Core Reference

Third Edition

Now covers Pocket PC
and Smartphone

* 30 SMOANIM
- HONINANVYHHO0Hd

uopIp3 pAYL

Microsoft

.net o Douglas Boling

Microsoft’

Core Reference

Third Edition

PROGRAMMING MICROSOFT

Microsofte

Net Douglas Boling

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2003 by Douglas Boling

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Boling, Douglas McConnaughey, 1960-

Programming Microsoft Windows CE .NET / Douglas Boling.--3rd ed.

p. cm.

Includes index.

ISBN 0-7356-1884-4

1. Microsoft Windows (Computer file) 2. Operating systems (Computers) 3. Microsoft
.NET. I Title.

QA76.76.063B625 2003
005.4'469--dc21 2003042205

Printed and bound in the United States of America.

23456789 QWT 876543

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa-
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send
comments to mspinput@microsoft.com.

ActiveSync, ActiveX, Developer Studio, DirectX, Microsoft, Microsoft Press, MS-DOS, Visual Basic,
Visual C++, Visual C#, Visual Studio, Win32, Windows, Windows NT, and Windows Server are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company, organization,
product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Acquisitions Editor: Anne Hamilton Interior Artist: Michael Kloepfer
Project Editor: Kathleen Atkins Proofreader: nSight, Inc.
Technical Editor: Jim Fuchs Indexer: Julie Hatley

Interior Graphic Designer: James D. Kramer Cover Designer: Methodologie, Inc.

Principal Compositor: Dan Latimer

Body Part No. X09-39008

gw\)\@&j@ gb@d"“

To Nancy Jane

part1 Windows Programming Basics
1 Hello Windows CE 3
2 Drawing on the Screen 39
3 Input: Keyhoard, Mouse, and Touch Screen 91
4 Windows, Controls, and Menus 129
5 Common Controls and Windows CE 205
6 Dialog Boxes and Property Sheets 297
patl Windows CE Programming
7 Memory Management 357
8 Files and the Registry 385
9 Windows CE Databases 439
10 Modules, Processes, and Threads 489
11 Notifications 557

partin Communications

12 Serial Communications 585
13 Windows CE Networking 615
14 Device-to-Device Communication 637
15 Connecting to the Desktop 147

pativ Device Programming

16 The Explorer Shell 799
17 Programming the Pocket PC 831
18 Extending the Pocket PC 875
19 Programming the Smartphone 929
20 GAPI, the Game API 997
partv Advanced Windows CE
21 System Programming 1025
22 Device Drivers and Services ' 1045

23 Programming the .NET Compact Framework 1113

Acknowledgments XiX

Introduction XXi
Part | ndows Progran

1 Hello Windows CE 3

What Is Different About Windows CE 3

Fewer Resources in Windows CE Devices 4

Unicode 4

New Controls 5

Componentization 5

Win32 Subset 6

It’s Still Windows Programming 6

Hungarian Notation 6

Your First Windows CE Application 7

Building Your First Application 10

Running the Program 11

What’s Wrong? 11

Hello2 12

Anatomy of a Windows-Based Application 15

The Window Class 15

The Window Procedure 15

The Life of a Message 16

Hello3 17

Registering the Window Class 20

Creating the Window 22

The Message Loop 23

The Window Procedure 24

HelloCE 28

The Code 29

Running HelloCE 36

vii

viii Table of Contents

2 Drawing on the Screen

Painting Basics
Valid and Invalid Regions
Device Contexts
Writing Text
Device Context Attributes
The TextDemo Example Program
Fonts
The FontList Example Program
Bitmaps
Device-Dependent Bitmaps
Device-Independent Bitmaps
DIB Sections
Drawing Bitmaps
Lines and Shapes
Lines
Shapes
Fill Functions
The Shapes Example Program

3 Input: Keyhoard, Mouse, and Touch Screen

The Keyboard
Input Focus
Keyboard Messages
Keyboard Functions
The KeyTrac Example Program
The Mouse and the Touch Screen
Mouse Messages
Working with the Touch Screen
The TicTac1 Example Program

4 Windows, Controls, and Menus
Child Windows
Window Management Functions
Enumerating Windows
Finding a Window
Editing the Window Structure Values

39

40
40
41
43
44
46
52
58
66
67
68
68
71
74
74
77
80
82

91

91
92
92
98
100
109
109
110
118

129

129
130
131
131
132

Table of Contents ix

Windows Controls 135
Button Controls 137

The Edit Control 140
The List Box Control 141

The Combo Box Control 141
Static Controls 142

The Scroll Bar Control 143

The CtIView Example Program 147
Menus 179
Handling Menu Commands 181
Resources 181
Resource Scripts 182
Icons 184
Accelerators 185
Bitmaps 186
Strings 186

The DOIView Example Program 187
5 CGommon Controls and Windows GE 205
Programming Common Controls 206
The Common Controls 208
The Command Bar 209

The CmdBar Example 221
Command Bands 236

The CmdBand Example 246

The Menu Bar 260

The MenuBar Example 269

The Month Calendar Control 286

The Date and Time Picker Control 289

The List View Control 292

The CapEdit Control 294
Other Common Controls 295
Unsupported Common Controls 296
6 Dialog Boxes and Property Sheets 297
Dialog Boxes 298

Dialog Box Resource Templates 298

X Table of Contents

Creating a Dialog Box 302
Dialog Box Procedures 303
Modeless Dialog Boxes 307
Property Sheets 308
Common Dialogs 314

The DigDemo Example Program 316

Part Il ndows _

7 Memory Management 357
Memory Basics 357
About RAM 358
About ROM 358
About Virtual Memory 359

An Application’s Address Space 362

The Different Kinds of Memory Allocation 364
Virtual Memory 365
Heaps 37

The Local Heap 372
Separate Heaps 373

The Stack 375
Static Data 376
String Resources 379
Selecting the Proper Memory Type 379
Managing Low-Memory Conditions 380

8 Files and the Registry 385
The Windows CE File System 386
The Object Store vs. Other Storage Media 387
Standard File 1/0 387

The FileView Sample Program _ 396
Memory-Mapped Files and Objects 406
Navigating the File System 408

The Registry 415
Registry Organization 416

The Registry API 417

The RegView Example Program 421

10

Windows GE Databases

Databases
Basic Definitions
The Database API
The AlbumDB Example Program

Modules, Processes, and Threads

Modules
Processes
Creating a Process
Terminating a Process
Other Processes
Threads
The System Scheduler
Creating a Thread
Setting and Querying Thread Priority
Setting a Thread’s Time Quantum
Suspending and Resuming a Thread
Fibers
Thread Local Storage
Synchronization
Events
Waiting...
Semaphores
Mutexes
Duplicating Synchronization Handles
Critical Sections
Interlocked Variable Access
Windows CE Security
Interprocess Communication
Finding Other Processes
WM_COPYDATA
Named Memory-Mapped Objects
Message Queues
Communicating with Files and Databases
The XTalk Example Program

Table of Contents xi

439

439
439
441
458

489

489
493
494
497
498
499
499
502
504
506
506
507
509
511
512
514
518
520
521
521
523
525
527
527
528
529
531
534
535

xii Table of Contents

Exception-Handling
C++ Exception Handling
~ Win32 Exception Handling

11 Notifications

User Notifications

Setting a User Notification
Timer Event Notifications
System Event Notifications
The Note Demo Example Program
Querying Scheduled Notifications

partin Communications

12 Serial Communications

Basic Serial Communication
Opening and Closing a Serial Port
Reading from and Writing to a Serial Port
Asynchronous Serial I/0
Configuring the Serial Port
Setting the Port Timeout Values
Querying the Capabilities of the Serial Driver
Controlling the Serial Port
Clearing Errors and Querying Status
Stayin’ Alive

The CeChat Example Program

13 Windows CE Networking

Windows Networking Support
WNet Functions
The ListNet Example Program

14 Device-to-Device Communication

Basic Sockets
Initializing the Winsock DLL
Stream Sockets
IrSock
Querying and Setting IR Socket Options

549
549
552

557

557
558
563
564
566
580

585

585
586
587
588
589
592
594
595
597
598
598

615

615
616
627

637

638
638
639
645
647

Table of Contents

Blocking vs. Nonblocking Sockets

The MySquirt Example Program
Bluetooth

Stack

Discovery

Publishing a Service

Bluetooth Communication with Winsock

Bluetooth Communication with Virtual COM Ports

The BtHello Example Program
OBEX

Initialization

Application Callbacks

Device Discovery

OBEX Communication

The ObexSquirt Example Program

15 Connecting to the Desktop

The Windows CE Remote API
RAPI Overview
Predefined RAPI Functions
The RapiDir Example Program
Custom RAPI Functions
The RapiFind Example Program
The CeUtil Functions
Connection Notification
Registry Method
COM Method
The CnctNote Example Program
Connection Detection on the Windows CE Side
Direct Socket Connections

partiv Device Programming

16 The Explorer Shell

Working with the Shell
The Shell Namespace
Special Folders

Xiii

648
651
670
671
672
682
685
687
692
714
714
714
716
718
722

747

748
748
751
758
762
768
77
781
782
783
786
794
795

799
800
800
801

Xiv Table of Contents

Shortcuts
Configuring the Start Menu
Recent Documents List
Launching Applications
The Taskbar
The TBlcons Example Program
The Out Of Memory Error Dialog Box
Console Applications
The CEFind Example Program
Console Redirection
Hardware Keys
Virtual Codes for Hardware Keys
Using the Application Launch Keys
Dynamically Overriding Application Launch Keys

17 Programming the Pocket PC

What Is a Pocket PG?
Is It a PDA, a Phone, or Both?
The Pocket PC Screen
Hello Pocket PG
Differences in a Pocket PC Application
Building HelloPPC
The New Menu
The NewMenuX Example
Pocket PC Notifications
Adding a Notification
Modifying a Notification
Removing a Notification
Dialog Boxes
Full-Screen Dialog Boxes
Input Dialogs
Property Sheets
AutoRun
Additional Pocket PC Shell Functions
Full-Screen Windows
Freeing Memory
Controlling the SIP

803
804
805
806
807
809
816
817
818
822
823
823
825
827

831

831

832
833
834
843
848
849
850
859
860
863
864
864
865
866
868
869
871

871
871
872

Table of Contents XV

18 Extending the Pocket PC 875
Custom Today Screen Items 875
Implementing a Today Screen ltem 876
Registering the Custom Item 880
Debugging a Custom ltem 881

The PowerBar Custom Today Screen Item 881
Custom Input Methods 895
The Components of a SIP 895
Threading Issues with Input Methods 896

The IlInputMethod and lInputMethod?2 Interfaces 897

The /IMCallback and /IMCallback2 Interfaces 902
The NumPanel Example Input Method 905

19 Programming the Smartphone 929
Introducing the Smartphone 930
A Smartphone Application 932

The Smartphone’s MenuBar Control 939
Creating a Smartphone MenuBar Control 940
Working with the Buttons and Menus 942

The Back Button and Other Interesting Buttons 944
Message Boxes 947
Dialog Boxes 949
Scrolling Dialogs 950
Smartphone Controls 950
Text Controls 951
Expandable Edit Controls 953
Spinner Controls 954

File Operation in the Smartphone 956
Communication 958
Phone API 958

The Connection Manager 961
SMS Messaging 965
The SMSTalk Example 974

Smartphone Security 995

xvi Table of Contents

20 GAPI, the Game API

GAPI Initialization
Getting Display Information
Querying Button Information
Accessing the Buttons

Drawing to the Screen

Indirect Access to the Frame Buffer

GAPI Maintenance

Cleaning Up

The GAPIShow Example

patv Advanced Windows CE

21 Svstem Programmmg

The Windows CE Memory Archltecture
Writing Cross-Platform Windows CE Applications
Platforms and Operating System Versions
Compile-Time Versioning
Explicit Linking
Run-Time Version Checking
Power Management
Querying the Power State
Changing the Power State
The Power Manager

22 Device Drivers and Services

Basic Drivers
Driver Names
The Device Driver Load Process
Enumerating the Active Drivers
Reading and Writing Device Drivers
Writing a Windows CE Stream Device Driver
The Stream Driver Entry Points
Device Interface Classes
Device Driver Power Management

997

998

999
1000
1001
1001
1002
1003
1003
1004

1025

1025
1028
1028
1030
1032
1032
1033
1033
1036
1039

1045

1045
1046
1047
1050
1052
1054
1055
1065
1067

Chapter 1 Chapter Title xvii

Building a Device Driver 1070
Debug Zones 1070

The Generic Driver Example 1071
Asynchronous Driver 1/0 1079
Services 1084
Service Architecture 1085

The Life of a Service 1085
Application Control of a Service 1087

The Service DLL Entry Points 1089

The Service IOCTL Commands 1091
Super Service 1094
Services.exe Command Line 1098
TickSrv Example Service 1098

23 Programming the .NET Compact Framework 1113
It’'s Becoming a Managed World 1113
To .NET or Not to .NET 1114

A Brief Introduction to Managed Applications 1116
HelloCF 1117
Common Language Runtime Basics 1120

The Framework Class Library 1125
Windows Forms Applications 1126
A Basic Windows Forms Application 1127
Configuring a Top-Level Form 1133
Compact Framework Unique Classes 1134
Accessing the Underlying Operating System 1139
P/Invoke 1140
P/Invoke Arguments 1142

The IrSquirtCF Example ’ 1147

Index 1165

Acknowledgments

Books are produced by diverse teams of talented people. My name appears on
the cover, but countless others were involved in this book’s creation. The teams
of people who worked on this edition all pushed themselves to the max to
complete this revision.

First, there’s the talented team at Microsoft Press. Kathleen Atkins, the
project leader and editor of all three editions of this book, took my gnarled syn-
tax and confused text and made it readable. The technical editor for this edi-
tion, as well as the first edition of the book, was Jim Fuchs. Jim provided a great
sanity check for me as well as providing a huge amount of help in getting the
CD organized and produced. Shawn Peck performed the copyediting duties,
keeping the text within the rules of the English language. Dan Latimer per-
formed the desktop publishing duties, and Michael Kloepfer produced the illus-
trations. Thanks to Julie Hatley for the index. Anne Hamilton, who was the
acquisitions editor for both the second and third editions of the book, deserves
credit for getting these revisions released. Thanks, Anne, for all your efforts in
keeping this book up-to-date.

Thanks also to the various Microsoft development and marketing teams.
Over the years, they have tolerated my endless questions. Thanks to Mike
Thomson, Michael Malueg, and Andrew Pearson for answering questions and
reviewing chapters. Ori Amiga on the Pocket PC team provided all manner of
priceless assistance: answering questions, getting new builds, and even provid-
ing hardware. Thanks also to Dominique Fortier, who provided great assistance
on the Pocket PC, Bluetooth, and OBEX content in this edition. I had great sup-
port from the Compact Framework team from Craig Neable, Mark Gilbert, and
Kei Amos. A special thank-you goes to Jeana Jorgensen, who, across a variety
of jobs at Microsoft, has always tolerated my cries for help no matter the hour
or relevance to her job. Thanks to all of you. Your help made this book so
much better than it would have been without you.

I also need to acknowledge Tatia Meghdadi, John Doub, and the team at
Socket Communication, who provided Bluetooth hardware and software for
testing.

A special thanks goes to my agent, Claudette Moore, and the team at
Moore Literary Agency. Claudette handled all the business details, freeing me to
deal with the fun stuff.

xix

XX Acknowledgments

This edition of Programming Windows CE builds on the foundation of the
two earlier editions, so what you read is based on work from a much larger
team. In addition to the people already mentioned, other folks from Microsoft
Press have helped immensely in the editing and production of the earlier edi-
tions of the book. They include Brian Johnson, Julie Xiao, Rebecca McKay, Rob
Nance, Cheryl Penner, Elizabeth Hansford, and Michael Victor.

My personal support team is headed by my wife, Nancy. Thanks, Nancy,
for the support, help, and love. The personal support team also includes our
boys, Andy, Sam, and Jake. They make sure I always remember what is impor-
tant in life. I also must acknowledge my parents, Ronald and Jane Boling. They
are my role models.

Introduction

I've been working with Microsoft Windows CE for almost as long as it’s been in
existence. A Windows programmer for many years, I'm amazed by the number
of different, typically quite small, systems to which I can apply my Windows
programming experience. These Windows CE systems run the gamut from PC-
like mini-laptops to cellular phones to embedded devices buried deep in some
large piece of industrial equipment. The use of the Win32 API in Windows CE
enables tens of thousands of Windows programmers to write applications for
an entirely new class of systems. The subtle differences, however, make writing
Windows CE code somewhat different from writing for the desktop versions of
Windows. It’s those differences that I'll address in this book.

Just What Is Windows CE?

Windows CE is the smallest and arguably the most interesting of the Microsoft
Windows operating systems. Windows CE was designed from the ground up to
be a small ROM-based operating system with a Win32 subset API. Windows CE
extends the Windows API into the markets and machines that can’t support the
larger footprints of the Windows XP kernel.

The now-defunct Windows 95/98/Me line was a great operating system
for users who needed backward compatibility with MS-DOS and Windows 2.x
and 3.x programs. Although it had shortcomings, Windows Me succeeded
amazingly well at this difficult task. The Windows NT/2000/XP line, on the
other hand, is written for the enterprise. It sacrifices compatibility and size to
achieve its high level of reliability and robustness. Windows XP Home Edition
is a version of Windows XP built for the home user that does strive for compat-
ibility, but this is secondary to its primary goal of stability.

Windows CE isn’t backward compatible with MS-DOS or Windows. Nor is
it an all-powerful operating system designed for enterprise computing. Instead,
Windows CE is a lightweight, multithreaded operating system with an optional
graphical user interface. Its strength lies in its small size, its Win32 subset API,
and its multiplatform support.

Windows CE also forms the foundation for the initial version of the .NET
Compact Framework, a version of the .NET runtime for mobile and embedded
devices. The Compact Framework provides the same powerful .NET runtime envi-
ronment with a smaller class library so that it fits in small battery-powered devices.

xxi

xxii Introduction

A Little Windows CE History

To understand the history of Windows CE, you need to understand the differ-
ences between the operating system and the products that use it. The operating
system is developed by a core group of programmers inside Microsoft. Their
product is the operating system itself. Other groups, who develop devices such
as the Pocket PC, use the newest version of the operating system that's avail-
able at the time their product is to be released. This dichotomy has created
some confusion about how Windows CE has evolved. Let’'s examine the history
of each, the devices and the operating system itself. '

The Devices

The first products designed for Windows CE were handheld “organizer”
devices with 480-by-240 or 640-by-240 screens and chiclet keyboards. These
devices, dubbed Handheld PCs, were first introduced in late 1996. Fall Comdex
97 saw the release of a dramatically upgraded version of the operating system,
Windows CE 2.0, with newer hardware in a familiar form—this time the box
came with a 640-by-240 landscape screen, sometimes in color, and a somewhat
larger keyboard.

In January 1998 at the Consumer Electronics Show, Microsoft announced
two new platforms, the Palm-size PC and the Auto PC. The Palm-size PC was
aimed directly at the pen-based organizer market dominated by Palm OS-based
systems. The Palm-size PC featured a portrait mode and a 240-by-320 screen,
and it used stylus-based input. Unfortunately for Windows CE fans, the public
reception of the original Palm-size PC was less than enthusiastic.

Later that year, a new class of mini-laptop—style Windows CE machines
with touch-typable keyboards and VGA or Super VGA screens made their
appearance. These machines, called H/PC Professionals, provided 10 hours of
battery life combined with improved versions of Microsoft’s Pocket Office
applications. Many of these machines had built-in modems, and some even
diverged from the then-standard touch screen, sporting track pads or IBM’s
TrackPoint devices.

In April 2000, Microsoft introduced the Pocket PC, a greatly enhanced
version of the old Palm-size PC. The original Pocket PC used a prerelease of
the more full-featured Windows CE 3.0 operating system under the covers.
The user interface of the Pocket PC was also different, with a cleaner, 2D,
look and a revised home page, the Today screen. The most important feature
of the Pocket PC, however, was the greatly improved performance of Win-
dows CE. Much work had been done to tune Windows CE for better perfor-
mance. That improvement, coupled with faster CPUs, allowed the system to

Introduction xxiii

run with the zip expected from a pocket organizer. With the Pocket PC, the
inevitability of Moore’s Law enabled Windows CE devices to cross over the
line: the hardware at this point was now capable of providing the computing
power that Windows CE required.

The Handheld PC was updated in 2000 to use Windows CE 3.0. Although
these systems (now called the Handheld PC 2000) haven’t been a consumer
success, they have found a home in the industrial market, where their relative
low cost, large screens, and great battery life satisfy a unique niche market.

The Pocket PC was updated in late 2001 with a release named Pocket PC
2002. This release was based on the final released version of Windows CE 3.0
and contained some user interface improvements. An exciting development
was the addition of the Pocket PC Phone Edition, which integrated cellular
phone support into a Pocket PC device. These devices combined the function-
ality of a Pocket PC with the connectivity of a cellular phone, enabling a new
generation of mobile but always connected software.

Another group within Microsoft released the Smart Display, a Windows CE
NET 4.1-based system that integrated a tablet form factor device with wireless
networking and a base connected to a PC. When the Smart Display is in its base,
it's a second monitor; when removed, it becomes a mobile display for the PC.

In the spring of 2003, the Pocket PC team released an update of the Pocket
PC called the Pocket PC 2003. This system, while not providing much of a
change to the user interface, did provide a huge increase in stability and perfor-
mance because it was based on Windows CE .NET 4.2. The Pocket PC 2003 also
added integrated Bluetooth support for those OEMs that chose to include it.

Microsoft has also been working with OEMs to produce cellular phones
based on Windows CE. A smattering of these phones, called Smartphones, were

" released in late 2002 and were initially based on Windows CE 3.0. An upgrade
in 2003 moved the Smartphone to Windows CE 4.2 and increased the feature
set of the device to include the .NET runtime.

New devices are being introduced all the time. An example are the Media
to Go devices, which are mobile video players using a hard disk for storage.
The power of the Windows CE operating system enables applications that are
beyond the capability of systems with simpler operating systems to run on
these devices.

The Operating System

Although these consumer-oriented products made the news, more important
development work was going on in the operating system itself. The Windows
CE operating system has evolved from the days of 1.0, when it was a simple
organizer operating system with high hopes. Starting with Windows CE 2.0 and

XXiv

Introduction

continuing to this day, Microsoft has released embedded versions of Windows
CE that developers can use on their custom hardware. Although consumer plat-
forms such as the Pocket PC get most of the publicity, the improvements to the
base operating system are what enable devices such as the Pocket PC and the
Smartphone.

Windows CE 2.0 was released with the introduction of the Handheld PC
2.0 at Fall Comdex 1997. Windows CE 2.0 added networking support, including
Windows standard network functions, a Network Driver Interface Specification
(NDIS) miniport driver model, and a generic NE2000 network card driver.
Added COM support allowed scripting, although the support was limited to in-
proc servers. A display driver model was also introduced that allowed for pixel
depths other than the original 2-bits-per-pixel displays of Windows CE 1.0. Win-
dows CE 2.0 was also the first version of the operating system to be released
separately from a product such as the H/PC. Developers could purchase the
Windows CE Embedded Toolkit (ETK), which allowed them to customize Win-
dows CE to unique hardware platforms. Developers who used the ETK, how-
ever, soon found that the goal of the product exceeded its functionality.

With the release of the original Palm-size PC in early 1998, Windows CE
was improved yet again. Although Windows CE 2.01 wasn’t released in an ETK
form, it was notable for its effort to reduce the size of the operating system and
applications. In Windows CE 2.01, the C runtime library, which includes func-
tions such as strcpy to copy strings, was moved from a statically linked library
attached to each EXE and DLL into the operating system itself. This change dra-
matically reduced the size of both the operating system and the applications
themselves.

In August 1998, Microsoft introduced the H/PC Professional with a new
version of the operating system, 2.11. Windows CE 2.11 was a service pack
update to Windows CE 2.1, which was never formally released. Later in the
year, Windows CE 2.11 was released to the embedded community as Microsoft
Windows CE Platform Builder version 2.11. This release included support for an
improved object store that allowed files in the object store to be larger than 4
MB. This release also added support for a console and a Windows CE version
of CMD.exe, the classic MS-DOS-style command shell. Windows CE 2.11 also
included Fast IR to support IrDA’s 4-MB infrared standard, as well as some spe-
cialized functions for IP multicast. An initial hint of security was introduced in
Windows CE 2.11: a device could now-examine and reject the loading of unrec-
ognized modules.

Windows CE 2.12 was also a service pack release to the 2.1, or Birch,
release of Windows CE. The big news in this release was a greatly enhanced set
of Platform Builder tools that included a graphical front end. The operating sys-

Introduction XXV

tem was tweaked with a new notification interface that combined the disparate
notification functions. The notification user interface was exposed in the Plat-
form Builder to allow embedded developers to customize the notification dia-
log boxes. A version of Microsoft’s PC-based Internet Explorer 4.0 was also
ported to Windows CE as the Genie, or Generic IE control. This HTML browser
control complements the simpler but smaller Pocket Internet Explorer.
Microsoft Message Queue support was added as well. The “go/no go” security
of Windows CE 2.11 was enhanced to include a “go, but don’t trust” option.
Untrusted modules can run—Dbut not call—a set of critical functions, nor can
they modify parts of the registry.

The long-awaited Windows CE 3.0 was finally released in mid-2000. This
release followed the April release of the Pocket PC, which used a slightly earlier
internal build of Windows CE 3.0. The big news for Windows CE 3.0 was its
kernel, which was optimized for better real-time support. The enhanced kernel
support includes 256 thread priorities (up from 8 in earlier versions of Windows
CE), an adjustable thread quantum, nested interrupt service routines, and
reduced latencies within the kernel.

The improvements in Windows CE 3.0 didn’t stop at the kernel. A new
COM component was added to complement the in-proc COM support available
since Windows CE 2.0. This new component included full COM out-of-proc and
DCOM support. The object store was also improved to support up to 256 MB of
RAM. File size limits within the object store were increased to 32 MB per file. An
Add-On Pack for the Platform Builder 3.0 added even more features, including
improved multimedia support though a media player control; improved net-
working support (and XML support) with PPTP, ICS, and remote desktop dis-
play support; and a formal introduction of the DirectX API.

The next release of Windows CE involved more than just new features; the
name of the product was also changed. Windows CE .NET 4.0, released in early
2001, changed the way virtual memory was organized, effectively doubling the
virtual memory space per application. Windows CE .NET 4.0 also added a new
driver loading model, services support, a new file-based registry option, Blue-
tooth, 802.11, and 1394 support. Ironically, while .NET was added to the name,
Windows CE .NET 4.0 didn’t support the .NET Compact Framework.

Late in 2001, Windows CE 4.1 was a follow-on to Windows CE 4.0, adding
IP v6, Winsock 2, a bunch of new supporting applets, and an example Power
Manager. Windows CE 4.1 also supports the .NET Compact Framework. The
final bits of the .NET runtime were released as a quick fix engineering (QFE)
package after the operating system shipped.

The second quarter of 2003 saw the release of Windows CE .NET 4.2. This
update provided cool new features for OEMs wanting to support Pocket PC

XXvi Introduction

applications on embedded systems. The Pocket PC—specific APIs that support
menu bars, the soft input panel (SIP), and other shell features were moved to
the base operating system. The Explorer shell was rewritten to support
namespace extensions. The performance of the kernel was improved by
directly supporting hardware paging tables on some CPUs.

Because Windows CE is a work in progress, the next version of Windows
CE is being developed. I'll be updating my Web site, www.bolingconsulting.com,
with information about this release as it becomes available.

Why You Should Read This Book

Programming Microsoft Windows CE is written for anyone who will be writing
applications for Windows CE or the .NET Compact Framework. Embedded sys-
tems programmers using Windows CE for a specific application, Windows pro-
grammers interested in writing or porting an existing Windows application, and
even developers of managed code can use the information in this book to make
their tasks easier.

The embedded systems programmer, who might not be as familiar with the
Win32 API as the Windows programmer, can read the first section of the book to
become familiar with Windows programming. Although this section isn’t the
comprehensive tutorial that can be found in books such as Programming Win-
dows, by Charles Petzold, it does provide a base that will carry the reader
through the other chapters in the book. It can also help the embedded systems
programmer develop fairly complex and quite useful Windows CE programs.

The experienced Windows programmer can use the book to learn about
the differences among the Win32 APIs used by Windows CE and Windows XP.
The differences between Windows CE and Windows XP are significant. The
small footprint of Windows CE means that many of the overlapping APIs in the
Win32 model aren’t supported. Some sections of the Win32 API aren’t sup-
ported at all. On the other hand, because of its unique setting, Windows CE
extends the Win32 API in a number of areas that are covered in this text.

This book is also useful for the developer using the .NET Compact Frame-
work. The Compact Framework currently has gaps in its functionality: it
requires managed applications to make calls to the operating system to perform
certain tasks. The book is a great guide to what’s available in the operating sys-
tem. A chapter in this book discusses the unique nature of developing managed
code on Windows CE-based devices.

The method used by Programming Windows CE is to teach by example. |
wrote numerous Windows CE example programs specifically for this book. The
source for each of these examples is printed in the text. Both the source and the

Introduction XXVii

final compiled programs for a number of the processors supported by Windows
CE are also provided on the accompanying CD.

The examples in this book are all written directly to the API, the so-called
“Petzold” method of programming. Since the goal of this book is to teach you
how to write programs for Windows CE, the examples avoid using a class
library such as MFC, which obfuscates the unique nature of writing applications
for Windows CE. Some people would say that the availability of MFC on Win-
dows CE eliminates the need for direct knowledge of the Windows CE API. I
believe the opposite is true. Knowledge of the Windows CE API enables more
efficient use of MFC. I also believe that truly knowing the operating system also
dramatically simplifies the debugging of applications.

What’s New in the Third Edition

The third edition of this book is a major revision that adds significant new text
about a variety of subjects from the Smartphone to Bluetooth. The book has
been updated to cover the new features of Windows CE .NET 4.2. New chapters
have also been added to cover the Smartphone and the .NET Compact Frame-
work. A number of chapters have been significantly expanded to cover topics
such as OBEX, Bluetooth, and services. Other chapters have been reorganized
to better present the topics.

A chapter has been added covering the Smartphone and the communica-
tion features of the Pocket PC Phone Edition. This chapter covers how to write
applications for the Smartphone 2003 device. Also covered is how to write
applications that work with the connection manager and send and receive mes-
sages through the Short Message Service (SMS) system on both the Smartphone
and the Pocket PC Phone Edition.

There is a new chapter on the .NET Compact Framework. This chapter
covers how to write managed applications on Windows CE. After an introduc-
tion to managed applications, the chapter concentrates on Windows Forms
applications, the unique classes of the .NET Compact Framework. A significant
portion of the chapter covers how to call from managed code to unmanaged or
native code since there are times when the managed class library doesn’t pro-
vide the functionality necessary for the application.

The device-to-device communication chapter contains coverage on Blue-
tooth and OBEX. Bluetooth is a wireless communication standard that frankly
isn’t well explained in many texts. This chapter explains Bluetooth and pro-
vides a simple, straightforward example of its use. It also contains a section on
OBEX, the Object Exchange standard that’s used by both Bluetooth and Infra-
red Data Association (IrDA). Another example in the chapter uses OBEX to
send files to other devices over either Bluetooth or ItDA.

Xxviii

Introduction

The Pocket PC chapters have been updated to cover the new features of
the Pocket PC 2003 devices. The menu bar example from the Pocket PC chapter
in the second edition of this book has been moved to the common controls
chapter, reflecting the move of the Pocket PC API to the general operating sys-
tem features in the latest version of Windows CE.

The drivers and services chapter has been updated to cover Windows CE
services. Windows CE services were introduced in Windows CE .NET 4.0. Ser-
vices provide a way to have code running in the background without the over-
head of a separate process for the service. The operating system also provides
a super service that can monitor IP ports and notify a service when a client con-
nects to that port. A simple Windows CE service example is provided in the
chapter, demonstrating how to write a service and use the features of the super
service.

For those owners of the first edition of this book, this edition contains all
the new features of the second edition as well. Those updates included exten-
sive coverage of the Pocket PC and Windows CE device drivers. Also, the new
memory management and threading features that have been implemented since
the first edition was published make this edition a significant update.

.NET Compact Framework

A developer would have had to be on a desert island somewhere not to have
heard of Microsoft’s .NET initiative. This initiative consists of a run-time envi-
ronment that isolates code from the hardware while at the same time providing
a type-safe runtime for increased security. A smaller version of this runtime has
been written for embedded and battery powered devices. The initial version of
the .NET Compact Framework runs on top of Windows CE on the Pocket PC
and on embedded systems based on Windows CE .NET 4.1 and later.

The unique requirements of embedded devices will make it a challenge to
write applications using only managed code. Embedded applications and some
mobile applications require the application to be tightly integrated with the
device. Because one of the features of the runtime is to isolate the hardware from
the application, an embedded managed application sometimes needs to break
the bounds of the runtime and directly access some operating system functions.

As previously mentioned, the Compact Framework chapter spends a sig-
nificant amount of time discussing how managed applications can access the
operating system. This discussion includes the techniques for marshaling
parameters across the managed/native code boundary—a task that's somewhat
more difficult in the Compact Framework than on the desktop.

Introduction XXix

What About MFC?

I used to have a stock answer for people who asked me whether they should
use MFC to build Windows CE applications: Don’t do it! The old Windows CE
systems with their slow CPUs were hard-pressed to run complex, full-featured
MFC applications. These days, I'm a little less dogmatic. The newest Windows
CE platforms are now fast enough to allow MFC-based applications to run with
reasonable performance. The MFC runtime library is included in ROM on these
devices, so the footprint of the application is simply the code, not the code plus
the MFC runtime.

But just as speed and the runtime have been added to the platforms, the
sun is setting on MFC. Microsoft no longer pushes development of MFC appli-
cations. Instead, the .NET environment is the development target of choice. So
should you develop in MFC? I say no, not for new projects. For old ones, there
still is a place for MFC simply so that the projects don’t have to be ported to
other tools.

Windows CE Development Tools

This book is written with the assumption that the reader knows C and is at least
familiar with Microsoft Windows. All native code development was done with
Microsoft eMbedded Visual C++ under Windows XP. To compile the example
programs in this book, you need Microsoft eMbedded Visual C++ 4.0, which is
conveniently supplied on the companion CD. You also need the appropriate
platform SDKs for the Windows CE device you're targeting.

Each example already has a predefined project set up, but you can also
choose to create the projects from scratch. For almost all the examples, simply
create a generic WCE Application project. For the examples that require access
to functions unique to the Pocket PC, special code links to those functions, even
though the project settings don’t specifically define a Pocket PC application.

For developers who want to build applications that run on the Pocket PC
2000 and 2002, you need to use Embedded Visual C++ 3.0. Unfortunately, there
isn’t enough room on the companion CD for both eVC 3 and e€VC 4, but eVC 3 is
available as a download from the Microsoft Web site. You'll also need the appro-
priate SDKs for those older Pocket PC systems. Many of the examples in the
book can be compiled for the older Pocket PC devices. Some examples, how-
ever, such as the Bluetooth, OBEX, and services examples, use features that
aren’t available on the older systems.

XXX Introduction

.NET Compact Framework applications are developed with Visual Studio
NET 2003. This tool isn’t provided on the CD because it’s huge and, unfortu-
nately for us programmers, not free. Still, this tool is an incredibly productive
development environment. For those interested in developing managed code,
the pain of the cost of upgrading is mitigated by the increase in developer pro-
ductivity. You'll need Visual Studio .NET 2003 to compile the examples in the
Compact Framework chapter. This tool provides the necessary runtimes for all
Pocket PC devices as well as embedded versions of Windows CE based on ver-
sion 4.1 or later.

Target Systems

You don’t need to have a Windows CE target device to experience the sample
programs provided by this book. The various platform SDKs come with a Win-
dows CE emulator that lets you perform basic testing of a Windows CE program
under Windows XP. This emulator comes in handy when you don’t have an
actual device handy. The emulator runs a version of Windows CE inside a PC
emulator which results in an actual Windows CE operating system runtime exe-
cuting on the PC.

You should consider a number of factors when deciding which Windows
CE hardware to use for testing. First, if the application is to be a commercial
product, you should buy at least one system for each type of target CPU. You
need to test against all the target CPUs because, although the source code will
probably be identical, the resulting executable will be different in size and so
will the memory allocation footprint for each target CPU.

What’s on the CD

The companion CD contains the source code for all the examples in the book.
I've also provided project files for Microsoft eMbedded Visual C++ so that you can
open preconfigured projects. All the examples have been designed to compile for
systems based on Windows CE 4.2, Pocket PC 2003, and Smartphone 2003.

In addition to the examples, the CD also includes a free copy of
Microsoft eMbedded Visual C++ 4.0. This is the same full-featured eMbedded
Visual C++ product that you can download from Microsoft’'s Web site or pay
to have sent to you on CD. Consider these tools the prize in the Cracker Jack
box. Also included is the platform SDK for the Pocket PC 2003.

The companion CD contains a StartCD program that provides you with
a graphical interface from which you can access the contents of the CD. This

Introduction xxxi

program will autorun when the CD is inserted into your CD-ROM drive if you
have that feature enabled in Windows. If you don’t have autorun enabled, just
navigate to the root directory of the CD and run StartCD.exe from Windows
Explorer. The file Readme.txt, available from the StartCD program or in the
root directory of the CD, will give you additional information about the con-
tents of the CD, system requirements for the included tools and SDK, and
information about support options for the included products.

The following are the system requirements for installing and running
Microsoft eMbedded Visual C++. Please note that to run the eMbedded Visual
C++, you’ll need to be using Windows 2000, Windows XP, or Windows
Server 2003.

B PC with Pentium processor; Pentium 150 MHz or higher processor
recommended

M Microsoft Windows XP, Windows 2000 Service Pack 2 (or later) or
Windows Server 2003

B 32 MB of RAM (48 MB recommended)

B Hard disk space required: minimum installation: about 360 MB; com-
plete installation: about 720 MB

B CD-ROM drive compatible with multimedia PC specification
B VGA or higher-resolution monitor required; Super VGA recommended

B Microsoft Mouse or compatible pointing device

Other Sources

Although I have attempted to make Programming Microsoft Windows CE a one-
stop shop for Windows CE programming, no one book can cover everything.
To learn more about Windows programming in general, I suggest the classic
text Programming Windows (Microsoft Press, 1998) by Charles Petzold. This is,
by far, the best book for learning Windows programming. Charles presents
examples that show how to tackle difficult but common Windows problems. To
learn more about the Win32 kernel API, I suggest Jeff Richter’s Programming
Applications for Microsoft Windows (Microsoft Press, 1999). Jeff covers the tech-
niques of process, thread, and memory management down to the most minute
detail. For learning more about MFC programming, there’s no better text than
Jeff Prosise’s Programming Windows with MFC (Microsoft Press, 1999). This
book is the “Petzold” of MFC programming and simply a required read for MFC
programmers.

xxxii Introduction

To learn more about .NET programming, I recommend Programming Win-
dows with C# (Microsoft Press, 2002), by Charles Petzold. Charles has applied his
amazing skills to the Windows Forms part of the .NET Framework. This is a great
book to come up to speed on the client side of .NET programming.

Support

Every effort has been made to ensure the accuracy of this book and the contents
of the sample files on the CD-ROM. Microsoft Press provides corrections and
additional content for its books through the World Wide Web at this location:

http:/www.microsoft.com/mspress/support/

If you have problems, comments, or ideas regarding this book or the CD-
ROM, please send them to Microsoft Press.

Send e-mail to

mspinput@microsoft.com

Or send postal mail to

Microsoft Press

Attn: Programming Microsoft Windows CE, Third Edition, Editor

One Microsoft Way

Redmond, WA 98052-6399

Please note that product support is not offered through these mail
addresses. For further information regarding Microsoft software support
options, please go to http://support.microsoft.com/directory/ or call Microsoft
Support Network Sales at (800) 936-3500.

Visit the Microsoft Press Web Site

You are also invited to visit the Microsoft Press World Wide Web site at the fol-
lowing location:

bttp://www.microsoft.com/mspress/

Youll find descriptions for the complete line of Microsoft Press books,
information about ordering titles, notice of special features and events, addi-
tional content for Microsoft Press books, and much more.

You can also find out the latest in Microsoft Windows CE .NET software
developments and news from Microsoft Corporation by visiting the following
Web site:

http.//www.microsoft.com/windows/embedded//ce.net/

Introduction xxxiii

Updates and Feedback

No book about Windows CE can be completely current for any length of time.
I maintain a Web page, http://www.bolingconsulting.com/cebook.btm, where I'll
keep a list of errata, along with updates describing any features found in sub-
sequent versions of Windows CE. Check out this page to see information on
new versions of Windows CE as they’re released.

Although T have striven to make the information in this book as accurate
as possible, you’ll undoubtedly find errors. If you find a problem with the text
or just have ideas about how to make the next version of the book better,
please drop me a note at CEBook@bolingconsulting.com. 1 can’t promise you
that I'll answer all your notes, but I will read every one.

Doug Boling
Tahoe City, California
April 2003

e

s

o Wn

g

g
,.mw.mw

Hello Windows CE

Since the classic The C Programming Language, programming books tradition-
ally start with a “hello, world” program. It’s a logical place to begin. Every pro-
gram has a basic underlying structure that, when not obscured by some
complex task it was designed to perform, can be analyzed to reveal the foun-
dation shared by all programs running on its operating system.

In this programming book, the “hello, world” chapter covers the details of
setting up and using the programming environment. The environment for
developing Microsoft Windows CE applications is somewhat different from that
for developing standard Microsoft Windows applications because Windows CE
programs are written on PCs running Microsoft Windows XP and debugged
mainly on separate Windows CE-based target devices.

While experienced Windows programmers might be tempted to skip this
chapter and move on to meatier subjects, I suggest that they—you—at least
skim the chapter to note the differences between a standard Windows program
and a Windows CE program. A number of subtle and significant differences in
both the development process and the basic program skeleton for Windows CE
applications are covered in this first chapter.

What Is Different About Windows GE

Windows CE has a number of unique characteristics that make it different from
other Windows platforms. First of all, the systems running Windows CE are
most likely not using an Intel x86—compatible microprocessor. Instead, Win-
dows CE runs on 4 different CPU families, SHx, MIPS, ARM, and x86. Fortu-
nately, the development environment isolates the programmer from almost all
of the differences among the various CPUs.

4

Part |

Windows Programming Basics

Nor can a Windows CE program be assured of a screen or a keyboard.
Pocket PC devices have a 240-by-320-pixel portrait-style screen, while other
systems might have screens with more traditional landscape orientations in
480-by-240, 640-by-240, or 640-by-480-pixel resolution. An embedded device
might not have a display at all. The target devices might not support color. And,
instead of a mouse, most Windows CE devices have a touch screen. On a
touch-screen device, left mouse button clicks are achieved by means of a tap on
the screen, but no obvious method exists for delivering right mouse button
clicks. To give you some method of delivering a right click, the Windows CE
convention is to hold down the Alt key while tapping. It’s up to the Windows
CE application to interpret this sequence as a right mouse click.

Fewer Resources in Windows CE Devices

Unicode

The resources of the target devices vary radically across systems that run Windows
CE. When writing a standard Windows program, the programmer can make a
number of assumptions about the target device, almost always an IBM-compatible
PC. The target device will have a hard disk for mass storage and a virtual memory

system that uses the hard disk as a swap device to emulate an almost unlimited

amount of (virtual) RAM. The programmer knows that the user has a keyboard, a
two-button mouse, and a monitor that these days almost assuredly supports 256
colors and a screen resolution of at least 800 by 600 pixels.

Windows CE programs run on devices that almost never have hard disks
for mass storage. The absence of a hard disk means more than just not having
a place to store large files. Without a hard disk, virtual RAM can’t be created by
swapping data to the disk. So Windows CE programs are almost always run in
a low-memory environment. Memory allocations can, and often do, fail because
of the lack of resources. Windows CE might terminate a program automatically
when free memory reaches a critically low level. This RAM limitation has a sur-
prisingly large impact on Windows CE programs and is one of the main chal-
lenges involved in porting existing Windows applications to Windows CE.

One characteristic that a programmer can count on when writing Windows CE
applications is Unicode. Unicode is a standard for representing a character as a
16-bit value as opposed to the ASCII standard of encoding a character into a
single 8-bit value. Unicode allows for fairly simple porting of programs to dif-
ferent international markets because all the world’s known characters can be
represented in one of the 65,536 available Unicode values. Dealing with Uni-
code is relatively painless as long as you avoid the dual assumptions made by

Chapter 1 Hello Windows CE 5

most programmers that strings are represented in ASCII and that characters are
stored in single bytes.

A consequence of a program using Unicode is that with each character
taking up two bytes instead of one, strings are now twice as long. A program-
mer must be careful making assumptions about buffer length and string length.
No longer should you assume that a 260-byte buffer can hold 259 characters
and a terminating zero. Instead of the standard char data type, you should use
the TCHAR data type. TCHAR is defined to be char for Microsoft Windows 95
and Microsoft Windows 98 development and unsigned short for Unicode-
enabled applications for Microsoft Windows 2000, Windows XP, and Windows
CE development. These types of definitions allow source-level compatibility
across ASCII- and Unicode-based operating systems.

New Controls

Windows CE includes a number of new Windows controls designed for specific
environments. New controls include the command bar and menu bar controls
that provide menu- and toolbar-like functions all on one space-saving line, crit-
ical on the smaller screens of Windows CE devices. Other controls have been
enhanced for Windows CE. A version of the edit control in Windows CE can be
set to automatically capitalize the first letter of a word, great for the keyboard-
less design of a PDA. Windows CE also supports most of the controls available
on desktop versions of Windows. Some of these controls are even more at
home on Windows CE devices than on the desktop. For example, the date and
time picker control and calendar control assist calendar and organizer applica-
tions suitable for handheld devices, such as the Handheld PC (H/PC) and the
Pocket PC. Other standard Windows controls have reduced function, reflecting
the compact nature of Windows CE hardware-specific OS configurations.

Componentization

Another aspect of Windows CE programming to be aware of is that Windows
CE can be broken up and reconfigured by Microsoft or by OEMs so that it can
be better adapted to a target market or device. Windows programmers usually
just check the version of Windows to see whether it is from the Microsoft Win-
dows 95, 98, or Me line or Windows 2000, XP line; by knowing the version they
can determine what API functions are available to them. Windows CE, however,
can be configured in countless ways.

By far, the most popular configuration of Windows CE today is the Pocket
PC. Microsoft defines the specific set of Windows CE components that are
present in all Pocket PC-branded devices. However, some OEMs produce PDA

6

Part |

Windows Programming Basics

devices that use Windows CE but are not branded as Pocket PCs. These devices
have a subtly different API from that of the Pocket PC devices. If you are
unaware of this, you can easily write a program that works on one platform but
not on another. In embedded platforms, the OEM decides the components to
include and can create a Software Development Kit (an SDK) specialized for its
specific platform. If the OEM is interested in third-party development, it can
make available a customized SDK for its device. New platforms are continually
being released, with much in common but also with many differences among
them. Programmers need to understand the target platform and to have their
programs check what functions are available on that particular platform before
trying to use a set of functions that might not be supported on that device.

Win32 Subset

Finally, because Windows CE is so much smaller than Windows XP, it simply
can’t support all the function calls that its larger cousins do. While you'd expect
an operating system that didn’t support printing, such as Windows CE on the
original models, not to have any calls to printing functions, Windows CE also
removes some redundant functions supported by its larger cousins. If Windows
CE doesn’t support your favorite function, a different function or set of func-
tions will probably work just as well. Sometimes Windows CE programming
seems to consist mainly of figuring out ways to implement a feature using the
sparse API of Windows CE. If thousands of functions can be called sparse.

It’s Still Windows Programming

While differences between Windows CE and the other versions of Windows do
exist, they shouldn’t be overstated. Programming a Windows CE application is
programming a Windows application. It has the same message loop, the same
windows, and for the most part, the same resources and the same controls. The
differences don’t hide the similarities. One of the key similarities is the tradition
of Hungarian notation.

Hungarian Notation

A tradition, and a good one, of almost all Windows programs since Charles Pet-
zold wrote Programming Microsoft Windows is Hungarian notation. This pro-
gramming style, developed years ago by Charles Simonyi at Microsoft, prefixes
all variables in the program usually with one or two letters indicating the variable

Chapter 1 Hello Windows CE 7

type. For example, a string array named Name would instead be named
szName, with the sz prefix indicating that the variable type is a zero-terminated
string. The value of Hungarian notation is the dramatic improvement in readabil-
ity of the source code. Another programmer, or you after not looking at a piece
of code for a while, won’t have to look repeatedly at a variable’s declaration to
determine its type. Table 1-1 shows typical Hungarian prefixes for variables.

Table 1-1 Hungarian Prefixes for Variables

Variable Type Hungarian Prefix
Integer iorn
Word (16-bit) wors
Double word (32-bit unsigned) Dw
Long (32-bit signed) L
Char

String Sz
Pointer P
Long pointer ip
Handle b
Window handle buwnd
Struct size cb

You can see a few vestiges of the early days of Windows. The /p, or long
pointer, designation refers to the days when, in the Intel 16-bit programming
model, pointers were either short (a 16-bit offset) or long (a segment plus an
offset). Other prefixes are formed from the abbreviation of the type. For exam-
ple, a handle to a brush is typically specified as hbr. Prefixes can be combined,
as in [psz, which designates a long pointer to a zero-terminated string. Most of
the structures defined in the Windows API use Hungarian notation in their field
names. I use this notation as well throughout this book, and I encourage you to
use this notation in your programs.

Your First Windows GE Application

Enough talk; let’s look at your first Windows CE program. Listing 1-1 shows
Hello1, a simple Hello World application written for Windows CE.

8 Part] Windows Programming Basics

Hello1.cpp

/1= = :
~// Hellol - A simple application for Windows CE

/1 :

// Written for the book Programming Windows CE

// Copyright (C) 2003 Douglas Boling

/1

#include "windows.h"

//

// Program.entry point

1/

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPWSTR 1pCmdLine, int nCmdShow) {

printf ("Hello World\n");
return 0;
}

Listing 1-1 Hello1, A simple Windows application

As you can see, aside from the entry point of the program, the code looks
fairly similar to the classic Kernighan and Ritchie version. Starting from just
below the comments, we have the line

f#include "windows.h"

which is the root of a vast array of include files that define the Windows CE API,
as well as the structures and constants they use.

The entry point of the program is the biggest difference between this pro-
gram and a standard C program. Instead of the C standard

int main (char ##argv, int argc)
the Windows CE build environment expects the standard Windows entry
point,1 as in

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPWSTR TpCmdLine, int nCmdShow);

Windows CE differs in some ways from the desktop versions of Windows.
The first of the four parameters passed, hInstance, identifies the specific
instance of the program to other applications and to Windows API functions
that need to identify the EXE. The hPrevinstance parameter is left over from the

1. While it is technically possible to change the entry point prototype to match the C standard entry
point, it typically isn’t worth the trouble.

Chapter 1 Hello Windows CE 9

old Win16 API (Windows 3.1 and earlier). In all Win32 operating systems,
including Windows CE, hPrevinstance is always 0 and can be ignored.

The IpCmdLine parameter points to a Unicode string that contains the text
of the command line. Applications launched from Microsoft Windows Explorer
usually have no command-line parameters. But in some instances, such as
when the system automatically launches a program, the system includes a com-
mand-line parameter to indicate why the program was started. The lpCmdLine
parameter provides us with one of the first instances in which Windows CE dif-
fers from Windows XP. Under Windows CE, the command-line string is a Uni-
code string. In all other versions of Windows, the string is always ASCIL.

The final parameter, nCmdShow, specifies the initial state of the program’s
main window. It is passed by the parent application, usually Explorer, and is a
recommendation of how the application should configure its main window.
This parameter might specify that the window be initially displayed as an icon
(SW_SHOWMINIMIZE), maximized (SW_SHOWMAXIMIZED) to cover the entire
desktop, or normal (SW_RESTORE), indicating that the window is placed on the
screen in the standard resizeable state. Other values specify that the initial state
of the window should be invisible to the user or that the window should be vis-
ible but incapable of becoming the active window. Under Windows CE, the val-
ues for this parameter are limited to only three allowable states: normal
(SW_SHOW), hidden (SW_HIDE), and show without activate
(SW_SHOWNOACTIVATE). Unless an application needs to force its window to a
predefined state, this parameter is simply passed without modification to the
ShowWindow function after the program’s main window has been created.

The next line is the only functioning line of the application.

printf ("Hello World\n");

Windows CE supports most of the standard C library, including printf, get-
char, and so forth. An interesting aspect of this line is that unlike almost every-
where else in Windows CE, the string is not Unicode but ANSI. There is a
logical reason for this. For the C standard library to be compliant with the ANSI
standard, printf and the other string library functions such as strcpy use ANSI
strings. Of course, Windows CE supports the Unicode versions of the standard
functions such as wprintf, getwchar, and wcscpy.

Finally the program ends with

return 0;

The value passed in the return line is available to other processes that use
the Win32 API GetExitCodeProcess.

10

Part |

Windows Programming Basics

Building Your First Application

To create Hellol from scratch on your system, start Microsoft eMbedded Visual
C++ and create a new project by selecting the New command on the File menu.
The first change from standard Win32 programming becomes evident when you
see the new project dialog box. You’ll have the opportunity to select from a
number of platforms, as shown in Figure 1-1. For non-MFC or ATL projects, the
chief decision is to choose between WCE Pocket PC Application (to build code
for a Pocket PC) and WCE Application (for all other Windows CE systems).
You’ll also pick the allowable target CPUs. For example, selecting Win32 (WCE
MIPID enables compiling to a Windows CE platform with a MIPS CPU. No matter
what target device you have, be sure to check the WCE emulator target. This
allows you to run the sample program in the emulator under Windows XP.

Files - Projects] Workspaces i

"8]WCE Application Project hame:
»ﬁ WCE ATL COM Appwizard iHeIIo‘I
%) WCE Dynamic-Link Library .
= WCE MFC ActiveX Contio/izard Logation:
59 WCE MFC Appwizard (di) |o:_examplesiHellol _j
fats WCE MFC Appwizard (exe) . .
%] WCE Static Library & Create new workipace

£ did i nent wotbspace

T Deperideney of

] e 1
CPUs: ;

[1Win32 [WCE ARMV4) ~

(win32 [(wWCE ARMV4I) |

[Jefin32 [4/CE ARMYAT] b
[]win32 [WCE MIPSI)

- {win32 (WCE SH3) =

Carcel |

Figure 1-1 The Platforms list box allows eMbedded Visual C++ to target
different Windows CE platforms

eMbedded Visual C++ will next ask you whether you want to create an
empty project, a simple program, or a Hello World application. For all the
examples in this book, pick Empty Project. This choice prevents the code wiz-
ards from adding any extra code to the examples. Create new files for
Hellol.cpp from the File menu by clicking New.

After you have created the proper source files for Hellol or copied them
from the CD, select the target Win32 (WCE x86em) Debug and then build the
program. This step compiles the source and, assuming you have no compilation
errors, automatically launches the emulator and inserts the EXE into the emula-
tor file system; you can then launch Hellol. If you're running Windows 98 or

Chapter 1 Hello Windows CE 1

Windows Me, the system displays an error message because the emulator runs
only under Windows 2000 or Windows XP.

If you have a Windows CE system available, such as a Pocket PC (PPC),
attach the PPC to the PC the same way you would to sync the contents of the
PPC with the PC. Open Microsoft ActiveSync, and establish a connection
between the PPC and the PC. While it’s not strictly necessary to have the Active-
Sync connection to your Windows CE device running (eMbedded Visual C++ is
supposed to make this connection automatically), I've found that having it run-
ning makes for a more stable connection between the development environ-
ment and the Windows CE system.

Once the link between the PC and the Windows CE device is up and run-
ning, switch back to eMbedded Visual C++, select the compile target appropri-
ate for the target device (for example, Win32 [WCE ARM] Debug for an iPaq
Pocket PC), and rebuild. As in the case of building for the emulator, if there are
no errors, eMbedded Visual C++ automatically downloads the compiled pro-
gram to the remote device. The program is placed either in the root directory of
the object store or, in the case of the Pocket PC, in the \windows\start menu
directory.

Running the Program

To run Hellol on an embedded Windows CE deviceH/PC, simply click on the
My ComputerHandheld PC icon to bring up the files in the root directory. At
that point, a double-tap on the application’s icon launches the program.

To run the program on a Pocket PC, simply select the program from the
Start menu on the device. The program appears there because eMbedded Visual
C++ downloads the application to be the \windows\start menu directory. This
way, a downloaded application is automatically visible on the Start menu.

What’s Wrong?

If you start Hello1 by clicking on the icon or by selecting the program on the
start menu of a Pocket PC, nothing seems to happen. On a Handheld PC, the
program appears to make the screen flash. This is because the program starts,
writes to the console, and terminates. Unless you start the program from an
already created console, Windows CE creates the console window when Hellol
executes the printf statement and closes the console automatically when Hello1
terminates.

On a Pocket PC, the application runs, but the Pocket PC doesn’t come
with support to display the console functions such as the output from printf. It's
possible to add console support to a Pocket PC by adding a driver, console.dll,
to the Windows directory of the Pocket PC. That driver must be written to take

12 Part |

Hello2

Windows Programming Basics

input from the driver interface, create a window on the screen, and print out
the strings. The console driver available on Handheld PCs and in embedded
versions of Windows CE does this.

Now that we have the basics down, it’s time to upgrade Hellol to something
you can at least see. Because many Windows CE systems don’t have the con-
sole driver, Hello2 creates a message box with the “Hello CE” text instead of
using printf. Hello2 is shown in Listing 1-2.

Hello2.cpp
== c
“// Hello2 - A sxmpTe app11cat1on for N1ndows CE/
e '

o Wr1tten for the book Programm'ing deows CE S
It Copyr1ght (C) 2@03 Doug]as Bo11ng :

: 11
fHinclude "windows.h"' :

/1

- // ‘Program entry po1nt

e) : ;
mt WINAPI w1nMa1n (HINSTANCE hInstance, HINSTANCE hPrevInstance,
. ‘LPWSTR 1pCmdL1ne, int nCmdShow) € &

i MessageBox (NULL, TEXT ("He]Io World™), TEXT ("Hell02"), MB;OK); st
L return UH :

v ‘

Listing 1-2 Hello2, a simple Windows application using the Message-
Box function

When you compile and run Hello2, you should see a small window like
the one shown in Figure 1-2.

Figure 1-2 Hello2 running on a Windows CE desktop

Chapter 1 Hello Windows CE 13

The MessageBox function that replaces printf provides two features for
Hello2. First and most obvious, it creates a window and places the “Hello
World” text in the window. The second feature is that the MessageBox function
doesn’t return until the user closes the message box window. This feature
allows Hello2 to keep running until the user dismisses the window.

The MessageBox function is prototyped as

int MessageBox (HWND hWnd, LPCTSTR 1pText, LPCTSTR 1pCaption, UINT uType);

The first parameter of MessageBox is the handle to the top-level window that
will be the parent of the message box when it is displayed. For now, we can
leave this parameter NULL because Hello2 doesn’t have any other windows.
The second parameter is the text that appears in the window. Notice that the
string passed is couched in the TEXT macro, ensuring that it will be compiled as
Unicode. The third parameter, [pCaption, is the text that will appear in the title
bar of the window. The last parameter, #T)pe, is a series of flags that specify
how the message box appears on the screen. The flags specify the number and
type of buttons on the message box; the icon, if any, on the message box; and
the settings of style flags for the message box window.
The flags listed in Table 1-2 are valid under Windows CE.

Table 1-2 Default Flags

Flags Button or Icon

For Buttons:

MB_OK OK

MB_OKCANCEL OK and Cancel
MB_RETRYCANCEL Retry and Cancel
MB_YESNO Yes and No
MB_YESNOCANCEL Yes, No, and Cancel
MB_ABORTRETRYIGNORE Abort, Retry, and Ignore
For Icons:

MB_ICONEXCLAMATION, MB_ICONWARNING Exclamation point
MB_ICONINFORMATION, MB_ICONASTERISK Lower case i within a circle
MB_ICONQUESTION Question mark
MB_YESNO ‘ Yes and No
MB_ICONSTOP, MB_ICONERROR, MB_ICONHAND Stop sign
MB_DEFBUITTON1 First button
MB_DEFBUTTON2 Second button
MB_DEFBUTTON3 Third button

(continued)

14 Part] Windows Programming Basics

Table 1-2 Default Flags (continued)

Flags Button or Icon

For Window Styles:

MB_SETFOREGROUND Bring the message box to the
foreground.

MB_TOPMOST Make the message box the top-

most window.

The return value from MessageBox indicates the button pressed by the
user. The return values are as follows:

IDOK OK button pressed

IDYES Yes button pressed

IDNO No button pressed

IDCANCEL Cancel button pressed or Esc key pressed
IDABORT Abort button pressed

IDRETRY Retry button pressed

IDIGNORE Ignore button pressed

MessageBox is a handy function to have an application display a simple
but informative dialog box.

One gotcha to look out for here: If you're debugging and recompiling the
program, it can’t be downloaded again if an earlier version of the program is
still running on the target system. That is, make sure Hello2 isn’t running on the
remote system when you start a new build in eMbedded Visual C++, or the
autodownload part of the compile process will fail. If this happens, close the
application and choose the Update Remote File menu command in eMbedded
Visual C++ to download the newly compiled file.

Hello2 displays a simple window, but that window is only as configurable
as the MessageBox function allows. How about showing a window that is com-
pletely configurable by the application? Before we can do that, a quick review
of how a Windows application really works is in order.

Chapter 1 Hello Windows CE 15

Anatomy of a Windows-Based Application

Windows-based programming is far different from MS-DOS—based or Unix-
based programming. An MS-DOS or Unix program uses getc- and putc-style
functions to read characters from the keyboard and write them to the screen
whenever the program needs to do so. This is the classic “pull” style used by
MS-DOS and Unix programs, which are procedural. A Windows program, on
the other hand, uses a “push” model, in which the program must be written to
react to notifications from the operating system that a key has been pressed or
a command has been received to repaint the screen.

Windows applications don’t ask for input from the operating system; the
operating system notifies the application that input has occurred. The operating
system achieves these notifications by sending messages to an application win-
dow. All windows are specific instances of a window class. Before we go any
further, let’s be sure we understand these terms.

The Window Class

A window is a region on the screen, rectangular in all but the most contrived of
cases, that has a few basic parameters, such as position—zx, ¥, and 2z (a window
is over or under other windows on the screen)—visibility, and hierarchy—the
window fits into a parent/child window relationship on the system desktop,
which also happens to be a window.

Every window created is a specific instance of a window class. A window
class is a template that defines a number of attributes common to all the win-
dows of that class. In other words, windows of the same class have the same
attributes. The most important of the shared attributes is the window procedure.

The Window Procedure

The behavior of all windows belonging to a class is defined by the code in its
window procedure for that class. The window procedure handles all notifica-
tions and requests sent to the window. These notifications are sent either by the
operating system, indicating that an event has occurred to which the window
must respond, or by other windows querying the window for information.

16 Part1 Windows Programming Basics

These notifications are sent in the form of messages. A message is nothing
more than a call being made to a window procedure, with a parameter indicat-
ing the nature of the notification or request. Messages are sent for events such
as a window being moved or resized or to indicate a key press. The values used
to indicate messages are defined by Windows. Applications use predefined
constants, such as WM_CREATE and WM_MOVE, when referring to messages.
Since hundreds of messages can be sent, Windows conveniently provides a
default processing function to which a message can be passed when no special
processing is necessary by the window class for that message.

The Life of a Message

Stepping back for a moment, let’s look at how Windows coordinates all of the
messages going to all of the windows in a system. Windows monitors all the
sources of input to the system, such as the keyboard, mouse, touch screen, and
any other hardware that could produce an event that might interest a window.
As an event occurs, a message is composed and directed to a specific window.
Instead of Windows directly calling the window procedure, the system imposes
an intermediate step. The message is placed in a message queue for the appli-
cation that owns the window. When the application is prepared to receive the
message, it pulls it out of the queue and tells Windows to dispatch that message
to the proper window in the application.

If it seems to you that a number of indirections are involved in that pro-
cess, you're right. Let’s break it down.

1. An event occurs, so a message is composed by Windows and placed
in a message queue for the application that owns the destination
window. In Windows CE, as in Windows XP, each application has its
own unique message queue.! (This is a break from Windows 3.1 and
earlier versions of Windows, where there was only one, systemwide,
message queue.) Events can occur, and therefore messages can be
composed, faster than an application can process them. The queue
allows an application to process messages at its own rate, although
the application had better be responsive or the user will see a jerki-
ness in the application. The message queue also allows Windows to
set a notification in motion and continue with other tasks without
having to be limited by the responsiveness of the application to
which the message is being sent.

1. Technically, each thread in a Windows CE application can have a message queue. I'll talk about
threads later in the book.

Hello3

Chapter 1 Hello Windows CE 17

2. The application removes the message from its message queue and
calls Windows back to dispatch the message. While it may seem
strange that the application gets a message from the queue and then
simply calls Windows back to process the message, there’s a method
to this madness. Having the application pull the message from the
queue allows it to preprocess the message before it asks Windows to
dispatch the message to the appropriate window. In a number of
cases, the application might call different functions in Windows to
process specific kinds of messages.

3. Windows dispatches the message; that is, it calls the appropriate
window procedure. Instead of having the application directly call the
window procedure, another level of indirection occurs, allowing
Windows to coordinate the call to the window procedure with other
events in the system. The message doesn’t stand in another queue at
this point, but Windows might need to make some preparations
before calling the window procedure. In any case, the scheme
relieves the application of the obligation to determine the proper
destination window—Windows does this instead.

4. The window procedure processes the message. All window proce-
dures have the same calling parameters: the handle of the specific
window instance being called, the message, and two generic param-
eters that contain data specific to each message type. The window
handle differentiates each instance of a window for the window pro-
cedure. The message parameter, of course, indicates the event that
the window must react to. The two generic parameters contain data
specific to the message being sent. For example, in a WM_MOVE
message indicating that the window is about to be moved, one of the
generic parameters points to a structure containing the new coordi-
nates of the window.

Enough review. It’s time to jump into a full-fledged Windows application,
Hello3. While the entire program files for this and all examples in the book
are available in the companion CD-ROM, I suggest that, as in the earlier exam-
ple, you avoid simply loading the project file from the CD and instead type in
the entire example by hand. By performing this somewhat tedious task, you’ll
see the differences in the development process as well as the subtle program

18 Part| Windows Programming Basics

differences between standard Win32 programs and Windows CE programs.
Listing 1-3 contains the complete source code for Hello3.

’Heuo3cpp
1/
/1 He11o3 - A-simple app11cat1on for Windows CE
1/

// Written for the book Programming Wind<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>