
ground to look at the documentation and understand the common controls not covered.

Programming Common Controls

Because the common controls are separate from the core operating system, the DLL that
contains them must be initialized before any of the common controls can be used. Under all
versions of Windows, including Windows CE, you can call the function

void InitCommonControls (void);

161

162

Part] Windows Programming Basics

to load the library and register many of the common control classes. This call doesn't initial-
ize the month calendar, time picker, up/down, tooltip, or other newer common controls. To
initialize those controls, use the function

BOOL InitCommonControlsEx (LPINITCOMMONCONTROLSEX TpInitCtrls);

This function allows an application to load and initialize only selected common controls. This
function is handy under Windows CE because loading only the necessary controls can reduce
the memory impact. The only parameter to this function is a two-field structure that contains
a size field and a field that contains a set of flags indicating which common controls should
be registered. Table 5-1 shows the available flags and their associated controls.

TABLE 5-1 Flags for Selected Common Controls

Flag Control classes initialized
ICC_BAR_CLASSES Toolbar
: » Status bar
Trackbar
Comménd bar
ICYC_CO‘(‘)L_C‘L\ASSES” H N wRebar”
ICCDATE CLASSES ~~ Dateand time picker
Month calendar control
ICC_LISTVIEW_CLASSES List view
Header control
ICC_PROGRESS_CLASS ~ Progress bar control
ICCTAB.CLASSESS ~ Tabcontrol
ICC_TREEVIEW_CLASSES Tree view control
ICC_UPDOWN_CLASS Up-Down control
ICC_TOOLTIP_CLASSES ' Tooltip control
(CC_CAPEDIT_CLASS Cap ediﬂt control

After the common control DLL is initialized, these controls can be treated like any other con-
trol. But because the common controls aren’t formally part of the Windows core functional-
ity, an additional include file, CommCtrl.h, must be included.

The programming interface for the common controls is similar to that for standard Windows
controls. Each of the controls has a set of custom style flags that configure the look and be-
havior of the control. Messages specific to each control are sent to configure and manipulate
the control and cause it to perform actions. One major difference between the standard
Windows controls and common controls is that notifications of events or requests for service
are sent via WM_NOTIFY messages instead of WM_COMMAND messages as in the standard

Chapter 5 Common Controls and Windows CE 163

controls. This technique allows the notifications to contain much more information than al-
lowed using WM_COMMAND message notifications. In addition, the technique allows the
WM_NOTIFY message to be extended and adapted for each of the controls that use it.

At a minimum, the WM_NOTIFY message is sent with /Param pointing to an NMHDR struc-
ture defined as the following:

typedef struct tagNMHDR {
HWND hwndFrom;
UINT idFrom;
UINT code;

} NMHDR;

The hwndFrom field contains the handle of the window that sent the notify message. For
property sheets, this is the property sheet window. The idFrom field contains the ID of the
control if a control is sending the notification. Finally, the code field contains the notifica-
tion code. While this basic structure doesn’t contain any more information than the WM_
COMMAND message, it's almost always extended, with additional fields appended to it. The
notification code then indicates which, if any, additional fields are appended to the notifica-
tion structure.

One additional difference in programming common controls is that most of the control-
specific messages that can be sent to the common controls have predefined macros that
make sending the message look as if your application is calling a function. So instead of
using an LVM_INSERTITEM message to a list view control to insert an item, as in

nIndex = (int) SendMessage (hwndLV, LVM_INSERTITEM, 0, (LPARAM)&1vi);

an application could just as easily have used the line

nIndex = ListView_InsertItem ChwndLV, &lvi);

There’s no functional difference between the two lines; the advantage of these macros is
clarity. The macros themselves are defined in CommCtrl.h along with the other definitions
required for programming the common controls. One problem with the macros is that the
compiler doesn’t perform the type checking on the parameters that normally occurs if the
macro is an actual function. This is also true of the SendMessage technique, in which the pa-
rameters must be typed as WPARAM and LPARAM types, but at least with messages, the lack
of type checking is obvious. All in all, though, the macro route provides better readability.
One exception to this system of macros is the calls made to the command bar control and
the command bands control. Those controls actually have a number of true functions in ad-
dition to a large set of macro-wrapped messages. As a rule, I'll talk about messages as mes-
sages, not as their macro equivalents. That should help differentiate a message or a macro
from a true function.

164 Part] Windows Programming Basics

The Common Controls

A prime Windows CE target niche—small personal productivity devices—has driven the re-
quirements for the common controls in Windows CE. The frequent need for time and date
references for schedule and task management applications has led to inclusion of the date
and time picker control and the month calendar control. The small screens of personal pro-
ductivity devices inspired the space-saving command bar. Mating the command bar with the
rebar control that was created for Internet Explorer has produced the command bands con-
trol. The command bands control provides even more room for menus, buttons, and other
controls across the top of a Windows CE application.

Starting with Windows CE 4.2, the command bar and command bands controls were sup-
plemented with the menu bar control created for Windows Mobile devices. The most ap-
parent difference between the menu bar control and the earlier command bar is that the
menu bar snaps to the bottom of the screen instead of the top of the application’s window.
Functionally, the menu bar is somewhat more limited than the command bands control.
However, for applications where compatibility between embedded Windows CE systems and
Windows Mobile systems is important, the application should use the menu bar control.

The Command Bar

Briefly, a command bar control combines a menu and a toolbar. This combination is valu-
able because the combination of a menu and toolbar on one line saves screen real estate on
space-constrained Windows CE displays. To the programmer, the command bar looks like

a toolbar with a number of helper functions that make programming the command bar a
breeze. In addition to the command bar functions, you can also use most toolbar messages
when you work with command bars. A window with a command bar is shown in Figure 5-1.

(B view | [F7)E1 @i @itemo &) [34J0d /34 jmg! x

FIGURE 5-1 A window with a command bar control

Creating a Command Bar

You build a command bar in a number of steps, each defined by a particular function. The
command bar is created, the menu is added, buttons are added, other controls are added,
tooltips are added, and finally, the Close and Help buttons are appended to the right side of
the command bar.

You begin the process of creating a command bar with a call to

HWND CommandBar_Create (HINSTANCE hInst, HWND hwndParent,
int idCmdBar);

Chapter 5 Common Controls and Windows CE 165

The function requires the program'’s instance handle, the handle of the parent window, and
an ID value for the control. If successful, the function returns the handle to the newly created
command bar control. But a bare command bar isn't much use to the application. It takes a
menu and a few buttons to jazz it up.

Command Bar Menus

You can add a menu to a command bar by calling the function:

BOOL CommandBar_InsertMenubarEx (HWND hwndCB, HINSTANCE hlInst,
LPTSTR pszMenu, int iButton);

The first two parameters of this function are the handle of the command bar and the in-
stance handle of the application. The pszMenu parameter is either the name of a menu
resource or the handle to a menu previously created by the application. If the pszMenu pa-
rameter is a menu handle, the hinst parameter must be NULL. The last parameter is the index
of the button to the immediate left of the menu. Because the Windows CE guidelines specify
that the menu should be at the left end of the command bar, this parameter should be set to
0, which indicates that all the buttons are to the right of the menu.

After a menu is loaded into a command bar, the handle to the menu can be retrieved at any
time using

HMENU CommandBar_GetMenu (HWND hwndCB, int iButton);

The second parameter, iButton, is the index of the button to the immediate left of the menu.
This mechanism provides the ability to identify more than one menu on the command bar.
However, given the Windows CE design guidelines, you should see only one menu on the bar.
With the menu handle, you can manipulate the structure of the menu using the many menu
functions available.

If an application modifies the menu on the command bar, the application must call
BOOL CommandBar_DrawMenuBar (HWND hwndCB, int iButton);

which forces the menu on the command bar to be redrawn. Here again, the parameters are
the handle to the command bar and the index of the button to the left of the menu. Under
Windows CE, you must use CommandBar_DrawMenuBar instead of DrawMenuBar, which is
the standard function used to redraw the menu under other versions of Windows.

Command Bar Buttons

Adding buttons to a command bar is a two-step process and is similar to adding buttons
to a toolbar. First, the bitmap images for the buttons must be added to the command bar.
Second, the buttons are added, with each of the buttons referencing one of the images in
the bitmap list that was previously added.

166

Part] Windows Programming Basics

The command bar maintains its own list of bitmaps for the buttons in an internal image list.
Bitmaps can be added to this image list one at a time or as a group of images contained in
a long and narrow bitmap. For example, for a bitmap to contain four 16-by-16-pixel images,
the dimensions of the bitmap added to the command bar would be 64 by 16 pixels. Figure
5-2 shows this bitmap image layout.

Image 0 Image 1 Image 2 Image 3
0 16 32 48 63

FIGURE 5-2 Layout of a bitmap that contains four 16-by-16-pixel images
Loading an image bitmap is accomplished using

int CommandBar_AddBitmap (HWND hwndCB, HINSTANCE hInst, int jdBitmap,
int iNumImages, int iImageWidth, int iImageHeight);

The first two parameters are, as is usual with a command bar function, the handle to the
command bar and the instance handle of the executable. The third parameter, idBitmap, is
the resource ID of the bitmap image. The fourth parameter, iNumimages, should contain the
number of images in the bitmap being loaded. Multiple bitmap images can be loaded into
the same command bar by calling CommandBar_AddBitmap as. many times as is needed. The
last two parameters are the dimensions of the images within the bitmap; set both of these
parameters to 16.

Two predefined bitmaps provide a number of images that are commonly used in command
bars and toolbars. You load these images by setting the hinst parameter in CommandBar._
AddBitmap to HINST_COMMCTRL and setting the idBitmap parameter to either IDB_STD_
SMALL_COLOR or IDB_VIEW_SMALL_COLOR. The images contained in these bitmaps are
shown in Figure 5-3. There are two groups of bitmaps shown. If the Windows CE system is
built with the classic Windows “skin,” the top group of bitmaps is used. If the system is built
with the XP “skin” the bottom set of bitmaps is used.! For each group, the buttons on the top
line contain the bitmaps from the standard bitmap, while the second-line buttons contain
the bitmaps from the standard view bitmap.

1 Itis also possible to build a Windows CE system with a custom “skin” that uses bitmaps with a different look than
either of the two groups shown.

Chapter 5 Common Controls and Windows CE 167

FIGURE 5-3 Images in the standard bitmaps provided by the common control DLL. The top set is used with
the classic “skin” while the bottom set is used with the XP “skin.”

The index values to these images are defined in CommCtrl.h, so you don't need to know the
exact order in the bitmaps.

Referencing Images

The images loaded into the command bar are referenced by their index into the list of im-
ages. For example, if the bitmap loaded contains five images, and the image to be referenced
is the fourth image into the bitmap, the zero-based index value is 3.

If more than one set of bitmap images is added to the command bar using multiple calls

to CommandBar_AddBitmap, the images’ subsequent lists are referenced according to the
previous count of images plus the index into that list. For example, if two calls are made to
CommandBar_AddBitmap to add two sets of images, with the first call adding five images
and the second adding four images, the third image of the second set is referenced with the
total number of images added in the first bitmap (5) plus the index into the second bitmap
(2), resulting in an index value of 5 + 2 = 7.

After the bitmaps are loaded, the buttons can be added using one of two functions. The first
function is this one:

BOOL CommandBar_AddButtons (HWND hwndCB, UINT uNumButtons,
LPTBBUTTON TpButtons);

CommandBar_AddButtons adds a series of buttons to the command bar at one time. The
function is passed a count of buttons and a pointer to an array of TBBUTTON structures.
Each element of the array describes one button. The TBBUTTON structure is defined as the
following:

typedef struct {
int iBitmap;
int idCommand;
BYTE fsState;
BYTE fsStyle;
DWORD dwData;
int iString;

} TBBUTTON;

The iBitmap field specifies the bitmap image to be used by the button. This is, as | just ex-
plained, the zero-based index into the list of images. The second parameter is the command

168

Part| Windows Programming Basics
ID of the button. This ID value is sent via a WM_COMMAND message to the parent when a

user clicks the button.

The fsState field specifies the initial state of the button. The allowable values in this field are
the following:

® TBSTATE_ENABLED The button is enabled. If this flag isn't specified, the button is dis-
abled and is grayed.

® TBSTATE_HIDDEN The button isn’t visible on the command bar.

® TBSTATE_PRESSED This button is displayed in a depressed state.

® TBSTATE_CHECKED The button is initially checked. This state can be used only if the
button has the TBSTYLE_CHECKED style.

B TBSTATE_INDETERMINATE The button is grayed.
The fsStyle field specifies the initial style of the button, which defines how the button acts.
The button can be defined as a standard push button, a check button, a drop-down button,

or a check button that resembles a radio button but allows only one button in a group to be
checked. The possible flags for the fsStyle field are the following:

B TBSTYLE_BUTTON The button looks like a standard push button.

® TBSTYLE_CHECK The button is a check button that toggles between checked and un-
checked states each time the user clicks the button.

m TBSTYLE_GROUP Defines the start of a group of buttons.

B TBSTYLE_CHECKGROUP The button is a member of a group of check buttons that act
like radio buttons in that only one button in the group is checked at any one time.

® TBSTYLE_DROPDOWN The button is a drop-down list button.
B TBSTYLE_AUTOSIZE The button's size is defined by the button text.

m TBSTYLE_SEP Defines a separator (instead of a button) that inserts a small space be-
tween buttons.

The dwData field of the TBBUTTON structure is an application-defined value. This value

can be set and queried by the application using the TB_SETBUTTONINFO and TB_
GETBUTTONINFO messages. The iString field defines the index into the command bar string
array that contains the text for the button. The iString field can also be filled with a pointer to
a string that contains the text for the button.

The other function that adds buttons to a command bar is this one:

BOOL CommandBar_InsertButton (HWND hwndCB, <int iButton,
LPTBBUTTON 1pButton);

Chapter 5 Common Controls and Windows CE 169

This function inserts one button into the command bar to the left of the button refer-
enced by the jButton parameter. The parameters in this function mimic the parameters in
CommandBar_AddButtons with the exception that the [pButton parameter points to a single
TBBUTTON structure. The iButton parameter specifies the position on the command bar of
the new button.

Working with Command Bar Buttons

When a user presses a command bar button other than a drop-down button, the com-
mand bar sends a WM_COMMAND message to the parent window of the command bar. So
handling button clicks on the command bar is just like handling menu commands. In fact,
because many of the buttons on the command bar have menu command equivalents, it's
customary to use the same command IDs for the buttons and the like-functioning menus,
thus removing the need for any special processing for the command bar buttons.

The command bar maintains the checked and unchecked state of check and checkgroup but-
tons. After the buttons are added to the command bar, their states can be queried or set us-
ing two messages, TB_ISBUTTONCHECKED and TB_CHECKBUTTON. (The TB_ prefix in these
messages indicates the close relationship between the command bar and the toolbar con-
trols.) The TB_ISBUTTONCHECKED message is sent with the ID of the button to be queried
passed in the wParam parameter this way:

fChecked = SendMessage (hwndCB, TB_ISBUTTONCHECKED, wID, 0);

where hwndCB is the handle to the command bar containing the button. If the return value
from the TB_ISBUTTONCHECKED message is nonzero, the button is checked. To place a but-
ton in the checked state, send a TB_CHECKBUTTON message to the command bar, as in

SendMessage (hwndCB, TB_CHECKBUTTON, wID, TRUE);

To uncheck a checked button, replace the TRUE value in IParam with FALSE.

Drop-Down Buttons

The drop-down list button is a more complex animal than the standard button on a com-
mand bar. The button looks to the user like a button that, when pressed, displays a list of
items from which the user can select. To the programmer, a drop-down button is actually

a combination of a button and a menu that is displayed when the user clicks the button.
Unfortunately, the command bar does little to support a drop-down button except to modify
the button appearance to indicate that the button is a drop-down button and to send a spe-
cial notification when the button is clicked by the user. It's up to the application to display the
menu.

The notification of the user clicking a drop-down button is sent to the parent window of
the command bar by a WM_NOTIFY message with the notification value TBN_DROPDOWN.

170

Partl Windows Programming Basics

When the parent window receives the TBN_DROPDOWN notification, it must create a pop-
up menu immediately below the drop-down button identified in the notification. The menu
is filled by the parent window with whatever selections are appropriate for the button. When
one of the menu items is selected, the menu sends a WM_COMMAND message indicating
the menu item picked, and the menu is dismissed. The easiest way to understand how to
handle a drop-down button notification is to look at the following procedure that handles a
TBN_DROPDOWN notification.

LRESULT DoNotifyMain (HWND hwnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {
LPNMHDR pNotifyHeader;
LPNMTOOLBAR pNotifyToolBar;
RECT rect;
TPMPARAMS tpm;
HMENU hMenu;

// Get pointer to notify message header.
pNotifyHeader = (LPNMHDR)1Param;

if (pNotifyHeader->code == TBN_DROPDOWN) {

// Get pointer to toolbar notify structure.
pNotifyToolBar = (LPNMTOOLBAR)1Param;

// Get the rectangle of the drop-down button.
SendMessage (pNotifyHeader->hwndFrom, TB_GETRECT,
pNotifyToolBar->iItem, (LPARAM)&rect);

// Convert rect to screen coordinates. The rect is

// considered here to be an array of 2 POINT structures.

MapWindowPoints (pNotifyHeader->hwndFrom, HWND_DESKTOP,
(LPPOINT)&rect, 2);

// Prevent the menu from covering the button.
tpm.cbSize = sizeof (tpm);
CopyRect (&tpm.rcExclude, &rect);

// Load the menu resource to display under the button.
hMenu = GetSubMenu (LoadMenu (hInst, TEXT (“popmenu”)),0);

// Display the menu. This function returns after the
// user makes a selection or dismisses the menu.
TrackPopupMenuEx (hMenu, TPM_LEFTALIGN | TPM_VERTICAL,
rect.left, rect.bottom, hWnd, &tpm);
}

return 0;

}

After the code determines that the message is a TBN_DROPDOWN notification, the first task
of the notification handler code is to get the rectangle of the drop-down button. The rectan-
gle is queried so that the drop-down menu can be positioned immediately below the button.

Chapter 5 Common Controls and Windows CE 171

To do this, the routine sends a TB_GETRECT message to the command bar with the ID of the
drop-down button passed in wParam and a pointer to a rectangle structure in /Param.

Because the rectangle returned is in the coordinate base of the parent window, and pop-up
menus are positioned in screen coordinates, the coordinates must be converted from one
basis to the other. You accomplish this using the function

MapWindowPoints (HWND hwndFrom, HWND hwndTo,
LPPOINT Tppoints, UINT cPoints);

The first parameter is the handle of the window in which the coordinates are originally based.
The second parameter is the handle of the window to which you want to map the coordi-
nates. The third parameter is a pointer to an array of points to be translated; the last parame-
ter is the number of points in the array. In the routine | just showed you, the window handles
are the command bar handle and the desktop window handle, respectively.

After the rectangle is translated into desktop coordinates, the pop-up, or context, menu can
be created. You do this by first loading the menu from the resource and then displaying the
menu with a call to TrackPopupMenuEx. If you recall the discussion of TrackPopupMenuEx
from Chapter 4, "Windows, Controls, and Menus,” the TPMPARAMS structure contains a rect-
angle that isn't covered up by the menu when it’s displayed. For your purposes, this rectangle
is set to the dimensions of the drop-down button so that the button isn't covered by the
pop-up menu. The fuFlags field can contain a number of values that define the placement of
the menu. For drop-down buttons, the only flag needed is TPM_VERTICAL. If TPM_VERTICAL
is set, the menu leaves uncovered as much of the horizontal area of the exclude rectangle

as possible. The TrackPopupMenuEx function doesn’t return until an item on the menu is se-
lected or the menu is dismissed by the user tapping on another part of the screen.

Combo Boxes on the Command Bar

Combo boxes on a command bar are much easier to implement than drop-down buttons.
You add a combo box by calling

HWND CommandBar_InsertComboBox (HWND hwndCB, HINSTANCE hInst,
int iWidth, UINT dwStyle,
WORD 1idComboBox,
int iButton);

This function inserts a combo box on the command bar to the left of the button indicated

by the iButton parameter. The width of the combo box is specified, in pixels, by the iWidth
parameter. The dwStyle parameter specifies the style of the combo box. The allowable style
flags are any valid Windows CE combo box style and window styles. The function automati-
cally adds the WS_CHILD and WS_VISIBLE flags when creating the combo box. The idCom-
boBox parameter is the ID for the combo box that will be used when WM_COMMAND
messages are sent notifying the parent window of a combo box event. Experienced Windows
programmers will be happy to know that CommandBar._InsertComboBox takes care of all the

172

Part] Windows Programming Basics

“parenting” problems that occur when a control is added to a standard Windows toolbar.
That one function call is all that is needed to create a properly functioning combo box on the
command bar.

After a combo box is created, you program it on the command bar the same way you would
a stand-alone combo box. Because the combo box is a child of the command bar, you must
query the window handle of the combo box by passing the handle of the command bar to
GetDlgltem with the ID value of the combo box, as in the following code:

hwndCombobox = GetDlgItem (GetDlgItem (hWnd, IDC_CMDBAR),
IDC_COMBO));

However, the WM_COMMAND messages from the combo box are sent directly to the par-
ent of the command bar, so handling combo box events is identical to handling them from a
combo box created as a child of the application’s top-level window.

Other Command Bar Functions

A number of other functions assist in command bar management. The CommandBar._Height
function returns the height of the command bar and is used in all the example programs
that use the command bar. Likewise, the CommandBar_AddAdornments function is also used
whenever a command bar is used. This function, prototyped as

BOOL CommandBar_AddAdornments (HWND hwndCB, DWORD dwFlags,
DWORD dwReserved) ;

places a Close button and, if you want, a Help button and an OK button on the extreme right
of the command bar. You pass a CMDBAR_HELP flag to the dwFlags parameter to add a Help
button, and you pass a CMDBAR_OK flag to add an OK button.

The Help button is treated differently from other buttons on the command bar. When the
Help button is pressed, the command bar sends a WM_HELP message to the owner of the
command bar instead of the standard WM_COMMAND message. The OK button’s action is
more traditional. When you tap it, you send a WM_COMMAND message with the control ID
IDOK. The CommandBar_AddAdornments function must be called after all other controls of
the command bar have been added.

If your top-level window is resizeable, you must notifiy the command bar of resize during
the WM_SIZE message by sending a TB_AUTOSIZE message to the command bar and then
calling

BOOL CommandBar_ATlignAdornments (HWND hwndCB);

The only parameter is the handle to the command bar. A command bar can be hidden by
calling

BOOL CommandBar_Show (HWND hwndCB, BOOL fShow);

Chapter 5 Common Controls and Windows CE 173

The fShow parameter is set to TRUE to show a command bar and FALSE to hide a command
bar. The visibility of a command bar can be queried with this:

BOOL CommandBar_IsVisible (HWND hwndCB);

Finally, a command bar can be destroyed using this:

void CommandBar_Destroy (HWND hwndCB);

Although a command bar is automatically destroyed when its parent window is destroyed,
sometimes it's more convenient to destroy a command bar manually. This is often done if

a new command bar is needed for a different mode of the application. Of course, you can
create multiple command bars, hiding all but one and switching between them by showing
only one at a time, but this isn't good programming practice under Windows CE because all
those hidden command bars take up valuable RAM that could be used elsewhere. The proper
method is to destroy and create command bars on the fly. You can create a command bar
fast enough so that a user shouldn't notice any delay in the application when a new com-
mand bar is created.

The CmdBar Example

The CmdBar example demonstrates the basics of command bar operation. On startup, the
example creates a bar with only a menu and a Close button. Selecting the different items
from the view menu creates various command bars showing the capabilities of the command
bar control. The source code for CmdBar is shown in Listing 5-1.

LISTING 5-1
CmdBar.rc

//
// Resource file

//

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

//

#include “windows.h”

#include “CmdBar.h” // Program-specific stuff

[/ = e e e e e e e e
// Icons and bitmaps

//

ID_ICON ICON “cmdbar.ico” // Program icon

DisCross BITMAP “cross.bmp” // Disabled button image

DisMask BITMAP “mask.bmp” // Disabled button image mask
SortDropBtn BITMAP “sortdrop.bmp” // Sort drop-down button image

/= e
// Menu

//

174 Part| Windows Programhing Basics

ID_MENU MENU DISCARDABLE
BEGIN
POPUP “&File”
BEGIN
MENUITEM “E&xit”, IDM_EXIT
END

POPUP “&View”

BEGIN
MENUITEM “&Standard”, IDM_STDBAR
MENUITEM “&View”, IDM_VIEWBAR
MENUITEM “&Combination”, IDM_COMBOBAR
END

END

popmenu MENU DISCARDABLE

BEGIN
POPUP “&Sort”
BEGIN
MENUITEM “&Name”, IDC_SNAME
MENUITEM “&Type”, . IDC_STYPE
MENUITEM “&Size”, IDC_SSIZE
MENUITEM “&Date”, IDC_SDATE
END
END
CmdBar.h
//
// Header file
1/

// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

// -
// Returns number of elements

#define dim(x) (sizeof(x) / sizeof(x[0]))

/== e e

// Generic defines and data types

//

struct decodeUINT { // ‘Structure associates
UINT Code; // messages

// with a function.
LRESULT (*Fxn) (HWND, UINT, WPARAM, LPARAM);

1

struct decodeCMD { // Structure associates
UINT Code; // menu IDs with a
LRESULT (*Fxn) (HWND, WORD, HWND, WORD); // function.

Y

Chapter 5 Common Controls and Windows CE

// Generic defines used by application

#define
#define
#define
#define

// Menu
#define
#define
#define
#define
#define

IDC_CMDBAR
ID_ICON
ID_MENU
IDC_COMBO

item IDs
IDM_EXIT
IDM_STDBAR
IDM_VIEWBAR
IDM_COMBOBAR
IDM_ABOUT

// Command bar button IDs

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

#define

IDC_NEW
IDC_OPEN
IDC_SAVE
IDC_QUT
IDC_COPY
IDC_PASTE
IDC_PROP

IDC_LICON
IDC_SICON
IDC_LIST
IDC_RPT
IDC_SNAME
IDC_STYPE
IDC_SSIZE
IDC_SDATE
IDC_DPSORT

STD_BMPS

VIEW_BMPS

// Function prototypes

//

HWND InitInstance (HINSTANCE, LPWSTR, int);

1

10
11
12

101
111
112
113
120

201
202
203
204
205
206
207

301
302
303
304
305
306
307
308
350

(STD_PRINT+1)

// Command band ID

// Icon resource ID

// Main menu resource ID
// Combo box on cmd bar ID

// File menu
// View menu

// Help menu

// Number of bmps in
// std imglist

(VIEW_NEWFOLDER+1) // Number of bmps 1in

int TermInstance (HINSTANCE, int);

// Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

// Message handlers
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM);

LRESULT DoSizeMain (HWND, UINT, WPARAM, LPARAM);

// view imglist

LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoNotifyMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

// Command functions
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandVStd (HWND, WORD, HWND, WORD);

175

Part | Windows Programming Basics

LPARAM DoMainCommandVView (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandVCombo. (HWND, WORD, HWND, WORD);

CmdBar.cpp

A/
// CmdBar - Command bar demonstration

/7
// Written for the book Programming Windows CE
// Copyright (C) 2007 Douglas Boling

1/

#include <windows.h> // For all that Windows stuff
#include <commctrl.h> // Command- bar includes

#include “CmdBar.h” // Program-specific stuff

it e e R
// Global ‘data

//

const TCHAR szAppName[] = TEXT (“CmdBar”);

HINSTANCE hInst; // Program instance handle

// Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {
WM_CREATE, DoCreateMain,
WM_SIZE, DoSizeMain,
WM_COMMAND, DoCommandMain,
WM_NOTIFY, DoNotifyMain,
WM_DESTROY, DoDestroyMain,
}; :

// Command Message dispatch for MainWindowProc

const struct decodeCMD MainCommandItems[] = {
IDM_EXIT, DoMainCommandExit,
IDM_STDBAR, DoMainCommandVStd,
IDM_VIEWBAR, DoMainCommandVView,
IDM_COMBOBAR, DoMainCommandVCombo,

15

- // Standard file bar button structure
const TBBUTTON tbCBStdBtns[] = {

// . BitmapIndex Command State Style UserData String
{0, 0, 0, TBSTYLE_SEP, 0, 0},
{STD_FILENEW, IDC_NEW, TBSTATE_ENABLED, : s

TBSTYLE_BUTTON, 0, ~ 03},
{STD_FILEOPEN, IDC_OPEN, TBSTATE_ENABLED,

TBSTYLE_BUTTON, 0, 03},
{STD_FILESAVE, : IDC_SAVE, TBSTATE_ENABLED, :

TBSTYLE_BUTTON, 0, 0},
{0, g 0, 0, TBSTYLE_SEP, 0, 0},
{STD_CUT, IDC;CUT, TBSTATE_ENABLED,

TBSTYLE_BUTTON, 0,

0}’

{STD_COPY,
{STD_PASTE,

{0,
{STD_PROPERTIES,

IDC_COPY,

IDC_PASTE,

0,
IDC_PROP,

TBSTYLE_BUTTON, 0,

};

Chapter 5 Common Controls and Windows CE

TBSTATE_ENABLED,
TBSTYLE_BUTTON,
TBSTATE_ENABLED,
TBSTYLE_BUTTON,
0, TBSTYLE_SEP,
TBSTATE_ENABLED,

0}

// Standard view bar button structure
const TBBUTTON tbCBViewBtns[] = {

// BitmapIndex
{0,
{VIEW_LARGEICONS,
{VIEW_SMALLICONS,

{VIEW_LIST,
{VIEW_DETAILS,

{0,

{VIEW_SORTNAME,
{VIEW_SORTTYPE,
{VIEW_SORTSIZE,
{VIEW_SORTDATE,

{0!
};

Command

0,
IDC_LICON,
IDC_SICON,

IDC_LIST,
IDC_RPT,

0,

IDC_SNAME,

IDC_STYPE,

IDC_SSIZE,

IDC_SDATE,

0’

State Style
0, TBSTYLE_SEP,

0,

0,
0,

0,

TBSTATE_ENABLED | TBSTATE_CHECKED,
TBSTYLE_CHECKGROUP, O,

TBSTATE_ENABLED,

TBSTYLE_CHECKGROUP, 0,
0, TBSTYLE_CHECKGROUP, O,

TBSTATE_ENABLED,

TBSTYLE_CHECKGROUP, O,

TBSTATE_ENABLED,
TBSTYLE_SEP,

0,

TBSTATE_ENABLED | TBSTATE_CHECKED,
TBSTYLE_CHECKGROUP, O,

TBSTATE_ENABLED,

TBSTYLE_CHECKGROUP, 0,

TBSTATE_ENABLED,

TBSTYLE_CHECKGROUP, O,

TBSTATE_ENABLED,

TBSTYLE_CHECKGROUP, 0,

0, TBSTYLE_SEP,

// Tooltip string Tist for view bar
const TCHAR *pViewTips[] = {TEXT (*”), TEXT (“Large”), TEXT (“Small”),
TEXT (“List”), TEXT (“Details”), TEXT (“"),

b

TEXT (“Sort by Name”), TEXT (“Sort by Type”),
TEXT (“Sort by Size”), TEXT (“Sort by Date”),

// Combination standard and view bar button structure
const TBBUTTON thCBCmboBtns[] = {

// BitmapIndex
{0,
{STD_FILENEW,
{STD_FILEOPEN,
{STD_PROPERTIES,

{o,
{STD_CUT,

{STD_COPY,

Command
0,
IDC_NEW,
IDC_OPEN,
IDC_PROP,

0,
IDC_CUT,

IDC_COPY,

State Style
0, TBSTYLE_SEP,
TBSTATE_ENABLED,
TBSTYLE_BUTTON,
TBSTATE_ENABLED,
TBSTYLE_BUTTON,
TBSTATE_ENABLED,
TBSTYLE_BUTTON,
0, TBSTYLE_SEP,
TBSTATE_ENABLED,
TBSTYLE_BUTTON,
TBSTATE_ENABLED,
TBSTYLE_BUTTON,

0,

0,

01,

031,
0}1

UserData String

03},
0}‘

0},
03},

0%,
0},
03,
0},
0},

0}1
0}!

UserData String

0}!
0}’
0}’

0},
0}9

0}’

0},

177

178

Part| Windows Programming Basics

{STD_PASTE, IDC_PASTE, TBSTATE_ENABLED,
TBSTYLE_BUTTON, 0, 03,
{0, 0 0, TBSTYLE_SEP, 0; 0},

{STD_BMPS + VIEW_LARGEICONS,
IDC_LICON, TBSTATE_ENABLED | TBSTATE_CHECKED,
TBSTYLE_CHECKGROUP, - 0, * 0%,
{STD_BMPS + VIEW_SMALLICONS,
IDC..SICON, TBSTATE_ENABLED,
TBSTYLE_CHECKGROUP, 0, 0},
{STD_BMPS + VIEW_LIST,
IDC_LIST, TBSTATE_ENABLED,
TBSTYLE_CHECKGROUP, 0, 0},
{STD_BMPS '+ VIEW_DETAILS,
IDC_RPT, TBSTATE_ENABLED, .
TBSTYLE_CHECKGROUP, 0, .0},
{0, 0, 0, TBSTYLE_SEP, 0, - 0},
{STD_BMPS + VIEW_BMPS,
IDC_DPSORT, TBSTATE_ENABLED,
TBSTYLE_DROPDOWN, 0, 0}
};

//
// Program entry point
// :
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
~LPWSTR 1pCmdLine, int nCmdShow) {
HWND hwndMain;
MSG msg;
int-rc = 0;

// Initialize application.

hwndMain = InitInstance (hInstance, 1pCmdLine, nCmdShow) ;
if (hwndMain == 0) return 0x10;

// Application message loop

while (GetMessage (&msg, NULL, 0, 0)) {
TransTlateMessage (&msg);
DispatchMessage (&msg);

}

// Instance cleanup

return TermInstance (hInstance, msg.wParam);

// InitInstance - Instance 7initialization

//

HWND . InitInstance (HINSTANCE hInstance, LPWSTR TpCmdLine, int nCmdShow){
HWND hWnd;
WNDCLASS . wc;
INITCOMMONCONTROLSEX 1icex;

#if defined (WIN32_PLATFORM_PSPC) || defined(WIN32_PLATFORM_WFSP)
// If Windows Mobile, allow only one 7instance of the application.

Chapter 5 Common Controls and Windows CE

hWnd = FindwWindow (szAppName, NULL);

if (hwnd) {

SetForegroundWindow ((HWND) (((DWORD)hWnd) | 0x01));

return 0;
}

#endif

// Register application main window class.
wc.style = 0; // Window style
wc. TpfnWndProc = MainWndProc; // Callback function
wc.chClsExtra = 0; // Extra class data
wc.cbWndExtra = 0; // Extra window data
wc.hInstance = hInstance; // Owner handle
wc.hIcon = NULL, // Application icon

wc.hCursor = LoadCursor (NULL, IDC_ARROW);// Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);

wc. TpszMenuName = NULL; // Menu name
wc.lpszClassName = szAppName; // Window class name

if (RegisterClass (&wc) == 0) return 0;

// Load the command bar common control class.
icex.dwSize = sizeof (INITCOMMONCONTROLSEX);
icex.dwICC = ICC_BAR_CLASSES;
InitCommonControlsEx (&icex);

// Save program instance handle in global variable.
hInst = hInstance;

// Create main window.
hWwnd = CreateWindow (szAppName, TEXT (“CmdBar Demo”), WS_VISIBLE,
CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL,
hInstance, NULL);
// Return fail code if window not created.
if (!Iswindow (hWnd)) return 0;

// Standard show and update calls
ShowWindow (hWnd, nCmdShow) ;
UpdateWindow (hwnd);

return hwnd;

// TermInstance - Program cleanup

//

int TermInstance (HINSTANCE hInstance, int nDefRC) {
return nDefRC;

}

//

// Message handling procedures for MainWindow

// MainWndProc - Callback function for application window

//

. LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {

179

180 Part]| Windows Programming Basics

int i;
1/ :
// Search message list to see if we need to handle this
// message. If in Tist, call procedure.
//)
for (i = 0; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[i].Code))

return (*MainMessages[i].Fxn) (hWnd, wMsg, wParam, TParam);

}
return DefWindowProc (hWnd, wMsg, wParam, 1Param);
}
[e e e
// DoCreateMain - Process WM_CREATE message for window.
//

LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM TParam) {
HWND hwndCB;

// Create a minimal command bar that has only a menu and an
// exit button.
hwndCB = CommandBar_Create (hInst, hWnd, IDC_CMDBAR);

// Insert the menu.
CommandBar_InsertMenubar (hwndCB, hInst, ID_MENU, 0);

// Add exit button to command bar.
CommandBar_AddAdornments ChwndCB, 0, 0);
return 0;

// DoSizeMain - Process WM_SIZE message for window.
//
‘LRESULT DoSizeMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM: TParam) {
// This only needed if the window can be resized
HWND hwndCB = GetDlgItem (hWnd, IDC_CMDBAR);
// Tell the command bar to resize itself and reposition Close button.
SendMessage (hwndCB, TB_AUTOSIZE, OL, OL);
CommandBar_ATlignAdornments (hwndCB) ;

return 0;

// DoCommandMain - Process WM_COMMAND message for window.
//
LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM: TParam) {
WORD idItem, wNotifyCode;
HWND hwndCt1;
INT i

// Parse the parameters.
idItem = (WORD) LOWORD (wParam);
wNotifyCode = (WORD) HIWORD. (wParam);

Chapter 5 Common Controls and Windows CE

hwndCt1l = (HWND) 1Param;

// Call routine to handle control message.
for (i = 0; i < dim(MainCommandItems); i++) {
if (idItem == MainCommandItems[i].Code)
return (*MainCommandItems[i].Fxn) (hWnd, idItem, hwndCt1,

wNotifyCode);
}
return 0;
}
e
// DoNotifyMain - Process WM_NOTIFY message for window.
//

LRESULT DoNotifyMain (HWND hwWwnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
LPNMHDR pNot1ifyHeader;
LPNMTOOLBAR pNotifyToolBar;
RECT rect;
TPMPARAMS tpm;
HMENU hMenu;

// Get pointer to notify message header.
pNotifyHeader = (LPNMHDR)1Param;

if (pNotifyHeader->code == TBN_DROPDOWN) {

// Get pointer to toolbar notify structure.
pNotifyToolBar = (LPNMTOOLBAR)1Param;

if (pNotifyToolBar->iltem == IDC_DPSORT) {

// Get the rectangle of the drop-down button.
SendMessage (pNotifyHeader->hwndFrom, TB_GETRECT,
pNotifyToolBar->iltem, (LPARAM)&rect);

// Convert rect to screen coordinates. The rect 1is

// considered here to be an array of 2 POINT structures.

MapWindowPoints (pNotifyHeader->hwndFrom, HWND_DESKTOP,
(LPPOINT)&rect, 2);

// Prevent the menu from covering the button.
tpm.cbhSize = sizeof (tpm);
CopyRect (&tpm.rcExclude, &rect);

hMenu = GetSubMenu (LoadMenu (hInst, TEXT (“popmenu”)),0);
TrackPopupMenuEx (hMenu, TPM_LEFTALIGN | TPM_VERTICAL,
rect.left, rect.bottom, hWnd, &tpm);

}

return 0;

// DoDestroyMain - Process WM_DESTROY message for window.
//

181

182

Part| Windows Programming Basics

LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,
: LPARAM 1Param) {
PostQuitMessage (0);

return 0;
}
/7
// Command handler routines
[=== b e e e e e
// DoMainCommandExit - Process Program Exit command
//

LPARAM DoMainCommandExit (HWND hWnd, WORD 1dItem, HWND hwndCt1,
WORD wNotifyCode) {

SendMessage (hWnd, WM_CLOSE, 0, 0);
return 0;

// DoMainCommandViewStd - Displays a standard ed1t -centric command bar
//
LPARAM -DoMainCommandVStd (HWND hWnd, WORD idItem, HWND hwndCt1,
WORD wNotifyCode) {
HWND hwndCB;

" // If a command bar exists, kill it.
if (hwndCB GetDlgItem (hWnd, IDC_CMDBAR))
" CommandBar_Destroy (hwndCB);

// Create a command bar.

~hwnd(B = CommandBar_Create (hInst, hWnd, IDC_CMDBAR);
// Insert a menu.

CommandBar_InsertMenubar (hwndCB, hInst, ID MENU, 0),

// Insert buttons.
CommandBar_AddBitmap (hwndCB, HINST. COMMCTRL IDB_STD_SMALL_COLOR,
- STD_BMPS, 0, 0); i

CommandBar_AddButtons (hwndCB, dim(tbCBStdBtns), tbCBStdBtns);

// Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 0),
return 0;

/7 DoMamCommandW'new - Displays a standard ed'it centr1c command bar
74
LPARAM DoMainCommandVView CHWND hWnd, WORD 1dItem, HWND hwndCt1,
WORD - wNot1i fyCode) ' {
INT 1;
HWND -hwndCB;
TCHAR szTmp[64];
HBITMAP hBmp, hMask;
HIMAGELIST hilDisabled, hilEnabled;

// 1f a command bar exists, kill it.

Chapter 5 Common Controls and Windows CE

if (hwnd(B = GetDlgItem (hWnd, IDC_CMDBAR))
CommandBar_Destroy (hwndCB);

// Create a command bar.

hwndCB = CommandBar_Create (hInst, hWnd, IDC_CMDBAR);

// Insert a menu.
CommandBar_InsertMenubar (hwndCB, hInst, ID_MENU, 0);

// Insert buttons, first add a bitmap and then the buttons.
CommandBar_AddBitmap (hwndCB, HINST_COMMCTRL, IDB_VIEW_SMALL_COLOR,
VIEW_BMPS, 0, 0);

// Load bitmaps for disabled image.
hBmp = LoadBitmap ChInst, TEXT (“DisCross”));
hMask = LoadBitmap (hInst, TEXT (“DisMask™));

// Get the current image list and copy.

hilEnabled = (HIMAGELIST)SendMessage (hwndCB, TB_GETIMAGELIST, 0, 0);
hilDisabled = ImageList_Duplicate (hilEnabled);

// Replace a button image with the disabled image.

Imagelist_Replace (hilDisabled, VIEW_LIST, hBmp, hMask);

// Set disabled image list.
SendMessage (hwndCB, TB_SETDISABLEDIMAGELIST, O,
(LPARAMYhi1Disabled);

// Add buttons to the command bar.
CommandBar_AddButtons (hwndCB, dim(tbCBViewBtns), tbCBViewBtns<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>