

Microsoft®
Core Reference

Third Edition

PROGRAM MI NG,,M I CROSOFT®

WINDC>WS CE
.NET

Douglas Boling

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2003 by Douglas Boling

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Boling, Douglas McConnaughey, 1960-

Programming Microsoft Windows CE .NET I Douglas Boling.--3rd ed.
p. cm.

Includes index.
ISBN 0-7356-1884-4
1. Microsoft Windows (Computer file) 2. Operating systems (Computers) 3. Microsoft

.NET. I. Title.

QA76.76.063B625 2003
005.4'469--dc21

Printed and bound in the United States of America.

2 3 4 5 6 7 8 9 QWT 8 7 6 5 4 3

Distributed in Canada by H.B. Fenn and Company Ltd.

2003042205

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send
comments to mspinput@microsoft.com.

ActiveSync, ActiveX, Developer Studio, DirectX, Microsoft, Microsoft Press, MS-DOS, Visual Basic,
Visual C++, Visual C#, Visual Studio, Win32, Windows, Windows NT, and Windows Server are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company, organization,
product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Acquisitions Editor: Anne Hamilton
Project Editor: Kathleen Atkins
Technical Editor: Jim Fuchs
Interior Graphic Designer: James D. Kramer
Principal Compositor: Dan Latimer

Body Part No. X09-39008

Interior Artist: Michael Kloepfer
Proofreader: nSight, Inc.
Indexer: Julie Hatley
Cover Designer: Methodologie, Inc.

To Nancy Jane

Part I
1
2
3
4
5
6

Part II
7
8
9

10
11

Part Ill
12
13
14
15

Part IV
16
17
18
19
20

PartV
21
22
23

t nts
ndows

Hello Windows CE

t

Drawing on the Screen

I

Input: Keyboard, Mouse, and Touch Screen
Windows, Controls, and Menus
Common Controls and Windows CE
Dialog Boxes and Property Sheets

Windows CE Programming
Memory Management
Files and the Registry
Windows CE Databases
Modules, Processes, and Threads
Notifications

Serial Communications
Windows CE Networking
Device-to-Device Communication
Connecting to the Desktop

The Explorer Shell
Programming the Pocket PC
Extending the Pocket PC
Programming the Smartphone
GAPI, the Game API

Advanced Windows CE
System Programming
Device Drivers and Services
Programming the .NET Compact Framework

c
3

39
91

129
205
297

357
385
439
489
557

585
615
637
747

799
831
875
929
997

1025
1045
1113

v

I
Acknowledgments xix

Introduction xxi

Part I

1 Hello Windows CE 3
What Is Different About Windows CE 3

Fewer Resources in Windows CE Devices 4

Unicode 4

New Controls 5
Componentization 5

Win32 Subset 6
It's Still Windows Programming 6

Hungarian Notation 6
Your First Windows CE Application 7

Building Your First Application 10
Running the Program 11

What's Wrong? 11

Hello2 12

Anatomy of a Windows-Based Application 15

The Window Class 15
The Window Procedure 15

The Life of a Message 16

Hello3 17

Registering the Window Class 20
Creating the Window 22
The Message Loop 23

The Window Procedure 24

HelloCE 28
The Code 29

Running HelloCE 36

vii

viii Table of Contents

2 Drawing on the Screen 39
Painting Basics 40

Valid and Invalid Regions 40
Device Contexts 41

Writing Text 43
Device Context Attributes 44
The TextDemo Example Program 46
Fonts 52
The Fontlist Example Program 58

Bitmaps 66
Device-Dependent Bitmaps 67
Device-Independent Bitmaps 68
DIB Sections 68
Drawing Bitmaps 71

Lines and Shapes 74
Lines 74
Shapes 77
Fill Functions 80
The Shapes Example Program 82

3 Input: Keyboard, Mouse, and Touch Screen 91
The Keyboard 91

Input Focus 92
Keyboard Messages 92
Keyboard Functions 98
The KeyTrac Example Program 100

The Mouse and the Touch Screen 109
Mouse Messages 109
Working with the Touch Screen 110
The TicTac1 Example Program 118

4 Windows, Controls, and Menus 129
Child Windows 129
Window Management Functions 130

Enumerating Windows 131
Finding a Window 131
Editing the Window Structure Values 132

Table of Contents ix

Windows Controls 135
Button Controls 137
The Edit Control 140
The List Box Control 141
The Combo Box Control 141
Static Controls 142
The Scroll Bar Control 143
The CtlView Example Program 147

Menus 179
Handling Menu Commands 181

Resources 181
Resource Scripts 182
Icons 184
Accelerators 185
Bitmaps 186
Strings 186

The DOIView Example Program 187

5 Common Controls and Windows CE 205
Programming Common Controls 206
The Common Controls 208

The Command Bar 209
The CmdBar Example 221
Command Bands 236
The CmdBand Example 246
The Menu Bar 260
The MenuBar Example 269
The Month Calendar Control 286
The Date and Time Picker Control 289
The List View Control 292
The CapEdit Control 294

Other Common Controls 295
Unsupported Common Controls 296

6 Dialog Boxes and Property Sheets 297
Dialog Boxes 298

Dialog Box Resource Templates 298

x Table of Contents

Creating a Dialog Box 302
Dialog Box Procedures 303
Modeless Dialog Boxes 307
Property Sheets 308
Common Dialogs 314

The DlgDemo Example Program 316

Part II

7 Memory Management 357
Memory Basics 357

About RAM 358
About ROM 358
About Virtual Memory 359
An Application's Address Space 362

The Different Kinds of Memory Allocation 364
Virtual Memory 365
Heaps 371
The Local Heap 372
Separate Heaps 373
The Stack 375
Static Data 376
String Resources 379
Selecting the Proper Memory Type 379
Managing Low-Memory Conditions 380

8 Files and the Registry 385
The Windows CE File System 386

The Object Store vs. Other Storage Media 387
Standard File 1/0 387
The FileView Sample Program 396
Memory-Mapped Files and Objects 406
Navigating the File System 408

The Registry 415
Registry Organization 416
The Registry API 417
The RegView Example Program 421

9 Windows CE Databases
Databases

Basic Definitions
The Database API
The Album DB Example Program

1 O Modules, Processes, and Threads
Modules
Processes

Creating a Process
Terminating a Process
Other Processes

Threads
The System Scheduler
Creating a Thread
Setting and Querying Thread Priority
Setting a Thread's Time Quantum
Suspending and Resuming a Thread

Fibers
Thread Local Storage
Synchronization

Events
Waiting ...
Semaphores
Mutexes
Duplicating Synchronization Handles
Critical Sections
Interlocked Variable Access

Windows CE Security
Interprocess Communication

Finding Other Processes
WM_COPYDATA
Named Memory-Mapped Objects
Message Queues
Communicating with Files and Databases

The XTalk Example Program

Table of Contents xi

439
439
439
441
458

489
489
493
494
497
498
499
499
502
504
506
506
507
509
511
512
514
518
520
521
521
523
525
527
527
528
529
531
534
535

xii Table of Contents

Exception Handling 549

C++ Exception Handling 549
Win32 Exception Handling 552

11 Notifications 557
User Notifications 557

Setting a User Notification 558
Timer Event Notifications 563
System Event Notifications 564

The Note Demo Example Program 566
Querying Scheduled Notifications 580

Part Ill Communications
12 Serial Communications 585

Basic Serial Communication 585
Opening and Closing a Serial Port 586
Reading from and Writing to a Serial Port 587
Asynchronous Serial 1/0 588
Configuring the Serial Port 589
Setting the Port Timeout Values 592
Querying the Capabilities of the Serial Driver 594
Controlling the Serial Port 595
Clearing Errors and Querying Status 597

Stayin' Alive 598
The CeChat Example Program 598

13 Windows CE Networking 615
Windows Networking Support 615

WNet Functions 616
The ListNet Example Program 627

14 Device-to-Device Communication 637
Basic Sockets 638

Initializing the Winsock DLL 638
Stream Sockets 639

lrSock 645

Querying and Setting IR Socket Options 647

Table of Contents xiii

Blocking vs. Nonblocking Sockets 648
The MySquirt Example Program 651

Bluetooth 670
Stack 671
Discovery 672
Publishing a Service 682
Bluetooth Communication with Winsock 685
Bluetooth Communication with Virtual COM Ports 687
The BtHello Example Program 692

OBEX 714
Initialization 714
Application Callbacks 714
Device Discovery 716
OBEX Communication 718
The ObexSquirt Example Program 722

15 Connecting to the Desktop 747
The Windows CE Remote API 748

RAPI Overview 748
Predefined RAPI Functions 751
The RapiDir Example Program 758
Custom RAPI Functions 762
The RapiFind Example Program 768

The CeUtil Functions 777
Connection Notification 781

Registry Method 782
COM Method 783
The CnctNote Example Program 786
Connection Detection on the Windows CE Side 794

Direct Socket Connections 795

Part IV

16 The Explorer Shell 799
Working with the Shell 800

The Shell Namespace 800
Special Folders 801

xiv Table of Contents

Shortcuts 803
Configuring the Start Menu 804
Recent Documents List 805
Launching Applications 806
The Taskbar 807
The TBlcons Example Program 809
The Out Of Memory Error Dialog Box 816

Console Applications 817
The CEFind Example Program 818
Console Redirection 822

Hardware Keys 823
Virtual Codes for Hardware Keys 823
Using the Application Launch Keys 825
Dynamically Overriding Application Launch Keys 827

17 Programming the Pocket PC 831
What Is a Pocket PC? 831

Is It a PDA, a Phone, or Both? 832
The Pocket PC Screen 833

Hello Pocket PC 834
Differences in a Pocket PC Application 843
Building HelloPPC 848

The New Menu 849
The NewMenuX Example 850

Pocket PC Notifications 859
Adding a Notification 860
Modifying a Notification 863
Removing a Notification 864

Dialog Boxes 864
Full-Screen Dialog Boxes 865
Input Dialogs 866
Property Sheets 868

Auto Run 869
Additional Pocket PC Shell Functions 871

Full-Screen Windows 871
Freeing Memory 871
Controlling the SIP 872

Table of Contents xv

18 Extending the Pocket PC 875
Custom Today Screen Items 875

Implementing a Today Screen Item 876
Registering the Custom Item 880
Debugging a Custom Item 881
The PowerBar Custom Today Screen Item 881

Custom Input Methods 895
The Components of a SIP 895
Threading Issues with Input Methods 896
The llnputMethod and llnputMethod2 Interfaces 897
The llMCa/lback and l/MCallback2 Interfaces 902
The NumPanel Example Input Method 905

19 Programming the Smartphone 929
Introducing the Smartphone 930

A Smartphone Application 932
The Smartphone's Menu Bar Control 939

Creating a Smartphone MenuBarControl 940
Working with the Buttons and Menus 942
The Back Button and Other Interesting Buttons 944

Message Boxes 947
Dialog Boxes 949

Scrolling Dialogs 950
Smartphone Controls 950

Text Controls 951
Expandable Edit Controls 953
Spinner Controls 954

File Operation in the Smartphone 956
Communication 958

Phone API 958
The Connection Manager 961
SMS Messaging 965
The SMSTalk Example 974

Smartphone Security 995

xvi Table of Contents

20 GAPI, the Game API 997
GAPI Initialization 998

Getting Display Information 999

Querying Button Information 1000

Accessing the Buttons 1001

Drawing to the Screen 1001
Indirect Access to the Frame Buffer 1002

GAPI Maintenance 1003

Cleaning Up 1003

The GAPIShow Example 1004

Part V

21 System Programming · 1025
The Windows CE Memory Architecture 1025

Writing Cross-Platform Windows CE Applications 1028

Platforms and Operating System Versions 1028

Compile-Time Versioning 1030
Explicit Linking 1032

Run-Time Version Checking 1032

Power Management 1033
Querying the Power State 1033

Changing the Power State 1036

The Power Manager 1039

22 Device Drivers and Services 1045
Basic Drivers 1045

Driver Names 1046

The Device Driver Load Process 1047

Enumerating the Active Drivers 1050

Reading and Writing Device Drivers 1052

Writing a Windows CE Stream Device Driver 1054

The Stream Driver Entry Points 1055
Device Interface Classes 1065

Device Driver Power Management 1067

Building a Device Driver
Debug Zones
The Generic Driver Example

Asynchronous Driver 1/0
Services

Service Architecture
The Life of a Service
Application Control of a Service
The Service DLL Entry Points
The Service IOCTL Commands
Super Service
Services.axe Command Line
TickSrv Example Service

23 Programming the .NET Compact Framework
It's Becoming a Managed World

To .NET or Not to .NET
A Brief Introduction to Managed Applications

HelloCF
Common Language Runtime Basics

The Framework Class Library
Windows Forms Applications

A Basic Windows Forms Application
Configuring a Top-Level Form

Compact Framework Unique Classes
Accessing the Underlying Operating System

P/lnvoke
P/lnvoke Arguments

The lrSquirtCF Example

Index

Chapter 1 Chapter Title xvii

1070
1070
1071

1079

1084
1085
1085

1087
1089

1091
1094

1098
1098

1113
1113
1114

1116
1117

1120
1125

1126
1127
1133

1134
1139
1140

1142
1147

1165

Acknowledgments

Books are produced by diverse teams of talented people. My name appears on
the cover, but countless others were involved in this book's creation. The teams
of people who worked on this edition all pushed themselves to the max to
complete this revision.

First, there's the talented team at Microsoft Press. Kathleen Atkins, the
project leader and editor of all three editions of this book, took my gnarled syn
tax and confused text and made it readable. The technical editor for this edi
tion, as well as the first edition of the book, was Jim Fuchs. Jim provided a great
sanity check for me as well as providing a huge amount of help in getting the
CD organized and produced. Shawn Peck performed the copyediting duties,
keeping the text within the rules of the English language. Dan Latimer per
formed the desktop publishing duties, and Michael Kloepfer produced the illus
trations. Thanks to Julie Hatley for the index. Anne Hamilton, who was the
acquisitions editor for both the second and third editions of the book, deserves
credit for getting these revisions released. Thanks, Anne, for all your efforts in
keeping this book up-to-date.

Thanks also to the various Microsoft development and marketing teams.
Over the years, they have tolerated my endless questions. Thanks to Mike
Thomson, Michael Malueg, and Andrew Pearson for answering questions and
reviewing chapters. Ori Amiga on the Pocket PC team provided all manner of
priceless assistance: answering questions, getting new builds, and even provid
ing hardware. Thanks also to Dominique Fortier, who provided great assistance
on the Pocket PC, Bluetooth, and OBEX content in this edition. I had great sup
port from the Compact Framework team from Craig Neable, Mark Gilbert, and
Kei Amos. A special thank-you goes to Jeana Jorgensen, who, across a variety
of jobs at Microsoft, has always tolerated my cries for help no matter the hour
or relevance to her job. Thanks to all of you. Your help made this book so
much better than it would have been without you.

I also need to acknowledge Tatia Meghdadi, John Doub, and the team at
Socket Communication, who provided Bluetooth hardware and software for
testing.

A special thanks goes to my agent, Claudette Moore, and the team at
Moore Literary Agency. Claudette handled all the business details, freeing me to
deal with the fun stuff.

xix

xx Acknowledgments

This edition of Programming Windows CE builds on the foundation of the
two earlier editions, so what you read is based on work from a much larger
team. In addition to the people already mentioned, other folks from Microsoft
Press have helped immensely in the editing and production of the earlier edi
tions of the book. They include Brian Johnson, Julie Xiao, Rebecca McKay, Rob
Nance, Cheryl Penner, Elizabeth Hansford, and Michael Victor.

My personal support team is headed by my wife, Nancy. Thanks, Nancy,
for the support, help, and love. The personal support team also includes our
boys, Andy, Sam, and Jake. They make sure I always remember what is impor
tant in life. I also must acknowledge my parents, Ronald and Jane Boling. They
are my role models.

Introduction

I've been working with Microsoft Windows CE for almost as long as it's been in
existence. A Windows programmer for many years, I'm amazed by the number
of different, typically quite small, systems to which I can apply my Windows
programming experience. These Windows CE systems run the gamut from PC
like mini-laptops to cellular phones to embedded devices buried deep in some
large piece of industrial equipment. The use of the Win32 API in Windows CE
enables tens of thousands of Windows programmers to write applications for
an entirely new class of systems. The subtle differences, however, make writing
Windows CE code somewhat different from writing for the desktop versions of
Windows. It's those differences that I'll address in this book.

Just What Is Windows CE?
Windows CE is the smallest and arguably the most interesting of the Microsoft
Windows operating systems. Windows CE was designed from the ground up to
be a small ROM-based operating system with a Win32 subset APL Windows CE
extends the Windows API into the markets and machines that can't support the
larger footprints of the Windows XP kernel.

The now-defunct Windows 95/98/Me line was a great operating system
for users who needed backward compatibility with MS-DOS and Windows 2.x
and 3.x programs. Although it had shortcomings, Windows Me succeeded
amazingly well at this difficult task. The Windows NT/2000/XP line, on the
other hand, is written for the enterprise. It sacrifices compatibility and size to
achieve its high level of reliability and robustness. Windows XP Home Edition
is a version of Windows XP built for the home user that does strive for compat
ibility, but this is secondary to its primary goal of stability.

Windows CE isn't backward compatible with MS-DOS or Windows. Nor is
it an all-powerful operating system designed for enterprise computing. Instead,
Windows CE is a lightweight, multithreaded operating system with an optional
graphical user interface. Its strength lies in its small size, its Win32 subset API,
and its multiplatform support.

Windows CE also forms the foundation for the initial version of the .NET
Compact Framework, a version of the .NET runtime for mobile and embedded
devices. The Compact Framework provides the same powerful .NET runtime envi
ronment with a smaller class library so that it fits in small battery-powered devices.

xxi

xxii Introduction

A Little Windows CE History
To understand the history of Windows CE, you need to understand the differ
ences between the operating system and the products that use it. The operating
system is developed by a core group of programmers inside Microsoft. Their
product is the operating system itself. Other groups, who develop devices such
as the Pocket PC, use the newest version of the operating system that's avail
able at the time their product is to be released. This dichotomy has created
some confusion about how Windows CE has evolved. Let's examine the history
of each, the devices and the operating system itself.

The Devices
The first products designed for Windows CE were handheld "organizer"
devices with 480-by-240 or 640-by-240 screens and chiclet keyboards. These
devices, dubbed Handheld PCs, were first introduced in late 1996. Fall Comdex
97 saw the release of a dramatically upgraded version of the operating system,
Windows CE 2.0, with newer hardware in a familiar form-this time the box
came with a 640-by-240 landscape screen, sometimes in color, and a somewhat
larger keyboard.

In January 1998 at the Consumer Electronics Show, Microsoft announced
two new platforms, the Palm-size PC and the Auto PC. The Palm-size PC was
aimed directly at the pen-based organizer market dominated by Palm OS-based
systems. The Palm-size PC featured a portrait mode and a 240-by-320 screen,
and it used stylus-based input. Unfortunately for Windows CE fans, the public
reception of the original Palm-size PC was less than enthusiastic.

Later that year, a new class of mini-laptop-style Windows CE machines
with touch-typable keyboards and VGA or Super VGA screens made their
appearance. These machines, called H/PC Professionals, provided 10 hours of
battery life combined with improved versions of Microsoft's Pocket Office
applications. Many of these machines had built-in modems, and some even
diverged from the then-standard touch screen, sporting track pads or IBM's
TrackPoint devices.

In April 2000, Microsoft introduced the Pocket PC, a greatly enhanced
version of the old Palm-size PC. The original Pocket PC used a prerelease of
the more full-featured Windows CE 3.0 operating system under the covers.
The user interface of the Pocket PC was also different, with a cleaner, 2D,
look and a revised home page, the Today screen. The most important feature
of the Pocket PC, however, was the greatly improved performance of Win
dows CE. Much work had been done to tune Windows CE for better perfor
mance. That improvement, coupled with faster CPUs, allowed the system to

Introduction xxiii

run with the zip expected from a pocket organizer. With the Pocket PC, the
inevitability of Moore's Law enabled Windows CE devices to cross over the
line: the hardware at this point was now capable of providing the computing
power that Windows CE required.

The Handheld PC was updated in 2000 to use Windows CE 3.0. Although
these systems (now called the Handheld PC 2000) haven't been a consumer
success, they have found a home in the industrial market, where their relative
low cost, large screens, and great battery life satisfy a unique niche market.

The Pocket PC was updated in late 2001 with a release named Pocket PC
2002. This release was based on the final released version of Windows CE 3.0
and contained some user interface improvements. An exciting development
was the addition of the Pocket PC Phone Edition, which integrated cellular
phone support into a Pocket PC device. These devices combined the function
ality of a Pocket PC with the connectivity of a cellular phone, enabling a new
generation of mobile but always connected software.

Another group within Microsoft released the Smart Display, a Windows CE
.NET 4.1-based system that integrated a tablet form factor device with wireless
networking and a base connected to a PC. When the Smart Display is in its base,
it's a second monitor; when removed, it becomes a mobile display for the PC.

In the spring of 2003, the Pocket PC team released an update of the Pocket
PC called the Pocket PC 2003. This system, while not providing much of a
change to the user interface, did provide a huge increase in stability and perfor
mance because it was based on Windows CE .NET 4.2. The Pocket PC 2003 also
added integrated Bluetooth support for those OEMs that chose to include it.

Microsoft has also been working with OEMs to produce cellular phones
based on Windows CE. A smattering of these phones, called Smartphones, were

· released in late 2002 and were initially based on Windows CE 3.0. An upgrade
in 2003 moved the Smartphone to Windows CE 4.2 and increased the feature
set of the device to include the .NET runtime.

New devices are being introduced all the time. An example are the Media
to Go devices, which are mobile video players using a hard disk for storage.
The power of the Windows CE operating system enables applications that are
beyond the capability of systems with simpler operating systems to run on
these devices.

The Operating System
Although these consumer-oriented products made the news, more important
development work was going on in the operating system itself. The Windows
CE operating system has evolved from the days of 1.0, when it was a simple
organizer operating system with high hopes. Starting with Windows CE 2.0 and

xxiv Introduction

continuing to this day, Microsoft has released embedded versions of Windows
CE that developers can use on their custom hardware. Although consumer plat
forms such as the Pocket PC get most of the publicity, the improvements to the
base operating system are what enable devices such as the Pocket PC and the
Smartphone.

Windows CE 2.0 was released with the introduction of the Handheld PC
2.0 at Fall Comdex 1997. Windows CE 2.0 added networking support, including
Windows standard network functions, a Network Driver Interface Specification
(NDIS) miniport driver model, and a generic NE2000 network card driver.
Added COM support allowed scripting, although the support was limited to in
proc servers. A display driver model was also introduced that allowed for pixel
depths other than the original 2-bits-per-pixel displays of Windows CE 1.0. Win
dows CE 2.0 was also the first version of the operating system to be released
separately from a product such as the H/PC. Developers could purchase the
Windows CE Embedded Toolkit (ETK), which allowed them to customize Win
dows CE to unique hardware platforms. Developers who used the ETK, how
ever, soon found that the goal of the product exceeded its functionality.

With the release of the original Palm-size PC in early 1998, Windows CE
was improved yet again. Although Windows CE 2.01 wasn't released in an ETK
form, it was notable for its effort to reduce the size of the operating system and
applications. In Windows CE 2.01, the C runtime library, which includes func
tions such as strcpy to copy strings, was moved from a statically linked library
attached to each EXE and DLL into the operating system itself. This change dra
matically reduced the size of both the operating system and the applications
themselves.

In August 1998, Microsoft introduced the H/PC Professional with a new
version of the operating system, 2.11. Windows CE 2.11 was a service pack
update to Windows CE 2.1, which was never formally released. Later in the
year, Windows CE 2.11 was released to the embedded community as Microsoft
Windows CE Platform Builder version 2.11. This release included support for an
improved object store that allowed files in the object store to be larger than 4
MB. This release also added support for a console and a Windows CE version
of CMD.exe, the classic MS-DOS-style command shell. Windows CE 2.11 also
included Fast IR to support IrDA's 4-MB infrared standard, as well as some spe
cialized functions for IP multicast. An initial hint of security was introduced in
Windows CE 2 .11: a device could now examine and reject the loading of unrec
ognized modules.

Windows CE 2 .12 was also a service pack release to the 2 .1, or Birch,
release of Windows CE. The big news in this release was a greatly enhanced set
of Platform Builder tools that included a graphical front end. The operating sys-

Introduction xxv

tern was tweaked with a new notification interface that combined the disparate
notification functions. The notification user interface was exposed in the Plat
form Builder to allow embedded developers to customize the notification dia
log boxes. A version of Microsoft's PC-based Internet Explorer 4.0 was also
ported to Windows CE as the Genie, or Generic IE control. This HTML browser
control complements the simpler but smaller Pocket Internet Explorer.
Microsoft Message Queue support was added as well. The "go/no go" security
of Windows CE 2.11 was enhanced to include a "go, but don't trust" option.
Untrusted modules can run-but not call-a set of critical functions, nor can
they modify parts of the registry.

The long-awaited Windows CE 3.0 was finally released in mid-2000. This
release followed the April release of the Pocket PC, which used a slightly earlier
internal build of Windows CE 3.0. The big news for Windows CE 3.0 was its
kernel, which was optimized for better real-time support. The enhanced kernel
support includes 256 thread priorities (up from 8 in earlier versions of Windows
CE), an adjustable thread quantum, nested interrupt service routines, and
reduced latencies within the kernel.

The improvements in Windows CE 3.0 didn't stop at the kernel. A new
COM component was added to complement the in-proc COM support available
since Windows CE 2.0. This new component included full COM out-of-proc and
DCOM support. The object store was also improved to support up to 256 MB of
RAM. File size limits within the object store were increased to 32 MB per file. An
Add-On Pack for the Platform Builder 3.0 added even more features, including
improved multimedia support though a media player control; improved net
working support (and XML support) with PPTP, ICS, and remote desktop dis
play support; and a formal introduction of the DirectX APL

The next release of Windows CE involved more than just new features; the
name of the product was also changed. Windows CE .NET 4.0, released in early
2001, changed the way virtual memory was organized, effectively doubling the
virtual memory space per application. Windows CE .NET 4.0 also added a new
driver loading model, services support, a new file-based registry option, Blue
tooth, 802.11, and 1394 support. Ironically, while .NET was added to the name,
Windows CE .NET 4.0 didn't support the .NET Compact Framework.

Late in 2001, Windows CE 4.1 was a follow-on to Windows CE 4.0, adding
IP v6, Winsock 2, a bunch of new supporting applets, and an example Power
Manager. Windows CE 4.1 also supports the .NET Compact Framework. The
final bits of the .NET runtime were released as a quick fix engineering (QFE)
package after the operating system shipped.

The second quarter of 2003 saw the release of Windows CE .NET 4.2. This
update provided cool new features for OEMs wanting to support Pocket PC

xxvi Introduction

applications on embedded systems. The Pocket PC-specific APis that support
menu bars, the soft input panel (SIP), and other shell features were moved to
the base operating system. The Explorer shell was rewritten to support
namespace extensions. The performance of the kernel was improved by
directly supporting hardware paging tables on some CPUs.

Because Windows CE is a work in progress, the next version of Windows
CE is being developed. I'll be updating my Web site, www.bolingconsulting.com,
with information about this release as it becomes available.

Why You Should Read This Book
Programming Microsoft Windows CE is written for anyone who will be writing
applications for Windows CE or the .NET Compact Framework. Embedded sys
tems programmers using Windows CE for a specific application, Windows pro
grammers interested in writing or porting an existing Windows application, and
even developers of managed code can use the information in this book to make
their tasks easier.

The embedded systems programmer, who might not be as familiar with the
Win32 API as the Windows programmer, can read the first section of the book to
become familiar with Windows programming. Although this section isn't the
comprehensive tutorial that can be found in books such as Programming Win
dows, by Charles Petzold, it does provide a base that will carry the reader
through the other chapters in the book. It can also help the embedded systems
programmer develop fairly complex and quite useful Windows CE programs.

The experienced Windows programmer can use the book to learn about
the differences among the Win32 APis used by Windows CE and Windows XP.
The differences between Windows CE and Windows XP are significant. The
small footprint of Windows CE means that many of the overlapping APis in the
Win32 model aren't supported. Some sections of the Win32 API aren't sup
ported at all. On the other hand, because of its unique setting, Windows CE
extends the Win32 API in a number of areas that are covered in this text.

This book is also useful for the developer using the .NET Compact Frame
work. The Compact Framework currently has gaps in its functionality: it
requires managed applications to make calls to the operating system to perform
certain tasks. The book is a great guide to what's available in the operating sys
tem. A chapter in this book discusses the unique nature of developing managed
code on Windows CE-based devices.

The method used by Programming Windows CE is to teach by example. I
wrote numerous Windows CE example programs specifically for this book. The
source for each of these examples is printed in the text. Both the source and the

Introduction xxvii

final compiled programs for a number of the processors supported by Windows
CE are also provided on the accompanying CD.

The examples in this book are all written directly to the API, the so-called
"Petzold" method of programming. Since the goal of this book is to teach you
how to write programs for Windows CE, the examples avoid using a class
library such as MFC, which obfuscates the unique nature of writing applications
for Windows CE. Some people would say that the availability of MFC on Win
dows CE eliminates the need for direct knowledge of the Windows CE API. I
believe the opposite is true. Knowledge of the Windows CE API enables more
efficient use of MFC. I also believe that truly knowing the operating system also
dramatically simplifies the debugging of applications.

What's New in the Third Edition
The third edition of this book is a major revision that adds significant new text
about a variety of subjects from the Smartphone to Bluetooth. The book has
been updated to cover the new features of Windows CE .NET 4.2. New chapters
have also been added to cover the Smartphone and the .NET Compact Frame
work. A number of chapters have been significantly expanded to cover topics
such as OBEX, Bluetooth, and services. Other chapters have been reorganized
to better present the topics.

A chapter has been added covering the Smartphone and the communica
tion features of the Pocket PC Phone Edition. This chapter covers how to write
applications for the Smartphone 2003 device. Also covered is how to write
applications that work with the connection manager and send and receive mes
sages through the Short Message Service (SMS) system on both the Smartphone
and the Pocket PC Phone Edition.

There is a new chapter on the .NET Compact Framework. This chapter
covers how to write managed applications on Windows CE. After an introduc
tion to managed applications, the chapter concentrates on Windows Forms
applications, the unique classes of the .NET Compact Framework. A significant
portion of the chapter covers how to call from managed code to unmanaged or
native code since there are times when the managed class library doesn't pro
vide the functionality necessary for the application.

The device-to-device communication chapter contains coverage on Blue
tooth and OBEX. Bluetooth is a wireless communication standard that frankly
isn't well explained in many texts. This chapter explains Bluetooth and pro
vides a simple, straightforward example of its use. It also contains a section on
OBEX, the Object Exchange standard that's used by both Bluetooth and Infra
red Data Association (IrDA). Another example in the chapter uses OBEX to
send files to other devices over either Bluetooth or IrDA.

xxviii Introduction

The Pocket PC chapters have been updated to cover the new features of
the Pocket PC 2003 devices. The menu bar example from the Pocket PC chapter
in the second edition of this book has been moved to the common controls
chapter, reflecting the move of the Pocket PC API to the general operating sys
tem features in the latest version of Windows CE.

The drivers and services chapter has been updated to cover Windows CE
services. Windows CE services were introduced in Windows CE .NET 4.0. Ser
vices provide a way to have code running in the background without the over
head of a separate process for the service. The operating system also provides
a super service that can monitor IP ports and notify a service when a client con
nects to that port. A simple Windows CE service example is provided in the
chapter, demonstrating how to write a service and use the features of the super
service.

For those owners of the first edition of this book, this edition contains all
the new features of the second edition as well. Those updates included exten
sive coverage of the Pocket PC and Windows CE device drivers. Also, the new
memory management and threading features that have been implemented since
the first edition was published make this edition a significant update .

. NET Compact Framework
A developer would have had to be on a desert island somewhere not to have
heard of Microsoft's .NET initiative. This initiative consists of a run-time envi
ronment that isolates code from the hardware while at the same time providing
a type-safe runtime for increased security. A smaller version of this runtime has
been written for embedded and battery powered devices. The initial version of
the .NET Compact Framework runs on top of Windows CE on the Pocket PC
and on embedded systems based on Windows CE .NET 4.1 and later.

The unique requirements of embedded devices will make it a challenge to
write applications using only managed code. Embedded applications and some
mobile applications require the application to be tightly integrated with the
device. Because one of the features of the runtime is to isolate the hardware from
the application, an embedded managed application sometimes needs to break
the bounds of the runtime and directly access some operating system functions.

As previously mentioned, the Compact Framework chapter spends a sig
nificant amount of time discussing how managed applications can access the
operating system. This discussion includes the techniques for marshaling
parameters across the managed/native code boundary-a task that's somewhat
more difficult in the Compact Framework than on the desktop.

Introduction xxix

What About MFC?
I used to have a stock answer for people who asked me whether they should
use MFC to build Windows CE applications: Don't do it! The old Windows CE
systems with their slow CPUs were hard-pressed to run complex, full-featured
MFC applications. These days, I'm a little less dogmatic. The newest Windows
CE platforms are now fast enough to allow MFC-based applications to run with
reasonable performance. The MFC runtime library is included in ROM on these
devices, so the footprint of the application is simply the code, not the code plus
the MFC runtime.

But just as speed and the runtime have been added to the platforms, the
sun is setting on MFC. Microsoft no longer pushes development of MFC appli
cations. Instead, the .NET environment is the development target of choice. So
should you develop in MFC? I say no, not for new projects. For old ones, there
still is a place for MFC simply so that the projects don't have to be ported to
other tools.

Windows CE Development Tools
This book is written with the assumption that the reader knows C and is at least
familiar with Microsoft Windows. All native code development was done with
Microsoft eMbedded Visual C++ under Windows XP. To compile the example
programs in this book, you need Microsoft eMbedded Visual C++ 4.0, which is
conveniently supplied on the companion CD. You also need the appropriate
platform SDKs for the Windows CE device you're targeting.

Each example already has a predefined project set up, but you can also
choose to create the projects from scratch. For almost all the examples, simply
create a generic WCE Application project. For the examples that require access
to functions unique to the Pocket PC, special code links to those functions, even
though the project settings don't specifically define a Pocket PC application.

For developers who want to build applications that run on the Pocket PC
2000 and 2002, you need to use Embedded Visual C++ 3.0. Unfortunately, there
isn't enough room on the companion CD for both eVC 3 and eVC 4, but eVC 3 is
available as a download from the Microsoft Web site. You'll also need the appro
priate SDKs for those older Pocket PC systems. Many of the examples in the
book can be compiled for the older Pocket PC devices. Some examples, how
ever, such as the Bluetooth, OBEX, and services examples, use features that
aren't available on the older systems.

xxx Introduction

.NET Compact Framework applications are developed with Visual Studio
.NET 2003. This tool isn't provided on the CD because it's huge and, unfortu
nately for us programmers, not free. Still, this tool is an incredibly productive
development environment. For those interested in developing managed code,
the pain of the cost of upgrading is mitigated by the increase in developer pro
ductivity. You'll need Visual Studio .NET 2003 to compile the examples in the
Compact Framework chapter. This tool provides the necessary runtimes for all
Pocket PC devices as well as embedded versions of Windows CE based on ver
sion 4.1 or later.

Target Systems
You don't need to have a Windows CE target device to experience the sample
programs provided by this book. The various platform SDKs come with a Win
dows CE emulator that lets you perform basic testing of a Windows CE program
under Windows XP. This emulator comes in handy when you don't have an
actual device handy. The emulator runs a version of Windows CE inside a PC
emulator which results in an actual Windows CE operating system runtime exe
cuting on the PC.

You should consider a number of factors when deciding which Windows
CE hardware to use for testing. First, if the application is to be a commercial
product, you should buy at least one system for each type of target CPU. You
need to test against all the target CPUs because, although the source code will
probably be identical, the resulting executable will be different in size and so
will the memory allocation footprint for each target CPU.

What's on the CD
The companion CD contains the source code for all the examples in the book.
I've also provided project files for Microsoft eMbedded Visual C++ so that you can
open preconfigured projects. All the examples have been designed to compile for
systems based on Windows CE 4.2, Pocket PC 2003, and Smartphone 2003.

In addition to the examples, the CD also includes a free copy of
Microsoft eMbedded Visual C++ 4.0. This is the same full-featured eMbedded
Visual C++ product that you can download from Microsoft's Web site or pay
to have sent to you on CD. Consider these tools the prize in the Cracker Jack
box. Also included is the platform SDK for the Pocket PC 2003.

The companion CD contains a StartCD program that provides you with
a graphical interface from which you can access the contents of the CD. This

Introduction xxxi

program will autorun when the CD is inserted into your CD-ROM drive if you
have that feature enabled in Windows. If you don't have autorun enabled, just
navigate to the root directory of the CD and run StartCD.exe from Windows
Explorer. The file Readme.txt, available from the StartCD program or in the
root directory of the CD, will give you additional information about the con
tents of the CD, system requirements for the included tools and SDK, and
information about support options for the included products.

The following are the system requirements for installing and running
Microsoft eMbedded Visual C++. Please note that to run the eMbedded Visual
C++, you'll need to be using Windows 2000, Windows XP, or Windows
Server 2003.

• PC with Pentium processor; Pentium 150 MHz or higher processor
recommended

• Microsoft Windows XP, Windows 2000 Service Pack 2 (or later) or
Windows Server 2003

• 32 MB of RAM (48 MB recommended)

• Hard disk space required: minimum installation: about 360 MB; com-
plete installation: about 720 MB

• CD-ROM drive compatible with multimedia PC specification

• VGA or higher-resolution monitor required; Super VGA recommended

• Microsoft Mouse or compatible pointing device

Other Sources
Although I have attempted to make Programming Microsoft Windows CE a one
stop shop for Windows CE programming, no one book can cover everything.
To learn more about Windows programming in general, I suggest the classic
text Programming Windows (Microsoft Press, 1998) by Charles Petzold. This is,
by far, the best book for learning Windows programming. Charles presents
examples that show how to tackle difficult but common Windows problems. To
learn more about the Win32 kernel API, I suggest Jeff Richter's Programming
Applications for Microsoft Windows (Microsoft Press, 1999). Jeff covers the tech
niques of process, thread, and memory management down to the most minute
detail. For learning more about MFC programming, there's no better text than
Jeff Prosise's Programming Windows with MFC (Microsoft Press, 1999). This
book is the "Petzold" of MFC programming and simply a required read for MFC
programmers.

xxxii Introduction

Support

To learn more about .NET programming, I recommend Programming Win
dows with C# (Microsoft Press, 2002), by Charles Petzold. Charles has applied his
amazing skills to the Windows Forms part of the .NET Framework. This is a great
book to come up to speed on the client side of .NET programming.

Every effort has been made to ensure the accuracy of this book and the contents
of the sample files on the CD-ROM. Microsoft Press provides corrections and
additional content for its books through the World Wide Web at this location:

http:!www.microsoft.com/mspress/support/
If you have problems, comments, or ideas regarding this book or the CD-

ROM, please send them to Microsoft Press.
Send e-mail to
mspinput@microsoft.com
Or send postal mail to
Microsoft Press
Attn: Programming Microsoft Windows CE, Third Edition, Editor
One Microsoft Way
Redmond, WA 98052-6399
Please note that product support is not offered through these mail

addresses. For further information regarding Microsoft software support
options, please go to http://support.microsoft.com/directory/ or call Microsoft
Support Network Sales at (800) 936-3500.

Visit the Microsoft Press Web Site
You are also invited to visit the Microsoft Press World Wide Web site at the fol
lowing location:

http://www.microsojt.com/mspress/
You'll find descriptions for the complete line of Microsoft Press books,

information about ordering titles, notice of special features and events, addi
tional content for Microsoft Press books, and much more.

You can also find out the latest in Microsoft Windows CE .NET software
developments and news from Microsoft Corporation by visiting the following
Web site:

http:l/www.microsojt.com/windows/embedded/ce.net/

Introduction xxxiii

Updates and Feedback
No book about Windows CE can be completely current for any length of time.
I maintain a Web page, http://www.bolingconsulting.com/cebook.htm, where I'll
keep a list of errata, along with updates describing any features found in sub
sequent versions of Windows CE. Check out this page to see information on
new versions of Windows CE as they're released.

Although I have striven to make the information in this book as accurate
as possible, you'll undoubtedly find errors. If you find a problem with the text
or just have ideas about how to make the next version of the book better,
please drop me a note at CEBook@bolingconsulting.com. I can't promise you
that I'll answer all your notes, but I will read every one.

Doug Boling
Tahoe City, California

April 2003

Part I

•
I

• •
I I

Hello Windows CE
Since the classic The C Programming Language, programming books tradition
ally start with a "hello, world" program. It's a logical place to begin. Every pro
gram has a basic underlying structure that, when not obscured by some
complex task it was designed to perform, can be analyzed to reveal the foun
dation shared by all programs running on its operating system.

In this programming book, the "hello, world" chapter covers the details of
setting up and using the programming environment. The environment for
developing Microsoft Windows CE applications is somewhat different from that
for developing standard Microsoft Windows applications because Windows CE
programs are written on PCs running Microsoft Windows XP and debugged
mainly on separate Windows CE-based target devices.

While experienced Windows programmers might be tempted to skip this
chapter and move on to meatier subjects, I suggest that they-you-at least
skim the chapter to note the differences between a standard Windows program
and a Windows CE program. A number of subtle and significant differences in
both the development process and the basic program skeleton for Windows CE
applications are covered in this first chapter.

What Is Different About Windows CE
Windows CE has a number of unique characteristics that make it different from
other Windows platforms. First of all, the systems running Windows CE are
most likely not using an Intel x86-compatible microprocessor. Instead, Win
dows CE runs on 4 different CPU families, SHx, MIPS, ARM, and x86. Fortu
nately, the development environment isolates the programmer from almost all
of the differences among the various CPUs.

3

4 Part I Windows Programming Basics

Nor can a Windows CE program be assured of a screen or a keyboard.
Pocket PC devices have a 240-by-320-pixel portrait-style screen, while other
systems might have screens with more traditional landscape orientations in
480-by-240, 640-by-240, or 640-by-480-pixel resolution. An embedded device
might not have a display at all. The target devices might not support color. And,
instead of a mouse, most Windows CE devices have a touch screen. On a
touch-screen device, left mouse button clicks are achieved by means of a tap on
the screen, but no obvious method exists for delivering right mouse button
clicks. To give you some method of delivering a right click, the Windows CE
convention is to hold down the Alt key while tapping. It's up to the Windows
CE application to interpret this sequence as a right mouse click.

Fewer Resources in Windows CE Devices

Unicode

The resources of the target devices vary radically across systems that run Windows
CE. When writing a standard Windows program, the programmer can make a
number of assumptions about the target device, almost always an IBM-compatible
PC. The target device will have a hard disk for mass storage and a virtual memory
system that uses the hard disk as a swap device to emulate an almost unlimited
amount of (virtual) RAM. The programmer knows that the user has a keyboard, a
two-button mouse, and a monitor that these days almost assuredly supports 256
colors and a screen resolution of at least 800 by 600 pixels.

Windows CE programs run on devices that almost never have hard disks
for mass storage. The absence of a hard disk means more than just not having
a place to store large files. Without a hard disk, virtual RAM can't be created by
swapping data to the disk. So Windows CE programs are almost always run in
a low-memory environment. Memory allocations can, and often do, fail because
of the lack of resources. Windows CE might terminate a program automatically
when free memory reaches a critically low level. This RAM limitation has a sur
prisingly large impact on Windows CE programs and is one of the main chal
lenges involved in porting existing Windows applications to Windows CE.

One characteristic that a programmer can count on when writing Windows CE
applications is Unicode. Unicode is a standard for representing a character as a
16-bit value as opposed to the ASCII standard of encoding a character into a
single 8-bit value. Unicode allows for fairly simple porting of programs to dif
ferent international markets because all the world's known characters can be
represented in one of the 65,536 available Unicode values. Dealing with Uni
code is relatively painless as long as you avoid the dual assumptions made by

Chapter 1 Hello Windows CE 5

most programmers that strings are represented in ASCII and that characters are
stored in single bytes.

A consequence of a program using Unicode is that with each character
taking up two bytes instead of one, strings are now twice as long. A program
mer must be careful making assumptions about buffer length and string length.
No longer should you assume that a 260-byte buffer can hold 259 characters
and a terminating zero. Instead of the standard char data type, you should use
the TCHAR data type. TCHAR is defined to be char for Microsoft Windows 95
and Microsoft Windows 98 development and unsigned short for Unicode
enabled applications for Microsoft Windows 2000, Windows XP, and Windows
CE development. These types of definitions allow source-level compatibility
across ASCII- and Unicode-based operating systems.

New Controls
Windows CE includes a number of new Windows controls designed for specific
environments. New controls include the command bar and menu bar controls
that provide menu- and toolbar-like functions all on one space-saving line, crit
ical on the smaller screens of Windows CE devices. Other controls have been
enhanced for Windows CE. A version of the edit control in Windows CE can be
set to automatically capitalize the first letter of a word, great for the keyboard
less design of a PDA. Windows CE also supports most of the controls available
on desktop versions of Windows. Some of these controls are even more at
home on Windows CE devices than on the desktop. For example, the date and
time picker control and calendar control assist calendar and organizer applica
tions suitable for handheld devices, such as the Handheld PC (H/PC) and the
Pocket PC. Other standard Windows controls have reduced function, reflecting
the compact nature of Windows CE hardware-specific OS configurations.

Componentization
Another aspect of Windows CE programming to be aware of is that Windows
CE can be broken up and reconfigured by Microsoft or by OEMs so that it can
be better adapted to a target market or device. Windows programmers usually
just check the version of Windows to see whether it is from the Microsoft Win
dows 95, 98, or Me line or Windows 2000, XP line; by knowing the version they
can determine what API functions are available to them. Windows CE, however,
can be configured in countless ways.

By far, the most popular configuration of Windows CE today is the Pocket
PC. Microsoft defines the specific set of Windows CE components that are
present in all Pocket PC-branded devices. However, some OEMs produce PDA

6 Part I Windows Programming Basics

devices that use Windows CE but are not branded as Pocket PCs. These devices
have a subtly different API from that of the Pocket PC devices. If you are
unaware of this, you can easily write a program that works on one platform but
not on another. In embedded platforms, the OEM decides the components to
include and can create a Software Development Kit (an SDK) specialized for its
specific platform. If the OEM is interested in third-party development, it can
make available a customized SDK for its device. New platforms are continually
being released, with much in common but also with many differences among
them. Programmers need to understand the target platform and to have their
programs check what functions are available on that particular· platform before
trying to use a set of functions that might not be supported on that device.

Win32 Subset
Finally, because Windows CE is so much smaller than Windows XP, it simply
can't support all the function calls that its larger cousins do. While you'd expect
an operating system that didn't support printing, such as Windows CE on the
original models, not to have any calls to printing functions, Windows CE also
removes some redundant functions supported by its larger cousins. If Windows
CE doesn't support your favorite function, a different function or set of func
tions will probably work just as well. Sometimes Windows CE programming
seems to consist mainly of figuring out ways to implement a feature using the
sparse API of Windows CE. If thousands of functions can be called sparse.

It's Still Windows Programming
While differences between Windows CE and the other versions of Windows do
exist, they shouldn't be overstated. Programming a Windows CE application is
programming a Windows application. It has the same message loop, the same
windows, and for the most part, the same resources and the same controls. The
differences don't hide the similarities. One of the key similarities is the tradition
of Hungarian notation.

Hungarian Notation
A tradition, and a good one, of almost all Windows programs since Charles Pet
zold wrote Programming Microsoft Windows is Hungarian notation. This pro
gramming style, developed years ago by Charles Simonyi at Microsoft, prefixes
all variables in the program usually with one or two letters indicating the variable

Chapter 1 Hello Windows CE 7

type. For example, a string array named Name would instead be named
szName, with the sz prefix indicating that the variable type is a zero-terminated
string. The value of Hungarian notation is the dramatic improvement in readabil
ity of the source code. Another programmer, or you after not looking at a piece
of code for a while, won't have to look repeatedly at a variable's declaration to
determine its type. Table 1-1 shows typical Hungarian prefixes for variables.

Table 1-1 Hungarian Prefixes for Variables

Variable Type

Integer

Word (16-bit)

Double word (32-bit unsigned)

Long (32-bit signed)

Char

String

Pointer

Long pointer

Handle

Window handle

Struct size

Hungarian Prefix

i or n

wars

Dw

L

c
Sz
p

Ip

h

hwnd

cb

You can see a few vestiges of the early days of Windows. The Ip, or long
pointer, designation refers to the days when, in the Intel 16-bit programming
model, pointers were either short (a 16-bit offset) or long (a segment plus an
offset). Other prefixes are formed from the abbreviation of the type. For exam
ple, a handle to a brush is typically specified as hbr. Prefixes can be combined,
as in lpsz, which designates a long pointer to a zero-terminated string. Most of
the structures defined in the Windows API use Hungarian notation in their field
names. I use this notation as well throughout this book, and I encourage you to
use this notation in your programs.

Your First Windows CE Application
Enough talk; let's look at your first Windows CE program. Listing 1-1 shows
Hellol, a simple Hello World application written for Windows CE.

8 Part I Windows Programming Basics

Hello1.~pp
//=:;=:;.:=~;::=:;::==·=:;=:::;:::;:::,::====;::.:.============;:~=:;:::==i:~=;i:~================:::::=.=====:=.==:;=;;: ,

II Hell ol • A simple appl i ca ti on for Wi nclows CE
II
II Written for. the book Programming Windows CE
11 Copyright (C} 2003 Douglas Boling
11=========7===================~~=======================================
#include ~window~.h".

II
II Program entry point
II
int WINAPl WinMatn CHINSTANCE ~Ins;tance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) {

printf <"Hello World\n");
return 0:

Listing 1-1 Hello1, A simple Windows application

As you can see, aside from the entry point of the program, the code looks
fairly similar to the classic Kernighan and Ritchie version. Starting from just
below the comments, we have the line

#include "windows.h"

which is the root of a vast array of include files that define the Windows CE API,
as well as the structures and constants they use.

The entry point of the program is the biggest difference between this pro
gram and a standard C program. Instead of the C standard

int main (char **argv, int argc)

the Windows CE build environment expects the standard Windows entry
point, 1 as in

int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,
LPWSTR lpCmdline, int nCmdShow);

Windows CE differs in some ways from the desktop versions of Windows.
The first of the four parameters passed, hlnstance, identifies the specific
instance of the program to other applications and to Windows API functions
that need to identify the EXE. The hPrevlnstance parameter is left over from the

1. While it is technically possible to change the entry point prototype to match the C standard entry
point, it typically isn't worth the trouble.

Chapter 1 Hello Windows CE 9

old Win16 API (Windows 3.1 and earlier). In all Win32 operating systems,
including Windows CE, hPrevlnstance is always 0 and can be ignored.

The lpCmdline parameter points to a Unicode string that contains the text
of the command line. Applications launched from Microsoft Windows Explorer
usually have no command-line parameters. But in some instances, such as
when the system automatically launches a program, the system includes a com
mand-line parameter to indicate why the program was started. The lpCmdline
parameter provides us with one of the first instances in which Windows CE dif
fers from Windows XP. Under Windows CE, the command-line string is a Uni
code string. In all other versions of Windows, the string is always ASCII.

The final parameter, nCmdShow, specifies the initial state of the program's
main window. It is passed by the parent application, usually Explorer, and is a
recommendation of how the application should configure its main window.
This parameter might specify that the window be initially displayed as an icon
(SW_SHOWMINIMIZE), maximized (SW_SHOWMAXIMIZED) to cover the entire
desktop, or normal (SW_RESTORE), indicating that the window is placed on the
screen in the standard resizeable state. Other values specify that the initial state
of the window should be invisible to the user or that the window should be vis
ible but incapable of becoming the active window. Under Windows CE, the val
ues for this parameter are limited to only three allowable states: normal
(SW_SHOW), hidden (SW_HIDE), and show without activate
(SW_SHOWNOACTJVATE). Unless an application needs to force its window to a
predefined state, this parameter is simply passed without modification to the
ShowWindow function after the program's main window has been created.

The next line is the only functioning line of the application.

printf ("Hello World\n"l;

Windows CE supports most of the standard C library, including prinif, get
char, and so forth. An interesting aspect of this line is that unlike almost every
where else in Windows CE, the string is not Unicode but ANSI. There is a
logical reason for this. For the C standard library to be compliant with the ANSI
standard, prinif and the other string library functions such as strcpy use ANSI
strings. Of course, Windows CE supports the Unicode versions of the standard
functions such as wprinif, getwchar, and wcscpy.

Finally the program ends with

return 0;

The value passed in the return line is available to other processes that use
the Win32 API GetExitCodeProcess.

10 Part I Windows Programming Basics

Building Your First Application
To create Hellol from scratch on your system, start Microsoft eMbedded Visual
C++ and create a new project by selecting the New command on the File menu.
The first change from standard Win32 programming becomes evident when you
see the new project dialog box. You'll have the opportunity to select from a
number of platforms, as shown in Figure 1-1. For non-MFC or ATL projects, the
chief decision is to choose between WCE Pocket PC Application (to build code
for a Pocket PC) and WCE Application (for all other Windows CE systems).
You'll also pick the allowable target CPUs. For example, selecting Win32 (WCE
MIPII) enables compiling to a Windows CE platform with a MIPS CPU. No matter
what target device you have, be sure to check the WCE emulator target. This
allows you to run the sample program in the emulator under Windows XP.

• WCE Application
.ii WCE ATL COM App\\lizard
l!)WCE Dynamic·Link Library

\\ICE MFC ActiveX ControlWizard
~\\ICE MFCAppWizard ldll)

\\ICE MFC App\\lizard I•••)
E WCE Slolic Librory

lc:_e<amples\Hello1 __ ~ "

r.' Cjli~$ hllW w.itkllp.,,.;

~Win32 [WCE ARMV4)
~Win32 [WCE ARMV41)
0Vlin32 P#CE ARMl/4 TJ
~Vlin32 [WCE MIPSll)
~Win32 [WCE SH3)

OK . t .Canoal I

Figure 1-1 The Platforms list box allows eMbedded Visual C++ to target
different Windows CE platforms

eMbedded Visual C++ will next ask you whether you want to create an
empty project, a simple program, or a Hello World application. For all the
examples in this book, pick Empty Project. This choice prevents the code wiz
ards from adding any extra code to the examples. Create new files for
Hellol.cpp from the File menu by clicking New.

After you have created the proper source files for Hellol or copied them
from the CD, select the target Win32 (WCE x86em) Debug and then build the
program. This step compiles the source and, assuming you have no compilation
errors, automatically launches the emulator and inserts the EXE into the emula
tor file system; you can then launch Hellol. If you're running Windows 98 or

Chapter 1 Hello Windows CE 11

Windows Me, the system displays an error message because the emulator runs
only under Windows 2000 or Windows XP.

If you have a Windows CE system available, such as a Pocket PC (PPC),
attach the PPC to the PC the same way you would to sync the contents of the
PPC with the PC. Open Microsoft ActiveSync, and establish a connection
between the PPC and the PC. While it's not strictly necessary to have the Active
Sync connection to your Windows CE device running (eMbedded Visual C++ is
supposed to make this connection automatically), I've found that having it run
ning makes for a more stable connection between the development environ
ment and the Windows CE system.

Once the link between the PC and the Windows CE device is up and run
ning, switch back to eMbedded Visual C++, select the compile target appropri
ate for the target device (for example, Win32 [WCE ARM] Debug for an iPaq
Pocket PC), and rebuild. As in the case of building for the emulator, if there are
no errors, eMbedded Visual C++ automatically downloads the compiled pro
gram to the remote device. The program is placed either in the root directory of
the object store or, in the case of the Pocket PC, in the \windows\start menu
directory.

Running the Program
To run Hellol on an embedded Windows CE deviceH/PC, simply click on the
My ComputerHandheld PC icon to bring up the files in the root directory. At
that point, a double-tap on the application's icon launches the program.

To run the program on a Pocket PC, simply select the program from the
Start menu on the device. The program appears there because eMbedded Visual
C++ downloads the application to be the \windows\start menu directory. This
way, a downloaded application is automatically visible on the Start menu.

What's Wrong?
If you start Hellol by clicking on the icon or by selecting the program on the
start menu of a Pocket PC, nothing seems to happen. On a Handheld PC, the
program appears to make the screen flash. This is because the program starts,
writes to the console, and terminates. Unless you start the program from an
already created console, Windows CE creates the console window when Hellol
executes the prinif statement and closes the console automatically when Hellol
terminates.

On a Pocket PC, the application runs, but the Pocket PC doesn't come
with support to display the console functions such as the output fromprintf. It's
possible to add console support to a Pocket PC by adding a driver, console.dll,
to the Windows directory of the Pocket PC. That driver must be written to take

12 Part I Windows Programming Basics

Hello2

input from the driver interface, create a window on the screen, and print out
the strings. The console driver available on Handheld PCs and in embedded
versions of Windows CE does this.

Now that we have the basics down, it's time to upgrade Hellol to something
you can at least see. Because many Windows CE systems don't have the con
sole driver, Hello2 creates a message box with the "Hello CE" text instead of
using print/. Hello2 is shown in Listing 1-2.

He1Jo2.cpp ·
,·· / l=~=?===f==~~=~::::~~~~~=;~*==;:i#,==*===~==?C:;:;:'=i:==·..:..,~::;~~~--~~=;::~~~~~~~=~~·~:::=?·...;.;~::::.::
'.tt He1 lo~·. -·A· s1mP:T'e" ap~ifciat1!n1 •• totVth~ows·!t(..
H ..

I/ Written .. for tlr~ book Pro9ram~1ng·Wfod9wS CE .. · ...
:-.{1.. c~p;tright· c.C~-:,.;._~0~3->Qo::u~:rl-~$·,°'·:~-~:1_.:-i.:f'q,2:··:<-" - , · ',,

/#Jnchide

II
//
IF

·· tnt WI NAP I WinMaln hP.revinstaMc:e!;
'·LPWSTR lpCmdi.tne:.1rrt' ncm,d'Sbow>•{

· .MessageB<>x. CNULL. T.8X'T <';Hello.. world")•· ttx.T ('.'Hel.lol"),

Listing 1-2 Hello2, a simple Windows application using the Message
Box function

When you compile and run Hello2, you should see a small window like
the one shown in Figure 1-2.

Figure 1-2 Hello2 running on a Windows CE desktop

Chapter 1 Hello Windows CE 13

The MessageBox function that replaces prinif provides two features for
Hello2. First and most obvious, it creates a window and places the "Hello
World" text in the window. The second feature is that the MessageBox function
doesn't return until the user closes the message box window. This feature
allows Hello2 to keep running until the user dismisses the window.

The MessageBox function is prototyped as

int MessageBox CHWND hWnd, LPCTSTR lpText, LPCTSTR lpCaption, UINT uType);

The first parameter of MessageBox is the handle to the top-level window that
will be the parent of the message box when it is displayed. For now, we can
leave this parameter NULL because Hello2 doesn't have any other windows.
The second parameter is the text that appears in the window. Notice that the
string passed is couched in the TEXT macro, ensuring that it will be compiled as
Unicode. The third parameter, lpCaption, is the text that will appear in the title
bar of the window. The last parameter, uType, is a series of flags that specify
how the message box appears on the screen. The flags specify the number and
type of buttons on the message box; the icon, if any, on the message box; and
the settings of style flags for the message box window.

The flags listed in Table 1-2 are valid under Windows CE.

Table 1-2 Default Flags

Flags

For Buttons:

MB_OK

MB_OKCANCEL

MB_RETRYCANCEL

MB_YESNO

MB_YESNOCANCEL

MB_ABORTRETRYIGNORE

For Icons:

MB_ICONEXCLAMA110N, MB_ICONWARNING

MB_ICONINFORMA110N, MB_ICONASTERISK

MB_ICONQUES110N

MB_YESNO

MB_ICONSTOP, MB_ICONERROR, MB_ICONHAND

MB_DEFBUITONJ

MB_DEFBUITON2

MB_DEFBUITON3

Button or Icon

OK

OK and Cancel

Retry and Cancel

Yes and No

Yes, No, and Cancel

Abort, Retry, and Ignore

Exclamation point

Lower case i within a circle

Question mark

Yes and No

Stop sign

First button

Second button

Third button

(continued)

14 Part I Windows Programming Basics

Table 1-2 Default Flags (continued)

Flags

For Window Styles:

MB_SETFOREGROUND

MB_TOPMOST

Button or Icon

Bring the message box to the
foreground.

Make the message box the top
most window.

The return value from MessageBox indicates the button pressed by the
user. The return values are as follows:

!DOK

/DYES

IDNO

JDCANCEL

ID ABORT

ID RETRY

IDIGNORE

OK button pressed

Yes button pressed

No button pressed

Cancel button pressed or Esc key pressed

Abort button pressed

Retry button pressed

Ignore button pressed

MessageBox is a handy function to have an application display a simple
but informative dialog box.

One gotcha to look out for here: If you're debugging and recompiling the
program, it can't be downloaded again if an earlier version of the program is
still running on the target system. That is, make sure Hello2 isn't running on the
remote system when you start a new build in eMbedded Visual C++, or the
autodownload part of the compile process will fail. If this happens, close the
application and choose the Update Remote File menu command in eMbedded
Visual C++ to download the newly compiled file.

Hello2 displays a simple window, but that window is only as configurable
as the MessageBox function allows. How about showing a window that is com
pletely configurable by the application? Before we can do that, a quick review
of how a Windows application really works is in order.

Chapter 1 Hello Windows CE 15

Anatomy of a Windows-Based Application
Windows-based programming is far different from MS-DOS-based or Unix
based programming. An MS-DOS or Unix program uses getc- and putc-style
functions to read characters from the keyboard and write them to the screen
whenever the program needs to do so. This is the classic "pull" style used by
MS-DOS and Unix programs, which are procedural. A Windows program, on
the other hand, uses a "push" model, in which the program must be written to
react to notifications from the operating system that a key has been pressed or
a command has been received to repaint the screen.

Windows applications don't ask for input from the operating system; the
operating system notifies the application that input has occurred. The operating
system achieves these notifications by sending messages to an application win
dow. All windows are specific instances of a window class. Before we go any
further, let's be sure we understand these terms.

The Window Class
A window is a region on the screen, rectangular in all but the most contrived of
cases, that has a few basic parameters, such as position-x, y, and z (a window
is over or under other windows on the screen)-visibility, and hierarchy-the
window fits into a parent/child window relationship on the system desktop,
which also happens to be a window.

Every window created is a specific instance of a window class. A window
class is a template that defines a number of attributes common to all the win
dows of that class. In other words, windows of the same class have the same
attributes. The most important of the shared attributes is the window procedure.

The Window Procedure
The behavior of all windows belonging to a class is defined by the code in its
window procedure for that class. The window procedure handles all notifica
tions and requests sent to the window. These notifications are sent either by the
operating system, indicating that an event has occurred to which the window
must respond, or by other windows querying the window for information.

16 Part I Windows Programming Basics

These notifications are sent in the form of messages. A message is nothing
more than a call being made to a window procedure, with a parameter indicat
ing the nature of the notification or request. Messages are sent for events such
as a window being moved or resized or to indicate a key press. The values used
to indicate messages are defined by Windows. Applications use predefined
constants, such as WM_CREATE and WM_MOVE, when referring to messages.
Since hundreds of messages can be sent, Windows conveniently provides a
default processing function to which a message can be passed when no special
processing is necessary by the window class for that message.

The Life of a Message
Stepping back for a moment, let's look at how Windows coordinates all of the
messages going to all of the windows in a system. Windows monitors all the
sources of input to the system, such as the keyboard, mouse, touch screen, and
any other hardware that could produce an event that might interest a window.
As an event occurs, a message is composed and directed to a specific window.
Instead of Windows directly calling the window procedure, the system imposes
an intermediate step. The message is placed in a message queue for the appli
cation that owns the window. When the application is prepared to receive the
message, it pulls it out of the queue and tells Windows to dispatch that message
to the proper window in the application.

If it seems to you that a number of indirections are involved in that pro
cess, you're right. Let's break it down.

1. An event occurs, so a message is composed by Windows and placed
in a message queue for the application that owns the destination
window. In Windows CE, as in Windows XP, each application has its
own unique message queue. 1 (This is a break from Windows 3.1 and
earlier versions of Windows, where there was only one, systemwide,
message queue.) Events can occur, and therefore messages can be
composed, faster than an application can process them. The queue
allows an application to process messages at its own rate, although
the application had better be responsive or the user will see a jerki
ness in the application. The message queue also allows Windows to
set a notification in motion and continue with other tasks without
having to be limited by the responsiveness of the application to
which the message is being sent.

1. Technically, each thread in a Windows CE application can have a message queue. I'll talk about
threads later in the book.

Hello3

Chapter 1 Hello Windows CE 17

2. The application removes the message from its message queue and
calls Windows back to dispatch the message. While it may seem
strange that the application gets a message from the queue and then
simply calls Windows back to process the message, there's a method
to this madness. Having the application pull the message from the
queue allows it to preprocess the message before it asks Windows to
dispatch the message to the appropriate window. In a number of
cases, the application might call different functions in Windows to
process specific kinds of messages.

3. Windows dispatches the message; that is, it calls the appropriate
window procedure. Instead of having the application directly call the
window procedure, another level of indirection occurs, allowing
Windows to coordinate the call to the window procedure with other
events in the system. The message doesn't stand in another queue at
this point, but Windows might need to make some preparations
before calling the window procedure. In any case, the scheme
relieves the application of the obligation to determine the proper
destination window-Windows does this instead.

4. The window procedure processes the message. All window proce
dures have the same calling parameters: the handle of the specific
window instance being called, the message, and two generic param
eters that contain data specific to each message type. The window
handle differentiates each instance of a window for the window pro
cedure. The message parameter, of course, indicates the event that
the window must react to. The two generic parameters contain data
specific to the message being sent. For example, in a WM_MOVE
message indicating that the window is about to be moved, one of the
generic parameters points to a structure containing the new coordi
nates of the window.

Enough review. It's time to jump into a full-fledged Windows application,
Hello3. While the entire program files for this and all examples in the book
are available in the companion CD-ROM, I suggest that, as in the earlier exam
ple, you avoid simply loading the project file from the CD and instead type in
the entire example by hand. By performing this somewhat tedious task, you'll
see the differences in the development process as well as the subtle program

18 Part I Windows Programming Basics

differences between standard Win32 programs and Windows CE programs.
Listing 1-3 contains the complete source code for Hello3.

Hello3.cpp
//==
II Hello3 - A simple application for Windows CE
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
//==
#include <windows.h> II For all that Windows stuff

LRESULT CALLBACK MainWndProc CHWND, UINT, WPARAM, LPARAMl;

//=================~===========~==========~==~=====:===~==~=====~========

II Program entry point
II
int.WINAPI WinMain CHINSTANCE hinstance, HINSTANCE hPrevinstance.

LPWSTR lpCmdLine; int .nCmdShow) {
WNDCLASS we;
HWND hWnd;
MSG msg;

II Register application main window
we.style ,,;, 0;
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hinstance = hlnstance;
wc.hicon = NULL,

class.
II Window style
IJ Callback function
II Extra class data
II Extra window data
II Owner hand.le
II Application icon

wc.hCursor = LoadCursor (NULL. IDCARROW);// Default cursor
wc. hbrBackground = CH BRUSH) GetStockObj ect (WHITLBRUSH);
wc.lpszMenuName = NULL; //Menu name
wc.lpszClassName = TEXTC"MyClass"); //Window class name

if (RegisterClass (&we) == 0) return -1;

ti Create main window.
hWnd "' CreateWindowEx(W.Sc,..EX_NODRAG, ff Ex style flags

I I Window cl as.s
N Window. title

lEXH"MyCl.ass"J,
TEXT<"Hel lo" J,
II Style flags
ws~vrsIBLE. l ws_cAPT.ION I ws_svsMENu.
CW_USEDEFAULT; // x position
CW_USEDEFAULT. // y position
CW_USEDEFAULT, //Initial width

Listing 1-3 The Hello3 program

CW_USEDEFAUL T,
NULL,
NULL,
hlnstance,
NULL);

Chapter 1 Hello Windows CE 19

II Initial height
II Parent
II Menu, must be null
II Application instance
II Pointer to create
11 parameters

if (!IsWindow (hWndll return -2; II Fail code if not created.

II Standard show and update calls
ShowWindow (hWnd, nCmdShowl;
UpdateWindow (hWnd);

II Application message loop
while (GetMessage C&msg, NULL, 0, 0)) {

TranslateMessage l&msg);
DispatchMessage (&msg);

II Instance cleanup
return msg.wParam;

II==
II MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PAINTSTRUCT ps;
RECT rect;
HOC hdc;

switch (wMsg)
case WM_PAINT:

II Get the size of the client rectangle
GetClientRect lhWnd, &rect);

hdc = BeginPaint lhWnd, &ps);
DrawText Ihde, TEXT ("Hello Windows CE!"), -1, &rect,

DT_CENTER I DT_VCENTER I DT_SINGLELINE);

EndPaint (hWnd, &ps);
return 0;

case WM_DESTROY:

}

PostQuitMessage (0);
break;

return DefWindowProc (hWnd. wMsg, wParam, lParam);

20 Part I Windows Programming Basics

Hello3 shows all aspects of a Windows program, from registering the win
dow class to the creation of the window to the window procedure. Hello3 has
the same entry point, WinMain, as the first two examples; but because it creates
its own window, it must register a window class for the main window, create the
window, and provide a message loop to process the messages for the window.

Registering the Window Class
In WinMain, Hello3 registers the window class for the main window. Register
ing a window class is simply a matter of filling out a rather extensive structure
describing the class and calling the RegisterClass function. RegisterClass and the
WNDCLASS structure are defined as follows:

ATOM RegisterClass (const WNDCLASS *lpWndClass);

typedef struct _WNDCLASS
UINT style;
WNDPROC lpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HANDLE hlnstance;
HICON hlcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCTSTR lpszMenuName;
LPCTSTR lpszClassName;

WNDCLASS;

The parameters assigned to the fields of the WNDCLASS structure define
how all instances of the main window for Hello3 will behave. The initial field,
style, sets the class style for the window. In Windows CE, the class styles are
limited to the following:

• CS_GLOBALCLASS indicates that the class is global. This flag is
provided only for compatibility because all window classes in Win
dows CE are process global.

• CS_HREDRAW tells the system to force a repaint of the window if
the window is sized horizontally.

• CS_ VREDRAW tells the system to force a repaint of the window if
the window is sized vertically.

• CS_NOCLOSE disables the Close button if one is present on the
title bar.

• CS_PARENTDC causes a window to use its parent's device context.

• CS_DBLCLKS enables notification of double-dicks (double-taps
under Windows CE) to be passed to the parent window.

Chapter 1 Hello Windows CE 21

The lpjnWndProc field should be loaded with the address of the win
dow's window procedure. Because this field is typed as a pointer to a window
procedure, the declaration to the procedure must be defined in the source code
before the field is set. Otherwise, the compiler's type checker will flag this line
with a warning.

The cbClsExtra field allows the programmer to add extra space in the class
structure to store class-specific data known only to the application. The cbWn
dExtra field is much handier. This field adds space to the Windows internal
structure responsible for maintaining the state of each instance of a window.
Instead of storing large amounts of data in the window structure itself, an appli
cation should store a pointer to an application-specific structure that contains
the data unique to each instance of the window. Under Windows CE, both the
cbClsExtra and cbWndExtra fields must be multiples of 4 bytes.

The hlnstance field must be filled with the program's instance handle,
which specifies the owning process of the window. The hlcon field is set to the
handle of the window's default icon. The hlcon field isn't supported under Win
dows CE and should be set to NULL. (In Windows CE, the icon for the class is
set after the first window of this class is created. For Hello3, however, no icon
is supplied, and unlike other versions of Windows, Windows CE doesn't have
any predefined icons that can be loaded.)

Unless the application being developed is designed for a Windows CE sys
tem with a mouse, the next field, hCursor, must be set to NULL. Fortunately, the
function call LoadCursor (JDC_ARROW) returns NULL if the system doesn't sup
port cursors.

The hbrBackground field specifies how Windows CE draws the back
ground of the window. Windows uses the brush, a small predefined array of
pixels, specified in this field to draw the background of the window. Windows
CE provides a number of predefined brushes that you can load using the Get
StockObject function. If the hbrBackground field is NULL, the window must
handle the WM_ERASEBKGND message sent to the window telling it to redraw
the background of the window.

The lpszMenuName field must be set to NULL because Windows CE
doesn't support windows directly having a menu. In Windows CE, menus are
provided by command bar, command band, or menu bar controls that the main
window can create.

Finally the lpszClassName parameter is set to a programmer-defined string
that identifies the class name to Windows. Hello3 uses the string "MyClass".

After the entire WNDCLASS structure has been filled out, the RegisterClass
function is called with a pointer to the WNDCLASS structure as its only param
eter. If the function is successful, a value identifying the window class is
returned. If the function fails, the function returns 0.

22 Part I Windows Programming Basics

Creating the Window
Once the window class has been registered successfully, the main window can
be created. All Windows programmers learn early in their Windows program
ming lives the CreateWindow and CreateWindowEx function calls. The proto
type for CreateWindowEx is as follows:

HWND CreateWindowEx (DWORD dwExStyle, LPCTSTR lpClassName,
LPCTSTR lpWindowName, DWORD dwStyle,
int x, int y, int nWidth, int nHeight,
HWND hWndParent, HMENU hMenu,
HINSTANCE hlnstance, LPVOID lpParaml;

Although the number of parameters looks daunting, the parameters are
fairly logical once you learn them. The first parameter is the extended style
flags. The extended style flags supported by Windows CE are as follows:

• WS_EX_TOPMOST Window is topmost.

• WS_EX_ WINDOWEDGE Window has a raised edge.

• WS_EX_CLIENTEDGE Window has a sunken edge.

• WS_EX_STATICEDGE 3D look for static windows.

• WS_EX_OVERLAPPEDWINDOW Combines
WS_EX_ WINDOWEDGE and WS_EX_CLIENFEDGE.

• WS_EX_CAPTIONOKBUITON Window has an OK button on
caption.

• WS_EX_CONTEXTHELP Window has help button on caption.

• WS_EX_NOACTIVATE Window is not activated when clicked.

• WS_EX_NOANIMATION Top-level window will not have explod
ing rectangles when created nor have a button on the taskbar.

• WS_EX_NODRAG Prevents window from being moved.

The dwExStyle parameter is the only difference between Create Window Ex
and Create Window. In fact, if you look at the declaration of Create Window in
the Windows CE header files, it's simply a call to CreateWindowEx with the
dwExStyle parameter set to 0.

The second parameter is the name of the window class of which our win
dow will he an instance. In the case of Hello3, the class name is MyClass, which
matches the name of the class registered in RegisterClass.

The next field is referred to as the window text. In other versions of Win
dows, this is the text that would appear on the title bar of a standard window. On

Chapter 1 Hello Windows CE 23

H/PCs, main windows rarely have title bars; this text is used only on the taskbar
button for the window. On the Pocket PC, however, this text is shown on the
navigation bar at the top of the display. The text is couched in a TEXT macro,
which ensures that the string will be converted to Unicode under Windows CE.

The style flags specify the initial styles for the window. The style flags are
used both for general styles that are relevant to all windows in the system and
for class-specific styles, such as those that specify the style of a button or a list
box. In this case, all we need to specify is that the window be created initially
visible with the WS_ VISIBLE flag. Experienced Win32 programmers should refer
to the documentation for Create Window because a number of window style
flags aren't supported under Windows CE.

The next four fields specify the initial position and size of the window.
Since most applications under Windows CE are full-screen windows, the size
and position fields are set to default values, which are indicated by the
CW _USEDEFAULT flag in each of the fields. The default value settings create a
window that is sized to fit the entire screen under the current versions of Win
dows CE. Be careful not to assume any particular screen size for a Windows CE
device because different implementations have different screen sizes.

The next field is set to the handle of the parent window. Because this is
the top-level window, the parent window field is set to NULL. The menu field
is also set to NULL because Windows CE does not support menus on top-level
windows.

The h!nstance parameter is the same instance handle that was passed to
the program. Creation of windows is one case in which that instance handle,
saved at the start of the routine, comes in handy. The final parameter is a
pointer that can be used to pass data from the CreateWindow call to the win
dow procedure during the WM_CREATE message. In this example, no addi
tional data needs to be passed, so the parameter is set to NULL.

If successful, the Create Window call returns the handle to the window just
created, or it returns 0 if an error occurred during the function. That window
handle is then used in the two statements (ShowWindow and UpdateWindow)
just after the error-checking if statement. The Show Window function modifies
the state of the window to conform with the state given in the nCmdShow
parameter passed to WinMain. The Update Window function forces Windows to
send a WM_PAINT message to the window that has just been created.

The Message Loop
After the main window has been created, WinMain enters the message loop,
which is the heart of every Windows application. Hello3's message loop is
shown at the top of the next page.

24 Part I Windows Programming Basics

while (GetMessage (&msg, NULL, 0, 0)) {
TranslateMessage (&msg);
DispatchMessage (&msg);

The loop is simple: GetMessage is called to get the next message in the
application's message queue. If no message is available, the call waits, blocking
that application's thread until a message is available. When a message is avail
able, the call returns with the message data contained in a MSG structure. The
MSG structure itself contains fields that identify the message, provide any mes
sage-specific parameters, and identify the last point on the screen touched by
the pen before the message was sent. This location information is different from
the standard Win32 message point data in that in Windows XP the point
returned is the current mouse position instead of the last point clicked (or
tapped, as in Windows CE).

The TranslateMessage function translates appropriate keyboard messages
into a character message. (I'll talk about others of these filter messages, such as
IsDialogMsg, later.) The DispatchMessage function then tells Windows to for
ward the message to the appropriate window in the application.

This GetMessage, TranslateMessage, Di!)patchMessage loop continues until
GetMessage receives a WM_QUIT message, which, unlike all other messages,
causes GetMessage to return 0. As can be seen from the while clause, the return
value 0 by GetMessage causes the loop to terminate.

After the message loop terminates, the program can do little else but clean
up and exit. In the case of Hello3, the program simply returns from WinMain.
The value returned by WinMain becomes the return code of the program. Tra
ditionally, the return value is the value in the wParam parameter of the last
message (WM_QUJT). The wParam value of WM_QUIT is set when that mes
sage is sent in response to a PostQuitMessage call made by the application.

The Window Procedure
The messages sent or posted to the Hello3 main window are sent to the proce
dure Main WndProc. Main WndProc, like all window procedures, is prototyped
as follows:

LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1 Pa ram);

The LRESULT return type is actually just a long (a long is a 32-bit value
under Windows) but is typed this way to provide a level of indirection between
the source code and the machine. While you can easily look into the include

Chapter 1 Hello Windows CE 25

files to determine the real type of variables that are used in Windows program
ming, this can cause problems when you're attempting to move your code
across platforms. Although it can be useful to know the size of a variable type
for memory-use calculations, there is no good reason to use (and plenty of rea
sons not to use) the type definitions provided by windows.h.

The CALLBACK type definition specifies that this function is an external
entry point into the EXE, necessary because Windows calls this procedure
directly. On the desktop, CALLBACK indicates that the parameters will be put in
a Pascal-like right-to-left push onto the program stack, which is the reverse of
the standard C-language method. The reason for using the Pascal language
stack frame for external entry points goes back to the very earliest days of Win
dows development. The use of a fixed-size, Pascal stack frame meant that the
called procedure cleaned up the stack instead of leaving it for the caller to do.
This reduced the code size of Windows and its bundled accessory programs
sufficiently so that the early Microsoft developers thought it was a good move.
Windows CE applications use a C stack frame for all functions, regardless of
whether they are externally callable.

The first of the parameters passed to the window procedure is the window
handle, which is useful when you need to define the specific instance of the
window. The wMsg parameter indicates the message being sent to the window.
This isn't the MSG structure used in the message loop in WinMain, but a sim
ple, unsigned integer containing the message value. The remaining two param
eters, wParam and lParam, are used to pass message-specific data to the
window procedure. The names wParam and lParam come to us from the
Win16 days, when wParam was a 16-bit value and lParam was a 32-bit value.
In Windows CE, as in other Win32 operating systems, both the wParam and
lParam parameters are 32 bits wide.

Hello3 has a traditional window procedure that consists of a switch state
ment that parses the wMsg message ID parameter. The switch statement for
Hello3 contains two case statements, one to parse the WM_PAINT message and
one for the WM_DESTROY message. This is about as simple as a window pro
cedure can get.

WM_ PAINT
Painting the window, and therefore processing the WM_PAINT message, is one
of the critical functions of any Windows program. As a program processes the
WM_PAINT message, the look of the window is achieved. Aside from painting
the default background with the brush you specified when you registered the
window class, Windows provides no help for processing this message. The
lines of Hello3 that process the WM_PAINT messages are shown below here:

26 Part I Windows Programming Basics

case WM_PAINT:
II Get the size of the client rectangle
GetClientRect (hWnd, &rect);

hdc = BeginPaint ChWnd, &ps);
DrawText Chdc, TEXT ("Hello Windows CE!"), -1, &rect,

DT_CENTER I DT_VCENTER I DT_SINGLELINE);

EndPaint ChWnd, &ps);
return 0;

Before the window can be drawn, the routine must determine its size. In
a Windows program, a standard window is divided into two areas, the noncli
ent area and the client area. A window's title bar and its sizing border com
monly make up the nonclient area of a window, and Windows is responsible
for drawing it. The client area is the interior part of the window, and the appli
cation is responsible for drawing that. An application determines the size and
location of the client area by calling the GetClientRect function. The function
returns a RECT structure that contains left, top, right, and bottom elements that
delineate the boundaries of the client rectangle. The advantage of the client vs.
nonclient area concept is that an application doesn't have to account for draw
ing such standard elements of a window as the title bar.

Other versions of Windows supply a series of WM_NCxxx messages that
enable your applications to take over the drawing of the nonclient area. In Win
dows CE, windows seldom have title bars. Because there's so little nonclient
area, the Windows CE team decided not to send the nonclient messages to the
window procedure.

All drawing performed in a WM_PAINTmessage must be enclosed by two
functions, BeginPaint and EndPaint. The BeginPaint function returns an HDC,
or handle to a device context. A device context is a logical representation of a
physical display device such as a video screen or a printer. Windows programs
never modify the display hardware directly. Instead, Windows isolates the pro
gram from the specifics of the hardware with, among other tools, device con
texts.

BeginPaint also fills in a PAINTSTRUCT structure that contains a number
of useful parameters:

typedef struct tagPAINTSTRUCT
HOC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL fincUpdate;
BYTE rgbReserved[32];

} PAINTSTRUCT;

Chapter 1 Hello Windows CE 27

The hdc field is the same handle that's returned by the BeginPaint func
tion. The JErase field indicates whether the window procedure needs to redraw
the background of the window. The rcPaint field is a RECT structure that
defines the client area that needs repainting. Hello3 ignores this field and
assumes that the entire client window needs repainting for every WM_PAINT
message, but this field is quite handy when performance is an issue because
only part of the window might need repainting. Windows actually prevents
repainting outside the rcPaint rectangle, even when a program attempts to do
so. The other fields in the structure, }Restore, jlncUpdate, and rgbReserved, are
used internally by Windows and can be ignored by the application.

The only painting that takes place in Hello3 occurs in one line of text in
the window. To do the painting, Hello3 calls the DrawText function. I cover the
details of DrawText in Chapter 2, but if you look at the function it's probably
obvious to you that this call draws the string "Hello Windows CE" on the win
dow. After DrawText returns, EndPaint is called to inform Windows that the
program has completed its update of the window.

Calling EndPaint also validates any area of the window you didn't paint.
Windows keeps a list of areas of a window that are invalid (areas that need to
be redrawn) and valid (areas that are up-to-date). By calling the BeginPaint
and EndPaint pair, you tell Windows that you've taken care of any invalid areas
in your window, whether or not you've actually drawn anything in the window.
In fact, you must call BeginPaint and EndPaint, or validate the invalid areas of
the window by other means, or Windows will simply continue to send
WM_PAINT messages to the window until those invalid areas are validated.

WM_DESTROY
The other message processed by Hello3 is the WM_DESTROY message. The
WM_DESTROY message is sent when a window is about to be destroyed.
Because this window is the main window of the application, the application
should terminate when the window is destroyed. To make this happen, the
code processing the WM_DESTROY message calls PostQuitMessage. This func
tion places a WM_QUIT message in the message queue. The one parameter of
this function is the return code value that will be passed back to the application
in the wParam parameter of the WM_QUIT message.

As I've mentioned, when the message loop sees a WJ11_QU!Tmessage, it exits
the loop. The WinMain function then calls Termlnstance, which, in the case of
Hello3, does nothing but return. WinMain then returns, terminating the program.

Hello3 is the classic Windows program. This programming style is some
times call the Petzold method of Windows programming in homage to the ulti
mate guru of Windows programming, Charles Petzold. Charles's book
Programming Microsoft Windows is currently in its fifth edition and is still the
best book for learning Windows programming.

28 Part I Windows Programming Basics

HelloCE

I prefer a somewhat different layout of my Windows programs. In a sense,
it's simply a method of componentizing the function of a Windows program
which, for me, makes it much easier to copy parts of one program to another.
In the final example of this chapter, I introduce this programming style along
with a few extra features that are necessary for Windows CE applications.

One criticism of the typical SDK style of Windows programming has always
been the huge switch statement in the window procedure. The switch statement
parses the message to the window procedure so that each message can be han
dled independently. This standard structure has the one great advantage of
enforcing a similar structure across almost all Windows applications, making it
much easier for one programmer to understand the workings of another pro
grammer's code. The disadvantage is that all the variables for the entire window
procedure typically appear jumbled at the top of the procedure.

Over the years, I've developed a different style for my Windows programs.
The idea is to break up the WinMain and WinProc procedures into manageable
units that can be easily understood and easily transferred to other Windows
programs. WinMain is broken up into procedures that perform application ini
tialization, instance initialization, and instance termination. Also in WinMain is
the ubiquitous message loop that's the core of all Windows programs.

I break the window procedure into individual procedures, with each han
dling a specific message. What remains of the window procedure itself is a frag
ment of code that simply looks up the message that's being passed to see
whether a procedure has been written to handle that message. If so, that pro
cedure is called. If not, the message is passed to the default window procedure.

This structure divides the handling of messages into individual blocks that
can be more easily understood. Also, with greater isolation of one message
handling code fragment from another, you can more easily transfer the code
that handles a specific message from one program to the next. I first saw this
structure described a number of years ago by Ray Duncan in one of his old
"Power Programming" columns in PC Magazine. Ray is one of the legends in
the field of MS-DOS and OS/2 programming. I've since modified the design a
bit to fit my needs, but Ray should get the credit for this program structure.

Chapter 1 Hello Windows CE 29

The Code
The source code for HelloCE is shown in Listing 1-4.

HelloCE.h
II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0J))

11--
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*FXn)(HWND. UINT, WPARAM, LPARAM);
} ;

struct decodeCMD {
UINT Code;
LRESULT (*FXn)(HWND, WORD, HWND, WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function

11--------------------------- --
11 Function prototypes
II
HWND Initinstance (HINSTANCE, LPWSTR, int);
int Terminstance (HINSTANCE, int);

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

II Message handlers
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAMl;
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

Listing 1-4 The HelloCE program (continued)

30 Part I Windows Programming Basics

Listing 1-4 (continued)

HelloCE.cpp
I/.====;:::;:==;::::=.=====·===-=::::;:=·=-=;:::.=
II HelloCE - A simp1~ application for Windows CE
fl
II Written for the book Prngramming Windows CE
11 Copyright (C) 2003 Douglas Boling

#include <windows.h>
#include "helloce.h"

II For all that Wind~ws stuff
II Program-specific .stuff

/ /." .. c - - - - - - - - - - - - - - - c - - - - - " • - c c - c - - - - - - - - - - - - c c - - - - - - - - - - - - - - - - • - - - • - - - •

II, Global data
ll
co11st TCHAR szAppName[J =• TEXl< "HelloCE");
HINSTAl-fCE hlllst; ll Program

//Message dispatch table for MainWindowProc
const struct decodeUINT .. MainMessagesO = {

WM_PAlNl, DoPalritMain,

} ;

int WINAPI WinMain {HINSTANCE hinstirnce, HINSTANC.E hPrevlnstance,
LPWSTR lpCmdLine, int nCmdShow) {

}

MSG msg;
int re= 0;
HWND hwnclMain;

II Initialize this instance.
hwndMain = Initlnstanc!;'! (hinstance, lpCmdline, nCmdShowJ;
if (hwndMain == 0) return .0)110;

// Application message 1 oop
while (GetMessage (&rnsg, NULL. 0. 0.).) {

TranslateMes.sage (&msg);

Di spatchMessage C&msg):
}

ff Instance cleanup
return Terrninst<nrce (hinsta.nce, msg.wParam).;

Chapter 1 Hello Windows CE 31

11--
11 Initinstance - Instance initialization
II
HWND Initinstance (HINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow) {

WNDCLASS we;
HWND hWnd;

II Save program instance handle in global variable.
hinst = hinstance;

#if defined(WIN32_PLATFORM_PSPC)
II If Pocket PC, only allow one instance of the application
hWnd = FindWindow (szAppName. NULL);
if (hWnd) {

SetForegroundWindow ((HWNDlCC<DWORD)hWnd) I 0x01));
return 0;

#end if

II Register application main window class.
we.style = 0; II Window style
wc.lpfnWndProc MainWndProc:
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hinstance = hinstance;
wc.hlcon = NULL,

II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon

wc.hCursor = LoadCursor (NULL, IDC_ARROW);ll Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wc.lpszMenuName = NULL; II Menu name
we. lpszClassName = szAppName; II Window class name

if (RegisterClass <&we) == 0) return 0;

II Create main window.
hWnd = CreateWindow (szAppName.

TEXT("HelloCE"),
I I Style flags

II Window class
II Window title

WS_VISIBLE I WS_CAPTION I WS_SYSMENU,
CW_USEDEFAULT, II x position
CW_USEDEFAULT, // y position
CW_USEDEFAULT, II Initial width
CW_USEDEFAULT. II Initial height
NULL.
NULL,
hinstance,

II Parent
II Menu, must be null
II Application instance

(continued)

32 Part I Windows Programming Basics

Listing 1-4 (continued)

}

NULL); // Pointer to create
II parameters

if (!IsWindow (hWndll return 0; II Fail code if not created.

II Standard show and update calls
ShowWindow (hWnd. nCmdShowJ;
UpdateWindow (hWnd);
return hWnd;

11---------------------------- -------------------------------- --------
11 Terminstance - Program cleanup
II
int Termlnstance (HINSTANCE hinstance, int nDefRCJ {

return nDefRC;
}

II==
II Message handling procedures for main window
II
11-------------------------·------------~-----------------------

ll MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParamJ {
INT i;

II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0; 1 < dim(MainMessages); i++l {

if (wMsg == MainMessages[i].Code)
return C*MainMessages[i).Fxn)(hWnd, wMsg, wParam, lParam);

return DefWindowProc (hWnd, wMsg, wParam, lParamJ;

11--·-------------------
ll DoPaintMain - Process WM_PAINT message for window.
II
LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PAINTSTRUCT ps;
RECT rect;
HOC hdc;

II Get the size of the client rectangle
GetClientRect (hWnd, &rect);

Chapter 1 Hello Windows CE 33

hdc = BeginPaint (hWnd, &ps);
DrawText (hdc, TEXT ("Hello Windows CE!"), -1, &rect,

DT_CENTER I DT_VCENTER I DT_SINGLELINE);

EndPaint (hWnd, &ps);
return 0;

11--
11 DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {
PostQuitMessage (0);
return 0;

If you look over the source code for HelloCE, you'll see the standard boil
erplate for all programs in this book. A few variables defined globally follow
the defines and includes. I know plenty of good arguments why no global vari
ables should appear in a program, but I use them as a convenience that short
ens and clarifies the example programs in the book. Each program defines an
szAppName Unicode string to be used in various places in that program. I also
use the hlnst variable a number of places, and I'll mention it when I cover the
Initlnstance procedure. The final global structure is a list of messages along
with associated procedures to process the messages. This structure is used by
the window procedure to associate messages with the procedure that handles
them.

In HelloCE, WinMain has two basic functions: it calls Initlnstance (where
the application initialization code is kept), processes the message in the mes
sage loop, and calls Terminatelnstance when the message loop exits. In this
program template, WinMain becomes a boilerplate routine that almost never
changes. In general, the only changes that are made to WinMain concern mod
ification of the processing of the message loop to process for keyboard accel
erators, watch for modeless dialog box messages or other tasks.

lnitlnstance
The main task of Initlnstance is to register the main window's window class,
create the application's main window, and display it in the form specified in the
nCmdShow parameter passed to WinMain. There is also some conditionally
compiled code that, if compiled for a Pocket PC, prevents more than one
instance of the program from running at any one time.

The first task performed by Initlnstance is to save the program's instance
handle hlnstance in a global variable named hlnst. The instance handle for a

34 Part I Windows Programming Basics

program is useful at a number of points in a Windows application. I save the
value here because the instance handle is known, and this is a convenient place
in the program to store it.

When running on a Pocket PC, HelloCE uses FindWindow to see whether
another copy of itself is currently running. This function searches the top-level
windows in the system looking for ones that match the class name or the win
dow title or both. If a match is found, the window is brought to the foreground
with SetForegroundWindow. The routine then exits with a zero return code,
which causes WinMain to exit, terminating the application. I'll spend more time
talking about the Pocket PC-specific code in Chapter 17.

These Pocket PC-specific lines are enclosed in #if and #endif lines. These
lines tell the compiler to include them only if the condition of the #if statement
is true-in this case, if the constant WIN32_PLATFORM_PSPC is defined. This
constant is defined in the Project Settings for the project. A quick look at the Cl
C++ tab of the Project Settings dialog box shows an entry field for Preprocessor
Definitions. In this field, one of the definitions is $(CePlatform), which is a
placeholder for a registry value. Deep in the registry, under the key
[HKELLOCAL_MACHINE}\Software\Microsoft\ Windows CE Tools\Platjorm
Manager, you can find series of registry keys, one for each target platform
installed in eMbedded Visual C++. The CePlatform value is defined differently
depending on the target project. For Pocket PC and old Palm-size PC projects,
CePlatform is defined as WIN32_PLATFORM_PSPC.

The registering of the window class and the creation of the main window
are quite similar to those in the Hello3 example. The only difference is the use
of the global string szAppName as the class name of the main window class.
Each time I use this template, I change the szAppName string to match the pro
gram name. This keeps the window class names somewhat unique for the dif
ferent applications, enabling the FindWindow code in HelloCE to work.

That completes the Initlnstance function. At this point, the application's
main window has been created and updated. So even before we have entered
the message loop, messages have been sent to the main window's window pro
cedure. It's about time to look at this part of the program.

MainWndProc
You spend most of your programming time with the window procedure when
you're writing a Windows program. The window procedure is the core of the
program, the place where the actions of the program's windows create the per
sonality of the program.

It's in the window procedure that my programming style differs signifi
cantly from most Windows programs written without the help of a class library
such as MFC. For almost all of my programs, the window procedure is identical

Chapter 1 Hello Windows CE 35

to the one previously shown in HelloCE. Before continuing, I repeat: this pro
gram structure isn't specific to Windows CE. I use this style for all my Windows
applications, whether they are for Windows 3.1, Windows Me, Windows XP, or
Windows CE.

This style reduces the window procedure to a simple table lookup func
tion. The idea is to scan the MainMessages table defined early in the C file for
the message value in one of the entries. If the message is found, the associated
procedure is then called, passing the original parameters to the procedure pro
cessing the message. If no match is found for the message, the DejWindowProc

function is called. DejWindowProc is a Windows function that provides a
default action for all messages in the system, which frees a Windows program
from having to process every message being passed to a window.

The message table associates message values with a procedure to process
it. The table is listed below:

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[J = {

WM_PAINT, DoPaintMain,
WM_DESTROY, DoDestroyMain,

} ;

The table is defined as a constant, not just as good programming practice
but also because it's helpful for memory conservation. Since Windows CE pro
grams can be executed in place in ROM, data that doesn't change should be
marked constant. This allows the Windows CE program loader to leave such
constant data in ROM instead of loading a copy into RAM, thus saving precious
RAM.

The table itself is an array of a simple two-element structure. The first
entry is the message value, followed by a pointer to the function that processes
the message. While the functions could be named anything, I'm using a consis
tent structure throughout the book to help you keep track of them. The names
are composed of a Do prefix (as a bow to object-oriented practice), followed by
the message name and a suffix indicating the window class associated with the
table. So DoPaintMain is the name of the function that processes WM_PAJNT
messages for the main window of the program.

OoPaintMain and OoOestroyMain
The two message processing routines in HelloCE are DoPaintMain and DoDe
stroyMain. They mimic the function of the case clauses in Hello3. The advan
tage of the separate routines is that the code and their local variables are
isolated to the routine. In Hello3's window procedure, the local variables spe
cific to the paint code are bundled at the top of the routine. The encapsulation

36 Part I Windows Programming Basics

of the code makes it easy to cut and paste the code into the next application
you write.

Running HelloCE
After you've entered the program into eMbedded Visual C++ and built it, you
can execute it remotely from inside Visual C++ by selecting Execute Hel
loCE.exe from the Build menu or by pressing Ctrl-FS. The program displays the
Hello Windows CE text in the middle of an empty window, as shown in Figure
1-3. Figure 1-4 shows HelloCE running on a Pocket PC. Tapping on the Close
button on the title bar causes Windows CE to send a WM_ CLOSE message to the
window. Although HelloCE doesn't explicitly process the WM_ CLOSE message,
the DefWindowProc procedure enables default processing by destroying the
main window. As the window is being destroyed, a WM_DESTROY message is
sent, which causes PostQuitMessage to be called.

Figure 1-3 The HelloCE window on an embedded Windows CE system

As I said, HelloCE is a very basic Windows CE program, but it gives you a
skeleton application on which you can build. If you look at the file HelloCE.exe
using Explorer, you'll see that the program is represented by a generic icon.
When HelloCE is running, the button on the taskbar in Figure 1-3 representing
HelloCE has no icon displayed next to the text. Adding a custom icon to a pro
gram and how the DrawText function works are a couple of the topics I'll
address in the next few chapters.

Chapter 1 Hello Windows CE 37

IQ] Hello2 9 :53a

Hello World

Figure 1-4 The HelloCE window on a Pocket PC

Figure 1-4 shows a problem that HelloCE has running on a Pocket PC. The
HelloCE window extends to the bottom of the screen. Depending on how you
switch between applications, the button to display the SIP may appear over the
top of the HelloCE window. Applications designed specifically for the Pocket
PC will create a menu bar at the bottom of the screen that among other things
contains the button necessary to display the soft keyboard. It must also resize its
window manually to avoid covering, or being covered, by the menu bar. We'll
see later in the book how to design an application specifically for the Pocket PC
user interface. Rest assured that the lessons covering Windows CE in the early
parts of the book apply as much to Pocket PC devices as to other Windows CE
systems.

Drawing on the Screen
In Chapter 1, the example program HelloCE had one task: to display a line of
text on the screen. Displaying that line took only one call to DrawText, with
Windows CE taking care of such details as the font and its color, the positioning
of the line of text inside the window, and so forth. Given the power of a graph
ical user interface (GUI), however, an application can do much more than sim
ply print a line of text on the screen. It can craft the look of the display down
to the most minute of details.

Over the life of the Microsoft Windows operating system, the number of
functions available for crafting these displays has expanded dramatically. With
each successive version of Windows, functions have been added that extend
the tools available to the programmer. As functions were added, the old ones
remained so that even if a function had been superseded by a new function, old
programs would continue to run on the newer versions of Windows. The
approach in which function after function is piled on while the old functions
are retained for backward compatibility was discontinued with the initial ver
sion of Windows CE. Because of the requirement to produce a smaller version
of Windows, the CE team took a hard look at the Win32 API and replicated only
the functions absolutely required by applications written for the Windows CE
target market.

One of the areas of the Win32 API hardest hit by this reduction was graph
ical functions. It's not that you now lack the functions to do the job-it's just
that the high degree of redundancy in the Win32 API led to some major pruning
of the graphical functions. An added challenge for the programmer is that dif
ferent Windows CE platforms have subtly different sets of supported APis. One
of the ways in which Windows CE graphics support differs from that of its desk
top cousins is that Windows CE doesn't support the different mapping modes
available under other implementations of Windows. Instead, the Windows CE

39

40 Part I Windows Programming Basics

device contexts are always set to the MM_TEXT mapping mode. Coordinate
transformations are also not supported under Windows CE. While these fea
tures can be quite useful for some types of applications, such as desktop pub
lishing, their necessity in the Windows CE environment of small portable
devices isn't as clear. So when you're reading about the functions and tech
niques used in this chapter, remember that some might not be supported on all
platforms. So that a program can determine what functions are supported, Win
dows has always had the GetDeviceCaps function, which returns the capabilities
of the current graphic device. Throughout this chapter, I'll refer to GetDevice
Caps when determining what functions are supported on a given device.

This chapter, like the other chapters in Part I of this book, reviews the
drawing features supported by Windows CE. One of the most important facts to
remember is that while Windows CE doesn't support the full Win32 graphics
API, its rapid evolution has resulted in it supporting some of the newest func
tions in Win32-some so new that you might not be familiar with them. This
chapter shows you the functions you can use and how to work around the
areas where certain functions aren't supported under Windows CE.

Painting Basics
Historically, Windows has been subdivided into three main components: the
kernel, which handles the process and memory management; User, which
handles the windowing interface and controls; and the Graphics Device Inter
face, or GDI, which performs the low-level drawing. In Windows CE, User
and GDI are combined into the Graphics Windowing and Event handler, or
GWE. At times, you might hear a Windows CE programmer talk about the
GWE. The GWE is nothing really new-just a different packaging of standard
Windows parts. In this book, I usually refer to the graphics portion of the
GWE under its old name, GDI, to be consistent with standard Windows pro
gramming terminology.

But whether you're programming for Windows CE, Windows 2000, or
Windows XP, there's more to drawing than simply handling the WM_PAINT
message. It's helpful to understand just when and why a WM_PAINTmessage is
sent to a window.

Valid and Invalid Regions
When for some reason an area of a window is exposed to the user, that area,
or region, as it's referred to in Windows, is marked invalid. When no other
messages are waiting in an application's message queue and the application's

Chapter 2 Drawing on the Screen 41

window contains an invalid region, Windows sends a WM_PAINT message to
the window. As mentioned in Chapter 1, any drawing performed in response to
a WM_PAINT message is couched in calls to BeginPaint and EndPaint. Begin
Paint actually performs a number of actions. It marks the invalid region as
valid, and it computes the clipping region. The clipping region is the area to
which the painting action will be limited. BeginPaint then sends a
WM_ERASEBACKGROUND message, if needed, to redraw the background, and
it hides the caret-the text entry cursor-if it's displayed. Finally BeginPaint
retrieves the handle to the display device context so that it can be used by the
application. The EndPaint function releases the device context and redisplays
the caret if necessary. If no other action is performed by a WM_PAINT proce
dure, you must at least call BeginPaint and EndPaint if only to mark the invalid
region as valid.

Alternatively, you can call to ValidateRect to blindly validate the region.
But no drawing can take place in that case because an application must have a
handle to the device context before it can draw anything in the window.

Often an application needs to force a repaint of its window. An applica
tion should never post or send a WM_PAINT message to itself or to another
window. Instead, you use the following function:

BOOL InvalidateRect (HWND hWnd, const RECT *lpRect, BOOL bErase);

Notice that InvalidateRect doesn't require a handle to the window's device
context, only to the window handle itself. The lpRect parameter is the area of
the window to be invalidated. This value can be NULL if the entire window is to
be invalidated. The bErase parameter indicates whether the background of the
window should be redrawn during the BeginPaint call as mentioned above.
Note that unlike other versions of Windows, Windows CE requires that the
h Wnd parameter be a valid window handle.

Device Contexts
A device context, often referred to simply as a DC, is a tool that Windows uses
to manage access to the display and printer, although for the purposes of this
chapter I'll be talking only about the display. Also, unless otherwise mentioned,
the explanation that follows applies to Windows in general and isn't specific to
Windows CE.

Windows applications never write directly to the screen. Instead, they
request a handle to a display device context for the appropriate window and
then, using the handle, draw to the device context. Windows then arbitrates
and manages getting the pixels from the DC to the screen.

42 Part I Windows Programming Basics

BeginPaint, which should be called only in a WM_PAINTmessage, returns
a handle to the display DC for the window. An application usually performs its
drawing to the screen during the WM_PAJNT messages. Windows treats paint
ing as a low-priority task, which is appropriate since having painting at a higher
priority would result in a flood of paint messages for every little change to the
display. Allowing an application to complete all its pending business by pro
cessing all waiting messages results in all the invalid regions being painted effi
ciently at once. Users don't notice the minor delays caused by the low priority
of the WM_PAINT messages.

Of course, there are times when painting must be immediate. An example
of such a time might be when a word processor needs to display a character
immediately after its key is pressed. To draw outside a WM_PAINTmessage, the
handle to the DC can be obtained using this:

HOC GetOC CHWNO hWnd);

GetDC returns a handle to the DC for the client portion of the window.
Drawing can then be performed anywhere within the client area of the window
because this process isn't like processing inside a WM_PAINT message; there's
no clipping to restrict you from drawing in an invalid region.

Windows CE supports another function that can be used to receive the
DC. It is

HOC GetOCEx (HWNO hWnd, HRGN hrgnClip, OWORO flags);

GetDCEx allows you to have more control over the device context
returned. The new parameter, hrgnClip, lets you define the clipping region,
which limits drawing to that region of the DC. The flags parameter lets you
specify how the DC acts as you draw on it. Note that Windows CE doesn't sup
port the following flags: DCX_PARENTCLIP, DCX_NORESETATTRS,
DCX_LOCKWINDOWUPDATE, and DCX_ VALIDATE.

After the drawing has been completed, a call must be made to release the
device context:

int ReleaseOC (HWNO hWnd, HOC hOC);

Device contexts are a shared resource, and therefore an application must
not hold the DC for any longer than necessary.

While GetDC is used to draw inside the client area, sometimes an applica
tion needs access to the nonclient areas of a window, such as the title bar. To
retrieve a DC for the entire window, make the following call:

HOC GetWindowOC (HWNO hWnd);

Chapter 2 Drawing on the Screen 43

As before, the matching call after the drawing has been completed for
GetWindowDC is ReleaseDC.

The DC functions under Windows CE are identical to the device context
functions under Windows XP. This should be expected because DCs are the
core of the Windows drawing philosophy. Changes to this area of the API
would result in major incompatibilities between Windows CE applications and
their desktop counterparts.

Writing Text
In Chapter 1, the HelloCE example displayed a line of text using a call to Draw
Text. That line from the example is shown here:

DrawText (hdc, TEXT ("Hello Windows CE!"), -1, &rect,
DT_CENTER I DT_VCENTER I DT_SINGLELINE);

DrawText is a fairly high-level function that allows a program to display
text while having Windows deal with most of the details. The first few param
eters of DrawText are almost self-explanatory. The handle of the device context
being used is passed, along with the text to display couched in a TEXT macro,
which declares the string as a Unicode string necessary for Windows CE. The
third parameter is the number of characters to print, or as is the case here, a -1
indicating that the string being passed is null terminated and Windows should
compute the length.

The fourth parameter is a pointer to a rect structure that specifies the for
matting rectangle for the text. DrawText uses this rectangle as a basis for format
ting the text to be printed. How the text is formatted depends on the function's
last parameter, the formatting flags. These flags specify how the text is to be
placed within the formatting rectangle, or in the case of the DT_CALCRECTflag,
the flags have DrawText compute the dimensions of the text that is to be printed.
DrawText even formats multiple lines with line breaks automatically computed.
In the case of HelloCE, the flags specify that the text should be centered hori
zontally (DT_CENTER), and centered vertically (DT_ VCENTER). The
DT_ VCENTER flag works only on single lines of text, so the final parameter,
DT_SINGLELINE, specifies that the text shouldn't be flowed across multiple lines
if the rectangle isn't wide enough to display the entire string.

Another way to draw text is by employing the following function:

BOOL ExtTextOut (HDC hdc, int X, int Y, UINT fuOptions,
const RECT *lprc, LPCTSTR lpString,
UINT cbCount, const int *lpDx);

44 Part I Windows Programming Basics

The ExtTextOut function has a few advantages over DrawText. First, Ext
TextOut tends to be faster for drawing single lines of text. Second, the text isn't
formatted inside a rectangle; instead, x and y starting coordinates are passed,
specifying where the text will be drawn. Generally, the point defined by the
coordinates is the upper left corner of the rectangle, but this can be changed
with the text alignment settings of the DC. The rect parameter that's passed is
used as a clipping rectangle or, if the background mode is opaque, the area
where the background color is drawn. This rectangle parameter can be NULL if
you don't want any clipping or opaquing. The next two parameters are the text
and the character count. The last parameter, nxtTextOut, allows an application
to specify the horizontal distance between adjacent character cells.

Windows CE differs from other versions of Windows in having only these
two text drawing functions for displaying text. You can emulate most of what you
can do with the text functions typically used in other versions of Windows, such
as TextOut and TabbedTextOut, by using either DrawText or ExtTextOut. This is
one of the areas in which Windows CE has broken with earlier versions of Win
dows, sacrificing backward compatibility to achieve a smaller operating system.

Device Context Attributes
What I haven't mentioned yet about HelloCE's use of DrawText is the large
number of assumptions the program makes about the DC configuration when
displaying the text. Drawing in a Windows device context takes a large number
of parameters, such as foreground and background color and how the text
should be drawn over the background as well as the font of the text. Instead of
specifying all these parameters for each drawing call, the device context keeps
track of the current settings, referred to as attributes, and uses them as appro
priate for each call to draw to the device context.

Foreground and Background Colors
The most obvious of the text attributes are the foreground and background
color. Two functions, SetTextColor and GetTextColor, allow a program to set
and retrieve the current color. These functions work well with both gray-scale
screens and the color screens supported by Windows CE devices.

To determine how many colors a device supports, use GetDeviceCaps as
mentioned previously. The prototype for this function is the following:

int GetDeviceCaps (HDC hdc, int nlndex);

You need the handle to the DC being queried because different DCs have
different capabilities. For example, a printer DC differs from a display DC. The
second parameter indicates the capability being queried. In the case of returning

Chapter 2 Drawing on the Screen 45

the colors available on the device, the NUMCOLORS value returns the number
of colors as long as the device supports 256 colors or fewer. Beyond that, the
returned value for NUMCOLORS is -1 and the colors can be returned using the
BITSPIXEL value, which returns the number of bits used to represent each
pixel. This value can be converted to the number of colors by raising 2 to the
power of the BITSPIXEL returned value, as in the following code sample:

nNumColors = GetDeviceCaps (hdc, NUMCOLORS);
if (nNumColors == -1)

nNumColors = 1 << GetDeviceCaps (hdc, BITSPIXEL);

Text Alignment
When displaying text with ExtTextOut, the system uses the text alignment of the
DC to determine where to draw the text. The text can be aligned both horizon
tally and vertically, using this function:

UINT WINAPI SetTextAlign (HDC hdc, INT fmode);

The alignment flags passed to /mode are as follows:

• TA_LEFT The left edge of the text is aligned with the reference
point.

• TA_RIGHT The right edge of the text is aligned with the reference
point.

• TA_TOP The top edge of the text is aligned with the reference point.

• TA_CENTER The text is centered horizontally with the reference
point.

• TA_BOTTOM The bottom edge of the text is aligned with the ref
erence point.

• TA_BASELINE The base line of the text is aligned with the refer
ence point.

• TA_NOUPDATECP The current point of the DC is not updated
after the ExtTextOut call.

• TA_UPDATECP The current point of the DC is updated after the
ExtTextOut call.

The reference point in the description refers to the x and y coordinates
passed to the ExtTextOut function. For each call to SetTextAlign, a flag for ver
tical alignment and a flag for horizontal alignment can be combined.

46 Part I Windows Programming Basics

Because it might be difficult to visualize what each of these flags does, Fig
ure 2-1 shows the results of each ·flag. In the figure, the X is the reference point.

"rA_LEFT

TA_RIGHf

"rA_TOP

TA_C?NTER

JA_BASELINE

JA_BOTTOM

Figure 2-1 The relationship between the current drawing point and the
text alignment flags

Drawing Mode
Another attribute that affects text output is the background mode. When letters
are drawn on the device context, the system draws.the letters themselves in the
foreground color. The.space between the letters is another matter. If the back
ground mode is set to opaque, the space is drawn with the current background
color: But if the background mode is set to transparent, the space between the
letters is left in whatever state it was in before the text was drawn. While this
might not seem like a big difference, imagine a window background filled with
a drawing or graph. If text is written over the top of the graph and the back
ground mode is set to opaque, the area around the text will be filled, and the
background color will overwrite the graph. If the background mode is transpar
ent, the text will appear as if it had been placed on the graph, and the graph
will show through between the letters of the text.

The TextDemo Example Program
The TextDemo program, shown in Listing 2-1, demonstrates the relationships
among the text color, the background color, and the background mode.

tmoemo.h
/./~~~,~;:::~~~~~~~·=~~~F#~'=#=:====;;:~::!:;:::==:;:~=~~=~==~=~~:s;i==~~====.~~=

. }1.H.eader file ...
II:

·.·.·•11 R~:turn$.number. of ~lem,.ellt~ ·
:ffod~f1i'!e•dimCx> (sfzf:!ol'CXJ ·l·•SizeofCx[0]})

Listing 2-1 The TextDemo program

Chapter 2 Drawing on the Screen 47

II Generic defines and data types
II
struct decodeUINT

UINT Code;
II Structure associates
II messages
II with a function.

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD {
UINT Code;

II Structure associates
II menu IDs with a

LRESULT (*FXn)(HWND, WORD, HWND, WORD); II function.
} ;

11--
11 Function prototypes
II
HWND Initinstance (HINSTANCE, LPWSTR, int);
int Termlnstance (HINSTANCE, int);

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM. LPARAM);

II Message handlers
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

TextDemo.cpp
II==
II TextDemo - Text output demo
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
#include <windows.h>
#include "TextDemo.h"

II For all that Windows stuff
II Program-specific stuff

11------- ---------- ---

11 Global data
II
const TCHAR szAppName[]
HINSTANCE hlnst;

TEXT ("TextDemo");
II Program instance handle

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {

WM_PAINT, DoPaintMain,
WM_DESTROY, DoDestroyMain,

} ;

(continued)

48 Part I Windows Programming Basics

Listing 2-1 (continued)

//==
II Program Entry Point
II
int WINAPI WinMain CHINSTANCE hinstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) {
MSG msg;
int re = 0;
HWND hwndMain;

II Initialize this instance.
hwndMain = Initlnstance (hinstance, lpCmdLine, nCmdShowl;
if (hwndMain == 0l

return 0xl0;

II Application message loop
while (GetMessage (&msg, NULL, 0, 0)) {

TranslateMessage C&msg);
DispatchMessage <&msg);

}

II Instance cleanup
return Terminstance Chlnstance, msg.wParam);

11---· -------------------
11 Initinstance - Instance initialization
II
HWND Initinstance (HINSTANCE hlnstance, LPWSTR lpCmdLine, int nCmdShowl{

WNDCLASS we;
HWND hWnd;

hinst = hinstance; II Save handle in global variable.

#if definedCWIN32_PLATFORM_PSPCl
II If Pocket PC, allow only one instance of the application.
hWnd = FindWindow (szAppName, NULL);
if (hWndl {

SetForegroundWindow ((HWNDlCCCDWORDlhWndl I 0x01));
return 0;

#end if
II Register application main window class.
we.style= 0; // Window style
wc.lpfnWndProc MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hinstance = hinstance;
wc.hicon = NULL,

II Callback function
II Extra class data
II Extra window data
II Owner handle
JI Application icon

Chapter 2 Drawing on the Screen 49

wc.hCursor = LoadCursor (NULL, IDC_ARROWJ;// Default cursor
wc.hbrBackground = (HBRUSHJ GetStockObject (WHITE_BRUSHJ;
wc.lpszMenuName = NULL: //Menu name
wc.lpszClassName = szAppName; //Window class name

if (RegisterClass (&we) == 0) return 0;

II Create main window.
hWnd = CreateWindowEx (WS_EX_NODRAG,

szAppName,
TEXT("TextDemo"),
JI Style flags

II Ex Style flags
JI Window class
JI Window title

WS_VISIBLE I WS_CAPTION I WS_SYSMENU,
CW_USEDEFAULT, // x position
CW_USEDEFAULT, // y p-0sition
CW_USEDEFAULT, // Initial width
CW_USEDEFAULT,
NULL,

JI Initial height
II Parent

NULL,
hinstance,
NULL);

II Menu, must be null
II Application instance
II Pointer to create
II Parameters

II Return fail code if window not created.
if ((!hWndl 11 (!IsWindow (hWndlll return 0;

II Standard show and update calls
ShowWindow (hWnd, nCmdShowl;
UpdateWindow (hWnd);
return hWnd;

!l---------·---------------------------------·--------------------------
1/ Terminstance - Program cleanup
II
int Terminstance (HINSTANCE hinstance, int nDefRCl {

return nDefRC;

!!==
II Message handling procedures for MainWindow
JI
!!--
!/ MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram) {
INT i;
II
II Search message list to see if we need to handle this

(continued)

50 Part I Windows Programming Basics

Listing 2-1 (continued)

I I mess1Jge. If in list, cal1 procedure.
II
for (i = 0; i < dim(MainMessages); i++l {

if CwMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxn)ChWnd, wMsg, wParam, lParam);

return DefWindowProc (hWnd, wMsg, wParam. lParam);

/l-------------·-·---·--
11 DoPaintMain - Process WM_PAINT message -for window.
II
LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PAI NT ST RU CT Ps:
RECT rec.t. rec.tCli :
HBRUSH hbrOld;
HOC hdc;
INT i, cy;
DWORD dwColorTable[J {0x00000080, 0x88$08080,

0x00cccccc, 0x00ffffff};

GetClientRect (hWnd, &rectCli}>

hdc = BeginPaint (hWnd, &ps);

II Get the height and length of the string.
DrawText Chdc, TEXT ("Hello Windows CE"), -1, &rect,

DT_CALCRECT I DT_CENTER I DT~SINGLELINE);

cy.= rect,bottom - rect~top + 5;

II Draw _black rectan~le on right half of window.
hbrOl.d = {HBRUSH)SelectObject (hdc, GetStock;Object (BLACK_l;lRUSHll:
Rec_t~ngl e {"t)dc, r~~tCl i. 1 eft +Jrect.Cli. right - r~ctClL left) /. 2.

rectCl ; .. top, rectCl L right. rectCli .bottom);
S~lectOpject (hdc,- ·hbti01d)-; ·. . ··.. .. ·

}

rectCli .top+= cy;
rectCli .bottom+= cy;

SetBkMode (hdc, OPAQUE);
for (i = 0; i < 4; i++) {

Chapter 2 Drawing on the Screen 51

SetTextColor (hdc, dwColorTable[i]);
SetBkColor (hdc, dwColorTable[3-i]);

DrawText (hdc, TEXT ("Hello Windows CE"), -1, &rectCli.
DT_CENTER I DT_SINGLELINE);

rectCli .top+= cy;
rectCli .bottom+= cy;

EndPaint (hWnd. &psl;
return 0;

11--
11 DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PostQuitMessage (0);
return 0;

}

The meat of TextDemo is in the OnPaintMain function. The first call to
DrawText doesn't draw anything in the device context. Instead, the
DT_CALCRECTflag instructs Windows to store the dimensions of the rectangle
for the text string in rect. This information is used to compute the height of the
string, which is stored in cy. Next, a black rectangle is drawn on the right side
of the window. I'll talk about how a rectangle is drawn later in the chapter; it's
used in this program to produce two different backgrounds before the text is
written. The function then prints out the same string using different foreground
and background colors and both the transparent and opaque drawing modes.
The result of this combination is shown in Figure 2-2.

The first four lines are drawn using the transparent mode. The second four
are drawn using the opaque mode. The text color is set from black to white so
that each line drawn uses a different color, while at the same time the back
ground color is set from white to black. In transparent mode, the background
color is irrelevant because it isn't used; but in opaque mode, the background
color is readily apparent on each line.

52 Part I Windows Programming Basics

Fonts

Figure 2-2 TextDemo shows how the text color, background color, and
background mode relate.

If the ability to set the foreground and background colors were all the flexibility
that Windows provided, we might as well be back in the days of MS-DOS and
character attributes. Arguably, the most dramatic change from MS-DOS is Win
dows' ability to change the font used to display text. All Windows operating
systems are built around the concept of W'YS/W'YG-what you see is what you
get-and changeable fonts are a major tool used to achieve that goal.

Two types of fonts appear in all Windows operating systems-raster and
TrueType. Raster fonts are stored as bitmaps, small pixel-by-pixel images, one
for each character in the font. Raster fonts are easy to store and use but have
one major problem: they don't scale well. Just as a small picture looks grainy
when blown up to a much larger size, raster fonts begin to look blocky as they
are scaled to larger and larger font sizes.

TrueType fonts solve the scaling problem. Instead of being stored as
images, each TrueType character is stored as a description of how to draw the
character. The font engine, which is the part of Windows that draws characters
on the screen, then takes the description and draws it on the screen in any size
needed. A Windows CE system can support either TrueType or raster fonts, but
not both. Fortunately, the programming interface is the same for both raster and
TrueType fonts, relieving Windows developers from worrying about the font
technology in all but the most exacting of applications.

The font functions under Windows CE closely track the same functions
under other versions of Windows. Let's look at the functions used in the life of
a font, from creation through selection in a DC and finally to deletion of the
font. How to query the current font as well as enumerate the available fonts is
also covered in the following sections.

Chapter 2 Drawing on the Screen 53

Creating a Font
Before an application is able to use a font other than the default font, the font
must be created and then selected into the device context. Any text drawn in a
DC after the new font has been selected into the DC will then use the new font.

Creating a font in Windows CE can be accomplished this way:

HFONT CreateFontindirect Cconst LOGFONT *lplf);

This function is passed a pointer to a LOGFONT structure that must be
filled with the description of the font you want.

typedef struct tagLOGFONT
LONG l fHei ght;
LONG lfWidth;
LONG lfEscapement;
LONG lfOrientation;
LONG lfWeight;
BYTE lfitalic;
BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQua l ity;
BYTE lfPitchAndFamily;
TCHAR lfFaceName[LF_FACESIZEJ;

LOGFONT;

The (/Height field specifies the height of the font in device units. If this
field is 0, the font manager returns the default font size for the font family
requested. For most applications, however, you want to create a font of a par
ticular point size. The following equation can be used to convert point size to
the (/Height field:

lfHeight = -1 * (PointSize * GetDeviceCaps (hdc, LOGPIXELSY) I 72);

Here GetDeviceCaps is passed a LOGPIXELSY field instructing it to return
the number of logical pixels per inch in the vertical direction. The 72 is the
number of points (a typesetting unit of measure) per inch.

The (/Width field specifies the average character width. Since the height of
a font is more important than its width, most programs set this value to 0. This
tells the font manager to compute the proper width based on the height of the
font. The ljEscapement and lfOrientation fields specify the angle in tenths of
degrees of the base line of the text and the x-axis. The (/Weight field specifies
the boldness of the font from 0 through 1000, with 400 being a normal font and
700 being bold. The next three fields specify whether the font is to be italic,
underline, or strikeout.

54 Part I Windows Programming Basics

The lpCharSet field specifies the character set you have chosen. This field
is more important in international releases of software, where it can be used to
request a specific language's character set. The lfOutPrecision field can be used
to specify how closely Windows matches your requested font. Among a num
ber of flags available, an OUT_TT_ONLY_PRECIS flag specifies that the font cre
ated must be a TrueType font. The lfClipPrecision field specifies how Windows
should clip characters that are partially outside the region being displayed.

The lfQuality field is set to one of the following:

• DEFAULT_QUALITY Default system quality.

• DRAFT_QUALITY Sacrifice quality for speed.

• CLEARTYPE_QUALITY Render text using ClearType technology.

• CLEARTYPE_COMPAT_QUALITY Render text using ClearType.
Use the same spacing as non-ClearType font.

ClearType is a text display technology that provides a sharper look for
fonts using the ability to address the individual red, green, and blue LEDs that
make up a pixel on a color LCD display. Depending on the system, ClearType
might not be supported or it might be enabled for all fonts in the system. For
systems that support ClearType but don't enabled it globally, using the
CLEARTYPE_QUALITY or CLEARTYPE_COMPAT_QUALITY flags will create a
font that will be rendered using ClearType. Because ClearType doesn't improve
the look of all fonts, you should test to see whether applying ClearType
improves the rendering of your chosen font.

The ifPitchAndFamily field specifies the family of the font you want. This
field is handy when you're requesting a family such as Swiss, which features
proportional fonts without serifs, or a family such as Roman, which features
proportional fonts with serifs, but you don't have a specific font in mind. You
can also use this field to specify simply a proportional or a monospaced font
and allow Windows to determine which font matches the other specified char
acteristics passed into the LOGFONT structure. Finally, the ljFaceName field can
be used. to specify the typeface name of a specific font.

When CreateFontlndirect is called with a filled LOGFONT structure, Win
dows creates a logical font that best matches the characteristics provided. To
use the font, however, the final step of selecting the font into a device context
must be made.

Selecting a Font into a Device Context
You select a font into a DC by using the following function:

HGDIOBJ SelectObject (HOC hdc, HGDIOBJ hgdiobj);

Chapter 2 Drawing on the Screen 55

This function is used for more than just setting the default font; you use
this function to select other GDI objects, as we shall soon see. The function
returns the previously selected object (in our case, the previously selected font),
which should be saved so that it can be selected back into the DC when we're
finished with the new font. The line of code looks like the following:

hOldFont = (HFONT)SelectObject (hdc, hFont);

When the logical font is selected, the system determines the closest match
to the logical font from the fonts available in the system. For devices without
TrueType fonts, this match could be a fair amount off from the specified param
eters. Because of this, never assume that just because you've requested a par
ticular font, the font returned exactly matches the one you requested. For
example, the height of the font you asked for might not be the height of the
font that's selected into the device context.

Querying a Font's Characteristics
To determine the characteristics of the font that is selected into a device con
text, a call to

BOOL GetTextMetrics CHDC hdc, LPTEXTMETRIC lptm);

returns the characteristics of that font. A TEXTMETRIC structure is returned with
the information and is defined as

typedef struct tagTEXTMETRIC
LONG tmHeight;
LONG tmAscent;
LONG tmDescent;
LONG tminternalLeading;
LONG tmExternalLeading;
LONG tmAveCharWidth;
LONG tmMaxCharWidth;
LONG tmWeight;
LONG tmOverhang;
LONG tmDigitizedAspectX;
LONG tmDigitizedAspectY;
char tmFi rstCha r;
char tmLastChar;
char tmDefaultChar;
char tmBreakChar;
BYTE tmitalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmPitchAndFamily;
BYTE tmCharSet;

TEXTMETRIC;

56 Part I Windows Programming Basics

The TEXTll!IETRIC structure contains a number of the fields we saw in the
LOGFONT structure, but this time the values listed in TEXTMETRIC are the val
ues of the font that's selected into the device context. Figure 2-3 shows the rela
tionship of some of the fields to actual characters.

Aside from determining whether you really got the font you wanted, the
GetTextmetrics call has another valuable purpose-determining the height of
the font. Recall that in TextDemo, the height of the line was computed using a
call to DrawText. While that method is convenient, it tends to be slow. You can
use the TEXTMETRIC data to compute this height in a much more straightfor
ward manner. By adding the tmHeight field, which is the height of the charac
ters, to the tmExternalLeading field, which is the distance between the bottom
pixel of one row and the top pixel of the next row of characters, you can deter
mine the vertical distance between the baselines of two lines of text.

tmExterna/Leading
a~rUnrf'~'''''''"'~"'''''''''"'"'''"'''"''''"''"''''''"'"~'~''"" ... >~-·~~··· ..

tmAscent

tmDescent

Figure 2-3 Fields from the TEXTMETRIC structure and how they relate
to a font

Although GetTextMetrics is great for determining the height of a font, it
provides only the average and maximum widths of a font. If more detail is
needed for a TrueType font, the function

BOOL GetCharABCWidths (HOC hdc, UINT uFirstChar, UINT ulastChar,
LPABC l pabc);

can be used. GetCharABCWidths returns the "ABC" widths of a series of char
acters delineated by the uFirstChar and uLastChar parameters. The font exam-

Chapter 2 Drawing on the Screen 57

ined is the font currently selected in the device context specified by the hdc
parameter. The ABC structure is defined as follows:

typedef struct _ABC
int abcA;
UINT abcB;
int abcC;

ABC;

The abcA field is the distance to add to the current position before draw
ing the character, or glyph. The abcB field is the width of the glyph, while the
abcC field is the distance to add to the current position after drawing the glyph.
Both abcA and abcC can be negative to indicate underhangs and overhangs.

To examine the widths of bitmap fonts, GetCharWidth32 can be used. It
returns an array of character widths for each character in a range of characters.

Destroying a Font
Like other GDI resources, fonts must be destroyed after the program has fin
ished using them. Failure to delete fonts before terminating a program causes
what's known as a resource leak-an orphaned graphic resource that's taking
up valuable memory but that's no longer owned by an application.

To destroy a font, first deselect it from any device contexts it has been
selected into. You do this by calling SelectObject; the font passed is the font that
was returned by the original SelectObject call made to select the font. After the
font has been deselected, a call to

BOOL DeleteObject (HGDIOBJ hObject);

(with hObject containing the font handle) deletes the font from the system.
As you can see from this process, font management is no small matter in

Windows. The many parameters of the LOGFONT structure might look daunt
ing, but they give an application tremendous power to specify a font exactly.

One problem when dealing with fonts is determining just what types of
fonts are available on a specific device. Windows CE devices come with a set of
standard fonts, but a specific system might have been loaded with additional
fonts by either the manufacturer or the user. Fortunately, Windows provides a
method for enumerating all the available fonts in a system.

Enumerating Fonts
To determine what fonts are available on a system, Windows provides this
function:

int EnumFontFamilies (HOC hdc, LPCTSTR lpszFamily,
FONTENUMPROC lpEnumFontFamProc, LPARAM lParam);

58 Part I Windows Programming Basics

This function lets you list all the font families as well as each font within
a family. The first parameter is the obligatory handle to the device context. The
second parameter is a string to the name of the family to enumerate. If this
parameter is null, the function enumerates each of the available families.

The third parameter is something different-a pointer to a function pro
vided by the application. The function is a callback function that Windows calls
once for each font being enumerated. The final parameter, lParam, is a generic
parameter that can be used by the application. This value is passed unmodified
to the application's callback procedure.

While the name of the callback function can be anything, the prototype of
the callback must match the declaration:

int CALLBACK EnumFontFamProc (LOGFONT *lpelf, TEXTMETRIC *lpntm,
DWORD FontType, LPARAM lParam);

The first parameter passed back to the callback function is a pointer to a
LOGFONT structure describing the font being enumerated. The second param
eter, a pointer to a textmetric structure, further describes the font. The font type
parameter indicates whether the font is a raster or TrueType font.

The Fontlist Example Program
The FontList program, shown in Listing 2-2, uses the EnumFontFamilies func
tion in two ways to enumerate all fonts in the system.

Fontlist.h
II==~===========
II Header file
fl
II Written for the book Programming Windows CE
II Copyright (C) 2003 Doug1as Boling

II Returns number of elements
#define dim(x) (sizeof(x) I stzeof(x[0]))
1/-------•--·---·--·-----·c·'c--~--~-c-- ---------------------·----·----
I/Generic defines and
II

Listing 2-2 The Fontlist program enumerates all fonts in the system.

Chapter 2 Drawing on the Screen 59

11--
11 Program-specific structures
II
#define FAMILYMAX 24
typedef struct {

int nNumFonts:
TCHAR szFontFamily[LF_FACES!ZE]:

FONTFAMSTRUCT;
typedef FONTFAMSTRUCT *PFONTFAMSTRUCT;

typedef struct {
INT yCurrent:
HOC hdc:

PAINTFONTINFO;
typedef PAINTFONTINFO *PPAINTFONTINFO:

11--
11 Function prototypes
II
HWND Initlnstance (HINSTANCE, LPWSTR. int);
int Termlnstance (HINSTANCE, int):

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM. LPARAM):

II Message handlers
LRESULT DoCreateMain CHWND, UINT, WPARAM, LPARAM):
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

Fontlist.cpp
II==
II FontList - Lists the available fonts in the system
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II===,,========,.================="'"'
#include <windows.h>
#include "Fontlist.h"

II For all that Windows stuff
II Program-specific stuff

11-----c--·--"-------------------------------------·-------------·----c-
/I Global data
II
const TCHAR szAppName[J
HINSTANCE hlnst;

TEXT ("FontliSt");
II Program instance handl~

(continued)

60 Part I Windows Programming Basics

Listing 2-2 (continued)

fClNTFAMSTRUCT ffs[FAMILYMAXJ:
INT sfamilyCnt = 0;

Messag~dispatch table forMainWindowProc
const struct decodeUINT MainMessages[] £

} ;

WM7 cREAJE •. · DocreateMa in.
WMiPAINJ,> DoPaJntMain,
WM~D~ST!l.OY, DoDestroyMain,

!!"'="'"'="'==================="'=='===;=======================;:=';'==============
II PrograJll entry point
//
int WINAPI WinMain (HINSlANCE hlnstance, HINSTANCE hPrevinstance,

}

int re == 0;
HWNO•·•hw11dMain;

LPW.$TR l pCmdL i ne, int nCmdShow) {

II Initialize .this instance.
hwndMain = lnitinstance (hlnstance, lpCllldLine, nCmdShow);
if (hwndMain == e))

return 0xl0;
!I Application message loop
whil.e (GetMessage <&msg. NU.LL, 0,. 0)) {

TranslateMessage (&msg);
OispatchMessa9e t&msg);

}

ll Instance cleanup
return Terminstance Chinst.ance .• msg.wParam).;

ff ----------~--~--------------------------
!! Initinstance • Instance initialization
//
HWND Initlhstance (HINSTANCE hlnstance, .LF'WSTR 1pCmdLine, int nCmdSho.wJ. {

WNDClASS .we;
HWND hWnd;

fl Save program instanc~ handle in 9lobaT variable.
hlnst = hlnstance;

#if defined (WIN32-PLA lFORM--PSPCJ
fl Pocket PC, a 11 ow only one instance
hWnd = Fi ndWi ndow (s zAppName, NULL) ;

ChWndl {
SetForegroundWi nc1ow ((HWND)(HtJWORO) hWnd) I 0x01J);
return -0;

Chapter 2 Drawing on the Screen 61

ftendif
II Register application main window class.
we.style= 0; //Window style
wc.lpfnWndProc = MainWndProc; //Callback function
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hinstance = hinstance;
wc.hicon = NULL,

II Extra class data
II Extra window data
II Owner handle
II Application icon

wc.hCursor = LoadCursor (NULL, IDC_ARROWJ;// Default cursor
wc.hbrBackground = (HBRUSHJ GetStockObject(WHITE_BRUSH);
we. lpszMenuName = NULL; //Menu name
wc.lpszClassName = szAppName; //Window class name

if (RegisterClass (&we)== 0) return 0;

II Create main window.
hWnd = CreateWindowEx (WS_EX_NODRAG, II Ex style flags

szAppName, // Window class
TEXT("Font Listing"),// Window title
I I Sty 1 e fl a gs
WS_VISIBLE I WS_CAPTION WS_SYSMENU.
CW_USEDEFAULT, // x position
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,

11 y position
11 Initial width
II Initial height
II Parent

NULL,
hlnstance,
NU LU;

II Menu, must be null
II Application instance
II Pointer to create

II Return fail code if window not created.
if (!IsWindow (hWndll return 0;

II Standard show and update calls
ShowWindow (hWnd, nCmdShow);
UpdateWindow (hWndl;
return hWnd;

II parameters

11--
11 Terminstance - Program cleanup
II
int Terminstance (HINSTANCE hinstance. int nDefRC) {

return nDefRC;
}

II==
II Font callback functions
II
11--

(continued)

62 Part I Windows Programming Basics

Listing 2-2 (continued)

II FontFamilyCallback • Callback function that enumerates the font
fl families
II
int CALLBACK FontFamilyCa 11 back (CONST LOG FONT *l p 1f,

CONST TEXTMETRIC *lpntm,

}

DWORD nFontType, LPARAM l Paralil) {
int re = l;

//Stop enumeration if array filled.
if (sfamilyCnt >= FAMILYMAX)

return 0;
Copy face name ¢f font.

1 strcpy (ffs[sfami lyCnt++]. szFontFami 1 y, l pl f->l HaceName);
return re;

11~---~---c~~----~-------"- -------~·-·---·•-----------------·---•--•--

/I EnumSi ng1eFontfami1 y - Cal 1 back function that enumerates fonts
II
nt CALLBACK EnumStng.leFontFamily (CONST LOGFONT *lplf,

CONST TEXTMEIRIC * lpntm,
DWQRD nFontType, LPARAM Haram)

PFONTFAMSTRUCT pffs;

pffs = \PFONTFAMSTRUCT) 1 Param;
pffs->nNumFonts++; I I. Increment count of fonts in family
return 1;

PaintSin~leFontFamfly - Callback function that draws a font

int CALLBACK PairitSingleFontfamily (CONST LOGFONT *lplf,
CONST TEXTMETRIC *lpntm,

PPA1NTFONT1NFO ppfi;
TCHAR sz0ut[256);
INT nFontHeight, nPointSize;
HFONT hFont, hOldFont:

DWORD nFontType, LPARAM lParam) {

lParam: I I Translate. lParam into struct
II pointer.

II Create the font from tile LOG FONT structl]re passed.
hFont = CreateFont!ndi rect (1 plf);

II Se1 ect the font into the device context.
hOlctront = <HFONT)SelectObject (ppfi~>hdc, hFol1t);

Chapter 2 Drawing on the Screen 63

II Compute font size.
nPointSize (lplf->lfHeight * 72) I

GetDeviceCaps(ppfi->hdc,LDGPIXELSY);

II Format string and paint on display.
wsprintf (szOut, TEXT ("Is Point:ld"), lplf->lfFaceName,

nPointSizel;
ExtTextOut (ppfi->hdc, 25, ppfi->yCurrent, 0, NULL.

szOut, lstrlen (szOut), NULL);

II Compute the height of the default font.
nFontHeight = lpntm->tmHeight + lpntm->tmExternalLeading;
II Update new draw point.
ppfi->yCurrent += nFontHeight;
II Deselect font and delete.
SelectObject (ppfi->hdc, hOldFontl;
DeleteObject (hFont);
return l;

//==
II Message handling procedures for MainWindow
II
//--
// MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
I NT i ·
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for Ii = 0; i < dim(MainMessagesl; i++) {

if lwMsg == MainMessages[iJ.Codel
return (*MainMessages[iJ.FxnlChWnd, wMsg, wParam, lParam);

}

return DefWindowProc lhWnd, wMsg, wParam, lParam);

/!--
// DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {
HOC hdc;
INT i, re;

//Enumerate the available fonts.
hdc = GetDC (hWnd);

(continued)

64 Part I Windows Programming Basics

Listing 2-2 (continued)

}

re= EnumFontFamilies ((HDC)hdc, (LPTSTR)NULL,
FontFamilyCallback, 0);

for Ci = 0; i < sFamilyCnt: i++) {
ffs[i].nNumFonts = 0;
re= EnumFontFamilies ((HOC)hdc, ffs[iJ.szFontFamily,

EnumSingleFontFamily,
(LPARAM)(PFONTFAMSTRUCT)&ffs[i]);

ReleaseDC ChWnd, hdc);
return 0;

II --- --------------
// DoPaintMain - Process WM_PAINT message for window.
II
LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PAINTSTRUCT ps;
RECT rect;
HOC hdc:
TEXTMETRIC tm;
INT nFontHeight, 1;
TCHAR sz0ut[256];
PAINTFONTINFO pfi;

GetClientRect ChWnd, &rect);

hdc = BeginPaint (hWnd, &ps);

II Get the height of the default font.
GetTextMetrics (hdc, &tm);
nFontHeight = tm.tmHeight + tm.tmExternalleading;

II Initialize struct that is passed to enumerate function.
pfi .yCurrent = rect.top;
pfi .hdc = hdc;
for Ci = 0; 1 < sFamilyCnt; i++) {

II Format output string, and paint font family name.
wsprintf (szOut, TEXTC"Family: Is "),

ffs[iJ.szFontFamily);
ExtTextOut Chdc, 5, pfi .yCurrent, 0, NULL,

szOut, lstrlen (szOut), NULL);
pfi.yCurrent += nFontHeight:

II Enumerate each family to draw a sample of that font.
EnumFontFamilies ((HDCJhdc, ffs[i].szFontFamily,

EndPaint ChWnd, &ps);
return 0;

Chapter 2 Drawing on the Screen 65

PaintSingleFontFamily,
CLPARAMl&pfil;

11--
11 DoDestroyMain - Process WM_DESTRDY message for window.
II
LRESULT DoDestroyMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PostQuitMessage (0);
return 0;

Enumerating the different fonts begins when the application is processing
the WM_ CREATE message in OnCreateMain. Here EnumFontFamilies is called
with the FontFamily field set to NULL so that each family will be enumerated.
The callback function is FontFamilyCallback, where the name of the font family
is copied into an array of strings.

The remainder of the work is performed during the processing of the
WM_PAINT message. The OnPaintMain function begins with the standard lit
any of getting the size of the client area and calling BeginPaint, which returns
the handle to the device context of the window. GetTextMetrics is then called to
compute the row height of the default font. A loop is then entered in which
EnumerateFontFamilies is called for each family name that had been stored
during the enumeration process in OnCreateMain. The callback process for this
callback sequence is somewhat more complex than the code we've seen so far.

The PaintSingleFontFamily callback procedure, used in the enumeration
of the individual fonts, employs the !Param parameter to retrieve a pointer to a
PAINIFONTINFO structure defined in FontList.h. This structure contains the cur
rent vertical drawing position as well as the handle to the device context. By
using the !Param pointer, FontList avoids having to declare global variables to
communicate with the callback procedure.

The callback procedure next creates the font using the pointer to LOG
FONT that was passed to the callback procedure. The new font is then selected
into the device context, while the handle to the previously selected font is
retained in hOldFont. The point size of the enumerated font is computed using
the inverse of the equation mentioned earlier in the chapter. The callback pro
cedure then produces a line of text showing the name of the font family along
with the point size of this particular font. Instead of using DrawText, the call
back uses ExtTextOut to draw the string.

66 Part I Windows Programming Basics

After displaying the text, the function computes the height of the line of
text just drawn using the combination of tmHeight and tmExternalLeading that
was provided in the passed 1EXTMETRIC structure. The new font is then dese
lected using a second call to SelectObject, this time passing the handle to the
font that was the original selected font. The new font is then deleted using Dele
teObject. Finally, the callback function returns a nonzero value to indicate to

· Windows that it is okay to make another call to the enumerate callback.
Figure 2-4 shows the Font Listing window. Notice that the font names are

displayed in that font and that each font has a specific set of available sizes.

Roman Point:26

I:"l'µPoA. IT01v-c:29
Family: Arla!

Arial Point:26

Figure 2-4 The Font Listing window shows some of the available fonts
for a Handheld PC.

Unfinished Business
If you look closely at Figure 2-4, you'll notice a problem with the display. The
list of fonts just runs off the bottom edge of the Font Listing window. The solu
tion for this problem is to add a scroll bar to the window. Since I'll provide a
complete explanation of window controls, including scroll bars, in Chapter 4,
I'll hold off describing how to properly implement the solution until then.

Bitmaps
Bitmaps are graphical objects that can be used to create, draw, manipulate, and
retrieve images in a device context. Bitmaps are everywhere within Windows,
from the little Windows logo on the Start button to the Close button on the title
bar. Think of a bitmap as a picture composed of an array of pixels that can be
painted onto the screen. Like any picture, a bitmap has height and width. It also
has a method for determining what color or colors it uses. Finally, a bitmap has
an array of bits that describe each pixel in the bitmap.

Historically, bitmaps under Windows have been divided into two types;
device-dependent bitmaps (DDBs) and device-independent bitmaps (DIBs).
DDBs are bitmaps that are tied to the characteristics of a specific DC and can't

Chapter 2 Drawing on the Screen 67

easily be rendered on DCs with different characteristics. DIBs, on the other
hand, are independent of any device and therefore must carry around enough
information so that they can be rendered accurately on any device.

Windows CE contains many of the bitmap functions available in other ver
sions of Windows. The differences include a new four-color bitmap format not
supported anywhere but on Windows CE and a different method for manipu
lating DIBs.

Device-Dependent Bitmaps
A device-dependent bitmap can be created with this function:

HBITMAP CreateBitmap (int nWidth, int nHeight, UINT cPlanes,
UINT cBitsPerPel, CONST VOID *lpvBits);

The nWidth and nHeight parameters indicate the dimensions of the bit
map. The cPlanes parameter is a historical artifact from the days when display
hardware implemented each color within a pixel in a different hardware plane.
For Windows CE, this parameter must be set to 1. The cBitspPerPel parameter
indicates the number of bits used to describe each pixel. The number of colors
is 2 to the power of the cBitspPerPel parameter. Under Windows CE, the allow
able values are 1, 2, 4, 8, 16, and 24. As I said, the four-color bitmap is unique
to Windows CE and isn't supported under other Windows platforms.

The final parameter is a pointer to the bits of the bitmap. Under Windows
CE, the bits are always arranged in a packed pixel format; that is, each pixel is
stored as a series of bits within a byte, with the next pixel starting immediately
after the first. The first pixel in the array of bits is the pixel located in the upper
left corner of the bitmap. The bits continue across the top row of the bitmap,
then across the second row, and so on. Each row of the bitmap must be double
word (4-byte) aligned. If any pad bytes are required at the end of a row to align
the start of the next row, they should be set to 0. Figure 2-5 illustrates this
scheme, showing a 126-by-64-pixel bitmap with 8 bits per pixel.

The function

HBITMAP CreateCompatibleBitmap (HOC hdc, int nWidth, int nHeight);

creates a bitmap whose format is compatible with the device context passed to
the function. So if the device context is a four-color DC, the resulting bitmap is
a four-color bitmap as well. This function comes in handy when you're manip
ulating images on the screen because it makes it easy to produce a blank bit
map that's directly color compatible with the screen.

68 Part I Windows Programming Basics

Byte
Offset Row 125

0 0

128 1

256 2

7936 63

Figure 2-5 Layout of bytes within a bitmap

Device-Independent Bitmaps
The fundamental difference between DIBs and their device-dependent cousins
is that the image stored in a DIB comes with its own color information. Almost
every bitmap file since Windows 3.0, which used the files with the BMP exten
sion, contains information that can be directly matched with the information
needed to create a DIB in Windows.

In the early days of Windows, it was a rite of passage for a programmer to
write a routine that manually read a DIB file and converted the data to a bitmap.
These days, the same arduous task can be accomplished with the following
function, unique to Windows CE:

HBITMAP SHLoadDIBitmap (LPCTSTR szFileName);

It loads a bitmap directly from a bitmap file and provides a handle to the
bitmap. In Windows XP the same process can be accomplished with Loadlm
age using the LR_LOADFROMFILE flag, but this flag isn't supported under the
Windows CE implementation of Loadlmage.

DIB Sections
While Windows CE makes it easy to load a bitmap file, sometimes you must
read what is on the screen, manipulate it, and redraw the image back to the
screen. This is another case in which DIBs are better than DDBs. While the bits

Chapter 2 Drawing on the Screen 69

of a device-dependent bitmap are obtainable, the format of the buffer is directly
dependent on the screen format. By using a DIB, or more precisely, something
called a DIB section, your program can read the bitmap into a buffer that has a
predefined format without worrying about the format of the display device.

While Windows has a number of DIB creation functions that have been
added over the years since Windows 3.0, Windows CE carries over only a hand
ful of DIB functions from Windows XP. Here is the first of these functions:

HBITMAP CreateDIBSection (HOC hdc, const BITMAPINFO *pbmi.
UINT iUsage, void •ppvBits,
HANDLE hSection, DWORD dwOffset);

Because they're a rather late addition to the Win32 API, DIB sections
might be new to Windows programmers. DIB sections were invented to
improve the performance of applications on Windows NT that directly manip
ulated bitmaps. In short, a DIB section allows a programmer to select a DIB in
a device context while still maintaining direct access to the bits that compose
the bitmap. To achieve this, a DIB section associates a memory DC with a
buffer that also contains the bits of that DC. Because the image is mapped to a
DC, other graphics calls can be made to modify the image. At the same time,
the raw bits of the DC, in DIB format, are available for direct manipulation.
While the improved performance is all well and good on Windows NT, the rel
evance to the Windows CE programmer is the ease with which an application
can work with bitmaps and manipulate their contents.

This call's parameters lead with the pointer to a BITMAPINFO structure. The
structure describes the layout and color composition of a device-independent bit
map and is a combination of a BITMAPINFOHEADER structure and an array of
RGBQUAD values that represent the palette of colors used by the bitmap.

The BITMAPINFOHEADER structure is defined as the following:

typedef struct tagBITMAPINFOHEADER{
DWORD biSize;
LONG biWidth;
LONG biHeight;
WORD biPlanes;
WORD biBitCount;
DWORD biCompression;
DWORD biSizelmage;
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrlmportant;

BITMAPINFOHEADER;

70 Part I Windows Programming Basics

As you can see, this structure contains much more information than just
the parameters passed to CreateBitmap. The first field is the size of the structure
and must be filled in by the calling program to differentiate this structure from
the similar BITMAPCOREINFOHEADER structure that's a holdover from the OS/2
presentation manager. The biWidth, biHeight, biPlanes, and biBitCount fields
are similar to their like-named parameters to the CreateBitmap call-with one
exception. The sign of the biHeight field specifies the organization of the bit
array. If biHeight is negative, the bit array is organized in a top-down format, as
is CreateBitmap. If biHeight is positive, the array is organized in a bottom-up
format, in which the bottom row of the bitmap is defined by the first bits in the
array. As with the CreateBitmap call, the biPlanes field must be set to 1.

The biCompression field specifies the compression method used in the bit
array. Under Windows CE, the allowable flags for this field are BI_RGB, indicat
ing that the buffer isn't compressed, and BI_BITFIELDS, indicating that the pixel
format is specified in the first three entries in the color table. The biSizelmage
parameter is used to indicate the size of the bit array; when used with Bl_RGB,
however, the biSizelmage field can be set to 0, which means that the array size
is computed using the dimensions and bits per pixel information provided in
the BITMAPINFOHEADER structure.

The biXPelsPerMeter and biYPelsPerMeter fields provide information to
accurately scale the image. For CreateDJBSection, however, these parameters
can be set to 0. The biClrUsed parameter specifies the number of colors in the
palette that are actually used. In a 256-color image, the palette will have 256
entries, but the bitmap itself might need only 100 or so distinct colors. This field
helps the palette manager, the part of Windows that manages color matching, to
match the colors in the system palette with the colors required by the bitmap.
The biClrlmportant field further defines the colors that are really required as
opposed to those that are used. For most color bitmaps, these two fields are set
to 0, indicating that all colors are used and that all colors are important.

As I mentioned above, an array of RGBQUAD structures immediately fol
lows the BITMAPINFOHEADER structure. The RGBQUAD structure is defined as
follows:

typedef struct tagRGBOUAD { /* rgbq *f
BYTE rgbBlue;
BYTE rgbGreen;
BYTE rgbRed;
BYTE rgbReserved;

RGBOUAD;

This structure allows for 256 shades of red, green, and blue. While almost
any shade of color can be created using this structure, the color that's actually
rendered on the device will, of course, be limited by what the device can display.

Chapter 2 Drawing on the Screen 71

The array of RGBQUAD structures, taken as a whole, describe the palette
of the DIB. The palette is the list of colors in the bitmap. If a bitmap has a pal
ette, each entry in the bitmap array contains not colors, but an index into the
palette that contains the color for that pixel. While redundant on a mono
chrome bitmap, the palette is quite important when rendering color bitmaps on
color devices. For example, a 256-color bitmap has one byte for each pixel, but
that byte points to a 24-bit value that represents equal parts red, green, and blue
colors. So while a 256-color bitmap can contain only 256 distinct colors, each of
those colors can be one of 16 million colors rendered using the 24-bit palette
entry. For convenience in a 32-bit world, each palette entry, while containing
only 24 bits of color information, is padded out to a 32-bit-wide entry-hence
the name of the data type: RGBQUAD.

Of the remaining four CreateDJBSection parameters, only two are used
under Windows CE. The iUsage parameter indicates how the colors in the pal
ette are represented. If the parameter is DIB_RGB_COLORS, the bits in the bit
map contain the full RGB color information for each pixel. If the parameter is
DIB_PAL_COLORS, the bitmap pixels contain indexes into the palette currently
selected in the DC. The ppvBits parameter is a pointer to a variable that receives
the pointer to the bitmap bits that compose the bitmap image. The final two
parameters, hSection and dwO.ffset, aren't supported under Windows CE and
must be set to 0. In other versions of Windows, they allow the bitmap bits to be
specified by a memory-mapped file. While Windows CE does support memory
mapped files, they aren't supported by CreateDJBSection.

Two functions exist to manage the palette of the DIB, as follows:

UINT GetOIBColorTable (HOC hdc, UINT uStartlndex,
UINT cEntries, RGBQUAO *pColors);

and

UINT SetOIBColorTable (HOC hdc, UINT uStartindex,
UINT cEntries, RGBQUAO *pColors);

For both of these functions, uStartlndex indicates the first entry into the palette
array to set or query. The cEntries parameter indicates how many palette entries
to change. The pointer to the RGBQUAD array is the array of colors either being
set, for SetDJBColorTable, or queried, for GetDIBColorTable.

Drawing Bitmaps
Creating and loading bitmaps is all well and good, but there's not much point
to it unless the bitmaps you create can be rendered on the screen. Drawing a
bitmap isn't as straightforward as you might think. Before a bitmap can be

72 Part I Windows Programming Basics

drawn in a screen DC, it must be selected into a DC and then copied over to the
screen device context. While this process sounds convoluted, there is rhyme to
this reason.

The process of selecting a bitmap into a device context is similar to select
ing a logical font into a device context; it converts the ideal to the actual. Just as
Windows finds the best possible match to a requested font, the bitmap selection
process must match the available colors of the device to the colors requested by
a bitmap. Only after this is done can the bitmap be rendered on the screen. To
help with this intermediate step, Windows provides a shadow type of DC, a
memory device context.

To create a memory device context, use this function:

HOC CreateCompatibleOC (HOC hdc);

This function creates a memory DC that's compatible with the current
screen DC. Once created, the source bitmap is selected into this memory DC
using the same SelectObject function you used to select a logical font. Finally,
the bitmap is copied from the memory DC to the screen DC using one of the bit
functions, BitBlt or StretchBlt.

The workhorse of bitmap functions is the following:

BOOL BitBlt (HOC hdcOest, int nXOest, int nYOest, int nWidth,
int nHeight, HOC hdcSrc, int nXSrc, int nYSrc,
OWORO dwRop);

Fundamentally, the BitBlt function, pronounced bit blit, is just a fancy
memcopy function, but since it operates on device contexts, not memory, it's
something far more special. The first parameter is a handle to the destination
device context-the DC to which the bitmap is to be copied. The next four
parameters specify the location and size of the destination rectangle where the
bitmap is to end up. The next three parameters specify the handle to the source
device context and the location within that DC of the upper left corner of the
source image.

The final parameter, dwRop, specifies how the image is to be copied from
the source to the destination device contexts. The ROP code defines how the
source bitmap and the current destination are combined to produce the final
image. The ROP code for a simple copy of the source image is SRCCOPY. The
ROP code for combining the source image with the current destination is SRC
PAINT. Copying a logically inverted image, essentially a negative of the source
image, is accomplished using SRCINVERT. Some ROP codes also combine the
currently selected brush into the equation to compute the resulting image. A
large number of ROP codes are available, too many for me to cover here. For a
complete list, check out the Windows CE programming documentation.

Chapter 2 Drawing on the Screen 73

The following code fragment sums up how to paint a bitmap:

II Create a DC that matches the device.
hdcMem = CreateCompatibleDC (hdc);

II Select the bitmap into the compatible device context.
hOldSel = SelectObject (hdcMem, hBitmap);

II Get the bitmap dimensions from the bitmap.
GetObject (hBitmap, sizeof (BITMAP), &bmpl;

II Copy the bitmap image from the memory DC to the screen DC.
BitBlt (hdc, rect.left, rect.top, bmp.bmWidth, bmp.bmHeight,

hdcMem, 0, 0, SRCCOPY);

II Restore original bitmap selection and destroy the memory DC.
SelectObject (hdcMem, hOldSel);
DeleteDC (hdcMem);

The memory device context is created, and the bitmap to be painted is
selected into that DC. Since you might not have stored the dimensions of the
bitmap to be painted, the routine makes a call to GetObject. GetObject returns
information about a graphics object, in this case, a bitmap. Information about
fonts and other graphic objects can be queried using this useful function. Next,
BitBlt is used to copy the bitmap into the screen DC. To clean up, the bitmap
is deselected from the memory device context and the memory DC is deleted
using DeleteDC. Don't confuse DeleteDC with ReleaseDC, which is used to free
a display DC. DeleteDC should be paired only with CreateCompatibleDC, and
ReleaseDC should be paired only with GetDC or GetWindowDC.

Instead of merely copying the bitmap, stretch or shrink it using this function:

BOOL StretchBlt (HDC hdcDest, int nXOriginDest, int nYOriginDest,
int nWidthDest, int nHeightDest, HOC hdcSrc,
int nXOriginSrc, int nYOriginSrc, int nWidthSrc,
int nHeightSrc, DWORD dwRop);

The parameters in StretchBlt are the same as those used in BitBlt, with the
exception that now the width and height of the source image can be specified.
Here again, the ROP codes specify how the source and destination are com
bined to produce the final image.

Windows CE also has another bitmap function. It is

BOOL Transparentimage (HOC hdcDest, LONG DstX, LONG DstY, LONG DstCx,
LONG DstCy, HANDLE hSrc, LONG SrcX, LONG SrcY,
LONG SrcCx, LONG SrcCy, COLORREF TransparentColor);

74 Part I Windows Programming Basics

This function is similar to StretchBlt, with two very important exceptions.
First, you can specify a color in the bitmap to be the transparent color. When
the bitmap is copied to the destination, the pixels in the bitmap that are the
transparent color are not copied. The second difference is that the hSrc param
eter can be either a device context or a handle to a bitmap, which allows you
to bypass the requirement to select the source image into a device context
before rendering it on the screen. Transparentlmage is essentially the same
function as Windows 2000's TransparentBlt function with the exception that
TransparentBlt can't directly use a bitmap as the source.

As in other versions of Windows, Windows CE supports two other blit
functions: PatBlt and MaskBlt. The PatBlt function combines the currently
selected brush with the current image in the destination DC to produce the
resulting image. I cover brushes later in this chapter. The MaskBlt function is
similar to BitBlt but encompasses a masking image that provides the ability to
draw only a portion of the source image onto the destination DC.

Lines and Shapes

Lines

One of the areas in which Windows CE provides substantially less functionality
than other versions of Windows is in the primitive line-drawing and shape
drawing functions. Gone are the Chord, Arc, and Pie functions that created
complex circular shapes. Gone too are most of the functions using the concept
of current point. Other than MoveToEx, LineTo, and GetCurrentPositionEx,
none of the GDI functions dealing with current point are supported in Win
dows CE. So drawing a series of connected lines and curves using calls to
ArcTo, PolyBezierTo, and so forth is no longer possible. But even with the loss
of a number of graphic functions, Windows CE still provides the essential func
tions necessary to draw lines and shapes.

Drawing one or more lines is as simple as a call to

BOOL Polyline CHDC hdc, const POINT *lppt, int cPoints);

The second parameter is a pointer to an array of POINT structures that are
defined as the following:

typedef struct tagPOINT {
LONG x;
LONG y;

} POINT;

Chapter 2 Drawing on the Screen 75

Each x and y combination describes a pixel from the upper left corner of
the screen. The third parameter is the number of point structures in the array.
So to draw a line from (0, 0) to (50, 100), the code would look like this:

POINTS pts[2];

pts[0J.x = 0;
pts[0J.y = 0;
pts[l].X = 50;
pts[l].y = 100;
Polyline (hdc, &pts, 2);

Another way to draw the same line would be to use the MoveToEx and
LineTo functions. They are prototyped as follows:

BOOL WINAPI MoveToEx CHDC hdc, int X, int Y, LPPOINT lpPointl;
BOOL WINAPI LineTo (HDC hdc, int X, int Y);

To use the functions to draw a line, first call MoveToEx to move the current
point to the starting coordinates of the line, and then call LineTo, passing the
ending coordinates. The calls to draw the same line as before using these func
tions would be as follows:

MoveToEx Chdc, 0, 0, NULL);
LineTo (hdc, 50, 100);

To query the current point, call the following function:

WINGDIAPI BOOL WINAPI GetCurrentPositionEx (HDC hdc, LPPOINT pPoint);

Just as in the early text examples, these code fragments make a number of
assumptions about the default state of the device context. For example, just
what does the line drawn between (0, 0) and (50, 100) look like? What is its
width and its color, and is it a solid line? All versions of Windows, including
Windows CE, allow these parameters to be specified.

Pens
The tool for specifying the appearance of lines and the outline of shapes is
called, appropriately enough, a pen. A pen is another GDI object and, like the
others described in this chapter, is created, selected into a device context, used,
deselected, and then destroyed. Among other stock GDI objects, stock pens can
be retrieved using the following code:

HGDIOBJ GetStockObject (int fnObject);

All versions of Windows provide three stock pens, each 1 pixel wide. The
stock pens come in 3 colors: white, black, and null. When you use GetStockOb
ject, the call to retrieve one of those pens employs the parameters WHITE_PEN,

76 Part I Windows Programming Basics

BIACK_PEN, and NULL_PEN respectively. Unlike standard graphic objects cre
ated by applications, stock objects should never be deleted by the application.
Instead, the application should simply deselect the pen from the device context
when it's no longer needed.

To create a custom pen under Windows, two functions are available. The
first is this:

HPEN CreatePen (int fnPenStyle, int nWidth, COLORREF crColor):

The fnPenStyle parameter specifies the appearance of the line to be
drawn. For example, the PS_DASH flag can be used to create a dashed line.
Windows CE supports only PS_SOLID, PS_DASH, and PS_NULL style flags. The
n Width parameter specifies the width of the pen. Finally, the crColor parameter
specifies the color of the pen. The crColor parameter is typed as COLORREF,
which can be constructed using the RGB macro. The RGB macro is as follows:

COLORREF RGB (BYTE bRed, BYTE bGreen, BYTE bBlue);

So to create a solid red pen, the code would look like this:

hPen = CreatePen (PS_SOLID, l, RGB (0xff, 0, 0));

The other pen creation function is the following:

HPEN CreatePenindirect (const LOGPEN *lplgpn):

where the logical pen structure LOGPEN is defined as

typedef struct tagLOGPEN {
UINT lopnStyle;
POINT lopnWidth;
COLORREF lopnColor:

} LOGPEN;

CreatePenlndirect provides the same parameters to Windows, in a differ
ent form. To create the same 1-pixel-wide red pen with CreatePenlndirect, the
code would look like this:

LOGPEN l p:
HPEN hPen:
lp.lopnStyle = PS_SOLID:
lp.lopnWidth.x = 1:
lp.lopnWidth.y = 1:
lp.lopnColor = RGB (0xff, 0, 0):

hPen = CreatePenindirect (&lp);

Windows CE devices don't support complex pens such as wide (more
than one pixel wide) dashed lines. To determine what's supported, our old

Shapes

Chapter 2 Drawing on the Screen 77

friend GetDeviceCaps comes into play, taking LINECAPS as the second parame
ter. Refer to the Windows CE documentation for the different flags returned by
this call.

Lines are useful but Windows also provides functions to draw shapes, both
filled and unfilled. Here Windows CE does a good job supporting most of the
functions familiar to Windows programmers. The Rectangle, RoundRect, Ellipse,
and Polygon functions are all supported.

Brushes
Before I can talk about shapes such as rectangles and ellipses, I need to
describe another GDI object that I've mentioned only briefly before now, called
a brush. A brush is a bitmap, typically 8 by 8 pixels, used to fill shapes. It's also
used by Windows to fill the background of a client window. Windows CE pro
vides a number of stock brushes and also the ability to create a brush from an
application-defined pattern. A number of stock brushes, each a solid color, can
be retrieved using GetStockObject. Among the brushes available is one for each
of the grays of a four-color grayscale display: white, light gray, dark gray, and
black.

To create solid color brushes, the function to call is the following:

HBRUSH CreateSolidBrush (COLORREF crColor);

The crColor parameter specifies the color of the brush. The color is spec
ified using the RGB macro.

To create custom pattern brushes, Windows CE supports the Win32 func-
ti on:

HBRUSH CreateDIBPatternBrushPt (const void *lpPackedDIB,
UINT iUsage);

The first parameter to this function is a pointer to a DIB in packed format.
This means that the pointer points to a buffer that contains a BITMAPINFO
structure immediately followed by the bits in the bitmap. Remember that a BIT
MAPINFO structure is actually a BITMAPINFOHEADER structure followed by a
palette in RGBQUAD format, so the buffer contains everything necessary to cre
ate a DIB-that is, bitmap information, a palette, and the bits to the bitmap. If
the second parameter is set to DIB_RGB_COLORS, the palette specified con
tains RGBQUAD values in each entry. For 8-bits-per-pixel bitmaps, the comple
mentary flag DIB_PAL_COLORS can be specified, but Windows CE ignores the
bitmap's color table.

78 Part I Windows Programming Basics

The CreateDIBPatternBrushPt function is more important under Windows
CE because the hatched brushes, supplied under other versions of Windows by
the CreateHatchBrush function, aren't supported under Windows CE. Hatched
brushes are brushes composed of any combination of horizontal, vertical, or
diagonal lines. Ironically, they're particularly useful with grayscale displays
because you can use them to accentuate different areas of a chart with different
hatch patterns. You can reproduce these brushes, however, by using Create
DIBPatternBrushPt and the proper bitmap patterns. The Shapes code example,
later in the chapter, demonstrates a method for creating hatched brushes under
Windows CE.

By default, the brush origin will be in the upper left corner of the window.
This isn't always what you want. Take, for example, a bar graph where the bar
filled with a hatched brush fills a rectangle from (100, 100) to (125, 220). Since
this rectangle isn't divisible by 8 (brushes typically being 8 by 8 pixels square),
the upper left corner of the bar will be filled with a partial brush that might not
look pleasing to the eye.

To avoid this situation, you can move the origin of the brush so that each
shape can be drawn with the brush aligned correctly in the corner of the shape
to be filled. The function available for this remedy is the following:

BOOL SetBrushOrgEx CHDC hdc, int nXOrg, int nYOrg, LPPOINT lpptl;

The nXOrg and nYOrg parameters allow the origin to be set between 0
and 7 so that you can position the origin anywhere in the 8-by-8 space of the
brush. The lppt parameter is filled with the previous origin of the brush so that
you can restore the previous origin if necessary.

Rectangles
The rectangle function draws either a filled or a hollow rectangle; the function
is defined as the following:

BOOL Rectangle (HDC hdc, int nLeftRect, int nTopRect,
int nRightRect, int nBottomRect);

The function uses the currently selected pen to draw the outline of the
rectangle and the current brush to fill the interior. To draw a hollow rectangle,
select the null brush into the device context before calling Rectangle.

The actual pixels drawn for the border are important to understand. Say
we're drawing a 5-by-7 rectangle at 0, 0. The function call would look like this:

Rectangle (0, 0, 5, 7);

Assuming that the selected pen was 1 pixel wide, the resulting rectangle
would look like the one shown in Figure 2-6.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

Chapter 2 Drawing on the Screen 79

Figure 2-6 Magnified view of a rectangle drawn with the Rectangle
function

Notice how the right edge of the rectangle is actually drawn in column 4
and that the bottom edge is drawn in row 6. This is standard Windows practice.
The rectangle is drawn inside the right and bottom boundary specified for the
Rectangle function. If the selected pen is wider than one pixel, the right and
bottom edges are drawn with the pen centered on the bounding rectangle.
(Other versions of Windows support the PS_INSIDEFRAME pen style that forces
the rectangle to be drawn inside the frame regardless of the pen width.)

Circles and Ellipses
Circles and ellipses can be drawn with this function:

BOOL Ellipse (HOC hdc, int nleftRect, int nTopRect,
int nRightRect, int nBottomRect);

The ellipse is drawn using the rectangle passed as a bounding rectangle,
as shown in Figure 2-7. As with the Rectangle function, while the interior of the
ellipse is filled with the current brush, the outline is drawn with the current pen.

(nLeftRect, nTopRect) (nRightRect-1, n TopRect)

(nLeftRect, nBottomRect-1) (nRightRect-1, nBottomRect -1)

Figure 2-7 The ellipse is drawn within the bounding rectangle passed to
the Ellipse function.

80 Part I Windows Programming Basics

Round Rectangles
The RoundRect function

BOOL RoundRect (HDC hdc, int nleftRect, int nTopRect,
int nRightRect, int nBottomRect,
int nWidth, int nHeight);

draws a rectangle with rounded corners. The roundedness of the corners is
defined by the last two parameters that specify the width and height of the ellipse
used to round the corners, as shown in Figure 2-8. Specifying the ellipse height
and width enables your program to draw identically symmetrical rounded corners.
Shortening the ellipse height flattens out the sides of the rectangle, while shorten
ing the width of the ellipse flattens the top and bottom of the rectangle.

(nLeftRect, nTopRect)

I •
• I I I

7 nHeighi . :
-----~-"---!

nWidth

(nRightRect, nBottomRect)

Figure 2-8 The height and width of the ellipse define the round corners
of the rectangle drawn by RoundRect.

Polygons
Finally, the Polygon function

BOOL Polygon (HDC hdc, const POINT •lpPoints, int nCount);

draws a many-sided shape. The second parameter is a pointer to an array of
point structures defining the points that delineate the polygon. The resulting
shape has one more side than the number of points because the function auto
matically completes the last line of the polygon by connecting the last point
with the first.

Fill Functions
The preceding functions use a combination of a brush and a pen to draw
shapes in the device context. Functions are available to fill areas without deal
ing with the pen that would normally outline the shape. The first of these func
tions is as follows:

int FillRect (HDC hDC, CONST RECT• lprc, HBRUSH hbr);

Chapter 2 Drawing on the Screen 81

The parameters of FillRect are the handle to the device context, the rec
tangle to fill, and the brush to fill the rectangle. FillRect is a quick and conve
nient way to paint a solid color or pattern in a rectangular area.

While FillRect is convenient, GradientFill is cool. GradientFill fills a rec
tangular area that starts on one side with one color and then has a smooth tran
sition to another color on the other side. Figure 2-9 shows a window in which
the client area is painted with GradientFill. The black-and-white illustration
doesn't do the image justice, but even in this figure it's easy to see the smooth
nature of the transition.

Figure 2-9 A window painted with the GradientFill function.

The prototype of GradientFill looks like this:

BOOL GradientFill (HDC hdc, PTRIVERTEX pVertex, ULONG dwNumVertex,
PVOID pMesh, ULONG dwNumMesh, ULONG dwMode);

The first parameter is the obligatory handle to the device context. The
pVertex parameter points to an array of TRIVERTEX structures, while the
dwNum Vertex parameter contains the number of entries in the TRIVERTEX
array. The 7RIVERTEX structure is defined as follows:

struct _TRIVERTEX {
LONG x;
Long y;
COLOR16 Red;
COLOR16 Green;
COLOR16 Blue;
COLOR16 Alpha;s

TRI VERTEX;

The fields of the TRIVERTEX structure describe a point in the device con
text and an RGB color. The points should describe the upper left and lower

82 Part I Windows Programming Basics

right corners of the rectangle being filled. The pMesh parameter of GradientFill
points to a GRADIENT_RECT structure defined as follows:

struct _GRADIENT_RECT
{

ULONG Upperleft;
ULONG LowerRight;

} GRADIENT_RECT;

The GRADIENT_RECT structure simply specifies which of the entries in the
TR/VERTEX structure delineates the upper left and lower right corners. Finally,
the dwNumMesh parameter of GradientFill contains the number of
GRADIENT_RECT structures, while the dwMode structure contains a flag indicat
ing whether the fill should be left to right (GRADIENT_FILL_RECT_ff) or top to
bottom (GRADIENT_FILL_RECT_ V). The GradientFill function is more complex
than is apparent because on the desktop, it can also perform a triangular fill that
isn't supported by Windows CE. Here's the code fragment that created the win
dow in Figure 2-9:

TRIVERTEX vert[2];
GRADIENT_RECT gRect;

vert [0] .x prect->left;
vert [0] .y prect->top;
vert [0] . Red 0x0000;
vert [0] .Green 0x0000;
vert [0] .Blue 0xff00;
vert [0] .Alpha 0x0000;

vert [1] .x prect->right;
vert [1] .y prect->bottom;
vert [1] . Red 0x0000;
vert [1] .Green 0xff00;
vert [1] .Blue 0x0000;
vert [1] .Alpha 0x0000;

gRect.Upperleft = 0;
gRect.LowerRight = l;

GradientFill(hdc,vert,2,&gRect,l,GRADIENT_FILL_RECT_H);

The Shapes Example Program
The Shapes program, shown in Listing 2-3, demonstrates a number of these
functions. In Shapes, four figures are drawn, each filled with a different brush.

Chapter 2 Drawing on the Screen 83

Shapes.h
II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11--
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD {
UINT Code;
LRESULT (*Fxn)(HWND, WORD. HWND. WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

11--
11 Defines used by MyCreateHatchBrush
II
typedef struct {

BITMAPINFOHEADER bmi;
COLORREF dwPal[2];
BYTE bBits[64];

BRUSHBMP;

11defi ne HS_HORIZONTAL
#define HS_VERTICAL
fldefi ne HS_FDIAGONAL
#define HS_BDIAGONAL
1fdefi ne HS_CROSS
#define HS_DIAGCROSS

0 I*
1 I*
2 I*
3 I*
4 f*
5 I*

*I
I 11 11 *I
\\\\\ *I
11 II I *I
+++++ *I
xxxxx *I

11--
/I Function prototypes
II
HWND Initinstance (HINSTANCE. LPWSTR. int);
int Term!nstance (HINSTANCE, int);

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

Listing 2-3 The Shapes program (continued)

84 Part I Windows Programming Basics

Listing 2-3 (continued)

f~ Message handfers
LRESULT QO:PaintMa1n (HWND, UINT, wJ>ARAM, LPARAM};

LRESULT DoDestroyMai n CHWND; UINT, WPARAM, LPARAM);

Shllpes.cpp

/I Shapes~ Brush a.nd shapes demo for W.indows ct:

11. Written for .the bocrk Progr.amming Windows CE
!I Copyright <CJ 2003 Douglas lfoHng

#i n.clude <wi.ndows. h>
ifl ncl ude ''.shapes~h"

II .C11.oba1

For all that Windows stuff
Program-specific stuff

ton st i;cHAI\ ~zAppName[] .,, .. TEXT <"Shapes");
H!NST:ANCE; hlnst: · Jl Program instance handle

//"Message dispatch ta.ble for M$in\llln(:lowProc
const struct.decodeUINT .MatnMessages.[] "" {

WM..;;PA!NT, !JoPaintMain,
W/'L.DESJRO.h D1;1DestroyMai ~,

} ;

11 =:;:==.:;:~F:::;:~~=;:::;~=:==:=:==;:=~~-==:====~::==~=:;:========~~========;:====~=========:=
ll
ll Program .. ehtry point

//
int WHAPI WinMain GHINSTANCE hinsta~.ce, HINSTANCE hlkevins.tance,

Lf>WSTR· 1 pCmdU ne, int nCmdShQw). {

MS~ msg; ..
HWNO hwndMain;

/Ftnitialize this
hwndMafn ~ Initlnst<H1cetilfostan~e, lpCmdll ne., nCmdShow};

(hwndMai n ··'"';.· 0)
r~tur.n 0~10;

~ppl i;::iitlon m~~sag.e lo6p
Whf le . C GetMessage C &msg •. N4L4.

Transl <lteMessa9e C&.msg)
Di spatchMess<HJe .t&msg):

Instance c.1 eanup
return Termlnstqnce (h!nstance, msg.wf>araml;

Chapter 2 Drawing on the Screen 85

//----- -- ---------------- --
// Initlnstance - Instance initialization
II
HWND lnitlnstance (HINSTANCE hlnstance, LPWSTR lpCmdLine, int nCmdShow){

WNDCLASS we;
HWND hWnd;

II Save program instance handle in global variable.
hinst = hlnstance;

#if defined(W!N32_PLATFORM_PSPC)
JI If Pocket PC, allow only one instance of the application.
hWnd = FindWindow (szAppName, NULL);
if (hWnd) {

SetForegroundWindow ((HWND)(((DWORDlhWnd) I 0x01));
return 0;

1fend if
II Register application main window class.
we.style = 0;
we. lpfnWndProc MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hlnstance = hlnstance;
wc.hlcon = NULL,

JI Window style
JI Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon

wc.hCursor = LoadCursor (NULL, IDC_ARROW);// Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wc.lpszMenuName = NULL; //Menu name
we. lpszClassName = szAppName; // Window class name

if (RegisterClass (&we) == 0) return 0;
II Create main window.
hWnd = CreateWindowEx (WS_EX_NODRAG,

szAppName,
TEXT("Shapes"),
WS_VISIBLE,
CW_USEDEFAULT.
CW_USEDEFAUL T,
CW_USEDEFAUL T,
CW_USEDEFAUL T,
NULL,
NULL,
hlnstance,
NU LU;

II Return fail code if window not created.
if (!IsWindow (hWnd)) return 0;

JI Ex Style
II Window class
II Window title
II Style flags
II x position
11 y position
II Initial width
JI Initial height
II Parent
II Menu, must be null
JI Application instance
JI Pointer to create
JI parameters

(continued)

86 Part I Windows Programming Basics

Listing 2-3 (continued)

}

II Standard show and update calls
ShowWindow ChWnd, nCmdShow);
UpdateWindow (hWnd);
return hWnd;

11-------------------------------- -------------------------------------
11 Termlnstance - Program cleanup
II
int Terminstance <HINsTANCE hlnstance, int nDefRCl {

return nDefRC;

II==
II Message handling procedures for MainWindow
II

11------------------------------- -----------------·-----------·--------
!! MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM .lParam) {
INT i;

II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0: i < dim<MainMessages); i++)

if <wMsg == MainMessages[i].Codel
return (*MainMessages[iJ.Fxn)(hWnd, wMsg, wParam, 1Param);

return DefWindowProc (hWnd, wMsg, wParam, lParam);
}

ll-·--------------------"·------------------"---------------------
11 MyCreateHatchBrush - Creates hatched brushes
//
HBRUSH MyCreateHatchBrush (INT fnStyl e, CDLORREF cl rrefl {

BRUSHBMP brbmp;
BYT~ *pBytes;
int i;
DWORD dwB1ts[6][2] = {

} ;

{0x000000ff,0x00000000}, f0xl0101010.0x10101010},
{0x0Hl20408 ,0xl0204080J, {0x80402010,0x0804020U.
{0x101010ff, 0x10101010}, {0x81422418, 0xl8244281},

if ((fnStyle < 0) JI CfnStyle > dimtdwBits)))
return 0;

memset <&brb!llP. 0. sizeof Cbrbmp));

Chapter 2 Drawing on the Screen 87

brbmp.bmi .biSize = sizeof CBITMAPINFOHEADER);
brbmp.bmi .biWidth = 8;
brbmp.bmi .bi Height = 8;
brbmp.bmi.biPlanes = l;
brbmp.bmi.biBitCount = l;
brbmp.bmi.biClrUsed = 2;
brbmp.bmi .biClrlmportant = 2·

II Initialize the palette of the bitmap.
brbmp.dwPal[0] PALETTERG8(0xff,0xff,0xff);
brbmp.dwPal[l] = PALETTERGB((BYTE)((clrref >> 16) & 0xff),

CBYTE)((clrref >> 8) & 0xff),
(BYTE)(clrref & 0xff));

II Write the hatch data to the bitmap.
pBytes = (BYTE *)&dwBits[fnStyle];
for (i = 0; i < 8; i ++ l

brbmp.bBits[i*4] = *pBytes++;

II Return the handle of the brush created.
return CreateDIBPatternBrushPt (&brbmp, DIB_RGB_COLORS);

11--
11 DoPaintMain - Process WM_PAINT message for window.
II
LRESULT DoPaintMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PAINTSTRUCT ps;
RECT rect;
HOC hdc;
POINT ptArray[6];
HBRUSH hBr, hOldBr;
TCHAR szText[128];

GetClientRect ChWnd, &rectl;
hdc = BeginPaint ChWnd, &psl;

II Draw ellipse.
hBr = CHBRUSH) GetStockObject (OKGRAY_BRUSHl;
hOldBr = CHBRUSH) SelectObject (hdc, hBrl;
Ellipse (hdc, 10, 50, 90, 130);
SelectObject (hdc, hOldBr);

II Draw round rectangle.
hBr = (HBRUSH) GetStockObject (LTGRAY_BRUSH);
hOldBr = (HBRUSH) SelectObject (hdc, hBrl;
RoundRect Chdc, 95, 50, 150, 130, 30, 30);
SelectObject (hdc, hOldBrl;

(continued)

88 Part I Windows Programming Basics

Listing 2-3 (continued)

}

If Draw hexagon using Polygon.
hBr = IHBRUSHI GetStockObject IWHITE_BRUSH);
hOldBr = CHBRUSH) selectObject Chdc, hBrl;
ptArray[0].x = 192;
ptArray[0].y = 50;
ptArray[l].x = 155;
ptArray[l].y = 75;
ptArray[2].x = 155;
ptArray[2].y = 105:
ptArray[3J.x = 192:
ptArray[3].y = 130:
ptArray[4].x = 230;
ptArray[4].y = 105:
ptArray[5J.x = 230;
ptArray[5].y = 75;

Polygon Ihde, ptArray, 6);
SelectObject Chdc, hOldBr):

hBr = IHBRUSH) MyCreateHatchBrush CHS~DIAGCROSS, RGB {0, 0, 0));
hOldBr = CHBRUSHl SelectObject (hdc, hBr);
Rectangle Chdc, 10, 145, 225, 210);
SelectObject Chdc, hOldBr);
DeleteObject (hBr);

SetBkMode (hdc. OPAQUE);
lstrcpy CszText, TEXT ("Opaque background"));
ExtTextOut (hdc, 20, 160, 0, NULL,

szText, lstrlen CszTextl, NULL>:

SetBkMode Chdc, TRANSPARENT);
1 strcpy (szText, TEXT ("Transparent background"));
ExtTextOut Chdc, 20, 185, 0, NULL,

szText, lstrlen CszTextl. NULL);

EndPaint (hWnd, &psl;
return 0:

II-- --------------------------·-------------,-----------·-----------,--
!/ DoDestroyMain • Process WM_DESTROY message for window
II
LRESULT OoDestroyMai n CHWND hWnd, UI NT wMsg, WPARAM wPa ram,

LPARAM lParam) {
PostQuitMessage (0);
return 0;

Chapter 2 Drawing on the Screen 89

In Shapes, OnPaintMain draws the four figures using the different func
tions discussed earlier. For each of the shapes, a different brush is created,
selected into the device context, and, after the shape has been drawn, dese
lected from the DC. The first three shapes are filled with solid grayscale shades.
These solid brushes are loaded with the GetStockObject function. The final
shape is filled with a brush created with the CreateDIBPatternBrushPt. The cre
ation of this brush is segregated into a function called MyCreateHatchBrush that
mimics the CreateHatchBrush function not available under Windows CE. To
create the hatched brushes, a black-and-white bitmap is built by filling in a bit
map structure and setting the bits to form the hatch patterns. The bitmap itself
is the 8-by-8 bitmap specified by CreateDIBPatternBrushPt. Since the bitmap is
monochrome, its total size, including the palette and header, is only around 100
bytes. Notice, however, that since each scan line of a bitmap must be double
word aligned, the last three bytes of each one-byte scan line are left unused.

Finally the program completes the painting by writing two lines of text
into the lower rectangle. The text further demonstrates the difference between
the opaque and transparent drawing modes of the system. In this case, the
opaque mode of drawing the text might be a better match for the situation
because the hatched lines tend to obscure letters drawn in transparent mode. A
view of the Shapes window is shown in Figure 2-10.

Figure 2-10 The Shapes example demonstrates drawing
different filled shapes.

To keep things simple, the Shapes example assumes that it's running on at
least a 240-pixel-wide display. This allows Shapes to work equally well on a
Handheld PC and a Pocket PC. I have barely scratched the surface of the abili
ties of the Windows CE GDI portion of GWE. The goal of this chapter wasn't to

90 Part I Windows Programming Basics

provide total presentation of all aspects of GDI programming. Instead, I wanted
to demonstrate the methods available for basic drawing and text support under
Windows CE. In other chapters in the book, I extend some of the techniques
touched on in this chapter. I talk about these new techniques and newly intro
duced functions at the point, generally, where I demonstrate how to use them
in code. To further your knowledge, I recommend Programming Windows, 5th
edition, by Charles Petzold (Microsoft Press, 1998), as the best source for learn
ing about the Windows GDI.

Now that we've looked at output, it's time to turn our attention to the
input side of the system-the keyboard and the touch panel.

Input: Keyboard, Mouse,
and Touch Screen

Traditionally, Microsoft Windows platforms have allowed users two methods of
input: the keyboard and the mouse. Windows CE continues this tradition but on
most systems replaces the mouse with a stylus and touch screen. Programmat
ically, the change is minor because the messages from the stylus are mapped to
the mouse messages used in other versions of Windows. A more subtle but also
more important change from versions of Windows that run on PCs is that a sys
tem running Windows CE might have either a tiny keyboard or no keyboard at
all. This arrangement makes the stylus input that much more important for Win
dows CE systems.

The Keyboard
While keyboards play a lesser role in Windows CE, they're still the best means
of entering large volumes of information. Even on systems without a physical
keyboard such as the Pocket PC, soft keyboards-controls that simulate key
boards on a touch screen-will most likely be available to the user. Given this,
proper handling of keyboard input is critical to all but the most specialized of
Windows CE applications. While I'll talk at length about soft keyboards later in
the book, one point should be made here. To the application, input from a soft
keyboard is no different from input from a traditional "hard" keyboard.

91

92 Part I Windows Programming Basics

Input Focus
Under Windows operating systems, only one window at a time has the input
focus. The focus window receives all keyboard input until it loses focus to
another window. The system assigns the keyboard focus using a number of
rules, but most often the focus window is the current active window. The active
window, you'll recall, is the top-level window, the one with which the user is
currently interacting. With rare exceptions, the active window also sits at the
top of the Z-order; that is, it's drawn on top of all other windows in the system.
In the Explorer, the user can change the active window by pressing Alt-Esc to
switch between programs or by tapping on another top-level window's button
on the task bar. The focus window is either the active window or one of its
child windows.

Under Windows, a program can determine which window has the input
focus by calling

HWND GetFocus (void);

The focus can be changed to another window by calling

HWND SetFocus (HWND hWnd);

Under Windows CE, the target window of SetFocus is limited. The window
being given the focus by SetFocus must have been created by the thread calling
SetFocus. An exception to this rule occurs if the window losing focus is related
to the window gaining focus by a parent/ child or sibling relationship; in this
case, the focus can be changed even if the windows were created by different
threads.

When a window loses focus, Windows sends a WM_KILLFOCUS message
to that window informing it of its new state. The wParam parameter contains
the handle of the window that will be gaining the focus. The window gaining
focus receives a WM_SETFOCUS message. The wParam parameter of the
WM_SETFOCUS message contains the handle of the window losing focus.

Now for a bit of motherhood. Programs shouldn't change the focus win
dow without some input from the user. Otherwise, the user can easily become
confused. A proper use of SetFocus is to set the input focus to a child window
(more than likely a control) contained in the active window. In this case, a win
dow would respond to the WM_SETFOCUS message by calling SetFocus with
the handle of a child window contained in the window to which the program
wants to direct keyboard messages.

Keyboard Messages
Windows CE practices the same keyboard message processing as its larger
desktop relations with a few small exceptions, which I cover shortly. When a

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 93

key is pressed, Windows sends a series of messages to the focus window, typ
ically beginning with a WM_KEYDOWN message. If the key pressed represents
a character such as a letter or number, Windows follows the WM_KEYDOWN
with a WM_CHAR message. (Some keys, such as function keys and cursor keys,
don't represent characters, so WM_CHAR messages aren't sent in response to
those keys. For those keys, a program must interpret the WM_KEYDOWN mes
sage to know when the keys are pressed.) When the key is released, Windows
sends a WM_KEYUP message. If a key is held down long enough for the auto
repeat feature to kick in, multiple WM_KEYDOWN and WM_ CHAR messages
are sent for each auto-repeat until the key is released when the final
WM_KEYUP message is sent. I used the word typically to qualify this process
because if the Alt key is being held when another key is pressed, the messages
I've just described are replaced by WM_SYSKEYDOWN, WM_SYSCHAR, and
WM_SYSKEYUP messages.

For all of these messages, the generic parameters wParam and lParam are
used in mostly the same manner. For WM_KEYxx and WM_SYSKEYxx mes
sages, the wParam value contains the virtual key value, indicating the key
being pressed. All versions of Windows provide a level of indirection between
the keyboard hardware and applications by translating the scan codes returned
by the keyboard into virtual key values. You see a list of the VK_xx values and
their associated keys in Table 3-1. While the table of virtual keys is extensive,
not all keys listed in the table are present on Windows CE devices. For exam
ple, function keys, a mainstay on PC keyboards and listed in the virtual key
table, aren't present on most Windows CE keyboards. In fact, a number of keys
on a PC keyboard are left off the space-constrained Windows CE keyboards. A
short list of the keys not typically used on Windows CE devices is presented in
Figure 3-1. This list is meant to inform you that these keys might not exist, not
to indicate that the keys never exist on Windows CE keyboards.

Table 3-1 Virtual Keys

.Constant Value Keyboard Equivalent

VK_LBUITON 01 Stylus tap

VK_RBUITON 02 Mouse right button *

VK_CANCEL 03 Control-break processing

VK_RBUITON 04 Mouse middle button *

05-07 Undefined

VK_BACK 08 Backspace key

VK_TAB 09 Tab key

(continued)

94 Part I Windows Programming Basics

Table 3-1 Virtual Keys (continued)

Constant

VK_CLEAR

Constant

VK_RETURN

VK_SHIFI'

VK_CONTROL

VK_MENU

VK_CAPITAL

VK_ESCAPE

VK_SPACE

VK_PRIOR

VK_NEXT

VK_END

VKJ!OME

VK_LEFI'

VK_UP

VK_RIGHT

VK_DOWN

VK_SELECT

VK_EXECUTE

VK_SNAPSHOT

VK_INSERT

VK_DELETE

VK_HELP

VK_O-VK_9

Value

OA-OB

oc
Value

OD

OE-OF

10

11

12

14

15-19

lA

lB

lC-lF

20

21

22

23

24

25

26
27

28

29

Keyboard Equivalent

Undefined

Clear key

Keyboard Equivalent

Enter key

Undefined

Shift key

Ctrl key

Alt key

Caps Lock key

Reserved for Kanji systems

Undefined

Escape key

Reserved for Kanji systems

Space bar

Page Up key

Page Down key

End key

Home key

Left Arrow key

Up Arrow key

Right Arrow key

Down Arrow key

Select key

2A Original equipment manufacturer (OEM)-specific

2B

2C

2D

2E

2F

30-39

3A-40

Execute key

Print Screen key for Windows 3.0 and later

Insert*

Deletet

Help key

0-9 keys

Undefined

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 95

Table 3-1 Virtual Keys (continued)

Constant Value Keyboard Equivalent

VK_A-VK_Z 41-SA A through Z keys

VK_LWIN SB Windows key

VK_RWIN SC Windows key*

VK_APPS SD

SE-SF Undefined

VK_NUMPAD0-9 60-69 Numeric keypad 0-9 keys

VK_MULTIPLY 6A Numeric keypad Asterisk (*) key

VK_ADD 6B Numeric keypad Plus sign (+) key

VK_SEPARATOR 6C Separator key

VK_SUBTRACT 6D Numeric keypad Minus sign(-) key

VK_DECIMAL 6E Numeric keypad Period (.) key

VK_DIVIDE 6F Numeric keypad Slash mark (/) key

VK_Fl- VK_F24 70-87 Fl-F24*

88-8F Unassigned

VK_NUMLOCK 90 Num Lock*

VK_SCROLL 91 Scroll Lock*

92-9F Unassigned

VK_LSHIFT AO Left Shift\

VK_RSHIFT Al Right Shift\

VK_LCONTROL A2 Left Control\

VK_RCONTROL A3 Right Control\

VK_LMENU A4 Left Alt\

VK_RMENU AS Right Alt\

A6-B9 Unassigned

VK_SEMICOLON BA ; key

VK_EQUAL BB =key

VK_COMMA BC , key

VK_HYPHEN BD - key

VK_PERIOD BE . key

VK_SLASH BF I key

VK_BACKQUOTE co 'key

(continued)

96 Part I Windows Programming Basics

Table 3-1 Virtual Keys (continued)

Constant

VK_LBRACKET

VK_BACKSIASH

VK_RBRACKET

VK_APOSTROPHE

VK_OFF

VK_ATTN

Value

Cl-DA

DB

DC

DD

DE

DF

ES

E6
E7-E8

E9-F5

F6
VK_CRSEL F7

VK_EXSEL F8

VK_EREOF F9

VK_PIAY FA

VK_ZOOM FB

VK_NONAME FC

VK_PA1 FD

VK_OEM_CLEAR FE

Keyboard Equivalent

Unassigned§

[key

\key

l key

I key

Power button

Unassigned

OEM-specific

Unassigned

OEM-specific

' Mouse right and middle buttons are defined but are relevant only on a Windows CE system equipped
with a mouse.

t On some Windows CE systems, Delete is simulated with Shift-Backspace

f Many Windows CE Systems don't have this key

\ These constants can be used only with GetKeyState and GetAsyncKeyState.

These codes are used by the application launch keys on systems that have them.

For the WM_CHAR and WM_SYSCHAR messages, the wParam value con
tains the Unicode character represented by the key. Most often an application
can simply look for WM_ CHAR messages and ignore WM_KEYDOWN and WM_
KEYUP. The WM_ CHAR message allows for a second level of abstraction so that
the application doesn't have to worry about the up or down state of the keys
and can concentrate on the characters being entered by means of the keyboard.

The lParam value of any of these keyboard messages contains further
information about the pressed key. The format of the lParam parameter is
shown in Figure 3-2.

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 97

Insert

Delete (Many Windows CE keyboards use Shift-Backspace for this function.)

Num Lock

Pause

Print Screen

Scroll Lock

Function Keys

Windows Context Menu key

Figure 3-1 Keys on a PC keyboard that are rarely on a Windows CE
keyboard

The low word, bits 0 through 15, contains the repeat count of the key.
Sometimes keys on a Windows CE device can be pressed faster than Windows
CE can send messages to the focus application. In these cases, the repeat count
contains the number of times the key has been pressed. Bit 29 contains the con
text flag. If the Alt key was being held down when the key was pressed, this bit
will be set. Bit 30 contains the previous key state. If the key was previously
down, this bit is set; otherwise, it's 0. Bit 30 can be used to determine whether
the key message is the result of an auto-repeat sequence. Bit 31 indicates the
transition state. If the key is in transition from down to up, Bit 31 is set. Bits 16
through 28 are used to indicate the key scan code. In many cases, Windows CE
doesn't support this field. However, on some of the newer Windows CE plat
forms where scan codes are necessary, this field does contain the scan code.
You shouldn't plan on the scan code field being available unless you know it's
supported on your specific platform.

32!31130f2g ·2s.•21 2s.2-s24.23· 22 ·2 i-201g-1s·11·1-~15'14~3-12·1110··9··a-·1-5··5-·4·--3-··2· 1··-0J-

ln~=~:",::'.:::::;W:--·--·-;:;:·~;"--- ----1

Previous key state, set to 1 if key previously down.

Transition state, set to 1 if key being released.

*Many Windows CE devices don't support this field.

Figure 3-2 The layout of the /Param value for key messages

98 Part I Windows Programming Basics

One additional keyboard message, WM_DEADCHAR, can sometimes
come into play. You send it when the pressed key represents a dead character,
such as an umlaut, that you want to combine with a character to create a differ
ent character. In this case, the WM___DEADCHAR message can be used to pre
vent the text entry point (the caret) from advancing to the next space until the
second key is pressed so that you can complete the combined character.

The WM_DEADCHAR message has always been present under Windows,
but under Windows CE it takes on a somewhat larger role. With the internation
alization of small consumer devices that run Windows CE, programmers should
plan for, and if necessary use, the WM_DEADCHAR message that is so often
necessary in foreign language systems.

Keyboard Functions
You'll find useful a few other keyboard state-determining functions for Win
dows applications. Among the keyboard functions, two are closely related but
often confused: GetKeyState and GetAsyncKeyState.

GetKeyState, prototyped as

SHORT GetKeyState (int nVirtKey);

returns the up/down state of the shift keys, Ctrl, Alt, and Shift, and indicates
whether any of these keys is in a toggled state. If the keyboard has two keys
with the same function-for example, two Shift keys, one on each side of the
keyboard-this function can also be used to differentiate which of them is
being pressed. (Most keyboards have left and right Shift keys, and some include
left and right Ctrl and Alt keys.)

You pass to the function the virtual key code for the key being queried. If
the high bit of the return value is set, the key is down. If the least significant bit
of the return value is set, the key is in a toggled state; that is, it has been pressed
an odd number of times since the system was started. The state returned is the
state at the time the most recent message was read from the message queue,
which isn't necessarily the real-time state of the key. An interesting aside: notice
that the virtual key label for the Alt key is VK_MENU, which relates to the win
dows convention that the Alt-Shift key combination works in concert with other
keys to access various menus from the keyboard.

Note that the GetKeyState function is limited under Windows CE to query
ing the state of the shift keys. Under other versions of Windows, GetKeyState
can determine the state of every key on the keyboard.

To determine the real-time state of a key, use

SHORT GetAsyncKeyState (int vKey);

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 99

As with GetKeyState, you pass to this function the virtual key code for the key
being queried. The GetAsyncKeyState function returns a value subtly different
from the one returned by GetKeyState. As with the GetKeyState function, the
high bit of the return value is set while the key is being pressed. However, the
least significant bit is then set if the key was pressed after a previous call to
GetAsyncKeyState. Like GetKeyState, the GetAsyncKeyState function can distin
guish the left and right Shift, Ctrl, and Alt keys. In addition, by passing the
VK_LBUITON virtual key value, GetAsyncKeyState determines whether the sty
lus is currently touching the screen.

An application can simulate a keystroke using the keybd_event function:

VOID keybd_event (BYTE bVk, BYTE bScan, DWORD dwFlags,
DWORD dwExtrainfo);

The first parameter is the virtual key code of the key to simulate. The bScan
code should be set to NULL under Windows CE. The dwFlags parameter can
have two possible flags: KEYEVENTF_KEYUP indicates that the call is to emulate
a key up event, while KEYEVENTF_SILENT indicates that the simulated key
press won't cause the standard keyboard click that you normally hear when
you press a key. So to fully simulate a key press, keybd_event should be called
twice, once without KEYEVENTF_KEYUP to simulate a key down, and then
once again, this time with KEYEVENTF_KEYUP to simulate the key release.
When simulating a shift key, specify the specific left or right VK code, as in
VK_LSHIFT or VF_RCONTROL.

A function unique to Windows CE is

BOOL PostKeybdMessage (HWND hwnd, UINT VKey,
KEY_STATE_FLAGS KeyStateFlags,
UINT cCharacters, UINT *pShiftStateBuffer,
UINT •pCharacterBuffer);

This function sends a series of keys to the specified window. The hwnd param
eter is the target window. This window must be owned by the calling thread.
The VKey parameter should be zero. KeyStateFlags specifies the key state for all
the keys being sent. The cCharacters parameter specifies the number of keys
being sent. The pShiftStateBujfer parameter points to an array that contains a
shift state for each key sent, while pCharacterBujfer points to the VK codes of
the keys being sent. Unlike keybd_event, this function doesn't change the global
state of the keyboard.

One final keyboard function, Map VirtualKey, translates virtual key codes
to characters. Map VirtualKey in Windows CE doesn't translate keyboard scan
codes to and from virtual key codes, although it does so in other versions of
Windows. The prototype of the function is the top of the following page.

100 Part I Windows Programming Basics

UINT MapVirtualKey (UINT uCode, UINT uMapType);

Under Windows CE, the first parameter is the virtual key code to be translated,
while the second parameter, uMapType, indicates how the key code is trans
lated. MapVirtualKey is dependent on the keyboard device driver implement
ing a supporting function. Many OEMs don't implement this supporting
function, so on their systems, MapVirtualKey fails.

Testing for the Keyboard
To determine whether a keyboard is even present in the system, you can call

DWORD GetKeyboardStatus (VOID);

This function returns the KBDI_KEYBOARD_PRESENT flag if a hardware key
board is present in the system. This function also returns a
KBDI_KEYBOARD_ENABLED flag if the keyboard is enabled. To disable the
keyboard, a call can be made to

BOOL EnableHardwareKeyboard (BOOL bEnable);

with the bEnable flag set to FALSE. You might want to disable the keyboard in
a system for which the keyboard folds around behind the screen; in such a sys

. tern, a user could accidentally hit keys while using the stylus.

The KeyTrac Example Program
The following example program, KeyTrac, displays the sequence of keyboard
messages. Programmatically, KeyTrac isn't much of a departure from the earlier
programs in the book. The difference is that the keyboard messages I've been
describing are all trapped and recorded in an array that's then displayed during
the WM_PAINT message. For each keyboard message, the message name is
recorded along with the wParam and !Param values and a set of flags indicat
ing the state of the shift keys. The key messages are recorded in an array
because these messages can occur faster than the redraw can occur. Figure 3-3
shows the KeyTrac window after a few keys have been pressed.

WM..J<E'NP wP:OOOCIJ041 P:c09ellClill •hlft:
WM_CHAR wP:OWJ0051 1':001s0001 !hlft:
WMJ<E\OOWN wP:OOOCIJ041 P:001s0001 !hlft:
WMJ(E'tUP ,.P:OOOCIJ041 l':c09ellClill !hlft:
WM.J<E'IUP wP:OOOOOCl10 P:c0aalll01 !l'1l1t:
WM_CHAR wP:000000411':001e0001 Shift: IS S
WMJ<E'rOOWN w1':00000041 1':001s0001 !hif!: IS S
WM..)<EYOOWN wP:OOOOOCl10 l':llll2a00'.l1 !hlft: IS S

Figure 3-3 The KeyTrac window after a Shift-A key combination fol
lowed by a lowercase a key press

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 101

The best way to learn about the sequence of the keyboard messages is to
run KeyTrac, press a few keys, and watch the messages scroll down the screen.
Pressing a character key such as the a results in three messages:
WM_KEYDOWN, WM_CHAR, and WM_KEYUP. Holding down the Shift key
while pressing the a and then releasing the Shift key produces a key-down
message for the Shift key followed by the three messages for the a key followed
by a key-up message for the Shift key. Because the Shift key itself isn't a char
acter key, no WM_CHAR message is sent in response to it. However, the
WM_CHAR message for the a key now contains a Ox41 in the wParam value,
indicating that an uppercase A was entered instead of a lowercase a.

Listing 3-1 shows the source code for the KeyTrac program.

KeyTrac.h
II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (Cl 2003 Douglas Boling
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0Jll

11----------------- --
11 Generic defines and data types
II
struct decodeUINT {

UINT Code;

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD {
UINT Code;
LRESULT (*Fxn)(HWND, WORD, HWND, WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

11--
11 Program-specific defines and structures
II
typedef struct {

UINT wKeyMsg;
INT wParam;
INT 1 Pa ram;
LPCTSTR pszMsgTxt;
TCHAR szShift[20];

MYKEYARRAY, *PMYKEYARRAY;

Listing 3-1 The KeyTrac program (continued)

102 Part I Windows Programming Basics

Listing 3·1 (continued)

II Structure to associate messages with
type<:fef struct {

UINT wMsg;
LPCTSTR pName:

} . KEYNAMESTRUCT:

/J-.c:- - - • - - - - - - -•. - • - - - ~ - - • - ~ ·~ -·C - "'"" '° ~ • ••.• ~ • •. ~ •• • •·~
11. Furicti on prototypes
II

. HWND Initinstance {HINSTANCE. ·LPWSTR, int);
i ht IermI nstance (HINSTANC~. int);.

11 Windo.w procedures
LRES1J.LT. CA[LBACK Mai nWrldPr-oc CHWND! UINT.
1 J 'Message ham:tlers · · · .•... · ...

{RESULT OoCreateMafh (HWk.D. U~Nl, WPARAM; . ·
. LRESULT OoPaint;Main CHWNO, UINT; WPARAM. {PARJiM.):
.LRESULT DoKeysMa.in (HWNO. UINT, WPARAM, LPARAM): ..

LRESULT OoDest;royMa in·· (HWND. UlNT_. WPARAM,' J.~ARAMr:

KeyT~l\IC.cpp

II KeyTrac - displays J<eyboari:l messages
II
u Written for the book Programmiog>window!!
ti copyright (CJ 2003 Dougla~ Boling ·
'· ... :. . . ,. '

l / =====~==·====::::::-====::==~====·~~=ii='=:i===;=r====.===~~=~=.~~·~~=========~===.~~=~=====
Htnc1ude <wlridows • .h>
#1 nc1 u.d.e <.comin.ctr1 • h> ·
#include "l<eytrac.h"

11 F'orin> that'windows 'stuff
I.I command bar 1ilcludes
fl Prbgram-'spect:fic· stuff·

/IT.he in.elude .and liti ftles for 'the.Pocket PC.1tre'condttio.naJly
/ 1 inc]uded so .that this example c,an ,shar~ t~e. s9i)1~ pr§j~Ct ff le.· This
11 is. l')ecessary since<this example 111ust haye a menu b_ar. o.il' th~. Pocket
II PC to have a SHi_blltton. . ..
11H. defi ne~<WlNsZ.-PtATFORM.:.PSPCJ.
i1nclude <aygshe11.h> ..

. ffp.ragma cqmll\ent(lib, "m1.sher.v•
fie.rid if_

lh·-:·-j···"--
11 Global data

Ii Add·Potket··PC Jncluiles.
·'II. L.1 hR· ?'~cket' Pt· 11b. 'fo/ mefiu oar., ..

· 1r.
. c()nst TCHAR szAppNam~[]
HINSTANCE. hinst;

'(;.K~YTrac''h ..•. · ...•.. · ... •.··.. · •:
· · Ir. Program 1ristanc~ han;<tl.e '

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 103

II Program-specific global data
MYKEYARRAY ka[16]:
int nKeyCnt = 0;
int nFontHeight:

tags
TEXT ("WM_KEYDOWN")},
TEXT ("WM_KEYUP")}.
TEXT ("WM_CHAR")},
TEXT ("WM_SYSCHAR")},

II Array associates key messages with text
KEYNAMESTRUCT knArray[] = {{WM_KEYDOWN,

{WM_KEYUP,
{WM_CHAR.
{WM_SYSCHAR.
{WM_SYSKEYUP,
{WM_SYSKEYDOWN,
{WM_DEADCHAR,
{WM_SYSDEADCHAR,

TEXT ("WM_SYSKEYUP")},
TEXT ("WM_SYSKEYDOWN")},
TEXT ("WM_DEADCHAR")},
TEXT ("WM_SYSDEADCHAR")}};

II Message dispatch table for MainWindowProc
canst struct decodeUINT MainMessages[J = {

WM_CREATE, DoCreateMain,

} :

WM_PAINT, DoPaintMain,
WM_KEYUP, DoKeysMain,
WM_KEYDOWN, DoKeysMain,
WM_CHAR, DoKeysMain,
WM_DEADCHAR, DoKeysMain,
WM_SYSCHAR, DoKeysMain,
WM_SYSDEADCHAR, DoKeysMain,
WM_SYSKEYDOWN, DoKeysMain,
WM_SYSKEYUP, DoKeysMain,
WM_DESTROY, DoDestroyMain,

II==
II Program entry point
II
int WINAPI WinMain CHINSTANCE hlnstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) {
MSG msg:
int re = 0:
HWND hwndMain:

II Initialize this instance.
hwndMain = Initinstance (hlnstance, lpCmdLine, nCmdShow):
if (hwndMain == 0)

return 0x10:

II Application message loop
whi.le (GetMessage C&msg, NULL, 0, 0)) {

TranslateMessage <&msg);
DispatchMessage C&msg);

}

(continued)

104 Part I Windows Programming Basics

Listing 3-1 (continued)

II Instance cleanup
return Terminstance (hinstance, msg.wParam):

l!-------------------:--
11 Initinstance - Instance initialization

II
HWND Initinstance <HINSTANCE hlnstance, LPWSTR lpCmdline, int nCmdShowJ {

WNDCLASS we:

HWND hWnd:

#if defined(WIN32_PLATFORM....PSPC)

II If Pocket PC, allow only one instance of the application
hWnd = FindWindow (szAppName. NULL);
if (hWnd) {

SetForegroundWindow ((HWND)(((DWORD)hWnd) I 0x01));

return 0;
}

#endif

hlnst.= hin~tance; //Save program instance handle

II Register application main w.indow class.

we.style= 0; II Window. style

wc. lpfnWndProc = MainWndProc; II Callback function

wc.cbClsExtra = 0: II Extra class data

wc.cbWndExtra ~ 0; // Extra window data
wc.hinstance = hinstance; //Owner handle

wc.hlcon = NULL, // Application icon
wc.hCursor = LoadCursor (.NULL, IDCARROW);// Default cursor

wc.hbrBackground = (HBRUSHJ GetStockObject CWHITLBRUSH);

wc.lpszMenuName = NULL; II Menu name
wc.lpszClassName = szAppName; II Window class name

if (Reg1sterClass(&wc) =o= 0) return 0;

II Create main window.
hWnd = CreateWindowEx CWS_ELNODRAG, szAppName, TEXT ("KeyTrac"),

WLViSIBLE I WS_CAPTION I WS_SYSMENU,

CW_USEDEFAUL T. C\>LUSEOEFAULT.
CW_USEDEFAULT, OW_USEDEFAULT,

NULL; NULL~ hinstancei NULL};

I I fan 1f wfnd,ow not cr.ea,ted
if (!IsWindow (11Wnd)) r;eturn 0:

II Standard show and update cal 1 s

ShowWindow ChWnd, nCmdShow);

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 105

UpdateWindow ChWnd):
return hWnd:

11--
11 Terminstance - Program cleanup
II
int Terminstance CHINSTANCE hinstance, int nDefRCl {

return nDefRC:

II==
II Message handling procedures for MainWindow
II
11--
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {
I NT i:
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0: i < dim(MainMessages): i++) {

if (wMsg == MainMessages[iJ.Code)
return (*MainMessages[iJ.Fxn)(hWnd, wMsg, wParam, lParaml:

}

return DefWindowProc (hWnd, wMsg, wParam, lParaml:

11--
11 DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
HOC hdc;
TEXTMETRIC tm:

#if defined(WIN32_PLATFORM_PSPC) && (_WIN32_WCE >= 300)
SHMENUBARINFO mbi; II For Pocket PC, create
memsetC&mbi, 0, sizeofCSHMENUBARINFOll: II menu bar so that we
mbi.cbSize = sizeof{SHMENUBARINFO); II have a sip button
mbi .hwndParent = hWnd;
mbi.dwFlags = SHCMBF_EMPTYBAR:
SHCreateMenuBar(&mbil:

//en di f

II Get the height of the default font.
hdc = GetDC ChWndl:

II No menu

(continued)

106 Part I Windows Programming Basics

Listing 3-1 (continued)

GetTextMetri cs (hdc, &tm):

}

nfontttetght "' tm. tmHeight + tm. tmExternaU.eading:.
Rele•seDC ChWnd. hdc):
return 0:

. //-------·-------

LRESULT Do Pai ntMain CHWND hWnd. UINT wMsg, WPARAM:wParam;
HARAM 1Param) .{

PAINTSTRUCT P$:
RECT rect. rectout ~
JCHAR szOutC256];
HOC hdc:.
INT i , j\:, . .
LPCTSTR pKe,yText~··

wsprintf

II

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 107

II If Pocket PC, display info on 2 lines
ExtTextOut (hdc, 10, rect.top, ETO_OPAQUE, &rectOut.

szOut, lstrlen (szOut), NULL):

II Scroll the window another line.
ScrollDC(hdc, 0, nFontHeight, &rect, &rect, NULL, NULL);
ExtTextOut (hdc, 5, rect.top, ETO_OPAQUE, &rectOut,

}

pKeyText, lstrlen (pKeyText), NULL):
} else {

II Wide screen. print all on one line.
ExtTextOut (hdc, 5, rect.top, ETO_OPAOUE, &rectOut.

pKeyText, lstrlen (pKeyText). NULL):
ExtTextOut (hdc, 100, rect.top, 0, NULL,

szOut. lstrlen (szOut), NULL):

nKeyCnt = 0:

EndPaint (hWnd, &psl:
return 0:

11--
11 DoKeysMain - Process all keyboard messages for window.
II
LRESULT DoKeysMain IHWND hWnd, UINT wMsg, WPARAM wParam~

LPARAM lParam) {

if CnKeyCnt >= 16) return 0:

ka[nKeyCntJ.wKeyMsg = wMsg:
ka[nKeyCnt].wParam = wParam:
ka[nKeyCnt].lParam = lParam:

II Capture the state of the shift flags.
ka[nKeyCnt].szShift[0] =TEXT ('\0');
if (GetKeyState CVK_LMENU))

lstrc~t (ka[nKeyCnt].szShift, TEXT ("lA "));

if (GetKeyState (VK_RMENU))
lstrcat Cka[nKeyCnt].szShift. TEXT ("rA ..)) :

if (GetKeyState (VK_MENU))
lstrcat (ka[nKeyCntJ.szShift, TEXT ("A ") l;

if (GetKeyState (VK_LCONTROL))
lstrcat (ka[nKeyCntJ.szShift, TEXT ("lC ..)) :

1f (GetKeyState (VK_RCONTROL))
lstrcat Cka[nKeyCntJ.szShift, TEXT ("rC ..)) :

1f CGetKeyState (VK_CONTRDL))
lstrcat (ka[nKeyCnt].szShift, TEXT ("C "));

(continued)

108 Part I Windows Programming Basics

Listing 3-1 (continued)

}0:

1 f. (GetKeyS'ta.te (l/K_.LSHI FT).)
1 strcat.J'k~lnKeyCntJ; izShift;

tf{GetKeyS{ate. {VK_.RSHIFT>l··
lstrch Cka[11KeyCnt]: szShJft,

i.t': {Gii:ke.YS:tate '.(VK_.SHI FJ)). . .
• ··· ,fstr~at (k1i(nKeyCntJ .szshift .

.. :~Keybnt~•:············
I nva l i dateRe<:t.

IF"'c-~-"·"·-
11, oooestrnyMatn - Proces's wM2oEs:rRoY 111ess1lge t'or window.
ll
.··LRESU~r.•.oooes.tr{)yMath •.. CliWNQ;h~ri4.·.·.urkr wMsg•,

tPARAM Jp.a/~111)1
I~): , .. .

Here are a few more characteristics of KeyTrac to notice. After each key
board message is recorded, an InvalidateRect function is called to force a
redraw of the window and therefore also a WM_PAINT message. As I men
tioned in Chapter 2, a program should never attempt to send or post a
WM_PAINT message to a window because Windows needs to perform some
setup before it calls a window with a WM_PAINT message.

Another device context function used in KeyTrac is

BOOL Scroll DC (HOC hDC, int dx, int dy, const RECT *lprcScroll,
const RECT *lprcClip, HRGN hrgnUpdate,
LPRECT lprcUpdate);

which scrolls an area of the device context either horizontally or vertically, but
under Windows CE, not both directions at the same time. The three rectangle
parameters define the area to be scrolled, the area within the scrolling area to
be clipped, and the area to be painted after the scrolling ends. Alternatively, a
handle to a region can be passed to ScrollDC. That region is defined by
Scrol!DC to encompass the region that needs painting after the scroll.

Finally, if the KeyTrac window is covered up for any reason and then
reexposed, the message information on the display is lost. This behavior occurs
because a device context doesn't store the bit information of the display. The
application is responsible for saving any information necessary to completely
restore the client area of the screen. Since KeyTrac doesn't save this informa
tion, it's lost when the window is covered up.

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 109

The Mouse and the Touch Screen
Unlike desktop PCs, Windows CE devices don't always have a mouse. Instead,
many Windows CE devices have a touch screen and stylus combination. For
Windows CE systems that do have a mouse, the programming interface is iden
tical to the desktop.

Mouse Messages
Whenever the mouse cursor moves across the display, the topmost window at
that point receives a WM_MOUSEMOVE message. If the user clicks the left or
right mouse button, the window receives a WM_LBUTTONDOWN or
LB_RBUITONDOWN message. When the user releases the button, the window
receives a WM_LBUITONUP or WM_RBUITONUP message. If the user presses
and releases the mouse wheel, the window receives a WM_MBUITONDOWN
followed by a WM_MBUITONUP message.

For all of these messages, the wParam and lParam parameters are loaded
with the same values. The wParam parameter contains a set of bit flags indicating
whether the Ctrl or Shift keys on the keyboard are currently held down. As in other
versions of Windows, the Alt key state isn't provided in these messages. To get the
state of the Alt key when the message was sent, use the GetKeyState function.

The lParam parameter contains two 16-bit values that indicate the posi
tion on the screen of the tap. The low-order 16 bits contain the x (horizontal)
location relative to the upper left corner of the client area of the window, while
the high-order 16 bits contain they (vertical) position.

If the user double-taps, that is, taps twice on the screen at the same loca
tion and within a predefined time, Windows sends a WM_LBUITONDBLCLK
message to the double-tapped window, but only if that window's class was reg
istered with the CS_DBLCLKS style. The class style is set when the window class
is registered with RegisterClass.

You can differentiate between a tap and a double-tap by comparing the
messages sent to the window. When a double-tap occurs, a window first
receives the WM_LBUITONDOWN and WM_LBUITONUP messages from the
original tap. Then a WM_LBUTTONDBLCLK is sent followed by another
WM_LBUITOMJP. The trick is to refrain from acting on a WM_LBUITONDOWN
message in any way that precludes action on a subsequent
WM_LBUITONDBLCLK. This is usually not a problem because taps usually select
an object, while double-tapping launches the default action for the object.

If the user rolls the mouse wheel, the window receives
WM_MOUSEWHEEL messages. For this message, the contents of lParam is the

110 Part I Windows Programming Basics

same as the other mouse messages, the horizontal and vertical location of the
mouse cursor. The low word of the wParam parameter contains the same bit
flags indicating the the keys currently held down. The high work of wParam
contains the distance the wheel was rotated expressed in multiples of a con
stant WHEEL_DELTA. If the value is positive, the rotation is away from the user.
A negative value indicates the wheel was rotated back toward the user.

Working with the Touch Screen
The touch screen and stylus combination is relatively new to Windows plat
forms, but fortunately, its integration into Windows CE applications is relatively
painless. The best way to deal with the stylus is to treat it as a single-button
mouse. The stylus creates the same mouse messages that are provided by the
mouse in other versions of Windows and by Windows CE systems that use a
mouse. The differences that do appear between a mouse and a stylus are due
to the different physical realities of the two input devices.

Unlike a mouse, a stylus doesn't have a cursor to indicate its current posi
tion. Therefore, a stylus can't hover over a point on the screen in the way that
the mouse cursor does. A cursor hovers when a user moves it over a window
without pressing a mouse button. This concept can't be applied to program
ming for a stylus because the touch screen can't detect the position of the stylus
when it isn't in contact with the screen.

Another consequence of the difference between a stylus and a mouse is that
without a mouse cursor, an application can't provide feedback to the user by
means of changes in appearance of a hovering cursor. Touch screen-based Win
dows CE systems do support setting the cursor for one classic Windows method
bf user feedback. The busy hourglass cursor, indicating that the user must wait for
the system to complete processing, is supported under Windows CE so that appli
cations can display the busy hourglass in the same manner as applications run
ning under other versions of Windows, using the SetCursor function.

Stylus Messages
When the user presses the stylus on the screen, the topmost window under that
point receives the input focus if it didn't have it before and then receives a
WM_LBUTTONDOWN message. When the user lifts the stylus, the window
receives a WM_IBUITONUP message. Moving the stylus within the same window
while it's down causes WM_MOUSEMOVE messages to be sent to the window.

Inking
A typical application for a handheld device is capturing the user's writing on the
screen and storing the result as ink. This process isn't handwriting recogni-

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 111

tion-simply ink storage. At first pass, the best way to accomplish this would be
to store the stylus points passed in each WM_MOUSEMOVE message. The prob
lem is that sometimes small CE-type devices can't send these messages fast
enough to achieve a satisfactory resolution. Under Windows CE, a function call
has been added to assist programmers in tracking the stylus.

BOOL GetMouseMovePoints (PPOINT pptBuf, UINT nBufPoints,
UINT *pnPointsRetrieved);

GetMouseMovePoints returns a number of stylus points that didn't result in
WM_MOUSEMOVE messages. The function is passed an array of points, the size
of the array (in points), and a pointer to an integer that will receive the number
of points passed back to the application. Once received, these additional points
can be used to fill in the blanks between the last WM_MOUSEMOVE message
and the current one.

GetMouseMovePoints does throw one curve at you. It returns points in the
resolution of the touch panel, not the screen. This touch panel resolution is
generally set at four times the screen resolution, so you need to divide the coor
dinates returned by GetMouseMovePoints by 4 to convert them to screen coor
dinates. The extra resolution helps programs such as handwriting recognizers.

A short example program, PenTrac, illustrates the difference that Get
MouseMovePoints can make. Figure 3-4 shows the PenTrac window. Notice the
two lines of dots across the window. The top line was drawn using points from
WM_MOUSEMOVE only. The second line included points that were queried
with GetMouseMovePoints. The black dots were queried from
WM_MOUSEMOVE, while the red (lighter) dots were locations queried with
GetMouseMovePoints.

PermaC.

Figure 3-4 The Pen Trac window showing two lines drawn

The source code for PenTrac is shown in Listing 3-2. The program places a
dot on the screen for each WM_MOUSEMOVE or WM_LBU1TONDOWN message
it receives. If the Shift key is held down during the mouse move messages, Pen
Trac also calls GetMouseMovePoints and marks those points in the window in red
to distinguish them from the points returned by the mouse messages alone.

112 Part I Windows Programming Basics

PenTrac cheats a little to enhance the effect of GetMouseMovePoints. The
DoMouseMain routine, which handles WM_MOUSEMOVE and
WM_LBUITONDOWN messages, calls the function sleep to kill a few millisec
onds. This delay simulates a slow-responding application that might not have
time to process every mouse move message in a timely manner.

PenTrac.h
II=,,,==========,.=================="'==============,,,,=================,,,=====
11 Header file

II
I I Written for th.e book Programming Windows CE
II Copyright (C) 2003 Douglas ~cling

!!==
II Returns number of elements.
#define dim(x) Csizeof(x) I sizeof(x[0]))

11- - - - - c -· - - - - -.c - - " - - ~ -

II Generi~.defines and data types

Ii
struct decod~UINT

UINT Code;

LRESULT (*Fxn.)(HWND, UlNT. WPARAM, LPARAM};
} ;

struct decodeCMD {

UINT Cocle;

LRESULT C*FXli)(HWND, WORD. HWND. WORD);
} ;

II Structure associates
//messages

fl with a function.

II Structure associates

II menu iDs with a
// function.

11 - - - - - - - - " - • - " -. ~ - • - - - , - - " - - -. ' - - " ~ , - - - - - - - - " - - " - - - - - - - - - - - - - - ' - - ~ - - - " - " -
II Function prototypes

fl
HWND Initinstance (HlN$TANCE, LPWSTR, int);

int Terminstance .(HINSTANCC int);

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

//Message hancllers

LRESULT DoPaintMain CHWND, UINT. WPARAM, LPARAM);

LRE$ULT OoMouseMain CHWND, UINT, WPARAM, LPARA:Ml;

LRESULT OoDestr9yMain CHWND,. UINT. WPARAM, LPARAM);

Listing 3-2 The PenTrac program

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 113

PenTrac.cpp
II==
II PenTrac - Tracks stylus movement
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
#include <windows.h>
#include "pentrac.h"

II For all that Windows stuff
II Program-specific stuff

11--
11 Global data
II
const TCHAR szAppName[J
HINSTANCE hinst;

TEXT ("PenTrac");
II Program instance handle

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[J = {

WM_LBUTTONDOWN, DoMouseMain,
WM_MOUSEMOVE, DoMouseMain,
WM_OESTROY, DoDestroyMain,

} ;

II==
II Program entry point
II
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) {
MSG msg;
int re = 0;
HWND hwndMain;

II Initialize this instance.
hwndMain = Initlnstance (hlnstance, lpCmdLine, nCmdShow);
if (hwndMain == 0)

return 0xl0;

II Application message loop
while (GetMessage (&msg, NULL, 0, 0)) {

TranslateMessage (&msg);
DispatchMessage <&msg);

II Instance cleanup
return Terminstance (hlnstance, msg.wParam);

(continued)

114 Part I Windows Programming Basics

Listing 3-2 (continued)

11 c - - - - - - - - - - - - • - c - - - " - - - - - •. • - - - • - - - c - - - - - - - - - - - , - .- .c -

If InitApp - Application initialization
If
HWND Initinstance (HINSTANCE hinstance,

WNDCLASS we;
HWND hWnd;

ffif defined (WIN32]LATFORM_PSPC)
// If Pocket PC, allow only one instance
hWnd = FindWindow (szAppName. NUUJ;
ff (hWnd) {

SetForeg roundWi ndow (tHWND l (((DWORD) hWnd) I 0x01});
return0;

Save. program instance handle in
hinst ;:; hiri.stance:

ll Register .. application ITlain window class.
we. st.Yle = 0;
wc.lpfnWndProt = MainwndProc:

w~;cbWndExt~a = 0;

ti
ll
II Extra c1ass ~ata
I! Extra Window data

wc.hlnstance = hlnstance; II Owner. handle
wc.hicon ..• ;= NUL.L. l/ Application ico.YI
wc.hCursor = LoadCursor CNULL, lDC...ARROwl ;l/ De.fault cursor
we. hbrBackground = CHBRUSH) GetStockObj ect (WHIH_BRUSHL
we .. , 1 pszMenLIName = NULL; //

"'= 0) return 0;

Create main. window.
hWnd = CreateWindowEx (WS--E)CNODRAG, szAppName. TEXT ("PenTr~tt"},

wS_VlSIBLE J .WS_tAPTION [WS_SYSMENU,
CW~USEDEFAUL T, CW_USEDEF' AULT.• CW_USEDEFAULT,
cw...:usEDEFAULT. NULL. NULL;

!f~~-~c'•----------~------------c--~

Jerm!ristance - Program cleanup

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 115

II
int Terminstance (HINSTANCE hinstance, int nDefRC) {

return nDefRC;

II==
II Message handling procedures for MainWindow
II

11--
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
INT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[iJ.Code)
return (*MainMessages[iJ.Fxn)(hWnd, wMsg, wParam, lParam);

return DefWindowProc (hWnd, wMsg, wParam, lParam);

11--
11 DoMouseMain - Process WM_LBUTTONDOWN and WM_MOUSEMOVE messages
II for window.
II
LRESULT DoMouseMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
POINT pt[64]:
POINT ptM:
UINT i, uPoints 0;
HDC hdc:

ptM.x = LOWORD (lParaml;
ptM.y = HIWORD (lParam);
hdc = GetDC (hWnd);
II If shift and mouse move, see if any lost points.
if (wMsg == WM_MOUSEMOVE) {

if (wPa ram & MK_SH I FT)
GetMouseMovePoints (pt, 64, &uPoints);

for (i = 0; i < uPoints; i++)
pt[i].x I= 4: II Convert move pts to screen coords
pt[i].y I= 4:
II Covert screen coordinates to window coordinates

(continued)

116 Part I Windows Programming Basics

Listing 3-2 (continued)

}

}
}

MapWindowPoints <HWND_DESKTOP, hWnd, &pt[i]. ll:
.SetPixel (hdc, pt[i}.x, pt[i].y, RGB. (255, 0, 0)):
SetPixel (hdc, pt[i].x+l. pt[iJ.y, .RGB (255, 0, 0));

SetPixel .~hdc, pt[i].x, pt[iJ.Y+l~ RGB (255, 0, 0));

SetPixel Ch.de, pt[i).x+l, pt[i]..Y+l. RGl3 (255, .0, 0});

II The original point is drawn last in case one .of the points
11 returned by GetM01.1seM:oveP61 nts overlaps it.
5etPixel {hdc, ptM.x, ptM,y •. RGB .(0, 0 .•. 0));

SetPixel (hdc, ptM.x+l'. Ptl<t·Y· -RGB(0., 0, 0));
SetPixel Ch.de; ptM.x. ptM.y+l.. RGB {0, 0, 0).);

SetPixel (hdc. ptM.x+l. ptM.y+l, RGB (0, 0, 0)):

ReleaseD.C Ch:Wnd,. hdc:l: ·

b.e.lieve we are busy,

//- - 7 c~- "-c~"·c. -.:~ ~~.-- "- -.-~ -.-.c,

ft J)oDes.troyMafn - .Process :WM-DESTROY message for. Window.

LRESULT DoOestroYMain.<(HWNf) hWnq, l)JNT WMsg, WPARAM wPara111,
LPARAM l~a ra!ll} {

.PostQuitM.i!~l)age < 0 h
ret.urn 0;

Input Focus and Mouse Messages
Here are some subtleties to note about circumstances that rule how and when
mouse messages initiated by stylus input are sent to different windows. As I men
tioned previously, the input focus of the system changes when the stylus is
pressed against a window. However, dragging the stylus from one window to the
next won't cause the new window to receive the input focus. The down tap sets
the focus, not the process of dragging the stylus across a window. When the stylus
is dragged outside the window, that window stops receiving WM_MOUSEMOVE
messages but retains input focus. Because the tip of the stylus is still down, no
other window will receive the WM_MOUSEMOVE messages. This is akin to using
a mouse and dragging the mouse outside a window with a button held down.

To continue to receive mouse messages even if the stylus moves off its
window, an application can call

HWND SetCapture CHWND hWnd);

passing the handle of the window to receive the mouse messages. The function
returns the handle of the window that previously had captured the mouse or

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 117

NULL if the mouse wasn't previously captured. To stop receiving the mouse
messages initiated by stylus input, the window calls

BOOL ReleaseCapture (void);

Only one window can capture the stylus input at any one time. To determine
whether the stylus has been captured, an application can call

HWND GetCapture (void);

which returns the handle of the window that has captured the stylus input or 0
if no window has captured the stylus input-although please note one caveat.
The window that has captured the stylus must be in the same thread context as
the window calling the/unction. This limitation means that if the stylus has
been captured by a window in another application, GetCapture still returns 0.

If a window has captured the stylus input and another window calls Get
Capture, the window that had originally captured the stylus receives a
WM_CAPTURECHANGED message. The !Param parameter of the message con
tains the handle of the window that has gained the capture. You shouldn't
attempt to take back the capture by calling GetCapture in response to this mes
sage. In general, since the stylus is a shared resource, applications should be
wary of capturing the stylus for any length of time and should be able to handle
gracefully any loss of capture.

Another interesting tidbit: Just because a window has captured the mouse,
that doesn't prevent a tap on another window from gaining the input focus for
that window. You can use other methods for preventing the change of input
focus, but in almost all cases, it's better to let the user, not the applications,
decide which top-level window should have the input focus.

Right-Button Clicks
When you click the right mouse button on an object in Windows systems, the
action typically calls up a context menu, which is a stand-alone menu display
ing a set of choices for what you can do with that particular object. On a system
with a mouse, Windows sends WM_RBUTTONDOWN and WM_RBUTTONUP
messages indicating a right-button click. When you use a stylus, you don't have
a right button. The Windows CE guidelines, however, allow you to simulate a
right-button click using a stylus. The guidelines specify that if a user holds
down the Alt key while tapping the screen with the stylus, a program should act
as if a right mouse button were being clicked and display any appropriate con
t ext menu. There's no MK_ALT flag in the wParam value of
WM_LBUTTONDOWN, so the best way to determine whether the Alt key is
pressed is to use GetKeyState with VK_MENU as the parameter and test for the
most significant bit of the return value to be set. GetKeyState is more appropri
ate in this case because the value returned will be the state of the key at the
time the mouse message was pulled from the message queue.

118 Part I Windows Programming Basics

On systems without a keyboard, the tap-and-hold gesture is used to sim
ulate a right mouse click. The function SHRecognizeGesture can be used on
Pocket PCs and, with the proper shell componets, embedded Windows CE sys
tems to detect a tap and hold. The function is prototyped as

WINSHELLAPI DWORD SHRecognizeGestureCSHRGINFO *Shrg);

The only parameter is the address of a SHRGINFO structure defined as

typedef struct tagSHRGI
DWORD cbSize;
HWND hwndClient;
POINT ptDown;
DWORD dwFlags;

SHRGINFO, *PSHRGINFO;

The cbSize field must be filled with the size of the structure. The hwndCli
ent field should be set to the handle of the window that is calling the function.
The ptDown field is a structure that should be filled with the point where the
gesture is being recognized. The dwFlags field can contain a number of flags.
The SHRG_RETURNCMD flag causes the function to return GN_CONTEXTMENU
if the user properly gestures with a tap and hold or zero otherwise. The
SHRG_NOTIFYPARENT flag causes a WM_NOTIFY message to be sent to the
parent window if the gesture is properly recognized. Finally, the
SHRG_LONGDELAY flag requires the user to hold the tap for a longer period of
time before the gesture is recognized.

The TicTac1 Example Program
To demonstrate stylus programming, I have written a trivial tic-tac-toe game.
The TicTacl window is shown in Figure 3-5. The source code for the program
is shown in Listing 3-3. This program doesn't allow you to play the game
against the computer, nor does it determine the end of the game-it simply
draws the board and keeps track of the X's and O's. Nevertheless, it demon
strates basic stylus interaction.

0
oxx
x

Figure 3-5 The TicTac1 window

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 119

TicTac1.h
II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))
11--
11 Generic defines and data types
II
struct decodeUINT

UINT Code;
II Structure associates
II messages
II with a function.

LRESULT (*Fxn)(HWND, UINT. WPARAM. LPARAM);
} ;

struct decodeCMD {
UINT Code;

II Structure associates
II menu IDs with a

LRESULT (*Fxn)(HWND, WORD, HWND, WORD); II function.
} ;

11--
11 Function prototypes
II
HWND Initinstance (HINSTANCE, LPWSTR, int);
int Terminstance (HINSTANCE, int);

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

II Message handlers
LRESULT DoSizeMain (HWND, UINT. WPARAM, LPARAM);

LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoLButtonDownMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoLButtonUpMain (HWND. UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

II Game function prototypes
void DrawXO (HDC hdc, HPEN hPen, RECT *prect, INT nCel l, INT nType);
void DrawBoard (HDC hdc, RECT *prect);

Listing 3-3 The TicTac1 program (continued)

120 Part I Windows Programming Basics

Listing 3-3 (continued)

TicTac1 .cpp
II===
II TicTacl - Simple tic-tac-toe game
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II
!!==
#include <windows.h> II For all that Windows stuff
#include <commctrl.h>
#include "tictacl.h"

JI Command bar includes
II Program-specific stuff

11---·--------
I/ Global data
II
canst TCHAR szAppName[J
HINSTANCE hinst:

TEXT ("TicTacl");

JI State data for game
RECT rectBoard = {0, 0, 0, 0};
RECT rectPrompt;
BYTE bBoard[9];
BYTE bTurn = 0;

II Program instance handle

II Used to place game board.
JI Used to place prompt.
II Keeps track of X's and O's.
II Keeps track of the turn.

II Message dispatch table for MainWindowProc
canst struct decodeUINT MainMessages[J = {

WM_SIZE, DoSizeMain,

} ;

WM_PAINT, DoPaintMain,
WM_LBUTTONUP, DoLButtonUpMain,
WM_DESTROY, DoDestroyMain,

II==
II
II Program entry point
II
int WINAPI WinMain (HINSTANCE hlnstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) {
MSG msg;
HWND hwndMain;

II Initi~lize this instance.
hwndMain = In1tinstance (hlnstance, lpCmdLine, nCmdShow);
if (hwndMain == 0)

return 0xl 0;
II Application message loop
while (GetMessage (&msg, NULL, 0, 0)) {

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 121

TranslateMessage (&msg);
DispatchMessage (&msg);

II Instance cleanup
return Terminstance (hinstance, msg.wParam);

11--
11 Initinstance - Instance initialization
II
HWND Initinstance (HINSTANCE hinstance. LPWSTR lpCmdLine, int nCmdShow) {

WNDCLASS we;
HWND hWnd;

II Save program instance handle in global variable.
hinst = hinstance;

#if defined(WIN32_PLATFORM_PSPC)
II If Pocket PC, allow only one instance of the application.
hWnd = FindWindow (szAppName. NULL):
if (hWnd) {

SetForegroundWindow ((HWND)(((DWORD)hWnd) I 0x01)):
return 0;

#end if
II Register application main window class.
we.style= 0; II Window style
wc.lpfnWndProc MainWndProc; II Callback function
wc.cbClsExtra = 0; II Extra class data
wc.cbWndExtra = 0; II Extra window data
wc.hinstance = hinstance; II Owner handle
wc.hicon =NULL. II Application icon
wc.hCursor = LoadCursor (NULL, IDC_ARROW);I/ Default cursor
wc.hbrBackground = CHBRUSH) GetStockObject (WHITE_BRUSH);
we. lpszMenuName = NULL; II Menu name
wc.lpszClassName = szAppName; II Window class name

if (RegisterClass (&we) == 0) return 0;

II Create main window.
hWnd = CreateWindowEx (WS_EX_NODRAG, szAppName, TEXT ("TicTacl"),

WS_VISIBLE I WS_CAPTION I WS_SYSMENU,
CW_USEDEFAULT. CW_USEDEFAULT,
CW_USEDEFAULT. CW_USEDEFAULT,
NULL, NULL, hinstance, NULL):

II Return fail code if window not created.
if (!IsWindow (hWnd)) return 0:

(continued)

122 Part I Windows Programming Basics

Listing 3-2 (continued)

}

II Standard show and update calls
ShowWi ndow (hWnd, nCmdShow):
UpdateWindow (hWnd);
return hWnd:

11-----------·-------------- ------------------- ---------------·------·
II ~erminstance - Program cleanup
II
int Termlnst~nce CHINSTANCE hlnstance, int nDefRCl {

return nDefRC:
}

11 =='=======:====~====~==!!:::=========='======;!::::;:=:=========:;::;:=====;;::;:!=;:;::;='===:;::::;:::::::====<==
II Message handling procedures for MainWindow
II
11- . - - -• - - • - _ • - c - c • ____ • c • •. - ___ • c .• _ • __ •. _ • __ • _ , • _____ ~ _ • __ • • _ • -. -.•• _ • • _ :- • _

/IMainWndProc - Callback function for applicat)on window
II
LRESULT CALLBACK MainWndProc CHWND hWnd •. UINT wMsg, WPARAM wParam,

LPARAM lParam) {

}

INT i:
II
I I search message Hst to see if we need to hand.1e this
II message. If in list, can procedwe.
II
for (1 "'· 0; 1 < dim(MainMes.sa.ges).; i++) {

if CwMsg == MainMessages[iJ.Codel
return (*Mai nMessagesiiJ. Fxn) (hW.hd, WMS9, wParam •. lParam);

}

return DefWindowProcChWnd, wM5g, wParam. lParaml:

11-----------------------•"-----·-------------------~------~~-----------
l{ DoSiteMain - Process WM_SIZE fuessage for.window •.
II
LRESULT DoSizeMain (HWNp hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam> {
RECT rect;
lNT i;

Adjust the size Of the client
the ci.)mmand b.ar height,

Get CJ 1 entRe.tt ChWn<l, &r:ectn
• •• • ."'' ,, ', : <',<

Initialize the board rectangle
(rectBoatd •. right == 0) { .

fl lnttialtze the board.
for Ci = 0: i < dimCbB:oardh i++)

bBoard[i] = 0:

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 123

II Define the playing board rect.
rectBoard = rect;
rectPrompt = rect;
II Layout depends on portrait or landscape screen.
if erect.right - rect. left > rect.bottom - rect.top)

rectBoard. left += 20:
rectBoard.top += 10;
rectBoard.bottom -= 10;
rectBoard.right rectBoard.bottom - rectBoard.top + 10:

re ct Prompt. 1 eft rectBoard.right + 10;

else {
rectBoard.left += 20;
rectBoard.right -= 20;
rectBoard.top += 10;
rectBoard.bottom = rectBoard.right - rectBoard.left + 10;

rectPrompt.top rectBoard.bottom + 10;

return 0;

11--
11 DoPaintMain - Process WM_PAINT message for window.
II
LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParaml {
PAINTSTRUCT ps;
RECT rect;
HFONT hFont, hOldFont;
HOC hdc;

GetClientRect (hWnd, &rect);

hdc = BeginPaint (hWnd, &ps);

II Draw the board.
DrawBoard (hdc, &rectBoardl;

II Write the prompt to the screen.
hFont = (HFONTlGetStockObject CSYSTEM_FONT);
hOldFont = (HFONT)SelectObject (hdc, hFont);
if (bTurn ="' 0)

DrawText (hdc, TEXT (.. x. s turn"), -1. &rect Prompt.
DT_CENTER I DLVCENTER / DLS I NG LE LI NE);

else
DrawText (hdc, TEXT ("O's turn"), -1. &rectPrompt,

DLCENTER I DLVCENTER / DT_SINGLELINEl;

(continued)

124 Part I Windows Programming Basics

Listing 3-3 (continued)

SelectObj ect (hdc. hOl dFont);
EndPaint (hWnd, &ps);
return 0;

}

//.OCILBWttot1UpMain Proi:;ess WM_LBUiTONUP message for window.
ll
LRESULT DoLButtonUpMai.n (HWND h.Wnd, UINT wMsg. WPARAM wParam.

LPARAM lParam) {
POINT pt;
INT ex. cy, nCell = 0;

pt,x = LOWORD ClParam);
pt.y.• HIWORD ClParam);
II See H .pen on board. If so, determine whi.ch Cell.
if CPtJnRect C&rectBoard. pt)){

II Normalize paint to upper left corner of board,
pt.x -= rt!ctBoard .1 eft;
pt ~"" rt!ctBoard.top;

ll Compute. size of each cell.
ex= (rectBoard.right.- rectBoard.left)/3:
cy = CrectBoar.d .bottom c redBoa rd. top) /3:

II Find colt.1mn.
nCeH = Cpt,x I c.x):
II Find. row.
nCel l += (p.Ly/ Cy) * 3;

If ~e11 empty, fill it~ith mark.
tbBoard[nCelT] == 0) {
if (blurnl {

bBoard[nCell] =.2;
bTu.rn = 0;

t!lSt! {
bsoard[nCellJ 1.;
bTurh =.l;

}

Inval idateRect (hWnd. NULL, FALS~);

else {
fl Inform the user of the.filled cell.
MessageBeep (9);
return 0;

0;

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 125

11--
11 DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PostQuitMessage (0);
return 0;

II==
II Game-specific routines
II
11--
11 DrawXO - Draw a single X or 0 in a square.
II
void DrawXO (HOC hdc, HPEN hPen, RECT *prect, INT nCell, INT nType) {

POINT pt[2];

}

I NT ex. cy;
RECT rect;

ex (prect->right - prect->left)l3;
cy (prect->bottom - prect->top)l3;

II Compute the dimensions of the target cell.
rect.left = (ex* CnCell % 3) + prect->left) + 10;
rect.right = rect.right = rect.left +ex - 20;
rect.top = cy * (nCell I 3) + prect->top + 10;
rect.bottom = rect.top + cy - 20;

II Draw an X ?
if C nType == 1)

pt[0J.x rect.left;
pt[0].y rect.top;
pt[l].x rect.right;
pt[l].y rect.bottom;
Polyline (hdc, pt, 2);

pt[0].x = rect.right;
pt[l].x = rect.left;
Polyline (hdc, pt, 2);

II How about an O ?
} else if (nType == 2)

Ellipse (hdc, rect. left, rect.top. rect.right, rect.bottom);

return;

11--
11 DrawBoard - Draw the tic-tac-toe board.
I I VK_MENU

(continued)

126 Part I Windows Programming Basics

Listing 3-3 (continued)

void DrawBoard CHDC hdc, RECT •prect) {
HPEN hPen, hOldPen;
POINT pt[2J:
LOGPEN l p;
I NT i , ex. cy;

// Create a nice thi.ck pen,
lp.lopnStyl e = PS_SOLID;
lp.lopnWidth.x = 5;
lp.lopnWidth.y = 5;
lp .. lopnColor = RGB UL 0, 01;
hPen = CreatePenindirect C&lp1:

hOldPen = CHPEN)SelectObject (hdc, hPen);

ex = (prectc>right ... - prect->left.)/3;
cy Cpreet->bottom - prect->top)/3;

II Draw lines down.
pt[0}.x = ex+ prect">left;
pt[l].x =ex+ preet->left;
pt[0].y = prect~>top;
pt[lJ.y = prect->bottom;
Polyline Chde, pt, .2);

pt[0J.x += ex;
pt[lJ. x += ex ;
Polyline Chdc, pt. 2);

l / Draw lines across.
pt[0}.X = prect~>left;

pt[ll.X = prect->ri ght;
pt[0J.y = cy + prect">top;
pt[l],y ... cy+·prect->top:
Polyline. · (hdc., pt, . 2);

pt, 2);

Fil·l···.·itrt's andO's.
Ci = 0; t < dim C.bBoard); i++}
or11wxo (MC:, llPen. &rectaoard,

(hdc. ·hllldPe11):
(hPen);

Chapter 3 Input: Keyboard, Mouse, and Touch Screen 127

The action in TicTacl is centered around three routines: DrawBoard,
DrawXO, and DoLButtonUpMain. The first two perform the tasks of drawing
the playing board. The routine that determines the location of a tap on the
board (and therefore is more relevant to our current train of thought) is DoL

Button UpMain. As the name suggests, this routine is called in response to a
WM_LBUITONUP message. The first action to take is to call

BOOL PtlnRect (canst RECT *lprc, POINT pt);

which determines whether the tap is even on the game board. The program
knows the location of the tap because it's passed in the lParam value of the
message. The board rectangle is computed when the program starts in DoSize
Main. Once the tap is localized to the board, the program determines the loca
tion of the relevant cell within the playing board by dividing the coordinates of
the tap point within the board by the number of cells across and down.

I mentioned that the board rectangle was computed during the DoSize
Main routine, which is called in response to a WM_SIZE message. While it
might seem strange that Windows CE supports the WM_SIZE message common
to other versions of Windows, it needs to support this message because a win
dow is sized frequently: first right after it's created and then each time it's min
imized and restored. You might think that another possibility for determining
the size of the window would be during the WM_ CREATE message. The lParam
parameter points to a CREATESTRUCT structure that contains, among other
things, the initial size and position of the window. The problem with using
those numbers is that the size obtained is the total size of the window, not the
size of the client area, which is what we need. Under Windows CE, most win
dows have no title bar and no border, but some have both and many have
scroll bars, so using these values can cause trouble. So now, with the TicTacl
example, we have a simple program that uses the stylus effectively but isn't
complete. To restart the game, we must exit and restart TicTacl. We can't take
back a move or have 0 start first. We need a method for sending these com
mands to the program. Sure, using keys would work. Another solution would
be to create hot spots on the screen that when tapped, provided the input nec
essary. Clearly this example needs some extra pieces to make it complete. I've
taken the discussion of Windows as far as I can without a more complete dis
cussion of the basic component of the operating system, the windows them
selves. It's time to take a closer look at windows, child windows, and controls.

Windows, Controls,
and Menus

Understanding how windows work and relate to each other is the key to under
standing the user interface of the Microsoft Windows operating system, whether
it be Microsoft Windows XP or Microsoft Windows CE. Everything you see on
a Windows display is a window. The desktop is a window, the taskbar is a win
dow, even the Start button on the taskbar is a window. Windows are related to
one another according to one relationship model or another; they may be in
parent/child, sibling, or owner/owned relationships. Windows supports a num
ber of predefined window classes, called controls. These controls simplify the
work of programmers by providing a range of predefined user interface ele
ments as simple as a button or as complex as a multiline text editor. Windows
CE supports the same standard set of built-in controls as the other versions of
Windows. These built-in controls shouldn't be confused with the complex con
trols provided by the common control library. I'll talk about those controls in
the next chapter.

Child Windows
Each window is connected via a parent/child relationship scheme. Applications
create a main window with no parent, called a top-level window. That window
might (or might not) contain windows, called child windows. A child window
is clipped to its parent. That is, no part of a child window is visible beyond the
edge of its parent. Child windows are automatically destroyed when their par
ent windows are destroyed. Also, when a parent window moves, its child win
dows move with it.

129

130 Part I Windows Programming Basics

Child windows are programmatically identical to top-level windows. You
use the Create Window or CreateWindowEx function to create them, each has a
window procedure that handles the same messages as its top-level window,
and each can, in turn, contain its own child windows. To create a child win
dow, use the WS_CHILD window style in the dwStyle parameter of Create Win
dow or CreateWindowEx. In addition, the hMenu parameter, unused in top
level Windows CE windows, passes an ID value that you can use to reference
the window.

Under Windows CE, there's one other major difference between top-level
windows and child windows. The Windows CE shell sends WM_HIBERNATE
messages only to top-level windows that have the WS_OVERLAPPED and
WS_ VISIBLE styles. (Window visibility in this case has nothing to do with what
a user sees. A window can be "visible" to the system and still not be seen by the
user if other windows are above it in the Z-order.) This means that child win
dows and most dialog boxes aren't sent WM_HIBERNATE messages. Top-level
windows must either manually send a WM_HIBERNATE message to their child
windows as necessary or perform all the necessary tasks themselves to reduce
the application's memory footprint. On Windows CE systems that use the stan
dard "Explorer shell," which supports application buttons on the taskbar, the
rules for determining the target of WM_HIBERNATE messages are also used to
determine what windows get buttons on the taskbar.

In addition to the parent/child relationship, windows also have an owner/
owned relationship. Owned windows aren't clipped to their owners. However,
they always appear "above" (in Z-order) the window that owns them. If the
owner window is minimized, all windows it owns are hidden. Likewise, if a
window is destroyed, all windows it owns are destroyed.

Window Management Functions
Given the windows-centric nature of Windows, it's not surprising that you can
choose from a number of functions that enable a window to interrogate its envi
ronment so that it might determine its location in the window family tree. To
find its parent, a window can call

HWND GetParent (HWND hWnd);

This function is passed a window handle and returns the handle of the
calling window's parent window. If the window has no parent, the function
returns NULL.

Chapter 4 Windows, Controls, and Menus 131

Enumerating Windows
GetWindow, prototyped as

HWND GetWindow (HWND hWnd, UINT uCmd);

is an omnibus function that allows a window to query its children, owner, and
siblings. The first parameter is the window's handle, while the second is a con
stant that indicates the requested relationship. The GW_CHILD constant returns
a handle to the first child window of a window. GetWindow returns windows
in Z-order, so the first window in this case is the child window highest in the
Z-order. If the window has no child windows, this function returns NULL. The
two constants, GW_HWNDFIRST and GW_HWNDLAST, return the first and last
windows in the Z-order. If the window handle passed is a top-level window,
these constants return the first and last topmost windows in the Z-order. If the
window passed is a child window, the Get Window function returns the first and
last sibling window. The GW_HWNDNEXT and GW_HWNDPREV constants
return the next lower and next higher windows in the Z-order. These constants
allow a window to iterate through all the sibling windows by getting the next
window, then using that window handle with another call to Get Window to get
the next, and so on. Finally, the GW_OWNER constant returns the handle of the
owner of a window.

Another way to iterate through a series of windows is

BOOL EnumWindows (WNDENUMPROC lpEnumFunc, LPARAM lParam);

This function calls the callback function pointed to by lpEnumFunc once for
each top-level window on the desktop, passing the handle of each window in
turn. The lParam value is an application-defined value, which is also passed to
the enumeration function. This function is better than iterating through a
GetWindow loop to find the top-level windows because it always returns valid
window handles; it's possible that a GetWindow iteration loop will get a win
dow handle whose window is destroyed before the next call to GetWindow can
occur. However, since Enum Windows works only with top-level windows,
GetWindow still has a place when a program is iterating through a series of
child windows.

Finding a Window
To get the handle of a specific window, use the function

HWND FindWindow (LPCTSTR lpClassName, LPCTSTR lpWindowName);

This function can find a window either by means of its window class name or
by means of a window's title text. This function is handy when an application

132 Part I Windows Programming Basics

is just starting up; it can determine whether another copy of the application is
already running. All an application has to do is call FindWindow with the name
of the window class for the main window of the application. Because an appli
cation almost always has a main window while it's running, a NULL returned by
FindWindow indicates that the function can't locate another window with the
specified window class-therefore, it's almost certain that another copy of the
application isn't running.

You can find the handle to the desktop window by using the function

HWND GetDesktopWindow (void);

Editing the Window Structure Values
The pair of functions

LONG GetWindowLong (HWND hWnd, int nlndex);

and

LONG SetWindowLong (HWND hWnd, int nlndex, LONG dwNewLong);

allow an application to edit data in the window structure for a window.
Remember that the WNDCLASS structure passed to the RegisterClass function
has a field, ch WndExtra, that controls the number of extra bytes that are to be
allocated after the structure. If you allocated extra space in the window struc
ture when the window class was registered, you can access those bytes using
the GetWindowLong and SetWindowLong functions. Under Windows CE, the
data must be allocated and referenced in 4-byte (integer sized and aligned)
blocks. So if a window class was registered with 12 in the cbWndExtra field, an
application can access those bytes by calling GetWindowLong or SetWin
dowLong with the window handle and by setting the values 0, 4, and 8 in the
nlndex parameter.

GetWindowLong and SetWindowLong support a set of predefined index
values that allow an application access to some of the basic parameters of a
window. Here is a list of the supported values for Windows CE.

• GWL_STYLE The style flags for the window

• GWL_EXSTYLE The extended style flags for the window

• GWL_ WNDPROC The pointer to the window procedure for the
window

• GWL_ID The ID value for the window

• GWL_USERDATA An application-usable 32-bit value

Chapter 4 Windows, Controls, and Menus 133

Dialog box windows support the following additional values:

• DWL_DLGPROC The pointer to the dialog procedure for the
window

• DWL_MSGRESULT The value returned when the dialog box func
tion returns

• DWL_USER An application-usable 32-bit value

Windows CE doesn't support the GWL_HINSTANCE and
GWL_HWNDPARENTvalues supported by Windows 2000 and Windows XP.

Changing the Style Flags
Editing the window structure can be useful in a number of ways. The style bits
of a window can be changed after the window has been created to change its
default actions and look. For example, the title bar of a window can be shown
or hidden by toggling the WS_CAP110N style bit. After changing any style flag
that modifies the look of the window, it's customary to force the system to
redraw the nonclient area of the window with a call to SetWindowPos.

SetWindowPos is one of those functions used all the time in Windows. It
allows the application to move, size, change the Z-order of, and as in this case,
redraw the nonclient area of the window. Its prototype is

BOOL SetWindowPos (HWND hWnd, HWND hWndinsertAfter, int X, int Y,
int ex, int cy, UINT uFlags);

The first parameter is the handle of the window that will be changed. The
h WndlnsertA.fter parameter optionally allows the function to set the Z-order of
the window. This parameter can be either a window handle or one of four flags
that position the window either at the top or the bottom of the Z-order. The
flags are shown here:

• HWND_B01TOM The window underneath all windows on the
desktop

• HWND_TOP The window on top of all windows

• HWND_TOPMOST The window to always be placed on top of
other windows, even when the window is deactivated

• HWND_NOTTOPMOST The window on top of all other nontop
most windows but not marked as a topmost window so that it will be
covered when another window is activated

134 Part I Windows Programming Basics

The X, Y, ex, artd cy parameters optionally specify the position and size of
the window. The flags parameter contains one or more flags that describe the
task to accomplish. The flags are as follows:

• SWP_NOMOVE Don't move the window.

• SWP_NOSIZE Don't resize the window.

• SWP_NOZORDER Don't set the window's Z-order.

• SWP_NOAGTIVATE If the Z-order is set, don't activate the win
dow.

• SWP_DRAWFRAME Redraw the nonclient area.

• SWP _FRAMECHANGED Recalculate the nonclient area, and then
redraw.

Two other flags, S"W'.P_SHOWW'lNDOWand S"W'.P_HIDEWINDOW, show
and hide the window, but it's easier to call the ShowWindow function to show
or hide a window. To use SetWindowPos to force the frame to be redrawn after
the style bits are changed, the call would be

SetWindowPos (hWnd, 0, 0, 0, 0, 0,
SWP_NOMOVE I SWP_NOSIZE I SWP_NOZORDER I SWP_FRAMECHANGED);

Subclassing a Window
Another use of SetWindowLong is to subclass a window. Subclassing a window
allows an application to essentially derive an instance of a new window class
from a preexisting window class. The classic use for subclassing is to modify
the behavior of a window control, such as an edit control.

The process of subclassing is actually quite simple. A window procedure
is created that provides only the new functionality required of the subclassed
window. A window is then creating using the base window class. GetWin
dowLong is called to get and save the pointer to the original window procedure
for the window. SetWindowLong is then called to set the window procedure for
this instance of the window to the new window procedure. The new window
procedure then receives the message sent to the window. Any messages not
acted upon by the new window procedure are passed on to the old window
procedure with the function CallWindowProc. The following code shows a
window being created and then subclassed. The subclass procedure then inter
cepts the WM_LBUITONDOWN message and beeps the speaker when the win
dow receives that message.

II Prototype of subclass procedure
LRESULT CALLBACK SCWndProc(HWND hWnd, UINT wMsg, WPARAM wParam,

Chapter 4 Windows, Controls, and Menus 135

LPARAM l Pa ram);

II Variable that holds the pointer to the original WndProc
WNDPRDC lpfnOldProc = 0;
II
II Routine that subclasses the requested window.
II
BOOL SubClassThisWnd CHWND hwndSC)

}

II

if (lpfnOldProc == 0) {
II Get and save the pointer to the original window procedure
lpfnOldProc = CWNDPROC)GetWindowLong (hwndSC, GWL_WNDPROC);

II Point to new window procedure
return SetWindowLong (hwndSC, GWL_WNDPROC, (OWORD)SCWndProc);

return FALSE;

II Subclass procedure
II
LRESULT CALLBACK SCWndProc(HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

}

switch (wMsg) {

case WM_LBUTTONDOWN:
MessageBeep(0);
break;

return CallWindowProc (lpfnOldProc, hWnd, wMsg, wParam, lParam);

To un-subclass the window, the program simply calls SetWindowLong to
set the WndProc pointer back to the original window procedure.

Windows Controls
Were it not for the Windows Control library, programming Windows applica
tions would be a slow and arduous process. In addition, every application
would have its own look and feel. This would force the user to learn a new way
of working with each new application. Fortunately, this scenario is avoided
with an assortment of controls that the operating system provides. In short, con
trols are simply predefined window classes. Each has a custom window proce
dure supplied by Windows that gives each of these controls a tightly defined
user and programming interface.

136 Part I Windows Programming Basics

Since a control is just another window, it can be created with a call to Cre
ate Window or Create Window Ex. Controls notify the parent window of events
via WM_ COMMAND messages encoding events and the ID and window handle
of the control encoded in the parameters of the message.

Like all messages, WM_COMMAND contains two generic parameters,
wParam and !Param. For a WM_COMMAND message, the high word of
wParam contains the notification code, the reason for the WM_COMMAND
message being sent. The low word of wParam contains the ID value of the con
trol that sent the message. The ID is a word that's typically defined when the
control is created and, to be useful, should be unique among all the sibling win
dows of the control. The !Param value contains the handle of the child window
that sent the control. In general, it's easier to track the source of a
WM_COAiMAND message though the control ID rather than the window handle
of the control, but both are available in the message. The following code is typ
ical of the first few lines of a WM_COAiMAND handler:

case WM_COMMAND:
WORD iditem, wNotifyCode;
HWND hwndCtl;

II Parse the parameters.
iditem =(WORD) LOWORD (wParam);
wNotifyCode =(WORD) HIWORD(wParam);
hwndCtl = (HWND) lParam;

From this point, the WM_COAiMAND handler typically uses the ID of the
control and then uses the notification code to determine why the
WM_COAiMAND message was sent.

Controls can also be configured and manipulated using predefined mes
sages sent to the control. Among other things, applications can set the state of
buttons, add items to or delete items from list boxes, and set the selection of
text in edit boxes, all by sending messages to the controls. Controls are typically
indentified by their ID, but many Windows functions require the handle of the
control. The GetDlgltem function provides a simple conversion. The function is
prototyped as

HWND GetDlgitem (HWND hDlg, int nIDDlgitem);

The two parameters are the handle of the parent window of the control and the
ID value for the control. Although the name implies that the function can be
used only in dialog boxes, something I'll talk about in Chapter 6, it works quite
fine for a control in any window.

Chapter 4 Windows, Controls, and Menus 137

Another convenient function to send a message to a control is SendDlg
ltemMessage. This function sends a message to a child window with a specific
ID. The prototype of the message is shown here:

LONG SendDlgitemMessage (HWND hParent, int nIDChild, UINT Msg,
WPARAM wParam. LPARAM lParam);

The parameters are similar to those for SendMessage. In fact, the following code
is functionally identical to that of SendDlgltemMessage:

LONG SendMessage (GetDlgitem (hParent, nIDChild), Msg, wParam, lParam);

The only difference is the convenience of not having to embed the GetDlgltem
call within SendMessage.

There are six predefined window control classes. They are

• Button A wide variety of buttons

• Edit A window that can be used to enter or display text

• List A window that contains a list of strings

• Combo A combination edit box and list box

• Static A window that displays text or graphics that a user can't
change

• Scroll bar A scroll bar not attached to a specific window

Each of these controls has a wide range of function, far too much for me
to cover completely in this chapter. But I'll quickly review these controls, men
tioning at least the highlights. Afterward, I'll show you an example program,
CtlView, to demonstrate these controls and their interactions with their parent
windows.

Button Controls
Button controls enable several forms of input to the program. Buttons come in
many styles, including push buttons, check boxes, and radio buttons. Each style
is designed for a specific use-for example, push buttons are designed for
receiving momentary input, check boxes are designed for on/off input, and
radio buttons allow a user to select one of a number of choices.

Push Buttons
In general, push buttons are used to invoke some action. When a user presses
a push button using a stylus, the button sends a WM_COMMAND message with

138 Part I Windows Programming Basics

a BN_CLICKED (for button notification clicked) notify code in the high word of
the wParam parameter.

Check Boxes
Check boxes display a square box and a label that asks the user to specify a
choice. A check box retains its state, either checked or unchecked, until the
user clicks it again or the program forces the button to change state. In addition
to the standard BS_CHECKBOX style, check boxes can come in a three-state
style, BS_3STATE, that allows the button to be disabled and shown grayed out.
Two additional styles, BS_AUTOCHECKBOX and BS_AUT03STATE, automati
cally update the state and look of the control to reflect the checked, the
unchecked, and, in the case of the three-state check box, the disabled state.

As with push buttons, check boxes send a BN_CLICKED notification when
the button is clicked. Unless the check box has one of the automatic styles, it's
the responsibility of the application to manually change the state of the button.
This can be done by sending a BM_SETCHECK message to the button with the
wParam set to 0 to uncheck the button or 1 to check the button. The three-state
check boxes have a third, disabled, state that can be set by means of the
BM_SETCHECK message with the wParam value set to 2. An application can
determine the current state using the BM_GETCHECK message.

Radio Buttons
Radio buttons allow a user to select from a number of choices. Radio buttons
are grouped in a set, with only one of the set ever being checked at a time. If
it's using the standard BS_RADIOBUTTON style, the application is responsible
for checking and unchecking the radio buttons so that only one is checked at a
time. However, like check boxes, radio buttons have an alternative style,
BS_AUTORADIOBUTTON, that automatically maintains the group of buttons so
that only one is checked.

Group Boxes
Strangely, the group box is also a type of button. A group box appears to the
user as a hollow box with an integrated text label surrounding a set of controls
that are naturally grouped together. Group boxes are merely an organizational
device and have no programming interface other than the text of the box,
which is specified in the window title text upon creation of the group box.
Group boxes should be created after the controls within the box are created.
This ensures that the group box will be "beneath" the controls it contains in the
window Z-order.

You should also be careful when using group boxes on Windows CE
devices. The problem isn't with the group box itself, but with the small size of

Chapter 4 Windows, Controls, and Menus 139

the Windows CE screen. Group boxes take up valuable screen real estate that
can be better used by functional controls. This is especially the case on the
Pocket PC with its very small screen. In many cases, a line drawn between sets
of controls can visually group the controls as well as a group box can.

Customizing the Appearance of a Button
You can further customize the appearance of the buttons described so far by
using a number of additional styles. The styles, BS_RIGHT, BS_LEFT,
BS_BOITOM, and BS_TOP, allow you to position the button text in a place
other than the default center of the button. The BS_MULTILINE style allows
you to specify more than one line of text in the button. The text is flowed to
fit within the button. The newline character (\n) in the button text can be
used to specifically define where line breaks occur. Windows CE doesn't sup
port the BS_ICON and BS_BITMAP button styles supported by other versions
of Windows.

Owner-Draw Buttons
You can totally control the look of a button by specifying the BS_OWNERDRAW
style. When a button is specified as owner-draw, its owner window is entirely
responsible for drawing the button for all the states in which it might occur.
When a window contains an owner-draw button, it's sent a WM_DRAWITEM
message to inform it that a button needs to be drawn. For this message, the
wParam parameter contains the ID value for the button and the !Param param
eter points to a DRAWITEMSTRUCT structure defined as

typedef struct tagDRAWITEMSTRUCT
UINT CtlType;
UINT Ctl ID;
UINT item ID:
UINT itemAction:
UINT itemState;
HWND hwndltem:
HDC hDC;
RECT re Item:
DWORD itemData;

DRAWITEMSTRUCT;

The Ct/Type field is set to ODT_BUITON, while the Ctl!D field, like the
wParam parameter, contains the button's ID value. The itemAction field con
tains flags that indicate what needs to be drawn and why. The most significant
of these fields is itemState, which contains the state (selected, disabled, and so
forth) of the button. The hDC field contains the device context handle for the
button window, while the rcltem RECT contains the dimensions of the button.
The itemData field is NULL for owner-draw buttons.

140 Part I Windows Programming Basics

As you might expect, the WM_DRAWITEM handler contains a number of
GDI calls to draw lines, rectangles, and whatever else is needed to render the
button. An important aspect of drawing a button is matching the standard col
ors of the other windows in the system. Since these colors can change, they
shouldn't be hard coded. You can query to find out which are the proper colors
by using the function

DWORD GetSysColor (int nlndex);

This function returns an RGB color value for the colors defined for differ
ent aspects of windows and controls in the system. Among a number of pre
defined index values passed in the index parameter, an index of
COLOR_BTNFACE returns the proper color for the face of a button, while
COLOR_BTNSHADOW returns the dark color for creating the three-dimensional
look of a button.

The Edit Control
The edit control is a window that allows the user to enter and edit text. As you
might imagine, the edit control is one of the handiest controls in the Windows
control pantheon. The edit control is equipped with full editing capability,
including cut, copy, and paste interaction with the system clipboard, all without
assistance from the application. Edit controls display a single line or, when the
ES_MULTILINE style is specified, multiple lines of text. The Notepad accessory,
provided with the desktop versions of Windows, is simply a top-level window
that contains a multiline edit control.

The edit control has a few other features that should be mentioned. An
edit control with the ES_PASSWORD style displays an asterisk (*) character by
default in the control for each character typed; the control saves the real char
acter. The ES_READONLY style protects the text contained in the control so that
it can be read, or copied into the clipboard, but not modified. The
ES_LOWERCASE and ES_UPPERCASE styles force characters entered into the
control to be changed to the specified case.

You can add text to an edit control by using the WM_SETTEXT message
and retrieve text by using the WM_GETTEXT message. Selection can be con
trolled using the EM_SETSEL message. This message specifies the starting and
ending characters in the selected area. Other messages allow the position of the
caret (the marker that indicates the current entry point in an edit field) to be
queried and set. Multiline edit controls contain a number of additional mes
sages to control scrolling as well as to access characters by line and column
position.

Chapter 4 Windows, Controls, and Menus 141

The List Box Control
The list box control displays a list of text items so that the user might select one
or more of the items within the list. The list box stores the text, optionally sorts
the items, and manages the display of the items, including scrolling. List boxes
can be configured to allow selection of a single item or multiple items or to pre
vent any selection at all.

You can add an item to a list box by sending an LB_ADDSTRING or
LB_INSERTSTRING message to the control, passing a pointer to the string to add
the lParam parameter. The LB_ADDSTR!NG message places the newly added
string at the end of the list of items, while LB_INSERTSTRING can place the
string anywhere within the list of items in the list box. The list box can be
searched for a particular item using the LB_FIND message.

Selection status can be queried using LB_GETCURSEL for single selection
list boxes. For multiple selection list boxes, LB_GETSELCOUNT and
LB_GETSELITEMS can be used to retrieve the items currently selected. Items in
the list box can be selected programmatically using the LB_SETCURSEL and
LB_SETSEL messages.

Windows CE supports most of the list box functionality available in other
versions of Windows with the exception of owner-draw list boxes, as well as
the LB_DIR family of messages. A new style, LBS_EX_CONSTSTRINGDATA, is
supported under Windows CE. A list box with this style doesn't store strings
passed to it. Instead, the pointer to the string is stored, and the application is
responsible for maintaining the string. For large arrays of strings that might be
loaded from a resource, this procedure can save RAM because the list box
won't maintain a separate copy of the list of strings.

The Combo Box Control
The combo box is (as the name implies) a combination of controls-in this
case, a single-line edit control and a list box. The combo box is a space-efficient
control for selecting one item from a list of many or for providing an edit field
with a list of predefined suggested entries. Under Windows CE, the combo box
comes in two styles: drop-down and drop-down list. (Simple combo boxes
aren't supported.) The drop-down style combo box contains an edit field with
a button at the right end. Clicking on the button displays a list box that might
contain more selections. Clicking on one of the selections fills the edit field of
the combo box with the selection. The drop-down list style replaces the edit
box with a static text control. This allows the user to select from an item in the
list but prevents the user from entering an item that's not in the list.

142 Part I Windows Programming Basics

Because the combo box combines the edit and list controls, a list of the
messages used to control the combo box strongly resembles a merged list of the
messages for the two base controls. CB_ADDSTRING, CB_INSERTSTRING, and
CB_FINDSTRING act like their list box cousins. Likewise, the
CB_SETEDITSELECT and CB_GETEDITSELECT messages set and query the
selected characters in the edit box of a drop-down or a drop-down list combo
box. To control the drop-down state of a drop-down or drop-down list combo
box, the messages CB_SHOWDROPDOWN and CB_GETDROPPEDSTATE can
be used.

As in the case of the list box, Windows CE doesn't support owner-draw combo
boxes. However, the combo box supports the CBS_EX_CONSTSTRINGDATA
extended style, which instructs the combo box to store a pointer to the string
for an item instead of the string itself. As with the list box
LBS_EX_CONSTSTRINGDATA style, this procedure can save RAM if an applica
tion has a large array of strings stored in ROM because the combo box won't
maintain a separate copy of the list of strings.

Static Controls
Static controls are windows that display text, icons, or bitmaps not intended for
user interaction. You can use static text controls to label other controls in a win
dow. What a static control displays is defined by the text and the style for the
control. Under Windows CE, static controls support the following styles:

• SS_LEFT Displays a line of left-aligned text. The text is wrapped if
necessary, to fit inside the control.

• SS_CENTER Displays a line of text centered in the control. The
text is wrapped if necessary, to fit inside the control.

• SS_RIGHT Displays a line of text aligned with the right side of the
control. The text is wrapped if necessary, to fit inside the control.

• SS_LEFTNOWORDWRAP Displays a line of left-aligned text. The
text isn't wrapped to multiple lines. Any text extending beyond the
right side of the control is clipped.

• SS_BITMAP Displays a bitmap. Window text for the control spec
ifies the name of the resource containing the bitmap.

• SS_ICON Displays an icon. Window text for the control specifies
the name of the resource containing the icon.

Chapter 4 Windows, Controls, and Menus 143

Static controls with the SS_NOT1FY style send a WM_ COMMAND message
when the control is clicked, enabled, or disabled, although the Windows CE
version of the static control doesn't send a notification when it's double-clicked.
The SS_CENTERIMAGE style, used in combination with the SS_BITMAP or
SS_ICON style, centers the image within the control. The SS_NOPREFIX style
can be used in combination with the text styles. It prevents the ampersand (&)

character from being interpreted as indicating that the next character is an
accelerator character.

Windows CE doesn't support static controls that display filled or hollow
rectangles such as those drawn with the SS_ WHITEFRAME or SS_BLACKRECT
style. Also, Windows CE doesn't support owner-draw static controls.

The Scroll Bar Control
The scroll bar control is a somewhat different beast from the other controls.
Scroll bars are typically seen attached to the sides of windows to control the
data being viewed in the window. Indeed, other window controls, such as the
edit box and the list box, use the scroll bar control internally. Because of this
tight relationship to the parent window, the interface of a scroll bar is different
from that of the other controls.

Instead of using WM_COMMAND messages to report actions, scroll bars
use WM_ VSCROLL and WM_HSCROLL messages. WM_ VSCROLL messages are
sent by vertically oriented scroll bars, whereas WM_HSCROLL messages are sent
by horizontally oriented scroll bars. In addition, instead of something like a
SB_SETPOSJT10N message being sent to a scroll bar to set its position, there are
dedicated functions to do this. Let's look at this unique interface.

Scroll Bar Messages
A WM_ VSCROLL message is sent to the owner of a vertical scroll bar any time
the user taps on the scroll bar to change its position. A complementary mes
sage, WM_HSCROLL, is identical to WM_ VSCROLL but is sent when the user
taps on a horizontal scroll bar. For both these messages, the wParam and
lParam assignments are the same. The low word of the wParam parameter
contains a code indicating why the message was sent. Figure 4-1 shows a dia
gram of horizontal and vertical scroll bars and how tapping on different parts of
the scroll bars results in different messages. The high word of wParam is the
position of the thumb, but this value is valid only while you're processing the
SB_THUMBPOSJT10N and SB_THUMBTRACK codes, which I'll explain shortly.
If the scroll bar sending the message is a stand-alone control and not attached
to a window, the lParam parameter contains the window handle of the scroll
bar.

144 Part I Windows Programming Basics

SB_LINELEFT

SB_PAGELEFT

SB_LINEUP

SB_PAGEUP

SB_THUMBPOSITION
SB_THUMBTRACK

SB_PAGEDOWN

SB_LINEDOWN

SB_THUMBPOSITION SB_LINERIGHT

SB_THUMBTRACK SB_PAGERIGHT

Figure 4·1 Scroll bars and their hot spots

The scroll bar message codes sent by the scroll bar allow the program to
react to all the different user actions allowable by a scroll bar. The response
required by each code is listed in the following table, Table 4-1.

The SB_LINExxx and SB_PAGExxx codes are pretty straightforward. You
move the scroll position either a line or a page at a time. The
SB_1HUMBPOSI110N and SB_THUMBTRACK codes can be processed in one of
two ways. When the user drags the scroll bar thumb, the scroll bar sends
SB_THUMBTRACK code so that a program can interactively track the dragging
of the thumb. If your application is fast enough, you can simply process the
SB_THUMBTRACK code and interactively update the display. If you field the
SB_THUMBTRACK code, however, your application must be quick enough to
redraw the display so that the thumb can be dragged without hesitation or
jumping of the scroll bar. This is especially a problem on the slower devices
that run Windows CE.

Table 4-1 Scroll Codes

Codes

For WM_ VSCROLL

SB_LINEUP

SB_LINEDOWN

SB_PAGEUP

SB_PAGEDOWN

Response

Program should scroll the screen up one line.

Program should scroll the screen down one line.

Program should scroll the screen up one screen's worth of
data.

Program should scroll the screen down one screen's worth
of data.

Chapter 4 Windows, Controls, and Menus 145

Table 4-1 Scroll Codes (continued)

Codes Response

For WM_HSCROLL

SB_LINELEFT Program should scroll the screen left one character.

SB_LINERIGHT Program should scroll the screen right one character.

SB_PAGELEFT Program should scroll the screen left one screen's worth of
data.

SB_PAGERIGHT Program should scroll the screen right one screen's worth of
data.

For both WM_ VSCROLL and WM__HSCROLL

SB_T1!UMBTRACK Programs with enough speed to keep up should update the
display with the new scroll position.

SB_T1!UMBPOSIT10N

SB_ENDSCROLL

SB_TOP

SB_BOTTOM

Programs that can't update the display fast enough to keep
up with the SB_T1!UMBTRACK message should update the
display with the new scroll position.

This code indicates that the scroll bar has completed the
scroll event. No action is required by the program.

Program should set the display to the top or left end of the
data.

Program should set the display to the bottom or right end of
the data.

If your application (or the system it's running on) is too slow to quickly
update the display for every SB_THUMBTRACK code, you can ignore the
SB_THUMBTRACK and wait for the SB_THUMBPOSITION code that's sent when
the user drops the scroll bar thumb. Then you have to update the display only
once, after the user has finished moving the scroll bar thumb.

Configuring a Scroll Bar
To use a scroll bar, an application should first set the minimum and maximum
values-the range of the scroll bar, along with the initial position. Windows CE
scroll bars, like their desktop cousins, support proportional thumb sizes, which
provide feedback to the user about the size of the current visible page com
pared with the entire scroll range. To set all these parameters, Windows CE
applications should use the SetScrol!Info function, prototyped as

int SetScrollinfo (HWND hwnd, int fnBar, LPSCROLLINFO lpsi, BOOL fRedraw);

146 Part I Windows Programming Basics

The first parameter is either the handle of the window that contains the
scroll bar or the window handle of the scroll bar itself. The second parameter,
fnBar, is a flag that determines the use of the window handle. The scroll bar
flag can be one of three values: SB_HORZ for a window's standard horizontal
scroll bar, SB_VERTfor a window's standard vertical scroll bar, or SB_Cn if the
scroll bar being set is a stand-alone control. Unless the scroll bar is a control,
the window handle is the handle of the window containing the scroll bar. With
SB_Cn, however, the handle is the window handle of the scroll bar control
itself. The last parameter is jRedraw, a Boolean value that indicates whether the
scroll bar should be redrawn after the call has been completed.

The third parameter is a pointer to a SCROLLINFO structure, which is
defined as

typedef struct tagSCROLLINFO
UINT cbSize;
UINT fMask;
int nMin;
int nMax;
UINT nPage;
int nPos;
int nTrackPos;

} SCROLLINFO;

This structure allows you to completely specify the scroll bar parameters.
The cbSize field must be set to the size of the SCROLLINFO structure. The jMask
field contains flags indicating what other fields in the structure contain valid
data. The nMin and nMax fields can contain the minimum and maximum scroll
values the scroll bar can report. Windows looks at the values in these fields if
the jMask parameter contains the SIF_RANGE flag. Likewise, the nPos field sets
the position of the scroll bar within its predefined range if the jMask field con
tains the SIF_POS flag.

The nPage field allows a program to define the size of the currently view
able area of the screen in relation to the entire scrollable area. This allows a
user to have a feel for how much of the entire scrolling range is currently visi
ble. This field is used only if the JMask field contains the SIF_PAGE flag. The last
member of the SCROLLINFO structure, nTrackPos, isn't used by the SetScroll
Info call and is ignored.

The jMask field can contain one last flag. Passing an
SIF_DISABLENOSCROLL flag causes the scroll bar to be disabled but still visible.
This is handy when the entire scrolling range is visible within the viewable area
and no scrolling is necessary. Disabling the scroll bar in this case is often pref
erable to simply removing the scroll bar completely.

Chapter 4 Windows, Controls, and Menus 147

Those with a sharp eye for detail will notice a problem with the width of
the fields in the SCROLLINFO structure. The nMin, nMax, and nPos fields are
integers and therefore, in the world of Windows CE, are 32 bits wide. On the
other hand, the WM_HSCROLL and WM_ VSCROLL messages can return only a
16-bit position in the high word of the wParam parameter. If you're using scroll
ranges greater than 65,535, use this function:

BOOL GetScroll Info CHWND hwnd, int fnBar, LPSCROLLINFO lpsi);

As with SetScrolllnfo, the flags in the fnBar field indicate the window han
dle that should be passed to the function. The SCROLLJNFO structure is identi
cal to the one used in SetScrolllnfo; however, before it can be passed to
GetScroll!nfo, it must be initialized with the size of the structure in cbSize. An
application must also indicate what data it wants the function to return by set
ting the appropriate flags in the JMask field. The flags used in JMask are the
same as the ones used in SetScrol!Info, with a couple of additions. Now an
SIF_TRACKPOS flag can be passed to have the scroll bar return its current
thumb position. When called during a WM_xSCROLL message, the nTrackPos
field contains the real time position, while the nPos field contains the scroll bar
position at the start of the drag of the thumb.

The scroll bar is an unusual control in that it can be added easily to win
dows simply by specifying a window style flag. It's also unusual in that the con
trol is placed outside the client area of the window. The reason for this
assistance is that scroll bars are commonly needed by applications, so the Win
dows developers made it easy to attach scroll bars to windows. Now let's look
at the other basic Windows controls.

The CtlView Example Program
The Ct!View example program, shown in Listing 4-1, demonstrates all the con
trols I've just described. The example makes use of several application-defined
child windows that contain various controls. You switch between the different
child windows by clicking on one of five radio buttons displayed across the top
of the main window. As each of the controls reports a notification through a
WM_ COMMAND message, that notification is displayed in a list box on the right
side of the window. Ct!View is handy for observing just what messages a con
trol sends to its parent window and when they're sent. Ct!View is designed to
use different control layouts depending on the width of the screen. This means
that even on the Pocket PC's narrow screen, all the controls are visible.

148 Part I Windows Programming Basics

Listing 4-1 The CtlView program

Chapter 4 Windows, Controls, and Menus 149

/fdefine IDG_SINGLELINE 100
ifidefi ne IOC_MULTILINE 101
#define IDG_PASSBOX 102

II List box window defines
#define !DG_COMBOBOX 100
#define IOG_SNGLELIST 101
iffdefi ne IOC_MULTILIST 102

II Static control window defines
/fdefine IDC_LEFTTEXT 100
/fdefine
#define
/fdefine
#define

IDC_RIGHTTEXT 101
IDC_CENTERTEXT 102
IDC_!CONCTL 103
IDC_BITMAPCTL 104

II Scroll bar window defines
#define IDC_LRSCROLL 100
#define IDC_UDSCROLL 101

II User-defined message to add a line to the window
#define MYMSG_ADDLINE (WM_USER + 10)

typedef struct {
TCHAR *SZClass;
int nID;
TCHAR *SZTitle;
int x;
int y;
int ex;
int cy;
DWORD lStyle;

CTLWNDSTRUCT, *PCTLWNDSTRUCT;

typedef struct {
WORD wMsg;
int nID;
WPARAM wParam;
LPARAM 1 Pa ram;

CTLMSG, * PCTLMSG;

typedef struct {
TCHAR *PSZLabel;
WORD wNotification;

} NOTELABELS, *PNOTELABELS;
11--
11 Function prototypes
II

(continued)

150 Part I Windows Programming Basics

Listing 4-1 (continued)

HWND lnitinstance (HINSTANCE, LPWSTR, intr;
int Terminstance (HINSTANCE, int);

II Window procedures
LRESULT CALLBACK FrameWndProc (IWJND ,. U! NT, WP A RAM, LPARAM):
LRESULT CALLBACK ClientWndProc (HWND, UINT; WPARAM, LPARAM);

II Message handlers
LRESUl,.T .DoCreateFrame (HWND, UINT, WP A RAM, LP A RAM l:
LRESULT DoSizeFrame CHWND, UINT, WPARAM, JPARAM);
LRESUI,. T DoCommandFrame { HWND, U I NT, WP A RAM, LPARAM);
LRESUL T DoAddl ineframe { HWND, U INT, WPARAM, LPARAM);
LRESULT DoDestroyFrame <HWND. UINT, WPARAM. LPARAM);

/ /- -- --.- ------ --- - - ---- --- -' --- -------'·' ---' ---- --- - ---- --' -- ---- -.- '
11 Window prototypes a.nd defi1H;)S for .stnWhd

itdefi ne • BTNWND
int lnitBt11Wnd

fl Window procedures
LRESULT.CALLBACK BtnWndProc

LRESULT DoCreateBtnWnd {HWND. UXNT, WPARAM, LPARAM);
LRESULT Do Ct 1 ColorBtnWnd <HWND, U INT •. WPARAM, LPARAM>;
LRESULT DoCommand8tnWnd (HWND, UlNT, WPARAM, LPARAM);
LRESULT .ooDrawitemBtnWnd CHWND. HINT; WPARAM, LPARAMl;

UINT, WPARAM. LPARAM);

wi n<Jaw·procedures
LRESULT CALLBACK EditWndProc

tRESULT··· OoCreatefdftW!ld ... CHWNP.····u INr.• •.. ·•wPARAM ••.. LPARAM·l;
LRESULT>DoCommarldEditWhd.fHWNO.)JI.NT,·· .•• wPAfl,AM,<~PA~l\M);

.·. Lfl,.EStlLT DoDrawitemEditWnd {HWNP, · UINT1 ~PARAM, LPAF\AM);
LRESULT DoMeasureltemEdttWnd JHWND., UlNT, WPARA.M, HARAM};
/Jc _ c ~ • _ , , , c __ • - , .c • • , •. c • c c - • - •••

#define. L!STWND
intlnitListWnd

Chapter 4 Windows, Controls, and Menus 151

II Window procedures
LRESULT CALLBACK ListWndProc (HWND. UINT. WPARAM. LPARAM);

LRESULT DoCreateListWnd (HWND. UINT, WPARAM. LPARAM);
LRESULT DoCommandListWnd (HWND. UINT. WPARAM, LPARAM);
LRESULT DoDrawitemListWnd (HWND, UINT. WPARAM. LPARAM);
LRESULT DoMeasureitemListWnd (HWND. UINT. WPARAM. LPARAM);

11--
11 Window prototypes and defines for StatWnd
II
#define STATWND TEXT ("StaticWnd")
int InitStatWnd (HINSTANCE);

II Window procedures
LRESULT CALLBACK StatWndProc (HWND. UINT. WPARAM, LPARAM);

LRESULT DoCreateStatWnd (HWND, UINT, WPARAM, LPARAM);
LRESULT DoCommandStatWnd (HWND, UINT, WPARAM, LPARAMl;
LRESULT DoDrawitemStatWnd (HWND, UINT, WPARAM. LPARAM);
LRESULT DoMeasureitemStatWnd (HWND, UINT, WPARAM. LPARAM);

11--
11 Window prototypes and defines ScrollWnd
II
#define SCROLLWND TEXT ("ScrollWnd"l
int InitScrollWnd <HINSTANCEl;

II Window procedures
LRESULT CALLBACK ScrollWndProc (HWND. UINT. WPARAM, LPARAM);

LRESULT DoCreateScrollWnd (HWND, UINT, WPARAM, LPARAMl;
LRESULT DoVScrollScrollWnd (HWND, UINT. WPARAM. LPARAM);
LRESULT DoHScrollScrollWnd (HWND, UINT. WPARAM. LPARAMl;

CtlView.cpp
II==
II CtlView - Lists the available fonts in the system.
II
II Written for the book Programming Windows CE
II Copyright (Cl 2003 Douglas Boling
II==
#include <windows.h>
#include <commctrl .h>
#include "CtlView.h"

II For all that Windows stuff
II Command bar includes
II Program-specific stuff

(continued)

152 Part I Windows Programming Basics

Listing 4-1 (continued)

11--
11 Global data
JI
canst TCHAR szAppName[] =TEXT ("CtlView");
HINSTANCE hlnst; II Program instance handle

II Message dispatch table for FrameWindowProc
canst struct decodeUINT FrameMessages[J = {

WM_CREATE. DoCreateFrame,

} ;

WM_SIZE, DoSizeFrame,
WM_COMMAND, OoCommandFrame,
MYMSG_ADDLINE, OoAddLineFrame,
WM_DESTROY, OoOestroyFrame,

typedef struct {
TCHAR *SzTitl e;
int nID;
TCHAR •szCtlWnds;
HWND hWndClient;

RBTNOATA;

II Text for main window radio buttons
TCHAR •szBtnTitle{] ={TEXT ("Buttons"), TEXT ("Edit"), TEXT ("List"),

TEXT ("Static"), TEXT ("Scroll")};
II Class names for child windows containing controls
TCHAR •szCtlWnds[] = {BTNWND, EDITWND, LISTWND, STATWND. SCROLLWNO};

int nWndSel = 0;

!!==
I/ Program entry point
II
int WINAPI WinMain CHINSTANCE hlnstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) {
MSG msg;
int re = 0;
HWND hwndFrame;

II Initialize application.
hwndFrame = Initlnstance Chlnstance. lpCmdLine, nCmdShow);
if ChwndFrame == 0)

return 0xl0;

II Application message loop
while (GetMessage {&msg, NULL, 0, 0)) {

TranslateMessage <&msg);

Chapter 4 Windows, Controls, and Menus 153

DispatchMessage (&msg);

II Instance cleanup
return Terminstance (hinstance, msg.wParaml;

11--
11 Initinstance - Instance initialization
II
HWND Initinstance (HINSTANCE hlnstance, LPWSTR lpCrndLine, int nCmdShow) {

WNDCLASS we;
HWND hWnd;

II Save program instance handle in global variable.
hlnst = hlnstance;

#if defined(W!N32_PLATFORM_PSPC)
II If Pocket PC, allow only one instance of the application
hWnd = FindWindow (szAppName, NULL);
if (hWnd) {

SetForegroundWindow ((HWND) (((DWORDlhWnd) I 0x01l);
return 0;

1/endi f
II Register application frame window class.
we.style= 0; II Window style
wc.lpfnWndProc = FrameWndProc; II Callback function
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hlnstance = hlnstance;
wc.hlcon = NULL.

II Extra class data
II Extra window data
II Owner handle
II Application icon

wc.hCursor = LoadCursor (NULL, IDC_ARROW);ll Default cursor
wc.hbrBackground = CHBRUSH) GetSysColorBrush (COLOR_STAT!C);
wc.lpszMenuName = NULL; II Menu name
wc.lpszClassName = szAppName; II Window class name

if (RegisterClass <&we) == 0) return 0:

II Initialize client window classes
if <InitBtnWnd (hlnstance) != 0) return 0;
if (lnitEditWnd (hlnstance) != 0) return 0:
if (InitlistWnd (hlnstancel != 0) return 0:
if (lnitStatWnd (hlnstance) != 0) return 0:
if (InitScrollWnd (hinstance) != 0) return 0;

II Create frame window.
hWnd = CreateWindowEx <WS_ELNODRAG, szAppName, TEXT ("Control View"),

WS_VISIBLE I WS_CAPTION I WS_SYSMENU,

(continued)

154 Part I Windows Programming Basics

Listing 4-1 (continued)

}

C.W_USEDEF,i\1.Jlf, cw_USEfJEFAUL T, cw:...usEDEFAu.L~,
CW_USEDEfAULT, NULL, NULL; h~nstance, NULL)}.

fl Return· fail code H window not treated .•
if (! lsWindow {hWnd}) return 0;

II Standard show and update calls
Showwindow ChWnd, nCmdShow);
UpdateWi ndow (hWnd);

return hWnd;

II Terminstance - Program cleanup
II
int Term I nstarice CH INSTANCE hlnstance. 1 nt nDefRC} t

return nDefRC;
}

I I Message handling procedures for FrameWindow
II
11-·------~"~-·-~c·----•···~ ---
!I FrameWn,tProc. - Ca 1 TbaCk function
II
LRESULT CALLBAC.K .. frameWndPro.c

}

int i;
II

II message.
II
for l1 = 01 i < dimlframeMessages):

if (wMsg "':"' FrameMessage.S[i].C.ode)
return (*FrameMes1ages[tJ.fxn}(hWnd~

return

I I -·- - - - - - - - - - - - ·c - - - - • - "" - - • • - - - • - - - • - • - • ·• - - - • • • :' ~ - c :; • - • -' - - - '.•- • - • • • - ".• - - -

I I DoCreateFratfie. • Process. WM_CREATE ntessage for window,
II
LRESULT DoCreateFram.e CHWNfJ hWnd, LllNT.\i/Msg,·.WPARAM<wParam,

HWND hwndChi 1 d;
INT i;

LPARAM lParam)

II Set currentl~ viewed window
nWndSel = .0;

Chapter 4 Windows, Controls, and Menus 155

II Create the radio buttons.
for (i = 0; i < dim(szBtnTitlel; i++) {

hwndChild = CreateWindow (TEXT ("BUTTON"),
szBtnTitle[i], BS_AUTORADIOBUTTON
WS_VISIBLE I WS_CHILD, 0,
0, 80, 20, hWnd,
(HMENU)(IDC_RADIOBTNS+i), hinst, NULL);

II Destroy frame if window not created.
if (!lsWindow (hwndChild))

DestroyWindow (hWndl:
break;

}

II Create report window. Size it so that it fits either on the right
II or below the control windows. depending on the size of the screen.
hwndChild = CreateWindowEx (WS_EX_CLIENTEDGE, TEXT ("listbox"),

TEXT (""), WS_VISIBLE I WS_CHILD I WS_VSCROLL I
LBS_USETABSTOPS I LBS_NOINTEGRALHEIGHT. 0, 0,
100, 100,hWnd, CHMENUJIDC_RPTLIST, hinst, NULL);

II Destroy frame if window not created.
if (!IsWindow (hwndChild)) {

DestroyWindow (hWnd);
return 0;

II Initialize tab stops for display list box.
i = 24;
SendMessage (hwndChild, LB_SETTABSTOPS. l, (LPARAMl&il;

II Create the child windows. Size them so that they fit under
II the command bar and fill the left side of the child area.
for (i = 0; i < dim(szCtlWnds); i++) {

hwndChild = CreateWindowEx CWS_EX_CLIENTEDGE, szCtlWnds[i],
TEXT (""), WS_CHILD, 0, 0, 200, 200, hWnd,
(HMENU)(IDC_WNDSEL+i), hlnst, NULL);

II Destroy frame if client window not created.
if (!IsWindow (hwndChildll

DestroyWindow (hWnd);
return 0;

}

II Check one of the auto radio buttons.
SendDlgltemMessage (hWnd, IDC_RADIOBTNS+nWndSel, BM_SETCHECK, l, 0):
hwndChild = GetDlgltem (hWnd, IDC_WNDSEL+nWndSel):
ShowWindow (hwndChild, SW_SHOWJ;

(continued)

156 Part I Windows Programming Basics

Listing 4-1 (continued)

return 0;
}

//------------·---
!! DoSizeFrame - Process WM_SIZE message for window.
II
LRESULT DoSizeFrame (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 19aram) {
int nWidth, nHeight;
int i. x, y. ex. cy;
BOOL bWide = TRUE;
RECT .re ct;
GetWindowRect (hWnd, &rect);
GetClientRect (hWnd, &rect);
II These arrays are used to adjust between wide and narrow screens.
POINT ptRBtnsN[J = {{5,0}. {90,0}. {180,0}. {5,20}. {90,20}};
POINT ptRBtnsW[J = {{5,0}, {90,0}, {180,0}, {270,0}, {360,0}};
LPPOINT pptRbtns = ptRBtnsW;

nWidth = LOWORD ClParam);
nHeight = HIWORD (lPararn};

II Use different layouts f.or narrow (Pocket PC) screens.
if <GetSystemMetrics CSM~CXSCREEN) < 480) {

pptRbtns = ptRBtnsN:
bWide = FALSE;

}

II Move the radio buttons.
for (1 = 0; i < dim(szBtnTitle); i++)

SetWi ndowPos (GetDlg I tern (hWnd, IDCRADIOBTNS+i) , 0,
pptRbtns[i].x, pptRbtns[iJ.y,
0, 0, SWP_NOSIZE I SWP_NOZORDER);

II Size .report window so that it fits either.on the right or
II below the control windows, depending on the size of the screen.
x = bWfde ? nWidth/2 : 0;
y = bWide ? 20 : (nHeight)l2 + 40;
ex = bWide ? nWidth/2 : nWidth;
cy • nHeight - y;

SetWindowPos (GetDlgitem (hWnd, IDC_RPTLISTl, 0, x, y, ex, cy,
SWP _NOZOROER);

II Size the child windows so that they fit under
II the command bar and fill the left side of the child area.
x 0;
y = bWide ? 20 : 40;

Chapter 4 Windows, Controls, and Menus 157

ex bWide ? nWidthl2 : nWidth;
cy bWide ? nHeight : (nHeight)l2+40;

for (i = 0; i < dim(szCtlWnds); i++)
SetWindowPos (GetDlgitem (hWnd. IDC_WNDSEL+i), 0, x, y, ex, cy,

SWP _NOZORDER);
return 0;

11--
11 DoCommandFrame - Process WM_COMMAND message for window.
II
LRESULT DoCommandFrame (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
HWND hwndTemp;
int nBtn;
II Don't look at list box messages.
if (LOWORD (wParam) == IDC_RPTLIST)

return 0;
nBtn = LOWORD (wParam) - IDC_RADIOBTNS;
if (nWndSel != nBtn) {

II Hide the currently visible window.
hwndTemp = GetDlgitem (hWnd, IDC_WNDSEL+nWndSel);
ShowWindow (hwndTemp, SW_HIDE);

II Save the current selection.
nWndSel = nBtn;
II Show the window selected via the radio button.
hwndTemp = GetDlgltem (hWnd, IDC_WNDSEL+nWndSel);
ShowWindow (hwndTemp. SW_SHOW);

return 0;

11--- -- -------------
11 DoAddlineFrame - Process MYMSG_ADDLINE message for window.
II
LRESULT DoAddlineFrame (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
TCHAR sz0ut[l28];
int i;

if (LOWORD (wParam) == 0xffff)
wsprintf (szOut, TEXT ("

else
\t %s"), (LPTSTR)lParam);

wsprintf (szOut. TEXT ("id:%3d \t %s"), LOWORD (wParam).
(LPTSTR)lParam);

(continued)

158 Part I Windows Programming Basics

Listing 4-1 (continued)

i = SendDl g I temMessage (hWnd, rnc_RPTLI ST. LB_ADDSTRI NG, 0,
CLPARAM)(LPCTSTRlszOut);

if (i ! = LB_ERR)
SendDlgitemMessage (hWnd, IDC_RPTLIST, LB_SETTOPINDEX, i,

(LPARAM)(LPCTSTR)szOut);
return 0;

11--
1/ DoDestroyFrame - Process WM_DESTROY message for window.
II
LRESULT DoDestroyFrame CHWND hWnd, UINT wMsg, WPARAM wParam.

LPARAM lParam) {
PostQuitMessage (0);
return 0;

}

BtnWnd.cpp
! I =;z:;=====;==;=,.====•"'"=='====,,.========"'='========::==========='=======:o========
If BtnWnd - Button window code
ll
II Written for the book Programming Windows CE
/!Copyright (CJ 2003 Douglas Boling
//~==~~====~=====~=~===============~~===================================

#include <windows.h>
#include "Ctlview.h"

extern HINSTANCE hlnst;

II For all that Windows stuff
II Program-specific stuff

LRESULT OrawButton (HWND hWnd, LPDRAWITEMSTRUCT pdi);
//---------------7--------c-·-- -------------- -------------------------
// Global data
II

// Message dispatch table for BtnWndWindowProc
const struct decodeUINT BtnWndMessages[J = {

WM_CREATE, DoCreateBtnWnd,
WM_CTLCOLORSTAHC, DoCtl Col orl;ltnWnd.
WM_CUMMAND. DoCommandBtnWnd,
WM_DRAWITEM, DoDrawitemBtnWnd,

};

II Structure defining the controls in the window
CTLWNOSTRUCT Btns [] = {

{TEXT ("BUTTON"), Iac_PUSHBTN, TEXT ("Buttor1").
10, 10, 120, 23. BS_PUSHBUTTON I BS_NOTIFY}.

Chapter 4 Windows, Controls, and Menus 159

{TEXT ("BUTTON"), IDC_CHKBOX, TEXT ("Check box"),
10, 35, 120, 23, BS_CHECKBOX},

{TEXT C "BUTTON" I, JD(_ACHKBOX, TEXT ("Auto check box" I,
10, 60, 110. 23, BS_AUTOCHECKBOX},

{TEXT ("BUTTON"), IDC_A3STBOX, TEXT C"Multiline auto 3-state box"),
140. 60, 90, 52, BS_AUT03STATE I BS_MULTILINE}.

} ;

II

{TEXT ("BUTTON"), IDC_RADIOl, TEXT ("Auto radio button 1"1.
10, 85, 120, 23, BS_AUTORADIOBUTTON},

{TEXT ("BUTTON"), IDC_RADI02, TEXT ("Auto radio button 2"1,
10, 110, 120, 23, BS_AUTORADIOBUTTON},

{TEXT ("BUTTON"), IDC_OWNRDRAW, TEXT ("OwnerDraw"),
150, 10, 44, 44, BS_PUSHBUTTON I BS_OWNERDRAW}.

Structure labeling the button control WM_COMMAND notifications
NOTELABELS nlBtn[] = {{TEXT ("BN_CLICKED ") , 0}.

{TEXT l"BN_PAINT ") ,

{TEXT ("BN_HI LITE ") '

{TEXT l"BN_UNHILITE"I,
{TEXT ("BN_DISABLE "),
{TEXT ("BN_DOUBLECLICKED"),
{TEXT ("BN_SETFOCUS "),
{TEXT ("BN_KILLFOCUS"),

} ;

II Handle for icon used in owner-draw icon
HICON hlcon = 0;

1}.
2}.
3}.
4}.
5}.

6}.
7}

11--
11 InitBtnWnd - BtnWnd window initialization
II
int InitBtnWnd IHINSTANCE hlnstancel {

WNDCLASS we;

II Register application BtnWnd window class.
we.style= 0; II Window style
wc.lpfnWndProc = BtnWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0:
wc.hlnstance = hinstance;
wc.hicon = NULL.

II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon

wc.hCursor = LoadCursor <NULL, JD[_ARROWl;I/ Default cursor
wc.hbrBackground = IHBRUSHI GetStockObject CWHITE_BRUSH);
wc.lpszMenuName = NULL; II Menu name
wc.lpszClassName = BTNWND; II Window class name

if CRegisterClass l&wcl == 01 return 1:

return. 0;

(continued)

160 Part I Windows Programming Basics

Listing 4-1 (continued)

!/==
II Message handling procedures for BtnWindow
l/-----c---C------------------

11 BtnWndWndProc - Callback function for application window
II
LRESULT CALLBACK BtnWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
int i ·

II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0; i < dimCBtnWndMessages); i++)

if (wMsg =~ BtnWndMessages[iJ.Codel
return (*BtnWndMessages[iJ.Fxn)(hWnd, wMsg, wParam, lParaml;

return DefWindoWProc (hWnd, wMsg, wParam, 1 Pa ram);

I!- - ' - - - - - - - - - ' - - - - - - ' - - ' - - - - - - - - - ' - ' - . ' - ' - • - - - - - - - ' - - - - - - - - - c - - •

II DoCreateBtnWnd - Process WM_CREATE message for window.
II
LRESULT DoCreateBtnWnd (HWND hWnd, UINTwMsg, WPAR.AM wParam,

LPARAM 1Param) {

}

int i ·

for (i = 0; i < dim(Btnsl; i++) {

}

CreateWindow CBtns [i J. szCl ass, Btns [i }. szTi tle,
Btns[iJ.lStyle I ws_VISIBLE I ws~cHILD,
Btns[iJ.x, Btns[i].y, Btns[1J.cx, Btns[i].cy,
hWnd, (HMENU) Btns[i].nID, hinst, NULL);

hicon = Loadicon (hlnst, TEXT ("TEXTICONd));

II We need to set the initial state of the radio buttons.
CheckRa.di oButton (hWnd, IDCRADIOl, IDC_RADJ02, IDC_RADI01):
return 0;

/J-c---~---------'----~'------'---'--~·-------'·c----'------~~--------~-
/l .DoCtlColorBtnWnd - process WM_CTLCOLORxx messages for window.
//
LRESU LT DoCtl Col orBtnWnd (H\'JND hWnd, UlNT wMsg, WPARAM wPa ram,

LPARAM lParamJ {
return (LRESULTlGetStockObject CWHITE_BRUSHl:

Chapter 4 Windows, Controls, and Menus 161

11--
11 DoCommandBtnWnd - Process WM_COMMAND message for window.
II
LRESULT DoCommandBtnWnd (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
TCHAR sz0ut[128]:
int i:
II Since the Check Box button is not an auto check box, it
II must be set manually.
if CCLOWORD (wParam) == IDC_CHKBOX) &&

(HIWORD CwParam) == BN_CLICKED)) {
II Get the current state, complement, and set.
i = SendDlgitemMessage ChWnd, IDC_CHKBOX, BM_GETCHECK, 0, 0):
if(i==0)

SendDlgitemMessage ChWnd, IDC_CHKBOX, BM_SETCHECK. l, 0);
else

SendDlgitemMessage (hWnd, IDC_CHKBOX, BM_SETCHECK, 0, 0);

II Report WM_COMMAND messages to main window.
for (i = 0: i < dim(nlBtn): i++) {

if (HIWORD CwParam) == nlBtn[i].wNotificationl
lstrcpy (szOut, nlBtn[iJ.pszlabel):
break;

if (i == dim(nlBtn))
wsprintf (szOut, TEXT ("notification: %x"), HIWORD CwParam));

SendMessage CGetParent (hWnd), MYMSG_ADDLINE, wParam,
(LP A RAM) szOut) :

return 0:

11--
11 DoDrawitemBtnWnd - Process WM_DRAWITEM message for window.
II
LRESULT DoDrawitemBtnWnd (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

return DrawButton (hWnd, (LPDRAWITEMSTRUCTllParam);

11-------------~--------------------------------------- ---------------
11 DrawButton - Draws an owner-draw button
II
LRESULT OrawButton (HWNO hWnd, LPORAWITEMSTRUCT pdil {

(continued)

162 Part I Windows Programming Basics

Listing 4-1 (continued)

HPEN: hPenShadow, hPenLight, hPenDkShadow,:hRedPen, hOldPen;

HB'RUSH hBr. hOl dBr;
LOGPEN lpen:
TCHAR szOut[128J;.
POINT pt0ut[3], p1;ln[3];.

11 Reflect the mes~ages t.o the report wind'ow. , ·.··
wspr'lritf (szOut, TEXT ("WM_DRAWITEM Act:%x St<it~£%J(>1)',

pdi->ftemAction, pdf->ttemState); · .
SendMessage CGetPa rent (hWnd). MYMS(LADDLINt, pdr~>cnrn.

(LPARAf1}sto1;1t):

II Create pens for·drawtnd.
lpen. lopnStyle = PS-SOLID;
lpen.lopnWidth.x "'.3:_ ·
lpen. lopnWidth'.y = 3; .. •
l pen. l opnCofor = GetsysColor
hPenShadow-= CreatePenl.ndlre'~t CMpen);.

l pen. l opnW1<lttr.x = 1;
lpen.lopnWidth.y ='1;
lpen.lopnColor = GetSysCp]or
hPenL t ght · =· createPenindirett C&lp'enf;

l pen; 1 opnColor "' G~tSysCoJ or. (c.oUJR:..30DKSHA~OW
hPehDkShadow = CreatePeniiid1 rect '{Mpen l: ·

' ... \ ": ····.',.. '. ·,-:'.,

fl Draw ttn~ :;~~p~r· .Te.ft Jnsi de .
ptln[0].x•;. ptl.i ~.>rcltem •. J eft +
ptin[01:.)' =:pd1->rclte~:bottolli -
pt!n{l].x = pdi->rcitem; left +
ptrndhY =;·pd.i·•>rcne~. top +
p;U.h,ri~].·~ = pd'f'-,)rclte·m. rt ght • ·
pttn[2l.y '·"''P~l.~):rcnem.top + 1:

Chapter 4 Windows, Controls, and Menus 163

II Select a pen to draw shadow or light side of button.
if (pdi->itemState & ODS_SELECTED) {

SelectObject (pdi->hDC, hPenDkShadow);
else {
SelectObject (pdi->hDC, hPenlight);

Polyline (pdi->hDC, ptln, 3);
II If selected, also draw a bright line inside the lower
II right corner.
if (pdi->itemState & ODS_SELECTED)

SelectObject Cpdi->hDC, hPenLight);
ptln[l].x = pdi->rcltem.right - 2:
ptln[l].y = pdi->rcltem.bottom - 2;
Polyline (pdi->hDC, ptln, 3);

II Now draw the black outside line on either the upper left or lower
II right corner.
pt0ut[0].x = pdi->rcltem.left;
pt0ut[0].y = pdi->rcltem.bottom - l;
pt0ut[2J.x = pdi->rcltem.right - l;
pt0ut[2].y = pdi->rcltem.top;

SelectObject Cpdi->hDC. hPenDkShadow);
if (pdi->itemState & ODS_SELECTED) {

ptOut[lJ.x = pdi->rcltem.left;
ptOut[l].y = pdi->rcltem.top;

}

else {
ptOut[lJ.x = pdi->rcltem.right - 1;
ptOut[l].y = pdi->rcltem.bottom - l;

Polyline (pdi->hDC, ptOut, 3);

II Draw the triangle.
pt0ut[0J.x = (pdi->rcltem.right - pdi->rcitem.left)l2;
pt0ut[0].y = pdi->rcltem.top + 4;
ptOut[l].x = pdi->rcltem.left + 3;
ptOut[l].y • pdi->rcltem.bottom - 6:
pt0ut[2].x = pdi->rcltem.right - 6;
pt0ut[2].y = pdi->rcltem.bottom - 6;
SelectObject (pd1->hDC, hRedPen);
Polygon (pdi->hDC, ptOut, 3):

II If button has the focus, draw the dotted rect inside the button.
if (pd1·>1temState & ODS_FOCUS) {

pdi->rcltem.left += 3;
pdi->rcltem.top += 3;

(continued)

164 Part I Windows Programming Basics

Listing 4-1 (continued)

pcU•>rcitem •• right -= 4:
,pdic.>rcitem.bottpm -= 4:

..• ;: :ol'.ll\vf<)CUS.Re<:t .(Pdl• >hpC •
. y····

.)1 c\~ari.•up •.. Ji rst .. select 'the orjgtnl11·
,;'·-··~· -:S~Ji~ciO:bJ,,~·~.~ .'tp~1->npc;··. ~Old·B'~:)::i:> .. ,··<.- ... :,,

~~lec;t~l:iJect (pd1~>Mc,"~01itP~h>~:.: · ·

}

II Now delete the brushes and pens
Del eteObject (hBr):
De leteObJect. C hPenShadow>;
Delet~Object ChPenOkShadow);
DeTeteObject (hPenLight);
return 0:

If Edi tWnd - Edit control wi ndo~ cod·e . . II . . .

11,Wrift\i!n.fo.rthe boo~ .Programmfng wtndow.s
I l Copyright CC.L2003. Dou~ias Bolin~ · · ·

/fincl~d~, <windows ,·h.>
./finclude "Ctlview.h" ·

extern.HI NSTANCE hI nst:
I I c ·~ - - -:~ - ": ~ - - - - - - - - ' ~ - -," - ~ - - - : - -··

ll Globa.t.data. ·
•·ll

} ;
'.' , ·'

I I Str~cture defining the cont~ols in the window
CTLWNos:rnuct Edits EJ = £ .• · . -....

{TEXT (''.edit~'). IDC~S1NGLEUN'E. T~Xr (~·single
l0, 'l0;ol80, 23, ES..,A:UTO~SCROLL};

H£tf { .. ed.it"), IDC_MU1TltlN£, JiXf{''Multflfoe eo)f cont.rbf-:J
· Hl" · 35; · rn0. 70. · Es:.Mufn LINE (JS-AUJQV'SCROL.tf, ·

Chapter 4 Windows, Controls, and Menus 165

} ;

{TEXT ("edit"), IDC_PASSBDX, TEXT (""),
10, 107, 180, 23, ES_PASSWORD},

II Structure labeling the edit control WM_COMMAND notifications
NOTELABELS nlEdit[] = {{TEXT ("EN_SETFOCUS "), 0x0100},

} ;

{TEXT ("EN_KILLFOCUS"), 0x0200},
{TEXT ("EN_CHANGE
{TEXT ("EN_UPDATE
{TEXT ("EN_ERRSPACE
{TEXT ("EN_MAXTEXT
{TEXT ("EN_HSCROLL
{TEXT ("EN_VSCROLL

"),

"),

"),

"),

"),

"),

0x0300},
0x0400},
0x0500},
0x0501},
0x0601},
0x0602},

11---------------------------- --
11 InitEditWnd - EditWnd window initialization
II
int InitEditWnd (HINSTANCE hinstance) {

WNDCLASS we;

}

II Register application EditWnd window class.
we.style= 0: II Window style
wc.lpfnWndProc = EditWndProc: II Callback function
wc.cbClsExtra = 0; II Extra class data
wc.cbWndExtra = 0; II Extra window data
wc.hinstance = hinstance; II Owner handle
wc.hicon = NULL, II Application icon
wc.hCursor = LoadCursor (NULL, IDC__ARROW);ll Default cursor
wc.hbrBackground = CHBRUSHl GetStockObject CWHITE_BRUSH);
wc.lpszMenuName = NULL; II Menu name
wc.lpszClassName = EDITWND: II Window class name

if (RegisterClass <&we) == 0) return 1:

return 0;

II==
II Message handling procedures for EditWindow
11--
11 EditWndWndProc - Callback function for application window
II
LRESULT CALLBACK EditWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
int i;
II
II Search message list to see if we need to handle this

(continued)

166 Part I Windows Programming Basics

Listing 4-1 (continued)

}

II message. If in list, ca 11 procedure.
II
for (i = 0: i < dim(EditWndMessages): 1++)

if CwMsg =::= EditWndMessages[iJ.Code)
return (*Edi tWndMessages [i]. Fxn) (hWnd, \ofM~g .::

}

11------------------------~~-.-------~-----·---~-~--~---·-------"-------
ll D-0CreateEdi tWnd -. Process WM..CREATE message for· window.
II
LRESULT DoCreateEdttWrid. (HWND hWnd;. U.INT w.Msg, WPARAM wParam.

l

. }

LPARAM lParam) {
int i;

· for (1

CreateWindriw (Edits[i] •. szc1ass.

}

return 0;

Edits(ij:;1styl~ I wS;.:.VJSl~tE•I WS.::CWttll:\'JS,.,.80~DER,
Edits[iJ.x.Edtts[iJ.y, Eclits[i].cx. Edit~tiJ;cy, ·
hWnd, <HMENUl Edits{.iJ.nID, ninst, nutU;

Chapter 4 Windows, Controls, and Menus 167

ListWnd.cpp
II==
II ListWnd - List box control window code
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include "Ctlview.h" II Program-specific stuff

extern HINSTANCE hlnst:
11--
11 Global data
II
II Message dispatch table for ListWndWindowProc
canst struct decodeUINT ListWndMessages[] = {

} :

WM_CREATE, DoCreateListWnd,
WM_COMMAND, DoCommandListWnd,

II Structure defining the controls in the window
CTLWNDSTRUCT Lists[] = {

} :

{TEXT ("combobox"). IDG_COMBOBOX. TEXT (""). 10. 10. 205. 100.
ws_vsCROLL}.

{TEXT ("Listbox"), IDC_SNGLELIST, TEXT (""), 10, 35, 100, 90,
WS_VSCROLL I LBS_NOTIFY},

{TEXT ("Listbox"), IDG_MULTILIST, TEXT('"'), 115, 35, 100, 90,
WS_VSCROLL I LBS_EXTENDEDSEL I LBS_NOTIFY}

II Structure labeling the list box control WM_COMMAND notifications
NOTELABELS nlList[] = {{TEXT ("LBN_ERRSPACE "), (-2)},

{TEXT ("LBN_SELCHANGE"l, l},
{TEXT ("LBN_DBLCLK "), 2},
{TEXT ("LBN_SELCANCEL"), 3},
{TEXT ("LBN_SETFOCUS "), 4}.
{TEXT ("LBN_KILLFOCUS"), 5},

} :
II Structure labeHng the combo box control WM_COMMAND notifications
NOTELABELS nlCombo[] ={{TEXT ("CBN_ERRSPACE "), (-1)},

{TEXT 1}, ("CBN_SELCHANGE n),

{TEXT 2}, ("CBN_DBLCLK "),

{TEXT 3}, ("CBN_SETFOCUS "),.

{TEXT 4}, ("CBN_KILLFOCUS "),

{TEXT 5}, ("CBN_EDITCHANGE n),

(continued)

168 Part I Windows Programming Basics

Listing 4-1 (continued)

{TEXT C "CBN_EDITUPDATE n)' 6}.

{TEXT ("CBN...:DROPOQWN "). n.
{TEXT ("CBN_CLOSEUP ")J 8}.

{TEXT ("CBN_SELENDOK "}. 9},

{TEXT ("CBN_SELENOCANCEl"), 10},
} :
/_/ - - - - - - - " - c - - - - ~- ~ - - - - - " - - - - - - - - ~ - - - - - .: - - - -.- - ". - ~.- - - - - ~ - - - - - - - - - - - - - - - - - -

1 I InitListWnd - Lis.tWnd window initialization

II
int InitliStWnd tHINSTANCE hinstance) {

WNDCLASS we;

}

II Register application l1stWnd window class.
wc.style=0; //Windciw style

wc.lpfnWndProc = ListWndProc: /{Callback function
wc.cbClsExtra = 0; //Extra class data.
wc.cbWndExtra = 0; II Extra window data·
wc.hinstan.ce = hinstance; l(Owrier handle
wc.hico.n ., NULL; ;/Application icon

we. hCursor = LoadCursor (NULL, IDC...:ARROW): // De fa.ult cursor
wc.hbrBackgrou.nd = (HBRUSH) GetStockObject (WHITE_BRUSH);

wc .1 pszMenuName = NULL:.
wc.lpszCTassName = LISTWND;

if <RegisterClass C&wc) ="' 0) return l; ..

return 0;

Ji Menu name
II Wfrid~w class name

I l==========<===============================.,.====""-====:oo;;"""'"'"'''"""'"'-=:===.=
II Message handling procedures for ListWindow

11·~-------------~---------·"---- ---- ------------------------------
// ListWndProc •Callback function for applic!ltionw1ndow

II
LRESULT CALL.BACK ListWndProc (HWND .hWnd, UlNT wMsg, WPARAM wParam,

LPARAM lParaml {

}

inti:

11
II Search message list .to see if we n.eed to handle this
II message •. If in list. caJl procedure .

. 11
for Ci ,;, 0: i < dimCL1sfWndMessagesl; i++l {

if (wM.sg == ListWndMessages[i].Go\'.fii>
return (*LlstWndMessages[iJ.FxnHhWnd, wMsg, wParam •. lP'aram);

}

return Det'WindowProc ChWnd, wMsg; wParam, 'iParam):

Chapter 4 Windows, Controls, and Menus 169

11--
11 DoCreateListWnd - Process WM_CREATE message for window.
II
LRESULT DoCreateListWnd CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
inti;
TCHAR sz0ut[64];
for (i = 0; i < dim(Lists); i++) {

CreateWindow (Lists[iJ.szClass, Lists[iJ.szTitle,
Lists[iJ.lStyle I WS_VISIBLE I WS_CHILD I WS_BORDER,
Lists[iJ.x. Lists[i].y, Lists[i].cx, Lists[i].cy,
hWnd, (HMENU) Lists[i].nID, hinst, NULL);

}

for (i = 0: i < 20; i++) {

}

wsprintf (szOut, TEXT ("Item %d"), i);
SendDlgltemMessage (hWnd, IDC_SNGLELIST. LB_ADDSTRING, 0,

(LP A RAM) szOut) ;

SendDlgltemMessage (hWnd, IDC_MULTILIST, LB_ADDSTRING, 0,
(LPARAM)szOut);

SendDlgltemMessage (hWnd, IDC_COMBOBOX, CB_ADDSTRING. 0,
(LPARAM) szOut);

II Set initial selection.
SendDlgitemMessage (hWnd, IDC_COMBOBOX, CB_SETCURSEL, 0, 0);
return 0;

11--
11 DoCommandListWnd - Process WM_CDMMAND message for window.
II
LRESULT DoCommandListWnd (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
TCHAR sz0ut[128];
inti:

if (LOWORD CwParam) == IDG_COMBOBOX) {
for (i = 0: i < dim(nlCombol: i++) {

}

if CHIWORD (wParam) == nlCombo[i].wNotification) {
lstrcpy (szOut, nlCombo[i].pszLabel);
break;

}

if (i == dim(nllist))
wsprintf (szOut, TEXT ("notification: %x"), HIWORD (wParam)):

(continued)

170 Part I Windows Programming Basics

Listing 4-1 (continued)

} else .r
for Cl = .~: 1 < .dim(nl List): i++> {

if (\HWORD CwParam) == nlLlst[i].wNotificati 0n)

Cszout. nlList[iJ.PszLabel}:

}

SendMessage (GetPatent (h.Wl'ld), f'IYMSIL,Al)DLINE.
{LPARi\t:t>szOut);'

...... ... strust~f'f der:fntri~
·cTLWROSTRU.C1 Sti:tts.·. [J

. HE'.J<T:.i•·~t~·tici'};'
10 i1r 12.0> ··23 "'· ··--,·:··", ;•,,. '

if !~~:{:5i:~r-) ;, , OC.;..RI.litfII!3.X+.~·~ :I~n.:k~!~fght
.. :. f.i"EXT ("st,{ic'')

·.· 1t· 60:.·120. ~3 •.

)£.

Chapter 4 Windows, Controls, and Menus 171

II Structure labeling
NOTELABELS nlStatic[]

} :

the static control WM_COMMAND
{{TEXT ("STN_CLICKED"J, 0},

{TEXT ("STN_ENABLE "), 2},
{TEXT ("STN_DISABLE"I, 3},

notifications

11--
11 InitStatWnd - StatWnd window initialization
II
int InitStatWnd CHINSTANCE hinstance) {

WNDCLASS we:

II Register application StatWnd window class.
we.style= 0; II Window style
wc.lpfnWndProc = StatWndProc; II Callback function
wc.cbClsExtra = 0; II Extra class data
wc.cbWndExtra = 0: II Extra window data
wc.hinstance = hlnstance; II Owner handle
wc.hlcon = NULL, II Application icon
wc.hCursor = LoadCursor CNULL, IDC_ARROWJ:ll Default cursor
wc.hbrBackground = CHBRUSH) GetStockObject CWHITE_BRUSHI:
wc.lpszMenuName = NULL: II Menu name
wc.lpszClassName = STATWND; II Window class name

if (RegisterClass C&wcl == 0) return 1:

return 0;

II==
II Message handling procedures for StatWindow
11--
11 StatWndProc - Callback function for application window
II
LRESULT CALLBACK StatWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
int i:
II
II Search message list to see if we need to handle this
II message. If in list. call procedure.
II
for (i = 0; i < dim(StatWndMessages): i++) {

if CwMsg == StatWndMessages[iJ.Codel
return (*StatWndMessages[iJ.FxnlChWnd, wMsg, wParam, lParam);

}

return DefWindowProc ChWnd, wMsg, wParam, lParam);

(continued)

172 Part I Windows Programming Basics

Listing 4-1 (continued)

·. /}2 - - -·c- - 7 - • •. - •• -·- •. c.~ ~ - ~ - • - •.• ··- ~ • 2:- c :.·c • ., •• -·" •:" "··;

II DoCreat~StatWnd - Process WtO::~EATE messag~ for wi ndo,wJ ·
II
LRESiJLr.oocrel!testatWn<J CHWND hWnd •. UINT wMsg.

·· LPARAM 1 !'aranr} {

.;· 0:. J

. for

.}

.scrollY/nc;l~cpp - -

(Stats [i].szC1~·si. ·Stats [iJ.szTttle •..
Stat~tii".1St,yle 1 w.s2vrsIBLf J W$.'.'.CHILD; <..... >

statS[iJ.x, StatsUJ.,r •. :.Stats[iJ.cx; ·statstH.cy,.·
hWhd, CHMENU) Stats[fl.nlO, Mnst, NULL); .

· .. 11; sc.ro.Jlwn.~ c ~ciolJ' ,liar ~o,~.~.ittjl• ~!;ndo~0SM~·.• ·~.· •. ·
•II ·· ·
• 11 /wr.ttt~I! for the bookPro!lr;mmt11~ liJtnd~ows CE. •· ·
if CoPY:right.(Cl 2001 oou9ll!s' 8ol1ng
:1.!~~:~.~~~=~~=====~~==~~~~~~~:~~~:=~=~==~~~*~-~:::·=~~~;~~~~~~~ ·:' -~~f~#: \''

Chapter 4 Windows, Controls, and Menus 173

#include <windows.h>
#include "Ctlview.h"

extern HINSTANCE hinst;

II For all that Windows stuff
II Program-specific stuff

11--
11 Global data
II
II Message dispatch table for ScrollWndWindowProc
const struct decodeUINT ScrollWndMessages[] = {

} ;

WM_CREATE, DoCreateScrollWnd,
WM_HSCROLL, DoVScrollScrollWnd,
WM_VSCROLL, DoVScrollScrollWnd,

II Structure defining the controls in the window
CTLWNDSTRUCT Scrolls [] = {

} ;

{TEXT ("Scrollbar"), IDC_LRSCROLL, TEXT (""),
10, 10, 150, 23, SBS_HORZ},

{TEXT ("Scrollbar"), IDC_UDSCROLL, TEXT (""),
180, 10, 23, 120, SBS_VERT},

II Structure labeling the scroll bar control scroll codes for WM_VSCROLL
NOTELABELS nlVScroll[] ={{TEXT ("SB_LINEUP "), 0},

{TEXT ("SB_LINEDOWN "), 1}.

{TEXT ("SB_PAGEUP "), 2}.

{TEXT ("SB_PAGEDOWN "), 3}.

{TEXT ("SB_THUMBPOSITION"l, 4}.

{TEXT ("SB_THUMBTRACK "), 5}.

{TEXT ("SB_TOP "), 6}.

{TEXT ("SB_BOTTOM "), 7}.

{TEXT ("SB_ENDSCROLL "), 8}.

} ;

II Structure labeling the scroll bar control scroll codes for WM_HSCROLL
NOTELABELS nlHScroll[] ={{TEXT ("SB_LINELEFT "), 0},

{TEXT ("SB_LINERIGHT "), 1}.

{TEXT ("SB_PAGELEFT ")' 2}.

{TEXT ("SB_PAGERIGHT "), 3}.

{TEXT ("SB_THUMBPOSITION"l, 4}.

{TEXT ("SB_THUMBTRACK "), 5}.

{TEXT ("SB_LEFT "), 6}.

{TEXT ("SB_RIGHT "), 7}.

{TEXT ("SB_ENDSCROLL "), 8}.

} ;

(continued)

174 Part I Windows Programming Basics

Listing 4-1 (continued)

11 ;_ - - - " - - - - - - - - - - - -- - - - - - - ;_" .:.. - - - - - - - ~ - '""' • - - - - - ~:- - • - - -
JI lnitScrollWnd - ScrollWnd window initializatidn.
JI
1 nt Ini tScrollWnd CH INSTANCE h Instance} {

WNDCLASS we:

II Regfster applicap()n)crollWm:I window class.
we.style= 0; · II Window style
WC .1 pfnWMProc = ScraUWndProc: // c~ lback func:ti on
wc:.cbCl sExtra = 0; ll Extra class data

· . .wt. cbWndExtra •'.,.; 0; · . 11 · Extra wfndow dat.a ·.
we. hlnstance = hfast~nce: // Owner hand.le
wc:.hicon = ~ULL, II Application icon

· 11tt •. hC1.1rsor ;,, l:oadCursor <NULL. IOC....ARROW) :II Default cursor
• wc:hbrBat;kgt~und = .. (HB~USIH· .. GetStock.Object· CWH!TLBRUSH>:

\VC•JJ>$.ZMenutfame. = NULL: I/ .Menu. name
.· wc,1 Ps.z:ClassN~me~ .ScROLLWND: Ii Window class name

0> re.turn l;

Message handling procedures for Scroll Window .
) /~-- -.--.~·-" -·~ .: •.•• •. •••• • .. ··'-• - •• - -.7 •:- - •.•••• •.• • •• •. : •.• - • •• • • -.-C- ·- ~ -• -.- - • •• • •
It ScrollWndProc - Ca.llback function for application window
//
LR!'. SULT CALL:BACl{Scrol HlndProc (.HWND hWnd, UlNT wMsg, WPARAM wPa ram,

lP:ARAM 1 Pa ram) {

li~t to see ·if· we n·eed tO handle this ·

Chapter 4 Windows, Controls, and Menus 175

for (i = 0; i < dim(Scrolls); i++) {
CreateWindow CScrolls[iJ.szClass. Scrolls[iJ.szTitle,

Scrolls[i]. lStyle I WS_VISIBLE I WS_CHILD,
Scrolls[i].x, Scrolls[i].y, Scrolls[i].cx,
Scrolls[i].cy,
hWnd, CHMENU) Scrolls[i].n!D, hinst, NULL);

return 0;

11--
11 DoVScrollScrollWnd - Process WM_VSCROLL message for window.
II
LRESULT DoVScrollScrollWnd (HWND hWnd, UINT wMsg, WPARAM wParam.

TCHAR sz0ut[128];
SCROLLINFO si;
inti, sPos;

LPARAM lParam) {

II Update the report window.
if CGetDlgitem (hWnd, 101) == (HWND)lParam)

for Ci = 0; i < dim(nlVScroll); i++) {
if CLOWORD CwParam) == nlVScroll[iJ.wNotification)

lstrcpy (szOut, nlVScroll[iJ.pszlabel);
break;

if Ci== dimCnlVScroll))
wsprintf (szOut. TEXT ("notification; %x"). HIWORD (wParam));

else {
for Ci= 0; i < dimCnlHScroll); i++) {

if CLOWORD (wParam) == nlHScroll[i].wNotification)
1 strcpy C szOut. nl HScrol l[i]. pszlabel);
break;

if Ci== dim(nlHScroll))
wsprintf (szOut, TEXT ("notification: %x"). HIWORD (wParam));

SendMessage (GetParent ChWndl, MYMSG_ADDLINE. -1. CLPARAMlszOut);

II Get scroll bar position.
si.cbSize = sizeof Csi);
si .fMask = SIF_POS;
GetScrollinfo ((HWNDllParam, SB_CTL. &si);
sPos = si .nPos;

(continued)

176 Part I Windows Programming Basics

Listing 4-1 (continued)

fl Act on the scroll code.
switch (LOWORD (wParamll {
case SB_LINEUP:

sPos -= 2;
break:

case SB_LIN£DOWN:
sPos += 2;
break:

case SB_PAGEUP.:
sPos -= 10:
break:

case SB_PAGEDOWN:
sPos +"' 10;
break;

u
if

i·f

sPos .. ·"'
break;

Check range.
(sPos < 0)
sPos =; 0;

(sPos > 100)
sPos = 100;

II Also SB_LINELEFT

fl Also SB_LINERIGHT

// Al so SB_PAGELEFT

II Update ~croll bar position.
si.cbSfze"' sizeof (si);
si .nPos = sPos;
si.fMask = SIF_POS;
SetScrollinfo UHWND)lParam, SB_CTL, &st. TRUE).;
return 0;

When the CtlView program starts, the WM_CREATE handler of the main
window, DoCreateFrame, creates a row of radio buttons across the top of the
window, a list box for message reporting, and five different child windows.
(The five child windows are all created without the WS_ VISIBLE style, so they're
initially hidden.) Each of the child windows in turn creates a number of con
trols. Before returning from DoCreateFrame, CtlView checks one of the auto
radio buttons and makes the BtnWnd child window (the window that contains
the example button controls) visible using ShowWindow.

The WM_SIZE handler of the main window, DoSizeMain, positions each
of the child windows in the frame window. This needs to be done here because
the window size parameters in WM_ CREATE don't take into account the size of
the caption bar.

Chapter 4 Windows, Controls, and Menus 177

As each of the controls on the child windows is tapped, clicked, or
selected, the control sends WM_COMMAND messages to its parent window.
That window in turn sends the information from the WM_COMMAND message
to its parent, the frame window, using the application-defined message
MYMSG_ADDLINE. There the notification data is formatted and displayed in the
list box on the right side, or below on the Pocket PC, of the frame window.

The other function of the frame window is to switch between the different
child windows. The application accomplishes this by displaying only the child
window that matches the selection of the radio buttons across the top of the
frame window. The processing for this is done in the WM_COA1MAND handler,
DoCommandFrame in CtlView.cpp.

The best way to discover how and when these controls send notifications
is to run the example program and use each of the controls. Figure 4-2 shows
the Control View window with the button controls displayed. As each of the
buttons is clicked, a BN_CLICKED notification is sent to the parent window of
the control. The parent window simply labels the notification and forwards it to
the display list box. Because the Check Box button isn't an auto check box, Ctl
View must manually change the state of the check box when a user clicks it.
The other check boxes and radio buttons, however, do automatically change
state because they were created with the BS_A UTOCHECKBOX,
BS_AUT03STATE, and BS_AUTORADIOBUTTON styles. The square button with
the exclamation mark inside a triangular icon is an owner-draw button.

Qstot>:

ontrol View

Figure 4-2 The Control View window with the button child window dis
played in the left pane

The source code for each child window is contained in a separate file. The
source for the window containing the button controls is contained in
BtnWnd.cpp. The file contains an initialization routine (/nitBtnWnd) that regis
ters the window and a window procedure (BtnWndProc) for the window itself.
The button controls themselves are created during the WM_CREATE message
using Create Window. The position, style, and other aspects of each control are
contained in an array of structures named Btns. The DoCreateBtn Wnd function

178 Part I Windows Programming Basics

cycles through each of the entries in the array, calling Create Window for each
one. Each child window in CtlView uses a similar process to create its controls.

To support the owner-draw button, BtnWndProc must handle the
WM_DRAWITEM message. The WM_DRAWITEM message is sent when the but
ton needs to be drawn because it has changed state, gained or lost the focus, or
been uncovered. Although the DrawButton function (called each time a
WM_DRAWITEM message is received) expends a great deal of effort to make
the button look like a standard button, there's no reason a button can't have
any look you want.

The other window procedures provide only basic support for their con
trols. The WM_CO.M111AND handlers simply reflect the notifications back to the
main window. The ScrollWnd child window procedure, ScrollWndProc, han
dles WM_ VSCROLL and WM_HSCROLL messages because that's how scroll bar
controls communicate with their parent windows.

Controls and Colors
Finally, a word about colors. In CtlView, the frame window class is registered in
a subtly different way from the way I've registered it in previous programs. In
the CtlView example, I set the background brush for the frame window using
the line

wc.hbrBackground = CHBRUSH)GetSysColorBrush (COLOR_STATIC);

This sets the background color of the frame window to the same back
ground color I used to draw the radio buttons. The function GetSysColorBrush
returns a brush that matches the color used by the system to draw various
objects in the system. In this case, the constant COLOR_STATIC is passed to Get
SysColorBrush, which then returns the background color Windows uses when
drawing static text and the text for check box and radio buttons. This makes the
frame window background match the static text background.

In the window that contains the button controls, the check box and radio
button background is changed to match the white background of the button
window, by fielding the WM_CTLCOLORSTATIC message. This message is sent
to the parent of a static control or a button control when the button is a check
box or radio button to ask the parent which colors to use when drawing the
control. In CtlView, the button window returns the handle to a white brush so
that the control background matches the white background of the window. You
modify the color of a push button by fielding the WM_CTLCOLORBUITONmes
sage. Other controls send different WM_CTLCOLORxxx messages so that the
colors used to draw them can be modified by the parent window. Another
example of the use of the WM_CTLCOLORSTATIC message can be seen in the
PowerBar example in Chapter 18.

Menus

Chapter 4 Windows, Controls, and Menus 179

Menus are a mainstay of Windows input. Although each application might have
a different keyboard and stylus interface, almost all have sets of menus that are
organized in a structure familiar to the Windows user.

Windows CE programs use menus a little differently from other Windows
programs, the most obvious difference being that in Windows CE, menus aren't
part of the standard top-level window. Instead, menus are attached to a com
mand bar or menu bar control that has been created for the window. Other
than this change, the functions of the menu and the way menu selections are
processed by the application match the other versions of Windows, for the most
part. Because of this general similarity, I give you only a basic introduction to
Windows menu management in this section.

Creating a menu is as simple as calling

HMENU CreateMenu (void);

The function returns a handle to an empty menu. To add an item to a menu,
two calls can be used. The first

BOOL AppendMenu (HMENU hMenu, UINT fuFlags, UINT idNewltem,
LPCTSTR lpszNewltem);

appends a single item to the end of a menu. The fuFlags parameter is set with
a series of flags indicating the initial condition of the item. For example, the
item might be initially disabled (thanks to the MF_GRAYED flag) or have a
check mark next to it (courtesy of the MF_CHECKED flag). Almost all calls spec
ify the MF_STRING flag, indicating that the lpszNewltem parameter contains a
string that will be the text for the item. The idNewltem parameter contains an ID
value that will be used to identify the item when it's selected by the user or to
indicate that the state of the menu item needs to be changed.

Another call that can be used to add a menu item is this one:

BOOL InsertMenu (HMENU hMenu, UINT uPosition, UINT uFlags,
U!NT u!DNewltem, LPCTSTR lpNewltem);

This call is similar to AppendMenu, with the added flexibility that the item can
be inserted anywhere within a menu structure. For this call, the uFlags param
eter can be passed one of two additional flags: MF_BYCOMMAND or
MF_BYPOSJT!ON, which specify how to locate where the menu item is to be
inserted into the menu.

Menus can be nested to provide a cascading effect. To add a cascading
menu, or submenu, create the menu you want to attach using

HMENU CreatePopupMenu (void);

180 Part I Windows Programming Basics

Then use InsertMenu, or AppendMenu to construct the menu. Then insert or
append the submenu to the main menu using either InsertMenu or Append
Menu with the MF_POPUP flag in the flags parameter. In this case, the uIDNew
Item parameter contains the handle to the submenu, while lpNewltem contains
the string that will be on the menu item.

You can query and manipulate a menu item to add or remove check marks
or to enable or disable it by means of a number of functions. This function,

BOOL EnableMenuitem (HMENU hMenu, UINT uIDEnableitem, UINT uEnable);

can be used to enable or disable an item. The flags used in the uEnable param
eter are similar to the flags used with other menu functions. Under Windows
CE, the flag you use to disable a menu item is MF_GRAYED, not MF_DISABLED.
The function

DWORD CheckMenuitem (HMENU hmenu, UINT uIDCheckitem, UINT uCheck);

can be used to check and uncheck a menu item. Many other functions are avail
able to query and manipulate menu items. Check the SDK documentation for
more details.

The following code fragment creates a simple menu structure:

hMainMenu = CreateMenu ();

hMenu = CreatePopupMenu ();
AppendMenu (hMenu, MF_STRING MF_ENABLED, 100, TEXT ("&New"));
AppendMenu (hMenu, MF_STRING MF_ENABLED, 101, TEXT ("&Open"));
AppendMenu (hMenu, MF_STRING MF_ENABLED, 101, TEXT ("&Save"));
AppendMenu (hMenu, MF _STRING MF_ENABLED, 101, TEXT ("E&xit"));

AppendMenu (hMainMenu, MF_STRING I MF_ENABLED I MF_POPUP, (UINT)hMenu,
TEXT ("&File"));

hMenu = CreatePopupMenu ();
AppendMenu (hMenu, MF_STRING
AppendMenu (hMenu, MF_STRING
AppendMenu (hMenu, MF_STRING

MF_ENABLED, 100, TEXT ("C&ut"));
MF_ENABLED, 101, TEXT ("&Copy"));
MF _ENABLED, 101, TEXT ("&Paste"));

AppendMenu (hMainMenu, MF_STRING I MF_ENABLED MF_POPUP,
(UINT)hMenu, TEXT ("&Edit"));

hMenu = CreatePopupMenu ();
AppendMenu (hMenu, MF_STRING I MF_ENABLED, 100, TEXT ("&About"));

AppendMenu (hMainMenu, MF_STRING I MF_ENABLED MF_POPUP,
(UINT)hMenu, TEXT ("&Help"));

Chapter 4 Windows, Controls, and Menus 181

Once a menu has been created, it can be displayed with the TrackPopup
Menu function, prototyped as

BOOL TrackPopupMenuEx CHMENU hmenu, UINT uFlags, int x, int y,

HWND hwnd, LPTPMPARAMS lptpm);

The first parameter is the handle of the menu. The uFlags parameter sets
the alignment for the menu in relation to the position parameters x and y.
Another flag, TPM_RETURNCMD, causes the function to return the ID value of
the selected menu item instead of generating a WM_COMMAND message. The
hwnd parameter is the handle to the window that will receive all messages
relating to the menu, including the resultant WM_ COMMAND if the user selects
a menu item. The final item, lptpm, points to a TPMPARAMS structure that con
tains a size value and a rectangle structure. The rectangle structure defines the
rectangle on the screen that the menu shouldn't cover. This parameter can be
null if no exclusion rectangle needs to be specified.

Handling Menu Commands
When a user selects a menu item, Windows sends a WM_COMMAND message
to the window that owns the menu. The low word of the wParam parameter
contains the ID of the menu item that was selected. The high word of wParam
contains the notification code. For a menu selection, this value is always 0. The
lParam parameter is 0 for WM_COMll1AND messages sent due to a menu selec
tion. So to act on a menu selection, a window needs to field the
WM_COMMAND message, decode the ID passed, and act according to the
menu item that was selected.

Now that I've covered the basics of menu creation, you might wonder
where all this menu creation code sits in a Windows program. The answer is, it
doesn't. Instead of dynamically creating menus on the fly, most Windows pro
grams simply load a menu template from a resource. To learn more about this,
let's spend the remainder of this chapter looking at resources.

Resources
Resources are read-only data segments of an application or a DLL that are
linked to the module after it has been compiled. The point of a resource is to
give a developer a compiler-independent place for storing content data such as
dialog boxes, strings, bitmaps, icons, and yes, menus. Since resources aren't
compiled in a program, they can be changed without your having to recompile
the application.

182 Part I Windows Programming Basics

You create a resource by building an ASCII file-called a resource script
describing the resources. Your ASCII file has the extension RC. You compile this
file with a resource compiler, which is provided by every maker of Windows
development tools, and then you link it into the compiled executable again
using the linker. These days, these steps are masked by a heavy layer of visual
tools, but the fundamentals remain the same. For example, eMbedded Visual
C++ creates and maintains an ASCII resource (RC) file even though few pro
grammers directly look at the resource file text any more.

It's always a struggle for the author of a programming book to decide how
to approach tools. Some lay out a very high level of instruction, talking about
menu selections and describing dialog boxes for specific programming tools.
Others show the reader how to build all the components of a program from the
ground up, using ASCII files and command line compilers. Resources can be
approached the same way: I could describe how to use the visual tools or how
to create the ASCII files that are the basis for the resources. In this book, I stay
primarily at the ASCII resource script level since the goal is to teach Windows CE
programming, not how to use a particular set of tools. I'll show how to create
and use the ASCII RC file for adding menus and the like, but later in the book in
places where the resource file isn't relevant, I won't always include the RC file in
the listings. The files are, of course, on the CD included with this book.

Resource Scripts
Creating a resource script is as easy as using Notepad to create a text file. The
language used is simple, with C-like tendencies. Comment lines are prefixed by
a double slash(//), and files can be included using a #include statement.

An example menu template would be the following:

II
II A menu template
II
ID_MENU MENU DISCARDABLE
BEGIN

END

PO PUP "&Fi 1 e"
BEGIN

END

MENUITEM "&Open ... ",
MENUITEM "&Save ... ",
MENUITEM SEPARATOR
MENUITEM "E&xit",

POPUP "&Help"
BEGIN

MENUITEM "&About",
END

100
101

120

200

Chapter 4 Windows, Controls, and Menus 183

The initial ID_MENU is the ID value for the resource. Alternatively, this ID
value can be replaced by a string identifying the resource. The ID value method
provides more compact code, while using a string may provide more readable
code when the application loads the resource in the source file. The next word,
MENU, identifies the type of resource. The menu starts with POPUP, indicating
that the menu item File is actually a pop-up (cascade) menu attached to the
main menu. Because it's a menu within a menu, it too has BEGIN and END key
words surrounding the description of the File menu. The ampersand (&) char
acter tells Windows that the next character should be the key assignment for
that menu item. The character following the ampersand is automatically under
lined by Windows when the menu item is displayed, and if the user presses the
Alt key along with the character, that menu item is selected. Each item in a
menu is then specified by the MENUITEM keyword followed by the string used
on the menu. The ellipsis following the Open and Save strings is a Windows UI
custom indicating to the user that selecting that item displays a dialog box. The
numbers following the Open, Save, Exit, and About menu items are the menu
identifiers. These values identify the menu items in the WM_COMMAND mes
sage. It's good programming practice to replace these values with equates that
are defined in a common include file so that they match the WM_COMMAND
handler code.

Table 4-2 lists other resource types that you might find in a resource file.
The DISCARDABLE keyword is optional and tells Windows that the resource
can be discarded from memory if it's not in use. The remainder of the menu is
couched in BEGIN and END keywords, although the bracket characters { and }
are recognized as well.

Table 4-2 The Resource Types Allowed by the Resource Compiler*

Resource Type

MENU

ACCELERATORS

DIALOG

BITMAP

ICON

FONT

RCDATA

STRING TABLE

VERSIONINFO

Explanation

Defines a menu

Defines a keyboard accelerator table

Defines a dialog box template

Includes a bitmap file as a resource

Includes an icon file as a resource

Includes a font file as a resource

Defines application-defined binary data block

Defines a list of strings

Includes file version information

' The SHMENUBAR resource type used by the Pocket PC is actually defined as RCDATA inside a wizard
generated include file.

184 Part I Windows Programming Basics

Icons
Now that we're working with resource files, it's a trivial matter to modify the
icon that the Windows CE shell uses to display a program. Simply create an
icon with your favorite icon editor, and add to the resource file an icon state
ment such as

ID_!CON ICON "iconname.ico"

When Windows displays a program in Windows Explorer, it looks inside the EXE
file for the first icon in the resource list and uses it to represent the program.

Having that icon represent an application's window is somewhat more of
a chore. Windows CE uses a small 16-by-16-pixel icon on the taskbar to repre
sent windows on the desktop. Under the desktop versions of Windows, the
RegisterClassEx function can be used to associate a small icon with a window,
but Windows CE doesn't support this function. Instead, the icon must be explic
itly loaded and assigned to the window. The following code fragment assigns a
small icon to a window.

hlcon = (H!CON) SendMessage (hWnd, WM_GETICON, FALSE, 0);

if (hlcon == 0) {

hlcon = Loadlmage (h!nst, MAKEINTRESOURCE (ID_!CONl), IMAGE_ICON,
16, 16, 0);

SendMessage (hWnd, WM_SETICON, FALSE, (LPARAM)hlcon);

The first SendMessage call gets the currently assigned icon for the window.
The FALSE value in wParam indicates that we're querying the small icon for the
window. If this returns 0, indicating that no icon has been assigned, a call to
Loadlmage is made to load the icon from the application resources. The Load
Image function can take either a text string or an ID value to identify the
resource being loaded. In this case, the MAKEINTRESOURCE macro is used to
label an ID value to the function. The icon being loaded must be a 16-by-16
icon because under Windows CE, Loadlmage won't resize the icon to fit the
requested size. Also under Windows CE, Loadlmage is limited to loading icons
and bitmaps from resources. Windows CE provides the function SHLoadD!Bit

map to load a bitmap from a file.
Unlike other versions of Windows, Windows CE stores window icons on

a per-class basis. So if two windows in an application have the same class, they
share the same window icon. A subtle caveat here-window classes are specific
to a particular instance of an application. If you have two different instances of
the application FOOBAR, they each have different window classes, so they may
have different window icons, even though they were registered with the same
class information. If the second instance of FOOBAR had two windows of the
same class open, those two windows would share the same icon, independent
of the window icon in the first instance of FOOBAR.

Chapter 4 Windows, Controls, and Menus 185

Accelerators
Another resource that can be loaded is a keyboard accelerator table. This table
is used by Windows to enable developers to designate shortcut keys for specific
menus or controls in your application. Specifically, accelerators provide a direct
method for a key combination to result in a WM_COMMAND message being
sent to a window. These accelerators are different from the Alt-F key combina
tion that, for example, can be used to access a File menu. File menu key com
binations are handled automatically as long as the File menu item string was
defined with the && character, as in &File. The keyboard accelerators are inde
pendent of menus or any other controls, although their assignments typically
mimic menu operations, as in using Ctrl-0 to open a file.

Below is a short resource script that defines a couple of accelerator keys.

ID ACCEL ACCELERATORS DISCARDABLE
BEGIN

END

"N", IDM_NEWGAME, VIRTKEY. CONTROL
"Z", IDM_UNDO, VIRTKEY, CONTROL

As with the menu resource, the structure starts with an ID value. The ID
value is followed by the type of resource and, again optionally, the discardable
keyword. The entries in the table consist of the letter identifying the key, fol
lowed by the ID value of the command, VIRTKEY, which indicates that the let
ter is actually a virtual key value, followed finally by the CONTROL keyword,
indicating that Control must be pressed with the key.

Simply having the accelerator table in the resource doesn't accomplish
much. The application must load the accelerator table and, for each message it
pulls from the message queue, see whether an accelerator has been entered.
Fortunately, this is accomplished with a few simple modifications to the main
mes sage loop of a program. Here's a modified main message loop that handles
keyboard accelerators:

II Load accelerator table.
hAccel = LoadAccelerators (hinst, MAKEINTRESOURCE (ID_ACCEL));

II Application message loop
while (GetMessage (&msg, NULL, 0, 0)) {

II Translate accelerators
if (!TranslateAccelerator (hwndMain, hAccel, &msg)) {

TranslateMessage (&msg);
DispatchMessage (&msg);

186 Part I Windows Programming Basics

Bitmaps

Strings

The first difference in this main message loop is the loading of the accel
erator table using the LoadAccelerators function. Then, after each message is
pulled from the message queue, a call is made to TranslateAccelerator. If this
function translates the message, it returns TRUE, which skips the standard
TranslateMessage and DispatchMessage loop body. If no translation was per
formed, the loop body executes normally.

Bitmaps can also be stored as resources. Windows CE works with bitmap
resources somewhat differently from other versions of Windows. With Win
dows CE, the call

HBITMAP LoadBitmap(HINSTANCE hlnstance, LPCTSTR lpBitmapName);

loads a read-only version of the bitmap. This means that after the bitmap is
selected into a device context, the image can't be modified by other drawing
actions in that DC. To load a read/write version of a bitmap resource, use the
Loadlmage function.

String resources are a good method for reducing the memory footprint of an
application while keeping language-specific information out of the code to be
compiled. An application can call

int LoadString(HINSTANCE hlnstance, UINT uID, LPTSTR lpBuffer,
int nBufferMax);

to load a string from a resource. The ID of the string resource is u!D, the lpBu.ffer
parameter points to a buff er to receive the string, and nBu.fferMax is the size of
the buffer. To conserve memory, LoadString has a new feature under Windows
CE. If lpBu.ffer is NULL, LoadString returns a read-only pointer to the string as the
return value. Simply cast the return value as a pointer and use the string as
needed. The length of the string will be located in the word immediately preced
ing the start of the string. Note that by default the resource compiler removes ter
minating zeros from string resources. If you want to read string resources
directly and have them be zero terminated, invoke the resource compiler with
the -r command line switch. Although I'll be covering memory management and
strategies for memory conservation in Chapter 7, one quick note here. It's not a
good idea to load a number of strings from a resource into memory. This just
uses memory both in the resource and in RAM. If you need a number of strings
at the same time, it might be a better strategy to use the new feature of Load
String to return a pointer directly to the resource itself. As an alternative, you can

Chapter 4 Windows, Controls, and Menus 187

have the strings in a read-only segment compiled with the program. You lose the
advantage of a separate string table, but you reduce your memory footprint.

The DOIView Example Program
The following example, DOIView, demonstrates the use of resources, key
board accelerators, and pop-up menus. DOIView, short for Declaration of
Independence View, displays the United States Declaration of Independence
in a window. The text for the program is stored as a series of string resources.
DOIView formats the text to fit the application window and uses scroll bars to
scroll the text.

Figure 4-3 shows the DOIView window. The keys Ctrl-H and Ctrl-E scroll
the document to the start (home) and end of the document. You can also tap on
the window to display a short menu that allows you to quickly scroll to the start
or end of the document as well as end the program.

The uri'lOlmous Declaration of the thirteen united States of America,

WHEN in the Course of human
which have connected with and to

Station tr; which Laws of Nature and them, a
of Mankind requires that they should declare the causes which impel them to

HE refll3Bd his to Laws, tt1e most wholesome ard necessary for the public Good.

Figure 4-3 The DOI View window with the menu displayed

The source for DOIView is shown in Listing 4-2. Notice the inclusion of a
third file, DOIView.rc, which contains the resource script for the program. DOI
View.rc contains the menu resource, a line to include the icon for the program,
and a string table that contains the text to be displayed. Since string resources
are limited to 4092 characters, the text is contained in multiple strings.

188 Part I Windows Programming Basics

DOIView.rc
//=:;"'="'="'="'="'=====o======="'============="==========;:==============:;:=:;:==="
II DOIView - Resource file

II
I I Written .for the book Programming Windows CE

II Copyright (C) 20.03 Douglas $oling

II
//========'=========i==;;========:==="'============;===='=="'"'="'=="'="'======,,:===='..:
#include ~OOIView,h"

!!------------------------------·--------------------------=------------
! / I con

ll
lD:...ICON ICON "DOI View. i co"

l 1- - - - - - - - = - -. - - - - - - • - - - - - - - - •. - • - -. - - - - - - - - - • - = - - ' - - - - • c - - - - - = - - - - - - - - - ~ - -

II Menu

//
!D_MENU Mt;NU DISCARDABLf

BEGIN

END

POPUP "&File"
BEG1N

END

MENUITEM "&Goto Start\tCtrl-H'',
MENUITEM~&Goto End\tCtrl-E".

MENU!TEM SEPARATOR

MENU ITEM "E&xit",

lDM~HOME

lDM_END

ID~EXH

11---=·····---------'·--···············-··-·------··········'··---------
ll Accelerator table

II
rn,...:ACC~L. ACCELERATORS DISCARDABLE
BEGIN

"H~', IDM..:._HOME ~ VI.RTKEY, CONTROL
"E", lDM"'END, VIRTK[Y, CONTROL

END

l/···=-----------~---------~-------·-~-~---·~-----=----~------·-----=---
Strtngtable

u
SlRlNGtABLEDlSCARDABLE

BEGIN
105-DOitEXT, "lN CONGRESS, July 4, 1776, \012The unanimous .. \

DecHration of the thirteen un.i.te.d States of America,\0l2WHEN in the.\
Course of human Events, it becomes necessary for one Peop 1 e to

Listing 4-2 The DOIView program

Chapter 4 Windows, Controls, and Menus 189

dissolve the Political Bands which have connected them with another, \
and to assume among the Powers of the Earth, the separate and equal \
Station to which the Laws of Nature and of Nature's God entitle them,
a decent Respect to the Opinions of Mankind requires that they should
declare the causes which impel them to the Separation.\012\
WE hold these Truths to be self-evident, that all Men are created \
equal, that they are endowed by their Creator with certain \
unalienable Rights, that among these are Life, Liberty and the Pursuit
of Happiness -- That to secure these Rights, Governments are \
instituted among Men, deriving their just Powers from the Consent of\
the Governed, that whenever any Form of Government becomes destructive
of these Ends, it is the Right of the People to alter or to abolish \
it, and to institute new Government, laying its Foundation on such \
Principles. and organizing its Powers in such Form, as to them shall
seem most likely to effect their Safety and Happiness. Prudence, \
indeed, will dictate that Governments long established should \
not be changed for light and transient Causes; and accordingly all
Experience hath shewn, that Mankind are more disposed to suffer, while \
Evils are sufferable, than to right themselves by abolishing the Forms \
to which they are accustomed. But when a long Train of Abuses and \
Usurpations, pursuing invariably the same Object, evinces a Design to \
reduce them under absolute Despotism, it is their Right, it is their \
Duty, to throw off such Government, and to provide new Guards for \
their future Security. Such has been the patient Sufferance of these \
Colonies; and \
such is now the Necessity which constrains them to alter their
former Systems of Government. The History of the present King of Great \
Britain is a History of repeated Injuries and Usurpations, all having \
in direct Object the Establishment of an absolute Tyranny over these \
States. To prove this, let Facts be submitted to a candid World.\012\
HE has refused his Assent to Laws, the most wholesome and \
necessary for the public Good.\012HE has forbidden his Governors to
pass Laws of immediate and pressing Importance, unless suspended in \
their Operation till his Assent should be obtained; and when so \
suspended, he has utterly neglected to attend to them.\012\
HE has refused to pass other Laws for the Accommodation of large \
Districts of People, unless those People would relinquish the Right of
Representation in the Legislature, a Right inestimable to them, and \
formidable to Tyrants only.\012HE has called together Legislative\
Bodies at Places unusual. uncomfortable, and distant from the \
Depository of their public Records. for the sole Purpose of fatiguing
them into Compliance with his Measures.\012\
HE has dissolved Representative Houses repeatedly, for opposing \
with manly Firmness his Invasions on the Rights of the People.\012HE \
has refused for a long Time, after such Dissolutions, to cause others \
to be elected; whereby the Legislative Powers, incapable of the\

(continued)

190 Part I Windows Programming Basics

Listing 4-2 (continued)

Annihilation, have returned to the People at large for their exercise; \
the State remaining in the mean time exposed to all the Dangers of \
Invasion fr'om withOut, and the Convulsions within. \012\
HE has endeavoured to prevent the Population of .these States; \
for that Purpose obstructing the Laws for Naturalization of Foreigners\
; refusing to pass others to encourage their Migrations hither, and \
raising the Conditions of new Appropriations of Lands.\012HE has \
obstructed the Administration of Justice, by refusing his Assent to \
Laws for establishing Judiciary Powers.\012HE has made Judges\
dependent on his Will alone, for the Tenure of thei.r Offices, and .the \
Amount and payment of their Salaries.\012"

IDS_DOITEXTl, "HE has erected a Multitude of new Offices, and sent \
hithe~ Swarms of Officers to harrass our People. and eat out their \
Substance.\012HE has kept among us, in Times of Peace, Standing \
Armies, without the consent of our Legislatures .. \012HE has affected to \
re.nder the Military independent of and s Uperi or to. the Civil Power .\012\
HE has combined with others. to sutiject us to a .Jur.isdiction \
forefgnto our Constitution, and unacknow.ledged by our Laws; giving.\
his Assent to their Acts of pretended Legi s 1 at ion: \012FOR quartering \
large Bodies of Armed Troops among us;\012FOR .protecting them, by a \
mock. Trial, from Punishment for any Murders which they should commit \
on the Inhabitants of these .. States.: \012FOR cutting off our Trade with \
all Parts of the .World!\012\
FOR imposing Taxes on us without our Consent:\012FOR depriving \
us, in many Cases, of the Benefits of Trial by Jury:\012FOR \
transporti Ilg us beyond Seas to be tried for pretended Offences: \012\
FOR abolishing t.he free System of English Laws tn <i neighbourfog \
Province, estabTishihg thereth an arbitrary Government, and enlarging \
its 6ounctari es, so as to render it at once an Examp1 e and fit.\
InstrQment for introducing the same absolute Rules into these\
coltmi e$: \012:\
P()~ taldngaW(lY our Charters, abolishing our most valuable Laws

altering fundamentally the .Forms of our Governments :\012FOR
suspe~dtng our own tegi s latures. and dec1 a ring themselves i hvested
with Power to .legislate for us in aU Cases whatsoever .\012HE Ms. \
(lbdfcated Government here •. by .declaring u$ out .. of his Protection and
\'/agthg War ag(linst us.X012HE has plundered .our Sea.s, .r.avagect·our · .. \
Co~st$, bqrn'I'. our Jowrs 0.and .• destroyedthe Jjves of· ... our People. \012\

·HE .ts, at .thi~Time,· transporting 1 arge Armies of Jor.etgn· \
Mercenaties.•· to.·.·compl eat. the··· Works of Oe(lth.,.• Desolation •. and. Tyranny;
already begun with circumstances of ·cruelty and Perfidy, scarcely\
paralleled Jn the most barbarous All.es. and tota 1 ly unworthy the. Head
of a t;iV.iHzed N1ltion.\012HE has constrained our fellow Citizens taken\
Captive on the high Seas to bear Arms aga.inst their Country, to become \
the Executioners of their Fri ends and Brethren, or to fa 11 themselves \
by•· their Hands.\012\

Chapter 4 Windows, Controls, and Menus 191

HE has excited domestic Insurrections amongst us, and has \
endeavoured to bring on the Inhabitants of our Frontiers, the \
merciless Indian Savages, whose known Rule of Warfare, is an \
undistinguished Destruction, of all Ages. Sexes and Conditions.\012IN \
every stage of these Oppressions we have Petitioned for Redress in the
most humble Terms: Our repeated Petitions have been answered only by \
repeated Injury. A Prince, whose Character is thus marked by every act \
which may define a Tyrant, is unfit to be the Ruler of a free People. \
NOR have we been wanting in Attentions to our Brittish Brethren. \
We have warned them from Time to Time of Attempts by their Legislature \
to extend an unwarrantable Jurisdiction over us. We have reminded them \
of the Circumstances of our Emigration and Settlement here. We have \
appealed to their native Justice and Magnanimity, and we have conjured \
them by the Ties of our common Kindred to disavow these Usurpations, \
which, would inevitably interrupt our Connections and Correspondence. \
They too have been deaf to the Voice of Justice and of Consanguinity. \
We must, therefore, acquiesce in the Necessity, which denounces our \
Separation, and hold them. as we hold the rest of Mankind, Enemies in \
War, in Peace, Friends.\012"

IDS_DOITEXT2. "WE, therefore, the Representatives of the UNITED \
STATES OF AMERICA, in GENERAL CONGRESS, Assembled, appealing to the\
Supreme Judge of the World for the Rectitude of our Intentions, do, in
the Name, and by Authority of the good People of these Colonies, \
solemnly Publish and Declare, That these United Colonies are, and of \
Right ought to be, FREE AND INDEPENDENT STATES; that they are absolved \
from all Allegiance to the British Crown, and that all political \
Connection between them and the State of Great-Britain, is and ought \
to be totally dissolved; and that as FREE AND INDEPENDENT STATES. they
have full Power to levy War, conclude Peace, contract Alliances, \
establish Commerce, and to do all other Acts and Things which \
INDEPENDENT STATES may of right do. And for the support of this \
Declaration, with a firm Reliance on the Protection of divine \
Providence. we mutually pledge to each other our Lives. our Fortunes, \
and our sacred Honor."
END

DOIView.h
II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

(continued)

192 Part I Windows Programming Basics

Listing 4-2 (continued)

//--
/! Generic defines and data types
II
struct decodeUINT {

UINT Code;

LRESULT (*Fxn)(HWND, U INT, .WP A RAM, LP A RAM);
} ;

struct decodeCMD {
UINT Code;
LRESULT (•Fxn)(HWND, WORD, HWND, WORD);

} ;

1/defi ne
#define

ifdefi ne
/fdefi ne
f,!defi ne

ifdefi ne
/fdefine

/ldefi ne

ID_MENU

ID_ACCEL

IDM_HOME
I DM_END
IDM_EXIT

IDS_DO IT EXT
IDS_ DO ITEXTl

ID$_DOITEXT2

10
11

100
101
102

1000
1001
1002

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
I I function

II
II consecutive

/jcC"----~---C--------'-,-•---~------'-~---•--''------c-c--••-••••--,,-~

II Function prototypes
II
LPTSTR WrapStrfog (HDC hdc, LPTSTR pszText, int *Pnlen, int nWidth,

BOOL *fEOU;

HWND Initln.stance CHlNSTANC.E, LPWSTR, int);
int Terminstance CHINSTANCE, int);

II Window procedures
LRESULT CALLBACK Mai.nWndProc (HWND, UINT, WPARAM, LPARAM);

II Message handlers
LRESULT DoCreateMa.in <HWND. UINl, WPARAM, LPARAM);
LRESULT DoSizeMain (HWND, UINT, WPARAM. LPARAM);
LRESULl
LRESULT
LRESUU
LRESULT
LRESUU
LRESULT

DoCommandMain (HWND, UlNT, WPARAM, LPARAM);

DoLsuttonDownMain CHWND, UINT. WPARAM, LPARAM);
DoRButtonUpM.ain (HWND. UINT, WPARAM, LPARAM);
DoVScrollMain (HWND, UINT, WPARAM, LPARAM);
DoPaintMain (HWND. UHff. WPARAM. LPARAM);
DoDestroyMain IHWND, UINT, WPARAM, LPARAM);

Chapter 4 Windows, Controls, and Menus 193

II Command functions
LPARAM DoMainCommandHome (HWND, WORD, HWND, WORD):
LPARAM DoMainCommandEnd CHWND, WORD, HWND, WORD):
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD);

DOIView.cpp
II==
II DOIView - Demonstrates window scroll bars
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
#include <windows.h>
#include "DOIView.h"
#include <aygshell .h>

II For all that Windows stuff
II Program-specific stuff
II Extended shell API

11--
11 Global data
II
canst TCHAR szAppName[] TEXTC"DOIView"):
HINSTANCE hinst: II Program instance handle

#define WM_MYMSG (WM_USER + 100)
II Message dispatch table for MainWindowProc
canst struct decodeUINT MainMessages[J = {

} :

WM_CREATE, OoCreateMain,
WM_SIZE. DoSizeMain,
WM_LBUTTONDOWN. DoLButtonDownMain,
WM_COMMAND, DoCommandMain,
WM_VSCROLL, DoVScrollMain,
WM_PAINT, DoPaintMain,
WM_DESTROY, DoDestroyMain,

II Command Message dispatch for MainWindowProc
canst struct decodeCMO MainCommanditems[J = {

IDM_HOME, DoMainCommandHome,
IDM_END, DoMainCommandEnd,
IDM_EXIT, DoMainCommandExit,

} ;

typedef struct {
LPTSTR pszline:

(continued)

194 Part I Windows Programming Basics

Listing 4-2 (continued)

tnt riLen;
LLINEARRAY, *PLIN.EARRAY:
' ,. '

#dMJri~•MAXUNES · 1000
.... LlNE~~~·'f.}~Text[MAXLINES];

trtt. n:Nufuliti.es<= 0,
int rii;h~ttt~tght = 1 ;
int nL.iilesi>efPage = 1;
,;' ,: : . .. "

MSG msg;
intrc.:..0:·
HWNO.hwndMatn:
HACCEL·hAccel:

: II Jnitial~ze:this

II Load accelerator ta•ble; •• ·
··· hAccel = l.oadAcce1 erators Chlrrst. •

: ·'·· ·, '· ... ,: . ". ', '.,.,

. . .
n· Application message l.oop

· whi i e. <GetMes:Sage c&mig'r'Nut0;

}

1 i .trarislate a<1£ce)erators . .
1 f. OTrl1n$lateAccelera~or fh'il1Jdt1aitr; ·

TransTateMessage·· f&msi;f) : •.•.
DispatchMessage (&msg>.:··.

.r~tur.h•Termlnstance.

Chapter 4 Windows, Controls, and Menus 195

HWND Initinstance (HINSTANCE hlnstance, LPWSTR lpCmdLine, int nCmdShow) {
WNDCLASS wc;
HWND hWnd;
PBYTE pRes. pBuff;
int nStrLen = 0, i = 0;

II Save program instance handle in global variable.
hlnst = hlnstance;

#if defined(W!N32_PLATFORM_PSPCl
II If Pocket PC, only allow one instance of the application
hWnd = FindWindow (szAppName, NULL);
if (hWnd l {

#end if

SetForegroundWindow ((HWND)(((DWORDlhWndl I 0x01));
return 0;

JI Load text from multiple string resources into one large buffer
pBuff = (PBYTE)LocalAlloc (LPTR, 8);
while (pRes = (PBYTEJLoadString Chlnst, IDS_DOITEXT + i++, NULL, 0))
{

II Get the length of the string resource
int nlen = *(PWORDl(pRes-2) * sizeof CTCHARl;
II Resize buffer
pBuff = CPBYTE)LocalReAlloc CpBuff, nStrlen + 8 + nLen,

LMEM_MOVEABLE I LMEM_ZEROINIT);
if (pBuff == NULL) return 0;
JI Copy resource into buffer
memcpy (pBuff + nStrLen, pRes, nLenl:
nStrLen += nlen;

*(TCHAR *)(pBuff + nStrlen) =TEXT ('\0');
pszDeclaration = (LPTSTRlpBuff;

II Register application main window class.
we.style = 0; II Window style
wc.lpfnWndProc = MainWndProc; II Callback function
wc.cbClsExtra = 0; II Extra class data
wc.cbWndExtra = 0; // Extra window data
wc.hinstance = hinstance; II Owner handle
wc.hlcon = NULL. //Application icon
wc.hCursor = LoadCursor (NULL, IDCARROWl;I/ Default cursor
wc.hbrBackground = (HBRUSHl GetStockObject CWHITE_BRUSH);
wc.lpszMenuName = NULL; II Menu name

(continued)

196 Part I Windows Programming Basics

Listing 4-2 (continued)

if (! IsWiridow (hWnd)) return 0; I I Fail code i.f not .created.

l/ Standard show and update cal}s
ShowWi ndow .. c hWnd. nCflidShow);

(hWnd):

// Termlnstance -
II
int

Chapter 4 Windows, Controls, and Menus 197

11--
11 OoCreateMain - Process WM_CREATE message for window.
II
LRESULT OoCreateMain (HWNO hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
TEXTMETRIC tm;
HOC hdc = GetOC (hWnd);
LOG FONT 1 f;
HFONT hFontWnd;

hFontWnd = (HFONT)GetStockObject (SYSTEM_FONT);
GetObject ChFontWnd, sizeof (LOGFONT), &lf);

lf.lfHeight = -12 * GetOeviceCaps(hdc, LOGPIXELSY)I 72;
lf.lfWeight = 0;
hFont = CreateFontlndirect (&lf);
SendMessage (hWnd, WM_SETFONT. (WPARAM)hFont, 0);

II Get the height of the default font.
hFontWnd = (HFONT)SelectObject (hdc, hFont);
GetTextMetrics (hdc, &tm);
nFontHeight = tm.tmHeight + tm.tmExternalLeading;
SelectObject (hdc, hFontWnd);

ReleaseOC (hWnd, hdc);
return 0;

11--
11 OoSizeMain - Process WM_SIZE message for window.
II
LRESULT OoSizeMain (HWNO hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
RECT rect;
HOC hdc = GetOC (hWnd);
GetClientRect (hWnd, &rect);
int i = 0, nChars, nWidth;
LPTSTR pszWndText = pszOeclaration;
SCROLLINFO si;
HFONT hFontWnd;
BOOL fNewLine;

hFontWnd = (HFONT)SelectObject (hdc, hFont);

II Compute the line breaks
nWidth = rect.right - rect.left - 10;
while (i < MAXLINES){

(continued)

198 Part I Windows Programming Basics

Listing 4-2 (continued)

}

}

pszWndText = WrapSt rt ng

ff < pszWndText: .,..; 0)

break; ..
1 aText.('iJ .p!jzi.ine .= pszWndText:
1 aText[iJ .nlett ·;; .nChars:
i++:
1 f < fNewLi nel {

laText[iJ.nLen • 0:
i++;

pszWndText+= nChars;

nNumLfnes = i:
hlinesPerPage = <rect.bOttom - rect:tqli)/nFontHe1.ght:

II Compute 11 nei; per Window and tota 1
s1 .cbSize = sizeof est): · ··
si .nMin =_,0;
si.nMax = nNUmLtnes;
si .nPa.ge = nLinesPerPage;

ji,nPos = nVPos:
st .fMask = SIF.J..LL:
SetScrdTlinfo (hWnd,

II Clean up .
Sel ectObject (hdc, hFontiWnd):
Rel easeO.C thWnd,. hdc);
.InvalidateRect (hWnd, NOi+; .TRUE);

return ij; ..

./I·~c.•.----<~--·

11.
11
11 '

Chapter 4 Windows, Controls, and Menus 199

II Call routine to handle control message.
for (i = 0: i < dim(MainCommandltems): i++)

if (idltem == MainCommandltems[i].Code)
return (*MainCommandltems[i].Fxn)(hWnd, idltem, hwndCtl.

wNot i fyCode) ;

return 0;

11--
11 DoLButtonDownMain - Process WM_LBUTTONDOWN message for window.
II
LRESULT DoLButtonDownMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

}

HMENU hMenuMain, hMenu:
POINT pt;
int re;

II Display the menu at the point of the tap
pt.x = LOWORD ClParam):
pt.y = HIWORD (lParam):

SHRGINFO sri:
sri.cbSize = sizeof (sri);
sri.dwFlags = 1:
sri.hwndClient = hWnd;
sri.ptDown =pt:

II See if tap and hold
re= SHRecognizeGesture (&sri);
if (re == 0) return 0:

II Display the menu at the point of the tap
II First, convert to desktop coordinates
MapWindowPoints (hWnd, HWND_DESKTOP, &pt, 1);
pt.x += 5;
hMenuMain = LoadMenu (hlnst, MAKEINTRESOURCE (IO_MENU)):
hMenu = GetSubMenu ChMenuMain, 0);
TPMPARAMS tpm:
tpm.cbSize = sizeof (tprn);
GetClientRect ChWnd. &tpm.rcExclude);
TrackPopupMenuEx ChMenu, TPM_LEFTALIGN I TPM_TOPALIGN.

pt.x, pt.y, hWnd, &tpm);
DestroyMenu (hMenuMain):
O.estroyMenu (hMenul;
return 0:

(continued)

200 Part I Windows Programming Basics

Listing 4-2 (continued)

11·~--·-----------------------
ll DoVScroll Main - Process WM...:.VSCROLL. message for window.
II
LRESULT DoVScrollMain (HWNO hWnd, UINT wMsg, WPARAM wParam,

LPA~AM .lParam) {
RECT rect:
SCROLL! N FO s i :
int sOldPos = riVPos;

GetClientRect ChWnd; &rect);

switch 1LOWORO CwParamll
case SB_LINEUP:

nVPos -= 1;
break:

case SB_LINEDQWN:
nVPos +"' 1:
break.:

case SB_PAGEUp:
nVPos -=. nLi nesPerPa.ge:
break;

case SB_PAGEOQWN:
nVPos += nLinesPerPage;
break;

case SB_THUMBTRACK:
case SB.:..T.HUMBPOSITION:

}

nVPos = HIWORD (wParaml;
break:

II Check range.
if CnVPos < 0)

nVPos = 0;
if (nVPos > nNumlines-1)

nVPos = nNumlines•l:

II If scroll position changed, update scrollbar and
I I .force redraw o.f window.
if (nVPos != sOldPos) {

si...cbSize = sizeof (si);
si.nPos = nVPos:
si.fMask = SlF_POS:
SetScrollIT!fo (hWnd, SB_VERT, &si, TRUE):

Chapter 4 Windows, Controls, and Menus 201

InvalidateRect (hWnd, NULL, TRUE):

return 0:

11--
11 DoPaintMain - Process WM_PAINT message for window.
II
LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PAINTSTRUCT ps:
HFDNT hFontWnd:
RECT rect:
HOC hdc:
int i • y = 5:

hdc = BeginPaint (hWnd. &ps):

GetClientRect (hWnd, &rect):

hFontWnd = CHFONT)SelectObject (hdc, hFontl:

II Draw the text
for (i = nVPos: i < nNumLines: i++) {

if (y > rect.bottom - nFontHeight - 10)
break:

if ClaText[iJ.nLen)
ExtTextOut (hdc, 5, y, TRANSPARENT, NULL, laText[i].pszLine,

laText[iJ.nLen, NULL):
y += nFontHeight:

SelectObject (hdc, hFontWndl:
EndPaint ChWnd, &ps);
return 0;

11--
11 DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PostQuitMessage (0):
return 0:

II==
II Command handler routines
II

(continued)

202 Part I Windows Programming Basics

Listing 4-2 (continued)

11- cc--·· --- ·•''.\·~ ~>~ "'·:~ ~-c·-c- - - - • - - • - - ~ - ~ ·- ~ ~.-~~~~-,,~.;_,- '~"-- - - - - -
11 J>oMa1i1.cbmman(rn'.6me-:':-': ·Proi:ess -PrAgrallt :H<>m~- ~i'.lmmand •.
fl' c:"' c '. : ' :. :, ' .. ,; .; ·. : ' '

LPARAM 1>tit.1~t~iplll11t~.ndH.om.e CHWNO hWnd •. : ~dtW}'.f<ti~~~}HWND

}

'il-

······ ... WORD wNotifyCQ~.~1j :
~iC'RQllIKfO sf:: . >
·if. <hvl'os :11' ir:rr

·nvPos "' 0.;

}

return 0:·

LPARAMOoMainCotnmandEnd

SCROLLINFO si;

Chapter 4 Windows, Controls, and Menus 203

11--
11 WrapString - Determine a length that will fit with a width
II
LPTSTR WrapString (HDC hdc, LPTSTR pszText, int *PnLen, int nWidth,

BOOL *fEOL) {
LPTSTR pszStr, pszStart:
SIZE Size:

*fEOL = FALSE:
*pnLen = 0:

II Skip to first non-space char
for(: (*pszText!=TEXT('\0')) && (*pszText<=TEXT (' ')); pszText++):

pszStart = pszText:

if (*pszText == 0)
return 0:

while (1) {

}

pszStr = pszText:
II Find end of the next word
for(; (*pSzText!=TEXT('\0')) && *PSZText>TEXT (' ');pszText++);

II Get length of the string
GetTextExtentPoint (hdc, pszStart, pszText - pszStart, &Size):

if (Size.ex > nWidth)
break:

if ((*pszText ==TEXT ('\0')) / / (*pszText ==TEXT ('\r')) I/

(*pszText ==TEXT ('\n'))) {
*fEOL = TRUE:
pszStr = pszText:
break:

}

II slip past space
pszText++;

*PnLen = pszStr - pszStart:
return pszStart:

When the program is launched, it reads the string resources into one large
buffer. To reduce the memory impact, the string resources are accessed by pass
ing a NULL buffer pointer to the LoadString function. That causes LoadString to
return a pointer to the resource in its return value. Note that these strings aren't
zero delimited in this case, so DOIView reads the word before the string to get

204 Part I Windows Programming Basics

the number of characters. Because the strings are Unicode, the string length is
then multiplied by the size of TCHAR to get the size of the buffer needed for the
string.

The main window of DOIView handles a few extra messages. The
WM_SIZE handler reformats the text by calling WrapString. This routine mea
sures the length of each line by calling GetTextExtentPoint. If the length is less
than the width of the window, the routine then adds another word to the line
and remeasures. This continues until the proper number of words is added to
the line to fit within the window. The WM_PAINT handler draws the lines of
text starting with the top line to be displayed, defined by the current scroll posi
tion.

The WM_ VSCROLL routine handles the messages from the vertical scroll
bar. When the notification is a SB_PAGEUP or SB_PAGEDOWN, the routine sub
tracts or adds the number of lines displayed in the window to the current scroll
position. The WM_LBUTTONDOWN handler loads a menu from a menu
resource. The menu has three commands: Home, to scroll to the top of the doc
ument; End, to scroll to the bottom; and Exit, which quits the program. DOI
View also responds to accelerator keys: Ctrl-H for Home and Ctrl-E for End.

This chapter has covered a huge amount of ground, from basic child win
dows to controls and on to resources and menus. My goal wasn't to teach
everything there is to know about these topics. Instead, I've tried to introduce
these program elements, provide a few examples, and point out the subtle dif
ferences between the way they're handled by Windows CE and the desktop
versions of Windows.

Although the Windows controls are useful and quite handy, the next
chapter covers the common controls. These controls are a far more powerful,
and more complex, set of controls, which Windows CE also supports.

Common Controls
and Windows CE

As Microsoft Windows matured as an operating system, it became apparent that
the basic controls provided by Windows were insufficient for the sophisticated
user interfaces that users demanded. Microsoft developed a series of additional
controls, called common controls, for their internal applications and later made
the dynamic-link library (DLL) containing the controls available to application
developers. Starting with Microsoft Windows 95 and Microsoft Windows NT 3.5,
the common control library was bundled with the operating system. (Although
this hasn't stopped Microsoft from making interim releases of the DLL as the
common control library was enhanced.) With each release of the common con
trol DLL, new controls and new features are added to old controls. As a group,
the common controls are less mature than the standard Windows controls and
therefore show greater differences between implementations across the various
versions of Windows. These differences aren't just between Microsoft Windows
CE and other versions of Windows, but also between Windows Me,
Windows 2000, and Windows XP. The functionality of the common controls in
Windows CE tracks most closely with the common controls delivered with Win
dows 98, although not all of the Windows 98 features are supported.

It isn't the goal of this chapter to cover in depth all the common controls.
That would take an entire book. Instead, I'll cover the controls and features of
controls the Windows CE programmer will most often need when writing Win
dows CE applications. I'll start with the command bar and menu bar controls
and then look at the month calendar and time and date picker controls. Finally,
I'll finish up with the list view control. By the end of the chapter, you might not
know every common control inside and out, but you will be able to see how

205

206 Part I Windows Programming Basics

the common controls work in general. And you'll have the background to look
at the documentation and understand the common controls not covered.

Programming Common Controls
Because the common controls are separate from the core operating system, the
DLL that contains them must be initialized before any of the common controls
can be used. Under all versions of Windows, including Windows CE, you can
call the function

void InitCommonControls (void);

to load the library and register many of the common control classes. This call
doesn't initialize the month calendar, time picker, up/down, IP address, or other
newer common controls. To initialize those controls, use the function

BOOL InitCommonControlsEx 1LPINITCOMMONCONTROLSEX lpinitCtrls);

This function allows an application to load and initialize only selected common
controls. This function is handy under Windows CE because loading only the
necessary controls can reduce the memory impact. The only parameter to this
function is a two-field structure that contains a size field and a field that con
tains a set of flags indicating which common controls should be registered.
Table 5-1 shows the available flags and their associated controls.

Table 5-1 Flags for Selected Common Controls

Flag

ICC_BAR_CIASSES

JCC_COOL_CIASSES

JCC_DATE_CIASSES

ICC_LISTVIEW_CIASSES

JCC_PROGRESS_CIASS

ICC_TAB_CIASSES

ICC_TREEVIEW_CIASSES

Control Classes Initialized

Toolbar

Status bar

Trackbar

Command bar

Rebar

Date and time picker

Month calendar control

List view

Header control

Progress bar control

Tab control

Tree view control

Chapter 5 Common Controls and Windows CE 207

Table 5-1 Flags for Selected Common Controls (continued)

Flag

ICC_UPDOWN_CLASS

ICC_TOOLTIP _CLASSES

ICC_CAFEDIT_CIASS

Control Classes Initialized

Up-Down control

Tool tip control

Cap edit control

Once the common control DLL has been initialized, these controls can be
treated like any other control. But since the common controls aren't formally
part of the Windows core functionality, an additional include file, CommCtrl.h,
must be included.

The programming interface for the common controls is similar to that for
standard Windows controls. Each of the controls has a set of custom style flags
that configure the look and behavior of the control. Messages specific to each
control are sent to configure and manipulate the control and cause it to perform
actions. One major difference between the standard Windows controls and
common controls is that notifications of events or requests for service are sent
via WM_NOTIFYmessages instead of WM_COMMAND messages as in the stan
dard controls. This technique allows the notifications to contain much more
information than would be allowed using WM_COMMAND message notifica
tions. In addition, the technique has allowed the WM_NOTIFY message to he
extended and adapted for each of the controls that use it.

At a minimum, the WM_NOTIFY message is sent with lParam pointing to
an NMHDR structure defined as the following:

typedef struct tagNMHDR
HWND hwndFrom;
UINT idFrom;
UINT code;

NMHDR;

The hwndFrom field contains the handle of the window that sent the
notify message. For property sheets, this is the property sheet window. The
idFrom field contains the ID of the control if a control is sending the notifica
tion. Finally, the code field contains the notification code. While this basic struc
ture doesn't contain any more information than the WM_CO.MMAND message,
it's almost always extended, with additional fields appended to it. The notifica
tion code then indicates which, if any, additional fields are appended to the
notification structure.

One additional difference in programming common controls is that most
of the control-specific messages that can be sent to the common controls have

208 Part I Windows Programming Basics

predefined macros that make sending the message look as if your application is
calling a function. So instead of using an LVM_INSERTITEM message to a list
view control to insert an item, as in

nlndex =(int) SendMessage (hwndLV, LVM_INSERTITEM, 0, (LPARAM)&lvi);

an application could just as easily have used the line

nindex = ListView_Insertltem (hwndLV. &lvi);

There's no functional difference between the two lines; the advantage of
these macros is clarity. The macros themselves are defined in CommCtrl.h along
with the other definitions required for programming the common controls. One
problem with the macros is that the compiler doesn't perform the type checking
on the parameters that would normally occur if the macro were an actual func
tion. This is also true of the SendMessage technique, in which the parameters
must be typed as W'PARAM and LPARAM types, but at least with messages the
lack of type checking is obvious. All in all, though, the macro route provides
better readability. One exception to this system of macros is the calls made to
the command bar control and the command bands control. Those controls actu
ally have a number of true functions in addition to a large set of macro
wrapped messages. As a rule, I'll talk about messages as messages, not as their
macro equivalents. That should help differentiate a message or a macro from a
true function.

The Common Controls
A prime Windows CE target niche-small personal productivity devices-has
driven the requirements for the common controls in Windows CE. The frequent
need for time and date references for schedule and task management applica
tions has led to inclusion of the date and time picker control and the month cal
endar control. The small screens of personal productivity devices inspired the
space-saving command bar. Mating the command bar with the rebar control
that was created for Internet Explorer 3.0 has produced the command bands
control. The command bands control provides even more room for menus, but
tons, and other controls across the top of a Windows CE application.

Finally, Pocket PC developers are familiar with the menu bar. This con
trol was added to the Windows CE common controls in Windows CE .NET
4.2. I'll cover the menu bar after I discuss the command bar and command
bands controls.

Chapter 5 Common Controls and Windows CE 209

The Command Bar
Briefly, a command bar control combines a menu and a toolbar. This combi
nation is valuable because the combination of a menu and toolbar on one line
saves screen real estate on space-constrained Windows CE displays. To the
programmer, the command bar looks like a toolbar with a number of helper
functions that make programming the command bar a breeze. In addition to
the command bar functions, you can also use most toolbar messages when
you're working with command bars. A window with a command bar is shown
in Figure 5-1.

OndBar Demo

Figure 5-1 A window with a command bar control

Creating a Command Bar
You build a command bar in a number of steps, each defined by a particular
function. The command bar is created, the menu is added, buttons are added,
other controls are added, tooltips are added, and finally, the Close and Help
buttons are appended to the right side of the command bar.

You begin the process of creating a command bar with a call to

HWND CommandBar_Create (HINSTANCE hinst, HWND hwndParent,
int idCmdBar);

The function requires the program's instance handle, the handle of the
parent window, and an ID value for the control. If successful, the function
returns the handle to the newly created command bar control. But a bare com
mand bar isn't much use to the application. It takes a menu and a few buttons
to jazz it up.

Command Bar Menus
You can add a menu to a command bar by calling one of two functions. The
first function is this:

BOOL CommandBar_InsertMenubar (HWND hwndCB, HINSTANCE hinst,
WORD idMenu, int iButton);

210 Part I Windows Programming Basics

The first two parameters of this function are the handle of the command
bar and the instance handle of the application. The idMenu parameter is the
resource ID of the menu to be loaded into the command bar. The last parameter
is the index of the button to the immediate left of the menu. Because the Win
dows CE guidelines specify that the menu should be at the left end of the com
mand bar, this parameter should be set to 0, which indicates that all the buttons
are to the right of the menu.

A shortcoming of the CommandBar _InsertMenubar function is that it
requires the menu to be loaded from a resource. You can't configure the menu
on the fly. Of course, it would be possible to load a dummy menu and manip
ulate the contents of the menu with the various menu functions, but here's an
easier method.

The function

BOOL CommandBar_InsertMenubarEx CHWND hwndCB, HINSTANCE hlnst,
LPTSTR pszMenu, int iButton);

has a set of parameters similar to CommandBar _InsertMenubar with the excep
tion of the third parameter, pszMenu. This parameter can be either the name of
a menu resource or the handle to a menu previously created by the program. If
the pszMenu parameter is a menu handle, the hlnst parameter must be NULL.

Once a menu has been loaded into a command bar, the handle to the
menu can be retrieved at any time using

HMENU CommandBar_GetMenu CHWND hwndCB, int iButton);

The second parameter, iButton, is the index of the button to the immedi
ate left of the menu. This mechanism provides the ability to identify more than
one menu on the command bar. However, given the Windows CE design guide
lines, you should see only one menu on the bar. With the menu handle, you
can manipulate the structure of the menu using the many menu functions avail
able.

If an application modifies the menu on the command bar, the application
must call

BOOL CommandBar_DrawMenuBar CHWND hwndCB, int iButton);

which forces the menu on the command bar to be redrawn. Here again, the
parameters are the handle to the command bar and the index of the button
to the left of the menu. Under Windows CE, you must use CommandBar_
DrawMenuBar instead of DrawMenuBar, which is the standard function used
to redraw the menu under other versions of Windows.

Chapter 5 Common Controls and Windows CE 211

Command Bar Buttons
Adding buttons to a command bar is a two-step process and is similar to adding
buttons to a toolbar. First the bitmap images for the buttons must be added to
the command bar. Second the buttons are added, with each of the buttons ref
erencing one of the images in the bitmap list that was previously added.

The command bar maintains its own list of bitmaps for the buttons in an
internal image list. Bitmaps can be added to this image list one at a time or as
a group of images contained in a long and narrow bitmap. For example, for a
bitmap to contain four 16-by-16-pixel images, the dimensions of the bitmap
added to the command bar would be 64 by 16 pixels. Figure 5-2 shows this bit
map image layout.

0 16 32 48 63

Figure 5-2 Layout of a bitmap that contains four 16-by-16-pixel images

Loading an image bitmap is accomplished using

int CommandBar_AddBitmap (HWND hwndCB, HINSTANCE hinst, int idBitmap,
int iNumimages, int iimageWidth, int iimageHeight);

The first two parameters are, as is usual with a command bar function, the
handle to the command bar and the instance handle of the executable. The
third parameter, idBitmap, is the resource ID of the bitmap image. The fourth
parameter, iNumlmages, should contain the number of images in the bitmap
being loaded. Multiple bitmap images can be loaded into the same command
bar by calling CommandBar _AddBitmap as many times as is needed. The last
two parameters are the dimensions of the images within the bitmap; set both
these parameters to 16.

Two predefined bitmaps provide a number of images that are commonly
used in command bars and toolbars. You load these images by setting the
hlnst parameter in CommandBar_AddBitmap to HINST_COMMCTRL and set
ting the idBitmap parameter to either IDB_STD_SMALL_COLOR or
IDB_ VIEW_SMALL_COLOR. The images contained in these bitmaps are shown
in Figure 5-3. The buttons on the top line contain the bitmaps from the standard

212 Part I Windows Programming Basics

bitmap, while the second-line buttons contain the bitmaps from the standard
view bitmap.

Figure 5-3 Images in the two standard bitmaps provided by the
common control DLL

The index values to these images are defined in CommCtrl.h, so you don't
need to know the exact order in the bitmaps. The constants are

Constants to access the standard bitmap
STD_CUT Edit/Cut button image
STD_COPY Edit/Copy button image
STD_PASTE
STD_UNDO
STD_REDOW
STD_DELETE
STD_FILENEW
STD_FILEOPEN
STD_FILESAVE
STD_PRINTPRE
STD_PROPERTI ES
STD_HELP

STD_FIND
STD_REPLACE
STD_PRI NT

Edit/Paste button image
Edit/Undo button image
Edit/Redo button image
Edit/Delete button image
File/New button image
File/Open button image
File/Save button image
Print preview button image
Properties button image
Help button (Use Commandbar_Addadornments
function to add a help button to the
command bar.)
Find button image
Replace button image
Print button image

Constants to access the standard view bitmap
VIEW_LARGEICONS View/Large Icons button image
VIEW_SMALLICONS View/Small Icons button image
VIEW_LIST
VIEW_DETAILS
VIEW_SORTNAME
VIEW_SORTSIZE
VIEW_SORTDATE
VIEW_SORTTYPE
VIEW_PARENTFOLDER
VIEW_NETCONNECT
VIEW_NETDISCONNECT
VIEW_NEWFOLDER

View/List button image
View/Details button image
Sort by name button image
Sort by size button image
Sort by date button image
Sort by type button image
Go to Parent folder button image
Connect network drive button image
Disconnect network drive button image
Create new folder button image

Chapter 5 Common Controls and Windows CE 213

Referencing Images
The images loaded into the command bar are referenced by their index into the
list of images. For example, if the bitmap loaded contained five images, and the
image to be referenced was the fourth image into the bitmap, the zero-based
index value would be 3.

If more than one set of bitmap images was added to the command bar
using multiple calls to CommandBar_AddBitmap, the images' subsequent lists
are referenced according to the previous count of images plus the index into
that list. For example, if two calls were made to CommandBar_AddBitmap to
add two sets of images, with the first call adding five images and the second
adding four images, the third image of the second set would be referenced with
the total number of images added in the first bitmap (5) plus the index into the
second bitmap (2), resulting in an index value of 5 + 2 = 7.

Once the bitmaps have been loaded, the buttons can be added using one
of two functions. The first function is this one:

BOOL CommandBar_AddButtons CHWND hwndCB, UINT uNumButtons,
LPTBBUTTON lpButtons);

CommandBar_AddButtons adds a series of buttons to the command bar
at one time. The function is passed a count of buttons and a pointer to an array
of YBBUTTON structures. Each element of the array describes one button. The
YBBUTTON structure is defined as the following:

typedef struct {
int iBitmap;
int idCommand;
BYTE fsState;
BYTE fsStyl e;
DWORD dwData;
int iString;

TB BUTTON;

The iBitmap field specifies the bitmap image to be used by the button.
This is, as I just explained, the zero-based index into the list of images. The sec
ond parameter is the command ID of the button. This ID value is sent via a
WM_COMMAND message to the parent when a user clicks the button.

The .fsState field specifies the initial state of the button. The allowable val
ues in this field are the following:

• TBSTATE_ENABLED The button is enabled. If this flag isn't speci
fied, the button is disabled and is grayed.

• TBSTATE_HIDDEN The button isn't visible on the command bar.

214 Part I Windows Programming Basics

• TBSTATE_PRESSED This button is displayed in a depressed state.

• TBSTATE_CHECKED The button is initially checked. This state
can be used only if the button has the TBSTYLE_CHECKED style.

• TBSTATE_INDETERMINATE The button is grayed.

One last flag is specified in the documentation, TESTATE_ WRAP, but it
doesn't have a valid use in a command bar. This flag is used by toolbars when
a toolbar wraps across more than one line.

The fsStyle field specifies the initial style of the button, which defines how
the button acts. The button can be defined as a standard push button, a check
button, a drop-down button, or a check button that resembles a radio button
but allows only one button in a group to be checked. The possible flags for the
jsStyle field are the following:

• TBSTYLE_BUTTON The button looks like a standard push button.

• TBSTYLE_ CHECK The button is a check button that toggles
between checked and unchecked states each time the user clicks the
button.

• TBSTYLE_GROUP Defines the start of a group of buttons.

• TBSTYLE_CHECKGROUP The button is a member of a group of
check buttons that act like radio buttons in that only one button in
the group is checked at any one time.

• TBSTYLE_DROPDOWN The button is a drop-down list button.

• TBSTYLE_AUTOSIZE The button's size is defined by the button
text.

• TBSTYLE_SEP Defines a separator (instead of a button) that
inserts a small space between buttons.

The dwData field of the TBBUTTON structure is an application-defined
value. This value can be set and queried by the application using the
TB_SETBUTTONINFO and TB_GETBUTTONINFO messages. The iString field
defines the index into the command bar string array that contains the text for
the button. The iString field can also be filled with a pointer to a string that con
tains the text for the button.

The other function that adds buttons to a command bar is this one:

BOOL CommandBar_JnsertButton (HWND hwndCB, int iButton,
LPTBBUTTON lpButton);

Chapter 5 Common Controls and Windows CE 215

This function inserts one button into the command bar to the left of the
button referenced by the iButton parameter. The parameters in this function
mimic the parameters in CommandBar_AddButtons with the exception that the
lpButton parameter points to a single TBBUITON structure. The iButton param
eter specifies the position on the command bar of the new button.

Working with Command Bar Buttons
When a user presses a command bar button other than a drop-down button,
the command bar sends a WM_ COMMAND message to the parent window of
the command bar. So handling button clicks on the command bar is just like
handling menu commands. In fact, since many of the buttons on the command
bar have menu command equivalents, it's customary to use the same command
IDs for the buttons and the like functioning menus, thus removing the need for
any special processing for the command bar buttons.

The command bar maintains the checked and unchecked state of check
and checkgroup buttons. After the buttons have been added to the command
bar, their states can be queried or set using two messages,
TB_ISBUTTONCHECKED and TB_CHECKBUTTON. (The TB_ prefix in these
messages indicates the close relationship between the command bar and the
toolbar controls.) The TB_ISBUITONCHECKED message is sent with the ID of
the button to be queried passed in the wParam parameter this way:

fChecked = SendMessage (hwndCB, TB_ISBUTTONCHECKED, wID, 0);

where hwndCB is the handle to the command bar containing the button. If the
return value from the TB_ISBUITONCHECKED message is nonzero, the button
is checked. To place a button in the checked state, send a TB_CHECKBUITON
message to the command bar, as in

SendMessage (hwndCB, TB_CHECKBUTTON, wID, TRUE);

To uncheck a checked button, replace the TRUE value in lParam with
FALSE.

Disabled Buttons
Windows CE allows you to easily modify the way a command bar or toolbar
button looks when the button is disabled. Command bars and toolbars maintain
two image lists: the standard image list that I described previously and a dis
abled image list used to store bitmaps that you can employ for disabled buttons.

To use this feature, you need to create and load a second image list for
disabled buttons. The easiest way to do this is to create the image list for the
normal states of the buttons using the techniques I described when I talked

216 Part I Windows Programming Basics

about CommandBar _AddBitmap. (Image lists in toolbars are loaded with the
message TB_LOADIMAGES.) Once that image list is complete, simply copy the
original image list and modify the bitmaps of the images to create disabled
counterparts to the original images. Then load the new image list back into the
command bar or toolbar. A short code fragment that accomplishes this chore is
shown here.

HBITMAP hBmp, hMask;
HIMAGELIST hilDisabled, hilEnabled;

II Load the bitmap and mask to be used in the disabled image list.
hBmp = LoadBitmap Chinst, TEXT C"DisCross"));
hMask = LoadBitmap Chinst, TEXT C"DisMask"));

II Get the standard image list and copy it.
hilEnabled = CHIMAGELISTlSendMessage ChwndCB, TB_GETIMAGELIST, 0, 0);
hilDisabled = Imagelist_Duplicate ChilEnabled);

II Replace one bitmap in the disabled list.
Imagelist_Replace (hilDisabled, VIEW_LIST, hBmp, hMask);

II Set the disabled image list.
SendMessage ChwndCB, TB_SETDISABLEDIMAGELIST, 0, CLPARAMl hilDisabled);

The code fragment first loads a bitmap and a mask bitmap that will
replace one of the images in the disabled image list. You retrieve the current
image list by sending a TB_GETIMAGELIST message to the command bar, and
then you duplicate it using ImageList_Duplicate. One image in the image list is
then replaced by the bitmap that was loaded earlier.

This example replaces only one image, but in a real-world example many
images might be replaced. If all the images were replaced, it might be easier to
build the disabled image list from scratch instead of copying the standard image
list and replacing a few bitmaps in it. Once the new image list is created, you
load it into the command bar by sending a TB_SETDISABLEDIMAGELIST mes
sage. The code that I just showed you works just as well for toolbars under
Windows CE as it does for command bars.

Drop-Down Buttons
The drop-down list button is a more complex animal than the standard button
on a command bar. The button looks to the user like a button that, when
pressed, displays a list of items for the user to select from. To the programmer,
a drop-down button is actually a combination of a button and a menu that is
displayed when the user clicks on the button. Unfortunately, the command
bar does little to support a drop-down button except to modify the button

Chapter 5 Common Controls and Windows CE 217

appearance to indicate that the button is a drop-down button and to send a
special notification when the button is clicked by the user. It's up to the appli
cation to display the menu.

The notification of the user clicking a drop-down button is sent to the par
ent window of the command bar by a WM_NOTJFY message with the notifica
tion value TBN_DROPDOWN. When the parent window receives the
TBN_DROPDOWN notification, it must create a pop-up menu immediately
below the drop-down button identified in the notification. The menu is filled by
the parent window with whatever selections are appropriate for the button.
When one of the menu items is selected, the menu will send a WM_COMMAND
message indicating the menu item picked, and the menu will be dismissed. The
easiest way to understand how to handle a drop-down button notification is to
look at the following procedure that handles a TBN_DROPDOWN notification.

LRESULT DoNotifyMain (HWND hWnd, U!NT wMsg, WPARAM wParam,
LPARAM lParam) {

LPNMHDR pNotifyHeader;
LPNMTOOLBAR pNotifyToolBar;
RECT rect;
TPMPARAMS tpm;
HMENU hMenu;

II Get pointer to notify message header.
pNotifyHeader = (LPNMHDR)lParam;

if (pNotifyHeader->code == TBN_DROPDOWN)

II Get pointer to toolbar notify structure.
pNotifyToolBar = (LPNMTOOLBAR)lParam;

II Get the rectangle of the drop-down button.
SendMessage (pNotifyHeader->hwndFrom, TB_GETRECT,

pNotifyToolBar->iltem, (LPARAMJ&rect);

II Convert rect to screen coordinates. The rect is
II considered here to be an array of 2 POINT structures.
MapWindowPoints (pNotifyHeader->hwndFrom, HWND_DESKTOP,

(LPPOINT)&rect, 2);

II Prevent the menu from covering the button.
tpm.cbSize = sizeof (tpm);
CopyRect (&tpm.rcExclude, &rect);

II Load the menu resource to display under the button.
hMenu = GetSubMenu (LoadMenu (hlnst, TEXT ("popmenu")),0);

(continued)

218 Part I Windows Programming Basics

II Display the menu. This function returns after the
II user makes a selection or dismisses the menu.
TrackPopupMenuEx (hMenu, TPM_LEFTALIGN I TPM_VERTICAL,

rect.left, rect.bottom, hWnd, &tpm);

return 0;

After the code determines that the message is a TBN_DROPDOWN notifi
cation, the first task of the notification handler code is to get the rectangle of the
drop-down button. The rectangle is queried so that the drop-down menu can
be positioned immediately below the button. To do this, the routine sends a
TB_GETRECT message to the command bar with the ID of the drop-down but
ton passed in wParam and a pointer to a rectangle structure in !Param.

Because the rectangle returned is in the coordinate base of the parent win
dow, and pop-up menus are positioned in screen coordinates, the coordinates
must be converted from one basis to the other. You accomplish this using the
function

MapWindowPoints (HWND hwndFrom, HWND hwndTo,
LPPOINT lppoints, UJNT cPoints);

The first parameter is the handle of the window in which the coordinates
are originally based. The second parameter is the handle of the window to
which you want to map the coordinates. The third parameter is a pointer to an
array of points to be translated; the last parameter is the number of points in the
array. In the routine I just showed you, the window handles are the command
bar handle and the desktop window handle, respectively.

Once the rectangle has been translated into desktop coordinates, the pop
up, or context, menu can be created. You do this by first loading the menu from
the resource and then displaying the menu with a call to TrackPopupMenuEx.
If you recall the discussion of TrackPopupMenuEx from the preceding chapter,
the TPMPARAMS structure contains a rectangle that won't be covered up by the
menu when it's displayed. For our purposes, this rectangle is set to the dimen
sions of the drop-down button so that the button won't be covered by the pop
u p menu. The fuFlags field can contain a number of values that define the
placement of the menu. For drop-down buttons, the only flag needed is
TPM_ VERTICAL. If TPM_ VERTICAL is set, the menu leaves uncovered as much
of the horizontal area of the exclude rectangle as possible. The TrackPopup
MenuEx function doesn't return until an item on the menu has been selected or
the menu has been dismissed by the user tapping on another part of the screen.

Chapter 5 Common Controls and Windows CE 219

Combo Boxes on the Command Bar
Combo boxes on a command bar are much easier to implement than drop
down buttons. You add a combo box by calling

HWND CommandBar_lnsertComboBox CHWND hwndCB, HINSTANCE hlnst,
int iWidth, UINT dwStyle,
WORD idComboBox,
int iButton);

This function inserts a combo box on the command bar to the left of the
button indicated by the iButton parameter. The width of the combo box is spec
ified, in pixels, by the iWidth parameter. The dwStyle parameter specifies the
style of the combo box. The allowable style flags are any valid Windows CE
combo box style and window styles. The function automatically adds the
WS_CHILD and WS_ VISIBLE flags when creating the combo box. The idCom
boBox parameter is the ID for the combo box that will be used when
WM_ COMMAND messages are sent notifying the parent window of a combo
box event. Experienced Windows programmers will be happy to know that
CommandBar_InsertComboBox takes care of all the "parenting" problems that
occur when a control is added to a standard Windows toolbar. That one func
tion call is all that is needed to create a properly functioning combo box on the
command bar.

Once a combo box is created, you program it on the command bar the
same way you would a standalone combo box. Since the combo box is a child
of the command bar, you must query the window handle of the combo box by
passing the handle of the command bar to GetDlgltem with the ID value of the
combo box, as in the following code:

hwndCombobox = GetDlgitem (GetDlgitem ChWnd, IDC_CMDBAR),
I oc_coMBO)) ;

However, the WM_COMMAND messages from the combo box are sent
directly to the parent of the command bar, so handling combo box events is
identical to handling them from a combo box created as a child of the applica
tion's top-level window.

Command Bar Tooltips
Tooltips are small windows that display descriptive text that labels a command
bar button when the stylus is held down over the control. The command bar
implements tooltips in its own unique way.

You add tooltips to a command bar by using this function:

BOOL CommandBar_AddToolTips CHWND hwndCB, UINT uNumToolTips,
LPTSTR lpToolTips);

220 Part I Windows Programming Basics

The lpToolTips parameter must point to an array of pointers to strings. The
uNumToolTips parameter should be set to the number of elements in the string
pointer array. The CommandBar _AddToolTips function doesn't copy the strings
into its own storage. Instead, the location of the string array is saved. This
means that the block of memory containing the string array must not be
released until the command bar is destroyed.

Each string in the array becomes the tooltip text for a control or separator
on the command bar, excluding the menu. The first string in the array becomes
the tooltip for the first control or separator, the second string is assigned to the
second control or separator, and so on. So even though combo boxes and sep
arators don't display tooltips, they must have entries in the string array so that
all the text lines up with the proper buttons.

Other Command Bar Functions
A number of other functions assist in command bar management. The
CommandBar_Height function returns the height of the command bar and is
used in all the example programs that use the command bar. Likewise, the
CommandBar _AddAdornments function is also used whenever a command
bar is used. This function, prototyped as

BOOL CommandBar_AddAdornments (HWNO hwndCB, OWORD dwFlags,
DWORD dwReserved);

places a Close button and, if you want, a Help button and an OK button on the
extreme right of the command bar. You pass a CMDBAR_HELP flag to the
dwFlags parameter to add a Help button, and you pass a CMDBAR_OK flag to
add an OK button.

The Help button is treated differently from other buttons on the command
bar. When the Help button is pressed, the command bar sends a WM_HELP
message to the owner of the command bar instead of the standard
WM_COMMAND message. The OK button's action is more traditional. When
you tap it, you send a WM_CO.MA1AND message with the control ID !DOK. The
CommandBar _AddAdornments function must be called after all other controls
of the command bar have been added.

If your top-level window is resizeable, you must notifiy the command bar
of resize during the WM_SIZE message by sending a TB_AUTOSIZE message to
the command bar and then calling

BOOL CommandBar_AlignAdornments (HWND hwndCB);

The only parameter is the handle to the command bar. A command bar
can be hidden by calling

BOOL CommandBar_Show (HWND hwndCB, BOOL fShow);

Chapter 5 Common Controls and Windows CE 221

The /Show parameter is set to TRUE to show a command bar and FALSE to
hide a command bar. The visibility of a command bar can be queried with this:

BOOL CommandBar_IsVisible (HWND hwndCB);

Finally, a command bar can be destroyed using this:

void CommandBar_Destroy (HWND hwndCB);

Although a command bar is automatically destroyed when its parent win
dow is destroyed, sometimes it's more convenient to destroy a command bar
manually. This is often done if a new command bar is needed for a different
mode of the application. Of course, you can create multiple command bars,
hiding all but one and switching between them by showing only one at a time,
but this isn't good programming practice under Windows CE because all those
hidden command bars take up valuable RAM that could be used elsewhere. The
proper method is to destroy and create command bars on the fly. You can cre
ate a command bar fast enough so that a user shouldn't notice any delay in the
application when a new command bar is created.

Design Guidelines for Command Bars
Because command bars are a major element of Windows CE applications, it's
not surprising that Microsoft has a rather strong set of rules for their use. Many
of these rules are similar to the design guidelines for other versions of Win
dows, such as the recommendations for the ordering of main menu items and
the use of tooltips. Most of these guidelines are already second nature to Win
dows programmers.

The menu should be the leftmost item on the command bar. The order of
the main menu items should be from left to right: File, Edit, View, Insert, For
mat, Tools, and Window. Of course, most applications have all of those menu
items, but the order of the items used should follow the suggested order. For
buttons, the order is from left to right: New, Open, Save, and Print for file
actions; and Bold, Italic, and Underline for font style.

The CmdBar Example
The CmdBar example demonstrates the basics of command bar operation. On
startup, the example creates a bar with only a menu and a close button. Select
ing the different items from the view menu creates various command bars
showing the capabilities of the command bar control. The source code for
CmdBar is shown in Listing 5-1.

222 Part I Windows Programming Basics

CmdBar.rc
!l====.,=======:=:o="'"'"'"'"'"'====="'="'=====,,,======,,,===========================
II Resource ffle
II
II Written for the book Programming Windows CE
II Copyright CCl 2003 Douglas Bol.1ng
!!===•====="'======
fint1ude nwindows~h"
#includa "CmdBar.h" /I Program-specific stuff
11~------~--·------·---·---·-'------------·-----~-----------·-----------
1 / Icons a.nd bitmaps
II
ID_ICON
Di.sCross
Di.sMask
SortDropBtn

ICON
BITMAP
BITMAP
BITMAP

"cmdbar.ico" ll
"cross .bmp" II
"mask.bmp" II
"sortdrcp.bmp" II

Program icon
Disabled button image
Disabled .button im11ge ma.s k
Sort drop-down button image

11--~-~---~--------------------·------------'------------------~-----:--
u Menu
II
ID--MENU. MENU DISCARDABLE
BEGIN

Porup·n&File"
BEGIN

MENUITEM "E&xit~.
END

:·&view"

"&Standard'',

Listing 5-1 The CmdBar program

IDM_EXIT

IDM_STDBAR
lDM_V I EWBAR

Chapter 5 Common Controls and Windows CE 223

MENUITEM "&Date", IDG_SDATE
END

END

11--
11 About box dialog template
II
aboutbox DIALOG discardable 10, 10, 160, 45
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I

DS_CENTER I DS_MODALFRAME
CAPTION "About"
BEGIN

ICON ID_ICON, -1. 5. 5, 10, 10
LTEXT "CmdBar - Written for the book Programming Windows

CE Copyright 2003 Douglas Boling"
-1. 40, 5, 110, 35

END

CmdBar.h
II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11--
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD {
UINT Code;
LRESULT (*FXn)(HWND, WORD. HWND, WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

11--
11 Generic defines used by application
#define IDC_CMDBAR 1
#define ID_ICON 10

II Command band ID
II Icon resource ID

(continued)

224 Part I Windows Programming Basics

Listing 5-1 (continued)

#define IO_MENU 11 II Main menu resource ID
ffdefi ne IDG_COMBO 12 II Combo box on cmd bar ID

II Menu i tern IDs
ffdefi ne IDM_EXIT 101 II File menu
#define IDM_STOBAR 111 II View menu
#define IOM_VIEWBAR 112
f/defi ne IOM_COMBOBAR 113
ffdefine IDM_ABOUT 120 II Help lllenu
II Command bar button IDs
ffdefi ne IOG_NEW 201
#define IDC ... OPEN 20.2
f/defi ne IDG_SAVE 203
#define IDG_CUT 204
#define IDG_COPY 205
#define IDG_PASTE 206
#define IDG_P.ROP 207

ffdefi ne IDG_LICON 301
#de.fine IOG_SICON 30.2
!/define IDG_LIST 303
ffdefi ne IPG_RPT 304
#define 1DG_SNAME 305
#define IDG_STYPE 30.6
ffdefi ne IDG_SSIZE 307
#define lDC_SDAlE 308
ffdefi ne IDG_DPSORT 350

#define STD_BMPS (STD_pRINT+l) //
II

#define VIEW...:BMPS <V IEW_NEWfOLDER+l) II Number of brrips in
11 view imgl i st

11- - - - - - - - - - - - - - " - - - "' - ' - " - - "' - - - - - - • - - - - "' -· ·- - • - - • - - ' - - - - - " - - - - - - - - - - - - - - - -
Ii Function prototypes
II
HWND Initinstance (HINSTANCE, LPWSTR, int);
int Terminstance (HI NSTANGE, int);

If Window procedures
LRESUL T CALLBACK Mai nWndProc

II Message handlers
LRESUL T DoCreateMai n <HWND, UINT, WPARAM, LPARAM);
LRESULT DoS·izeMain (HWND, UINT, WPARAM, lPARAMl;
LRESULT DoCommandMain (HWNO; UINT, WPARAM, LPARAM);

Chapter 5 Common Controls and Windows CE 225

LRESULT DoNotifyMain (HWND, UINT. WPARAM, LPARAMl;
LRESULT DoDestroyMain (HWND, UINT. WPARAM, LPARAM);

II Command functions
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandVStd (HWND. WORD, HWND, WORD);
LPARAM DoMainCommandVView (HWND. WORD. HWND. WORD);
LPARAM DoMainCommandVCombo CHWND, WORD. HWND, WORD);
LPARAM DoMainCommandAbout (HWND. WORD, HWND, WORD);
II Dialog procedures
BOOL CALLBACK AboutDlgProc (HWND. UINT. WPARAM, LPARAM);

CmdBar.cpp
II==
II CmdBar - Command bar demonstration
II
II Written for the book Programming Windows CE
II Copyright <Cl 2003 Douglas Boling
II==
#include <windows.h>
#include <commctrl.h>

II For all that Windows stuff
II Command bar includes

#include ncmdBar.hn II Program-specific stuff
11--
11 Global data
II
const TCHAR szAppName[J
HINSTANCE hlnst;

TEXT (nCmdBar");
II Program instance handle

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[J = {

WM_CREATE, DoCreateMain,
WM_SIZE. DoSizeMain,
WM_COMMAND, DoCommandMain,
WM_NOTIFY, DoNotifyMain,
WM_DESTROY, DoDestroyMain,

} ;

II Command Message dispatch for MainWindowProc
const struct decodeCMD MainCommanditems[J = {

IDM_EXIT. DoMainCommandExit,

} ;

IDM_STDBAR, DoMainCommandVStd,
IDM_VIEWBAR. DoMainCommandVView,
IDM_COMBOBAR. DoMainCommandVCombo,
IDM_ABOUT, DoMainCommandAbout,

(continued)

226 Part I Windows Programming Basics

listing 5-1 (continued)

11 Standard file bar button structure
const TBBUTTOR tbCBStdBtns[J ; {
11 Bitmapindex Command State

};

II

{0. 0. 0,
{STD_FILENEW,

{STD_FILEOPEN,

{STD_FILESAVE,

{0,
{STD_CUT,

IDG_NEW,

IDG_OPEN,

IDLSAVE, TBSTATCENABLED,

0, T$$TY LE....SEP ,
TB$1ATE....ENASLED.

Chapter 5 Common Controls and Windows CE 227

II Tooltip string list for view bar
canst TCHAR •pViewTips[] ={TEXT(""), TEXT ("Large"), TEXT ("Small"),

TEXT ("List"), TEXT ("Details"), TEXT (""),
TEXT ("Sort by Name"), TEXT ("Sort by Type"),
TEXT ("Sort by Size"), TEXT ("Sort by Date"),

} ;

II Combination standard and view bar button structure
canst TBBUTTON tbCBCmboBtns[] =
II Bitmap Index Command State Style UserData String

{0, 0, 0. TBSTYLE_SEP, 0. 0}.
{STD_FILENEW, IDCNEW, TBSTATE_ENABLED,

TBSTYLE_BUTTON, 0' 0}.
{STD_FILEOPEN, IDCOPEN, TBSTATE_ENABLED,

TBSTYLE_BUTTON, 0' 0}.

{STD_PROPERTIES, IDCPROP, TBSTATE_ENABLED,
TBSTYLE_BUTTON, 0. 0}.

{0, 0. 0' TBSTYLE_SEP, 0. 0}.
{STD_CUT, IOC_CUT, TBSTATE_ENABLED,

TBS TY LE_BUTTON, 0, 0},
{STD_COPY, IDCCOPY, TBSTATE_ENABLED,

TBSTYLE_BUTTON, 0. 0}.
{STD_PASTE, IDCPASTE, TBSTATE_ENABLED,

TBS TY LE_BUTTON, 0, 0}.
{0, 0. 0, TBSTYLE_SEP, 0. 0}.
{STD_BMPS + VIEW_LARGEICONS,

IDC_LICON, TBSTATE_ENABLED I TBSTATE_CHECKED,
TBSTYLE_CHECKGROUP, 0. 0},

{STD_BMPS + VIEW_SMALLICONS,
IDCSICON, TBSTATE_ENABLED,

TBSTYLE_CHECKGROUP, 0, 0}.
{STD_BMPS + VIEW_LIST,

IDC_LIST, TBSTATE_ENABLED,
TBSTYLE_CHECKGROUP, 0' 0}.

{STD_BMPS + VIEW_DETAILS,
IDC_RPT, TBSTATE_ENABLED,

TBSTYLE_CHECKGROUP, 0. 0},
{0, 0. 0. TBSTYLE_SEP, 0, 0},
{STO_BMPS + VIEW_BMPS,

IDC_DPSORT,TBSTATE_ENABLED,
TBSTYLE_DROPDOWN, 0, 0}

} ;

II==
II Program entry point
II

(continued)

228 Part I Windows Programming Basics

Listing 5-1 (continued)

int WINAPI WinMain (HINSTANCE hlnstance, HINSTANC.E hPrevlnstance,
LPWSTR lpCmdLine., int nCmdShow) {

HWND hwndMa1n;
MSG msg;
1nt re.=. 0;

II Initialize appl.ication.

hwndMain "'lnitinstance (hlnstance, lpCmdline, nCmdShow);
if (hwnctMain ="' 0} return 0x10 .. ;

II Application message loop
whlle (GetMessage (&msg, NULL. 0, 0)) {

TranslateMessage C&msg);
DispatChMessage C&msg);

}

II Instance cleanup
return Termll1stance (hlnstance. msg,wParam);

}
//-----c. ______ ; __ • ___ ;_•---•-"-~~~·"--·c-~c

I I Initlnstance - Instanc.e initial i.zation
II
HWND Initlnstance CHINSTANCE hlnstance.

HWND hWnd;
DWORD dwStyle. = WS_VISIBLE;
int x = CW~uSEDEFAULT, y = CW__cUSEDEFAULT;
int ex * CW_USEDEFAULT, Cy = CW_USEDEFAULT;
WNDCLASS. we;
INlTCOMMONCONTROLSEX ioex;

tftif defined(WI N32...PLATFORM:...PSPC)
If. Pocket PC. al]ow only one instance

hWnd = Fi ndWi ndow (szAppName, NULL);
(hWndl {
SetFo.regroundWi ndow ({HWND}(((DWORDlhWnd.)

RegfSter application main window class.
we.style = 0; l!
wc.l.pfnWndProc =MatnWndProc;
wc.tbClsExtra = 0;

ll
//

wc.;cbWhdExtra = 0; 11
wc.hlnstance = hlhstance; ti owner handle
wc.h.lcon = NULL. // Application icon

hCursor = LoadCursor (NULL, IDC ... ARROW);// Default cursor

Chapter 5 Common Controls and Windows CE 229

wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wc.lpszMenuName = NULL; II Menu name
we. lpszClassName = szAppName; II Window class name

if CRegisterClass (&we) == 0) return 0;

II Load the command bar common control class.
icex.dwSize = sizeof (INITCOMMONCONTROLSEX);
icex.dw!CC = !CC_BAR_CLASSES;
InitCommonControlsEx (&icex);

#ifndef WIN32_PLATFORM_PSPC
dwStyle I= WS_CAPTION I WS_SIZEBOX I WS_MAXIMIZEBOX I WS_MINIMIZEBOX:
x = y = 10;
ex GetSystemMetrics (SM_CXSCREEN) 30;
cy = GetSystemMetrics CSM_CYSCREEN) - 50

#end if
II Save program instance handle in global variable.
hinst = hinstance;

II Create main window.
hWnd = CreateWindow (szAppName, TEXT ("CmdBar Demo"), dwStyle,

x, y, ex, cy, NULL, NULL, hinstance, NULL);
II Return fail code if window not created.
if C!IsWindow (hWnd)) return 0:

II Standard show and update calls
ShowWindow (hWnd, nCmdShow);
UpdateWindow (hWnd);
return hWnd;

11--
11 Terminstance - Program cleanup
II
int Terminstance (HINSTANCE hinstance, int nDefRC) {

return nDefRC;

II==
II Message handling procedures for MainWindow
11--
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
int i ;

(continued)

230 Part I Windows Programming Basics

Listing 5-1 (continued)

}

II
II Search message
(I message. If in list, cail procedure.
II
for (1 = .il; i <.dim(MainMessages}; i+:r)

}

if CwMsg =.;;. MainMessages[i].CP:de)
ret.1H',n ('i'MainMessages [.i}. i::xnf(hWl'!d

return. DefWi ndowProc (hWnd, wMsg,. wParani. 1 Par am};

11- - - - • - • - • - • - ·•: "·- - - ~ " - ~ - • - - - • - .- - • - :- -. - .: - :<• ~ : .- .- • •. ~ -
11 DoCreateMai .. n • Pr:ocess WM_CREATE message' :forwfndow;
II
LRESULT DoCreateMain (HWND>hWnd .• UINT wMsg,

. ·.LPARAM:.lParami {.·

}

HWND hwridClh

I I ere.ate a mJnimai
// exit button.
hwndCB·=·CommandBar_Cre~te

11 Tnser:t the. menu.
CommandBar_JnsertMenut>ar

11 Add exit button to command bar;
CommanciBa r_AddAdornments (hwndCB; 0'.
retur.n 0;

//;.'" --·- - -• _. ·c. _ ·•'·-. - . -~. _ .'.c. • ;;.·.•.•. "·--. •- •.•. ,;. ••

ii oosizeMain - Process WM.:J!ZE message for wim;tpw. · II . . .· . .. ·.· . .

.. LR:E:SULLDoSizeMain (fiWN:D hWn<:J. UJtH wMs:g, :WPAR;AM wPararn~
. UAR.AM l P~ram) {

HHndef WIN3Z.:.;PLATFORM_)$PC.
' HWN D tiwndCB '"' Get.01 g It.em (hWnd. JDC.:.;CMDBAR)J
II Tell the command bar to resize itself a~d .reposition Close button~
SendMessage(hwndCB; TBJUTOSIZEi .ec. 0U;.
CommanciBat_Al i.gnAdornments(bwridCBJi ·

ilend11' I /WI N32.:..PlA f:.FORM.:_:PSPC . . .
return 0;

}.
11- • _.;_ • • "~, ·", ___ -.- •.. ·--.• ,. _L_'"·~-"- "" •.•• ~-" _.,,_:; __ _
11 [locfomm~ndMafo -'fira~ess wM_.coMMANP ~skll9~Jor ~tna~.
II
LRESULT DoComman'dM~in (HWND hWnd~, UIR,F.~Mi~. WPARAM wPar~m •.

LPARAM .. lPariil)I).{

Chapter 5 Common Controls and Windows CE 231

}

WORD iditem, wNotifyCode:
HWND hwndCtl :
INT 1:

II Parse the parameters.
iditem =(WORD) LOWORD (wParaml:
wNotifyCode =(WORD) HIWORD (wParam);
hwndCtl = (HWND) lParam:

II Call routine to handle control message.
for (1 = 0: i < dim(MainCommanditems); i++)

if (iditem == MainCommanditems[iJ.Code)

}

return (*MainCommanditems[i].Fxn)(hWnd, iditem, hwndCtl,
wNot i fyCode):

return 0:

11--- ------------
11 DoNotifyMain - Process WM_NOTIFY message for window.
II
LRESULT DoNotifyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
LPNMHDR pNotifyHeader:
LPNMTOOLBAR pNotifyToolBar:
RECT rect:
TPMPARAMS tpm;
HMENU hMenu;

II Get pointer to notify message header.
pNotifyHeader = (LPNMHDR)lParam:

if (pNotifyHeader->code == TBN_DROPDOWN) {

II Get pointer to toolbar notify structure.
pNotifyToolBar = (LPNMTOOLBAR)lParam;

if (pNotifyToolBar·>iitem == IDC_DPSORT) {

II Set the rectangle of the drop-down button.
SendMessage (pNotifyHeader·>hwndFrom, TB_GETRECT,

pNotifyToolBar·>iitem, (LPARAMl&rectl:

// Convert rect to screen coordinates. The rect is
fl con'Sidered here to be an array .of 2 POINT structures.
MapWfn('lowPoi nts (pNotifyHeader· >hwndFrom, HWND_DESKTOP,

CLPPOINT)&rect, 2):

(continued)

232 Part I Windows Programming Basics

Listing 5·1 (continued)

}

.}

}

II Prevent the menu from covering the button •
. tpm.cbSize = sizeof (tpm):

Copy Re ct (&tpm. rcExcl ude, &rect);

hMenu.:; GetSubMenu (LoadMenu (hLnst, TEXT ("popmenu")),0);

TrackPopupMenuEx ChMenu, TPM-LEFTALIGN I .TPM_VERTICAL.
feet. left. ,rect. bottom, hWnd, &tpm);

return 0;

I I - • - · - · · - - - - - - - - .- - ·- - • • - - - - - - - - - - - - - - ·• • - .-. - - - - - - -·- ·c - ·• - - - - - - - - - - - - • - - - • • - .;,.

II DoDestroyMain - Process WM_DESTRO'v message for window.

II
.. LRESUtT DoDestroyMain (HWND hWl)d, UINT wM5g, WPARAM w'Param.

}

LPARAM lParam) {
.PostOuitMessage (0);

return 0:

I I=:="'="""===================;:===:;===:"'======:=============;:=========..,;,;:=.
I I Command handler .. routines . . .

l I - - - - - - - - - - - - - - - - - - ~ - - - ~ - - - - - - - - - - -. - - - - - - " ~ -. " .• - .- - - : .• -· - ,- .; ~ - - - - - .-. - - - - - - - -
I I Do Mai nCommcindExit - Proces1> Program Exfr ~ommand:
II
LPARAM DoMai nCommandExi t (HWNP hW~d; WORD. i drtem •. H\tlND hwndctl.

}

WORD wNot.ifyCode) {

SendMessage (hWnd. WM_CLOSE, .0. 0);

return 0:

I I - - - - - •. - - c - - - - - - - " - - - - - - - ,_ - - - - - ~ - - - - - c - - - - - - • - - • - " - - - - - - ·- _· • "·- - • • ." -. - - - - -

11-DoMainCommandViewStd - Disphys a standard edit•centriccomm1rnd ba,r
!l
LPARAM DoMain,CommandVStd CHWND hWnd, WORD idltem,

WO~D ~Not1fyCode) {
HWND hwndCB:

fl H a command bar exists, ki 11 iL ..
if '< hwndCB = GetDl gitem {hWnd. rDLCMD~AR))

· cotnmandBar _Destroy (hwndCB.) i ··

ll Create a command bar •
._ ,:''' '

hwndCB = CommandBar _Create < hlnst, hWnd, IDLCMDBAR);
fl ·rhsert a menu.
ComihilndBar_InsertMenubar (hwndCB; hlnst, ID_MENU, 0);

Chapter 5 Common Controls and Windows CE 233

II Insert buttons.
CommandBar_AddBitmap (hwndCB, HINST_COMMCTRL, IDB_STD_SMALL_COLOR,

STD_BMPS, 0, 0):

CommandBar_AddButtons (hwndCB, dim(tbCBStdBtns), tbCBStdBtns);

II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB. 0, 0);
return 0:

11--
11 DoMainCommandVView - Displays a standard edit-centric command bar
II
LPARAM DoMainCommandVView (HWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) {
INT i;
HWND hwndCB;
TCHAR szTmp[64];
HBITMAP hBmp, hMask:
HIMAGELIST hilDisabled, hilEnabled;

II If a command bar exists, kill it.
if (hwndCB = GetDlgitem (hWnd, IDC_CMDBAR))

CommandBar_Destroy (hwndCB):
II Create a command bar.
hwndCB = CommandBar_Create (hinst, hWnd, IDC_CMDBARl:

II Insert a menu.
CommandBar_InsertMenubar ChwndCB, hinst, ID_MENU, 0):

II Insert buttons, first add a bitmap and then the buttons.
CommandBar_AddBitmap (hwndCB, HINST_COMMCTRL, IDB_VIEW_SMALL_COLOR,

VIEW_BMPS, 0, 0):

II Load bitmaps for disabled image.
hBmp = LoadBitmap (hinst, TEXT ("DisCross"ll:
hMask = LoadBitmap (hlnst, TEXT ("DisMask")):

II Get the current image list and copy.
hilEnabled = CHIMAGELIST)SendMessage ChwndCB, TB_GETIMAGELIST, 0, 0):
hilDisabled = Imagelist_Duplicate (hilEnabled):
II Replace a button image with the disabled image.
Imagelist_Replace (hilDisabled, VIEW_LIST, hBmp, hMask);

II Set disabled image list.
SendMessage (hwndCB, TB_SETDISABLEDIMAGELIST, 0,

(LPARAM)hilDisabled);

(continued)

234 Part I Windows Programming Basics

Listing 5-1 (continued)

11 Add buttons> to the command bar; .
CommandBar_AddButtons (hw;OdCB~ dim(tbCBVjewBtns},

Jl Add tool tips to the co111mand bar •
. C.ommandBar _AddTool Tips (hwndQBi,l111"CpV1 ewTips),

Comma.ndBa r _I nsertCo.mboBox,

JI Fill. in combo box;

for ("' 0: i < 10:

Chapter 5 Common Controls and Windows CE 235

CommandBar_AddButtons ChwndCB, dim(tbCBCmboBtns), tbCBCmboBtns);

JI Add exit button to command bar.
CommandBar_AddAdornments ChwndCB, 0, 0);
return 0;

//--
// DoMainCommandAbout - Process the Help I About menu command.
II
LPARAM DoMainCommandAbout(HWND hWnd, WORD iditem. HWND hwndCtl.

WORD wNotifyCode) {

II Use DialogBox to create modal dialog box.
DialogBox (hinst, TEXT ("aboutbox"). hWnd, AboutDlgProc);
return 0;

//==
II About Dialog procedure
II
BOOL CALLBACK AboutDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

switch (wMsg) {

}

case WM_COMMAND:
switch (LOWORD (wParam)) {

case IDOK:

break:

case IDCANCEL:
EndDialog (hWnd, 0);
return TRUE:

return FALSE;

Each of the three command bars created in CmdBar demonstrates differ
ent capabilities of the command bar control. The first command bar, created in
the routine DoMainCommandVStd, creates a vanilla command bar with a menu
and a set of buttons. The button structure for this command bar is defined in the
array tbCBStdBtns, which is defined near the top of CmdBar.cpp.

The second command bar, created in the routine DoMainCommand
Wiew, contains two groups of checkgroup buttons separated by a combo box.
This command bar also demonstrates the use of a separate image for a disabled
button. The list view button, the third button on the bar, is disabled. The image
for that button in the image list for disabled buttons is replaced with a bitmap
that looks like an X.

236 Part I Windows Programming Basics

The DoMainCommandVCombo routine creates the third command bar. It
uses both the standard and view bitmap images as well as a custom bitmap for
a drop-down button. This command bar demonstrates the technique of refer
encing the images in an image list that contains multiple bitmaps. The drop
down button is serviced by the DoNotifyMain routine, where a pop-up menu is
loaded and displayed when a TBN_DROPDOWN notification is received.

Finally, when CmdBar is compiled for an embedded version of Windows
CE, it looks a bit different because of the style flags in CreateWindow. The main
window has a caption bar and doesn't fill the entire screen. You can size the
window by dragging the edge of the window and move the window by drag
ging the caption bar. This program shows off the ability of a command bar to
resize itself with a little help from some code in the WM_SIZE message handler.

Command Bands
A command bands control is a rebar control that, by default, contains a com
mand bar in each band of the control. The rebar control is a container of con
trols that the user can drag around the application window. Given that
command bands are nothing more than command bars in a rebar control,
knowing how to program a command bar is most of the battle when learning
how to program the command bands control.

Each individual band of the command bands control can have a "gripper"
that can be used to drag the band to a new position. A band can be in a mini
mized state, showing only its gripper and, if you want, an icon; in a maximized
state, covering up the other bands on the line; or restored, sharing space with
the other bands on the same line. You can even move bands to a new row, cre
ating a multiple-row command band. Figure 5-4 shows a window with a com
mand bands control in two rows across the top of the window.

Figure 5-4 A window with a command bands control

The standard use of a command bands control is to break up the elements
of a command bar-menu, buttons, and other controls-into separate bands.
This allows users to rearrange these elements as they see fit. Users can also
expose or overlap separate bands as needed in order to provide a larger total
area for menus, buttons, and other controls.

Chapter 5 Common Controls and Windows CE 237

Creating a Command Bands Control
Creating a command bands control is straightforward, if a bit more complicated
than creating a command bar control. You create the control by calling

HWND CommandBands_Create (HINSTANCE hinst, HWND hwndParent, UINT wID,
DWORD dwStyles, HIMAGELIST himl);

The dwStyles parameter accepts a number of flags that define the look and
operation of the command bands control. These styles match the rebar styles;
the command bands control is, after all, closely related to the rebar control.

• RBS_ADTOSIZE Bands are automatically reformatted if the size or
position of the control is changed.

• RBS_BANDBORDERS Each band is drawn with lines to separate
adjacent bands.

Image Lists for Command Bands Controls
I touched on image lists earlier. Command bars and toolbars use image
lists internally to manage the images used on buttons. Image lists can be
managed in a standalone image list control. This control is basically a
helper control that assists applications in managing a series of like-size
images. The image list control in Windows CE is identical to the image list
control under Windows 2000 and Windows Me, with the exception that
the Windows CE version can't contain cursors for systems built without
mouse/cursor support. For the purposes of the command bands control,
the image list just needs to be created and a set of bitmaps added that will
represent the individual bands when they're minimized. An example of
the minimal code required for this is shown here:

himl = ImageLisLCreate (16, 16, ILG_COLOR, 2, 0);
hBmp = LoadBitmap (hinst, TEXT ("CmdBarBmps"));
ImageList_Add (himl, hBmp, NULL);
DeleteObject (hBmp);

The Imagelist_Create function takes the dimensions of the images to
be loaded, the format of the images (!LC_ COLOR is the default), the num
ber of images initially in the list, and the number to be added. The two
images are then added by loading a double-wide bitmap that contains two
images and calling Imagelist_Add. After the bitmap has been loaded into
the image list, it should be deleted.

238 Part I Windows Programming Basics

• RBS_FIXEDORDER Bands can be moved but always remain in
the same order.

• RBS_SMARTLABELS When minimized, a band is displayed with
its icon. When the band is restored or maximized, its label text is dis
played.

• RBS_ VARHEIGHT Each row in the control is vertically sized to
the minimum required by the bands on that row. Without this flag,
the height of every row is defined by the height of the tallest band in
the control.

• CCS_ VERT Creates a vertical command bands control.

• RBS_ VERTICALGRIPPER Displays a gripper appropriate for a
vertical command bar. This flag is ignored unless CCS_ VERT is set.

Of these styles, RBS_SMARTLABELS and RBS_ VARHEIGHT are the two
most frequently used flags. The RBS_SMARTLABELS flag lets you choose an
attractive appearance for the command bands control without requiring any
effort from the application. The RBS_ VARHEIGHT flag is important if you use
controls in a band other than the default command bar. The CCS_ VERT style
creates a vertical command bands control, but because Windows CE doesn't
support vertical menus, any band with a menu won't be displayed correctly in
a vertical band. As you'll see, however, you can hide a particular band when the
control is oriented vertically.

Adding Bands
You can add bands to your application by passing an array of REBARBAND
INFO structures that describe each band to the control. The function is

BOOL CommandBands_AddBands (HWND hwndCmdBands, HINSTANCE hinst,
UINT cBands, LPREBARBANDINFO prbbi);

Before you call this function, you must fill out a REBARBANDINFO struc
ture for each of the bands to be added to the control. The structure is defined as

typedef struct tagREBARBANDINFO{
UINT cbSize;
UINT fMask;
UINT fStyle;
COLORREF clrFore;
COLORREF clrBack;
LPTSTR lpText;
UINT cch;
int ilmage;

HWND hwndChild;
UINT cxMinChild;
UINT cyMinChild;
UINT cyMinChild;
UINT ex;
HBITMAP hbmBack;
UINT wID;
UINT cyChild;
UINT cyMaxChild;
UINT cylntegral;
UINT cxldeal;
LPARAM lParam;

REBARBANDINFO;

Chapter 5 Common Controls and Windows CE 239

Fortunately, although this structure looks imposing, many of the fields can
be ignored because there are default actions for uninitialized fields. As usual
with a Windows structure, the cbSize field must be filled with the size of the
structure as a fail-safe measure when the structure is passed to Windows. The
jMask field is filled with a number of flags that indicate which of the remaining
fields in the structure are filled with valid information. I'll describe the flags as
I cover each of the fields.

The fStyle field must be filled with the style flags for the band if the
RBBIM_STYLE flag is set in the jMask field. The allowable flags are the follow
ing:

• RBBS_BREAK The band will start on a new line.

• RBBS_FIXEDSIZE The band can't be sized. When this flag is
specified, the gripper for the band isn't displayed.

• RBBS_HIDDEN The band won't be visible when the command
band is created.

• RBBS_GRIPPERALWAYS The band will have a sizing grip, even if
it's the only band in the command band.

• RBBS_NOGRIPPER The band won't have a sizing grip. The band
therefore can't be moved by the user.

• RBBS_NOVERT The band won't be displayed if the command
bands control is displayed vertically due to the CCS_ VERT style.

• RBBS_CHILDEDGE The band will be drawn with an edge at the
top and bottom of the band.

• RBBS_FIXEDBMP The background bitmap of the band doesn't
move when the band is resized.

240 Part I Windows Programming Basics

For the most part, these flags are self~explanatory. Although command
bands are usually displayed across the top of a window, they can be created as
vertical bands and displayed down the left side of a window. In that case, the
RBBS_NOVERT style allows the programmer to specify which bands won't be
displayed when the command band is in a vertical orientation. Bands contain
ing menus or wide controls are candidates for this flag because they won't be
displayed correctly on vertical bands.

You can fill the clrFore and clrBack fields with a color that the command
band will use for the foreground and background colors when your application
draws the band. These fields are used only if the RBBIM_ COLORS flag is set in
the mask field. These fields, along with the hbmBack field, which specifies a
background bitmap for the band, are useful only if the band contains a trans
parent command bar. Otherwise, the command bar covers most of the area of
the band, obscuring any background bitmap or special colors. I'll explain how
to make a command bar transparent in the section "Configuring Individual
Bands."

The lpText field specifies the optional text that labels the individual band.
This text is displayed at the left end of the bar immediately to the right of the
gripper. The ilmage field is used to specify a bitmap that will also be displayed
on the left end of the bar. The ilmage field is filled with an index to the list of
images contained in the image list control. The text and bitmap fields take
added significance when paired with the RBS_SMARTLABELS style of the com
mand band control. When that style is specified, the text is displayed when the
band is restored or maximized and the bitmap is displayed when the band is
minimized. This technique is used by the H/PC Explorer on its command band
control.

The wID field should be set to an ID value that you use to identify the
band. The band ID is important if you plan on configuring the bands after they
have been created or if you think you'll be querying their state. Even if you
don't plan to use band IDs in your program, it's important that each band ID be
unique because the control itself uses the IDs to manage the bands. This field
is checked only if the RBBIM_ID flag is set in the JMask field.

The hwndChild field is used if the default command bar control in a band
is replaced by another control. To replace the command bar control, the new
control must first be created and the window handle of the control then placed
in the hwndChild field. The hwndChild field is checked only if the
RBBIM_CHILD flag is set in thejMask field.

The cxMinChild and cyMinChild fields define the minimum dimensions to
which a band can shrink. When you're using a control other than the default
command bar, these fields are useful for defining the height and minimum
width (the width when minimized) of the band. These two fields are checked
only if the RBBIM_CHILDSIZE flag is set.

Chapter 5 Common Controls and Windows CE 241

The ex/deal field is used when a band is maximized by the user. If this
field isn't initialized, a maximized command band stretches across the entire
width of the control. By setting ex/deal, the application can limit the maximized
width of a band, which is handy if the controls on the band take up only part
of the total width of the control. This field is checked only if the
RBBIM_IDEALSIZE flag is set in the fMask field.

The lParam field gives you a space to store an application-defined value
with the band information. This field is checked only if the RBBIM_LPARAM
flag is set in the fMask field. The other fields in REBARBANDINFO apply to the
more flexible rebar control, not the command band control. The code below
creates a command bands control, initializes an array of three REBARBAND
INFO structures, and adds the bands to the control.

II Create a command bands control.
hwndCB = CommandBands_Create (hlnst, hWnd, IDC_CMDBAND, RBS_SMARTLABELS

RBS_VARHEIGHT, himl);

II Initialize common REBARBANDINFO structure fields.
for (i = 0; i < dim(rbil; i++) {

rbi[i].cbSize = sizeof (REBARBANDINFO);
rbi [i J. fMask = RBBIM_ID I RBBIM_IMAGE I RBBIM_SIZE I RBBIM_STYLE;
rbi[i].fStyle = RBBS_FIXEDBMP;
rbi[i].wID = IDB_CMDBAND+i;

II Initialize REBARBANDINFO structure for each band.
II l. Menu band.
rbi[0J.fStyle I= RBBS_NOGRIPPER;
rbi[0].cx = 130;
rbi[0].iimage = 0;

II 2. Standard button band.
rbi[lJ.fMask I= RBBIM_TEXT;
rbi[l].cx = 200;
rbi[l].ilmage = l;
rbi[l].lpText =TEXT ("Std Btns");

II 3. Edit control band.
hwndChild = CreateWindow (TEXT ("edit"), TEXT ("edit ctl"),

WS_VISIBLE I WS_CHILD I WS_BORDER,
0, 0, 10, 5, hWnd, (HMENU)IOC_EDITCTL,
hlnst, NULL);

rbi [2] .fMask I= RBBIM_TEXT I RBBIM_STYLE I RBBIM_CHILDSIZE I RBBIM_CHILD;
rbi[2J.fStyle I= RBBS_CHILDEDGE;
rbi[2J.hwndChild = hwndChild;
rbi[2J.cxMinChild = 0;

(continued)

242 Part I Windows Programming Basics

rbi[2].cyMinChild = 25;
rbi[2].cyChild = 55;
rbi[2J.cx = 130;
rbi[2].ilmage = 2;
rbi[2].lpText =TEXT ("Edit field");

II Add bands.
CommandBands_AddBands ChwndCB, hlnst, 3, rbi);

The command bands control created in the preceding code has three
bands, one containing a menu, one containing a set of buttons, and one con
taining an edit control instead of a command bar. The control is created with
the RBS_SMARTLABELS and RBS_ VARHEIGHT styles. The smart labels display
an icon when the bar is minimized and a text label when the band isn't mini
mized. The RBS_ VARHEIGHT style allows each line on the control to have a dif
ferent height.

The common fields of the REBARBANDINFO structures are then initialized
in a loop. Then the remaining fields of the structures are customized for each
band on the control. The third band, containing the edit control, is the most
complex to initialize. This band needs more initialization since the edit control
needs to be properly sized to match the standard height of the command bar
controls in the other bands.

The ilmage field for each band is initialized using an index into an image
list that was created and passed to the CommandBands_Create function. The
text fields for the second and third bands are filled with labels for those bands.
The first band, which contains a menu, doesn't contain a text label because
there's no need to label the menu. You also use the RBBS_NOGRIPPER style for
the first band so that it can't be moved around the control. This fixes the menu
band at its proper place in the control.

Now that we've created the bands, it's time to see how to initialize them.

Configuring Individual Bands
At this point in the process, the command bands control has been created and
the individual bands have been added to the control. We have one more task,
which is to configure the individual command bar controls in each band. (Actu
ally, there's little more to configuring the command bar controls than what I've
already described for command bars.)

The handle to a command bar contained in a band is retrieved using

HWND CommandBands_GetCommandBar CHWND hwndCmdBands, UINT uBand);

The uBand parameter is the zero-based band index for the band contain
ing the command bar. If you call this function when the command bands con
trol is being initialized, the index value correlates directly with the order in
which the bands were added to the control. However, once the user has a

Chapter 5 Common Controls and Windows CE 243

chance to drag the bands into a new order, your application must obtain this
index indirectly by sending an RB_IDTOINDEX message to the command bands
control, as in

nlndex = SendMessage (hwndCmdBands, RB_IDTDINDEX. !D_BAND, 0);

This message is critical for managing the bands because many of the func
tions and messages for the control require the band index as the method to
identify the band. The problem is that the index values are fluid. As the user
moves the bands around, these index values change. You can't even count on
the index values being consecutive. So as a rule, never blindly use the index
value without first querying the proper value by translating an ID value to an
index value with RB_IDTOINDEX.

Once you have the window handle to the command bar, simply add the
menu or buttons to the bar using the standard command bar control functions
and messages. Most of the time, you'll specify only a menu in the first bar, only
buttons in the second bar, and other controls in the third and subsequent bars.

The following code completes the creation process shown in the earlier
code fragments. This code initializes the command bar controls in the first two
bands. Since the third band has an edit control, you don't need to initialize
that band. The final act necessary to complete the command band control ini
t i aliz a ti on is to add the close box to the control using a call to
CommandBands_AddAdornments.

II Add menu to first band.
hwndBand = CommandBands_GetCommandBar (hwndCB, 0);
CommandBar_lnsertMenubar (hwndBand, hlnst, !D_MENU. 0);

II Add standard buttons to second band.
hwndBand = CommandBands_GetCommandBar (hwndCB, l);
CommandBar_AddBitmap (hwndBand, HINST_COMMCTRL, IDB_STD_SMALL_COLOR,

15. 0. 0);

CommandBar_AddButtons (hwndBand, dim(tbCBStdBtns), tbCBStdBtns);

II Add exit button to command band.
CommandBands_AddAdornments (hwndCB, hlnst, 0, NULL);

Saving the Band Layout
The configurability of the command bands control presents a problem to the
programmer. Users who rearrange the bands expect their customized layout to
be restored the next time the application is started. This task is supposed to be
made easy using the following function.

BOOL CommandBands_GetRestorelnformation (HWND hwndCmdBands,
UINT uBand, LPCOMMANDBANDSRESTOREINFO pcbr);

244 Part I Windows Programming Basics

This function saves the positioning information from an individual band
into a COMMANDBANDSRESTOREINFO structure. The function takes the han
dle of the command bands control and an index value for the band to be que
ried. The following code fragment shows how to query the information from
each of the bands in a command band control.

II Get the handle of the command bands control.
hwndCB = GetDlgitem (hWnd, IDC_CMDBAND);

II Get information for each band.
for (i = 0; i < NUMBANDS; i++) {

II Get band index from ID value.
nBand = SendMessage (hwndCB, RB_IDTOINDEX, IDB_CMDBAND+i, 0);

II Initialize the size field, and get the restore information.
cbr[i].cbSize = sizeof CCOMMANDBANDSRESTOREINFO);
CommandBands_GetRestoreinformation (hwndCB, nBand, &cbr[i]);

The preceding code uses the RB_IDTOINDEX message to convert known
band IDs to the unknown band indexes required by CommandBands_
GetRestorelnformation. The data from the structure would normally be stored
in the system registry. I'll talk about how to read and write registry data in
Chapter 8, "Files and the Registry."

The restore information should be read from the registry when the appli
cation is restarted, and used when creating the command bands control.

II Restore configuration to a command band.
COMMANDBANDSRESTOREINFO cbr[NUMBANDS];
REBARBANDINFO rbi;

II Initialize size field.
rbi .cbSize = sizeof (REBARBANDINFO);

II Set only style and size fields.
rbi .fMask = RBBIM_STYLE I RBBIM_SIZE;

II Set the size and style for all bands.
for (i = 0; i < NUMBANDS; i++) {

rbi .ex= cbr[iJ.cxRestored;
rbi.fStyle = cbr[iJ.fStyle;

nBand = SendMessage ChwndCB, RB_IDTOINDEX, cbr[iJ.wID, 0);
SendMessage ChwndCB, RB_SETBANDINFO, nBand, CLPARAM)&rbi);

II Only after the size is set for all bands can the bands
JI needing maximizing be maximized.
for Ci = 0; i < NUMBANDS; i++) {

Chapter 5 Common Controls and Windows CE 245

if (cbr[iJ.fMaximized) {
nBand = SendMessage (hwndCB, RB_IDTOINDEX, cbr[i].wID, 0);
SendMessage (hwndCB, RB_MAXIMIZEBAND, nBand, TRUE);

This code assumes that the command bands control has already been cre
ated in its default configuration. In a real-world application, the restore infor
mation for the size and style could be used when first creating the control. In
that case, all that would remain would be to maximize the bands depending on
the state of the /Maximized field in the COMMANDBANDSRESTOREINFO struc
ture. This last step must take place only after all bands have been created and
properly resized.

One limitation of this system of saving and restoring the band layout is
that you have no method for determining the order of the bands in the control.
The band index isn't likely to provide reliable clues because after the user has
rearranged the bands a few times, the indexes are neither consecutive nor in
any defined order. The only way around this problem is to constrain the
arrangement of the bands so that the user can't reorder the bands. You do this
by setting the RBS_FIXEDORDER style. This solves your problem but doesn't
help users if they want a different order. In the example program at the end of
this section, I use the band index value to guess at the order. But this method
isn't guaranteed to work.

Handling Command Band Messages
The command bands control needs a bit more maintenance than a command
bar. The difference is that the control can change height, and thus the window
containing the command bands control must monitor the control and redraw
and perhaps reformat its client area when the control is resized.

The command bands control sends a number of different WM_NOTIFY
messages when the user rearranges the control. To monitor the height of the
control, your application needs to check for an RBN_HJTIGHTCHANGE notifica
tion and react accordingly. The code below does just that:

II This code is inside a WM_NOTIFY message handler.
LPNMHDR pnmh;

pnmh = (LPNMHDR)lParam;
if (pnmh->code == RBN_HEIGHTCHANGE)

Inval idateRect (hWnd, NULL, TRUE);

If an RBN_HEIGHTCHANGE notification is detected, the routine simply
invalidates the client area of the window forcing a WM_PAINT message. The
code in the paint message then calls

UINT CommandBands_Height (HWND hwndCmdBands);

246 Part I Windows Programming Basics

to query the height of the command bands control and subtracts this height
from the client area rectangle.

As with the command bar, the command bands control can be hidden and
shown with a helper function:

BOOL CommandBands_Show (HWND hwndCmdBands, BOOL fShow);

The visibility state of the control can be queried using

BOOL CommandBands_lsVisible (HWND hwndCmdBands);

The CmdBand Example
The CmdBand program demonstrates a fairly complete command bands con
trol. The example creates three bands: a fixed menu band, a band containing a
number of buttons, and a band containing an edit control. Transparent com
mand bars and a background bitmap in each band are used to create a com
mand bands control with a background image.

You can use the View menu to replace the command bands control with
a simple command bar by choosing Command Bar from the View menu. You
can then re-create and restore the command bands control to its last configura
tion by choosing Command Bands from the View menu. The code for the Cmd
Band program is shown in Listing 5-2.

Cmdaand.rc

Listing 5-2 The CmdBand program

Chapter 5 Common Controls and Windows CE 247

ID_MENU MENU DISCARDABLE
BEGIN

END

POP UP "&File"
BEGIN

MENUITEM "E&xit",
END
POPUP "&View"
BEGIN

END

MENUITEM "Command Bar",
MENUITEM "Command Band",

POPUP "&Help"

BEGIN
MENUITEM "&About ... ",

END

IDM_EXIT

IDM_VIEWCMDBAR
IDM_VIEWCMDBAND

IDM_ABOUT

11--
11 About box dialog template
II
aboutbox DIALOG discardable 10, 10, 160, 40
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER I

DS_MODALFRAME
CAPTION "About"
BEGIN

END

ICON IO_ICON, -1. 5, 5, 10, 10
LTEXT "CmdBand - Written for the book Programming Windows

CE Copyright 2003 Douglas Boling"
-1, 40, 5, 110, 30

CmdBand.h
II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11--
11 Generic defines and data types
II
struct decodeUINT {

UINT Code;
II Structure associates
II messages

(continued)

248 Part I Windows Programming Basics

Listing 5-2 (continued)

LRESULT (*Fxn)(HWND. UINT, WPARAM, LPARAM);

} ;

struct decodeCMD {

UINT Code:

LRESULT C•Fxn)CHWND, WORD, HWND, WORD);

} ;

fl with a function.

II Structure associates

II menu IDs with a
II function.

11-------------------"-~----c---------------------~-----c••-------------
// Defines used by application

II
ffodefi ne IDCCMDBAND

/Fdefi ne IDG_CMDBAR

/Fdefine ID_ICON

/Fdefine ID_MENU

2

10
11

/Fdefine IDC_EDITCTL 12

{fdefi ne IDB;_CMDBAND

#define IDB_CMDBANDMENU

#define IDB_CM08ANDBTN

ffodefi ne IDECCMDBANDEDil

II Menu i tern IDs

#define IDM_EXIT

50
50
51
5.2

100

#define IDM_VIEWCMDBAR 110
1/defi.ne I DM_VI EWCMDBAND 111

#define IDM_ABOUT 120
#defJne NUMBANDS 3

// Command band ID
II Command bar ID

II Icon ID

I I Main menu resource ID

fl Base ID for .. bands

ll Menu band.ID

II Button. ban& ID

//

ff-~--·c------~·--~-A·•--•"c-·-··---------·"·-·------~-~-------~~-------

1/ Function prototypes

II
int CreateCommandBand <HWND hWnd, BOOL fFirstl;

int DestroyComrnandBand (HWND hWnd);

HWND I11itinstance <HINSTANCE, LPWSTR,

II Window procedures

LRESULT. CALLBACK· MaihWndProc

II Message. handlers

LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM);

LRESUU DoPaintMain (HWND, UINT, WPARAM, LPARAM);

LRESULT Do Not i fyMai n <HWND, UI NT, WPARAM, LPARAM).;

Chapter 5 Common Controls and Windows CE 249

LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain CHWND, UINT, WPARAM, LPARAM);

II Command functions
LPARAM DoMainCommandViewCmdBar (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandVCmdBand (HWND, WORD, HWND, WORD):
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandAbout (HWND, WORD, HWND, WORD);
II Oialog procedures
BOOL CALLBACK AboutDlgProc (HWND, UINT, WPARAM. LPARAM);

CmdBand.cpp
II==
II CmdBand - Dialog box demonstration
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
//==
#include <windows.h>
#include <commctrl .h>
#include "CmdBand.h"

II For all that-Windows stuff
II Command bar includes
11 Program"speci fi c stuff

11--------------- --

11 Global data
II
const TCHAR szAppName[]
HINSTANCE hinst;

TEXT ("CmdBand");
II Program instance handl_e

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {

WM_CREATE. DoCreateMain.
WM_PAINT. OoPaintMain,
WM_NOTI FY, DoNotifyMa in,
WM_COMMAND, DoCommandMain,
WM_DESTROY, DoDestroyMain,

} ;

II Command message dispatch for MainWindowProc
const struct decodeCMD MainCommanditems[J = {

} ;

IDM~VIEWCMDBAR. DoMainCommandViewCmdBar,
IDM_VIEWCMDBAND, DoMainCommandVCmdBand,
IDM_EXIT, DoMainCommandExit,
IDM___ABOUT, DoMainCommandAbout,

II Command. band button initialization structure
const TB BUTTON tbCBStdBtns [] = {

(continued)

250 Part I Windows Programming Basics

Listing 5-2 (continued)

Chapter 5 Common Controls and Windows CE 251

II Initialize application.
hwndMain = Initinstance (hinstance, lpCmdLine, nCmdShow);
if (hwndMain == 0)

return 0x10;
II Application message loop
while (GetMessage (&msg, NULL, 0, 0)) {

TranslateMessage (&msg);
DispatchMessage (&msg);

II Instance cleanup
return Terminstance (hinstance, msg.wParam);

11--
11 Initinstance - Instance initialization
II
HWND Initinstance (HINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow){

HWND hWnd;
WNDCLASS we;
INITCOMMONCONTROLSEX icex;

II Save program instance handle in global variable.
hinst = hinstance;

#if defined(WIN32_PLATFORM_PSPCl
II If Pocket PC, allow only one instance of the application.
hWnd = FindWindow (szAppName, NULL);
if (hWnd) {

SetForegroundWindow ((HWND)(((DWORD)hWnd) I 0x01));
return 0;

#endif
II Register application main window class.
we.style= 0; II Window style
wc.lpfnWndProc MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hlnstance = hinstance;
wc.hlcon = NULL,

II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon

wc.hCursor = LoadCursor (NULL, IDC_ARROW);ll Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wc.lpszMenuName = NULL; II Menu name
wc.lpszClassName = szAppName; II Window class name

if (RegisterClass (&we) == 0) return 0;

II Load the command bar common control class.
icex.dwSize = sizeof (!NITCOMMONCONTROLSEX);

(continued)

252 Part I Windows Programming Basics

Listing 5-2 (continued)

icex.dw!C(= ICCCOOL_CLASSES;.

InjJCommonControlsEx (&icexl;

1.1 ·. Cre!lte/~ai n window.
hW.nd = Crea.teWtndow (szAppName, TEXT ("Cm.dBand Demo"L ws_VJSIBLE,

CW~USEOEFAULT, CW.'...USEDEFALJLl. < CW~USEDEFALJLT,

CW...:USEDIFAU~T. NULL, NULL, lllristal'ice, NULL};
// Return. fail code if. window not crea.ted.
if Cl IsWiridow. (hWnd).) return 0;

ll standard show and update calls
ShowWindow (hWnd, nCmdShow};
UpdateWindow (hWnd);

hWnd;

II Termlnstance ' Program
ii
int Termlnstance CH INSTANCE hlnstance, int. nDefRO {

//="'"'"'"'"'"'="'="'====::=======;======'===="'===--================:================
//·Mes.sage handljng procedures for .MainWindow

ti- ' - - ' " - ' • " - ~ ' - - .: - - • •. - - - " - - - - - • - - - • - - •• - - - • ' - - - - - - - - - . - - - - - - - - - - -
I! MainWndProc Callback. f1,mcti on for application window

ll
LRESUL T CALLBACK Ma inWn<IProc CHWND hWrid, U.INT wMsg.

LPARAM l Pararn)

~eafchmessage list to see
If· in. 1 i st., ca 11 procedure.

dtmCMainMessages): i++l {
MainMessi).ges.[i], Gode)

(*MafoMess.agesIJJ.Fxnl(hWnd, wMsg, wParam. lParam);

fl OoCreateMatn '.process WM~CREATE message for window.

ll
LRESUU lloGreateMain (HWNO hWrid, UlNT wMsg, WPARAM wParam,

LPARAM lPararn){

Chapter 5 Common Controls and Windows CE 253

CreateCommandBand (hWnd, TRUE);
return 0;

11--
11 DoPaintMain - Process WM_PAINT message for window.
II
LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam.

PAI NTSTRUCT ps;
HWND hwndCB;
RECT rect;
HOC hdc;
POINT ptArray[2];

LPARAM lParam) {

II Adjust the size of the client rect to take into account
II the command bar or command bands height.
GetClientRect (hWnd, &rect);
if (hwndCB = GetDlgitem (hWnd, IDC_CMDBAND))

rect.top += CommandBands_Height (hwndCB);
else

rect.top += CommandBar_Height (GetDlgitem (hWnd, IDC_CMDBAR));

hdc = BeginPaint (hWnd, &ps);
ptArray[0].x rect.left;
ptArray[0].y rect.top;
ptArray[l].x rect.right;
ptArray[l].y rect.bottom;
Polyline (hdc, ptArray, 2);

ptArray[0J.x = rect.right;
ptArray[l].x = rect. left;
Polyline (hdc, ptArray, 2);

EndPaint (hWnd, &ps);
return 0;

11--
11 DoCommandMain - Process WM_COMMAND message for window.
II
LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
WORD id!tem. wNotifyCode;
HWND hwndCtl;
I NT i ;
II Parse the parameters.
idltem =(WORD) LOWORD (wParam);
wNotifyCode = (WORD) HIWORD (wParam);

(continued)

254 Part I Windows Programming Basics

Listing 5-2 (continued)

l Pa ram;

routine to. handle control .. message.
< dim(MainCommandltelTis); i++) {

.Code)

FxnJChWnd, idltem,
wNotifyCode);

DoOestroyMaln • Process WM,..:DESTROY message for W.i ndow.

. .
DoDestroYMain <(HWND hWnd, UINTwMsg,

LPARAM lP.aram) {
(0);

(hWnd.~WM"'-'CLOSe. 0, 0);

Chapter 5 Common Controls and Windows CE 255

11--
11 DoMainCommandVCmdBarStd - Process View I Std Command bar command.
II
LPARAM DoMainCommandViewCmdBar (HWND hWnd, WORD iditem, HWND hwndCtl.

WORD wNotifyCode) {
HWND hwndCB;

hwndCB = GetDlgitem (hWnd. IDC_CMDBAND);
if ChwndCB)

DestroyCommandBand ChWnd);
else

return 0;

II Create a minimal command bar that has only a menu and
II an exit button.
hwndCB = CommandBar_Create (hlnst, hWnd, IDC_CMDBAR);

II Insert the menu.
CommandBar_InsertMenubar (hwndCB, hinst, ID_MENU, 0);
II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB. 0, 0l;
InvalidateRect (hWnd, NULL, TRUE);
return 0;

11--
11 DoMainCommandVCmdBand - Process View I Command band command.
II
LPARAM DoMainCommandVCmdBand (HWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) {

}

HWND hwndCB:
hwndCB = GetDlgitem (hWnd, IDC_CMDBAR);
if (hwndCB)

CommandBar_Destroy (hwndCB);
else

return 0;

CreateCommandBa.nd (hWnd. FALSE);
Inv al idateRect <hWnd, NULL, TRUE);
return 0;

ll---------------~--

11 DoMainCommandAbout - Process the Help I About menu command.
II
LPARAM DoMainCommandAbout(HWND hWnd, WORD iditem, HWND hwndCtl.

WORD wNotifyCode) {
II Use DialogBox to create modal dialog box.
DialogBox (hlnst, TEXT C"aboutbox"), hWnd, AboutDlgProc);

(continued)

256 Part I Windows Programming Basics

Listing 5-2 (continued)

return 0;
}

ll=======o===

II About Dialog procedure

II
BOOL CALLBACK AboutDl gProc (HWND hWnd, UI NT wMsg, WP A RAM wParanr.

LPARAM lParam) {
switch (wMsg) {

case WM_COMMAND:
switch (LOWORD (wParamJ)

case IDOK:

case IDCANCEL:

}

break:

return FALSE;

EndDialog (hWnd, 0J;

return TRUE;

11-~-~-,--~---
11 DestroyCommandBand - Destroy command band control after saving
II the current confijuration.

ll
int DestroyCommandBand (HWND hWndl {

HWND hwndCB;

INT. i. nBand, nMaxBand = 0;

hwndCB=GetDlgltem(hWnd,

Ci "' 0; i < NUMBANDS; i++} {

!l Ge.t band index from ID value.
nBand = SendMessage (hwndCB, RB_IDTO!NDEX,

I I .Save the band number

nBandOrder[i l = ri.Barid;

11 Get the restore infbrmation.
cbr[i].cbSize. = sizeof (COMMANDBANDSRE;STDRl;:INFO);

CommandBands--GetResto re I l1f ormat.4 on

(hwndCB I;

ll Cre.ateCommandBand - Create. a fbrmatted command band control.

II

Chapter 5 Common Controls and Windows CE 257

int CreateCommandBand (HWND hWnd, BOOL fFirst)
HWND hwndCB, hwndBand, hwndChild;
INT i, nBand, nBtnindex, nEditindex;
LONG lStyle;
HB ITMAP hBmp;
HIMAGELIST hi ml;
REBARBANDINFO rbi[NUMBANDS];

II Create image list control for bitmaps for minimized bands.
himl = ImageList_Create (16, 16, ILC_COLOR, 3, 0);
II Load first two images from one bitmap.
hBmp = LoadBitmap (hinst, TEXT ("CmdBarBmps"));
Image Li st_Add (hi ml. hBmp, NULL);
DeleteObject (hBmp);
II Load third image as a single bitmap.
hBmp = LoadBitmap (hinst, TEXT ("CmdBarEditBmp"));
ImageList_Add (himl, hBmp, NULL);
DeleteObject (hBmp);
II Create a command band.
hwndCB = CommandBands_Create (hinst, hWnd, IDC_CMDBAND,

RBS_SMARTLABELS I
RBS_AUTOSIZE I RBS_VARHEIGHT, himl);

II Load bitmap used as background for command bar.
hBmp = LoadBitmap (hinst, TEXT ("CmdBarBack"));
II Initialize common REBARBANDINFO structure fields.
for (i = 0; i < dim(rbi); i++) {

rbi[i].cbSize = sizeof (REBARBANOINFO);
rbi[i]. fMask = RBBIM_IO I RBBIM_IMAGE I RBBIM_SIZE

RBBIM_BACKGROUND I RBBIM_STYLE;
rbi[iJ.wID = IDB_CMDBAND+i;
rbi[i].hbmBack = hBmp;

II If first time, initialize the restore structure since it is
II used to initialize the band size and style fields.
if (fFirst) {

nBtnindex = l;
nEditindex = 2;
cbr[0].cxRestored = 130;
cbr[lJ.cxRestored = 210;
cbr[l].fStyle = RBBS_FIXEDBMP;
cbr[2J.cxRestored = 130:
cbr[2] .fStyl e = RBBS_FIXEDBMP I RBBS_CHHDEDGE;

else {
II If not first time, set order of bands depending on
II the last order.

(continued)

258 Part I Windows Programming Basics

Listing 5-2 (continued)

if < nBandOrder[2]) {

// 1. Menu band
rbH0J .fStyle =RBBS--FqEDBMP I
rbf[0J. cbr.[0J,cxRestored;
rbi[0J ,Jtlllage = 0:

.2. st<indard •. button. band
rbi[nBtnindexlAMas.k J-,, RBBIMlTEXt;
rbi [nBtnindeXLi Image = 1:

rbiTnE•d.i.tindexJ.hvmdChild····"'··· hwn<iOhild•;·.
rbHnEditlndex]. cxMinChi ld .. = 0;
rbi[nEdjtlnctexJ. cY.MinChi 1 (j ••o:••• 23;
rbi[nEditlndex] .cyChild "' 55;
rbi[nEditI~dexJ.1 Image
r bi. [nEdi t Indexl. lpText

lhe next two jiarameter$.·are
rbftnEd)tindexl.cx =·cbr[2]
rbi[nEdi t.Indel<J. fSty1 e

}

Chapter 5 Common Controls and Windows CE 259

II Add standard buttons to second band.
hwndBand = CommandBands_GetCommandBar (hwndCB. nBtnindex);
II Insert buttons
CommandBar_AddBitmap (hwndBand, HINST_COMMCTRL. IDB_STD_SMALL_COLOR,

16. 0, 0);
CommandBar_AddButtons ChwndBand. dim(tbCBStdBtns), tbCBStdBtns);

II Modify the style flags of each command bar to make transparent.
for (i = 0; i < NUMBANDS; i++) {

hwndBand = CommandBands_GetCommandBar (hwndCB, i);
lStyle = SendMessage (hwndBand, TB_GETSTYLE, 0, 0);
lStyle I= TBSTYLE_TRANSPARENT;
SendMessage (hwndBand, TB_SETSTYLE, 0, lStyle);

II If not the first time the command band has been created, restore
II the user's last configuration.
if (!fFirst) {

for Ci = 0; i < NUMBANDS; i++) {
if (cbr[iJ.fMaximized) {

}

nBand = SendMessage ChwndCB, RB_IDTOINDEX,
cbr[iJ.wID, 0);

SendMessage ChwndCB, RB_MAXIMIZEBAND, nBand, TRUE);

II Add exit button to command band.
CommandBands_AddAdornments (hwndCB, hinst, 0, NULL);
return 0;

CmdBand creates the command band in the CreateCommandBand rou
tine. This routine is initially called in DoCreateMain and later in the DoMain
CommandVCmdBand menu handler. The program creates the command bands
control using the RBS_SMARTLABELS style along with an image list and text
labels to identify each band when it's minimized and when it's restored or max
imized. An image list is created and initialized with the bitmaps that are used
when the bands are minimized.

The array of REBARBANDINFO structures is initialized to define each of
the three bands. If the control has previously been destroyed, data from the
COMMANDBANDSRESTOREINFO structure is used to initialize the style and ex
fields. The CreateCommandBand routine also makes a guess at the order of the
button and edit bands by looking at the band indexes saved when the control
was last destroyed. While this method isn't completely reliable for determining
the previous order of the bands, it gives you a good estimate.

260 Part I Windows Programming Basics

When the command bands control is created, the command bars in each
band are also modified to set the TBS_TRANSPARENT style. This process, along
with a background bitmap defined for each band, demonstrates how you can
use a background bitmap to make the command bands control have just the
right look.

When CmdBand replaces the command bands control with a command
bar, the application first calls the DestroyCommandBand function to save the
current configuration and then destroy the command bands control. This func
tion uses the CommandBands_ GetRestorelnformation to query the size and
style of each of the bands. The function also saves the band index for each
band to supply the data for the guess on the current order of the button and
edit bands. The first band, the menu band, is fixed with the RBBS_NOGRIPPER
style, so there's no issue as to its position.

The Menu Bar
The menu bar control was introduced in the Pocket PC 2000. In look, the menu
bar differs from the command bar in that it sits on the bottom of the window,
not the top. To the programmer, however, the menu bar has a vastly different
programming interface. Because of the popularity of the Pocket PC and the
desire of OEMs to be able to create embedded systems that are software com
patible with the Pocket PC, the menu bar is now distributed with the embedded
versions of Windows CE starting with Windows CE .NET 4.2.

The menu bar control is a subtly complex control that does not lend itself
to manual programming. The designers of the menu bar control seem to have
intended that most programming and resource generation for the menu bar
control would be done through code wizards and the resource editor. Although
this is the way most Windows programmers code, it's still important to know
how the menu bar control actually works, especially for situations in which the
tools aren't quite up to the job. For this reason, I'm going to present the menu
bar at the basic API level in this section. I can therefore present exactly what the
control is looking for, especially in the way of resources. For later examples in
the book, when I use the menu bar in examples, I'll use the code wizards to
generate the menu bar menus.

Before I jump into programming the menu bar, I'd like to say a few words
about how the control is designed. The menu bar control differs in a number of
ways from the command bar control used on other Windows CE systems. First,
the menu is not managed as a single unit on the menu bar. Instead, while the
menu is specified as a single resource, it is managed by the menu bar as a series
of separate submenus. Each submenu is displayed as a properly positioned
pop-up menu when a particular button on the menu bar is tapped. So in this
sense, the menu bar is more like a toolbar than its cousin the command bar.

Chapter 5 Common Controls and Windows CE 261

A user sees little difference between a menu bar and a command bar
because the menu buttons are positioned as expected-next to each other on
the far left side of the bar. However, to the programmer, understanding this
difference is the key to understanding how to manage and manipulate the
menu bar.

Another difference is that unlike the command bar, the menu bar is not a
true child of the window that creates it. The control itself is a pop-up window
created by the system and placed at the bottom of the screen. The window that
creates a menu bar can accidentally obscure the menu bar by covering it. Alter
natively, parts of a menu bar can be drawn on top of its owner. To avoid this,
the application must size its window to leave room for the menu bar on the
desktop. This dance with the menu bar is the reason why applications that use
the menu bar control manually resize their main windows.

Figure 5-5 shows a menu bar on a Pocket PC, while Figure 5-6 shows the
same application running on an embedded system. Subtle differences exist
between the look of the two menu bars that should be discussed.

Figure 5-5 A menu bar on a Pocket PC device

Figure 5-6 A menu bar on an embedded system

The menu bar on the Pocket PC contains the soft input panel (SIP) button
on the far left of the control. On the embedded device, the SIP button is on the

262 Part I Windows Programming Basics

taskbar, not on the menu bar. In place of the SIP button, the menu bar on the
embedded device has a Close button, in contrast with the Pocket PC, which has
a smart Minimize button on the Navigation bar across the top of the screen.
Finally, even though the very same application, with the same menu bar
resource, was used to create both menu bars, the Pocket PC version has a menu
named New on the far left of the bar. The New menu is an extension of the
shell, which this embedded device doesn't support. Because of this lack of sup
port in the shell, the menu bar doesn't create a New menu, even though the
resource used to create the menu bar specifies one.

Another menu bar difference between the Pocket PC and embedded sys
tems is the height of the menu bar. Since the height of the menu bar can be dif
ferent on different systems, determining the height of the menu bar must be
done programmatically. Older Pocket PC applications, including those in earlier
versions of this book, made the then-valid assumption that the menu bar was 26
pixels high. Now that the menu bar control appears on a variety of systems, that
assumption is no longer valid. One easy way to compute the height of the
menu bar is to call GetWindowRect on the handle of the menu bar. In the fol
lowing code, the height is computed just after the menu bar is created in the
WM_ CREATE message handler.

RECT rectMB;
GetWindowRect (hwndMenuBar, &rectMBl;
nMBHeight = (rectMB.bottom - rectMB.top);

Creating a Menu Bar
To create a menu bar, call

BOOL SHCreateMenuBar (SHMENUBARINFO *pmb);

The only parameter is the address of an SHMENUBARINFO structure, which is
defined as

typedef struct tagSHMENUBARINFO
DWORD cbSize;
HWND hwndParent;
DWORD dwFlags;
UINT nToolBarld;
HINSTANCE hinstRes;
int nBmpld;
int cBmplmages;
HWND hwndMB;
COLORREF cl rBk;

SHMENUBARINFO;

Chapter 5 Common Controls and Windows CE 263

The cbSize field must be filled with the size of the SHMENUBARINFO
structure. The second field, hwndParent, should be set to the window that is
creating the menu bar. The dwFlags field can be set to a combination of three
flags:

• SHCMBF_EMPTYBAR Used to create a menu bar with no menu

• SHCMBF_HIDDEN Creates a menu bar that is initially hidden

• SHCMBF_HIDESIPBUITON Creates the menu bar without a SIP
button on the right-hand side of the bar

• SHCMBF_COLORBK Specifies that the clrBk field contains a valid
color to use when filling the menu bar background

• SHCMBF_HMENU Specifies that the resource is a menu resource,
not a menu bar resource

Unless you specify the SHCMBF_EMP1YBAR flag, you must set the nTool
Barld field to the resource that describes the menu and button structure of the
menu bar. Unless the SHCMBF_HMENU flag is used, this resource is not a sim
ple menu resource. It is a combination of a generic resource data block and a
menu resource that together describe the menus and the positions of the but
tons on the menu bar. I'll describe this resource later in this section.

The next field, hlnstRes, should be set to the instance handle of the mod
ule that contains the menu bar resource. The next two fields, nBmp!d and
cBmplmages, describe the bitmap images that can be used to define the look of
buttons on the menu bar. If the menu bar is to have graphical buttons, you can
set the field nBmp!d to a bitmap resource ID. This bitmap should be 16 pixels
in height and each image in the bitmap should be 16 pixels wide. Thus if the
bitmap has three images, it should be 48 pixels wide by 16 pixels high. The
cBmp!mages field should be set to the number of images in the bitmap. For you
graphic artists out there, consult the latest application guidelines for instructions
regarding the look the graphics should take to blend in with the other parts of
the shell.

The SHCreateMenuBar function returns TRUE if the menu bar was suc
cessfully created. If so, the hwndMB field of SHMENUBARINFO will contain the
handle of the menu bar. You need to save this window handle since there is no
other way to determine the menu bar handle after it has been created.

Menu Bar Resources
As I mentioned earlier, the menu bar acts like a toolbar control in many ways.
Some differences between these objects are apparent when you look at the

264 Part I Windows Programming Basics

resources that the menu bar uses. A simple menu bar might resemble the one
shown in Figure 5-7.

Figure 5-7 A simple menu bar with the Edit menu open

When a menu bar is created, the nToolBar!d field of SHMENUBARINFO is
appropriately named since the resource identified by nToolBarID is not a menu
resource but a custom resource used by the menu bar control. To create the
menu bar shown in Figure 5-7, the resource editor created the following text in
the .RC file:

/////!l/lll/llll/////////////////////////////////////l/////l/ll/l//l/llllll
II Data
II
IDM_MENU SHMENUBAR MOVEABLE PURE
BEGIN

END

IDM_MENU, 4,
I_IMAGENONE, IDM_SHAREDNEW, TBSTATE_ENABLED, TBSTYLE_AUTOSIZE, IDS_SHNEW,
0, NOMENU,
I_IMAGENONE, ID_EDIT, TBSTATE_ENABLED,
TBSTYLE_DROPDOWN J TBSTYLE_AUTOSIZE, IDS_CAP_EDIT, 0, 0,
I_IMAGENONE, IDM_MAIN_COMMANDl, TBSTATE_ENABLED,
TBSTYLE_DROPDOWN J TBSTYLE_AUTOSIZE, IDS_HELP, 0, 1,
0, ID_BACKBTN, TBSTATE_ENABLED, TBSTYLE_AUTOSIZE, 0, ID_BACKBTN, 2,

lllllllll/llllllllllllllll/lllllllll/lll/lll/lll/llll/lllllllllllllll/ll/ll
II Menu bar
II
IDM_MENU MENU DISCARDABLE
BEGIN

POPUP "Edit"

Chapter 5 Common Controls and Windows CE 265

END

BEGIN

ENO

MENU ITEM "Cut",
MENUITEM "Copy",
MENUITEM "Paste",

PO PUP "Tools"
BEGIN

END

MENUITEM "About",
MENUITEM "Options",

ID_ED IT _CUT
ID_EDIT_COPY
ID_EDILPASTE

IDM_HELP_ABOUT
ID_TOOLS_OPTIONS

Most times, you won't need to know exactly what the resource editor is
placing in the resource. However, you should know the format, both to ease
updating applications for using a menu bar and when writing to devices for
which the resource editor doesn't create menu bar controls. The resource is
essentially a description of the buttons on a toolbar. The following code offers
a more formatted view of the preceding data:

IDM_MENU SHMENUBAR MOVEABLE PURE
BEGIN

IDM_MENU, 4,

I_IMAGENONE, IDM_SHAREDNEW,
TBSTYLE_AUTOSIZE,

TBSTATE_ENABLED,
IDS_SHNEW,

l_IMAGENONE, ID_ED!T, TBSTATE_ENABLED,

0. NOMENU,

TBSTYLE_DROPDOWN I TBSTYLE_AUTOS!ZE, IDS_CAP_ED!T, 0, 0,

END

l_IMAGENONE, IDM_MAIN_COMMANDl, TBSTATE_ENABLED,
TBSTYLE_DROPDOWN I TBSTYLE_AUTOSIZE, IDS_HELP,

0. ID_BACKBTN, TBSTATE_ENABLED,
TBSTYLE_AUTOSIZE, 0.

0' 1.

ID_BACKBTN, 2,

The first line in the resource identifies the resource ID, IDM_MENU, its
resource type, SHMENUBAR, and the resource flags, MOVEABLE and PURE. The
IDM_MENU is the ID that is passed to SHCreateMenuBar in the SHMENUBAR
INFO structure. The resource type SHMENUBAR is actually defined in the wiz
ard as RCDATA, which the resource compiler understands as a simple block of
resource data used by an application. This is important information, since
SHMENUBAR isn't defined by the Pocket PC include files; it is included only if
you use the Pocket PC AppWizard to create a menu bar resource. So, for non
wizard-generated resource files that define menu bars, you might need to add
the following line to your .RC file:

#define SHMENUBAR RCDATA

266 Part I Windows Programming Basics

The first line of the data inside the BEGIN I END block is shown here:

IDM_MENU, 4,

This line defines the menu resource that will be used to create the individ
ual pop-up menus displayed from the menu bar. The number 4 indicates the
number of items in the remaining SHMENUBAR resource. Each item represents
either a menu pop-up or a button on the menu bar.

The formatted view of the preceding resource breaks each item's resource
description into two lines because of this book's format. Let's look at the last
item from the resource, which describes the Back button item.

0, ID_BACKBTN, TBSTATE_ENABLED, TBSTYLE_AUTOSIZE, 0, ID_BACKBTN, 2,

Broken vertically to insert comments, the resource looks like this:

0. II Bitmap index
ID_BACKBTN, II WM_COMMAND ID value
TBSTATE_ENABLED, II Initial state of "button"
TBSTYLE_AUTOSIZE, II Style of "button"
0. II String resource ID of text 1 abel
ID_BACKBTN, II String resource ID of tooltip
2. II Submenu index

The first field contains the index into the bitmap array for this item's image
on the menu bar. For items without bitmaps, set this field to l_IMAGENONE. In
the preceding example, the image used is the first image in the bitmap. The
next field contains the ID value for the item. For buttons, this is the ID value
that will be sent to the parent window in a WM_COMMAND message when the
button is tapped. For menus, you can use this ID to identify the submenu when
querying the submenu handle. Because the shell uses its own set of IDs in the
menu bar, applications shouldn't use values below 100. This rule applies to val
ues for menu and button IDs as well as string resource IDs.

The menu bar uses two predefined menu item IDs: IDM_SHAREDNEW
and IDM_SHAREDNEWDEFAULT. Both of these IDs will cause a New menu
item to be added that displays the menu items registered by other applications.
The difference between these two IDs is that IDM_SHAREDNEWVEFAULT dis
plays the new menu with a simple tap of the menu item. Using
IDM_SHAREDNEW turns the New menu into a button with an adjoining down
arrow. Tapping on the New button sends a WM_COMMAND message to the
parent indicating that a new document should be created. Tapping on the
adjoining up arrow displays the new menu itself. For non-Pocket PC systems,
the New menu is displayed on the menu bar only if the shell for the system pro
vides New menu support; otherwise, the predefined new menu item IDs are
ignored.

Chapter 5 Common Controls and Windows CE 267

The next two fields in the resource are the initial state of the button, or
root menu item, and its style. This state is described in toolbar state flags such
as TBSTATE_ENABLED and TBSTATE_CHECKED. For menus, this state is almost
always TBSTATE_ENABLED. The style field is also specified in toolbar flags with
styles such as TBSTYLE_BUTTONfor a button, or TBSTYLE_DROPDOWN, which
is used for menu items. Items that have text instead of a bitmap-as well as
items that include a bitmap-will also typically have the TBSTYLE_AUTOSIZE
flag set to tell the menu bar to size the button to fit the text of the menu item.

The next field is set to the resource ID of a string resource used to label
the item. This text is used alongside any bitmap image specified in the first field
of the item. In our example, the item is a simple bitmap button, so no string
resource is specified. For menu items, this is the string resource-not the sub
menu name specified in the menu resource-that will label the menu. You can
use seven predefined string IDs if needed. They are defined with self-explana
tory constants in the Aygshell.h file:

#define IDS_SHNEW 1

#define IDS_SHEDIT 2
#define IDS_SHTOOLS 3

#define IDS_SHV I EW 4

#define IDS_SHFILE 5
#define IDS_SHGO 6

#define IDS_SHFAVORITES 7

#define IDS_SHOPEN 8

If you need a different text label, your application must define the text as
a string resource and pass that ID in this field. Following the label field is a tool
tip field. You must also fill this field with the ID of a string resource.

The final field specifies the submenu that can pop up if the user taps the
item. This submenu value is valid only if the style field contains
TBSTYLE_DROPDOWN, which indicates the item has a menu attached. This
value represents the index into the menu resource of the submenus. The exam
ple presented earlier in this section has two submenus: Edit, with Cut, Copy,
and Paste items; and Tools, with About and Options items. The text that's dis
played on the button is the string from the bar resource, not the string in the
menu resource. For example, the menu resource could be modified as shown
in the following code without changing the text on the menu bar.

lll
II Menu bar
II
IDM_MENU MENU DISCARDABLE

BEGIN

POPUP "Cat"

(continued)

268 Part I Windows Programming Basics

BEGIN
MENU ITEM "Cut", ID_EDIT_CUT
MENU ITEM "Copy", ID_EDILCOPY
MENU ITEM "Paste", ID_EDILPASTE

END
POPUP "Dog"
BEGIN

MENU ITEM "About", IDM_HELP_ABOUT
MENU ITEM "Options", ID_TOOLS_OPTIONS

END
END

Notice that the root menu names are now Cat and Dog, not Edit and
Options. Because the menu bar takes the names from the menu bar item and
not the menu resource, the change has no effect on the application.

This relatively long-winded explanation of the menu bar resource is meant
as foundation material. Only on the rarest of occasions should you really have
to manually tweak this resource. However, this knowledge can still be quite
handy.

Working with a Menu Bar
Once you've created the menu bar, you still might need to configure it.
Although the menu bar looks different from a command bar, it is built upon the
same toolbar foundation. So while you can't expect a menu bar to always act
like a command bar, you can use some of the command bar functions and tool
bar messages. For example, one handy feature of the common controls is that
they contain a series of bitmaps for commonly used toolbar buttons. Instead of
creating these images yourself-and thereby possibly creating a non-standard
image-you can use the system-provided images for actions such as cut, copy,
and paste.

Using the Common Control Bitmaps in a Menu Bar To use the system-provided
bitmaps, simply add them to the menu bar as you would add them to a com
mand bar. These images are added to the menu bar after the addition of any bit
map specified in the SHMENUBARINFO structure when the menu bar was
created. So, if you had a bitmap of three images, and you added the standard
set of images, the Cut bitmap image would be specified as STD_CUT+3. In the
following code fragment, the menu bar is created and the set of standard
images is added to the bar.

if C!SHCreateMenuBar(&mbi))
return NULL;

CommandBar_AddBitmap (mbi .hwndMB, HINST_COMMCTRL,
IDB_STD_SMALL_COLOR,
STD_PRINT, 16, 16);

Chapter 5 Common Controls and Windows CE 269

The simplest way to use these images is to specify the correct index in the
button item in the menu bar resource. Remember that the first field in the menu
bar item resource is the index to the bitmap image. Just set that bitmap index to
point to the proper bitmap for the button.

Working with Menu Bar Menus Sometimes applications need to manipulate
menus by setting or clearing check marks or by enabling or disabling items. The
standard set of menu functions (CheckMenultem, for example) works as
expected on menus maintained by a menu bar. The trick is to get the handle of
the menu so that you can modify its items. The menu bar supports three mes
sages you can use to get and set menu handles: SHCMBM_GETMENU,
SHCMBM_GETSUBMENU, and SHCMBM_SETSUBMENU. The messages
SHCMBM_GETMENU and SHCMBM_GETSUBMENU can be sent to the menu bar
to query the menu handle or a specific submenu. The following line shows
how to query the root menu handle using SHCMBM_GETMENU.

hMenu = (HMENU)SendMessage (hwndMenuBar, SHCMBM_GETMENU, 0, 0);

You can then use this menu handle to modify any of the menu items that the
menu bar might display. To query a submenu attached to a specific menu bar
item, use SHCMBM_GETSUBMENU, as in

hSubMenu = (HMENU)SendMessage (hwndMenuBar, SHCMBM_GETSUBMENU, 0,
ID_VIEWMENU);

The lParam value is set to the ID of a specific button on the menu bar
in this example, it's the menu handle attached to the button with the
ID_VIEWMENUID value.

To change the menu of a particular button on the menu bar, you can use
SHCMBM_SETSUBMENU with wParam set to the ID of the button and IP a ram
set to the new menu handle, as in

hOldMenu = (HMENU)SendMessage (hwndMenuBar, SHCMBM_SETSUBMENU,
ID_VIEWMENU, (LPARAM)hNewMenu);

The MenuBar Example
The MenuBar example demonstrates a number of the menu bar techniques
described in the preceding section. The example switches between two menu
bars. Each menu bar has its own set of buttons, each with a different set of
styles. The example displays all W'iJ,f_COA1MAND and W'iJ,f_N011FY messages in
a list box in its main window. This list box allows you to see what the applica
tion sees in terms of notifications and command messages.

When run on systems that support New menus, the menu bars have a
unique New menu for each bar, one with a shared New menu and another with

270 Part I Windows Programming Basics

a simple New menu. In addition, the New menuis also extended with a custom
menu item. When used with the NewMenuX example in Chapter 17, MenuBar
demonstrates how to intercept permanent Pocket PC New menu item selections
by fielding the NMN_INVOKECOMMAND notification and asking the user
whether Cale should be launched.

Figure 5-8 shows a Pocket PC running MenuBar. Notice that the three
rightmost buttons on the menu bar use the predefined Cut, Copy, and Paste bit
map images.

WM_OOl>IMAND id:201 cnde:O
WM_NOTl'fY ld:100 event:-701
WM_NOTl'fY ld:100 everrt::-702
WM_OJMMAND id:lO code:O
WM_NOTl'fY id:100 event:-701
WM_NOTl'fY id:100 everit:-702
WM_OJMMAND id:210 axle:O
WM_NOTIFY id:lOO everit:-701
WM_NOTIFY ld:100 eveot:-702

_COMMAND id:230 cocle:O

Figure 5·8 The MenuBar example uses standard common control
bitmap images.

Listing 5-3 contains the source code for MenuBar. As usual, it is divided
into MenuBar.rc, MenuBar.h, and MenuBar.cpp.

Listing 5-3 The MenuBar example

Chapter 5 Common Controls and Windows CE 271

ID_ICON ICON "MenuBar.ico" II Program icon

ID_TOOLBMPS BITMAP DISCARDABLE "btns.bmp"

11--
11 Accelerator keys
II
ID_ACCEL ACCELERATORS DISCARDABLE
BEGIN

"0", IDM_EXIT, VIRTKEY, CONTROL, NOINVERT
END
11--
11 MenuBar resources
II
#define SHMENUBAR RCDATA

II MenuBar resource with simple new menu
ID_TOOLBARl SHMENUBAR MOVEABLE PURE
BEGIN

END

ID_MENU, 5,

I_IMAGENONE, IDM_SHAREDNEWDEFAULT. TBSTATE_ENABLED.
TBSTYLE_AUTOSIZE, IDS_SHNEW, IDS_SNEWTT, NOMENU,

I_IMAGENONE, ID_VIEWMENU, TBSTATE_ENABLED.
TBSTYLE_DROPDOWN I TBSTYLE_AUTOSIZE, IOS_VIEWMENUNAME, 0, 0,

I_IMAGENONE, !D_TOOLMENU, TBSTATE_ENABLED.
TBSTYLE_DROPDOWN I TBSTYLE_AUTOSIZE, IDS_TOOLMENUNAME, 0, 1,

0, IDM_ABOUT, TBSTATE_ENABLED,
TBSTYLE_BUTTON I TBSTYLE_AUTOSIZE, 0, IDS_BTNTOOLTT, 0,

2, ID_MENU3, TBSTATE_ENABLED,
TBSTYLE_DROPDOWN I TBSTYLE_AUTOSIZE, 0, IDS_BTNTOOLTT, 2,

II MenuBar resource with shared new
ID_TOOLBAR2 SHMENUBAR MOVEABLE PURE
BEGIN

ID~MENU, 8,

I_IMAGENONE, IDM_SHAREDNEW, TBSTATE_ENABLED,
TBSTYLE_BUTTON I TBSTYLCAUTOSIZE, IDS_SHNEW, I DS_NEWTT. NOMENU.

I_IMAGENONE, ID_VIEWMENU, TBSTATE_ENABLED.
TBSTYLE_DROPDOWN I TBSTYLE_AUTOSIZE, IDS_VIEWMENUNAME, 0, 0,

(continued)

272 Part I Windows Programming Basics

Listing 5-3 (continued)

END

LIMAGENONE, ID__JOOLMENU, TBSTATE_ENABLED,
TBSTYLE_DROPDOWN I TBSTYLE_AUTOSIZE. IDS_TOQLMENUNAME' 0' 1,

1, I DM_ABOUT, TBSTATE_ENABLED,
TBSTYLLCHECK I rn.sTYLE_AUTOSIZE, 0, IDS_BTNTOOLTT, 0,

LIMAGENONE, 0, TBSTATE..:.ENABLED, TBSTYLE.-.SEP, 0, 0, 0,

3+STO_CUT, IDM_CUT, . .TBSTATE_ENABLED,
TBSTYLE_BUUON l TBSTYLE_AUTOSIZE. 0, IDS:...BTNCUJU, .0,
3+STO_COPY, IDM_CQPY, TBSTATE_ENABLED,
TBSTYLE_BUUON I 1BSTYLCAUTOSIZE. 0, IDS-BTNCOPYU, 0,

3+STO_PASTE ,·lDM:_PASTE, TBSTATLENABLED,

TBSTYLCBUTTON I TBSTYLE..:..AUTOSlZL 0, IDS aTNPASTETT.

ID_MENU
BEGIN

END

POPUP "&Menul"
BEGIN

MENUITEM "Exit*,
END
POPUP "&MenU2"
BEGIN

POPUP n&Menu3"

BEGIN
MENUITEM "Menu
MENUITEM "Menu
MENUHEM ''Menu item 3".
MENUITEM "Menu item 4'',
MENUITEM ''Menu item 5u,

JI String resourc(:) table
II
STRINGTABLE DlSCARDABLE
BEGIN

IDS_VIEWMENUNAME
IOS_TOOLMENUNAME
IDS_SNEWTT
IDS_NEWTT
IOS_BTNTOOL TT
IDS_BTNCUTTT
IOS_BTNCOPYTT
IDS_BTNPASTETT
END

Chapter 5 Common Controls and Windows CE 273

"View"
"Tools"
"New menu tooltip text"
"New doc + shared menu tooltip"
"Button tooltip"
"Cut"
"Copy"
"Paste"

11--
11 About box dialog template
II
aboutbox DIALOG discardable 10, 10, 135, 40
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER I

DS_MODALFRAME
CAPTION "About"
BEGIN

ICON IO_ICON, -1. 3, 5, 10, 10
LTEXT "MenuBar - Written for the book Programming Windows

CE Copyright 2003 Douglas Boling"
-1. 30, 5, 102, 37

END

MenuBar.h
II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11--
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*FXn)(HWNO, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD {
UINT Code;
LRESULT (*Fxn)(HWND, WORD, HWND, WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

(continued)

274 Part I Windows Programming Basics

Listing 5-3 (continued)

!/--
fl Generic defines used by application
#define ID_ACCEL 1 /! Accelerator table lD
#define ID_TOOLBMPS 2
ifdefi ne !D,,.JCON 3
:/fdefi ne ID_TOOLBARl 100
:/fdefi ne ID_TOOLBAR2 101
:/fdefi ne ID_MENU 102
1/defi ne IDG_RPTLIST 103
:/{define ID_V I EWMENU 50
#define ID_TOOLMENU 51
://define IO_MENU3 52

:/fdefi ne IDM_EXIT 200
#define lDM_DOSHARED.NEW 201
#define !DM_DOSIMPLENEW 202

://define IDM:..ABOUT 210

:/fdefine IDM...:ITEM1 220
#define lDM:..ITEM2 221
#d!ifi ne IDM_ITEM3 222
://define IDM-ITEM4 223
#define ID M:.. IT E.M5 224
:/fdefi ne. IDM_IT[M6 225

#define IDM_CUT 230
.:/rdefin.e IDM...;COPY 231
ifdefi ne iDM_PASTE 232

4fdefi ne IDM...:MYNEWMENUITEM (I DM_NEWMENUMAX+l) II New Menu custom i tern

#define I DS_VI EWMENUNAME 256 JI Stri.ng table !Os
#define IDS_ TOOLM.ENUNAME 257
:/fdefine IDS~SNEWTT 256
:/!define IDS_NEWTT 259
llctefine I DS_BTNTOO.L TT 260
:/fdenne IDS_BTN3TEXT 2.61
:/fdefine lDS ... BTN:CIJTTT 26~

•://define I DU!HICOPY.TT 263
#def foe Ios..::.BTNPASTETT 264

,.. __ ,,,.. :__, ___ ,.. -- _._ - -,- - -- - ... - "t' '--:- .. -- ""'-- _ .. ,-·- --- - ... --'--:'- ---,--,-,--

ll Function pr.ototypes
II

Chapter 5 Common Controls and Windows CE 275

HWND Initlnstance (HINSTANCE, LPWSTR, intl:
int Termlnstance (H!NSTANCE, int):
HWND MyCreateMenuBar (HWND hWnd, int idToolbar):
void MyCheckMenu (int idMenu);
void Add2List (HWND hWnd, LPTSTR lpszFormat, ...);

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM. LPARAMl;
II Message handlers
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoSizeMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoNotifyMain (HWND, UINT, WPARAM, LPARAMl;
LRESULT DoCommandMain (HWND. UINT, WPARAM. LPARAMl:
LRESULT DoSettingChangeMain (HWND, UINT, WPARAM, LPARAMl:
LRESULT DoActivateMain <HWND, UINT. WPARAM, LPARAMl:
LRESULT DoDestroyMain (HWND. UINT, WPARAM, LPARAM);

II WM_COMMAND message handlers
LPARAM DoMainCommandExit CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandSharedNew (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandSimpleNew (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandAbout (HWND, WORD, HWND. WORD);

II Dialog procedures
BOOL CALLBACK AboutDlgProc (HWND, UINT, WPARAM, LPARAM);
ExPPCincs.h
II==
II Extra Aygshell includes - This file is necessary to add back defines
II removed from the Pocket PC SOK in 2002 and 2003. These defines allow
II an application to intercept action from the New menu.
II

#ifdef ~cplusplus
extern "C" {
ffendif

#ifndef NMN_GETAPPREGKEY
II++++++
II
II New menu notifications
II

II get the application specific reg key for "new" menu items
#define NMN_GETAPPREGKEY 1101
II Sent to app before shared new menu is destroyed.
#define NMN_NEWMENUDESTROY 1102

(continued)

276 Part I Windows Programming Basics

Listing 5-3 (continued)

I/ se.nt >to ai>.P before.COM :a.ofect i.s i nstariti ated .
. ljtdefine ~MN_INVOKECOMMAtm .. u0s
iJ/>seM; toiapp~t\en rie"•JJutton
'#define NMN'.::.NEWBlJTTONl.IPDATED .

~, '),,' '',','.,''''

typedef'
{

hdr:
TCHAR szReg[$0.];
HMENl.lhMenµ; .
CtSll) ·clsid;

} NMNEWMENU, il<PNMNEWMENIJ':

I(Fqr.applfcatto.n acldedl)lenu items.
1/define. lDM'....NEW~ENl:JMAX . 30a0

Chapter 5 Common Controls and Windows CE 277

II This guid must match the one in the NewMenuX example
static const GUID CLSID_NewMenuX =
{0x130f6e46,0xc3f9,0x4fa8,{0xb8,0xbc,0x75,0x72,0xb,0xc7,0x32,0x31}};
#endif WIN32_PLATFORM_PSPC

const TCHAR szAppName[J
HINSTANCE hlnst;

TEXTC"MenuBar");
II Program instance handle

HWND hwndMenuBar = NULL;
SHACTIVATEINFO sai;

II Handle of menu bar control
II Used to adjust window for SIP

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[J = {

WM_CREATE, DoCreateMain,

} ;

WM_SIZE, DoSizeMain,
WM_COMMAND, DoCommandMain,
WM_NOTIFY, DoNotifyMain,
WM_SETTINGCHANGE, DoSettingChangeMain,
WM_ACTIVATE, DoActivateMain,
WM_DESTROY, DoDestroyMain,

II Command Message dispatch for MainWindowProc
const struct decodeCMD MainCommanditems[J = {

} ;

IDM_EXIT. DoMainCommandExit,
IDM_DOSHAREDNEW, DoMainCommandSharedNew,
IDM_DOSIMPLENEW, DoMainCommandSimpleNew,
IDM_ABOUT, DoMainCommandAbout,

II==
II Program entry point
II
int WINAPI WinMain (H!NSTANCE hinstance, HINSTANCE hPrevlnstance,

LPWSTR lpCmdLine, int nCmdShow) {
MSG msg;
int re = 0·
HWND hwndMain;
HACCEL hAccel;

II Initialize application.
hwndMain = Initinstance Chinstance, lpCmdLine, nCmdShowl:
if (hwndMain == 0) return 0xl0;

hAccel = LoadAcceleratorsChinstance, MAKEINTRESOURCE (ID_ACCEL));

II Application message loop
while (GetMessage (&msg, NULL, 0, 0)) {

(continued)

278 Part I Windows Programming Basics

Listing 5-3 (continued)

}

II Translate accelerator keys.
if (!TranslateAcceJerator(hwndMain,

Transl ateMess.age (&msg);
Di spatchMessage <&msg);

Instance clea~up
return Terminstance (hlnstance, msg.wParam);

i.nstance of
(szAppl'larne,

retu.rn 0;

Register .. application ma.in window
we, style = CS3REDRAW I cs_HREDRAW;
wc,lpfnWndProc···"' ·MainWndProc;
wc.cbClsEX:tr<'! =0;

//
wc,hinst~n~e:; hinstance: II Owner handle
wc;hlcon =.NULL. // Applic~tion Jeon
wc:hcursor= Loa\!Cursor(NULL •. lDCLARROWJ;.··// tieJaulttursor

(HBRUSH) GetStockObject (WHITE_J3RUSH);
NUt~; · II

Chapter 5 Common Controls and Windows CE 279

UpdateWindow (hWnd);
return hWnd;

11--
11 Terminstance - Program cleanup
II
int Terminstance (HINSTANCE hinstance, int nDefRC) {

return nDefRC;

II==
II Message handling procedures for main window
II
11--
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
INT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0; i < dim(MainMessages): i++)

if (wMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, lParam);

return DefWindowProc (hWnd, wMsg, wParam, lParam);

11--
11 DoCreateMain - Process WM~CREATE message for window.
II
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LP A RAM 1 Pa ram) {
SIPINFO si;
HWND hwndChild;
int i • ex, cy;

II .Initialize the shell to activate info structure.
memset (&sai, 0, si zeof (sai));
sai .cbSize = sizeof (sai);

II Create menu bar and check for errors.
hwndMenuBa r = MyCreateMenuBa r (hWnd. ID_ TOOLBARll;
if (lhwndMenuBar) {

MessageBox (hWnd, TEXT("Couldn\'t create MenuBar"),
szAppName. MB_OK);

DestroyWindow (hWnd);

(continued)

280 Part I Windows Programming Basics

Listing 5-3 (continued)

return 0.;

ll-

}

II Set menu chec~ mark.
MyCheckMenu (IDM_DOS IMP LENEW);

II ~reate report window.
hwndChild = CreateWi ndowEx

It will bE! s.ized in the WM_SIZE handler.
C0, lEXT (''list.box"), TEXT (""),
ws_vISIBLE l ws_CHILD I ws_vscROLL I
LBS~USETABSTOPS I LBS_NOINTEGRALHElGHT.
0, 0, 0. 0, hWnd, (HMENU)IDC_RPTLIST,
hlnst, NULL);

fl Destroy frame if window not created.
if (!IsWindow ChwndChildl) {

DeslroYWindow (hWnd);
return 0;

II Initialize tab stops for display list box.
= 8;

S.endMessage {hwnd.Chi ld, LB..cSETTABSTOPS,

// Query the sip state and size our window
memset.(&si, 0; sizeof (Si}).;

(LPARAMJ &i};

si .cbSize = sizeof (si);

SHSipI.nfo(SPI_cGETSIPINFO, 0, {PVOID)&s.i, FALSO.;
cX =' sLrcVisibleOesktop.right< Si .rcVisf)JlE!Oesktop.left:
cy = st.rcVisibleDesktop.bottom - si .rCVisibleDesktop.top;

II If the s.i.p i$ not shown,. or is showing but
/I desktop re ct doesn't include the height of
if (!(Si. fdwFl ags & SIPLONJ) j

((si .fdwFlags & S!PF_ON) && !(si .fdwf1ags
RECT rectMB;
GetWi ndowRect ChWndMen uBar, &rectMB) ... ;
cy -= (rectMB, bottom - rectM8 .. top);

SetWindowPos (hWnd, NULL. 0, 0, ex/ cy, SWP_NOMOVE I SWP _NOZOROER);
return 0;

/I.DoSizeMaih. - Process WM_SIZE message for window.

(HWND hWnd, UTNT.wMsg, WPA!\AM wPar.am,
RECT r.ect;

t;.etClientRect ChWnd, &rect);
SetW.ihdowPos (GetDlgltem <hWnd, IOC-RPTLlStl, NULL.

rect.right - rect.left, rect.bottom -

Chapter 5 Common Controls and Windows CE 281

SWP_NOZORDER);
return 0;

11--
11 DoCommandMain - Process WM_COMMAND message for window.
II
LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {
WORD iditem, wNotifyCode;
HWND hwndCtl;
I NT i ;

II Parse the parameters.
iditem =(WORD) LOWORD (wParam);
wNotifyCode = <WORD) HIWORD (wParam);
hwndCtl = (HWND) lParam;

Add2List (hWnd, TEXT ("WM_COMMAND id:%d code:%d"), iditem,
wNot i fyCode J ;

II Call routine to handle control message,
for (i = 0; i < dim(MainCommanditems); i++)

if (iditem == MainCommanditems[i].Code)
return (*MainCommanditems[i].Fxn)(hWnd, iditem, hwndCtl,

wNoti fyCode);

return 0;

//--C--···•···--------------
11 DoNotifyMain - Process WM_NOTIFY message for window.
II
LRESULT DoNotifyMain (HWND hWnd. UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PNMNEWMENU lpNewMenu;
LPNMHDR lpnhr = (LPNMHDR)lParam;

Add2List (hWnd, TEXT ("WM_NOTIFY id:%d event:%d"), lpnhr->idFrom,
l pnhr->code):

II This code only works when compiling on a Pocket PC
f/if defined(WIN32..:PLATFORM_PSPC) II See if new menu being displayed.

if (lpnhr->code == NMN_GETAPPREGKEY) {
lpNewMenu = (PNMNEWMENU) lParam;
AppendMenu (l pNewMenu->hMenu, MF _ENABLED, IDM_MYNEWMENUITEM,

TEXT("My own New menu item"));
AppendMenu ClpNewMenu->hMenu, MF_SEPARATOR, 0, 0);

II Permanent new menu item selected
} else if (1 pnhr->code == NMN_INVOKECOMMAND)

lpNewMenu = (PNMNEWMENU) lParam;

(continued)

282 Part I Windows Programming Basics

Listing 5-3 (continued)

Chapter 5 Common Controls and Windows CE 283

LPARAM DoMainCommandExit (HWND hWnd, WORD iditem, HWND hwndCtl,
WORD wNotifyCode) {

SendMessage ChWnd, WM_CLOSE, 0, 0);
return 0:

11--
11 DoMainCommandAbout - Process Tools About command.
II
LPARAM DoMainCommandAbout CHWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) {
II Use DialogBox to create modal dialog.
DialogBox (hinst, TEXT ("aboutbox"l, hWnd, AboutDlgProc);
return 0;

11--
11 DoMainCommandSimpleNew - Process Simple new menu command.
II
LPARAM DoMainCommandSimpleNew (HWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) {
if (IsWindow (hwndMenuBar))

DestroyWindow (hwndMenuBarl:

II Create a menu bar.
hwndMenuBar = MyCreateMenuBar (hWnd, ID_TOOLBARl);
MyCheckMenu (IDM_DOSIMPLENEW);
return 0;

11--
11 DoMainCommandSharedNew - Process Shared new menu command.
II
LPARAM DoMainCommandSharedNew (HWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) {

}

II Delete the old menu bar.
if (IsWindow (hwndMenuBar))

DestroyWindow (hwndMenuBar);

II Create the menu bar.
hwndMenuBar = MyCreateMenuBar ChWnd, ID_TOOLBAR2l:

II Add the standard view bitmap.
CommandBar_AddBitmap (hwndMenuBar, HINST_COMMCTRL,

IDB_STD_SMALL_COLOR, STD_PRINT, 16, 16);
MyCheckMenu (IDM_DOSHAREDNEWl;
return 0:

II Set menu checkmark.

II==

(continued)

284 Part I Windows Programming Basics

Listing 5-3 (continued)

II About Dialog procedure

II
BOOL CALLBACKAboutDlgPr()c

switch (wMs.g) {

case WM_INITDTALOG;
{

SHINITOLGIMFO tdi:
idi .dwMask =' SIHDIM_HAGS;

WPARAM wPa ram,

idi .dwFlags = SHID1F_DOMEBUTTON I SHIDlF .. .StZEDLGFULLSCREEN f

}

SHlDI F _SI PDOWN;
idi.hDlg =,hWnd;
SHinHOialog (&idi);

}

brei'\k;
case WM_COMMAND:

switch (LOWORD

}

return FALSE;
}

11~--~

// MyCreateMenuBa

ll
HWND MyCreateMenuBar'·(HWNO

SHMENUBARI NFO mbi.;

}

ll Create a menu .bar.
memsetc.&mbi,0, siteof(SHMENUBARINFO));

mbf.~bSize = s1zeof(SHMENUBAR1NFO);

mbi.,hwndParent= ~Wnd;

mbi • nToo l Bar Id = .1dlo.o1 bar;
mbLhlrtstRes = hlnst;

mbi.nBmpH = ID_TO()LBMPS;
mbL c6mpim;;iges. = 3;

SHGreataMenuBar (&rnpi);
returb mbi .hwhdMB:

II Parentwindow
II II} of toolbar re.source

II Inst handle of ~PP
fl ID of bitmap resource
II Numof images in ... bitmap

11 Return the menu bar handle.

ll - - - - - - - - - - - - - ' - ... - - - - - - - - - - - -
11 MyCheckMenu - !'.laces a check next to a menu Hem

11

Chapter 5 Common Controls and Windows CE 285

void MyCheckMenu (int idMenu) {
HMENU hSubMenu;

II The handle for the view menu
hSubMenu = (HMENU)SendMessage (hwndMenuBar, SHCMBM_GETMENU, 0, 0);
if CidMenu == IDM_DOSIMPLENEW) {

CheckMenuitem ChSubMenu, IDM_DOSIMPLENEW, MF_BYCOMMAND
MFS_CHECKED);

CheckMenuitem ChSubMenu, IDM_DOSHAREDNEW, MF_BYCOMMAND
MFS_UNCHECKED);

else {
CheckMenuitem ChSubMenu, IDM_DOSIMPLENEW, MF_BYCOMMAND

MFS_UNCHECKED);
CheckMenuitem ChSubMenu, IDM_DOSHAREDNEW, MF_BYCOMMAND

MFS_CHECKED);

return;

11--
11 Add2List - Add string to the report list box.
II
void Add2List CHWND hWnd, LPTSTR lpszFormat, ...)

int nBuf, i ;
TCHAR szBuffer[512];

va_list args;
va_startCargs, lpszFormat);

nBuf = _vstprintf(szBuffer, lpszFormat, argsJ;

i = SendDlgitemMessage ChWnd, IDC_RPTLIST, LB_ADDSTRING, 0,
CLPARAM)CLPCTSTRJszBufferJ;

if Ci ! = LB_ERR)
SendDlgltemMessage (hWnd, IDC_RPTLIST, LB_SETTOPINDEX, i,

CLPARAMJ(LPCTSTRJszBufferJ;
va_end(args);

The MenuBar example creates its menu bar in a common routine called
MyCreateMenuBar. The two parameters provide the handle of the window that
will own the menu bar and the ID of the resource specifying the menu bar con
figuration. MenuBar.rc contains two SHMENUBAR templates, ID_TOOLBARl
and ID_TOOLBAR2. Both templates reference a common menu resource,
ID_MENU Notice that the menu resource has the names Menul, Menu2, and
Menu3 for its top-level menu items. These names are not used because the
menu bar instead uses the strings in the menu bar resource.

286 Part I Windows Programming Basics

The two menu bars are switched simply by destroying one bar and creat
ing another. The creation of a menu bar happens so quickly that the user
doesn't even notice it. This solution is better than creating two menu bars and
alternately showing one and hiding the other, since having two controls con
sumes extra memory that is better used elsewhere.

When the menu bar with the shared new menu button is created, a call is
made to CommandBar _Addbitmap to add the common control bitmaps that
include the cut, copy, and paste images. This menu bar also includes a check
box-style button that is tapped once to set and tapped again to clear. The sim
ple menu bar has a button with a bitmap-the bitmap with the artistic C that
when tapped displays a menu. This button shows that it's just as easy to display
a menu from a button with a bitmap as it is with a text label.

This completes the discussion of the "menu" controls. I talk about these
controls at length because you'll need one of them for almost every Windows
CE application.

For the remainder of the chapter, I'll cover the highlights of some of the
other controls. These other controls are similar to but have somewhat less func
tion than their counterparts under Windows XP. I'll spend more time on the
controls I think you'll need when writing a Windows CE application. I'll start
with the month calendar and the time and date picker controls. These controls
are rather new to the common control set and have a direct application to the
PIM-like applications that are appropriate for many Windows CE systems. I'll
also spend some time covering the list view control, concentrating on features
of use to Windows CE developers. I'll cover just briefly the remainder of the
common controls.

The Month Calendar Control
The month calendar control gives you a handy month-view calendar that can
be manipulated by users to look up any month, week, or day as far back as the
adoption of the Gregorian calendar in September 1752. The control can display
as many months as will fit into the size of the control. The days of the month
can be highlighted to indicate appointments. The weeks can indicate the cur
rent week throughout the year. Users can spin through the months by tapping
on the name of the month or change years by tapping on the year displayed.

Before using the month calendar control, you must initialize the common
control library by calling InitCommonControlsEx with the ICC_DATE_CLASSES
flag. You create the control by calling CreateWindow with the
MON1HCAL_CLASS flag. The style flags for the control are shown here:

Chapter 5 Common Controls and Windows CE 287

• MCS_MULTISELECT The control allows multiple selection of
days.

• MCS_NOTODAY The control won't display today's date under the
calendar.

• MCS_NOTODAYCIRCLE The control won't circle today's date.

• MCS_ WEEKNUMBERS The control displays the week number (1
through 52) to the left of each week in the calendar.

• MCS_DAYSTATE The control sends notification messages to the
parent requesting the days of the month that should be displayed in
bold. You use this style to indicate which days have appointments or
events scheduled.

Initializing the Control
In addition to the styles I just described, you can use a number of messages or
their corresponding wrapper macros to configure the month calendar control.
You can use an MCM_SETFIRSTDAYOFWEEK message to display a different
starting day of the week. You can also use the MCM_SETRANGE message to dis
play dates within a given range in the control. You can configure date selection
to allow the user to choose only single dates or to set a limit to the range of
dates that a user can select at any one time. The single/multiple date selection
ability is defined by the MCS_MULTJSELECT style. If you set this style, you use
the MCM_SETMAXSELCOUNT message to set the maximum number of days that
can be selected at any one time.

You can set the background and text colors of the control by using the
MCM_SETCOLOR message. This message can individually set colors for the dif
ferent regions within the controls, including the calendar text and background,
the header text and background, and the color of the days that precede and fol
low the days of the month being displayed. This message takes a flag indicating
the part of the control to set and a COLORREF value to specify the color.

The month calendar control is designed to display months on an integral
basis. That is, if the control is big enough for one and a half months, it displays
only one month, centered in the control. You can use the
MCM_GETMINREQRECT message to compute the minimum size necessary to
display one month. Because the control must first be created before the
MCM_GETMINREQRECT can be sent, properly sizing the control is a round
about process. You must create the control, send the MCM_GETMINREQRECT
message, and then resize the control using the data returned from the message.

288 Part I Windows Programming Basics

Month Calendar Notifications
The month calendar control has only three notification messages to send to its
parent. Ofthese, the MCN_GETDAYSTATE notification is the most important.
This notification is sent when the control needs to know what days of a month
to display in bold. This is done by querying the parent for a series of bit field
values encoded in a MONTHDAYSTATE variable. This value is nothing more
than a 32-bit value with bits 1 through 31 representing the days 1 through 31 of
the month.

When the control needs to display a month, it sends an
MCN_GETDAYSTATE notification with a pointer to an NMDAYSTATE structure
defined as the following:

typedef struct {
NMHDR nmhdr;
SYSTEMTIME stStart;
int cDayState;
LPMDNTHDAYSTATE prgDayState;

NMDAYSTATE;

The nmbhdr field is simply the NMHDR structure that's passed with every
WM_NOTIFY message. The stStart field contains the starting date for which the
control is requesting information. This date is encoded in a standard SYSTEM
TIME structure used by all versions of Windows. It's detailed here:

typedef struct {
WORD wYear;
WORD wMonth;
WORD wDayOfWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;

SYSTEMTIME;

For this notification, only the wMonth, wDay, and wYear fields are significant.
The cDayState field contains the number of entries in an array of MONTH

DAYSTATE values. Even if a month calendar control is displaying only one
month, it could request information about the previous and following months if
days of those months are needed to fill in the top or bottom lines of the calen
dar.

The month calendar control sends an MCN_SELCHANGE notification
when the user changes the days that are selected in the control. The structure
passed with this notification, NMSELCHANGE, contains the newly highlighted
starting and ending days. The MCN_SELECT notification is sent when the user

Chapter 5 Common Controls and Windows CE 289

double-taps on a day. The same NMSELCHANGE structure is passed with this
notification to indicate the days that have been selected.

The Date and Time Picker Control
The date and time picker control looks deceptively simple but is a great tool for
any application that needs to ask the user to specify a date. Any programmer
who has had to parse, validate, and translate a string into a valid system date or
time will appreciate this control.

When used to select a date, the control resembles a combo box, which is
an edit field with a down arrow button on the right side. Clicking on the arrow,
however, displays a month calendar control showing the current month. Select
ing a day in the month dismisses the month calendar control and fills the date
and time picker control with that date. When you configure it to query for a
time, the date and time picker control resembles an edit field with a spin button
on the right end of the control.

The date and time picker control has three default formats: two for dis
playing the date and one for displaying the time. The control also allows you to
provide a formatting string so that users can completely customize the fields in
the control. The control even lets you insert application-defined fields in the
control.

Creating a Date and Time Picker Control
Before you can create the date and time picker control, the common control
library must be initialized. If InitCommonControlsEx is used, it must be passed
an ICC_DATE_CLASSES flag. The control is created by using CreateWindow
with the class DATETIMEPICK_CLASS. The control defines the following styles:

• DTS_LONGDATEFORMAT The control displays a date in long for
mat, as in Friday, September 19, 2003. The actual long date format is
defined.Jn the system registry.

• DTS_SHORTDATEFORMAT The control displays a date in short
format, as in 9/19/03. The actual short date format is defined in the
system registry.

• DTS_TIMEFORMAT The control displays the time in a format
such as 5:50:28 PM. The actual time format is defined in the system
registry.

• DTS_SHOWNONE The control has a check box to indicate that the
date is valid.

• DTS_UPDOWN An up-down control replaces the drop-down but
ton that displays a month calendar control in date view.

290 Part I Windows Programming Basics

• DTS_APPCANPARSE Allows the user to directly enter text into the
control. The control sends a D1N_USERSTRING notification when the
user is finished.

The first three styles simply specify a default format string. These formats
are based on the regional settings in the registry. Since these formats can
change if the user picks different regional settings in the Control Panel, the date
and time picker control needs to know when these formats change. The system
informs top-level windows of these types of changes by sending a
WM_SETTINGCHANGE message. An application that uses the date and time
picker control and uses one of these default fonts should forward the
WM_SETTINGCHANGE message to the control if one is sent. This causes the
control to reconfigure the default formats for the new regional settings.

The DTS_APPCANPARSE style enables the user to directly edit the text in
the control. If this isn't set, the allowable keys are limited to the cursor keys
and the numbers. When a field, such as a month, is highlighted in the edit
field and the user presses the 6 key, the month changes to June. With the
DTS_APPCANPARSE style, the user can directly type any character in the edit
field of the control. When the user has finished, the control sends a
D1N_USERSTRING notification to the parent window so that the text can be
verified.

Customizing the Format
To customize the display format, all you need to do is create a format string and
send it to the control using a DTM_SETFORMAT message. The format string can
be made up of any of the following codes:

String
fragment

Description

"d" Dne- or two-digit day.
"dd" Two-digit day. Single digits have a leading zero.
"ddd" The three-character weekday abbreviation. As in Sun, Mon ...
"dddd" The full weekday name.

"h" Dne- or two-digit hour (12-hour format).
"hh" Two-digit hour (12-hour format). Single digits have a leading zero.
"H" One- or two-digit hour (24-hour format).
"HH" Two-digit hour (24-hour format). Single digits have a leading zero.

"m" One- or two-digit minute.
"mm" Two-digit minute. Single digits have a leading zero.

"M" One- or two-digit month.

Chapter 5 Common Controls and Windows CE 291

"MM" Two-digit month. Single digits have a leading zero.

"MMM" Three-character month abbreviation.
"MMMM" Full month name.
"t" The one-letter AM/PM abbreviation. As in A or P.
"tt" The two-letter AM/PM abbreviation. As in AM or PM.

"X" Specifies a callback field that must be parsed by the application.

"y" One-digit year. As in 1 for 2001.
"yy" Two-digit year. As in 01 for 2001.
"yyy" Full four-digit year. As in 2001.

Literal strings can be included in the format string by enclosing them in
single quotes. For example, to display the string Today is: Saturday, December
5, 2001 the format string would be

'Today is: 'dddd', 'MMMM' 'd', 'yyy

The single quotes enclose the strings that aren't parsed. That includes the
Today is: as well as all the separator characters, such as spaces and commas.

The callback field, designated by a series of X characters, provides for the
application the greatest degree of flexibility for configuring the display of the
date. When the control detects an X field in the format string, it sends a series
of notification messages to its owner asking what to display in that field. A for
mat string can have any number of X fields. For example, the following string
has two X fields.

'Today 'XX' is:' dddd', 'MMMM' 'd', 'yyy' and is 'XXX' birthday'

The number of X characters is used by the application only to differentiate
the application-defined fields; it doesn't indicate the number of characters that
should be displayed in the fields. When the control sends a notification asking
for information about an X field, it includes a pointer to the X string so that the
application can determine which field is being referenced.

When the date and time picker control needs to display an application
defined X field, it sends two notifications: DTN_FORMATQUERY and
DTN_FORMAT. The DTN_FORMATQUERY notification is sent to get the maxi
mum size of the text to be displayed. The DTN_FORMAT notification is then
sent to get the actual text for the field. A third notification, DTN_ WMKEYDOWN,
is sent when the user highlights an application-defined field and presses a key.
The application is responsible for determining which keys are valid and modi
fying the date if an appropriate key is pressed.

292 Part I Windows Programming Basics

The List View Control
The list view control is arguably the most complex of the common controls. It
displays a list of items in one of four modes: large icon, small icon, list, and
report. The Windows CE version of the list view control supports many, but not
all, of the common control library functions released with Internet Explorer 4.0.
Some of these functions are a great help in the memory-constrained environ
ment of Windows CE. These features include the ability to manage virtual lists
of almost any size, headers that can have images and be rearranged using drag
and drop, the ability to indent an entry, and new styles for report mode. The list
view control also supports the new custom draw interface, which allows a fairly
easy way of changing the appearance of the control.

You register the list view control either by calling InitCommonControls or
by calling an InitCommonControls using an ICC_LISTVIEW_CLASSES flag. You
create the control by calling CreateWindow using the class filled with
WC_LISTVIEW Under Windows CE, the list view control supports all the styles
supported by other versions of Windows, including the LVS_OWNERDATA style
that designates the control as a virtual list view control.

Styles in Report Mode
In addition to the standard list view styles that you can use when creating the
list view, the list view control supports a number of extended styles. This rather
unfortunate term doesn't refer to the extended styles field in the CreateWin
dowsEx function. Instead, two messages, LVM_GETEXTENDEDLISTVIEWSTYLE
and LVM_SETEXTENDEDLISTVIEWSTYLE, are used to get and set these
extended list view styles. The extended styles supported by Windows CE are
listed below.

• LVS_EX_CHECKBOXES The control places check boxes next to
each item in the control.

• LVS_EX_HEADERDRAGDROP Allows headers to be rearranged
by the user using drag and drop.

• LVS_EX_GRIDLINES The control draws grid lines around the
items in report mode.

• LVS_EX_SUBITEMIMAGES The control displays images in the
subitem columns in report mode.

• LVS_EX_FULLROWSELECT The control highlights the item's
entire row in report mode when that item is selected.

• LVS_EX_ONECLICKACTIVATE The control activates an item with

Chapter 5 Common Controls and Windows CE 293

a single tap instead of requiring a double tap.

Aside from the LVS_EX_CHECKBOXES and LVS_EX_ONECLJCKACTIVATE
extended styles, which work in all display modes, these new styles all affect the
actions of the list view when in report mode. The effort here has clearly been
to make the list view control an excellent control for displaying large lists of
data.

Note that the list view control under Windows CE doesn't support other
extended list view styles, such as LVS_EX_INFOTIP, LVS_EX_ONECLJCKACTIVATE,
LVS_EX_TWOCLJCKACTIVATE, LVS_EX_TRACKSELECT, LVS_EX_REGIONAL, or
LVS_EX_f'LATSB, supported in some versions of the common control library.

Virtual List View
The virtual list view mode of the list view control is a huge help for Windows
CE devices. In this mode, the list view control tracks only the selection and
focus state of the items. The application maintains all the other data for the
items in the control. This mode is handy for two reasons. First, virtual list view
controls are fast. The initialization of the control is almost instantaneous
because all that's required is that you set the number of items in the control.
The list view control also gives you hints about what items it will be looking for
in the near term. This allows applications to cache necessary data in RAM and
leave the remainder of the data in a database or file. Without a virtual list view,
an application would have to load an entire database or list of items in the list
view when it's initialized. With the virtual list view, the application loads only
what the control requires to display at any one time.

The second advantage of the virtual list view is RAM savings. Because the
virtual list view control maintains little information on each item, the control
doesn't keep a huge data array in RAM to support the data. The application
manages what data is in RAM with some help from the virtual list view's cache
hint mechanism.

The virtual list view has some limitations. The LVS_OWNERDATA style that
designates a virtual list view can't be set or cleared after the control has been
created. Also, virtual list views don't support drag and drop in large icon or
small icon mode. A virtual list view defaults to LVS_AUTOARRANGE style, and
the LVM_SETIIEMPOS!TION message isn't supported. In addition, the sort styles
LVS_SORTASCENDING and LVS_SORTDESCENDING aren't supported. Even so,
the ability to store large lists of items is handy.

To implement a virtual list view, an application needs to create a list view
control with an LVS_OWNERDATA style and handle these three notifications
LVN_GETDISPINFO, LVN_ODCACHEHINT, and LVN_ODFINDITEM. The
LVN_GETDISPINFO notification should be familiar to those of you who have

294 Part I Windows Programming Basics

programmed list view controls before. It has always been sent when the list
view control needed information to display an item. In the virtual list view, it's
used in a similar manner, but the notification is sent to gather all the information
about every item in the control.

The virtual list view lets you know what data items it needs using the
LVN_ODCACHEHINT notification. This notification passes the starting and end
ing index of items that the control expects to make use of in the near term. An
application can take its cue from this set of numbers to load a cache of those
items so that they can be quickly accessed. The hints tend to be requests for the
items about to be displayed in the control. Because the number of items can
change from view to view in the control, it's helpful that the control tracks this
instead of having the application guess which items are going to be needed.
Because the control often also needs information about the first and last pages
of items, it also helps to cache them so that the frequent requests for those
items don't clear the main cache of items that will be needed again soon.

The final notification necessary to manage a virtual list view is the
LVN_ODFINDITEM notification. This is sent by the control when it needs to
locate an item in response to a key press or in response to an LVM_FINDITEM
message.

In Chapter 9, the virtual list view control is demonstrated in the
AlbumDB example. Check out that source to see how the virtual list view is
used in practice.

The CapEdit Control
The CapEdit control is an edit box that capitalizes the first letter in the first or
every word in the control. This control is great for edit controls that will receive
proper names but are on keyboardless devices, where tapping the Shift key
isn't convenient for the user.

To create the CapEdit control, create a window with the WC_CAPEDIT
class name. Since CapEdit uses the edit control's window procedure for its base
function, you can configure the control like an edit control by sending it stan
dard edit control messages. The only message that's unique to this control is
CEM_UPCASEALLWORDS. If wParam isn't 0, the control will capitalize the first
letter in every word. Sending this message with wParam equal to 0 will cause
the control to capitalize only the first word in the control.

Chapter 5 Common Controls and Windows CE 295

Other Common Controls
Windows CE supports a number of other common controls available under
Windows XP. Most of these controls are supported completely within the limits
of the capability of Windows CE. For example, while the tab control supports
vertical tabs, Windows CE supports vertical text only on systems that support
TrueType fonts. For systems supporting raster fonts, the text in the tabs must be
manually generated by the Windows CE application by rotating bitmap images
of each letter. Frankly, it's probably much easier to devise a dialog box that
doesn't need vertical tabs. Short descriptions of the other supported common
controls follow.

The Status Bar Control
The status bar is carried over unchanged from the desktop versions of Win
dows. General user interface guidelines advise against using this control on
small-screen devices. The status bar simply takes up too much precious screen
space. If the control is used, the user should be able to optionally hide the sta
tus bar.

The Tab Control
The tab control is fully supported, the previously mentioned vertical text limi
tation notwithstanding. The TCS_HOTIRACK style that highlighted tabs under
the cursor isn't supported. The TCS_EX_REGISTERDROP extended style is also
not supported.

The Trackbar Control
The trackbar control gains the capacity for two "buddy" controls that are auto
matically updated with the trackbar value. The trackbar also supports the cus
tom draw service, providing separate item drawing indications for the channel,
the thumb, and the tick marks.

The Progress Bar Control
The progress bar includes the latest support for vertical progress bars and 32-bit
ranges. This control also supports the new smooth progression instead of mov
ing the progress indicator in discrete chunks.

The Up-Down Control
The up-down control under Windows CE supports only edit controls for its
buddy control.

296 Part I Windows Programming Basics

The Toolbar Control
The Windows CE toolbar supports tooltips differently from the way tooltips are
supported by the desktop versions of this control. You add toolbar support for
tooltips in Windows CE the same way you do forthe command bar, by passing
a pointer to a permanently allocated array of strings. The toolbar also supports
the transparent and flat styles that are supported by the command bar.

The Tree View Control
The tree view control supports two new styles recently added to the tree view
common control: TVS_CHECKBOXES and TVS_SINGLESEL. The
TVS_CHECKBOXES style places a check box adjacent to each item in the con
trol. The TVS_SINGLESEL style causes a previously expanded item to close up
when a new item is selected. The tree view control also supports the custom
draw service. The tree view control doesn't support the TVS_TRACKSELECT
style, which allows you to highlight an item when the cursor hovers over it.

Unsupported Common Controls
Windows CE doesn't support four common controls seen under other versions
of Windows. The animation control, the drag list control, the hot key control,
and, sadly, the rich edit control are all unsupported. Animation would be hard
to support given the slower processors often seen running Windows CE. The
hot key control is problematic in that keyboard layouts and key labels, stan
dardized on the PC, vary dramatically on the different hardware that runs Win
dows CE. And the drag list control isn't that big a loss, given the improved
power of the report style of the list view control.

The rich edit control is another story. Although not formally supported,
Riched20.dll is on Windows CE platforms that have Pocket Word. The only sup
ported alternative is the rich ink control supported on the H/PC and Pocket PC.
This control provides text and ink input. It also converts Rich Text Format (RTF)
and Pocket Word Ink (PWI) files to ASCII text.

Windows CE supports fairly completely the common control library seen
under other versions of Windows. The date and time picker, month calendar,
and command bar are a great help given the target audience of Windows CE
devices.

Now that both the basic window controls and the common controls have
been covered, it's time to look at where they're most often used-dialog boxes.
Dialog boxes free you from having to create and maintain controls in a win
dow. Let's see how it's done.

Dialog Boxes and
Property Sheets

The CtlView example in Chapter 4 demonstrated how controls can be used to
create quite complex user interfaces. The problem with that example, though,
was that CtlView also contains a fair amount of code to create and manage the
controls, code that you won't find in most Windows applications. Most Win
dows applications don't manage their child controls manually. Instead, dialog
boxes are used. Dialog boxes are windows that typically use a predefined win
dow class and a different default window procedure. The combination of the
window class and the default window procedure, along with a set of special
dialog box creation functions, hides the complexity of creating and managing
the control windows.

Dialog boxes (sometimes simply referred to as dialogs) query data from
the user or present data to the user-hence the term dialog box. A specialized
form of dialog, named a property sheet, allows a program to display multiple but
related dialog boxes in an overlapping style; each box or property sheet is
equipped with an identifying tab. Property sheets are particularly valuable
given the tiny screens associated with many Windows CE devices.

Windows CE also supports a subset of the common dialog library avail
able under Windows XP. Specifically, Windows CE supports versions of the
common dialog boxes File Open, File Save, Color, and Print. These dialogs are
somewhat different on Windows CE. They're reformatted for the smaller
screens and aren't as extensible as their desktop counterparts.

297

298 Part I Windows Programming Basics

Dialog Boxes
Dialog boxes are windows created by Windows using a template provided by
an application. The template describes the type and placement of the controls
in the window. The Dialog Manager-the part of Windows that creates and
manages dialog boxes-also provides default functionality for switching focus
between the controls using the Tab key as well as default actions for the Enter
and Escape keys. In addition, Windows provides a default dialog box window
class, freeing applications from the necessity of registering a window class for
each of the dialog boxes it might create.

Dialog boxes come in two types: modal and modeless. A modal dialog
prevents the user from using the application until the dialog box has been dis
missed. For example, the File Open and Print dialog boxes are modal. A mod
eless dialog box can be used interactively with the remainder of the application.
The Find dialog box in Microsoft Pocket Word is modeless; the user doesn't
need to dismiss it before typing in the main window.

Like other windows, dialog boxes have a window procedure, although
the dialog box window procedure is constructed somewhat differently from
standard windows procedures. Rather than passing unprocessed messages to
the DejWindowProc procedure for default processing, a dialog box procedure
returns TRUE if it processed the message and FALSE if it didn't process the mes
sage. Windows supplies a default procedure, DejDialogProc, for use in specific
cases-that is, for specialized modeless dialog boxes that have their own win
dow classes.

Dialog Box Resource Templates
Most of the time, the description for the size and placement of the dialog box
and for the controls is provided via a resource called a dialog template. You can
create a dialog template in memory, but unless a program has an overriding
need to format the size and shape of the dialog box on the fly, loading a dialog
template directly from a resource is a much better choice. As is the case for
other resources such as menus, dialog templates are contained in the resource
(RC) file. The template is referenced by the application using either its name or
its resource ID.

Figure 6-1 shows a dialog box. This dialog box will be used as an example
throughout the discussion of how a dialog box works.

Chapter 6 Dialog Boxes and Property Sheets 299

Figure 6-1 A simple dialog box

The dialog template for the dialog box in Figure 6-1 is shown here:

GetVal DIALOG discardable 10, 10, 75, 60

STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER
EXSTYLE WS_EX_CAPTIONOKBTN

CAPTION "Enter line number"

BEGIN

LTEXT "Enter &value:" IDD_VALLABEL, 5. 10, 40, 12
ED ITT EXT IDD_VALUE, 50, 10, 20, 12. WS_TABSTOP

AUTORADIOBUTTON "&Decimal", IDD_DEC, 5. 25, 60, 12,

WS_TABSTOP I WS_GROUP

AUTORADIOBUTTON "&Hex", IDD_HEX, 5. 40, 60, 12
END

The syntax for a dialog template follows a simple pattern similar to that for
a menu resource. First is the name or ID of the resource followed by the key
word DIALOG identifying that what follows is a dialog template. The optional
discardahle keyword is followed by the position and size of the dialog box.
The position specified is, by default, relative to the owner window of the dialog
box.

The units of measurement in a dialog box aren't pixels but dialog units. A
dialog unit is defined as one-quarter of the average width of the characters in
the system font for horizontal units and one-eighth of the height of one charac
ter from the same font for vertical units. The goal is to create a unit of measure
ment independent of the display technology; in practice, dialog boxes still need
to be tested in all display resolutions in which the box might be displayed. You
can compute a pixel vs. dialog unit conversion using the GetDialogBaseUnits
function, but you'll rarely find it necessary. The visual tools that come with most
compilers these days isolate a programmer from terms such as dialog units, but
it's still a good idea to know just how dialog boxes are described in an RC file.

300 Part I Windows Programming Basics

The STYLE line of code specifies the style flags for the dialog box. The
styles include the standard window (WS_xx) style flags used for windows as
well as a series of dialog (DS_xx) style flags specific to dialog boxes. Windows
CE supports the following dialog box styles:

• DS_ABSALIGN Places the dialog box relative to the upper left cor
ner of the screen instead of basing the position on the owner window.

• DS_CENTER Centers the dialog box vertically and horizontally on
the screen.

• DS_MODALFRAME Creates a dialog box with a modal dialog box
frame that can be combined with a title bar and System menu by
specifying the WS_CAPTION and WS_SYSMENU styles.

• DS_SETFONT Tells Windows to use a nondefault font that is spec
ified in the dialog template.

• DS_SETFOREGROUND Brings the dialog box to the foreground
after it's created. If an application not in the foreground displays a
dialog box, this style forces the dialog box to the top of the Z-order
so that the user will see it.

Most dialog boxes are created with at least some combination of the
WS_POPUP, WS_CAPTION, and WS_SYSMENU style flags. The WS_POPUP flag
indicates that the dialog box is a top-level window. The WS_CAPTION style
gives the dialog box a title bar. A title bar allows the user to drag the dialog box
around as well as serving as a site for title text for the dialog box. The
WS_SYSMENU style causes the dialog box to have a Close button on the right
end of the title bar, thus eliminating the need for a command bar control to pro
vide the Close button. Note that Windows CE uses this flag differently from
other versions of Windows, in which the flag indicates that a system menu is to
be placed on the left end of the title bar.

The EXSTYLE line of code specifies the extended style flags for the dialog
box. For Windows CE, these flags are particularly important. The
WS_EX_CAPTIONOKBTN flag tells the dialog manager to place an OK button
on the title bar to the immediate left of the Close button. Having both OK and
Close (or Cancel) buttons on the title bar saves precious space in dialog boxes
that are displayed on the small screens typical of Windows CE devices. The
WS_EX_CONTEXTHELP extended style places a Help button on the title bar to
the immediate left of the OK button. Clicking on this button results in a
WM_HELP message being sent to the dialog box procedure.

Chapter 6 Dialog Boxes and Property Sheets 301

The CAPTION line of code specifies the title bar text of the dialog, pro
vided that the WS_CAPTION style was specified so that the dialog box would
have a title bar.

The lines describing the type and placement of the controls in the dialog
box are enclosed in BEGIN and END keywords. Each control is specified either
by a particular keyword, in the case of commonly used controls, or by the key
word CONTROL, which is a generic placeholder that can specify any window
class to be placed in the dialog box. The LTITXT line of code on the previous
page specifies a static left-justified text control. The keyword is followed by the
default text for the control in quotes. The next parameter is the ID of the con
trol, which must be unique for the dialog box. In this template, the ID is a con
stant defined in an include file that is included by both the resource script and
the C or C++ file containing the dialog box procedure.

The next four values are the location and size of the control, in dialog
units, relative to the upper left corner of the dialog box. Following that, any
explicit style flags can be specified for the control. In the case of the LTEXTline,
no style flags are necessary, but as you can see, the EDITTEXTand first AUTO
RADIOBUTTON entries each have style flags specified. Each of the control key
words have subtly different syntax. For example, the EDITTEXT line doesn't
have a field for default text. The style flags for the individual controls deserve
notice. The edit control and the first of the two radio buttons have a
WS_TABSTOP style. The dialog manager looks for controls with the
WS_TABSTOP style to determine which control gets focus when the user
presses the Tab key. In this example, pressing the Tab key results in focus
being switched between the edit control and the first radio button.

The WS_GROUP style on the first radio button starts a new group of con
trols. All the controls following the radio button are grouped together, up to the
next control that has the WS_GROUP style. Grouping auto radio buttons allows
only one radio button at a time to be selected.

Another benefit of grouping is that focus can be changed among the con
trols within a group by exploiting the cursor keys as well as the Tab key. The
first member of a group should have a WS_TABSTOP style; this allows the user
to tab to the group of controls and then use the cursor keys to switch the focus
among the controls in the group.

The CONTROL statement isn't used in this example, but it's important and
merits some explanation. It's a generic statement that allows inclusion of any
window class in a dialog box. It has the following syntax:

CONTROL "text", id, class, style, x, y, width, height
[, extended-style]

302 Part I Windows Programming Basics

For this entry, the default text and control ID are similar to the other state
ments, but the next field, class, is new. It specifies the window class of the con
trol you want to place in the dialog box. The class field is followed by the style
flags and then by the location and size of your control. Finally, the CONTROL
statement has a field for extended style flags. If you use eMbedded Visual C++
to create a dialog box and look at the resulting RC file using a text editor, you'll
see that it uses CONTROL statements as well as the more readable LTEXT, EDIT
TEXT, and BmTON statements. There's no functional difference between an
edit control created with a CONTROL statement and one created with an EDIT
TEXT statement. The CONTROL statement is a generic version of the more spe
cific keywords. The CONTROL statement also allows inclusion of controls that
don't have a special keyword associated with them.

Creating a Dialog Box
Creating and displaying a dialog box is simple; just use one of the many dialog
box creation functions. The first two are these:

int DialogBox (HANDLE hlnstance, LPCTSTR lpTemplate, HWND hWndOwner,
DLGPROC lpDialogFunc);

int DialogBoxParam CHINSTANCE hlnstance. LPCTSTR lpTemplate,
HWND hWndOwner, DLGPROC lpDialogFunc,
LPARAM dwlnitParam);

These two functions differ only in DialogBoxParam's additional LPARAM
parameter, so I'll talk about them at the same time. The first parameter to these
functions is the instance handle of the program. The second parameter specifies
the name or ID of the resource containing the dialog template. As with other
resources, to specify a resource ID instead of a name requires the use of the
MAKEINTRESOURCE macro.

The third parameter is the handle of the window that will own the dialog
box. The owning window isn't the parent of the dialog box because, were that
true, the dialog box would be clipped to fit inside the parent. Ownership means
instead that the dialog box will be hidden when the owner window is mini
mized and will always appear above the owner window in the Z-order.

The fourth parameter is a pointer to the dialog box procedure for the dia
log box. I'll describe the dialog box procedure shortly. The DialogBoxParam
function has a fifth parameter, which is a user-defined value that's passed to the
dialog box procedure when the dialog box is to be initialized. This helpful
value can be used to pass a pointer to a structure of data that can be referenced
when your application is initializing the dialog box controls.

Chapter 6 Dialog Boxes and Property Sheets 303

Two other dialog box creation functions create modal dialogs. They are
the following:

int DialogBoxindirect (HANDLE hinstance, LPDLGTEMPLATE lpTemplate,
HWND hWndParent, DLGPROC lpDialogFunc);

int DialogBoxindirectParam CHINSTANCE hinstance,
LPCDLGTEMPLATE DialogTemplate, HWND hWndParent,
DLGPROC lpDialogFunc, LPARAM dwinitParam);

The difference between these two functions and the two previously
described is that these two use a dialog box template in memory to define the
dialog box rather than using a resource. This allows a program to dynamically
create a dialog box template on the fly. The second parameter to these func
tions points to a DLGTEMPLATE structure, which describes the overall dialog
box window, followed by an array of DLGITEMTEMPLATE structures defining
the individual controls.

When any of these four functions are called, the dialog manager creates a
modal dialog box using the template passed. The window that owns the dialog
is disabled, and the dialog manager then enters its own internal GetMessage/
DispatchMessage message processing loop; this loop doesn't exit until the dia
log box is destroyed. Because of this, these functions don't return to the caller
until the dialog box has been destroyed. The WM_ENTERIDLE message that's
sent to owner windows in other versions of Windows while the dialog box is
displayed isn't supported under Windows CE.

If an application wanted to create a modal dialog box with the template
shown above and pass a value to the dialog box procedure, it might call this:

DialogBoxParam (hlnstance, TEXT ("GetVal"), hWnd, GetValDlgProc,
0xl234);

The hlnstance and h Wnd parameters would be the instance handle of the
application and the handle of the owner window. The Get Val string is the name
of the dialog box template, while GetValDlgProc is the name of the dialog box
procedure. Finally, Ox1234 is an application-defined value. In this case, it might
be used to provide a default value in the dialog box.

Dialog Box Procedures
The final component necessary for a dialog box is the dialog box procedure. As
in the case of a window procedure, the purpose of the dialog box procedure is
to field messages sent to the window-in this case, a dialog box window-and
perform the appropriate processing. In fact, a dialog box procedure is simply a

304 Part I Windows Programming Basics

special case of a window procedure, although we should pay attention to a few
differences between the two.

The first difference, as mentioned in the previous section, is that a dialog
box procedure doesn't pass unprocessed messages to DejWindowProc. Instead,
the procedure returns TRUE for messages it processes and FALSE for messages
that it doesn't process. The dialog manager uses this return value to determine
whether the message needs to be passed to the default dialog box procedure.

The second difference from standard window procedures is the addition
of a new message, WM_IMTDIALOG. Dialog box procedures perform any ini
tialization of the controls during the processing of this message. Also, if the dia
log box was created with DialogBoxParam or DialogBoxlndirectParam, the
!Param value is the generic parameter passed during the call that created
the dialog box. While it might seem that the controls could be initialized during
the WM_CREATE message, that doesn't work. The problem is that during the
WM_ CREATE message, the controls on the dialog box haven't yet been created,
so they can't be initialized. The WM_INITDIALOG message is sent after the con
trols have been created and before the dialog box is made visible, which is the
perfect time to initialize the controls.

Here are a few other minor differences between a window procedure and
a dialog box procedure. Most dialog box procedures don't need to process the
WM_PAINT message because any necessary painting is done by the controls or,
in the case of owner-draw controls, in response to control requests. Most of the
code in a dialog box procedure is responding to WM_COMMAND messages
from the controls. As with menus, the WM_ COMMAND messages are parsed by
the control ID values. Two special predefined ID values that a dialog box has
to deal with are !DOK and IDCANCEL. !DOK is assigned to the OK button on
the title bar of the dialog box, while IDCANCEL is assigned to the Close button.
In response to a click of either button, a dialog box procedure should call

BOOL EndDial-09 (HWND hDlg, int nResult);

EndDialog closes the dialog box and returns control to the caller of what
ever function created the dialog box. The hDlg parameter is the handle of the
dialog box, while the nResult parameter is the value that's passed back as the
return value of the function that created the dialog box.

The difference, of course, between handling the !DOK and IDCANCEL
buttons is that if the OK button is clicked, the dialog box procedure should col
lect any relevant data from the dialog box controls to return to the calling pro
cedure before it calls EndDialog.

A dialog box procedure to handle the GetVal template previously
described is shown here:

Chapter 6 Dialog Boxes and Property Sheets 305

II==
11 Get Val Di al og procedure
II
BOOL CALLBACK GetValDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
TCHAR szText[64];
int nVal, nBase;

switch (wMsg) {
case WM_INITDIALOG:

SetDlgitemint (hWnd, IDD_VALUE, 0, TRUE);
SendDlgitemMessage (hWnd, IDD_VALUE, EM_LIMITTEXT,

sizeof (szText)-1, 0);
CheckRadioButton (hWnd, IDD_DEC, IDD_HEX, IDD_DEC);
return TRUE;

case WM_COMMAND:
switch (LOWORD (wParam)) {

case IDD_HEX:
II See if Hex already checked.
if (SendDlgitemMessage (hWnd, IDD_HEX,

BM_GETSTATE, 0, 0) == BST_CHECKED)
return TRUE:

II Get text from edit control.
GetDlgitemText (hWnd, IDD_VALUE, szText, sizeof (szText));
II Convert value from decimal, and then set as hex.
if (ConvertValue (szText, 10, &nVal)) {

II If conversion successful, set new value.
wsprintf (szText, TEXT ("%X"), nVal);

SetDlgitemText (hWnd, IDD_VALUE, szText);
II Set radio button.
CheckRadioButton (hWnd, IDD_DEC, IDD_HEX, IDD_HEX);

else {
MessageBox (hWnd, TEXT ("Value not valid"),

TEXT ("Error"), MB_OK);

return TRUE;

case IDD_DEC:
II See if Decimal already checked.
if (SendDlgitemMessage (hWnd, IDD_DEC,

BM_GETSTATE, 0, 0)
return TRUE:

II Get text from edit control.

BSLCHECKED)

GetDlgitemText (hWnd, IDD_VALUE, szText, sizeof (szText));
(continued)

306 Part I Windows Programming Basics

}

II Convert value from hex, then set as decimal.
if (ConvertValue (szText, 16, &nVal)) {

II If conversion successful, set new value.
wsprintf (szText, TEXT ("%d"), nVal);
SetDlgitemText (hWnd, IDD_VALUE, szText);
II Set radio button.
CheckRadioButton (hWnd, IDD_DEC, IDD_HEX, IDD_DEC);

} else {
II If bad conversion, tell user.
MessageBox (hWnd, TEXT ("Value not valid"),

TEXT ("Error"), MB_QK);

return TRUE:
case !DOK:

II Get the current text.
GetDlgltemText (hWnd, IDD_VALUE, szText, sizeof (szText)):
II See which radio button checked.
if (SendDlg!temMessage (hWnd, IDD_DEC,

BM_GETSTATE, 0, 0) BST_CHECKED)
nBase = 10;

else
nBase = 16;

II Convert the string to a number.
if (ConvertValue (szText, nBase, &nVal))

EndDi al og (hWnd, nVal);
else

MessageBox (hWnd, TEXT ("Value not valid"),
TEXT ("Error"), MB_OK);

break:

case IDCANCEL:

break:
}

EndDialog (hWnd, 0);
return TRUE;

return FALSE;

This is a typical example of a dialog box procedure for a simple dialog
box. The only messages that are processed are the WM_INITDIALOG and
WM_COMMAND messages. The WM_INITDIALOG message is used to initialize
the edit control using a number passed, via DialogBoxParam, through to the
lParam value. The radio button controls aren't auto radio buttons because the
dialog box procedure needs to prevent the buttons from changing if the value in
the entry field is invalid. The WM_COMMAND message is parsed by the control
ID, where the appropriate processing takes place. The !DOK and IDCANCEL

Chapter 6 Dialog Boxes and Property Sheets 307

buttons aren't in the dialog box template; as mentioned earlier, those buttons
are placed by the dialog manager in the title bar of the dialog box.

Modeless Dialog Boxes
I've talked so far about modal dialog boxes that prevent the user from using
other parts of the application before the dialog box is dismissed. Modeless dia
log boxes, on the other hand, allow the user to work with other parts of the
application while the dialog box is still open. Creating and using modeless dia
log boxes requires a bit more work. For example, you create modeless dialog
boxes using different functions than those for modal dialog boxes:

HWND CreateDialog (HINSTANCE hlnstance, LPCTSTR lpTemplate,
HWND hWndOwner, DLGPROC lpDialogFunc);

HWND CreateDialogParam (HINSTANCE hinstance, LPCDLGTEMPLATE lpTemplate,
HWND hWndOwner, DLGPROC lpDialogFunc,
LPARAM lParaminit);

HWND CreateDialogindirect (HINSTANCE hlnstance,

or

LPCDLGTEMPLATE lpTemplate, HWND hWndOwner,
DLGPROC lpDialogFunc);

HWND CreateDialogindirectParam (HINSTANCE hinstance,
LPCDLGTEMPLATE lpTemplate, HWND hWndOwner,
DLGPROC lpDialogFunc, LPARAM lParaminit);

The parameters in these functions mirror the creation functions for the
modal dialog boxes with similar parameters. The difference is that these func
tions return immediately after creating the dialog boxes. Each function returns
0 if the create failed or returns the handle to the dialog box window if the create
succeeded.

The handle returned after a successful creation is important because appli
cations that use modeless dialog boxes must modify their message loop code to
accommodate the dialog box. The new message loop should look similar to the
following:

while (GetMessage C&msg, NULL, 0, 0)) {
if ((hMlDlg == 0) I I (!IsDialogMessage (hMlDlg, &msg))) {

TranslateMessage (&msg);
DispatchMessage <&msg);

308 Part I Windows Programming Basics

The difference from a modal dialog box message loop is that if the mode
less dialog box is being displayed, messages should be checked to see whether
they're dialog messages. If they're not dialog messages, your application for
wards them to TranslateMessage and DispatchMessage. The code shown above
simply checks to see whether the dialog box exists by checking a global vari
able containing the handle to the modeless dialog box and, if it's not 0, calls
/sDialogMessage. If IsDialogMessage doesn't translate and dispatch the message
itself, the message is sent to the standard TranslateMessage/ DispatchMessage
body of the message loop. Of course, this code assumes that the handle
returned by CreateDialog (or whatever function creates the dialog box) is saved
in hMlDlg and that hMlDlg is set to 0 when the dialog box is closed.

Another difference between modal and modeless dialog boxes is in the
dialog box procedure. Instead of using EndDialog to close the dialog box, you
must call DestroyWindow instead. This is because EndDialog is designed to
work only with the internal message loop processing that's performed with a
modal dialog box. Finally, an application usually won't want more than one
instance of a modeless dialog box displayed at a time. An easy way to prevent
this is to check the global copy of the window handle to see whether it's non
zero before calling CreateDialog. To do this, the dialog box procedure must set
the global handle to 0 after it calls DestroyWindow.

Property Sheets
To the user, a property sheet is a dialog box with one or more tabs across the
top that allow the user to switch among different "pages" of the dialog box. To
the programmer, a property sheet is a series of stacked dialog boxes. Only the
top dialog box is visible; the dialog manager is responsible for displaying the
dialog box associated with the tab on which the user clicks. However you
approach property sheets, they're invaluable given the limited screen size of
Windows CE devices.

Each page of the property sheet, named appropriately enough a property
page, is a dialog box template, either loaded from a resource or created dynam
ically in memory. Each property page has its own dialog box procedure. The
frame around the property sheets is maintained by the dialog manager, so the
advantages of property sheets come with little overhead to the programmer.
Unlike the property sheets supported in other versions of Windows, the prop
erty sheets in Windows CE don't support the Apply button. Also, the OK and
Cancel buttons for the property sheet are contained in the title bar, not posi
tioned below the pages.

Chapter 6 Dialog Boxes and Property Sheets 309

Creating a Property Sheet
Instead of the dialog box creation functions, use this new function to create a
property sheet:

int PropertySheet (LPCPROPSHEETHEADER lppsphl;

The PropertySheet function creates the property sheet according to the informa
tion contained in the PROPSHEETHEADER structure, which is defined as the
following:

typedef struct _PROPSHEETHEADER
DWORD dwSize;
DWORD dwFlags;
HWND hwndOwner;
HINSTANCE hlnstance;

union (

} ;

HICON hlcon;
LPCWSTR pszlcon;

LPCWSTR pszCaption;
UINT nPages;
union (

UINT nStartPage;·
LPCWSTR pStartPage;

} ;

union {

} ;

LPCPROPSHEETPAGE ppsp;
HPROPSHEETPAGE FAR *phpage;

PFNPROPSHEETCALLBACK pfnCallback;
PROPSHEETHEADER;

Filling in this convoluted structure isn't as imposing a task as it might look.
The dwSize field is the standard size field that must be initialized with the size
of the structure. The dwFlags field contains the creation flags that define how
the property sheet is created, which fields of the structure are valid, and how
the property sheet behaves. Some of the flags indicate which fields in the struc
ture are used. (I'll talk about those flags when I describe the other fields.) Two
other flags set the behavior of the property sheet. The PSH_PROPTITLE flag
appends the string "Properties" to the end of the caption specified in the psz
Caption field. The PSH_MODELESS flag causes the PropertySheet function to
create a modeless property sheet and immediately return. A modeless property
sheet is like a modeless dialog box; it allows the user to switch back to the orig
inal window while the property sheet is still being displayed.

310 Part I Windows Programming Basics

The next two fields are the handle of the owner window and the instance
handle of the application. Neither the hlcon nor the pszlcon field is used in
Windows CE, so both fields should be set to 0. The pszCaption field should
point to the title bar text for the property sheet. The nStartPage/pStartPage
union should be set to indicate the page that should be initially displayed. This
can be selected either by number or by title if the PSH_USEPSTARTPAGE flag is
set in the dwFlags field.

The ppsp/phpage union points to either an array of PROPSHEETPAGE
structures describing each of the property pages or handles to previously
created property pages. For either of these, the nPages field must be set to
the number of entries of the array of structures or page handles. To indicate
that the pointer points to an array of PROPSHEETPAGE structures, set the
PSH_PROPSHEETPAGE flag in the dwFlags field. I'll describe both the structure
and how to create individual pages shortly.

The pfnCallBack field is an optional pointer to a procedure that's called
twice-when the property sheet is about to be created and again when it's
about to be initialized. The callback function allows applications to fine-tune
the appearance of the property sheet. This field is ignored unless the
PSP_USECALLBACK flag is set in the dwFlags field. One place the callback is
used is in Pocket PC applications, to place the tabs on the bottom of the prop
erty sheet.

The callback procedure should be defined to match the following proto
type:

UINT CALLBACK PropSheetPageProc CHWND hwnd, UINT uMsg,
LPPROPSHEETPAGE ppsp);

The parameters sent back to the application are a handle value docu
mented to be reserved, the notification code in the uMsg parameter, and, in
some notifications, a pointer to a PROPSHEETPAGE structure. The notifications
supported in Windows CE 2.re as follows:

• PSCB_PRECREATE Sent just before the property sheet is created

• PSCB_INITIALIZED Sent when the property sheet is initialized

• PSCB_GETVERSION Sent to query the level of support expected
by the application

• PSCB_GE1TITLE Sent to query additional title text

• PSCB_GETLINKTEXT On Pocket PC, sent to query the string to
place below the tabbed pages on the property sheet

Chapter 6 Dialog Boxes and Property Sheets 311

Creating a Property Page
As I mentioned earlier, individual property pages can be specified by an array
of PROPSHEETPAGE structures or an array of handles to existing property
pages. Creating a property page is accomplished with a call to the following:

HPROPSHEETPAGE CreatePropertySheetPage (LPCPROPSHEETPAGE lppsp);

This function is passed a pointer to the same PROPSHEETPAGE structure
and returns a handle to a property page. PROPSHEETPAG.E is defined as this:

typedef struct _PROPSHEETPAGE
DWORD dwSize;
DWORD dwFlags;
HINSTANCE hlnstance;
union {

LPCSTR pszTemplate;
LPCDLGTEMPLATE pResource;

} ;

union {

} ;

HICON hlcon;
LPCSTR pszlcon;

LPCSTR pszTitle;
DLGPROC pfnDlgProc;
LP A RAM l Pa ram;
LPFNPSPCALLBACK pfnCallback;
UINT FAR * pcRef Parent;

PROPSHEETPAGE;

The structure looks similar to the PROPSHEETHEADER structure, leading
with a dwSize and a dwFlags field followed by an hlnstance field. In this struc
ture, hlnstance is the handle of the module from which the resources will be
loaded. The dwFlags field again specifies which fields of the structure are used
and how they're used, as well as a few flags specifying the characteristics of the
page itself.

The pszTemplate/pResource union specifies the dialog box template used
to define the page. If the PSP_DLGINDIRECTflag is set in the dwFlags field, the
union points to a dialog box template in memory. Otherwise, the field specifies
the name of a dialog box resource. The hlcon/pszlcon union isn't used in Win
dows CE and should be set to 0. If the dwFlags field contains a PSP_USETITLE
flag, the pszTitle field points to the text used on the tab for the page. Otherwise,
the tab text is taken from the caption field in the dialog box template. The
pfnDlgProc field points to the dialog box procedure for this specific page, and
the lParam field is an application-defined parameter that can be used to pass
data to the dialog box procedure. The pfnCallback field can point to a callback

312 Part I Windows Programming Basics

procedure that's called twice-when the page is about to be created and when
it's about to be destroyed. Again, like the callback for the property sheet, the
property page callback allows applications to fine-tune the page characteristics.
This field is ignored unless the dwFlags field contains the PSP_USECALLBACK

flag. Finally, the pcRejCount field can contain a pointer to an integer that will
store a reference count for the page. This field is ignored unless the flags field
contains the PSP_USEREFPARENTflag.

Windows CE supports the PSP _PREMATUI&' flag, which causes a property
page to be created when the property sheet that owns it is created. Normally, a
property page isn't created until the first time it's shown. This has an impact on
property pages that communicate and cooperate with each other. Without the
PSP_PREMATURE flag, the only property page that's automatically created
when the property sheet is created is the page that is displayed first. So at that
moment, that first page has no sibling pages to communicate with. Using the
PSP _PREMATURE flag, you can ensure that a page is created when the property
sheet is created, even though it isn't the first page in the sheet. Although it's
easy to get overwhelmed by all these structures, simply using the default values
and not using the optional fields results in a powerful and easily maintainable
property sheet that's also as easy to construct as a set of individual dialog
boxes.

Once a property sheet has been created, the application can add and
delete pages. The application adds a page by sending a PSM_ADDPAGE mes
sage to the property sheet window. The message must contain the handle of a
previously created property page in lParam; wParam isn't used. Likewise, the
application can remove a page by sending a PSM_REMOVEPAGE message to
the property sheet window. The application specifies a page for deletion either
by setting wParam to the zero-based index of the page selected for removal or
by passing the handle to that page in lParam.

The code below creates a simple property sheet with three pages. Each of
the pages references a dialog box template resource. As you can see, most of the
initialization of the structures can be performed in a fairly mechanical fashion.

PROPSHEETHEADER psh;
PROPSHEETPAGE psp[3];
int i ;
II Initialize page structures with generic information.
memset (&psp, 0, sizeof (psp)); II Zero out all unused values.
for (i = 0; i < dim(psp); i++) {

psp[i].dwSize = sizeof (PROPSHEETPAGE);
psp[i].dwFlags = PSP_DEFAULT; II No special processing needed
psp[i].hinstance = hinst; II Instance handle where the

II dialog templates are located
II Now do the page-specific stuff.
psp[0J.pszTemplate =TEXT ("Pagel"); II Name of dialog resource for page

Chapter 6 Dialog Boxes and Property Sheets 313

psp[0].pfnDlgProc = PagelDlgProc; II Pointer to dialog proc for page 1

psp[l].pszTemplate =TEXT ("Page2"l: II Name of dialog resource for page 2
psp[l].pfnDlgProc = Page2DlgProc; II Pointer to dialog proc for page 2

psp[2].pszTemplate =TEXT ("Page3"l: II Name of dialog resource for page 3
psp[2].pfnDlgProc = Page3DlgProc; II Pointer to dialog proc for page 3

II !nit property sheet header structure.
psh.dwSize = sizeof CPROPSHEETHEADERl:
psh.dwFlags = PSH_PROPSHEETPAGE; II We are using templates, not handles.
psh.hwndParent = hWnd: II Handle of the owner window
psh.hlnstance = hlnst; II Instance handle of the application
psh.pszCaption =TEXT ("Property sheet title"):
psh.nPages = dimCpspl; II Number of pages
psh.nStartPage = 0:
psh.ppsp = psp;
psh.pfnCallback = 0:

II Index of page to be shown first
II Pointer to page structures
II We don't need a callback procedure.

II Create property sheet. This returns when the user dismisses the sheet
II by tapping OK or the Close button.
i = PropertySheet C&pshl:

While this fragment has a fair amount of structure filling, it's boilerplate
code. Everything not defined, such as the page dialog box resource templates
and the page dialog box procedures, is required for dialog boxes as well as
property sheets. So aside from the boilerplate stuff, property sheets require lit
tle, if any, work beyond simple dialog boxes.

Property Page Procedures
The procedures that back up each of the property pages differ in only a few
ways from standard dialog box procedures. First, as I mentioned previously,
unless the PSP _PREMATURE flag is used, pages aren't created immediately
when the property sheet is created. Instead, each page is created and
WM_INITDIALOG messages are sent only when the page is initially shown.
Also, the lParam parameter doesn't point to a user-defined parameter; instead,
it points to the PROPSHEETPAGE structure that defined the page. Of course,
that structure contains a user-definable value that can be used to pass data to
the dialog box procedure.

Also, a property sheet procedure doesn't field the !DOK and IDCANCEL
control IDs for the OK and Close buttons on a standard dialog box. These but
tons instead are handled by the system-provided property sheet procedure that
coordinates the display and management of each page. When the OK or Close
button is tapped, the property sheet sends a WM_NOTJFY message to each
sheet notifying them that one of the two buttons has been tapped and that they
should acknowledge that it's okay to close the property sheet.

314 Part I Windows Programming Basics

Switching Pages
When a user switches from one page to the next, the Dialog Manager sends a
WM_NOTIFY message with the code PSN_KILLACTIVE to the page currently
being displayed. The dialog box procedure should then validate the data on the
page. If it's permissible for the user to change the page, the dialog box proce
dure should then set the return value of the window structure of the page to
PSNRET_NOERROR and return TRUE. You set the PSNRET_NOERROR return
field by calling SetWindowLong with DWL_MSGRESULT, as in the following line
of code:

SetWindowLong (hwndPage, DWL_MSGRESULT, PSNRET_NOERROR);

where hwndPage is the handle of the property sheet page. A page can keep
focus by returning PSNRET_INVALID_NOCHANGEPAGE in the return field.
Assuming a page has indicated that it's okay to lose focus, the page being
switched to receives a PSN_SETACTIVE notification via a WM_NOTIFY message.
The page can then accept the focus or specify another page that should receive
the focus.

Closing a Property Sheet
When the user taps on the OK button, the property sheet procedure sends a
WM_NOTIFY with the notification code PSN_KILLACTIVE to the page currently
being displayed, followed by a WM_NOTIFY with the notification code
PSN_APPLY to each of the pages that have been created. Each page procedure
should save any data from the page controls when it receives the PSN_APPLY
notification code.

When the user clicks the Close button, a PSN_QUERYCANCEL notification
is sent to the page procedure of the page currently being displayed. All this
notification requires is that the page procedure return TRUE to prevent the close
or FALSE to allow the close. A further notification, PSN_RESET, is then sent to all
the pages that have been created, indicating that the property sheet is about to
be destroyed.

Common Dialogs
In the early days of Windows, it was a rite of passage for a Windows developer
to write his or her own File Open dialog box. A File Open dialog box is com
plex-it must display a list of the possible files from a specific directory, allow
file navigation, and return a fully justified filename back to the application.
While it was great for programmers to swap stories about how they struggled
with their unique implementation of a File Open dialog, it was hard on the

Chapter 6 Dialog Boxes and Property Sheets 315

users. Users had to learn a different file open interface for every Windows
application.

Windows now provides a set of common dialog boxes that perform typi
cal functions, such as selecting a filename to open or save or picking a color.
These standard dialog boxes (called common dialogs) serve two purposes.
First, common dialogs lift from developers the burden of having to create these
dialog boxes from scratch. Second, and just as important, common dialogs pro
vide a common interface to the user across different applications. (These days,
Windows programmers swap horror stories about learning COM.)

Windows CE provides four common dialogs: File Open, Save As, Print,
and Choose Color. Common dialogs, such as Find, Choose Font, and Page
Setup, that are available under other versions of Windows aren't supported
under Windows CE. The other advantage of the common dialogs is that they
have a customized look for each platform while retaining the same program
ming interface. This makes it easy to use, say, the File Open dialog on the
Pocket PC, the Smartphone, and embedded versions of Windows CE because the
dialog box has the same interface on both systems, even though the look of
the dialog box is vastly different on the different platforms. Figure 6-2 shows the
File Open dialog on an embedded Windows CE system; Figure 6-3 shows the File
Open dialog box on the Pocket PC.

Open

~\

!!lame: IYPB: 1All Documents ("', "')

x

~·OK X

Figure 6-2 The File Open dialog on an embedded Windows CE system

316 Part I Windows Programming Basics

Open

Fl:Jkler:)All Folders ~) !illlii~
Type:)Al Doruments (*.*) ~I

Figure 6-3 The File Open dialog on a Pocket PC

Instead of showing you how to use the common dialogs here, I'll let the
next example program, DlgDemo, show you. That program demonstrates all
four supported common dialog boxes.

The DlgDemo Example Program
The DlgDemo program demonstrates basic dialog boxes, modeless dialog
boxes, property sheets, and common dialogs. When you start DlgDemo, it dis
plays a window that shows the WM_ COMMAND and WM_NOTIFY messages
sent by the various controls in the dialogs, similar to the right side of the Ctl
View window. The different dialogs can be opened using the various menu
items. Figure 6-4 shows the Dialog Demo window with the property sheet dia
log displayed.

The basic dialog box is a simple "about box" launched by selecting the
Help About menu. The property sheet is launched by selecting the File Property
Sheet menu. The property sheet dialog contains five pages corresponding to
the different windows in the CtlView example. The common dialog boxes are
launched from the File Open, File Save, File Color, and File Print menu items.
The DlgDemo source code is shown in Listing 6-1.

Chapter 6 Dialog Boxes and Property Sheets 317

x

Figure 6-4 The Dialog Demo window

Dig Demo.re
II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==

#include "windows.h"
#include "DlgDemo.h"
#include "commctrl .h"

II Program-specific stuff

11--
II Icons and bitmaps
II
ID_ICON ICON "DlgDemo.ico"
IOI BTNICON ICON "btnicon.ico"
statbmp B !TMAP "statbmp.bmp"

Listing 6-1 The DlgDemo program

II
II
II

Program icon
Bitmap used in owner-draw button
Bitmap used in static window

(continued)

318 Part I Windows Programming Basics

listing 6-1 (continued)

II Menu,< the RC d.ata resol!rce i.s needed by the menu b.a r
/J
ID:...MEN.U RCDATA MOVEABLE PURE
BEGIN

ID_MENlJ, 2,
-2, 100, TBSTATLENABLE!l, TBSTY.LE_DROPDOWN I TBSTYLE_AlJTOS IZE. 5 ,0, 0,
-2, un. TBSTATE_ENABLEO, TBSTYLE_QROPDOWNITBSTYLE_AUTOSIZE.3,0,l

END
ID_MENll MENU D!SCARDABLE
B ECiI N

IDM_OPEN
IDM_SAVE

IDl·LCOLOR
lDM_PRI NT

IDM:...SHOWPROPSHEET
IOM_SJ-{OWMODELESS

foc:_RAo.ror. .. s .. (is. a0, i2.
ws_r ABSTO~ 1 ws""GROUP

Chapter 6 Dialog Boxes and Property Sheets 319

AUTORADIOBUTTON "Auto radio button 2",
IDC_RADI02, 5, 75, 80, 12

5. 30. 30. PUSHBUTTON

END

IDC_OWNRDRAW, 95,
BS_OWNERDRAW

ID_EDITPAGE DIALOG discardable 0, 0, 80, 80
CAPTION "Edit"
BEGIN

EDITTEXT

EDITTEXT

EDITTEXT

END

IDC_SINGLELINE, 5, 5, 70, 12,
WS_TABSTOP

IDC_MULTILINE, 5, 20, 70, 40,
WS_TABSTOP I ES_MULTILINE

IDG_PASSBOX. 5, 65, 70, 12,
WS_TABSTOP I ES_PASSWORD

ID_LISTPAGE DIALOG discardable 0, 0, 125, 80
CAPTION "List"
BEGIN

COMBO BOX

LISTBOX

LISTBOX

END

I DC_COMBOBOX, 5, 5, 70, 60,
WS_TABSTOP I CBS_DROPDOWN

IDC_SNGLELIST. 5, 20, 50, 60,
WS_TABSTOP

IDC_MULTILIST, 60, 20, 50, 60,
WS_TABSTOP I LBS_EXTENDEDSEL

ID_STATPAGE DIALOG discardable 0, 0, 130, 80
CAPTION "Static"
BEGIN

END

LTEXT "Left text",
RTEXT "Right text",
CTEXT "Center text".

I CON ID I_BTN I CON
CONTROL "statbmp",

ID_SCROLLPAGE DIALOG discardable 0,
CAPTION "Scroll"
BEGIN

SCROLLBAR

SCROLLBAR

END

IDG_LEFTTEXT, 5, 5, 70, 20
IDC_RIGHTTEXT, 5, 30, 70, 20
IDC_CENTERTEXT, 5, 55, 70, 20,

WS_BORDER
IDC_ICONCTL, 95, 5, 32, 32
IDC_BITMAPCTL, "static", SS_BITMAP,

95. 40. 32. 32

0, 60, 80

IDC_LRSCROLL, 5,
WS_TABSTOP

5, 70, 12.

IDC_UDSCROLL, 80, 5, 12, 70,
WS_TABSTOP I SBS_VERT

(continued)

320 Part I Windows Programming Basics

Listing 6-1 (continued)

llc----------------•--•---------------------------------C-------~-----~-
/1 Clear list; mqdeless dialog box template.

II
Clearbox DIALOG discardable 60, 10, 70, 3'0

STYLE ws_PoPuP 1 ws_nsrnlE 1 ws_CAPnoN 1 ws_sYSMENU .L OS_MODALFRAME
CAPTION "Cl ear"

BEGIN
DEFPUSHBUTTON "Clear Lfstbox"

IDD_CLEAR, 5. 5, 60, 20

END

/f•------------•-------•--•-----------------~---••7----C-------~-----C--
f f. About box dialog box tempiate

II
aboutbox DIALOG discardabl~ 10, 10, 132, 40
STYLE. WS_POPUP I WS_VISIBLE I WLCAPTION I .W5-SYSMENU I .05-CEfltER I

DS...:.MODALFRAME

CAPTION "About"
BEGIN

ICON IO_!CON -1. 5; 5. 0, 0

LTEXT "DlgDemo - Written for the.book Programming Wfndows \
·CE Copyright ~001 Douglas ~oling" · ·

-1. 28, 5, 100, 30
END

DlgDemo.h
//================================.,;=============>==,;,====================
II Header file

//
l! Written. for the book Programming Windows CE
11 Copyright (C) 2003 .Douglas Bo 1 i ng

,. '. ,. . , '" ..
I /======:::=;==::;:::=,==========;:::==~-:--:-======::;:~====...:_::-.==.==~:=::====~ ======::zc=:::;====::;=::;i;·:;:.:,
fl Returns nymber of elements
/tdefi ne dim(x) (si zeof(x) I si ze0f(.X[0]))

11--•-~------•--------------C-C-•--·~·--·---~--•--•--------~-~------•---
• II Generic defines and data types

II
struct decodeUlNT {

UINTCode:.

LRESliLT <*Fxn)(HWNO, UlNT; WPARAM, LPARAM');
} ;

stru9t decodeCMo.{

UINTCode;

LRESULT (*Fxn)(HWNO, WORD, HWND. WORD);

}:

ll Str:Uct.u.re associates.
If .messages

/ l with a ftrnctio:n.

/l Structure associate~

11 menu. IDs with a

II fonction.

Chapter 6 Dialog Boxes and Property Sheets 321

11--
11 Generic defines used by application
#define I D(_CMDBAR 1
#define IDC_RPTLIST 2
#define ID_ICON 10
#define ID_MENU

#define IDM_OPEN
#define IDM_SAVE

11

100
101

#define IDM_COLOR 102
#define IDM_PRINT 103
#define IDM_SHOWPROPSHEET 104
#define IDM_SHOWMODELESS 105
#define IDM_EXIT 106
#define IDM_ABOUT 110
#define IDl_BTNICON 120

II Identifiers for the property page resources
#define ID_BTNPAGE 50
#define ID_EDITPAGE 51
#define ID_L!STPAGE 52
#define ID_STATPAGE 53
#define ID_SCROLLPAGE 54

#define IDC_PUSHBTN 200
#define IDC_CHKBOX 201
#define IDC_ACHKBOX 202
#define IDC_A3STBOX 203
#define IDC_RAD!Ol 204
#define IDC_RADI02 205
#define IDC_OWNRDRAW 206

#define IDC_SINGLELINE
#define
#define

IDC_MULTILINE
JD(_PASSBOX

#define IDC_COMBOBOX

210
211
212

220
#define IDC_SNGLELIST 221
#define IDC_MULTILIST
#define IDC_LEFTTEXT
#define
#define
#define
#define

JD(_RIGHTTEXT
rnc_c ENTE RT EXT
roc_rcoNcn
JD(_B ITMAPCTL

#define IDC_LRSCROLL

222
230
231
232
233
234

240
#define IDC_UDSCROLL 241

II Command bar ID
II ID for report list box
II Icon resource ID
II Main menu resource ID

II Menu item IDs

II Button defines

11 Edit defines

II List box defines

II Static defines

II Scroll bar defines

(continued)

322 Part I Windows Programming Basics

Listing 6-1 (continued)

· typedef struct {
TCHAR *PSzlabel::
DWORD. Yi Not ifrcati qn; . ; .

} NOTELABELS, *PNQTELABELS;
I/- - -- -·. •-.- - • •.-.. -.· '.·- - - ·-·- "-. ~- ·.····•·. ~ - -- -·• •·- --· -·-- • --'··· - ~ .• • '.·- • -~---'.• •.•
Ii Function prqtotypes ·
71·· ·. . .

HWND Initinstance: CHHfSTANCE,
··int Termfnstaric~ '<HINS'f~NCE,
ll window procedures
L,RESULT CALLBACK Mai nWndPro.c
I I Message handlers. .
LRESULT DoCreateMa.i n c HWND;. UlNL .
LRESULT DoCommandMatn CHWNO'. UINT..
LRES4.LT .o·oA(idlineMai n {HW:NQ,'

Chapter 6 Dialog Boxes and Property Sheets 323

DlgDemo.cpp
II==
II DlgDemo - Dialog box demonstration
II
II Written for the book Programming Windows CE
JI Copyright CC) 2003 Douglas Boling
II==
#include <windows.h> JI For all that Windows stuff
#include <commctrl .h> II Command bar includes
#include <commdlg.h> II Common dialog box includes
#include <prsht.h> II Property sheet includes

#include "DlgDemo.h" JI Program-specific stuff
#if definedCWIN32_PLATFORM_PSPC)
#include <aygshell .h> II Add Pocket PC includes
#pragma comment(lib. "aygshell" II Link Pocket PC lib for menu bar
fiend if
11--
11 Global data
II
const TCHAR szAppName[] =TEXT ("DlgDemo");
HINSTANCE hinst; // Program instance handle
HWND g_hwndMlDlg = 0; // Handle to modeless dialog box

HINSTANCE hLib = 0; // Handle to CommDlg lib
typedef BOOL (APIENTRY* LFCHDOSECOLORPROC) CLPCHOOSECOLOR);

#ifndef WIN32_PLATFORM_PSPC
typedef BOOL CAPIENTRY* LFPAGESETUPDLG)(LPPAGESETUPDLGW);
LFPAGESETUPDLG lpfnPrintDlg = 0: // Ptr to print common dialog fn
fjel se
typedef BOOL CAPIENTRY* LFPRINTDLG) (LPPRINTDLG lppsdl:
LFPRINTDLG lpfnPrintDlg = 0: // Ptr to print common dialog fn
fiend if
LFCHOOSECOLORPROC lpfnChooseColor = 0; // Ptr to color common dialog fn

JI Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[J = {

WM_CREATE, DoCreateMain,

} :

WM_COMMANO. DoCommandMain,
MYMSG_ADDLINE, DoAddLineMain,
WM_DESTROY, DoDestroyMain,

(continued)

324 Part I Windows Programming Basics

Listing 6-1 (continued)

H Command 111ess~ge di spat th for. MainWi .ndo.wProc
const strµct dec9d.eCMD MainCqmmand!1;ems[] = {

. · JoM.:oPt:N:: P?Mai.nCommandOpen. ·

} ;

II

··. l'DM:....SAVE, DoMainCommandSave,
.. IOMjHOWPROPSHEET, DoMa 1 nComman~ShowProp.
IDM;;..SHOWf'.10grLESS; · DoMai nCommarldko.d~less. ·
lDMiCOLOR •. 'DoMai. hCotnrria ndCo l or,
IDM_pRHH, · DoMai nCommandPri nt,
IDM_EXIT. DoMainComma.ndExit,
IDM_ABOUT, DoMainCommandAbout,

II Labels for WM_NOTIFY notifications
II
NOTELABELS nlPropPage[] ={{TEXT ("PSN_SETACTIVE "), CPSN_FIRST-0)}.

{TE:XT ("PSN_KILLACTIVE "), (PSN_FIRST-1)}.

} ;

{TEXT C"PSN_APPLY "), CPSN_FIRST-2)}.
{TEXT ("PSN_RESH "), CPSN_FIRST-3)},
{TEXT C"PSN_HASHELP · "), CPSN_FIRST-4)}.
{TEXT ("PSN_HELP "), CPSN:...FIRST-5)}.
{TEXT ("PSN_WIZBACK "), CPSN_FIRST-6)}.
{TEXT ("PSN_WIZNEXT "), (PSN_FIRST-7)}.
{TEXT ("PSN_WIZFINlSH "), CPSN_FIRST-8)}.
{TEXT ("PSN_QUERYCANCEL"). (PSN .. JI RST-9)}.

fot nPropPageSize = dimCnlPropPage);

If Labels .for the property.pages
TC HAR *SZPagesn = {TEXT ("Btn ").

} ;

TEXT ("Edit"),
TEXT ("List"),
TEXT {"Stat''.),

. TEXT (''Serl").

//.Program entry point
./I
HWNO hwrldMain:

int WINAPI WinM.ain CHlNSTANCE hrnstarlce, HINSTANCE hPr~vinstance,
LPWSTR 1 pCmdL ine, .int nCmdShowJ f

MS.G nis,g; ·
~nt ·re ;. 0· '> •. ,

I I Ini ti.a.Ii ze application. .·
hwndMa1n = Tn1tinstance Chinstance', lpCmdLine, nCmdShow) ~
if (hwndMa in == 0). return 0Xl0;

Chapter 6 Dialog Boxes and Property Sheets 325

II Application message loop
while (GetMessage C&msg, NULL, 0, 0)) {

II If modeless dialog box is created, let it have
II the first crack at the message.
if ((g_hwndMlDlg == 0) I [

(!IsDialogMessage (g_hwndMlDlg, &msg))) {
TranslateMessage C&msg):
DispatchMessage (&msg);

II Instance cleanup
return Terminstance Chinstance. msg.wParam);

11--
11 Initinstance - Instance initialization
II
HWND Initinstance (HINSTANCE hlnstance, LPWSTR lpCmdLine,

int nCmdShowl {
HWND hWnd;
WNDCLASS we;

II Save program instance handle in global variable.
hinst = hinstance;

#if defined(WIN32_PLATFORM_PSPC)
II If Pocket PC, allow only one instance of the application.
hWnd = FindWindow (szAppName, NULL);
if (hWnd) {

SetForegroundWindow ((HWND)(((DWORDlhWnd) [0x01));
return 0;

#endif
.II Register application main window class.
we.style = 0: II Window style
wc.lpfnWndProc MainWndProc; II Callback function
wc.cbClsExtra = 0; II Extra class data
wc.cbWndExtra = 0; II Extra window data
wc.hinstance = hinstance; II Owner handle
wc.hicon = NULL,· II Application icon
wc.hCursor = LoadCursor (NULL, IDC_ARROWl:ll Default cursor
wc.hbrBackground = CHBRUSH) GetStockObject CWHITE_BRUSH);
wc.lpszMenuName = NULL; II Menu name
wc.lpszClassName = szAppName; II Window class name

if (RegisterClass <&we) == 0) return 0:

(continued)

326 Part I Windows Programming Basics

Listing 6-1 (continued)

(LFPAGESETU.P.DLG)GetProc,4.ddress (hlib.,

#end if
}

II Create main window.

TEXT (~'P:age.Setui>Dl gW" H:

hWnd = Createwindow (szAppName, TEXT (''Dh}o.g Demo~')., WS_VISIBLE,
CW....USEDEFAULT, CW:USEDEFAVLf, CW_USEOEFAUL T,
'cl'LUSEDEFAULT~ NULL; NULL, hlnstance. NULL):

II Return ·fail code if wi.ndow hot created.
if (.t.IsWi.ndow (hWnd)) return 0:

II Standard show and.update calls
ShowWindow (hWnd, nCmdShow):
UpdateWi n.dow (hWnd):
return hWnd:

//c-------------------
1/ Termlnstance • program cleanup
fl
int Termlnstance CH1NSTANCt hinstance,,

}

ifChLib)
Free Library.

return nDef.Rci ··

II Message•hanctli ng 'pr'Ocedures for MafoWfrftlo~ it ,

II~ - - -·-.- ~.~-·--- • • - ~-'·- • ·. •- - -- - •·· --

IN'f.1,.
ll
j;

II message.
·11
for (i = 0: 1 < dimCMainMess.ages>: 1++> {

Chapter 6 Dialog Boxes and Property Sheets 327

if CwMsg == MainMessages[iJ.Code)
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, lParam):

}

return DefWindowProc (hWnd, wMsg, wParam, lParaml:

11--
11 DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
HWND hwndChil d:
INT i, nHeight = 0:
LPCREATESTRUCT lpcs:
HMENU hMenu:

#if defined(WIN32_PLATFORM_PSPC) && (_WIN32_WCE >= 300)
SHMENUBARINFO mbi: II For Pocket PC, create
memsetC&mbi. 0, sizeof(SHMENUBARINFQ)); II menu bar so that we
mbi.cbSize = sizeofCSHMENUBARINFOl: II have a sip button
mbi.hwndParent = hWnd:
mbi.nToolBarid = ID_MENU:
mbi .hinstRes = hlnst:
SHCreateMenuBar(&mbi):
hMenu = (HMENU)SendMessage(mbi.hwndMB. SHCMBM_GETSUBMENU, 0, 100);

/fe l se
II Create a command bar. Add a menu and an exit button.
HWND hwndCB = CommandBar_Create Chlnst, hWnd, IDC_CMDBARl:
CommandBar_InsertMenubar ChwndCB, hlnst, ID_MENU, 0):
CommandBar__AddAdornments (hwndCB, 0, 0):
nHeight = CommandBar_Height (hwndCB):
hMenu = CommandBar_GetMenu (hwndCB, 0);

#end if
II Convert lParam to pointer to create structure.
lpcs = (LPCREATESTRUCT) lParam:

II See color and print functions not found: disable menus.
if CllpfnChooseColor)

EnableMenuitem ChMenu, IDM_COLOR, MF_BYCOMMAND MF _GRAYED):
if (!lpfnPrintDlg)

EnableMenultem (hMenu, IDM_PRI NT, MF_BYCOMMAND MF_GRAYED);
II
II Create report window. Size it so that it fits under
II the command bar and fills the remaining client area.
II
hwndChild = CreateWindowEx (0, TEXT ("listbox"),

TEXT (""), WS_VISIBLE I WS_CHILD I WS_VSCROLL I

(continued)

328 Part I Windows Programming Basics

Listing 6·1 (continued)

}

LB5-USETABSJOPS I LBS_NOINTEGRALHEIGHT. 0.
nHeight, lpcs->cx, lpcs•>cy - nHeight,
hWnd,. (HMENU)IOC_RPTLIST, lpcs->hinstance, NULL);

II Destroy frame if wi.ndow.not created.

if C!IsWindow 1hwndChildll {
DestroyWindow (hWnd):
return 0;

}

II Initialize tab stops for display list box.
i = 8;
SendMessage (hwndChild., LB_SETTABSTOPS, 1. CLPARAMJ&i);
.return 0;

11-----------------------"----~----~---------------~---·------~--~-----~
II DoCommandMain; Process WM_COMMAND message forwindOw.

II
LRESULT DoCollimandMain tHWND hWnd, UINTwMsg, WPARAM wParam,

}

LPARAM lParamJ {
WORD idltem, wNotifyCode;

HWND hwndCtl:
INT i;

II Parse the parameters.
id Item = (WORD) LOWORD (wParam);

wNotifyCode = (WORD) HIWORD (wParaml:
hwndCtl = CHWND) 1Param:

II Call routine to handle control me.ssage.
for Ct = 0; i < dim(MainCommanditems); 1++) {

if (idltem == MainCrimmanditemsiiJ.C~deJ

}

return (*Mai nCommanditems.[i].FxnJ.<~wnd; .· iditem 1 hwn<!Ctl,
wt-lot i fyCode J;

return 0;

Ii-·--~•--··~--~; __ • -•-----•---------•-•--•••-•--•-~-·-~--"------------
// DoAddUneMain • Process MY.MSG_ADDL!NE message for window.
II
LRESULTOoAddLineMain (HWND hWnd, UINT WMsg, WPARAM wParam,

LPARAM lParam) {

TCHAR szOut[128l:

INT .1:

// I.f nothing in wParam. Just fill 1i1 spaces;
ff (wParam == -1) {

Chapter 6 Dialog Boxes and Property Sheets 329

II Print message only.
lstrcpy (szOut, (LPTSTRllParam);

else {
II If no ID val, ignore that field.
if (LOWORD (wParam) == 0xffff)

else

II Print prop page and message.
wsprintf (szOut, TEXT ("%s \t %s"),

szPages[HIWORD (wParam) - ID_BTNPAGE].
(LPTSTR)lParam);

II Print property page, control ID, and message.
wsprintf (szOut, TEXT ("%s \tid:%3d \t%s"),

szPages[HIWORD (wParaml - ID_BTNPAGE],
LOWORD (wParam), (LPTSTR)l Pa ram);

SendDlgitemMessage (hWnd, IDC_RPTLIST, LB_ADDSTRING, 0,
(LPARAM)(LPCTSTR)szOutl;

if (i != LB_ERRl
SendDlgitemMessage (hWnd, IDC_RPTLIST, LB_SETTOPINDEX, i,

(LPARAM)(LPCTSTR)szOut);
return 0;

11--
11 DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LP A RAM 1 Pa ram l {
PostQuitMessage (0);
return 0;

II==
II Command handler routines
11--
11 DoMainCommandOpen - Process File Open command
II
LPARAM DoMainCommandOpen (HWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCodel {
OPENFILENAME of;
TCHAR szFileName [MAX_PATH] = {0};
const LPTSTR pszOpenFilter =TEXT ("All Documents (•.•l\0•.•\0\0");
TCHAR sz0ut[l28];
INT re;

szFil eName[0] '\0'; II Initialize filename.
memset <&of, 0, sizeot (of)); II Initialize File Open structure.

(continued)

330 Part I Windows Programming Basics

Listing 6-1 (continued)

Chapter 6 Dialog Boxes and Property Sheets 331

CHOOSECOLOR cc:
static COLORREF cr[16]:
TCHAR sz0ut[128]:
INT re:

II Initialize color structure.
memset (&cc, 0, sizeof (cell:
memset (&er, 0, sizeof (crll:

cc.lStructSize = sizeof (eel:
cc.hwndOwner = hWnd;
cc.hinstance = hinst:
cc.rgbResult = RGB (0, 0, 0):
cc.lpCustColors =er:
cc.Flags= CC_ANYCOLOR:

re= (lpfnChooseColor) (&eel:
wsprintf (szOut, TEXT ("Choose Color returned: %x, color: %x"),

re. cc.rgbResultl;
SendMessage (hWnd, MYMSG_ADDLINE, -1, (LPARAM)szOutl:
return 0:

11--
11 DoMainCommandPrint - Process File Print command.
II
LPARAM DoMainCommandPrint (HWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCodel {
TCHAR sz0ut[128];
INT re:

#ifndef WIN32_PLATFORM_PSPC
PAGESETUPDLG psd;

II Initialize print structure.
memset (&psd, 0, sizeof (psdll:
psd.lStructSize = sizeof (psd):
psd.hwndOwner = hWnd:

re= (lpfnPrintDlgl (&psdl:
/tel se

PRINTDLG pd;
II Initialize print structure.
memset <&pd, 0, sizeof (pd)):

pd.cbStruct = sizeof (pd):
pd.hwndOwner = hWnd:
pd.dwFlags = PD_SELECTALLPAGES:

(continued)

332 Part I Windows Programming Basics

Listing 6-1 (continued)

re = tlpfoPrfl'ltJ>lgJ.,(&pd>: .• ...
4,lendif (I,• fi'nd~f ~:I~3¥~PLA TFORM_PSPC .. : ·, . ··. ·'

:wspr1 ntf (~·zO:i.:1t ;,• JEXl ~ "PrintQlg rgturne{!:
·. ··.•· ·· re; GetlastError{)) r · · ··

S¢n(jMessa-9e ... c~wn..ci. MY.MSG...ADDl,JN.E, /,1,
r,eturn. 0:

1 l PropSheetProc> ~ Function . call e,d. when Property eyheit• created
II
1lif de:fin.ed CWI N3LPLATfORM_PSPCJ &.&.. C:WlN32~WCE >= 300J
int ·CALLBACK PropShee.tP~ocCHWND hWnliDlg, 'uINr uMsg;' LPARAM l Pa ram) {

. if <uMsg == PSCQ_INifIALIZ.ED) {
1 /' Get tab contre1 .• ·. .· ·.·.· ·
.HWNO flwndfabs ... ·GetDlghem.Chwndo_lg~ 0x3020); ...
'owORD dwStyle = GetWindowtong (hwndTabs. GWLSTYLE);
setw; ndoWl:orig (hwndT.abs •. GWL:.'.STYH. dwStyie 1 · rcsj!oTTOM>;

. . } ·else fr C u~sg = pSCS~GETVER~lONl •
• J •

.return C.0MGTL3?_VER$ION: ' ..

. · I/ Add a hyperl ink 1 t•fre below· f he tab/ •.
else. if (uMsg ==:'. PSCS.,.GETLI.NKTEXJ) { .. ·.

Jstrcpy ULPTSTR)lP~ru(TEXT C"Latinchthecalcu1~tor .by'!)
. ·· ·.··. ·. '.TEXf(!'hpp:fn9 -<f1 le:\.\wtnd,ow~\)cal c.ex~{h~.1,,e}>. ") > i

return 0:
} .

} . . : '.

4fena1.f I /defi ned(W·IN32-PlATFORM_P~PC) &.& cwlN32.:)lCE >=)00)
. '

......... ,,.. "'-..... , ;.."' '"I-..:,>'< ,.."';;. .. ,:..;... .. ,lo<!

11 Do Ma 1 ~CommandShowProp " P~oces~ sho\(p~op~~t./ s heat command; i I ,

LPARAM ··00MainCommandShowProp(HWND-hWn1f,. WORD. iditem,
·.· .· .. · · · .· ~ORO.\i/Notif,YCodetJ

PROPSHHTPAGE psp[5J;
PROPSHEETHEADER psh: ...
INT f:

II Zero all the property page strµctvres;
· memset C&psp, .0,. stzeo:f (psp)'): . · ·
II Fill in default values in property page s'tructu.res .
. for.(i =0: 1 <'dim{psp):l++Jti .. ···.· .. _·.··.

pspC;:l.dws1ze = s1-zeo:f (PROPSHEETPAGE);
p~p[fJ.dwFlags = PSP_OEFAULT;

Chapter 6 Dialog Boxes and Property Sheets 333

psp[i].hlnstance = hlnst;
psp[i].lParam = (LPARAMlhWnd;

II Set the dialog box templates for each page.
psp[0].pszTemplate MAKEINTRESOURCE (ID_BTNPAGE);
psp[l].pszTemplate MAKEINTRESOURCE (ID_EDITPAGE);
psp[2].pszTemplate MAKEINTRESOURCE (ID_LISTPAGEJ;
psp[3].pszTemplate
psp[4].pszTemplate

MAKEINTRESOURCE (ID_STATPAGE);
MAKEINTRESOURCE (ID_SCROLLPAGE);

II Set the dialog
psp[0J.pfnDlgProc
psp[lJ.pfnDlgProc
psp[2].pfnDlgProc
psp[3].pfnDlgProc
psp[4J.pfnDlgProc

box procedures for each page.
BtnDlgProc;
EditDlgProc;
ListDlgProc;
StaticDlgProc;
ScrollDlgProc;

II Initialize property sheet structure.
psh.dwSize = sizeof (PROPSHEETHEADER);
psh.dwFlags = PSH_PROPSHEETPAGE;
psh.hwndParent = hWnd;
psh.hlnstance = hlnst;
psh.pszCaption =TEXT ("Property Sheet Demo");
psh.nPages = dim(psp);
psh.nStartPage = 0;
psh.ppsp = psp;
II On Pocket PC, make property sheets full screen.

#if defined(WIN32_PLATFORM_PSPC) && (_WIN32_WCE >= 300)
psh.pfnCallback = PropSheetProc;
psh.dwFlags J= PSH_USECALLBACK I PSH_MAXIMIZE;

#else
psh.pfnCallback = 0;

#endif lldefined(W!N32_PLATFORM_PSPC) && (_WIN32_WCE >= 300)
II Create and display property sheet.
PropertySheet <&psh);
return 0;

11--
11 DoMainCommandModelessDlg - Process the File Modeless menu command.
II
LPARAM DoMainCommandModeless(HWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) (

II Create dialog box only if not already created.
if (g_hwndMlDlg == 0)

II Use CreateDialog to create modeless dialog box.

(continued)

334 Part I Windows Programming Basics

Listing 6-1 (continued)

// DoMa HiCo.mrnaridAbout - Process the Help About menu command.
II
LPARAMDoMalnCIJtntnandAbout(HWNO bWnd, .WOR[)·. i ditem,

WORD WNotifyCode) {

!/============"'===="'"=="'"'"'"'==;;===============;:===""'==============="'=====
//Mode less ClearList dialog box procedure
fl
BOOL ··CALLBACK ModelessDlgProc

return FALSE;
}

list box to clear
<GetWindow (hWnq.

IDC_RPTLlST,
LB_RESETCONTENT,

IF Modeless dtalog boxes can't use .EndDi ijlog.
Des trGYWindow . (h.Wnd) :
g.::.hWndMTOli) ... = 0.;

Chapter 6 Dialog Boxes and Property Sheets 335

II==
II About dialog box procedure
II
BOOL CALLBACK AboutDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
switch (wMsg) {

}

case WM_COMMAND:
switch (LOWORD (wParam))

case IDOK:

break;

case IDCANCEL:
EndDialog ChWnd, 0);
return TRUE;

return FALSE:

BtnDlg.cpp
II==
II BtnDlg - Button dialog box window code ~

II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
#include <windows.h>
#include <prsht.h>
#include "DlgDemo.h"

extern HINSTANCE hinst:

II For all that Windows stuff
II Property sheet includes
II Program-specific stuff

LRESULT DrawButton (HWND hWnd, LPDRAWITEMSTRUCT pdi):
11--
11 Global data
II
II Identification strings for various WM_COMMAND notifications
NOTELABELS nlBtn[] ={{TEXT ("BN_CLICKED "), 0},

{TEXT
{TEXT
{TEXT
{TEXT
{TEXT
{TEXT
{TEXT

} :

("BN_PAINT ").

("BN_HILITE "),

("BN_UNHILITE"),
("BN_DISABLE "),
("BN_DOUBLECLICKED"),
("BN_SETFOCUS "),
("BN_KILLFOCUS"l.

1}.

2}.

3}.

4}.

5}.

6}.

7}

(continued)

336 Part I Windows Programming Basics

Listing 6-1 (continued)

extern NOTELABELS nlPropPage[J;

extern int nPropPageSize;

If Handle for icon used in owner-draw icon

HICON h1con = 0;
ll=======~===~====~=~=~====~====~;====-====;=~==~==7~===~#~==~~==~====~=

If BtnDlgProc - Button page dialog box procedure

If
BOOL CALLBACK BtnDl gProc (HWND hW.nd .• UINT wMsg, .WPA.RAM. wParam.

LPARAM lPa ram) {
TCHAR sz0ut[128];

HWND hwndMain;
INT 1;

switch CwMsg) (

case WM_INITDIALOG:

II The generic parameter contains the.

I I top- level window han.dl e ~
hwndMai n =· ntwND) ((LPPROPSHEETPAGE>lPa ram) ->l Pa ram:

I I Save the window handle 1 n the window structure.
SetWl ndowLong (hWnd, .DWL,.:.USE~; (LONG)hwndMain);

11 Load fcon for owner-draw window.

hi.con = Load.Icon (hlnst, MAKEINTRESOURCE ODLBTNICON}).;

II We need to set the initial st.ate of the radio buttons.
CheckRadioButtcin (hWnd. IDC...:RADIOL IDC...:RADI02, IDC..:RAD !01):

·.return. TRUE:

II · .
II Reflect WM_COMMAND messages to Jnain ·wfndow.

II
case WM_C.OMMAND:

lI Since the check box is not an auto check box, the button

II has to be set manually,
if ((LOWORD (wParam) == lDC...:CHKBOX) .&&

<HIWORD (wParam) ;::= BN_<:UCKED)l t
II Get the current state .• complement, and Set.
i = SendDlgitemMessa.ge {hWnd:, ... IDC...:CHKBOX. Btt.,:GETCHECK~ · 0. 0)< . . ' ...

if (1'}

SendDlglt.emMe5'$age (hWnd,. IDQ..CflKBOX, BM.:.SETCHECK,
0. 0); .. ·.

else
SendDlgitemMessage (hWrid. IDC:;.CHKBOX. BM:;.SETCHECK,

II

Chapter 6 Dialog Boxes and Property Sheets 337

1. 0);

II Get the handle of the main window from the user word.
hwndMain = CHWND) GetWindowLong (hWnd, DWL_USER);

II Look up button notification.
lstrcpy (szOut, TEXT ("WM_COMMAND: "));
for Ci = 0; i < dim(nlBtn); i++) {

if CHIWORD CwParaml == nlBtn[iJ.wNotification)
lstrcat CszOut, nlBtn[i].pszLabel);
break;

if Ci == dim(nlBtn))
wsprintf (szOut, TEXT ("WM_COMMAND notification: %x"),

HIWORD CwParam));

SendMessage (hwndMain, MYMSG_ADDLINE,

return TRUE;

MAKEWPARAM (LOWORD (wParaml,ID_BTNPAGE),
CLPARAMlszOut);

II Reflect notify message.
II
case WM_NOTI FY:

II Get the handle of the main window from the user word.
hwndMain = CHWND) GetWindowLong (hWnd, DWL_USER);

II Look up notify message.
for Ci = 0; i < nPropPageSize; i++) {

if (((NMHDR *)lParamJ->code ==
nlPropPage[i].wNotification) {

lstrcpy (szOut, nlPropPage[i].pszLabel);
break;

}

if Ci == nPropPageSize)
wsprintf (szOut, TEXT ("Notify code:%d"),

CCNMHDR *)lParam)->code);
SendMessage (hwndMain, MYMSG_ADDLINE,

MAKEWPARAM (-1,ID_BTNPAGE), (LPARAMlszOut);

return FALSE; II Return false to force default processing.

(continued)

338 Part I Windows Programming Basics

Listing 6-1 (continued)

~PEN hPe'nsha'dow.' hPenLtght. ·
POJNT ptOut[J), ptI ndJ: ·
HaRUsH' t'Br. 'holdBr.i
TCHAR ~:fOut[;J;28J(.
HWND hwndMai n;
LOGPEN Jpen ;

II Get the handle of. the main window from the user word;,
hwndMai n = CHWND)GetWi ndowlong (hWnd. DWL_USER):

11 Refl e.c:t the messages t.o the report .window.
wsprintf (szOut. TEXT ("WM_:DRAWITEM Act:%X State:%x"),

pdi ~>itemActiOn, pdi->ftemState);

SendMessage· thwrrd.Ma i·n, MYMSG_ADDLINE,
MAKEWPARAM Cpdi->CtlID; ID.:.:;BTNPAGE};
t LPARAM)sZOutl:

1.: ' ',

/ICreat'e pens for drawing~
Tp¢n .• 1QpJi!Style PS'...$0LJ[l; ..
lpen~ ldpnW1dfh~x = 3:
lpen.lopnWidth;y "'3;
lpen.lop.nCo1or = GetSysColor (COLOR...3DSHAD0W):
hPenShadow = CreatePenlndi rect C&-lpen l:

Chapter 6 Dialog Boxes and Property Sheets 339

II Draw a rectangle with a thick outside border to start the
II frame drawing.
hOldPen = (HPEN)SelectObject (pdi->hDC. hPenShadow):
hOldBr = CHBRUSH)SelectObject Cpdi->hDC. hBr):
Rectangle (pdi->hDC. pdi->rcitem.left, pdi->rcitem.top,

pdi->rcitem.right, pdi->rcitem.bottom):

II Draw the upper left inside line.
ptin[0J.x = pdi->rcitem.left + l;
ptin[0].y = pdi->rcitem.bottom - 3:
ptin[lJ.x = pdi->rcitem.left + 1:
ptin[lJ.y = pdi->rcitem.top + 1:
ptin[2J.x = pdi->rcitem.right - 3:
ptin[2].y = pdi->rcitem.top + 1;

II Select a pen to draw shadow or light side of button.
if (pdi->itemState & ODS_SELECTED) {

SelectObject Cpdi->hDC, hPenDkShadow>:
} else {

SelectObject (pdi->hDC, hPenLight):
}

Polyline (pdi->hDC, ptin, 3):

II If selected, also draw a bright line inside the lower
II right corner.
if (pdi->itemState & ODS_SELECTED) {

SelectObject (pdi->hDC, hPenLight):
ptin[lJ.x = pdi->rcitem.right - 3:
ptin[lJ.y = pdi->rcitem.bottom - 3;
Polyline (pdi->hDC, ptln, 3):

}

II Now draw the black outside line on either the upper left or the
II lower right corner.
ptOut[0].x = pdi->rcitem.left:
pt0ut[0].y = pdi->rcitem.bottom - 1;
pt0ut[2J.x = pdi->rcitem.right - l;
pt0ut[2].y = pdi->rcitem.top;
SelectObject (pdi->hDC. hPenDkShadow):
if (pdi->itemState & ODS_SELECTED) {

}

ptOut[l].x = pdi->rcitem.left;
ptO~t[l].y.= pdi->rcltem.top:

else {
ptOuftlJ.~= pdi->rcitem.right - 1:
ptOut[lLY = pdi->rcltem.bottom - 1:

Polyline (pdi•>hDC, ptOut. 3);

(continued)

340 Part I Windows Programming Basics

Listing 6-1 (continued)

Chapter 6 Dialog Boxes and Property Sheets 341

extern HINSTANCE hinst;
11--
11 Global data
II
II Identification strings for various WM_COMMAND notifications
NOTELABELS nlEdit[] = {{TEXT ("EN_SETFOCUS "), 0x0100},

{TEXT ("EN_KILLFOCUS"J, 0x0200},
{TEXT ("EN_CHANGE "), 0x0300},
{TEXT ("EN_UPDATE "), 0x0400},
{TEXT ("EN_ERRSPACE "), 0x0500},
{TEXT ("EN_MAXTEXT "), 0x0501},
{TEXT ("EN_HSCROLL "), 0x0601},
{TEXT ("EN_VSCROLL "), 0x0602},

} ;

extern NOTE LABELS nlPropPage[J;
extern int nPropPageSize;
II==
II EditDlgProc - Edit box page dialog box procedure
II
BOOL CALLBACK EditDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParaml {
TCHAR sz0ut[128];
HWND hwndMain;
INT i;

switch (wMsg) {

case WM_INITDIALOG:

II

II The generic parameter contains the
II top-level window handle.
hwndMain = (HWNDJ((LPPROPSHEETPAGEJlParamJ->lParam;
II Save the window handle in the window structure.
SetWindowLong (hWnd, DWL_USER, (LONG)hwndMain);
return TRUE;

II Reflect WM_COMMAND messages to main window.
II
case WM_COMMAND:

II Get the handle of the main window from the user word.
hwndMain = CHWND) GetWindowLong (hWnd, DWL__USERJ;

II Look up button notification.
lstrcpy (szOut, TEXT ("WM_COMMAND: "));
for (i = 0; i < dim(nl Edit); i++) {

if (HIWORD (wParam) == nlEdit[i].wNotification)
lstrcat (szOut, nlEdit[iJ.pszlabel);

(continued)

342 Part I Windows Programming Basics

Listing 6-1 (continued)

return TRU:E;

II
I I Reflect notifY, mes sage.
II . . .

. ca$e WM_..N,OTI FY:
II Ge.t the h.andle of the main windpw from ffie u_ser wO:rd.
hwndMa i Ii = (HW.ND l GetWtndowLong (hWnd, DWLUSER) .:

II Le>ok up· notify message.
for Ci = .0: l < nPrap.PageS,ze: 1++) { · ·

}
}

if(.((NMHDR.*llParam>~>code == . .·
nJ PrapPage[i J;wNati ficat1 an>

lstrcpy <szout, nlPropPage[t.J.psztabeH:
b.reak.:.

if {i == riPropPageSize)
wsprintf <szdut, TEXT ("Notify ccufo:%d''),

· · < (NMHDR ~).1Par!lrnl~~code):

(hwnd~ain i MYMS!LADOLIN'E) •. : .
MAKEWPARAM (-1,ID_EDITPAGE),. (LPARAM)szOut);

FALSE: //Return. fals~ tb force.default processing,

FALSE:

Li~dDtg;~pp
·:, :. '(:/'~!~'1*=·~~=-~-;;;:.~·=====:==:==;:;,;,.; .. ·.~:=~===::;:~=====:f:i=~=~}~~==:i:=~~,:::;;;:~':""==-,~·==~~=~=~e=z====.
II ListDlg - List box dialog window code
II
Fl Writ.ten for the book.Programming Windows CE

' !/.Copyright (C) 2003 Douglas Baling

11 ======="'"'"'"'"'"'"'"'"'=================================="""'.-:.:========="'"'"'"'"'

Chapter 6 Dialog Boxes and Property Sheets 343

#include <windows.h>
#include <prsht.h>
#include "DlgDemo.h"

extern HINSTANCE hinst;

II For all that Windows stuff
II Property sheet includes
II Program-specific stuff

11--

II Global data
II
NOTELABELS nlList[] {{TEXT l"LBN_ERRSPACE "I. (-2)}.

{TEXT ("LBN_SELCHANGE"J, 1}.

{TEXT ("LBN_DBLCLK ") , 2}.
{TEXT C"LBN_SELCANCEL"), 3}.

{TEXT C"LBN_SETFOCUS "), 4}.

{TEXT C"LBN_KILLFOCUS"), 5}.

} ;

NOTE LABELS nlCombo[J {{TEXT ("CBN_ERRSPACE "). (-1)}.

{TEXT ("CBN_SELCHANGE ..) . 1}.
{TEXT C"CBN_DBLCLK "). 2}.
{TEXT ("CBN_SETFOCUS "). 3}.

{TEXT C"CBN_KILLFOCUS "). 4}.

{TEXT ("CBN_EDITCHANGE "). 5}.

{TEXT C"CBN_EDITUPDATE "). 6}.

{TEXT C"CBN_DROPDOWN ..) . 7}.

{TEXT ("CBN_CLOSEUP "). 8}.
{TEXT C"CBN_SELENDOK ..) . 9}.

{TEXT ("CBN_SELENDCANCEL"J, 10}.
} ;

extern NOTELABELS nlPropPage[J;
extern int nPropPageSize;
II==
II ListDlgProc - List box page dialog box procedure
II
BOOL CALLBACK ListDlgProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParamJ {
TCHAR sz0ut[128];
HWND hwndMain;
INT i;

switch (wMsg) {

case WM_INITDIALOG:
II The generic parameter contains the
II top-level window handle.
hwndMain = CHWNDICCLPPROPSHEETPAGEJlParamJ->lParam;
II Save the window handle in the window structure.
SetWindowLong ChWnd, DWL_USER, CLONG)hwndMainl;

(continued)

344 Part I Windows Programming Basics

listing 6-1 (continued)

II

JI Fill the list and combo boxes.
for (i. = 0; i < 20; i++) {

}

wsprintf (szOut, TEXT ("Item ld"l. i);
SendDl gitemMessage (hWnd. I DG_SNGLELIST, LB_ADDSTRING,

0, (LPARAM).s.zOut) ;

SendDl gitemMessage (hWnd, IDG_MUL Tl LIST, LB..:.ADDSTRlNG,
0, CLPARAM)szOut);

SendDlgitemMessage (hWnd, IDCCOMBOBOX, CB_ADDSTRING,
0, CLPARAM)szOutl:

II Provide default selection for the combo box.
SendDlgitemMessage (hWnd, IDLCOMBOBOX, CB_SETCURSEL, 0, 0J:
return TRUE:

II Reflect WM_COMMAND messages to main window.
II
cas.e Wl'LCOMMAND:

// Get the handle of the main window from the user w.ord.
hwndMa in = CHWND) GetWi ndowlong JhWnd, DWLUSERJ.;

II Report the WM...cCOMMANDmessages.
l strcpy (szOut. TtXT ("WM_COMMAND: ") l;
if (LOWORD {wParam) == IDC_COMBOBOX) {

for Ci = 0: i < dim(nlCombo); i++) {
if (HIWORD (wParam) == nlCombo[i].wNotification) {

lstrcat (szOut, nlCombo[i].pszLabell:
break;

}

if (i == dimCnlComboJJ
wspri ntf (szOut,

} else {

TEXT ("WM_COMMAND notification: %x"J,
HIWORD (wParamJ);

for Ci = 0; i < dim(nlList); i++) {

}

if CH1WORD CwParam) == nlList[iJ.wNotiffcationl {
lstrcat (szOut, .n.1 List[i] .pszlabel);
break;

if (i == dim(nlList))
wsprintf (szOut,

TEXT ("WM_COMMAND notification: %x"),
HIWORO (wParam));

Chapter 6 Dialog Boxes and Property Sheets 345

II

SendMessage (hwndMain, MYMSG_ADDLINE,

return TRUE:

MAKEWPARAM (LOWORD (wParam),lD_LISTPAGEl.
(LPARAMlszOut):

II Reflect notify message.
II
case WM_NOTIFY:

II Get the handle of the main window from the user word.
hwndMain = (HWND) GetWindowLong ChWnd, DWL_USER):

II Look up notify message.
for Ci = 0: i < nPropPageSize: i++) {

if (((NMHDR *)lParam)->code ==
nlPropPage[iJ.wNotification)

lstrcpy (szOut, nlPropPage[i].pszLabel):
break:

}

if Ci == nPropPageSize)
wsprintf (szOut, TEXT ("Notify code:%d"),

((NMHDR *)lParaml->code):

SendMessage ChwndMain, MYMSG_ADDLINE,
MAKEWPARAM (-1,ID_LISTPAGEl,
(LPARAM)szOut):

return FALSE: II Return false to force default processing.

return FALSE:

StaticDlg.cpp
II==
II StaticDlg - Static control dialog box window code
II
II Written for the book Programming Windows CE
II Copyright <C> 2003 Douglas Boling
II==
#include <windows.h>
#include <prsht.h>
#include "DlgDemo.h"

extern HINSTANCE hinst:

II For all that Windows stuff
II Property sheet includes
II Program-specific stuff

11--------------------------------~------------··----------·------------

(continued)

346 Part I Windows Programming Basics

Listing 6-1 (continued)

Chapter 6 Dialog Boxes and Property Sheets 347

II

SendMessage ChwndMain, MYMSG_ADDLINE,

return TRUE;

MAKEWPARAM CLOWORD CwParam),ID_STATPAGE).
CLP A RAM J szOut J;

II Reflect notify message.
II
case WM_NOTIFY:

II Get the handle of the main window from the user word.
hwndMain = CHWND) GetWindowLong ChWnd. DWL_USER);

II Look up notify message.
for Ci = 0; i < nPropPageSize; i++J {

if CCCNMHDR *llParamJ->code ==
nlPropPage[iJ.wNotificationJ {

lstrcpy CszOut, nlPropPage[i].pszLabel);
break;

if Ci == nPropPageSizeJ
wsprintf CszOut, TEXT ("Notify code:%d"J,

CCNMHDR *)lParamJ->code);

SendMessage (hwndMain, MYMSG_ADDLINE,
MAKEWPARAM (-1,ID_STATPAGEJ, CLPARAM)szOutJ;

return FALSE; II Return false to force default processing.

return FALSE;

ScrollDlg.cpp
II==
II ScrollDlg - Scroll bar dialog box window code
II
II Written for the book Programming Windows CE
II Copyright (CJ 2003 Douglas Boling
II==
#include <windows.h>
#include <prsht.h>
#include dDlgDemo.h"

extern HINSTANCE hinst;

II For all that Windows stuff
II Property sheet includes
II Program-specific stuff

(continued)

348 Part I Windows Programming Basics

Listing 6·1 (continued)

1/----------~-----·- ---
// Global data
II
II Identification strings for various WM_xSCROLL notifications
NOTELABELS nlVScroll[] = {{TEXT ("SB_LINEUP "), 0},

{TEXT ("SB_LINEDOWN "), l},
{TEXT ("SB_PAGEUP "), 2),
{TEXT ("SB_PAGEDOWN "), 3},

} ;

{TEXT
{TEXT
{TEXT
{TEXT
{TEXT

NOTELABELS nlHScroll[] {{TEXT
{TEXT
{TEXT
{TEXT
{TEXT
{TEXT
{TEXT
{TEXT
{TEXT

} :
extern NOTELABELS nlPropPage[];
extern int nPropPageSize;

("SB_THUMBPOSITION"),
("SB_THUMBTRACK "),

("SB_TOP "),

("SB_BOTTOM n)'

("SB_ENDSCROLL "),

("SB_LINELEFT fl)'

("SB_LINERIGHT "),

("SB_PAGELEFT "),

("SB_PAGERIGHT "),

("SB_THUMBPOSITION"),
("SB_THUMBTRACK ")'

("SB_LEFT 0),

("SB_RIGHT "),

("SB_ENDSCROLL "),

4}.

5}.

6}.

7}.

8}.

0}.

l},

2}.

3}.

4}.

5}.

6}.

7}.

8}.

II===~==

II ScrollDlgProc - Scroll bar page dialog box.procedure
II
BOOL CALLBACK ScrollDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam.

TCHAR sz0ut[128];
SCROLLINFO si;
HWND hwndMain;
INTi,sPos;

switch <wMsg) {

case WM_lNITDIALOG:

LPARAM 1 Pa ram) {

II The generic parameter contains
fl the top-level window handle.
hwndMain = (HWND)((LPPROPSHEETPAGE)lParam)->lParam;
II Save the window handle in the window structure.
SetWindowLong (hWnd, DWL_USER, (LONG)hwndMain);
return TRUE:

Chapter 6 Dialog Boxes and Property Sheets 349

II
II Reflect WM_COMMAND messages to main window.
II
case WM_VSCROLL:
case WM_HSCROLL:

II Get the handle of the main window from the user word.
hwndMain = (HWNO) GetWindowlong (hWnd, DWL_USER);

II Update the report window.
II Determine whether from horizontal or vertical scroll bar.
if (GetDlgitem (hWnd, 101) == (HWNDllParam) {

for (i = 0; i < dim(nl VScrol l); i++) {
if (LOWORD (wParam) == nlVScroll[i].wNotification)

lstrcpy (szOut, nlVScroll[i].pszlabel);
break;

if (i == di m (n 1 VS c r o 11))

else

wsprintf (szOut, TEXT ("notification: %x"),
HIWORD (wParam));

for (i = 0; i < dim(nlHScroll); i++) {
if CLOWORD (wParam) == nlHScroll[i].wNotification)

lstrcpy (szOut, nlHScroll[i].pszlabel);
break;

if Ci == dim(nlHScroll))
wsprintf (szOut, TEXT ("notification: %x"),

HIWORD (wParam));

SendMessage (hwndMain, MYMSG_ADDLINE,
MAKEWPARAM (-1. ID_SCROLLPAGE), (LP A RAM) szOut);

II Get scroll bar position.
si .cbSize = si zeof Csi);
si .fMask = SIF_POS;
GetScrol l Info (CHWNDll Pa ram, SB_CTL, &si);
sPos = si .nPos;

II Act on the scroll code.
switch (LOWORD (wParam)) {
case SB_L!NEUP: 11 Al so SB_LINELEFT

sPos -= 2;
break;

(continued)

350 Part I Windows Programming Basics

Listing 6-1 (continued)

nlPropPagt:)(iJ. wNot.1'ffcat1 on)
l~trcpy (szOut, nlPropPa9e[i] .pszLa.belJ;
break;

}

Chapter 6 Dialog Boxes and Property Sheets 351

if Ci == nPropPageSize)
wsprintf (szOut. TEXT ("Notify code:%d"),

((NMHDR *)lParam)->code);

SendMessage (hwndMain, MYMSG_ADDLINE,
MAKEWPARAM (-1, ID_SCROLLPAGE), (LPARAM)szOut);

return FALSE; // Return false to force default processing.

return FALSE;

The dialog box procedures for each of the property pages report all
WM_ COMMAND and WM_N011FY messages back to the main window, where
they're displayed in a list box contained in the main window. The property
page dialog box procedures mirror the child window procedures of the CtlView
example, the differences being that the page procedures don't have to create
their controls and that they field the WM_IMTDIALOG message to initialize the
controls. The page procedures also use the technique of storing information in
their window structures-in this case, the window handle of the main window
of the example. This is necessary because the parent window of the pages is
the property sheet, not the main window. The window handle is conveniently
accessible during the WM_INITDIALOG message because it's loaded into the
user-definable parameter in the PROPSHEETPAGE structure by the main win
dow when the property sheet is created. Each page procedure copies the
parameter from the PROPSHEETPAGE structure into the DWL_USER field of the
window structure available to all dialog box procedures. When other messages
are handled, the handle is then queried using GetWindowLong. The page pro
cedures also field the WM_N011FY message so that they, too, can be reflected
back to the main window.

As with CtlView, the best way to learn from DlgDemo is to run the pro
gram and watch the different WM_ COMMAND and WM_N011FY messages that
are sent by the controls and the property sheet. Opening the property sheet and
switching between the pages results in a flood of WM_NOTIFY messages
informing the individual pages of what's happening. It's also interesting to note
that when the OK button is pressed on the property sheet, the PSN_APPLY mes
sages are sent only to property pages that have been displayed.

The menu handlers that display the Print and Color common dialogs work
with a bit of a twist. Because some Windows CE systems don't support these
dialogs, DlgDemo can't call the functions directly. That would result in these
two functions being implicitly linked at run time. On systems that did not sup
port these functions, Windows CE wouldn't be able to resolve the implicit links

352 Part I Windows Programming Basics

to all the functions in the program, and therefore the program wouldn't be able
to load. So instead of calling the functions directly, you explicitly link these
functions in InitApp by loading the common dialog DLL using LoadLibrary and
getting pointers to the functions using GetProcAddress. If DlgDemo is running
on a system that doesn't support one of the functions, the GetProcAddress func
tion fails and returns 0 for the function pointer. In OnCreateMain, a check is
made to see whether these function pointers are 0, and if so, the Print and Color
menu items are disabled. In the menu handler functions DoMainCommand
Color and DoMainCommandPrint, the function pointers returned by GetProc
Address are used to call the functions. This extra effort isn't necessary if you
know your program will run only on a system that supports a specific set of
functions, but every once in a while, this technique comes in handy.

The Pocket PC handles the common print dialog differently. Although the
Pocket PC exports the function PageSetupDialog, the function prototype isn't
included in the SDK, and the function returns immediately when called.

One other detail is how this program adapts to the Pocket PC shell. Dlg
Demo creates a menu bar instead of a command bar when compiled for the
Pocket PC. This provides a place for the menu as well as exposing the Soft Key
board button.

In addition, on Pocket PCs, the property sheet expands to fill the full
screen, and its tabs are located on the bottom of the sheet instead of the top. I
made these adaptations to demonstrate how to comply with the Pocket PC user
interface guidelines. To place the tabs on the bottom of the sheet and provide
the hyperlink text below the pages, DlgDemo provides the property sheet call
back function shown here:

int CALLBACK PropSheetProc(HWND hwndDlg, UINT uMsg, LPARAM lParam) {

if (uMsg == PSCB_INITIALIZED) {
II Get tab control
HWND hwndTabs = GetDlgitem (hwndDlg, 0x3020);

DWORD dwStyle = GetWindowLong (hwndTabs, GWL_STYLE);
SetWindowLong ChwndTabs, GWL_STYLE, dwStyle I TCS_BOTTOM);

else if (uMsg == PSCB_GETVERSION)
return 'COMCTL32_VERSION;

return 1;

The source of this rather strange code comes from the MFC source code
provided with the Pocket PC SDK. During the PSCB_INIT1ALIZE notification, the
handle of the Tab control of the property sheet is queried using the predefined

Chapter 6 Dialog Boxes and Property Sheets 353

control ID Ox3020. The style bits of the Tab control are then modified to have
the control place the tabs on the bottom instead of the top by setting the
TCS_B01TOM style flag.

The function also handles the PSCB_GETLINKTEXT notification and
returns the following text:

TEXT ("Launch the calculator by tapping <file:calc.exe{here}>."l

The hyperlink is enclosed in angle brackets<>. The text displayed for the link
is enclosed in curly braces {). When the hyperlink is tapped, the Pocket PC will
launch calc.exe. The hyperlink can also be a data file such as bookl.pxl or
memo.pwd.

Dialog boxes and property sheets are quite often the only user interface a
Windows CE program has. Although sometimes complex in implementation,
the help Windows CE provides in creating and maintaining dialog boxes and
property sheets reduces the workload on the program to some extent.

This chapter also marks the end of the introductory section, "Windows
Programming Basics." In these first six chapters, I've talked about fundamental
Windows programming while also using a basic Windows CE application to
introduce the concepts of the system message queue, windows, and messages.
I've given you an overview of how to paint text and graphics in a window and
how to query the user for input. Finally, I talked about the windows hierarchy,
controls, common controls, and dialog boxes. For the remainder of the book, I
move from description of the elements common to both Windows CE and the
desktop versions of Windows to the unique nature of Windows CE program
ming. It's time to turn to the operating system itself. Over the next four chapters,
I'll cover memory management, files, databases, and processes and threads.
These chapters are aimed at the core of the Windows CE operating system.

Part II

Windows CE
Programming

Memory Management
If you have an overriding concern when you're writing a Microsoft Windows CE
program, it should be dealing with memory. A Windows CE machine might
have only 4 MB of RAM. This is a tiny amount compared with that of a standard
personal computer, which typically needs 128 MB or more. In fact, memory on
a Windows CE machine is so scarce that it's sometimes necessary to write pro
grams that conserve memory even to the point of sacrificing the overall perfor
mance of the application.

Fortunately, although the amount of memory is small in a Windows CE
system, the functions available for managing that memory are fairly complete.
Windows CE implements almost the full Win32 memory management API avail
able under Microsoft Windows XP and Microsoft Windows Me. Windows CE
supports virtual memory allocations, local and separate heaps, and even
memory-mapped files.

Like Windows XP, Windows CE supports a 32-bit flat address space with
memory protection between applications. But because Windows CE was
designed for different environments, its underlying memory architecture is dif
ferent from that for Windows XP. These differences can affect how you design
a Windows CE application. In this chapter, I'll describe the basic memory archi
tecture of Windows CE. I'll also cover the different types of memory allocation
available to Windows CE programs and how to use each memory type to min
imize your application's memory footprint.

Memory Basics
As with all computers, systems running Windows CE have both ROM (read only
memory) and RAM (random access memory). Under Windows CE, however,

357

358 Part II Windows CE Programming

both ROM and RAM are used somewhat differently than they are in a standard
personal computer.

About RAM
The RAM in a Windows CE system is divided into two areas: program memory,
also known as the system heap, and object store. The object store can be con
sidered something like a permanent virtual RAM disk. Unlike the old virtual
RAM disks on a PC, the object store retains the files stored in it even if the sys
tem is turned off.1 This arrangement is the reason Windows CE systems such as
the Pocket PC typically have a main battery and a backup battery. When the
user replaces the main batteries, the backup battery's job is to provide power to
the RAM to retain the files in the object store. Even when the user hits the reset
button, the Windows CE kernel starts up looking for a previously created object
store in RAM and uses that store if it finds one.

The other area of the RAM is devoted to the program memory. Program
memory is used like the RAM in personal computers. It stores the heaps and
stacks for the applications that are running. The boundary between the object
store and the program RAM is movable. The user can move the dividing line
between object store and program RAM using the System Control Panel applet.
Under low-memory conditions, the system will ask the user for permission to
take some object store RAM to use as program RAM to satisfy an application's
demand for more RAM.

About ROM
In a personal computer, the ROM is used to store the BIOS (basic input/output
system) and is typically 64-128 KB. In a Windows CE system, the ROM can
range from 4 to 32 MB and stores the entire operating system, as well as the
applications that are bundled with the system. In this sense, the ROM in a Win
dows CE system is like a small read-only hard disk.

In a Windows CE system, ROM.:based programs can be designated as Exe
cute in Place (XIP). That is, they're executed directly from the ROM instead of
being· foaded into program RAM and then executed. This capability is a huge
advantage for small systems in two ways. The fact that the code is executed
directly from ROM means that the program code doesn't take up valuable pro
gram RAM. Also, since the program doesn't have to be copied into RAM before
it's launched, it takes less time to start an application. Programs that aren't in

1. On mobile systems such as the Pocket PC, the system is never really off. When the user presses the
Off button, the system enters a very low power suspended state.

Chapter 7 Memory Management 359

ROM but are contained in the object store or on a Flash memory storage card
aren't executed in place; they're copied into the RAM and executed.

About Virtual Memory
Windows CE implements a virtual memory management system. In a virtual
memory system, applications deal with virtual memory, which is a separate,
imaginary address space that might not relate to the physical memory address
space that's implemented by the hardware. The operating system uses the
memory management unit of the microprocessor to translate virtual addresses
to physical addresses in real time.

The key advantage of a virtual memory system can be seen in the com
plexity of the MS-DOS address space. Once demand for RAM exceeded the 640-
KB limit of the original PC design, programmers had to deal with schemes such
as expanded and extended memory to increase the available RAM. OS/2 l .x and
Windows 3.0 replaced these schemes with a segment-based virtual memory
system. Applications using virtual memory have no idea (nor should they care)
where the actual physical memory resides, only that the memory is available. In
these systems, the virtual memory was implemented in segments, resizable
blocks of memory that ranged from 16 bytes to 64 KB in size. The 64-KB limit
wasn't due to the segments themselves, but to the 16-bit nature of the Intel
80286 that was the basis for the segmented virtual memory system in Windows
3.x and OS/2 l.x.

Paged Memory
The Intel 80386 supported segments larger than 64 KB, but when Microsoft and
IBM began the design for OS/2 2.0, they chose to use a different virtual memory
system, also supported by the 386, known as a paged virtual memory system. In
a paged memory system, the smallest unit of memory the microprocessor man
ages is the page. For Windows NT and OS/2 2.0, the pages were set to 386's
default page size of 4096 bytes. When an application accesses a page, the
microprocessor translates the virtual address of the page to a physical page in
ROM or RAM. A page can also be tagged so that accessing the page causes an
exception. The operating system then determines whether the virtual page is
valid and, if so, maps a physical page of memory to the virtual page.

Windows CE implements a paged virtual memory management system
similar to the other Win32 operating systems. Under Windows CE, a page is
either 1024 or 4096 bytes, depending on the microprocessor. This is a change
from Windows XP, where the page size is 4096 bytes for Intel microprocessors.
For the CPUs currently supported by Windows CE, the 486, the Intel Strong
ARM, and the Hitachi SH4 use 4096-byte pages. The NEC 4100 uses a 4-KB page

360 Part II Windows CE Programming

size in Windows CE 3.0 but a 1-KB page size in earlier versions of the operating
system. The Hitachi SH3 uses 4096-byte pages in Windows CE 4.1, but it uses
1024-byte pages in earlier versions of Windows CE.

Virtual pages can be in one of three states: free, reseroed, or committed. A
free page is, as it sounds, free and available to be allocated. A reserved page is
a page that has been reserved so that its virtual address can't be allocated by the
operating system or another thread in the process. A reserved page can't be
used elsewhere, but it also can't be used by the application because it isn't
mapped to physical memory. To be mapped, a page must be committed. A
committed page has been reserved by an application and has been directly
mapped to a physical address.

All that I've just explained is old hat to experienced Win32 programmers.
The important thing for the Windows CE programmer is to learn how Windows
CE changes the equation. While Windows CE implements most of the same
memory API set of its bigger Win32 cousins, the underlying architecture of Win
dows CE does impact programs. Before diving into the memory architecture of
a Windows CE application, let's look at a few of the functions that provide
information about the global state of the system memory.

Querying the System Memory
If an application knows the current memory state of the system, it can better
manage the available resources. Windows CE implements both the Win32 Get
Systemlnfo and GlobalMemoryStatus functions. The GetSystemlnfo function is
prototyped below:

VOID GetSystemlnfo CLPSYSTEM_INFO lpSystemlnfo);

It's passed a pointer to a SYSTEM_INFO structure defined as

typedef struct {
WORD wProcessorArchitecture;
WORD wReserved;
DWORD dwPageSize;
LPVOID lpMinimumApplicationAddress;
LPVOID lpMaximumApplicationAddress;
DWORD dwActiveProcessorMask;
DWORD dwNumberOfProcessors;
DWORD dwProcessorType;
DWORD dwAllocationGranularity;
WORD wProcessorLevel;
WORD wProcessorRevision;

SYSTEM_INFO;

The wProcessorArchitecture field identifies the type of microprocessor in the
system. The value should be compared with the known constants defined in

Chapter 7 Memory Management 361

Winnt.h, such as PROCESSOR_ARCHflECTURE_INTEL. Windows CE has extended
these constants to include PROCESSOR_ARCHITECTURE_ARM,
PROCESSOR_ARCHflECTURE_SHx, and others. Additional processor constants are
added as net CPUs are supported by any of the Win32 operating systems. Skipping
a few fields, the dwProcessorType field further narrows the microprocessor from a
family to a specific microprocessor. Constants for the Hitachi SHx architecture
include PROCESSOR_HITACHI_SH3 and PROCESSOR_HITACHI_SH4. The last
two fields, wProcessorLevel and wProcessorRevision, further refine the CPU type.
The wProcessorLevel field is similar to the dwProcessorType field in that it defines
the specific microprocessor within a family. The dwProcessorRevision field tells
you the model and the stepping level of the chip.

The dwPageSize field specifies the page size, in bytes, of the microproces
sor. Knowing this value comes in handy when you're dealing directly with the
virtual memory API, which I talk about shortly. The lpMinimumApplication
Address and lpMaximumApplicationAddress fields specify the minimum and
maximum virtual address available to the application. The dwActiveProcessor
Mask and dwNumberOJProcessors fields are used in Windows XP for systems
that support more than one microprocessor. Since Windows CE supports only
one microprocessor, you can ignore these fields. The dwAllocationGranularity
field specifies the boundaries to which virtual memory regions are rounded.
Like Windows XP, Windows CE rounds virtual regions to 64-KB boundaries.

A second handy function for determining the system memory state is this:

void GlobalMemoryStatus(LPMEMORYSTATUS lpmst);

which returns a MEMORYSTATVS structure defined as

typedef struct {
DWORD dwlength;
DWORD dwMemoryload;
DWORD dwTotalPhys;
DWORD dwAvailPhys;
DWORD dwTotalPageFile;
DWORD dwAvailPageFile;
DWORD dwTotalVirtual;
DWORD dwAvailVirtual;

MEMORY STATUS;

The dwLength field must be initialized by the application before the call is
made to GlobalMemoryStatus. The dwMemoryLoad field is of dubious value; it
makes available a general loading parameter that's supposed to indicate the cur
rent memory use in the system. The dwTotalPhys and dwAvailPhys fields indicate
how many pages of RAM are assigned to the program RAM and how many are
available. These values don't include RAM assigned to the object store.

362 Part II Windows CE Programming

The dwTotalPageFile and dwAvailPageFile fields are used under Windows
XP and Windows Me to indicate the current status of the paging file. Because
paging files aren't supported under Windows CE, these fields are always 0. The
dwTotalVirtual and dwAvailVirtual fields indicate the total and available num
ber of virtual memory pages accessible to the application.

The information returned by GlobalMemoryStatus provides confirmation
of the memory architecture of Windows CE. Making this call on an HP iPaq
Pocket PC with 32 MB of RAM returned the following values:

dwMemoryload 0xl8 (24)
dwTotalPhys 0x011ac000 (18,530,304)
dwAvailPhys 0x00B66000 (11,952,128)
dwTotalPageFile 0
dwAvai 1 Page File 0
dwTotalVirtual 0x02000000 (33,554,432)
dwAvailVirtual 0x01e10000 (31,522,816)

The dwTotalPhys field indicates that of the 32 MB of RAM in the system, I
have dedicated 18.S MB to the program RAM, of which 12 MB is still free. Note
that there's no way for an application, using this call, to know that another 14
MB of RAM has been dedicated to the object store. To determine the amount of
RAM dedicated to the object store, use the function GetStorelnformation.

The dwTotalPageFile and dwAvailPageFile fields are 0, indicating no sup
port for a paging file under Windows CE. The dwTotalVirtual field is interesting
because it shows the 32-MB limit on virtual memory that Windows CE enforces
on an application. Meanwhile, the dwAvailVirtual field indicates that in this
application little of that 32 MB of virtual memory is being used.

An Application's Address Space
Although similar to the layout of a Windows XP application, the application
address space of a Windows CE application has one huge difference that has an
impact on applications. Under Windows CE, an application is limited to the vir:
tual memory space avaifable in its 32-MB slot arid the 32-MB slot 1, which is
usecrToToad XIP:basedDtLs. While 32· MB·might seem like a fair amount of
space available to an application that might run on a system with only 4 MB of
RAM, Win32 application programmers, used to a 2-GB virtual address space,
need to keep in mind the limited virtual address space available to a Windows
CE application.

Figure 7-1 shows the layout of an application's 64-MB virtual address
space, including the upper 32 MB used for XIP DLLs.

03FF FFFF COREDLL.DLL

Other XIP DLLs

' •

XIP DLL space

Chapter 7 Memory Management 363

1-DLL space
(constant for
all applications)

0200 0000 l=========::t:
non-XIP DLLs

' ' • Free virtual space

Heap (reserved space)

Stack (reserved space)
1------------fi I-Application-specific

Resources space

Read/write data

Read-only data ..
' Code

00010000 •

0000 0000 reserved

Figure 7-1 Memory map of a Windows CE application

Notice that the application is mapped as a 64-KB region starting at
OxlOOOO. Remember, the lowest 64 KB of the address space for any application
is reserved by Windows. The image of the file contains the code along with the
static data segments and the resource segments. The actual code pages are not
typically loaded in when the application is launched. Instead, each page is
loaded on demand as the code in those pages is executed.

The read-only static data segment and the read/write static data areas typ
ically take only a few pages. Each of these segments is page aligned. Like the
code, these data segments are committed to RAM only as they're read or written

364 Part II Windows CE Programming

to by the application. The resources for the application are loaded into a sepa
rate set of pages. The resources are read only and are paged into the RAM only
as they're accessed by the application.

The application's stack is mapped above the resource segment. The stack
segment is easily recognized because the committed pages are at the end of the
reserved section, indicative of a stack that grows from higher addresses down.
If this application had more than one thread, more than one stack segment
would be reserved in the application's address space.

Following the stack is the local heap. The loader reserves a large number
of pages, on the order of hundreds of kilobytes, for the heap to grow but com
mits pages only as necessary to satisfy memory allocations from malloc, new, or
LocalAlloc calls. The remaining address space from the end of the reserved
pages for the local heap to the start of the non-XIP DLLs mapped into the
address space is free to be reserved and, if RAM permits, committed by the
application. Non-XIP DLLs, those that are not execute-in-place in the ROM, are
loaded into the application's address space starting at the 32-MB boundary in a
top-down fashion. Non-XIP DLLs include those DLLs that are stored com
pressed in the ROM. Compressed ROM files must be decompressed into and
executed from RAM when loaded.

The upper 32 MB of the application's address space is reserved for XIP
DLLs. Windows CE maps the code for the XIP DLLs into this space. Read/write
segments for these DLLs are loaded into the lower 32 MB of the application's
address space. Starting with Windows CE 4.2, resource-only DLLs loaded from
ROM are loaded outside the entire 64-MB application space. These DLLs are
loaded into the virtual memory space.

The Different Kinds of Memory Allocation
A Windows CE application has a number of different methods for allocating
memory. At the bottom of the memory-management food chain are the Virtu
alxxx functions that directly reserve, commit, and free virtual memory pages.
Next comes the heap APL Heaps are regions of reserved memory space man
aged by the system for the application. Heaps come in two flavors: the default
local heap automatically allocated when an application is started, and separate
heaps that can be manually created by the application. After the heap API is
static data-data blocks defined by the compiler and that are allocated automat
ically by the loader. Finally, we come to the stack, where an application stores
variables local to a function.

The one area of the Win32 memory API that Windows CE doesn't support
is the global heap. The global heap API, which includes calls such as Global-

Chapter 7 Memory Management 365

Alloc, GlobalFree, and GlobalRealloc, is therefore not present in Windows CE.
The global heap is really just a holdover from the Win16 days of Windows 3.x.
In Win32, the global and local heaps are quite similar. One unique use of global
memory, allocating memory for data in the clipboard, is handled by using the
local heap under Windows CE.

The key to minimizing memory use in Windows CE is choosing the proper
memory-allocation strategy that matches the memory-use patterns for a given
block of memory. I'll review each of these memory types and then describe
strategies for minimizing memory use in Windows CE applications.

Virtual Memory
Virtual memory is the most basic of the memory types. The system uses calls to
the virtual memory API to allocate memory for the other types of memory,
including heaps and stacks. The virtual memory API, including the VirtualAlloc,
VirtualFree, and VirtualReSize functions, directly manipulates virtual memory
pages in the application's virtual memory space. Pages can be reserved, com
mitted to physical memory, and freed using these functions.

Allocating Virtual Memory
Allocating and reserving virtual memory is accomplished using this function:

LPVOID VirtualAlloc CLPVOID lpAddress, DWORD dwSize,
DWORD flAllocationType,
DWORD flProtect);

The first parameter to VirtualAlloc is the virtual address of the region of
memory to allocate. The lpAddress parameter is used to identify the previously
reserved memory block when you use VirtualAlloc to commit a block of mem
ory previously reserved. If this parameter is NULL, the system determines where
to allocate the memory region, rounded to a 64-KB boundary. The second
parameter is dwSize, the size of the region to allocate or reserve. While this
parameter is specified in bytes, not pages, the system rounds the requested size
up to the next page boundary.

The flAllocationType parameter specifies the type of allocation. You can
specify a combination of the following flags: MEM_COMMIT,
MEM_AUTO_COMMIT, MEM_RESERVE, and MEM_TOP_DOWN. The
MEM_COMMIT flag allocates the memory to be used by the program.
MEM_RESERVE reserves the virtual address space to be later committed.
Reserved pages can't be accessed until another call is made to VirtualAlloc
specifying the region and using the MEM_COMMIT flag. The third flag,

366 Part II Windows CE Programming

MEM_TOP_DOWN, tells the system to map the memory at the highest permis
sible virtual address for the application.

The MEM_AUTO_COMMIT flag is unique to Windows CE and is quite
handy. When this flag is specified, the block of memory is reserved immedi
ately, but each page in the block will automatically be committed by the system
when it's accessed for the first time. This allows you to allocate large blocks of
virtual memory without burdening the system with the actual RAM allocation
until the instant each page is first used. The drawback to auto-commit memory
is that the physical RAM needed to back up a page might not be available when
the page is first accessed. In this case, the system will generate an exception.

VirtualAlloc can be used to reserve a large region of memory with subse
quent calls committing parts of the region or the entire region. Multiple calls to
commit the same region won't fail. This allows an application to reserve mem
ory and then blindly commit a page before it's written to. While this method
isn't particularly efficient, it does free the application from having to check the
state of a reserved page to see whether it's already committed before making
the call to commit the page.

The flProtect parameter specifies the access protection for the region
being allocated. The different flags available for this parameter are summarized
in the following list.

• PAGE_READONLY The region can be read. If an application
attempts to write to the pages in the region, an access violation will
occur.

• PAGE_READWRITE The region can be read from or written to by
the application.

• PAGE_EXECUTE The region contains code that can be executed
by the system. Attempts to read from or write to the region will result
in an access violation.

• PAGE_EXECUTE_READ The region can contain executable code,
and applications can also read from the region.

• PAGE_EXECUTE_READWRITE The region can contain execut
able code, and applications can read from and write to the region.

• PAGE_GUARD The first access to this region results in a
STATUS_GUARD_PAGE exception. This flag should be combined
with the other protection flags to indicate the access rights of the
region after the first access.

Chapter 7 Memory Management 367

• PAGE_NOACCESS Any access to the region results in an access
violation.

• PAGE_NOCACHE The RAM pages mapped to this region won't be
cached by the microprocessor.

The PAGE_GUARD and PAGE_NOCHACHE flags can be combined with
the other flags to further define the characteristics of a page. The PAGE_ GUARD
flag specifies a guard page, a page that generates a one-shot exception when
it's first accessed and then takes on the access rights that were specified when
the page was committed. The PAGE_NOCACHE flag prevents the memory that's
mapped to the virtual page from being cached by the microprocessor. This flag
is handy for device drivers that share memory blocks with devices using direct
memory access CDMA).

Regions vs. Pages
Before I go on to talk about the virtual memory API, I need to make a some
what subtle distinction. Virtual memory is reserved in regions that must align
on 64-KB boundaries. Pages within a region can then be committed page by
page. You can directly commit a page or a series of pages without first reserv
ing a region of pages, but the page, or series of pages, directly committed will
be aligned on a 64-KB boundary. For this reason, it's best to reserve blocks of
virtual memory in 64-KB chunks and then commit that page within the region
as needed.

With the limit of 32 MB of usable virtual memory space per process, this
leaves a maximum of 32 MB I 64 KB - 1= 511 virtua1 memory regions that can
be reserved before the system reports that it's out of memory. Take, for exam
ple, the following code fragment:

#define PAGESIZE 1024 // Assume we're on a 1-KB page machine
for (i = 0; i < 512: i++)

pMem[i] = VirtualAlloc (NULL, PAGESIZE, MEM_RESERVE I MEM_COMMIT,
PAGE_READWRITE);

This code attempts to allocate 512 one-page blocks of virtual memory. Even if
you have half a megabyte of RAM available in the system, VirtualAlloc will fail
before the loop completes because it will run out of virtual address space for
the application. This happens because each 1-KB block is allocated on a 64-KB
boundary. Since the code, stack, and local heap for an application must also be
mapped into the same 32-MB virtual address space, available virtual allocation
regions usually top out at about 475.

368 Part II Windows CE Programming

A better way to make 512 distinct virtual allocations is to do something
like this:

#define PAGESIZE 1024 II Assume we're on a 1-KB page machine.

II Reserve a region first.
pMemBase = VirtualAlloc (NULL, PAGESIZE * 512, MEM_RESERVE,

PAGE_NOACCESS);

for (i = 0; i < 512; i++)

pMem[i] = VirtualAlloc (pMemBase + (i*PAGESIZE), PAGESIZE,
MEM_COMMIT, PAGE_READWRITE);

This code first reserves a region; the pages are committed later. Because the
region was first reserved, the committed pages aren't rounded to 64-KB bound
aries, and so, if you have 512 KB of available memory in the system, the allo
cations will succeed.

Although the code I just showed you is a contrived example (there are
better ways to allocate 1-KB blocks than directly allocating virtual memory), it
does demonstrate a major difference (from other Windows systems) in the way
memory allocation works in Windows CE. In the desktop versions of Windows,
applications have a full 2-GB virtual address space with which to work. In Win
dows CE, however, a programmer should remain aware of the relatively small
32-MB virtual address per application.

Freeing Virtual Memory
You can decommit, or free, virtual memory by calling Virtua!Free. Decommit
ting a page unmaps the page from a physical page of RAM but keeps the page
or pages reserved. The function is prototyped as

BOOL Virtual Free (LPVOID lpAddress, DWORD dwSize,
DWORD dwFreeType);

The lpAddress parameter should contain a pointer to the virtual memory
region that's to be freed or decommitted. The dwSize parameter contains the
size, in bytes, of the region if the region is to be decommitted. If the region is
to be freed, this value must be 0. The dwFreeType parameter contains the flags
that specify the type of operation. The MEM_DECOMMIT flag specifies that the
region will be decommited but will remain reserved. The MEM_RELEASE flag
both decommits the region if the pages are committed and also frees the region.

All the pages in a region being freed by means of Virtua!Free must be in
the same state. That is, all the pages in the region to be freed must either be
committed or reserved. Virtua!Free fails if some of the pages in the region are
reserved while some are committed. To free a region with pages that are both

Chapter 7 Memory Management 369

reserved and committed, the committed pages should be decommitted first, and
then the entire region can be freed.

Changing and Querying Access Rights
You can modify the access rights of a region of virtual memory, initially speci
fied in VirtualAlloc, by calling VirtualProtect. This function can change the
access rights only on committed pages. The function is prototyped as

BOOL VirtualProtect (LPVOID lpAddress, DWORD dwSize,
DWORD flNewProtect. PDWORD lpflOldProtect);

The first two parameters, lpAddress and dwSize, specify the block and the
size of the region that the function acts on. The flNewProtect parameter contains
the new protection flags for the region. These flags are the same ones I men
tioned when I explained the VirtualAlloc function. The lpflOldProtect parame
ter should point to a DWORD that will receive the old protection flags of the
first page in the region.

The current protection rights of a region can be queried with a call to

DWORD VirtualQuery (LPCVOID lpAddress,
PMEMORY_BASIC_INFORMATION lpBuffer.
DWORD dwlength);

The lpAddress parameter contains the starting address of the region being
queried. The lpBu.ffer pointer points to a PMEMORY_BASIC_INFORMATION
structure that I'll talk about soon. The third parameter, dwLength, must contain
the size of the PMEMORY_BASIC_INFORMATJON structure.

The PMEMORY_BASIC_INFORMATION structure is defined as

typedef struct _MEMORY_BASIC_INFORMATION
PVOID BaseAddress;
PVOID AllocationBase;
DWORD AllocationProtect;
DWORD RegionSize;
DWORD State;
DWORD Protect;
DWORD Type;

MEMORY_BASIC_INFORMATION;

The first field of MEMORY_BASIC_INFORMATION, BaseAddress, is the
address passed to the VirtualQuery function. The AllocationBase field contains
the base address of the region when it was allocated using the VirtualAlloc func
tion. The AllocationProtect field contains the protection attributes for the region
when it was originally allocated. The RegionSize field contains the number of
bytes from the pointer passed to VirtualQuery to the end of series of pages that
have the same attributes. The State field contains the state-free, reserved, or

370 Part II Windows CE Programming

committed-of the pages in the region. The Protect field contains the current
protection flags for the region. Finally, the Type field contains the type of mem
ory in the region. This field can contain the flags MEM_PRIVATE, indicating that
the region contains private data for the application; MEM_MAPPED, indicating
that the region is mapped to a memory-mapped file; or MEM_IMAGE, indicating
that the region is mapped to an EXE or a DLL module.

The best way to understand the values returned by VirtualQuery is to look
at an example. Say an application uses VirtualAlloc to reserve 16,384 bytes (16
pages on a 1-KB page-size machine). The system reserves this 16-KB block at
address OxAOOOO. Later the application commits 9216 bytes (9 pages) starting
2048 bytes (2 pages) into the initial region. Figure 7-2 shows a diagram of this
scenario.

A2COO --1---..,....

1
j

\:~
i'"
i
!---- Pages later
L.... committed

Pages originally
reserved by
Virtua/Alloc

r- l
lpAddress value passed --+ ::::: _, -_·-.... r- ___ ..._
to Virtua/Query

1··"
AOOOO -'-----------'-

Figure 7-2 A region of reserved virtual memory that has nine pages
committed

If a call is made to VirtualQuery with the lpAddress pointer pointing 4
pages into the initial region (address OxAlOOO), the returned values would be
the following:

BaseAddress
AllocationBase
AllocationProtect
RegionSize
State
Protect
Type

0xA1000
0xA0000
PAGE_NOACCESS
0x1C00 (7,168 bytes or 7 pages)
MEM_COMMIT
PAGE_READWRITE
MEM_PRIVATE

Heaps

Chapter 7 Memory Management 371

The BaseAddress field contains the address passed to Virtua!Query,
OxAlOOO, 4096 bytes into the initial region. The AllocationBase field contains
the base address of the original region, while AllocationProtect contains
PAGE_NOACCESS, indicating that the region was originally reserved, not
directly committed. The RegionSize field contains the number of bytes from the
pointer passed to Virtua!Query, OxAlOOO to the end of the committed pages at
OxA2COO. The State and Protect fields contain the flags indicating the current
state of the pages. The Type field indicates that the region was allocated by the
application for its own use.

Clearly, allocating memory on a page basis is inefficient for most applications.
To optimize memory use, an application needs to be able to allocate and free
memory on a per byte, or at least a per 8-byte, basis. The system enables allo
cations of this size through heaps. Using heaps also protects an application
from having to deal with the differing page sizes of the microprocessors that
support Windows CE. An application can simply allocate a block in a heap, and
the system deals with the number of pages necessary for the allocation.

As I mentioned before, heaps are regions of reserved virtual memory
space managed by the system for the application. The system gives you a num
ber of functions that allow you to allocate and free blocks within the heap with
a granularity much smaller than a page. As memory is allocated by the applica
tion within a heap, the system automatically grows the size of the heap to fill
the request. As blocks in the heap are freed, the system looks to see if an entire
page is freed. If so, that page is decommitted.

Unlike Windows XP, Windows CE supports the allocation of only fixed
blocks in the heap. This simplifies the handling of blocks in the heap, but it can
lead to the heaps becoming fragmented over time as blocks are allocated and
freed. The result can be a heap being fairly empty but still requiring a large
number of virtual pages because the system can't reclaim a page from the heap
unless it's completely free.

Each application has a default, or local, heap created by the system when
the application is launched. Blocks of memory in the local heap can be allo
cated, freed, and resized using the Loca!Alloc, Loca!Free, and Loca!Realloc func
tions. An application can also create any number of separate heaps. These
heaps have the same properties as the local heap but are managed through a
separate set of Heapxxxx functions.

372 Part II Windows CE Programming

The Local Heap
By default, Windows CE initially reserves 192,512 bytes for the local heap but
commits the pages only as they are allocated. If the application allocates more
than the 188 KB in the local heap, the system allocates more space for the local
heap. Growing the heap might require a separate, disjointed address space
reserved for the additional space on the heap. Applications shouldn't assume
that the local heap is contained in one block of virtual address space. Because
Windows CE heaps support only fixed blocks, Windows CE implements only
the subset of the Win32 local heap functions necessary to allocate, resize, and
free fixed blocks on the local heap.

Allocating Memory on the Local Heap
You allocate a block of memory on the local heap by calling

HLOCAL LocalAlloc (UINT uFlags, UINT uBytes);

The call returns a value cast as an HLOCAL, which is a handle to a local memory
block, but since the block allocated is always fixed, the return value can simply
be recast as a pointer to the block.

The uFlags parameter describes the characteristics of the block. The flags
supported under Windows CE are limited to those that apply to fixed alloca
tions. They are the following:

• LMEM_FIXED Allocates a fixed block in the local heap. Since all
local heap allocations are fixed, this flag is redundant.

• LMEM_ZEROINIT Initializes memory contents to 0.

• LPTR Combines the LMEM_FIXED and LMEM_ZEROINIT flags.

The uBytes parameter specifies the size of the block to allocate in bytes.
The size of the block is rounded up, but only to the next 8-byte boundary.

Freeing Memory on the Local Heap
You can free a block by calling

HLOCAL LocalFree (HLOCAL hMem);

The function takes the handle to the local memory block and returns NULL if
successful. If the function fails, it returns the original handle to the block.

Resizing and Querying the Size of Local Heap Memory
You can resize blocks on the local heap by calling

HLOCAL LocalReAlloc CHLOCAL hMem, UINT uBytes, UINT uFlag);

Chapter 7 Memory Management 373

The hMem parameter is the pointer (handle) returned by LocalAlloc. The
uBytes parameter is the new size of the block. The uFlag parameter contains
the flags for the new block. Under Windows CE, two flags are relevant,
LMEM_ZEROINIT and LMEM_MOVEABLE. LMEM_ZEROJNIT causes the contents
of the new area of the block to be set to 0 if the block is grown as a result of
this call. The LMEM_MOVEABLE flag tells Windows that it can move the block
if the block is being grown and there's not enough room immediately above the
current block. Without this flag, if you don't have enough space immediately
above the block to satisfy the request, LocalRealloc will fail with an out-of
memory error. If you specify the LMEM_MOVEABLE flag, the handle (really the
pointer to the block of memory) might change as a result of the call.

The size of the block can be queried by calling

UINT LocalSize (HLOCAL hMem);

The size returned will be at least as great as the requested size for the block. As
I mentioned earlier, Windows CE rounds the size of a local heap allocation up
to the next 8-byte boundary.

Separate Heaps
To avoid fragmenting the local heap, it's better to create a separate heap if you
need a series of blocks of memory that will be used for a set amount of time.
An example of this would be a text editor that might manage a file by creating
a separate heap for each file it's editing. As files are opened and closed, the
heaps would be created and destroyed.

Heaps under Windows CE have the same API as those under Windows XP.
The only noticeable difference is the lack of support for the HEAP_GENERATE
_EXCEPTIONS flag. Under Windows XP, this flag causes the system to generate
an exception if an allocation request can't be accommodated.

Creating a Separate Heap
You create heaps by calling

HANDLE HeapCreate (DWORD flOptions, DWORD dwlnitialSize,
DWORD dwMaximumSize);

Under Windows CE, the first parameter, flOptions, can be NULL, or it can
contain the HEAP_NO_SERIALIZE flag. By default, Windows heap management
routines prevent two threads in a process from accessing the heap at the same
time. This serialization prevents the heap pointers that the system uses to track
the allocated blocks in the heap from being corrupted. In other versions of Win
dows, the HEAP _NO _SERIALIZE flag can be used if you don't want this type of

374 Part II Windows CE Programming

protection. Under Windows CE, however, this flag is provided only for compat
ibility, and all heap accesses are serialized.

The other two parameters, dwlnitialSize and dwMaximumSize, specify
the initial size and expected maximum size of the heap. The dwMaximumSize
value determines how many pages in the virtual address space to reserve for
the heap. You can set this parameter to 0 if you want to defer to Windows'
determination of how many pages to reserve. The default size of a heap is 188
KB. The dwlnitialSize parameter determines how many of those initially
reserved pages will be immediately committed. If this value is 0, the heap ini
tially has one page committed.

Allocating Memory in a Separate Heap
You allocate memory on the heap using

LPVOID HeapAlloc (HANDLE hHeap, DWORD dwFlags, DWORD dwBytes);

Notice that the return value is a pointer, not a handle as in the LocalAlloc func
tion. Separate heaps always allocate fixed blocks, even under Windows XP and
Windows Me. The first parameter is the handle to the heap returned by the
HeapCreate call. The dwFlags parameter can be one of two self-explanatory
values, HEAP_NO_SERIALIZE and HEAP_ZERO_MEMORY. The final parameter,
dwBytes, specifies the number of bytes in the block to allocate. The size is
rounded up to the next DWORD.

Freeing Memory in a Separate Heap
You can free a block in a heap by calling

BOOL HeapFree (HANDLE hHeap, DWORD dwFlags, LPVOID lpMem);

The only flag allowable in the dwFlags parameter is HEAP_NO_SERIALIZE.
The lpMem parameter points to the block to free, while hHeap contains the
handle to the heap.

Resizing and Querying the Size of Memory in a Separate Heap
You can resize heap allocations by calling

LPVOID HeapReAlloc (HANDLE hHeap, DWORD dwFlags, LPVOID lpMem,
DWORD dwBytes);

The dwFlags parameter can be any combination of three flags:
HEAP_NO_SERIALIZE, HEAP_REALLOC_IN_?LACE_ONLY, and HEAP_ZERO_
MEMORY. The only new flag here is HEAP_REALLOC_IN_PLACE_ONLY, which
tells the heap manager to fail the reallocation if the space can't be found for the
block without relocating it. This flag is handy if you already have a number of
pointers pointing to data in the block and you aren't interested in updating

Chapter 7 Memory Management 375

them. The lpMem parameter is the pointer to the block being resized, and the
dwBytes parameter is the requested new size of the block. Notice that the func
tion of the HEAP_REALLOC_IN_PLACE_ONLYflag in HeapReAlloc provides the
opposite function from the one that the LMEM_MOVEABLE flag provides for
LocalReAlloc. HEAP _REALLOC_IN_PLACE_ ONLY prevents a block from moving
that would be moved by default in a separate heap, while LMEM_MOVEABLE
enables a block to be moved that by default would not be moved in the local
heap. HeapReAlloc returns a pointer to the block if the reallocation was suc
cessful and returns NULL otherwise. Unless you specified that the block not be
relocated, the returned pointer might be different from the pointer passed in if
the block had to be relocated to find enough space in the heap.

To determine the actual size of a block, you can call

DWORD HeapSize (HANDLE hHeap, DWORD dwFlags, LPCVOID lpMem);

The parameters are as you expect: the handle of the heap; the single, optional
flag, HEAP_NO_SERIALJZE; and the pointer to the block of memory being
checked.

Destroying a Separate Heap
You can completely free a heap by calling

BOOL HeapDestroy (HANDLE hHeap);

Individual blocks within the heap don't have to be freed before you destroy the
heap.

One final heap function is valuable when writing DLLs. The function

HANDLE GetProcessHeap (VOID);

returns the handle to the local heap of the process calling the DLL. This allows
a DLL to allocate memory within the calling process's local heap. All the other
heap calls, with the exception of HeapDestroy, can be used with the handle
returned by GetProcessHeap.

The Stack
The stack is the easiest to use (the most self-managing) of the different types
of memory under Windows CE. The stack under Windows CE, as in any oper
ating system, is the storage place for temporary variables that are referenced
within a function. The operating system also uses the stack to store return
addresses for functions and the state of the microprocessor registers during
exception handling.

Windows CE manages a separate stack for every thread in the system. By
default, each stack in the system is limited to a maximum size of around 58 KB.

376 Part II Windows CE Programming

Each separate thread within one process can grow its stack up to the 58-KB
limit. This limit has to do with how Windows CE manages the stack. When a
thread is created, Windows CE reserves a 64-KB region for the thread's stack. It
then commits virtual pages from the top down as the stack grows. As the stack
shrinks, the system will, under low-memory conditions, reclaim the unused but
still committed pages below the stack. The limit of 58 KB comes from the size
of the 64-KB region dedicated to the stack minus the number of pages neces
sary to guard the stack against overflow and underflow.

When an application creates a new thread, the maximum size of the stack
can be specified in the CreateTbread call that creates the thread. The maximum
size of the stack for the main thread of the application can be specified by a
linker switch when an application is linked. The same guard pages are applied,
but the stack size can be specified up to 1 MB. Note that the size defined for the
default stack is also the default size used for all the separate thread stacks. That
is, if you specify the main stack to be 128 KB, all other threads in the applica
tion have a stack size limit of 128 KB unless you specify a different stack size in
each call to CreateTbread.

One other consideration must be made when you're planning how to use
the stack in an application. When an application calls a function that needs
stack space, Windows CE attempts to commit the pages immediately below the
current stack pointer to satisfy the request. If no physical RAM is available, the
thread needing the stack space is briefly suspended. If the request can't be
granted within a short period of time, an exception is raised. Windows CE goes
to great lengths to free the required pages, but if this can't happen the system
raises an exception. I'll cover low-memory situations shortly, but for now just
remember that you shouldn't try to use large amounts of stack space in low
memory situations.

Static Data
C and C++ applications have predefined blocks of memory that are automati
cally allocated when the application is loaded. These blocks hold statically allo
cated strings, buffers, and global variables as well as buffers necessary for the
library functions that were statically linked with the application. None of this is
new to the C programmer, but under Windows CE, these spaces are handy for
squeezing the last useful bytes out of RAM.

Windows CE allocates two blocks of RAM for the static data of an applica
tion, one for the read/write data and one for the read-only data. Because these
areas are allocated on a per-page basis, you can typically find some space left
over from the static data up to the next page boundary. The finely tuned Win
dows CE application should be written to ensure that it has little or no extra

Chapter 7 Memory Management 377

space left over. If you have space in the static data area, sometimes it's better to
move a buffer or two into the static data area instead of allocating those buffers
dynamically.

Another consideration is that if you're writing a ROM-based application,
you should move as much data as possible to the read-only static data area.
Windows CE doesn't allocate RAM to the read-only area for ROM-based appli
cations. Instead, the ROM pages are mapped directly into the virtual address
space. This essentially gives you unlimited read-only space with no impact on
the RAM requirements of the application.

The best place to determine the size of the static data areas is to look in
the map file that's optionally generated by the linker. The map file is chiefly
used to determine the locations of functions and data for debugging purposes,
but it also shows the size of the static data if you know where to look. Listing
7-1 shows a portion of an example map file generated by Visual C++.

memtest

Times tamp is 34ce4088 (Tue Jan 27 12:16:08 1998)

Preferred load address is 00010000

Start Length Name Class
0001:00000000 00006100H .text CODE
0002:00000000 00000310H .rdata DATA
0002:00000310 00000014H .xdata DATA
0002:00000324 00000028H .idata$2 DATA
0002:0000034c 00000014H .idata$3 DATA
0002:00000360 000000f4H . i data$4 DATA
0002:00000454 000003eeH .idata$6 DATA
0002:00000842 00000000H .edata DATA
0003:00000000 000000f4H .idata$5 DATA
0003:000000f4 00000004H . CRT$XCA DATA
0003:000000f8 00000004H . CRT$XCZ DATA
0003:000000fc 00000004H . CRT$X IA DATA
0003:00000100 00000004H .CRT$XIZ DATA
0003:00000104 00000004H .CRT$XPA DATA
0003:00000108 00000004H . CRHXPZ DATA
0003:0000010c 00000004H .CRT$XTA DATA
0003:00000110 00000004H .CRT$XTZ DATA
0003:00000114 000011e8H .data DATA
0003:000012fc 0000108cH .bss DATA
0004:00000000 000003e8H .pdata DATA
0005:00000000 000000f0H .rsrc$01 DATA
0005:000000f0 00000334H .rsrc$02 DATA

Listing 7-1 The top portion of a map file showing the size of the data
segments in an application (continued)

378 Part II Windows CE Programming

Listing 7-1 (continued)

The map file in Listing 7-1 indicates that the EXE has five sections. Section
0001 is the text segment containing the executable code of the program. Sec
tion 0002 contains the read-only static data. Section 0003 contains the read/
write static data. Section 0004 contains the fix-up table to support calls to other
DLLs. Finally, section 0005 is the resource section containing the application's
resources, such as menu and dialog box templates.

Let's examine the .data, .bss, and .rdata lines. The .data section contains
the initialized read/write data. If you initialized a global variable as in

static HINST g_hLoadlib = NULL;

the g_loadlib variable would end up in the .data segment. The .bss segment
contains the uninitialized read/write data. A buffer defined as

static BYTE g_ucitems[256];

would end up in the .bss segment. The final segment, .rdata, contains the read
only data. Static data that you've defined using the canst keyword ends up in
the .rdata segment. An example of this would be the structures I use for my
message lookup tables, as in the following:

II Message dispatch table for MainWindowProc
canst struct decodeUINT MainMessages[J = {

WM_CREATE, DoCreateMain,
WM_SIZE, DoSizeMain,
WM_COMMAND, DoCommandMain,
WM_DESTROY, DoDestroyMain,

} ;

The .data and .bss blocks are folded into the 0003 section, which, if you
add the size of all blocks in the third section, has a total size of Ox2274, or
8820, bytes. Rounded up to the next page size, the read/write section ends up
taking nine pages, with 396 bytes not used. So in this example, placing a
buffer or two in the static data section of the application would be essentially

Chapter 7 Memory Management 379

free. The read-only segment, section 0002, including .rdata, ends up being
Ox0842, or 2114, bytes, which takes up three pages, with 958 bytes, almost an
entire page, wasted. In this case, moving 75 bytes of constant data from the
read-only segment to the read/write segment saves a page of RAM when the
application is loaded.

String Resources
One often-forgotten area for read-only data is the resource segment of your
application. While I mentioned a new Windows CE-specific feature of the
LoadString function in Chapter 4, it's worth repeating here. If you call Load
String with 0 in place of the pointer to the buffer, the function returns a pointer
to the string in the resource segment. An example would be

LPCTSTR pString;

pString = CLPCTSTR)LoadString Chinst, ID_STRING, NULL, 0)

The string returned is read only, but it does allow you to reference the string
without having to allocate a buffer to hold the string. Also be warned that the
string won't be zero terminated unless you have added the -n switch to the
command line of the resource compiler. However, the word immediately pre
ceding the string contains the length of the string resource.

Selecting the Proper Memory Type
Now that we've looked at the different types of memory, it's time to consider
the best use of each. For large blocks of memory, directly allocating virtual
memory is best. An application can reserve as much address space (up to the
usable 32-MB limit of the application) but can commit only the pages necessary
at any one time. While directly allocated virtual memory is the most flexible
memory allocation type, it shifts to us the burden of worrying about page gran
ularity as well as keeping track of the reserved versus committed pages.

The local heap is always handy. It doesn't need to be created and will grow
as necessary to satisfy a request. Fragmentation is the issue here. Consider that
applications on a Pocket PC might run for weeks or even months at a time.
There's no Off button on a Pocket PC-just a Suspend command. So when
you're thinking about memory fragmentation, don't assume that a user will open
the application, change one item, and then close it. A user is likely to start an
application and keep it running so that the application is just a quick click away.

380 Part II Windows CE Programming

The advantage of separate heaps is that you can destroy them when their
time is up, nipping the fragmentation problem in the bud. A minor disadvan
tage of separate heaps is the need to manually create and destroy them.

The static data area is a great place to slip in a buffer or two essentially for
free because the page is going to be allocated anyway. The key to managing
the static data is to make the size of the static data segments close to, but over
the page size of, your target processor. Sometimes it's better to move constant
data from the read-only segment to the read/write segment if it saves a page in
the read-only segment. The only time you wouldn't do this is if the application
is to be burned into ROM. Then the more constant the data is, the better,
because it doesn't take up RAM. The read-only segment is handy even for appli
cations loaded from the object store because read-only pages can be discarded
and reloaded as needed by the operating system.

The stack is, well, the stack-simple to use and always around. The only
considerations are the maximum size of the stack and the problems of enlarging
the stack in a low-memory condition. Make sure your application doesn't
require large amounts of stack space to shut down. If the system suspends a
thread in your application while it's being shut down, the user will more than
likely lose data. That won't help customer satisfaction.

Managing Low-Memory Conditions
Even for applications that have been fine-tuned to minimize their memory use,
there are going to be times when the system runs very low on RAM. Windows
CE applications operate in an almost perpetual low-memory environment. The
Pocket PC is designed intentionally to run in a low-memory situation. Applica
tions on the Pocket PC don't have a Close button-the shell automatically
closes them when the system needs additional memory. Because of this, Win
dows CE offers a number of methods to distribute the scarce memory in the sys
tem among the running applications.

The WM_HIBERNATE Message
The first and most obvious addition to Windows CE is the WM_HIBERNATE
message. Windows CE shell sends this message to all top-level windows that
have the WS_OVERIAPPED style (that is, have neither the WS_FOPUP nor the
WS_CHILD style) and have the WS_ VISIBLE style. These qualifications should

Chapter 7 Memory Management 381

allow most applications to have at least one window that receives a
WM_HIBERNATE message. An exception to this would be an application that
doesn't really terminate but simply hides all its windows. This arrangement
allows an application a quick start because it only has to show its window, but
this situation also means that the application is taking up RAM even when the
user thinks it's closed. While this is exactly the kind of application design that
should not be used under Windows CE, those that are designed this way must
act as if they're always in hibernate mode when hidden because they'll never
receive a WM_HIBERNATE message.

The shell sends WM_HIBERNATE messages to the top-level windows in
reverse Z-order until enough memory is freed to push the available memory
above a preset threshold. When an application receives a WM_HIBERNATE
message, it should reduce its memory footprint as much as possible. This can
involve releasing cached data; freeing any GDI objects such as fonts, bitmaps,
and brushes; and destroying any window controls. In essence, the application
should reduce its memory use to the smallest possible footprint that's necessary
to retain its internal state.

If sending WM_HIBERNATE messages to the applications in the back
ground doesn't free enough memory to move the system out of a limited
memory state, a WM_HIBERNATE message is sent to the application in the fore
ground. If part of your hibernation routine is to destroy controls on your win
dow, you should be sure that you aren't the foreground application.
Disappearing controls don't give the user a warm and fuzzy feeling.

Memory Thresholds
Windows CE monitors the free RAM in the system and responds differently as
less and less RAM is available. As less memory is available, Windows CE first
sends WM_HIBERNATE messages and then begins limiting the size of allocations
possible. The two tables that follow show the free-memory levels used by the
Explorer shell and the Pocket PC to trigger low-memory events in the system.
Windows CE defines four memory states: normal, limited, low, and critical. The
memory state of the system depends on how much free memory is available to
the system as a whole. These limits are higher for 4-KB page systems because
those systems have less granularity in allocations, as shown in Table 7-1 and
Table 7-2.

382 Part II Windows CE Programming

Table 7-1 Memory Thresholds for the Explorer Shell

Event

Limited-memory
state

Free Memory
1024-Page Size

128 KB

Low-memory state 64 KB

Critical-memory
state

16 KB

Free Memory
4096-Page Size

160 KB

96 KB

48 KB

Table 7-2 Memory Thresholds for the Pocket PC

Event
Free Memory
1024-Page Size

Hibernate threshold 200 KB

Limited-memory 128 KB
state

Low-memory state 64 KB

Critical-memory 16 KB
state

Free Memory
4096-Page Size

224 KB

160 KB

96 KB

48 KB

Comments

Send WM_HIBERNATE
messages to applications in
reverse Z-order. Free stack
space reclaimed as needed.

Limit virtual allocations to 16
KB. Low-memory dialog dis
played.

Limit virtual allocations to
8KB.

Comments

Send WM_HIBERNATE
messages to applications in
reverse Z-order.

Begin to close applications
in reverse Z-order. Free
stack space reclaimed as
needed.

Limit virtual allocations to
16 KB.

Limit virtual allocations to
8 KB.

The effect of these memory states is to share the remaining wealth. First,
WM_HIBERNATE messages are sent to the applications to ask them to reduce
their memory footprint. After an application is sent a WM_HIBERNATE message,
the system memory levels are checked to see whether the available memory is
now above the threshold that caused the WM_HIBERNATE messages to be sent.
If not, a WMJ[IBERNATE message is sent to the next application. This contin
ues until all applications have been sent a WM_HIBERNATE message.

The low-memory strategies of the Explorer shell and the Pocket PC
diverge at this point. If the Explorer shell is running, the system displays the
OOM, the out-of-memory dialog, and requests that the user either select an
application to close or reallocate some RAM dedicated to the object store to the

Chapter 7 Memory Management 383

program memory. If, after the selected application has been shut down or
memory has been moved into program RAM, you still don't have enough mem
ory, the out-of-memory dialog is displayed again. This process is repeated until
there's enough memory to lift the H/PC above the threshold.

For the Pocket PC, the actions are somewhat different. The Pocket PC
shell automatically starts shutting down applications in least recently used order
without asking the user. If there still isn't enough memory after all applications
except the foreground application and the shell are closed, the system uses its
other techniques of scavenging free pages from stacks and limiting any alloca
tions of virtual memory.

If, on either system, an application is requested to shut down and it
doesn't, the system will purge the application after waiting approximately 8 sec
onds. This is the reason an application shouldn't allocate large amounts of stack
space. If the application is shutting down due to low-memory conditions, it's
possible that the stack space can't be allocated and the application will be sus
pended. If this happens after the system has requested that the application
close, it could be purged from memory without properly saving its state.

In the low- and critical-memory states, applications are limited in the
amount of memory they can allocate. In these states, a request for virtual mem
ory larger than what's allowed is refused even if there's memory available to
satisfy the request. Remember that it isn't just virtual memory allocations that
are limited; allocations on the heap and stack are rejected if, to satisfy the
request, those allocations require virtual memory allocations above the allow
able limits.

I should point out that sending WM_HIBERNATE messages and automati
cally closing down applications is performed by the shell. On embedded sys
tems for which the OEM can write its own shell, it is the OEM's responsibility to
implement the WM_HIBERNATE message and any other memory management
techniques. Fortunately, the Microsoft Windows CE Platform Builder provides
the source code for the Explorer shell that implements the WM_HIBERNATE
message.

It should go without saying that applications should check the return
codes of any memory allocation call, but since some still don't, I'll say it. Check
the return codes from calls that allocate memory. There's a much better chance
of a memory allocation failing under Windows CE than under the desktop ver
sions of Windows. Applications must be written to react gracefully to rejected
memory allocations.

The Win32 memory management API isn't fully supported by Windows CE,
but there's clearly enough support for you to use the limited memory of a Win
dows CE device to the fullest. A great source for learning about the intricacies of

384 Part II Windows CE Programming

the Win32 memory management API is Jeff Richter's Programming Applications
for Microsoft Windows (Microsoft Press, 1999). Jeff spends six chapters on mem
ory management, while I have summarized the same topic in one.

We've looked at the program RAM, the part of RAM that is available to
applications. Now it's time, in the next two chapters, to look at the other part of
the RAM, the object store. The object store supports more than a file system. It
also optionally supports the registry API as well as a database API unique to
Windows CE.

Files and the Registry
One of the areas where Windows CE diverges furthest from its larger cousin
Windows XP is in the area of file storage. Instead of relying on ferromagnetic
storage media such as floppy disks or hard disk drives, Windows CE imple
ments a unique RAM-based file system known as the o~ject store. In implemen
tation, the object store more closely resembles a database than it does a file
allocation system for a disk. In the object store resides the files as well as the
registry for the system and any Windows CE databases. Fortunately for the pro
grammer, most of the unique implementation of the object store is hidden
behind standard Win32 functions.

The Windows CE file API is taken directly from Win32, and for the most
part, the API is fairly complete. Windows CE also implements the standard reg
istry API, albeit without the vast levels of security found in Windows XP.

Some differences in the object store do expose themselves to the pro
grammer. Execute-in-place files, stored in ROM, appear as files in the object
store, but these functions can't be opened and read as standard files. The object
store format is undocumented, so there is no way to dig underneath the file sys
tem API to look at sectors, clusters, or cylinders of data as you could on a FAT
formatted disk.

The concept of the current directory, so important in other versions of
Windows, isn't present in Windows CE. Files are specified by their complete
path. The command line shell does maintain its own current directory, but this
directory is independent of the file system.

As a general rule, Windows CE doesn't support the deep application-level
security available under Windows XP. However, because the generic Win32 API
was originally based on Windows NT, a number of the functions for file and
registry operations have one or more parameters that deal with security rights.
Under Windows CE, these values should be set to their default, not security

385

386 Part II Windows CE Programming

state. This means you should almost always pass NULL in the security parame
ters for functions that request security information. 1 In this rather long chapter,
I'll first explain the file system and the file APL Then we'll do a tour of the reg
istry API.

The Windows CE File System
The default file system, supported on all Windows CE platforms, is the object
store. The object store is equivalent to the hard disk on a Windows CE device.
It's a subtly complex file storage system incorporating compressed RAM storage
for read/write files and seamless integration with ROM-based files. A user sees
no difference between a file in RAM in the object store and those files based in
ROM. Files in RAM and ROM can reside in the same directory, and document
files in ROM can be opened (although not modified) by the user. In short, the
object store integrates the default files provided in ROM with the user-gener
ated files stored in RAM.

In addition to the object store, Windows CE supports multiple installable
file systems that can support up to 256 different storage devices or partitions on
storage devices. The interface to these devices is the installable file system (IFS)
APL Most Windows CE platforms include an IFS driver for the FAT file system
for files stored on ATA flash cards or hard disks. In addition, third-party manu
facturers can write an IFS driver to support other file systems.

Windows CE doesn't use drive letters as is the practice on PCs. Instead,
every storage device is simply a directory off the root directory. Traditionally,
the name of each directory is Storage Card. If more than one storage device is
inserted, the additional devices are numbered, as in Storage Card 1, Storage
Card 2, and so on, all the way up to Storage Card 99 for the lOOth card. I say
"traditionally" because Windows CE doesn't assume a name. Instead, it asks the
driver what it wants to call the directory, and traditionally, the block mode
driver returns the name Storage Card. Because the name of the storage device
directory can change, you should never assume that these directories will be
called Storage Card. I'll demonstrate a method for determining which directo
ries in the root are directories and which are actually storage devices.

As should be expected for a Win32-compatible operating system, the file
name format for Windows CE is the same as that of its larger counterparts. Win
dows CE supports long filenames. Filenames and their complete paths can be
up to MAX_PATH in length, which is currently defined at 260 bytes. Filenames

1. Windows CE does support its own version of module-level security. I'll be discussing this version in
Chapter 10.

Chapter 8 Files and the Registry 387

have the same name.ext format as they do in other Windows operating systems.
The extension is the three characters following the last period in the filename
and defines the type of file. The file type is used by the shell when determining
the difference between executable files and different documents. Allowable
characters in filenames are the same as for Windows XP.

Windows CE files support many of the same attribute flags as Windows
XP, with a few additions. Attribute flags include the standard read-only, system,
hidden, compressed, and archive flags. A few additional flags have been
included to support the special RAM/ROM mix of files in the object store.

The Object Store vs. Other Storage Media
To the programmer, the difference between files in the RAM part of the object
store and the files based in ROM are subtle. The files in ROM can be detected
by a special in-ROM file attribute flag. Execute in place (XIP) modules in ROM
are marked by an additional ROM-Module attribute indicating their XIP status.
XIP files can't be opened using the standard file opening functions such as Cre
ateFile. In addition, some files in the ROM and almost all files in the RAM are
compressed and therefore marked with the compressed file attribute.

The object store in Windows CE has some basic limitations. First, the size
of the object store is currently limited to 256 MB of RAM. Given the compres
sion features of the object store, this means that the amount of data that the
object store can contain is somewhere around 512 MB. Individual files in the
object store are limited to 32 MB. These file size limits don't apply to files in sec
ondary storage such as hard disks, PC Cards, and CompactFlash Cards.

Standard File 1/0
Windows CE supports most of the same file I/0 functions found in Windows
XP and Windows Me. The same Win32 API calls, such as CreateFile, ReadFile,
WriteFile, and CloseFile, are all supported. A Windows CE programmer must be
aware of a few differences, however. First of all, the old Win16 standards,
_!read, _!write, and _llseek, aren't supported. This isn't really a huge problem
because all of these functions can easily be implemented by wrapping the Win
dows CE file functions with a small amount of code. Windows CE does support
basic console library functions such as /print/ and print/ for console applica
tions if the console is supported on that configuration.

Windows CE doesn't support the overlapped I/0 that's supported under
Windows XP. Files or devices can't be opened with the FILE_
FIAG_OVERIAPPED flag, nor can reads or writes use the overlapped mode of
asynchronous calls and returns.

388 Part II Windows CE Programming

File operations in Windows CE follow the traditional handle-based meth
odology used since the days of MS-DOS. Files are opened by means of a func
tion that returns a handle. Read and write functions are passed the handle to
indicate the file to act on. Data is read from or written to the offset in the file
indicated by a system-maintained file pointer. Finally, when the reading and
writing have been completed, the application indicates this by closing the file
handle. Now on to the specifics.

Creating and Opening Files
Creating a file or opening an existing file or device is accomplished by means
of the standard Win32 function:

HANDLE CreateFile (LPCTSTR lpFileName, DWORD dwDesiredAccess;
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes, HANDLE hTemplateFile);

The first parameter is the name of the file to be opened or created. The
filename should have a fully specified path. Filenames with no path information
a~~ assumed to be in the root directory of the object store.

The dwDesiredAccess parameter indicates the requested access rights. The
allowable flags are GENERIC_READ to request read access to the file and
GENERIC_ WRITE for write access. Both flags must be passed to get read/write
access. You can open a file with neither read nor write permissions. This is
handy if you just want to get the attributes of a device. The dwShareMode
parameter specifies the access rights that can be granted to other processes.
This parameter can be FILE_SHARE_READ and/ or FILE_SHARE_ WRITE. The
lpSecurityAttributes parameter is ignored by Windows CE and should be set to
NULL.

The dwCreationDistribution parameter tells CreateFile how to open or
create the file. The following flags are allowed:

• CREATE_NEW Creates a new file. If the file already exists, the
function fails.

• CREATE_ALWAYS Creates a new file or truncates an existing file.

• OPEN_EXISTING Opens a file only if it already exists.

• OPEN_ALWAYS Opens a file or creates a file if it doesn't exist. This
differs from CREATE_ALWAYS because it doesn't truncate the file to 0
bytes if the file exists.

• TRUNCATE_EXISTING Opens a file and truncates it to 0 bytes.
The function fails if the file doesn't already exist.

Chapter 8 Files and the Registry 389

The dwFlagsAndAttributes parameter defines the attribute flags for the file
if it's being created in addition to flags in order to tailor the operations on the
file. The following flags are allowed under Windows CE:

• FILE_AITRIBUTE_NORMAL This is the default attribute. It's
overridden by any of the other file attribute flags.

• FILE_AITRIBUTE_READONLY Sets the read-only attribute bit for
the file. Subsequent attempts to open the file with write access will
fail.

• FILE_AITRIBUTE_ARCHIVE Sets the archive bit for the file.

• FILE_AITRIBUTE_SYSTEM Sets the system bit for the file indicat
ing that the file is critical to the operation of the system.

• FILE_AITRIBUTE_HIDDEN Sets the hidden bit. The file will be
visible only to users who have the View All Files option set in the
Explorer.

• FILE_FLAG_ WRITE_THROUGH Write operations to the file won't
be lazily cached in memory.

• FILE_FLAG_RANDOM_ACCESS Indicates to the system that the
file will be randomly accessed instead of sequentially accessed. This
flag can help the system determine the proper caching strategy for
the file.

Windows CE doesn't support a number of file attributes and file flags that
are supported under Windows XP. The unsupported flags include but aren't lim
ited to the following: FILE_AITRIBUTE_OFFLINE, FILE_FLAG_OVERLAPPED,
FILE_FLAG_NO_BUFFERING, FILE_FLAG_SEQUENTIAL_SCAN, FILE_FLAG_
DELETE_ ON_ CLOSE, FILE_FLAG_BACKUP _SEMANnCS, and FILE_FLAG_POSIX_
SEMAN11CS. Under Windows XP, the flag FILE_A11RIBUTE_ TEMPORARY is used
to indicate a temporary file, but as we'll see later, it's used by Windows CE to
indicate a directory that is in reality a separate drive or network share.

The final parameter in CreateFile, hTemplate, is ignored by Windows CE
and should be set to 0. CreateFile returns a handle to the opened file if the func
tion was successful. If the function fails, it returns INVALID_HANDLE_ VALUE. To
determine why the function failed, call GetLastError. If the dwCreationDistribu
tion flags included CREATE_ALWAYS or OPEN_ALWAYS, you can determine
whether the file previously existed by calling GetLastError to see if it returns
ERROR_ALREADY_EXISTS. CreateFile will set this error code even though the
function succeeded.

390 Part II Windows CE Programming

In addition to opening files and devices, CreateFile can open storage vol
umes such as hard disks and flash cards. To open a volume, pass the name of
the volume appended with \Vol:. For example, to open a compact flash card
volume represented by the directory name Storage Card, the call would be as
follows:

H = CreateFile (TEXT ("\\Storage card\\Vol :"), GENERIC_READjGENER!C_WRITE,
0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

The handle returned by the CreateFile call can be used to pass IO Control
(IOCTL) commands to the volume. Possible IOCTLs include commands to for
mat or verify the volume.

Reading and Writing
Windows CE supports the standard Win32 functions ReadFile and WriteFile;
both functions return TRUE if successful and FALSE otherwise. Reading a file is
as simple as calling the following:

BOOL ReadFile (HANDLE hFile, LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPDWORD lpNumberOfBytesRead, LPOVERLAPPED lpOverlapped);

The parameters are fairly self-explanatory. The first parameter is the handle of
the opened file to read followed by a pointer to the buffer that will receive the
data and the number of bytes to read. The fourth parameter is a pointer to a
DWORD that will receive the number of bytes that were actually read. Finally,
the lpOverlapped parameter must be set to NULL because Windows CE doesn't
support overlapped file operations. As an aside, Windows CE does support
multiple reads and writes pending on a device; it just doesn't support the ability
to return from the function before the operation completes.

Data is read from the file starting at the file offset indicated by the file
pointer. After the read has completed, the file pointer is adjusted by the number
of bytes read.

ReadFile won't read beyond the end of a file. If a call to ReadFile asks for
more bytes than remain in the file, the read will succeed, but only the number
of bytes remaining in the file will be returned. This is why you must check the
variable pointed to by lpNumberOJBytesRead after a read completes to learn
how many bytes were actually read. A call to ReadFile with the file pointer
pointing to the end of the file results in the read being successful, but the num
ber of read bytes is set to 0.

Chapter 8 Files and the Registry 391

Writing to a file is accomplished with this:

BOOL WriteFile (HANDLE hFile, LPCVOID lpBuffer,
DWORD nNumberOfBytesToWrite,
LPDWORD lpNumberOfBytesWritten,
LPOVERLAPPED lpOverlapped);

The parameters are similar to ReadFile, with the obvious exception that lpBu:ffer
now points to the data that will be written to the file. As in ReadFile, the lpOver
lapped parameter must be NULL. The data is written to the file off set indicated
by the file pointer, which is updated after the write so that it points to the byte
immediately beyond the data written.

Moving the File Pointer
The file pointer can be adjusted manually with a call to the following:

DWORD SetFilePointer (HANDLE hFile, LONG lDistanceToMove,
PLONG lpDistanceToMoveHigh, DWORD dwMoveMethod);

The parameters for SetFilePointer are the handle of the file; a signed offset dis
tance to move the file pointer; a second, upper 32-bit, offset parameter; and
dwMoveMethod, a parameter indicating how to interpret the offset. Although
lDistanceToMove is a signed 32-bit value, lpDistanceToMoveHigh is a pointer to
a signed 32-bit value. For file pointer moves of greater than 4 GB, the lpDistance
ToMoveHigh parameter should point to a LONG that contains the upper 32-bit
offset of the move. This variable will receive the high 32 bits of the resulting file
pointer. For moves of less than 4 GB, simply set lpDistanceToMoveHigh to
NULL. Clearly, under Windows CE, the lpDistanceToMoveHigh parameter is a bit
excessive, but having the function the same format as its Windows XP counter
part aids in portability across platforms.

The offset value is interpreted as being from the start of the file if
dwMoveMethod contains the flag FILE_BEGIN. To base the offset on the current
position of the file pointer, use FILE_ CURRENT. To base the offset from the end
of the file, use FILE_END in dwMoveMethod.

SetFilePointer returns the file pointer at its new position after the move has
been accomplished. To query the current file position without changing the file
pointer, simply call SetFilePointer with a zero offset and relative to the current
position in the file, as shown here:

nCurrFilePtr = SetFilePointer (hFile, 0, NULL, FILE_CURRENT);

Closing a File
Closing a file handle is a simple as calling

BOOL CloseHandle (HANDLE hObject);

392 Part II Windows CE Programming

This generic call, used to close a number of handles, is also used to close file
handles. The function returns TRUE if it succeeds. If the function fails, a call to
GetLastError will return the reason for the failure.

Truncating a File
When you have finished writing the data to a file, you can close it with a call to
CloseHandle and you're done. Sometimes, however, you must truncate a file to
make it smaller than it currently is. In the days of MS-DOS, the way to set the
end of a file was to make a call to write zero bytes to a file. The file was then
truncated at the current file pointer. This won't work in Windows CE. To set the
end of a file, move the file pointer to the location in the file where you want the
file to end and call:

BOOL SetEndOfFile (HANDLE hFile);

Of course, for this call to succeed, you need write access to the file. The func
tion returns TRUE if it succeeds.

To insure that all the data has been written to a storage device and isn't
just sitting around in a cache, you can call this function:

WINBASEAPI BOOL WINAPI FlushFileBuffers (HANDLE hFile);

The only parameter is the handle to the file you want to flush to the disk or,
more likely in Windows CE, a PC Card.

Getting File Information
A number of calls allow you to query information about a file or directory. To
quickly get the attributes knowing only the file or directory name, you can use
this function:

DWORD GetFileAttributes (LPCTSTR lpFileName);

In general, the attributes returned by this function are the same ones that I cov
ered for CreateFile, with the addition of the attributes listed here:

• FILE_AITRIBUTE_COMPRESSED The file is compressed.

• FILE_AITRIBUTE_INROM The file is in ROM.

• FILE_AITRIBUTE_ROMMODULE The file is an executable mod
ule in ROM formatted for execute-in-place loading. These files can't
be opened with CreateFile.

• FILE_A1TRIBUTE_DIRECTORY The name specifies a directory,
not a file.

Chapter 8 Files and the Registry 393

• FILE_A1TRIBUTE_TEMPORARY When this flag is set in combi
nation with FILE_A1TRIBUTE_DIRECTORY, the directory is the root
of a secondary storage device, such as a PC Card, a hard disk, or the
network share folder.

The attribute FILE_A17RIBUTE_COMPRESSE1J is somewhat misleading on
a Windows CE device. Files in the RAM-based object store are always com
pressed, but this flag isn't set for those files. On the other hand, the flag does
accurately reflect whether a file in ROM is compressed. Compressed ROM files
have the advantage of taking up less space but the disadvantage of not being
execute-in-place files.

An application can change the basic file attributes, such as read only, hid
den, system, and attribute by calling this function:

BOOL SetFileAttributes CLPCTSTR lpFileName, DWORD dwFileAttributes);

This function simply takes the name of the file and the new attributes.
Note that you can't compress a file by attempting to set its compressed attribute.
Under other Windows systems that do support selective compression of files,
the way to compress a file is to make a call directly to the file system driver.

A number of other informational functions are supported by Windows CE.
All of these functions, however, require a file handle instead of a filename, so
the file must have been previously opened by means of a call to CreateFile.

File Times
The standard Win32 API supports three file times: the time the file was cre
ated, the time the file was last accessed (that is, the time it was last read, writ
ten, or executed), and the last time the file was written to. That being said, the
Windows CE object store keeps track of only one time, the time the file was
last written to. One of the ways to query the file times for a file is to call this
function:

BOOL GetFileTime (HANDLE hFile, LPFILETIME lpCreationTime,
LPFILETIME lplastAccessTime,
LPFILETIME lplastWriteTime);

The function takes a handle to the file being queried and pointers to three FILE
TIME values that will receive the file times. If you're interested in only one of
the three values, the other pointers can be set to NULL.

When the file times are queried for a file in the object store, Windows CE
copies the last write time into all FILETIME structures. This goes against Win32
documentation, which states that any unsupported time fields should be set to

394 Part II Windows CE Programming

0. For the FAT file system used on storage cards, two times are maintained: the
file creation time and the last write time. When GetFileTime is called on a file on
a storage card, the file creation and last write times are returned and the last
access time is set to 0.

The FILETIME structures returned by GetFileTime and other functions can
be converted to something readable by calling

BOOL FileTimeToSystemTime (const FILETIME *lpFileTime,
LPSYSTEMTIME lpSystemTime);

This function translates the FILETIME structure into a SYSTEMTIME struc
ture that has documented day, date, and time fields that can be used. One large
caveat is that file times are stored in coordinated universal time format (UTC),
also known as Greenwich Mean Time. This doesn't make much difference as
long as you're using unreadable FILETIME structures, but when you're translat
ing a file time into something readable, a call to

BOOL FileTimeToLocalFileTime (const FILETIME *lpFileTime,
LPFILETIME lpLocalFileTime):

before translating the file time into system time provides the proper time zone
translation to the user.

You can manually set the file times of a file by calling

BOOL SetFileTime (HANDLE hFile. const FILETIME *lpCreationTime,
const FILETIME *lpLastAccessTime,
const FILETIME *lpLastWriteTime):

The function takes a handle to a file and three times each in FILETIME format.
If you want to set only one or two of the times, the remaining parameters can
be set to NULL. Remember that file times must be in UTC time, not local time.

For files in the Windows CE object store, setting any one of the time fields
results in all three being updated to that time. If you set multiple fields to dif
ferent times and attempt to set the times for an object store file, lpLastWriteTime
takes precedence. Files on storage cards maintain separate creation and last
write times. You must open the file with write access for SetFileTime to work.

File Size and Other Information
You can query a file's size by calling

DWORD GetFileSize (HANDLE hFile, LPDWORD lpFileSizeHigh):

The function takes the handle to the file and an optional pointer to a DWORD
that's set to the high 32 bits of the file size. This second parameter can be set to
NULL if you don't expect to be dealing with files over 4 GB. GetFileSize returns
the low 32 bits of the file size.

Chapter 8 Files and the Registry 395

I've been talking about these last few functions separately, but an addi
tional function, GetFilelnformationByHandle, returns all this information and
more. The function prototyped as

BOOL GetFilelnformationByHandle (HANDLE hFile,
LPBY_HANDLE_FILE_INFORMATION lpFilelnformation);

takes the handle of an opened file and a pointer to a BY_HANDLE_FILE_INFOR
MATJON structure. The function returns TRUE if it was successful.

The BY_HANDLE_FILE_INFORMATION structure is defined this way:

typedef struct _BY_HANDLE_FILE_INFORMATION
DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftlastAccessTime;
FILETIME ftlastWriteTime;
DWORD dwVolumeSerialNumber;
DWORD nFileSizeHigh;
DWORD nFileSizeLow;
DWORD nNumberOfLinks;
DWORD nFileindexHigh;
DWORD nFileindexLow;
DWORD dwOID;

BY_HANDLE_FILE_INFORMATION:

As you can see, the structure returns data in a number of fields that separate
functions return. I'll talk about only the new fields here.

The dwVolumeSeria!Number field is filled with the serial number of the
volume in which the file resides. The volume is what's considered a disk or par
tition under Windows XP. Under Windows CE, the volume refers to the object
store, a storage card, or a disk on a local area network. For files in the object
store, the volume serial number is 0.

The nNumberOflinks field is used by Windows XP's NTFS file system and
can be ignored under Windows CE. The nFilelndexHigh and nFilelndexLow
fields contain a systemwide unique identifier number for the file. This number
can be checked to see whether two different file handles point to the same file.
The File Index value is used under Windows XP and Windows Me, but Win
dows CE has a more useful value, the object ID of the file, which is returned in
the dwOID field. The object ID is an identifier that can be used to reference
directories, files, databases, and individual database records. Handy stuff.

396 Part II Windows CE Programming

The FileView Sample Program
FileView is an example program that uses the multi-line edit control to display
the contents of a file in a window. FileView is simply a file viewer; it doesn't
allow you to modify the file. The code for FileView is shown in Listing 8-1.

3,
LTEXT ·~FileView ·Written for thel:JookProgrammtng Windows

GE Gopyri ght2003 Douglas Bo Ii ng"
30,

END

Listing 8-1 The FileView program

Chapter 8 Files and the Registry 397

FileView.h
//==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
!/==
II Returns number of elements.
#define dim(x) (sizeof(x) I sizeof(x[0]))

/J--
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*Fxn)CHWND, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD {
UINT Code;
LRESULT (*Fxn)(HWND, WORD, HWND, WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

//--
II Generic defines used by application
#define ID_ICON 1 II Application icon

II Resource ID
#define !DC_CMDBAR 2 II Command band ID
/fdefine !D_MENU 3 II Main menu resource ID
#define ID_VIEWER 4 JI View control ID

II Menu item IDs
#define IDM_OPEN 101 II File menu
ffdefi ne IDM_EXIT 102
#define IDM_ABOUT 120 JI Help menu

//--
// Function prototypes
II
INT MyGetFileName (HWND hWnd, LPTSTR szFileName, INT nMax);

HWND Initinstance CHINSTANCE, LPWSTR, int);
int Terminstance (HINSTANCE, int);

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

(continued)

398 Part II Windows CE Programming

Listing 8-1 (continued)

II Message handleri
'LRESULT DoCreateMa.in OJWND, tJINT. WPARAM, LPARAM);

LRESU,LT DoStieMatn ,CHWND; UINT, WPARAM, LPARAM);
LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAM):
LRESULT DoDestroyMain CHWND, UINT, WPARAM, LPARAM);
I J Command functions
LPARAM DoMainColl)mandOpen (HWND. WORD, HWND. WORD);
LPARAM DoMainCommaridExit (HWND. WORD, HWND, WORD);
LPARAM DoMaincommandAbout (HWND. WORD, HWND, WORD);

/I Dialog procedures
BOOL CALLBACK Abo,µtDlgProc CHWND, UINT. WPARAM, LPARAM):

FileView.cpp

II FlleView •A Wihdows CE,, file viewer
I}

ll Written ,for the ,book Progr,i:unm\ng Windows C,E
11 Copyright (C) 2003 Douglas Boling

,#inc,1 ude <,windows,. h>
#include <commctrl.h>
1finciucte <commdlQ.h>

ff; ncfode "Fi 1 eVi ew. h''

#define BUFFSIZE 16384

I/ For a11 that Windows s,tuff
// Command, bar includes
I/ Common dialog includes

II Program-specific stUff

ll-----------------~--------~~----·--·----------------------------------
1 I Gfoba 1 data
II
const TCHAR s:zAppName[J =TEXT ("FileView'');
extern TCHAR szViewerCls[);
HINSTANCE hinst; II Program instance handle

HANDLE. g_t:iFile=INYALID .. HANDLE_VALUE; // Handle to the opened file
PBYTE g_pBuff = 0: // Pointer to file data buffer

II Mes~age disprtch table for MainWindowProc
const struct decodeVINT MatnMessages[J =

} ;

WM .. CREATE, DoCreateMain,
WM_SIZE, DoSi:zeMain.
WM .. COMMAND, DoCommandMain,
WM_DESTROY, DoDestroyMain,

Chapter 8 Files and the Registry 399

Ch0811 Command message dispatch for MainWindowProc
const struct decodeCMD MainCommanditems[] = {

IDM_OPEN, DoMainCommandOpen,
IDM_EXIT, DoMainCommandExit,
IDM_ABOUT, DoMainCommandAbout,

} ;

II==
II Program entry point
II
int WINAPI WinMain (H!NSTANCE hlnstance, HINSTANCE hPrevlnstance,

LPWSTR lpCmdLine, int nCmdShow) {
HWND hwndMain;
MSG msg;

II Initialize this instance.
hwndMain = Initlnstance (hinstance, lpCmdLine, nCmdShow);
if (hwndMain == 0) return 0xl0;

II Application message loop
while (GetMessage (&msg, NULL, 0, 0)) {

TranslateMessage <&msg);
DispatchMessage (&msg);

II Instance cleanup
return Termlnstance (hinstance, msg.wParam);

11--
11 Initinstance - Instance initialization
II
HWND Initlnstance (HINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow){

HWND hWnd;
WNDCLASS we;
INITCOMMONCONTROLSEX icex;

#if defined(WIN32_PLATFORM_PSPC)
II If Pocket PC, allow only one instance of the application.
HWND hWnd = FindWindow (szAppName, NULL);
if (hWnd) {

#end if

SetForegroundWindow ((HWND)(((OWORD)hWnd) I 0x01));
return 0;

II Save program instance handle in global variable.
hinst = hinstance;

II Register application main window class.
we.style= 0; II Window style

(continued)

400 Part II Windows CE Prqgramming

Listing 8-1 (continued)

we. 1 pfnWndProc "' .. Ma.foWndProc;
wc.cbClsEXtra = 0:

II Ci!llback function
II Extra class. d.ata

we. cbWndExtra = .0; ll Extra window ·data
wc.hinsfa(ice = hln&·t.ancE): //Owner handle
wc.hicon =NULL, . //Application icori
wc.hCursor = LoadCursor (NULL, rnc].RROwJ;li Default cunior
we. hbrBackground = CHSRIJSH) GetSttickObject (WHITE_BRUSH};
wc. l psiMenuName ;:; .NULL:
wc.lpszCJassNa111e = szAppName:
if CRegisterClass C&wcl == 0} return 0;

II ·Menu name
/.I W'i ndow cl ass

II load the co111Jl1and barcommon control class.
i cex.dwSiZe = sizeof (INITCOMMONCONTROLSEX);
icex.dw1CC = lCG_BAR..;CLASSES;
trritCommonContr<llsEx c&r~exl: · .··

11 Create mai"n wfodow.
hWnd ·"' createwfodow f$zAppl'iame,. TEXT" C''.FileView"L

ws}.tiSISLE.· cw:'...USEOEJAULT. CW::..JJSEDEFAULT,
.· GW_lJSEDEFAULt. CW~USEDEFAULT •. NULL .NULL,

hinstance, NliLU;
if (!I sWindow (hWnd)) return 0: :/! Fat(code 1 f windciw not created.

II Standard show and up:date cal is
Show.Wi nctow <hWnd, nCmdShow);
UpdateWi ndow (hWnd); · ·
return ·hwntt:

//-·- ---.· .. ~-~ -~ ------~ ~ ~.- -· •• c·-·-·1-·--.·-~ c·c. -·· -·~- - -- __ ;._~ ·- _;·.~ -- .··-··· - w·•·-.-- -~';- "·"··

·II .Termlns.tance • Progralll cleanup

· ~~t .Terminstance <Hp~SrA~CJLhinstance~

}

if
Closettand1e (g:..;hFiJe>:

if (.~pBuffl
Local Free .(g~pBliff) :.

. return nDefRC:
. .

Close the opened

II free buffer,

J/=:;:::=~=====,=~=~=i=-=:=i=i===;:;::;====;:·#'~#:="~=~=~==;~-~~.==:::~·=i7:t::;:====~".""~=='=:f:·::==~:::;=:==-
Ii Message ba.rtdling•procedures<for.M_ain,Wtnd~w ..
I I- c·•- ··-: -- ~- -···"·"·--" ·-- - - - ·- - ~~--'" --.-·:·:-:•·•- ·-- - - "---- - --·-.c: ---- - - ~: - :. ·--- - : ·

11 }1<d nWndProc - Call back funct1cin 'for' aPPlTt~ti·on window .. // . . . ·. ,

. LRESULT CALLBACK MainWndProc (HWND hWrtd, Ur0rffwMsg,
LPARAM lPa!'an\) {

INLt;

Chapter 8 Files and the Registry 401

II
JI Search message list to see if we need to handle this
II message. If in list, call function.
II
for (i = 0; i < dim(MainMessages); i++l

if (wMsg == MainMessages[iJ.Codel
return (*MainMessages[iJ.Fxn)(hWnd, wMsg, wParam, lParaml:

return DefWindowProc (hWnd, wMsg, wParam, lParaml:

!1--
!/ DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
HWND hwndCB, hwndChild;
LPCREATESTRUCT lpcs;

JI Convert lParam into pointer to create structure.
lpcs = (LPCREATESTRUCT) lParam;

II Create a minimal command bar that has only a menu and an
JI exit button.
hwndCB = CommandBar_Create (hinst, hWnd, IDC_CMDBARl:
II Insert the menu.
CommandBar_InsertMenubar (hwndCB, hlnst, ID_MENU, 0);
II Add exit button to command bar.
CommandBar_AddAdornments <hwndCB, 0, 0);

hwndChild = CreateWindowEx (0,TEXT("edit"), TEXT(""), WS_VISIBLE I
WS_CHILD I ES_MULTILINE I WS_VSCROLL I
WS_HSCROLL I ES_READONLY, 0, 0, lpcs->cx,
lpcs->cy, hWnd, (HMENUlID_VIEWER, hlnst, 0);

II Destroy frame if window not created.
if (!IsWindow (hwndChildll

DestroyWindow (hWndl:
return 0;

JI Allocate a buffer.
g_pBuff = (PBYTElLocalAlloc (LMEM_FIXED, BUFFSIZEl;
if (! g_pBuff l {

MessageBox (NULL, TEXT ("Not enough memory"),
TEXT ("Error"), MB_OK):

return 0;

return 0;

(continued)

402 Part II Windows CE Programming

Listing 8-1 (continued)

Chapter 8 Files and the Registry 403

II==
II Command handler routines
11--
11 DoMainCommandOpen - Process File Open command.
II
LPARAM DoMainCommandOpen CHWND hWnd, WORD iditem, HWND hwndCtl.

WORD wNotifyCode) {
TCHAR szFileName[MAX_PATHJ;
HWND hwndViewer;
DWORD cBytes;
LPTSTR pXLateBuff = 0;
int lFileSize, 1:
BOOL fUnicode = TRUE;
HANDLE hFileTrnp;

hwndViewer = GetDlgitem ChWnd, ID_VIEWERl:

II Ask the user for the file name
if CMyGetFileName ChWnd, szFileName. dimCszFileName)l ·~ .0)

return 0:

II Open the file.
hFileTmp = CreateFile (szFileName. GENERIC_READ.

FILE_SHARE_READ, NULL, OPEN-EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL):

if ChFileTmp == INVAL!D_HANDLE_VALUE) {
MessageBox ChWnd, TEXTC"Couldn't open file"), szAppName, MB_OK):
return 0;

if (g_hFilel {

}

CloseHandle (g_hFile);
II clear the edit box
SendMessage ChwndViewer, EM_SETSEL, 0, -1);
SendMessage (hwndViewer, EM_REPLACESEL, 0, CLPARAMJTEXT(""));

g_hFile = hFileTmp;
11. Get the size of. the file
lFileSize = Cint)GetFi1eSize (g_hFile, NULU:
II See if file> 2G~a
if Cl Fil eSi.;?:e < 0) n~~urn 0;

(!ReadFile <a-frF;j}:~. g_pBu.ff, B.UFFSIZE-1. &cByt~s,
return 0:

vial che~ktp~L
(i .. 0 : (i <16) .&&

if file Unicode. ~ssume,~ ~f)glish
(i < (intlcB.ytes.): i++) {

(continued)

404 Part II Windows CE Programming

Listing 8-1 (continued)

Chapter 8 Files and the Registry 405

II==
II About Dialog procedure
II
BOOL CALLBACK AboutDlgProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {
switch (wMsg) {

case WM_COMMAND:
switch (LOWORD (wParam))

case IDOK:
case IDCANCEL:

break;

return FALSE;

EndDialog (hWnd, 0);
return TRUE;

11--
11 MyGetFileName - Returns a filename using the common dialog
II
INT MyGetFileName (HWND hWnd, LPTSTR szFileName, INT nMax) {

OPENFILENAME of;
canst LPTSTR pszOpenFilter =TEXT ("All Documents (•.•)\0•.•\0\0");

szFileName[0] = '\0';
memset (&of, 0, sizeof (of));

of.lStructSize = sizeof (of);
of.hwndOwner = hWnd;
of. lpstrFile = szFileName;
of.nMaxFile = nMax;
of. lpstrFilter = pszOpenFilter;
of.Flags = 0;

if (GetOpenFileName C&of))
return lstrlen CszFileName);

else
return 0;

II Initial filename
II Initial file open structure

FileView.cpp contains the standard Windows functions and the menu
command handlers. In the WM_CREATE handler (DoCreateMain for the main
window), FileView creates an edit control that is used to display the file con
tents. Another routine of interest is DoOpenMain, by which the file is opened,
read, and sent to the edit control. DoOpenMain uses CreateFile to open the file
with read-only access. If the function succeeds, it calls GetFileSize to query the
size of the file being viewed.

406 Part II Windows CE Programming

Memory-Mapped Files and Objects
Memory-mapped files give you a completely different method for reading and
writing files. With the standard file I/0 functions, files are read as streams of
data. To access bytes in different parts of a file, the file pointer must be moved
to the first byte, the data read, the file pointer moved to the other byte, and then
the file read again.

With memory-mapped files, the file is mapped to a region of memory.
Then, instead of using FileRead and File Write, you simply read and write the
region of memory that's mapped to the file. Updates of the memory are auto
matically reflected back to the file itself. Setting up a memory-mapped file is a
somewhat more complex process than making a simple call to CreateFile, but
once a file is mapped, reading and writing the file is trivial.

Memory-Mapped Files
Windows CE uses a slightly different procedure from Windows XP to access a
memory-mapped file. To open a file for memory-mapped access, a new func
tion, unique to Windows CE, is used; it's named CreateFileForMapping. The
prototype for this function is the following:

HANDLE CreateFileForMapping (LPCTSTR lpFileName, DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile);

The parameters for this function are similar to those for CreateFile. The file
name is the name of the file to read. The dwDesiredAccess parameter, specify
ing the access rights to the file, must be a combination of GENERIC_READ and
GENERIC_ WRITE, or it must be 0. The security attributes must be NULL, while
Windows CE ignores the h TemplateFile parameter.

The handle returned by CreateFileForMapping can then be passed to

HANDLE CreateFileMapping (HANDLE hFile,
LPSECURITY_ATTRIBUTES lpFileMappingAttributes,
DWORD flProtect, DWORD dwMaximumSizeHigh,
DWORD dwMaximumSizeLow, LPCTSTR lpName);

This function creates a file-mapping object and ties the opened file to it.
The first parameter for this function is the handle to the opened file. The secu
rity attributes parameter must be set to NULL under Windows CE. The flProtect
parameter should be loaded with the protection flags for the virtual pages that
will contain the file data. The maximum size parameters should be set to the

Chapter 8 Files and the Registry 407

expected maximum size of the object, or they can be set to 0 if the object
should be the same size as the file being mapped. The lpName parameter
allows you to specify a name for the object. This is handy when you're using a
memory-mapped file to share information across different processes. Calling
CreateFileMapping with the name of an already-opened file-mapping object
returns a handle to the object already opened instead of creating a new one.

Once a mapping object has been created, a view into the object is created
by calling

LPVOID MapViewOfFile (HANDLE hFileMappingObject, DWORD dwDesiredAccess,
DWORD dwFileOffsetHigh, DWORD dwFileOffsetlow,
DWORD dwNumberOfBytesToMap);

Map ViewOJFile returns a pointer to memory that's mapped to the file. The func
tion takes as its parameters the handle of the mapping object just opened as
well as the access rights, which can be FILE_MAP _READ, FILE_MAP _WRITE, or
FILE_MAP _ALL_ACCESS. The offset parameters let you specify the starting point
within the file that the view starts, while the dwNumberOJBytesToMap parame
ter specifies the size of the view window.

These last three parameters are useful when you're mapping large objects.
Instead of attempting to map the file as one large object, you can specify a
smaller view that starts at the point of interest in the file. This reduces the mem
ory required because only the view of the object, not the object itself, is backed
up by physical RAM.

As you write to the memory-mapped file, the changes are reflected in the
data you read back from the same buffer. When you close the memory-mapped
file, the system writes the modified data back to the original file. If you want to
have the data written to the file before you close the file, you can use the fol
lowing function:

BOOL FlushViewOfFile(LPCVOID lpBaseAddress, DWORD dwNumberOfBytesToFlush);

The parameters are the base address and size of a range of virtual pages within
the mapped view that will be written to the file. The function writes only the
pages that have been modified to the file.

When you're finished with the memory-mapped file, a little cleanup is
required. First a call to

BOOL UnmapViewOfFile (LPCVOID lpBaseAddress);

unmaps the view to the object. The only parameter is the pointer to the base
address of the view.

Next a call should be made to close the mapping object and the file itself.
Both these actions are accomplished by means of calls to CloseHandle. The first

408 Part II Windows CE Programming

call should be to close the memory-mapped object, and then CloseHandle
should be called to close the file.

The code fragment that follows shows the entire process of opening a file
for memory mapping, creating the file-mapping object, mapping the view, and
then cleaning up.

HANDLE hFile, hFileMap;
PBYTE pFileMem;
TCHAR szFileName[MAX_PATHJ;
II Get the filename.

hFile = CreateFileForMapping (szFileName, GENERIC_WRITE,
FILE_SHARE_READ, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL
FILE_FLAG_RANDOM_ACCESS,0);

if (hFile != INVALID_HANDLE_VALUE) {

hFileMap = CreateFileMapping (hFile, NULL, PAGE_READWRITE, 0, 0, 0);
if ChFileMap) {

pFileMem = MapViewOfFile (hFileMap, FILE_MAP_WRITE, 0, 0, 0);
if CpFileMem) {

II
II Use the data in the file.
II

II Start cleanup by unmapping view.
UnmapViewOfFile (pFileMem);

CloseHandle ChFileMap);

CloseHandle (hFile);

A variation of memory-mapped files, memory-mapped objects are great
for interprocess communication. I'll cover memory-mapped objects when I dis
cuss interprocess communication in Chapter 10.

Navigating the File System
Now that we've seen how files are read and written, let's take a look at how the
files themselves are managed in the file system. Windows CE supports most of
the convenient file and directory management APis, such as CopyFile, MoveFile,
and CreateDirectory.

Chapter 8 Files and the Registry 409

File and Directory Management
Windows CE supports a number of functions useful in file and directory man
agement. You can move files using MoveFile, copy them using CopyFile, and
delete them using DeleteFile. You can create directories using CreateDirectory
and delete them using RemoveDirectory. While most of these functions are
straightforward, I should cover a few intricacies here.

To copy a file, call

BOOL CopyFile (LPCTSTR lpExistingFileName, LPCTSTR lpNewFileName,
BOOL bFai llfExi sts);

The parameters are the name of the file to copy and the name of the destination
directory. The third parameter indicates whether the function should overwrite
the destination file if one already exists before the copy is made.

Files and directories can be moved and renamed using

BOOL MoveFile (LPCTSTR lpExistingFileName, LPCTSTR lpNewFileName);

To move a file, simply indicate the source and destination names for the file.
The destination file must not already exist. File moves can be made within the
object store, from the object store to an external drive, or from an external drive
to the object store. MoveFile can also be used to rename a file. In this case, the
source and target directories remain the same; only the name of the file
changes.

MoveFile can also be used in the same manner to move or rename direc
tories. The only exception is that MoveFile can't move a directory from one vol
ume to another. Under Windows CE, MoveFile moves a directory and all its
subdirectories and files to a different location within the object store or different
locations within another volume.

Deleting a file is as simple as calling

BOOL DeleteFile (LPCTSTR lpFileName);

You pass the name of the file to delete. For the delete to be successful, the file
must not be currently open.

You can create and destroy directories using the following two functions:

BOOL CreateDirectory CLPCTSTR lpPathName,
LPSECURITY_ATTRIBUTES lpSecurityAttributes);

and

BOOL RemoveDirectory (LPCTSTR lpPathName);

CreateDirectory takes the name of the directory to create and a security param
eter that should be NULL under Windows CE. RemoveDirectory deletes a direc
tory. The directory must be empty for the function to be successful.

410 Part II Windows CE Programming

Creating a Temporary File
At times you will need to create a temporary file. How do you pick a unique
filename? You can ask Windows for the name of a temporary file by using the
following function:

UINT GetTempFileName (LPCTSTR lpPathName, LPCTSTR lpPrefixString,
UINT uUnique, LPTSTR lpTempFileName):

The first parameter is the path of the temporary file. You can specify a single"."
to indicate the current directory, or you can specify an existing directory. The
second parameter, lpPrefixString, is the name prefix. The first three characters
of the prefix become the first three characters of the temporary filename. The
uUnique parameter can be any number you want or 0. If you pass 0, Windows
will generate a number based on the system time and use it as the last four
characters of the filename. If uUnique is 0, Windows guarantees that the file
name produced by GetTempFileName will be unique. If you specify a value
other than 0 in uUnique, Windows returns a filename based on that value but
doesn't check to see whether the filename is unique. The last parameter is the
address of the output buffer to which GetTempFileName returns the filename.
This buffer should be at least MAX_PATH characters (not bytes) in length.

Finding Files
Windows CE supports the basic FindFirstFile, FindNextFile, FindClose proce
dure for enumerating files that is supported under Windows XP. Searching is
accomplished on a per-directory basis using template filenames with wild card
characters in the template.

Searching a directory involves first passing a filename template to Find
FirstFile, which is prototyped in this way:

HANDLE FindFirstFile (LPCTSTR lpFileName,
LPWIN32_FIND_DATA lpFindFileData):

The first parameter is the template filename used in the search. This filename
can contain a fully specified path if you want to search a directory other than
the root. Windows CE has no concept of Current Directory built into it; if no
path is specified in the search string, the root directory of the object store is
searched.

As you would expect, the wildcards for the filename template are ? and
*. The question mark (?) indicates that any single character can replace the
question mark. The asterisk (*) indicates that any number of characters can
replace the asterisk. For example, the search string \ Windows\Alarm?. wav
would return the files \ Windows\Alarml.wav, \ Windows\Alarm2.wav, and

Chapter 8 Files and the Registry 411

\ Windows\Alarm3.wav. On the other hand, the search string \Windows*.wav
would return all files in the windows directory that have the WAY extension.

The second parameter of FindFirstFile is a pointer to a
WIN32_FIND_DATA structure, as defined here:

typedef struct _WIN32_FIND_DATA
DWORD dwFileAttributes;
FILETIME ftCreationTirn~;

FILETIME ftLastAccessTirne;
FILETIME ftLastWriteTime;
DWORD nFileSizeHigh;
DWORD nFileSizeLow;
DWORD dwOID;
WCHAR cFileName[MAX_PATH];

WIN32_FIND_DATA;

This structure is filled with the file data for the first file found in the search. The
fields shown are similar to what we've seen.

If FindFirstFile finds no files or directories that match the template file
name, it returns INVALID_HANDLE_ VALUE. If at least one file is found, Find
FirstFile fills in the WIN32_FIND_DATA structure with the specific data for the
found file and returns a handle value that you use to track the current search.

To find the next file in the search, call this function:

BOOL FindNextFile (HANDLE hFindFile,
LPWIN32_FIND_DATA lpFindFileData);

The two parameters are the handle returned by FindFirstFile and a pointer to a
find data structure. FindNextFile returns TRUE if a file matching the template
passed to FindFirstFile is found and fills in the appropriate file data in the
WIN32_FIND_DATA structure. If no file is found, FindNextFile returns FALSE.

When you've finished searching either because FindNextFile returned
FALSE or because you simply don't want to continue searching, you must call
this function:

BOOL FindClose (HANDLE hFindFile);

This function accepts the handle returned by FindFirstFile. If FindFirstFile
returned INVALID_HANDLE_ VALUE, you shouldn't call FindClose.

The following short code fragment encompasses the entire file search pro
cess. This code computes the total size of all files in the Windows directory.

WIN32_FIND_DATA fd;
HANDLE hFind;
INT nTotalSize = 0;

(continued)

412 Part II Windows CE Programming

II Start search for all files in the windows directory.
hFind = FindFirstFile (TEXT ("\\windows\\•.•"), &fd);

II If a file was found, hFind will be valid.
if (hFind != INVALID_HANDLE_VALUE)

II Loop through found files. Be sure to process file
II found with FindFirstFile before calling FindNextFile.
do

II If found file is not a directory, add its size to
II the total. (Assume that the total size of all files
II is less than 2 GB.)
if (!(fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY))

nTotalSize += fd.nFileSizeLow;

II See if another file exists.
} while (FindNextFile ChFind, &fd));

II Clean up by closing file search handle.
FindClose ChFind);

In this example, the Windows directory is searched for all files. If the found
"file" isn't a directory, that is, if it's a true file, its size is added to the total. Notice
that the return handle from FindFirstFile must be checked, not only so that you
know whether a file was found but also to prevent FindClose from being called
if the handle is invalid.

A more advanced version of the FindxxxFile API is FindFirstFileEx. The
advantage of this function is the added ability to enumerate only directories and
even to enumerate the device drivers currently running. The function is proto
typed as

HANDLE FindFirstFileEx(LPCTSTR lpFileName, FINDEX_INFO_LEVELS finfoLevelid,
LPVOID lpFindFileData, FINDEX_SEARCH_OPS fSearchOp,
LPVOID lpSearchFilter, DWORD dwAdditionalFlags);

As in FindFirstFile, the first parameter, lpFileName, specifies the search
string. The parameter ftnfoLevel!d must be set to the constant FindExlnfoStan
dard. Given that the second parameter must be FindExlnfoStandard, the third
parameter always points to a WIN32_FIND_DATA structure. The final two
parameters, lpSearchFilter and dwAdditionalFlags, must be set to 0 on Win
dows CE.

The fourth parameter, fSearchOp, is what differentiates FindFirstFileEx from
FindFirstFile on Windows CE. This parameter can be one of three values: Find
ExSearchNameMatch, FindExSearchLimitToDirectories, or FindExSearchLimit
ToDevices. The value FindExSearchNameMatch tells FindFirstFileEx to act just

Chapter 8 Files and the Registry 413

like FindFirstFile, searching for a matching filename. The value FindExSearch
LimitToDirectories indicates that the function should search only for directories
matching the search specification. This search should be slightly faster than
repeatedly calling FindFirstFile and checking for the directory attribute because
this check is done inside the file system, thereby reducing the number of Find

NextFile calls. The final value, FindExSearchLimitToDevices, is the most inter
esting. It causes the function to search the names of the loaded device drivers
to find a matching name. You shouldn't provide a path, with the exception of
an optional leading "\".

FindFirstFileEx returns a handle if the search is successful and returns
INVALID_HANDLE_ VALUE if the search fails. When performing a search, use
FindFirstFileEx in place of FindFirstFile. To search for the second and all other
files, call FindNextFile. When you have completed the search, call FindClose to
close the handle.

While FindFirstFileEx is a handy addition to the Windows CE API, some
early Pocket PC 2000 systems don't seem to correctly implement this function
when enumerating device names. You should be careful when calling this func
tion; couch it in a _try _except block to guard against exceptions. If an excep
tion occurs during the function call, you can assume that that particular aspect
of FindFirstFileEx isn't supported on that device.

Distinguishing Drives from Directories
As I mentioned at the beginning of this chapter, Windows CE doesn't support
the concept of drive letters so familiar to MS-DOS and Windows users. Instead,
file storage devices such as PC Cards or even hard disks are shown as directo
ries in the root directory. That leads to the question, "How can you tell a direc
tory from a drive?" To do this, you need to look at the file attributes for the
directory. Directories that are actually secondary storage devices-that is, they
store files in a place other than the object store-have the file attribute flag
FILE_ATTRJBUTE_TEMPORARY set. Windows CE also uses this attribute flag for
other "nondirectory" directories such as the NETWORK and RELEASE folders.
The NETWORK folder lists network shares. The RELEASE folder is used during
embedded development. So finding storage devices on any version of Windows
CE is fairly easy, as is shown in the following code fragment:

WIN32_FIND_DATA fd;
HANDLE hFind;
TCHAR szPath[MAX_PATH];
ULARGE_INTEGER lnTotal. lnFree;

lstrcpy CszPath, TEXT("\\•.•"));
hFind = FindFirstFile CszPath, &fd);

(continued)

414 Part II Windows CE Programming

if (hFind != INVALID_HANDLE_VALUEJ
do {

if ((fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORYJ &&
(fd.dwFileAttributes & FILE_ATTRIBUTE_TEMPORARY)) {
TCHAR szName[MAX_PATHJ;
wstrcpy (szName, fd.cFileName);
wstrcat (szName, TEXT (\\Vol:));
HANDLE h = CreateFile (szName,

GENERIC_READIGENERIC_WRITE,
0, NULL, OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);

if (h != INVALID_HANDLE_VALUE) {
CloseHandle (h);

JI Get the disk space statistics for drive.
GetDiskFreeSpaceEx (fd.cFileName, NULL, &lnTotal,

&lnFree);

while (FindNextFile (hFind, &fd));
FindClose (hFind);

This code uses the find first/find next functions to search the root directory for
all directories with the FILE_ATTRIBUTE_TEMPORARY attribute set. It then
checks to see whether the directory can be opened as a volume. Other directo
ries with the FILE_ATTRIBUTE_TEMPORARY flag can't be opened because they
don't represent file system volumes.

Notice the call to the following function in the code I just showed you:

BOOL GetDiskFreeSpaceEx (LPCWSTR lpDirectoryName,
PULARGE_INTEGER lpFreeBytesAvailableToCaller,
PULARGE_INTEGER lpTotalNumberOfBytes,
PULARGE_INTEGER lpTotalNumberOfFreeBytes);

This function provides information about the total size of the drive and the
amount of free space it contains. The first parameter is the name of any direc
tory on the drive in question. This doesn't have to be the root directory of the
drive. GetDiskFreeSpaceEx returns three values: the free bytes available to the
caller, the total size of the drive, and the total free space on the drive. These val
ues are returned in three ULARGE_INTEGER structures. These structures contain
two DWORD fields named LowPart and HighPart. This allows GetDiskFree
SpaceEx to return 64-bit values. Those 64-bit values can come in handy on Win
dows XP, where the drives can be large. If you aren't interested in one or more

Chapter 8 Files and the Registry 415

of the fields, you can pass a NULL in place of the pointer for that parameter. You
can also use GetDiskFreeSpaceEx to determine the size of the object store.

Another function that can be used to determine the size of the object store is

BOOL GetStoreinformation (LPSTORE_INFORMATION lpsi);

GetStorelnformation takes one parameter, a pointer to a STORE_INFOR
MA110N structure defined as

typedef struct STORE_INFORMATION
DWORD dwStoreSize;
DWORD dwFreeSize;

STORE_INFORMATION. *LPSTORE_INFORMATION;

As you can see, this structure simply returns the total size and amount of free
space in the object store.

That covers the Windows CE file APL As you can see, very little Windows
CE-unique code is necessary when you're working with the object store. Now
let's look at the registry API, where Windows CE also follows the Win32 API
quite closely.

The Registry
The registry is a system database used to store configuration information in
applications and in Windows itself. The registry as defined by Windows CE is
similar but not identical in function and format to the registries under other ver
sions of Windows. In other words, for an application, most of the same registry
access functions exist, but the layout of the Windows CE registry doesn't exactly
follow Windows XP.

As in all versions of Windows, the registry is made up of keys and values.
Keys can contain keys or values or both. Values contain data in one of a num
ber of predefined formats. Since keys can contain keys, the registry is distinctly
hierarchical. The highest-level keys, the root keys, are specified by their pre
defined numeric constants. Keys below the root keys and values are identified
by their text name. Multiple levels of keys can be specified in one text string by
separating the keys with a backslash (\).

To query or modify a value, the key containing the value must first be
opened, the value queried or written, and then the key closed. Keys and values
can also be enumerated so that an application can determine what a specific
key contains. Data in the registry can be stored in a number of different pre
defined data types. Among the available data types are strings, 32-bit numbers,
and free-form binary data.

416 Part II Windows CE Programming

Registry Organization
The Windows CE registry supports three of the high-level, root, keys seen on
other Windows platforms: HKEY_LOCALfiACHINE, HKEY_CURRENT_USER,
and HKEY_CLASSES_ROOT As with other Windows platforms, Windows CE
uses the HKEY_LOCAL_MACHINE key to store hardware and driver configura
tion data, HKEY_CURRENT_USER to store user-specific configuration data, and
the HKEY_CLASSES_ROOT key to store file type matching and OLE configura
tion data.

As a practical matter, the registry is used by applications and drivers to
store state information that needs to be saved across invocations. Applications
typically store their current state when they are requested to close and then
restore this state when they are launched again. The traditional location for stor
ing data in the registry by an application is obtained by means of the following
structure:

{ROOT_KEY}\Software\{Company Name}\{Company Product}

In this template, ROOT_KEY is either HKEY_LOCAL_MACHINE for machine
specific data, such as what optional components of an application can be
installed on the machine, or HKEY_CURRENT_USER for user-specific informa
tion, such as the list of the user's last-opened files. Under the Software key, the
name of the company that wrote the application is used followed by the name
of the specific application. For example, Microsoft saves the configuration infor
mation for Pocket Word under the key

HKEY_LOCAL_MACHINE\Software\Microsoft\Pocket Word

While this hierarchy is great for segregating registry values from different appli
cations from one another, it's best not to create too deep a set of keys. Because
of the way the registry is designed, it takes less memory to store a value than it
does a key. Because of this, you should design your registry storage so that it
uses fewer keys and more values. To optimize even further, it's more efficient
to store more information in one value than to have the same information
stored across a number of values.

The window in Figure 8-1 shows the hierarchy of keys used to store data
for Pocket Word. The left pane shows the hierarchy of keys down to the Set
tings key under the Pocket Word key. In the Settings key, three values are
stored: Wrap To Window, Vertical Scrollbar Visibility, and Horizontal Scrollbar
Visibility. In this case, these values are DWORD values, but they could have
been strings or other data types.

Chapter 8 Files and the Registry 417

"

Figure 8-1 The hierarchy of registry values stored by Pocket Word

The Registry API
Now let's turn toward the Windows CE registry API. In general, the registry API
provides all the functions necessary to read and write data in the registry as well
as enumerate the keys and data store within. Windows CE doesn't support the
security features of the registry that are supported under Windows XP. How
ever, Windows CE does prohibit untrusted applications from modifying certain
critical registry keys.

Opening and Creating Keys
You open a registry key with a call to this function:

LONG RegOpenKeyEx CHKEY hKey, LPCWSTR lpszSubKey, DWORD ulOptions,
REGSAM samDesired, PHKEY phkResult);

The first parameter is the key that contains the second parameter, the subkey.
This first key must be either one of the root key constants or a previously
opened key. The subkey to open is specified as a text string that contains the
key to open. This subkey string can contain multiple levels of subkeys as long
as each subkey is separated by a backslash. For example, to open the suhkey
HKEY_LOCAL_MACHINE\Software\Microsoft\Focket Word, an application
could either call RegOpenKeyEx with HKEY_LOCAL_MACHINE as the key and
Software\Microsoft\Focket Word as the subkey or open the Software\Microsoft
key and then make a call with that opened handle to RegOpenKeyEx, specifying
the subkey Pocket Word. Key and value names aren't case specific.

418 Part II Windows CE Programming

Windows CE ignores the ulOptions and samDesired parameters. To
remain compatible with future versions of the operating system that might use
security features, these parameters should be set to 0 for u!Options and NULL
for samDesired. The phkResult parameter should point to a variable that will
receive the handle to the opened key. The function, if successful, returns a
value of ERROR_SUCCESS and an error code if it fails.

Another method for opening a key is

LONG RegCreateKeyEx CHKEY hKey, LPCWSTR lpszSubKey, DWORD Reserved,
LPWSTR lpszClass, DWORD dwOptions,
REGSAM samDesired,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
PHKEY phkResult, LPDWORD lpdwDisposition);

The difference between RegCreateKeyEx and RegOpenKeyEx, aside from
the extra parameters, is that RegCreateKeyEx creates the key if it didn't exist
before the call. The first two parameters, the key handle and the subkey name,
are the same as in RegOpenKeyEx. The Reserved parameter should be set to 0.
The lpClass parameter points to a string that contains the class name of the key
if it's to be created. This parameter can be set to NULL if no class name needs
to be specified. The dwOptions and samDesired and lpSecurityAttributes
parameters should be set to 0, NULL, and NULL respectively. The phkResult
parameter points to the variable that receives the handle to the opened or
newly created key. The lpdwDisposition parameter points to a variable that's set
to indicate whether the key was opened or created by the call.

Reading Registry Values
You can query registry values by first opening the key containing the values of
interest and calling this function:

LONG RegQueryValueEx (HKEY hKey, LPCWSTR lpszValueName,
LPDWORD lpReserved, LPDWORD lpType,
LPBYTE lpData, LPDWORD lpcbData);

The hKey parameter is the handle of the key opened by RegCreateKeyEx or
RegOpenKeyEx. The lpszValueName parameter is the name of the value that's
being queried. The lpType parameter is a pointer to a variable that receives the
variable type. The lpData parameter points to the buffer to receive the data,
while the lpcbData parameter points to a variable that receives the size of the
data. If RegQueryValueEx is called with the lpData parameter equal to NULL,
Windows returns the size of the data but doesn't return the data itself. This
allows applications to first query the size and type of the data before actually
receiving it.

Chapter 8 Files and the Registry 419

Writing Registry Values
You set a registry value by calling

LONG RegSetValueEx (HKEY hKey, LPCWSTR lpszValueName, DWORD Reserved,
DWORD dwType, canst BYTE *lpData, DWORD cbData);

The parameters here are fairly obvious: the handle to the open key followed by
the name of the value to set. The function also requires that you pass the type
of data, the data itself, and the size of the data. The data type parameter is sim
ply a labeling aid for the application that eventually reads the data. Data in the
registry is stored in a binary format and returned in that same format. Specifying
a different type has no effect on how the data is stored in the registry or how
it's returned to the application. However, given the availability of third-party
registry editors, you should make every effort to specify the appropriate data
type in the registry.

The data types can be one of the following:

• REG_SZ A zero-terminated Unicode string

• REG_EXPAND_SZ A zero-terminated Unicode string with embed
ded environment variables

• REG_MULTI_SZ A series of zero-terminated Unicode strings ter-
minated by two zero characters

• REG_DWORD A 4-byte binary value

• REG_BINARY Free-form binary data

• REG_DWORD_BIG_ENDIAN A DWORD value stored in big
endian format

• REG_DWORD_LI1TLE_ENDIAN Equivalent to REG_DWORD

• REG_LINK A Unicode symbolic link

• REG_NONE No defined type

• REG_RESOURCE_LIST A device driver resource list

Deleting Keys and Values
You delete a registry key by calling

LONG RegDeleteKey (HKEY hKey, LPCWSTR lpszSubKey);

The parameters are the handle to the open key and the name of the subkey you
plan to delete. For the deletion to be successful, the key must not be currently
open. You can delete a value by calling

LONG RegDeleteValue (HKEY hKey, LPCWSTR lpszValueName);

420 Part II Windows CE Programming

You can glean a wealth of information about a key by calling this function:

LONG RegQueryinfoKey (HKEY hKey, LPWSTR lpszClass, LPDWORD lpcchClass,
LPDWORD lpReserved, LPDWORD lpcSubKeys,
LPDWORD lpcchMaxSubKeyLen,
LPDWORD lpcchMaxClassLen,
LPDWORD lpcValues, LPDWORD lpcchMaxValueNameLen,
LPDWORD lpcbMaxValueData,
LPDWORD lpcbSecurityDescriptor,
PFILETIME lpftLastWriteTime);

The only input parameter to this function is the handle to a key. The function
returns the class of the key, if any, as well as the maximum lengths of the sub
keys and values under the key. The last two parameters, the security attributes
and the last write time, are unsupported under Windows CE and should be set
to NULL.

Closing Keys
You close a registry key by calling

LONG RegCloseKey (HKEY hKey);

When a registry key is closed, Windows CE flushes any unwritten key data to
the registry before returning from the call.

Enumerating Registry Keys
In some instances, you'll find it helpful to be able to query a key to see what
subkeys and values it contains. You accomplish this with two different func
tions: one to query the subkeys, another to query the values. The first function

LONG RegEnumKeyEx (HKEY hKey, DWORD dwindex, LPWSTR lpszName,
LPDWORD l pcchName, LPDWORD l pReserved,
LPWSTR lpszClass,
LPDWORD lpcchClass, PFILETIME lpftLastWriteTime);

enumerates the subkeys of a registry key through repeated calls. The parame
ters to pass the function are the handle of the opened key and an index value.
To enumerate the first subkey, the dwlndex parameter should be 0. For each
subsequent call to RegEnumKeyEx, dwlndex should be incremented to get the
next subkey. When there are no more subkeys to be enumerated, Reg
EnumKeyEx returns ERROR_NO _MORE_ITEMS.

For each call to RegEnumKeyEx, the function returns the name of the sub
key and its classname. The last write time parameter isn't supported under Win
dows CE.

Chapter 8 Files and the Registry 421

Values within a key can be enumerated with a call to this function:

LONG RegEnumValue (HKEY hKey, DWORD dwindex, LPWSTR lpszValueName,
LPDWORD lpcchValueName, LPDWORD lpReserved,
LPDWORD lpType, LPBYTE lpData, LPDWORD lpcbData);

Like RegEnumKey, this function is called repeatedly, passing index values to
enumerate the different values stored under the key. When the function returns
ERROR_NO_MORE_ITEMS, no more values are under the key. RegEnumValue
returns the name of the values and the data stored in each value, as well as its
data type and the size of the data.

The RegView Example Program
The following program is a registry viewer application. It allows a user to nav
igate the trees in the registry and examine the contents of the data stored.
Unlike RegEdit, which is provided by Windows XP, RegView doesn't let you
edit the registry. However, such an extension wouldn't be difficult to make. List
ing 8-2 contains the code for the RegView program.

Reg View.re
!!==
II Resource file
II
II Copyright (C) 2003 Douglas Boling
II==
#include "windows.h"
#include "regview.h" II Program-specific stuff

11--- ------------
11 Icons and bitmaps
II
ID_ICON ICON "regview.ico"
ID_BMPS BITMAP "TVBmps.bmp"

I I Program icon

11--
11 Menu
II
ID_MENU MENU DISCARDABLE
BEGIN

POPUP "&File"
BEGIN

MENUITEM "E&xit",
END

Listing 8-2 The RegView program

IDM_EXIT

(continued)

422 Part II Windows CE Programming

Listing 8-2 (continued)

END

POPUP "&Help"
BEGIN

MENUITEM "&About ... ",
END

IDM_ABOUT

11--"-----------
ll About box dialog template
II
aboutbox DIALOG discardable 10, 10, 135, 40
STYLE WS_POPUP I WS_VISJBLE I WS_CAPTJON I WS_SYSMENU I DS_CENTER I

DS_MODALFRAME
CAPTION "About"
BEGIN

ICON ID_ICON, -1, 3. 5, 10, 10
L TEXT "RegVi ew - Wri tte.n .for the book Programming Window$ CE \

Copyright a003 Doug) as Boling"
·L 3\L 5, 102. 33

END

RegView.h

II Header file
II
II Written for the book Programming Windows CE
II Copyright (C~ 2003 Douglas Bo1ir1g

II Returns number of .elements
#define dim(x) Csizeof(x) J sizeof(x(0]))

//•·•·•-•••••c-•··'··-··-·••·••••••·•·-••••····-•-C•-c.•--••••·-':·•--•--
11 Generic.defines and data types
II
struct decodeU1NT {

UINT Code;

LRESULT (*Fxn)(HWND, UINT, WPARAM,. LPARAM);
} ;

struct decodeCMD {
U INT Code;
LRESULT (*FXn)(HWNb. WORD. HWNb .• WORD):.

} :
struct decotjeNotHy {

U.INT Code:
LRESULT (*Fxn) (HWND, U INT. HWNQ. LP.NMHDR) .;

} ;

JI Structure associates
11 messages
II wtth a function.

II Structure associates
II control IDs with a
!.I fur1ct ion..

I I Strllct.ure associates
I I control tos with a
II notify handler.

Chapter 8 Files and the Registry 423

//--
II Generic defines used by application
#define ID_ICON 1 JI App icon resource ID
#define ID_BMPS 2 II Bitmap resource ID
#define IDCCMDBAR 10 II Command band ID
#define ID_MENU 11 II Main menu resource ID
#define ID_TREEV 12 II Tree view control ID
ifadefi ne ID_LISTV 13 II List view control ID

II Menu i tern IDs
#define IDM_EXIT 101 II File menu
#define IDM_ABOUT 150 II Help menu

//--
// Function prototypes
II
HWND Initinstance (HINSTANCE, LPWSTR, int);
int Terminstance (HINSTANCE, int);

INT EnumChildren (HWND, HTREEITEM, HKEY, LPTSTR);
DWORD CountChildren (HKEY, LPTSTR, LPTSTR);
INT EnumValues (HWND, HKEY, LPTSTR);
INT DisplayValue (HWND, INT, LPTSTR, PBYTE, DWORD, DWORD);
INT GetTree (HWND, HTREEITEM, HKEY *· TCHAR *· INT);
HTREEITEM InsertTV (HWND, HTREEITEM, TCHAR *· LPARAM, DWORD);
INT InsertLV (HWND, INT, LPTSTR, LPTSTR);
HWND CreateLV (HWND, RECT *):
HWND CreateTV (HWND, RECT •);

JI Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

II Message handlers
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoSizeMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoNotifyMain (HWND, UINT, WPARAM. LPARAM);
LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

II Command functions
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandAbout (HWND, WORD, HWND, WORD);

II Notify functions
LPARAM DoMainNotifyListV CHWND, UINT, HWND, LPNMHDR);
LPARAM DoMainNotifyTreeV (HWND, UINT, HWND, LPNMHDR);

II Dialog procedures
BOOL CALLBACK AboutDlgProc (HWND, UINT, WPARAM, LPARAM);

(continued)

424 Part II Windows CE Programming

Listing 8-2 (continued)

RegView.c
II==
II RegView - WinCE registry viewer
II
II Written for the book Programming Windows CE
II Copyright (Cl 2003 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include <commctrl .h> II Command bar includes
if/include <commdlg.h> II Common dialog includes

#include "RegVi ew. h'' II Program-specific stuff

11--
11 Global data
II
canst TCHAR szAppName[] =TEXT ("RegView");
HINSTANCE hlnst; II Program instance handle

INT nDivPct = 40; II Divider setting between windows

II Message dispatch table for MalnWindowProc
const struct decodeUINT MainMessages[J = {

WM_CREATE. DoCreateMain,
WM_SIZ£. DoSizeMain,
WM_COMMAND, DoCommandMain,
WM_NOTIFY, DoNoti fyMai n,
WM_DESTROY, DoDestroyMain,

} ;

II Command message dispatch for MainWindowProc
canst struct decodeCMD MainCommanditems[] = {

} ;

I DM...:.EX IT, D.oMa i nCommandExi.t,
IDM_ABOUT, DoMainCommandAbout,

II Notification message dispatch for MainWindowProc
canst struct decodeNotify MainNotifyltems[] = {

} ;

ID_LISTV, DoMainNotifylistV,
ID_TREEV, DoMainNotifyTreeV,

II===~========================
II
II Program entry point
II
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShowl {
HWN[} hwndMain;
MSG msg;
int re = 0;

Chapter 8 Files and the Registry 425

II Initialize this instance.
hwndMain = Initinstance Chinstance, lpCmdLine, nCmdShow);
if (hwndMain == 0)

return 0xl0;

II Application message loop
while CGetMessage C&msg, NULL, 0, 0)) {

TranslateMessage C&msg);
DispatchMessage C&msgl;

II Instance cleanup
return Terminstance Chinstance, msg.wParam);

II- -- --
11 Initinstance - Instance initialization
II
HWND Initinstance (HINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow){

WNDCLASS wc;
INITCOMMONCONTROLSEX icex;
HWND hWnd;

II Save program instance handle in global variable.
hinst = hinstance;

#if defined(WIN32_PLATFORM_PSPC)
II If Pocket PC, allow only one instance of the application.
hWnd = FindWindow (szAppName, NULL);
1f ChWnd) {

SetForegroundWindow CCHWND)(((DWORDlhWnd) I 0x01));
return 0;

#end if
II Register application main window class.
we.style= 0; II Window style
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hinstance = hinstance;
wc.hicon = NULL,

II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon

wc.hCursor = LoadCursor (NULL, IDC_ARROWl;ll Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject CWHITE_BRUSH);
wc. lpszMenuName = NULL; 11 Menu name
wc.lpszClassName = szAppName: II Window class name

if CRegisterClass C&wc) == 0) return 0;

II Load the command bar common control class.
icex.dwSize = sizeof CINITCOMMONCONTROLSEX);
icex.dwICC = ICC_BAILCLASSES I ICC_TREEVIEW_CLASSES

(continued)

..

426 Part II Windows CE Programming

Listing 8-2 (continued)

r.cc_USTVIEW-'CLASSES;

Chapter 8 Files and the Registry 427

II Create a minimal command bar that has only a menu and an
II exit button.
hwndCB = CommandBar_Create Chinst, hWnd, IDC_CMDBAR);
II Insert the menu.
CommandBar_InsertMenubar (hwndCB, hinst, ID_MENU, 0);
II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 0);

II The position of the child windows will be set in WM_SIZE
SetRect C&rect, 0, 0, 10, 10);
II Create the tree view control
hwndChild = CreateTV (hWnd, &rect);
if (!IsWindow (hwndChild)) {

}

DestroyWindow (hWnd);
return 0:

II Create the list view control
hwndChild = CreateLV ChWnd, &rect);
II Destroy frame if window not created.
if ClisWindow (hwndChild)) {

}

DestroyW1ndow (hWnd):
return 0:

II Insert the base keys.
InsertTV (hWnd, NULL, TEXT ("HKEY_CLASSES_ROOT"),

(LPARAMIHKEY_CLASSES_ROOT, 11:
InsertTV (hWnd, NULL, TEXT C"HKEv_cuRRENT_USER"),

(LPARAM)HKEY_CURRENT_USER. 1);
InsertTV (hWnd, NULL, TEXT ("HKEv_LOCAL_MACHINE"),

(LPARAM)HKEY_LOCAL_MACHINE, 1);
InsertTV (hWnd, NULL, TEXT C"HKEY_USERS"),

CLPARAM)HKEY_USERS, l);
return 0;

11--
11 DoSizeMain - Process WM_SIZE message for window.
II
LRESULT DoSizeMain (HWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam){

HWND hwndLV, hwndTV:
RECT rect, rectLV. rectTV;
INT nDivPos, ex. cy;

hwndTV = GetDlgitem (hWnd, ID_TREEV):
hwndLV""' GetDlgltem ChWnd. ID_LJSTV):

II Adjust the s.ize of the client rect to take into account
II the command bar height.
Get Cl i ent.Rect C hWnd. &rect):

(continued)

428 Part II Windows CE Programming

Listing 8-2 (continued)

}

rett.top +.; Coll1mandBar_Hei.ght (GetDlgitem><hWnd, IDG_CMDBAR}):
ex• rett.right ~ rect.left;
cy = r.ect. bottom - rect. top;

II For Pocket PC. st.ack .the windows; otherwise, they're side by side ..
if (GetsystemMetriCS··{SM_CXSCREEN} < 480) {

}

nDtvPos = (cy * noivPct)/110;
SetRect l&rectTV, rect,l~ft, rect.top, ex, ~DivPos);
SetRect <&rectLV, rect. lef.t, nPivPos + rect.top, ex .• cy • nDivPos):

else {
nPivPos = (ex • nDivPctlll00;
SetRect C&rectTV; rett.left; reCt.top, nDivPos; cyl;
SetRect l&rectLV. nDivPos, rect.top. ex - nDivPos. cy);

II The child window positions
SetWi ndowPos (bwndTV, l'iUL.L, rec:t.TV •. 1 eft. rectTV. top,

re ct TV. r.i ght, re.ct TV. bottom, SW·P _NOZOROER):
setWi ndowPos (hwndl V, NUU, rectLV. 1 eft, rectLV. top,

rectl V. right, rect.LV .bottom, SWP_NOZORDER);
return 0:

ll·-··"·--···----~-----------------·---~-----~--------- 0 -~·-------------

1 I DoComrnandMain - Proc.ess WM_COMMANP mess a·ge for 11i. ndow ..
JI
LRESULT DoCommandMain CHWND hWnd, UINT wMsg, WPARAM wP~ram,

. LPARAM lParam) {
WORD iditem, wNotifyCode;
HWND hwndCtl:
HIT i;

II Parse th~ parameters~
iditem = (WORD) LO·WORD <wP(lram);
wNotifyCode = (WORDJ HlWORD (wPar.am);
hwndCtl = (HWNDl lParam;

II Call routin~ to handl~ control message.
for (i = 0: i < dimCMainCommanditems); i++) {

if (iditem == MainCommanditems[i].Codel

}

return (*MainCommanditems[i] .Fxn)(hWnd, id Item, h.wndCtl,
wNot i fyCode) :

return 0;

IJ--·---------·---------------C---------~------·---------·--------------
/1 DoNotifyMain - Process WM~NOTIFY ~essage for window.
II
LRESULT DoNotifyMain (HWNO hWnd, UINT wMsg, WPARAM wParam,

Chapter 8 Files and the Registry 429

LPARAM lParam) {
UINT iditem;
HWND hCtl;
LPNMHDR pHdr;
INT i;

II Parse the parameters.
idltem = wParam;
pHdr (LPNMHDR) lParam;
hCtl = pHdr->hwndFrom;

II Call routine to handle control message.
for (i = 0; i < dim(MainNotifyltems); i++)

if (idltem == MainNotifyltems[iJ.Code)
return (*MainNotifyltems[i].Fxn)(hWnd, iditem, hCtl, pHdr);

return 0;

11---------------------------------------

II DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {
PostQuitMessage (0);
return 0;

II==
II Command handler routines
11--
11 DoMainCommandExit - Process Program Exit command.
II
LPARAM DoMainCommandExit (HWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

SendMessage (hWnd, WM_CLOSE, 0, 0);
return 0;

11--
11 DoMainCommandAbout - Process the Help I About menu command.
II
LPARAM DoMainCommandAbout(HWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

II Use DialogBox to create modal dialog box.
DialogBox (hinst, TEXT ("aboutbox"), hWnd, AboutDlgProc);
return 0;

(continued)

430 Part II Windows CE Programming

Listing 8-2 (continued)

l/Nbtif~Jancller• ... r'o~tines
II c - - " -, .• - • c ~ • - - - . •" - .• •

//'DoMainNottfyLi{tV - Protess notify .message for list view;
fl
LPARAM.DoMaiiHfotiJ'YLlstV (HWND hi-Ind. UINT iditem. HWND hwndCtl.

LPNMHPR. pntJ1hl. {

}

// ~. 7 • - - • - - • - - - - - - - - - - - - - 7 - - - - - - c - - - • ~ ·-. " - - - - - - - .- - - - • - • - - - - - - • - - • - - .- - - • -

ll DoMainNoti fyTreev - Process view.
ll
LPARAM .. DoMa inN()tlfylreeV id Item, HWND hwndCtl ,

case TVN~IH:MEXPAND ING:
CpNoti fyTV·>action "''" TVE-EXPANO)
GetTree (hWnd ..•. pNoti fyTV->HemNew. hltem,

Chapter 8 Files and the Registry 431

szKey, dim(szKey));
EnumChildren (hWnd, pNotifyTV->itemNew.hltem,

hRoot, szKey);

break;

return 0;

11--
11 CreateLV - Create list view control.
II
HWND CreateLV (HWND hWnd, RECT *prect) {

HWND hwndLV;
LVCOLUMN lvc;

II
II Create report window. Size it so that it fits under
II the command bar and fills the remaining client area.
II
hwndLV CreateWindowEx (0, WC_L!STVIEW. TEXT (""),

WS_VIS!BLE I WS_CHILD I WS_VSCROLL
WS_BORDER I LVS_REPORT,
prect->left, prect->top,
prect->right - prect->left,
prect->bottom · prect->top,
hWnd, (HMENU)!O_LISTV,
hlnst, NULL);

II Add columns.
if (hwndLV) {

}

lvc.mask = LVCF_TEXT I LVCF_WIDTH I LVCF_FMT I LVCF_SUBITEM I
LVCF _ORDER;

lvc.fmt = LVCFMT_LEFT;
lvc.cx = 120;
lvc.pszText =TEXT ("Name");
l vc. iOrder = 0;
lvc.iSubltem = 0;
SendMessage (hwndLV, LVM_l NSERTCOLUMN, 0. (LP A RAM l& 1 vc);

lvc.mask I= LVCF_SUBITEM;
lvc.pszText =TEXT ("Data");
lvc.cx = 250;
lvc.iOrder = 1;
lvc.iSubltem = 1:
SendMessage (hwndLV, LVM_INSERTCOLUMN. 1, .(LPARAMl&lvc);

return hwndLV;

(continued)

432 Part II Windows CE Programming

Listing 8-2 (continued)

//""----~---~~---------"--~-

II Ir\i.tTreeView - Initialize tree view control.
//
HWND .Create TV (HWNO hWnd. RECT *Prect) {

HB!TMAP hBmp;
HlMAGELIST html :
HWND hwndTV;

//
ll
II the command bar arid fills pa~t of .the cli~nt area.
fl

= CreateWfodowEx (0, WC_TREE'.VIEW,
TE:XT (""), WS_VISIBLE l WS~CHI LO f WLVSCROLL
WS'-BORDERJ•TIJS.,;H/l.SLlNES 1·· ·nsoC.HASBUTTONS
T\JS"-oLINESATROOT, prect->Jeft,
prectc>right, prec:;t'>b<:>ttom.
hWno .<<HMENIJ)!D~TREEV •. hlnst .•.

l\li .. i$Qblte1J1 = .0:
lVi.pszText = pszName.;
l\ILtimage = 0;

Chapter 8 Files and the Registry 433

re= SendMessage (hwndLV. LVM_INSERTITEM, 0, (LPARAMl&lvi);

lvi .mask = LVIF_TEXT;
lvi.iitem = nitem;
lvi .iSubitem = l;
lvi .pszText = pszData;

re= SendMessage (hwndLV, LVM_SETITEM, 0, (LPARAM)&lvi);
return 0;

11--
11 InsertTV - Insert item into tree view control.
II
HTREEITEM InsertTV (HWND hWnd, HTREEITEM hParent, TCHAR *pszName,

LPARAM lParam, DWORD nChildren) {
TV_INSERTSTRUCT tvis;

HWND hwndTV = GetDlgitem (hWnd, ID_TREEV);
II Initialize the insertstruct.
memset (&tvis, 0, sizeof (tvis));
tvis.hParent = hParent;
tvis.hlnsertAfter = TVI_LAST;
tvis.item.mask = TVIF_TEXT I TVIF_PARAM I TVIF_CHILDREN I

TVIF_IMAGE;
tvis.item.pszText = pszName;
tvis.item.cchTextMax = lstrlen (pszName);
tvis.item.iimage = l;
tvis.item.iSelectedlmage = l;
tvis.item.lParam = lParam;
if CnChildren)

tvis.item.cChildren 1;
else

tvis.item.cChildren 0;

return TreeView_Insertltem ChwndTV, &tvis);

11--
11 GetTree - Compute the full path of the tree view item.
II
INT GetTree CHWND hWnd, HTREEITEM hitem, HKEY *pRoot, TCHAR *pszKey,

INT nMax) {
TV_ITEM tvi;
TCHAR szName[256];
HTREEITEM hParent;
HWND hwndTV = GetDlgitem ChWnd, ID_TREEV);

memset (&tvi, 0, sizeof Ctvi));

(continued)

434 Part II Windows CE Programming

Listing 8-2 (continued)

hParent = TreeView_GetParent (hwndTV, hitem);
if (hParent) {

II Get the parent of the parent of the ...
GetTree (hWnd, hParent, pRoot, pszKey, nMaiO;

II Get the name of the item.
tvi .mask = TVIF_TEXT;

. .
-- ~~--~ -.~----·------~---·~-~--~·~~-~---·~-.-----:~---~-~--·----

th.e data• (jependlng on the type.

n9nt '.. L~T$TR. pszNarn:e,
DWQRD (jwTy:pet {

Chapter 8 Files and the Registry 435

}

break;

case REG_BINARY:
szData[0] =TEXT ('\0');
for (i = 0; i < (int)dwDSize: i++) {

len = lstrlen (szData);
wsprintf (&szData[len], TEXT ("%02X "), pbData[i]);
if (len > dim(szData) - 6)

break:

break;
default:

wsprintf (szData, TEXT ("Unknown type: %x"), dwType);
}

InsertLV (hWnd, nCnt, pszName, szData);
return 0:

(1---C·-•··--••••••••••-"·•••••-•••••••••••••••••••••••-•·-·-··--••••-••

II EnumValues - Enumerate each of the values of a key.
-~I : ,.:,-·. ·_.-.: .. ,· . ·:-'. ,· ::· :,. .. ·,, .' ··.·

•• ':I:~r ,:EiluJri~'a1ue's ''(liwNil' 'hwnl'. li-Ktv···h~o~t. :LP1's1R.··, pszKe'.Y'~ ·. <
' INT}C~t := 0.! r,c,1 : : : . •: . . : : :

DWORD dwN$1ze, d\'jDSize,'dwT.Ype;
TCHAR szName[MAx_PATHl:
BYTE b0ata[1024fr' ,.
_HKEY··_hKey;_

if <lstrlen <pszKey)) {
if (RegOpenKeyEx (hRoot, pszKey, 0, 0, &hKey) I= ERROR_SUCCESS)

return 0;
else

hKey = hRoot:

II Clean out list view.
ListView_DeleteAllltems (GetDlgitem (hWnd, ID_LISTV));

ll Enumerate the valµes in the list view control.
,n~nt,o;Jl:, ··· ·
:-9~Ns.1z_e_:7' ~fm~szNamel.: ·
,d~DS.t~e ''! -dim(bData >;

ChKey, nC.nt, szName, &dwNSize,
NULL,. PtdwType, bData, &ciwDSi ze):

(continued)

436 Part II Windows CE Programming

Listing 8-2 (continued)

}

Chapter 8 Files and the Registry 437

else
hKey = hRoot;

dwNSize = dim(szName);
dwCSize = dim(szClass);
re= RegEnumKeyEx (hKey, i, szName, &dwNSize, NULL,

szClass, &dwCSize, &ft);
while (re == ERROR_SUCCESS) {

}

nChild = CountChildren (hRoot, pszKey, szName);
II Add key to tree view.
InsertTV (hWnd, hParent, szName, 0, nChild);
dwNSize = dim(szName);
re = RegEnumKeyEx ChKey, ++i, szName, &dwNSize,

NULL, NULL, 0, &ft):

II If this wasn't the root key, close it.
if (hKey != hRoot)

RegCloseKey ChKey);
II If no children, remove expand button.
if(i==0){

}

tvi .hitem = hParent;
tvi .mask= TVIF_CHILDREN;
tvi. cChil dren = 0;
TreeView_Setitem (GetDlgitem (hWnd, ID_TREEV), &tvi);

return i:

II==
II About Dialog procedure
II
BOOL CALLBACK AboutDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
switch <wMsg) {

}

case WM_COMMAND:
switch (LOWORD (wParam))

case !DOK:

}

break;

case IDCANCEL:
EndDialog (hWnd, 0);
return TRUE;

return FALSE;

The workhorses of this program are the enumeration functions that query
what keys and values are under each key. As a key is opened in the tree view
control, the control sends a WM_N011FY message. In response, RegView enu-

438 Part II Windows CE Programming

merates the items below that key and fills the tree view with the child keys and
the list view control with the values.

We've covered a fair amount of ground in this chapter. The Windows CE
file system, while radically different from its predecessors under the covers, pre
sents a standard Win32 interface to the programmer and a familiar directory
structure to the user. The registry structure and interface are quite familiar to
Windows programmers and should present no surprises. Now it's time to look
at the other type of data that is stored in the object store, Windows CE data
bases. The database API is unique to Windows CE. Let's see how it works.

Windows CE Databases
Windows CE supports a unique database API for storing and organizing data in
the system. The database functions provide a simple tool for managing and
organizing data. They aren't to be confused with the powerful multilevel SQL
databases found on other computers. Even with its modest functionality, how
ever, the database API is convenient for storing and organizing simple groups of
data, such as address lists and mail folders.

In this chapter, I'll give you an overview of the database APL The database
API is one of the areas that have experienced a fair amount of change as Win
dows CE has evolved. Essentially, functionality has been added to later versions
of Windows CE. Where appropriate, I'll cover the differences between the dif
ferent versions and show workarounds, where possible, for maintaining a com
mon code base.

Databases
Windows CE gives you an entirely unique set of database APis not available
under the other versions of Windows. The database implemented by Windows
CE is simple, with only one level and a maximum of four sort indexes, but it
serves as an effective tool for organizing uncomplicated data, such as address
lists and to-do lists.

Basic Definitions
A Windows CE database is composed of a series of records. Records can con
tain any number of properties. These properties can be one of the data types
shown in Table 9-1.

439

440 Part II Windows CE Programming

Table 9-1

Data Type

IVal

UiVal

Lval

UlVal

FILETIME

LPWSTR

CEBLOB

BOOL

Double

Database Data Types Supported by Windows CE

Description

2-byte signed integer

2-byte unsigned integer

4-byte signed integer

4-byte unsigned integer

A time and date structure

0-terminated Unicode string

A collection of bytes

Boolean

8-byte signed value

Records can't contain other records. Also, records can reside on only one
database. Windows CE databases can't be locked. However, Windows CE does
provide a method of notifying a process that another thread has modified a
database.

A Windows CE database can have up to four multilevel sort indexes. (In a
multilevel sort index, the database sorts by a primary index and then sorts
within that index by a second, and even third, index.) These indexes are
defined when the database is created but can be redefined later, although the
restructuring of a database takes a large amount of time. Each sort index by
itself results in a fair amount of overhead, so you should limit the number of
sort indexes to what you really need.

In short, Windows CE gives you a basic database functionality that helps
applications organize simple data structures. The pocket series of Windows CE
applications provided by Microsoft with the Pocket PC use the database API to
manage the address book, the task list, and e-mail messages. So if you have a
collection of data, this database API might just be the best method of managing
that data.

Designing a Database
Before you can jump in with a call to CeCreateDatabaseEx2, you need to think
carefully about how the database will be used. While the basic limitations of the
Windows CE database structure rule out complex databases, the structure is
quite handy for managing collections of related data on a small personal device,
which, after all, is one of the target markets for Windows CE.

Each record in a database can have as many properties as you need as
long as they don't exceed the basic limits of the database structure. The limits

Chapter 9 Windows CE Databases 441

are fairly loose. An individual property can't exceed the constant
CEDB_MAXPROPDATASIZE, which is set to 65,471. A single record can't
exceed CEDB_MAXRECORDSIZE, currently defined as 131,072. The maximum
number of records that can be in a single database is 65,535.

Database Volumes
Database files can be stored in volumes on external media as well as directly in
the object store. A database volume is nothing more than a specially formatted
file where Windows CE databases can be located. Because database volumes
can be stored on file systems other than the object store, database information
can be stored on Compact Flash Cards or similar external storage devices. The
most immediate disadvantage of working with database volumes is that they
must be first mounted and then unmounted after you close the databases
within the volume. Essentially, mounting the database creates or opens the file
that contains one or more databases along with the transaction data for those
databases.

There are disadvantages to database volumes aside from the overhead of
mounting and unmounting the volumes. Database volumes are actual files and
therefore can be deleted by means of standard file operations. The volumes are,
by default, marked as hidden, but that wouldn't deter the intrepid user from
finding and deleting a volume in a desperate search for more space on the
device. Databases created directly within the object store aren't files and there
fore are much more difficult for the user to accidentally delete.

The Database API
Once you have planned your database and given the restrictions and consider
ations necessary to it, the programming can begin.

Mounting a Database Volume
If your database is on external media such as a CompactFlash card, you'll need
to mount the database volume that contains it. To mount a database volume, call

BOOL CeMountDBVol (PCEGUID pguid, LPWSTR lpszVol, DWORD dwFlags);

This function performs a dual purpose: it can create a new volume or open an
existing volume. The first parameter is a pointer to a guid. CeMountDBVol
returns a guid that's used by most of the database functions to identify the loca
tion of the database file. You shouldn't confuse the CEGUJD-type guid parame
ter in the database functions with the GUJD type that is used by OLE and parts
of the Windows shell. A CEGUID is simply a handle that tracks the opened data
base volume.

442 Part II Windows CE Programming

The second parameter in CeMountDBVol is the name of the volume to
mount. This isn't a database name, but the name of a file that will contain one
or more databases. Since the parameter is a filename, you should define it in
\path \name.ext format. The standard extension should be CDB.

The last parameter, dwFlags, should be loaded with flags that define how
this function acts. The possible flags are the following:

• CREATE_NEW Creates a new database volume. If the volume
already exists, the function fails.

• CREATE_ALWAYS Creates a new database volume. If the volume
already exists, it overwrites the old volume.

• OPEN_EXISTING Opens a database volume. If the volume doesn't
exist, the function fails.

• OPEN_ALWAYS Opens a database volume. If the volume doesn't
exist, a new database volume is created.

• TRUNCATE_EXISTING Opens a database volume and truncates it
to 0 bytes. If the volume already exists, the function fails.

If the flags resemble the action flags for CreateFile, they should. The
actions of CeMountDBVol essentially mirror CreateFile except that instead of
creating or opening a generic file, CeMountDBVol creates or opens a file espe
cially designed to hold databases.

If the function succeeds, it returns TRUE and the guid is set to a value that
is then passed to the other database functions. If the function fails, a call to Get
LastError returns an error code indicating the reason for the failure.

Database volumes can be opened by more than one process at a time. The
system maintains a reference count for the volume. As the last process
unmounts a database volume, the system unmounts the volume.

Enumerating Mounted Database Volumes
You can determine which database volumes are currently mounted by repeat
edly calling this function:

BOOL CeEnumDBVolumes (PCEGUID pguid, LPWSTR lpBuf, DWORD dwSize);

The first time you call CeEnumDBVolumes, set the guid pointed to by pguid to
be invalid. You use the CREATE_INVALIDGUID macro to accomplish this.
CeEnumDBVolumes returns TRUE if a mounted volume is found and returns the
guid and name of that volume in the variables pointed to by pguid and lpBuff.
The dwSize parameter should be loaded with the size of the buffer pointed to

Chapter 9 Windows CE Databases 443

by lpBujJ. To enumerate the next volume, pass the guid returned by the previ
ous call to the function. Repeat this process until CeEnumDBVolumes returns
FALSE. The code below demonstrates this process:

CEGUID guid;
TCHAR szVolume[MAX_PATH];
INT nCnt = 0;

CREATE_INVALIDGUID (&guid);
while (CeEnumDBVolumes (&guid, szVolume, sizeof (szVolume)))

II guid contains the guid of the mounted volume;
II szVolume contains the name of the volume.
nCnt++; II Count the number of mounted volumes.

Unmounting a Database Volume
When you have completed using the volume, you should unmount it by calling
this function:

BOOL CeUnmountDBVol (PCEGUID pguid);

The function's only parameter is the guid of a mounted database volume. Call
ing this function is necessary when you no longer need a database volume and
you want to free system resources. Database volumes are unmounted only
when all applications that have mounted the volume have called CeUnmount
DBVol.

Using the Object Store as a Database Volume
Even though you can store databases in volumes on external media, more often
than not you'll want to store the database in the object store. Because many of
the database functions require a CEGUJD that identifies a database volume, you
need a CEGUJD that references the system object store. Fortunately, one can be
created using this macro:

CREATE_SYSTEMGUID (PCEGUID pguid);

The parameter is, of course, a pointer to a CEGUJD. The value set in the
CEGUJD by this macro can then be passed to any of the database functions that
require a separate volume CEGUID.

Creating a Database
You can create a database by calling the function CeCreateDatabaseEx2, which
is prototyped as

CEOID CeCreateDatabaseEx2 (PCEGUID pguid, CEDBASEINFOEX *plnfo);

444 Part II Windows CE Programming

The first parameter is a pguid parameter that identifies the mounted database
volume where the database is located. The second parameter is a pointer to a
CEDEASEINFOEX structure defined as

typedef struct _CEDBASEINFOEX
WORD wVersion;
WORD wNumSortOrder;
DWORD dwFlags;
WCHAR szDbaseName[CEDB_MAXDBASENAMELEN];
DWORD dwDbaseType;
DWORD dwNumRecords;
DWORD dwSize;
FILETIME ftlastModified;
SORTORDERSPECEX rgSortSpecs[CEDB_MAXSORTORDER];

CEDBASEINFOEX. *PCEDBASEINFOEX;

The first field, w Version, specifies the version of the structure itself. It should be
set to CEDEASEINFOEX_ VERSION. The wNumSortOrder parameter should be
set to the number of sort order structures in rgSortSpecsArray. The maximum
number of sort indexes that can be specified is 4.

The dwFlags field has two uses. First, it contains flags indicating which
fields in the structure are valid. The possible values for the dwFlags field are
CEDE_ VALIDNAME, CEDE_ VALIDTYPE, CEDE_ VALIDSORTSPEC, and CEDE_
VALIDDEFLAGS. When you're creating a database, it's easier to set the dwFlags
field to CEDE_ VALIDCREATE, which is a combination of the flags I just listed.
An additional flag, CEDE_ VALIDMODTIME, is used when CeOidGetlnfo uses
this structure.

The other use for the dwFlags parameter is to specify the properties of the
database. Two flags are currently defined. The first is CEDE_NOCOMPRESS,
which can be specified if you don't want the database you're creating to be
compressed. By default, all databases are compressed, which saves storage
space at the expense of speed. By specifying the CEDE_NOCOMPRESS flag, the
database will be larger but you will be able to read and write to the database
faster. The second flag that can be defined is CEDE_SYSTEMDE. This flag indi
cates that the database cannot be deleted by an untrusted application. Trusted
and untrusted applications are part of the Windows CE security architecture and
will be discussed in Chapter 10.

The szDbaseName field specifies the name of the new database. Unlike
filenames, the database name is limited to 32 characters, including the terminat
ing zero. The dwDbaseType field is a user-defined parameter that can be
employed to differentiate families of databases. For example, you might want to
use a common type value for all databases that your application creates. This
allows them to be easily enumerated. At this point, there are no rules for what
type values to use. Some example type values used by the Microsoft Pocket
suite are listed in Table 9-2.

Chapter 9 Windows CE Databases 445

Table 9-2 Predefined Database Types

Database Value

Contacts 24 (18 hex)

Appointments 25 (19 hex)

Tasks 26 (lA hex)

Categories 27 (lB hex)

The values listed in Table 9-2 aren't guaranteed to remain constant; I sim
ply wanted to show some typical values. If you use a 4-byte value, it shouldn't
be too hard to find a unique database type for your application, although
there's no reason another application couldn't use the same type.

The fields wNumRecords, dwSize, and ftLastModified are ignored during
the call to CeCreateDatabaseEx. They are used by other database functions that
utilize this same structure.

The final field, rgSortSpecs, specifies the sort specification for the database.
This parameter contains an array of SORTORDERSPECEX structures defined as

typedef struct _SORTORDERSPECEX
WORD wVersion;
WORD wNumProps;
WORD wKeyFlags;
CEPROPID rgPropID[CEDB_MAXSORTPROPJ;
DWORD rgdwFlags[CEDB_MAXSORTPROPJ;

SORTORDERSPECEX;

The first field in SORTORDERSPECEX is the wVersion field, which should
be set to SORTORDERSPECEX_ VERSION. The wNumProps field specifies the
number of sort properties used in this sort specification. The wKeyFlags field
defines characteristics for the specification. The only flag currently supported is
CEDB_SORT_UNJQUE, which indicates that each record in the database must
have a unique value in this property.

The rgPropID field is an array of structures that contains property IDs, or
PEGPROPIDs. A property ID is nothing more than a unique identifier for a
property in the database. Remember that a property is one field within a data
base record. The property ID is a DWORD value with the low 16 bits containing
the data type and the upper 16 bits containing an application-defined value.
These values are defined as constants and are used by various database func
tions to identify a property. For example, a property that contained the name of
a contact might be defined as

#define PID_NAME MAKELONG (CEVT_LPWSTR, 1)

446 Part II Windows CE Programming

The MAKELONG macro simply combines two 16-bit values into a DWORD
or LONG. The first parameter is the low word or the result, while the second
parameter becomes the high word. In this case, the CEVT_LPWSTR constant
indicates that the property contains a string, while the second parameter is sim
ply a value that uniquely identifies the Name property, distinguishing it from
other string properties in the record.

The final field in SORTORDERSPECEX, rgdwFlags, contains an array of
flags that define how the sort is to be accomplished. Each entry in the array
matches the corresponding entry in the rgPropID array. The following flags are
defined for this field:

• CEDB_SORT_DESCENDING The sort is to be in descending
order. By default, properties are sorted in ascending order.

• CEDB_SORT_CASEINSENSITIVE The sort should ignore the case
of the letters in the string.

• CEDB_SORT_UNKNOWNFIRST Records without this property
are to be placed at the start of the sort order. By default, these
records are placed last.

• CEDB_SORT_IGNORENONSPACE The sort should ignore non
space characters such as accents during sorting. This flag is valid
only for string properties.

• CEDB_SORT_IGNORESYMBOLS The sort should ignore symbols
during sorting. This flag is valid only for string properties.

• CEDB_SORT_IGNOREKANATYPE The sort should not differenti
ate between Hiragapa and Katakana characters. This flag is valid
only for string properties.

• CEDB_SORT_IGNOREWIDTH The sort should ignore the differ
ence between single-byte characters and the same character repre
sented by a double-byte value. This flag is valid only for string
properties.

• CEDB_SORT_NONNULL This flag specifies that this sort property
must be present in all records in the database.

A typical database might have three or four sort orders defined. After a
database is created, these sort orders can be changed by calling
CeSetDatabaselnfoEx2. However, this function is quite resource· intensive and
can take from seconds up to minutes to execute on large databases.

Chapter 9 Windows CE Databases 447

The value returned by CeCreateDatabaseEx2 is a CEOID. We have seen
this kind of value a couple of times so far in this chapter. It's an ID value that
identifies the newly created database. If the value is 0, an error occurred while
you were trying to create the database. You can call GetlastErrar to diagnose
the reason the database creation failed.

The function CeCreateDatabaseEx2 was added to Windows CE .NET 4.0.
If an application needs to run on a Windows CE 3.0-based system, such as a
Pocket PC 2000 or Pocket PC 2002, the application must use the function
CeCreateDatabaseEx to create a database. The chief difference between the
two functions is that CeCreateDatabaseEx2 allows multilevel sorting, whereas
CeCreateDatabaseEx does not.

Opening a Database
In contrast to what happens when you create a file, creating a database doesn't
also open the database. To do that, you must make an additional call to

HANDLE CeOpenDatabaseEx2 (PCEGUID pguid, PCEOID poid, LPWSTR lpszName,
SORTORDERSPECEX *pSort,
DWORD dwFlags,
CENOTIFYREQUEST *pRequest);

The first parameter is the address of the CEGUID that indicates the database vol
ume that contains the database. A database can be opened either by referencing
its CEOID value or by referencing its name. To open the database by using its
name, set the value pointed to by the paid parameter to 0 and specify the name
of the database using the lpszName parameter. If you already know the CEOID
of the database, simply put that value in the parameter pointed to by paid. If the
CEOID value isn't 0, the function ignores the lpszName parameter.

The pSart parameter specifies which of the sort order specifications should
be used to sort the database while it's opened. This parameter should point to
a SORTORDERSPECEX structure that matches one of the entries in the SORT
ORDERSPECEX array that was defined when the database was created. The
pointer doesn't have to point to the exact entry used when the database was
created. Instead, the data within the SORTORDERSPECEX structure must match
the data in the original SORTORDERSPECEX array entry. A Windows CE data
base can have only one active sort order. To use a different sort order, you can
open a database again, specifying a different sort order.

The dwFlags parameter can contain either 0 or CEDB_AUTOINCREMENT.
If CEDB_AUTOINCREMENT is specified, each read of a record in the database
results in the database pointer being moved to the next record in the sort order.
Opening a database without this flag means that the record pointer must be

448 Part II Windows CE Programming

manually moved to the next record to be read. This flag is helpful if you plan
to read the database records in sequential order.

The final parameter points to a structure that specifies how your applica
tion will be notified when another process or thread modifies the database. The
scheme is a message-based notification that allows you to monitor changes to
the database while you have it opened. To specify the window that receives the
notification messages, you pass a pointer to a CENOTIFYREQUEST structure that
you have previously filled in. This structure is defined as

typedef struct _CENOTIFYREQUEST
DWORD dwSize;
HWND hWnd;
DWORD dwFlags;
HANDLE hHeap;
DWORD dwPa ram;

CENOTIFYREQUEST;

The first field must be initialized to the size of the structure. The h Wnd
field should be set to the window that will receive the change notifications.
The dwFlags field specifies how you want to be notified. If you put 0 in this
field, you'll receive notifications in the old database notification scheme. This
method used three messages based on the WM_USER constant that is sup
posed to be reserved for applications. While this method is simpler than the
method I'm about to describe, I recommend against using it. Instead, put
CEDB_EXNOTIFICATION in the dwFlags field; your window will receive an
entirely new and more detailed notification method. This new notification
method requires that Windows CE allocate a structure. If you specify a handle
to a heap in the hHeap field, the structure will be allocated there. If you set
hHeap to 0, the structure will be allocated in your local heap. The dwParam
field is a user-defined value that will be passed back to your application in the
notification structure.

Your window receives a WM_DBNOTIFICATION message in the new noti
fication scheme. When your window receives this message, the !Param param
eter points to a CENOTIFICATION structure defined as

typedef struct _CENOTIFICATION
DWORD dwSize
DWORD dwPa ram;
UINT uType;
CE GU ID gui d;
CEOID oid;
CEOID oidParent;

} CENOTIFICATION;

Chapter 9 Windows CE Databases 449

As expected, the dwSize field fills with the size of the structure. The dwParam
field contains the value passed in the dwParam field in the CEN071FYREQUEST
structure. This is an application-defined value that can be used for any purpose.

The uType field indicates why the WM_DBN071FICA710N message was
sent. It will be set to one of the following values:

• DB_CEOID_CREATED A new file system object was created.

• DB_CEOID_DATABASE_DELETED The database was deleted from
a volume.

• DB_CEOID_RECORD_DELETED A record was deleted in a data
base.

• DB_CEOID_CHANGED An object was modified.

The guid field contains the guid for the database volume that the message
relates to, while the aid field contains the relevant database record oid. Finally,
the oidParent field contains the oid of the parent of the oid that the message
references.

When you receive a WM_DBN071FICA710N message, the CEN071FICA-
710N structure is placed in a memory block that you must free. If you specified
a handle to a heap in the hHeap field of CEN071FYREQUEST, the notification
structure will be placed in that heap; otherwise, the system places this structure
in your local heap. Regardless of its location, you are responsible for freeing the
memory that contains the CEN071FICA710N structure. You do this with a call to

BOOL CeFreeNotification(PCENOTIFYREQUEST pRequest,
PCENOTIFICATION pNotify);

The function's two parameters are a pointer to the original CEN071FYREQUEST
structure and a pointer to the CEN071FICA710N structure to free. You must free
the CENOTIFICA710N structure each time you receive a WM_DBNOTIFICATION
message.

Seeking (or Searching for) a Record
Now that the database is opened, you can read and write the records. But
before you can read a record, you must seek to that record. That is, you must
move the database pointer to the record you want to read. You accomplish this
using

CEOID CeSeekDatabaseEx (HANDLE hDatabase, DWORD dwSeekType, DWORD dwValue,
WORD wNumVal s, LPDWORD 1 pdwlndex);

450 Part II Windows CE Programming

The first parameter for this function is the handle to the opened database. The
dwSeekType parameter describes how the seek is to be accomplished. The
parameter can have one of the following values:

• CEDB_SEEK_CEOID Seek a specific record identified by its object
ID. The object ID is specified in the dw Value parameter. This type of
seek is particularly efficient in Windows CE databases.

• CEDB_SEEK_BEGINNING Seek the nth record in the database.
The index is contained in the dw Value parameter.

• CEDB_SEEK_ CURRENT Seek from the current position n records
forward or backward in the database. The offset is contained in the
dwValue parameter. Even though dwValue is typed as an unsigned
value, for this seek it's interpreted as a signed value.

• CEDB_SEEK_END Seek backward from the end of the database n
records. The number of records to seek backward from the end is
specified in the dw Value parameter.

• CEDB_SEEK_ VALUESMALLER Seek from the current location
until a record is found that contains a property that is the closest to
but not equal to or over the value specified. The value is specified by
a CEPROPVAL structure pointed to by dwValue.

• CEDB_SEEK_ VALUEFIRSTEQUAL Starting with the current loca
tion, seek until a record is found that contains the property that's
equal to the value specified. The value is specified by a CEPROPVAL
structure pointed to by dwValue. The location returned can be the
current record.

• CEDB_SEEK_ VALUENEXTEQUAL Starting with the next location,
seek until a record is found that contains a property that's equal to
the value specified. The value is specified by a CEPROPVAL structure
pointed to by dwValue.

• CEDB_SEEK_ VALUEGREATER Seek from the current location
until a record is found that contains a property that is equal to, or the
closest to, the value specified. The value is specified by a CEPROP
VAL structure pointed to by dwValue.

As you can see from the available flags, seeking in the database is more
than just moving a pointer; it also allows you to search the database for a par
ticular record.

Chapter 9 Windows CE Databases 451

As I just mentioned in the descriptions of the seek flags, the dwValue
parameter can either be loaded with an offset value for the seeks or point to an
array of property values for the searches. The values are described in an array
of CEPROPVAL structures, each defined as

typedef struct _CEPROPVAL
CEPROPID propid;
WORD wLenData;
WORD wFlags;
CEVALUNION val;

CEPROPVAL;

The propid field must match the property ID values of the sort order you spec
ified when the database was opened. Remember that the property ID is a com
bination of a data type identifier along with an application-specific ID value that
uniquely identifies a property in the database. This field identifies the property
to examine when seeking. The wLenData field is ignored. None of the defined
flags for the wFlags field is used by CeSeekDatabase, so this field should be set
to 0. The val field is actually a union of the different data types supported in the
database.

Following is a short code fragment that demonstrates seeking to the third
record in the database.

DWORD dwlndex;
CEO ID oi d;

II Seek to the third record.
oid = CeSeekDatabase (g_hDB, CEDB_SEEK_BEGINNING, 3, &dwlndex);
i f (0 i d == 0) {

II There is no third item in the database.

Now say we want to find the first record in the database that has a height
property of greater than 100. For this example, assume the size property type is
a signed long value.

II Define pid for height property as a signed long with ID of 1.
#define PID_HEIGHT MAKELONG CCEVT_l4, 1)

CEOID oid;
DWORD dwlndex;
CEPROPVAL Property;

II First seek to the start of the database.
oid = CeSeekDatabaseEx (g_hDB, CEDB_SEEK_BEGINNING, 0, 1, &dwlndex);

(continued)

452 Part II Windows CE Programming

II Seek the record with height> 100.
Property.propid = PID_HEIGHT;
Property.wlenData = 0;
Property.wFlags = 0;
Property.val.lVal = 100;

II Set property to search.
II Not used but clear anyway.
II No flags to set
II Data for property

oid = CeSeekDatabaseEx (g_hDB, CEDB_SEEK_VALUEGREATER, (DWORD)&Property,
1, &dwindex);

if (oi d == 0) {
II No matching property found; db pointer now points to end of db.

else {
II oid contains the object ID for the record,
II dwlndex contains the offset from the start of the database
II of the matching record.

Because the search for the property starts at the current location of the
database pointer, you first need to seek to the start of the database if you want
to find the first record in the database that has the matching property.

Changing the Sort Order
I talked earlier about how CeDatabaseSeekEx depends on the sort order of the
opened database. If you want to choose one of the predefined sort orders
instead, you must close the database and then reopen it specifying the pre
defined sort order. But what if you need a sort order that isn't one of the four
sort orders that were defined when the database was created? You can redefine
the sort orders using this function:

BOOL CeSetDatabaseinfoEx2 (PCEGUID pguid,
CEO ID oi dDbase.
CEDBASEINFOEX *pNewinfo);

The function takes the CEGUJD of the database volume and the object ID of the
database you want to redefine and a pointer to a CEDBASEINFOEX structure.
This structure is the same one used by CeCreateDatabaseEx2. You can use
these functions to rename the database, change its type, or redefine the four
sort orders. You shouldn't redefine the sort orders casually. When the database
sort orders are redefined, the system has to iterate through every record in the
database to rebuild the sort indexes. This can take minutes for large databases.
If you must redefine the sort order of a database, you should inform the user of
the massive amount of time it might take to perform the operation.

Reading a Record
Once you have the database pointer at the record you're interested in, you can
read or write that record. You can read a record in a database by calling the fol
lowing function:

Chapter 9 Windows CE Databases 453

CEOJD CeReadRecordPropsEx (HANDLE hDbase, DWORD dwFlags,
LPWORD lpcPropID.
CEPROPID •rgProp!D, LPBYTE •lplpBuffer,
LPDWORD lpcbBuffer,
HANDLE hHeap);

The first parameter in this function is the handle to the opened database.
The -lpcPropID parameter points to a variable that contains the number of
CEPROPJD structures pointed to by the next parameter, rgPropID. These two
parameters combine to tell the function which properties of the record you
want to read. There are two ways to utilize the lpcPropID and rgPropID param
eters. If you want only to read a selected few of the properties of a record, you
can initialize the array of CEPROPID structures with the ID values of the prop
erties you want and set the variable pointed to by lpcPropID with the number
of these structures. When you call the function, the returned data will be
inserted into the CEPROPID structures for data types such as integers. For
strings and blobs, where the length of the data is variable, the data is returned
in the buffer indirectly pointed to by lplpBU;ffer.

Since CeReadRecordPropsEx has a significant overhead to read a record, it
is always best to read all the properties necessary for a record in one call. To do
this, simply set rgPropID to NULL. When the function returns, the variable
pointed to by lpcPropID will contain the count of properties returned and the
function will return all the properties for that record in the buffer. The buffer
will contain an array of CEPROPJD structures created by the function, immedi
ately followed by the data for those properties, such as blobs and strings, where
the data isn't stored directly in the CEPROPID array.

One very handy feature of CeReadRecordPropsEx is that if you set
CEDB_ALLOWREALLOC in the dwFlags parameter, the function will enlarge, if
necessary, the results buffer to fit the data being returned. Of course, for this to
work, the buffer being passed to the function must not be on the stack or in the
static data area. Instead, it must be an allocated buffer, in the local heap or a
separate heap. In fact, if you use the CEDB_ALLOWREALLOC flag, you don't
even need to pass a buffer to the function; instead, you can set the buffer
pointer to 0. In this case, the function will allocate the buffer for you.

Notice that the buffer parameter isn't a pointer to a buffer but the address
of a pointer to a buffer. There actually is a method to this pointer madness.
Since the resulting buffer can be reallocated by the function, it might be moved
if the buffer needs to be reallocated. So the pointer to the buffer must be mod
ified by the function. You must always use the pointer to the buffer returned by
the function because it might have changed. Also, you're responsible for freeing
the buffer after you have used it. Even if the function failed for some reason, the
buffer might have moved or even have been freed by the function. You must
clean up after the read by freeing the buffer if the pointer returned isn't 0.

454 Part II Windows CE Programming

As you might have guessed from the preceding paragraphs, the hHeap
parameter allows CeReadRecordPropsEx to use a heap different from the local
heap when reallocating the buffer. When you use CeReadRecordPropsEx and
you want to use the local heap, simply pass a 0 in the hHeap parameter.

The following routine reads all the properties for a record and then copies
the data into a structure.

int ReadDBRecord (HANDLE hDB, DATASTRUCT *pData, HANDLE hHeap) {
WORD wProps;
CEOID oid;
PCEPROPVAL pRecord;
PBYTE pBuff;
DWORD dwRecSize;
int i;

II Read all properties for the record.
pBuff 0; II Let the function allocate the buffer.
oid = CeReadRecordPropsEx (hDB, CEDB_ALLOWREALLOC, &wProps, NULL,

&CLPBYTElpBuff, &dwRecSize, hHeap);
II Failure on read.
if (oid == 0)

return 0;

II Copy the data from the record to the structure. The order
II of the array is not defined.
memset (pData, 0 , sizeof (DATASTRUCT)); II Zero return struct
pRecord = (PCEPROPVAL)pBuff; II Point to CEPROPVAL

for (i = 0; i < wProps; i++)
switch (pRecord->propid)
case PID_NAME:

II array.

lstrcpy CpData->szName, pRecord->val. lpwstr);
break;

case P ID_TYPE:
lstrcpy (pData->szType, pRecord->val. lpwstr);
break;

case PID_SIZE:
pData->nSi ze pRecord->val. iVal;
break;

pRecord++;

if ChHeap)
HeapFree ChHeap, 0, pBuff);

else
LocalFree CpBuff);

return i ;

Chapter 9 Windows CE Databases 455

Because this function reads all the properties for the record, CeReadRecord
PropsEx creates the array of CEPROPVAL structures. The order of these struc
tures isn't defined, so the function cycles through each one to look for the data
to fill in the structure. After all the data has been read, a call to either HeapFree
or LocalFree is made to free the buffer that was returned by CeReadRecord
PropsEx.

Nothing requires every record to contain all the same properties. You
might encounter a situation where you request a specific property from a
record by defining the CEPROPID array and that property doesn't exist in the
record. When this happens, CeReadRecordPropsEx will set the
CEDB_PROPNOTFOUND flag in the wFlags field of the CEPROP/D structure for
that property. You should always check for this flag if you call CeReadRecord
PropsEx and you specify the properties to be read. In the example above, all
properties were requested, so if a property didn't exist, no CEPROP/D structure
for that property would have been returned.

Writing a Record
You can write a record to the database using this function:

CEOID CeWriteRecordProps (HANDLE hDbase, CEOID oidRecord, WORD cPropID,
CEPROPVAL * rgPropVal);

The first parameter is the obligatory handle to the opened database. The
oidRecord parameter is the object ID of the record to be written. To create a
new record instead of modifying a record in the database, set oidRecord to 0.
The cProp!D parameter should contain the number of items in the array of
property ID structures pointed to by rgProp Val. The rgProp Val array specifies
which of the properties in the record to modify and the data to write.

Deleting Properties, Records, and Entire Databases
You can delete individual properties in a record using CeWriteRecordProps. To
do this, create a CEPROPVAL structure that identifies the property to delete and
set CEDB_PROPDELETE in the wFlags field.

To delete an entire record in a database, call

BOOL CeDeleteRecord (HANDLE hDatabase, CEOID oidRecord);

The parameters are the handle to the database and the object ID of the record
to delete.

You can delete an entire database using this function:

BOOL CeDeleteDatabaseEx (PCEGUID pguid, CEOID oid);

456 Part II Windows CE Programming

The two parameters are the CEGUJD of the database volume and the object ID
of the database. The database being deleted can't currently be opened.

Enumerating Databases
Sometimes you must search the system to determine what databases are on the
system. Windows CE provides a set of functions to enumerate the databases in
a volume. These functions are

HANDLE CeFindFirstDatabaseEx (PCEGUID pguid, DWORD dwDbaseType);

and

CEOID CeFindNextDatabaseEx (HANDLE hEnum, PCEGUID pguid);

These functions act like FindFirstFile and FindNextFile with the exception that
CeFindFirstDatabaseEx only opens the search; it doesn't return the first data
base found. The PCEGUJD parameter for both functions is the address of the
CEGUID of the database volume you want to search. You can limit the search
by specifying the ID of a specific database type in the dwDbaseType parameter.
If this parameter is set to 0, all databases are enumerated. CeFindFirstData
baseEx returns a handle that is then passed to CeFindNextDatabaseEx to actu
ally enumerate the databases.

Here's how to enumerate the databases in the object store:

HANDLE hDBList;
CEOID oidDB;
CEGUID gui dVol;

II Enumerate the databases in the object store.
CREATE_SYSTEMGUID(&guidVol);

hDBList = CeFindFirstDatabaseEx (&guidVol, 0);
if (hDBList != INVALID_HANDLE_VALUE) {

oidDB = CeFindNextDatabaseEx (hDBList, &guidVol);
while (oidDBl {

II Enumerated database identified by object ID.
MyDisplayDatabaseinfo (hCeDB);

hCeDB = CeFindNextDatabaseEx (hDBList, &guidVol);

CloseHandle (hDBList);

The code first creates the CEGUID of the object store using the macro
CREATE_SYSTEMGUID. That parameter, along with the database type specifier

Chapter 9 Windows CE Databases 457

0, is passed to CeFindFirstDatabaseEx to enumerate all the databases in the
object store. If the function is successful, the databases are enumerated by
repeatedly calling CeFindNextDatabaseEx.

Querying Object Information
To query information about a database, use this function:

BOOL CeOidGetlnfoEx2 (PCEGUID pguid, CEOID aid, CEOIDINFOEX *Oidlnfo);

These functions return information about not just databases, but any object in
the object store. This includes files and directories as well as databases and
database records. The function is passed the database volume and object ID of
the item of interest and a pointer to a CEOIDINFOhX structure.

Here's the definition of the CEOIDINFOEX structure:

typedef struct _CEOIDINFOEX
WORD wVersion;
WORD wObjType;
union {

} ;

CEFILEINFO infFile;
CEDIRINFO infDirectory;
CEDBASEINFOEX infOatabase;
CERECORDINFO infRecord;

CEOIDINFOEX;

This structure starts with a version field that should be set to
CEOIDINFOEX_ VERSION. The second field indicates the type of the item and a
union of four different structures each detailing information about that type of
object. The currently supported flags are OB]TYPE_FILE, indicating that the object
is a file; OB]TYPE_DIRECTORY, for directory objects; OB]TYPE_DATABASE, for
database objects; and OB]TYPE_RECORD, indicating that the object is a record
inside a database. The structures in the union are specific to each object type.

The CEFILEINFO structure is defined as

typedef struct _CEFILEINFO
DWORD dwAttributes;
CEOID oidParent;
WCHAR szFileName[MAX_PATH];
FILETIME ftLastChanged;
DWORD dwlength;

CEFILEINFO;

458 Part II Windows CE Programming

the CEDIRINFO structure is defined as

typedef struct _CEDIRINFO
DWORD dwAttributes;
CEOID oidParent;
WCHAR szDirName[MAX_PATHJ;

CEDIRINFO;

and the CERECORDINFO structure is defined as

typedef struct _CERECORDINFO
CEOID oidParent;

} CERECORDINFO;

You've already seen the CEDBASEINFOEX structure used in
CeCreateDatabaseEx2 and CeSetDatabaselnjoEx2. As you can see from the pre
ceding structures, CeGet0idlnfoEx2 returns a wealth of information about each
object. One of the more powerful bits of information is the object's parent aid,
which will allow you to trace the chain of files and directories back to the root.
These functions also allow you to convert an object ID to a name of a database,
directory, or file.

The object ID method of tracking a file object should not be confused with
the PID scheme used by the shell. Object IDs are maintained by the file system
and are independent of whatever shell is being used. This would be a minor
point under other versions of Windows, but with the ability of Windows CE to
be built as components and customized for different targets, it's important to
know what parts of the operating system support which functions.

The AlbumDB Example Program
It's great to talk about the database functions; it's another experience to use
them in an application. The example program that follows, AlbumDB, is a sim
ple database that tracks record albums, the artist that recorded them, and the
individual tracks on the albums. It has a simple interface because the goal of the
program is to demonstrate the database functions, not the user interface. Figure
9-1 shows the AlbumDB window with a few albums entered in the database.

Listing 9-1 contains the code for the AlbumDB program. When the pro
gram is first launched, it attempts to open a database named Albums in the
object store. If the program doesn't find one, it creates a new one. This is
accomplished in the OpenCreateDB function.

Chapter 9 Windows CE Databases 459

Ammonia Avenue
Pyramid
I Robot

°"" Eve
Turn ot a Friendly Card
Cosmic Thing
No Need to Aroue
Everybody Else Is doini;i it Why can't We?
To the Fa1thfUI Departed
Communique
Make111g Movies
Lo11eover Gotd
Dire Strait:
Brotners in Arms
One Every Street
On the Boarder
Hotel CaUforma

Alan Parsons Proiect
Alan Parsons ProJec.t
Alan Parsons Ptojec.t
Alan Parsons Project
Alan Parsons Proiect
Alan Parsons Project
Alan Parsons Project
B52's
Cranberries
Cranberries
Cranberries
Dire Straits
Dire Straits
Dire Straits
DireSirarts

Figure 9-1 The AlbumDB window

AlbumDB.rc

Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Roc:k
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock

II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright (Cl 2003 Douglas Boling
II==

#include "windows.h"
#include "albumdb.h" II Program-specific stuff
11--
11 Icons and bitmaps
II
ID_I CON I CON "albumdb.ico" II Program icon

11--
11 Menu
II
ID_MENU MENU DISCARDABLE
BEGIN

PO PUP "&File"
BEGIN

END

MENUITEM "&Delete Database",
MENUITEM SEPARATOR
MENUITEM "E&xit",

Listing 9-1 The AlbumDB program

IDM_DELDB

IDM_EXIT

(continued)

460 Part II Windows CE Programming

listing 9-1 (continued)

MENUITEM "&About ... ", IDM_ABOUT.
END

END
/1- ·- ·- ~-.- - •• "·". -- - -· ••• -· "·· ••• - -··-·. -·--- ... -- • -.- • -·~- .• -~·------ -- - •• ·- -
II New/Ed.it Track dialog template
II
EditTrackDlg .. DIA~OG discarctable 10 .• t0. 135.• 40
STYLE WS~POpUP I WLV.ISIBU I WS:::.CAPUON I WLSYSMENU I DS_CENTER I

DS:::,M~HlAL~RAME.
EXSTYLE •WS_Ex_CAPTlON.OKBTN
CAPTION "Edit Track"
BEGIN

LTEXT ~Track NameP·
EOITTEXT

-1. 5, 5, 50. 12
Ioo_TRACK, 60, 5, 70, 12,

ws~TABSTOP 1 ES-AUTOHSCROLL

-1, 5, 20, 50, 12
IDD_TIME. 60, 20, 50, 12, WS_TABSTOP

II New/Edit Album dat~ dialog template
II .

EditAlbumOlg DIALOG dfscardable 5, 5, 135, 100
STYLE WS~POPUP l WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER I

DS_MODALFRAME
EXSTYLE WS_EX_CAPTIONOKBTN
CAPTION "Edit Album"
BEGIN

LTEXT "Album Name•
EDITTEXT

L TEXT "Artist"
ED ITT EXT

-1, 5.
IDD_NAML 60,

WS_TABSTOP

5, 50, 12
5, 72. 12.
ES_AUTOHSCROLL

-1, 5, 20. 50, 12
LD.D_ARTIST, 60, 20, 72, 12.

WS:_TABSTOP I ES_AUTOHSCROLL

Chapter 9 Windows CE Databases 461

END

LTEXT "Category" -1. 5. 35, 50, 12
COMBOBOX IDD_CA TE GORY. 60, 35, 72. 60,

WS_TABSTOP I CBS_DROPDOWN
LISTBOX IDD_TRACKS, 60, 50, 72. 45,

LBS_USETABSTOPS

PUSHBUTTON "&New Track ... ".
IDD_N EWTRACK,

WS_TABSTOP
PUSHBUTTON "&Edit Track ... ",

PUSHBUTTON "&Del Track",

ID D_ED IT TRACK,
WS_TABSTOP

IDD_DEL TRACK,
WS_TABSTOP

3. 50, 52, 12.

3. 65, 52. 12.

3, 80, 52, 12.

11--------------------------- --
11 About box dialog template
II
aboutbox DIALOG discardable 10, 10, 135, 40
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER I

DS_MODALFRAME
CAPTION "About"
BEGIN

I CON ID_I CON, -1, 3. 5, 10. 10
LTEXT "AlbumDB - Written for the book Programming Windows \

CE Copyright 2003 Douglas Boling"
-1. 30, 5, 102, 33

END

AlbumDB.h
II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11--
11 Generic defines and data types
II
struct decodeUINT {

UINT Code;
II Structure associates
II messages
II with a function.

(continued)

462 Part II Windows CE Programming

Listing 9-1 (continued)

L~ESULT (*Fxn)(Hl'/.ND, UIHT. WPARAM, LPARAMl;
} ;

'5UUct deGOdeCMD {.
UINT Code;
LRESULT (*Fxnf(HWND. WORD, HWND,. WORD);

II Generic ~.efi,nes us.ed
4/:defi rle IO.,..:ICON
1fdefi ne IDC_cMDBAR
tfd'efi.ne IP..:MENU
#define Ill...:LISTV

Menu Hem IDs
·lfdefit!\~ · IOM.:.:.DELD~
/,!C!eftne lDM.:.:.EXJ:T

#de ff Ile IDN_NEW
#deflfle !DM...:EDIT
#define IDM_DELETE

1/defi ne IDM.:..SORHIAME
#define !DM_SORTARTIST

bY: app li cation
1
2

~
5

l@l
1~2

110
111
112

120
121

#·d.efi ne IDM...,SORTCATEGORY 122

/fadefi ne IDM_ABOUT 150

·II IDs for dialog box controls
#define IDD_NAME 100
j/define IDO_ART!ST 101
#define IDD_NUMTRACKS 102
#define ioo_CATEGORY 103
#define IDO_TRACKS 104
{/define IDD_NEWTRACK 105
#de.fine IDD_EDITTRACK 106
tfdefi ne IDD.:..DEL TRACK 107

II Stru¢ture associates
II menu IDs with a
II function ..

// App icon resource ID
. I l. Command band ID.
ll Main menu resource ID
If list view control ID

I J Fil emenu

IJ Albµm mehu

II Sort IDs must be
II consecutive.

II Help menu

II Edit album dialog.

#de.fine IDD;;.TRACK 200 // Edit track dialog.
1/defi ne IQ()_ TIME 201

If --•"--·---------------c·-·-------·-·--·-· -·----·-------·----------
// Progra~·specific stru~tures
If
// Structure used bY N.ew/ Edit Al bum dl g proc
#de.fl ne MAX_NAMELEN 64
#define MALARTISTLEN 64
#d~fill~ MAX._TRACKNAMELEN 512

Chapter 9 Windows CE Databases 463

typedef struct {
TCHAR szName[MAX_NAMELENJ:
TCHAR szArtist[MAX_ARTISTLEN]:
INT nDateRel:
SHORT sCategory:
SHORT sNumTracks:
INT nTrackDataLen:
TCHAR szTracks[MAX_TRACKNAMELEN]:

ALBUMINFO, *LPALBUMINFO:

II Structure used by Add/Edit album track
typedef struct {

TCHAR szTrack[64]:
TCHAR szTime[16J:

TRACKINFO, *LPTRACKINFO:

II Structure used by GetltemData
typedef struct {

int nitem:
ALBUMINFO Album:

LVCACHEDATA, *PLVCACHEDATA:

II Database property identifiers
#define PID_NAME MAKELONG (CEVT_LPWSTR,
#define PID_ARTIST MAKE LONG (CEVT_LPWSTR,
#define PID_RELDATE MAKE LONG (CEVT_I2, 3)
#define PID_CATEGORY MAKE LONG (CEVT_I2, 4)
1/defi ne PID_NUMTRACKS MAKE LONG (CEVLI2, 5)
#define PID_TRACKS MAKELONG (CEVT_BLOB, 6)
#define NUM_DB_PROPS 6

1)

2)

//--
// Function prototypes
II
int InitApp (HINSTANCEl:
HWND Initlnstance (HINSTANCE, LPWSTR, int):
int Terminstance (HINSTANCE, int);

HANDLE OpenDB (HWND hWnd, LPTSTR lpszNamel:
HANDLE OpenCreateDB (HWND, int*):
void ReopenDatabase (HWND, INT);
int GetitemData (int, PLVCACHEDATAl:
HWND CreateLV (HWND, RECT *);
void ClearCache (void):
int ErrBox (HWND hWnd, LPTSTR 1 pszFormat, ...) ;

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

(continued)

464 Part II Windows CE Programming

Listing 9-1 (continued)

II Message handlers
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoSizeMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoCommandMain CHWND, UINT, WPARAM. LPARAM);
LRESULT DoNotifyMain(HWND, UINT, WPARAM, LPARAM);
LRESULT DoDbNotifyMain. (HWND, UINT, WPARAM .• LPARAM);
LRESULT DoDestroyMain CHWND., UINT, WPARAM, LPARAM)

II Command functions
LPARAM DoMaincommandDelDB CHWND, WDRD, HWND, .WORD):
LPARAM DoMainCommandExit CHWND, WORD, HWND, WORD) .. ;

LPARAM DOM!li ncomrnandNew (HWl'W. WORD.;. HWND' WORD);
LP A RAM DoMai nComrnandEdit CHWND, WORO, HWND. WORD);

LP A RAM
LP A RAM DoMai nComrnandSort CHWND OWORD. HWND. WORD).;
LPARAM DoMai nComrnillldAbout CHWND., WORD, HWND, WORD}.;

II
II
//
ll

/}include <aygshe 11 • h>
tfpragma .comment(lib, "aygshell"
#en di
ll
!/ Gl oba 1 data

II
coristJCHAR szAppName[] = TEXT (''A lbumDB");

HTNSTANCE hlnst; II Program

Chapter 9 Windows CE Databases 465

HANDLE g_hDB = INVALID_HANDLE_VALUE; II Handle to album database
CEOID g_oidDB = 0; II Object ID of the album database
CEGUID g_guidDB;
CENOTIFYREQUEST cenr;

int g_nLastSort = 0;
CEDBASEINFOEX g_diex;

II Guid for database volume
II Notify request structure.

II Last sort order used
II Sort order array

II These two variables represent a one-item cache for
II the list view control.
int g_nlastltem = -1;
LPBYTE g_plastRecord = 0;

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {

WM_CREATE, DoCreateMain,

} ;

WM_S!ZE. DoSizeMain,
WM_COMMAND, DoCommandMain,
WM_NOTIFY. DoNotifyMain,
WM_DESTROY, DoDestroyMain,
WM_DBNOTIFICATION, DoDbNotifyMain,

II Command message dispatch for MainWindowProc
const struct decodeCMD MainCornmandlterns[] = {

IDM_DELDB, DoMainCommandDelDB,

} ;

IDM_EXIT, DoMainCommandExit,
IDM_NEW, DoMainCommandNew,
IDM_EDIT, DoMainComrnandEdit,
IDM_DELETE, DoMainCommandDelete,
IDM_SORTNAME. DoMainCommandSort,
IDM_SORTARTIST, DoMainCommandSort,
IDM_SORTCATEGORY, DoMainComrnandSort,
IDM_ABOUT. DoMainCornrnandAbout,

II Album category strings; must be alphabetical.
canst TCHAR •pszCategories[] ={TEXT ("Classical"), TEXT ("Country''),

TEXT ("New Age"), TEXT ("Rock")};
II==
II Program entry point
II
int WINAPI WinMain CHINSTANCE h!nstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdline, int nCmdShow) {
HWND hwndMain;
MSG msg;
int re = 0;

II Initialize this instance.
hwndMain = lnitlnstance (hinstance, lpCmdLine, nCmdShow);

(continued)

466 Part II Windows CE Programming

Listing 9-1 (continued)

Chapter 9 Windows CE Databases 467

g_diex.rgSortSpecs[i].rgdwFlags[0] = 0;
g_diex.rgSortSpecs[i].rgPropID[l] = PID_CATEGORY;
g_diex.rgSortSpecs[iJ.rgdwFlags[lJ = 0;
i++;
g_diex.rgSortSpecs[i].wVersion = SORTORDERSPECEX_VERSION;
g_diex.rgSortSpecs[iJ.wNumProps = 2;
g_diex.rgSortSpecs[i].rgPropID[0] = PID_ARTIST;
g_diex.rgSortSpecs[i].rgdwFlags[0] = 0;
g_diex.rgSortSpecs[i].rgPropID[lJ = PID_NAME;
g_diex.rgSortSpecs[i].rgdwFlags[lJ = 0;
i++;

g_diex.rgSortSpecs[iJ.wVersion = SORTORDERSPECEX_VERSION;
g_diex.rgSortSpecs[i].wNumProps = 3;
g_diex.rgSortSpecs[i].rgPropID[0]= PID_CATEGORY;
g_diex.rgSortSpecs[iJ.rgdwFlags[0J = 0;
g_diex. rgSortSpecs[i J. rgPropID[l] = PID_ARTIST:
g_diex.rgSortSpecs[i].rgdwFlags[lJ = 0;
g_diex.rgSortSpecs[i].rgProp!D[2J = PID_NAME;
g~diex.rgSortSpecs[i].rgdwFlags[2] = 0;

II Register application main window class.
we.style= 0: II Window style
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hinstance = hinstance;
wc.hicon = NULL,

II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon

wc.hCursor = LoadCursor (NULL, IDC_ARROW);I/ Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject CWHITE_BRUSH);
wc. 1 pszMenuName = NULL; 11 Menu name
wc.lpszClassName = szAppName; II Window class name

if (RegisterClass (&we) == 0) return 0;

II Load the command bar common control class.
i cex .dwS.i ze = s i zeof (I NITCOMMONCONTROLSEX);
icex.dwICC "'ICC-BAR...cCLASSES I ICC.,.TREEVIEW_CLASSES

ICC_LISTV I EW_CLASSES;
InitCommonControlsEx C&icex);

I I Return .fa i T code if window not
ff C!fsWindow ChWndll return 0;

(continued)

468 Part II Windows CE Programming

Listing 9-1 (continued)

Chapter 9 Windows CE Databases 469

memset(&mbi, 0, sizeof(SHMENUBARINFO)); II menu bar so that we
mbi .cbSize = sizeof(SHMENUBARINFO); II have a sip button.
mbi .hwndParent = hWnd;
mbi .dwFlags = SHCMBF_EMPTYBAR; II No menu
SHCreateMenuBar(&mbi);
SetWindowPos (hWnd, 0, 0, 0, lpcs->cx,lpcs->cy - 26,

SWP_NOMOVE I SWP_NOZORDER);
ffendif

II Convert lParam to pointer to create structure.
lpcs = (LPCREATESTRUCT) lParam;

II Create a minimal command bar that has only a menu and an
II exit button.
hwndCB = CommandBar_Create (hinst, hWnd, IDC_CMDBARl;
II Insert the menu.
CommandBar_InsertMenubar (hwndCB. hinst, ID_MENU, 0);
II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 0);
nHeight = CommandBar_Height ChwndCBl;

II Open the album database. If one doesn't exist, create it.
g_hDB = OpenCreateDB (hWnd, &nCnt);
if (g_hDB == INVALID_HANDLE_VALUE) {

MessageBox (hWnd, TEXT ("Could not open database."), szAppName,
MB_OK);

DestroyWindow (hWnd);
return 0;

II Create the list view control in right pane.
SetRect C&rect, 0, nHeight. lpcs->cx. lpcs->cy - nHeight);
hwndChild = CreateLV (hWnd, &rect);

II Destroy frame if window not created.
if (!IsWindow (hwndChild))

DestroyWindow (hWnd);
return 0;

ListView_SetitemCount (hwndChild, nCnt);
return 0;

11---------------------- ---
// DoSizeMain - Process WM_SIZE message for window.
II
LRESULT DoSizeMain (HWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam){

HWND hwndLV;
RECT rect;
hwndLV = GetDlgitem (hWnd, ID_LISTV);
II Adjust the size of the client rect to take into account

(continued)

470 Part II Windows CE Programming

Listing 9-1 (continued)

., < IJ .·Pa rs~ ... tfrepa.ra111~t~s •..
)dltem,=. (W.,ORD).LOWORO ~wPwram);.<. ·

' wN()t:ifrC.i:i<fe·"."·OIORD> HiWORD . .
l\wlidCtl ;.., (HWNO} Haram:

/lean routf~e to handle control' m.essage.
fo.r ct "" 0: 1 < dim{HatnCommanditems): 1++}. {

'1 f (HJtem .;: ... MafnComroand!tems (i] ;Code)
· retu.fo (*HainCorilman'.drtemsliJ.FxnICh~nd, id!tem, tiwridCtl. •

. · . . · · wN.ot.i fyt!i'd'e) ;
.,.,., ,,:· ,•' ,

.... }
·II-.---.:·~ "" -"',\"''.- .;,. :..•:.;'-·-:- -."', ..,._ -·- .. _ . .,. -... -- -
It ·DoNottfyMafrr .: Proce~$ 'DB_Cf:OID.;..xxx mes~ages for wiridciw •

. //
LRESULT Oo.DbNC)t~fyMain (HWNO hWriq, UlNT ;,Msg, WpARAM w,Para,m,
. . · · · LPARAM ll~ar.am) { · . ·. · · ·

···c~NOTIFICAHON *peen = (CEtHJUFlCATJON.*HParam:
. ·• ~w::ltch '(peen" >uJype). f · · ·

.... ·. ·<'·· cas~F.O,Bi:'ce(ll D2(;HANGEO: · .
. . > '<• •..• ·.· Inva1.fd11:tu:1Re~t .(GetDTgJte111·

.··; '. _) .. ias~~ii:~Iorn-~R~ATfo: · ..
,:· •n :·-::.f«!di>.e·noatabase (hW.l"td~

• ·· · • P,~:~al<: .. ·.·. . · .. zr.~.· case: .. 06.,:CEOID.:.R~CORD.:.DELET.ED:
~ .-. · .. '." ,, . '. ':·'.'-

Chapter 9 Windows CE Databases 471

break:
}

CeFreeNotification C&cenr, peen):
return 0:

11--
11 DoNotifyMain - Process WM_NOTIFY message for window.
II
LRESULT DoNotifyMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
int iditem, i;
LPNMHDR pnmh:
LPNMLISTVIEW pnmlv:
NMLVDISPINFO *pLVdi;
LVCACHEDATA data;
HWND hwndLV;

II Parse the parameters.
idltem = (int) wParam:
pnmh = (LPNMHDR)lParam:
hwndLV = pnmh->hwndFrom;

if Ciditem == ID_LISTVl {
pnmlv = CLPNMLISTVIEWllParam;

switch (pnmh->codel {
case LVN_GETDISPINFO:

pLVdi = (NMLVDISPINFO *)lParam;

II Get a pointer to the data either from the cache
II or from the actual database.
GetitemData CpLVdi->item.iltem, &data);

if (pLVdi->item.mask & LVIF_IMAGE)
pLVdi->item.iimage = 0;

if (pLVdi->item.mask & LVIF_PARAMl
pLVdi->item.lParam = 0;

if (pLVdi->item.mask & LVIF_STATEJ
pLVdi->item.state = 0;

if CpLVdi->item.mask & LVIF_TEXT> {
switch CpLVdi->1tem.iSubiteml {
case 0:

lstrcpy (pLVd1->item.pszText,,dat~.A1bum.szName):
break:

case 1:
1 strcpy (p LVd i - >i tern. pszText. dat:if.Album. szArti st l:

(continued)

472 Part II Windows CE Programming

Listing 9-1 (continued)

}

}

break;
case 2:

}

}

break:

lstrcpy ~pLVdi->item.pszText,
pszCategories[data.Album.sCategoryJ);

break:

II Sort by column
case LVN:...COLUMNCLICK:

i = ((NM_LISTVIEW *)l Param)->iSubltem + IDM_SORTNAME;
PostMessage (hWnd, WM_COMMAND, MAKELPARAM (i, 0), 0);
break;

If Double click indicates edit
case. NM_DBLCLK:

PostMessage (hWnd, WM_COMMAND, MAKELPARAM (IQM_:.EDIT. 0), 0);
break;

I I Ignore cache hinting for db example .•
case LVN_ODCACHEHINT:

break;

case LVN_ODFINDITEM1

}

II We shoul~ do a reverse lookup here to see if
II an item exists for the text passed.
return -1;

return 0;

11- - - - - - - - -·- - - - - - - - - - - - - • - - - - • - - - - - - - - - - - - ·- • - - -
II DoDestroyMai n - Process WM_DESTROY message for window ..
//
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParain) {
PostOuttMessage (0);

return :0;

· 11 Coljlflia.nd handler routines
11-~-----·--------------------------~----------------~---~--------------
11 OoMaineommaridDelDB - Process Program Delete command.
ll
LPARAM OoMainCommandDelDB CHWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

Chapter 9 Windows CE Databases 473

}

int i, re;

i = MessageBox (hWnd, TEXT ("Delete the entire database?"),
TEXT ("Delete"). MB_YESNO);

if Ci != !DYES)
return 0;

if (g_oidDB) {
CloseHandle (g_hDBl;
re= CeDeleteDatabase (g_oidDBI;
if (re == 0) {

}

ErrBox (hWnd, TEXT ("Couldn\'t delete database. rc=%d"),
GetLastError());

g_hDB = OpenDB (hWnd, NULL); //Open the database.
return 0;

g_hDB = INVALID_HANDLE_VALUE;
g_oidDB = 0;

ListView_SetitemCount (GetDlgitem (hWnd, ID_LISTV), 0);
return 0;

11--
11 DoMainCommandExit - Process Program Exit command.
II
LPARAM DoMainCommandExit (HWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCodel {
SendMessage ChWnd, WM_CLOSE, 0, 0);
return 0:

}

//--
// DoMainCommandNew - Process Program New command.
II
LPARAM DoMainCommandNew (HWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCodel {
PCEPROPVAL pcepv;
int i, re;
CEOID oid;
HWND hwndLV = GetDlgltem ChWnd, ID_LISTV):
II Display the new/edit dialog.
pcepv = 0;
re= DialogBoxParam Chlnst, TEXT ("EditAlbumDlg"l, hWnd,

Edi tA 1 bumDl gProc, (LPARA/.0 &pcepv) :
if Ire == 0)

return 0:

II Write the record.
ofd = CeWriteRecordProps(g_hDB. 0,) ;

(continued)

474 Part II Windows CE Programming

Listing 9-1 (continued)

Chapter 9 Windows CE Databases 475

if(!oidl
ErrBox (hWnd, TEXT ("Write Rec fail. rc=%d"), GetLastError());

LocalFree ((LPBYTElpcepv);
Cl earCache (); II Clear the lv cache.

InvalidateRect (hwndLV, NULL, TRUE);
return 0;

II Force redraw.

11--
11 DoMainCommandDelete - Process Program Delete command.
II
LPARAM DoMainCommandDelete (HWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCodel {
HWND hwndLV;
TCHAR szText[64];
DWORD dwindex;
int i , nSe l ;
CEOID oid;

hwndLV = GetDlgltem (hWnd, ID_LISTV);
nSel = ListView_GetSelectionMark (hwndLV);
if (nSel != -1) {

wsprintf (szText, TEXT ("Delete this item?"));
i = MessageBox (hWnd, szText, TEXT ("Delete"), MB_YESNO);
if (i != IDYES)

return 0;

II Seek to the necessary record.
oid = CeSeekDatabase (g_hDB, CEDB_SEEK_BEGINNING, nSel, &dwlndex);
CeDeleteRecord (g_hDB, oid);

II Reduce the list view count by one and force redraw.
i = ListView_GetltemCount ChwndLV) - l;
ListView_SetltemCount (hwndLV, i);
Cl earCache (); II Clear the lv cache.
InvalidateRect (hwndLV, NULL, TRUE);

return 0;
}

11--
11 DoMainCommandSort - Process the Sort commands.
II
LPARAM DoMainCommandSort(HWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

(continued)

476 Part II Windows CE Programming

Listing 9-1 (continued)

}

int Y1Sort;

switch (iditeml
case IDM_SORTNAME:

nSort = 0:

break:
case IDM_SORTARTIST:

nSort = 1;
break;

case IDM_SOFHCATEGORY:

nSort = 2;
break;

}

if <nSort == g_nlastSortl
return 0;

ReopenDatabase (hWnd. nSort):

return 0:
II Close and reopen the database.

Ii - · - , - - · '· - - · - · - · - - - · " - ' • - , · - " · .. · · · · , ' · • · · • .• ' - -.. - , -.- - • - · - - · • - - - ' - - - - •• -
fl DoMai nCommandAbbtlt - Process the Help l About menu command,

II
LPARAM DoMi;ii nGommendAbout(HWND hWnd •. WORD .i.ditem, HWND hwndCtl ,

WORD wNot i fyCode) {

U$e< Dlal ogBox to create modal di al og.

(hinst. n:xr {" aboutbox"). h\'Jnd,

/I creat.eLV Creates the list
II

Chapter 9 Windows CE Databases 477

}

lvc.mask = LVCF_TEXT I LVCF_WIDTH I LVCF_FMT I LVCF_SUBITEM;
lvc.fmt = LVCFMT_LEFT;
lvc.cx = 150;
lvc.pszText =TEXT ("Name");
lvc.iSubitem = 0;
SendMessage (hwndLV, LVM_INSERTCOLUMN, 0, (LPARAMl&lvcl;

lvc.mask I= LVCF_SUBITEM;
lvc.pszText =TEXT ("Artist");
lvc.cx = 100;
lvc.iSubitem = l;
SendMessage (hwndLV, LVM_INSERTCOLUMN, l, (LPARAMl&lvc);

lvc.mask I= LVCF_SUBITEM;
lvc.pszText =TEXT ("Category");
lvc.cx = 100;
lvc.iSubitem = 2;
SendMessage ChwndLV, LVM_INSERTCOLUMN, 2, (LPARAMl&lvc);

return hwndLV;

11--
11 OpenDB - Open database.
II
HANDLE OpenDB (HWND hWnd, LPTSTR lpszName) {

}

II Reinitialize the notify request structure.
cenr.dwSize = sizeof (cenrl:
cenr.hwnd = hWnd;
cenr.dwFlags = CEDB_EXNOTIFICATION;

if Cl pszName I
g_oidDB = 0;

return CeOpenDatabaseEx2 (&g_guidDB, &g_oidDB, lpszName,
&g_diex.rgSortSpecs[g_nLastSort],
0, &cenrl;

11--------------- --
11 OpenCreateDB - Open database, create if necessary.
II
HANDLE OpenCreateDB (HWND hWnd, int *pnRecords) {

int re;
CEOIDINFO oidinfo;

g_oidDB = 0;
g_hDB = OpenDB (hWnd, TEXT ("\\Albums"));
if (g_hDB == INVALID_HANDLE_VALUE) {

re= GetlastError();
if (re == ERROR_FILE_NOT_FOUNDI {

(continued)

478 Part II Windows CE Programming

Listing 9-1 (continued)

iUotctQf:: <>eCreateDatabaseEx2 (&g_gui dDB •. &g...:di ex):
.. i(<~..-'01dri~ ;'°=< u f . . .·.·.·. ·.· .. ·· .·· ... •· . ·•.
· '·.·EfrBox t nWnd. TEXT.·< "Datab.ase create· failed. rc"'%d"J, ·

, · Gett11.stErrorC l):

Chapter 9 Windows CE Databases 479

static WORD wProps;
DWORD dwlndex:
CEOID oid;
PCEPROPVAL pRecord NULL;
DWORD dwRecSize;
int i ;

II See if the item requested was the previous one. If so,
II just use the old data.
if ((nltem == g_nLastltem) && (g_pLastRecordl)

pRecord = (PCEPROPVAL)g_pLastRecord;
else {

II Seek to the necessary record.
oid = CeSeekDatabase (g_hDB, CEDB_SEEK_BEGINNING. nltem, &dwlndex);
if (oid == 0) (

ErrBox (NULL, TEXT ("Db item not found. rc=%d"),
GetLastError());

return 0;

II Read all properties for the record. Have the system
II allocate the buffer containing the data.
oi d = CeReadRecordProps (g_hDB, CEDB_ALLOWREALLOC, &wProps, NULL,

CLPBYTE •)&pRecord, &dwRecSize);
if C oi d == 0) {

ErrBox (NULL. TEXT ("Db item not read. rc=%d"),
GetLastError() l;

return 0;

II Free old record, and save the newly read one.
if (g_plastRecordl

LocalFree (g_pLastRecordl;
g_nLastltem = nltem;
g_pLastRecord = (LPBYTElpRecord;

JI Copy the data from the record to the album structure.
for (i =0; i <wProps; i++) {

switch CpRecord->propid) {
case PID_NAME:

lstrcpy (pcd->Album.szName, pRecord->val .lpwstr);
break;

case PID_ARHST:
1st rcpy (pcd ->A 1 bum. szA rt is t, pRecord->va l. lpws tr l ;
break;

case PID_CATEGORY:
pcd->Album.sCategory pRecord->val
break;

case PID_NUMTRACKS:

(continued)

480 Part II Windows CE Programming

Listing 9-1 (continued)

}

pcd->Album.sNumTracks = pRecord->val.iVal;
break;

pRecord++;

return l;

!!----------- ---------------------- ----------------------"- ----------
!/ InsertLV - Add an item to the list view control.
II
int InsertLV (HWND hWnd, int nitem, LPJSTR pszNall)e. LPTSTR pszType,

int nSize) {

}

LVITEMlvi;
HWND hwndLV = GetDlgitem ChWnd, ID_LISTVl;

lvi .mask,.. LVIF_TEXT I LVIF_!MAGE [LVH_PARAM;
lvi .i!tem = nltem;
1 v1'. i Subitem = 0;
Jvj ,pszText = pszName;
1 vi. iimage = 0;

1 vi .1 Pa ram = nitem;
SendMessage (hwndLV, LVM_INS£RTITEM, 0, CLPARAM).&lvil;

lvi ;ma.sk = LVJF_TEXT;
lvi .iltem = nltem;
lvi.iSubltem • 1;
1 vi. pszText ·"' pszType:
SendMessage (hwndLV, LVM_SET!TEM. 0, CLPARAMl&lvil;

return 0;

I I - ' :· - - - - ·• -· - - - - - • - - - - - ' - - - - ~ - - - - - " • - - • - - - .. - c - • - - - - •. - • • " - - • - - - " • - - - - - - - -
I I Validate Time - Tri vi a 1 error checking of ti.me field
II
BOOL ValidateTime CTCHAR •pStrl {

BOOL fSep = FALSE;
TCHAR •pPtr:

pPtr = pStr.:
II See if field contains only numbers and ~~to one colon.
while (*pPtrl {

if (•pPtr ==TEXT(':')) {
if {fSepl

return FALSE;
fSep = TRUE;

else if CC*pPtr <TEXT C'0')) II (•pPtr >TEXT ('9').))
return FALSE;

pPtr++;

II Reject empty field.
if (pPtr > pStr)

return TRUE;
return FALSE;

Chapter 9 Windows CE Databases 481

11--
11 ErrBox - Displays an error string in a message box
II
int ErrBox (HWND hWnd, LPTSTR 1 pszFormat, ...) {

int nBuf;
TCHAR szBuffer[512];

va_list args;
va_start(args, lpszFormat);
nBuf = _vstprintf(szBuffer, lpszFormat, args);
va_end(args);

MessageBox (hWnd, szBuffer, TEXT("Error"), MB_OK I MB_ICONERROR);
return 0:

II==
II EditTrack dialog procedure
II
BOOL CALLBACK EditTrackDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
static LPTRACKINFO lpti;

switch (wMsg) {
case WM_INITDIALOG:

lpti = (LPTRACKINFO)lParam:
SendDlgitemMessage (hWnd, IDD_TRACK, EM_SETLIMITTEXT,

sizeof (lpti->szTrack), 0);
SendDl g I temMessage (hWnd, !DD_ TIME, EM_SETLIMITTEXT,

sizeof (lpti->szTime), 0);
II See if new album or edit of old one.
if (lstrlen (lpti->szTrack) == 0) {

}

SetWindowText (hWnd, TEXT ("New Track"));
else {

SetDlgltemText (hWnd, IDD_TRACK, lpti->szTrack);
SetDlgitemText (hWnd, IDD_TIME, lpti->szTime);

return TRUE;

case WM_COMMAND:
switch (LOWORD (wParam)) {

case IDOK:
Edit_GetText (GetDlgitem (hWnd, IDD_TRACK),

(continued)

482 Part II Windows CE Programming

Listing 9-1 (continued)

lpti->szTrack, sizeof (lpti->szTrack));
Edit_GetText (GetOlgitem (hWnd, IOO_TIME),

lpt1->szT1me, sizeof (lpti->szTime));
if .CValidateTime (lpti->szTime))

else
EndD1alog ChWnd, ll;

MessageBox (hWnd. TEXT ("Track time must \
be entered in mm;ss format"),

·TEXT ("Error"), MB_OK);
return TRUE; ..

case IDCANCEL:

break;

return FALSE:

End Dialog (hWnd, 0);
return TRUE:

II EditAl bum di a 1 og procedure
II
BOOl CALLBACK EditAlbumDlgProc (HWNO hWnd, UlNT wMsg, WflARAM wParam,

LPARAM 1Param) {
static PCEPROPVAL •ppRecord:
static int nTracks;
PCEPROPVAL pRecord. pReCPtr;
TCHAR •pPtr, szTmp[12B];
HWND hwndTList, hwndCombo:
TRACKINFO ti:
BOOI fEnable:
inti, nlen, re:

switch (wMsg) {
case WM_INITDIALOG:

ppRecord • <PCEPROPVAL •)lParam;
pRecord = •ppRecord;

hwndCombo = GetDl gitem (hWnd, IDD_CATEGORY l;
hwndTList = GetDlgitem ChWnd, IDD_TRACKSJ;

Edit_LimitText (GetDlgrtelJl (hWnd, IDD~NAME), MAX_NAMELENJ;
Edit_LimitText CGetDl g!tem ChWnd, IDD_ARTIST),

MALARTISTLENJ:
II Set tab stops on track list box.
i = 110;
Li stBox_SetTabStops C hwndTL i st. 1, &fl:
II Initialize category combo box.

Chapter 9 Windows CE Databases 483

for (i = 0: i < dim(pszCategories); i++)
ComboBox_AddString (hwndCombo, pszCategories[iJ);

ComboBox_SetCurSel (hwndCombo, 3):
nTracks = 0:

II See if new album or edit of old one.
if (pRecord == 0)

SetWindowText (hWnd, TEXT ("New Album"));
else {

II Copy the data from the record to album structure.
for (i = 0; i < NUM_OB_PROPS: i++)

}

switch (pRecord->propidl {
case PID_NAME:

SetDlgltemText (hWnd, IDD_NAME,
pRecord->val. lpwstr);

break;
case PID_ARTIST:

SetDlg!temText ChWnd, IDD_ARTIST,
pRecord->val .1 pwstr);

break:
case PID_CATEGORY:

ComboBox_SetCurSel (hwndCombo,
pRecord->val .iVal):

break:
case PID_TRACKS:

pPtr = (TCHAR *)pRecord->val .blob.lpb:
for (i = 0: *pPtr: i++){

ListBox_InsertString (hwndTList,i ,pPtr);
pPtr += lstrlen (pPtr) + 1:
nTracks++:

break;
}

pRecord++:

II Select first track, or disable buttons if no tracks.
if (nTracks)

ListBox_SetCurSel (GetDlgltem (hWnd, IDD_TRACKS), 3);
else {

EnableWindow (GetDlg!tem (hWnd, IDD_DELTRACK),
FALSE);

EnableWindow CGetDlgltem (hWnd, IOD_EDITTRACK),
FALSE);

return TRUE:

(continued)

484 Part II Windows CE Programming

Listing 9-1 (continued)

case WM~COMMAND: \

hwndTList ." GetDl gltem (hWnd,. IDD_TRACKS);
hwndCombo " . GetDlgltem IDD-..CATE60RY);
pRecord ·;; *P!JRecord;
switch <LOWORD .. {wParam))

case IDD-'TRACKS:

case LBN_OBLCLK:
PostMessage (hWnd, WM_COMMAND,

MAKELONGCIOD_EDIJTRACK. 0). 0);
break;

case LBN_SELCHANGE:
i = ListBox_GetCurSel (hwndTList);
if (i == LB_ERRl

else
fEnable = FALSE;

fEnable = TRUE;
(GetDTglteril (hWnd,
IDD~DELTRACKl, ·fEnabl e};

CGetDlgiteril· (hWnd,
IQO_EDITTRACK); fEnaole);

return TRUE;

sizeof Hi)).;
rt = DialogBoxParam (hJnst,

TEXT C"EditJrackDl!J"). hWnd,
EditTrac;kDTgProc, .(tPARAM)&til;

ws.printf (szTmp. TEXT
ti .szlrack,

i = Li stBox_GetCurSel
if (i !"' LB_ERR)

Chapter 9 Windows CE Databases 485

(*pPtr !=TEXT ('\0')))
pPtr++;

if (*pPtr ==TEXT ('\t'))
*pPtr++ =TEXT ('\0');

lstrcpy Cti.szTime, pPtr);
lstrcpy (ti.szTrack, szTmpl;
re = DialogBoxParam (hinst,

TEXT ("EditTrackDlg"),
hWnd, EditTrackDlgProc,
(LPARAMl&ti);

if (rel {
wsprintf CszTmp, TEXT ("%s\t%s"),

ti .szTrack, ti .szTime);
i = ListBox_GetCurSel ChwndTList);
ListBox_DeleteString (hwndTList, i);
ListBox_lnsertString (hwndTList, i,

szTmp);
Li stBox_SetCurSel (hwndTL i st, i);

return TRUE;

case IDD_DELTRACK:
II Grab the current selection, and remove
II it from list box.
i = ListBox_GetCurSel ChwndTList);
if (i != LB_ERR) {

re = MessageBox (hWnd,
TEXT ("Delete this item?"),
TEXT ("Track"), MB_YESND);

if Crc == !DYES) {
i=ListBox_DeleteString (hwndTList,i);
if (i > 0)

i - - ;

Li stBox_SetCurSel C hwndTL i st. i);

return TRUE;

case IDOK:
II Be lazy and assume worst-case size values.
nlen = sizeof CCEPROPVAL) * NUM_DB_PROPS +

MAX_NAMELEN + MAX_ARTISTLEN +
MAX_TRACKNAMELEN;

II See if prev record, alloc if not.
if CpRecord) {

II Resize record if necessary.

(continued)

486 Part II Windows CE Programming

Listing 9-1 (continued)

Chapter 9 Windows CE Databases 487

pRecPtr->propid = PID_TRACKS;
pRecPtr->val .blob.lpb = (LPBYTE)pPtr;

II Get the track titles from the list box.
re = MAX_TRACKNAMELEN;
for (i = 0; i < nTracks; i++) {

II Make sure we have the room in the buff.
re -= ListBox_GetTextLen(hwndTList, i);
if <re)

ListBox_GetText (hwndTList. i. pPtr);
else {

nTracks = i;
break;

pPtr += lstrlen (pPtr) + l;

*pPtr++ =TEXT ('\0');
pRecPtr->val .blob.dwCount

(LPBYTElpPtr - pRecPtr->val .blob. lpb;
*ppRecord = pRecord;
EndDialog (hWnd. l);
return TRUE:

case IDCANCEL:

break:

return FALSE;

EndDialog <hWnd. 0);
return TRUE;

II==
II About dialog procedure
II
BOOL CALLBACK AboutDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
switch (wMsg) {

case WM_COMMAND:
switch (LOWORD (wParam))

case IDOK:
case IDCANCEL:

break;

return FALSE;

EndDialog (hWnd, 0);
return TRUE;

488 Part II Windows CE Programming

The program uses a virtual list view control to display the records in the
database. As I explained in Chapter 5, virtual list views don't store any data
internally. Instead, the control makes calls back to the owning window using
notification messages to query the information for each item in the list view
control. The WM_NOTIFY handler OnNotifyMain calls GetltemData to query
the database in response to the list view control sending LVN_GETDISP/NFO
notifications. The Getltemlnfo function first seeks the record to read and then
reads all the properties of a database record with one call to CeReadRecord
Props. Since the list view control typically uses the LVN_GETD!SPINFO notifica
tion multiple times for one item, Getltemlnfo saves the data from the last record
read. If the next read is of the same record, the program uses the cached data
instead of rereading the database.

As I've explained before, you can change the way you sort by simply clos
ing the database and reopening it in one of the other sort modes. The list view
control is then invalidated, causing it to again request the data for each record
being displayed. With a new sort order defined, the seek that happens with
each database record read automatically sorts the data by the sort order defined
when the database was opened.

AlbumDB doesn't provide the option of storing the database on external
media. To modify the example to use separate database volumes, only minor
changes would be necessary. You'd need to replace the CREATE_SYSTEMGUID
macro that fills in the g_guidDB value with a call to CeMountDBVol to mount
the appropriate volume. You'd also need to unmount the volume before the
application closed.

The database API is unique to Windows CE and provides a valuable func
tion for the information-centric devices that Windows CE supports. Although it
isn't a powerful SQL-based database, its functionality is a handy tool for the
Windows CE developer.

The last few chapters have covered memory and the file system. Now it's
time to look at the third part of the kernel triumvirate-processes and threads.
As with the other parts of Windows CE, the API will be familiar if perhaps a bit
smaller. However, the underlying architecture of Windows CE does make itself
known.

Modules, Processes,
and Threads

Like Windows XP, Windows CE is a fully multitasking and multithreaded oper
ating system. What does that mean? In this chapter, I'll present a few definitions
and then some explanations to answer that question.

Win32 files that contain executable code are called modules. Windows CE
supports two types of modules: applications, with the EXE extension; and
dynamic-link libraries, with the DLL extension. When Windows CE loads an
application module, it creates a process.

A process is a single instance of an application. If two copies of Microsoft
Pocket Word are running, two unique processes are running. Every process has
its own, protected, 32-MB address space as described in Chapter 7. Windows
CE enforces a limit of 32 separate processes that can run at any time.

Each process has at least one thread. A thread executes code within a pro
cess. A process can have multiple threads running "at the same time." I put the
phrase at the same time in quotes because, in fact, only one thread executes at
any instant in time. The operating system simulates the concurrent execution of
threads by rapidly switching between the threads, alternatively stopping one
thread and switching to another.

Modules
The format of Windows CE modules is identical to the PE format used by Win
dows XP. Unlike Windows XP, Windows CE doesn't support the SYS file for
mat used for device drivers. Instead, Windows CE device drivers are
implemented as DLLs.

489

490 Part II Windows CE Programming

The difference between an EXE and a DLL is actually quite subtle. The for
mat of the files is identical, save a few bytes in the header of the module. In
practice, however, the difference is quite pronounced. When Windows
launches an EXE, it creates a separate process space for that module, resolves
any imported functions, initializes the proper static data areas, creates a local
heap, creates a thread, and then jumps to the entry point of the module.

DLLs, on the other hand, can't be launched independently. The only way
a DLL is loaded is by a request from an EXE or another DLL. The request to load
a DLL can occur in two ways. The first way is implicit loading. In this case, a
DLL is loaded automatically when Windows loads an EXE that lists the DLL in
its import table. The linker generates the import table when the EXE is linked,
and the table contains the list of DLLs and the functions within those DLLs that
the EXE might call during the life of the application. When the EXE is loaded,
Windows looks at the list of DLLs in the EXE's import table and loads those
DLLs into the process space of the application. DLLs also contain import tables.
When a DLL is loaded Windows also looks at the import table of the DLL and
loads any DLLs needed by that DLL.

When a DLL is built, it contains zero or more functions it exports. These
are the functions that are callable from EXEs or other DLLs. A DLL that has no
functions is still useful because it might contain resource data needed by the
application.

The other way a DLL can be loaded is through explicit loading. In this
case, Windows doesn't automatically load the DLL; it's loaded programmatically
by the application using one of two calls, LoadLibrary or LoadLibraryEx.

LoadLibrary is prototyped as

HINSTANCE Loadlibrary (LPCTSTR lplibFileName);

The only parameter is the filename of the DLL. If the filename does not have
path information, the system searches for DLLs in the following order:

1. The image of the DLL that has already been loaded in memory

2. The directory of the executable loading the library

3. If a relative path was specified, the relative path based on the root (\)

4. The Windows directory (\Windows)

5. The root directory in the object store (\)

6. The image of the DLL in ROM if no relative path is specified

7. The path specified in the SystemPath value in [HKEY_LOCAL_
MACHINEJ\Loader

Chapter 10 Modules, Processes, and Threads 491

If the DLL name is a completely specified path name, the search is as follows:

1. The image of the DLL that has already been loaded in memory

2. The completely specified name in the lpLibFileName parameter

If the DLL is specified with a relative pathname, that is, one without a
leading backslash (\) character, the relative path is appended to the directories
listed in the SystemPath registry variable. So if the DLL name is temp \bob.dll
and a directory in the path is pathdir, the resulting search is path
dir\temp\bob.dll. This characteristic of merging relative paths with the System
Path directories can easily lead to unexpected results. Because of this,
applications should avoid the use of relative paths when specifying DLLs.

Notice in all the earlier search sequences that if the DLL has already been
loaded into memory, the system uses that copy of the DLL. This behavior is true
even if your pathname specifies a different file from the DLL originally loaded.
Another peculiarity of LoadLibrary is that it ignores the extension of the DLL
when comparing the library name with what's already in memory. For example,
if Simple.dll is already loaded in memory and you attempt to load the control
panel applet Simple.cpl, which under the covers is simply a DLL with a different
extension, the system won't load Simple.cpl. Instead, the system returns the
handle to the previously loaded Simple.dll.

LoadLibrary returns either an instance handle to the DLL that's now
loaded or 0 if for some reason the function couldn't load the library. Calling
GetLastError will return an error code specifying the reason for the failure.

Once you have the DLL loaded, you get a pointer to a function exported
by that DLL by using GetProcAddress, which is prototyped as

FARPROC GetProcAddress (HMODULE hModule, LPCWSTR lpProcName);

The two parameters are the handle of the module and the name of the
function you want to get a pointer to. The function returns a pointer to the
function, or 0 if the function isn't found. Once you have a pointer to a function,
you can simply call the function as if the loader had implicitly linked it.

When you are finished with the functions from a particular library, you
need to call FreeLibrary, prototyped as

BOOL Freelibrary (HMODULE hlibModule);

FreeLibrary decrements the use count on the DLL. If the use count drops to 0,
the library is removed from memory.

The following routine solves the problem of an application not knowing
whether the menu bar API is present on a system.

492 Part II Windows CE Programming

fMenuBarCreated = FALSE;

hlib = LoadLibrary (TEXT ("aygshell.dll"));
if (hLib) {

FARPROC lpfn = GetProcAddress (hLib, TEXT ("SHCreateMenuBar"));
if (lpfn) {

memset(&mbi, 0, sizeof(SHMENUBARINFO)); II !nit structure
mbi .cbSize = sizeof(SHMENUBARINFO);
mbi .hwndParent = hWnd;
mbi .hinstRes = hlnst;
mbi.nToolBarid = ID_MENU;
mbi .dwFlags = SHCMBF_HMENU;
(*lpfn) C&mbi);
fMenuBarCreated = TRUE;

if (!fMenuBarCreated)
II Create a command bar instead

II Use std menu resource

In this code, the menu bar is created only if the system supports it. If the library
AygShell.dll or the SHCreateMenuBar function can't be found, a standard com
mand bar is created.

Windows CE also supports the LoadLibraryEx function, prototyped as

HMODULE LoadLibraryEx (LPCTSTR lpLibFileName, HANDLE hFile, DWORD dwFlags);

The first parameter is the name of the DLL to load. The second parameter, hFile,
isn't supported by Windows CE and must be set to 0. The last parameter,
dwFlags, defines how the DLL is loaded. If dwFlags contains the flag
DONT_RESOLVE_DLL_REFERENCES, the DLL is loaded, but any modules the
DLL requires are not loaded. In addition, the entry point of the DLL, typically
DllMain, isn't called. If dwFlags contains LOAD_LIBRARY_AS_DATAFILE, the
DLL is loaded into memory as a data file. The DLL is not relocated or prepared
in any way to be called from executable code. However, the handle returned
can be used to load resources from the DLL using the standard resource func
tions such as LoadString.

When a DLL is loaded, its entry point, traditionally named DllMain, is
called. DllMain is prototyped as

BOOL APIENTRY DllMain(HANDLE hModule, DWORD ul_reason_for_call,
LPVOID lpReserved);

In addition to being called when the DLL is first loaded, DllMain is also
called when it's unloaded or when a new thread is created or destroyed in the

Chapter 10 Modules, Processes, and Threads 493

process that loads it. The second parameter, ul_reasonJor _call, indicates the
reason for the call to DllMain.

DLLs should avoid doing anything more than simple initialization from
within Dl!Main. An action such as loading other DLLs or any other action that
might load other DLLs can cause problems with the Windows CE loader. This
restriction can cause problems for DLLs that have been ported from the desktop
versions of Windows because those operating systems are much more tolerant
of actions within DllMain.

One last DLL function is handy to know about. The function Disable
ThreadLibraryCalls tells the operating system not to send DLL_THREAD_
ATTACH and DLL_THREAD_DETACH notifications to the DLL when threads are
created and terminated in the application. Preventing these notifications can
improve performance and reduce the working set of an application because the
DLL's LibMain isn't called when threads are created and destroyed. The func
tion is prototyped as

BOOL DisableThreadlibraryCalls CHMODULE hlibModule);

The only parameter is the handle to the DLL identifying the DLL that doesn't
want to be notified of the thread events.

Processes
Windows CE treats processes differently than does Windows XP. First and fore
most, Windows CE has the aforementioned system limit of 32 processes being
run at any one time. When the system starts, at least four processes are created:
NK.exe, which provides the kernel services; FileSys.exe, which provides file
system services; GWES.exe, which provides the GUI support; and Device.exe,
which loads and maintains the device drivers for the system. On most systems,
other processes are also started, such as the shell, Explorer.exe, and, if the sys
tem is connected to a PC, Repllog.exe and RAPISrv.exe, which service the link
between the PC and the Windows CE system. This leaves room for about 24
processes that the user or other applications that are running can start. While
this sounds like a harsh limit, most systems don't need that many processes. A
typical Pocket PC that's being used heavily might have 15 processes running at
any one time.

Windows CE diverges from its desktop counterparts in other ways. Com
pared with processes under Windows XP, Windows CE processes contain much
less state information. Since Windows CE doesn't support the concept of a cur
rent directory, the individual processes don't need to store that information.
Windows CE doesn't maintain a set of environment variables, so processes don't

494 Part II Windows CE Programming

need to keep an environment block. Windows CE doesn't support handle inher
itance, so there's no need to tell a process to enable handle inheritance. Because
of all this, the parameter-heavy CreateProcess function is passed mainly NULLs
and zeros, with just a few parameters actually used by Windows CE.

Many of the process and thread-related functions are simply not sup
ported by Windows CE because the system doesn't support certain features
supported by Windows XP. Since Windows CE doesn't support an environment,
all the Win32 functions dealing with the environment don't exist in Windows
CE. Some functions aren't supported because there's an easy way to work
around the lack of the function. For example, ExitProcess doesn't exist under
Windows CE. But as you might expect, there's a workaround that allows a pro
cess to close.

Enough of what Windows CE doesn't do; let's look at what you can do
with Windows CE.

Creating a Process
The function for creating another process is

BOOL CreateProcess (LPCTSTR lpApplicationName,
LPCTSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL binheritHandles, DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCTSTR lpCurrentDirectory,
LPSTARTUPINFO lpStartupinfo,
LPPROCESS_INFORMATION lpProcessinformation);

While the list of parameters looks daunting, most of the parameters must
be set to NULL or 0 because Windows CE doesn't support security or current
directories, nor does it handle inheritance. This results in a function prototype
that looks more like this:

BOOL CreateProcess (LPCTSTR lpApplicationName,
LPTSTR lpCommandLine, NULL, NULL, FALSE,
DWORD dwCreationFlags, NULL, NULL, NULL,
LPPROCESS_INFORMATION lpProcessinformation);

The parameters that remain start with a pointer to the name of the application
to launch. Windows CE looks for the application in the following directories, in
this order:

1. The path, if any, specified in lpApplicationName

2. The Windows directory,(\ Windows)

Chapter 1 O Modules, Processes, and Threads 495

3. The root directory in the object store, (\)

4. The directories in the path specified in the SystemPath value in
[HKELLOCAL_MACHINENoader

This action is different from Windows XP, where CreateProcess searches
for the executable only if lpApplicationName is set to NULL and the executable
name is passed through the lpCommandLine parameter. In the case of Win
dows CE, the application name must be passed in the lpApplicationName
parameter because Windows CE doesn't support the technique of passing a
NULL in lpApplicationName with the application name as the first token in the
lpCommandLine parameter.

The lpCommandLine parameter specifies the command line that will be
passed to the new process. The only difference between Windows CE and Win
dows XP in this parameter is that under Windows CE the command line is
always passed as a Unicode string. And as I mentioned previously, you can't
pass the name of the executable as the first token in lpCommandLine.

The dwCreationFlags parameter specifies the initial state of the process
after it has been loaded. Windows CE limits the allowable flags to the following:

• 0 Creates a standard process.

• CREATE_SUSPENDED Creates the process and then suspends the
primary thread.

• DEBUG_PROCESS The process being created is treated as a pro
cess being debugged by the caller. The calling process receives
debug information from the process being launched.

• DEBUG_ONLY_THIS_PROCESS When combined with DEBUG_
PROCESS, debugs a process but doesn't debug any child processes
that are launched by the process being debugged.

• CREATE_NEW_CONSOLE Forces a new console to be created.

The only other parameter of the CreateProcess function that Windows CE
uses is lpProcesslnformation. This parameter can be set to NULL, or it can point
to a PROCESS_INFORMAITON structure that's filled by CreateProcess with infor
mation about the new process. The PROCESS_INFORMATION structure is
defined this way:

typedef struct _PROCESS_!NFORMATION
HANDLE hProcess;
HANDLE hThread;
DWORD dwProcess!d;
DWORD dwThreadld;

PROCESS_!NFORMATION;

496 Part II Windows CE Programming

The first two fields in this structure are filled with the handles of the new
process and the handle of the primary thread of the new process. These han
dles are useful for monitoring the newly created process, but with them comes
some responsibility. When the system copies the handles for use in the
PROCESS_INFORMATION structure, it increments the use count for the handles.
This means that if you don't have any use for the handles, the calling process
must close them. Ideally, they should be closed immediately following a suc
cessful call to CreateProcess. I'll describe some good uses for these handles later
in this chapter, in the section "Synchronization."

The other two fields in the PROCESS_INFORMATION structure are filled
with the process ID and primary thread ID of the new process. These ID values
aren't handles but simply unique identifiers that can be passed to Windows
functions to identify the target of the function. Be careful when using these IDs.
If the new process terminates and another new one is created, the system can
reuse the old ID values. You must take measures to assure that ID values for
other processes are still identifying the process you're interested in before using
them. For example, you can, by using synchronization objects, be notified
when a process terminates. When the process terminated, you would then
know not to use the ID values for that process.

Using the create process is simple, as you can see in the following code
fragment:

TCHAR szFileName[MAX_PATH];
TCHAR szCmdLine[64];
DWORD dwCreationFlags;
PROCESS_INFORMATION pi;
int re;

lstrepy CszFileName, TEXT ("eale"));
lstrepy (szCmdLine, TEXT(""));
dwCreationFlags = 0;

re= CreateProeess (szFileName, szCmdLine, NULL, NULL, FALSE,
dwCreationFlags, NULL, NULL, NULL, &pi);

if (rel {
CloseHandle Cpi .hThread);
Cl oseHandl e (pi. hProeess l;

This code launches the standard Calculator applet found on the Pocket
PC. Since the filename doesn't specify a path, CreateProcess will, using the stan
dard Windows CE search path, find Calc.exe in the \Windows directory.
Because I didn't pass a command line to Cale, I could have simply passed a
NULL value in the lpCmdLine parameter. But I passed a null string in szCmdLine

Chapter 10 Modules, Processes, and Threads 497

to differentiate the lpCmdline parameter from the many other parameters in
CreateProcess that aren't used. I used the same technique for dwCreationFlags.
If the call to CreateProcess is successful, it returns a nonzero value. The code
above checks for this and, if the call was successful, closes the process and
thread handles returned in the PROCESS_INFORMATION structure. Remember
that this must be done by all Win32 applications to prevent memory leaks.

Terminating a Process
A process can terminate itself by simply returning from the WinMain proce
dure. For console applications, a simple return from main suffices. Windows
CE doesn't support the ExitProcess function found in Windows XP. Instead, you
can have the primary thread of the process call ExitThread. Under Windows
CE, if the primary thread terminates, the process is terminated as well, regard
less of what other threads are currently active in the process. The exit code of
the process will be the exit code provided by ExitTbread. You can determine
the exit code of a process by calling

BOOL GetExitCodeProcess (HANDLE hProcess, LPDWORD lpExitCode);

The parameters are the handle to the process and a pointer to a DWORD that
receives the exit code that was returned by the terminating process. If the pro
cess is still running, the return code is the constant STILL_ACTIVE.

You can terminate another process. But while it's possible to do that, you
shouldn't be in the business of closing other processes. The user might not be
expecting that process to be closed without his or her consent. If you need to
terminate a process (or close a process, which is the same thing but a much
nicer word), the following methods can be used.

If the process to be closed is one that you created, you can use some sort
of interprocess communication to tell the process to terminate itself. This is the
most advisable method because you've designed the target process to be closed
by another party. Another method of closing a process is to send the main win
dow of the process a WM_CLOSE message. This is especially effective on the
Pocket PC, where applications are designed to respond to WM_CLOSE mes
sages by quietly saving their state and closing. Finally, if all else fails and you
absolutely must close another process, you can use TerminateProcess.

TerminateProcess is prototyped as

BOOL TerminateProcess (HANDLE hProcess, DWORD uExitCode);

The two parameters are the handle of the process to terminate and the exit
code the terminating process will return.

498 Part II Windows CE Programming

Other Processes
Of course, to terminate another process, you've got to know the handle to that
process. You might want to know the handle to a process for other reasons as
well. For example, you might want to know when the process terminates. Win
dows CE supports two additional functions that come in handy here (both of
which are seldom discussed). The first function is OpenProcess, which returns
the handle of an already running process. OpenProcess is prototyped as

HANDLE OpenProcess CDWORD dwDesiredAccess, BOOL binheritHandle,
DWORD dwProcessidl;

Under Windows CE, the first parameter isn't used and should be set to 0. The
b!nheritHandle parameter must be set to FALSE because Windows CE doesn't
support handle inheritance. The final parameter is the process ID value of the
process you want to open.

The other function useful in this circumstance is

DWORD GetWindowThreadProcessid CHWND hWnd, LPDWORD lpdwProcess!d);

This function takes a handle to a window and returns the process ID for the
process that created the window. So using these two functions, you can trace a
window back to the process that created it.

Two other functions allow you to directly read from and write to the mem
ory space of another process. These functions are

BOOL ReadProcessMemory (HANDLE hProcess, LPCVOID lpBaseAddress,
LPVOID lpBuffer, DWORD nSize,
LPDWORD lpNumberOfBytesRead);

and

BOOL WriteProcessMemory (HANDLE hProcess, LPVOID lpBaseAddress,
LPVOID lpBuffer, DWORD nSize,
LPDWORD lpNumberOfBytesWritten);

The parameters for these functions are fairly self-explanatory. The first
parameter is the handle of the remote process. The second parameter is the base
address in the other process's address space of the area to be read or written.
The third and fourth parameters specify the name and the size of the local buffer
in which the data is to be read from or written to. Finally, the last parameter
specifies the bytes actually read or written. Both functions require that the entire
area being read to or written from must be accessible. Typically, you use these
functions for debugging, but there's no requirement that this be their only use.

Chapter 10 Modules, Processes, and Threads 499

Threads
A thread is, fundamentally, a unit of execution. That is, it has a stack and a pro
cessor context, which is a set of values in the CPU internal registers. When a
thread is suspended, the registers are pushed onto the thread's stack, the active
stack is changed to the next thread to be run, that thread's CPU state is pulled
off its stack, and the new thread starts executing instructions.

Threads under Windows CE are similar to threads under Windows XP.
Each process has a primary thread. Using the functions that I describe below, a
process can create any number of additional threads within the process. The
only limit to the number of threads in a Windows CE process is the memory and
process address space available for the thread's stack.

Threads within a process share the address space of the process. Memory
allocated by one thread is accessible to all threads in the process. Threads share
the same access rights for handles whether they be file handles, memory object
handles, or handles to synchronization objects. Thread access rights to other
processes are, however, thread specific. Most of the time, you won't need to
worry about this, but there are times when you're working with interprocess
issues that this issue can arise. Refer to the information in the "Asynchronous
Driver I/0" section of Chapter 22 for details.

The stack size of the main thread of a process is set by the linker. (The
linker switch for setting the stack size in Microsoft eMbedded C++ is /stack.)
Secondary threads are created by default with the same stack size as the pri
mary thread, but the default can be overridden when the thread is created.

The System Scheduler
Windows CE schedules threads in a preemptive manner. Threads run for a
quantum, or time slice. After that time, if the thread hasn't already relinquished
its time slice and if the thread isn't a run-to-completion thread, it's suspended
and another thread is scheduled to run. Windows CE chooses which thread to
run based on a priority scheme. Threads of a higher priority are scheduled
before threads of lower priority.

The rules for how Windows CE allocates time among the threads are quite
different from Windows XP. Windows CE processes don't have a priority class.
Under Windows XP, threads derive their priority based on the priority class of
their parent processes. A Windows XP process with a higher-priority class has
threads that run at a higher priority than threads in a process with a lower-pri
ority class. Threads within a process can refine their priority within a process by
setting their relative thread priority.

500 Part II Windows CE Programming

Because Windows CE has no priority classes, all processes are treated as
peers. Individual threads can have different priorities, but the process that the
thread runs within doesn't influence those priorities. Also, unlike some of the
desktop versions of Windows, the foreground thread in Windows CE doesn't
get a boost in priority.

When Windows CE was first developed, the scheduler supported eight
priority levels. Starting with Windows CE 3.0, that number was increased to 256
priority levels. However, most applications still use the original (now lowest)
eight priority levels. The upper 248 levels are typically used by device drivers or
other system-level threads. This doesn't mean that an application can't use the
higher levels, but accessing them requires different API calls, and the applica
tion must be a "trusted" application. I'll talk more about security and the con
cept of trusted vs. untrusted applications later in the chapter.

The lowest eight priority levels are listed below:

• THREAD_PRIORITY_TIME_CRITICAL Indicates 3 points above
normal priority

• THREAD_PRIORITY_HIGHEST Indicates 2 points above normal
priority

• THREAD_PRIORITY_ABOVE_NORMAL Indicates 1 point above
normal priority

• THREAD_PRIORITY_NORMAL Indicates normal priority. All
threads are created with this priority

• THREAD_PRIORITY_BELOW_NORMAL Indicates 1 point below
normal priority

• THREAD_PRIORITY_LOWEST Indicates 2 points below normal
priority

• THREAD_PRIORITY_ABOVE_IDLE Indicates 3 points below
normal priority

• THREAD_PRIORITY_IDLE Indicates 4 points below normal
priority

All higher-priority threads run before lower-priority threads. This means
that before a thread set to run at a particular priority can be scheduled, all
threads that have a higher priority must be blocked. A blocked thread is one
that's waiting on some system resource or synchronization object before it can
continue. Threads of equal priority are scheduled in a round-robin fashion.
Once a thread has voluntarily given up its time slice, is blocked, or has com-

Chapter 1 O Modules, Processes, and Threads 501

pleted its time slice, all other threads of the same priority are allowed to run
before the original thread is allowed to continue. If a thread of higher priority
is unblocked and a thread of lower priority is currently running, the lower
priority thread is immediately suspended and the higher-priority thread is
scheduled. Lower-priority threads can never preempt a higher-priority thread.

An exception to the scheduling rules happens if a low-priority thread
owns a resource that a higher-priority thread is waiting on. In this case, the low
priority thread is temporarily given the higher-priority thread's priority to avoid
a prohlem known as priority inversion, so that it can quickly accomplish its task
and free the needed resource.

While it might seem that lower-priority threads never get a chance to run
in this scheme, it works out that threads are almost always blocked, waiting on
something to free up before they can be scheduled. Threads are always created
at IBREAD_PRIORITY_NORMAL, so, unless they proactively change their prior
ity level, a thread is usually at an equal priority to most of the other threads in
the system. Even at the normal priority level, threads are almost always
blocked. For example, an application's primary thread is typically blocked wait
ing on messages. Other threads should be designed to block on one of the
many synchronization objects available to a Windows CE application.

Never Do This!
What's not supported by the arrangement I just described, or by any other
thread-based scheme, is code like the following:

while (bFlag == FALSE)
II Do nothing, and spin.

II Now do something.

This kind of code isn't just bad manners; because it wastes CPU power, it's a
death sentence to a battery-powered Windows CE device. To understand why
this is important, I need to digress into a quick lesson on Windows CE power
management.

Windows CE is designed so that when all threads are blocked, which hap
pens over 90 percent of the time, it calls down to the OEM Abstraction Layer
(the equivalent of the BIOS on an MS-DOS machine) to enter a low-power wait
ing state. Typically, this low-power state means that the CPU is halted; that is,
it simply stops executing instructions. Because the CPU isn't executing any
instructions, no power-consuming reads and writes of memory are performed
by the CPU. At this point, the only power necessary for the system is to main
tain the contents of the RAM and light the display. This low-power mode can

502 Part II Windows CE Programming

reduce power consumption by up to 99 percent of what is required when a
thread is running in a well-designed system.

Doing a quick back-of-the-envelope calculation, say a Pocket PC is
designed to run for 10 hours on a fully charged battery. Given that the system
turns itself off after a few minutes of nonuse, this 10 hours translates into weeks
of battery life in the device for the user. (I'm basing this calculation on the
assumption that the system indeed spends 90 percent or more of its time in its
low-power idle state.) Say a poorly written application thread spins on a vari
able instead of blocking. While this application is running, the system will never
enter its low-power state. So, instead of 600 minutes of battery time (10 hours
x 60 minutes/hour), the system spends 100 percent of its time at full power,
resulting in a battery life of slightly over an hour, which means that the battery
would be lucky to last a day's normal use. So as you can see, it's good to have
the system in its low-power state.

Fortunately, since Windows applications usually spend their time blocked
in a call to GetMessage, the system power management works by default. How
ever, if you plan on using multiple threads in your application, you must use
synchronization objects to block threads while they're waiting. First let's look at
how to create a thread, and then I'll dive into the synchronization tools avail
able to Windows CE programs.

Creating a Thread
You create a thread under Windows CE by calling the function CreateTbread,
which is a departure from the desktop versions of Windows in which you're
never supposed to call this API directly. The reason for this change is that on
the desktop, calling Create171read doesn't give the C runtime library the chance
to create thread-unique data structures. So on the desktop, programmers are
instructed to use either of the run-time thread creation functions _beginthread
or _beginthreadex. These functions provide some thread-specific initialization
and then call CreateTbread internally.

In Windows CE, however, the runtime is written to be thread safe and
doesn't require explicit thread initialization, so calling CreateTbread directly is
the norm. The function is prototyped as

HANDLE CreateThread (LPSECURITY_ATTRIBUTES lpThreadAttributes,
DWORD dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddress,
LPVOID lpParameter, DWORD dwCreationFlags,
LPDWORD lpThreadid);

Chapter 1 O Modules, Processes, and Threads 503

As with CreateProcess, Windows CE doesn't support a number of the
parameters in CreateTbread, so they are set to NULL or 0 as appropriate. For
CreateTbread, the lpThreadAttributes parameter isn't supported and must be
set to NULL. The dwStackSize parameter is used only if the
STACK_SIZE_PARAM_IS_A_RESERVATION flag is set in the dwCreationFlags
parameter. The size specified in dwStackSize is the maximum size to which the
stack can grow. Windows CE doesn't immediately commit the full amount of
RAM to the stack when the thread is created. Instead, memory is committed
only as necessary as the stack grows.

The third parameter, lpStartAddress, must point to the start of the thread rou
tine. The lpParameter parameter in CreateTbread is an application-defined value
that's passed to the thread function as its only parameter. You can set the dwCre
ationFlags parameter to either 0, STACK_SIZE_PARAM_IS_A_RESERVATION, or
CREATE_SUSPENDED. If CREATE_SUSPENDED is passed, the thread is created
in a suspended state and must be resumed with a call to ResumeTbread. The
final parameter is a pointer to a DWORD that receives the newly created
thread's ID value.

The thread routine should be prototyped this way:

DWDRD WINAPI ThreadFunc (LPVOID lpArg);

The only parameter is the lpParameter value, passed unaltered from the call to
CreateTbread. The parameter can be an integer or a pointer. Make sure, how
ever, that you don't pass a pointer to a stack-based structure that will disappear
when the routine that called CreateTbread returns.

If CreateTbread is successful, it creates the thread and returns the handle
to the newly created thread. As with CreateProcess, the handle returned should
be closed when you no longer need the handle. Following is a short code frag
ment that contains a call to start a thread and the thread routine.

11- - - - -- - - - - - - - -- - - -- - - - - - - - - - - - -- -- -

II
II
HANDLE hThreadl;
DWORD dwThreadlID = 0;
int nParameter = 5;

hThreadl = CreateThread (NULL, 0, Thread2, (PVOID)nParameter, 0,
&dwThreadlID);

CloseHandle (hThreadl);

11--
11 Second thread routine
II

(continued)

504 Part II Windows CE Programming

DWORD WINAPI Thread2 (PVOID pArg)

int nParam = (int) pArg;

II
II Do something here.
II
II
II
return 0xl5;

In this code, the second thread is started with a call to CreateThread. The
nParameter value is passed to the second thread as the single parameter to the
thread routine. The second thread executes until it terminates, in this case sim
ply by returning from the routine.

A thread can also terminate itself by calling this function:

VOID ExitThread (DWORD dwExitCode);

The only parameter is the exit code that's set for the thread. That thread exit
code can be queried by another thread using this function:

BOOL GetExitCodeThread (HANDLE hThread, LPDWORD lpExitCode);

The function takes the handle to the thread (not the thread ID) and returns the
exit code of the thread. If the thread is still running, the exit code is
STILL_ACTIVE, a constant defined as Ox0103. The exit code is set by a thread
using ExitThread or the value returned by the thread procedure. In the preced
ing code, the thread sets its exit code to Ox15 when it returns.

All threads within a process are terminated when the process terminates.
As I said earlier, a process is terminated when its primary thread terminates.

Setting and Querying Thread Priority
Threads are always created at the priority level IBREAD_PRIORITY_NORMAL.
The thread priority can be changed either by the thread itself or by another
thread using one of two functions. The first is

BOOL SetThreadPriority (HANDLE hThread, int nPriority);

The two parameters are the thread handle and the new priority level. The level
passed can be one of the constants described previously, ranging from
THREAD_PRIORITY_IDLE up to THREAD_PRIORITY_TIME_CRITICAL. You
must be extremely careful when you're changing a thread's priority. Remem-

Chapter 10 Modules, Processes, and Threads 505

ber that threads of a lower priority almost never preempt threads of higher
priority. So a simple bumping up of a thread one notch above normal can
harm the responsiveness of the rest of the system unless that thread is care
fully written.

The other function that sets a thread's priority is

BOOL CeSetThreadPriority (HANDLE hThread, int nPriority);

The difference between this function and SetTbreadPriority is that this function
sets the thread's priority to any of the 256 priorities. Instead of using predefined
constants, nPriority should be set to a value of 0 to 255, with 0 being highest
priority and 255 being the lowest.

A word of caution: SetTbreadPriori~y and CeSetTbreadPriori~y use com
pletely different numbering schemes for the nPriority value. For example, to set
a thread's priority to 1 above normal, you could call SetTbreadPriority with
WREAD_PRIORITY_ABOVE_NORMAL or call CeSetTbreadPriority with nPrior
ity set to 250 but the constant WREAD_PRIORITY_ABOVE_NORMAL defined as
2, not 250. The rule is that you should use the constants for SetTbreadPriority
and the numeric values for CeSetTbreadPriority. Another difference posed by
CeSetTbreadPriority is that it's a protected function. For systems that implement
Windows CE's module-based security, only trusted modules can call CeSet
TbreadPriority. To query the priority level of a thread, call this function:

int GetThreadPriority (HANDLE hThread);

This function returns the priority level of the thread. You shouldn't use the
hard-coded priority levels. Instead, use constants, such as
WREAD_PRIORITY_NORMAL, defined by the system. This ensures that you're
using the same numbering scheme that SetTbreadPriority uses. For threads that
have a priority greater than WREAD_PRIORITY_TIMECRITICAL, this function
returns the value WREAD_PRIORITY_TIMECRITICAL.

To query the priority of a thread that might have a higher priority than
WREAD_PRIORITY_TIMECRITICAL, call the function

int CeGetThreadPriority (HANDLE hThreadJ:

The value returned by CeGetTbreadPriority will be 0 to 255, with 0 being the
highest priority possible. Here again, Windows CE uses different numbering
schemes for the priority query functions than it does for the priority set func
tions. For example, for a thread running at normal priority, GetTbreadPriority
would return WREAD_PRIORITY_NORMAL, which is defined as the value 3.
CeGetTbreadPriority would return the value 251.

506 Part II Windows CE Programming

Setting a Thread's Time Quantum
Threads can be individually set with their own time quantum. The time quan
tum is the maximum amount of time a thread runs before it's preempted by the
operating system. By default, the time quantum is set to 100 milliseconds,
although for embedded systems, the OEM can change this. 1 For example, some
Pocket PC devices use a default quantum of 75 milliseconds, while others use
the standard 100-millisecond quantum.

To set the time quantum of a thread, call

int CeSetThreadQuantum (HANDLE hThread, DWORD dwTime);

The first parameter is the handle to the thread. The second parameter is the
time, in milliseconds, of the desired quantum. If you set the time quantum to 0,
the thread is turned into a "run-to-completion thread." These threads aren't pre
empted by threads of their own priority. Obviously, threads of higher priorities
preempt these threads. CeSetTbreadQuantum is a protected function and so
can't be called by "untrusted" modules.

You can query a thread's time quantum with the function

int CeGetThreadQuantum (HANDLE hThread);

The first parameter is the handle to the thread. The function returns the current
quantum of the thread.

Suspending and Resuming a Thread
You can suspend a thread at any time by calling this function:

DWORD SuspendThread (HANDLE hThread);

The only parameter is the handle to the thread to suspend. The value returned
is the suspend count for the thread. Windows maintains a suspend count for
each thread. Any thread with a suspend count greater than 0 is suspended.
Since SuspendTbread increments the suspend count, multiple calls to Suspend
Thread must be matched with an equal number of calls to ResumeTbread
before a thread is actually scheduled to run. ResumeCount is prototyped as

DWORD ResumeThread (HANDLE hThread);

Here again, the parameter is the handle to the thread and the return value is the
previous suspend count. So if ResumeTbread returns 1, the thread is no longer
suspended.

1. In early versions of Windows CE, a thread's time quantum was fixed. Typically, the time quantum was
set to 25 milliseconds, although this was changeable by the OEM.

Fibers

Chapter 1 O Modules, Processes, and Threads 507

At times, a thread simply wants to kill some time. Since I've already
explained why simply spinning in a while loop is a very bad thing to do, you
need another way to kill time. The best way to do this is to use this function:

void Sleep (DWORD dwMilliseconds);

Sleep suspends the thread for at least the number of milliseconds specified in
the dwMilliseconds parameter. Because the scheduler timer in systems based on
Windows CE 3.0 and later has a granularity of 1 millisecond, calls to Sleep with
very small values are accurate to 1 millisecond. On systems based on earlier
versions of Windows CE, the accuracy of Sleep depends on the period of the
scheduler timer, which was typically 25 milliseconds. This strategy is entirely
valid, and sometimes it's equally valid to pass a 0 to Sleep. When a thread
passes a 0 to Sleep, it gives up its time slice but is rescheduled immediately
according to the scheduling rules I described previously.

Fibers are threadlike constructs that are scheduled within the application
instead of by the scheduler. Fibers, like threads, have their own stack and exe
cution context. The difference is that the application must manage and manu
ally switch between a set of fibers so that each one gets the appropriate amount
of time to run.

An application creates a fiber by first creating a thread. The thread calls a
function to turn itself into a fiber. The thread, now a single fiber, can then create
multiple fibers from itself. The operating system schedules all of the fibers as a
single thread, the thread that was originally converted to the first fiber. So the
system allocates the time scheduled for the original thread to whichever fiber
the application chooses. When the application chooses, it can stop a particular
fiber and schedule another. This switch is transparent to Windows CE because
all it considers is the quantum and the priority of the original thread. Fibers
aren't more efficient than a well-designed multithreaded application, but they
do allow applications to micromanage the scheduling of code execution within
the application.

To create a set of fibers, an application first creates a thread. The thread
then calls ConvertTbreadToFiber, which is prototyped as

LPVOID WINAPI ConvertThreadToFiber (LPVOID lpParameter);

The single parameter is an application-defined value that can be retrieved by
the fiber using the macro GetFiberData. The value returned is the pointer to the

508 Part II Windows CE Programming

fiber data for this fiber. This value will be used when another fiber wants to
schedule this fiber. If the return value is 0, the call failed.

Upon return from the function, the thread is now a fiber. One significant
restriction on converting a thread to a fiber is that the thread must use the
default stack size for its stack. If the thread has a different stack size from the
main thread in the process, the call to ConvertThreadToFiber will fail.

Once the original thread has been converted to a fiber, it can spawn addi
tional fibers with the following call:

LPVOID WINAPI CreateFiber (DWORD dwStackSize,
LPFIBER_START_ROUTINE lpStartAddress,
LPVOID lpParameter);

The dwStackSize parameter is ignored. The lpStartAddress parameter is the
entry point of the new fiber being created. The final parameter is an applica
tion-defined value that is passed to the entry point of the new fiber. The return
value from CreateFiber is the pointer to the fiber data for this new fiber. This
value will be used to switch to the newly created fiber.

The function prototype of the fiber entry point looks similar to the entry
point of a thread. It is

VOID CALLBACK FiberProc CPVOID lpParameter);

The one parameter is the value passed from the CreateFiber call. This parame
ter can also be retrieved by the fiber by calling GetFiberData. Note that no
return value is defined for the fiber procedure. A fiber procedure should never
return. If it does, the system exits the thread that is the basis for all fibers
spawned by that thread.

The new fiber does not immediately start execution. Instead, the fiber call
ing CreateFiber must explicitly switch to the new fiber by calling

VOID WINAPI SwitchToFiber (LPVOID lpFiber);

The single parameter is the pointer to the fiber data for the fiber to be switched
to. When this call is made, the calling fiber is suspended and the new fiber is
enabled to run.

The DeleteFiber function is used to destroy a fiber. It looks like this:

VOID WINAPI DeleteFiber (LPVOID lpFiber);

The single parameter is the pointer to the fiber data of the fiber to destroy. If a
fiber calls DeleteFiber on itself, the thread is exited and all fibers associated with
that thread are also terminated.

It's critical that fibers clean up after themselves. Each fiber should be
deleted by another fiber in the set, and then the final fiber can delete itself and

Chapter 1 O Modules, Processes, and Threads 509

properly exit the thread. If the thread is exited without deletion of all fibers, the
memory committed to support each of the undeleted fibers will not be freed,
resulting in a memory leak for the application.

Fibers are interesting but are they necessary? The short answer is, not
really. Fibers were added to Windows CE for two reasons. First, it makes it eas
ier to port applications from Unix style operating systems where something
akin to fibers is used frequently. The second reason for adding them was a
request from an internal group within Microsoft that wanted to use fibers when
they ported their Windows XP application to Windows CE.

I doubt either of these reasons inspires hoards of developers to start using
fibers. A couple of major groups within Microsoft have decided. Fibers are not
supported on the Pocket PC 2003 devices, nor are they part of the Standard
SOK configuration promoted by the embedded team. Even so, if your system
needs fiber support, Windows CE does provide it.

Thread Local Storage
Tbread local storage is a mechanism that allows a routine to maintain separate
instances of data for each thread calling the routine. This capability might not
seem like much, but it has some very handy uses. Take the following thread
routine:

int g_nGlobal; II System global variable

int ThreadProc (pStartData)
int nValuel;

}

int nValue2;

while (unblocked)
II
II Do some work.
II

II We're done now; terminate the thread by returning.
return 0;

For this example, imagine that multiple threads are created to execute the
same routine, ThreadProc. Each thread has its own copy of nValuel and
n Value2 because these are stack-based variables and each thread has its own
stack. All threads, though, share the same static variable, g_nGlobal.

510 Part II Windows CE Programming

Now imagine that the ThreadProc routine calls another routine, Worker
Bee. As in

int g_nGl oba 1 : II System global variable

int ThreadProc (pStartData)
int nValuel:
int nValue2:
while (unblocked)

WorkerBee(); II Let someone else do the work.
}

II We're done now: terminate the thread by returning.
return 0:

int WorkerBee (void) {
int nLocall:

}

static int nLocal2;
II
II Do work here.
II
return nlocall:

Now WorkerBee doesn't have access to any persistent memory that's local
to a thread. nLocall is persistent only for the life of a single call to WorkerBee.
nLocal2 is persistent across calls to WorkerBee but is static and therefore shared
among all threads calling WorkerBee. One solution would be to have Thread
Proc pass a pointer to a stack-based variable to WorkerBee. This strategy works,
but only if you have control over the routines calling WorkerBee. What if you're
writing a DLL and you need to have a routine in the DLL maintain a different
state for each thread calling the routine? You can't define static variables in the
DLL because they would be shared across the different threads. You can't
define local variables because they aren't persistent across calls to your routine.
The answer is to use thread local storage.

Thread local storage allows a process to have its own cache of values that
are guaranteed to be unique for each thread in a process. This cache of values
is small because an array must be created for every thread created in the pro
cess, but it's large enough if used intelligently. To be specific, the system con
stant, ns_MINIMUM_AVAILABLE, is defined to be the number of slots in the
TLS array that's available for each process. For Windows CE, like Windows XP,
this value is defined as 64. So each process can have 64 4-byte values that are
unique for each thread in that process. For the best results, of course, you must
manage those 64 slots well.

Chapter 10 Modules, Processes, and Threads 511

To reserve one of the TLS slots, a process calls

DWORD TlsAlloc (void);

T7sAlloc looks through the array to find a free slot in the TLS array, marks it as
in use, and then returns an index value to the newly assigned slot. If no slots
are available, the function returns -1. It's important to understand that the indi
vidual threads don't call T7sAlloc. Instead, the process or DLL calls it before cre
ating the threads that will use the TLS slot.

Once a slot has been assigned, each thread can access its unique data in
the slot by calling this function:

BOOL TlsSetValue (DWORD dwTlsindex, LPVOID lpTlsValue);

and

LPVOID TlsGetValue (DWORD dwTlslndex);

For both of these functions, the TLS index value returned by TlsAlloc specifies
the slot that contains the data. Both T7sGetValue and T7sSetValue type the data
as a PVOID, but the value can be used for any purpose. The advantage of think
ing of the TLS value as a pointer is that a thread can allocate a block of memory
on the heap and then keep the pointer to that data in the TLS value. This allows
each thread to maintain a block of thread-unique data of almost any size.

One other matter is important to thread local storage. When TlsAlloc
reserves a slot, it zeroes the value in that slot for all currently running threads.
All new threads are created with their TLS array initialized to 0 as well. This
means that a thread can safely assume that the value in its slot will be initialized
to 0. This is helpful for determining whether a thread needs to allocate a mem
ory block the first time the routine is called.

When a process no longer needs the TLS slot, it should call this function:

BOOL TlsFree (DWORD dwTlslndex);

The function is passed the index value of the slot to be freed. The function
returns TRUE if successful. This function frees only the TLS slot. If threads have
allocated storage in the heap and stored pointers to those blocks in their TLS
slots, that storage isn't freed by this function. Threads are responsible for free
ing their own memory blocks.

Synchronization
With multiple threads running around the system, you need to coordinate the
activities. Fortunately, Windows CE supports almost the entire extensive set of
standard Win32 synchronization objects. The concept of synchronization

512 Part II Windows CE Programming

Events

objects is fairly simple. A thread waits on a synchronization object. When the
object is signaled, the waiting thread is unblocked and is scheduled (according
to the rules governing the thread's priority) to run.

Windows CE doesn't support some of the synchronization primitives sup
ported by Windows XP. These unsupported elements include file change noti
fications and waitable timers. The lack of waitable timer support can easily be
worked around using other synchronization objects or, for longer-period time
outs, the more flexible Notification API, unique to Windows CE.

One aspect of Windows CE unique to it is that the different synchroniza
tion objects don't share the same namespace. This means that if you have an
event named Bob, you can also have a mutex named Bob. (I'll talk about
mutexes later in this chapter.) This naming convention is different from Win
dows XP's rule, where all kernel objects (of which synchronization objects are
a part) share the same namespace. While having the same names in Windows
CE is possible, it's not advisable. Not only does the practice make your code
incompatible with Windows XP, there's no telling whether a redesign of the
internals of Windows CE might just enforce this restriction in the future.

The first synchronization primitive I'll describe is the event object. An event
object is a synchronization object that can be in a signaled or nonsignaled state.
Events are useful to a thread to let it be known that, well, an event has
occurred. Event objects can either be created to automatically reset from a sig
naled state to a nonsignaled state or require a manual reset to return the object
to its nonsignaled state. Events can be named and therefore shared across dif
ferent processes allowing interprocess synchronization.

An event is created by means of this function:

HANDLE CreateEvent (LPSECURITY_ATTRIBUTES lpEventAttributes,
BOOL bManualReset, BOOL binitialState,
LPTSTR lpName);

As with all calls in Windows CE, the security attributes parameter, lpEvent
Attributes, should be set to NULL. The second parameter indicates whether the
event being created requires a manual reset or will automatically reset to a non
signaled state immediately after being signaled. Setting bManualReset to TRUE
creates an event that must be manually reset. The b!nitia!State parameter spec
ifies whether the event object is initially created in the signaled or nonsignaled
state. Finally, the lpName parameter points to an optional string that names the
event. Events that are named can be shared across processes. If two processes

Chapter 1 O Modules, Processes, and Threads 513

create event objects of the same name, the processes actually share the same
object. This allows one process to signal the other process using event objects.
If you don't want a named event, the lpname parameter can be set to NULL.

To share an event object across processes, each process must individually
create the event object. You shouldn't just create the event in one process and
send the handle of that event to another process. To determine whether a call
to CreateEvent created a new event object or opened an already created object,
you can call GetLastError immediately following the call to CreateEvent. If Get
LastError returns ERROR_ALREADY_EXISTS, the call opened an existing event.

Once you have an event object, you'll need to be able to signal the event.
You accomplish this using either of the following two functions:

BOOL SetEvent (HANDLE hEvent);

or

BOOL PulseEvent (HANDLE hEvent);

The difference between these two functions is that SetEvent doesn't automati
cally reset the event object to a nonsignaled state. For autoreset events, SetEvent
is all you need because the event is automatically reset once a thread unblocks
on the event. For manual reset events, you must manually reset the event with
this function:

BOOL ResetEvent (HANDLE hEvent);

These event functions sound like they overlap, so let's review. An event object
can be created to reset itself or require a manual reset. If it can reset itself, a call
to SetEvent signals the event object. The event is then automatically reset to the
nonsignaled state when one thread is unblocked after waiting on that event. An
event that resets itself doesn't need PulseEvent or ResetEvent. If, however, the
event object was created requiring a manual reset, the need for ResetEvent is
obvious.

PulseEvent signals the event and then resets the event, which allows all
threads waiting on that event to be unblocked. So the difference between
PulseEvent on a manually resetting event and SetEvent on an automatic reset
ting event is that using SetEvent on an automatic resetting event frees only one
thread to run, even if many threads are waiting on that event. PulseEvent frees
all threads waiting on that event.

An application can associate a single DWORD value with an event by
calling

BOOL SetEventData (HANDLE hEvent, DWORD dwData);

514 Part II Windows CE Programming

The parameters are the handle of the event and the data to associate with that
event. Any application can retrieve the data by calling

DWORD GetEventData (HANDLE hEvent);

The single parameter is the handle to the event. The return value is the data
previously associated with the event.

You destroy event objects by calling CloseHandle. If the event object is
named, Windows maintains a use count on the object, so one call to Close
Handle must be made for every call to CreateEvent.

Waiting ...
It's all well and good to have event objects; the question is how to use them.
Threads wait on events, as well as on the soon to be described semaphore and
mutex, using one of the following functions: WaitForSingleObject, WaitFor
MultipleObjects, Msg WaitForMultipleObjects, or Msg WaitForMultipleObjectsEx.
Under Windows CE, the WaitForMultiple functions are limited in that they can't
wait for all objects of a set of objects to be signaled. These functions support
waiting for one object in a set of objects being signaled. Whatever the limita
tions of waiting, I can't emphasize enough that waiting is good. While a thread
is blocked with one of these functions, the thread enters an extremely efficient
state that takes very little CPU processing power and battery power.

Another point to remember is that the thread responsible for handling a
message loop in your application (usually the application's primary thread)
shouldn't be blocked by WaitForSingleObject or WaitForMultipleObjects
because the thread can't be retrieving and dispatching messages in the message
loop if it's blocked waiting on an object. The function MsgWaitForMultiple
Objects gives you a way around this problem, but in a multithreaded environ
ment, it's usually easier to let the primary thread handle the message loop and
secondary threads handle the shared resources that require blocking on events.

Waiting on a Single Object
A thread can wait on a synchronization object with the function

DWORD WaitForSingleObject (HANDLE hHandle, DWORD dwMilliseconds);

The function takes two parameters: the handle to the object being waited on
and a timeout value. If you don't want the wait to time out, you can pass the
value INFINITE in the dwMilliseconds parameter. The function returns a value
that indicates why the function returned. Calling WaitForSingleObject blocks
the thread until the event is signaled, the synchronization object is abandoned,
or the timeout value is reached.

Chapter 1 O Modules, Processes, and Threads 515

WaitForSingleObject returns one of the following values:

• WAIT_OB]ECT_O The specified object was signaled.

• WAIT_TIMEOUT The timeout interval elapsed, and the object's
state remains nonsignaled.

• WAIT_ABANDONED The thread that owned a mutex object being
waited on ended without freeing the object.

• WAIT_FAILED The handle of the synchronization object was
invalid.

You must check the return code from WaitForSingleObject to determine
whether the event was signaled or simply that the timeout had expired. (The
WAIT_ABANDONED return value will be relevant when I talk about mutexes
soon.)

Waiting on Processes and Threads
I've talked about waiting on events, but you can also wait on handles to pro
cesses and threads. These handles are signaled when their processes or threads
terminate. This allows a process to monitor another process (or thread) and
perform some action when the process terminates. One common use for this
feature is for one process to launch another and then, by blocking on the han
dle to the newly created process, wait until that process terminates.

The rather irritating routine on the next page is a thread that demonstrates
this technique by launching an application, blocking until that application
closes, and then relaunching the application:

DWORD WINAPI KeepRunning (PVOID pArg) {
PROCESS_INFORMATION pi;
TCHAR szFileName[MAX_PATHJ:
int re = 0;

II Copy the filename.
lstrcpy (szFileName, (LPTSTR)pArg);
while (1) {

II Launch the application.
re = CreateProcess (szFileName, NULL, NULL, NULL, FALSE,

0, NULL, NULL, NULL, &pi);
II If the application didn't start, terminate thread.
if (!re)

return -1;
II Close the new process's primary thread handle.
Cl oseHandl e (pi. hThread);

(continued)

516 Part II Windows CE Programming

II Wait for user to close the application.
re = WaitForSi ngl eObject (pi. hProcess, INFINITE);

JI Close the old process handle.
Cl oseHandl e (pi. hProcess);

JI Make sure we returned from the wait correctly.
if (re != WAIT_OBJECT_0)

return -2;

return 0; //This should never get executed.

This code simply launches the application using CreateProcess and waits
on the process handle returned in the PROCESS_INFORMATION structure.
Notice that the thread closes the child process's primary thread handle and,
after the wait, the handle to the child process itself.

Waiting on Multiple Objects
A thread can also wait on a number of events. The wait can end when any one
of the events is signaled. The function that enables a thread to wait on multiple
objects is this one:

DWORD WaitForMultipleObjects (DWORD nCount, CONST HANDLE *lpHandles,
BOOL bWaitAll, DWORD dwMilliseconds);

The first two parameters are a count of the number of events or mutexes to wait
on and a pointer to an array of handles to these events. The bWaitAll parameter
must be set to FALSE to indicate that the function should return if any of the
events are signaled. The final parameter is a timeout value, in milliseconds. As
with WaitForSingleObject, passing INFINITE in the timeout parameter disables
the timeout. Windows CE doesn't support the use of WaitForMultipleObjects to
enable waiting for all events in the array to be signaled before returning.

Like WaitForSingleObject, WaitForMultipleObjects returns a code that indi
cates why the function returned. If the function returned because of a synchro
nization object being signaled, the return value will be WAIT_OB]ECT_O plus an
index into the handle array that was passed in the lpHandles parameter. For
example, if the first handle in the array unblocked the thread, the return code
would be WAIT_OB]ECT_O; if the second handle was the cause, the return code
would be WAIT_OB]ECT_O + 1. The other return codes used by WaitForSingle
Object-WAIT_TIMEOUT, WAIT_ABANDONED, and WAIT_FAILED-are also
returned by WaitForMultipleObjects for the same reasons.

Chapter 10 Modules, Processes, and Threads 517

Waiting While Dealing with Messages
The Win32 API provides other functions that allow you to wait on a set of
objects as well as messages: MsgWaitForMultipleObjects and MsgWaitForMulti
pleObjectsEx. Under Windows CE, these functions act identically, so I'll describe
only MsgWaitForMultipleObjects. This function essentially combines the wait
function, MsgWaitForMultipleObjects, with an additional check into the message
queue so that the function returns if any of the selected categories of messages
are received during the wait. The prototype for this function is the following:

DWORD MsgWaitForMultipleObjectsEx (DWORD nCount, LPHANDLE pHandles,
BOOL fWaitAll, DWORD dwMilliseconds,
DWORD dwWakeMasks);

This function has a number of limitations under Windows CE. As with WaitFor
MultipleObjects, MsgWaitForMultipleObjectsEx can't wait for all objects to be
signaled. Nor are all the dwWakeMask flags supported by Windows CE. Win
dows CE supports the following flags in dwWakeMask. Each flag indicates a cat
egory of messages that, when received in the message queue of the thread,
causes the function to return.

• QS_ALLINPUT Any message has been received.

• QS_INPUT An input message has been received.

• QS_KEY A key up, key down, or syskey up or down message has
been received.

• QS_MOUSE A mouse move or mouse click message has been
received.

• QS_MOUSEBUTTON A mouse click message has been received.

• QS_MOUSEMOVE A mouse move message has been received.

• QS_PAINT A WM_PAINT message has been received.

• QS_POSTMESSAGE A posted message, other than those in this
list, has been received.

• QS_SENDMESSAGE A sent message, other than those in this list,
has been received.

• QS_TIMER A WM_11MER message has been received.

The function is used inside the message loop so that an action or actions
can take place in response to the signaling of a synchronization object while
your program is still processing messages.

518 Part II Windows CE Programming

The return value is WAIT_OB]ECT_O up to WAIT_OB]ECT_O + nCount- 1
for the objects in the handle array. If a message causes the function to return,
the return value is WAIT_OB]ECT_O + nCount. An example of how this function
might be used follows. In this code, the handle array has only one entry, hSync
Handle.

fContinue = TRUE;
while (fContinue)

re = MsgWaitForMultipleObjects Cl, &hSyncHandle, FALSE,
INFINITE, QS_ALLINPUT);

if (re == WAIT_OBJECT_0) {
II

Semaphores

II Do work as a result of sync object.
II

else if (re== WAIT_OBJECT_0 + 1) {
II It's a message; process it.
PeekMessage (&msg, hWnd, 0, 0, PM_REMOVE);
if (msg.message == WM_QUIT)

fContinue = FALSE;
else {

TranslateMessage C&msg);
DispatchMessage (&msg);

Earlier I described the event object. That object resides in either a signaled or a
nonsignaled state. Events are synchronization objects that are not all or nothing,
signaled or nonsignaled. Semaphores, on the other hand, maintain a count. As
long as that count is above 0, the semaphore is signaled. When the count is 0,
the semaphore is nonsignaled.

Threads wait on semaphore objects as they do events, using WaitFor
SingleObject or WaitForMultipleObjects. When a thread waits on a semaphore,
the thread is blocked until the count is greater than 0. When another thread
releases the semaphore, the count is incremented and the thread blocking on
the semaphore returns from the wait function. The maximum count value is
defined when the semaphore is created so that a programmer can define how
many threads can access a resource protected by a semaphore.

Semaphores are typically used to protect a resource that can be accessed
only by a set number of threads at one time. For example, if you have a set of
five buffers for passing data, you can allow up to five threads to grab a buffer
at any one time. When a sixth thread attempts to access the buffer array pro-

Chapter 10 Modules, Processes, and Threads 519

tected by the semaphore, it will be blocked until one of the other threads
releases the semaphore.

To create a semaphore, call the function

HANDLE CreateSemaphore (LPSECURITY_ATTRIBUTES lpSemaphoreAttributes,
LONG linitialCount, LONG lMaximumCount,
LPCTSTR lpName);

The first parameter, lpSemaphoreAttributes, should be set to NULL. The param
eter llnitialCount is the count value when the semaphore is created and must
be greater than or equal to 0. If this value is greater than 0, the semaphore will
be initially signaled. The lMaximumCount parameter should he set to the max
imum allowable count value the semaphore will allow. This value must be
greater than 0.

The final parameter, lpName, is the optional name of the object. This
parameter can point to a name or be NULL. As with events, if two threads call
CreateSemaphore and pass the same name, the second call to CreateSemaphore
returns the handle to the original semaphore instead of creating a new object.
In this case, the other parameters, linitialCount and lMaximumCount, are
ignored. To determine whether the semaphore already exists, you can call Get
LastError and check the return code for ERR.OR_ALREADY_EXISTS.

When a thread returns from waiting on a semaphore, it can perform its
work with the knowledge that only lMaximumCount threads or fewer are run
ning within the protection of the semaphore. When a thread has completed
work with the protected resource, it should release the semaphore with a call to

BOOL ReleaseSemaphore (HANDLE hSemaphore, LONG lReleaseCount,
LPLONG lpPreviousCount);

The first parameter is the handle to the semaphore. The lReleaseCount param
eter contains the number by which you want to increase the semaphore's count
value. This value must be greater than 0. While you might expect this value to
always be 1, sometimes a thread might increase the count by more than 1. The
final parameter, lpPreviousCount, is set to the address of a variable that will
receive the previous resource count of the semaphore. You can set this pointer
to NULL if you don't need the previous count value.

To destroy a semaphore, call CloseHandle. If more than one thread has
created the same semaphore, all threads must call CloseHandle, or more pre
cisely, CloseHandle must be called as many times as CreateSemaphore was
called before the operating system destroys the semaphore.

Another function, OpenSemaphore, is supported on the desktop versions
of Windows but not supported by Windows CE. This function is redundant on
Windows CE because a thread that wants the handle to a named semaphore

520 Part II Windows CE Programming

Mutexes

can just as easily call CreateSemaphore and check the return code from GetLast
Error to determine whether it already exists.

Another synchronization object is the mutex. A mutex is a synchronization
object that's signaled when it's not owned by a thread and nonsignaled when it
is owned. Mutexes are extremely useful for coordinating exclusive access to a
resource such as a block of memory across multiple threads.

A thread gains ownership by waiting on that mutex with one of the wait
functions. When no other threads own the mutex, the thread waiting on the
mutex is unblocked and implicitly gains ownership of the mutex. After the thread
has completed the work that requires ownership of the mutex, the thread must
explicitly release the mutex with a call to ReleaseMutex.

To create a mutex, call this function:

HANDLE CreateMutex (LPSECURITY_ATTRIBUTES lpMutexAttributes,
BOOL blnitialOwner, LPCTSTR lpName);

The lpMutexAttributes parameter should be set to NULL. The blnitia!Owner
parameter lets you specify that the calling thread should immediately own the
mutex being created. Finally, the lpName parameter lets you specify a name for
the object so that it can be shared across other processes. When calling Create
Mutex with a name specified in the lpName parameter, Windows CE checks
whether a mutex with the same name has already been created. If so, a handle
to the previously created mutex is returned. To determine whether the mutex
already exists, call GetLastError. It returns ERROR_ALREADY_EXISTS if the
mutex has been previously created.

Gaining immediate ownership of a mutex using the blnitia!Owner param
eter works only if the mutex is being created. Ownership isn't granted if you're
opening a previously created mutex. If you need ownership of a mutex, be sure
to call GetLastError to determine whether the mutex had been previously com
mitted. If so, call WaitForSingleObject to gain ownership of the mutex.

You release the mutex with this function:

BOOL ReleaseMutex (HANDLE hMutex);

The only parameter is the handle to the mutex.
If a thread owns a mutex and calls one of the wait functions to wait on

that same mutex, the wait call immediately returns because the thread already
owns the mutex. Since mutexes retain an ownership count for the number of
times the wait functions are called, a call to ReleaseMutex must be made for
each nested call to the wait function.

Chapter 10 Modules, Processes, and Threads 521

To close a mutex, call CloseHandle. As with events and semaphores, if
multiple threads have opened the same mutex, the operating system doesn't
destroy the mutex until it has been closed the same number of times that
CreateMutex was called.

Duplicating Synchronization Handles
Event, semaphore, and mutex handles are process specific, meaning that they
shouldn't be passed from one process to another. The ability to name each of
these kernel objects makes it easy for each process to "create" an event of the
same name, which, as we've seen, simply opens the same event for both pro
cesses. There are times, however, when having to name an event is overkill. An
example of this situation might be using an event to signal the end of asynchro
nous 1/0 between an application and a driver. The driver shouldn't have to cre
ate a new and unique event name and pass it to the application for each
operation.

The DuplicateHandle function exists to avoid having to name events,
mutexes, and semaphores all the time. It is prototyped as follows:

BOOL DuplicateHandle (HANDLE hSourceProcessHandle, HANDLE hSourceHandle,
HANDLE hTargetProcessHandle, LPHANDLE lpTargetHandle,
DWORD dwDesiredAccess, BOOL binheritHandle,
DWORD wOptions);

The first parameter is the handle of the process that owns the source handle. If
a process is duplicating its own handle, it can get this handle by using Get
CurrentProcess. The second parameter is the handle to be duplicated. The third
and fourth parameters are the handle of the destination process and a pointer
to a variable that will receive the duplicated handle. The dwDesiredAccess
parameter is ignored, and the blnheritHandle parameter must be FALSE. The
dwOptions parameter must have the flag DUPLICATE_SAME_ACCESS set. The
parameter can optionally have the DUPLICATE_CLOSE_SOURCE flag set, indi
cating that the source handle should be closed if the handle is successfully
duplicated.

DuplicateHandle is restricted on Windows CE to only duplicating event,
mutex, and semaphore handles. Passing any other type of handle will cause the
function to fail.

Critical Sections
Using critical sections is another method of thread synchronization. Critical sec
tions are good for protecting sections of code from being executed by two dif
ferent threads at the same time. Critical sections work by having a thread call

522 Part II Windows CE Programming

EnterCriticalSection to indicate that it has entered a critical section of code. If
another thread calls EnterCriticalSection referencing the same critical section
object, it's blocked until the first thread makes a call to LeaveCriticalSection.
Critical sections can protect more than one linear section of code. All that's
required is that all sections of code that need to be protected use the same crit
ical section object. The one limitation of critical sections is that they can be used
to coordinate threads only within a process.

Critical sections are similar to mutexes, with a few important differences.
On the downside, critical sections are limited to a single process by means of
which mutexes can be shared across processes. But this limitation is also an
advantage. Because they're isolated to a single process, critical sections are
implemented so that they're significantly faster than mutexes. If you don't need
to share a resource across a process boundary, always use a critical section
instead of a mutex.

To use a critical section, you first create a critical section handle with this
function:

void InitializeCriticalSection (LPCRITICAL_SECTION lpCriticalSection);

The only parameter is a pointer to a CRITICAL_SECTION structure that you
define somewhere in your application. Be sure not to allocate this structure on
the stack of a function that will be deallocated as soon the function returns. You
should also not move or copy the critical section structure. Since the other crit
ical section functions require a pointer to this structure, you'll need to allocate
it within the scope of all functions using the critical section. While the
CRITICAL_SECTION structure is defined in WINBASE.H, an application doesn't
need to manipulate any of the fields in that structure. So for all practical pur
poses, think of a pointer to a CRITICAL_SECTION structure as a handle instead
of as a pointer to a structure of a known format.

When a thread needs to enter a protected section of code, it should call
this function:

void EnterCriticalSection (LPCRITICAL_SECTION lpCriticalSection);

The function takes as its only parameter a pointer to the critical section struc
ture initialized with InitializeCriticalSection. If the critical section is already
owned by another thread, this function blocks the new thread and doesn't
return until the other thread releases the critical section. If the thread calling
EnterCriticalSection already owns the critical section, a use count is incre
mented and the function returns immediately.

If you need to enter a critical section but can't afford to be blocked waiting
for that critical section, you can use the function

BOOL TryEnterCriticalSection (LPCRITICAL_SECTION lpCriticalSection);

Chapter 10 Modules, Processes, and Threads 523

TryEnterCritica!Section differs from EnterCritica!Section because it always
returns immediately. If the critical section was unowned, the function returns
TRUE and the thread now owns the critical section. If the critical section is
owned by another thread, the function returns FALSE. This function, added in
Windows CE 3.0, allows a thread to attempt to perform work in a critical section
without being forced to wait until the critical section is free.

When a thread leaves a critical section, it should call this function:

void LeaveCriticalSection (LPCRITICAL_SECTION lpCriticalSectionl;

As with all the critical section functions, the only parameter is the pointer to the
critical section structure. Since critical sections track a use count, one call to
LeaveCritica!Section must be made for each call to EnterCritica!Section by the
thread that owns the section.

Finally, when you're finished with the critical section, you should call

void DeleteCriticalSection (LPCRITICAL_SECTION lpCriticalSection);

This action cleans up any system resources used to manage the critical section.

Interlocked Variable Access
Here's one more low-level method for synchronizing threads-using the func
tions for interlocked access to variables. While programmers with multithread
experience already know this, I need to warn you that Murphy's Law2 seems to
come into its own when you're using multiple threads in a program. One of the
sometimes overlooked issues in a preemptive multitasking system is that a
thread can be preempted in the middle of incrementing or checking a variable.
For example, a simple code fragment such as

if (!i++)

II Do something because i was 0.

can cause a great deal of trouble. To understand why, let's look into how that
statement might be compiled. The assembly code for that if statement might
look something like this:

load regl, [addr of i] ;Read variable
add reg2, regl, 1 ;reg2 = regl +
store reg2, [addr of iJ ;Save incremented var
bne regl, zero, ski pbl k ;Branch regl != zero

2. Murphy's Law: Anything that can go wrong will go wrong. Murphy's first corollary: When something
goes wrong, it happens at the worst possible moment.

524 Part II Windows CE Programming

There's no reason that the thread executing this section of code couldn't be pre
empted by another thread after the load instruction and before the store instruc
tion. If this happened, two threads could enter the block of code when that isn't
the way the code is supposed to work. Of course, I've already described a num
ber of methods (such as critical sections and the like) that you can use to pre
vent such incidents from occurring. But for something like this, a critical section
is overkill. What you need is something lighter.

Windows CE supports the full set of interlocked functions from the Win32
APL The first three, Interlockedlncrement, InterlockedDecrement, and Inter
lockedExchange, allow a thread to increment, decrement, and in some cases
optionally exchange a variable without your having to worry about the thread
being preempted in the middle of the operation. The other functions allow
variables to be added to and optionally exchanged. The functions are proto
typed here:

LONG Interlockedlncrement(LPLONG lpAddend);

LONG InterlockedDecrement(LPLDNG lpAddend);

LONG InterlockedExchange(LPLONG Target, LONG Value);
LONG InterlockedCompareExchange (LPLONG Destination, LONG Exchange,

LONG Comperand);
LONG InterlockedTestExchange (LPLONG Target, LONG OldValue, LONG NewValue);LONG
InterlockedExchangeAdd (LPLONG Addend, LONG Increment);

PVOID InterlockedCompareExchangePointer (PVOID* Destination, PVOID Exchange,
PVOID Comperand);

PVOID InterlockedExchangePointer (PVOID* Target, PVOID Value);

For the interlocked increment and decrement, the one parameter is a pointer to
the variable to increment or decrement. The returned value is the new value of
the variable after it has been incremented or decremented. The Interlocked
Exchange function takes a pointer to the target variable and the new value for
the variable. It returns the previous value of the variable. Rewriting the previous
code fragment so that it's thread safe produces this code:

if (!Interlockedlncrement(&i)) {
II Do something because i was 0.

The InterlockedCompareExchange and InterlockedTestExchange functions
exchange a value with the target only if the target value is equal to the test
parameter. Otherwise, the original value is left unchanged. The only difference
between the two functions is the order of the parameters.

Chapter 10 Modules, Processes, and Threads 525

lnterlockedExchangeAdd adds the second parameter to the LONG pointed
to by the first parameter. The value returned by the function is the original
value before the add operation. The final two functions, lnterlockedCompare
ExchangePointer and lnterlockedExchangePointer, are identical to the Inter
locked Compa reExcha nge and lnterlockedExchange functions, but the
parameters have been type cast to pointers instead of longs.

Windows CE Security
While Windows CE doesn't implement the thread- and process-level security
of the Windows NT/2000/XP line, it does have an optional level of module
based security. This security scheme is based on the concept of trusted and
untrusted modules. The modules are the executables (.EXEs) and dynamic
link libraries (DLLs). Trusted modules can access anything in the system, while
untrusted modules are refused access to a handful of protected functions and
registry keys.

The Windows CE security scheme must be implemented by the OEM
when it ports Windows CE to its hardware. When an executable or DLL is
loaded, the operating system notifies the OAL, the OEM abstraction layer,
underneath the operating system. The OAL then decides, by whatever means it
chooses, to mark the executable or DLL as being trusted or untrusted. This
check happens only for modules loaded from the object store or external
media. In most cases, modules loaded directly from ROM are assumed to be
trusted because the OEM made the decision about what modules were present
in the ROM. However, this ROM module trust assumption can be disabled by
the OEM. For systems that don't implement this security scheme, all modules
are considered trusted.

Because trusted modules have free reign, the only interesting case is what
happens if a module is untrusted. When an untrusted module calls a protected
function, such as the function Virtua!Copy, the call fails. Calling GetLastError
then returns ERROR_ACCESS_DENIED. A handful of registry keys and their
descendants are also protected. Untrusted modules can read a protected regis
try key, but any attempt to modify a protected key or create values or keys
underneath a protected key results in an ERROR_ACCESS_DENIED failure. A list
of the protected functions3 and registry keys is shown in Listing 10-1. In addi
tion to the list, files marked with the FILE_AITR!BUTE SYSTEM attribute can't be
moved, changed, or deleted by untrusted applications. Databases with the SYS
TEM flag can't be modified by untrusted applications.

3. A number of undocumented functions are also protected but are not included in this list.

526 Part II Windows CE Programming

There are a few interesting derivations of this security scheme. What hap
pens when a trusted executable unknowingly loads an untrusted DLL? What if
an untrusted executable loads a trusted DLL? Finally, how is a device driver
supposed to react to a call from an untrusted module? Actually, the rules are
fairly simple.

Functioh$

PowerOffSystem

Regi$try Keys
HKEYc..L9CAL_;MAcHl.Npcomrn •.•
HKEY"""LOCAL..OMACHINl;:\Drivers
HKELLOCAL;:;MACH.I NE\Servi c;es
HKSY--LOCALMACHINE\HARDWARE
HKEY _LOCACMACHlN ~\$Y STEM
HKELLOCAL_MACH INE\1 nit
HKEY:...LOCAUolACHIN.E\WDMOri vers

Listing 10-1 The list of protected functions and registry keys

If a trusted module attempts to load an untrusted DLL, the load fails. If an
untrusted module loads a trusted DLL, the trust level of the DLL is reduced to
untrusted. A module can determine its trust state by calling the function

DWORD CeGetCurrentTrust (void);

Chapter 1 O Modules, Processes, and Threads 527

The return value for this function is either OEM_CERT!FY_TRUST, which
signifies that the module is running in a trusted state, or OEM_CERT!FY_RUN,
which indicates that the module is currently untrusted. If a module requires
access to trusted functions, it can call CeGetCurrentTrust at its initialization, and
if it discovers that it's running in an untrusted state, it can fail its initialization.

Device drivers operate in a different process space from standard applica
tions, but sometimes a device driver might need to check the trust state of a
calling application. Here's the function that accomplishes this task:

DWORD CeGetCallerTrust (void);

The return values are the same as for CeGetCurrentTrust,
OEM_CERT!FY_TRUST, and OEM_CERTIFY_RUN.

Interprocess Communication
Quite often, two Windows CE processes need to communicate. The walls
between processes that protect processes from one another prevent casual
exchanging of data. The memory space of one process isn't exposed to another
process. Handles to files or other objects can't be passed from one process to
another. Windows CE doesn't support handle inheritance. Some of the other
more common methods of interprocess communication, such as named pipes,
are also not supported under Windows CE. However, you can choose from
plenty of ways to enable two or more processes to exchange data.

Finding Other Processes
Before you can communicate with another process, you have to determine
whether it's running on the system. Strategies for finding whether another pro
cess is running depend mainly on whether you have control of the other pro
cess. If the process to be found is a third-party application in which you have
no control over the design of the other process, the best method might be to
use the FindWindow function to locate the other process's main window. Find
Window can search either by window class or by window title. You can enu
merate the top-level windows in the system using Enum Windows. You can also
use the ToolHelp debugging functions to enumerate the processes running, but
this works only when the ToolHelp DLL is loaded on the system, and unfortu
nately, it generally isn't included, by default, on most systems.

If you're writing both processes, however, it's much easier to enumerate
them. In this case, the best methods include using the tools you'll later use in
one process to communicate with the other process, such as named mutexes,

528 Part II Windows CE Programming

events, or memory-mapped objects. When you create one of these objects, you
can determine whether you're the first to create the object or you're simply
opening another object by calling GetLastError after another call created the
object. And the simplest method might be the best; call FindWindow.

The classic case of using FindWindow on a Pocket PC occurs when an
application must determine whether another copy of itself is already running.
According to the Pocket PC and the earlier Palm-size PC guidelines, an applica
tion must allow only one copy of itself to run at a time. Following is a code frag
ment that all the examples in this book use for accomplishing this task.

II If Pocket PC, allow only one instance of the application.
HWND hWnd = FindWindow (szAppName, NULL);
if (hWndl {

SetForegroundWindow CCHWND)(((DWORDlhWnd) I 0x01));
return -1;

The first statement uses FindWindow to find a window class of the same
name as the class of the application's main window. Because this call is made
before the main window is created in the application, the only way the window
could have been found, assuming you're using a unique name for your window
class, is for it to have already been created by another copy of your application.
An advantage of this technique is that FindWindow returns the handle of the
main window of the other instance. In the case of the Pocket PC, we want to set
that instance in the foreground, which is what we do with the subsequent call
to SetForegroundWindow. The ORing of the 1 to the window handle is a hack
of Windows CE that causes the window being activated to be restored if it was
in a minimized state.

WM_COPYDATA
After you find your target process, the talking can begin. If you're staying at the
window level, you can simply send a WM_COPYDATA message.
WM_COPYDATA is unique in that it's designed to send blocks of data from one
process to another. You can't use a standard user-defined message to pass
pointers to data from one process to another because a pointer isn't valid across
processes. WM_COPYDATA gets around this problem by having the system
translate the pointer to a block of data from one process's address space to
another's. The recipient process is required to copy the data immediately into
its own memory space, but this message does provide a quick-and-dirty
method of sending blocks of data from one process to another.

Chapter 1 O Modules, Processes, and Threads 529

Named Memory-Mapped Objects
The problem with WM_COPYDATA is that it can be used only to copy fixed
blocks of data at a specific time. Windows CE supports entities referred to as
memory-mapped objects. These are objects that are backed up by the paging
file under Windows XP. Under Windows CE, they are simply areas of virtual
memory with only physical RAM to back them up. Without the paging file,
these objects can't be as big as they would be under Windows XP, but Windows
CE does have a way of minimizing the RAM required to back up the memory
mapped object.

Using a named memory-mapped object, two processes can allocate a
shared block of memory that's equally accessible to both processes at the same
time. You should use named memory-mapped objects so that the system can
maintain a proper use count on the object. This procedure prevents one pro
cess from freeing the block when it terminates while the other process is still
using the block.

Of course, this level of interaction comes with a price. You need some
synchronization between the processes when they're reading and writing data
in the shared memory block. The use of named mutexes and named events
allows processes to coordinate their actions. Using these synchronization
objects requires the use of secondary threads so that the message loop can be
serviced, but this isn't an exceptional burden.

You create such a memory-mapped object by calling CreateFileMapping
and passing -1 in the handle field. CreateFileMapping was initially described in
Chapter 8 in the discussion of memory-mapped files. Because no file is speci
fied, you must specify the size of the memory-mapped region in the maximum
size fields of CreateFileMapping. The following routine creates a 16-MB region
by using a memory-mapped file:

II Create a 16-MB memory-mapped object.
hNFileMap = CreateFileMapping ((HANDLE)-1, NULL, PAGE_READWRITE,

0, 0x1000000, NULL);
if (hNFileMap)

II Map in the object.
pNFileMem = MapViewOfFile (hNFileMap,

FILE_MAP_WRITE, 0, 0, 0);

The memory object created by this code doesn't actually commit 16 MB of RAM.
Instead, only the address space is reserved. Pages are autocommitted as they're
accessed. This process allows an application to create a huge, sparse array of
pages that takes up only as much physical RAM as is needed to hold the data.
At some point, however, if you start reading or writing to a greater number of
pages, you'll run out of memory. When this happens, the system generates an

530 Part II Windows CE Programming

exception. I'll talk about how to deal with exceptions later in this chapter. The
important thing to remember is that if you really need RAM to be committed to
a memory-mapped object, you need to read each of the pages so that the sys
tem will commit physical RAM to that object. Of course, don't be too greedy
with RAM; commit only the pages you absolutely require.

Naming a Memory-Mapped Object
A memory-mapped object can be named by passing a string to CreateFileMap
ping. This isn't the name of a file being mapped. Instead, the name identifies
the mapping object being created. In the preceding example, the region was
unnamed. The following code creates a memory-mapped object named Bob.
This name is global so that if another process opens a mapping object with the
same name, the two processes will share the same memory-mapped object.

II Create a 16-MB memory-mapped object.
hNFileMap = CreateFileMapping CCHANDLE)-1, NULL, PAGE_READWRITE,

0, 0x1000000, TEXT ("Bob"));
if (hNFileMap)

II Map in the object.
pNFileMem = MapViewOfFile (hNFileMap,

FILE_MAP_WRITE, 0, 0, 0);

The difference between named and unnamed file mapping objects is that
a named object is allocated only once in the system. Subsequent calls to Create
FileMapping that attempt to create a region with the same name will succeed,
but the function will return a handle to the original mapping object instead of
creating a new one. For unnamed objects, the system creates a new object each
time CreateFileMapping is called.

When you're using a memory-mapped object for interprocess communica
tion, processes should create a named object and pass the name of the region to
the second process rather than pass a pointer. While the first process can simply
pass a pointer to the mapping region to the other process, this isn't advisable. If
the first process frees the memory-mapped file region while the second process
is still accessing the file, the operating system throws an exception. Instead; the
second process should create a memory-mapped object with the same name as
the initial process. Windows knows to pass a pointer to the same region that
was opened by the first process. The system also increments a use count to track
the number of opens. A named memory-mapped object won't be destroyed
until all processes have closed the object. This system assures a process that the
object will remain at least until it closes the object itself. The XTalk example,
presented later in this chapter, provides an example of how to use a named
memory-mapped object for interprocess communication.

Chapter 10 Modules, Processes, and Threads 531

Message Queues
Windows CE supports a method of interprocess communication called message
queues. The Message Queue API, as the name suggests, provides data queues
for sending data from one process to another.

To communicate with a message queue, a process or pair of processes cre
ates a message queue for reading and one for writing. A call to create or open a
queue can specify only read or write access, not both read and write access. The
queue is then opened again for the corresponding write or read access. "Mes
sages" are then written to the queue by using the write handle to the queue. (In
this context, a message is simply a block of data with a defined length.) The
message can be read by using the read handle to the queue. If a series of mes
sages is written to a queue, they are read in the order they were written, in clas
sic first in, first out (FIFO) fashion. When a queue is created, the number and the
maximum size of messages are defined for the queue. If the queue is full and a
write occurs, the write function will either block (waiting for a free slot in the
queue), fail and return immediately, or wait for a specific amount of time before
failing and returning. Likewise, read functions can block until a message is in the
queue to be read, or they can wait a specific period of time before returning.

In addition, a message can be marked as an "alert" message. Alert mes
sages are sent to the front of the queue so that the next read of the queue will
read the alert message regardless of the number of messages that have been
waiting to be read. Only one alert message can be in the queue at any one time.
If a second alert message is written to the queue before the first one was read,
the second alert message replaces the first and the first alert message is lost.

To create a message queue, call this function:

HANDLE WINAPI CreateMsgQueue (LPCWSTR lpszName, LPMSGQUEUEOPTIONS lpOptions);

The first parameter is the name of the queue that will be either opened or cre
ated. The name is global to the entire system. That is, if one process opens a
queue with a name and another process opens a queue with the same name,
they open the same queue. The name can be up to .N!AX_PA1H characters in
length. The parameter can also be set to NULL to create an unnamed queue.

The second parameter of CreateMsgQueue is a pointer to a MSG
QUEUEOPTJONS structure defined as follows:

typedef MSGQUEUEOPTIONS_OS {
DWORD dwSize;
DWORD dwFlags;
DWORD dwMaxMessages;
DWORD cbMaxMessage;
BOOL bReadAccess

MSGQUEUEOPTIONS;

532 Part II Windows CE Programming

The dwSize field must be filled in with the size of the structure. The dwF!ags
parameter describes how the queue should act. The flags supported are
MSGQUEUE_NOPRECOMMIT, which tells Windows CE not to allocate the RAM
necessary to support messages in the queue until the RAM is needed; and
MSGQUEUE_ALLOW_BROKEN, which allows writes and reads to the queue to
succeed even if another call hasn't been made to open the queue for the match
ing read or write of the message. The dwMaxMessages field should be set to the
maximum number of messages that are expected to be in the queue at any one
time. The cbMaxMessage field indicates the maximum size of any single mes
sage. Finally, the bReadAccess field should be set to TRUE if read access is
desired for the queue and FALSE if write access is desired. A single call to
CreateMsgQueue can only create the queue for either read or write access. To
open a queue for both read and write access, CreateMsgQueue should be called
twice, once for read access and once for write access.

The function returns the handle to the queue if successful, or NULL if the
function failed. The handle returned by CreateMsgQueue is an event handle
that can be waited on with WaitForSingleObject and the other related Wait
functions. The event is signaled when the state of the queue changes, either by
a new message being placed in the queue or by an entry in the queue becom
ing available.

CreateMsgQueue will succeed even if a queue of the same name already
exists. GetLastError will return ERROR_ALREADY_EXISTS if the queue existed
before the call to CreateMsgQueue.

An unnamed message queue can be opened with this function:

HANDLE WINAPI OpenMsgQueue (HANDLE hSrcProc, HANDLE hMsgQ,
LPMSGQUEUEOPTIONS pOptions);

The parameters are the process handle of the process that originally opened the
message queue, the handle returned by CreateMsgQueue, and a pointer to a
MSGQUEUEOPTIONS structure. The only fields in the MSGQUEUEOPTIONS
structure examined by the function are the dwSize field and the bReadAccess
field.

To write a message to the queue, the aptly named WriteMsgQueue func
tion is used. It is prototyped as follows:

BOOL WINAPI WriteMsgQueue (HANDLE hMsgQ, LPVOID lpBuffer, DWORD cbDataSize,
DWORD dwTimeout, DWORD dwFlags);

The initial parameter is the write handle to the message queue. The lpBu.ffer
parameter points to the buffer containing the message, whereas cbDataSize
should be set to the size of the message. If cbDataSize is greater than the max
imum message size set when the queue was created, the call will fail.

Chapter 1 O Modules, Processes, and Threads 533

The dwTimeout parameter specifies the time, in milliseconds, that
WriteMsgQueue should wait for a slot in the queue to become available before
returning. If dwTimeout is set to 0, the call will fail and return immediately if the
queue is currently full. If dwTimeout is set to INFINITE, the call will wait until a
slot becomes free to write the message. The dwFlags parameter can be set to
MSGQUEUE_MSGALERT to indicate that the message being written is an alert
message.

The return value from WriteMsgQueue is a Boolean, with TRUE indicating
success. The function will fail if the queue has not been opened for read access
and MSGQUEUE_ALLOW_BROKEN was not specified when the queue was cre
ated. To determine the reason for failure, call GetLastError.

To read a message from the queue, the function ReadMsgQueue is used.
It's prototyped as follows:

BOOL ReadMsgQueue (HANDLE hMsgQ, LPVOID lpBuffer, DWORD cbBufferSize,
LPDWORD lpNumberOfBytesRead, DWORD dwTimeout,
DWORD* pdwFlags);

As with WriteMsgQueue, the first two parameters are the handle to the message
queue, the pointer to the buffer that, in this case, will receive the message. The
cbBu.fferSize parameter should be set to the size of the buffer. If cbBu.fferSize is
less than the size of the message at the head of the queue, the read will fail with
ERROR_INSUFFICIENT_BUFFER returned by a call to GetLastError.

The lpNumberO.fBytesRead parameter should point to a DWORD that will
receive the size of the message read. The dwTimeout parameter specifies how
long the function should wait until a message is present in the queue to read.
As with WriteMsgQueue, passing 0 in this parameter causes ReadMsgQueue to
fail and return immediately if there is no message in the queue. Passing INFI
NITE in the dwTimeout parameter causes the call to wait until there is a mes
sage in the queue before returning. The pdwFlags parameter should point to a
DWORD that will receive the flags associated with the message read. The only
flag currently defined is MSGQUEUE_MSGALERT, which indicates that the mes
sage just read was an alert message.

You can query the configuration of a message queue with this function:

BOOL GetMsgQueueinfo (HANDLE hMsgQ, LPMSGQUEUEINFO lpinfo);

The parameters are the handle to the message queue and a pointer to a MSG
QUEUEINFO structure defined as follows:

typedef MSGQUEUEINFO
DWORD dwSize;
DWORD dwFlags;
DWORD dwMaxMessages;

534 Part II Windows CE Programming

DWORD cbMaxMessage;
DWORD dwCurrentMessages;
DWORD dwMaxQueueMessages;
WORD wNumReaders;
WORD wNumWriters

MSGQUEUEINFO;

The first few fields in this structure match the MSGQUEUEOPTIONS structure
used in creating and opening queues. The field dwSize should be set to the size
of the structure before the call to GetMsgQueuelnfo is made. The remaining
fields are filled in by a successful call to GetMsgQueuelnfo.

The dwFlags field. will be set to the queue flags, which are
MSGQUEUE_NOPRECOMMIT and MSGQUEUE_ALLOW_BROKEN. The
dwMaxMessages field cont~ins the. maximum number of messages the queue
can contain, while cbMaxMessage contains the maximum size of any single
message.

The dwCurrentMessages field is set to the number of messages currently in
the queue waidng to be read. The dwMaxQueueMessages field is set to the max
imum number of messages that were ever in the queue. The wNumReaders
field is set to the number of handles opened for read access for the queue,
while wNumWriters is set to the number of handles opened for write access.

To close a message queue, call this function:

BOOL WINAPI CloseMsgQueue (HANDLE hMsgQ);

The single parameter is the handle to the queue. Because queues must be
opened at least twice, once for reading and once for writing, this call must be
made at least twice per queue.

Message queues are great for interprocess communication because they
are fast and they are thread safe. Messages can be almost any size, although for
long queues with really huge buffers it might be best to allocate data buffers
dynamically by using memory-mapped objects and by using message queues to
pass pointers to the large data buffers.

Communicating with Files and Databases
A more basic method of interprocess communication is the use of files or a cus
tom database. These methods provide a robust, if slower, communication path.
Slow is relative. Files and databases in the Windows CE object store are slow in
the sense that the system calls to access these objects must find the data in the
object store, uncompress the data, and deliver it to the process. However, since
the object store is based in RAM, you see none of the extreme slowness of a
mechanical hard disk that you'd see under the desktop versions of Windows.

Chapter 10 Modules, Processes, and Threads 535

To improve performance with files in the object store, the
FILE_FLAG_RANDOM_ACCESS flag should be used.

The Xlalk Example Program
The following example program, XTalk, uses events, mutexes, and a shared
memory-mapped block of memory to communicate among different copies of
itself. The example demonstrates the rather common problem of one-to-many
communication. In this case, the XTalk window has an edit box with a Send
button next to it. When a user taps the Send button, the text in the edit box is
communicated to every copy of XTalk running on the system. Each copy of
XTalk receives the text from the sending copy and places it in a list box, also in
the XTalk window. Figure 10-1 shows two XTalk programs communicating.

Figure 10-1 The desktop showing two XTalk windows

To perform this feat of communication, XTalk uses a named memory
mapped object as a transfer buffer, a mutex to coordinate access to the buffer,
and two event objects to indicate the start and end of communication. A third
event is used to tell the sender thread to read the text from the edit control and
write the contents to the shared memory block. Listing 10-2 shows the source
code for XTalk.

536 Part II Windows CE Programming

XTalk.rc
//==============="'"'=====:==============='===="'===="'===================:====
11 Resource file
II
II Written for the bobk Prbgramming Windows CE
II Copyright <Cl 2003 Douglas Boling
II==
#include "windows.h"
ffinclude "xtalk.h" II Program-specific stuff

11--------•-·-----~----'----------'-----~-------"---~----•'---'--'----'-

ll Icons and bitmaps
//
ID_ICON .ICON "xtal k.ico"

xtalk.DIALOG discardable 10, 10, 120. 60

II Program icon

STYLE .w.s_oVERLAPPEO. I ws_vISIBLE I< ws~cAPTION< I ws-.svsMENU I
DS_CENJER I DS_MODALFRAME

CAPTION "XTal k"
CLASS "xtalk"
BEGIN

L TEXT "&Text"
EDI TT EXT

-L 2. 10,
25, 10, 58. 12,

WS_TABSTOP I ES_AUTOHSCROLL
8$, 10, 3.0, 12, WS_TABSTOP

IDD'-I NTEXT, 2, 25, 116, 40,

END

Re.turns number of elements
ffdefi ne .dim(x) . .<size()f(x) F Si zeof(xf0J)
II- - ' ' · - -. - - ' - '· - ' - ' - - - ' - ' - - - - - .- , - - - - - - -
I I Generic defines and data t,ypes
ll
struct decodeUlNT {

UINT Code;

Listing 10-2 The source code for XTalk

WS_TABSTOP I WS_VSCROLL

l/ Structure i!ssoci ates
II messages
I/ With a functfon.

Chapter 10 Modules, Processes, and Threads 537

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD {
UINT Code;

II Structure associates
II menu IDs with a

LRESULT (*FXn)(HWND, WORD, HWND, WORD); II function.
} ;

11--
II Generic defines used by application
#define ID_ICON 1

#define IDD_l NTEXT 10 11 Control IDs
#define IDD_SENDTEXT 11
#define IDD_OUTTEXT 12

#define MMBUFFSIZE 1024 II Size of shared buffer
#define TEXTSIZE 256

II Interprocess communication structure mapped in shared memory
typedef struct {

int nAppCnt;
int nReadCnt;
TCHAR szText[TEXTSIZEJ:

SHAREBUFF;
typedef SHAREBUFF •PSHAREBUFF;

11--~-------

ll Function prototypes
II
HWND Initinstance CHINSTANCE, LPWSTR. int);
int Termlnstance (HINSTANCE, int);

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);
II Message handlers
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoSetFocusMain. CHWND, UINT, WPARAM, LPARAMJ;
LRESULT DoCommandMain <HWND. UINT, WPARAM. LPARAMl:
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

I I Command functi ohs
LPARAM DoMainCommandSend (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandExit (HWND. WORD, HWND, WORD);

II Thread functions
DWORD WINAPI SenderThread CPVOID pArg);
DWORD WINAPI ReaderThread (PVOID pArg);

(continued)

538 Part II Windows CE Programming

Listing 10-2 (continued)

Chapter 1 O Modules, Processes, and Threads 539

II==
II Program entry point
II
int WINAPI WinMain CHINSTANCE hinstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) {

}

MSG msg;
int re = 0;
HWND hwndMain;

II Initialize application.
hwndMain = Initinstance (h!nstance, lpCmdline, nCmdShow);
if (hwndMain == 0)

return Terminstance Chlnstance, 0x10):

II Application message loop
while (GetMessage C&msg. NULL, 0, 0)) {

if ((hwndMain == 0) [I !IsDialogMessage (hwndMain, &msg)) {
TranslateMessage C&msg);
DispatchMessage C&msg);

}

II Instance cleanup
return Terminstance (hinstance, msg.wParam);

I I - - - - - - - - · - - - - · - · - · - - - · - · · - - - - - - - · - - - - · · · - - · - - - - - - - - - · · -. ·
II Init!nstance - Instance initialization
II
HWND Initinstance CHINSTANCE hlnstance, LPWSTR

HWND hWnd;
HANDLE hThread;
RECT rect:
int re;
BOOL fFirstApp =TRUE:
WNDCLASS we;

#if defined(WIN32_PLATFORM_PSPC)
I I If Pocket PC, bring the other copy to the foregNiund so
II the user can see it.
HWND hWnd = FindWindow (szAppName, NULL);
if (hWnd) SetForegroundWindow ((HWND)(((DWORD)hWnd) I 0x01));

/foendif

II Save program instance handle in global variable.
hinst = hlnstance;

II Register application main window class.
we.style = 0: II Window style

(continued)

540 Part II Windows CE Programming

Listing 10-2 (continued)

wc.lpfnWndProc = MainWndProc;

wc.cbClsExtra = 0;
wc.cbWndExtra = DLGWINOOWEXTRA;
wc.hinstance = hinstance;

wcchicon = NULL,
wc.~Cursor = NULL;

II Callback function

II Extra class data
II Extra window data

II Owner handle

II Application icon

II Default cursor
(COLOR_BTNFACE + 1); wc.hbrBackground = (HBRUSH)

wc.lpszMenuName"" NULL;
wc.lpszClassName = szAppName;

II Menu name

II Window class name

if CRegisterClass (&we) == 0) return 0;

II Create mutex used to share memory-mapped structure.

g_hmWriteOkay = CreateMutex (NULL, TRUE, TEXT C"XTALKWRT"));
re= GetlastError();

if (re == ERROULREADY_EXJSTS)
fFirstApp = FALSE;

else if <rel return 0;

II Wait here for ownership to ensure that the initialization is done.
JI This is. necessary.since CreateMutex doesn't wait.

re "' WaitforSing.leObject (g_hmWri teOkay, .2000):
if (re I;= WAIT_OBJECT_0) ·

return 0:

Create a file:mapping object.

g_;hMMOpj = CreateFileMapping CCHANDLH-1, NULL, PAGE.:..READWRITE, 0.
MMllUFFSIZE, TEXT ("XTALKBLK"));

.ff C g_hMMObJ ="' 0 l .retllrn 0:

/I.Map Jnt.o memory the fi 1 e·mappi ng object •

. g_._pBciff = (PSHAREBUFF)Ma.pV1 ewOfF11 e (g_oMMObj' FILE..:MAP..:WRITE,

if Og:.:,.ps.yffl
0, 0, 0);

Closef1andle < g_hMMObj):

(/ 111i.t1alize structure if first application sta.rted •.

if ({Fi ~~tApp) . . . •.. . .
··!llem·s.et (g..;.pB~ff, 0, sizeof (SHAREBUFFl l:

n [nc.ri:;111ent app. r1.mni ng count. Interlock not neede.d due to. rout.ex.

9-PBliff'.'>11AppCnt+:f;

ft Re1e(lse th~ ll1ut~~. We need to re.1 ease the 111utex .twice

I I .1f. lr{e u~rie~ it when we entered the .wait. above.

Relea~~M~te~Cg_brnWriteOkayl;
(f F.i rs tAp.p)
.Rel easeMutex. (.g_l:lmWri teOkay);

Chapter 10 Modules, Processes, and Threads 541

II Now create events for read, and send notification.
g_hSendEvent = CreateEvent (NULL, FALSE, FALSE, NULL);
g_hReadEvent = CreateEvent (NULL, TRUE, FALSE, TEXT ("XTALKREAD"));
g_hReadDoneEvent = CreateEvent (NULL, FALSE, FALSE,

TEXT ("XTALKDONE"));
if (! g_hReadEvent 11 ! g_hSendEvent I/ ! g_hReadDoneEvent)

return 0;

II Create main window.
hWnd = CreateDialog (hinst, szAppName, NULL, NULL);
re= GetLastError();
if (!fFirstApp) {

GetWindowRect (hWnd, &rect);
MoveWindow (hWnd, rect.left+l0, rect.top+l0,

rect.right-rect.left, rect.bottom-rect.top, FALSE);

II Create secondary threads for interprocess communication.
hThread = CreateThread <NULL, 0, SenderThread, hWnd, 0, (DWORD *)&re);
if (hThread)

CloseHandle (hThread);
else {

DestroyWindow (hWnd);
return 0;

hThread = CreateThread (NULL, 0, ReaderThread, hWnd, 0, (DWORD *)&re):
if (hThread)

CloseHandle (hThread);
else {

DestroyWindow (hWnd):
return 0;

II Return fail code if window not created.
if (!IsWindow (hWnd)) return 0;

II Standard show and update calls
ShowWindow (hWnd, nCmdShow);
UpdateWindow (hWnd):
return hWnd;

11--
11 Terminstance - Program cleanup
II
int Terminstance (HINSTANCE hinstance. int nDefRC) {

II Free memory-mapped object.
if (g_pBuffl {

(continued)

542 Part II Windows CE Programming

Listing 10-2 (continued)

}

II Decrement app running count.
InterlockedDecrement C&g_pBuff->nAppCntl:
UnmapViewOfFile (g_pBuffl;

if (g_hMMObj l
CloseHandle (9~hMMObj);

II Free mutex.
if (g_hmWrfteOkay)

CloseHandl.e Cg_hmWriteOkay);

II Close event handtes.
if (9~hReadEvent)

CloseHandl e (g..;,.hReadEvent):

{il-hReadDbneEvent)
C).oseHand1e (g_hReadOoneEvent);

(g:....hSendEyent 1·•
C.1aseHand1 e (g_,.hSend Event);

procedures for main window

for application window

CHWND hWnd, UHIT wMsg. WP A RAM wPa ram,
LPARAM lParam) {

Ti st .to see if we .need to handle this
list .• c.all procedure.

{

wMsg, wParam, lParaml:

thWnd, wMs9'. WParam; lPararn);

.. '"'',..'"' .. ,., .. _ .. ,.,._,;,.' .. ,,."I' _,;.."''""-,.. __ ., ,,,., .. ',,. - - - .. - .,. - - ..

for window.

n <HWND hWnd, UlNTwMsg, WP A RAM wPa ram,
LPARAk TParaml {

N32:....PLATFORM~PSPCl && LWIN3LWCE >= 300)

Chapter 1 O Modules, Processes, and Threads 543

SHMENUBARINFO mbi; II For Pocket PC, create
memsetC&mbi. 0, sizeofCSHMENUBARINFO)); II menu bar so that we
mbi .cbSize = sizeof(SHMENUBARINFO); II have a sip button.
mbi .hwndParent = hWnd;
mbi .dwFlags = SHCMBF_EMPTYBAR;
SHCreateMenuBar(&mbi);

/foendi f
return 0;

II No menu

11--
11 DoSetFocusMain - Process WM_SETFOCUS message for window.
II
LRESULT DoSetFocusMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
SetFocus (GetDlgitem (hWnd, IDD_OUTTEXT));
return 0;

ll------------·---
11 DoCommandMain - Process WM_COMMAND message for window.
II
LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
WORD idltem, wNotifyCode;
HWND hwndCtl;
int i ;

II Parse the parameters.
iditem = (WORD) LOWORD (wParam);
wNotifyCode = CWORD) HIWORD CwParam);
hwndCtl = CHWND) lParam;

II Call routine to handle control message.
for(i = 0; i < dim(MainCommanditems); i++)

if(idltem == MainCommanditems[iJ.Code)
return (*MainCommanditems[i].Fxn)(hWnd, iditem, hwndCtl.

wNot i fyCode);

return 0;

11--
11 DoDestroyMain • Process WM_DESlROY message for window.
II
LRESUl..T DoDestroyMain <HWND hWnd, UTNT wMsg, WPARAM wParam,

LPARAM lParam) {
PostQuitMessage (0);
return.0;

(continued)

544 Part II Windows CE Programming

Listing 10-2 (continued)

II==
II Command handler routtnes
11--------------------~C--------------------C-- --------
!/ DoMainCommandExit - Process Program Exit command.

JI
LPARAM DoMainCommandExit (HWND hWnd, WORD idltem, HWND hwndCtl,

}

WORD wNotifyCodel {

SendMessage ChWnd, WM'-CLOSE, 0, 0);
return 0;

I I - - - - - - - - - - ~ - - - - • - c - - - - - - .- - - c - - - - - - • .- ~ - - - - - - - - - - - - .• • - " - " - - - - - - - - • " •· - - • -

II DoMainCommandSend - Process Prog~am Send command.

II
LPARAM DoMai nCommandSend (HWND

WORD wNoti fyCode)

SetEvent (g~hSendEvent);

return 0;

II======================================="'======================'========
II SenderThread - Performs the interprocess communication

//
bWORD W.I NAP! SenderThread CPVOTD pArg). {

HWND hWnd;
int nGoCoc;le, re;

TCHAR szText[TEXTSIZEJ;

hWnd = CHWNO)pArg;
while (l) {

nGoCode = WaftForsingl eObj ect

if CnGocode == WAIT_ OBJ ECT_0)
SendDlgitelTIMessage (hWnd,

re= WaitForSingleObject (g_hmWriteOkay,

if Cre == WAILOSJECL.0) {
l~trepy (g_pBuff->szText, szText)1
g __ pBuff->nReadCnt = g_pBuff->nAppCnt;

Pul seEvent (g_hReadEventl;

//Wait whUe reader. threads get data.
while (g_pBuff->nReadCnt)

re =· WaitForSingleObject··Cg...;;hReadboneEvent;

INflNITEli
ReleaseMutex (g~hmWri teOkayJ;

} else

Chapter 10 Modules, Processes, and Threads 545

return -1;

return 0;

II==
II ReaderThread - Performs the interprocess communication
II
DWORD WINAPI ReaderThread (PVOID pArg) (

HWND hWnd;
int nGoCode, re, i;
TCHAR szText[TEXTSIZE];

hWnd = (HWND)pArg;
while (1) (

nGoCode = WaitForSingleObject (g_hReadEvent, INFINITE);
if (nGoCode == WAIT_OBJECT_0) (

i = SendDlgltemMessage (hWnd, IDD_INTEXT, LB_ADDSTRING, 0,
(LPARAM)g_pBuff->szText);

SendDlgitemMessage (hWnd, IDD_INTEXT, LB_SETTOPINDEX, i, 0);

InterlockedDecrement (&g_pBuff->nReadCnt);
SetEvent (g_hReadDoneEvent);

else (
re= GetLastErrorCl;
wsprintf (szText, TEXT ("rc:%d"), re);
MessageBox (hWnd, szText, TEXT ("ReadThread Err"), MLOKl;

return 0;

The interesting routines in the XTalk example are the Initlnstance proce
dure and the two thread procedures SenderThread and ReaderThread. The rel
evant part of Initlnstance is shown below with the error checking code
removed for brevity.

II Create mutex used to share memory-mapped structure.
g_hmWriteOkay = CreateMutex (NULL, TRUE, TEXT ("XTALKWRT"));
re= GetLastError();
if (re == ERROR_ALREADY_EXISTS)

fFirstApp = FALSE;
II Wait here for ownership to ensure that the initialization is done.
II This is necessary since CreateMutex doesn't wait.
re= WaitForSingleObject (g_hmWriteOkay, 2000);
if (re != WAIT_OBJECT_0)

return 0;

546 Part II Windows CE Programming

II Create a file-mapping object.
g_hMMObj = CreateFileMapping CCHANDLE)-1, NULL, PAGE_READWRITE, 0,

MMBUFFSIZE, TEXT ("XTALKBLK"));

II Map into memory the file-mapping object.
g_pBuff = CPSHAREBUFF)MapViewOfFile (g_hMMObj, FILE_MAP_WRITE,

0. 0. 0);

II Initialize structure if first application started.
if CfFi rstApp)

memset (g_pBuff, 0, sizeof (SHAREBUFF));

II Increment app running count. Interlock not needed due to mutex.
g_pBuff->nAppCnt++;

II Release the mutex. We need to release the mutex twice
II if we owned it when we entered the wait above.
ReleaseMutex (g_hmWriteOkay);
if (fFirstApp)

ReleaseMutex (g_hmWriteOkay);

II Now create events for read and send notification.
g_hSendEvent = CreateEvent (NULL, FALSE, FALSE, NULL);
g_hReadEvent = CreateEvent (NULL, TRUE, FALSE, TEXT ("XTALKREAD"l);
g_hReadDoneEvent = CreateEvent (NULL, FALSE, FALSE,

TEXT ("XTALKDONE"));

This code is responsible for creating the necessary synchronization objects
as well as creating and initializing the shared memory block. The mutex object
is created first with the parameters set to request initial ownership of the mutex
object. A call is then made to GetLastError to determine whether the mutex
object has already been created. If not, the application assumes that the first
instance of XTalk is running and later will initialize the shared memory block.
Once the mutex is created, an additional call is made to WaitForSingleObject to
wait until the mutex is released. This call is necessary to prevent a late-starting
instance of XTalk from disturbing communication in progress. Once the mutex
is owned, calls are made to CreateFileMapping and Map ViewOJFile to create a
named memory-mapped object. Since the object is named, each process that
opens the object opens the same object and is returned a pointer to the same
block of memory.

Once the shared memory block is created, the first instance of XTalk
zeroes out the block. This procedure also forces the block of RAM to be com
mitted because memory-mapped objects by default are autocommit blocks.
Then nAppCnt, which keeps a count of the running instances of XTalk, is incre
mented. Finally the mutex protecting the shared memory is released. If this is

Chapter 1 O Modules, Processes, and Threads 547

the first instance of XTalk, ReleaseMutex must be called twice because it gains
ownership of the mutex twice-once when the mutex is created and again
when the call to WaitForSingleObject is made.

Finally, three event objects are created. SendEvent is an unnamed event,
local to each instance of XTalk. The primary thread uses this event to signal the
sender thread that the user has pressed the Send button and wants the text in
the edit box transmitted. ReadEvent is a named event that tells the other
instances of XTalk that there's data to be read in the transfer buffer. Read
DoneEvent is a named event signaled by each of the receiving copies of XTalk
to indicate that they have read the data.

The two threads, ReaderThread and SenderThread, are created immedi
ately after the main window of XTalk is created. The code for SenderThread is
shown here:

DWORD WINAPI SenderThread (PVOID pArg) {
HWND hWnd;
int nGoCode, re;
TCHAR szText[TEXTSIZEJ;

hWnd = (HWNDlpArg;
while (1) {

nGoCode = WaitForSingleObjeet (g_hSendEvent, INFINITE);
if (nGoCode == WAIT_OBJECT_0) {

SendDlgitemMessage (hWnd, IDD_OUTTEXT. WM_GETTEXT,
sizeof (szText), CLPARAM)szText);

re= WaitForSingleObjeet (g_hmWriteOkay, 2000);
if (re == WAIT_OBJECT_0) {

return 0;

lstrepy (g_pBuff->szText, szText);
g_pBuff->nReadCnt = g_pBuff->nAppCnt;
PulseEvent (g_hReadEvent);

II Wait while reader threads get data.
while (g_pBuff->nReadCnt)

re = WaitForSingleObjeet (g_hReadDoneEvent,
INFINITE);

ReleaseMutex (g_hmWriteOkay);

The routine waits on the primary thread of XTalk to signal SendEvent. The
primary thread of XTalk makes the signal in response to a WM_COMMAND
message from the Send button. The thread is then unblocked, reads the text

548 Part II Windows CE Programming

from the edit control, and waits to gain ownership of the WriteOkay mutex.
This mutex protects two copies of XTalk from writing to the shared block at the
same time. When the thread owns the mutex, it writes the string read from the
edit control into the shared buffer. It then copies the number of active copies of
XTalk into the nReadCnt variable in the same shared buff er and pulses Read
Event to tell the other copies of XTalk to read the newly written data. A manual
resetting event is used so that all threads waiting on the event will be
unblocked when the event is signaled.

The thread then waits for the nReadCnt variable to return to 0. Each time
a reader thread reads the data, the nReadCnt variable is decremented and the
ReadDone event signaled. Note that the thread doesn't spin on this variable but
uses an event to tell it when to check the variable again. This would actually be
a great place to use WaitForMultipleObjects and have all reader threads signal
when they've read the data, but Windows CE doesn't support the WaitAll flag
in WaitForMultipleObjects.

Finally, when all the reader threads have read the data, the sender thread
releases the mutex protecting the shared segment and the thread returns to wait
for another send event.

The ReaderThread routine is even simpler. Here it is:

DWORD WINAPI ReaderThread CPVOID pArg) {
HWND hWnd;
int nGoCode, re, i;
TCHAR szText[TEXTSIZE];

hWnd = CHWNDlpArg;
while (1) {

nGoCode = WaitForSingleObject (g_hReadEvent, INFINITE);
if (nGoCode == WAIT_OBJECT_0) {

i = SendDlgitemMessage (hWnd, IDD_INTEXT, LB_ADDSTRING, 0,
CLPARAM)g_pBuff->szText);

SendDlgitemMessage ChWnd, IDD_INTEXT, LB_SETTOPINDEX, i, 0);

InterlockedDecrement C&g_pBuff->nReadCnt);
SetEvent (g_hReadDoneEvent);

return 0;

The reader thread starts up and immediately blocks on ReadEvent. When it's
unblocked, it adds the text from the shared buffer into the list box in its win
dow. The list box is then scrolled to show the new line. After this is accom
plished, the nReadCnt variable is decremented using InterlockedDecrement to

Chapter 10 Modules, Processes, and Threads 549

be thread safe, and the ReadDone event is signaled to tell SenderThread to
check the read count. After that's accomplished, the routine loops around and
waits for another read event to occur.

Exception Handling
Windows CE .NET, along with eMbedded C++ 4.0, supports both Microsoft's
standard structured exception handling extensions to the C language (the _try,
__ except and _try, _finally blocks) and the ANSI-standard C++ exception
handling framework, with keywords such as catch and throw.

Windows exception handling is complex, and if I were to cover it com
pletely, I could easily write another entire chapter. The following review intro
duces the concepts to non-Win32 programmers and conveys enough
information about the subject for you to get your feet wet. If you want to wade
all the way in, the best source for a complete explanation of Win32 exception
handling is Jeffrey Richter's Programming Applications for Windows, 4th edi
tion (Microsoft Press, 1999).

C++ Exception Handling
Support for C++ exception handling was added in Windows CE .NET 4.0. The
statements, try, catch, and throw are familiar to C++ programmers and work as
expected in Windows CE. To use C++ exception handling in a Windows CE
C++ application, the application must be compiled with the -GX compiler
switch. For those not familiar with the operation of these keywords, what fol
lows is a quick introduction.

Using Exceptions to Report Errors
It's the vogue in programming circles these days to report errors in a function
by throwing an exception. Using this scheme, a calling function that doesn't
check for errors will have the exception automatically passed on to its calling
function. If no function ever checks for the exception, the exception will be
passed to the operating system, which will act appropriately on the offending
application. Functions that simply report an error code in a return code can't
enforce error checking because the lack of verification of the error code isn't
automatically reported up the stack chain.

A simple example of the different methods of reporting errors is shown in
the following code fragments. In the first code fragment, the failure of Local
Alloc in Add!tem is reported by returning 0. Note how each call to Addltem has
to be checked to see whether an error occurred in Addltem.

550 Part II Windows CE Programming

PMYITEM Addltem CPMYITEM pLast, DWORD dwData) {

II Allocate the item
PMYITEM p = (PMYITEMlLocalAlloc (LPTR, sizeof CMYITEM));
if (p == 0)

return 0;

II Link the list
p->pPrev = pLast;
if CpLast) pLast->pNext p;
p->dwData = dwData;
return p;

int test (HWND hWnd)
PMYITEM pNext;

}

pNext = Addltem (NULL, l);
if CpNext == NULL)

return ERROR___CODE;

pNext = Addltem (pNext, 2);
if CpNext == NULL)

return ERROR_CODE;

pNext = Addltem (pNext, 3);
if CpNext == NULL)

return ERROR_CODE;
return 0;

In the following code fragment, Addltem throws an exception if the mem
ory allocation fails. Notice how much cleaner the calling routine testl looks.

PMYITEM Addltem CPMYITEM pLast, DWORD dwData) {

II Allocate the item
PMYITEM p = CPMYITEM)LocalAlloc (LPTR, sizeof CMYITEM));
if (p == 0)

throw ("failure to allocate item in Addltem");

II Link the list
p->pPrev = pLast;
if (pLast) pLast->pNext p;
p->dwData = dwData;
return p;

Chapter 10 Modules, Processes, and Threads 551

int testl (HWND hWnd)
PMY ITEM pNext;

try
pNext = Addltem (NULL, l);
pNext = Addltem (pNext, 2);
pNext = Addltem (pNext, 3);

catch (char * strException)
return ERROR_CODE;

return 0;

The simple structure of the foregoing routines demonstrates the ease with
which C++ exception handling can be added to an application. The try key
word wraps code that might generate an exception. The wrapped code
includes any routines called from within the try block. If an exception is thrown
with a string argument, the exception will be caught by the catch block in testl.
What happens if some other exception is thrown? Let's look at the basics of the
try, catch, and throw keywords to see.

The try, catch Block
The basic structure of the exception keywords is demonstrated in the following
pseudocode.

try
{

throw (arg of type_t);

catch (type_t arg)
{

II catches all throws with argument of type_t

Within the try block, if an exception is thrown with an argument, the exception
will be caught by the catch block that has the matching argument. If no catch
block has a matching argument, the exception is passed to the function that
called the code containing the try block. If no enclosing try, catch block is
found, the thread is terminated. If no exception occurs within the try block,
none of the associated catch blocks are executed.

try
{

For example

throw (l);

552 Part II Windows CE Programming

would be caught if the try block had an associated catch block with an integer
argument such as

catch (int nExceptionCode)
{

II Exception caught!

The argument doesn't have to be a simple type; it can be a C++ class. It's
also permissible to have multiple catch blocks each with a different argument
string associated with the try block. Catch blocks are evaluated in the order
they appear in the code. Finally, a catch block with ellipsis arguments catches
all exceptions within the try block.

try
{

throw (1);

throw ("This is an ascii string");

throw (CMyException cEx);

catch (int nExCode)
{

II catches all throws with an integer argument

catch (char * szExCode)

II catches all throws with a string argument

catch (CMyException cEx)
{

II catches all throws with a CMyException class argument

catch(...)
{

II catches all exceptions not caught above

Win32 Exception Handling
Windows CE has always supported the Win32 method of exception handling,
using the _try, _except, and _finally keywords. What follows is a brief over
view of these statements.

Chapter 10 Modules, Processes, and Threads 553

The _try, _except Block
The _try, _except block looks like this:

_try {

II Try some code here that might cause an exception.

_except (exception filter) {

JI This code is depending on the filter on the except line.

Essentially, the try-except pair allows you the ability to anticipate exceptions
and handle them locally instead of having Windows terminate the thread or the
process because of an unhandled exception.

The exception filter is essentially a return code that tells Windows how to
handle the exception. You can hard code one of the three possible values or
call a function that dynamically decides how to respond to the exception.

If the filter returns EXCEPTION_FXECUTE_HANDLER, Windows aborts the
execution in the try block and jumps to the first statement in the except block.
This is helpful if you're expecting the exception and you know how to handle
it. In the code that follows, the access to memory is protected by a __ try,
_except block.

BYTE ReadByteFromMemory (LPBYTE pPtr, BOOL *bDataValid) {
BYTE ucData = 0;

*bDataValid =TRUE;
_try {

ucData = *pPtr;

_except (DecideHowToHandleException ()) {
JI The pointer isn't valid; clean up.
ucData = 0;
*bDataValid =FALSE;

return ucData;

int DecideHowToHandleException (void)
return EXCEPTION_EXECUTE_HANDLER;

If the memory read line above wasn't protected by a _try, _except block
and an invalid pointer was passed to the routine, the exception generated
would have been passed up to the system, causing the thread and perhaps the

554 Part II Windows CE Programming

process to be terminated. If you use the _try, _except block, the exception is
handled locally and the process continues with the error handled locally.

Another possibility is to have the system retry the instruction that caused
the exception. You can do this by having the filter return
EXCEPT10N_CONTINUE_EXECU710N. On the surface, this sounds like a great
option-simply fix the problem and retry the operation your program was per
forming. The problem with this approach is that what will be retried isn't the
line that caused the exception, but the machine instruction that caused the
exception. The difference is illustrated by the following code fragment that
looks okay but probably won't work:

II An example that doesn't work •••
int Divideit (int aVal. int bVal) {

int cVal;
_try {

cVal aVal I bVal;

_except (EXCEPTION_CONTINUE_EXECUTION)
bVal = l;

return cVal;

The idea in this code is noble: protect the program from a divide-by-zero
error by ensuring that if the error occurs, the error is corrected by replacing
b Val with 1. The problem is that the line

cVal = aVal I bVal;

is probably compiled to something like the following on a MIPS-compatible
CPU:

lw t6,aVal (sp) ;Load aVal
lw t7 ,bVal (sp) ;Load bVal
div t6,t7 ; Perform the divide
SW t6,cVal (sp) ;Save result into cVal

In this case, the third instruction, the div, causes the exception. Restarting the
code after the exception results in the restart beginning with the div instruction.
The problem is that the execution needs to start at least one instruction earlier
to load the new value from bVal into the register. The moral of the story is that
attempting to restart code at the point of an exception requires knowledge of
the specific machine instruction that caused the exception.

The third option for the exception filter is to not even attempt to solve the
problem and to pass the exception up to the next, higher, _try, _except block
in code. The exception filter returns EXCEPTION_CONTINUE_SEARCH.

Chapter 1 O Modules, Processes, and Threads 555

Because _try, _except blocks can be nested, it's good practice to handle spe
cific problems in a lower, nested, _try, _except block and more global errors
at a higher level.

Determining the Problem
With these three options available, it would be nice if Windows let you in on
why the exception occurred. Fortunately, Windows provides the function

DWORD GetExceptionCode (void);

This function returns a code that indicates why the exception occurred in the
first place. The codes are defined in WINBASE. H and range from
EXCEPTION_ACCESS_ VIOLATION to CONTROL_C_EXIT, with a number of
codes in between. Another function allows even more information:

LPEXCEPTJON_POINTERS GetExceptionlnformation (void);

GetExceptionlnformation returns a pointer to a structure that contains
pointers to two structures: EXCEPTION_RECORD and CONTEXT.
EXCEPTION_RECORD is defined as

typedef struct _EXCEPTION_RECORD
DWORD ExceptionCode;
DWORD ExceptionFlags;
struct _EXCEPTION_RECORD *ExceptionRecord;
PVOID ExceptionAddress;
DWORD NumberParameters;
DWORD Exceptionlnformation[EXCEPTION_MAXIMUM_PARAMETERS];

EXCEPTJON_RECORD;

The fields in this structure go into explicit detail about why an exception
occurred. To narrow the problem down even further, you can use the CON
TEXT structure. The CONTEXT structure is different for each CPU and essen
tially defines the exact state of the CPU when the exception occurred.

There are limitations on when these two exception information functions
can be called. GetExceptionCode can be called only from inside an except block
or from within the exception filter function. The GetExceptionlnformation func
tion can be called only from within the exception filter function.

Generating Your Own Exceptions
There are times when an application might want to generate its own excep
tions. The Win32 method for raising an exception is the function RaiseExcep
tion, prototyped as follows:

void RaiseException (DWORD dwExceptionCode, DWORD dwExceptionFlags,
DWORD nNumberOfArguments, const DWORD *lpArguments);

556 Part II Windows CE Programming

The first parameter is the exception code, which will be the value returned by
GetExceptionCode from within the __ except block. The codes understood by
the system are the same codes defined for GetExceptionCode, discussed earlier.
The dwExceptionFlags parameter can be EXCEPTION_NONCONTINUABLE to
indicate that the exception can't be continued or 0 if the exception can be con
tinued. The last two parameters, nNumberOJArguments and lpArguments,
allow the thread to pass additional data to the exception handler. The data
passed can be retrieved with the GetExceptionlnformation function in the
_except filter function.

The _try, _finally Block
Another tool of the structured exception handling features of the Win32 API is
the _try, _finally block. It looks like this:

_try {

II Do something here.

_finally

II This code is executed regardless of what happens in the try block.

The goal of the _try, _Jinally block is to provide a block of code, the
finally block, that always executes regardless of how the other code in the try
block attempts to leave the block. Unfortunately, the current Windows CE C
compilers don't support leaving the _try block by a return or a goto statement.
The Windows CE compilers do support the _leave statement that immediately
exits the _try block and executes the _Jinally block, so there is some limited
use of a _try, _finally block if only to avoid using a goto statement simply to
jump to some common cleanup code.

In the preceding three chapters, I've covered the basics of the Windows
CE kernel from memory to files to processes and threads. Now it's time to break
from this low-level stuff and start looking outward. In the final chapter of this
section, I'll cover the Windows CE notification API. The notification API frees
applications from having to stay running in the background to monitor what is
going on in the system. Let's take a look.

Notifications
One area in which Microsoft Windows CE exceeds the Windows XP API is the
notification interface. Windows CE applications can register to be launched at a
predetermined time or when any of a set of system events occur. Applications
can also register a user notification. In a user notification, the system notifies the
user at a specific time without the application itself being launched at that time.

The notification interface is based on only a handful of functions, the
most important of which is CeSetUserNotificationEx. This omnibus function
provides all the functionality to schedule any of the three types of notifications:
user, system, and timer. CeSetUserNotificationEx replaced three separate func
tions-CeSet UserNotification, CeRunAppAtEvent, and CeRunAppAtTime
which essentially have slightly less functionality.

User Notifications
A Windows CE application can schedule the user to be notified at a given time
using the CeSetUserNotificationEx function. When the time of the notification
occurs, the system alerts the user by displaying a dialog box, playing a wave
file, vibrating the device, or flashing an external LED. If the system was off at
the time of the notification, Windows CE turns the system on. Because Win
dows CE systems have an automatic power-off feature, the system will quickly
turn itself back on if the notification fires while the system is unattended. Figure
11-1 shows the alert bubble on a Pocket PC, while Figure 11-2 shows the noti
fication dialog on an embedded Windows CE device.

557

558 Part II Windows CE Programming

Ren1'n<ler "i'x ~ E 11!:14

Rem1mfer ' -'~-

Snoore:jsminutes ~[

Figure 11-1 The alert bubble on a Pocket PC device

Figure 11-2 The notification dialog on an embedded Windows CE
device

Windows CE also displays the icon of the application that set the notifica
tion on the taskbar. The user has the option of acknowledging the notification
by clicking OK on the notification dialog box, pressing the Notify button on the
system case (if one is present), or on some systems, tapping the application's
taskbar annunciator icon, which launches the application that registered the
notification. After a user notification has been set, you can modify it by making
another call to CeSetU<;erNotificationEx.

Setting a User Notification
CeSetUserNotificationEx is prototyped as

HANDLE CeSetUserNotificationEx (HANDLE hNotification,
CE_NOTIFICATION_TRIGGER *pent,
CE_USER_NOTIFICATION *pceun);

Chapter 11 Notifications 559

The hNotification parameter is set to 0 to create a new notification. To modify
a notification already registered, you should set hNotification to the handle of
the notification that you want to modify.

The CE_NOTIFICATION_TRIGGER structure defines the type and detail of
the notification being set. This structure is defined as

typedef struct UserNotificationTrigger
DWORD dwSize;
DWORD dwType;
DWORD dwEvent;
WCHAR *lpszApplication;
WCHAR *lpszArguments;
SYSTEMTIME stStartTime;
SYSTEMTIME stEndTime;

CE_NOTIFICATION_TRIGGER, *PCE_NOTIFICATION_TRIGGER;

The first field should be set to the size of the structure. The second field,
dwType, should be filled with a flag indicating the type of notification being set.
For user notifications, set this field to either CNT_PERIOD or CNT_TIME. The
CNT_PERIOD flag creates a notification that will dismiss itself after a set time,
while a CNT_TIME notification will not dismiss itself without user action. For
user notifications, the dwEvent field isn't used. I'll talk about that field when I
discuss event notifications.

The next field, lpszApplication, specifies the application that will be
launched if the user requests more detail from the notification. If the application
is launched, its command line is specified by the next field, lpszArguments.

Another use for the lpszApplication field is to specify an event to be sig
naled when the notification fires. To specify an event, the field should be for
matted as

\\.\Notifications\NamedEvents\<Event Name>

where <Event Name> is any name chosen for the event. Remember that when
you specify this string in C, the backslash character must be replicated because
it's used as the escape character. So to have a notification trigger an event named
Bob, the string pointed to by the lpszApplication field would look like this:

TEXT ("\\\\.\\Notifications\\NamedEvents\\Bob"l

To be notified using an event, an application must create a named event
with the same name as <Event Name> by using the CreateEvent function and
wait on the handle returned, as in

hEvent = CreateEvent (NULL, FALSE, FALSE, TEXT ("Bob"));

The final two fields, stStartTime and stEndTime, specify the starting time
and ending time of the notice. The starting time, of course, is when the system

560 Part II Windows CE Programming

first notifies the user by means of a number of different methods I'll talk about
in a moment. You use the ending time only in a CNT_PERIOD-style user notifi
cation; the CeSetUserNotificationEx function ignores the ending time for
CNT_11ME notifications. stEndTime designates the time the system is to remove
the notice if the user doesn't acknowledge the notification. This time must be
later than the starting time.

How the system notifies the user is specified by the third parameter of
CeSetUserNotificationEx, which points to a CE_USER_NOTIFICATION structure.
This structure is defined as

typedef struct UserNotificationType
DWORD ActionFlags;
TCHAR *PWSZDialogTitle:
TCHAR *PWSZDialogText:
TCHAR *pwszSound:
DWORD nMaxSound:
DWORD dwReserved:

CE_USER_NOTIFICATION:

The ActionFlags field of this structure contains a set of flags that define how the
user is notified. The flags can be any combination of the following:

• PUN_LED Flash the external LED.

• PUN_VIBRATE Vibrate the device.

• PUN_DIALOG Display a dialog box.

• PUN_SOUND Play a wave file.

• PUN_REPEAT Repeat the wave file for 10 to 15 seconds.

The fact that these flags are defined doesn't mean that all systems imple
ment all these actions. Most Windows CE devices can't vibrate and a few don't
even have an external LED. There isn't a defined method for determining the
notification capabilities of a device, but as I'll presently show you, the system
provides a dialog box that's customized by the OEM for the capabilities of
each device.

The remainder of the fields in the structure depend on the flags set in the
ActionFlags field. If the PUN_DIALOG flag is set, the pwszDialogTitle and
pwszDialogText fields specify the title and text of the dialog that's displayed.
For a Pocket PC device, the dialog text appears on the Alert dialog, but since
the Pocket PC Alert doesn't use a caption bar, the dialog title text isn't used.
The pwszSound field is loaded with the filename of a wave file to play if the
PUN_SOUND flag is set. The nMaxSound field defines the size of the pwsz
Sound field.

Chapter 11 Notifications 561

Configuring a User Notification
To give you a consistent user interface for choosing the method of notification,
Windows CE provides a dialog box to query the user about how he wants to be
notified. To display the user configuration dialog box, you call this function:

BOOL CeGetUserNotificationPreferences (HWND hWndParent,
PCE_USER_NOTIFICATION lpNotification);

This function takes two parameters-the window handle of the parent window
for the dialog box and a pointer to a CE_USER_NOTIFICATION structure. You
can initialize the CE_USER_NOTIFICATION structure with default settings for the
dialog before CeGetUserNotificationPreferences is called. When the function
returns, this structure is filled with the changes the user made. CeGetUserNotifi
cationPrf!ferences returns TRUE if the user clicked the OK button to accept the
changes and FALSE if an error occurred or the user canceled the dialog box.
Figure 11-3 shows the notification preferences dialog box opened through the
CeGetUserNotificationPreferences function on a Pocket PC.

f!{I NoteDemo 'i'x .. E 10:12 ¢!

~Playoound IA!arml •I

D Repeat oound

~ Display message

~Flashlight

~Vibrate

Figure 11-3 The dialog box opened by CeGetUserNotificationPrefer
ences on a Pocket PC

This function gives you a convenient method for configuring user notifi
cations. The dialog box lets you have check boxes for playing a sound, display
ing another dialog box, and flashing the LED. It also contains a combo box that
lists the available wave files that the user can choose from if he wants sound.
The dialog box doesn't have fields to allow the user to specify the text or title
of the dialog box if one is to be displayed. That text must be provided by the
application.

562 Part II Windows CE Programming

Acknowledging a User Notification
A user notification can be cleared by the application before it times out by
calling

BOOL CeClearUserNotification (HANDLE hNotification);

Once a user notification has occurred, it must be acknowledged by the user
unless the user notification's end time has passed. The user can tap the Dismiss
button on the notification dialog box or press the notification button on the
Pocket PC case. Or the user can tap the Snooze button, which automatically
reschedules the notification for a later time. On an H/PC or an embedded Win
dows CE system, the user can tap the Open button to launch the application
specified when the notification was scheduled. An Open button isn't provided
on the alert dialog on the current implementations of the Pocket PC.

If the user taps the Open button, the notification isn't automatically
acknowledged. Instead, an application should programmatically acknowledge
the notification by calling this function:

BOOL CeHandleAppNotifications (TCHAR *PWSzAppName);

The one parameter is the name of the application that was launched because the
user tapped the Open button. Calling this function removes the dialog box, stops
the sound, turns off the flashing LED, and on systems with the Windows CE
Explorer shell, removes the application's annunciator icon from the taskbar. This
function doesn't affect any notifications that are scheduled but haven't fired.

When the system starts an application because of a notification, it passes
a command line argument to indicate why the application was started. For a
user notification, this argument is the command line string specified in the
lpszArguments field of the CE_NOTIFICATION_TRIGGER structure. If you
scheduled the notification using the CNT_CLASSICTIME flag, the command line
is the predefined string constant APP_RUN_TO_HANDLE_NOTIFICATION. If the
event notification method is specified, the application won't be started. Instead,
an event of the specified name will be signaled.

As a general rule, an application started by a notification should first
check to see whether another instance of the application is running. If so, the
application should communicate to the first instance that the notification
occurred and terminate. This saves memory because only one instance of the
application is running. The following code fragment shows how this can be
easily accomplished.

INT i;
HWND hWnd;
HANDLE hNotify;

TCHAR szText[128];
TCHAR szFileName[MAX_PATH];

if (*lpCmdLine) {
pPtr = lpCmdLine;
II Parse the first word of the command line.

Chapter 11 Notifications 563

for (i = 0; i < dim(szText) && *lpCmdLine >TEXT(' '); i++)
szText[iJ = *pPtr++;

szText[i] =TEXT ('\0');

II Check to see if app started due to notification.
if (lstrcmp (szText, TEXT("My Notification cmdline")) == 0) {

II Acknowledge the notification.

}

GetModuleFileName (hinst, szFileName, sizeof (szFileName));
CeHandleAppNotifications (szFileName);

II Get handle off the command line.
hNotify = (HANDLE)_wtol (pPtr);

II Look to see if another instance of the app is running.
hWnd = FindWindow (NULL, szAppName);
if (hWnd) {

SendMessage (hWnd, MYMSG_TELLNOTIFY, 0, (LPARAM)hNotify);
II This app should terminate here.
return 0;

This code first looks to see whether a command line parameter exists and
if so, whether the first word is the keyword indicating that the application was
launched by the system in response to a user notification. If so, the notification
is acknowledged and the application looks for an instance of the application
already running, using FindWindow. If found, the routine sends an application
defined message to the main window of the first instance and terminates. Oth
erwise, the application can take actions necessary to respond to the user's tap
of the Open button on the alert dialog.

Timer Event Notifications
To run an application at a given time without user intervention, use a timer
event notification. To schedule a timer event notification, use CeSetUserNotifi
cationEx just as you do for the user notification but pass a NULL value in the
pceun parameter, as you see on the followjng page.

564 Part II Windows CE Programming

CE_NOTIFICATION_TRIGGER cnt;
TCHAR szArgs[J =TEXT ("This is a timer notification.");
TCHAR szExeName[MAX_PATHJ;

memset C&nt, 0, sizeof (CE_NOTIFICATION_TRIGGER));
nt.dwSize = sizeof (CE_NOTIFICATION_TRIGGER);
nt.dwType = CNT_TIME;
nt.lpszApplication = szExeName;
nt.lpszArguments = szArgs;
nt.stStartTime = st;
GetModuleFileName (hlnst, szExeName. sizeof (szExeName));
hNotify = CeSetUserNotificationEx (0, &nt, NULL);

When the timer notification is activated, the system powers on, if currently
off, and launches the application with a command line parameter specified in
the lpszArguments field of the notification trigger structure. As with the user
notification, if the application is started, it should check to see whether another
instance of the application is running and pass the notification on if one is run
ning. Also, an application should be careful about creating a window and tak
ing control of the machine during a timer event. The user might object to
having his game of solitaire interrupted by another application popping up
because of a timer notification.

System Event Notifications
Sometimes, you might want an application to be automatically started. Win
dows CE supports a third type of notification, known as a system event notifi
cation. This notification starts an application when one of a set of system events
occurs, such as after the system has completed synchronizing with its compan
ion PC. To set a system event notification, you again use the omnibus CeSet
UserNotificationEx function. This time, you specify the type of event you want
to monitor in the dwEvent field of the notification trigger structure, as in

CE_NOTIFICATION_TRIGGER nt;
TCHAR szExeName[MAX_PATHJ;
TCHAR szArgs[128] = TEXT("This is my event notification str-ing.");

memset C&nt, 0, sizeof (CE_NOTIFICATION_TRIGGERll;
nt.dwSize = sizeof (CE_NOTIFICATION_TRIGGER);
nt.dwType = t;NLEVENT;
nt.dwEvent = dwMyEventFlags;
nt.lpszApplication = szExeName;
nt.lpszArguments = szArgs;
GetModuleFileName (hinst, szExeName, sizeof (szExeName));
CeSetUserNotificationEx (0, &nt, NULL);

Chapter 11 Notifications 565

The event flags are the following:

• NOTIFICATION_EVENT_SYNC_END Notify when sync com
plete.

• NOTIFICATION_EVENT_DEVICE_CHANGE Notify when
device driver is loaded or unloaded.

a

• NOTIFICATION_EVENT_RS232_DETECTED Notify when an
RS232 connection is detected.

• NOTIFICATION_EVENT_TIME_CHANGE Notify when the sys
tem time is changed.

• NOTIFICATION_EVENT_TZ_CHANGE Notify when time zone is
changed. 1

• NOTIFICATION_EVENT_RESTORE_END Notify when a device
restore is complete.

• NOTIFICATION_EVENT_ WAKEUP Notify when a device wakes
up.

For each of these events, the application is launched with a specific com
mand line parameter indicating why the application was launched. In the case
of a device change notification, the specified command line string is followed
by either /ADD or /REMOVE and the name of the device being added or
removed. For example, if the user inserts a modem card, the command line for
the notification would look like this:

My event command line string /ADD COM3:

A number of additional system events are defined in Notify.h, but OEMs
must provide support for these additional notifications and at this point few, if
any, of the additional notification events are supported.

Once an application has registered for a system event notification, Win
dows CE will start or signal the application again if the event that caused the
notification is repeated.

Clearing out system event notifications is best done with what might be
thought of as an obsolete function, the old CeRunAppAtEvent function, proto
typed as

BOOL CeRunAppAtEvent (TCHAR *pwszAppName, LONG lWhichEvent);

The parameters are the application to run and the event flag for the event of
which you want to be notified. While the function has been superseded by

1. The NOTIFICATION_EVENT_TZ_CHANGE notification flag isn't supported on some Pocket PCs.

566 Part II Windows CE Programming

CeSetUserNotificationEx, 'it does still have one use--clearing out all the system
notifications for a specific application. If you pass your application name along
with the flag N011FICA110N_EVENT_NONEin the !WhichEvent parameter, Win
dows CE clears out all event notifications assigned to that application. While
you would think you could pass the same flag to CeSetUserNotificationEx to
clear out the events, it doesn't unless you pass the original handle returned by
that function when you originally scheduled the notification.

The Note Demo Example Program
The following program, NoteDemo, demonstrates each of the notification func
tions that allow you to set user notifications, system notifications, and timer noti
fications. The program presents a simple dialog box equipped with five buttons.
The first two buttons allow you to configure and set a user notification. The sec
ond two buttons let you set system and timer notifications. The last button clears
out all the notifications you might have set using NoteDemo. The gap above the
buttons is filled with the command line, if any, that was passed when the appli
cation started. That space also displays. a message when another instance of
NoteDemo starts because of a user notification. Figure 11-4 shows two Note
Demo windows. The one in the foreground was launched because of a user noti
fication, with the command-line parameter, "This is my u.ser notification string."

Figure 11-4 The NoteDemo window

Chapter 11 Notifications 567

The source code for NoteDemo appears in Listing 11-1. The notification
code is confined to the button handler routines. The code is fairly simple: for
each type of notification, the appropriate Windows CE function is called. When
asked to configure a user notification, the application calls CeGetUserNotifica
tionPreferences. The program gives you one additional dialog box with which
to configure the system notifications.

NoteDemo.rc
II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright (Cl 2003 Douglas Boling
II==
#include "windows.h"
#include "NoteDemo.h" II Program-specific stuff

ll-----------------------------C--
11 Icons and bitmaps
II
ID_ICON ICON "NoteDemo.ico" II Program icon

11·---------C•·-·•--·--•··--·--·-·---·-····--·-·-··-•--------•··-•••••••
II Main window dialog template
II

120. 98 NoteDemo DIALOG discardable 25, 5,
STYLE WS_OVERLAPPED I WS_VISIBLE WS_CAPTION I WS_SYSMENU I

DS_CENTER I DS_MODALFRAME
CAPTION "NoteDemo"
BEGIN

LTEXT "", !DD_OUTPUT, 2. 2.
PUSHBUTTON "Set &User Notification",

IDD_ADDUSERNOT, 2'
PUSHBUTTON "&Configure User Notification",

!DD_CFGUSERNOT, 2,

PUSHBUTTON "Set &System Notitication",
!DD_ADDSYSNDT, 2,

PUSHBUTTON "Set &Timer Notification",
!DD_ADDTIMENOT, 2.

PUSHBUTTON "Clear all my Notifications",
!DD_CLEARNOT, 2.

END

115. 21

25, 115, 12.

39, 115, 12,

53. 115, 12,

67, 115, 12.

81, 115, 12.

WS_TABSTOP

WS_TABSTOP

WS_TABSTDP

WS_TABSTOP

WS_TABSTOP

11---------------··----·-------------------------------C---···----C·----
ll Set system event notification dialog box dialog template.
II

Listing 11-1 The NoteDemo program (continued)

568 Part II Windows CE Programming

Listing 11-1 (continued)

SysNotifyConfig DIALOG DISCARDABLE 0, 0, 130; 89
STYLE DS_MODALfRAME r ws.:...POPUP I ws_CAPTION I WS_SYSMENU
EXSTYLE WS_ELCAPTIONOKBTN
CAPTION "Notify On ... "
BEGIN

AUTOCHECKBOX "Sync End", rnc_sYNC_END. 7' 5. 121. 10.
WS::...TABSTOP

AUTOCHECKBOX "Device Change",IDc_DEVICE_CHANGE. 7, 17, 121. 10.
WS_TABSTOP

AUTOCHECKBOX ,;Seri a 1 Connection Detected",
rnc_srnIALDETECT, 7, 29, 121, 10,

WS_TABSTOP
AUTOCHECKBOX "System Ti~e Change",

IDLTIMLCHANGE, 7, 41, 121. 10,
WS_TABSTOP

AUTOCHECKBOX "Restore End", IOC_RESTORE....:END, 7, 53, 121. 10,
WS..:.TABSTOP

AUTOCHECKBOX "System Wake Up", I.DLPOWER_UP.. 7, 65, 121. 10.
WS::...TABSTOP

AU.TOCHECKBOX "Time Zone Change", IDG_TLCHANGE, 7, 77, 121. 10.
WS_TABSTOP

END

Noteoemo.h·
//===-============-=========
JI Header ffl e
II
fJ Written for the book Programming Windows· CE
11 copyr1 ~ht (Cl 20.03 Douglas Bol 1 ng ·

.li======""'===*===========:"'============="'========== .. =====================
II Returns number of elements
1fdefine dim(x) (s1.zeof(x) I sizeof{x[0]))

11·-~---•·---··---"---------••--··----c-·----··-----•c----·-····-----·-·
. I I Generic .defines and data types

/J
StJ'UCt decodeU INT {

UINT Code;

BOOL (*Fxn HHWND, UINT, WpARAM, LPARAM);
' ' I '

. struct i:tecodeCMD · {
UINT Code;
LHSUL t (*Fxn) {HWN[), WORD, HWND, WORD):

} :

/J Structure associates
· 11 messages
II with a functibn~

11 Structure associ at.e.s
II menu IDs with a
If function.

Chapter 11 Notifications 569

II Define function not supported under Windows CE.
#ifndef IsDlgButtonChecked
#define IsDlgButtonChecked(a, b)\

SendDlgitemMessage (a, b, BM_GETCHECK, 0, 0)
/fend if
11--
II Generic defines used by application

/fdefi ne ID_ICON 1

/fdefi ne I DD_ADDUSERNOT 10 11 Control IDs
#define IDD_C FGUS ER NOT 11
#define IDD_ADDSYSNOT 12
/fdefi ne IDD_ADDTIMENOT 13
#define IDD_OUTPUT 14
#define IDD_CLEARNOT 15

#define I DCSYNCEND 20
/fdefi ne IDC_DEVICE_CHANGE 21
/fdefi ne I DCSERIAL_DETECT 22
#define I DC TIME_CHANGE 23
#define IDCRESTORE_END 24
#define IDCPOWER..UP 25
/fdefi ne IDC_Tl_CHANGE 26

#define MYMSG_TELLNOTIFY (WM_USER + 100)

ll-------------------·--
11 Function prototypes
II
void Add2List (HWND hWnd, LPTSTR lpszFormat, ...);
II Window procedures
BOOL CALLBACK MainDlgProc (HWND, UINT, WPARAM. LPARAM);
BOOL CALLBACK SetEventNotifyDlgProc (HWND, UINT, WPARAM, LPARAM):

II Message handlers
BOOL DoinitDialogMain (HWND, UINT, WPARAM. LPARAM);
BOOL DoCommandMain (HWND, UINT, WPARAM. LPARAM);
BOOL DoTellNotifyMain (flWND, UINT. WPARAM, LPARAM);

II Command functions
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandAddUserNotification <HWND, WORD, HWND. WORD);
LPARAM DoMainCommandConfigUserNotification (HWND, WORD, HWND, WORD):
LPARAM DoMainCommandAddSysNotification (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandAddTimerNotification (HWND, WORD, HWND. WORD);
LPARAM DoMainCommandClearNotifications (HWND, WORD, HWND, WORD);
II Thread prototype
DWORD WINAPI MonitorThread (PVOID pArg);

(continued)

570 Part II Windows CE Programming

Listing 11-1 (continued)

Chapter 11 Notifications 571

int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,
LPWSTR lpCmdLine, int nCmdShowl {

INT i;
TCHAR szText[MAX_PATH];
WCHAR *PPtr;
HANDLE hNotify;
HWND hWnd:
HANDLE hThread;

hinst = hinstance:

if (*lpCmdlinel {
pPtr = lpCmdline;
II Parse the first word of the command line.
for (i = 0: (i < dim(szText)-1) && (*pPtr > TEXT (· ')); i++)

szText[i] = *pPtr++;
szText[i] =TEXT ('\0');

II Check to see if app started due to notification.
if (lstrcmp (szText~ APP-RUN_TO_HANDLE_NOTIFICATIONl 0) {

II Acknowledge the notification.
GetModuleFileName (hinst, szText, sizeof (szText));
CeHandleAppNotifications CszTextl;

II Get handle of command line.
hNotify = (HANDLE)_wtol (pPtr):

II Look to see if another instance of the app is running.
hWnd = FindWindow <NULL, szAppName);
if (hWnd) {

SendMessage (hWnd, MYMSG_TELLNOTIFY, 0,
(LPARAM)hNotify};

II I should terminate this app here, but I don't so you
II can see what happens.
return 0;

}

II Do a little initialization of CE_USER_NOTIFICATION.
memset <&g_ceun. 0, sizeof (g_ceun));
g_ceun.ActionFlags = PUN_DIALOG;
g_ceun.pwszDialogTitle = szDlgTitle;
g_ceun.pwsZDia16gText = szDlgText;
g_ceun,pwszSound szSound:
g_ceun.nMaxSound = sizeof (szSound}:

II Create secondary thread for timer event notification.
g_hNoteEvent "' CreateEvent (NULL, FALSE, FALSE. szEventName):

(continued)

572 Part II Windows CE Programming

Listing 11-1 (continued)

hThread •"' CreateThread (NULL, 0, MonitorThread, hWnd. 0, (OWORD *)&i);

H (hThread == 0)

Oisp}ay dialog.box as main window.
DialogBoxParam (hlnstance, szAppName, NULL, MainDl gProc,

(lPARAM)lpCmdLine);
/(Signal notification thread to terminate
g~fContinue = FALSI::
SetEvent (g_hNotefvent);
WaitForSingle.ObJect (hThread, 1000);
Cl oseHandle (hThreild):
CloseHandle (g_hNoteEventJ:

//';'===,,,===========,.=====;;:=============;'=====,;;============================
/I Message handllrigprocedures.for main.window
fie c .- ." c - c ·" "•- • - - " - ~ - • - - - - - • - - - - - " - - " - - " - - "

ll MainblgProc - cal1bac:k function for application window
ll
BOO~ CALLBACK MainDlgProc CHWND hWnd, UI NT wMsg.

ltst. call procedure.

i < dimCMainMeS$ageS): .1.H)

WMsg, WParam. lParainl:

/J.DoinitDialogMain - ProcessWM~IN.rfbIALOG message for window.
II
Boot Dolni tbial ogMa.tn WPARAM wParam,

Chapter 11 Notifications 573

BOOL DoCommandMain CHWND hWnd, UINT wMsg, WPARAM wParam. LPARAM lParam){
WORD idltem, wNotifyCode;
HWND hwndCtl;
INT i;

II Parse the parameters.
idltem =(WORD) LOWORD (wParam);
wNotifyCode =(WORD) HIWDRD (wParam);
hwndCtl = (HWND) lParam;

II Call routine to handle control message.
for (i = 0; i < dim(MainCommandltems); i++)

if (idltem == MainCommandltems[i].Code)
(*MainCommandltems[i].Fxn)(hWnd, iditem, hwndCtl,

wNot i fyCode);
return TRUE;

return FALSE;

11--
11 DoTellNotifyMain - Process MYMSG_TELLNOTIFY message for window.
II
BOOL DoTellNotifyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
Add2List (hWnd, TEXT ("Notification %d reported"), lParam);
SetForegroundWindow ((HWND)((DWORDlhWnd I 0x01));
return 0;

II==
II Command handler routines
11-- ---------
11 DoMainCommandExit - Process Program Exit command.
II
LPARAM DoMainCommandExit (HWND hWnd, WORD idltem, HWND hwndCtl.

}

EndDialog (hWnd, 0);
return 0;

WORD wNotifyCode) {

11--
11 DoMainCommandAddUserNotification - Process Add User Notify button.
II
LPARAM DoMainCommandAddUserNotification (HWND hWnd, WORD idltem,

HWND hwndCtl, WORD wNotifyCodel
SYSTEMTIME st. ste;
TCHAR szExeName[MAX_PATH], szText[128];
TCHAR szArgs[128] = TEXTC"This is my user notification string.");
CE_NOTIFICATION_TRIGGER nt;

(continued)

574 Part II Windows CE Programming

Listing 11-1 (continued)

Chapter 11 Notifications 575

II Display the system-provided configuration dialog.
CeGetUserNotificationPreferences (hWnd, &g_ceun);
return 0;

11--
11 DoMainCommandAddSysNotification - Process Add Sys notify button.
II
LPARAM DoMainCommandAddSysNotification (HWND hWnd, WORD iditem,

}

HWND hwndCtl, WORD wNotifyCode)

DialogBox Chinst. TEXT ("SysNotifyConfig"), hWnd,
SetEventNotifyDlgProc);

return 0;

11--
11 DoMainCommandAddTimerNotification - Process add timer notify button.
II
LPARAM DoMainCommandAddTimerNotification (HWND hWnd, WORD iditem.

HWND hwndCtl, WORD wNotifyCode)
SYSTEMTIME st;
HANDLE hNotify;
CE_NOTIFICATION_TRIGGER nt:
TCHAR szExeName[MAX_PATH], szText[128];
TCHAR szArgs[128] = TEXT("This is my timer notification string.");

II Initialize time structure with local time.
GetLocalTime (&st);
II Do a trivial amount of error checking.
if Cst.wMinute == 59) {

st.wHour++;
st.wM;nute = 0;

else
st.wMinute++;

memset (&nt, 0, sizeof (CE_NOTIFICATION_TRIGGER));
nt.dwSize = sizeof (CE_NOTIFICATION_TRIGGER):
nt.dwType = CNT_TIME;
nt.lpszApplication = szExeName:
nt.lpszArguments = szArgs;
nt.stStartTime = st;

1 strcpy (szExeName, NAME:D_EVENT_PREFI l_TEXT);
ls treat CszExeName, u:Even.tName):
II Set the notification.
hNotify = CeSetUserNotjficationEx (0, &nt, NULL);
if C hNot 1 fy)

wsprtntf (szText, TEXT ("Timer notification set for %d:%02d:%02d"),
st.wHour, st.wMinute. st.wSecondl:

(continued)

576 Part II Windows CE Programming

Listing 11-1 (continued)

else
wspri ntf·CstText; ·TEXT ("Timer notlffcat ion

• GetListError(>);

Messageaox (hWnci. sZText; szAppName. MB.J>K>;
return 0:

II OoMainCommandCleilrN~tif'icaticms - Clear all rroiffications po{nfifrg
// to this appncatton~ Note: this is a fatrly lad;estack fraJlie.·
// ...

. LPARAM DoMainComm~ndClearNot.ifications (HWNP h;Wnd:. WORD idltem, . .
. ·HWNDtiwrii:tctf •• wQjtn··wNoturc·ode> .{.

PBYTE pBuff = NULL;
PCE-:NOTIFI cAnoN_INfO_HEAOER .Pnf h:.
:HANDLE. hNo~Hifttcile's[128J; Vt Ass'u1111rth'is
Jnt .. re, . i:JCnt = 0:, < · · . · .•. ·.· .•. •···. .•

6~~~:.·~z~a::~::[~~~~m~.·t.s:r~~xtr_1~e1·:·• ·.
,,;, .. ·,' ' ., .. , .. "·:·' ··"-'·

. ·>: >rG~t;~:urJi'.i~name... ..·· .. · .. ·.·.
GetMoifoTef'.it~·Nallle· ffitrJs~;'.szExeflame;

·. p Buff = {PBYTEffoca1 Al·T~~ .· ... £·LPTR. :a{9'2•) f
if •(1prfofr) 1 · · · ·. .·. · · · ·. · ·

}

·. MessageBo~ •
:· retufinJ;o ·

re·= .ceGet0$erNotific~:€.i priHandJ:•es ·.(hNotHarri:tries;
. .

' : , ,' :, '· .'

"!: 0i\··<·riWl!ttctcrit·: ·~+~f.(•'/ .. •·
./; .. Ouefy infq• on a·sihgfe ~anAi·e •···•·

···re·~·· .c~.li~ici~·e.rNPt1'.f,t,¢a~;f~rr c:~:~~~.~~!~•I·;·:.Ej·fr;::1'.~z;:.•·
(Ni { · . .

P~Hi = CPC~~NOllFICA'[I()N_lNFQiHE~D.~~)pall.ff: ... ·.
·· tf. Cllstrcmp··tpnih">ticent~>lpszAppJi.c~ttofr; sZ'exerfameJh /

··u: (ce.c1earuserNot1f1ccat.1oti.· q>.nih->~Not1ricat1~n)) ·
·~~

···<·•.·• ..

. ·, .ws'pr'lr\tf .. f~zt~xt'.;•· l'EXl' {i1tieareij·%Cf• rfotffica:ttdns~•).
MessageBox (h\il.na,. ~zText; szAppNa~e·i>t.ir(.-OK}; .··· · ·

} else · .· X <

•···. ·•t-1~ssageB.6x· :cnwl1a, •.·mn···•t''.<foul a ·not·querY hafidles-.;>, . .'., , ,· : . ; ·: .:· ' '.;. ·· ... :

Chapter 11 Notifications 577

}

szAppName, MB_OK);
LocalFree (pBuff);
return 0;

11--
11 MySetEventNotification - Sets event notifications
II
int MySetEventNotification (HWND hWnd, DWORD dwEvent)

TCHAR szArgs[J = TEXTC"This is my event notification string.");
CE_NOTIFICATION_TRIGGER nt;
HANDLE hNotify;
TCHAR szExeName[MAX_PATH], szText[l28];

memset C&nt, 0, sizeof (CE._NOTIFICATION_TRIGGERl):
nt.dwSize = sizeof (CE_NOTIFICATION_TRIGGER);
nt.dwType = CNT_EVENT;
nt.dwEvent = dwEvent:
nt.lpszApplication = szExeName:
nt.lpszArguments = szArgs;
GetModuleFileName (h!nst, szExeName, sizeof <szExeName));

II Set the notification.
hNotify = CeSetUserNot1f1cationEx (0, &nt, NULL);
1f (hNot1fy)

else

wspr1ntf (szText. TEXT ("Event notification set for %0Bx"),
dwEvent l:

wspr1ntf (szText, TEXT("Set Event notification failed re: %d"),
GetLastError());

}

MessageBox (hWnd. szText, szAppName, MB_OK);
return 0;

11--
11 Add2List - Add string to the report list box.
II
void Add2L1st (HWND hWnd, LPTSTR lpszFormat •...) {

int 1, nBuf;
TCHAR szBuffer[512];

va_list args;
va_start(args, lpszFormat);

nBuf = _vstprintf(szBuffer. lpszFormat. args):
i = SendDl gitemMessage (hWnd, IDD_OUTPUT, WM_SETHXT. 0.

(LPARAM)(LPCTSTRlszBuffer):
va_end<args);

(continued)

578 Part II Windows CE Programming

Listing 11-1 (continued)

Chapter 11 Notifications 579

break:

return FALSE:

II==
II MonitorThread - Monitors event for timer notifieaiton
II
DWORD WINAPI MonitorThread CPVOID pArg) {

int re:

}

while (g_fContinue) {
re= WaitForSingleObjeet (g_hNoteEvent, INFINITE):
if (!g_fContinue)

break:
if (re == WAIT_OBJECT_0)

SendMessage (g_hMain, MYMSG_TELLNOTIFY, 0. (LPARAM)g_hNoteEvent):
else

break;

return 0:

When NoteDemo starts, it examines the command line to determine
whether it was started by a user notification. If so, the program attempts to find
another instance of the application already running. If the program finds one, a
message is sent to the first instance, informing it of the user notification.
Because this is an example program, the second instance doesn't terminate
itself as it would if it were a commercial application.

The timer notification uses a named event as its signal instead of launch
ing a second copy of the application. To monitor the event, NoteDemo creates
a second thread before the main window is created. This routine, Monitor
Tbread, simply waits on the event handle that was created for the timer notifi
cation. When NoteDemo terminates, it sets a quit flag for the thread and signals
the event itself. This causes MonitorTbread to terminate.

The last button that clears all the notifications scheduled for the Note
Demo application has an interesting task. How does it know what is scheduled?
Does it keep a record of every notification it has scheduled? Fortunately, that's
not necessary. NoteDemo simply queries the notifications scheduled for all
applications, finds the ones for itself, and clears them. Let's see how that's done.

580 Part II Windows CE Programming

Querying Scheduled Notifications
While scheduling the different notifications is often all that applications need,
additional functions allow applications to query the notifications currently
scheduled in the system. Here's the function that queries the notifications:

BOOL CeGetUserNotificationHandles (HANDLE *rghNotifications,
DWORD cHandles, LPDWORD pcHandlesNeeded):

This function returns an array filled with handles to all notifications currently
scheduled in the system. The first parameter is the pointer to a handle array.
The second parameter, cHandles, should be filled with the number of entries in
the array. The third parameter should contain the address of a DWORD that will
be filled with the number of entries in the array filled with valid notification
handles.

If the array is large enough to hold all the handles, the function returns
TRUE and provides the number of handles returned in the variable pointed to
by pcHandlesNeeded. If the array is too small, the function fails. You can query
the number of handles the system will return by passing NULL in the rghNotift
cations parameter and 0 in the cHandles parameter. The function will then
return the number of handles in the variable pointed to by pcHandlesNeeded.

After you have queried all the handles, you can determine the details of
each notification by passing each handle to the function:

BOOL CeGetUserNot1f1cat1on (HANDLE hNot1ficat1on, DWORD cBufferS1ze,
LPDWORD pcBytesNeeded, LPBYTE pBuffer):

The first parameter is the handle to the notification in which you're interested.
The second parameter is the size of the buffer you're providing the function to
return the data about the notification. The third parameter is the address of a
DWORD that will receive the size of the data returned. The final parameter is
the address of a buffer that will receive the details about the notification.

The size of the required buffer changes depending on the notification.
The buffer begins with a CE_NOTIFICATION_INFO_HEADER structure. The
buffer also contains a CE_NOTIFICATION_TRIGGER structure and, depending
on the type of notification, an optional CE_USER_NOTIFICATION structure.
Because these structures contain pointers to strings for application names and
command lines, these strings must also be stored in the buffer.

To determine how big the buffer needs to be, you can call CeGetUser
Notification with cBu.fferSize set to 0 and pBu.ffer set to NULL. The function
returns the number of bytes required by the buffer in the variable that
pcBytesNeeded points to. However, calling the function this way takes just as
much time as retrieving the data itself, so it would be better to assume a size for

Chapter 11 Notifications 581

the buffer and call the function. Only if the call fails because the buffer is too
small do you then reallocate the buffer so that it's large enough to hold the data.

Now on to the data returned. The CE_NOTIFJCATION_INFO_HEADER
structure is defined this way:

typedef struct UserNotificationinfoHeader
HANDLE hNotification;
DWORD dwStatus;
CE_NOTIFICATION_TRIGGER *pcent;
CE_USER_NOTIFICATION *pceun;

CE_NOTIFICATION_INFO_HEADER;

The first field is the handle of the event you are querying. The second field con
tains the status of the notification. This field contains 0 if the notification hasn't
fired or CNS_SIGNALLED if it has. The next two fields are pointers to the same
structures discussed earlier in the chapter. The pointer to the
CE_NOTIFICATION_TRIGGER structure points to an address in the buffer in
which that structure is defined. Depending on the type of notification, the
pointer to the CE_USER_NOTIFICATION structure could be NULL.

The combination of the two structures, CE_NOTIFICATION_TRIGGER and
CE_USER_NOTIFICATION along with the status flag, completely describes the
notification. By examining the trigger structure, you can determine the applica
tion that's scheduled to run as a result of the notification, its command line, and
of course, the type of notification itself.

The Notification API is a handy way to monitor events in a Windows CE
system. The ability to have the operating system launch your application
instead of having to lurk around in memory waiting for the event significantly
reduces the memory requirements for a well-designed system. User notifica
tions give you a convenient and uniform way to alert the user of events that
need attention.

Now that we've looked at the Notification API, we've covered the basics of
Windows CE applications. The next section of this book turns from the basics
to one of the more important areas of Windows CE applications, communica
tion. This next section covers everything from basic serial communication to
networking, both wired and wireless.

Part Ill

Serial Communications
If there's one area of the Win32 API that Windows CE doesn't skimp, it's in
communication. It makes sense. Either systems running Windows CE are
mobile, requiring extensive communication functionality, or they're devices
generally employed to communicate with remote servers or as remote servers.
In this chapter, I introduce the low-level serial communication APis.

Talking to a serial port involves opening and conversing with a serial
device driver. Talking to a device driver isn't a complicated process. In fact, in
the tradition of most modern operating systems, applications in Windows CE
access device drivers through the file system API, using functions such as
CreateFile, ReadFile, WriteFile, and CloseHandle. In addition, there are times,
and the serial driver occasions one of those times, when an application needs
to talk to the device, not just send data through the device. To do this, use the
DeviceioControl function. We'll use all these functions in this chapter.

Basic Serial Communication
The interface for a serial device is a combination of generic driver I/0 calls and
specific communication-related functions. The serial device is treated as a
generic, installable stream device for opening, closing, reading from, and writ
ing to the serial port. For configuring the port, the Win32 API supports a set of
Comm functions. Windows CE supports most of the Comm functions supported
by Windows XP.

A word of warning: programming a serial port under Windows CE isn't
like programming one under MS-DOS. You can't simply find the base address
of the serial port and program the registers directly. While there are ways for a

585

586 Part Ill Communications

program to gain access to the physical memory space, every Windows CE
device has a different physical memory map. Even if you solved the access
problem by knowing exactly where the serial hardware resided in the memory
map, there's no guarantee the serial hardware is going to be compatible with
the 16550-compatible serial interface we've all come to know and love in the
PC world. In fact, the implementation of the serial port on some Windows CE
devices looks nothing like a 16550.

But even if you know where to go in the memory map and the implemen
tation of the serial hardware, you still don't need to "hack down to the hard
ware." The serial port drivers in Windows CE are interrupt-driven designs and
are written to support its specific serial hardware. If you have any special needs
not provided by the base serial driver, you can purchase the Microsoft Windows
CE Platform Builder and write a serial driver yourself. Aside from that extreme
case, there's just no reason not to use the published Win32 serial interface
under Windows CE.

Opening and Closing a Serial Port
As with all stream device drivers, a serial port device is opened using Create
File. The name used needs to follow a specific format: the three letters COM fol
lowed by the number of the COM port to open and then a colon. The colon is
required under Windows CE and is a departure from the naming convention
used for device driver names used in Windows XP. The following line opens
COM port 1 for reading and writing:

hSer = CreateFile (TEXT ("COMl:"), GENERIC_READ I GENERIC_WRITE,
0, NULL, OPEN_EXISTING, 0, NULL);

You must pass a 0 in the sharing parameter as well as in the security attributes
and the template file parameters of CreateFile. Windows CE doesn't support
overlapped 1/0 for devices, so you can't pass the FILE_FLAG_OVERLAPPED flag
in the dwFlagsAndAttributes parameter. The handle returned is either the handle
to the opened serial port or INVALID_HANDLE_ VALUE. Remember that unlike
many of the Windows functions, CreateFile doesn't return a 0 for a failed open.

You close a serial port by calling CloseHandle, as in the following:

CloseHandle (hSer);

You don't do anything differently when using CloseHandle to close a serial
device than when you use it to close a file handle.

Chapter 12 Serial Communications 587

Reading from and Writing to a Serial Port
Just as you use the CreateFile function to open a serial port, you use the func
tions ReadFile and WriteFile to read and write to that serial port. Reading data
from a serial port is as simple as making this call to ReadFile:

INT re;
DWORD cBytes;
BYTE ch;

re = ReadFi 1 e(hSer, &ch, 1, &cBytes, NULL);

This call assumes the serial port has been successfully opened with a call to
CreateFile. If the call is successful, one byte is read into the variable ch, and
cBytes is set to the number of bytes read.

Writing to a serial port is just as simple. The call would look something
like the following:

INT re;
DWORD cBytes;
BYTE ch;

ch= TEXT ('a');
re= WriteFile(hSer, &ch, 1, &cBytes, NULL);

This code writes the character a to the serial port previously opened. As you
may remember from Chapter 8, both ReadFile and WriteFile return TRUE if
successful.

Because overlapped I/0 isn't supported under Windows CE, you should
be careful not to attempt to read or write a large amount of serial data from your
primary thread or from any thread that has created a window. Because those
threads are also responsible for handling the message queues for their win
dows, they can't be blocked waiting on a relatively slow serial read or write.
Instead, you should use separate threads for reading from and writing to the
serial port.

You can also transmit a single character using this function:

BOOL TransmitCommChar (HANDLE hFile, char cChar);

The difference between the TransmitCommChar and WriteFile functions
is that TransmitCommChar puts the character to be transmitted at the front of
the transmit queue. When you call WriteFile, the characters are queued up after
any characters that haven't yet been transmitted by the serial driver. Transmit
CommChar allows you to insert control characters quickly in the stream with
out having to wait for the queue to empty.

588 Part Ill Communications

Asynchronous Serial 1/0
While Windows CE doesn't support overlapped I/0, there's no reason why you
can't use multiple threads to implement the same type of overlapped opera
tion. All that's required is that you launch separate threads to handle the syn
chronous I/0 operations while your primary thread goes about its business. In
addition to using separate threads for reading and writing, Windows CE sup
ports the Win32 WaitCommEvent function that blocks a thread until one of a
group of preselected serial events occurs. I'll demonstrate how to use separate
threads for reading and writing a serial port in the CeChat example program
later in this chapter.

You can make a thread wait on serial driver events by means of the fol
lowing three functions:

BOOL SetCommMask (HANDLE hFile, DWORD dwEvtMask);
BOOL GetCommMask (HANDLE hFile, LPDWORD lpEvtMaskl;

and

BOOL WaitCommEvent (HANDLE hFile, LPDWORD lpEvtMask,
LPOVERLAPPED lpOverlappedl;

To wait on an event, you first set the event mask using SetCommMask. The
parameters for this function are the handle to the serial device and a combina
tion of the following event flags:

• EV_BREAK A break was detected.

• EV_CTS The Clear to Send (CTS) signal changed state.

• EV_DSR The Data Set Ready (DSR) signal changed state.

• EV_ERR An error was detected by the serial driver.

• EV_RLSD The Receive Line Signal Detect (RLSD) line changed
state.

• EV_RXCHAR A character was received.

• EV_RXFLAG An event character was received.

• EV_TXEMP1Y The transmit buffer is empty.

You can set any or all of the flags in this list at the same time using Set
CommMask. You can query the current event mask using GetCommMask.

To wait on the events specified by SetCommMask, you call WaitComm
Event. The parameters for this call are the handle to the device, a pointer to a
DWORD that will receive the reason the call returned, and lpOverlapped, which
under Windows CE must be set to NULL. The code fragment that follows waits

Chapter 12 Serial Communications 589

on a character being received or an error. The code assumes that the serial port
has already been opened and that the handle is contained in hComPort.

DWORD dwMask;
II Set mask and wait.
SetCommMask (hComPort, EV_RXCHAR I EV_ERRl:
if (WaitCommEvent (hComPort, &dwMask, 0) {

II Use the flags returned in dwMask to determine the reason
II for returning.
Switch (dwMask) {
case EV_RXCHAR:

//Read character.
break:

case EV_ERR:
II Process error.
break;

Configuring the Serial Port
Reading from and writing to a serial port is fairly straightforward, but you also
must configure the port for the proper baud rate, character size, and so forth. The
masochist could configure the serial driver through device 1/0 control (IOCTL)
calls, but the IoCtl codes necessary for this are exposed only in the Platform
Builder, not the Software Development Kit. Besides, here's a simpler method.

You can go a long way in configuring the serial port using two functions,
GetCommState and SetCommState, prototyped here:

BOOL SetCommState (HANDLE hFile, LPDCB lpDCB);
BOOL GetCommState (HANDLE hFile, LPDCB lpDCB);

Both these functions take two parameters, the handle to the opened serial
port and a pointer to a DCB structure. The extensive DCB structure is defined
as follows:

typedef struct _DCB
DWORD DCBlength;
DWORD BaudRate;
DWORD fBinary: 1;
DWORD fParity: 1;
DWORD fOutxCtsFlow:l;
DWORD fOutxDsrFlow:l;
DWORD fDtrControl :2:
DWORD fDsrSensitivity:l;
DWORD fTXContinueOnXoff:l:

(continued)

590 Part Ill Communications

DWORD fOutX: 1;
DWORD finX: 1;
DWORD fErrorChar: 1;
DWORD fNull: 1;
DWORD fRtsControl :2;
DWORD fAbortOnError:l;
DWORD fDummy2:17;
WORD wReserved;
WORD Xonlim;
WORD Xofflim;
BYTE ByteSize;
BYTE Parity;
BYTE StopBits;
char XonChar;
char XoffChar;
char ErrorChar;
char EofChar;
char EvtChar;
WORD wReservedl;

} DCB;

As you can see from structure, SetCommState can set a fair number of
states. Instead of attempting to fill out the entire structure from scratch, you
should use the best method of modifying a serial port, which is to call
GetCommState to fill in a DCB structure, modify the fields necessary, and then
call SetCommState to configure the serial port.

The first field in the DCB structure, DCBlength, should be set to the size of
the structure. This field should be initialized before the call to either GetComm
State or SetCommState. The BaudRate field should be set to one of the baud
rate constants defined in Winbase.h. The baud rate constants range from
CBR_110 for 110 bits per second to CBR_256000 for 256 kilobits per second
(Kbps). Just because constants are defined for speeds up to 256 Kbps doesn't
mean that all serial ports support that speed. To determine what baud rates a
serial port supports, you can call GetCommProperties, which I'll describe
shortly. Windows CE devices generally support speeds up to 115 Kbps,
although some support faster speeds. The ./Binary field must be set to TRUE
because no Win32 operating system currently supports a nonbinary serial trans
mit mode familiar to MS-DOS programmers. The jParity field can be set to
1RUE to enable parity checking.

The fOutxCtsFlow field should be set to 1RUE if the output of the serial
port should be controlled by the port CTS line. The fOutxDsrFlow field should
be set to 1RUE if the output of the serial port should be controlled by the DSR
line of the serial port. The .fDtrControl field can be set to one of three values:
D1R_CONTROL_DISABLE, which disables the DTR (Data Terminal Ready) line

Chapter 12 Serial Communications 591

and leaves it disabled; DTR_CONTROL_ENABLE, which enables the DTR line; or
DTR_CONTROL_HANDSHAKE, which tells the serial driver to toggle the DTR
line in response to how much data is in the receive buff er.

The jDsrSensitivity field is set to TRUE, and the serial port ignores any
incoming bytes unless the port DSR line is enabled. Setting the fIXContinue
OnXoff field to TRUE tells the driver to stop transmitting characters if its receive
buffer has reached its limit and the driver has transmitted an XOFF character.
Setting the fOutX field to TRUE specifies that the XON/XOFF control is used to
control the serial output. Setting the ftnX field to TRUE specifies that the XON/
XOFF control is used for the input serial stream.

The fErrorChar and ErrorChar fields are ignored by the default imple
mentation of the Windows CE serial driver, although some drivers might sup
port these fields. Likewise, the fAbortOnError field is also ignored. Setting the
JNull field to TRUE tells the serial driver to discard null bytes received.

The fRtsControl field specifies the operation of the RTS (Request to Send)
line. The field can be set to one of the following: RTS_CONTROL_DISABLE, indi
cating that the RTS line is set to the disabled state while the port is open;
RTS_CONTROL_JJNABLE, indicating that the RTS line is set to the enabled state
while the port is open; or RTS_CONTROL_HANDSHAKE, indicating that the RTS
line is controlled by the driver. In this mode, the RTS line is enabled if the serial
input buffer is less than half full; it's disabled otherwise. Finally,
RTS_CONTROL_TOGGLE indicates that the driver enables the RTS line if there are
bytes in the output buffer ready to be transmitted and disables the line otherwise.

The XonLim field specifies the minimum number of bytes in the input
buffer before an XON character is automatically sent. The XoffLim field speci
fies the maximum number of bytes in the input buffer before the XOFF charac
ter is sent. This limit value is computed by taking the size of the input buffer
and subtracting the value in XoffLim. In the sample Windows CE implementa
tion of the serial driver provided in the Platform Builder, the XonLim field is
ignored and XON and XOFF characters are sent based on the value in XoffLim.
However, this behavior might differ in some systems.

The next three fields, ByteSize, Parity, and StopBits, define the format of
the serial data word transmitted. The ByteSize field specifies the number of bits
per byte, usually a value of 7 or 8, but in some older modes the number of bits
per byte can be as small as 5. The Parity field can be set to the self-explanatory
constant EVENPARITY, MARKPARITY, NOPARITY, ODDPARITY, or SPACEPAR
ITY. The StopBits field should be set to ONESTOPBIT, ONE5STOPBITS, or
TWOSTOPBITS, depending on whether you want one, one and a half, or two
stop bits per byte.

592 Part Ill Communications

The next two fields, XonChar and Xof!Char, let you specify the XON and
XOFF characters. Likewise, the EvtChar field lets you specify the character used
to signal an event. If an event character is received, an EV_RXFIAG event is sig
naled by the driver. This "event" is what triggers the WaitCommEvent function
to return if the EV_RXFIAG bit is set in the event mask.

Setting the Port Timeout Values
As you can see, SetCommState can fine-tune, to almost the smallest detail, the
operation of the serial driver. However, one more step is necessary-setting the
timeout values for the port. The timeout is the length of time Windows CE waits
on a read or write operation before ReadFile or WriteFile automatically returns.
The functions that control the serial timeouts are the following:

BOOL GetCommTimeouts (HANDLE hFile, LPCOMMTIMEOUTS lpCommTimeouts);

and

BOOL SetCommTimeouts (HANDLE hFile, LPCOMMTIMEOUTS lpCommTimeouts);

Both functions take the handle to the open serial device and a pointer to a
COMMTIMEOUTS structure, defined as the following:

typedef struct _COMMTIMEOUTS {
DWORD ReadintervalTimeout;
DWORD ReadTotalTimeoutMultiplier;
DWORD ReadTotalTimeoutConstant;
DWORD WriteTotalTimeoutMultiplier;
DWORD WriteTotalTimeoutConstant;

COMMTIMEOUTS;

The COMMTIMEOUTS structure provides for a set of timeout parameters
that time both the interval between characters and the total time to read and
write a block of characters. Timeouts are computed in two ways. First Read
IntervalTimeout specifies the maximum interval between characters received. If
this time is exceeded, the ReadFile call returns immediately. The other timeout
is based on the number of characters you're waiting to receive. The value in
ReadTota!TimeoutMultiplier is multiplied by the number of characters
requested in the call to ReadFile and is added to ReadTotalTimeoutConstant to
compute a total timeout for a call to ReadFile.

The write timeout can be specified only for the total time spent during the
WriteFile call. This timeout is computed the same way as the total read timeout,
by specifying a multiplier value, the time in WriteTotalTimeoutMultiplier, and a
constant value in WriteTotalTimeoutConstant. All of the times in this structure
are specified in milliseconds.

Chapter 12 Serial Communications 593

In addition to the basic timeouts that I just described, you can set values
in the COMMTIMEOUTS structure to control whether and exactly how timeouts
are used in calls to ReadFile and WriteFile. You can configure the timeouts in
the following ways:

• Timeouts for reading and writing as well as an interval timeout. Set
the fields in the COMMTIMEOUTS structure for the appropriate time
out values.

• Timeouts for reading and writing with no interval timeout. Set Read
lnterva!Timeout to 0. Set the other fields for the appropriate timeout
values.

• The ReadFile function returns immediately regardless of whether
there is data to be read. Set Read!nterva!Timeout to MAXDWORD.
Set ReadTotalTimeoutMultiplier and ReadTota!TimeoutConstant to 0.

• ReadFile doesn't have a timeout. The function doesn't return until
the proper number of bytes is returned or an error occurs. Set the
Read!nterva!Timeout, ReadTotalTimeoutMultiplier, and ReadTotal
TimeoutConstant fields to 0.

• WriteFile doesn't have a timeout. Set WriteTotalTimeoutMultiplier
and WriteTota!TimeoutConstant to 0.

The timeout values are important because the worst thing you can do is to
spin in a loop waiting on characters from the serial port. While the calls to
ReadFile and WriteFile are waiting on the serial port, the calling threads are effi
ciently blocked on an event object internal to the driver. This saves precious
CPU and battery power during the serial transmit and receive operations. Of
course, to block on ReadFile and WriteFile, you'll have to create secondary
threads because you can't have your primary thread blocked waiting on the
serial port.

Another call isn't quite as useful-SetupComm, prototyped this way:

BOOL SetupComm (HANDLE hFile, DWORD dwlnQueue, DWORD dwOutQueue);

This function lets you specify the size of the input and output buffers for the
driver. However, the sizes passed in SetupComm are only recommendations,
not requirements to the serial driver. For example, the example implementa
tion of the serial driver in the Platform Builder ignores these recommended
buffer sizes.

594 Part Ill Communications

Querying the Capabilities of the Serial Driver
The configuration functions enable you to configure the serial driver, but with
varied implementations of serial ports, you need to know just what features a
serial port supports before you configure it. The function GetCommProperties
provides just this service. The function is prototyped this way:

BOOL GetCommProperties (HANDLE hFile, LPCOMMPROP lpCommProp);

GetCommProperties takes two parameters: the handle to the opened serial
driver and a pointer to a COMMPROP structure defined as

typedef struct _COMMPROP
WORD wPacketlength;
WORD wPacketVersion;
DWORD dwServiceMask;
DWORD dwReservedl;
DWORD dwMaxTxQueue;
DWORD dwMaxRxQueue;
DWORD dwMaxBaud;
DWORD dwProvSubType;
DWORD dwProvCapabilities;
DWORD dwSettableParams;
DWORD dwSettableBaud;
WORD wSettableData;
WORD wSettableStopParity;
DWORD dwCurrentTxQueue;
DWORD dwCurrentRxQueue;
DWORD dwProvSpecl;
DWORD dwProvSpec2;
WCHAR wcProvChar[l];

COMM PROP;

As you can see from the fields of the COMMPROP structure, GetComm
Properties returns generally enough information to determine the capabilities of
the device. Of immediate interest to speed demons is the dwMaxBaud field that
indicates the maximum baud rate of the serial port. The dwSettableBaud field
contains bit flags that indicate the allowable baud rates for the port. Both these
fields use bit flags that are defined in WinBase.h. These constants are expressed
as BAUD_xxxx, as in BAUD_19200, which indicates that the port is capable of a
speed of 19.2 kbps. Note that these constants are not the constants used to set the
speed of the serial port in the DCB structure. Those constants are numbers, not
bit flags. To set the speed of a COM port in the DCB structure to 19.2 kbps, you
would use the constant CBR_19200 in the BaudRate field of the DCB structure.

Starting back at the top of the structure are the wPacketLength and
wPacketVersion fields. These fields allow you to request more information from

Chapter 12 Serial Communications 595

the driver than is supported by the generic call. The dwServiceMask field indi
cates what services the port supports. The only service currently supported is
SP _SERIALCOMM, indicating that the port is a serial communication port.

The dwMaxTxQueue and dwMaxRxQueue fields indicate the maximum
size of the output and input buffers internal to the driver. The value 0 in these
fields indicates that you'll encounter no limit in the size of the internal queues.
The dwCurrentTxQueue and dwCurrentRxQueue fields indicate the current
size for the queues. These fields are 0 if the queue size can't be determined.

The dwProvSubType field contains flags that indicate the type of serial port
supported by the driver. Values here include PST_RS232, PST_RS422, and
PST_RS423, indicating the physical layer protocol of the port. PST_MODEM
indicates a modem device, and PST_FAX tells you the port is a fax device. Other
PST_ flags are defined as well. This field reports what the driver thinks the port
is, not what device is attached to the port. For example, if an external modem
is attached to a standard, RS-232, serial port, the driver returns the PST_RS232
flag, not the PST_MODEM flag.

The dwProvCapabilities field contains flags indicating the handshaking
the port supports, such as XON/XOFF, RTS/CTS, and DTR/DSR. This field also
shows you whether the port supports setting the characters used for XON/
XOFF, parity checking, and so forth. The dwSettableParams, dwSettableData,
and dwSettableStopParity fields give you information about how the serial data
stream can be configured. Finally, the fields dwProvSpecl, dwProvSpec2, and
wcProvChar are used by the driver to return driver-specific data.

Controlling the Serial Port
You can stop and start a serial stream using the following functions:

BOOL SetCommBreak (HANDLE hFile);

and

BOOL ClearCommBreak (HANDLE hFile);

The only parameter for both these functions is the handle to the opened COM
port. When SetCommBreak is called, the COM port stops transmitting characters
and places the port in a break state. Communication is resumed with the
ClearCommBreak function.

You can clear out any characters in either the transmit or the receive
queue internal to the serial driver using this function:

BOOL PurgeComm (HANDLE hFile, DWORD dwFlags);

596 Part Ill Communications

The dwFlags parameter can be a combination of the flags PURGE_ TX CLEAR and
PURGE_RXCLEAR. These flags terminate any pending writes and reads and
reset the queues. In the case of PURGE_RXCLEAR, the driver also clears any
receive holds due to any flow control states, transmitting an XON character if
necessary, and setting RTS and DTR if those flow control methods are enabled.
Because Windows CE doesn't support overlapped 1/0, the flags
PURGE_TXABORT and PURGE_RXABORT, used under Windows XP and Win
dows Me, are ignored.

The EscapeCommFunction provides a more general method of controlling
the serial driver. It allows you to set and clear the state of specific signals on the
port. On Windows CE devices, it's also used to control serial hardware that's
shared between the serial port and the IrDA port. The function is prototyped as

BOOL EscapeCommFunction CHANDLE hFile, DWORD dwFunc):

The function takes two parameters, the handle to the device and a set of flags
in dwFunc. The flags can be one of the following values:

• SETDTR Sets the DTR signal

• CLRDTR Clears the DTR signal

• SETRTS Sets the RTS signal

• CLRRTS Clears the RTS signal

• SETXOFF Tells the driver to act as if an XOFF character has been
received

• SETXON Tells the driver to act as if an XON character has been
received

• SETBREAK Suspends serial transmission and sets the port in a
break state

• CLRBREAK Resumes serial transmission from a break state

• SETIR Tells the serial port to transmit and receive through the
infrared transceiver

• CLRIR Tells the serial port to transmit and receive through the
standard serial transceiver

The SETBREAK and CLRBREAK commands act identically to SetComm
Break and ClearCommBreak and can be used interchangeably. For example,
you can use EscapeCommFunction to put the port in a break state and
ClearCommBreak to restore communication.

Chapter 12 Serial Communications 597

Clearing Errors and Querying Status
The function

BOOL ClearCommError (HANDLE hFile, LPDWORD lpErrors, LPCOMSTAT lpStat);

performs two functions. As you might expect from the name, it clears any error
states within the driver so that I/0 can continue. The serial device driver is
responsible for reporting the errors. The default serial driver returns the follow
ing flags in the variable pointed to by lpErrors: CE_OVERRUN, CE_RXPARITY,
CE_FRAME, and CE_TXFULL. C!earCommError also returns the status of the
port. The third parameter of ClearCommError is a pointer to a COMSTAT struc
ture defined as

typedef struct _COMSTAT
DWORD fCtsHold : l;
DWORD fDsrHold : l;
DWORD fRlsdHold 1;
DWORD fXoffHold 1;
DWORD fXoffSent l;
DWORD fEof : 1;
DWORD fTxim : l;
DWORD fReserved 25;
DWORD cbinQue;
DWORD cbOutQue;

COMSTAT;

The first five fields indicate that serial transmission is waiting for one of
the following reasons. It's waiting for a CTS signal, waiting for a DSR signal,
waiting for a Receive Line Signal Detect (also known as a Carrier Detect), wait
ing because an XOFF character was received, or waiting because an XOFF char
acter was sent by the driver. The JEor field indicates that an end-of-file character
has been received. ThefI'xim field is TRUE if a character placed in the queue by
the TransmitCommChar function instead of a call to WriteFile is queued for
transmission. The final two fields, cblnQue and cbOutQue, return the number
of characters in the input and output queues of the serial driver.

The function

BOOL GetCommModemStatus (HANDLE hFile, LPDWORD lpModemStat);

returns the status of the modem control signals in the variable pointed to by
lpModemStat. The flags returned can be any of the following:

• MS_CTS_ON Clear to Send (CTS) is active.

• MS_DSR_ON Data Set Ready (DSR) is active.

• MS_RING_ON Ring Indicate (RI) is active.

• MS_RLSD_ON Receive Line Signal Detect (RLSD) is active.

598 Part Ill Communications

Stayin' Alive
One of the issues with serial communication is preventing the system from
powering down while a serial link is active. A Windows CE system has three
different timeout values that suspend the system, including a time since the user
last pressed a key or tapped the screen. Because a communication program can
run unattended, the program might need to prevent the auto-suspend feature of
Windows CE from suspending the system. I cover this topic in the "Preventing
the System from Powering Down" section in Chapter 21.

The CeChat Example Program
The CeChat program is a simple point-to-point chat program that connects two
Windows CE devices using any of the available serial ports on the device. The
CeChat window is shown in Figure 12-1. Most of the window is taken up by the
receive text window. Text received from the other device is displayed here.
Along the bottom of the screen is the send text window. If you type characters
here and either hit the Enter key or tap the Send button, the text is sent to the
other device. The combo box on the command bar selects the serial port to use.

Figure 12-1 The CeChat window

Chapter 12 Serial Communications 599

The source code for CeChat is shown in Listing 12-1. CeChat uses three
threads to accomplish its work. The primary thread manages the window and
the message loop. The two secondary threads handle reading from and writing
to the appropriate serial port.

CeChat.rc
II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
#include "windows.h"
#include "CeChat.h" II Program-specific stuff
11--
11 Icons and bitmaps
II
ID_ICDN ICON "CeChat. ico" II Program icon

11--
11 Menu
II
ID_MENU MENU DISCARDABLE
BEGIN

ENO

POPUP "&File"
BEGIN

MENUITEM "E&xit",
END
POPUP "&Help"
BEGIN

MENUITEM "&About ... ",
END

IDM_EXIT

IDM_ABOUT

11--
11 Accelerator table
II
ID_ACCEL ACCELERATORS OISCAROABLE
BEGIN

"Q". I.OM_EXIT, VIRTKEY, CONTROL, NO INVERT
"S", ID_SENDBTN, VIRTKEY, ALT
VK_RETURN, rn_SENDBTN, VIRTKEY

END

Listing 12-1 The CeChat source code (continued)

600 Part Ill Communications

Listing 12·1 (continued)

II i· •· · •··· ·• · · ----•.:- • ----- • ------• ----· ---~:.
· fl AbouJ box dfa]og template_
If

·. aboUtbox DIA.LOG' 1ff~cardable }0. 10, 13$, 40
STYLE :ws.:..P9.PuP 1 ws~v rs IBLE 1 ws"'"cAPno:N 1 .wss~sMENu
. '/ \ OlL.MODAL.FRAME .·
cAPTIO~ ''About''. : . BEGIN ·,·.

ICON ID_lcoN'.·· . -1, 3 •. · 5; :10, 10
{T'.EXT "CeChat. -Written for the booK P:rog'ramming Windows \

· · C£ Copyrtgh~ 20.0.3 ·Douglas Bolf lr!f' ·
"l •. :30. 5. 102, 37

END

·. lfi. Header. file· It.>: ,• .·

. 11. __ W.r}tte~_-. fort.b.e •. b9.o.lc Progr~n1min9. windO\'IS.
/tc~opydght CC) 2003'noug1as Bolin{ ·
:·/1~#:,~:=~~-~~~+~~~~~TT~~-~-~~~~~~~~~~~~·~~,-~:~-,~~~~-,~~·=:~~,~·~~~~~~~,;:7'~~=:;=~: .

. sj:ru.c.r.aecod:etMli> {
.. UlNT Code: .

. 4RESULT C*f)n) (HWND·,
· .. };· . / · ...
Ji~.:..~~ •. :. --

:·1l S~n~r'i9. define$_. used-by applfcat.10.n

;:~~::~~~-:'. '~~i~~~-~-. . . } . . .
.:#_d_~f!n~ ·· Jb~Aqct~
fld.eftne ·: illc~cl>lDBAR

.•· l'kd~ft~.~ .. fo_i~cVTE'XT
"{tde.fi)'.le.. .10.2.si:~DTEXT
fd.~flne . ·. I.D~S.ENDBTN

,. , '·'· , '

/t App icon r.esa:urce .IO
·11 Menu resoU:rc;_e_lD' ····
I l Accel. tab le. r·o
11 .. colllm~;,d biln9°10· ·
II Receive text .bo~
lt send text:box'
// Send bt1tto.n

Chapter 12 Serial Communications

II Menu i tern IDs
fldefi ne IDM_EXIT l

f/defi ne IDM_USECOM 110 II Use COM.
f/defi ne IDM_ABOUT 120 II Help menu

II Command bar IDs
{/define 1Dc_coMPORT 150 II COM port comb~ box
ftdefi ne IDLBAUDRATE 151 II Baud rate combo box

#define TEXTSIZE 256
11----------··----·······-·-··--·······-··-························-----
ll Function prototypes
II
DWORD WINAPI ReadThread (PVOID pArg):
DWORD WINAPI SendThread CPVOID pArg):
HANDLE InitCommunication (HWND, LPTSTR):
int FillComComboBox CHWND):

HWND Initihstance CHlNSTANCE/ ~PWSTR, int):
irlt lerminstance <HINSTANCE, int>:

II Window procedures
LRESULT .CALLBACK MainWndProc (HWNO, UJNT, WPARAM •. LPARAMl; .

I I Message handlers · .. ·.· .. ·. ·• ···
LRESULT DoCreateMa1n CHWND, UINT, WPARAM, LPARAM):
LReSULT D6SizeMa1n CHW.NO, urn. WPARAM, LPARAM):
LRESUL T DbSetFocusMai n CHWND. UI NT, WPARAM, LPARAM):
LRESULT DoPocketPCShell (HWND, UIN.T, WPARAM, LPARAM):
LRESULT DoCommandMain (HWNO, UINT, WPARAM, LPARAMl:
LRESULT DoDestroyMain CHWND, UINT, WPARAM, LPARAM):
II Command functions
LPARAM DoMainCommandExit (HWNO, WORD, HWND, WORD):
LPARAM DoMainCommandComPort (HWND, WORD, HWND, WORD):
LPARAM DoMainCommandSendText (HWNO,WORD, HWND, WORD):
LPARAM DoMai n.Com:mandAbout (HWNO, WORD, HWNO, WORD):

II Dialog procedures
BOOL CALLBACK AboutDlgProc CHWND, UINT, WPARAM, LPARAMl:
BOOL CALLBACK EditAlbumDlgProc (HWND. UINT, WPARAM •. UARAM>:

CeChat.cpp
I l===========••=;i:=============================••=====;•===·=============-=====!=====
II CeChat - A Windows CE communication demo
II
II Written for the book Programming Windows CE
II Copyright (CJ 2003 Douglas Boling

601

(continued)

602 Part Ill Communications

Listing 12-1 (continued)

Chapter 12 Serial Communications 603

int WINAPI WinMain CHINSTANCE hinstance, HINSTANCE hPrevinstance,
LPWSTR lpCmdLine, int nCmdShow) {

}

HWND hwndMain;
HACCEL hAccel;
MSG msg:
int re = 0:

II Initialize this instance.
hwndMain = Initinstance (hlnstance, lpCmdLine, nCmdShowl;
if ChwndMain == 0)

return 0x10;

II Load accelerator table.
hAccel = LoadAccelerators (hinst, MAKEINTRESOURCE (lD_ACCEL));

II Application message loop
while CGetMessage C&msg, NULL. 0, 0)) {

if (!TranslateAccelerator (hwndMain, hAccel, &msg)) {
TranslateMessage C&msg):
DispatchMessage C&msg):

II Instance cleanup
return Terminstance (hinstance, msg.wParam):

11--
11 Initinstance - Instance initialiiation
II
HWND Initlnstance CHINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow){

HWND hWnd;
HANDLE hThread;
WNDCLASS we:
INITCOMMONCONTROLSEX icex;

II Save program instance handle in global variable.
hinst = hinstance:

#if defined(WIN32_PLATFORM_PSPC)
II If Pocket PC. allow only one instance of the application.
HWND hWnd = FindWindow (szAppName, NULL);
if (hWnd) {

SetForegroundWindow ((HWND)(((OWORD)hWnd) I 0x01)):
return 0;

/Jendi f
II Register application main window class.

we.style = 0;
wc.lpfnWndProc = MainWndProc:

II Window style
II Callback function

(continued)

604 Part Ill Communications

Listing 12·1 (continued)

.we :clldl s'Extl'i·a ,,. 0• > ··· · .I I .E'xtfa clas~ data
: wc::e:liwnC!Ext~a ,. :e:; ·.. . fl Extra· wi nd(>w data .
w~,htrrsh:n·~i!."" .·M~$:~~n¢~; .. . , . ..· It owner. h••H1dJe.

.. · wc,hre;on !'!;.~l,tLL: ' .. •:· ··· :· .. i> ii ... ·· ..)/App11cat1,on icon
we. hCur.sor:c .. :toadCu.rso~. ·.· (tfo1;.L,:l:Pc::.:ARRoWl,·:I/ ... Defaul. t· cu.rs or·

. ···. wc.~br~ackgrbuttil ~.(HS RUSH) ~etStO~kQ.bJeqt (WHITLBRUSH):
· we•. tP.$tM·~~u.~aiii·e: =. NUtt.i . <. . ' • : • • • fl Menu ri!ime ·• ·
wc.li)szclas~Name.;.;, $tAppName: 11 Window class name

', ,·· ' "

H CR~gisterC}ass C&wc) == .0) .retorn 0:

// Load the comma.nd bar comm~n control ~1.ass.
· i cex. dwSi ze =' s i zeof CINITCOMMONCONTROLSEX):
.1 cex. ~wICC ,=' ICC_BA~CL~SSES:
lt'litCommonGorltrol sEx 'f~1c.i;ixJ: . ' . .

f 1 create ·unnam~d ali.to~reset :event 1 r11'~1 $11.Y faJse. ·
.. g_hSendEvent = CreateEveQt (N,ULL. FALSE. FALSE, .NULL);
. ·'•' ... \, ;·· ·' •',·, .. : .,_, '' ' ',,:1" 1::·.":,' :'! ,.

I• oe '
0
•

II Create· m1atn window •. ,.
hWnd .. Creat.e~.1nd6w (st~ppN~me, TE.l<J (11CeChat"). ·' ..

ws-.v I,sraq. c.w ... JSED.~FAU LT.. .cW:..US.EDEFAULT.
ccw:..usE.bEFA\:JLT+. cw .. usEoEFALJ.Lt, Nuu; ·

... ·• NUL:I... hfnstan.t::e:,. NuG~l: ·
.. ·. // Ret1;1tn' ;~~~'l.~o<!~;i,~,· ~ipdow ··rot: ~re~t.e<! ..

. H OlsWindow·{hWnd)) return '0: · · ··

Ii Create write thread.· ~ead thread cre.ated when. p·ort opened.
hThr~~d.·>~·r~ateTtl~e'ad (N,(JLL,·0 .• $endTh~ead: hWnd, 0 .. NUl.,Ll:

.1 f (hThr.ead.) ' ..
•·· c1bsetia:iici'1e (hThreact>:

else { : . ,
· Oestro.YW1ndow (hWnd);
. return 0:

}
II $ta.ndard J;how and.update calls
Sh~wWindow (hWnd, nCmdShowl:
UpdateWindow (hWnd):.
return hWnd:

I I T.ermlr:rstanc.e ·~ Progrilm cJ eanup II . . '

'irit Termin$tance (HINSTAflCE .hlnstance', 1n.t nDefRC> {
HANDLE hPort = hCo.niPort; .

fCorit1nue·~· FALSh

Chapter 12 Serial Communications 605

hComPort = INVALID_HANDLE_VALUE;
if (hPort != INVALID_HANDLE_VALUE)

CloseHandle (hPort);

if (g_hSendEvent != INVALID_HANDLE_VALUE)
PulseEvent (g_hSendEvent);
Sleep(100);
CloseHandle (g_hSendEvent);

return nDefRC;

II==
II Message handling procedures for MainWindow
11--
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
int i:
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[iJ.Code)
return (*MainMessages[iJ.Fxn)(hWnd, wMsg, wParam, lParam);

return DefWindowProt (hWnd, wMsg, wParam, lParam);

11---------------------------------------~------------------------------
ll DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
HWND hwndCB, hCl, hC2, hC3;
int i:
TCHAR szFirstDev[32];
LPCREATESTRUCT lpcs = (LPCREATESTRUCT) lParam;

#if defined(WIN32_PLATFORM_PSPC) && (_WIN32_WCE >= 300)
memset (&sai, ~· sizeof (sat));
sai .cbSize = sizeof (sail;
{

SHMENUBARINFO mbi; II For Pocket PC, create
memset(&mbi, 0, sizeof(SHMENUBARINFO)); II menu bar so that we
mbi.cbSize = sizeof(SHMENUBARINFO); II have a sip button.
mbi.hwndParent = hWnd;
mbi .dwFlags = SHCMBF_EMPTYBAR;

(continued)

606 Part Ill Communications

Listing 12-1 (continued)

sfitreateMentiBarC&l!l!J1);'·
SetWJndowN.s CHWnd. ~{·0, 0,

. ··•·•.·· swe..:~oZO!\hER j
}

#erid1 f

II Crea.ta a. command liar ...
hwndCB = ColllmandS"ar..:Create (hinst, hWnd, wc_cMDBAtU:
CommirndBar_InsertMehubar (hwndCB; hlnst, rn.:_.MENU, 0);

. /1.Iri~ert the ~.OM port combo •box.
·C®tniahdB~r_tnsertComboBox (hwndCB. hrnst. 140. CBS_OROPOOWNLIST.

IDC...:COMPORT, 1) :

FfllComC~m.boBox (hWndl:
._--._.-\. '.,-, .. ;:._, , ' -~

.:·h.:AdHexifJ>uttonto command bar.
·.·. comina:hdsar:..ActdAdol'nments < hwndCB. 0. 0 >:

.··}~!•·cr~'ate ·.ch";ld wi.ndows. They 'win. 'positio~ed in

.:· ... /.·~~/:e·t~:8;~:~~~~:~~~xt w1 nctow.

Chapter 12 Serial Communications 607

SendDlgitemMessage (hwndCB, IDC_COMPORT, CB_SETCURSEL, i,
(LPARAM)szFirstDev);

break;

return 0;

11--
11 DoSizeMain - Process WM_SIZE message for window.
II
LRESULT DoSizeMain (HWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam){

RECT rect;

II Adjust the size of the client rect to take into account
II the command bar height.
GetClientRect (hWnd, &rect);
rect.top += CommandBar_Height (GetDlgltem (hWnd, IDC_CMDBAR));

SetWindowPos (GetDlgitem (hWnd, ID_RCVTEXT), NULL, rect.left,
rect.top, (rett.right - rect.left),
rect.bottom - rect.top ~ 25, SWP_NOZORDERl:

SetWindowPos (GetDlgitem (hWnd, ID_SENDTEXTJ, NULL, rect.left,
rect.bottom - 25, (rect.right - rect.left) - 50,
25, SWP_NOZOROER);

SetWindowPos (GetDlgitem (hWnd, ID_SENDBTN), NULL,

return 0;

(rect.right - rect.left) - 50, rect.bottom - 25,
50, 25, SWP _NOZORDER);

11--
11 DoPocketPCShell - Process Pocket PC required messages.
II
LRESULT DoPocketPCShell (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
#if defined(W!N32_PLATFORM_PSPC) && (_WIN32_WCE >= 300)

if (wMsg== WM_SETTINGCHANGE)
return SHHandleWMSettingChange<hWnd, wParam, lParam, &sai);

if (wMsg == WM~ACTIVATE)
return SHHandleWMActivate(hWnd, wParam, lParam, &sai, 0);

ffendif
return 0:

II--- ---------------- ---
11 DoFocuSMaih - Process WM_SETFOCUS message for window.
II
LRESUL T DoSetFocusMai n (HWND hWnd, U INT wMsg, WP A RAM wPa ram,

LPARAM lParam) {
SetFocus (GetDlgltem (hWnd, ID_SENDTEXT));

(continued)

608 Part Ill Communications

Listing 12-1 (continued)

return 0;

11------------c-----c-----------------~---'~---'---c----------------c-~-

// DoCommandMain c Process WM~COMMAND message for window.
II
LRESULT DoCommandMain (HWND hWnd, lJINT wMsg, WPARAM wParam,

}

LPARAM lParam} {
WORD idJtem, wNotifyCode;
HWND hWndCtl;
int i ;

I I Parse the .. parameters.
id Item = (WORD) LOWORD (wParam);
wNotifyCode = (WORD) HIWORD
hwndCt1 = (HWND) lParqm;

// Cal 1 routine to handle control message ..
for (i = 0; i. < diinCMa1nCommandite111s); i++)

if (idltem "'"" Mai.nCommanditemsliJ. Code)
return

return 0:

11 DoMai nCommandExit - Process
II
LPARAM DoMainCommandfxit (HWND

WORD WNotifyCode)
(hWnd, WM..,.CLOSE; 0, 0);

return
}

// - ' - c ' - " -

fl DoMafnCommandComPort - Process the COM port co~bo
II
LPARAM DoMainC.ommandComPort (HWND hWnd, WORD i.ditem,

WORD wNot i fyCod.e) {

Chapter 12 Serial Communications 609

int i ;
TCHAR szDev[32];

if (wNotifyCode == CBN_SELCHANGE) {
i = SendMessage (hwndCtl, CB_GETCURSEL, 0, 0);
if (i != nLastDev) {

SendMessage (hwndCtl, CB_GETLBTEXT, i, (LPARAM)szDev);
InitCommunication (hWnd, szDev);
SetFocus CGetDlgltem (hWnd, ID_SENDTEXT));

return 0;

II-- ------ -
II DoMainCommandSendText - Process the Send text button.
II
LPARAM DoMainCommandSendText (HWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

II Set event so that sender thread will send the text.
SetEvent (g_hSendEventl;
SetFocus (GetDlgltem (hWnd, ID_SENDTEXT));
return 0;

11--

11 DoMainCommandAbout - Process the Help I About menu command.
II
LPARAM DoMainCommandAbout(HWND hWnd, WORD idltem, HWND hwndCtl.

WORD wNotifyCode) {
II Use DialogBox to create modal dialog.
DialogBox (hlnst. TEXT ("aboutbox"), hWnd, AboutDlgProc);
return 0;

II==
II About Dialog procedure
II
BOOL CALLBACK AboutDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {
switch CwMsg) {

case WM_COMMAND:
switch CLOWORD (wParam))

case !DOK:

break;

case IDCANCEL:
EndDialog (hWnd, 0);
return TRUE;

(cuntinued)

610 Part Ill Communications

Listing 12-1 (continued)

Chapter 12 Serial Communications 611

}

GetCommState (hLoeal, &deb):
deb.BaudRate = nSpeed:
deb.fParity = FALSE:
deb.fNull = FALSE:
deb.StopBits = ONESTOPBIT:
deb.Parity= NOPARITY:
deb.ByteSize = 8:
SetCommState (hLoeal. &deb);

II Set the timeouts. Set infinite read timeout.
cto.ReadlntervalTimeout = 0:
eto.ReadTotalTimeoutMultiplier = 0:
cto.ReadTotalTimeoutConstant = 0;
eto.WriteTotalTimeoutMultiplier = 0;
cto.WriteTotalTimeoutConstant = 0:
SetCommTimeouts (hLocal, &ctol:

wsprintf (szDbg, TEXT ("Port %s opened\r\n"), pszDevName);
SendDlgitemMessage ChWnd, ID_RCVTEXT, EM_REPLACESEL, 0,

I LPARAM)szDbg);

II Start read thread if not already started.
hComPort = hLocal;
if (!GetExitCodeThread ChReadThread, &dwTStat) 11

(dwTStat != STILL_ACTIVEll {

}

else

hReadThread = CreateThread !NULL, 0, ReadThread, hWnd,
0, &dwTStatl:

if ChReadThread)
CloseHandle ChReadThreadl:

wsprintf (szDbg, TEXT ("Couldn\'t open port Is. re=%d\r\n"l,
pszDevName, GetLastError());

SendDlgltemMessage (hWnd, ID_RCVTEXT, EM_REPLACESEL,
0, (LPARAM)szDbg);

return hComPort:

II==============,.,..==
II SendThread - Sends characters to the serial port
II
DWORD WINAPI SendThread (PVOID pArg) {

HWND hWnd, hwndSText;
int re:
DWORD cBytes:
TCHAR szText[TEXTSIZEJ:

(continued)

612 Part Ill Communications

Listing 12·1 (continued)

hWnd = CHWND)J>Arg:
hWndSText = GetDlgrtem (hWnd, ID._SENDTEXT>;
whtle (l){

}

re =;WaHForstngle.Object (g_h$.endEVent, lHJINITE);
if (re :=. WAlLOBjECL0) {

if C!fContihue)

bre11k;
JI Disabl~·send button:whtle sending.
Enabl eWi ndow (GetDlgitem (hWnd, ID_SENDBTN), FALSE);

GetWfodowText·(hwndSText, szText, dim(szText));
lstreat (szText; TEXT ("\r\n~)l;

re"' WriteF1le (hComPort, szText.
lstrlen (szText)*sizeof CTCHAR),&cBytes, 0);

if (re) {

:}

I I Copy sen.t text to output window .
. SendDl gitemMessage (hWnd. lD_RCVTEXT. EM_REPLACESEL •. 0.

(LPARAM'nEXT (" >"));
SetWfod~wText (hwndSText, TEXT ('"')): I/ Cl ear text box

else'{ . . ·

. ./ l E1 se .• print error: ~essage,
wsprintf (szText. TEXT C"Send failed rc,;;%d\r\n"J.

. . .Getl.;astError< l):
DWORD dwErr = 0:
CQMSTAT Stat; .··

if (Cl earcommE.rror (tiComPort, &dwErr, &Stat)) {
printf C"fail\n");

lr P\At text fo receive text box:
SenqDlg rtemMessaQe c hWnd:, t·D-'-RcVTEXT' EM:..REP LACESEL' 0.

(LPARAM)szTextl;

EnableWfndow (GetDl gitem ChWnd. rrCSENDBTN). TRUE):
} elSe.

break:

return 0:

I /~.=;::;::=:==r=====,=::::::;:=;:;~====i;:====~======.====i;=;:~=:=:;:====::s:;:=====:;;=:;:====::::::=:===$l~=:::;===
//. ReadTh.read ~ Recei Ves character.s from the serial port

II
DWORD WI NAP(Readthread (PVOID pArg) .{

HWND hWnd:
DWORD:·cBytes, f;
BYTE szText[TEXTSIZE], *pPtr:
TCHAR tch; . .

hWnd = (HWNDlpArg;
while (fContinue) {

tch = 0;
pPtr = szText;

Chapter 12 Serial Communications 613

for (i = 0; i < sizeof (szText)-sizeof (TCHAR); i++) {

while (!ReadFile (hComPort, pPtr. 1, &cBytes. 0))
if (hComPort == INVALID_HANDLE_VALUE)

return 0;

II This syncs the proper byte order for Unicode.
tch = Ctch << 8) & 0xff00;
tch I= *pPtr++;
if (tch ==TEXT ('\n'))

break;

*PPtr++ = 0; II Avoid alignment problems by addressing as bytes.
*pPtr++ = 0;

II If out of byte sync, move bytes down one.
if (i % 2) {

}

pPtr = szText;
while (*pPtr I I *(pPtr+l))

*PPtr = *(pPtr+l);
pPtr++;

*PPtr = 0;

SendDlgitemMessage (hWnd, ID_RCVTEXT, EM_REPLACESEL, 0,
(LPARAM)szTextl;

return 0;

When the CeChat window is created, it sniffs out the three port names
using the methods I described earlier in the chapter. The combo box is then
filled, and an attempt is made to open one of the COM ports. Once a port is
opened, the read thread is created to wait on characters.

The send thread is actually quite simple. All it does is block on an event
that was created when CeChat was started. When the event is signaled, it reads
the text from the send text edit control and calls WriteFile. Once that has com
pleted, the send thread clears the text from the edit control and loops back to
where it blocks again.

Serial communication is a rather basic but important mode of communica
tion on Windows CE devices. In the next chapter, we'll look at networking and
how to use the WNet API to communicate over a network.

Windows CE Networking
Networks are at the heart of modern computer systems. Over the years,
Microsoft Windows has supported a variety of networks and networking APis.
The evolving nature of networking APis along with the need to keep systems
backward compatible has resulted in a huge array of overlapping functions and
parallel APis. As in many places in Windows CE, the networking API is a subset
of the vast array of networking functions supported under Windows XP. This
chapter covers the Windows Networking APL This API supports basic network
connections so that a Windows CE device can access disks and printers on a
network.

Windows Networking Support
The WNet API is a provider-independent interface that allows Windows appli
cations to access network resources without regard for the network implemen
tation. The Windows CE version of the WNet API has fewer functions but
provides the basics so that a Windows CE application can gain access to shared
network resources, such as disks and printers. The WNet API is implemented
by a "redirector" DLL that translates the WNet functions into network com
mands for a specific network protocol.

By default, the only network supported by the WNet API is Windows Net
working. Support for even this network is limited by the fact that redirector files
that implement Windows Networking aren't bundled with some Windows CE
devices. For the WNet API to work, the redirector DLLs must be installed in the
\windows directory. In addition, the network control panel, also a supplemen
tary component on some systems, must be used to configure the network card
so that it can access the network. If the redirector DLLs aren't installed, or an

615

616 Part Ill Communications

error occurs when you're configuring or initializing the network adapter, the
WNet functions return the error code ERROR_NO_NETWORK.

WNet Functions
As with other areas in Windows CE, the WNet implementation under Windows
CE is a subset of the same API on the desktop, but support is provided for the
critical functions, while the overlapping and obsolete functions are eliminated.
For example, the standard WNet API contains four different and overlapping
WNetAddConnection functions, while Windows CE supports only one,
WNetAddConnection3.

Conventions of UNC
Network drives can be accessed in one of two ways. The first method is to
explicitly name the resource using the Universal Naming Convention (UNC)
naming syntax, which is a combination of the name of the server and the
shared resource. An example of this is \ \.BJGSRVR\DRVC, where the server
name is BIGSRVR and the resource on the server is named DRVC. The leading
double backslashes immediately indicate that the name is a UNC name. Direc
tories and filenames can be included in the UNC name, as in \\big
srvr\drvc\dir2Vilel .ext. Notice that I changed case in the two names. That
doesn't matter because UNC paths are case insensitive.

As long as the WNet redirector is installed, you can use UNC names wher
ever you use standard filenames in the Windows CE API. You'll have problems,
though, with some programs, which might not understand UNC syntax.

Mapping a Remote Drive
To get around applications that don't understand UNC names, you can map a
network drive to a local name. When a network drive is mapped on a Windows
CE system, the remote drive appears as a folder in the \network folder in the
object store. The \network folder isn't a standard folder; in fact, in early ver
sions of Windows CE, it didn't even show up in the Explorer. (For current sys
tems, the visibility of the \network folder depends on a registry setting that's
usually enabled.) Instead it's a placeholder name by which the local names of
the mapped network drives can be addressed. For example, the network drive
\ \.BigSrvr\DrvC could be mapped to the local name JoeBob. Files and directo
ries on \ \.BigSrvr\DrvC would appear under the folder \network\joebob. The
local name can't be represented as a drive letter, such as G, since Windows CE
doesn't support drive letters.

I mentioned that the \network folder is a virtual folder; this needs further
explanation. If you use the FindFirstFile/ FindNextFile process to enumerate the

Chapter 13 Windows CE Networking 617

directories in the root directory, the \network directory might not be enumer
ated. However, FindFirstFile/FindNextFile enumerates the mapped resources
contained in the \network folder. So if the search string is \'".*to enumerate the
root directory, the \network folder might not be enumerated, but if you use
\network\·•.* as the search string, any mapped drives will be enumerated.

In Windows CE, the visibility of the \network folder is controlled by a reg
istry setting. The \network folder is visible if the DWORD value RegisterFSRoot
under the key [HKELLOCAL_MACHINEJ\comm\redir exists and is set to a
nonzero value. Deleting this value or setting it to 0 hides the \network folder.

The most direct way to map a remote resource is to call this function:

DWORD WNetAddConnection3 (HWND hwndOwner, LPNETRESOURCE lpNetResource,
LPTSTR lpPassword, LPTSTR lpUserName,
DWORD dwFlags);

The first parameter is a handle to a window that owns any network sup
port dialogs that might need to be displayed to complete the connection. The
window handle can be NULL if you don't want to specify an owner window.
This effectively turns the WNetAddConnection3 function into the
WNetAddConnection2 function supported under other versions of Windows.

The second parameter, lpNetResource, should point to a NETRESOURCE
structure that defines the remote resource being connected. The structure is
defined as

typedef struct _NETRESOURCE
DWORD dwScope;
DWORD dwType;
DWORD dwDisplayType;
DWORD dwUsage;
LPTSTR lplocalName;
LPTSTR lpRemoteName;
LPTSTR lpComment;
LPTSTR lpProvider;

NETRESOURCE;

Most of these fields aren't used for the WNetAddConnection3 function and
should be set to 0. All you need to do is specify the UNC name of the remote
resource in a string pointed to by lpRemoteName and the local name in a string
pointed to by lpLocalName. The local name is limited to 99 characters in length.
The other fields in this structure are used by the WNet enumeration functions
that I'll describe shortly.

You use the next two parameters in WNetAddConnection3, lpPassword
and lpUserName, when requesting access from the server to the remote device.
If you don't specify a user name and Windows CE can't find user information

618 Part Ill Communications

for network access already defined in the registry, the system displays a dialog
box requesting the user name and password. Finally, the dwFlags parameter
can be either 0 or the flag CONNECT_UPDATE_PROFJLE. When this flag is set,
the connection is dubbed persistent. Windows CE stores the connection data for
persistent connections in the registry. Unlike other versions of Windows, Win
dows CE doesn't restore persistent connections when the user logs on. Instead,
the local name to remote name mapping is tracked only in the registry. If the
local folder is later accessed after the original connection was dropped, a recon
nection is automatically attempted when the local folder is accessed.

If the call to WNetAddConnection3 is successful, it returns NO_ERROR.
Unlike most Win32 functions, WNetAddConnection3 returns an error code in
the return value if an error occurs. This is a nod to compatibility that stretches
back to the Windows 3.1 days. You can also call GetLastError to return the error
information. As an aside, the function WNetGetLastError is supported under
Windows CE, but it's just an alias for GetLastError, so you can call that function
if compatibility with other platforms is important.

The other function you can use under Windows CE to connect a remote
resource is WNetConnectionDialogl. This function presents a dialog box to the
user requesting the remote and local names for the connection. The function is
prototyped as

DWORD WNetConnectionDialogl (LPCONNECTDLGSTRUCT lpConnectDlgStruc);

The one parameter is a pointer to a CONNECTDLGSTRUCT structure defined as
the following:

typedef struct
DWORD cbStructure;
HWND hwndOwner;
LPNETRESOURCE lpConnRes;
DWORD dwFlags;
DWORD dwDevNum;

CONNECTDLGSTRUCT;

The first field in the structure is the size field and must be set with the size
of the CONNECTDLGSTRUCTstructure before you call WNetConnectionDialogl.
The hwndOwner field should be filled with the handle of the owner window
for the dialog box. The lpConnRes field should point to a NETRESOURCE struc
ture. This structure should be filled with zeros except for the lpRemoteName
field, which may be filled to specify the default remote name in the dialog. You
can leave the lpRemoteName field 0 if you don't want to specify a suggested
remote path.

The dwFlags field can either be 0 or be set to the flag CONNDLG_RO_PAm.
When this flag is specified, the user can't change the remote name field in the

Chapter 13 Windows CE Networking 619

dialog box. Of course, this requirement means that the lpRemoteName field in
the NETRESOURCE structure must contain a valid remote name. Windows CE
ignores the dwDevNum field in the CONNECTDLGSTRUCT structure.

When the function is called, it displays a dialog box that allows the user to
specify a local name and, if not invoked with the CONNDLG_RO_PAlliflag, the
remote name as well. If the user taps on the OK button, Windows attempts to
make the connection specified. The connection, if successful, is recorded as a
persistent connection in the registry.

If the connection is successful, the function returns NO_ERROR. If the user
presses the Cancel button in the dialog box, the function returns -1. Other
return codes indicate errors processing the function.

Disconnecting a Remote Resource
You can choose from three ways to disconnect a connected resource. The first
method is to delete the connection with this function:

DWORD WNetCancelConnection2 (LPTSTR lpName, DWORD dwFlags,
BOOL fForce);

The lpName parameter points to either the local name or the remote network
name of the connection you want to remove. The dwFlags parameter should be
set to 0 or CONNECT_UPDATE_PROF/LE. If CONNECT_UPDATE_PROFILE is set,
the entry in the registry that references the connection is removed; otherwise,
the call won't change that information. Finally, the }Force parameter indicates
whether the system should continue with the disconnect, even if there are open
files or print jobs on the remote device. If the function is successful, it returns
NO_ERROR.

You can prompt the user to specify a network resource to delete using this
function:

DWORD WNetDisconnectDialog CHWND hwnd, DWORD dwType);

This function brings up a system-provided dialog box that lists all connections
currently defined. The user can select one from the list and tap on the OK but
ton to disconnect that resource. The two parameters for this function are a han
dle to the window that owns the dialog box and dwType, which is supposed to
define the type of resources-printer (RESOURCETYPE_PRIN1) or disk
(RESOURCETYPE_DJSK)-enumerated in the dialog box. However, some sys
tems ignore this parameter and enumerate both disk and print devices. This dia
log, displayed by WNetDisconnectDialog, is actually implemented by the
network driver. So it's up to each OEM to get this dialog to work correctly.

620 Part Ill Communications

A more specific method to disconnect a network resource is to call

DWORD WNetDisconnectDialogl CLPDISCOLGSTRUCT lpDiscDlgStruc);

This function is misleadingly named in that it won't display a dialog box if all
the parameters in DISCDLGSTRUCT are correct and point to a resource not cur
rently being used. The dialog part of this function appears when the resource is
being used.

DISCDLGSTRUCT is defined as

typedef struct {
DWORD cbStructure;
HWND hwndOwner;
LPTSTR lplocalName;
LPTSTR lpRemoteName;
DWORD dwFlags;

DISCDLGSTRUCT;

As usual, the cbStructure field should be set to the size of the structure.
The hwndOwner field should be set to the window that owns any dialog box
displayed. The lpLocalName and lpRemoteName fields should be set to the local
and remote names of the resource that's to be disconnected. Under current
implementations, lpLocalName is optional, while the lpRemoteName field must
be set for the function to work correctly. The dwFlags parameter can be either
0 or DISC_NO_FORCE. If this flag is set and the network resource is currently
being used, the system simply fails the function. Otherwise, a dialog appears
asking the user if he or she wants to disconnect the resource even though the
resource is being used. Under the current implementations, the
DISC_NO_FORCE flag is ignored.

Enumerating Network Resources
It's all very well and good to connect to a network resource, but it helps if you
know what resources are available to connect to. Windows CE supports three
WNet functions used to enumerate network resources: WNetOpenEnum,
WNetEnumResource, and WNetCloseEnum. The process is similar to enumerat
ing files with FileFindFirst, FileFindNext, and FileFindClose.

To start the process of enumerating network resources, first call the
function

DWORD WNetOpenEnum (DWORD dwScope, DWORD dwType, DWORD dwUsage,
LPNETRESOURCE lpNetResource,
LPHANDLE lphEnum);

The first parameter, dwScope, specifies the scope of the enumeration. It can be
one of the following flags:

Chapter 13 Windows CE Networking 621

• RESOURCE_CONNECTED Enumerate the connected resources.

• RESOURCE_REMEMBERED Enumerate the persistent network
connections.

• RESOURCE_GLOBALNET Enumerate all resources on the net
work.

The first two flags, RESOURCE_CONNEC1ED and RESOURCE_REMEMBERED,
simply enumerate the resources already connected on your machine. The dif
ference is that RESOURCE_CONNECTED returns the network resources that are
connected at the time of the call, while RESOURCE_REMEMBERED returns
those that are persistent regardless of whether they're currently connected.
When either of these flags is used, the dwUsage parameter is ignored and the
lpNetResource parameters must be NULL.

The third flag, RESOURCE_GLOBALNET, allows you to enumerate
resources-such as servers, shared drives, or printers out on the network-that
aren't connected. The dwType parameter specifies what you're attempting to
enumerate-shared disks (RESOURCETYPE_DISK), shared printers
(RESOURCETYPE_PRJNT), or both (RESOURCETYPE_ANY).

You use the third and fourth parameters only if the dwScope parameter is
set to RESOURCE_GLOBALNET The dwUsage parameter specifies the usage of
the resource and can be 0 to enumerate any resource, RESOURCEUSAGE_
CONNECTABLE to enumerate only connectable resources, or RESOURCE
USAGE_CONTAINER to enumerate only containers such as servers.

If the dwScope parameter is set to RESOURCE_GLOBALNET, the fourth
parameter, lpNetResource, must point to a NETRESOURCE structure; otherwise,
the parameter must be NULL. The NETRESOURCE structure should be initialized
to specify the starting point on the network for the enumeration. The starting
point is specified by a UNC name in the lpRemoteName field of NETRESOURCE.
The dwUsage field of the NETRESOURCE structure must be set to
RESOURCETYPE_CONTAINER. For example, to enumerate the shared resources
on the server BIGSERV, the lpRemoteName field would point to the string
\ \BIGSERV To enumerate all servers in a domain, lpRemoteName should simply
specify the domain name. For the domain EntireNet, the lpRemoteName field
should point to the string EntireNet. Because Windows CE doesn't allow you to
pass a NULL into lpRemoteName when you use the RESOURCE_GLOBALNET
flag, you can't enumerate all resources in the network namespace as you can
under Windows XP. This restriction exists because Windows CE doesn't sup
port the concept of a Windows CE device belonging to a specific network
context.

622 Part Ill Communications

The final parameter of WNetOpenEnum, lphEnum, is a pointer to an enu
meration handle that will be passed to the other functions in the enumeration
process. WNetOpenEnum returns a value of NO_ERROR if successful. If the
function isn't successful, you can call GetLastError to query the extended error
information.

Once you have successfully started the enumeration process, you actually
query data by calling this function:

DWORD WNetEnumResource (HANDLE hEnum, LPDWORD lpcCount,
LPVOID lpBuffer,
LPDWORD lpBufferSize);

The function takes the handle returned by WNetOpenEnum as its first parame
ter. The second parameter is a pointer to a variable that should be initialized
with the number of resources you want to enumerate in each call to WNet
EnumResource. You can specify -1 in this variable if you want WNetEnum
Resource to return the data for as many resources as will fit in the return buffer
specified by the lpBu.ffer parameter. The final parameter is a pointer to a
DWORD that should be initialized with the size of the buffer pointed to by
lpBu.ffer. If the buffer is too small to hold the data for even one resource,
WNetEnumResource sets this variable to the required size for the buffer.

The information about the shared resources returned by data is returned
in the form of an array of NETRESOURCE structures. While this is the same
structure I described when I talked about the WNetAddConnection3 function,
I'll list the elements of the structure here again for convenience:

typedef struct _NETRESOURCE
DWORD dwScope;
DWORD dwType;
DWORD dwDisplayType;
DWORD dwUsage;
LPTSTR lplocalName;
LPTSTR lpRemoteName;
LPTSTR lpComment;
LPTSTR lpProvider;

NETRESOURCE;

The interesting fields in the context of enumeration start with the dwType
field, which indicates the type of resource that was enumerated. The value can
be RESOURCETYPE_DISK or RESOURCETYPE_PRINT. The dwDisplayType field
provides even more information about the resource, demarcating domains
(RESOURCEDISPLAYTYPE_DOMAIN) from servers (RESOURCEDISPLAY
TYPE_SERVER) and from shared disks and printers (RESOURCEDISPLAY
TYPE_SHARE). A fourth flag, RESOURCEDISPLAYTYPE_GENERIC, is returned if
the display type doesn't matter.

Chapter 13 Windows CE Networking 623

The lpLoca!Name field points to a string containing the local name of the
resource if the resource is currently connected or is a persistent connection. The
lpRemoteName field points to the UNC name of the resource. The lpComment
field contains the comment line describing the resource that's provided by
some servers.

WNetEnumResource either returns NO_ERROR, indicating that the func
tion passed (but you need to call it again to enumerate more resources), or
ERROR_NO_MORE_ITEMS, indicating that you have enumerated all resources
matching the specification passed in WNetOpenEnum. With any other return
code, you should call GetLastError to further diagnose the problem.

You have few strategies when enumerating the network resources. You
can specify a huge buffer and pass -1 in the variable pointed to by lpcCount,
telling WNetEnumResource to return as much information as possible in one
shot. Or you can specify a smaller buffer and ask for only one or two resources
for each call to WNetEnumResource. The one caveat on the small buffer
approach is that the strings that contain the local and remote names are also
placed in the specified buffer. The name pointers inside the NETRESOURCE
structure then point to those strings. This means that you can't specify the size
of the buffer to be exactly the size of the NETRESOURCE structure and expect to
get any data back. A third possibility is to call WNetEnumResource twice, the
first time with the lpBu.ffer parameter 0, and have Windows CE tell you the size
necessary for the buffer. Then you allocate the buffer and call WNetEnum
Resource again to actually query the data. However you use WNetEnumResource,
you'll need to check the return code to see whether it needs to be called again
to enumerate more resources.

When you have enumerated all the resources, you must make one final
call to the function:

DWDRD WNetCloseEnum (HANDLE hEnum);

The only parameter to this function is the enumeration handle first returned by
WNetOpenEnum. This function cleans up the system resources used by the
enumeration process.

Following is a short routine that uses the enumeration functions to query
the network for available resources. You pass to a function a UNC name to use
as the root of the search. The function returns a buffer of zero-delimited strings
that designate the local name, if any, and the UNC name of each shared
resource found.

II Helper routine
int AddTolist (LPTSTR *pPtr, INT *pnlistSize, LPTSTR pszStr) {

INT nlen = lstrlen (pszStr) + 1;
(continued)

624 Part Ill Communications

if (*pnlistSize < nlen) return -1;
lstrcpy (*pPtr, pszStr);
*pPtr += nlen;
*pnlistSize -= nlen;
return 0;

11--
11 EnumNetDisks - Produces a list of shared disks on a network
II
int EnumNetDisks (LPTSTR pszRoot, LPTSTR pszNetlist, int nNetSize){

INT i = 0, re, nBuffSize = 1024;

DWORD dwCnt, dwSize;
HANDLE hEnum;
NETRESOURCE nr;
LPNETRESOURCE pnr;
PBYTE pPtr, pNew;

II Allocate buffer for enumeration data.
pPtr = (PBYTE) LocalAlloc (LPTR, nBuffSize);
if (!pPtr)

return -1;

II Initialize specification for search root.
memset (&nr, 0, sizeof (nr));
nr. lpRemoteName = pszRoot;
nr.dwUsage = RESOURCEUSAGE_CONTAINER;

II Start enumeration.
re = WNetOpenEnum (RESOURCE_GLOBALNET, RESOURCETYPE_DISK, 0, &nr,

&hEnum);
if (re != NO_ERROR)

return -1;

II Enumerate one item per loop.
do

dwCnt = l;
dwSize = nBuffSize;
re= WNetEnumResource (hEnum, &dwCnt, pPtr, &dwSize);

II Process returned data.
if (re == NO_ERROR) {

pnr = (NETRESOURCE *)pPtr;
if (pnr->lpRemoteName)

re = AddTolist (&pszNetlist, &nNetSize,
pnr->lpRemoteName);

Chapter 13 Windows CE Networking 625

II If our buffer was too small, try again.
} else if Crc == ERROR_MORE_DATA) {

pNew = LocalReAlloc (pPtr, dwSize, LMEM_MOVEABLE);
if (pNew) {

pPtr = pNew;
nBuffSize = LocalSize CpPtr);
re = 0;

while (re== 0);

II If the loop was successful. add extra zero to list.
if Crc == ERROR_NO_MORE_ITEMS) {

re= AddTolist (&pszNetlist, &nNetSize, TEXT (""));
re = 0;

II Clean up.
WNetCloseEnum (hEnum);
LocalFree (pPtr);
return re;

While the enumeration functions work well for querying what's available
on the net, you can use another strategy for determining the current connected
resources. At the simplest level, you can use FileFindFirst and FileFindNext to
enumerate the locally connected network disks by searching the folders in the
\network directory. Once you have the local name, a few functions are avail
able to you for querying just what that local name is connected to.

Querying Connections and Resources
The folders in the \network directory represent the local names of network
shared disks that are persistently connected to network resources. To determine
which of the folders are currently connected, you can use the function

DWORD WNetGetConnection (LPCTSTR lplocalName,
LPTSTR lpRemoteName,
LPDWORD lpnlength);

WNetGetConnection returns the UNC name of the network resource associated
with a local device or folder. The lpLocalName parameter is filled with the local
name of a shared folder or printer. The lpRemoteName parameter should point
to a buffer that can receive the UNC name for the device. The lpnLength param
eter points to a DWORD value that initially contains the length in characters of
the remote name buffer. If the buffer is too small to receive the name, the length
value is loaded with the number of characters required to hold the UNC name.

626 Part Ill Communications

One feature (or problem, depending on how you look at it) of WNetGet
Connection is that it fails unless the local folder or device has a current connec
tion to the remote shared device. This allows us an easy way to determine
which local folders are currently connected and which are just placeholders for
persistent connections that aren't currently connected.

Sometimes you need to transfer a filename from one system to another
and you need a common format for the filename that would be understood by
both systems. The WNetGetUniversalName function translates a filename that
contains a local network name into one using the UNC name of the connected
resource. The prototype for WNetGetUniversalName is the following:

DWORD WNetGetUniversalName (LPCTSTR lplocalPath, DWORD dwlnfolevel,
LPVOID lpBuffer, LPDWORD lpBufferSize);

Like WNetGetConnection, this function returns a UNC name for a local name.
There are two main differences between WNetGetConnection and WNetGetUni
versalName. First, WNetGetUniversalName works even if the remote resource
isn't currently connected. Second, you can pass a complete filename to WNet
GetUniversalName instead of simply the local name of the shared resource,
which is all that is accepted by WNetGetConnection.

WNetGetUniversalName returns the remote information in two different
formats. If the dwlnfolevel parameter is set to UNIVERSAL_NAME_INFO_LEVEL,
the buffer pointed to by lpBuffer is loaded with the following structure:

typedef struct _UNIVERSAL_NAME_INFO
LPTSTR lpUniversalName;

} UNIVERSAL_NAME_INFO;

The only field in the structure is a pointer to the UNC name for the shared
resource. The string is returned in the buffer immediately following the struc
ture. So if a server \ \BigServ\DriveC was attached as LocC and you pass WNet
GetUniversalName the filename \Network\LocC\ Win32\Filename.ext, the
function returns the UNC name \ \BigServ\DriveC\win32'filename.ext.

If the dwlnfolevel parameter is set to REMOTE_NAME_INFO_LEVEL, the
buffer is filled with the following structure:

typedef struct _REMOTE_NAME_INFO
LPTSTR lpUniversalName;
LPTSTR lpConnectionName;
LPTSTR lpRemainingPath;

} REMOTE_NAME_INFO;

This structure not only returns the UNC name but also parses the UNC name
into the share name and the remaining path. So, using the same filename as in

Chapter 13 Windows CE Networking 627

the previous example, \network\LocC\win32Vilename.ext, the
REMOTE_NAME_INFO fields would point to the following strings:

lpUniversalName: \ \BigServ\DriveC\ win32\filename.ext
lpConnectionName: \ \BigServ\DriveC
lpRemainingPath: \ win32\filename.ext
One more thing: you don't have to prefix the local share name with \net

work. In the preceding example, the filename \LocC\ Win32Vilename.ext
would have produced the same results.

One final WNet function supported by Windows CE is

DWORD WNetGetUser (LPCTSTR lpName, LPTSTR lpUserName,
LPDWORD lpnlength);

This function returns the name the system used to connect to the remote
resource. WNetGetUser is passed the local name of the shared resource and
returns the user name the system used when connecting to the remote resource
in the buffer pointed to by lpUserName. The lpnLength parameter should point
to a variable that contains the size of the buffer. If the buffer isn't big enough to
contain the user name, the variable pointed to by lpnLength is filled with the
required size for the buffer.

The ListNet Example Program
ListNet is a short program that lists the persistent network connections on a
Windows CE machine. The program's window is a dialog box with three con
trols: a list box that displays the network connections, a Connect button that lets
you add a new persistent connection, and a Disconnect button that lets you
delete one of the connections. Double-clicking on a connection in the list box
opens an Explorer window to display the contents of that network resource.
Figure 13-1 shows the ListNet window, while Listing 13-1 shows the ListNet
source code.

Figure 13-1 The ListNet window containing a few network folders

628 Part Ill Communications

Listing 13·1 The ListNet source

Chapter 13 Windows CE Networking 629

struct decodeUINT
UINT Code;

II Structure associates
II messages
II with a function.

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD {
UINT Code;

II Structure associates
II menu IDs with a

LRESULT (*FXn)(HWND, WORD. HWND, WORD); II function.
} ;

11--
II Generic defines used by application

1/defi ne ID_ICON

1/defi ne IDD_NETLIST 100 11 Control IDs
1/defi ne IDD_CNCT 101
#define IDD_DCNCT 102

11--
11 Function prototypes
II
INT RefreshLocalNetDrives (HWND hWnd);
int CheckErrorCode (HWND hWnd, int re, LPTSTR lpText);

II Dialog window procedure
BOOL CALLBACK MainWndProc (HWND, UINT, WPARAM. LPARAM);

II Dialog window Message handlers
BOOL DoCommandMain (HWND, UINT, WPARAM, LPARAM);
II Command functions
LPARAM DoMainCommandExit (HWND, WORD. HWND, WORD);
LPARAM DoMainCommandViewDrive (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandMapDrive (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandFreeDrive (HWND, WORD, HWND, WORD);

ListNet.cpp
II==
II ListNet - A network demo application for Windows CE
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include <winnetwk.h> II Network includes
#include "ListNet.h" II Program-specific stuff

(continued)

630 Part Ill Communications

Listing 13-1 (continued)

Chapter 13 Windows CE Networking 631

#end if

mbi .cbSize = sizeof(SHMENUBARINFO);
mbi .hwndParent = hWnd;
mbi .dwFlags = SHCMBF_EMPTYBAR;
SHCreateMenuBar(&mbi);

di .dwMask = SHIDIM_FLAGS;
di.hDlg = hWnd;

II have a sip button.

di .dwFlags = SHIDIF_DONEBUTTON I SHIDIF_SIZEDLG;
SHinitDialog <&di);
}

i = 75;
SendDlgitemMessage (hWnd, IDD_NETLIST. LB_SETTABSTOPS, l,

(LPARAMl&i);
RefreshLocalNetDrives (hWnd);
break;

case WM_COMMAND:
return DoCommandMain (hWnd, wMsg, wParam, 1 Pa ram);

return FALSE;

11--
11 DoCommandMain - Process WM_COMMAND message for window.
II
BOOL DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParaml{

WORD idltem, wNotifyCode;
HWND hwndCtl;
INT i;

II Parse the parameters.
idltem =(WORD) LOWORD <wParam);
wNotifyCode = (WORD) HIWORD (wParam);
hwndCtl = (HWND) lParam;

II Call routine to handle control message.
for (i = 0; i < dim(MainCommanditems); i++) {

}

if (idltem "'= MainCommandltems[i].Code) {
(•MainCommanditems[i].Fxn)(hWnd, idltem, hwndCtl.

wNot i fyCode) ;
return TRUE;

return FALSE;

II==
II Command handler routines

(continued)

632 Part Ill Communications

Listing 13-1 (continued)

!!-----------------------------"---~------------; _________ ~------------·
II DoMainCommandExtt ~ Process Program Exit command.
If
LPARAM DoMainCommandExit (HWNO hWnd, WORD iditem, HWND hwndCtl,

WORD wNc,>tifyCode) {

}

EndDialog (hWnd. 0):
return 0;

ll~----------------------·-~~--------------------·------~---------------
1 I DoMai nCommandVi ewDrive - Process list box double clicks.
II
LPARAM DoMainCommandViewDrive (HWND hWnd, WORD iditem. HWND hwndCtl,

}

WORD wNotifyCode) {
TCHAR szCmdLine[128]. szFolder[MALPATH]:

PROCESS_UFORMArION pi;
HCURSOR hOl d;
INT i, ~c. nLen;

/1. w~.'re only intereste,d in 1ist box double~elicks.
if (wNotifyCode != LBN;...DBLCLK)

return 0:

'= SendMessage (hwndCtl, LB_:_,_GETCURSEL1 0, 0):
if Ct == LB_ERR) return 0;
nLen. ".' SendMessa9e Chwndctl. LB:...GETTEXT, i, {LPARAMlszFolderl:
if CnLen ="' LB_ERRl

return 0:
/f trimoff'dercription of share.

for Ci "' 0: .i < nLen: i++)
. :if CszFolder.[i] ==TEXT ('\t'))

break:
.szFo1 der[iJ "' TEXT ('.\0');

hOld = SetCLlrsor CLoadCursot (NULL. IDC....:WAITl l:
lstrcp,- (szCmdLin'e, TEXT ("\\network\\")):
lstreat (szCmdLine, szFolder);

.re= CreateProcess (TEXT ("Explorer")., szCmdLine. NULL, NULL.
FALSE, 0, NULL, NULL, NULL, &pi);

if (rel f
CJ()sel:iandle (pi .hProcess):

. CloseHandle (pi. hThread);
}

.set.Cursor (hOld}:
return TRUE;

Chapter 13 Windows CE Networking 633

ll-------------------------------~--·-----------------------------------
11 DoMainCommandMapDrive - Process map network drive command.
II
LPARAM DoMainCommandMapDrive (HWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) {
DWORD re;
CONNECTDLGSTRUCT eds;
NETRESOURCE nr;
TCHAR szRmt[256];

.'

memset C&nr, 0, sizeof (nr));
nr.dwType = RESOURCETYPE_DISK;
memset (szRmt, 0, sizeof (szRmt));

cds.cbStructure = sizeof (eds);
cds.hwndOwner = hWnd;
cds.lpConnRes = &nr;
cds.dwFlags = CONNDLG_PERSIST;
II Display dialog box.
re= WNetConnectionDialogl Clcds);
if (re == NO_ERROR)

RefreshlocalNatDrives (hWnd);
else

CheckErrorCode (hWnd, re, TEXT ("WNetConnectionDialogl"));
return 0;

11--·-------------------------
ll DoMainCommandFreeDrive - Process disconnect network drive command.
II
LPARAM DoMainCommandFreeDrive (HWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) {

}

int re= WNetDisconnectDialog (hWnd, RESOURCETYPE_DISK);
if (re == NO_ERROR)

RefreshLocalNetDrives (hWnd);
else

CheckErrorCode (hWnd, re. TEXT ("WnetDisconnectDialog"));
return 0;

//==
II Network browsing functions
11--
·ll EnumerateLocalNetDrives - Add an item to the list view control.
II
INT RefreshLocalNetDrives (HWND hWnd) {

HWND hwndCtl = GetDlgitem (hWnd, IDD_NETLIST);
INT re, nBuffSize = 1024:
DWORD dwCnt, dwSize;

(continued)

634 Part Ill Communications

Listing 13-1 (continued)

Chapter 13 Windows CE Networking 635

II If our buffer was too small, try again.
} else if (re== ERROR_MORE_OATA) {

pNew = CPBYTE)LoealReAlloc CpPtr, dwSize, LMEM_MOVEABLE):
if CpNew) {

pPtr = pNew;
nBuffSize = LoealSize (pPtrl:
re = 0;

else
break:

wh i 1 e (re == 0 l :
II Clean up.
WNetCloseEnum (hEnum);
LocalFree (pPtr);
return 0;

11--
11 CheekErrorCode - Print error messages as necessary.
II
int CheekErrorCode CHWND hWnd, int re, LPTSTR lpText) {

TCHAR szTxt[128];

}

II If good or dialog canceled, just return.
if ((re== NO_ERRORl I I (re -1))

return re:
if (re== ERROR_NO_NETWORK)

lstrcpy (szTxt, TEXT ("No network detected."));
else

wsprintf (szTxt, TEXT ("%s failed re= %d"), lpText, rel:

MessageBox ChWnd, szTxt, szAppName, MB_OKl:
return re:

The heart of the networking code is at the end of ListNet, in the routine
RefreshLocalNetDrives. This routine uses the WNet enumerate functions to
determine the persistent network resources mapped to the system. Network
connections and disconnections are accomplished with calls to
WNetConnectionDialogl and WNetDisconnectDialog respectively. You open an
Explorer window containing the shared network disk by launching
Explorer.exe with a command line that's the path of the folder to open.

This chapter has given you a basic introduction to some of the networking
features of Windows CE. Next on our plate is networking from a different angle:
peer-to-peer communication. In Chapter 14, we look at how a Windows CE
device can communicate with another Windows CE device using Infrared and
Bluetooth communication. Let's take a look.

Device-to-Device
Communication

The personal nature of cellular phones and Pocket PCs requires that a new type
of network be supported by the devices. Wide area and local area networks
supported by Windows CE devices must share time with personal area net
works, those networks that link devices over a short distance perhaps for only
a short time. Windows CE supports personal area networking (PAN) over two
transport technologies, infrared and radio frequency. The infrared transport
conforms to the Infrared Data Association, or IrDA, standard, while Windows
CE uses the Bluetooth standard for radio-frequency networking.

Applications interact with both the IrDA communications stack and the
Bluetooth stack using the Winsock API. Windows CE supports two different
Winsock stacks, one based on Winsock 1.1 and the other based on Winsock
2.0. The Winsock 2 stack is more functional but also much larger than its Win
sock 1.1 counterpart. Most new devices will support the Winsock 2.0 stack,
although some designers might choose the size advantage of the smaller Win
sock 1.1 stack over the greater functionality of the Winsock 2.0 stack.

This chapter covers the IrDA and Bluetooth communication stacks as seen
through the Winsock API on Windows CE. The chapter starts with an overview
of generic socket communication and then dives into the specifics of IrDA and
Bluetooth communication, with an additional section on the Object Exchange
(OBEX) standard.

637

638 Part Ill Communications

Basic Sockets
Winsock is the name for the Windows Sockets APL Winsock is the API for the
Windows CE TCP /IP networking stack and is used to access the Ir DA and Blue
tooth communication stacks. What's left out of the Windows CE implementation
of Winsock is the ever-so-handy WSAAsyncSelect function, which enables
(under other Windows systems) an application to be informed when a Winsock
event has occurred. Actually, in the Winsock 1.1 implementation, many of the
WSAxxx calls that provide asynchronous actions are missing from Windows CE.
Instead, the Windows CE implementation is more like the original Berkeley
socket APL Windows CE's developers decided not to support these functions to
reduce the size of the Winsock implementation. These functions were handy
but not required because Windows CE is multithreaded.

The lack of asynchronous functions doesn't mean that you're left with call
ing socket functions that block on every call. You can put a socket in nonblock
ing mode so that any function that can't accomplish its task without waiting on an
event will return with a return code indicating that the task isn't yet completed.

Initializing the Winsock DLL
Like other versions of Winsock, the Windows CE version should be initialized
before you use it. You accomplish this by calling WSAStartup, which initializes
the Winsock DLL. It's prototyped as

int WSAStartup (WORD wVersionRequested, LPWSADATA lpWSAData);

The first parameter is the version of Winsock you're requesting to open. For all
current versions of Windows CE, you should indicate version 2.0. An easy way
to do this is to use the MAKEWORD macro, as in MAKEWORD (2, 0). The sec
ond parameter must point to a WSAData structure.

struct WSAData {

} ;

WORD wVersion;
WORD wHighVersion;
char szDescription[WSADESCRIPTION_LEN+l];
char szSystemStatus[WSASYSSTATUS_LEN+l];
unsigned short iMaxSockets;
unsigned short iMaxUdpDg;
char FAR* lpVendorinfo;

This structure is filled in by WSAStartup, providing information about the spe
cific implementation of this version of Winsock. Currently the first two fields
return either Ox0101, indicating support for version 1.1, or Ox0202, indicating

Chapter 14 Device-to-Device Communication 639

that the system supports the Winsock 2.0 stack. The szDescription and
szSystemStatus fields can be used by Winsock to return information about itself.
In the current Windows CE version of Winsock, these fields aren't used. The
iMaxSockets parameter suggests a maximum number of sockets that an applica
tion should be able to open. This number isn't a hard maximum but rather a
suggested maximum. The iMaxUdpDg field indicates the maximum size of a
datagram packet. A 0 indicates no maximum size for this version of Winsock.
Finally, lpVendorlnfo points to optional vendor-specific information.

WSAStartup returns 0 if successful; otherwise, the return value is the error
code for the function. Don't call WSAGetLastError in this situation because the
failure of this fiinction indicates that Winsock, which provides WSAGetLast
Error, wasn't initialized correctly.

Windows CE also supports WSACleanup, which is traditionally called
when an application has finished using the Winsock DLL. For Windows CE, this
function performs no action but is provided for compatibility. Its prototype is

int WSACleanup ();

ASCII vs. Unicode
One issue that you'll have to be careful of is that almost all the string fields used
in the socket structures are char fields, not Unicode. Because of this, you'll find
yourself using the functions

int WideCharToMultiByte(UINT CodePage, DWORD dwFlags,
LPCWSTR lpWideCharStr, int cchWideChar,
LPSTR lpMultiByteStr, int cchMultiByte,
LPCSTR lpDefaultChar, LPBOOL lpUsedDefaultChar);

to convert Unicode strings to multibyte strings and

int MultiByteToWideChar CUINT CodePage, DWORD dwFlags,
LPCSTR lpMultiByteStr, int cchMultiByte,
LPWSTR lpWideCharStr, int cchWideChar);

to convert multibyte characters to Unicode. The functions refer to multibyte
characters instead of ASCII because on double-byte coded systems, they con
vert double-byte characters to Unicode.

Stream Sockets
Like all socket implementations, Winsock under Windows CE supports both
stream and datagram connections. In a stream connection, a socket is basically
a data pipe. Once two points are connected, data is sent back and forth without
the need for additional addressing. In a datagram connection, the socket is more
like a mailslot, with discrete packets of data being sent to specific addresses. In

640 Part 111 Communications

describing the Winsock functions, I'm going to cover the process of creating a
stream connection (sometimes called a connection-oriented connection)
between a client application and a server application. I'll leave the explanation
of the datagram connection to other, more network-specific, books.

The life of a stream socket is fairly straightforward: it's created, bound, or
connected to an address; read from or written to; and finally closed. A few extra
steps along the way, however, complicate the story slightly. Sockets work in a
client/ server model. A client initiates a conversation with a known server. The
server, on the other hand, waits around until a client requests data. When set
ting up a socket, you have to approach the process from either the client side
or the server side. This decision determines which functions you call to config
ure a socket. Table 14-1 illustrates the process from both the client and the
server side. For each step in the process, the corresponding Winsock function
is shown.

Table 14-1 Process for Producing a Connection-Oriented Socket
Connection

Server Function Client Function

Create socket socket Create socket socket

Bind socket to an address bind Find desired server (many functions)

Listen for client connec- listen Connect to server connect
tions

Accept client's connec- accept
ti on

Receive data from client recv Send data to server send

Send data to client send Receive data from server recv

Both the client and the server must first create a socket. After that, the pro
cess diverges. The server must attach or, to use the function name, bind, the
socket to an address so that another computer or even a local process can con
nect to the socket. Once an address has been bound, the server configures the
socket to listen for a connection from a client. The server then waits to accept
a connection from a client. Finally, after all this, the server is ready to converse.

The client's job is simpler: the client creates the socket, connects the
socket to a remote address, and then sends and receives data. This procedure,
of course, ignores the sometimes not-so-simple process of determining the
address to connect to. I'll leave that problem for a few moments while I talk
about the functions behind this process.

Chapter 14 Device-to-Device Communication 641

Creating a Socket
You create a socket with the function

SOCKET socket (int af, int type, int protocol);

The first parameter, aj, specifies the addressing family for the socket. Win
dows CE supports three addressing formats: A.F_INET, AF_IRDA, and AF_BT.
You use the Ar"_BT constant when you're creating a socket for Bluetooth use,
Ar"_IRDA for an Ir DA socket, and AF_INET for TCP /IP communication. The type
parameter specifies the type of socket being created. For a TCP /IP socket, this
can be either SOCK_STREAM for a stream socket or SOCK_DGRAM for a data
gram socket. For Bluetooth and IrDA sockets, the zvpe parameter must be
SOCK_STREAM. Windows CE doesn't currently expose a method to create a raw
socket, which is a socket that allows you to interact with the IP layer of the
TCP/IP protocol. Among other uses, raw sockets are used to send an echo
request to other servers, in the process known as pinging. However, Windows
CE does provide a method of sending an Internet Control Message Protocol
(ICMP) echo request. The protocol parameter specifies the protocol used by the
address family specified by the af parameter. For Bluetooth, this parameter
should be set to BTHPROTO_RFCOMM. The function returns a handle to the
newly created socket. If an error occurs, the socket returns INVALID_SOCKET.
You can call WSAGetLastError to query the extended error code.

Server Side: Binding a Socket to an Address
For the server, the next step is to bind the socket to an address. You accomplish
this with the function

int bind (SOCKET s. canst struct sockaddr FAR *addr, int namelen);

The first parameter is the handle to the newly created socket. The second
parameter is dependent on whether you're dealing with a TCP /IP socket, an
IrDA socket, or a Bluetooth socket. For a standard TCP /IP socket, the structure
pointed to by addr should be SOCKADDR_IN, which is defined as

struct sockaddr_in {

} ;

short sin_family;
unsigned short sin_port;
IN_ADDR sin_addr;
char sin_zero[8];

The first field, sinJamily, must be set to AF_INET. The second field is the
IP port, while the third field specifies the IP address. The last field is simply
padding to fit the standard SOCKADDR structure. The last parameter of bind,
namelen, should be set to the size of the SOCKADDR_IN structure.

642 Part Ill Communications

When you're using IrSock, the address structure pointed to by sockaddr is
SOCKADDR_IRDA, which is defined as

struct sockaddr_irda {

} ;

u_short irdaAddressFamily;
u_char irdaDeviceID[4];
char irdaServiceName[25];

The first field, irdaAddressFamily, should be set to AF_IRDA to identify
the structure. The second field, irdaDeviceJD, is a 4-byte array that defines the
address for this IR socket. This can be set to 0 for an lrSock server. The last field
should be set to a string to identify the server.

You can also use a special predefined name in the irdaServiceName field
to bypass the lrDA address resolution features. If you specify the name LSAP
SELxxx, where xxx is a value from 001 through 127, the socket will be bound
directly to the LSAP (Logical Service Access Point) selector defined by the value.
Applications should not, unless absolutely required, bind directly to a specific
LSAP selector. Instead, by specifying a generic string, the lrDA address resolu
tion code determines a free LSAP selector and uses it.

For a Bluetooth socket, the address structure pointed to by sockaddr is
SOCKADDR_Bm, which is defined as

typedef struct _SOCKADDR_BTH {
USHORT addressFamily;
bt_addr btAddr;
GUID serviceClassid;
ULONG port;

SOCKADDR_BTH, *PSOCKADDR_BTH;

The addressFamily field should be set to AF_BT. The bt_addr structure is
a 64-bit field that contains the device's 48-bit Bluetooth address. This field isn't
used in the bind call. The serviceC!assld field is used in the connect function to
tell the client which server service to connect to. The port field can be set to
RFCOMM channel 1 through 31 or set to 0 to have the system choose a free
channel.

Listening for a Connection
Once a socket has been bound to an address, the server places the socket in lis
ten mode so that it will accept incoming communication attempts. You place
the socket in listen mode by using the aptly named function

int listen (SOCKET s, int backlog);

The two parameters are the handle to the socket and the size of the queue that
you're creating to hold the pending connection attempts. This size value can be

Chapter 14 Device-to-Device Communication 643

set to SOMAXCONN to set the queue to the maximum supported by the socket
implementation.

Accepting a Connection
When a server is ready to accept a connection to a socket in listen mode, it calls
this function:

SOCKET accept (SOCKET s, struct sockaddr FAR *addr,
int FAR *addrlen);

The first parameter is the socket that has already been placed in listen
mode. The next parameter should point to a buffer that receives the address of
the client socket that has initiated a connection. The format of this address is
dependent on the protocol used by the socket. For Windows CE, this is a
SOCKADDR_IN, a SOCKADDR_IRDA, or a SOCKADDR_Blli structure. The final
parameter is a pointer to a variable that contains the size of the buffer. This vari
able is updated with the size of the structure returned in the address buffer
when the function returns.

The accept function returns the handle to a new socket that's used to com
municate with the client. The socket that was originally created by the call to
socket will remain in listen mode and can potentially accept other connections.
If accept detects an error, it returns INVALID_SOCKET. In this case, you can call
WSAGetLastError to get the error code.

The accept function is the first function I've talked about so far that blocks.
That is, it won't return until a remote client requests a connection. You can set
the socket in nonblocking mode so that, if no request for connection is queued,
accept will return INVALID_SOCKET with the extended error code WSAE
WOULDBLOCK. I'll talk about blocking vs. nonblocking sockets shortly.

Client Side: Connecting a Socket to a Server
On the client side, things are different. Instead of calling the bind and accept
functions, the client simply connects to a known server. I said simply, but as with
most things, we must note a few complications. The primary one is addressing
knowing the address of the server you want to connect to. I'll put that topic aside
for a moment and assume the client knows the address of the server.

To connect a newly created socket to a server, the client uses the function

int connect (SOCKET s, canst struct sockaddr FAR *name,
int namelen);

The first parameter is the socket handle that the client created with a call to
socket. The other two parameters are the address and address length values
we've seen in the bind and accept functions.

644 Part Ill Communications

If connect is successful, it returns 0. Otherwise, it returns SOCKET_ERROR,
and you should call WSAGetLastError to get the reason for the failure.

Sending and Receiving Data
At this point, both the server and the client have socket handles they can use to
communicate with one another. The client uses the socket originally created
with the call to socket, while the server uses the socket handle returned by the
accept function.

All that remains is data transfer. You write data to a socket this way:

int send (SOCKET s, const char FAR *buf, int len, int flags);

The first parameter is the socket handle to send the data. You specify the
data you want to send in the buffer pointed to by the bu:f parameter, while the
length of that data is specified in len. The flags parameter must be 0.

You receive data by using the function

int recv (SOCKET s, char FAR *buf, int len, int flags);

The first parameter is the socket handle. The second parameter points to
the buffer that receives the data, while the third parameter should be set to the
size of the buffer. The flags parameter can be 0, or it can be MSG_PEEK if you
want to have the current data copied into the receive buffer but not removed
from the input queue or if this is a TCP /IP socket (MSG_ OOB) for receiving any
out-of-band data that has been sent.

Two other functions can send and receive data; they are the following:

int sendto (SOCKET s, const char FAR *buf, int len, int flags,
const struct sockaddr FAR *to, int token);

and

int recvfrom (SOCKET s, char FAR *buf, int len, int flags,
struct sockaddr FAR *from, int FAR *fromlen);

These functions enable you to direct individual packets of data using the
address parameters provided in the functions. They're used for connectionless
sockets, but I mention them now for completeness. When used with connec
tion-oriented sockets such as those I've just described, the addresses in sendto
and recvfrom are ignored and the functions act like their simpler counterparts,
send and recv.

Closing a Socket
When you have finished using the sockets, call this function:

int shutdown (SOCKET s, int how);

lrSock

Chapter 14 Device-to-Device Communication 645

The shutdown function takes the handle to the socket and a flag indicating
the part of the connection you want to shut down. The how parameter can be
SD _RECEIVE to prevent any further recv calls from being processed, SD _SEND
to prevent any further send calls from being processed, or SD_BOTHto prevent
either send or recv calls from being processed. The shutdown function affects
the higher-level functions send and recv but doesn't prevent data previously
queued from being processed. Once you have shut down a socket, it can't be
used again. It should be closed and a new socket created to restart a session.

Once a connection has been shut down, you should close the socket with
a call to this function:

int closesocket (SOCKET s);

The action of closesocket depends on how the socket is configured. If
you've properly shut down the socket with a call to shutdown, no more events
will be pending and closesocket should return without blocking. If the socket
has been configured into linger mode and configured with a timeout value,
closesocket will block until any data in the send queue has been sent or the
timeout expires.

I've alluded to IrSock a number of times as I've described functions. IrSock is
essentially a socketlike API built over the top of the IrDA stack used for infrared
communication. IrSock is the only high-level interface to the IrDA stack.

The major differences between IrSock and Winsock are that IrSock doesn't
support datagrams, it doesn't support security, and the method used for
addressing it is completely different from that used for Winsock. What IrSock
does provide is a method to query the devices ready to talk across the infrared
port, as well as arbitration and collision detection and control.

From a programmer's perspective, the main difference in programming
IrSock and Winsock is that the client side needs a method of detecting which
infrared-capable devices are within range and are ready to accept a socket con
nection. This is accomplished by calling getsockopt with the level parameter set
to SOL_IRLMP and the optname parameter set to IRLMP _ENUMDEVICES, as in
the following:

dwBuffSize = sizeof (buffer);
re = getsockopt ChlrSock, SOL_IRLMP, IRLMP_ENUMDEVICES,

buffer, &dwBuffSize);

646 Part Ill Communications

When called with IRIMP _ENUMDEVICES, getsockopt returns a DEVICELIST
structure in the buffer. DEVICELIST is defined as

typedef struct _DEVICELIST {
ULONG numDevice;
IRDA_DEVICE_INFO Device[!];

DEVICELIST;

The DEVICELIST structure is simply a count followed by an array of
JRDA_DEVJCE_INFO structures, one for each device found. The
IRDA_DEVICE_INFO structure is defined as

typedef struct _IRDA_DEVICE_INFO
u_char irdaDeviceID[4];
char irdaDeviceName[22];
u_char Reserved[2];

IRDA_DEVICE_INFO;

The two fields in the IRDA_DEVICE_INFO structure are a device ID and a
string that can be used to identify the remote device.

Following is a routine that opens an IR socket and uses getsockopt to
query the remote devices that are in range. If any devices are found, their
names and IDs are printed to the debug port.

II
II Poll for IR devices.
II
DWORD WINAPI IrPoll (HWND hWnd) {

INT re, nSize, i, j;

char cDevice[256J;
TCHAR szName[32], sz0ut[256J;
DEVICELIST *PDL;
SOCKET irsock;

II Open an infrared socket.
irsock =socket (AF_IRDA, SOCK_STREAM, 0);
if (irsock == INVALID_SOCKET)

return -1;

II Search for someone to talk to; try 10 times over 5 seconds.
for (i = 0; < 10; i++) {

JI Call getsockopt to query devices.
memset (cDevice, 0, sizeof (cDevice));
nSize = sizeof (cDevice);
re= getsockopt (irsock, SOL_!RLMP, IRLMP_ENUMDEVICES,

cDevice, &nSize);
if (rel

break;

Chapter 14 Device-to-Device Communication 647

pDL = (DEVICELIST *) cDevice;
if (pDL->numDevice) {

Add2List (hWnd, TEXT ("%d devices found."), pDL->numDevice);

for (j = 0; j < (int)pDL->numDevice; j++) {
II Convert device ID.
wsprintf (szOut,

TEXT ("DeviceID \t%02X.%02X.%02X.%02X"),
pDL->Device[j].irdaDeviceID[0],
pDL->Device[j].irdaDeviceID[l],
pDL->Device[j].irdaDevice!D[2],
pDL->Device[j].irdaDevice!D[3]);

OutputDebugString (szOut);

II Convert device name to Unicode.
mbstowcs (szName, pDL->Device[j].irdaDeviceName,

sizeof (pDL->Device[j].irdaDeviceName));

wsprintf (szOut, TEXT ("irdaDeviceName \t%s"l.
szName);

OutputDebugString (szOut);

Sleep(500);

closesocket (irsock);
return 0;

Just having a device with an IR port in range isn't enough; the remote
device must have an application running that has opened an IR socket, bound
it, and placed it into listen mode. This requirement is appropriate because these
are the steps any server using the socket API would perform to configure a
socket to accept communication.

Querying and Setting IR Socket Options
IrSock supports the getsockopt and setsockopt functions for getting and setting
the socket options, but the options supported have little overlap with the socket
options supported for a standard TCP /IP socket. To query socket options, use
this function:

int getsockopt (SOCKET s, int 1 evel, int optname,
char FAR *Optval. int FAR *Optlen);

The first parameter is the handle to the socket, while the second parameter is
the level in the communications stack for the specific option. The level can be

648 Part Ill Communications

at the socket level, SOL_SOCKET, or a level unique to IrSock, SOL_IRIMP. The
options supported for IrSock are shown in the following lists.

For the SOL_SOCKET level, your option is

• SO_LINGER Queries the linger mode

For the SOL_IRLMP level, your options are

• IRLMP _ENUMDEVICES Enumerates remote IrDA devices

• IRLMP_IAS_QUERY Queries IAS attributes

• IRLMP_SEND_PDU_LEN Queries the maximum size of send
packet for IrLPT mode

The corresponding function with which to set the options is

int setsockopt (SOCKET s, int level, int optname,
const char FAR *Optval, int optlen);

The parameters are similar to getsockopt. A list of the allowable options follows.
For the SOL_SOCKET level, your option is

• SO_LINGER Delays the close of a socket if unsent data remains in
the outgoing queue

For the SOL_IRLMP level, your options are

• IRLMP _IAS_SET Sets IAS attributes

• IRLMP _IRLPT_MODE Sets the IrDA protocol to IrLPT

• IRLMP!JWIRE_MODE Sets the IrDA protocol to 9-wire serial
mode

• IRLMP_SHARP_MODE Sets the IrDA protocol to Sharp mode

Blocking vs. Nonblocking Sockets
One issue I briefly touched on as I was introducing sockets is blocking. Win
dows programmers are used to the quite handy asynchronous socket calls that
are an extension of the standard Berkeley socket APL By default, a socket is in
blocking mode so that, for example, if you call recv to read data from a socket
and no data is available, the call blocks until some data can be read. This isn't
the type of call you want to be making with a thread that's servicing the mes
sage loop for your application.

Although Windows CE doesn't support the WSAAsync calls available to
desktop versions of Windows, you can switch a socket from its default blocking

Chapter 14 Device-to-Device Communication 649

mode to nonblocking mode. In nonblocking mode, any socket call that might
need to wait to successfully perform its function instead returns immediately
with the error code WSAEWOULDBLOCK. You are then responsible for calling
the would-have-blocked function again at a later time to complete the task.

To set a socket into blocking mode, use this function:

int ioctlsocket (SOCKET s, long cmd, u_long *argp);

The parameters are the socket handle, a command, and a pointer to a variable
that either contains data or receives data depending on the value in cmd. The
allowable commands for Windows CE IrSock sockets are the following:

• FIONBIO Sets or clears a socket's blocking mode. If the value
pointed to by argp is nonzero, the socket is placed in blocking
mode. If the value is 0, the socket is placed in nonblocking mode.

• FIONREAD Returns the number of bytes that can be read from the
socket with one call to the recv function.

So to set a socket in blocking mode, you should make a call like this one:

fBlocking = FALSE;
re= ioctlsocket (sock, FIONBIO, &fBlocking);

Of course, once you have a socket in nonblocking mode, the worst thing
you can do is continually poll the socket to see whether the nonblocked event
occurred. On a battery-powered system, this can dramatically lower battery life.
Instead of polling, you can use the select function to inform you when a socket
or set of sockets is in a nonblocking state. The prototype for this function is

int select (int nfds, fd_set FAR *readfds, fd_set FAR *writefds,
fd_set FAR •exceptfds,
canst struct timeval FAR *timeout);

The parameters for the select function look somewhat complex, which, in
fact, they are. Just to throw a curve, the function ignores the first parameter. The
reason it exists at all is for compatibility with the Berkeley version of the select
function. The next three parameters are pointers to sets of socket handles. The
first set should contain the sockets that you want to be notified when one or
more of the sockets is in a nonblocking read state. The second set contains
socket handles of sockets that you want informed when a write function can be
called without blocking. Finally, the third set, pointed to by excep~fds, contains
the handles of sockets that you want notified when an error condition exists in
that socket.

'

650 Part Ill Communications

The final parameter is a timeout value. In keeping with the rather interest
ing parameter formats for the select function, the timeout value isn't a simple
millisecond count. Rather, it's a pointer to a TIMEVAL structure defined as

struct timeval {
long tv_sec;
long t v_usec;

} ;

If the two fields in TIMEVAL are 0, the select call returns immediately, even
if none of the sockets has had an event occur. If the pointer, timeout, is NULL
instead of pointing to a TIMEVAL structure, the select call won't time out and
returns only when an event occurs in one of the sockets. Otherwise, the time
out value is specified in seconds and microseconds in the two fields provided.

The function returns the total number of sockets for which the appropriate
events occur, 0 if the function times out, or SOCKET_ERROR if an error occurs.
If an error does occur, you can call WSAGetLastError to get the error code. The
function modifies the contents of the sets so that, on returning from the func
tion, the sets contain only the socket handles of sockets for which events occur.

The sets that contain the events should be considered opaque. The format
of the sets doesn't match their Berkeley socket counterparts. Each of the sets is
manipulated by four macros defined in WINSOCK.H. These are the four macros:

• FD_CLR Removes the specified socket handle from the set

• FD_ISSET Returns TRUE if the socket handle is part of the set

• FD_SET Adds the specified socket handle to the set

• FD_ZERO Initializes the set to 0

To use a set, you have to declare a set of type fd_set. Then initialize the set
with a call to FD_ZERO and add the socket handles you want with FD_SET. An
example would be

fd_set fdReadSocks;

FD_ZERO (&fdReadSocks);
FD_SET (hSockl, &fdReadSocks);
FD_SET (hSock2, &fdReadSocks);

re= select (0, &fdReadSocks, NULL, NULL, NULL);
if (re != SOCKET_ERROR) {

if (FD_ISSET (hSockl, &fdReadSocks))
II A read event occurred in socket 1.

if (FD_ISSET (hSock2, &fdReadSocks))
II A read event occurred in socket 2.

Chapter 14 Device-to-Device Communication 651

In this example, the select call waits on read events from two sockets with
the handles hSockl and hSock2. The write and error sets are NULL, as is the
pointer to the timeout structure, so the call to select won't return until a read
event occurs in one of the two sockets. When the function returns, the code
checks to see whether the socket handles are in the returned set. If so, that
socket has a nonblocking read condition.

The last little subtlety concerning the select function is just what qualifies
as a read, write, and error condition. A socket in the read set is signaled when
one of the following events occurs:

• There is data in the input queue, so recv can be called without
blocking.

• The socket is in listen mode and a connection has been attempted,
so a call to accept won't block.

• The connection has been closed, reset, or terminated. If the connec
tion was gracefully closed, recv returns with 0 bytes read; otherwise,
the recv call returns SOCKET_ERROR. If the socket has been reset,
the recv function returns the error WSACONNRESET

A socket in the write set is signaled under the following conditions:

• Data can be written to the socket. A call to send still might block if
you attempt to write more data than can be held in the outgoing
queue.

• A socket is processing a connect and the connect has been accepted
by the server.

A socket in the exception set is signaled under the following condition:

• A socket is processing a connect and the connect failed.

The MySquirt Example Program
To demonstrate IrSock, the following program, MySquirt, shows how to transfer
files from one Windows system to another. It's similar to the IrSquirt program
provided with the Pocket PC and Smartphone. The difference is that this pro
gram is designed to be compiled for and run on Windows CE and Windows XP
systems. 1 So by running the program on these systems, you can send, that is,
squirt, files from one system to another. MySquirt has a window that displays a

1. To build MySquirt for Windows XP or Windows Me, use Microsoft Visual C++ 6.0 or Microsoft Visual
Studio .NET.

652 Part Ill Communications

list of status messages as the handshaking takes place between the two Win
dows systems. To use MySquirt, you'll need to have it running on two Windows
systems. To transfer a file, enter the name of the file you want to send and press
the Send button. The system transmits the name and size of the file to the
receiving system, and if it's accepted, the file data is subsequently sent. Figure
14-1 shows MySquirt on an embedded Windows CE device after it has sent a
file to a Pocket PC, while Figure 14-2 shows the results on the Pocket PC
screen. The source code for the example is shown in Listing 14-1.

Figure 14-1 The MySquirt window on an embedded
Windows CE device after a file has been sent

·: Monitor thread entered
: sock accept ,,
, receive thread entered
name: \my documents\dlgdemo.exe

, received file size of 24671 bytes
: Sending size ack,
; recv'd 8192 bytes.
:! recv'd 8192 bytes.
:i recv'd 8192 bytes.

recv'd 95 bytes.
receive finished
receive thread exit

Figure 14-2 The MySquirt window on a Pocket PC
after a file has been received

Chapter 14 Device-to-Device Communication 653

MySquirt.rc
//==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright CC) 2003 Douglas Boling
II==

#include "windows.h"
#include "MySquirt.h" II Program-specific stuff

11--

11 Icons and bitmaps
II
ID_ICON ICON "MySquirt.ico" II Program icon

11--------------------------------------- ------------------------------

11 Main window dialog template
II
MySquirt DIALOG discardable 10, 10, 135, 110
STYLE WS_OVERLAPPED I WS_VISIBLE WS_CAPTION I WS_SYSMENU I

DS_CENTER I DS_MODALFRAME
CAPTION "MySquirt"
CLASS "MySquirt"
BEGIN

LTEXT "&File:" -1,

EDI TT EXT IDD_OUTTEXT,
WS_TABSTOP I

PUSHBUTTON "&Send File" IDD_SENDFI LE,

LI STBOX IDD_INTEXT,
WS_TABSTOP I

END

MySquirt.h

2' 11, 15, 12
17, 10, 71, 12.

ES_AUTOHSCROLL
92, 10, 38, 12.

2' 25, 128, 80,
WS_VSCROLL

WS_TABSTOP

II==
11 Header file
II
II Written for the book Programming Windows CE
II Copyright CC) 2003 Douglas Boling
II==
II Returns number of elements
#define dim(x) (sizeofCxl I sizeof(x[0]))

Listing 14-1 The MySquirt source code (continued)

654 Part Ill Communications

Listing 14-1 (continued)

Chapter 14 Device-to-Device Communication 655

#define BAD_F IL EW RITE -3
#define BAD_SOCKET -4

#define BAD_SOCKETRECV -5
#define BAD_FILESIZE -6
#define BAD_MEMORY -7

1fdefi ne BLKSIZE 8192 II Transfer block size

//--
// Function prototypes
II
HWND Initlnstance (HINSTANCE, LPCMDLINE. int);
int Termlnstance (HINSTANCE, int);

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM. LPARAM):

JI Message handlers
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoSizeMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAM):
LRESULT DoPocketPCShell (HWND, UINT, WPARAM. LPARAM);
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

JI Command functions
LPARAM DoMainCommandSend (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD);

II Thread functions
DWORD WINAPI MonitorThread (PVDID pArg):
DWORD WINAPI ReceiveThread (PVOID pArg);
DWORD WINAPI SendFileThread (PVOID pArg):

MySquirt.cpp
!!==
II MySquirt - A simple IrSock application for Windows CE
II
JI Written for the book Programming Windows CE
II Copyright (Cl 2003 Douglas Boling
II==
#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include <af_irda.h>
#include <winsock.h>
#include "MySquirt.h"
#ifndef _WIN32_WCE

II For all that Windows stuff

II IrDA includes
II Socket includes
II Program-specific stuff

(continued)

656 Part Ill Communications

Listing 14-1 (continued)

#include <process.h>

#include <tchar.h>
ffendif
#if deftned(WIN32_PLATFORM_PSPC)

Iii ncl ude <aygshelLh>

#pragma comment(li~. "aygshell"

#endif

I I Desktop multi.th read includes

I I Add Pock.et . .PC .tncl udes.
II Link Pocket PC.1 ib for menu bar.

jj---C---CC--"
II Global data

//
canst TC HAR szAppName[] = TEXT ("MySqu i rt")>;
canst.char chzAppName[J dMySquirt";

HINSTANCE hlnst: // Program instance handle

HWND hMa.i n; I I Main window handle
BOOL fContinue = TRUE; II Server thread continue

BOOL fFlrstSize = TRUE: I/ First WM.:_SIZE Hag
#if defined (WI N3LPLAlFORM---PSPC) && C~WlN32_WCE >= 300)
SHACTIVATEINFO

/,!endif

ll Message

};

ti

ffendif

II
int WINAPI .WinMain

MSG msg;
int re = 0;

HTNSTANC.E hPre\I Instance,

LPCMDLlNE 1 nt nCmdShow) {

Chapter 14 Device-to-Device Communication 657

II Initialize application.
hMain = lnitinstance (hlnstance, lpCmdLine, nCmdShow);
if (hMain == 0)

return Termlnstance (hlnstance, 0x10);

II Application message loop
while (GetMessage (&msg, NULL, 0, 0)) {

if ((hMain == 0) I I !IsDialogMessage (hMain, &msg)) {
TranslateMessage <&msg);
DispatchMessage (&msg);

II Instance cleanup
return Terminstance (hinstance, msg.wParam);

11--
11 Initlnstance - Instance initialization
II
HWND Initlnstance CHINSTANCE hlnstance, LPCMDLINE lpCmdLine,

int nCmdShow){
HWND hWnd;
HANDLE hThread;
WNDCLASS we;
WSADATA wsaData;
int re;

hinst = hinstance; II Save program instance handle.

II For all systems, if previous instance exists, activate it instead
II of starting a new one.
hWnd = FindWindow (szAppName, NULL);
if (hWnd) {

SetForegroundWindow ((HWND)((DWORD)hWnd I 0x01));
return 0;

II Init Winsock
re= WSAStartup (1, &wsaData);
if (rel {

MessageBox (NULL. TEXT<"Error in WSAStartup"), szAppName, MB_OK):
return 0;

II Register application main window class.
we.style = 0;
wc.lpfnWndProc MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = DLGWINDOWEXTRA;
wc.hlnstance = hinstance;

II
II
II
II
II

Window style
Callback function
Extra class data
Extra window data
Owner handle

(continued)

658 Part 111 Communications

Listing 14-1 (continued)

wc. h I con .. ,;, . NULL; // AppHcat ion icon
wc. hCursor = LoaqCursor CNULL. rnc_ARROW);// Default cursor
wc. hbrBackgr.Qund = <HBRUSH) >GetStockObJect (L TGRAY ... BRUSHJ:

wc. lpszMenuName "' NULL: //
wc. lpsz:Cl assNarne "'. szAppName:
if (RegtsterClai;s C&wc) == 0)

fl Create mil in wi ndo\"I.

hWrid "' CreateDiill og (htnst,
II Return 0 if window not created ..

lsWi ndow ChWnd)) retu.rh 0;

= 0; i dim{MainMessages): i++)

CwMsg == >Ma in Mes sages [i J . Code)
return (*MainMessages[iJ.Fxn)ChWnd, wMsg, wParam, lParam);

Chapter 14 Device-to-Device Communication 659

return DefWindowProc (hWnd, wMsg, wParam, lParam);
}

11--
11 DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

#if defined(WIN32_PLATFORM_PSPC) && (_WIN32_WCE >= 300)
SHINITDLGINFO shidi;
SHMENUBARINFO mbi; II For Pocket PC, create
memsetC&mbi, 0, sizeof(SHMENUBARINFO)); II menu bar so that we
mbi .cbSize = sizeof(SHMENUBARINFO); II have a sip button.
mbi.dwFlags = SHCMBF_EMPTYBAR:
mbi .hwndParent = hWnd:
SHCreateMenuBarC&mbi);
SendMessage(mbi.hwndMB, SHCMBM_GETSUBMENU, 0, 100);

II For Pocket PC, make dialog box full screen with P/PC
/I specific call. Since this call ts only on PIPC, we
II must use Loadlibrary, GetProcAddress to gain access
II to the function.
shidi .dwMask = SHIDIM_FLAGS;
shidi .dwFlags = SHIDIF_DONEBUTTON I SHIDIF_SIZEDLG I SHIDIF_SIPDOWN:
shidi .hDlg = hWnd:
SHinitDtalogC&shidi);

sai.cbSize = sizeof (sail:
SHHandleWMSettingChange(hWnd, wParam, lParam, &sai);

/Jendi f

}

GetWindowText (hWnd, szTitle, dim CszTitlell;
return 0;

11--
11 DoSizeMain - Process WM_SIZE message for window.
II
LRESULT DoSizeMain {HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
#if definedCWIN32_PLATFORM_PSPCl && (_WIN32_WCE >= 300)

static RECT rectListbox;
RECT rect;

GetC1ientRect (hWnd, &rect);
if CfFirstSize) {

II First time through, get the position of the list box for
II resizing later. Store the distance from the sides of
II the list box control to the side of the parent window.
if (IsWindow (GetDlgitem ChWnd, IDD_INTEXT))} {

(continued)

660 Part Ill Communications

Listing 14-1 (continued)

:.:> .t:'_;!.:f_:'/J-~fi;r'stSit~; FJALSE:·;• \ > .·/ .··. · ·. · .
';-;t:··~ .o ··:,. :!'-,;;;;'">/;;:r~~~:it~d~~~:~~ ·.·.:(.:~~:tDJ~Xt·t!~r: .-qiWn::d:~·:<::Jr9P-.~:·~J:E~T)., '&r~Ct:L i.stb.(>.X) ~--
"'· ; .,: '\;'.//~~~~p\if:fo~(lwf\:01rifs.CCHWNO.iDE:$JgOP~ :ti:Wnii:; (LPP:OINTl&rectListbox, 2):

·. i ... ' .. , . \'·'·f~ct({sthox.r.:t:ght' = rec.t :rf!tht •::r.edtl i stbox ;right;
.•. . :; te'cti.htbo~,b¢ttQll'I ,: re:Ct;bottom'·-

'•, ·:,:_··:<,.~>:. _,'.J:-' ', o,, ..
o ,Mo' • ;J: <,;:.,, •,;''

• • • ,- "0 ••• ' ;:· ~ .-.··.~ ''.: ~) ·:,- • x ... :.:w····-:: , •. -.··.· - · ·
'·:: .. setlilJM-oW:Pos' }G~t~1gli~m :.ChWil~, 1op.o_l~TEXTcl. 0,_ re~t.JeJt .+. 5;

.. ·. reett.i$tbo;:.top, rect~ r,ight - 10,
.... · ... · re ct• .botto~ < rectL1 $thox. top .

.. ·.: .· ·'.:< :. : SWP;~t>.~ERli

Chapter 14 Device-to-Device Communication 661

return 0;

11--
11 DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
fContinue = FALSE;
Sleep (0);
PostQuitMessage (0);
return 0;

II Shut down server thread.
II Pass on timeslice.

II==
II Command handler routines
11--
11 DoMainCommandExit - Process Program Exit command.
II
LPARAM DoMainCommandExit (HWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) {

SendMessage (hWnd, WM_CLOSE, 0, 0);
return 0;

11--
11 DoMainCommandSerid - Process Program Send File command.
II
LPARAM DoMainCommandSend (HWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) {
static TCHAR szName[MAX_PATH];

GetDlgitemText (hWnd, IDD_OUTTEXT, szName, dim(szName));
MyCreateThread (NULL, 0, SendFileThread, (PVOID)szName, 0, NULL);
return 0;

11--
11 Add2List - Add string to the report list box.
II
void Add2List (HWND hWnd, LPTSTR lpszFormat, ...)

int i. nBuf;
TCHAR szBuffer[512];

va_list args;
va_start(args, lpszFormat);

nBuf = _vstprintf(szBuffer. lpszFormat, args);

i = SendDlg!temMessage (hWnd, IDD_INTEXT, LB_ADDSTRING, 0,
(LPARAM)(LPCTSTR)szBuffer);

(continued)

662 Part Ill Communications

Listing 14-1 (continued)

}

Chapter 14 Device-to-Device Communication 663

Add2List ChWnd, TEXT(" bind failed"));
closesocket (s_sockl;
return 0;

II Set socket into listen mode.
re= listen (s_sock, SOMAXCONN);
if (re == SOCKET_ERRORl {

Add2List ChWnd, TEXT(" listen failed %d"), GetLastError(ll:
closesocket (s_sock);
return 0:

II Wait for remote requests.
II Block on accept.
while CfConttnue) {

}

nSize = sizeof Ct_iraddrl:
t_sock =accept Cs_sock, (struct sockaddr *)&t_iraddr, &nSize);
if (t_sock == INVALID_SOCKET) {

Add2List ChWnd, TEXT(" accept failed %d"), GetLastError(l):
}

Add2List (hWnd, TEXT("sock accept ... "));
MyCreateThread (NULL. 0, ReceiveThread, CPVOIDH_sock, 0, NULL):

closesocket Cs_sock):
Add2List (hWnd, TEXT("Monitor thread exit")):
return 0:

II==
II ReceiveThread - Sends the file requested by the remote device
II
DWORD WINAPI ReceiveThread CPVOID pArg) {

SOCKET t_sock = CSOCKET)pArg:
HWND hWnd = hMain: II I'm cheating here.
int nCnt, nFileSize, re;
TCHAR szFileName[MAX_PATHJ;
char szAnsiName[MAX_PATH]:
PBYTE pBuff:
inti, nSize, nTotal;
DWORD dwBytes:
HANDLE hfile:
Add2List (hWnd, TEXTC"receive thread entered"));
SetThreadPri ority (GetCurrentThread (), THREAD_PRIORITLABOVE_NORMAL):

II Read the number of bytes 1 n the filename.
re= recv (t_sock; CLPSTRl&nCnt. sizeof (nCntl, 0l:
if ((re== SOCKET_ERRORl II CnCnt > MAK_PATHll {

Add2List ChWnd, TEXTC"failed receiving name size"ll:
closesocket (t_sock);

(continued)

664 Part Ill Communications

Listing 14-1 (continued)

return 0:
}

' . . '

11 Re~d th.e filename. If Pocket PC. put file 1 n my documents •.
II Deal in ANSI here since it will be translated to Unicode later .•

ffif defined(WIN32-.PLATFORM:...PSPCl
· .. strcpy (szAns1Name, "\\my documents\\"): · //Ansi

iffeTse
strcpy (szAnsfName, "\\"): //Ansi

#endif / ldefined(WIN32_PLATFORM]SPC)
f = strlen (szAnsiName); //Ansi
re= recv (Lsock. CLPSTRl&szAnsiName[i]. nCnt, 0):
if (re == SOCKE:LERROR} {

)

Add2List (hWnd~ TEXT("failed receiving name"));
clQses.ocket (Lsock);
return 0:

ffifdef _UNICODE
mbstowcs (szFtleName, szAnsiName, strlen (szAnsiName) + 1);

ilel se
lstrcpy CszFileName, szAnsiName);

#lendi f
.Add2List (hWnd, TEXTC';name: %s"), szFileName);

pSuff ~ CPBYTE)lrica1A1loc (LPTR. BLKSIZE); llCre~te buff for fife.
II
II Receive file size.
ll
re.;,,. recv (Lsock, (LPSTR)&nFileSize. si.zeof (riFHeSize>. 0):
Add2List thWnd; TEXT("received file size of %d bytes"), nFileSiZe);

i.f ((re !,; SOCKELERRQR) && (nFHeSize > 0)) {

JI We Should.really check her.e to s.eeif .. th.ere i.s enough
.! I free space to receive the .file.

II Gre~te the file. Overwrite if user says so.
re = 0:
)1.Fi.le = CreateFile (~zFileName, GENERIG_WRITE, 0, NULL,

CREATLALWAYS. FILE_ATTRIBUTLNORMAL, NULL}:
if (hFi.le == INVALID..:..HANOLLVALUE) {

}

Add2List (hWnd, TEXT("File Open failed. re %d"l.
GetLastErrrir());.

re.= BAD_FI LEWRITE:

II .Send ack code.
Add2Ust (hWnd, TEXH"Se11ding size ack.")):
send {Lsock. (LPSTRl&rc, sizeof (re), 0):

Chapter-14 Device-to-Device Communication 665

II
II Receive file.
II
nTotal = nFileSize:
while ((!re) && (nFileSize > 0)) {

}

MySetWindowText (hWnd, TEXT ("%02d%% received"),
<nTotal-nFileSize)*1001nTotal);

nCnt =min (BLKSIZE, nFileS1ze);
for (nSize = 0; nSize < nCnt;) {

}

i = recv (t_sock, CLPSTR)pBuff+nSize, nCnt-nSize, 0);
if (i == SOCKET_ERROR) {

Add2List ChWnd, TEXT("recv socket err %d"),
GetlastError());

re = BAD_SOCKETRECV;
break:

nSize += 1:

Add2List (hWnd, TEXT<"recv'd %d bytes."), nSize);
if (i) {

if C!WriteFile (hFile, pBuff, nSize, &dwBytes, 0))
re = BAD_FILEWRITE:

nFileSize -= dwBytes;
else

Sleep(50);
II Send ack of packet.
send (t_sock, CLPSTRJ&rc, sizeof Crc), 0);

else if (re== BAD_FILEOPEN)
Add2List (hWnd, TEXT("File not found."));

Add2List ChWnd, TEXTC"receive finished"));
SetWindowText (hWnd, szTitle):
LocalFree (pBuff);
CloseHandle (hFile);
Add2List (hWnd, TEXT("receive thread exit"));
return 0;

ll-------------------------------~--------------------------------------
11 SendFile - Sends a file to the remote device
II
DWORD WINAPI SendFileThread (PVOID pArg) {

TCHAR *SzFileName = (LPTSTRlpArg;
HWND hWnd = hMain:
SOCKET c_sock;
char szAnsiName[MAX_PATHJ:
HANDLE h File;
INT re, nSize, i, nFileSize, nTotal, nCnt;

(continued)

666 Part Ill Communications

Listing 14-1 (continued)

Chapter 14 Device-to-Device Communication 667

II
II Copy address of found device.
II
memset (&iraddr, 0, sizeof (iraddr));
iraddr.irdaAddressFamily = AF_IRDA;
memcpy (iraddr.irdaDeviceID. pDL->Device[0].irdaDeviceID, 4);
II
II Now initialize the specific socket we're interested in.
II
memcpy (iraddr.irdaServiceName, chzAppName, sizeof (chzAppName)+l);
Add2List (hWnd, TEXT("Found: %hs"), pDL->Device[0].irdaDeviceName);

II
II Connect to remote socket.
II
re= connect (c_sock, (struct sockaddr *)&iraddr, sizeof (iraddr));
if (re) {

Add2List ChWnd, TEXTC"Connect failed. re %d"), WSAGetLastError());
closesocket (c_sock);
return -4;

Add2List (hWnd, TEXT("connected ... "));

re = 0;
nFileSize GetFileSize (hFile, NULL);

II Allocate buffer and read file.
pBuff = (LPBYTE)LocalAlloc CLPTR, nFileSize);
if (pBuff) {

ReadFile (hFile, pBuff, nFileSize, CDWORD *)&nCnt, NULL);
if (nCnt != nFileSize)

re = BAD_FILEREAD;
else

re= BAD_MEMORY;

if (re) {
closesocket (c_sock);
CloseHandle ChFile);
Add2List (hWnd, TEXTC"Error allocating buffer or reading file."));
return re;

}

JI Start transfer. First send size and get ack.

JI Strip off any leading path, assume len > 1 since we've opened file.
for (i = lstrlen CszFileName)-1; Ci > 0) &&

(szFileName[i] !=TEXT('\\'))
if (szFileName[i] ==TEXT('\\')) i++;

i - -) ;

(continued)

668 Part Ill Communications

Listing 14-1 (continued)

II Send name si.ze~

nCnt = <.Utrlen C&szFi 1 eName[i]) + 1);
r.c = send<.Ct3ock. { LPSTR)&nCnt. si zeof (nCnt), · 0);

// Send filename.
iJ (r.c 1= SOCKl:T_:.E:RlWR) {

/f; fdef _:u.tncooE

#else
wcstombs C szAl1sJName, &szFi leName[i J. nCnt);

= send. (c_sock, (LPSTR)szAnsi Niime .• nCnt, 0).;

size. Sfze will a Twa.Ys. be gig.

se~d Cc sock. (LPSTR)&nfileSize. si;zeof (nfileSize), 0);
SOCKELERROR)

("%02d%% sent"),
(nlotalcnFileSi ;ze)*100/nlota l) :

//<Send up .•• to· .• the.b1 ock .size,
ncnt =min {BLKSUE, nFileSize);
re .. = s·emd .. .(c_:.sock, .. pPtr., nGnt, 0 l:
if (re .== SOCKETJ:RROR) .. {

(c_soC:k, (LPSTR}&rc, sizeof (re), 0);

closesocket (c_sock);
II Clean up.
CloseHandle (hFile);
LocalFree CpBuff);
if (re)

Chapter 14 Device-to-Device Communication 669

Add2List ChWnd, TEXTC"SendFile Exit re= %d"), re);
else

Add2List ChWnd, TEXTC"File sent successfully."));
return 0;

From a Windows standpoint, MySquirt is a simple program. It uses a dialog
box as its main window. When the program is first launched, it creates a thread
to monitor for other devices that creates an infrared socket, binds it to a service
name, puts the socket into listen mode, and blocks on a call to accept. When a
remote device connects, the monitor thread creates another thread to handle the
actual receiving of the file while it loops back and waits for another connection.

A transmission is initiated when another device running MySquirt sends a
file. This process begins when the user on the sending device presses the Send
button. If text exists in the edit box, the application reads it and calls the Send
File routine. In this routine, a socket is created and any remote devices are enu
merated using repeated calls to getsockopt. If a device is found, a connection is
attempted with a call to connect. Connect succeeds only if the remote device has
bound an IR socket using the same service name, which happens to be defined
as the string contained in chzAppName, an ASCII representation of the program
name. This addressing scheme ensures that if a connection is made, the remote
device is running MySquirt. Once a connection is made, the sending device
sends over the filename, which it does in two steps: first it sends the byte length
of the filename and then the name itself. This process allows the server to know
how many characters to receive before continuing. The device then sends the
file size. If the file sent by the server device fits in the object store, the. routine
creates the file on the client side, notifying the user if the file already exists. If all
has gone well to this point, the data is received and written to the file. The appli
cation closes the socket and frees the buffer created to read the data into.

On the receiving side, a transmission is initiated when the monitor
thread's call to accept returns. The monitor thread creates a receiving thread
and loops back looking for other sending devices. The receiving thread
receives the name and size of the file and determines whether the file is accept
able. If so, it sends an acknowledgment back to the sending device. From then
on, the receiving thread reads the data from the socket and writes it to the
newly created file. When the transmission is complete, the receiving thread
closes the file, closes the receiving socket, and terminates.

670 Part Ill Communications

The other interesting aspect of MySquirt is that I wrote the program to be
compiled on both Windows CE and the desktop versions of Windows using
Microsoft Visual Studio .NET. I made a few adjustments to the program to han
dle the different declarations for the lpCmdLine parameter of WinMain and a
macro to hide the differences between calling Create1bread in Windows CE
and beginthreadex on the desktop. The example on the companion CD has
project files for both eMbedded C++ for Windows CE compilation and Visual
Studio .NET for compiling for the desktop.

Bluetooth
Bluetooth is the name of a wireless interface standard that uses radio frequency
(RF) as its medium instead of infrared frequency, as is used with IrDA. Bluetooth
is designed to be a successor to IrDA, providing the file transfer capabilities of
IrDA along with a number of other capabilities centering on cableless connections.

Bluetooth is named for Harald Blatand (Bluetooth), who was king of Den
mark from 940 to 985. Harald was the grandson of King Ethelred of England
and the grandfather of King Canute, famous for demonstrating the limits of
kingly power by commanding the tide not to come in2. Harald's claim to fame
is the unification of Denmark and Norway during his rule. One thousand ten
years later, following an Ericsson-initiated feasibility study of using a low-power
radio frequency network to link peripherals, a special interest group (SIG) was
formed with Ericsson, IBM, Toshiba, Nokia, and Intel to organize and form a
standard under the codename Bluetooth. That catchy code name was soon cho
sen as the actual name· of the standard.

Although it has taken longer than expected for Bluetooth-enabled devices
to reach the mainstream, the number of devices supporting Bluetooth has
grown. Following this trend, a number of Pocket PC and other Windows CE
devices now include support for Bluetooth. Windows CE 4.0 .NET provides
integrated support for the Bluetooth protocol, which is also supported by the
Pocket PC 2003. Some Pocket PC OEMs use third-party Bluetooth software on
their devices instead of the Windows CE stack. This Bluetooth discussion covers
only the Windows CE Bluetooth APL To program third-party Bluetooth stacks,
developers should contact the device manufacturers for information.

Bluetooth functionality is centered on profiles that define services pro
vided to the user. Profiles include Cordless Telephony, Intercom, Headset, Fax,
Dial-Up Networking, LAN Access, Object Push, Synchronization, and File Trans
fer. Not all profiles are supported by all devices. In fact, most devices support
only a very few profiles relevant to the device.

2. For those wondering, the tide came in anyway.

Stack

Chapter 14 Device-to-Device Communication 671

Windows CE provides the Dial-up Networking, LAN Access, Object Push
and File Transfer profiles out of the box, although OEMs are free to add support
for other profiles in their products. The Pocket PC 2003 provides support for
Object Push and File Transfer profiles. OEMs add support for additional pro
files, such as a headset profile for wireless headsets.

The applications, such as Pocket Inbox and Pocket Outlook, that are bun
dled with the devices support Bluetooth for file transfer, business card
exchange, and synchronization. Working with these applications is preferable
to writing code to work directly with the Bluetooth API because of the com
plexity of that APL

For those who are interested in working directly with the Bluetooth API,
the task isn't easy, clean, or quick. Part of the problem is the flexibility of the
Bluetooth standard and the complexity of the discovery protocol that commu
nicates which services are available from a device. Before we can dive into this
code, a bit of background is necessary.

A diagram of the Bluetooth stack is shown in Figure 14-3. The lower three lay
ers-Baseband, Link Manager Protocol, and the first Host Controller Interface
(HCI) layer-are implemented in the Bluetooth hardware. The layers above the
hardware and below the application are provided by Windows CE, although it's
possible for third parties to extend the Bluetooth stack by providing additional
profiles above the HCI layer.

Applications

Audio

HCI (Software)

HCI (Hardware)

Link Manager Protocol

Base Band

Figure 14-3 A diagram of the Bluetooth stack on Windows CE

672 Part Ill Communications

Applications interact with the Bluetooth stack through one of two inter
faces. The preferred method is for applications to use the Winsock API to
access the Bluetooth stack. Just as with IrDA, applications use standard Win
sock functions to open sockets associated with the Bluetooth stack. Control is
accomplished through various WSAxxx functions. Data transfer is accomplished
through the standard socket send and recv functions.

Winsock support for Bluetooth depends on the Winsock stack installed on
the device. If the system has Winsock 2.0 installed, such as the Pocket PC 2003,
Bluetooth functionality is accessed directly through Winsock calls such as set
sockopt. For systems with Winsock 1.1 installed, the Bluetooth stack needs to be
configured through a dedicated Bluetooth API. For example, to query the cur
rent mode of an asynchronous connection, an application can use the dedi
cated function BthGetCurrentMode or, if Winsock 2.0 is on the system, a call to
getsockopt with the option name SO _B7H_ GET_MODE.

The other way applications can work with Bluetooth is through virtual
serial ports. With this method, applications load a Bluetooth-dedicated serial
driver. Control of the stack is accomplished through DeviceloControl calls to the
COM driver. Calling WriteFile and ReadFile to write and read the COM port
sends and receives data across the Bluetooth connection.

Discovery
Before devices can communicate across a Bluetooth connection, devices and
the services those devices provide must be discovered. The discovery process is
quite complex because of the flexible nature of the Bluetooth feature set.
Devices and services on particular devices can be queried in a general way-all
printers, for example-or they can be specifically queried-for example,
whether a particular device supports a particular service, such as the Headset
Audio-Gateway service.

Both device discovery and service discovery are accomplished through the
same series of functions, albeit with significantly different parameters. The dis
covery process is accomplished through a series of three functions: WSALookup
ServiceBegin, WSALookupServiceNext, and WSALookupServiceEnd. These
functions aren't specific to Winsock 2.0, but in the discussion that follows, I'm
providing information only about using them in Bluetooth applications. A par
allel series of functions-BthNsLookupServiceBegin, BthNsLookupServiceNext,
and BthNsLookupServiceEnd-are functionally identical and can be used for
systems with Winsock 1.1. Although the function names imply a simple iterative
search, the parameters required for the search are daunting.

Chapter 14 Device-to-Device Communication 673

Device Discovery
To find local devices, an application first calls WSALookupServiceBegin, which
is prototyped as

INT WSALookupServiceBegin (LPWSAQUERYSET pQuerySet, DWORD dwFlags,
LPHANDLE lphlookup);

The first parameter is a pointer to a WSAQUERYSET structure, which I'll
discuss shortly. For device searches, the dwFlags parameter should contain the
flag LUP_CONTAINERS. The other allowable flags for this parameter will be cov
ered in the upcoming discussion about service queries. The final parameter
should point to a handle value that will be filled in with a search handle; this
search handle will be used for the other calls in the search. The return value is
an HRESULTwith 0, indicating success.

The WSAQUERYSET structure is defined as

typedef struct _WSAQuerySet {
DWORD dwSize;
LPTSTR lpszServicelnstanceName;
LPGUID lpServiceClassld;
LPWSAVERSION lpVersion;
LPTSTR lpszComment;
DWORD dwNameSpace;
LPGUID lpNSProviderld;
LPTSTR lpszContext;
DWORD dwNumberOfProtocols;
LPAFPROTOCOLS lpafpProtocols;
LPTSTR lpszQueryString;
DWORD dwNumberOfCsAddrs;
LPCSADDR_!NFO lpcsaBuffer;
DWORD dwOutputFlags;
LPBLOB lpBlob;

WSAQUERYSET, •PWSAQUERYSET;

The dwSize field should be set to the size of the structure. For device que
ries, the only other fields that need to be used are the dwNameSpace field,
which must be set to NS_BT, and the lpBlob field, which should point to a BLOB
structure. The remaining fields should be set to 0.

The BLOB structure pointed to by the lpBlob field is actually optional for
the initial device query call, but it's recommended so that the time the Blue
tooth stack spends looking for devices can be defined. If the query time isn't
specified, the Bluetooth stack defaults to a rather long 15 to 20 seconds waiting
for devices to respond. To define the query time, lpBlob points to a BLOB struc
ture that, in turn, points to a blob of a specific type. The generic BLOB structure
is defined as

674 Part Ill Communications

typedef struct _BLOB
ULONG cbSize;
BYTE* pBlobData;

BLOB, LPBLOB;

The two fields are the size of the specific BLOB structure being pointed to
a pointer to the specific BLOB data. For device queries, the blob we're inter
ested in is an inquiry blob defined as

typedef struct _BTHNS_INQUIRYBLOB
ULONG LAP;
unsigned char length;
unsigned char num_responses;

BTHNS_INQUIRYBLOB, *PBTHNS_INQUIRYBLOB;

The first field should be set to BT_ADDR_GIAC, which is the general
inquiry access code (GIAC), defined as Ox9e8b33. The length field should be set
to the time the stack should wait for devices to respond. The unit of time for
this field is a rather strange 1.28 seconds, so if you want to wait approximately
5 seconds, the value 4 in the field will produce a wait of 4 x 1.28, or 5.12, sec
onds. The final field, num_responses, specifies the maximum number of
devices that need to respond to end the query before the timeout value.

So before a call to WSALookupServiceBegin is made to query the available
devices, the WSAQUERYSET, BLOB, and BTHNS_INQUIRYBLOB structures
should be initialized with the WSAQUERYSET structure's lpBlob field pointing to
the BLOB structure. The BLOB structure should be initialized so that the cbSize
field contains the size of the BTHNS_INQUIRYBLOB structure and the pBlob
D at a field points to the BTHNS_INQUJRYBLOB structure. The
BTHNS_INQUIRYBLOB structure should be filled in with the search criteria.

When the call to WSALookupServiceBegin returns successfully, a call to
WSALookupServiceNext is made. Whereas the WSALookupServiceBegin call can
take a number of seconds, the WSALookupServiceNext call can return immedi
ately as long as the data being requested has been cached in the stack by the
WSALookupServiceBegin call. The WSALookupServiceNext call is defined as

INT WSALookupServiceNext (HANDLE hLookup, DWORD dwFlags,
LPDWORD lpdwBufferLength, LPWSAQUERYSET pResults);

The first parameter is the handle returned by WSALookupServiceBegin. The
dwFlags parameter contains a number of different flags that define the data
returned by the function. The possible flags are

• LUP_RETURN_NAME Return the name of the remote device.

• LUP_RETURN_ADDRESS Return the address of the remote
device.

Chapter 14 Device-to-Device Communication 675

• LUP_RETURN_BLOB Return BTHJNQUIRYRESULT structure with
information about the remote device.

• BTHNS_LUP_RESET_ITERATOR Reset the enumeration so that
the next call to WSALookupServiceNext will return information about
the first device in the list.

• BTHNS_LUP_NO_ADVANCE Return information about a device
but don't increment the device index so that the next call to WSA
LookupServiceNext returns information about the same device.

The final two parameters are the address of a variable that contains the
size of the output buffer and a pointer to the output buffer. Although the output
buffer pointer is cast as a pointer to a WSAQUERYSET structure, the buffer
passed to WSALookupServiceNext should be significantly larger than the struc
ture so that the function can marshal any strings into the buff er beyond the end
of the structure itself.

When the function returns without error, the WSAQUERYSET structure
pointed to by pResults contains information about a Bluetooth device. The
name of the device, if requested with the LUP _RETURN_NAME flag, is pointed
to by the lpszServicelnstanceName field. The address of the remote device is
contained in the CSADDR_INFO structure pointed to by lpcsaBuffer.
CSADDR_INFO provides information about the local and remote device
addresses and is defined as

typedef struct _CSADDR_INFO {
SOCKET_ADDRESS LocalAddr;
SOCKET_ADDRESS RemoteAddr;
INT iSocketType;
INT i Protocol;

CSADDR_INFO;

The SOCKET_ADDRESS fields are filled in with Bluetooth-specific
SOCKADDR_BTH addresses, so to get the remote address, the RemoteAddr field
should be properly cast, as in

bt = CCSOCKADDR_BTH *)

pQueryResult->lpcsaBuffer->RemoteAddr.lpSockaddrl->btAddr;

Each call to WSALookupServiceNext returns information about a single
device. The function should be called repeatedly until it returns
SOCKET_ERROR. If GetLastErrorreturns WSA_E_NO_MORE, there was no error;
there are simply no more devices to be found.

676 Part Ill Communications

After completing the WSALookupServiceNext loop, the program should
call WSALookupServiceEnd to clean up any resources the Winsock stack has
maintained during the search. The function is prototyped as

INT WSALookupServiceEnd (HANDLE hLookup);

The single parameter is the handle returned by WSALookupServiceBegin.
The following routine queries the Bluetooth devices that are in range and

returns their names and addresses in an array.

#define MYBUFFSIZE 16384
typedef struct {

TCHAR szName[256];
BLADDR btaddr;

MYBTDEVICE, *PMYBTDEVICE;
II
II FindDevices - Find devices in range.
II
int FindDevices CPMYBTDEVICE pbtDev, int *pnDevs) {

DWORD dwFlags, dwLen;
HANDLE hLookup;
inti.re;

II Create inquiry blob to limit time of search
BTHNS_INQUIRYBLOB inqblob;
memset C&inqblob, 0, sizeof (inqblob));
inqblob.LAP = BT_ADDR_GIAC; II Default GIAC
inqblob.length = 4; II 4 * 1.28 = 5 seconds
inqblob.num_responses = *pnDevs;

II Create blob to point to inquiry blob
BLOB blob;
blob.cbSize = sizeof (BTHNS_INQUIRYBLOB);
blob.pBlobData = CPBYTE)&inqblob;

II !nit query
WSAQUERYSET QuerySet;
memset (&QuerySet.0,sizeof CWSAQUERYSET));
QuerySet.dwSize = sizeof CWSAQUERYSET);
QuerySet.dwNameSpace = NS_BTH;
QuerySet.lpBlob =&blob;

II Start query for devices
re= WSALookupServiceBegin (&QuerySet, LUP_CONTAINERS, &hLookup);
if (re) return re;

II Allocate output buffer
PBYTE pOut = (PBYTE)LocalAlloc (LPTR, MYBUFFSIZE);

Chapter 14 Device-to-Device Communication 677

if (!pOut) return -1;
WSAQUERYSET *pOueryResult (WSAQUERYSET *)pQut;

II Loop through the devices by repeatedly calling WSALookupServiceNext
for (i = 0; i < *pnDevs; i++) {

dwlen = MYBUFFSIZE;
dwFlags = LUP_RETURN_NAME LUP_RETURN_ADDR;
re= WSALookupServiceNext (hlookup, dwFlags, &dwlen, pQueryResult);
if (re == SOCKET_ERROR) {

re= GetlastError();
break;

II Copy device name
lstrcpy (pbtDev[i].szName, pQueryResult->lpszServiceinstanceNamel;

II Copy Bluetooth device address
SOCKADDR_BTH *Pbta;
pbta = (SOCKADDR_BTH *)

pQueryResult->lpcsaBuffer->RemoteAddr.lpSockaddr;
pbtDev[iJ.btaddr = pbta->btAddr;

II See if we left the loop simply because there were no more devices
if (re WSA_E_NO_MORE) re = 0;

II Return the number of devices found
*pnDevs = i;

II Clean up
WSALookupServiceEnd (hlookup);
LocalFree (pOut);
return re;

The preceding routine uses WSALookupSeroiceBegin, WSALookupSeroice
Next, and WSALookupSeroiceEnd to iterate through the Bluetooth devices in
range. The routine could query other information about the remote devices by
passing the LUP _RETURN_BLOB flag in WSALookupSeroiceNext, but the infor
mation returned isn't needed to connect to the device.

Service Discovery
Once the device of interest is found, the next task is to discover whether that
device supplies the service needed. Services are identified in a multilevel fash
ion. The service can publish itself under a generic service such as printer or fax
service or publish itself under a specific unique identifier, or GUID.

If you know the specific service as well as its documented GUID, there is
no need for service discovery. Simply connect a Bluetooth socket to the specific

678 Part Ill Communications

service as discussed in the "Bluetooth" section on page 668. If, however, you don't
know the exact service GUID, you must take on the task of service discovery.

Querying services is accomplished through the same WSALookupSeroice
Begin, WSALookupSeroiceNext, and WSALookupSeroiceEnd functions discussed
earlier in the device discovery section. As with device discovery, the initial query
is accomplished with a call to WSALookupSeroiceBegin. To query the services on
a remote device, set the dwFlags parameter to 0 instead of using the
LUP _CONTAINERS flag. To query the service provided by the local system instead
of remote devices,. set the LUP _RES_SERVICE flag in the dwFlags parameter.

When you're querying the services of another device, the WSAQUERYSET
structure needs to specify the target device that's being queried. This is accom
plished by referencing a restriction blob in the WSAQUERYSET structure. The
restriction blob is defined as

typedef struct _BTHNS_RESTRICTIONBLOB
ULONG type;
ULONG serviceHandle;
SdpQueryUuid uuids[12J:
ULONG numRange;
SdpAttributeRange pRange[lJ;

BTHNS_RESTRICTIONBLOB;

The type field specifies whether the query should check for services,
attributes of the services, or both attributes and services by specifying the flags
SDP _SERVICE_SEARCH_REQUEST, SDP _SERVICE_ATTRIBUTE_REQUEST, and
SDP _SERVICE_SEARCH_ATTRIBUTE_REQUEST, respectively. The seroiceHandle
parameter is used in attribute-only searches to specify the service being que
ried. If the services are being queried, the uuids array contains up to 12 service
IDs to check. The service IDs are specified in an SdpQueryUuid structure
defined as

typedef struct _SdpQueryUuid
SdpQueryUuidUnion u;
USHORT uuidType;

SdpQueryUuid;

The SdpQueryUuid structure allows the service IDs to be specified as 16-,
32-, or 128-bit ID values. The ID values for documented services are provided
in the Bluetooth include file Bt_sdp.h in the SDK.

When you're querying attributes for a service.or services, the pRange array
can specify the minimum and maximum attribute range to query. The size of
the pRange array is specified in the numRange parameter. In the following

Chapter 14 Device-to-Device Communication 679

code, a specific service is queried to see whether it exists on the device, and if
it does, the query also returns the attributes associated with the service.

int QueryService CHWND hWnd, BT_ADDR bta, GUID *pguid) {
DWDRD dwFlags, dwlen:
HANDLE hlookup;
TCHAR szDeviceName[256]:
LPWSAQUERYSET pQuerySet;
PBYTE pQuery;
int i , re:

pQuery = CPBYTE)LocalAlloc (LPTR, MYBUFFSIZE);
if (!pQuery) return 0:

pQuerySet = (LPWSAQUERYSET)pQuery;
memset (pQuerySet, 0, MYBUFFSIZE);
pQuerySet->dwSize = sizeof (WSAQUERYSET);
pQuerySet->dwNameSpace = NS_BTH:

II Specify device
CSADDR_INFO csi;
memset (&csi, 0, sizeof (csi)):

SOCKADDR_BTH sa;
memset C&sa, 0, sizeof (sa));
sa.btAddr = bta;
sa.addressFamily = AF_BT:

II Specify the remote device address
csi .RemoteAddr.lpSockaddr = (LPSOCKADDR) &sa;
csi .RemoteAddr.iSockaddrLength = sizeof(SOCKADDR_BTH):
pQuerySet->lpcsaBuffer = &csi:
pQuerySet->dwNumberOfCsAddrs = 1:

II Form query based on service class being checked
BTHNS_RESTRICTIONBLOB btrblb;
memset (&btrblb, 0, sizeof (btrblb));
btrblb.type = SDP_SERVICE_SEARCH_ATTRIBUTE_REQUEST;
btrblb.numRange = 1:
btrblb.pRange[0].minAttribute = 0;
btrblb.pRange[0].maxAttribute = 0xffff;
btrblb.uuids[0].uuidType = SDP_ST_UUID128: //Define search type
memcpy (&btrblb.uuids[0].u.uuidl28, pguid, sizeof (GUID));

II Create blob to point to restriction blob
BLOB blob;
blob.cbSize = sizeof (BTHNS_RESTRICTIONBLOB);
blob.pBlobData = (PBYTE)&btrblb;

680 Part Ill Communications

pQuerySet->lpBlob &blob;
dwFlags = 0;

re= WSALookupServiceBegin (pQuerySet, dwFlags, &hlookupl;
if (re) return re;

II Setup query set for ServiceNext call
pQuerySet->dwNumberOfCsAddrs = l;
pQuerySet->lpszServiceinstanceName = szDeviceName;
memset CszDeviceName, 0, sizeof (szDeviceName));

dwFlags = LUP_RETURN_NAME I LUP_RETURN_ADDR;
dwlen = MYBUFFSIZE;
while ((re = WSALookupServiceNext (hlookup, dwFlags, &dwlen,

pQuerySet)) == 0) {
ISdpRecord **pRecordArg;
int cRecordArg = 0;

II Setup attribute query
HRESULT hr = ParseBlobToRecs (pQuerySet->lpBlob->pBlobData,

pQuerySet->lpBlob->cbSize,
&pRecordArg, (ULONG *)&cRecordArg);

if (hr == ERRDR_SUCCESS)
II Parse the records

}

II Clean up records
for (i = 0; i < cRecordArg; i++)

pRecordArg[iJ->Release();
CoTaskMemFree(pRecordArg);

dwlen = MYBUFFSIZE;
i++;

re = WSALookupServiceEnd (hlookup);
LocalFree (pQuery);
return re;

Notice that in this code, the Service Discovery Protocol (SDP) data for the
service is returned in the buffer pointed to by the lpBlob structure. This data
isn't parsed in the routine. Instead, a routine named ParseBlobToRecs is called
to parse the data. The routine ParseBlobToRecs, shown here, returns a series of
!SdpRecord interface pointers, one for each record in the SDP data.

II
II ParseBlobToRecs - Use ISdpStream object to parse the response from the
II SOP server.
II

Chapter 14 Device-to-Device Communication 681

HRESULT ParseBlobToRecs CUCHAR *PbData, DWORD cbStream,
ISdpRecord ***pppSdpRecords, ULONG *pcbRec) {

HRESULT hr:
ULONG ulError:
ISdpStream *pIStream = NULL:
*pppSdpRecords = NULL:
*PCbRec = 0:

hr= CoCreatelnstance (~uuidof(SdpStream), NULL.
CLSCTX_INPROC_SERVER, ~uuidof(ISdpStream),
(LPVOID *)&pIStream);

if (FAILED(hr)) return hr:
II Validate SDP data blob
hr= pIStream->Validate (pbData, cbStream, &ulError):

if (SUCCEEDED(hr)) {
hr = pIStream->VerifySequenceOf (pbData, cbStream,

SDP_TYPE_SEQUENCE, NULL, pcbRec);
if CSUCCEEDED(hr) && *pcbRec > 0) {

*PPPSdpRecords = (ISdpRecord **)CoTaskMemAlloc (
sizeof (ISdpRecord*) *

(*PCbRec)):
if (pppSdpRecords != NULL) {

else

hr = pIStream->RetrieveRecords (pbData, cbStream,
*pppSdpRecords, pcbRec):

if (!SUCCEEDED(hr)) {
CoTaskMemFree (*pppSdpRecords):
*pppSdpRecords = NULL:
*PCbRec = 0;

hr E_OUTOFMEMORY;

if (pIStream != NULL) {
pIStream->Release();
pIStream = NULL:

return hr:

The routine returns the data in an array of JSdpRecord pointers. It's left to
the reader to parse the record data using the other interfaces provided in the
Bluetooth APL

682 Part Ill Communications

Publishing a Service
The other side of service discovery is service publication. Bluetooth applica
tions that want to provide a service to other applications must do more than
simply create a Bluetooth socket, bind the socket, and call accept as would an
IrDA service. In addition to the socket work, the service must publish the
details of the service through the SDP APL

The actual publication of a service is actually quite simple. All that's nec
essary is to call WSASetSeroice, which is prototyped as

INT WSASetService (LPWSAQUERYSET lpqsReginfo, WSAESETSERVICEOP essoperation,
DWORD dwControlFlags);

The three parameters are a pointer to a WSAQUERYSET structure; a service
operation flag, which needs to be set to RNRSERVICE_REGISTER; and a
dwControlFlags parameter set to 0.

If only registration were that simple. The problem isn't calling the func
tion; it's composing the SDP data that's placed in the WSAQUERYSET structure.
The dwNameSpace field should be set to NS_Bm. And, as with the discovery
process, the blobs are involved. The blob used in setting the service is a
B'fl!NS_SETBLOB structure defined as

typedef struct _BTHNS_SETBLOB {
ULONG* pRecordHandle;
ULONG fSecurity;
ULONG fOptions;
ULONG ulRecordlength;
UCHAR pRecord[l];

BTHNS_SETBLOB, *PBTHNS_SETBLOB;

The first parameter points to a ULONG that will receive a handle for the
SDP record being created. The .fSecurity and /Options fields are reserved and
should be set to 0. The ulRecordLength parameter should be set to the length of
the SDP record to publish, whereas pRecord is the starting byte of the byte array
that is the SDP record to publish.

The following code demonstrates publishing an SDP record. The routine
is passed an SDP record and its size. It then initializes the proper structures and
calls WSASetSeroice to publish the record.

int PublishRecord (HWND hWnd, PBYTE pSDPRec, int nRecSize, ULONG *pRecord) {
BTHNS_SETBLOB *pSetBlob;
ULONG ulSdpVersion = BTH_SOP_VERSION;
int re;

II Zero out the record handle that will be returned by the call
*pRecord = 0;

Chapter 14 Device-to-Device Communication 683

II Allocate and init the SetBlob
pSetBlob = (BTHNS_SETBLOB *)LocalAlloc (LPTR,

sizeof (BTHNS_SETBLOB) + nRecSize);
if (!pSetBlob) return -1;

pSetBlob->pRecordHandle = pRecord;
pSetBlob->pSdpVersion = &ulSdpVersion;
pSetBlob->fSecurity = 0;
pSetBlob->fOptions = 0;
pSetBlob->ulRecordlength nRecSize;
memcpy CpSetBlob->pRecord, pSDPRec, nRecSize);

II !nit the container blob
BLOB blob;
blob.cbSize = sizeof{BTHNS_SETBLOB) + SDP_RECORD_SIZE - l;
blob.pBlobData = (PBYTE) pSetBlob;

II !nit the WSAQuerySet struct
WSAQUERYSET Service;
memset (&Service, 0, sizeof(Service));
Service.dwSize = sizeof(Service);
Service.lpBlob =&blob;
Service.dwNameSpace = NS_BTH;

II Publish the service
re = WSASetService(&Service, RNRSERVICE_REGISTER, 0);
if (re== SOCKET_ERROR) re= GetlastError();
II Clean up
LocalFree ((PBYTElpSetBlob);
return re;

When the application no longer wants to support the service, it needs to
remove the record from the SDP database. Removing the record is accom
plished by using WSASetService, specifying the record handle of the service and
the flag RNRSERVICE_DELETE. The record handle is passed in the
BTHNS_SETBLOB structure. The other fields of this structure are ignored. The
following code shows a routine that unregisters a service.

int UnpublishRecord (ULONG hRecord) {
ULONG ulSdpVersion = BTH_SDP_VERSION;
int re;

BTHNS_SETBLOB SetBlob;
memset (&SetBlob, 0, sizeof (SetBlob));
SetBlob.pRecordHandle = &hRecord;
SetBlob.pSdpVersion = &ulSdpVersion;

684 Part Ill Communications

II Init the container blob
BLOB blob;
blob.cbSize = sizeof(BTHNS_SETBLOB);
blob.pBlobData = (PBYTE) &SetBlob;

II Init the WSAQuerySet struct
WSAQUERYSET Service;
memset (&Service, 0, sizeof(Service));
Service.dwSize = sizeof(Service);
Service.lpBlob =&blob;
Service.dwNameSpace = NS_BTH;

II Unpublish the service
re= WSASetService(&Service, RNRSERVICE_DELETE, 0);
return re;

SOP Records
The format of the SDP information that's published is so complex that Windows
CE provides a special COM control to construct and deconstruct SDP records.
Even with the control, parsing SDP records isn't easy. The first problem is
knowing what's required in the SDP record. The information in the SDP record
is defined by the Bluetooth specification, and a complete explanation of this
data far exceeds the space available for such an explanation.

As a shortcut, many Bluetooth applications compose a generic record,
either hand-assembling the record or using an example tool named BthNs
Create that's provided in the Platform Builder. These hand-generated records
are saved as a byte array in the application. The known offsets where the GUID
and the RFCOMM channel are stored are known and are updated in the array
at run time. The record is then published using WSASetService, as shown earlier.

The following code shows a routine that uses a canned SDP record with
the GUID of the service and the channel stuffed into the appropriate places in
the record.

int RegisterService (HWND hWnd, GUID *pguid, byte bChannel, ULONG *pRecord) {
II SDP dummy record
II GUID goes at offset 8
II Channel goes in last byte of record.
static BYTE bSDPRecord[] = {
0x35, 0x27, 0x09, 0x00, 0x01, 0x35, 0xll, 0xlC, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x09, 0x00, 0x04, 0x35, 0x0C, 0x35, 0x03, 0xl9, 0x01,
0x00, 0x35, 0x05, 0xl9, 0x00, 0x03, 0x08, 0x00};

Chapter 14 Device-to-Device Communication 685

II Translate guid into net byte order for SOP record
GUID *P = (GUID *)&bSDPRecord[8];
p->Datal = htonl (pguid->Datal);
p->Data2 = htons Cpguid->Data2);
p->Data3 = htons Cpguid->Data3);
memcpy Cp->Data4, pguid->Data4, sizeof (pguid->Data4));

II Copy channel value into record
bSDPRecord[sizeof CbSDPRecord)-1] = bChannel;

return PublishRecord ChWnd, bSDPRecord, sizeof (bSDPRecord), pRecord);

Bluetooth Communication with Winsock
The hard part of Bluetooth communication is the setup. Once a service is pub
lished, the communication with remote devices is simple regardless of the
method, Winsock or virtual COM port, used by the application.

As with IrDA, using Winsock to communicate over Bluetooth consists of
implementing a client/server design with the server creating a socket that's
bound to an address and a client that connects to the server socket by specify
ing the address and port of the server.

Server Side
A Bluetooth application providing a service first must set up a server routine
that creates a socket and performs all the necessary calls to support the server
side of a socket communication. The task starts with creating a socket with the
standard socket call. The address format of the socket should be set to AF_BT,
indicating a socket bound to the Bluetooth transport.

Once created, the socket needs to be bound with a call to bind. The fol
lowing code shows a socket being created followed by a call to bind the socket.
The address the socket is bound to is left blank, indicating that the system will
provide the proper settings. The address format for the Bluetooth address used
in the bind call is set to AF_BT.

II Open a bluetooth socket
s_sock =socket CAF_BT, SOCK_STREAM, BTHPROTO_RFCOMM);
if (s_sock == INVALID_SOCKET)

return -1;

II Fill in address stuff
memset C&btaddr, 0, sizeof (btaddr));
btaddr.addressFamily = AF_BT;
btaddr.port = 0; II Let driver assign a channel

686 Part Ill Communications

II Bind to socket
re= bind (s_sock, (struct sockaddr *)&btaddr, sizeof (btaddr));
if (re) {

}

closesocket (s_sock);
return -2;

II Get information on the port assigned
len = sizeof (btaddr);
re= getsockname (s_sock, (SOCKADDR *)&btaddr, &len);
if (re) {

closesocket (s_sock);
return 0;

II Tell the world what we've bound to.
printf ("Addr %04x.%08x, port %d", GELNAP(btaddr.btAddr),

GET_SAP(btaddr.btAddr), btaddr.port)

Once the call to bind succeeds, the code calls getsockname, which fills in
the details of the address of the device and, more important, the Bluetooth
RFCOMM channel the socket was bound to. This RFCOMM channel is impor
tant since it will need to be published with the SDP record so that other devices
will know which port to connect to when connecting to the service. The macros
in the prinif statement in the preceding code demonstrate the division of the
Bluetooth device address into its two parts: the NAP, or nonsignificant address
portion, and the SAP, or significant address portion.

Once the RFCOMM channel is known, the SDP record can be constructed
and published as shown earlier in this section. The socket is then placed in lis
ten mode, and a call to accept is made, which blocks until a client application
socket connects to the address. When the client does connect, the accept call
returns with the handle of a new socket that's connected with the client. This
new socket is then used to communicate with the client device.

Client Side
On the client side, the task of connecting starts with device discovery. Once the
Bluetooth address of the client is determined, the client can create a thread that
will communicate with the server. The process mirrors any socket-based client
with calls to create the socket, and the client connects the socket to the remote
server by specifying the address of the server. In the case of a Bluetooth client,
the address of the server must include either the RFCOMM channel or the GUID
of the service being connected to. In the following code, a client connects to a
remote service knowing the remote device's Bluetooth address and the GUID
of the client.

Chapter 14 Device-to-Device Communication 687

II Open a bluetooth socket
t_sock =socket CAF_BT, SOCK_STREAM, BTHPROTO_RFCOMM);
if (t_sock == INVALID_SOCKET)

return 0;

II Fill in address stuff
memset C&btaddr, 0, sizeof (btaddr));
btaddr.btAddr = btaddrTarget;
btaddr.addressFamily = AF_BT;
btaddr.port = 0; II Let driver assign a channel
memcpy C&btaddr.serviceClassld, &guidbthello, sizeof CGUID));

II Connect to remote socket
re= connect (t_sock. (struct sockaddr *)&btaddr. sizeof (btaddr));
if (re) {

closesocket (t_sock);
return -4;

II Connected ...

Once the client is connected, data can be exchanged with the server with
the standard socket routines send and recv. When the conversation is con
cluded, both client and server should close their respective sockets with a call
to closesocket.

Bluetooth Communication with Virtual COM Ports
If using Winsock for communication isn't to your liking, the Windows CE Blue
tooth stack can also be accessed by using a serial driver that can be loaded. This
method has a number of shortcomings, but some developers prefer it to using
Winsock because of the familiarity of using a simple serial port compared with
the complexity of Winsock. In any case, before I show you how to use the vir
tual serial port method, a few of the problems should be discussed.

The first problem is that the Bluetooth driver name is already the most
used driver name in Windows CE. The Windows CE stream driver architecture is
such that the operating system is limited to 10 instances of a given driver name,
such as COM or WAV. Since typically 2 to 4 instances of serial drivers are already
in a Windows CE system, the available number of virtual COM ports is limited.
Also, since the Bluetooth stack typically exposes some of its profiles through
COM ports, the 2 to 4 number quickly increases to 6 to 8 ports, leaving only 2
to 4 available COM driver instances for Bluetooth applications that want to use
virtual COM ports. An intrepid programmer could register the Bluetooth driver
under a different name, such as BTC for Bluetooth COM, but this nonstandard
name wouldn't be expected if it were to be passed on to other applications.

688 Part Ill Communications

The second problem is that although the virtual COM port method is used
on a number of platforms, the implementation on Windows CE is unique. At
least with the Winsock method, an application can be written to be fairly source
code compatible with Windows XP. That isn't the case with the virtual COM
port method.

Finally, creating COM ports using this method is accomplished using the
RegisterDevice function. Although perfectly functional, this function has been
deprecated for quite a while under newer versions of Windows CE. Drivers
loaded with RegisterDevice aren't listed in the active device list maintained in
the registry by the system. RegisterDevice requires that the application provide
the index value for the driver being loaded. Because there's no simple method
for determining which instance values are in use, the application must try all 10
instance values until one doesn't fail because it's used by another COM driver.
Still, in some circumstances-when legacy support is needed, for example
using a virtual COM port is necessary.

Creating a virtual COM port is accomplished with the function Register
Device, which is prototyped as

HANDLE RegisterDevice (LPCWSTR lpszType, DWORD dwindex, LPCWSTR lpszlib,
DWORD dwinfo);

The first parameter is a three-character name of the driver, such as COM or
WAY. The second parameter is the instance value from 1 through 9, or 0 for
instance 10. This value can't already be in use by another driver of the same
name. The third parameter is the name of the DLL that implements the driver.
The final parameter is a DWORD that's passed to the !nit entry point of the driver.

When used to load a Bluetooth virtual COM port, RegisterDevice is used as
follows:

hDev = RegisterDevice CTEXTC"COM"), dwlndex, TEXT("btd.dll"), CDWORD) &pp);

where pp is the address of a PORTEMUPortParams structure defined as

typedef struct _portemu_port_params
int channel ;
int flocal;
BD_ADDR device;
int imtu;
int iminmtu;
int imaxmtu;
int isendquota;
int irecvquota;
GUID uuidService;
unsigned int uiportflags;

PORTEMUPortParams;

Chapter 14 Device-to-Device Communication 689

The first field is the RFCOMM channel to be used for this port. If the chan
nel is to be assigned automatically, the field can be set to
RFCOMM_CHANNEL_MULTIPLE. The }Local field should be set to TRUE for the
server application and FALSE for the client application. The device field is used
by client applications to specify the Bluetooth address of the remote server.
This field must be 0 for server applications.

The next three parameters allow the application to specify the maximum
transaction unit (MTU). The first field in this series, imtu, is the suggested value,
while iminmtu is the minimum acceptable MTU and imaxmtu is the maximum
acceptable MTU. If all three of these fields are 0, the driver uses default values
for the MTU. The isendquota and irecvquota fields set the buffer sizes for send
and receive operations. Setting these fields to 0 indicates that the driver should
use the default values.

The uuidService field is used by the client application to specify the ser
vice being connected to on the server. If the channel field is 0, this field must
be set. If the uuidService is nonzero, the Bluetooth stack will perform an SDP
search to determine the proper channel for the service. The actual SDP search
will take place when the COM port is opened, not when it's loaded with
Register Device.

The upporifl,ags field can contain a combination of the following flags:

• RFCOMM_PORT_FLAGS_AUTHENTICATE Perform authentica
tion with the remote device when connecting.

• RFCOMM_PORT_FLAGS_ENCRYPT Encrypt the stream.

• RFCOMM_PORT_FLAGS_REMOTE_DCB When this flag is speci
fied, changing the DCB settings of the port results in a negation with
the peer device DCB settings.

• RFCOMM_PORT_FLAGS_KEEP_DCD If this flag is set, the emu
lated DCD line will always be set.

Server Side
As when using Winsock to talk to the Bluetooth stack, using virtual COM ports
requires that one device be the server and the other the client. The server's
responsibility includes loading the driver, opening the driver, determining the
RFCOMM channel assigned to the port, and advertising the port using the SDP
process discussed earlier.

The following code fragment demonstrates a server registering a virtual
COM port driver. Notice that the routine makes multiple attempts at registering
the driver, starting with instance value 9 and going down. Since the upper
instance values are typically less used, this results in a quicker registration pro-

690 Part Ill Communications

cess. Notice that as soon as the registration loop completes, the code saves the
instance value because that value forms the name of the driver. The driver
name is then used to open the driver with CreateFile. Once the driver is
opened, the server uses one of the two special 1/0 Control (IOCTL) commands
available on a virtual COM port to query the RFCOMM channel. The server then
calls its RegisterService routine to advertise the service through an SDP record.

II
II Server process for opening a virtual COM port
II
inti, re;
PORTEMUPortParams pp;
TCHAR szDrvName[6];

memset (&pp, 0, sizeof (pp));
pp.channel = RFCOMM_CHANNEL_MULTIPLE;
pp.flocal = TRUE;
pp.uiportflags = 0;

II Find free instance number and load Bluetooth virt serial driver
for (i = 9 ; i >= 0; i - -) {

hDev = RegisterDevice (L"COM", i, L"btd.dll", (OWORD)&pp);
if (hOev)

break;

II See if driver registered
if (hDev == 0) return -1;

II Form the driver name and save it.
wsprintf (szDrvName, TEXT("COM%d:"), i);

II Open the driver
hDevOpen = CreateFile (szDrvName, GENERIC_READ I GENERIC_WRITE. 0,

NULL, OPEN_ALWAYS, 0, 0);
if (hDevOpen == INVALID_HANDLE_VALUE) {

DeregisterDevice (hDev);
return -2;

DWORD port = 0;
DWORD dwSizeOut;
re = DeviceioControl (hDevOpen, IOCTL_BLUETOOTH_GET_RFCOMM_CHANNEL,

NULL, 0, &port, sizeof(port), &dwSizeOut, NULL);

Add2List ChWnd, TEXTC"rc = %d Port value is %d"), re, port);

re= RegisterService (hWnd, &guidbthello, (unsigned char) port, &hService);

Chapter 14 Device-to-Device Communication 691

The IOCTL command used in the preceding code, JOCTL_BLUETOOTH_
GET_RFCOMM_CHANNEL, returns the RFCOMM channel of the COM port. For
the call to DeviceloControl, the output buffer points to a DWORD value that will
receive the port number. The output buffer size must be set to the size of a
DWORD. Once the port is determined, the routine simply calls the RegisterSer
vice routine, shown earlier in this chapter.

Client Side
The client side of the process is similar to the server side, with the exception
that the client needs to know the Bluetooth address of the server and the GUID
of the service on the server. Both of these parameters are specified in the
PORTEMUPortParams structure when the device is registered. The following
code shows the COM port initialization process from the client perspective.

II
II Client side
II
inti, re;
PORTEMUPortParams pp;
TCHAR szDrvName[6];

int nDevs2 = MAX_DEVICES;
MYBTDEVICE btd2[MAX_DEVICES];

II Find the server's Bluetooth address
re= FindDevices (btaServ);
if (rel return -1:

memset (&pp, 0, sizeof (pp));
pp.channel = 0:
pp.flocal = FALSE;
pp.device= btaServ;
pp.uuidService = guidbtService;
pp.uiportflags = 0:

II Find free instance number and load Bluetooth virt serial driver
for (i = 9 : i >= 0 ; i - -) {

}

hDev = RegisterDevice (L"COM", i, L"btd.dll", (OWORDJ&ppl;
if (hDev)

break;

II See if driver registered
if (hDev == 01 return -1:

692 Part Ill Communications

II Form the driver name and save it.
wsprintf (szDrvName, TEXT("COM%d:"), i);

II Open the driver
hDevOpen = CreateFile (szDrvName, GENERIC_READ I GENERIC_WRITE, 0,

NULL, OPEN_ALWAYS, 0, 0);
if ChDevOpen == INVALID_HANDLE_VALUE) {

DeregisterDevice ChDev);
return -2:

BLADDR bt;
DWORD dwSizeOut;
re = DeviceioControl ChDevOpen, IOCTL_BLUETOOTH_GET_PEER_DEVICE,

NULL, 0, &bt, sizeof(bt), &dwSizeOut, NULL);
printf ("Connection detected with %04x%08x\r\n", GELNAP(bt), GELSAP(bt));

Notice the use of the second IOCTL command provided for Bluetooth sup
port, IOCTL_BLUETOOTH_ GET_PEER_DEVICE. This command returns the Blue
tooth address of the device on the other end of the connected virtual serial port.

Communication between the client and the server is accomplished
through the standard Win32 file functions ReadFile and WriteFile. When the
conversation has been concluded, the driver should be closed with a call to
CloseHandle and the driver unloaded with a call to DeregisterDevice, proto
typed here:

BOOL DeregisterDevice (HANDLE hDevice);

The only parameter is the handle returned by RegisterDevice.

The BtHello Example Program
The BtHello example demonstrates a fairly complete Bluetooth application that
can act as both a client and a server. BtHello must be running on two Windows
CE devices that use the Windows CE Bluetooth stack for it to work. When
started, BtHello searches for other Bluetooth devices in the area and lists them
in the output window. When the user taps the "Say Hello" button, BtHello con
nects to the bthello service on the other device. Once connected, the client
sends the server a short string and then closes the connection. The server reads
the text and displays it in its window. Figure 14-4 shows the BtHello example
after it has received the message from the other device.

Chapter 14 Device-to-Device Communication 693

Figure 14-4 The BtHello example after it has received a message from
another device

The source code for BtHello is shown in Listing 14-2. The application is a
simple dialog-based application. The source code is divided into two .cpp files
and their associated include files: BtHello.cpp, which contains the majority of
the source code; and MyBtUtil.cpp, which contains handy Bluetooth routines
for finding devices and for registering service GUIDs with the SDP service.

MyBtUtil.h
II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright CC) 2003 Douglas Boling
II==

#ifndef _MYBTUTIL_H_
#define _MYBTUTIL_H_

#if defined (~cplusplus)
extern "C" {
#en di f

Listing 14-2 The BtHello source code (continued)

694 Part Ill Communications

Listing 14-2 (continued)

1firwlude. <.windows···h~
#include. <wins.ock2,h>
#i nt;:Tud.e
41incFude
4finclu.de

Chapter 14 Device-to-Device Communication 695

II Create inquiry blob to limit time of search
BTHNS_INQUIRYBLOB inqblob;
memset C&inqblob, 0, sizeof (inqblob));
inqblob.LAP = BT_ADDR_GIAC: II Default GIAC
inqblob.length = 4: II 4 * 1.28 = 5 seconds
inqblob.num_responses = nMax;

II Create blob to point to inquiry blob
BLOB blob;
blob.cbSize = sizeof (BTHNS_INQUIRYBLOB);
blob.pBlobData = (PBYTE)&inqblob;

II Init query
WSAQUERYSET QuerySet;
memset(&QuerySet,0,sizeof(WSAQUERYSETll:
QuerySet.dwSize sizeof(WSAQUERYSET);
QuerySet.dwNameSpace NS_BTH;
QuerySet.lpBlob &blob;

II Start query for devices
re= WSALookupServiceBegin C&QuerySet, LUP_CONTAINERS, &hlookup);
if <rel return re;

PBYTE pOut = CPBYTE)LocalAlloc (LPTR, MYBUFFSIZE):
if (!pOut) return -1:
WSAQUERYSET *pOueryResult = (WSAQUERYSET *lpOut;

for (i = 0; i < nMax: i++) {
dwlen = MYBUFFSIZE:
dwFl ags = LUP _RETURN_NAME I LUP _RETURN_ADDR;
re= WSALookupServiceNext (hLookup, dwFlags, &dwLen, pQueryResult);
if (re == SOCKET_ERROR) {

re= GetLastError();
break:

II Copy device name
lstrcpy (pbtDev[iJ.szName, pQueryResult->lpszServiceinstanceName);
II Copy bluetooth device address
SOCKADDR_BTH *pbta:
pbta = (SOCKADDR_BTH *)pQueryResult->lpcsaBuffer->RemoteAddr.lpSock-

addr:
pbtDev[iJ.btactdr = pbta->btAddr:

}

if <re == WSA_E_NO_MOREl re = 0:
*pnDevs = 1:
WSALookupServiceEnd (hLookup);
LocalFree (pOutl:
return re;

(continued)

696 Part Ill Communications

Listing 14-2 (continued)

//-----------·----------------------------------- ---- ---------- ------
11 PublishRecord - Helper routine that actually does the registering
II of the SDP record.
II
int Publ ishRecord CPBYTE pSDPRec, int nRecSize, ULONG •pRecord) {

BTHNS_SETBLOB *pSetBlob:

}

ULONG ul SdpVersion = BTH_SDP _VERSION;
int re;

If Zero out the record handle that will be returned by the call
*pRecord = 0;

II Allocate and init the SetBlob
pSetBlob = CBTHNS_SETBLOB *)LocalAlloc {LPTR,

sizeof CBTHNS_SETBLOB) + nRecSiZe~ll;
if (!pSetBlobl return -1;

pSetBlob->pRecordHandle = pRecord;
pSetBlob->pSdpVersion = &ulSdpVersion;
pSetBlob->fSecurity = 0;
pSetBlob->fOptions • 0;
pSetBlob->ulRecordlength nRecSize;
memcpy (pSet.Blob->pRecord, pSDPRec, nRecSize);

II Intt the container blob
BLOB blob;
blob.cbSize sizeof(BTHNS_SETBLOBl + nRecSize - 1;
blob.pBlobData CPBYTE) p$etBlob;

// lnit the WSAQuerySet struct
WSAQUERYSET Service;
memset (&Service, 0, sizeof(Service)l;
Service.dwSize = sizeof(Service);
Service.lpBlob =&blob;
Service.dwNameSpace = NS_BTH;

JI Publish the service
re= WSASetService(&Service, RNRSERVICE_REGISTER, 0);
if. (re == SOCKET_ERROR)

re= GetlastError{);

II Clean up
Loca lFree < < PBYTE)pSetBl ob l:
return re:

Chapter 14 Device-to-Device Communication 697

11--
11 UnregisterBtService - Remove service from SOP database
II
int UnregisterBtService CHWNO hWnd, ULONG hRecordl {

ULONG ulSdpVersion = BTH_SOP_VERSION;
int re:

BTHNS_SETBLOB SetBlob:
memset C&SetBlob, 0, sizeof (SetBlob));
SetBlob.pRecordHandle = &hRecord:
SetBlob.pSdpVersion = &ulSdpVersion:

II Init the container blob
BLOB blob;
blob.cbSize = sizeof(BTHNS_SETBLOB):
blob.pBlobOata = (PBYTE) &SetBlob:

II Init the WSAQuerySet struct
WSAQUERYSET Service:
memset <&Service, 0, siieof(Service)):
Service.dwSize = sizeof(Servicel:
Service.lpBlob =&blob;
Service.dwNameSpace = NS_BTH:

II Unpublish the service
re= WSASetService(&Service, RNRSERVICE_OELETE, 0):
if (re == SOCKET_ERROR)

re= GetLastError(l:
return re:

11--
11 RegisterBtService - Registers a service with a guid and RFChannel
II
int RegisterBtService (GUIO *pguid. byte bChannel, ULONG *PRecord) {

II SOP dummy record
II GUIO goes at offset 8
II Channel goes in last byte of record.
static BYTE bSOPRecord[] = {
0x35, 0x27, 0x09, 0x00, 0x01, 0x35, 0xll, 0xlC, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x09, 0x00, 0x04, 0x35, 0x0C, 0x35, 0x03,
0x00, 0x35. 0x05, 0xl9, 0x00, 0x03, 0x08; 0x00}:

II Update the SOP record
II Translate guid into net byte order for SOP record
GUIO *P = (GUIO *l&bSOPRecord[8]:
p->Oatal = htonl Cpguid->Oatall:

0x00, 0x00,
0x00, 0x00,
0xl9, 0x01.

(continued)

698 Part Ill Communications

Listing 14·2 (continued)

Chapter 14 Device-to-Device Communication 699

#define MYMSG_ENABLESEND CWM_USER+l000)
#define MYMSG_PRINTF (WM_USER+1001)
11--
11 Function prototypes
II
HWND Initinstance CHINSTANCE. LPCMDLINE, int);
int Terminstance CHINSTANCE, int);
void Add2List CHWND hWnd, LPTSTR lpszFormat, ...);

II Window procedures
LRESULT CALLBACK MainWndProc CHWND, UINT, WPARAM, LPARAM);

II Message handlers
LRESULT DoCreateMain CHWND, UINT. WPARAM, LPARAM);
LRESULT DoSizeMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoPocketPCShell CHWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoEnableSendMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoPrintfNotifyMain CHWND, UINT, WPARAM, LPARAM);

II Command functions
LPARAM DoMainCommandSend CHWND, WORD. HWND. WORD);
LPARAM DoMainCommandExit CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandScan (HWND, WORD, HWND, WORD);

II Thread functions
DWORD WINAPI SearchThread CPVOID pArg);
DWORD WINAP! ServerThread CPVOID pArg):
DWORD WINAPI ReceiveThread CPVOID pArg);
DWORD WINAPI SayHelloThread CPVOID pArg);

BtHello.cpp
II==
II BtHello - A demonstration of a Bluetooth application
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
#include <windows.h>
#include <winsock2.h>
#include <ws2bth.h>
#include <Msgqueue.h>

#if defined(WIN32_PLATFORM_PSPCl
#include <aygshel 1. h>

II For all that Windows stuff

II Add Pocket PC includes

(continued)

700 Part Ill Communications

Listing 14-2 (continued)

4/pragma comment(lib, "aygshell")
ifendif

#include "btHel1o.h•
#include ~MyBTutil,h"

II Link Pocket PC lib for menubar

II Program-specific stuff
11 My B.l ueto.oth routines

If--~-~-------\-~,--" .. ,. ____ -·--"·---------- ---'-------·----------------
/I Glob.a 1 dilta
II
canst TCHAR szAppName[] = TEXT ("bthe11 o");

// {26CECFEC-D255·4a5d ·AF7C-9CCF840E7 A42}
GUID guidbthello =
{ 0x26cecfec, 0xd255, 0x.4a5d, { 0xaf, 0x7c, 0x9c, 0xcf,

0x84, 0xe. 0x7a, 0x42} };

HINSTANCE hinst;
HWND hMain:
BOO~ .fC.ontfnue = TRUE;
BOOL .ffi rstSi ze ·= TRUE:

II Program instance handle
II Main window handle
/I Servef thre1d cont. fla~

I/ First WM: • ..SIZE flag

iHf defineMWIN3LPLATFORM_PSPC) && (_WIN32-WCE >= 300)
SHACTIVATEINFO saf; If Needed for PPC helper funcs
1/endif

HANDLE hORead = 01
HANDLE hQWrite • 0;
CRlUCALSECTION csPrintf;

1fdeflne MAX;.;.:DEV ICES 16 .
. M'(BTDgVICE. btd[MAX.....DEVICES];

int nDevs = 0;

II Used for thread safe print

II List of BT devices
/; Co.unt. of BT devices

I I, Message dispatch tab 1 e for Mai riWindowflroc
tonst. struct decOdeUINl MainMessages[] = {

WM;.;.:CREATE .• DoCreateMain.

};

WM_Srzi:; ... DoSizeMain.,
WM.,.COMMAND, .ll()CommandMa in,
MYMSG:...ENABLESJN D. Do Enab l eSen oMa in.
MYMSG_PRINTf', DoPri ntfNotifyMai n'
WM_SEHINGCHANGE, D()J'ocketPCShel r,
WM.,..ACTillATE:, DoPocke~PCS~eJl,
W.M:...DEST.ROY ..•. DoDestf'oyMa i.n, •

I/ Comman4 Message dispatch for MainWi ndowProc
c~nst struct decodeCMD Ma1nCommandltems(] = {

.. def1ned(WJtt32~PLATFORMjSPC) && (_WIN~2_W~E >"' 300)

Chapter 14 Device-to-Device Communication 701

IDOK, DoMainCommandExit,
fie 1 se

IDOK, DoMainCommandSend,
fiend if

} ;

IDCANCEL, DoMainCommandExit,
IDD_SAYHELLO, DoMainCommandSend,
IDD_SCAN, DoMainCommandScan,

II==
II Program entry point
II
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,

LPCMDLINE lpCmdLine, int nCmdShow) {
MSG msg;
int re = 0;

II Initialize this instance.
hMain = Initinstance (hinstance, lpCmdLine, nCmdShow);
if (hMain == 0)

return Terminstance (hinstance, 0xl0);

II Application message loop
while (GetMessage (&msg, NULL, 0, 0)) {

if ((hMain == 0) I I !IsDialogMessage (hMain, &msg)) {
TranslateMessage <&msg);
DispatchMessage <&msg);

II Instance cleanup
return Terminstance (hinstance, msg.wParaml:

11--
11 Initinstance - Instance initialization
II
HWND Initinstance (HINSTANCE hinstance, LPCMDLINE lpCmdLine,

int nCmdShow){
WNDCLASS we;
HWND hWnd;
HANDLE hThread;
int re:

hinst = hinstance; II Save program instance handle.

II For all systems, if previous instance, activate it instead of us.
hWnd = FindWindow (szAppName. NULL);
if (hWnd) {

SetForegroundWindow <<HWND)((DWORDlhWnd I 0x0lll:

(continued)

702 Part Ill Communications

Listing 14-2 (continued)

return 0;
}

!nit Wins.eek
WSADATA wsaData;
re = WSAStarfup (0x0202, ~wsaData);

(rel {
WSAStartup".), szAppName. MLOK);

Chapter 14 Device-to-Device Communication 703

return 0:

CloseHandle (hThread);

II Post a message to have device discovery start
PostMessage (hWnd, WM_COMMAND, MAKEWPARAM (IDD_SCAN, BN_CLICKED),0);

ShowWindow (hWnd, nCmdShow); JI Standard show and update calls

}

UpdateWindow (hWnd);
SetFocus (GetDlgitem (hWnd, IDD_OUTTEXT)): ·
return hWnd;

11--
11 Terminstance - Program cleanup
II
int Terminstance (HINSTANCE hlnstance, int nDefRCl {

WSACleanup ();
return nDefRC:

//==============~======~==============~==========================m======

II Message handling.procedures for main window
11--
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
INT i:
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0; i < dim(MainMessages); i++> {

if <wMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, lP~ram):

}

return DefWindowProc (hWnd, wMsg, wParam, lParam);
}

11--
11 DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

1/if defined(WIN32_PLATFORM_PSPC) && CWIN32_WCE >= 300)
SHINITDLGINFO shidi;
SHME~UBA~INFO mbi; II For Pocket PC, create
memset(&mbi, 0, sizeof(SHMENUBARINFO)): 11 me.nu bar so that we
mbi .cbSize = sizeof(SHMENUBARINFO); II have a sip button

(continued)

704 Part Ill Communications

Listing 14-2 (continued)

mbi . dwFl ags = SHCMBF:...EMPTYBAR; .
mbi.hwndParent = hWnd;

·sHCreateMenuBar<&mbt>:
SendMes sage{ mbi .• .tiwndMB ', SHCMBM_GETSU BMENU, 0, 100 l;

II For Pocket PC. make di a 1 og box full screen with PPC
I I specific cal L
shidi .dwMask = SH:rDIM_FLAGS;
shidLdWFlags = SHIDIF_OONEBUTTON I SHIDIF_SIZEDLG 1 SHIDIF_SIPDOWN;
shidi.hOlg = hwnd:
SHinttDi~log(&shtdiJ;

sai .cbSize = sizeof (sai):
SHHandleWMSettingChange(hWnd, .wParam. lParam, &sail:

#endi f
return 0:

}

11 - - - - - ~.·- ~ c - ~ - - - • -'" - -· - " c - - - ~.-;., - "'- - - ·-· - - • - - ~. -,.- - c - - •. c c. -.- -· - - ~ ~. - ~ - - - - - - '·· .·, ~·
11 DoSizeMai n - Process· :wM~SrZE message .. fqr window.
If
LRESULT DoSizeMain (HWND hWnd, UI.NT wlfag,

lPARAM. 1 Pa ram) T

#if defined(WIN32:..PLAfFORM]SPC)
static. RECT rectlistbox:
RECT rect:

GetCli entRect < hWnd. &redt>:
uff .(fFirstSize) {

}

II First time through, get the positio·n of the listbo){ for
If resizing later. Star<e ttre dtstance from the side~ of ·
l I the 1 i stbox control to. the Si.de of the parent w1 ndow
rt (IsWindow ufatDTgTtent ChWnd. Ioo .. INTEx:tnf'{ ' · .. ····

&etwtn<fowRect < GetDT g rt.em ChWnd; r qo .. :J NlEXT}. ·• &recHrs:tbox) •
MapWindQWPoi nts :<ttW.No.:..DESKTOP. ·hWnd .• (LPPO.Itff!&tectL istpox. z);

rectlistbox.right = 'rect.right • .rectL1stbox.rt.ght:
rectL istbox. bottom = rect. bottom • rec:tl i stbQx.bott.om;

SetWi ndowP'os CGetOJgitem (hWnd,> I DD..,ltHEXTJ, 0, •recL i eft+5,

#endif

rectlistbox. top•' re ct. right' 10;
rect.llottoin ~ rectL i stboictop
SWP..'.NOZORDERJ;

if. (fFii;s.tSize) {
. EnableWinclow (GetOlgitem (hWnd, IDD..,SA)'H~LLO), FALSO:
. EnableWindow (GetDlgitem (hWnd, IDD_SCAN), fALSE):

Chapter 14 Device-to-Device Communication 705

fFirstSize FALSE:

return 0:

11--
11 DoCommandMain - Process WM_COMMANO message for window.
II
LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam,

}

LPARAM 1 Paraml (
WORD iditem, wNotifyCode:
HWND hwndCtl:
I NT i :

II Parse the parameters.
iditem = CWORDJ LOWORD CwParaml:
wNotifyCode =(WORD) HIWORD (wParamJ:
hwndCtl = CHWNDJ lParam:

II Call routine to handle control message.
for Ci = 0: i < dimCMainCommanditemsl: i++) {

if (iditem == MainCommanditems[i].Code)
return (*MainCommanditems[i].Fxn)(hWnd, iditem, hwndCtl,

wNotifyCode):

return 0:

11--
11 DoEnableSendMain - Process user message to enable send button
II
LRESULT DoEnableSendMain (HWND hWnd, UINT wMsg, WPARAM wParam,

}

LPARAM lParam) {
EnableWindow CGetDlgitem ChWnd, IDD_SAYHELLO), lParam):
EnableWindow CGetDlgitem (hWnd, IDD_SCAN), TRUE):
SetWindowText (hWnd, szAppName):
return 0:

11--
11 DoPrintfNotifyMain - Process printf notify message
II
LRESULT DoPrintfNotifyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
TCHAR szBuffer[512]:
int re:
DWORD dwlen = 0:
DWORD dwFlags = 0:

memset (szBuffer, 0, sizeof (szBuffer)):
re= ReadMsgQueue (hQRead, (LPBYTE)szBuffer, sizeof (szBUffer),

(continued)

706 Part Ill Communications

Listing 14·2 (continued)

Chapter 14 Device-to-Device Communication 707

return 0:

11--
11 DoMainCommandSend - Process Program Send File command.
II
LPARAM DoMainCommandSend CHWND hWnd, WORD iditem, HWND hwndCtl.

}

WORD wNotifyCodel {
static TCHAR szName[MAX_PATH]:

GetDlgitemText ChWnd. IDD_OUTTEXT. szName, dim(szName)):
CreateThread (NULL, 0, SayHelloThread, CPVOID)szName, 0, NULL):
return 0:

11--
11 DoMainCommandScan - Process Device Scan command.
II
LPARAM DoMainCommandScan (HWND hWnd, WORD iditem, HWND hwndCtl,

}

WORD wNotifyCode) {
SetWindowText (hWnd, TEXT("Scanning ... "));
EnableWindow (GetDlgitem ChWnd, IDD_SAYHELLO). FALSE):
EnableWindow (GetDlgitem (hWnd, IDD_SCAN), FALSE):
CreateThread (NULL, 0, SearchThread, CPVOIDlhWnd, 0, NULL):
return 0:

11--
11 Add2List - Add string to the report list box.
II
void Add2List (HWND hWnd, LPTSTR lpszFormat, ...) {

int nBuf, n Len:

}

TCHAR szBuffer[512]:
va_list args:
if ChWnd == 0)

hWnd = hMain:

EnterCriticalSection C&csPrintfl:
va_start(args. lpszFormatl:
nBuf = _vstprintfCszBuffer, lpszFormat. argsl:
va_endCargsl:

nlen = (lstrlen CszBuffer)+l) * sizeof (TCHARl:
WriteMsgQueue ChOWrite, CLPBYTElszBuffer, nlen. 0. 0):
PostMessage (hWnd, MYMSG_PRINTF, 0, 0):
LeaveCriticalSection ClcsPrintfl:

ll--C-------•-~--~---~--~--~·-···--·-•----------------------------------
11 MySetWindowText - Set Window title to passed printf style string.
II
void MySetWi ndowText .CHWND hWnd, LPTSTR 1 pszFormat, ...) {

(continued)

708 Part Ill Communications

Listing 14-2 (continued)

}

tnt nBuf •. nlen:. '
tCHAR s.zBQffer[512J i
va_J.fst args;

.E'.nterCri(I cal Sect Ion. (&csPri ntfJ:
va...;st11rt(args, lpszFormat);

.ris;1.1:f "' ...;VStp~fotfCszBuffer, 1 pszFormat, args) ; ..
va~end(args);

nLen = (lstrlen (szBuffer)+l)* sizeof CTCHAR):
Wri teMsgQueue (hQWrite, (LPBYTE>szBuffer, nlen, 0, MSGQUEULMSGALERTl:
PostMessage (hWnd, MYMSG~PRINTF, 0, 0).;
LeaveCriticalSectfon C&csPrintfl;

II SearchThread - Monitors for other devices.
II
DWORD WINAPI SearchThread (PVOID pArg) {

HWND hWnd = (HWt{D)pArg;
1nt1. re, .Channel= 0:

Add2List ChWnd, TEXTC'Search thread. entered'')):

!I .!nit COM for the th~ead. .
Co.lniti al i zeEx(NULL, COINILMUL TITH READ ED):

I I Fi l'ld the Bl uetoot.h devices
nD.evs = MALDEVlCES:
re = Fi ndoevi ces ·· < btd. · &nDevs):

fl List them.
for Ci = .h .i < nDevs·:· .i++l

·· Add2List.'fowrlct. TEXr<''%d •. dev:>%s< "), i~ btd[t].siNameJ: ·

PostMessage ChWnd, .MYMSG_ENABLESEND, 0, l);
CoUni niti a 1 i ze():
Add2List (hWnd, TEXT("Searc.h.thread exit")};
return 0:

I /=7::;:~=-==='=.:;:==.===:::::·~====::::'====::::==~=-:-====i==============i==.==============:;:"==i::
fl ServerThread ~ Mona.ors for connections, connects and notifjes
II 1..1s.er. when a conn,ection occurs,
If . .

DWORD WlNAPl ServerThread (PVOID 'p:Arg) {
HW.ND hWnd = (HWND)pArg;
INT re, ien, nSize:
SOCKADDILBTH btaddr. t_btaddr:

Chapter 14 Device-to-Device Communication 709

SOCKET r_sock, s_sock;
ULONG RecordHandle;
HRESULT hr;

Add2List (hWnd, TEXT("Server thread entered"));
CoinitializeEx(NULL,COINIT_MULTITHREADEDl:

II Open a bluetooth socket
s_sock =socket CAF_BT, SOCK_STREAM, BTHPROTO_RFCOMMl;
if (s_sock == INVALID_SOCKETl {

Add2List (hWnd, TEXT("socket failed. re %d"), WSAGetLastError());
return 0;

II Fill in address stuff
memset (&btaddr, 0, sizeof (btaddrll:
btaddr.addressFamily = AF_BT;
btaddr.port = 0: II Let driver assign a channel

II Bind to socket
re= bind (s_sock, (struct sockaddr *l&btaddr, sizeof (btaddr));
if <rel {

Add2List (hWnd, TEXT("bind failed"));
closesocket (s_sock);
return 0;

II Get information on the port assigned
len = sizeof (btaddr);
re= getsockname (s_sock, (SOCKADDR *l&btaddr, &len);
if (re) {

Add2List ChWnd, TEXT("getsockname failed"));
closesocket (s_sock);
return 0:

Add2List (hWnd, TEXT("Addr %04x.%08x, port %d"),
GET_NAP(btaddr.btAddr), GET_SAP(btaddr.btAddr), btaddr.portl:

II Register our service
re = RegisterBtService l&guidbthello, (unsigned char) btaddr.port,

&RecordHandle);
if (rel {

Add2List (hWnd, TEXTC"RegisterService fail %d %d"), re,
GetLastError());

closesocket (s_sock);
return 0;

II Set socket into listen mode
re= listen (s_sock, SOMAXCONN);

(continued)

710 Part Ill Communications

Listing 14-2 (continued)

)) ;

Chapter 14 Device-to-Device Communication 711

re = BAD_TEXTLEN;

II Send ack
nBytes =send (r_sock, (char *)&re, sizeof (re), 0);
if (nBytes == SOCKET_ERROR) {

Add2List (hWnd, TEXT("Error %d receiving text length"), GetLastError(

closesocket (r_sock);
return 0;

II Read the text
nBytes = recv (r_sock, (LPSTR)szRcvBuff, nCnt, 0);

if (nBytes == SOCKET_ERROR) {
Add2List (hWnd, TEXT("failed receiving text"));
closesocket (r_sock);
return 0;

Add2List (hWnd, TEXT("Other device says: %s"), szRcvBuff);

II send ack of text
re = 0;
nBytes =send (r_sock, (char *)&re, siieof (re), 0);
if (nBytes == SOCKET_ERROR) {

Add2List (hWnd, TEXT("Error %d sending ack"), GetlastError());
re = SOCKET_ERROR;

Add2List (hWnd, TEXT("receive thread exit"));
return 0;

11--
// SayHello - Sends text to the remote device
II
DWORD WINAPI SayHelloThread (PVOID pArg) {

TCHAR szText[] = TEXT("Hello Device");
HWND hWnd = hMain;
SOCKET t_sock;
INT j, re. nCnt, nBytes;
SOCKADDR_BTH btaddr;
BOOL fSuccess = FALSE;

II Open a bluetooth socket
t_sock =socket (AF_BT, SOCK_STREAM, BTHPROTO_RFCOMM);
if (t_sock == INVALIO_SOCKET) {

Add2List (hWnd, TEXT("socket failed. re %d"), WSAGetlastError());
return 0;

(continued)

712 Part Ill Communications

Listing 14-2 (continued)

fl Loop through each device trying to say hello
for (j = 0; j < nDevs; j++) {

Add2List (hWnd, TEXT("Trying device %s"), btd[j].szName);
11 Fi.11 in .address stuff
memset <1btaddr, 0, sizeof (btaddr));
btaddr.btAddr = btdfj] .btaddr;
btaddr.addressFamily = AF_BT;

btaddr.port = 0: //Let driver find the. channel
memcpy (&btaddr.serviceClassld, &guidbthello. sizeof CGUID)l:
II
II Connect to remote socket
II
re= connect (Lsock, (struct soc.kaddr *l&btaddr, sizeof Cbtadqr));
if (re == 0) {

fSuccess = TRUE;
break;

Add2List (hWnd, TEXT("connect failed. rc%d"l, WSAGetLastError()};
}

if C!fSuccess) {
closesocket Ct~sockl;
return 0;

Add2Li st (hWnd, TEXT(''connected.,."));

II send name s)ze
riCnt = (lstrlen (szText) + 1) * sizeof (TCHAR);
nBytes =send <Lsock,. (LPSTRl&nCnt, sizeof CnCnn. 0);

I/ Recv ack of text size
if crecv <Lsock, <char *)&re, sizeof. (re},. 0) -

re = $0CkELERROR;

if <re == 0) {

II Send text name
if (nBytes != SOCKET_ERROR) (

nBytes =send (t_sock .• (LPSTRlszText. nCnt, 0);

fl Recv ack of text send~
if (recv (t_sock, Cchar' *l&rc, sizeof. (re}. 0l

re = SOCKET .. £RROR;

II Send cilose code.
if (re. ! = BAD_SOCKET)

send (Lsock, (LPSTR)&rc, sizeof (re), 0);

SOCKtLERRORl

closesocket (t_sock);
if (re)

Chapter 14 Device-to-Device Communication 713

Add2List (hWnd, TEXTC"SayHello Exit re= %d"), re);
else

Add2List (hWnd, TEXT("Text sent successfully"));
return 0;

The interesting routines are the search thread routine SearchThread and
the server thread routine ServerTbread. The SearchTbread calls the FindDevice
routine to enumerate the Bluetooth devices in the immediate area. The search
is set to take approximately 5 seconds. Once found, the device names and
addresses are listed in the output window. The names and the addresses of all
the devices are saved in an array. The search can be restarted by tapping on the
Scan button.

The server routine, ServerThread, creates a socket and binds it to an
address. The routine then queries Winsock for the RFCOMM channel assigned
to the socket. The RegisterBtService routine is then called to advertise the
bthello service. The RegisterBtService routine uses a prebuilt SDP record and
inserts the GUID for the service and the RFCOMM channel in the appropriate
parts of the record. Once constructed, the SDP packet is registered in the
PublishRecord routine.

When the user taps the "Say Hello" button, an attempt is made to connect
to the bthello server on each of the devices found. If one of the connections is
successful, the text is sent to the other device.

Accessing Bluetooth through either Winsock or virtual COM ports pro
vides the most flexible way to wirelessly communicate with another device. The
problem is that with either of these methods the custom application, such as
BtHello, has to be on both machines unless the application communicates
through one of the public services.

If you use one of the public services, the application must implement
the proper protocol. Although directly talking to Bluetooth is the most flex
ible path, it's also the most complex. How about a higher-level standard that
will inform the application when devices come in range, that will work over
Bluetooth and IrDA, and that will provide a simple method for transferring
files? There is such a standard. It's called the Object Exchange (OBEX) stan
dard, and it too is supported by the Pocket PC and other Windows CE
devices.

714 Part Ill Communications

OBEX
The OBEX standard provides a vendor-independent standard for transferring
files, business card information, and calendar information between devices.
Windows CE supports OBEX over IrDA and Bluetooth. The embedded version
of Windows CE supports a number of OBEX protocols, depending on how the
system is configured. The Pocket PC supports the OBEX Push protocol
although additional protocols may be optionally supporte·d by OEMs. This sec
tion covers how to use OBEX to detect devices in range of either IrDA or Blue
tooth as well as how to use OBEX to send files to another device.

The OBEX support under Windows CE is provided through a series of
COM interfaces. The primary interface is JObex or its modestly enhanced deriv
ative, 10bex2. This interface provides support for initialization and shutdown of
OBEX support as well as device enumeration. Other interfaces used when
working with OBEX include JObexDevice, for communication with a device;
and IObexSink, which provides a callback interface in the application.

Initialization
To initialize the OBEX system, an application must first create an IObex or
10bex2 object. The difference between the two interfaces is a single method,
PauseDeviceEnum, which provides the handy feature of suspending the device
enumeration and resuming instead of having to stop and restart it. Creating the
object is easily accomplished using the COM function CoCreatelnstance. Once
the object is created, the OBEX system can be initialized with a call to the Ini
tialize method. The following code shows this initialization process.

IObex *PObex = NULL;
HRESULT hr= CoCreateinstance (_uuidof(Obex), NULL, CLSCTX_INPROC_SERVER,

_uuidof(IObex), (void **)&pObex);
if (FAILED(hr))

return hr;

if (pObex != NULL)
pObex->Initialize ();

else
return -1;

Application Callbacks
The best way to keep informed concerning the status of the OBEX system is for
the application to support an JObexSink interface that the OBEX system can call
in to with status messages. Application callbacks are optional; an application
using OBEX isn't required to support them. However, the callback scheme

Chapter 14 Device-to-Device Communication 715

enables the best method for device detection and also provides a way for the
OBEX system to notify the application when a remote device requires a pass
word for a connection.

The !ObexSink interface is a standard COM interface with a single addi
tional method, Notify, prototyped as

HRESULT IObexSink::Notify (OBEX_EVENT Event,
IUn known *pUn kl, I Un known *pUn k2);

To tell the OBEX system about the callback interface, the application must
ask the OBEX interface for its connection point container. Once found, the con
nection point container is queried for an !ObexSink connection point. Once
that's found, the Advise method can be called on the connection point pointing
to the !ObexSink interface in the application. The process is best illustrated in
the simple code fragment shown here:

II Create my class the implements an IObexSink interface
MyObexSink *pSink;
pSink =new MyObexSink(hWnd);
if (!pSink)

return -1;

II Create connection point container
hr= pObex->Oueryinterface (IID_IConnectionPointContainer.

(LPVOID *)&pContainer);
if (!SUCCEEDED(hr) I I (pContainer == 0))

return -2;

hr= pContainer->FindConnectionPoint (l!D_!ObexSink, &pConPt);
if (!SUCCEEDED(hr) I I (pConPt == 0)) {

pContainer->Release();
return -3;

II Ask for notifications
hr pConPt->Advise((lUnknown *)pSink, &dwCookie);

When a callback occurs, the Event parameter provides the reason for the
callback. In theory, the pUnkl and pUnk2 parameters are pointers to COM objects
that are relevant for each event. In practice, for the supported events, pUnkl is a
pointer to an !PropertyBag interface that contains information about the device.

The events reported by the OBEX system are listed here:

• OE_QUERY_PASSWORD The remote device needs a password to
continue.

• OE_DEVICE_ARRIVAL A new device has been detected in range.

716 Part Ill Communications

• OE_DEVICE_DEPARTURE A device has moved out of range.

• OE_DEVICE_UPDATE New information is available on a device
in range.

At the time the callback is made, the OBEX object is blocked from other
work for the application, so the code in the callback interface must be executed
quickly. Traditionally, the interface simply posts a message with the relevant
details to a window where the details are examined asynchronously from the
callback.

Device Discovery
One of the most convenient aspects of OBEX programming is that most func
tions the application uses apply to devices using both IrDA and Bluetooth.
Device discovery is one of these common areas. Device discovery can be
accomplished in a synchronous or an asynchronous manner. The synchronous
method is simpler, but the asynchronous method is much more flexible.

Synchronous Device Detection
Synchronous device detection is accomplished by calling the !Obex method
StartDeviceEnum, prototyped as

HRESULT IObex::StartDeviceEnum (void);

StartDeviceEnum returns immediately, but the OBEX system starts moni
toring for devices. The application must wait some amount of time for the
OBEX system to gather information about the devices. Typically, the applica
tion should wait 5 or more seconds before calling back to get a list of the
devices detected. The application doesn't have to be idle during this wait. The
application can set a Windows timer, using SetTimer to have the operating sys
tem send a timer message back to the application 5 seconds after the initial call
to StartDeviceEnum.

Once the enumeration time has elapsed, the application can call Stop
DeviceEnum, prototyped as

HRESULT IObex::StopDeviceEnum (void);

This method doesn't have to be called before the EnumDevices method
(discussed next), but it must not be called until the OBEX system has had time
to enumerate the local devices.

To query the devices the OBEX system has discovered, call EnumDevices,
prototyped as

HRESULT IObex::EnumDevices (IDeviceEnum *ppDeviceEnum,
REFCLSID uuidTransport);

Chapter 14 Device-to-Device Communication 717

The first parameter is the address of a pointer to an IDeviceEnum inter
face. This pointer is set by the method to an IDeviceEnum object that can be
used to enumerate the devices. The second parameter is the GUID of the trans
port-Bluetooth, IrDA, or others-that the application is interested in. If the
application wants a list of all devices regardless of the transport they support, a
NULL value can be passed in the second parameter.

The IDeviceEnum interface, used to enumerate the devices, has four
methods: Next, Reset, Skip, and Clone. To return a list of the devices, use the
Next method:

HRESULT IDeviceEnum::Next (ULONG celt, !ObexDevice **rgelt,
ULONG *pceltFetched);

The second parameter of the Next method points to an array of IOhex
Device interface pointers. The first parameter, celt, should be set to the number
of the entries in the JOhexDevice pointer array. The third parameter is the
address of a ULONG that receives the number of JOhexDevice pointers returned
in the array.

The Next method can be used in two ways. In the first way, Next is called
with the celt parameter set to 1 so that the call returns a single JOhexDevice
pointer. Using the method this way, Next will have to be repeatedly called to
return a device pointer for each device found. The other way to use the Next
method is to call it once but pass a large array of JOhexDevice pointers, which
will be filled with pointers for all the devices. Either way will return similar
device information.

The other methods of IDeviceEnum are shown here:

HRESULT IDeviceEnum: :Skip CULONG celt);
HRESULT IDeviceEnum: :Reset (void);
HRESULT IDeviceEnum: :Clone CIDeviceEnum *ppenum);

These relatively self-explanatory methods allow the application to skip a set
number of devices in the enumeration, reset the enumeration back to the first
device, and create a new copy of the IDeviceEnum interface.

Asynchronous Device Detection
Asynchronous device detection is accomplished by starting the detection with
the same call to StartDeviceEnum as in the synchronous detection. The differ
ence is that before the call to StartDeviceEnum is made, the application pro
vides an IOhexSink interface to be notified with an OE_DEVICE_ARRIVAL event
when devices are detected. There is no need to call the IOhex method Enum-

718 Part Ill Communications

Devices because the notification process will provide the device information as
the devices are discovered.

One interesting aspect of asynchronous device detection is that the device
information returned in the JObexSink callback is initially incomplete. The
OBEX system will initially report that a device has been found but provides lit
tle information about the device. As more information about the device is gath
ered, the OBEX system provides additional callback events, this time with an
OE_DEVICE_UPDATE notification. Because of this, the application needs to tol
erate the incomplete information and parse the update notifications to complete
the information about the discovered device.

Information about the devices is passed in the notification callback
through a PropertyBag object. This object has information such as the name of
the device, its address, the transport supported, and services supported by the
device. Because of the repeated updates on the same device, the application
has to determine the device being updated and add the updated information to
that device. The ObexSquirt example later in this chapter demonstrates how to
keep track of devices through asynchronous detection.

If the device supports Bluetooth, there is a good possibility that the device
enumeration process will detect more than one device able to communicate.
The application has to be written to provide the user the ability to select the tar
get device.

OBEX Communication
Once a device has been chosen as a target, the application must connect with
the device to initialize communication. The connection process starts with
accessing the JObexDevice interface associated with the target device. If the
device enumeration was accomplished with synchronous enumeration, the
IDeviceEnum::Next method returns a list of JObexDevice interface pointers, one
for each device found. For asynchronous enumeration, the only information the
application has is a PropertyBag object for each device. To convert that to an
IObexDevice interface, IObex provides the BindToDevice method, prototyped as

HRESULT IObex::BindToDevice (IPropertyBag• pPropertyBag,
IObexDevice•• ppDevice);

The BindToDevice method returns the JObexDevice pointer that matches
the device described in the PropertyBag object pointed to by the first parameter.

The JObexDevice interface provides the basic set of methods used to com
municate with a device. The first method of interest is the Connect method,
prototyped as

Chapter 14 Device-to-Device Communication 719

HRESULT IObexDevice: :Connect (LPCWSTR pszPassword, DWORD dwCapability,
IHeaderCollection* pHeaders);

The first parameter is the password to the remote device. If this parameter
isn't specified and the remote device needs a password, the OBEX system will
call back to the application to request the password. The dwCapability param
eter is reserved and should be set to 0. The final parameter is a pointer to a
header collection object. This object must be created before the call to Connect
and contains a list of specifications for the connection.

A header collection object is a COM object that's used to describe the
OBEX operation being attempted. For connections, the header collection can
optionally contain a target service to connect to on the remote device.

The target is added to the header collection object using the AddTarget
method, shown here:

HRESULT IHeaderCollection::AddTarget (unsigned long ulSize, byte* pData);

The two parameters are the length of the target data being set and the target
data itself.

If no target service is specified, a connection is attempted to the default
OBEX service, Object Push, which is fielded on Windows CE devices by Pocket
InBox. Other OBEX services can be supported by devices. The two services of
most interest to Windows CE developers are the file browsing service, or
ObexFTP, and the Sync service. To connect to the FTP service, the target service
should be set to the File Browsing GUID:

{F9ec7bc4-953c-lld2-984e-525400dc9e09}

Note that the GUID needs to be specified in network byte order instead
of the Windows-standard little-endian byte order. The following code takes a
PropertyBag object that describes a device and connects to the device's FTP
service.

II {F9ec7bc4-953c-lld2-984e-525400dc9e09}
GUID CLSID_FTP_Net0rder={0xc47becf9, 0x3c95, 0xd211,

{0x98, 0x4e, 0x52, 0x54, 0x00, 0xdc, 0x9e, 0x09}};
II
II Start here with a pointer to a IPropertyBag describing the device
II
HRESULT hr= pObex->BindToDevice (pDevPropBag, &pDevice);

IHeaderCollection *pHC = 0;
hr= CoCreateinstance<~uuidof(HeaderCollectionl. NULL,

CLSCTX_INPROC_SERVER, ~uuidof(IHeaderCollection),
(void **)&pHC):

if (FAILED(hr)) {

720 Part Ill Communications

CloseHandle (hFile);
return -2;

pHC->AddTarget(sizeof (CLSID_FTP_NetOrder),(UCHAR *)&CLSID_FTP_NetOrder);

II Connect to device
hr= pDevice->Connect (NULL, 0, pHC);
if (FAILED(hr)) {

printf ("Connect fail %x %d", hr, GetLastError());
pHC->Release();
CloseHandle (hFile);
return -3;

printf ("Connected ... ");

Once connected, the application can exchange objects using the Get and
Put methods, prototyped as follows:

HRESULT Get (IHeaderCollection* pHeaders, IStream•* ppStream);
HRESULT Put CIHeaderCollection* pHeaders, IStream** ppStream);

For both these methods, a header collection object must be created first to
describe the object being sent or requested. The object name is specified using
the AddName method of the header collection object, defined as

HRESULT IHeaderCollection::AddName (LPCWSTR pszName);

The only parameter is the string containing the name of the object.
When Put or Get is called, it returns a pointer to an !Stream interface. The

!Stream interface provides the basic read and write methods for reading and
writing to the other device. The following code demonstrates how to push a file
from the application to another connected device:

//get a header collection
IHeaderCollection *pFileHC = 0;
hr= CoCreatelnstance<~uuidof(HeaderCollection), NULL,

CLSCTX_INPROC_SERVER, ~uuidofCIHeaderCollection),
(void **l&pFileHC);

if (FAILED(hr))
return -2;

II Add file name to header
hr= pFileHC->AddName(pszFileName);
if (FAILED(hr)) {

pFileHC->Release();
return -3;

II Send header
IStream *St0ut 0;

Chapter 14 Device-to-Device Communication 721

hr= pDevice->Put(pFileHC, &stout);
if (FAILED(hr)) {

pFileHC->Release();
return -4;

II Send the data
nTotal = nFileSize;
while (nFileSize) {

II Send up to the block size
nCnt =min (BUFFSIZE, nFileSize);

if (!ReadFile (hFile, pBuff, nCnt, &dwBytesWritten, FALSE)) {
Add2List ChWnd. TEXT("ReadFile error %d "), GetlastError());
break;

nCnt = Cint)dwBytesWritten;

hr= stOut->Write (pBuff, nCnt, &dwBytesWritten);
if(FAILED(hr))

break;

nFileSize -= (int)dwBytesWritten;

printf ("Done");

When the application has completed its transfer and needs to disconnect,
a call to the Disconnect method of IObexDevice should be made. The method
is defined as

HRESULT IObexDevice::Disconnect (IHeaderCollection* pHeaders);

The method requires a header collection object. If the application is dis
connecting from the default Object Push service, the header simply needs to be
created. For disconnecting from other services, the target service should be set
to match the service originally connected to.

The IObexDevice interface supports a handful of other methods, shown
here:

HRESULT IObexDevice::SetPath (LPCWSTR pszName, DWORD dwFlags,
IHeaderCollection* pHeaders);

HRESULT IObexDevice: :EnumProperties CREFIID riid, void** ppv);
HRESULT IObexDevice::SetPassword (LPCWSTR pszPassword);
HRESULT IObexDevice::Abort (IHeaderCollection* pHeaders);

The SetPath method is used in the FJP service to specify the target direc
tory on the remote device. The security settings of the other device typically
restrict the path to acceptable directories.

722 Part Ill Communications

The EnumProperties method returns the PropertyBag object associated
with the device. This function is essentially the inverse of the IObex::BindTo
Device method. The SetPassword method provides another way to set the pass
word for remote device access. Finally, the Abort method provides a way for
the application to halt a task.

The ObexSquirt Example Program
The ObexSquirt example demonstrates the use of the OBEX service to connect
and send a file to another device. Since the example uses OBEX, the transfer
can take place over IrDA or Bluetooth because the OBEX system handles all the
grisly transport details.

Figure 14-5 shows the ObexSquirt program running on an embedded
Windows CE device. Notice that the upper list box contains the list of a number
of devices in range of this system. The example works by using asynchronous
device enumeration to query the area for devices. As informatlon is returned
about each device, the text in the device list is updated to provide the name of
the device and the supported protocol. Devices are listed twice in the list if they
support both Object Push and the FIP OBEX service.

Figure 14-5 The ObexSquirt program, showing the devices in range of
the system

Chapter 14 Device-to-Device Communication 723

The source code for ObexSquirt is shown in Listing 14-3. Unlike both the
MySquirt and BtHello examples, ObexSquirt is a single-threaded application.
The OBEX service provides some threading because it provides asynchronous
device search. The example exposes an JObexSink interface that's called when
devices are found. When a notification is received, the application simply posts
a message to its main window, where the notification is actually processed.

ObexSquirt.h
II==
11 Header file
II
II Written for the book Programming Windows CE
II Copyright (Cl 2001 Douglas Boling
//==
II Returns number of elements
#define d1m<xl Cstzeof(x) I sizeof(x[0J))

11 Windows Cls' Spedific defines
{}deft ne LPCMDLINE LPWSTR ..
11--~~------~--------·---"--·~-;-----------------------------·---~------
11 Generic defines and data types
II
struct decodeUINT {

UINT Code:

LRESULT (*Fxn){HWND, UINT. WPARAM, LPARAMl:
} :
struct decodeCMD {

UINT Code:
LRESULT (*fXn)(HWND, WORD, HWND, WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

11--
11 Defines used by application

#deft ne ID_I CON

#define IDD_INTEXT
#define IDD_SENDFI LE
#define IDD_OUTTEXT
#define IDD_SCAN
#define IDD_DEVICES

#define MYMSG_OBEXEVENT
#define MYMSG_PRINTF

1

10
11
12
13
14

(WM_USER+l000)
(WM_USER+1001)

Listing 14-3 The ObexSquirt source code

11 Control IDs

(continued)

724 Part Ill Communications

Listing 14-3 (continued)

Chapter 14 Device-to-Device Communication 725

#define DEV_TRANS_IRDA 0x00010000
#define DEV_TRANS_BTOOTH 0x00020000

#define DEV_SERVICE_OBJPUSH 0x01000000
#define DEV_SERVICE_FTP 0x02000000
#define DEV_SERVICE_IRMCSYNC 0x04000000

typedef struct {
DWORD dwFl ags;
TCHAR szName[256];
TCHAR szAddr[32];
DWORD dwTransport;
DWORD dwPort;
GUID guidService;
IPropertyBag* pDevBag;

MYOBEXDEVICEINFO, *PMYOBEXDEVICEINFO;

#define MAX_DEVS 16
#define BUFFSIZE 8192
11--
11 Function prototypes
II
HWND Initinstance (HINSTANCE, LPCMDLINE, int);
int Terminstance (HINSTANCE, int);
void Add2List (HWND hWnd, LPTSTR lpszFormat, ...);
int InitObex (HWND hWnd);
int SendFile (HWND hWnd, IObexDevice *pDevice, LPTSTR pszFileName,

DWORD dwFl ags l;
BOOL MyYield ();

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

II Message handlers
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoSizeMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoCommandMain (HWND, UINT. WPARAM, LPARAM);
LRESULT DoPocketPCShell (HWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoObexEventMain (HWND, UINT, WPARAM, LPARAMl;
LRESULT DoPrintfNotifyMain (HWND, UINT, WPARAM, LPARAM);

II Command functions
LPARAM DoMainCommandSend (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandDevList CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD);

(continued)

726 Part Ill Communications

Chapter 14 Device-to-Device Communication 727

} ;

*PPV = NULL;
return (E_NOINTERFACE);

ULONG STDMETHODCALLTYPE AddRef () {
ULONG cnt = CULONG)Interlockedincrement ((long *)&m_lRef);
return cnt;

ULONG STDMETHODCALLTYPE Release () {
ULONG cnt;
cnt = (ULONG)InterlockedDecrement ((long *l&m_lRef);
if (cnt == 0) {

delete this;
return 0;

return cnt;

ObexSquirt.cpp
II==
II ObexSquirt - A simple Obex application for Windows CE
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
#include <windows.h>
#include <obex.h>
#include <Msgqueue.h>
#if defined(WIN32_PLATFORM_PSPCl
#include <aygshell.h>

II For all that Windows stuff

II Add Pocket PC includes
#pragma comment(lib, "aygshell"
#end if

II Link Pocket PC lib for menubar

#include "obexsquirt.h"
#include "MyObexSink.cpp"

II Program-specific stuff
II IObexSink class

ll-------------c--
11 Global data
II
const TCHAR szAppName[J = TEXT ("obexsquirt");
const TCHAR szTitleText[] =TEXT ("OBEX Squirt");

TCHAR szTitle[128];
HINSTANCE hinst;
HWND hMain;
BOOL fFirstSize =TRUE;

II Program instance handle
II Main window handle
II First WM_SIZE flag

(continued)

728 Part Ill Communications

Listing 14-3 (continued)

#if defined(WIN3.2_PLATFORM_PSPC) && (_WIN32_WCE >= 300)

SHACUVATEINFO s9i; II Needed for P.PC helper Junes
iffendi.f

II The GUID strings below a.re defined numerically in bLsdp.h
const TCHAR g_._s.zlrMCSyncGuidtJ =

TEXT("{00001104-0000-1000-8000-00805f9b34fb}");
con st TC HAR g_szObJPus hGui d[l =

TEXT ("{00001105.- 0000-100.0-8000-00805 f9b34 fb}");
const TCHAR g_szFtpGuid[] =

TEXT("{00001106'0000-1000·8000'00805f9b34fb}");

const TtHAR g_szTrans1rDA[] =

TEXTl"{30a7bc02-59b6-40bb-aa2b'89eb49ef274e}");

tonst TCHAR ~-SZTtansBth[] =
TEXT("{30a7bc03-59b6-40bb-aa2bc89eb49ef274e}~):

// { F9ec7bc4-953vlld2-984e.-525400dc9e09}

GUID CLSID_Fi l e£xchange_Net0rder = {0xc47beef9. 0X3c95 .• >0xd211,

f0x98; 0x4e. 0x52, 0x54, 0x00, 0xdc;, 0x9e, 0x09}};

HANDLE hORead = 0;
HANDLE hQWrite= 0;
CRIUCAL~$ECTION csP(i.ntf;

CRITTCAL . .SECTION cs Lock;

IObex *PDbex = NULL;
B00[.f0bex2IF = FALSE;

II Msg queues are used to sync
! I Output to the li stbox

/I Obex main interface ptr

ItonnettionPolntContainer •pContaine.r = NULL;

!Connecti.onPoi ht •pConPt = NULL;
DWDRD··dwCookie;

MYOBEXOEVlCEIN~o obDev~[MAX_DEVS];

II Message dispatch table for ·MainWindowProc

const struct decodeUINT MainMessages[] = {
WM_CREATE. DoCreateMain,

};

WM_SIZE, DoSi z .. eMai n,

WM_COMMAND ,. DoCommandMa in,

MYMSG_013EXEVUT, DoObexEventMain,

MYMSG_PRI NTF. DoPri ntfNOti 1'yMain,
WM_SETTINGCHANGE, DoPocketPCShell,

WM---ACTIVATE, DoPocketPCShel1,
WM_OESTROY, DoDestroyMain,

ll Command Message dispatch for Mai nWindowProc
const struct decodeCMD MainCommanditems.[J = {

Chapter 14 Device-to-Device Communication 729

#if defined(WIN32_PLATFORM_PSPC) && (_WIN32_WCE >= 300)
IDOK, DoMainCommandExit,

#else
IDOK, DoMainCommandSend,

/tendif

} ;

IDCANCEL, DoMainCommandExit,
IDD_SENDFILE, DoMainCommandSend,
IDD_DEVICES, DoMainCommandDevList,

II==
II Program entry point
II
int WINAPI WinMain (H!NSTANCE hlnstance, HINSTANCE hPrevlnstance,

LPCMDLINE lpCmdLine, int nCmdShow) {
MSG msg;
int re = 0;

II Initialize this instance.
hMain = Initlnstance (hinstance, lpCmdLine, nCmdShow);
if (hMain) {

II Application message loop
while (GetMessage (&msg, NULL, 0, 0)) {

if ((hMain == 0) I I !IsDialogMessage (hMain, &msg)) {
TranslateMessage (&msg);
DispatchMessage (&msg);

II Instance cleanup
return Termlnstance (hinstance, msg.wParam); ·

11--
11 Initinstance - Instance initialization
II
HWND Initinstance (HINSTANCE hlnstance, LPCMDLINE lpCmdLine,

int nCmdShowJ{
WNDCLASS we;
HWND hWnd;

hinst = hlnstance; II Save program instance handle.

II For all systems, if previous instance, activate it instead of us.
hWnd = FindWindow (szAppName, NULL);
if (hWnd) {

SetForegroundWindow ((HWND)((DWORD)hWnd I 0x01));
return 0;

(continued)

730 Part Ill Communications

Listing 14·3 (continued)

(TEXT { ''MSGQUE:UE\ \ ThTead")'

ruq0; bReadAccess = i"Al.:SE;

hOWrite = CreateMsg()ueue {TEXT ("MS.GQUWE\\ThTeadn).,

= Ma.i nWndProc:
= 0;
= DLGW.I NDOWEXTRA:

Chapter 14 Device-to-Device Communication 731

11--
11 ResetDevList - Clean up the list of devices
II
int ResetDevList (void)

int i ;
II Clean up property bags
for Ci = 0; i < dim (obDevs); i++) {

if (obDevs[iJ.pDevBag) {
obDevs[iJ.pDevBag->Release();
obDevs[iJ.pDevBag = 0;

return 0;

11--
11 Termlnstance - Program cleanup
II
int Termlnstance (HINSTANCE hlnstance, int nDefRC) {

if (pObex) {
pObex->StopDeviceEnum();
ResetDevList ();
if (pCon Pt) {

}

pConPt->Unadvise(dwCookie);
Sleep(100);
pConPt->Release();

if (pContainer) {
pContainer->Release();

}

pObex->Shutdown();
pObex->Release();

CoUninitialize();
return nDefRC;

II==
II Message handling procedures for main window
11--
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParaml {
INT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II

(continued)

732 Part Ill Communications

Listing 14·3 (continued)

SHINITDLGlNFO sMdi:
SHJl1ENIJBAR1NFO mbt: l/ For Pocket PC. create
merrisetc&mbl. 0. siZeof<SHMENUBARlNFOJ): // bar so that we

mPt.qwFlilgs = SHCMBF._JMPTY~AR;

mbi .hwndParent·=>hWnd;
slicreateMenuBarc&rnbn:

Chapter 14 Device-to-Device Communication 733

II First time through, get the position of the listbox for
II resizing later. Store the distance from the sides of
II the listbox control to the side of the parent window
if (lsWindow (GetDlgltem (hWnd, IDD_INTEXT))) {

GetWindowRect (GetDlgltem (hWnd, IDD_INTEXT), &rectListbox);
MapWindowPoints (HWND_DESKTOP, hWnd, (LPPOINT)&rectListbox, 2);
rectListbox.right = rect.right - rectListbox.right;
rectListbox.bottom = rect.bottom - rectListbox.bottom;

SetWindowPos (GetDlgltem (hWnd, IDD_INTEXT), 0, rect.left+5,
rectListbox.top, rect.right-10,
rect.bottom - rectListbox.top - 5,
SWP_NOZORDER);

}

/foendi f
if (fFirstSize) {

}

EnableWindow (GetDlgltem (hWnd, IDD_SENDFILE), FALSE);
int i = 40;
SendDlgltemMessage (hWnd, IDD_DEVICES, LB_SETTABSTOPS, l,

(LPARAM)&i):
fFirstSize = FALSE;

return 0:

11--
11 DoCommandMain - Process WM_COMMAND message for window.
II
LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam,

}

LPARAM lParam) {
WORD idltem, wNotifyCode;
HWND hwndCtl ;
INT i;

II Parse the parameters.
idltem = (WORD) LOWORD (wParam);
wNotifyCode = (WORD) HIWORD (wParam);
hwndCtl = (HWND) lParam;

II Call routine to handle control message.
for (i = 0; i < dim(MainCommanditems); i++) {

if (idltem == MainCommanditems[i].Code)

}

return (•MainCommandltems[i].Fxn)(hWnd, idltem, hwndCtl,
wNotifyCode);

return 0:

(continued)

734 Part Ill Communications

Listing 14·3 (continued)

{

LELGETCOUNT. 0. 0):

, LB"'"'GETlTEMQATA. f,0 > :·

Chapter 14 Device-to-Device Communication 735

if (wParam == OE_QUERY_PASSWORD) {
MessageBox (hWnd, TEXT("Query Password"), TEXT("App"), MB_OK);
return 0;

II Parse name
VARIANT var;
Variantinit (&var);
hr= pDeviceBag->Read (TEXT("Name"), &var, NULL);
if (SUCCEEDED(hr)) {

diDev.dwFlags i= DEV_FLAG_NAME;
lstrcpy (diDev.szName, var.bstrVal);

VariantClear<&var);

II Parse address
hr= pDeviceBag->Read (TEXT<"Address"), &var, NULL);
if (SUCCEEDED(hr)) {

diDev.dwFlags \= DEV_FLAG_ADDRESS;
if (var.vt == VT_BSTR)

lstrcpy (diDev.szAddr, var.bstrVal);
else if (var.vt == VT_I4)

wsprintf (diDev.szAddr, TEXT("%08x"), var.ulVal);
else

diDev.dwFlags &= -DEV_FLAG_ADDRESS;

VariantClear(&var);

II Parse port
hr= pDeviceBag->Read (TEXT("Port"), &var, NULL);
if (SUCCEEDED(hr)) {

diDev.dwFlags \= DEV_FLAG_PORT;
if (var.vt == VT_BSTR)

lstrcpy (diDev.szAddr, var.bstrVal);
else if (var.vt == VT_I4)

wsprintf (diDev.szAddr, TEXTC"%08x"), var.ulVal);
else

diDev.dwFlags &= -DEV_FLAG_PORT;

VariantClear(&var):

II Parse IrDA information
hr= pDeviceBag->Read (TEXT("lrDA"), &var, NULL);
VariantClear(&var);

hr= pDeviceBag->Read <TEXT("Transport"), &var, NULL);
if (SUCCEEDED(hr)) {

if (var.Vt == VT_BSTR)
WCHAR szTran[40];

(continued)

736 Part Ill Communications

Listing 14-3 (continued)

memset (szTran, 0, sizeof (szTran)l;
wcsncpy (szTran, var.bstrVal, 38l:
wcslwr (szTranl;
if Cwcscmp (g_szTransirDA, szTran) == 0J

diDev.dwFlags I= DEV_TRANS_IRDA;
else if Cwcscmp (g_szTransBth, szTranl 0)

diDev.dwFlags I= DEV_TRANS_BTOOTH:

}

VariantClear(&var);

hr= pDeviceBag->Read (TEXT("OBEX:IrXfer"), &var, NULL);
if (SUCCEEDEDChr))

Add2List ChWnd, TEXTC"OBEX:IrXfer"ll:
VariantClear(&var):

II Parse servi.ce UUID
hr= pDeviceBag->Read CTEXTC"ServiceUUID"), &var. NULL);
if (SUCCEEDEDChrll {

if (var.vt == VT_BSTR) {
II Compare the guid service string to ones we know about
if (wcsncmp (g_szObjPushGuid. var.bstrVal, 38) == 0J

diDev.dwFlags != (DEV_FLAG_UUID I DEV_SERVICE_OBJPUSH);

else if (wcsncmp (g_siFtpGuid, var.bstrVal, 38) == 0)
diDev.dwFlags I= <DEV_FLAG_UUID I DEV_:SERV!CE_FTP);

else if (wcsncmp (g_szirMCSyncGuid. var.bstrVal, 38) == 01
diDev.dwFlags I= (DEV_FLAILUUID I DEV...:SERVICE_IRMCSYNC.);

}

VariantClearC&var);

diDev.pDevBag = pDeviceBag;

II Tell the user what protocols the device supports.
lstrcpy (szDevStr, diDev.szName);
lstrcat (szDevStr, TEXT(" "));
if CdiDev.dwFlags & DEV_SERVlCE_OBJPUSHl

lstrcat (szDevStr, TEXTC"Object Push"));
else if (diDev.dwFlags & DEV_SERVICE_FTP)

lstrcat (szDevStr, TEXTC"FTP"));
else if (diDev.dwFlags & DEV_SERVICE_lRMCSYNC)

lstrcat (szDevStr, TEXT("IrMC Sync"));
els.e if {diDev.dwFlags & DEV_TRANS_IRDA)

lstrcat (szDevStr, TEXT("IrDA">l:

Chapter 14 Device-to-Device Communication 737

II See if device already recorded
pFoundDev = FindDevinfo (pDeviceBag);

II React depending on the notice
switch ((int)wParam) {
case OE_DEVICE_ARRIVAL:

II See if device already found
if (pFoundDev->pDevBag)

break;
memcpy (pFoundDev, &diDev, sizeof (diDev));

i = SendDlgitemMessage (hWnd, IDD_DEVICES, LB_AODSTRING, 0,
(LPARAM)szDevStr);

SendDlgitemMessage (hWnd, IDD_DEVICES, LB_SETITEMDATA, i,
(LPARAMlpFoundDev);

break;

case OE_DEVICE_UPDATE:
i = LB_ERR;
memcpy (pFoundDev, &diDev, sizeof (diDev));

II Find device entry in list box
if (pFoundDev->pDevBag) {

}

i = FindDevinlist (hWnd, pFoundDev);
II Release because we already hold the propbag
pFoundDev->pDevBag->Release();

if (LB_ERR ! = i)
SendDlgitemMessage (hWnd, IDD_DEVICES, LB_DELETESTRING,i,0);

SendDlgitemMessage (hWnd, IDD_DEVICES, LB_INSERTSTRING, i,
(LPARAM)szDevStr);

SendDlgitemMessage (hWnd, IDD_DEVICES, LB_SETITEMDATA, i,
(LPARAM)pFoundDev);

break;

case OE_DISCONNECT:
case OE_DEVICE_DEPARTURE:

II See if device not in device array, ignore disconnect
if (pFoundDev->pDevBag == 0)

break;

II Find device in list box and delete
i = FindDevinList (hWnd, pFoundDev);
if (LB_ERR ! = i)

SendDlgitemMessage (hWnd, IDD_DEVICES, LB_DELETESTRING,i ,0);

(continued)

738 Part Ill Communications

Listing 14-3 (continued)

II Clear entry in device array
pFoundDev->pDevBag->ReleaseCl:
pPoundDev ~ >pDe.vBag

re ;. ReadMsgQueue
&dwLen. 0, &dwFlags);

if {re) {

i.f (dWFla9s

Chapter 14 Device-to-Device Communication 739

return SHHandleWMActivate(hWnd, wParam, lParam, &sai. 0);
#end if

return 0;

!!--
// DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam.

LPARAM lParam) {
Sleep (0);
PostQuitMessage (0);
return 0;

II Pass on timeslice.

//==
II Command handler routines
/!---,--------------------
// DoMainCommandExit - Process Program Exit command.
II
LPARAM DoMainCommandExit (HWND hWnd, WORD iditem, HWND hwndCtl.

WORD wNotifyCode) {

SendMessage (hWnd, WM_CLOSE, 0, 0);
return 0;

!/--
// DoMainCommandSend - Process Program Send File command.
II
LPARAM DoMainCommandSend (HWND hWnd, WORD iditem. HWND hwndCtl,

WORD wNotifyCodel {
int i;
HRESULT hr;
PMYOBEXOEVICEINFO pDev:
TCHAR szName[MAX_PATH];
IObexDevice *PDevice = 0;

GetOlgitemText <hWnd, IOD_OUTTEXl. szName, dim(szNamel);
if <Jstrlerr (szName) === 0 l {

MessageBox {hWnd, TEXT(" Fi le name nee.ded"), TEXT(" Error"),
MB_OKl;

return 0';

fl Get the selected device
i = Se.ndDlgltemMessage ChWnd, IDO_OEVICtS, LB_GETCURSEL, 0, 0);
if (i != LB_ERR) {

pDev = CPMYOBEXDEVICEINFO)SendDlgitemMessage (hWnd,
IDD_DEVICES, LB_GETITEMDATA,i,0);

(continued)

740 Part Ill Communications

Listing 14·3 (continued)

CwNot}fYCode
; 7 SendDJgJternMessage (hWhd. IDD~DEVlCES, tB:C:GE:TCURSH. 0, 0);
i.f (t J::; LB~ERRJ {

(·PMYOB EXDEVlcEINFO)$encl Qlg lt!:lmMes~·age (hWtid.
!DD..,,:DEVJCES, LB_GElITEMbATA,i ,0).:

Chapter 14 Device-to-Device Communication 741

EnableWindow (GetDlgitem (hWnd, IDD_SENDFILE), TRUE);

return 0:

11--
11 Add2List - Add string to the report list box.
II
void Add2List (HWND hWnd, LPTSTR lpszFormat, ...)

int nBuf, nlen:

}

TCHAR szBuffer[512];
va_list args;
if (hWnd == 0)

hWnd = hMain:

EnterCriticalSection (&csPrintf);

va_start(args, lpszFormat);
nBuf = _vstprintf(szBuffer, lpszFormat, args);
va_end(args):

nlen = (lstrlen (szBuffer)+l) * sizeof (TCHAR);
WriteMsgQueue (hQWrite, (LPBYTE)szBuffer, nlen, 0, 0);
PostMessage (hWnd. MYMSG_PRINTF. 0, 0);
LeaveCriticalSection (&csPrintf);

11--
11 MySetWindowText - Set Window title to passed printf style string.
II
void MySetWindowText (HWND hWnd, LPTSTR lpszFormat, ...) {

int nBuf, nlen;
TCHAR szBuffer[512];
va_list args;

EnterCriticalSection <&csPrintf);

va_start(args, lpszFormat);
nBuf = _vstprintf(szBuffer, lpszFormat, args);
va_end(args);

nlen = (lstrlen (szBuffer)+l) * sizeof (TCHAR);
WriteMsgQueue (hQWrite, (LPBYTE)szBuffer, nlen, 0, MSGQUEUE_MSGALERT);
PostMessage (hWnd, MYMSG_PRINTF, 0, 0);
LeaveCriticalSection (&csPrintf);

11----------------- -------------------------- -------- ----------------

11 MyYield - Flushes the message queue during long operations
II

(continued)

742 Part Ill Communications

Listing 14-3 (continued)

BOOL MyYield 0
MSG msg:
int re = 0;

while <PeekMessage <&msg, NULL, 0, 0, Pf!LNOREMOVE)} {

if (msg.message == WM~OUITl
return FALSE;

GetMessage C&msg, NULL, 1. 0):
if ((hMain == 0) II !IsDi.alogMessage (hMain, &msg)) {

Transl ateMessage (&msg);
DispatchMessage (&rnsg);

}

}

return TRUE;

ff··--------C---C--•---·"•·c•·•·-~•----•-----·-•-·~-----····--·-•---··•-

f/ InitObex - Initialize th• Ob•x ~ubsystem~

fl
int InitObex (HWND hWnct) {

HRESULT hr.;

h.r "' CoCreateinstance C. ui.(tdo'f<Obex); NULL, CLSCTX_INPROC_SERVER,
_._uutdof(!Obex2). (.voi ct·.·*'* l&pObeX);

lf(FAILEDChr).) {
hr = CoC:reatelrJstance (~uuiddf(ObexJ. NUl.L. CLSCJX..:rNPROCSERVER,

--.:..uuictof(IObex), (Void **l&pObex):

} else
f0bex21F-= ~RUE1

if (FA! LED(hr JJ { ·
Add2List (hWnd, TEXT('!Obex. initializ~tion faHeci! %.ct %x\n''L

h.r, i:letlastE.rrC>r:c > >; ·
return 0:

}

if (pObeX != NVL.L)
pObex-> Ini ti.al tze

else
return 0;

I /Set .deyi ce caps

!Obet<Caps·. *IYDbexC~~s
h.r·· c:·. pobex·>Ouerytnterface(rlP:.rbl)~xcaps.
if (SUC,CEEDW<~ r)) { ·.·.· .. ·.· ...•. ·

pObexCapi;- >S.etCaps cs.~~D:.;OEvicLUPDAT~S.) ;•
pQbeX:Caps ·>R.e119as19c) ;.

}

Chapter 14 Device-to-Device Communication 743

}

InitializeCriticalSection<&cslock);
EnterCriticalSection(&cslockl:

MyObexSink *pSink:
pSink =new MyObexSink(hWnd);
if (!pSink) {

LeaveCriticalSection(&cslock);
return 0;

II Create connection point container
hr= pObex->Queryinterface <IID_IConnectionPointContainer,

(LPVOID *)&pContainer);
if (!SUCCEEDED(hr) I I (pContainer == 0)) {

LeaveCriticalSection(&cslock);
return 0;

hr= pContainer->FindConnectionPoint (IID_IObexSink, &pConPtl;
if (!SUCCEEDED(hr) I I <pConPt == 0)) {

pContainer->Release();
LeaveCriticalSection(&cslockl:
return 0:

II Ask for notifications
hr= pConPt->Advise((IUnknown *)pSink, &dwCookie);

LeaveCriticalSection(&csLock);

II Start device enumeration
if (ERROR_SUCCESS != pObex->StartDeviceEnum())

return 0;

IDeviceEnum *pDeviceEnum = 0;
hr= pObex->EnumDevices(&pDeviceEnum, CLS!D_NULL);

if(!SUCCEEDED(hrl I I (pDeviceEnum == 0))
return NULL;

Add2List (hWnd, TEXT("EnumDevices succeeded"));
pDeviceEnum->Release ();
return 1:

11--
11 SendFile - Sends a file to another obex device
II

(continued)

744 Part Ill Communications

Listing 14-3 (continued)

int SendFile (HWND hWnd, IObexDevice *pDevice, LPTSTR pszFileName,
DWORD dwFlags)

LPTSTR pszName;
DWORD dWBytesWritten;
int ncnt, nFileSize, nTotal;
HRESULT hr:
HANDLE hFile;
PBYTE pBuff;

Add2List (hWnd, TEXT("Sending file %s"), pszFileName):

pBuff = (PBYTE)LocalAlloc (LPTR, BUFFSIZEl:
if (pBuff == 0) return 0;

JI prune the path from the file name
pszName = wcsrchr (pszFileName, '\\');
if (pszName == 0)

pszName = pszFileName;
else

pszName++;

II Open the file
hFi 1 e = CreateFil e (pszFi 1 eName. GENrnrc_READ. FI LE_SHARE_READ.

NULL, OPEN_EXISTING. 0, NULL);
if (hFile "'"' INVALID_HANDLE_VALUE) {

Add2List lhWnd, TEXTC"file opened failed. re %d").
GetlastError());

return -1;

II Get file size
nFileSize = GetFileSize (hFile, NULL);
if (!MyYield ()) return 0;

IHeaderCollection *pHC = 0;
hr= CoCreateinstanceC_uuidofCHeaderCollection), NULL,

CLSCTX_I NPRoc_srnvER, _uui dof CIHeaderCo 11 ecti on),
(void **)&pHC);

if (!MyYield Cl 11 FAILED(hr)) {
CloseHandle ChFile);
return -2;

}

if (dwFlags & OEV_SERVICE_FTP)
pHC->AddTarget Csizeof (CLSID_FileExchange_NetOrder),

CUCHAR *)&CLSID_FileExchange_NetOrder);

Chapter 14 Device-to-Device Communication 745

II Connect to device
hr= pDevice->Connect (NULL. 0, pHC);
if (!MyYield C) 11 FAILED(hr)) {

Add2List (hWnd. TEXT("Connect fail %x %d"). hr. GetLastError());
pHC->Release();
CloseHandle (hFile);
return -3;

Add2List ChWnd, TEXT("Connected ... "));
//get a header collection
IHeaderCollection *pFileHC = 0;
hr= CoCreateinstance<~uuidof(HeaderCollection), NULL,

CLSCTX_INPROC_SERVER, ~uuidof(IHeaderCollection),
(void **)&pFileHC);

if (!MyYield () 11 FAILED(hr)) {
pHC->Release();
pDevice->Disconnect (pHC);
CloseHandle (hFile);
return -2;

}

II Add file name to header
hr= pFileHC->AddName(pszName);
if (!MyYield () I I FAILEDChr)) {

pHC->Release();
pFileHC->Release();
CloseHandle (hFile);
return -3;

II Send header
!Stream *stout = 0;
hr= pDevice->Put(pFileHC, &stout);
if (!MyYield () 11 FAILED(hr))

pDevice->Disconnect (pHC);
pHC->Release();
pFileHC->Release();
CloseHandle (hFile);
return -4;

II Send the data
nTotal = nFileSize;
while (nFileSize) {

if (!MyYield ())break;
MySetWindowText (hWnd. TEXT ("%02d%% sent").

(nTota 1 -nFi l eSi ze) *100/nTota 1);
II Send up to the block size
nCnt =min (BUFFSIZE, nFileSize);

(continued)

746 Part Ill Communications

Listing 14·3 (continued)

.if' (JR~adfile' Chl'"ile.• pBtJfT'.: nCnt;<&dwl31i;e,sWri
Add21.:1 $t fhWod ~ TE'XT(... Read'Pile l\lrrot' ~d "
break;

pDevice->Dtsconnact
i f(.pHC)

pHC·>Release(l;
Cl os.eH.aridle(hFi 1 e);
1f(pFileHCl, . .

.pFi .1eH.~.~)R.ele11se0.:
r.eturn 0;

This chapter has given you a basic introduction to some of the ways
Windows CE devices can communicate with other devices. Next on our plate is
networking from a different angle. In Chapter 15, we look at the Windows CE
device from the perspective of its companion PC. The link between the Win
dows CE device and a PC is based on some of the same networking infrastruc
ture that we touched upon here. Let's take a look.

Connecting to the Desktop
One of the major market segments that Windows CE is designed for is desktop
companions. In answer to the requirements of this market, two product catego
ries created using Windows CE are desktop companions: the Handheld PC and
the Pocket PC. A third, the Smartphone, also leverages its link to the PC. Each
of these products requires a strong and highly functional link between the Win
dows CE device and the desktop PC running Windows.

Given this absolute necessity for good desktop connectivity, it's not sur
prising that Windows CE has a vast array of functions that enable applications
on the desktop and the remote Windows CE device to communicate with one
another. In general, most of this desktop-to-device processing takes place on
the desktop. This is logical because the desktop PC has much greater process
ing power and more storage space than the less powerful and much smaller
Windows CE system.

All of the helper DLLs, communications support, and viewer programs are
collected in the ActiveSync product. When a user buys any of the horizontal
platforms, such as the Pocket PC or the Handheld PC, a CD loaded with Active
Sync comes with the device. The user becomes accustomed to seeing the
Mobile Devices folder that, once ActiveSync is installed, appears on his desk
top. But there's much more to ActiveSync than Mobile Devices. A number of
DLLs are included, for example, to help the Windows CE application developer
write PC-based applications that can work with the remote Windows CE device.

In this chapter, I'll cover the various APis that provide the desktop-to
Windows CE link. These include the remote API, or RAPI, that allows applica
tions running on the desktop to directly invoke functions on the remote Win
dows CE system. I'll also look at methods a PC application can use to notify
itself when a connection exists between a PC and a Windows CE device.

747

748 Part Ill Communications

In a departure from the other chapters in this book, almost all the exam
ples in this chapter are PC-based Windows programs. They're written to work
for all 32-bit versions of Windows. I take the same approach with the PC-based
examples as I do for the CE-based examples, writing to the API instead of using
a class library such as MFC. The principles shown here could easily be used by
MFC-based applications or by a managed application using the .NET runtime
environment.

The Windows CE Remote API
The remote API (RAFI) allows applications on one machine to call functions on
another machine. Windows CE supports essentially a one-way RAFI; applica
tions on the PC can call functions on a connected Windows CE system. In the
language of RAFI, the Windows CE device is the RAFI server while the PC is the
RAFI client. The application runs on the client, the PC, which in turn calls func
tions that are executed on the server, the Windows CE device.

RAPI Overview
RAFI under Windows CE is designed so that PC applications can manage the
Windows CE device remotely. The exported functions deal with the file system,
registry, and databases, as well as functions for querying the system configura
tion. Although most RAFI functions are duplicates of functions in the Windows
CE API, a few functions extend the APL You use these functions mainly for ini
tializing the RAFI subsystem and enhancing performance of the communication
link by compressing iterative operations into one RAFI call.

The RAFI functions are listed in the Windows CE API reference but are
called by PC applications-not by Windows CE applications. The RAFI func
tions are prefixed with a Ce in the function name to differentiate them from
their Windows CE-side counterparts; for example, the function GetStorelnfor
mation in Windows CE is called CeGetStorelnformation in the RAFI version of
the function. Unfortunately, some APis in Windows CE, such as the database
API, also have functions prefixed with Ce. In these cases, both the CE function
(for example, CeCreateDatabase) and the RAFI function (again, CeCreateData
base) have the same name. The linker isn't confused in this case because a Win
dows CE application won't be calling the RAFI function and a PC-based
program can't call the database function except through the RAFI interface.

These Windows CE RAFI functions work for Windows 95/98/Me as well as
Windows NT/2000/XP, but because they're Win32 functions, applications devel
oped for the Win16 API can't use the Windows CE RAFI functions. The RAFI

Chapter 15 Connecting to the Desktop 749

functions can be called from either a Windows-based application or a Win32-
console application. All you have to do to use the RA.PI functions is include the
RAPI.h header file and link with the RA.PI.lib library.

Essentially, RA.PI is a remote procedure call. It communicates a PC appli
cation's request to invoke a function and returns the results of that function.
Because the RA.PI layer is simple on the Windows CE side, all strings used in
RA.PI functions must be in Unicode regardless of whether the PC-based appli
cation calling the RA.PI function uses the Unicode format.

Dealing with Different Versions of RAPI
The problem of versioning has always been an issue with redistributable DLLs
under Windows. RAPI.DLL, the DLL on the PC that handles the RA.PI API, is dis
tributed with the ActiveSync software that comes with a Smartphone, a Pocket
PC, or other PC-companion Windows CE devices. Trouble arises because the
RAPI API has been extended over time as the Windows CE functions have
expanded; you have to be aware that the RA.PI DLL you load on a machine
might not be the most up-to-date RA.PI DLL. Older RA.PI DLLs don't have all the
exported functions that the newest RA.PI DLL has.

This isn't as much of a problem as it used to be, however. The set of RA.PI
functions hasn't changed from the old H/PC Pro days up to the current Pocket
PC products. However, you should always be aware that new versions of
ActiveSync might provide RA.PI functions that aren't available on older installa
tions.

On the other hand, just because you 're using the latest RA.PI DLL doesn't
mean that the Windows CE system on the other end of the RA.PI connection
supports all the functions that the RA.PI DLL supports. An old H/PC running
Windows CE 2.0 won't support the extended database API supported by the
current Windows CE systems, no matter what RA.PI DLL you're using on the PC.

The best way to solve the problem of multiple versions of RAPI.DLL is to
program defensively. Instead of loading the RA.PI DLL implicitly by specifying
an import library and directly calling the RA.PI functions, you might want to
load the RA.PI DLL explicitly with a call to LoadLibrary. You can then access the
exported functions by calling GetProcAddress for each function and then calling
the pointer to that function.

The problem of different versions of Windows CE has a much easier solu
tion. Just be sure to call CeGetVersionEx to query the version of Windows CE on
the remote device. This gives you a good idea of what the device capabilities of
that device are. If the remote device has a newer version of Windows CE than
RAPI.dll, you might want to inform the user of the version issue and suggest an
upgrade of the synchronization software on the PC.

750 Part Ill Communications

Initializing RAPI
Before you can call any of the RAFI functions, you must first initialize the RAFI
library with a call to either CeRapilnit or CeRapilnitEx. The difference between
the two functions is that CeRapilnit blocks, waiting on a successful connection
with a Windows CE device, while CeRapilnitEx doesn't block. ActiveSync has
established a connection between the PC and the device for these functions to
succeed.

The first initialization function is prototyped as

HRESULT CeRapilnit (void);

This function has no parameters. When the function is called, Windows looks
for an established link to a Windows CE device. If one doesn't exist, the func
tion blocks until one is established or another thread in your application calls
CeRapiUninit, which is generally called to clean up after a RAFI session. The
return value is either 0, indicating that a RAFI session has been established, or
the constant E_FAIL, indicating an error. In this case, you can call GetLastError
to diagnose the problem.

Unfortunately CeRapi!nit blocks, sometimes, for an extended period of
time. To avoid this, you can use the other initialization function,

HRESULT CeRapilnitEx (RAPIINIT* pRapilnit);

The only parameter is a pointer to a RAPllNIT structure defined as

typedef struct _RAPIINIT
DWORD cbSize;
HANDLE heRapilnit;
HANDLE hrRapilnit;

RAPIINIT;

The cbSize field must be filled in before the call is made to CeRapilnitEx. After
the size field has been initialized, you call CeRapilnitEx and the function
returns without blocking. It fills in the second of the three fields, heRapilnit,
with the handle to an event object that will be signaled when the RAFI connec
tion is initialized. You can use WaitForSingleObject to have a thread block on
this event to determine when the connection is finally established. When the
event is signaled, the final field in the structure, hrRapilnit, is filled with the
return code from the initialization. This value can be 0 if the connection was
successful or E_FAIL if the connection wasn't made for some reason.

Handling RAPI Errors
When you're dealing with the extra RAFI layer between the caller and the exe
cution of the function, a problem arises when an error occurs: did the error
occur because the function failed or because of an error in the RAFI connection?

Chapter 15 Connecting to the Desktop 751

RAFI functions return error codes indicating success or failure of the function.
If a function fails, you can use the following two functions to isolate the cause
of the error:

HRESULT CeRapiGetError (void);

and

DWORD CeGetlastError (void);

The difference between these two functions is that CeRapiGetError returns
an error code for failures due to the network or other RAFI-layer reasons. On
the other hand, CeGetLastError is the RAFI counterpart to GetLastError; it
returns the extended error for a failed function on the Windows CE device. So,
if a function fails, call CeRapiGetError to determine whether an error occurred
in the RAFI layer. If CeRapiGetError returns 0, the error occurred in the original
function on the CE device. In this case, a call to CeGetLastError returns the
extended error for the failure on the device.

Here's one last general function, used to free buffers that are returned by
some of the RAFI functions. This function is

HRESULT CeRapiFreeBuffer (LPVOID Buffer);

The only parameter is the pointer to the buffer you want to free. The function
returns S_OKwhen successful and E_FAIL if not. Throughout the explanation of
RAFI functions, I'll mention those places where you need to use CeRapiFree
Bu.ffer. In general, though, you use this function anywhere a RAFI function
returns a buffer that it allocated for you.

Ending a RAPI Session
When you have finished making all the RAFI calls necessary, you should clean
up by calling

HRESULT CeRapiUninit (void);

This function gracefully closes down the RAFI communication with the remote
device. CeRapiUninit returns E_FAIL if a RAFI session hasn't been initialized.

Predefined RAPI Functions
As I mentioned in the beginning of this chapter, the RAFI services include a
number of predefined RAFI functions that duplicate Windows CE functions on
the PC side of the connection. So, for example, just as GetStorelnformation
returns the size and free space of the object store to a Windows CE program,
CeGetStorelnformation returns that same information about a connected Win
dows CE device to a PC-based application. The functions are divided into a

752 Part Ill Communications

number of groups that I'll talk about in the following pages. Since the actions of
the functions are identical to their Windows CE-based counterparts, I won't go
into the details of each function. Instead, although I'll list every RAPI function,
I'll explain at length only the functions that are unique to RAPI.

RAPI System Information Functions
The RAPI database functions are shown in the following list. I've previously
described most of the Windows CE counterparts to these functions, shown,
with the exception of CeCheckPassword and CeRapilnvoke. The CeCheckPass
word function, as well as its Windows CE counterpart CheckPassword, com
pares a string to the current system password. If the strings match, the function
returns TRUE. The comparison is case specific. Another function you might not
recognize is CeGetDesktopDeviceCaps. This is the RAPI equivalent of GetDevice
Caps on the Windows CE side.

System Information Functions

CeGetVersionEx

CeGlobalMemoryStatus

CeGetSystemPowerStatusEx

CeGetStorelnformation

CeGetSystemMetrics

CeGetDesktopDeviceCaps

CeGetSystemlnjo

CeCbeckPassword

CeCreateProcess

CeRapilnvoke

RAPI File and Directory Management Functions
The following list shows the RAPI file management functions, illustrating that
almost any file function available to a Windows CE application is also available
to a PC-based program.

File and Directory Management Functions

CeFindAllFiles

CeFindFirstFile

CeFindNextFile

CeFindClose

CeGetFileAttributes

CeSetFileAttributes

CeCreateFile

CeReadFile

Ce WriteFile

CecloseHandle

CeSetFilePointer

CeSetEndOjFile

CeCreateDirectory

CeRemoveDirectory

CeMoveFile

CeCopyFile

CeDeleteFile

CeGetFileSize

CeGetFileTime

CeSetFileTime

Chapter 15 Connecting to the Desktop 753

Here's a new function, CeFindAl!Files, that's not even available to a Win
dows CE application. This function is prototyped as

BOOL CeFindAllFiles (LPCWSTR szPath, DWORD dwFlags,
LPDWORD lpdwFoundCount,
LPLPCE_FIND_DATA ppFindDataArray);

CeFindAl!Files is designed to enhance performance by returning all the files
of a given directory with one call rather than having to make repeated RAPI calls
using CeFindFirstFile and CeFindNextFile. The first parameter is the search string.
This string must be specified in Unicode, so if you're not creating a Unicode
application, the TEXT macro won't work because the TEXT macro produces char
strings for non-Unicode applications. In ANSI-standard C++ compilers, prefixing
the string with an L before the quoted string as in L'\ *.*"produces a proper Uni
code for the function even in a non-Unicode application. For string conversion,
you can use the WideCharToMultiByte and MultiByteTo WideChar library func
tions to convert Unicode and ANSI strings into one another.

The second parameter of the CeFindAllFiles function, dwFlags, defines the
scope of the search and what data is returned. The first set of flags can be one
or more of the following:

• FAF_A1TRIB_CHILDREN Returns only directories that have child
items

• FAF_A1TRIB_NO_HIDDEN Doesn't report hidden files or
directories

• FAF_FOLDERS_ONLY Returns only folders in the directory

• FAF_NO_HIDDEN_SYS_ROMMODULES Doesn't report ROM
based system files

The second set of flags defines what data is returned by the CeFindAl!Files
function. These flags can be one or more of the following:

• FAF_A1TRIBUTES Returns file attributes

• FAF_CREATION_TIME Returns file creation time

• FAF_LASTACCESS_TIME Returns file last access time

• FAF_LASTWRITE_TIME Returns file last write time

• FAF_SIZE_HIGH Returns upper 32 bits of file size

• FAF_SIZE_LOW Returns lower 32 bits of file size

• FAF_OID Returns the object identifier (OID) for the file

• FAF_NAME Returns the filename

754 Part Ill Communications

Just because the flags are listed here doesn't mean you can find a good
use for them. For example, the FAF_SIZE_HIGHflag is overkill, considering that
few files on a Windows CE device are going to be larger than 4 GB. The file
time flags are also limited by the support of the underlying file system. For
example, the Windows CE object store tracks only the last access time and
reports it in all file time fields.

There also appears to be a bug with the FAF_ATTRIB_CHIWRENflag. This
valuable flag allows you to know when a directory contains subdirectories
without your having to make an explicit call to that directory to find out. The
flag seems to work only if the filename specification-the string to the right of
the last directory separator backslash (\)-contains only one character. For
example, the file specification

\\windows*

works with FAF_ATTRIB_CHILDREN, whereas

\\windows*.*

returns the same file list but the flag FILE_ATTRIBUTE_HAS_CHILDRENisn't set
for directories that have subdirectories.

The third parameter of CeFindAllFiles should point to a DWORD value
that will receive the number of files and directories found by the call. The final
parameter, ppFindDataArray, should point to a variable of type
LPCE_FIND_DATA, which is a pointer to an array of CE_FIND_DATA structures.
When CeFindAllFiles returns, this variable will point to an array of
CE_FIND_DATA structures that contain the requested data for each of the files
found by the function. The CE_FIND_DATA structure is defined as

typedef struct _CE_FIND_DATA {
DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftlastAccessTime;
FILETIME ftlastWriteTime;
DWORD nFileSizeHigh;
DWORD nFileSizelow;
OWORD dwOID;
WCHAR cFileName[MAX_PATH]:

CE_FIND_DATA;

The fields of CE_FIND_DATA look familiar to us by now. The only inter
esting field is the dwOID field that allows a PC-based application to receive the
OID of a Windows CE file. This can be used with CeGetOidGetlnfo to query
more information about the file or directory. The flags in the dwFileAttributes
field relate to Windows CE file attributes even though your application is run
ning on a PC. This means, for example, that the FILE_ATTRIBUTE_TEMPORARY

Chapter 15 Connecting to the Desktop 755

flag indicates an external storage device like a PC Card. Also, attribute flags are
defined for execute-in-place ROM files. The additional attribute flag,
FILE_ATTRJBUTE_HAS_CHILDREN, is defined to indicate that the directory con
tains child directories.

The buffer returned by CeFindAllFiles is originally allocated by the
RAPl.DLL. Once you have finished with the buffer, you must call CeRapiFree
Bu.ffer to free the buffer.

RAPI Database Management Functions
The RAPI database management functions are shown in the following list. As
you can see, these functions mimic the extensive database API found in Win
dows CE. RAPI has not been extended to support the newer database APis sup
ported by Windows CE .NET. However, the older functions provide enough
functionality to read databases, even if the databases were created with the
newer functions.

Database Management Functions

CeCreateDatabase

CeCreateDatabaseEx

CeDeleteDatabase

CeDeleteDatabaseEx

CeDeleteRecord

CeFindFirstDatabase

CeFindFirstDatabaseEx

CeFindNextDatabase

CeFindNextDatabaseEx

CeOidGetlnfo

CeOidGetlnfoEx

CeOpenDatabase

CeOpenDatabaseEx

CeReadRecordProps

CeReadRecordPropsEx

CeSeekDatabase

CeSetDatabaselnfo

CeSetDatabaselnfoEx

Ce WriteRecordProps

CeMountDBVol

CeUnmountDBVol

CeEnumDBVolumes

CeFindAl!Databases

All but one of the database functions has a Windows CE counterpart. The
only new function is CeFindAl!Databases. Like CeFindAllFiles, this function is
designed as a performance enhancement so that applications can query all the
databases on the system without having to iterate using the CeFindFirstData
base and CeFindNextDatabase functions. The function is prototyped as

BOOL CeFindAllDatabases (DWORD dwDbaseType, WORD wFlags,
LPWORD cFindData,
LPLPCEDB_FIND_DATA ppFindData);

756 Part Ill Communications

The first parameter is the database type value, or 0, if you want to return all
databases. The wFlags parameter can contain one or more of the following
flags, which define what data is returned by the function.

• FAD_OID Returns the database OID

• FAD_FLAGS Returns the dwFlags field of the Dblnfo structure

• FAD_NAME Returns the name of the database

• FAD_TYPE Returns the type of the database

• FAD_NUM_RECORDS Returns the number of records in the data
base

• FAD_NUM_SORT_ORDER Returns the number of sort orders

• FAD_SORT_SPEC Returns the sort order specs for the database

The cFindData parameter should point to a WORD variable that receives
the number of databases found. The last parameter should be the address of a
pointer to an array of CEDB_FIND_DATA structures. As with the CeFindAllFiles
function, CeFindAl!Databases returns the information about the databases
found in an array and sets the ppFindData parameter to point to this array. The
CEDB_FIND_DATA structure is defined as

struct CEDB_FIND_DATA {
CEOID OidDb:
CEDBASEINFO Dblnfo:

} :

The structure contains the OID for a database followed by a CEDBASEINFO
structure. I described this structure in Chapter 9, but I'll repeat it here so that
you can see what information can be queried by CeFindAl!Databases.

typedef struct _CEDBASEINFO {
DWORD dwFlags;
WCHAR szDbaseName[CEDB_MAXDBASENAMELEN]:
DWORD dwDbaseType;
WORD wNumRecords:
WORD wNumSortOrder;
DWORD dwSize;
FILETIME ftlastModified;
SORTORDERSPEC rgSortSpecs[CEDB_MAXSORTORDER];

CEDBASEINFO:

As with CeFindAllFiles, you must free the buffer returned by CeFindAl!Data
bases with a call to CeRapiFreeBuffer.

Chapter 15 Connecting to the Desktop 757

One other function in this section requires a call to CeRapiFreeBu.ffer. The
function CeReadRecordProps, which returns properties for a database record,
allocates the buffer where the data is returned. If you call the RAPI version
function, you need to call CeRapiFreeBu.ffer to free the returned buffer.

RAPI Registry Management Functions
The RAPI functions for managing the registry are shown in the following list.
The functions work identically to their Windows CE counterparts. But remem
ber that all strings, whether they are specifying keys and values or strings
returned by the functions, are in Unicode.

Registry Management Functions

CeRegOpenKeyEx

CeRegEnumKeyEx

CeRegCreateKeyEx

CeRegCloseKey

CeRegDeleteKey

RAPI Shell Management Functions

CeRegEnum Value

CeRegDelete Value

CeRegQuerylnfoKey

CeRegQuery ValueEx

CeRegSet ValueEx

The RAPI shell management functions are shown in the next list. Although I'll
cover the Windows CE-equivalent functions in the next chapter, you can see
that the self-describing names of the functions pretty well document them
selves. The CeSHCreateShortcut and CeSHGetShortcutTarget functions allow
you to create and query shortcuts. The other two functions, CeGetTempPath
and CeGetSpecialFolderPath, let you query the locations of some of the special
purpose directories on the Windows CE system, such as the programs directory
and the recycle bin.

Shell Management Functions

CeSHCreateShortcut

CeSHGetShortcutTarget

RAPI Window Management Functions

CeGetTempPath

CeGetSpecialFolderPath

The final set of predefined RAPI functions allows a desktop application to man
age the windows on the Windows CE desktop. These functions are shown in
the following list. The functions work similarly to their Windows CE functions.
The CeGetWindow function allows a PC-based program to query the windows

758 Part Ill Communications

and child windows on the desktop while the other functions allow you to query
the values in the window structures.

Window Management Functions

CeGetWindow

CeGetWindowLong

The RapiDir Example Program

CeGetWindowText

CeGetClassName

The RapiDir example is a PC-console application that displays the contents of a
directory on an attached Windows CE device. The output of RapiDir, shown in
Figure 15-1, resembles the output of the standard DIR command from a PC
command line. RapiDir is passed one argument, the directory specification of
the directory on the Windows CE machine. The directory specification can take
wildcard arguments such as *.exe if you want, but the program isn't completely
robust in parsing the directory specification. Perfect parsing of a directory string
isn't the goal of RapiDir-demonstrating RAPI is.

Figure 15-1 The output of RapiDir

The source code for RapiDir is shown in Listing 15-1. The program is a
command line application and therefore doesn't need the message loop or any
of the other structure seen in a Windows-based application. Instead the Win
Main function is replaced by our old C friend, main.

Remember that RapiDir is a standard Win32 desktop application. It won't
even compile for Windows CE. On the other hand, you have the freedom to use
the copious amounts of RAM and disk space provided by the comparatively
huge desktop PC. When you build RapiDir, you'll need to add RAFI.lib to the
libraries that the linker uses. Otherwise, you'll get unresolved external errors for

Chapter 15 Connecting to the Desktop 759

all the RAPI functions you call in your application. RAPI.h and RAPI.lib come
with the Microsoft eMbedded Tools. The location of these files varies from plat
form to platform. The easiest way to find the files is to use the Explorer's search
function to look for RAPI.h and RAPI.lib and then add the appropriate directo
ries to the project.

RapiDir.cpp
!/==
JI RapiDir - Returns the contents of a directory on a Windows CE system.
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
!/==
#include <windows.h>
#include <stdio.h>
#include <rapi .h>

JI For all that Windows stuff

JI RAPI includes

!!==
II main - Program entry point
II
int main (int argc, char ••argv)

RAPIINIT ri;
char szSrch[MAX_PATHJ, •pPtr;
WCHAR szwDir[MAX_PATH];
CE_FIND_DATA •pfd = 0;
DWORD i, cltems. dwTotal 0;
FI LETIME ft;
SYSTEMTIME st;
char ampm = 'a';
int re;

II Call RapilnitEx to asynchronously start RAPI session.
ri.cbSize = sizeof (ri);
re= CeRapiinitEx (&ri);
if (re != NOERROR) {

}

printf (TEXT ("Rapi Initialization failed\r\n"));
return 0;

II Wait 5 seconds for connect.
re= WaitForSingleObject (ri .heRapiinit, 5000);
if (re == WAIT_OBJECT_0) {

if (ri .hrRapi I nit != NOERROR) {
printf (TEXT ("Rapi Initialization failed.\r\n"));
return 0;

Listing 15-1 The RapiDir source code (continued)

760 Part Ill Communications

Listing 15-1 (continued)

} else if (re== WAIT_TIMEOUT)

}

printf (TEXT ("Rapi Initialization timed out.\r\n"ll:
return 0:

II If. no argument. assume root directory.
if Cargc l)

lstrcpy (szSrth, argv[lJl:
else

lstrcpy CszSrch. "\\");

I! Point. to end of name.
pPtr = szSrch + lstrlen CszsrchJ - l;

II Strip any trailing backslash.
ff C*PPtr == '\\')

*pPtr = '\0';

ii Look for w.i.l dcards in filename. pPtr points to string end.
Ci =. 0; (pPtr s.zsrch) && (*pPtr != '\\'); pPtr-") {

U*pPtr== '*')ti C*pPtr== '?'))

i++;

II Display dir name first so that on long calls we show we're alive.
if (pPtr >= szSrch)

char ch;
ch = *PPtr;
*pPtr = '\0';
printf CHXT ("\r\n Directory of Xs\r\n\r\n''), szSrchJ;
*pPtr = th:

("\r\n Directory of \\\r\n\r\n"));

CHXT ("\r\n Directory
II Nowildcards, append*··*

Ci == 0)

lstrcat (szSrch, ''\ *. *'');

II Convert ANSI string to Unicode.
memset (szwDir, 0. sizeof (szwDir));

mbstowcs CszwDir. szSrch. lstrlen CszSrchl
//<RAPI call
re= CeFindAllFilss (szwDir. FAF'-SIZE_LDW I FAF_NAME I

FAF _ATTRIBUTES I ~AF .._LASr ACCESS_ TIME.
&citems. &pfdJ;

II Display the resu1ts.
if (cltems) {

Chapter 15 Connecting to the Desktop 761

for (i = 0; i < citems; i++) {
II Convert file time.
FileTimeToLocalFileTime <&pfd->ftLastAccessTime, &ft);
FileTimeToSystemTime (&ft, &st);
II Adjust for AM/PM.
if (st.wHour == 0)

st.wHour = 12;
else if (st.wHour > 11)

ampm = 'p';
if (st.wHour > 12)

st.wHour -= 12;

printf (TEXT ("%02d/%02d/%02d %02d:%02d%c\t"),
st.wMonth, st.wDay, st.wYear,
st.wHour, st.wMinute, ampm);

II Display dir marker or file size.
if (pfd->dwFileAttributes & FILE_ATTRIBUTLDIRECTORY)

printf (TEXT C"<DIR>\t\t "));
else< {

printf (TEXT C"\t%8d "), pfd->hFil.eSizelow);
dwTotal += pfd·>nFileSizeLow;

II Display name, use Cap %S to indicate Unicode.
printf (TEXT ("%5\r\n"), pfd->cFileName);
pfd++;

printf CTEXT ("\t%10d File(s)\t%9d bytes\r\n\r\n"),
cltems, dwTotal);

} else
printf (TEXT ("File not Found\r\n\r\n"));

II Clean up by freeing the FindAllFiles buffer.
if (pfdl

CeRapiFreeBuffer (pfdl;
II Clean up by uninitializing RAPI.
CeRapiUninit ();
return 0;

This single procedure application first calls CeRapilnitEx to initialize the
RAPI session. I used the Ex version of the initialization function so that RapiDir
can time out and terminate if a connection isn't made within 5 seconds of start
ing the program. If I'd used CeRapilnit instead, the only way to terminate
RapiDir if a remote CE device weren't connected would be a user-unfriendly
Ctrl+C key combination.

762 Part Ill Communications

Once the RAPI session is initialized, a minimal amount of work is done on
the single command line argument that's the search string for the directory.
Once that work is complete, the string is converted into Unicode and passed to
CeFindAllFiles. This RAPI function then returns with an array of
CE_FIND_DATA structures that contain the names and requested data of the
files and directories found. The data from that array is then displayed using
printf statements. The buffer returned by CeFindAllFiles is freed by means of a
call to CeRapiFreeBu.ffer. Finally, the RAPI session is terminated with a call to
CeRapiUninit.

If you compare the output of RapiDir with the output of the standard DIR
command, you notice that RapiDir doesn't display the total bytes free on the
disk after the listing of files. Although I could have displayed the total free space
for the object store using CeGetStoragelnformation, this practice wouldn't work
if the user displayed a directory on a PCMCIA card or other external media. Win
dows CE supports the GetDiskFreeSpaceEx function, but the Windows CE RAP!
DLL doesn't expose this function. To get this information, we'll use RAPI's ability
to call custom RAPI functions on a Windows CE system.

Custom RAPI Functions
No matter how many functions the RAPI interface supports, you can always
think of functions that an application needs but the RAPI interface doesn't give
you. Because of this, RAPI provides a method for a PC application to call a user
defined function on the Windows CE device.

You can invoke a user-defined RAPI function in one of two ways. The first
way is called block mode. In block mode, you make a call to the RAPI remote
invocation function, the function makes the call to a specified function in a
specified DLL, the DLL function does its thing and returns, and the RAPI func
tion then returns to the calling PC program with the output. The second method
is called stream mode. In this mode, the RAP! call to the function returns imme
diately, but a connection is maintained between the calling PC application and
the Windows CE DLL-based function. This method allows information to be fed
back to the PC on an ongoing basis.

Using RAPI to Call a Custom Function
The RAPI function that lets you call a generic function on the Windows CE
device is CeRapilnvoke, which is prototyped as

HRESULT CeRapiinvoke (LPCWSTR pDllPath, LPCWSTR pFunctionName,
DWORD cbinput, BYTE *pinput, DWORD *pcbOutput,
BYTE **ppOutput. IRAP!Stream **pp!RAP!Stream,
DWORD dwReserved);

Chapter 15 Connecting to the Desktop 763

The first parameter to CeRapilnvoke is the name of the DLL on the Win
dows CE device that contains the function you want to call. The name must be
in Unicode but can include a path. If no path is specified, the DLL is assumed
to be in the \windows directory on the device. The second parameter is the
name of the function to be called. The function name must be in Unicode and
is case specific.

The next two parameters, cblnput and p!nput, should be set to the buffer
containing the data and the size of that data to be sent to the Windows CE
based function. The input buffer should be allocated in the local heap of the
application. When you call CeRapilnvoke, this buffer will be freed by the func
tion. The pcbOutput and ppOutput parameters are both pointers-the first a
pointer to a DWORD that receives the size of the data returned and the second
a pointer to a PBYTE variable that receives the pointer to the buffer containing
the data returned by the Windows CE function. The buffer returned by CeRapi
lnvoke is allocated by the function in your local heap. You're responsible for
freeing this buffer. I'll describe the next-to-last parameter, pp!RAP!Stream, later.

To use CeRapilnvoke in block mode, all you do is specify the DLL contain
ing the function you want to call, the name of the function, and the data, and
then make the call. When CeRapilnvoke returns, the data from the CE-based
function will be sitting in the buffer pointed to by your output pointer variable.

Writing a RAPI Server Function
You can't call just any function in a Windows CE DLL. The structure of the Win
dows CE function must conform to the following function prototype:

STDAPI INT FuncName CDWORD cbinput, BYTE *pinput, DWORD *pcbOutput,
BYTE **ppOutput, IRAPIStream *PIRAPIStream);

As you can see, the parameters closely match those of CeRapilnvoke. As with
CeRapilnvoke, I'll talk about the parameter p!RAP!Stream later.

Listing 15-2 contains the source code for a very simple block-mode RAPI
server. This is a DLL and therefore has a different structure from the application
files previously used in the book The primary difference is that the DLL con
tains a DllMain routine instead of WinMain. The DllMain routine is called by
Windows whenever a DLL is loaded or freed by a process or thread. In our
case, we don't need to take any action other than to return TRUE indicating all
is well.

You should be careful to make the name of your RAPI server DLL eight
characters or less. Current implementations of the RAPI DLL will fail to find
server DLLs with names not in the old 8.3 format.

764 Part Ill Communications

Listing 15-2 RapiServ.cpp, a simple block-mode RAPI server DLL

Chapter 15 Connecting to the Desktop 765

II If not zero terminated or if zero length, return error.
if ((i >= cbinput I 2) 11 (i == 0)) {

LocalFree (plnputl;
return -2;

11 Call the function.
if (GetDiskFreeSpaceEx ((LPTSTRlpinput, NULL, &lnTotal, &lnFree)) {

II Allocate memory for the return buffer.
pdwLocal = (PDWORDl LocalAlloc (LPTR, 2 * sizeof (DWORD));
if (pdwLocal l {

else

II Copy data from function to output buffer.
pdwLocal[0] = lnTotal .LowPart;
pdwLocal[lJ = lnFree.LowPart;
II Specify size and buffer.
*pCbOutput = 2 * sizeof (DWORD);
*ppOutput = (PBYTElpdwLocal;

else
re= GetLastError();

re= GetLastError();
II The function is responsible for freeing the input buffer.
LocalFree (pinput);
return re;

The unusual prefix before the function prototype for RAPJGetDiskSize,

_declspec (dllexport) INT RAP!GetDiskSize ...

tells the linker to export the function listed so that external modules can call the
function directly. This declaration is a shortcut for the old way of defining
exports in a separate function definition (DEF) file. While this shortcut is con
venient, sometimes you still need to fall back on a DEF file. The _declspec line
is couched in an extern C bracket. This technique ensures that if the file is com
piled with the C++ language extensions enabled, the function name won't be
mangled by the compiler. This is an important assurance because we need to
call this function by its real name, not by some fabricated name created by a
compiler.

The function of RapiServ is to make available that GetDiskFreeSpaceEx
function we needed in the RapiDir example application. The server function,
RAPIGetDiskSize, has the same prototype I described earlier. The input buffer is
used to pass a directory name to the DLL while the output buffer returns the
total disk space and the free disk space for the directory passed. The format of
the input and output buffers is totally up to you. However, the function must

766 Part Ill Communications

free the input buffer with Loca!Free and the output buffer should be allocated
using Loca!Alloc so that the RAPI library can free it after it has been used. The
value returned by RAP!GetDiskSize is the value that's returned by the CeRapi
lnvoke function to the PC-based application.

On the PC side, a call to a block-mode RAPI server function looks like the
following.

11---
11 MyCeGetDiskFreeSpaceEx - Homegrown implementation of a RAPI
II GetDiskFreeSpace function
II
BOOL MyCeGetDiskFreeSpaceEx (LPWSTR pszDir, PDWORD pdwTotal,

PDWORD pdwFree) {
HRESULT hr;
DWORD dwin, dwOut;
LPBYTE pinput;
LPWSTR pPtr;
PDWORD pOut;
BOOL bRC = FALSE;

II Get length of Unicode string.
for (dwin = 2, pPtr = pszDir; *pPtr++; dwin+=2);
II Allocate buffer for input.
pinput = LocalAlloc (LPTR, dwin);
if (!pinput)

return FALSE;
II Copy directory name into input buffer.
memcpy (pinput, pszDir, dwin);

II Call function on Windows CE device.
hr= CeRapiinvoke (L"RapiServ", L"RAPIGetDiskSize", dwin,

pinput, &dwOut. (PBYTE *)&pout, NULL, 0);

11 If successful, return total and free values.
if (hr == 0) {

*pdwTotal = p0ut[0];
*pdwFree = pOut[l];
bRC = TRUE;

LocalFree (pOut);
return bRC;

This routine encapsulates the call to CeRapilnvoke so that the call looks
just like another CE RAPI call. The code in this routine simply computes the
length of the Unicode string that contains the directory specification, allocates a
buffer and copies the string into it, and passes it to the CeRapilnvoke function.
When the routine returns, the return code indicates success or failure of the

Chapter 15 Connecting to the Desktop 767

call. CeRapilnvoke frees the input buffer passed to it. The data is then copied
from the output buffer and that buffer is freed with a call to LocalFree.

Throughout this section, I've put off any explanation of the parameters
referring to !RAP/Stream. In fact, in the example code above, the prototype for
the server call, RAPIGetDiskSize, simply typed the p!RAP!Stream pointer as a
PVOID and ignored it. In the client code, the CeRapilnvoke call passed a NULL
to the pp!RAP!Stream pointer. This treatment of the !RAP/Stream interface is
what differentiates a block-mode call from a stream-mode call. Now let's look
at the !RAP/Stream interface.

Stream Mode
Stream-mode RAPI calls are different from block mode in that the initial RAPI
call creates a link between the PC application and the server routine on the
Windows CE device. When you call CeRapilnvoke in stream mode, the call
returns immediately. You communicate with the server DLL using an !RAP/
Stream interface. You access this interface using a pointer returned by the
CeRapilnvoke call in the variable pointed to by pp!RAP!Stream.

The !RAP/Stream interface is derived from the standard COM !Stream
interface. The only methods added to !Stream to create !RAP/Stream are Set
RapiStat and GetRapiStat, which let you set a timeout value for the RAPI com
munication. Fortunately, we don't have to implement an !RAP/Stream interface
either on the client side or in the server DLL. This interface is provided for us by
the RAPI services as a way to communicate.

Following is a call to CeRapilnvoke that establishes a stream connection
and then writes and reads back 10 bytes from the remote server DLL.

DWORD dwin, dwOut, cbBytes:
IRAPIStream *pIRAPIStream:
BYTE bBuff[BUFF_SIZE];
PBYTE pOut;
HRESULT hr:

II RAP! call
hr= CeRapiinvoke (L"ServDLL", L"RAPIRmtFunc", dwin, bBuff,

&dwOut, &pout, &pIRAPIStream, 0);
if (hr == S_OK) {

II Write 10 bytes.
pIRAPIStream->Write (bBuff, 10, &cbBytes);
II Read data from server.
pIRAPIStream->Read (bBuff, 10, &cbBytes);

pIRAPIStream->Release ();

768 Part Ill Communications

When establishing a stream connection, you can still use the input buffer
to pass initial data down to the remote server. From then on, you should use the
Read and Write methods of !RAP/Stream to communicate with the server. When
you're finished with the !RAP/Stream interface, you must call Release to release
the interface.

The Rapifind Example Program
The RapiFind example program searches the entire directory tree of a Windows
CE device for files matching a search specification. The program is in two parts:
a RAPI server DLL, FindSrv.dll, and a console-based, Win32 application, Rapi
Find. The program works by passing a search string on the command line.
RapiFind returns any files on the attached Windows CE device that match the
search string. If the search specification includes a directory, only that directory
and any of its subdirectories are searched for matching files. Figure 15-2 shows
the output of RapiFind. Let's look at the server DLL, FindSrv, shown in Listing
15-3.

Figure 15-2 The output of RapiFind

Chapter 15 Connecting to the Desktop 769

FindSrv.cpp
II==
II FindSrv - A RAP! stream server DLL
II
II Written for the book Programming Windows CE
II Copyright (Cl 2003 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff

II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11---
11 Add if not defined.
#ifndef RAPISTREAMFLAG
typedef enum tagRAPISTREAMFLAG

STREAM_TIMEOUT_READ
} RAPISTREAMFLAG;
DECLARE_INTERFACE_ (IRAP!Stream, !Stream)
{

STDMETHOD(SetRapiStat)(THIS_ RAPISTREAMFLAG Flag,
DWORD dwValue) PURE;

STDMETHODCGetRapiStat)(THIS_ RAPISTREAMFLAG Flag,
DWORD •pdwValue) PURE;

} ;

#end if
11---
11 Function prototypes declared as exports from the DLL.
II Bracket so that function name won't be mangled by C++.
extern "C" {
~ declspec(dllexport) INT RAPIFindFile (DWORD cbinput, BYTE •pinput,

DWORD •pcbOutput, BYTE ••ppOutput,
IRAP!Stream •pIRAPIStream);

II==
II DllMain - DLL initialization entry point
II
BOOL WINAPI DllMain (HANDLE hinstDLL, DWORD dwReason,

LPVOID lpvReservedl {
return TRUE;

}

Listing 15-3 FindSrv.cpp, a stream-mode RAPI server DLL (continued)

770 Part Ill Communications

Listing 15-3 (continued)

Chapter 15 Connecting to the Desktop 771

szNew[i] =TEXT ('\0');

pPtr = szNew + lstrlen (szNew);

II Report directory we're searching.
WriteToClient (2, 0, szNew, pIRAPIStream);

II Find matching files.
hFind = FindFirstFile (pszDir, &fd);
if (hFind != INVALID_HANDLE_VALUE) {

do
II Report all matching files.
if (!(fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY))

WriteToClient (1, fd.nFileSizelow, fd.cFileName,
pIRAPIStream);

re= FindNextFile (hFind, &fd);
while (re);

FindClose (hFind);
else {

re= GetlastError();
if ((re != ERROR_FILE_NOT_FOUND) &&

(re != ERROR_NO_MORE_FILES)) {
TCHAR szDbg[64];
wsprintf (szDbg, TEXT ("lFind Error:%d"), rel;
WriteToClient (99, 0, szDbg, pIRAPIStream);
return -1;

II Create generic search string for all directories.
lstrcat (szNew, TEXT ("*·*"));

hFind = FindFirstFile (szNew, &fd);
if (hFind != INVALID_HANDLE_VALUE) {

do {
if Cfd.dwFlleAttributes & FILE__ATTRIBUTE_DIRECTORY)

II Recurse to the lower directory.

}

lstrcpy (pPtr, fd.cFileName);
lstrcat (pPtr, pSrcSpecl;
nErr • SrchDirectory (szNew, pIRAPIStream);
if (nErr) break;
*pPtr =TEXT ('\0');

re = FindNextFi le (hFind, &fd);
while (re);

(continued)

772 Part Ill Communications

Listing 15-3 (continued)

FindClose (hFfnd);
{

GetLastErrorO:
((re l"' ERROR..JILLNOLFOUNIJ) &&

Cre J= ERROR,..N.O~MORCFILES))

TCH~Rvsz0bg(64]:
wsprintftsztlb~ .n:xt C"2F'ind .Error:%d") ,·· . .re).;
WrtteToCl ient C99, .. 0, s;::Dbg, pIRAPIStream);
return - l;

return nErr:

If RAPTFi n.ctfl le -
PC application

II .Release th.e interface ..
pIRAPlStream·>Release ();
rt:1turn 0;

Chapter 15 Connecting to the Desktop 773

As with the earlier RAPI server DLL, FindSrv is short and to the point. The
differences between this server and the block server can be seen early in the
file. The !RAP/Stream interface isn't defined in some of the older tools, so if
necessary, this interface is derived at the top of the file from !Stream. Immedi
ately following the interface declaration is the exported function prototype.
Notice that the prototype is enclosed in an extern C bracket. This prevents the
default mangling of the function name that the C++ precompiler would nor
mally perform. We need the name of the function unmangled so that it's a
known name to the client.

The exported RAPI function is RAPIFindFile, which you can see at the end
of the source code. This routine does little more than check to see that the
search string is valid before it calls SrchDirectory, a function internal to the DLL.
SrchDirectory is a recursive function that searches the directory defined in the
search specification and all subdirectories underneath. When a file is found that
matches the search specification, the name and size of the file are sent back to
the client caller using the Write method of !RAP/Stream. The format of the data
transmitted between the client and server is up to the programmer. In this case,
I send a command word, followed by the file size, the length of the name, and
finally the filename itself. The command word gives you a minimal protocol for
communication with the client. The command value 1 indicates a found file, the
value 2 indicates the server is looking in a new directory, and the value 0 indi
cates that the search is complete. Following the last write, Release is called to
free the !RAP/Stream interface.

The source code for the client application, RapiFind, is shown in Listing
15-4.

RapiFind.cpp
II==
II RapiFind - Searches for a file or files on a Windows CE system
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
#include <windows.h>
#include <stdio.h>
#include <rapi.h>

II For all that Windows stuff

11 RAP! includes

II==
II main - Program entry point
II
int main (int argc, char **argv)

Listing 15-4 RapiFind.cpp, a stream-mode RAPI client application (continued)

774 Part Ill Communications

Listing 15-4 (continued)

RAPIINIT ri;
char szSrch[MALPATHl. *·PPtr;
WCHAR szwDfr[MALPATH};
WCHAR szName[MAX..;PATHJ;
DWORD i . dwTota l ;=

IRAPIStream. *plRAPlStrE!am
PBYH: pinput, pO.ut;
HRfSULT hr;
int re, nCmd,

II
if

printf
return -1;

lstrcpy CS.zSrch,

Chapter 15 Connecting to the Desktop 775

if CpPtr <= szSrch) {

if

II
if

lstrcpy (szSrch, TEXT ("\\"));
lstrcat CszSrch, argv[l)l;

(ii {

printf (TEXT ("\r\n Searching
else

pri ntf CTEXT C"\r\n Searching

No wil dca rds, append *. *
(i == 01
lstrcat (szSrch, "*.*");

for %s\r\n\r\n"), pPtr+l);

in %s\r\n\r\n"I, szSrch);

II Convert ANSI string to Unicode. At the same time, copy it
II into a discardable buffer for CeRapilnvoke.
dwln = lstrlen (szSrchl + 1: //Make mbstowcs convert terminating 0.

plnput = (PBYTE)LocalAlloc (LPTR, dwln * sizeof CWCHAR));
if (!plnput) {

printf (TEXT ("\r\nOut of memory\r\n"));
return -1;

mbstowcs ((LPWSTRlplnput, szSrch, dwin);
dwin *= sizeof (WCHAR);

II RAP! call
hr= CeRapiinvoke (L"FindSrv", L"RAPIFindFile", dwln,

pinput, &dwOut, &pOut, &pIRAPIStream, 01;
if (hr == S_OKI {

II Read command.
pIRAP!Stream->Read (&nCmd, sizeof (nCmd), &cbBytes);
while CnCmdl {

switch (nCmd) {
JI Display found file.
case 1:

II Read length of file.
pIRAPIStream->Read (&i, sizeof (i), &cbBytes);
dwTotal += i:
dwFiles++;

II Read length of filename.
pIRAPIStream->Read C&nSize, sizeof CnSizel, &cbBytes);
11 Read name itself.
pIRAP!Stream->Read (szName, nSize, &cbBytes);

(continued)

776 Part Ill Communications

Listing 15-4 (continued)

II Print directory and name.
printf (TEXT ("%9d\t%S%S\r\n"), i, szwOir, szName);
break;

11 Pi $play n<ime of di rectory we 're cJ.trrently searchi n9.
Case .2:

II Read and discard dummy length value;
pIRAPIStream->Read (&nSize, sizeo1' (nSize.), &cbBytes);
II Read length of directory.
pIRAPIStream->Read (&nSize, sizeof <nSize), &cbBytes);
II Read directory name i·tself.
pIRAPIStream->Read (szwDfr, nSize, &cbBytes);
break;

II Read next command.
plRAPIStream->Read (&nCmd, s i ;;eof (nCmd), &cbBytes);

p1RAPIStreamc>Rele.ase .();
else ff (hr """' ERRDILFHE~NOT_FOUND)

printf (TEXT C'The RAPI server DLL FindSrv could not be found \
on the CE target device.\r\n"));

else
printf (TEXT ("CeRapi Invoke returned %d"), ht);

printf (TEXT ("\r\nFound %d
dwFi.l es, dwTota l l;

II Clean up by uninftializing
CeRapjUnitiit ();
return 0;

The call to CeRapilnvoke returns a pointer to an !RAP/Stream interface
that's then used to read data from the server. The client reads one integer value
to determine whether the following data is a found file, a report of the current
search directory, or a report that the search has ended. With each command,
the appropriate data is read using the Read method. The result of the search is
then reported using prinif statements. After all the results have been returned,
the application calls the Release method to free the !RapiStream interface.

Although you could implement the same file-find function of RapiFind
using a block-mode connection, the stream format has a definite advantage in
this case. By reporting back results as files are found, the program lets the user
know that the program is executing correctly. If the program were designed to
use a block-mode call, RapiFind would appear to go dead while the server DLL
completed its entire search, which could take 10 or 20 seconds.

Chapter 15 Connecting to the Desktop 777

As I mentioned in the explanation of CeRapilnit, a call to this function
doesn't initiate a connection to a device. You can, however, be notified when a
connection to a Windows CE device is established. There are ways, both on the
PC and on the Windows CE device, to know when a connection is made
between the two systems. After a brief look at CeUtil, which provides some
handy helper functions for PC applications dealing with Windows CE devices,
I'll talk next about connection notifiers.

The CeUtil Functions
ActiveSync uses the PC registry to store voluminous amounts of information
about the Windows CE devices that have partnered with the PC. ActiveSync
also uses the registry to store extensive configuration information. While most
of these registry keys are documented, if you access them by name you're
assuming that those key names will always remain the same. This might not be
the case, especially in international versions of Windows where registry keys
are sometimes in a different language.

The CeUtil DLL exports functions that provide an abstraction layer over
the registry keys used by ActiveSync. Using this DLL allows a PC application to
query the devices that are currently registered and to add or delete registry val
ues underneath the keys that hold data for specific devices. The CeUtil DLL
doesn't communicate with a remote Windows CE device; it only looks in the PC
registry for information that has already been put there by ActiveSync.

The keys in the registry related to ActiveSync are separated into either
HKEY_LOCAL_MACHINE, for generic configurations such as the initial configu
ration for a newly registered device, or HKEY_CURRENT_USER, where the con
figuration information for the already registered devices is located. When a new
device is registered, ActiveSync copies the template in HKEY_LOCAL_MACHINE
to a new subkey under HKEY_CURRENT_USER that identifies the specific
device.

In general, you register a new filter in the keys under HKEY_
LOCAL_MACHINE to ensure that all devices that are registered in the future also
use your filter. You use the registry entries under HKEY_CURRENT_USER to reg
ister that filter for a specific device that was already registered before you
installed that same filter.

Accessing ActiveSync Registry Entries
To open one of the many registry keys that hold connection information, you
can use this function:

HRESULT CeSvcOpen (UINT uSvc, LPTSTR pszPath, BOOL fCreate,
PHCESVC phSvc);

778 Part Ill Communications

The first parameter of this function is a flag that indicates which predefined key
you want to open. Here are the available flags:

The following are keys under HKEY_LOCAL_MACHINE that apply to
generic Windows CE Services configuration information.

• CESVC_ROOT_MACHINE ActiveSync root key under HKEY_LOCAL_
.MACHINE

• CESVC_FILTERS Root key for filter registration

• CESVC_CUSTOM_MENUS Root key for custom menu registration

• CESVC_SERVICES_COMMON Root key for services

• CESVC_SYNC_COMMON Root key for synchronization services
registration

The following are keys under HKEY_CURRENT_USER that apply to specific
Windows CE devices that are partnered with the PC.

• CESVC_ROOT_USER ActiveSync root key under HKEY_LOCAL_USER

• CESVC_DEVICES Root key for individual device registration

• CESVC_DEVICEX Root key for a specific device

• CESVC_DEVICE_SELECTED Root key for the device currently
selected in the ActiveSync window

• CESVC_SERVICES_USER Root services subkey for a specific device

• CESVC_SYNC Synchronization subkey for a specific device

Of the many registry keys that can be returned by CeSvcOpen, the ones I'll
be using throughout the chapter are CESVC_FILTERS, the key in which a filter
is registered for all future devices; CESVC_DEVICES, the key in which informa
tion for all registered devices is located; and CESVC_DEVICEX, which is used to
open keys for specific registered devices. The other flags are useful for register
ing synchronization objects as well as for registering general ActiveSync config
uration information.

The second parameter to CeSvcOpen is pszPath. This parameter points
either to the name of a subkey to open underneath the key specified by the
uSvc flag or to a DWORD value that specifies the registered Windows CE device
that you want to open if the uSvc flag requires that a device be specified. The
/Create parameter should be set to TRUE if you want to create the key being
opened because it currently doesn't exist. If this parameter is set to FALSE,
CeSvcOpen fails if the key doesn't already exist in the registry. Finally, the phSvc

Chapter 15 Connecting to the Desktop 779

parameter points to a CESVC handle that receives the handle of the newly
opened key. Although this isn't typed as a handle to a registry key (an HKEYJ,
the key can be used in both the CeUtil registry functions and the standard reg
istry functions.

CeSvcOpen returns a standard Win32 error code if the function fails. Oth
erwise, the key to the opened registry key is placed in the variable pointed to
by phSvc.

You can open registry keys below those opened by CeSvcOpen by calling
CeSvcOpenEx. This function is prototyped as

HRESULT CeSvcOpenEx (HCESVC hSvcRoot, LPTSTR pszPath, BOOL fCreate,
PHCESVC phSvc);

The parameters for this closely mirror those of RegOpenKey. The first parameter
is a handle to a previously opened key. Typically, this key would have been
opened by CeSvcOpen. The second parameter is the string that specifies the
name of the subkey to be opened. Notice that since we're running on the PC,
this string might not be a Unicode value. The /Create parameter should be set
to TRUE if you want the key to be created if it doesn't already exist. Finally, the
phSvc parameter points to a CESVC handle that receives the handle to the
opened key.

When you have finished with a key, you should close it with a call to this
function:

HRESULT CeSvcClose (HCESVC hSvc);

The only parameter is the handle you want to close.

Enumerating Registered Devices
Of course, the requirement to specify the device ID value in CeSvcOpen begs
the question of how you determine what devices have already been partnered
with the PC. To determine this, you can use the function

HRESULT CeSvcEnumProfiles (PHCESVC phSvc, DWORD lProfilelndex,
PDWORD plProfile);

The first parameter to CeSvcEnumProfiles is a pointer to a CESVC handle.
The handle this parameter points to is uninitiated the first time the function is
called. The function returns a handle that must be passed in subsequent calls to
CeSvcEnumProfiles. The second parameter is an index value. This value should
be set to 0 the first time the function is called and incremented for each subse
quent call. The final parameter is a pointer to a DWORD that receives the device
ID for the registered device. You can use this value when you're calling CeSvc
Open to open a registry key for that device.

780 Part Ill Communications

Each time the function is called, it returns NOERROR if a new device ID is
returned. When all devices have been enumerated, CeSvcEnumProfiles returns
ERROR_NO_MORE_ITEMS. You should be careful to continue calling CeSvc
EnumProfiles until the function returns ERROR_NO_MORE_ITEMS so that the
enumeration process will dose the handle parameter pointed to by phSvc. If
you want to stop enumerating after you've found a particular device ID, you'll
need to call CeSvcClose to close the hSvc handle manually.

The following routine enumerates the Windows CE devices that have
been registered on the PC. The program enumerates all the registered Windows
CE devices and prints out the name and device type of each of the devices. The
program uses the function CeSvcGetString, which I'll describe shortly.

int PrintCeDevices (void) {
HCESVC hSvc, hDevKey;
TCHAR szName[128], szType[64];
DWORD dwPro;
int i ;

II Enumerate each registered device.
i = 0;
while CCeSvcEnumProfiles (&hSvc, i++, &dwPro) == 0) {

II Open the registry key for the device enumerated.
CeSvcOpen (CESVC_DEVICEX, CLPTSTR)dwPro, FALSE. &hDevKey);

II Get the name and device type strings.
CeSvcGetString (hDevKey, TEXT ("DisplayName"),

szName. dimCszName));
CeSvcGetString (hDevKey, TEXT ("DeviceType"),

szType, dim(szType));

II Print to the console.
printf (TEXT ("Name: %s\t\tType: %s"), szName, szType);

II Close the key opened by CeSvcOpen.
CeSvcClose ChDevKey);

return i-1; II Return the number of devices found.

Reading and Writing Values
The remainder of the CeUtil library functions concern reading and writing
values in the registry. In fact, you can skip these functions and use the reg
istry functions directly, but the CeSvcxxx functions are a bit simpler to use.
These functions allow you to read and write three of the data types used in

Chapter 15 Connecting to the Desktop 781

the registry: DWORD, string, and binary data. These just happen to be the only
data types used in the values under the ActiveSync keys. The functions are all
listed here:

HRESULT CeSvcGetDword CHCESVC hSvc, LPCTSTR pszValName,
LPDWORD pdwVal);

HRESULT CeSvcSetDword CHCESVC hSvc, LPCTSTR pszValName,
DWORD dwVal);

HRESULT CeSvcGetString CHCESVC hSvc, LPCTSTR pszValName,
LPTSTR pszVal, DWORD cbVal);

HRESULT CeSvcSetString CHCESVC hSvc, LPCTSTR pszValName,
LPCTSTR pszVal l;

HRESULT CeSvcGetBinary (HCESVC hSvc, LPCTSTR pszValName,
LP BYTE pszVal, LPDWORD pcbVal);

HRESULT CeSvcSetBinary CHCESVC hSvc, LPCTSTR pszValName,
LP BYTE pszVal, DWORD cbVal);

The parameters for these functions are fairly self-explanatory. The first
parameter is the handle to an open key. The second parameter is the name of
the value being read or written. The third parameter specifies the data or a
pointer to where the data will be written. The fourth parameter on some of the
functions specifies the size of the buffer for the data being read or, in the case
of CeSvcSetBinary, the length of the data being written.

One final function in the CeUtil library is

HRESULT CeSvcDeleteVal CHCESVC hSvc, LPCTSTR pszValName);

This function, as you might expect, lets you delete a value from the registry.
The parameters are the handle to an open key and the name of the value to be
deleted.

The CeUtil library doesn't provide any function that you couldn't do your
self with a bit of work and the standard registry functions. However, using these
functions frees you from having to depend on hard-coded registry key names
that could change in the future. I strongly advise using these functions when
ever possible when you're accessing registry entries that deal with ActiveSync.

Connection Notification
ActiveSync gives you two ways of notifying PC-based applications when a con
nection is made with a Windows CE device. The first method is to simply
launch all the applications listed under a given registry key. When the connec
tion is broken, all applications listed under another key are launched. This
method has the advantage of simplicity at the cost of having the application not
know why it was launched.

782 Part Ill Communications

The second method of notification is a COM-interface method. This noti
fication method involves two interfaces: IDccMan, provided by RAPI.dll, and
IDccManSink, which must be implemented by the application that wants to be
notified. This method has the advantage of providing much more information
to the application as to what is actually happening at the cost of having to
implement a COM-style interface.

Registry Method
To have your PC application launched when a connection is made to a Win
dows CE device, simply add a value to the PC registry under the following key:

[HKEY_LOCAL_MACHINEJ
\Software\Microsoft\Windows CE Services\AutoStartOnConnect

I'll show you shortly how to access this key using CeSvcOpen so that the
precise name of the key can be abstracted. The name of the value under
AutoStartOnConnect can be anything, but it must be something unique. The
best way to ensure this is to include your company name and product name
plus its version in the value name. The actual data for the value should be a
string that contains the fully specified path for the application you want to
launch. The string can only be the filename; appending a command line string
causes an error when the program is launched. For example, to launch a myapp
program that's loaded in the directory c:\windowsce\tools\syncstu.ff, the value
and data might be

MyCorpThisApp c:\windowsce\tools\syncstuff\myapp.exe

To have a command line passed to your application, you can have the
entry in the registry point to a shortcut that will launch your application. The
entry in the registry can't pass a command line, but shortcuts don't have that
limitation.

You can have an application launched when the connection is broken
between the PC and the Windows CE device by placing a value under the fol
lowing key:

[HKEY_LOCAL_MACHINEJ
\Software\Microsoft\Windows CE Services\AutoStartOnDisconnect

The format for the value name and the data is the same as the format used in
the AutoStartOnConnect key.

A routine to set these values is simple to write. The example routine
below uses the CeSvcOpen and CeSvcSetString functions to write the name of
the module to the registry. Remember that since this routine runs on a PC, and

Chapter 15 Connecting to the Desktop 783

therefore perhaps under Windows XP, you'll need administrator access for this
routine to have write access to the registry.

II
II RegStartOnConnect - Have module started when connect occurs.
II
LPARAM RegStartOnConnect (HINSTANCE hlnst) {

TCHAR szName[MAX_PATHJ;
HCESVC hSvc;
HRESULT re;

II Get the name of the module.
GetModuleFileName (hlnst, szName, dim(szName));

II Open the AutoStartOnConnect key.
re= CeSvcOpen (CESVC_ROOT_MACHINE, "AutoStartOnConnect",

TRUE, &hSvc);
if (re == NOERROR) {

II Write the module name into the registry.
CeSvcSetString (hSvc, TEXT ("MyCompanyMyApp"), szName);
CeSvcClose (hSvc);

return re;

The preceding routine doesn't have to know the absolute location of the
ActiveSync keys in the registry, only that the Autostart key is under
CESVC_ROOT_MACHINE. You can modify this routine to have your application
started when a connection is broken by substituting AutoStartOnConnect with
AutoStartOnDisconnect in the call to CeSvcOpen.

COM Method
As I mentioned before, the COM method of connection notification is imple
mented using two COM interfaces-IDccMan and IDccManSink. The system
implements IDccMan, while you are responsible for implementing IDccMan
Sink. The IDccMan interface gives you a set of methods that allow you to con
trol the link between the PC and the Windows CE device. Unfortunately, most
of the methods in IDccMan aren't implemented. The IDccManSink interface is
a series of methods that are called by the connection manager to notify you that
a connection event has occurred. Implementing each of the methods in IDcc
ManSink is trivial because you don't need to take any action to acknowledge
the notification.

The process of connection notification is simple. You request an IDccMan
interface. You call a method in IDccMan to pass a pointer to your IDccManSink

784 Part Ill Communications

interface. ActiveSync calls the methods in IDccManSink to notify you of events
as they occur. In this section, I'll talk about the unique methods in IDccManSink
and IDccMan, but I'll skip over the !Unknown methods that are part of every
COM interface. 1

The /DccMan Interface
To gain access to the IDccMan interface, you need to call the COM library func
tion Colnitialize to initialize the COM library. Then you make a call to CoCre
atelnstance to retrieve a pointer to the IDccMan interface. Once you have this
interface pointer, you call the method IDccMan::Advise to notify the connection
manager that you want to be notified about connection events. This method is
prototyped as

HRESULT IDccMan: :Advise (IDccManSink *pDccSink,
DWORD *pdwContext);

The first parameter is a pointer to an IDccManSink interface that you must
have previously created. I'll talk about IDccManSink shortly. The second
parameter is a pointer to a DWORD that receives a context value that you pass
to another IDccMan method when you request that you no longer be advised
of events.

You can display the communications configuration dialog of ActiveSync
by calling this method:

HRESULT IDccMan: :ShowCommSettings (void);

This method has no parameters; it simply displays the communications dialog
box. The user is responsible for making any changes to the configuration and
for dismissing the dialog box.

When you no longer need connection notifications, you call the Unadvise
method, prototyped as

HRESULT IDccMan::Unadvise (DWORD dwContext);

The only parameter is the context value that was returned by the Advise
method. After you have called Unadvise, you no longer need to maintain the
IDccManSink interface.

The /DccManSink Interface
You are responsible for creating and maintaining the IDccManSink interface for
as long as you want notifications from the connection manager. The interface
methods are simple to implement-you simply provide a set of methods that

1. Many books have been written about COM, but only one, Mr. Bunny's Guide to ActiveX, captures the
essence of COM. Check it out if you get the opportunity.

Chapter 15 Connecting to the Desktop 785

are called by the connection manager when a set of events occurs. Following
are the prototypes for the methods of !DccManSink:

HRESULT IDccManSink::OnlogListen (void);

HRESULT IDccManSink: :OnLogAnswered (void);

HRESULT !OccManSink::OnLogipAddr (DWORD dwlpAddr);

HRESULT IDccManSink: :OnlogActive (void);

HRESULT IOccManSink: :OnlogTerminated (void);

HRESULT !OccManSink::Onloginactive (void);

HRESULT !DccManSink: :OnLogOisconnection (void);

HRESULT IDccManSink: :OnlogError (void);

Although the documentation describes a step-by-step notification by the
connection manager, calling each of the methods of /DccManSink as the events
occur, I've found that only a few of the methods are actually called with any
consistency.

When you call CoCreatelnstance to get a pointer to the /DccManSink
interface, the connection manager is loaded into memory. When you call
Advise, the connection manager responds with a call to OnLogListen, indicating
that the connection manager is listening for a connection. When a connection
is established, the connection manager calls OnLog!pAddr to notify you of the
IP address of the connected device. OnLog!pAddr is the only method in /Dcc

ManSink that has a parameter. This parameter is the IP address of the device
being connected. This address is handy if you want to establish a socket con
nection to the device, bypassing the extensive support of the connection man
ager and RAPI. This IP address can change between different devices and even
when connecting the same device if one connection is made using the serial
link and a later connection is made across a LAN. The connection manager then
calls OnLogActive to indicate that the connection between the PC and the
device is up and fully operational.

When the connection between the PC and the Windows CE device is
dropped, the connection manager calls the OnLogDisconnection method. This
disconnection notification can take up to a few seconds before it's sent after the
connection has actually been dropped. The connection manager then calls the
OnLogListen method to indicate that it is in the listen state, ready to initiate
another connection.

786 Part Ill Communications

Some of the other methods are called under Windows Me. Those methods
simply refine the state of the connection even further. Since your application
has to operate as well under Windows XP as it does under Windows Me, you'll
need to be able to operate properly using only the notifications I've just
described.

The CnctNote Example Program
The CnctNote program is a simple dialog box-based application that uses the
COM-based method for monitoring the PC-to-Windows CE device connection
state. The example doesn't act on the notifications-it simply displays them in
a list box. The CnctNote window is shown in Figure 15-3.

Onloglisten
OnlogAnswered
0 n Lo gActive
OnloglpAddr: 192.168.01.1 0
OnlogDisconnection
Onloglisten
OnlogAnswered
OnlogActive
OnloglpAddr: 127.00.00.01

Figure 15-3 The CnctNote window shows two consecutive connections
from different devices.

The source code for CnctNote is shown in Listing 15-5.

Listing 15-5 CnctNote source code

Chapter 15 Connecting to the Desktop 787

11---
11 Icons and bitmaps
II
IO_ICON ICON "CnctNote. ico" II Program icon

11---
CnctNote DIALOG discardable 10, 10. 220, 160
STYLE WS_OVERLAPPED I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I

DS_CENTER I DS_MODALFRAME
CAPTION "CnctNote"
CLASS "CnctNote"
BEGIN

LISTBOX IDC_RPTLIST, 2. 10. 216, 140.
WS_TABSTOP I WS_VSCROLL

END

CnctNote.h
//====================~==~==~=
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II===~======
II Returns number of elements
//define dim(x) (sizeof(x) I sizeof(x[0J))
ll-----------~---
11 Generic defines and data types
II
struct decodeUINT {

UINT Code:

LRESULT (*FXn)(HWND, UINT, WPARAM,
} :
struct decodeCMD {

UINT Code:

LPARAM):

LRESULT (*FxnlCHWND, WORD, HWND. WORD);
} :

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

11---
11 Generic defines used by application
#define ID_ICON 1
//define IDC_RPTLIST 10 11 Control IDs
11--·-----------·-·----------------
// Function prototypes
II

(continued)

788 Part Ill Communications

Listing 15·5 (continued)

Chapter 15 Connecting to the Desktop 789

#include <windows.h>
#include <stdio.h>
#include <initguid.h>
#include <dccole.h>

II For all that Windows stuff

#include "CnctNote.h" II Program-specific stuff
11--------- --------------------- ------------------------------------- -
II Global data
II
canst TCHAR szAppName[]
HINSTANCE hinst;
BOOL fFirst =TRUE;

IDccMan •pDccMan;
MyDccSink •pMySink;
DWORD g_Context;

TEXT C"CnctNote"J;
II Program instance handle

II Notification interface
II Context variable

II==
II Program entry point
II
int WINAPI WinMain CHINSTANCE hinstance, HINSTANCE hPrevinstance,

LPSTR lpCmdline, int nCmdShowl
MSG msg;
HWND hwndMain;

II Initialize application.
hwndMain = Initinstance (hinstance, lpCmdline, nCmdShow);
if (hwndMain == 01

return Terminstance Chinstance, 0xl0l;

II Application message loop
while (GetMessage (&msg, NULL, 0, 011 {

if ((hwndMain == 0) I I !IsDialogMessage (hwndMain, &msg)) {
TranslateMessage C&msg);
DispatchMessage C&msg);

II Instance cleanup
return Terminstance (hinstance, msg.wParam);

11--------------------------- ---
11 Initinstance - Instance initialization
II
HWND Initinstance (HINSTANCE hinstance, LPSTR lpCmdline, int nCmdShow){

WNDCLASS we;
HWND hWnd;
HRESULT hr;

(continued)

790 Part Ill Communications

Listing 15-5 (continued)

11 savii program fn$timce
hlnst = l1i11$tih-ce:::: ··· ·

~·~ .. : 0~!I:~i:i:}:r~:i~·~tii:·; .. :.
if (FAlL!WflJ:r1);{:.··

Mei!s'~fa~0:ic:t:t1QL1::;;

} . . .
''., - , .. '.

11 ~~,Qi~ter· aPPlicat\on.111airi. whtdo\'I .. cla,ss .•...
wc~styfe.;;.;0;: • .. · .. ·.· . · · ·.//Wfadowstyle
wc:lpfnWndf>.roc·=MaHlWndPr.oc: .ll Callb!!Ck fUilct1on
we '..c:b:.C1 ~ .. ~J<tr:~ = 0: . . . I l Exti-a class data
wC:~cbWn~Ext!'a t .O,L~WINDOW,EXT:RA: •. Ii Ex1fra wihdp\'1 d.at9
we hli'.lstanc:e ;; htnstance · · II owner handle
wc'.lJ:~cbrt i. ~QJ,,L.,: . ' ·1iiPPH~ation tcon

··we 'ttci.irs.ar ,;;;·NULL;....... · · . ;. : . :. /(Oefault'c:ur~or

.. ·.~~~~i:1~]TI~:~;!o,~~H~~~''.%:t~~~ •...
'=.-i~

'' "
',·,::·, ,. '·,'

II cr~at'e';InaJri wiP#<i~~ .·.· .
llw.nd =·CreateDia.1.og. ctJ.rrtst,.

', . ';:.-:,:. ':.< . . ~ . . · .. > .,

·.. II R,eturh fa11·'code i,.f wfoilow not created~
: 1i (U.s·wi n'dow ·ChWrtdh ··rettirn 0 ·: · · ·

1/. stanlilard. shewaM update cails
" · :·.~·:,S:h:·o~~t·~.d~·wi.:_(::h.W~.d·~,~:,'-h'Cffidsb.t;w); -, ,'

,.;,;~;:··:., ".) ':.,yp~(fa'*'~.,fnft·~,w.;-_ .J~-~~:~i;,
bWhPt·.· ;< '.

Chapter 15 Connecting to the Desktop 791

II==
II MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

switch (wMsg)

case WM_SIZE:
if (fFi rst)

HRESULT hr;
IDccManSink *pdms:
fFi rst FALSE;

II Get a pointer to the IDccMan COM interface.
hr= CoCreateinstance (CLSID_DccMan, NULL, CLSCTX_SERVER,

IID_IDccMan, (LPVOID•)&pDccMan);
if (FAILED(hr)) {

Add2List (hWnd, "CoCreateinstance failed");
break:

II Create new notification object.
pMySink =new MyDccSink(hWnd, pDccMan);
pMySink->Queryinterface (IID_IDccManSink, (void ••l&pdms);
II Ask to be advised of connect state changes.
pDccMan->Advise (pdms, &g_Context);

break;
case WM_COMMAND:

switch (LOWORD (wParam)) {
case !DOK:
case IDCANCEL:

SendMessage (hWnd, WM_CLOSE, 0, 0);
break:

break;
case WM_DESTROY:

II Stop receiving notifications.
pDccMan->Unadvise (g_Context);

II Release the DccMan object.
pDccMan->Release();

(continued)

792 Part Ill Communications

listing 15-5 (continued)

PostOuitMessage (0);
break;

}

return .OefW.indowProc (hWnd, wMsg, wP.aram, TParam);

!/----'---~------------- -----------~----·------------------·---------•--

/ / Add2Li st - Add string to the report 1 i st box.
II
void Add2List (HWNO. hWnd, LPISTRlpszFormat, ...)

int nBuf, i;

TCHAR ~zBuffer[512];

va..:.list args;
va_start(args, lpszFortnat);

(.i != LB-.ERRl

a rgs);

(hWnd, IOC_RPTLIST, LB..:.ADOSTfUNG. 0,

C LPARAM)UPCTSTRl szl3uffer);

SendDlgitemMessage (hWnd, IDC_RPTLIST. LB_SETTDPINDEX, i,
CLPARAM){LPCTSTR)szBµffer);

CHWND hwndMili n, IDccMan *pDccMan) {

m_p.OccMan = pOccMan;
hWnd =hwndMairi;
m~pDccMan ''>Add Ref();
return:

jj--.CC------~---•--•--------··-•------C•C----·'--------c--------•--·'••-

1/ Destructor
MyDccSink: :'-'MyDccSink () {

m_pDccMan->Release();
return;

//'-·-- ---------------·---------------------------·-----------··-------
/! A<JdRef - Increment object ref count.
STDMUHODIMPJUlONGl MyDccSink::AddRef (THIS).{

Chapter 15 Connecting to the Desktop 793

return (ULONG)Interlockedincrement (&m_lRef);

/!---
// Release - Decrement object ref count.
STDMETHODIMP_(ULONG) MyDccSink: :Release (THIS) {

}

ULONG cnt;

cnt = (ULONG)InterlockedDecrement (&m_lRef);
if (cnt == 0) {

delete this;
return 0;

return cnt;

!!---
// Querylnterface - Return a pointer to interface.
STDMETHODIMP MyDccSink::Queryinterface <REFIID riid, LPVOID * ppvObj) {

if (IID_IUnknown==riid I I IID_IDccManSink==riid)
*ppvObj <IDccManSink*lthis;

else {
*ppvObj NULL;
return E_NOINTERFACE;

AddRef();
return NO_ERROR;

/!---
!/
STDMETHODIMP MyDccSink::OnLoglpAddr (DWORD dwlpAddr) {

Add2List (hWnd, TEXT ("OnLogipAddr: %02d.%02d.%02d.%02d"l,
(dwlpAddr & 0x000000ff), (dwlpAddr & 0x0000ff00)>>8,
(dwlpAddr & 0x00ff0000)>>16, dwipAddr>>24);

return NO_ERROR;

l!---
11
STDMETHODIMP MyDccSink::OnLogTerminated ()

Add2List (hWnd, TEXT ("OnLogTerminated "));
return NO_ERROR;

}

/!---
//
STDMETHODIMP MyDccSink::OnLogActive ()

Add2List (hWnd, TEXT ("OnLogActive "));

(continued)

794 Part Ill Communications

Listing 15·5 (continued)

The meat of CnctNote is in the WM_SIZE handler of the window proce
dure. Here, CoCreatelnstance is called to get a pointer to the IDccMan inter
face. If this is successful, an object is created that implements an JDccManSink
interface. The Advise method is then called to register the IDccManSink object.
The sole job of the methods in IDccManSink is to report when they're called by
posting a message in the list box, which is the only control on the dialog box.

Connection Detection on the Windows CE Side
As you know, this chapter describes the PC-side applications that work with
remote Windows CE devices. However, while reading the previous section, you
probably wondered how a Windows CE application can know when a connection

Chapter 15 Connecting to the Desktop 795

is made between the Windows CE device and a PC. Windows CE supports con
nection notification using the Notification API that I discussed in Chapter 11.

Direct Socket Connections
There are times where the communication requirements of your application go
beyond the services that RAPI provides. The link that ActiveSync and RAPI use
is built on TCP/IP. So if you want, it's fairly straightforward to establish a link
between the PC and the device with sockets.

To link two devices with sockets, you need the IP address of both devices.
I just covered how the IDccMan interface can provide the IP address of the
remote Windows CE device. This IP address is accurate if the ActiveSync con
nection is made over a network. However, if the connection is made via a serial
or infrared link, the IP address reported is 127.0.0.1.

On the device side, if the PC is connected via a serial or infrared link, the
connected PC's IP address can be found by using gethostbyname, passing the
name "ppp_peer". An example of this is shown here:

struct hostent *phe;
SOCKADDR_IN pc_sin;

phe = gethostbyname C"ppp_peer");
if Cphel {

pc_sin.sin_addr.S_un.S_addr = *(DWORD *)phe->h_addr;
printf "PC addr: %s", inet_ntoa (pc_sin.sin_addrll;

If ActiveSync is connected over an Ethernet link, the gethostbyname func
tion should be used with the machine name of the PC. You can find the name
of the partner PC in the registry under the key HKEY _LOCAL_MACHINE\
SOFTWARE\Microsoft\ Windows CE Services\Partners. Because Windows CE
systems can have two partners, you first have to check which partner is active.
Do this by reading the PCurvalue under the key. Then look under the Pl or P2
subkey and read the string value PName. Remember to change the string from
a Unicode string to a character string before calling gethostbyname.

Now I come to the end of my explanation of the PC-side ActiveSync. For the
remainder of the book, I'll return to the Windows CE side of things. I'll start with
a look at the different shells that Windows CE supports. The Explorer shell looks
on the surface like the old Windows 95 shell, although the programming interface
is much simpler. The Pocket PC shell, on the other hand, is completely unique.

Part IV

The Explorer Shell
One of the unique aspects of Windows CE is that different Windows CE plat
forms have different shells. The default shell for the embedded versions of Win
dows CE is derived from the old Handheld PC shell. The look and feel of the
Explorer shell is significantly different from the shell for the Pocket PC. Despite
differences, the parts of the shells that are the same (and there are plenty of
common shell components) share the underlying APL

The Explorer shell is derived from the Windows 95 and 98 shells. To the
user, the look is almost pure Windows 95. That is, of course, by design. The
folks at Microsoft figured that having the Windows CE shell resemble the Win
dows 95 shell would flatten the user's learning curve and enhance the accept
ability of Windows CE devices.

On the surface, the shell used by the Pocket PC has nothing in common
with the Windows 95 shell. Gone are both the Explorer and the familiar desk
top icons. In place of the Explorer is the Today screen, which displays data
from applications directly on the desktop. But while the Explorer is gone, some
of the underlying plumbing remains. Both systems have a Start button. The Start
button on the Pocket PC is located in the upper left corner of the Pocket PC
screen. Both systems also use special directories and the shell namespace,
which I'll talk about shortly.

Although the Explorer shell resembles the Windows 95 shell, it's not as
flexible. Most of the powerful interfaces available under Windows 95, such as
the ability to drag and drop objects between programs, are either only partially
implemented or not implemented at all. The goal of the programmers of the
Explorer shell seemed to be to implement as few of the native COM interfaces
as possible while still retaining the ability to contain the Internet viewing capa
bilities of an embedded Internet Explorer in the shell. That said, the Explorer
shell does use some COM interfaces. In fact, the newest version of the Explorer

799

800 Part IV Device Programming

shell has exposed the COM interfaces to support desktop style name space
extensions that allow the Explorer to navigate into virtual folders that are
exposed via COM interfaces.

Starting with Windows CE .NET 4.2, the operating system now exposes
most of the Pocket PC shell APis such as SHinitDialog and the like that assist
Pocket PC applications in providing the Pocket PC look and feel. The imple
mentation of some of these functions is up to the OEM that implements them,
but at least it is now possible for a non-Pocket PC system to run many of not
most Pocket PC applications. This chapter covers the concept of the shell
namespace and the shell's use of special directories. This chapter also explains
how to work with the taskbar as well as how to create shortcuts. And although
the console isn't strictly part of the Explorer shell, this chapter covers it as well.
The Windows CE console isn't on all Windows CE systems. For example, the
Pocket PC doesn't include console support. Although Windows CE doesn't sup
port the full character mode API found in Windows XP, you can still write fairly
complete console applications.

Working with the Shell
Because the Explorer shell is derived from the Windows 95 shell, I must cover
some system definitions first introduced with Windows 95. In general, while the
concepts remain the same, the implementation is completely different under
the covers.

The Shell Namespace
From Windows 95 on, the Windows shell has used the concept of a shell
namespace. The Explorer shell and the Pocket PC shell also use the namespace
concept to track the objects in the shell. Simply put, the shell namespace is the
entire collection of the operating system's objects, files, directories, printers,
control panel applets, and so forth. The idea is that by addressing files the same
way as control panel applets, the shell makes it easy to deal with the diverse
collection of objects.

A folder is simply a collection of objects. A directory is a collection of files
on a disk. A folder generalizes and extends the directory concept, in that a
folder doesn't merely contain files, but can include other objects such as control
panel objects, printers, or remote connection links. Each object in a folder is
called an item. Items are identified by an item ID.

The item ID is a data structure that uniquely identifies the item in the
folder. Since folders also have identifiers, an individual item can be uniquely

Chapter 16 The Explorer Shell 801

defined by means of a list of item IDs that identify the item, its folder, and the
parent folders of the folder. Think of this list of item identifiers as a completely
specified pathname of a file. A system might have many files namedfoobar, but
only one in a specific directory. This list of item IDs is appropriately called an
ID list. A pointer to such a list is a pointer to an ID list, frequently abbreviated
as pidl, which is generally and rather unfortunately pronounced piddle. Shell
functions usually reference items in the shells by their pidls. There is, of course,
a translation function that converts a pidl to a filename.

Special Folders
The Windows CE shell, like the shells for the desktop versions of Windows, has
a set of folders that are treated differently from normal directories in the file sys
tem. An example of this is the recycle bin, which is simply a hidden directory
to which the shell moves files and directories when the user deletes them.
Another example is the Programs folder, which contains a set of shortcuts that
are then displayed on the Start menu.

The list of special folders changes with each shell. The Windows 95/98/
Me shells and the Windows NT /2000/XP shells have a different set of special
folders from those of the Windows CE shells. The Pocket PC, Smartphone, and
Explorer shells each implements its own subset of special folders. Fortunately,
the function to return the path of a specific special folder is the same on all
these systems. That function, SHGetSpecialFolderPath, is prototyped as

BOOL SHGetSpecialFolderPath (HWND hwndOwner, LPTSTR lpszPath,
int nFolder, BOOL fCreate);

The hwndOwner parameter is the handle to a window that will be the owner of
any dialog box that the function creates. The second parameter, lpszPath, points
to a buffer at least MAX_PATIJ characters, not bytes, in length, which will receive
the returned path. The nFolder parameter is set to the constant that indicates what
folder you need. The /Create parameter is a Boolean that you can set to TRUE if
you want the system to create the directory if one currently doesn't exist.

The nFolder parameter can be one of many constants that are common
across the Windows operating systems. Not all the values are supported on all
Windows CE platforms, but the following short list includes some constants that
most platforms support.

• CSIDL_BITBUCKET The location of the recycle bin.

• CSIDL_DESKTOP The folder that stores the objects that appear on
the desktop. Note that the use of this constant is different than it was
under Windows 95.

802 Part IV Device Programming

• CSIDL_FONTS The folder that contains the system fonts.

• CSIDL_DRIVES The root of the file system.

• CSIDL_PROGRAMS The folder that contains the items shown in
the Programs submenu of the Start menu.

• CSIDL_PERSONAL The default folder in which to save docu
ments.

• CSIDL_FAVORITES The folder that contains shortcuts to favorite
items.

• CSIDL_STARTUP The folder that contains programs or shortcuts
to programs that will be launched when the system is restarted.

• CSIDL_RECENT The folder that contains the list of recently used
documents.

The SHGetSpecialFolderPath function was first supported in Windows CE
3.0. For earlier versions of Windows CE, you must use two other functions,
SHGetSpecialFolderLocation and SHGetPathFromIDList. The function SHGetSpe
cialFolderLocation takes the constants in the preceding list and returns a pidl.
Then you need to call SHGetPathFromIDList to translate the pidl to a path. The
two functions are prototyped as

HRESULT SHGetSpecialFolderlocation (HWND hwndOwner, int nFolder,
LPITEMIDLIST *PPi dl);

and

BOOL WINAPI SHGetPathFromIDList (LPCITEMIDLIST pidl, LPTSTR pszPath);

If you needed only to call SHGetSpecialFolderLocation and follow that by
calling SHGetPathFromIDList to get the path, life would be simple. Unfortu
nately, the process isn't that easy. The pidl that's returned by SHGetSpecialFold
erLocation points to a buffer that has been allocated by the shell. You need to
call the shell back to free this buffer after you're finished with the ID list. You
free this buffer using an !Malloc interface provided by the shell.

The !Malloc interface contains methods that allow an application to allo
cate, free, and otherwise manipulate memory in the local heap of the !Malloc
provider. In the case of the shell, a pointer to its !Malloc interface can be
acquired with a call to SHGetMalloc. The function is prototyped as

HRESULT SHGetMalloc (LPMALLOC *ppMalloc);

Once you have a pointer to the interface, you can call the Free method to free
any ID lists returned by ShGetSpecialFolderLocation.

Chapter 16 The Explorer Shell 803

On some early Windows CE systems, SHGetSpecialFolderLocation returns
a constant, typed as a pidl, which can then be passed to SHGetPathFromIDList
to get a directory name. Those systems don't implement !Malloc. To support
those early machines, you can use a routine like the following, which attempts
to get the !Malloc interface. However, if this call fails, the routine simply pro
ceeds to call SHGetSpecialFolderLocation and SHGetPathFromIDList to query
the directory.

INT MyGetSpecialDirectory (HWND hWnd, INT nFolderID,
LPTSTR 1 pDi r) {

int re;
LPITEMIDLIST pidl;
BOOL fUseIMalloc =TRUE;
LPMALLOC lpMalloc = NULL;

II Attempt to get the Shell Malloc interface.
re= SHGetMalloc (&lpMalloc);
if (re == E_NOTIMPL)

fUseIMalloc = FALSE;
else if (re != NOERROR)

return re;

re= SHGetSpecialFolderLocation (hWnd, nFolderID, &pidl);
if (re == NOERROR) {

}

II Translate the idlist to a directory name.
if (SHGetPathFromIDList (pidl, lpDir))

re = E_FAIL;
II Free the idlist.
if (fUseIMalloc)

IMalloc_Free(lpMalloc,pidl);

II Free shell's IMalloc interface.
if (fUseIMalloc)

IMalloc_Release(lpMalloc);
return re;

Note that on the Pocket PC, the combination of two functions-SHGetSpe
cialFolderLocation and SHGetPathFromIDList-supports a greater number of
the CSIDL_ constants than does the single function SHGetSpecialFolderPath. For
this reason, and to remain backward-compatible with older systems, I tend to
use the combination of the older functions instead of the newer function.

Shortcuts
Shortcuts are small files that, when opened, launch an application or open a
document in another folder. The idea behind shortcuts is that you could have

804 Part IV Device Programming

an application located in one directory but you might want to be able to launch
it from other directories. Since the shell uses the contents of special directories
to define what is in the Start menu and on the desktop, placing a shortcut in
one of those special directories allows an application to appear in the Start
menu or on the desktop.

While the concept of shortcuts was taken from the desktop versions of
Windows, the method of creating them was not. Instead of using a COM inter
face, as is done on the desktop, you create a shortcut in Windows CE using the
following function:

BOOL SHCreateShortcut (LPTSTR szShortcut, LPTSTR szTarget);

The first parameter specifies the name and location of the shortcut. This name
should be a fully qualified filename with an extension of LNK. The second
parameter is the fully qualified filename of the application you want to start or
the file you want to open. The function returns TRUE if successful.

Another function that will create a shortcut is

DWORD SHCreateShortcutEx (LPTSTR lpszDir, LPTSTR lpszTarget,
LPTSTR szShortcut, LPDWORD lpcbShortcut);

Like SHCreateShortcut, the first two parameters specify the name of the shortcut
and the name of the target file. The third parameter is a buffer that will receive
the name of the shortcut that was created. The fourth parameter first contains
the number of characters that can fit in szShortcut and is filled by the function
with the number of characters copied into szShortcut. The resulting name of the
shortcut is a derivation of the string pointed to by lpszDir. For example, if
lpszDir pointed to \temp \joe.lnk, the resulting shortcut would be \temp \short
cut to joe.lnk as long as a file with that name didn't already exist. If a file with
that name did exist, the resulting name would be \temp\shortcut to joe (2).lnk.
The advantage of SHCreateShortcutEx is the function's guarantee of a unique
file name for the resulting shortcut file.

You can determine the contents of a shortcut by calling this function:

BOOL SHGetShortcutTarget (LPTSTR szShortcut, LPTSTR szTarget,
int cbMax);

The first parameter is the filename of the shortcut. The remaining two parame
ters are the buffer that receives the target filename of the shortcut and the size
of that buffer.

Configuring the Start Menu
Shortcuts come into their own when you're customizing the Start menu. When
the Start button is clicked, the taskbar looks in its special folder and creates a

Chapter 16 The Explorer Shell 805

menu item for each item in the folder. Subfolders contained in the special folder
become submenus on the Start menu.

The Start menu of the Explorer shell is limited in that you can't customize
the Start menu itself. You can, however, modify the Programs submenu and the
submenus it contains. To add an item to the Programs submenu of the Explorer
Start menu, you place a shortcut in the folder returned after you called
SHGetSpecialFolderPath with the folder constant CSJDLJ>ROGRAMS. For exam
ple, look at the following short code fragment, which lists the Cale program in
the Programs submenu of the Start directory on a device.

INT re;
TCHAR szDir[MAX_PATHJ;

re= SHGetSpeeialFolderPath ChWnd, szDir, CSIDL_PROGRAMS, FALSE);
if (re == NOERROR) {

lstreat CszDir, TEXT ("\\Cale.lnk"));
SHCreateShorteut CszDir, TEXT ("\\windows\\eale.exe"));

This fragment uses the routine SHGetSpecialFolderPath to return the folder
used by the Programs submenu. Once that's found, all that is required is to
append the necessary LNK extension to the name of the link and call SHCreate
Shortcut specifying the location of Calc.exe.

The Start menu of the Pocket PC is more flexible than the Explorer shell
because you can add items directly to the Start menu itself. To accomplish this,
add shortcuts to the folder returned with SHGetSpecialFolderLocation and the
constant CSIDL_STARTMENU.

Although it is possible to download executables directly to the Start menu
directories, a better idea is to create a directory under the \Programs folder to
store your application and place a shortcut pointing to your application in the
Start menu. This solution allows your application to keep any necessary DLLs
and additional files isolated in their own directory instead of dumping them in
the Start menu directory.

Recent Documents List
A feature of the Start menu since it was introduced in Windows 95 is the Doc
uments submenu. This menu lists the last 10 documents that were opened by
applications in the system. This list is a convenient place in which users can
reopen recently used files. The system doesn't keep track of the last-opened
documents. Instead, an application must tell Windows that it has opened a doc
ument. Windows then prunes the least recently opened document on the menu
and adds the new one.

806 Part IV Device Programming

Under Windows CE, the function that an application calls to add a docu
ment to the recently used list is

void SHAddToRecentDocs (UINT uFlags, LPCVOID pv);

The first parameter can be set to one of two flags, SHARD_PATH or
SHARD_PIDL If uFlags is set to SHARD_PATH, the second parameter points to
the fully qualified path of the document file. If SHARD_PIDL is specified in
uFlags, the second parameter points to a pointer to an ID list. If the second
parameter is 0, all items in the recently used document menu are deleted.

Launching Applications
Windows CE supports one of the standard Windows shell functions, Shel!Exe
cuteEx. Although Windows CE doesn't support much of the functionality of
Shel!ExecuteEx, the functionality that remains is still quite useful. Shel!Execu
teEx is somewhat simpler to use than CreateProcess to create new processes.
ShellExecuteEx also has the advantage of being able to automatically associate
data files with the application that should open them. Furthermore, it opens the
Explorer to a specific directory. The function prototype for ShellExecuteEx is

BOOL WINAPI ShellExecuteEx (LPSHELLEXECUTEINFO lpExecinfo);

The only parameter is a pointer to the rather complex SHELLEXECUTEINFO
structure, defined as

typedef struct _SHELLEXECUTEINFO
DWORD cbSize;
ULONG fMask;
HWND hwnd;
LPCSTR lpVerb;
LPCSTR lpFile;
LPCSTR lpParameters;
LPCSTR lpDirectory;
int nShow;
HINSTANCE hinstApp;

II Optional members
LPVOID lpIDList;
LPCSTR lpClass;
HKEY hkeyClass;
DWORD dwHotKey;
HANDLE hicon;
HANDLE hProcess;

SHELLEXECUTEINFO;

Chapter 16 The Explorer Shell 807

The first field is the traditional size field that must be set to the size of the
structure. The .fMask field can contain two flags: SEE_MASK_FLAG_NO_UI,
which instructs the function not to display an error dialog box if the function
fails, and SEE_MASK_NOCLOSEPROCESS, which will return the handle to the
child process in the hProcess field. If you set the latter flag, your application is
responsible for closing the returned handle. The hwnd field is the handle to a
window that owns any error dialog displayed as a result of the function.

The lp Verb field points to a string that tells ShellExecuteEx what to do. The
documented "verbs" are open, print, explore, edit, and properties, but for the
current Windows CE Explorer shell, the verb is basically ignored. The default is
open. The lpFile field should point to a string that contains the name of a file
a data file, a directory, or an executable. If lpFile points to an application name,
the lpParameters field can contain the address of a string containing the com
mand line parameters for the application. If lpFile points to a document file or
a directory, lpParameters should be NULL.

Of all the remaining fields, only hlnstApp and hProcess are used. All the
others are ignored. The h!nstApp field should be set to the instance handle of
the application calling the function. As I mentioned earlier, if you set the
SEE_MASK_NOCLOSEPROCESS flag in.fMask, the function returns the handle of
the child process. For example, the following code fragment opens a Pocket
Word document in the root directory of a Windows CE system:

SHELLEXECUTEINFO si;

memset (&si, 0, sizeof (si));
si .cbSize = sizeof (si);
si. fMask = 0;
si .hwnd = hWnd;
si. l pFi le = TEXT ("\ \docl. pwd");
s i. l pVerb = TEXT C "Open");
re = Shel lExecuteEx C&si);

The shell launches the proper application by looking in the registry to
associate a data file's extension with an associated application. This process is
essentially identical to the method used on the desktop. The shell searches the
registry for a subkey under [HKEY_CLASSES_ROOT] that matches the extension
of the data file. The default value of that subkey then identifies another subkey
that indicates the application to launch.

The Taskbar
The taskbar interface under Windows CE is almost identical to the taskbar inter
face under the desktop versions of Windows. I've already talked about how you

808 Part IV Device Programming

can configure the items in the Start menu. The taskbar also supports annunci
ators, those tiny icons on the far right of the taskbar. The taskbar icons are pro
grammed with methods similar to those used in Windows XP. The only
limitation under the Explorer shell or the Pocket PC shell is that they don't sup
port tooltips on the taskbar icons.

Programs can add, change, and delete taskbar icons using this function:

BOOL Shell_Notifyicon (DWORD dwMessage, PNOT!FYICONDATA pnid);

The first parameter, dwMessage, indicates the task to accomplish by calling the
function. This parameter can be one of the following three values:

• NIM_ADD Adds an annunciator to the taskbar

• NIM_DELETE Deletes an annunciator from the taskbar

• NIM_MODIFY Modifies an existing annunciator on the taskbar

The other parameter points to a NOTIFYICONDATA structure, which is
defined as

typedef struct _NOTIFYICONDATA
DWORD cbSize;
HWND hWnd;
UINT u!D;
UINT uFlags;
UINT uCallbackMessage;
HICON hlcon;
WCHAR szTip[64];

NOT! FYI CON DATA;

The first field, cbSize, must be filled with the size of the structure before a
call is made to Shell_Notifylcon. The h Wnd field should be set to the window
handle that owns the icon. This window receives messages notifying the win
dow that the user has tapped, double-tapped, or moved her pen on the icon.
The uJD field identifies the icon being added, deleted, or modified. This prac
tice allows an application to have more than one icon on the taskbar. The
uFlags field should contain flags that identify which of the remaining fields in
the structure contain valid data.

When you're adding an icon, the uCallback.Message field should be set to
a message identifier that can be used by the taskbar when notifying the window
of user actions on the icon. This value is usually based on WM_ USER so that the
message value won't conflict with other messages the window receives. The
taskbar looks at this field only if uFlags contains the NIF_MESSAGE flag.

The hlcon field should be loaded with the handle to the 16-by-16-pixel
icon to be displayed on the taskbar. You should use Loadlmage to load the icon

Chapter 16 The Explorer Shell 809

because Loadlcon doesn't return a small format icon. The taskbar looks at this
field only if the NIF_ICON flag is set in uFlags. Finally, the szTip field would
contain the tool-tip text for the icon on other Windows systems but is ignored
by the current Windows CE shells.

Managing a taskbar icon involves handling the notification messages the
taskbar sends and acting appropriately. The messages are sent with the mes
sage identifier you defined in the call to Shell_Notffylcon. The wParam param
eter of the message contains the ID value of the taskbar icon that the message
references. The !Param parameter contains a code indicating the reason for the
message. These values are actually the message codes for various mouse
events. For example, if the user taps your taskbar icon, the !Param value in the
notification message will be WM_LBUITONDOWN, followed by another mes
sage containing WM_LBUITONUP.

The TBlcons Example Program
The TBicons program demonstrates adding and deleting taskbar annunciator
icons. Figure 16-1 shows the TBicons window. The buttons at the bottom of the
window allow you to add and delete icons from the taskbar. The list box that
takes up most of the window displays the callback messages as the taskbar
sends them. In the taskbar, you can see two icons that TBicons has added. The
list box contains a list of messages that have been sent by the taskbar back to
the TBicons window.

Figure 16-1 The Windows CE desktop with a TBlcons window

810 Part IV Device Programming

The source code for TBicons is shown in Listing 16-1. The program uses
a dialog box as its main window. The routines that add and delete taskbar icons
are DoMainCommandAddlcon and DoMainCommandDellcon. Both these rou
tines simply fill in a NOTIFYICONDATA structure and call Shell_Notifylcon. The
routine that handles the notification messages is DoTaskBarNotifyMain. This
routine is called when the window receives the user-defined message
MYMSG_TASKBARNOTIFY, which is defined in TBicons.h as WM_USER+ 100.
Remember that dialog boxes use some of the WM_ USER message constants, so
it's a good practice not to use the first hundred values above WM_ USER to avoid
any conflicts.

Listing 16-1 TBlqons source code

Chapter 16 The Explorer Shell 811

II==
II Returns number of elements
#define dimCxl Csizeof(xl I sizeof(x[0J))

11--
11 Generic defines and data types
II
struct decodeUINT

UINT Code;
II Structure associates
II messages
II with a function.

BOOL (*Fxnl(HWND, UINT, WPARAM, LPARAMl;
} ;

struct decodeCMD {
UINT Code;

II Structure associates
II menu IDs with a

LRESULT (*Fxnl(HWND, WORD, HWND, WORD); II function.
} ;

11--
11 Generic defines used by application

#define ID_ICON 1

#define IDD_ADDICON 10 11 Control IDs
#define IDD_DELICON 11
#define IDD_OUTPUT 12

ffodefine MYMSG_TASKBARNOTIFY CWM_USER + 100)
I I- .c " -

II Function prototypes
II
void Add2List (HWND hWnd, LPTSTR lpszFormat, ...);

II Window procedures
BOOL CALLBACK MainDlgProc CHWND, UINT, WPARAM, LPARAM);

II Message handlers
BOOL DoinitDlgMain CHWND, UINT, WPARAM, LPARAMl:
BOOL DoCommandMain CHWND, UINT, WPARAM, LPARAM);
BOOL DoTaskBarNotifyMatn (HWND, UINT, WPARAM, LPARAMl;

II Command functions
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandAddicon CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandDelicon (HWND, WORD. HWND, WORD);

(continued)

812 Part IV Device Programming

Listing 16·1 (continued)

Chapter 16 The Explorer Shell 813

II Display dialog box as main window.
DialogBoxParam (hinstance, szAppName, NULL, MainDlgProc, 0);
return 0;

II==
II Message handling procedures for main window
11--
11 MainDlgProc - Callback function for application window
II
BOOL CALLBACK MainDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
INT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0; i < dim(MainMessages); i++)

if (wMsg == MainMessages[i].Code)
return (*MainMessages[iJ.Fxn)(hWnd, wMsg, wParam, lParam);

return FALSE;

11-- -----------
11 DoinitDlgMain - Process WM_INITDIALOG message for window.
II
BOOL DoinitDlgMain (HWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam){

return 0;

11--
11 DoCommandMain - Process WM_COMMAND message for window.
II
BOOL DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam){

WORD iditem, wNotifyCode;
HWND hwndCtl;
I NT i ;

II Parse the parameters.
iditem = (WORD) LOWORD (wParam);
wNotifyCode =(WORD) HIWORD (wParam);
hwndCtl = (HWND) lParam;

II Call routine to handle control message.
for (i = 0; i < dim(MainCommanditemsl; i++)

if (idltem == MainCommanditems[i].Code)
(*MainCommanditems[iJ.Fxn)(hWnd, iditem, hwndCtl,

wNot i fyCode) ;

(continued)

814 Part IV Device Programming

Listing 16-1 (continued)

Chapter 16 The Explorer Shell 815

Shell_Notifyicon CNIM_DELETE. &nid):

EndDialog ChWnd, 0):
return 0:

11- - - - -- - - - -- - - - - - - - -- -- - -- - -- - - - -- - -- -- - - - - - - - - - -- - - - - -- - - - - - - -- - - - - - - -
II DoMainCommandAddicon - Process Add Icon button.
II
LPARAM DoMainCommandAddicon (HWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) {

}

NOTIFYICONDATA nid;

niconID++:
nid.cbSize = sizeof CNOTIFYICONDATA):
nid.hWnd = hWnd;
nid.uID = niconID;
nid.uFlags = NIF_ICON I NIF_MESSAGE: II NIF_TIP not supported
nid.uCallbackMessage = MYMSG_TASKBARNOTIFY;
nid.hicon = (HICON)Loadimage (h!nst, MAKEINTRESOURCE (!D_ICON),

IMAGE_ICON, 16,16,0):
nid.szTip[0] = '\0';

Shell_Notifyicon CNIM_ADD, &nid);
return 0:

11--~---
ll DoMainCommandDelicon - Process Del Icon button.
II
LPARAM DoMainCommandDelicon (HWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) {
NOTIFYICONDATA nid;

if CniconID == 0)
return 0;

memset C&nid, 0, sizeof nid);
nid.cbSize = sizeof (NOTIFYICONDATA);
nid.hWnd = hWnd;
nid.uID = niconID--;

Shell_Notifylcon CNIM_DELETE, &nid);
return 0;

11--
11 Add2List -·Add string to the report list box.
II

(continued)

816 Part IV Device Programming

Listing 16-1 (continued)

void Md:2:.Li$tJ.~W~D.h~nd4
int i:.·. nBuf.: . · · > ,
rcliA~;;~z'~.uff~~csfaJ.(•\··

,',,,_,':.''
~'. , """ . - .

n13cU:f =o; ;Jvswr1nt·frsiiBuffe'~/ lpszFofmat. arg~); •
i =· Se,ndDlglteinMe$sa~ilfhWnd~···111o:JiUTPUT.; .. LUODStRI Ni'{.

· U}ARAM)fLPtis'tR:i i;i1faft!!r>; ,
{i J= LB_~RRt .· ... · ..•.•• · .· •··· < < ' .•.. · .. ··. .•
; S~ndDl)j:It1;11QMessige OiWnd, ,, rno_ouiPVT •• LIL'.SEtTOPIKOEX; ••

.. '. CLPARAM)(LPCTSTE)szBuffer);·>

TBicons can run on a Pocket PC, but the task bar annunciators are visible
only when the Today screen is showing. Aside from this difference, the pro
gram runs under the Pocket PC as it does under other versions of Windows CE.

The Out Of Memory Error Dialog Box
Because Windows CE applications are almost always running in a limited mem
ory environment, it seems likely that they'll need an Out Of Memory Error dia
log box. The standard Windows CE shells give you just such a dialog box as a
system service. Figure 16-2 shows this dialog box on a Pocket PC.

Slot 2C000000
,_ l'•>li it

Out Of Memory Error ~

A There is not enough
W memory. ?lease exit some

running programs and try
again.

Figure 16-2 The Windows CE Out Of Memory Error dialog box

The advantage of using the system-provided Out Of Memory Error dialog
box is that you don't have to create one yourself in what, by definition, is

Chapter 16 The Explorer Shell 817

already a low-memory condition. The dialog box provided by the system is also
correctly configured for the proper screen size and local language. To display
an Out Of Memory Error dialog box, you call this function:

int SHShowOutOfMemory (HWND hwndOwner, UINT grfFlags);

The two parameters are the owner window and grjFlags, which must be set to 0.

Console Applications
Windows CE doesn't support the character mode API supported by Windows
XP. Instead, a Windows CE console application just uses the standard C library
I/0 functions, such as print/ and getc, to read and write characters from the
command line. Another major difference between command line applications
on Windows CE and on other versions of Windows is that they use the standard
WinMain entry point instead of the standard C entry point of main.

Not all Windows CE systems support the console. For example, the Pocket
PC doesn't include console support. However, on those Windows CE systems
that do include support, the console is a handy tool. Revisiting the discussion in
Chapter 1, the following Windows CE console application runs under Windows
CE. Aside from the difference of the entry point, a Windows CE console appli
cation looks like any other standard C command-line application.

II
II HelloCon - A simple console application
II
#include <windows.h> II For all that Windows stuff

II Program entry point
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevlnstance,

LPWSTR lpCmdline, int nCmdShow) {

II You don't use Unicode for the stdio functions ...
printf ("Hello World\n");

II .. . but you can with the 'w' versions.
wprintf (TEXT ("Hello World\n"));
return 0;

Windows CE console applications have access to the Win32 APL In fact, a
console application can create windows, enter a message loop, and operate as
if it were a standard Windows application. The difference is that the first time
you call one of the stdio C library functions, such as print/, a console window
is created and the result of that function will be seen in that window.

818 Part IV Device Programming

Consoles are implemented under Windows CE using a console driver with
the appropriate device name of CON. Up to 10 console windows can be
opened at any one time. The limit comes from the CONO through CON9 nam
ing convention used by drivers under Windows CE. Console applications don't
directly open a CON driver to read and write to the window. At the current
time, support for console applications is limited to a subset of the standard C
library character mode functions, although this subset seems to grow with every
release of Windows CE.

Because the initialization of the console driver occurs only after the first
call to an 1/0 library function, it's possible for a console application to run to
completion and terminate without ever creating a console window for output.
If you want a console window to always be created, you'll need to include a
print/ or other console input or output call to force the console to be created.
You can always insert a line like

printf (" \b");

which prints a space and then backspaces over the space to force the console
to be created.

The CEFind Example Program
The following program is a short console application that searches the Win
dows CE file system for matching file names. The program can be launched
from a console window using Cmd.exe, or it can be launched from the
Explorer. Because no concept of a current directory is built into Windows CE,
the search always starts from the root of the file system unless a path is speci
fied with the filename specification. Figure 16-3 shows the results of CEFind
when looking for all the TrueType fonts on a system.

Pockee. CHD v 4.Z:O
> ceU.Dd *.1'tf

162:460 \ll'indowS\CO\U'.ttf
123980 \Tlirulow•\t.ahoaa. t.tt

81000 \Window11'\wil'lgding.t.tf

Figure 16-3 The results of a CEFind search for TrueType font files

The CEFind source is contained in one file, CEFind.cpp, shown in Listing
16-2. The entry point is WinMain, which then calls SrchDirectory, which recur
sively calls itself to search each of the directories underneath the original
directory.

Chapter 16 The Explorer Shell 819

CEFind.cpp
II==
II CEFind - A Windows CE console file search application
II
II Written for the book Programming Windows CE
II Copyright CC> 2003 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff

II Returns number of elements
#define dim(x) (sizeof(x) I sizeofCx[0]))

int SrchDirectory (LPTSTR pszDir):
11--
11 Global data
II
int nTotal = 0:
int nFiles = 0:

II Program entry point
II
int WINAPI WinMain CHINSTANCE hinstance, HINSTANCE hPrevinstance~ ..

LPWSTR 1 pCmd Line, int nCmdShowl {
TCHAR pinput[256]:

if (wcslen (lpCmdline) == 0l {

}

pr1ntf ("USAGE: CEFIND filespec\n");
return 0:

printf ("\n"): II Initialize the console.
II We always start at the root.
memset Cpinput, 0, sizeof (pinput)):
if (*lpCmdLine !=TEXT('\\')) {

pinput[0] =TEXT('\\'):
}

wcscat (pihput, lpCmdline):

II Perform recursive search.
SrchD.i rectory < pinput);
wpriritf CL"\n 19d fileCsJ~ound. Id bytes.\n", nFiles. nTotal l:
return 0;.

}

//·-~------·------------------;-----------·---•---------~-,-------------
// SrchDirectory - Recursive routine that searches a dir and all

Listing 16-2 The CEFind program (continued)

820 Part IV Device Programming

Listing 16-1 (continued)

Chapter 16 The Explorer Shell 821

wprintf (L"lFind Error. Str:%s rc:%d", pszDir, re);
return -1:

II Create generic search string for all directories.
lstrcat (szNew, TEXT ("•.•"));

hFind = FindFirstFile (szNew, &fd);
if (hFind != INVALID_HANDLE_VALUE) {

do {
if (fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)

II Recurse to the lower directory.
lstrcpy (pPtr, fd.cFileNamel:
lstrcat (pPtr, pSrcSpec);
nErr = SrchDirectory (szNew);
if CnErr) break;
•pPtr =TEXT ('\0');

}

re= FindNextFile (hfind, &fd);
} while <re);

FindClose (hFind);
else {

re= GetLastError();
if ((re != ERROR_FILE_NOT_FOUND) &&

(re != ERROR_NO_MORE_FILES)) {
wprintf (L"2Find Error:%d", re);
return -1;

return nErr;

The console can be quite useful in debugging. Because all Windows CE
applications can call console functions, such as print/, you can use the console
as a quick-and-dirty debug console. This is especially helpful in debugging
applications on unusual embedded systems that don't have a method to con
nect to the development tools on a PC.

For systems that don't support the console, the standard console functions
are still exported. It's just that the console functions simply look for a console
driver that, on that system, isn't there. Even for systems without a console
driver, there's no reason you can't put a console driver on the system. In fact,
one of the tricks of the Windows CE gurus is to create a console driver and
place it in the Windows directory of a Pocket PC for quick-and-dirty debugging.

In addition, DLLs can also use the console as easily as executables can.
This feature is handy for debugging DLLs that are loaded by processes other

822 Part IV Device Programming

than the process you have developed. One caveat, however: the system auto
. matically creates a console for a process only once. If for some reason the con

sole is closed, subsequent output to the console for that application is lost.

Console Redirection
Windows CE supports two functions, GetStdioPath Wand SetStdioPath W, that
allow the console input and output functions to be redirected to files or drivers
other than the default console driver. The console functions support the three
traditional console paths: input, output, and error, identified by the traditional
labels stdin, stdout, and stderr, respectively.

To query the current console settings, call the function GetStdioPath W
prototyped as

BOOL GetStdioPathW (DWORD id, PWSTR pwszBuf, LPDWORD lpdwLen);

The id parameter specifies which path to be queried: stdin for input, std
out for output, and stderr for error. By default, all three paths point to a single
console driver instance such as CONl:. The second parameter, pwszBuf,
receives the name of the driver or file that that the specified path is directed
toward. The final parameter, lpdwLen, should contain the length, in characters,
of pwszBuj and should be set to the length of the string returned.

The individual console paths can be redirected with the function SetStdio
Path W Its prototype is

BOOL SetStdioPathW (DWORD id, LPCWSTR pwszPath);

As with GetStdioPath W, the first parameter identifies the path to set. The second
parameter specifies the name of the device driver instance or the file that will
be the source (in the case of the input path) or the destination (in the case of
the output or error paths for the console).

In the following code fragment, the output of Cmd.exe is redirected to a
file named tempout.txt.

II Query the current output path.
dwLen = MAX_PATH;
fRet = GetStdioPathW(stdout, szStdOut, &dwLen);

II Set output path to file.
SetStdioPathW(l, TEXT("\\tempout.txt"));

II Launch cmd.exe with a DIR command.
CreateProcess (TEXT("Cmd.exe"), TEXT("lc dir"), NULL, NULL, FALSE, 0,

NULL, NULL, NULL, &pi);
WaitForSingleObject (pi .hProcess, 2000);

II Clean up and restore default output path.
Cl oseHandl e (pi. hProcess);
Cl oseHandl e (pi. hThread l;
SetStdioPathW(stdout, szStdOut);

Chapter 16 The Explorer Shell 823

The preceding code first queries the current output path setting so that it
can be restored at the end of the code fragment. Next cmd.exe is launched with
a command-line string telling cmd.exe to list the contents of the current direc
tory and then terminate. After the process is launched, the code waits for two
seconds for the command to succeed and then closes the handles returned by
CreateProcess and restores the output path.

Hardware Keys
The keyboard isn't necessarily the only way for the user to enter keystrokes to
an application. All Pocket PCs and many embedded systems have additional
buttons that can be assigned to launch an application or to send unique virtual
key codes to applications. The Pocket PC has an additional set of buttons
known as navigation buttons that mimic common navigation keys such as Line
Up and Line Down. These navigation keys give the user shortcuts, which allow
scrolling up and down as well as access to the services of the often-used key
Enter. Because the scrolling buttons simply send Page Up, Page Down, Line Up,
and Line Down key messages, your application doesn't have to take any special
action to support these keys.

The application launch buttons are another matter. When pressed, these
keys cause the shell to launch the application registered for that key. Although
a system is usually configured with default associations, you can override these
settings by modifying the registry so that pressing a hardware control button
launches your application. An application can also override the application
launch ability of a specific key by having the key mapped directly to a window.
In addition, you can use the hot key features of the Graphics Windowing and
Event Subsystem (GWE) to override the hardware key assignment and send a
hot key message to a window.

Virtual Codes for Hardware Keys
Since the hardware control buttons are treated as keyboard keys, pressing a
hardware control key results in WM_KEYDOWN and WM_KEYUP messages as
well as a WM_CHAR message if the virtual key matches a Unicode character.
The system mapping of these keys employs two strategies. For the navigation
keys, the resulting virtual key codes are codes known and used by Windows

824 Part IV Device Programming

applications so that those applications can "use" the keys without even know
ing that's what they're doing. The application-launching keys, on the other
hand, need virtual key codes that are completely different from previously
known keys so that they won't conflict with standard key events.

Navigation Key Codes
As I mentioned earlier, the navigation keys are mapped to common navigation
keys. The actual virtual key code mapping for navigation keys is shown in the
following table.

Key Action Key Message Key Code

Action Press WM_KEYDOWN OEM dependent*

Action Release WM_KEYUP OEM dependent*

WM_KEYDOWN VK_RETURN

WM_ CHAR VK_RETURN

WM_KEYUP VK_RETURN

Rock Up Press WM_KEYDOWN OEM dependent*

Release WM_KEYUP OEM dependent*

WM_KEYDOWN VK_UP

WM_KEYUP VK_UP

Rock Down Press WM_KEYDOWN OEM dependent*

Release WM_KEYUP OEM dependent*

WM_KEYDOW'i'V VK_DOWN

WM_KEYUP VK_DOWN

Rock Left Press WM_KEYDOW'i'V OEM dependent*

Release WM_KEYUP OEM dependent*

WM_KEYDOWN VK_LEFI'

WM_KEYUP VK_LEFI'

Rock Right Press WM_KEYDOWN OEM dependent*

Release WM_KEYUP OEM dependent*

WM_KEYDOWN VK_RIGHT

WM_KEYUP VK_RIGHT

* OEM-dependent key codes differ from system to system. Some OEMs might not send the messages.
while others might send the messages with a virtual key code of 0.

Chapter 16 The Explorer Shell 825

Unfortunately, there's no reliable way of determining whether a
VK_RETURN key event came from the SIP or from a hardware button. Each
OEM has a different method of assigning virtual key codes to the hardware nav
igation buttons.

Application Launch Key Codes
The shell manages the application launch keys named Appl through a possible
Appl6. These keys produce a combination of virtual key codes that are inter
preted by the shell. The codes produced are a combination of the left Windows
key (VK_LWJNJ and a virtual code starting with OxCl and continuing up,
depending on the application key pressed. For example, the Appl key pro
duces the virtual key sequence VK_LWIN followed by OxCl, while the App2 key
produces the sequence VK_LWIN followed by OxC2.

Using the Application Launch Keys
Applications are bound to a specific application launch key through entries in the
registry. Specifically, each key has an entry under [HKEY_LOCAL_MACHINE]
\Software\Microsoft\Shell\Keys. The entry is the virtual key combination for
that key, so for the Appl key, the entry is

[HKEY_LOCAL_MACHINEJ\Software\Microsoft\Shell\Keys\40Cl

The 40Cl comes from the code Ox40, which indicates the Windows key has
been pressed and concatenated with the virtual key code of the application
key, OxCl. The default value assigned to this key is the fully specified path
name of the application assigned to the key. A few other values are also stored
under this key. The ResetCmd value is the path name of the application that is
assigned to this key if the Restore Defaults button is pressed in the system's But
ton control panel applet. The Name value contains the friendly name of the
key, such as Button 1 or Side Button.

The only way to change the application assigned to a key is to manually
change the registry entry to point to your application. Of course, you shouldn't
do this without consulting your users because they might have already config
ured the application keys to their liking. The routine that follows assigns an
application to a specific button and returns the name of the application previ
ously assigned to that button. The vkAppKey parameter should be set to an
application key virtual key code, OxCl through OxCF. The pszNewApp parame
ter should point to the fully specified path name of the application you want to
assign to the key.

826 Part IV Device Programming

11--
11 SetAppLaunchKey - Assigns an application launch key to an
II application.
II
int SetAppLaunchKey (LPTSTR pszNewApp, BYTE vkAppKey, LPTSTR pszOldApp,

INT nOldAppSize) {
TCHAR szKeyName[256];
DWORD dwType, dwDisp;
HKEY hKey;
INT re:

II Construct the key name.
wsprintf (szKeyName,

TEXT ("Software\\Microsoft\\Shell\\Keys\\40%02x"), vkAppKey);

II Open the key.
re = RegCreateKeyEx (HKELLOCAL_MACHINE, szKeyName, 0, TEXT (""),

0, 0, NULL, &hKey, &dwDisp);
if (re != ERROR_SUCCESS)

return -1:

II Read the old application name.
re= RegQueryValueEx (hKey, TEXT (""), 0, &dwType,

CPBYTE)pszOldApp, &nOldAppSize);
if (re != ERROR_SUCCESS) {

RegCloseKey (hKey);
return -2:

II Set the new application name.
re= RegSetValueEx (hKey, TEXT(""), 0, REG_SZ, (PBYTE)pszNewApp,

(lstrlen (pszNewApp)+l) * sizeof (TCHAR));
RegCloseKey (hKey);
if (re != ERROR_SUCCESS)

return -3:

return 0:

When an application button is pressed, the system doesn't check to see
whether another copy of the application is already running-it simply launches
a new copy. You should design your application, especially on the Pocket PC,
to check to see whether another copy of your application is already running
and if so, to activate the first copy of the application and quietly terminate the
newly launched copy.

You can determine whether an application is assigned to a key by calling
the function SHGetAppKeyAssoc, which is prototyped as

Byte SHGetAppKeyAssoc (LPCTSTR ptszApp);

Chapter 16 The Explorer Shell 827

The only parameter is the fully qualified name of your application. If a key is
associated with your application, the function returns the virtual key code for
that key. If no key is associated with your application, the function returns 0.
This function is useful because most applications, when launched by an appli
cation key, override the default action of the key so that another copy of the
application won't launch if the key is pressed again.

Dynamically Overriding Application Launch Keys
A running application can override a launch key in two ways. The first method
is to use the function SHSetAppKeyWndAssoc, prototyped as

BOOL SHSetAppKeyWndAssoc (BYTE bVk, HWND hwnd);

The first parameter is the virtual key code of the hardware button. The second
parameter is the handle of the window that's to receive the notices of button
presses. For example, a program might redirect the Appl key to its main win
dow with the following line of code:

SHSetAppKeyWndAssoc (0xCl, hwndMain);

The window that has redirected an application might receive key mes
sages but the virtual key codes received and the type of key messages are OEM
specific. The chief reason for using SHSetAppKeyWndAssoc is to prevent the
button from launching an application. When you no longer want to redirect the
application launch key, you can call SHSetAppKeyWndAssoc specifying the vir
tual code of the key and NULL for the window handle.

The second method of overriding an application launch key is to use the
RegisterHotKey function. The advantage of using the RegisterHotKey function is
that your window will receive known messages, albeit WM_HOTKEY instead of
WM_KEYxxx messages, when the key is pressed, no matter what application
currently has the keyboard focus. This function is prototyped as

BOOL RegisterHotKey (HWND hWnd, int id, UINT fsModifiers, UINT vk);

The first parameter is the handle of the window that receives the WM_HOTKEY
messages. The second parameter is an application-defined identifier that's
included with the WM_HOTKEY message to indicate which key caused the
message. ThefsModifiers parameter should be set with flags, indicating the shift
keys that must also be pressed before the WM_HOTKEY message can be sent.
These self-explanatory flags are MOD_ALT, MOD_CONTROL, MOD_SHIFI', and
MOD_ WIN An additional flag, MOD_KEYUP, indicates that the window will
receive WM_HOTKEY messages when the key is pressed and when the key is
released. When using RegisterHotKey on application keys, you should always

828 Part IV Device Programming

specify the MOD_ WIN flag because application keys always are combined with
the Windows shift-modifier key. The final parameter, vk, is the virtual key code
for the key you want as your hot key. This key doesn't have to be a hardware
key code; you can actually use almost any other virtual key code supported by
Windows, although assigning Shift-F to your custom fax application might
make Pocket Word users a bit irate when they tried to enter a capital F.

When the key registered with RegisterHotKey is pressed, the system sends
a WM_HOTKEY message to the window. The wParam parameter contains the
ID code you specified when you called RegisterHotKey. The low word of
!Param parameter contains the shift-key modifiers, MOD_xxx, that were set
when the key was pressed, while the high word of !Param contains the virtual
key code for the key.

The disadvantage of using RegisterHotKey is that if another application has
already registered the hot key, the function will fail. This can be problematic on
the Pocket PC, where applications stay running until the system purges them to
gain extra memory space. One strategy to employ when you want to use a
hardware key temporarily-for example, in a game-would be to use SHGet
AppKeyAssoc to determine what application is currently assigned to that key. It's
a good bet that if RegisterHotKey failed due to some other program using it, the
application assigned the application key is also the one currently running and
has redirected the hot key to its window. You can then send a WM_ CLOSE mes
sage to that application's main window to see whether it will close and free up
the hardware key.

When you no longer need the hot key, you can unregister the hot key
with this function:

BOOL UnregisterHotKey (HWND hWnd, int id);

The two parameters are the window handle of the window that had registered
the hot key and the ID value for that hot key you assigned with RegisterHotKey.

The Game API, or GAPI, provides a method for applications to take con
trol of all hardware keys in the system. GAPI lets an application take control of
all the keys but not individual keys. Still, GAPI provides a convenient setvice
for game developers. (For more information about GAPI, refer to Chapter 20.)

The application launch buttons provide a handy way to make your appli
cations easily accessible by the user. The only additional task required of the
application is to assume control of the key when it's running so that users can't
inadvertently launch multiple copies of the application.

I began this chapter by saying the Explorer shell is interesting in that, like
many parts of Windows CE, it resembles its desktop counterparts but is imple
mented very differently. These differences show up the most in places, such as
the COM interfaces the Explorer uses and in console applications, where the

Chapter 16 The Explorer Shell 829

implementation is limited to supporting a subset of standard C library calls and
little else.

In the next chapter, I turn to the Pocket PC shell. This shell has dramatic
differences in look and feel that affect the way you write Pocket PC applica
tions. Throughout this book, the examples have contained small snippets of
code that I mentioned were required for the Pocket PC, but I didn't explain
why. It's time to explore the details of these extra pieces of code.

Programming the
Pocket PC

The Pocket PC is one of the most successful Windows CE-based systems. The
combination of small, PDA-size dimensions and a powerful CPU has provided
a portable but fast platform for the Windows CE operating system. In addition,
an extensive reworking of the user interface for the Pocket PC devices makes
for an interesting platform for application developers.

The Pocket PC is so interesting that Microsoft has taken many of the
Pocket PC-specific functions and made them available on the Windows CE
operating system, which allows original equipment manufacturers to build
devices that are Pocket PC-like without having all the features, and require
ments, of a branded Pocket PC device. What is important to note is that
although many of the Pocket PC functions-or more precisely, the Explorer
shell-have been brought into the operating system, the implementation of
these functions is generally up to the OEM. So while I will discuss the functions
in this chapter with respect to how they are implemented on the Pocket PC, just
because a particular OEM supports a function on a non-Pocket PC device, they
might not implement the function exactly the way the Pocket PC does.

What Is a Pocket PC?
Now that we have Pocket PC devices and Pocket PC-like devices, just what
denotes a real Pocket PC from a Pocket PC-like device? First and foremost, a
Pocket PC device is a Windows CE-based PDA with a custom shell and a set of
customized applications written by Microsoft but sold by OEMs such as

831

832 Part IV Device Programming

Hewlett-Packard, Toshiba, Viewsonic, and others. Pocket PC branded devices
are certified by Microsoft to conform to a specific set of standards in both hard
ware and software. Pocket PC-like devices are Windows CE-based devices that
include a set of base components that expose most of the Pocket PC APls. The
implementation of these functions, as mentioned earlier, is dependent on the
OEM so there isn't a guarantee that one Pocket PC-like device will look or
operate like another Pocket PC-like device. Still, these devices will most likely
be implemented to act as closely as possible like a Pocket PC.

Pocket PC applications must conform to a rather strict set of requirements
that enforce the look and feel of the application. The Pocket PC is customized
to expect that applications running on it conform to its requirements. While it is
simple to create an application that runs but doesn't conform to the Pocket PC
guidelines, the application will probably not work as the user expects, nor will
the application be able to react to the actions of the Pocket PC shell.

Is It a PDA, a Phone, or Both?
Another aspect of the Pocket PC is the blurring of the lines between Personal
Digital Assistants (PDAs) and cell phones. Some devices are only PDAs, some
are PDA form factors with cellular communication built in, and some are cell
phones that run Windows CE. So which device is which, and how much do
these devices have in common?

The Pocket PC 2003 device is an evolution of the original Pocket PC
device released in April of 2000. The operating system is now Windows CE 4.2
instead of Windows CE 3.0, and there have been a handful of new functions
added to support user features such as the shell notification interface, but all in
all it's the same system albeit with a much more robust operating system under
the covers. The chief difference the user will notice is the new, smaller and yet
more powerful hardware that has changed over the last few years. Now devices
may have built-in wireless networking or Bluetooth personal area networking
or may have neither but be significantly smaller or less expensive.

Another advance has been the integration of cellular technology into some
Pocket PC devices. Microsoft has released a version of the Pocket PC called
Pocket PC Phone edition that adds functions to support voice calling, short
message service (SMS), and other features specific to having an integrated
phone in the device. The user interface and application requirements of the
Pocket PC Phone edition are almost identical to those of a standard Pocket PC
device. It has the same portrait screen and lack of keyboard. The device differs
from a standard Pocket PC in that phone cellular calls can be made from the
device with an integrated speaker and microphone.

Chapter 17 Programming the Pocket PC 833

A device just being introduced at this writing is the Smartphone device.
The Smartphone is a cell phone that is based on Windows CE with a custom
shell and custom applications. Aside from the shell, which is significantly differ
ent from the Pocket PC due to the constraints and usage model of a cell phone,
the Smartphone is surprisingly similar to the Pocket PC underneath. Aside from
the economies of scale that might suggest a common solution, the same group
inside Microsoft is responsible for both platforms, which provides a bureau
cratic impetus to commonality across the two platforms.

Given the overlap between these systems, it's difficult to parse the func
tionality into distinct chapters without having a fair amount of overlap. To avoid
this situation, I've made an arbitrary decision to put off discussing any of the
features of the Pocket PC Phone edition until Chapter 19. This arrangement
allows a single discussion of dialing, SMS, and Telephony API (TAPI) extensions
in the chapter that discusses a communication-specific device.

The Pocket PC Screen
The main difference between a real Pocket PC and a Pocket PC-like device is
the Pocket PC shell. This shell is unique to the Pocket PC and the Pocket PC
Phone edition, so OEMs building Pocket PC-like devices won't have the exact
look and feel, or the exact operation, of this shell. The Pocket PC shell imple
ments the Today screen, the top-down Start Menu, and a number of other fea
tures specific to the Pocket PC. Figure 17-1 shows the Pocket PC's Today screen.

Figure 17-1 The Pocket PC display

834 Part IV Device Programming

Across the top of the Pocket PC screen is the navigation bar. This element
of the screen contains the title of the foreground window, the current time, and
(when a dialog is displayed) an OK button for dismissing a dialog. Tapping the
navigation bar displays the Start menu, allowing the user to launch applications
or to switch to running applications.

The Today screen contains information about the device. Today screen
panels can be configured through the control panel. (In the next chapter, I'll
discuss how developers can add custom Today screen panels.) The bottom of
the Pocket PC screen is reserved for the menu bar. The Today screen menu bar
is unique in that it displays taskbar annunciators created using the same API
that I described in Chapter 16.

When the user starts an application, the screen layout is similar to that
seen with the Today screen in view. The navigation bar is at the top, the appli
cation window takes up the main screen area, and the menu bar holds its place
at the bottom of the screen. The best way to learn about programming this plat
form is to go right to an example.

Hello Pocket PC
A Pocket PC application is still a Windows application, so it has a message loop,
a main window, and window procedures. However, some new requirements
do change the design a bit. First, a Pocket PC application must make sure that
only one copy of itself is running at any one time. The operating system doesn't
ensure this-that is the application's job. Second, instead of using a command
bar-as do other Windows CE applications-Pocket PC applications use the
menu bar. In many ways, the menu bar acts like an updated command bar, but
it does have some peculiarities. A Pocket PC application should not have a
Close button, an Exit command, or a Close command in its menus. This is
because PDA users don't use applications; they use their PDAs. (The user inter
face gurus that work on this stuff have decided that users would rather not
know when a particular application is running or not.)

Let's move on to some code. Figure 17-2 shows two screen shots of a sim
ple Pocket PC application called HelloPPC. The left image shows the window
with the soft input panel, or SIP, hidden; the image on the right shows HelloPPC
with the SIP showing. Notice how the text centers itself in the visible portion of
the workspace. The HelloPPC window has a red outline to highlight its size and
position.

Chapter 17 Programming the Pocket PC 835

/f/J/ ttello .. , 10·31 0 £::; Hello .. E 10:31 0

Hello Pocket PC!

Hello Pocket PC!

Figure 17-2 The HelloPPC application with the SIP both hidden and
showing

Listing 17-1 shows the source code for HelloPPC. Fundamentally, what
you'll notice about HelloPPC is that it is predominantly a standard Windows CE
application. The differences between this code and that shown in Chapter 1
have to do with the difference between the Pocket PC and the Explorer shells.
I'll talk about these differences in the sections following the code.

HelloPPC.rc
II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright CC) 2003 Douglas Boling
II==
#include "windows.h" II Windows stuff
#include "commctrl .h" II Common ctl stuff
#include "aygshell .h" II Pocket PC stuff
#include "HelloPPC.h" II Program-specific stuff

11--
11 Icons and bitmaps
II
ID_ICON ICON "HelloPPC.ico" II Program icon

Listing 17-1 The HelloPPC application (continued)

836 Part IV Device Programming

Listing 17-1 (continued)

. /i- ".· -". --~ -~· .~ --~ ----" -
ft

Chapter 17 Programming the Pocket PC 837

II Message handlers
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAMl;
LRESULT DoCommandMain CHWND. UINT, WPARAM. LPARAM);
LRESULT DoSettingChangeMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoActivateMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoHibernateMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain CHWND, UINT, WPARAM, LPARAM);

II WM_COMMAND message handlers
LPARAM DoMainCommandExit CHWND, WORD, HWND, WORD);

HelloPPC.c
II==
II HelloPPC - A simple application for the Pocket PC
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II
II==
#include <windows.h> II For all that Windows stuff
#include <commctrl .h> II Command bar includes
#include <aygshell .h> II Pocket PC includes
#include "helloppc.h" II Program-specific stuff
ll------------------------------'---------------------------------------
11 Global data
II
canst TCHAR szAppName[J
HINSTANCE hinst;

II Pocket PC globals

TEXT ("HelloPPC");
II Program instance handle

II Handle of menu bar control
II Indicates hibernated state

HWND hwndMenuBar = NULL;
BOOL fHibernated = FALSE;
SHACTIVATEINFO sai; II Used to adjust window for SIP

II Message dispatch table for MainWindowProc
canst struct decodeUINT MainMessages[J = {

WM_CREATE, DoCreateMain,

} ;

WM_PAINT, DoPaintMain,
WM_COMMAND, DoCommandMain,
WM_SETTINGCHANGE, DoSettingChangeMain,
WM_ACTIVATE, DoActivateMain,
WM_HIBERNATE, DoHibernateMain,
WM_DESTROY, DoDestroyMain,

II Command Message dispatch for MainWindowProc
const struct decodeCMD MainCommanditems[J = {

(continued)

838 Part IV Device Programming

Listing 17-1 (continued)

Chapter 17 Programming the Pocket PC 839

}

wc.lpfnWndProc = MainWndProc; II Callback function
wc.cbClsExtra = 0; II Extra class data
wc.cbWndExtra = 0; II Extra window data
wc.hinstance = hinstance; II Owner handle
wc.hicon =NULL, II Application icon
wc.hCursor = LoadCursor (NULL, IOC_ARROW); II Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wc.lpszMenuName = NULL; II Menu name
wc.lpszClassName = szAppName: II Window class name

if (RegisterClass C&wc) == 0) return 0;

II Create main window.
hWnd = CreateWindow (szAppName,

TEXT ("Hello"),
WS_VISIBLE,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAUL T,
CW_USEDEFAULT,
NULL.
NULL,
hinstance,
NULL):

if (!IsWindow (hWnd)) return 0;

II Standard show and update calls
ShowWindow (hWnd. nCmdShow);
UpdateWindow (hWnd):
return hWnd:

II Window class
II Window title
I I Style flags
II x position
II y position
II Initial width
II Initial height
II Parent
II Menu, must be null
II Application instance
II Pointer to create
II parameters
II Fail if not created.

11-- -
II Terminstance - Program cleanup
II
int Terminstance CHINSTANCE hinstance, int nDefRC) {

return nDefRC:
}

II==
II Message handling procedures for main window
II
11--
11 MainWndProc • Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
INT i:

(continued)

840 Part IV Device Programming

Listing 17-1 (continued)

}

II
11 Search message list to see if we need to ha.ndle thts
II message. If in list~ call procedure.
II
for (i = 0; i < dim(MainMessages); i++) {

if CwMsg == MainMessage.s[iJ.Code)
return (*MainMessages[iJ.Fxn)(hWnd. wMsg, wParam, lParam);

return DefWihdowProc ChWnd, wMsg, wParam, lParaml;

11------------------------------~~,----·--~-------·--------------------·
11 DoCreateMai n - Proce.ss WM_CREATE message for .window.
II

LRESULT .DoCreateMain CHWND hWnd. U!NT wMsg, WPARAM wParam,

SHMENUBARI NFO .mbi;
SIP INFO s i ;
int ex. cy;

LPARAM l Pa ram) {

II Initialize the shell to activate
memset (&sai. 0, sizeo.f (sai)l;
sai .cbSi2e = stzeof Csai);

II Create a menu bar.
memsetC&mbi, .0. si zeof(SHMENUBARINFO)); I I
mbi.cbSize.• sfzeof(SHMENUBARJNFO);
mbi .hwndParent = hWnd:
mbi .dwflags .= SHCMBLEMPTYBAR;

II Create menu bar and check for
U SHCreateMenuBa r(&mbi)) {
MessageBox (hWnd, TEXT (''Caul dn \'.t

szAppName, M8--0KJ;

II Query the sip state and size
memset <&sL .. 0, si .. zeof csnl;
sf. cbSize =. size9f (si);
SHS.ipinfo(SPLGETSIPINFO. 0, (PVOID}&si.

Parent window
Flags like .hide
rn .. of tool bar .. resource
Inst hand) e of app
ID of bitmap resource

ex= sLrcvtsib1eDesktop.right - si .rcVisibleDesktop.left;

Chapter 17 Programming the Pocket PC 841

cy = si .rcVisibleDesktop.bottom - si.rcVisibleDesktop.top;

II If the sip is not shown, or showing but not docked, the
II desktop rect doesn't include the height of the menu bar.
if (!(si.fdwFlags & SIPF_ON) II

((si .fdwFlags & SIPF_ON) && !(si .fdwFlags & SIPF_DOCKED)))
RECT rectMB;
GetWindowRect (hwndMenuBar, &rectMB);
cy -= (rectMB.bottom - rectMB.top);

SetWindowPos (hWnd, NULL, 0, 0, ex, cy, SWP_NOMOVE I SWP_NOZORDER);
return 0;

11--
11 DoCommandMain - Process WM_COMMAND message for window.
II
LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
WORD id!tem, wNotifyCode;
HWND hwndCtl;
I NT i ;

II Parse the parameters.
id!tem = (WORD) LOWORD (wParam);
wNotifyCode =(WORD) HIWORD (wParam);
hwndCtl = (HWND) lParam;

II Call routine to handle control message.
for Ci = 0; i < dim(MainCommand!tems); i++)

if (id!tem == MainCommanditems[iJ.Code)
return (*MainCommand!tems[iJ.Fxn)(hWnd, id!tem, hwndCtl,

wNot i fyCode) ;

return 0;

11--
11 DoPaintMain - Process WM_PAINT message for window.
II
LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PAINTSTRUCT ps;
HPEN hPen, hOld;
RECT rect;
HDC hdc;

hdc = BeginPaint (hWnd, &ps);
GetClientRect (hWnd, &rect);

(continued)

842 Part IV Device Programming

Listing 17-1 (continued)

// Draw a red rectangle . around
hPen .. " CreatePerr(pS""SOLID; ·•J•
hOld "' IflPENYSelectObJect Choe.
Rectangl.e (hdc •• •reef.left,
SeledObJe.C:t \hqc/ h(J}d;);

Del eteObjegt lhPenJ:

DrawTeXt

EndPalnt

Chapter 17 Programming the Pocket PC 843

return 0;

11--
11 DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PostQuitMessage (0);
return 0;

II==
II Command handler routines
11--
11 DoMainCommandExit - Process Program Exit command.
II
LPARAM DoMainCommandExit CHWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode)
SendMessage ChWnd, WM_CLOSE, 0, 0);
return 0;

The HelloPPC application creates a main window and prints Hello Pocket
PC in the center of the window. It also draws a red rectangle around the border
of its window to clearly show the extent of the window. The program creates a
menu bar without a menu but with a button to display the SIP. If you tap the SIP
button, you will see the main window resize to avoid being covered by the SIP.
If you attempt to start a second copy of HelloPPC, the system will instead
switch to the copy currently rnnning. Finally, if you open the SIP and tap Ctrl
Q, the application will quit. Each of these little features takes a little bit of code
to conform to the standards of a Pocket PC application. Now let's examine
these code fragments and learn how it's done.

Differences in a Pocket PC Application
Comparing the source code of HelloPPC to the code of HelloCE in Chapter 1
shows a fair amount of new code specifically added to handle the requirements
of the Pocket PC shell. The first issue is the requirement that a Pocket PC appli
cation only have one instance of itself running at any one time. The Pocket PC
shell won't enforce this requirement; it's up to the application.

Single Instance
The single instance requirement of a Pocket PC is accomplished with the Find
Window code that has appeared in almost every example in this book. This

844 Part IV Device Programming

code ensures that only one copy of the application is running at any given time.
The following code fragment shows how this is accomplished.

II Allow only one instance of the application.
HWND hWnd = FindWindow (szAppName, NULL);
if (hWnd) {

SetForegroundWindow ((HWND)(((DWDRD)hWnd) I 0x01));
return -1;

The call to FindWindow looks for a top-level window with the same class name
as HelloPPC. If the window is found, the code calls SetForegroundWindow to
put that window into the foreground, and then the second copy of the applica
tion terminates. Notice the rather strange logical ORing of a 1 to the window
handle. This is an internal hack that tells Windows to restore the window being
set to the foreground in case it has been minimized. Without this bit, you could
accidentally set a minimized window to the foreground, and under the Pocket
PC shell, the user would never see this minimized window.

Use a Menu Bar, Not a Command Bar
The next few changes to HelloPPC are all in the WM_CREA1E message handler.
Instead of creating a command bar or command band control, a Pocket PC appli
cation creates a menu bar control. I discussed the Menu bar in Chapter 5, but
here is a short review. The following code fragment creates a simple menu bar.

SHMENUBARINFO mbi;

II Create a menu bar.
mbi .hwndParent = hWnd;
mbi .dwFlags = SHCMBF_EMPTYBAR;
mbi .nToolBarid = 0;
mbi .hinstRes = 0;
mbi .nBmpid = 0;
mbi .cBmpimages = 0;
mbi .hwndMB = 0;

II Create menu bar and check for errors.
if (SHCreateMenuBar(&mbi))

hwndMenuBar = mbi .hwndMB;

II Parent window
II Flags like hide SIP btn
II ID of toolbar resource
II Inst handle of app
II ID of bitmap resource
II Num of images in bitmap
II Handle of bar returned

II Save the menu bar handle.

This code initializes a SHMENUBARINFO structure and passes it to
SHCreateMenuBar to create the main window's associated menu bar. The
menu bar control can contain a menu, toolbar buttons, and the button that dis
plays the SIP. For HelloPPC, the menu bar has no menu and thus the
SHCMBF_EMPTYBAR flag is set in the dwFlags field. The only other field that
requires initialization for this simple configuration is the hwndParent field that

Chapter 17 Programming the Pocket PC 845

is set to the HelloPPC window handle. After the menu bar is created, the handle
of the returned control is saved.

Manually Sizing the Main Window
A Pocket PC application must also deal with the menu bar and the SIP. The key
is to size the application's top-level window so that the SIP doesn't obscure it.
Also, if you create the top-level window following the Windows CE tradition of
using CW_USEDEFAULTin the position and size parameters of CreateWindow,
the window will be created over the top of the area used by the menu bar. To
avoid covering up the menu bar with a window, or the window being covered
by the SIP, the WM_CREATE handler includes the following code:

II Query the SIP state and size our window appropriately.
memset C&si, 0, sizeof Csi));
si .cbSize = sizeof (si);
SHSipinfoCSPI_GETSIPINFO, 0, CPVO!D)&si, FALSE);

ex si .rcVisibleDesktop.right - si .rcVisibleDesktop. left;
cy si .rcVisibleDesktop.bottom - si .rcVisibleDesktop.top;

II If the SIP is not shown, or is showing but not docked, the
II desktop rect doesn't include the height of the menu bar.
if c ! c s i . f dw F 1 a gs & SIP F _o N) I I

((si.fdwFlags & SIPF_ON) && !Csi.fdwFlags & SIPF_DOCKED)))
RECT rectMB;
GetWindowRect ChwndMenuBar, &rectMB);
cy -= CrectMB.bottom - rectMB.top);

SetWindowPos ChWnd, NULL, 0, 0, ex, cy, SWP_NOMOVE I SWP_NOZORDER);

The preceding code uses the function SHSiplnfo to query the current state
of the SIP. Included in the information returned by this call is the visible portion
of the desktop that is not obscured by a docked SIP. The code computes the
size of this rectangle and uses it if the SIP is displayed in a docked state and
positioned at the bottom of the screen. If, however, the SIP is not visible, or if
it is floating, the main window still must be sized, because the system default
window size does not leave room for the menu bar. The preceding code tests
whether the SIP is hidden or floating and, if it is, shortens the window height by
the height of the menu bar. On a Pocket PC, this value is documented to be 26
pixels, but it isn't guaranteed to be the same on Pocket PC-like devices.
Because of this, the value should be computed instead of hard-coded.

This code to specify the size of the window can be placed elsewhere in a
Pocket PC application. For example, you could resize the window after Create
Window returns instead of within the WM_CREATE message handler. Either

846 Part IV Device Programming

way, you must manually size the window, depending on the state of the SIP
and whether you want to use a menu bar control in your application. I choose
to place the size code in the WM_ CREATE message handler as a matter of style.

Dealing with Changes in the SIP
Once HelloPPC is running, it must still deal with the user displaying and hiding
the SIP. The standard technique for handling the SIP is to resize your applica
tion's main window whenever the SIP is displayed or hidden. This technique
allows your standard window code to deal with SIP changes as it would with
any window resize. Of course, you aren't required to resize your main window
in reaction to the SIP, but you must provide some way of insuring that the SIP
does not obscure data that the user is interacting with when the SIP is shown.
The Pocket PC shell provides some simple hooks to monitor the SIP and auto
matically resize a window. This method is the easiest to use and the one I'll
describe here.

To automatically resize your window in response to the SIP, you must glo
bally declare an SHACTIVATEINFO structure in your program. While you can
find the structure declared in the include files required for the program, the
internal structure, aside from one field, is irrelevant. This structure should be
initialized to 0 and the cbSize field should be set to the size of the structure, as
in the following code fragment:

SHACTIVATEINFO sai; II Declare globally.

II Initialize the shell activate info structure.
memset (&sai, 0, sizeof (sail);
sai.cbSize = sizeof (sail;

This initialization should happen either before your main window is cre
ated or in the WM_ CREATE handler.

Your main window's window procedure must handle the WM_ACTIVATE
and WM_SETTINGCHANGE messages. The WM_SETTINGCHANGE message is
used in Windows to indicate that some basic system setting has changed. In the
Pocket PC, WM_SETnNGCHANGE is also used to notify an application that the
state of the SIP has changed. While the application could manually determine
the state of the SIP and handle it in its own WM_SETTINGCHANGE message
handler, the Pocket PC shell provides a simple function that can be called to do
the work for the application. The function prototype for this function is

BOOL SHHandleWMSettingChange (HWND hwnd, WPARAM wParam, LPARAM lParam,
SHACTIVATEINFO *psai);

The first three parameters of this function are the handle to the window
receiving the WM_SETnNGCHANGE message and the message's wParam and

Chapter 17 Programming the Pocket PC 847

lParam parameters. The final parameter is the address of the SHACTIVATEINFO
structure declared and initialized earlier in the code. The use of this function is
quite simple; just call this function whenever the top-level window receives a
WM_SE111NGCHANGE message. The function resizes the window if necessary.

The second function to call to help with the SIP is

BOOL SHHandleWMActivate CHWND hwnd, WPARAM wParam, LPARAM lParam,
SHACTIVATEINFO *psai, DWORD dwFlags);

As you might expect from the name of the function, SHHandle WMActivate
should be called in response to a WM_ACTIVATE message sent to the top-level
window. The parameters are the same as for SHHandleWMSettingChange, with
the addition of the dwFlags parameter. The dwFlags parameter can be either 0
or SHA_INPUI'DIALOG, if the top-level window is a dialog box with child con
trols. For dialog boxes, the SHA_INPUTDIALOG flag will prevent the SIP from
automatically popping up and down when the focus switches between the dif
ferent child controls.

In addition to SHHandleWMActivate and SHHandleWMSettingChange,
another difference between HelloPPC and many of the other examples in this
book is the use of the CS_HREDRAW and CS_ VREDRAW flags when registering
the window class. These flags automatically invalidate the main window when
ever the window is resized. The interaction of these functions along with the
redraw style flags will result in the top-level window being redrawn when the
SIP is shown or hidden. This interaction provides a simple way for a Pocket PC
program to automatically adjust the presentation of its data simply by handling
the WM_PAINT message and drawing the appropriate data in the format neces
sary for the situation.

Be aware of one issue with some versions of Microsoft eMbedded Visual
C++: The code wizard that produces the example Pocket PC application does
not initialize the SHACTIVATEINFO structure. Therefore, the example code does
not automatically resize the window when the SIP is displayed, even though it
calls the SHHandleWMSettingChange function. In addition, the wizard code
does not call SHHandleWMActivate, so if you plan to base your application on
this wizard, you should add the code described in this section. It just goes to
show that a programmer should never depend on code wizards. While wizards
can be handy tools for rapid code generation, if you don't understand the code
they produce, you're going to have problems.

Ctrl-Q Closes a Pocket PC Application
The final Pocket PC modification in HelloPPC comes in WinMain and is part of
a tradition of Pocket PC applications. Notice that in WinMain, HelloPPC loads
a keyboard accelerator table. The message loop is modified to enable that

848 Part IV Device Programming

accelerator table. A quick look in the HelloPPC.rc shows that the only acceler
ator key is Ctrl-Q, which is associated with a WM_COMMAND id code of
IDM_EXIT As you might expect, tapping Ctrl+Q in the SIP while HelloPPC is
active will close the application. Traditionally, Pocket PC applications don't
have a Close button or an Exit menu item. They close with a Ctrl+Q key
sequence. A little testing will show that most Pocket PC applications bundled
with the system respond similarly to this key sequence. The Ctrl-Q "Easter egg"
has the added value of allowing the programmer to start a Pocket PC applica
tion for testing, and then to tell it to close before downloading a new copy.
While you can always add an Exit menu item and then remove it before ship
ping your application, you will inevitably need to test something about your
application after shipping.

Building HelloPPC
The HelloPPC project files are based on the Pocket PC application project tem
plate. This is a different project template from the other examples in this book.
However, the differences between the Windows CE application project tem
plate and the Pocket PC application project template are quite minor.

When you decide to base your project on the Pocket PC application tem
plate, eMbedded Visual C++ changes the project settings to link the shell exten
sions library, aygshell.lib, to the program. This library resolves the newer
functions such as SHCreateMenuBar, SHHandleWMActivate, and SHHandle
WMSettingChange. There are other differences between the way that Pocket PC
and other Windows CE devices are handled which aren't dependent on the
project template that's used. For example, when you select the Pocket PC as the
target device, the compiled file is automatically downloaded to the Windows CE
device's \ Windows\Start Menu directory, instead of downloading to the root
directory.

One issue I haven't yet mentioned is that for a number of examples you
need to create a menu bar-and in some cases a menu-if you want to cor
rectly run these applications on the Pocket PC. I did not want one project for
the Windows CE systems example and a separate project for the Pocket PC. To
avoid this, and to avoid adding extra code to explicitly load the shell extension
functions, code is conditionally compiled into the application that instructs the
linker to link the aygshell library when compiling for a Pocket PC target. The
following code is taken from the KeyTrac example in Chapter 3:

#if defined(WIN32_PLATFORM_PSPC)
#include <aygshell .h>
#pragma comment(lib, "aygshell"
#end if

II Compile only for Pocket PC.
II Add Pocket PC includes.
II Link Pocket PC lib for menu bar.

Chapter 17 Programming the Pocket PC 849

The first line is a conditional compile preprocessor command that tells the
compiler to compile the enclosed lines only if the symbol
WIN32_PLATFORM_PSPC is defined. As you might expect, that symbol is
defined if you compile to either the Pocket PC or old Palm-size PC targets. The
second line tells the compiler to include the Aygshell.h include file that pro
vides the function prototypes and type definitions necessary for using the
Pocket PC-specific functions. Finally, the #fJragma line instructs the linker to
link in the aygshell library so that the Pocket PC functions can be resolved.

Aygshell is now available in the Windows CE Platform Builder for OEMs to
include in their custom devices. The component is optional, though, so you
should check with the specific platform SDK documentation to see whether it's
included on your target device.

The New Menu
The Pocket PC shell is centered on two menus, the Start menu and the New
menu. The Start menu is basically the same start menu used by the Explorer
shell with the exception that it is displayed from the top of the screen down,
but the New menu is unique to the Pocket PC.

The New menu is available on the Today screen. Tapping any item on the
New menu typically launches an application with a template for creating a new
item, such as a note, a contact, or an Excel spreadsheet. The new menu can
optionally be displayed by applications. This is done by creating a button on
the Menu bar with an ID of IDM_SHAREDNEW When the button, which looks
to the user like a menu, is tapped, the system displays the New menu.

The New menu can be modified by applications in two ways. First, menu
items can be added to the New menu either on a permanent basis, which adds
an item when any application is running, or on a temporary basis, which adds
an item only when the application is in the foreground. In addition, the fore
ground application can override the default actions of New menu items.

Managing the New Menu
The New menu can be added to a Menu bar in two ways. In the first way, in
shared mode, tapping the New menu sends a WM_COMMAND message to the
application with an ID value of IDM_SHAREDNEW. In simple (nonshared)
mode, tapping the New menu displays a series of permanent menu items
gleaned from the registry.

These permanent items are specified in the registry under the key
HKEY _LOCAL_MACHINE]\Software \Microsoft \Shell \Extensions \N ewMenu.
This key lists a series of GUIDs that define COM in-process servers that imple
ment an IID_INewMenultemServer interface. The IID_INewMenultemServer

850 Part IV Device Programming

interface is actually quite simple. Aside from the standard !Unknown methods,
the only method supported is

HRESULT INewMenuitemServer::CreateNewitem CHWND hwndParentl;

The single parameter is the handle to the window that currently owns the menu
bar. When the user selects the permanent item on the menu bar that references
the COM object that implements the IID_INewMenultemServer interface, the
Pocket PC first sends a WM_NOTIFY message with the notification
NMN_INVOKECOMMAND to the window owning the menu bar. If the applica
tion returns 1, the Pocket PC assumes that the application has taken care of the
menu selection and no further action occurs. If the application returns 0, the
Pocket PC will load the COM object and call the CreateNewltem method. In
response, the COM object typically launches the appropriate application.

The NewMenuX Example
The following code is a simple New menu item extension that launches the cal
culator. If eMbedded Visual C++ is used to compile and download the New
MenuX server, it will register itself and add the proper registry key to tell the
New menu of the existence of NewMenuX. If NewMenuX.dll is copied to the
device manually, the following registry entries will need to be added:

[HKEY_CLASSES_ROOT\CLSID\{130F6E46-C3F9-4fa8-B8BC-75720BC73231}]
="Prag Win CE New Menu Extension"
[HKEY_CLASSES_ROOT\CLSID\
{130F6E46-C3F9-4fa8-BBBC-75720BC73231}\InProcServer32]
=\Windows\NewMenuX.dll

[HKEY_LOCAL_MACHINEJ\Software\Microsoft\Shell\Extensions\NewMenu\
{130F6E46-C3F9-4fa8-BBBC-75720BC73231} = Launch Cale
Enabled = 1

The first few lines register the in-proc server. The last three lines tell the
shell about the added New Menu item. The default value of the key above is
Launch Cale. The one value under the key is a DWORD value named Enabled,
which is set to 1. Listing 17-2 contains the source for the NewMenuX example.

Listing 17-2 The NewMenuX example

Chapter 17 Programming the Pocket PC 851

DllCanUnloadNow @l PRIVATE
DllGetClassObject @2 PRIVATE
DllRegisterServer @3 PRIVATE
DllUnregisterServer @4 PRIVATE

NewMenuX.h
!!==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==

II Declare these here so that the MenuBar example can know the GUID
II {130F6E46-C3F9-4fa8-B8BC-75720BC73231}
static const GUID CLSID_NewMenuX =
{0xl30f6e46,0xc3f9,0x4fa8,{0xb8,0xbc,0x75,0x72,0xb,0xc7,0x32.0x31}};
const TCHAR szCLSIDNewMenuX[] =
TEXT ("{130F6E46-C3F9-4fa8-B8BC-75720BC73231}");

#ifndef JUST_GET_THE_GUID
II This isn't defined by the current Pocket PC SOK. Uncomment if needed.
II DECLARE_INTERFACE_(INewMenuitemServer. !Unknown)
II {
II II *** !Unknown methods ***
II STDMETHOD(Querylnterface) (THIS_ REFIID riid, LPVOID * ppvObj) PURE;
II STDMETHOD_(ULONG,AddRef) (THIS) PURE;
II STDMETHOD_(ULONG,Release) (THIS) PURE;
II II *** !NewMenuitemServer methods ***
II STDMETHOD<CreateNewitem) (THIS_ HWND hwndParent) PURE:
II } ;
II **** Start of Generic COM declarations ****
!!==
II MyClassFactory - Object declaration
II
class MyClassFactory : public IClassFactory
private:

long m_lRef;

public:
MyClassFactory();
-MyClassFactory();

//!Unknown methods
STDMETHODIMP Queryinterface (THIS_ REFIID riid, LPVOID *PPV);

STDMETHODIMP_(ULONG) AddRef (THIS);
STDMETHODIMP_(ULONG) Release (THIS);

(continued)

852 Part IV Device Programming

Listing 17-2 (continued)

Chapter 17 Programming the Pocket PC 853

long g_DllCnt = 0;
HINSTANCE hinst;

II Global DLL reference count
II DLL instance handle

const TCHAR szFriendlyName[J =TEXT ("Prog Win CE New Menu Extension");
II==
II DllMain - DLL initialization entry point
II
BOOL WINAPI DllMain (HANDLE hinstDLL, DWORD dwReason,

LPVOID lpvReserved) {
hinst = (HINSTANCElhinstDLL;
return TRUE;

II==
II DllGetClassObject - Exported function called to get pointer to
II Class factory object
II
STDAPI DllGetClassObject (REFCLSID rclsid, REFIID riid, LPVOID *ppv) {

MyClassFactory *pcf;
HRESULT hr;

II See if caller wants us ...
if (IsEqualCLSID (rclsid, CLSID_NewMenuX))

II Create IClassFactory object.
pcf =new MyClassFactory(l;
if (pcf == NULL)

return E_OUTOFMEMORY;
II Call class factory's query interface method.
hr = pcf->Queryinterface (riid, ppv);
II This will cause an obj delete unless interface found.
pcf->Release();
return hr;

return CLASS_E_CLASSNOTAVAILABLE;

II==
II DllCanUnloadNow - Exported function called when DLL can unload
II
STDAPI DllCanUnloadNow () {

if (g_DllCnt)
return S_FALSE;

return S_OK;

II==
II DllRegisterServer - Exported function called to register the server
II
STDAPI DllRegisterServer () {

(continued)

854 Part IV Device Programming

Listing 17-2 (continued)

Chapter 17 Programming the Pocket PC 855

//==
II DllUnregisterServer - Exported function called to remove the server
II information from the registry
II
STDAPI DllUnregisterServer()

INT re;
TCHAR szTmp[128];

wsprintf (szTmp, TEXT ("CLSID\\%s"), szCLSIDNewMenuX);
re= RegDeleteKey (HKEY_CLASSES_RDOT, szTmp);
if (re != ERROR_SUCCESS)

return E_FAIL;
II Create string, use multuple lines due to book format limits
lstrcpy (szTmp, TEXT l"Software\\Microsoft\\Shell\\"));
lstrcat (szTmp, TEXT ("Extensions\\NewMenu\\"));
lstrcat (szTmp, szCLSIDNewMenuX);
re= RegDeleteKey (HKEY_CLASSES_ROOT, szTmp);
if (re != ERROR_SUCCESS)

return E_FAIL;
return 5-0K;

//***,*****
II MyClassFactory Object implementation
//----------------- ------- --
// Object constructor
MyClassFactory::MyClassFactory () {

}

m_lRef = l;
return;

//Set ref count to 1 on create.

11--
// Object destructor
MyClassFactory::-MyClassFactory () {

return;

//--
// Queryinterface - Called to see what interfaces this object supports
STDMETHODIMP MyClassFactory::Queryinterface (THIS_ REFIID riid,

LPVOID *PPV) {

II If caller wants our !Unknown or IClassFactory object,
II return a pointer to the object.
if (IsEqual IID (riid, IID_IUnknown) 11

IsEqualIID (riid, IID_IClassFactory))

II Return pointer to object. *PPV = (LPVOID)this;
Add Ref(); II Inc ref to prevent delete on return.
return NOERROR;

(continued)

856 Part IV Device Programming

Listing 17-2 (continued)

*PPV. = NULL;
return CLNOINTERFACE);

}

I!- - - - - - - •• - - '. - - - - - -·- - • - - - - - " - • 'c - ··- -

/I Add Ref .c .Increment object ref count.
STDMETHOOIMP~CULONG J MYClassfactory:: AddRef (THIS) {

ULONG cnt:

cnt = (ULONG)Interlockedrncrement <&m_l Ref);
return cnt;

//-'. - ' - - - - - - - ' - - - - ' - - - - - - - - - ' - - - - - - - c - - - - - - - - - - - - - - ' - - - - - - - - - - - - - - •.• - - -

I I Rel ease - Decr.ement object ref count.
STDMETHODIMP_CULONGl MyClassFactory::Release (THIS) {

ULONG cnt;

cnt = (ULONG) lnterl ockedOecrernent C&rn_lReO;
if Cent == 0)

delete this:
return cnt;

--·- -.,. -- ... _ ----·- --- ---- ----·- ·- --.-- --- - - --- - -.... - .:.. - ·- -·- - -- - - --- - -- - - -.- - - -·- ... -
lockSefver - Cal led to tel 1 .the DLL .not to

STDMUHODIMP MyCTassFactory::Lock$erver (BOOL
(fl_oCk)
Ihterlockedincrement (&g_oncnt);

else
Interl ockedDecrement C&g_Ol l Cnt);

return. NOERROR;

MyNewMenuiternServer *pMyNMX:
HRESULT hr;

(pUnkOuter)
return.· (CLAS$---E_.NOAGGRtGATlONJ;

if (lsEqualIID <dld, lLD_lUnkriownl 11

ri id.

LPVOID *PPVl {

(riid, IlD_JNewMenuiternserver))

11 Create New menu item object.
pMyNMX = new MyNewMenulternServer():

Chapter 17 Programming the Pocket PC 857

if (!pMyNMX)
return E_OUTOFMEMORY;

II See if object exports the proper interface.
hr= pMyNMX->Oueryinterface (riid, ppv);
II This will cause an object delete unless interface found.
pMyNMX->Release ();
return hr;

return E_NOINTERFACE;

//**
II MyNewMenuitemServer Object implementation
!!--
// Object constructor
MyNewMenuitemServer: :MyNewMenuitemServer () {

m_lRef = 1;
g_DllCnt++;
return;

//Set ref count to 1 on create.

!!------------------······-··---
// Object destructor
MyNewMenuitemServer::-MyNewMenuitemServer () {

g_Dll Cnt- - ;
return;

!!--
// Queryinterface - Cal1ed to see what interfaces this object supports
STDMETHODIMP MyNewMenultemServer::Ouery!nterface !THIS_ REFIID riid,

LPVOID *PPV) {

II If caller wants our !Unknown or IID_IInputMethod2 object,
II return a pointer to the object.
if IIsEqualIID (riid, IID_IUnknownl I I

IsEqualIID (riid, IID_INewMenuitemServer))

II Return pointer to object.
*PPV = (INewMenuitemServer *)this;
AddRef(): // Inc ref to prevent delete on return.
return NOERROR;

*PPV = NULL;
return (E_NOINTERFACE);

}

//-----···---·-··-····---C-~-·-••------·----·--·--··•-·•••-·------·•••••

II AddRef - Increment object ref count.
STDMETHODIMP_(ULONG) MyNewMenuitemServer: :AddRef (THIS) {

ULONG cnt;

(continued)

858 Part IV Device Programming

Listing 17-2 (continued)

All the preceding code supports the last routine, CreateNewltem, in the
NewMenuX example. CreateNewltem simply launches the calculator applica
tion by using ShellExecuteEx.

Handling the New Menu from Within an Application
When your application is running, you can extend the New menu by fielding
WM_NOTIFY messages with the notify code of NMN_GETAPPREGKEY. This
notification is sent when the New menu is about to be displayed. The lParam
value points to a NMNEWMENU structure, which is defined as

typedef struct tagNMNEWMENU
{

NMHDR hdr;

TCHAR szReg[80];
HMENU hMenu;
CLSID clsid;

NMNEWMENU, *PNMNEWMENU;

Chapter 17 Programming the Pocket PC 859

The hMenu field of this structure contains the handle to the New menu
that is about to be displayed. The easiest way to extend the New menu is to use
AppendMenu to add menu items to the menu. The added menu items should
have ID values greater than IDM_NEWMENUMAX.

Some Pocket PC SDKs do not define the NMNEWMENU structure nor do
they define the notification messages. When compiling using those SDKs, you
will need to define these items in your application. The definitions for the noti
fication codes are shown here.

#define NMN_GETAPPREGKEY 1101
#define NMN_NEWMENUDESTROY 1102
#define NMN_INVOKECOMMAND 1103

The NMN_GETAPPREGKEY notification is sent to the foreground applica
tion when the New menu is displayed. As you might expect, the
NMN_NEWMENUDESTROY notification is sent when the New menu is
destroyed. Finally, the NMN_INVOKECOMMAND notification is sent when the
user selects a specific item.

The following code fragment fields the notification and adds an extra item
to the New menu.

#define IDM_MYNEWMENUITEM CIDM_NEWMENUMAX+l)
II See if New menu is being displayed.
if (lpnhr->code == NMN_GETAPPREGKEY) {

lpNewMenu = CPNMNEWMENU) lParam;
AppendMenu ClpNewMenu->hMenu, MF_ENABLED, IDM_MYNEWMENUITEM,

TEXT ("My own New menu item"));
AppendMenu (lpNewMenu->hMenu, MF_SEPARATOR, 0, 0);

When the user selects the added item on the New menu, a WM_COMMAND

message will be sent with the ID value of the menu item added to the New
menu.

Pocket PC Notifications
The Pocket PC has a unique method of notifying the user independent of the
standard Windows CE notification API discussed in Chapter 11. The Pocket PC
notifications can display an icon on the navigation bar at the top of the screen,
optionally display an information bubble with HTML text, and even beep the

860 Part IV Device Programming

user as necessary. The user can respond by tapping on hyperlinks or buttons
within the bubble. These responses are then sent back to the originating appli
cation. Unlike the standard Windows CE notifications, the Pocket PC notifica
tions require the application be running and manually set the notification as
needed. Once the notification is set, the application can stay running and
receive feedback from the notification via window messages or terminate and
specify that a COM in-proc server receives the feedback. Figure 17-3 shows a
Pocket PC desktop with a notification bubble being displayed.

Figure 17-3 A notification bubble

The bubble is anchored to the application-defined icon on the navigation
bar. Notification bubbles have a title and a text body. The bubble window is
automatically sized to fit the text.

Adding a Notification
To display a notification, the SHNotificationAdd function is used. Its rather sim
ple prototype is

LRESULT SHNotificationAdd (SHNOTIFICATIONDATA * pndAdd);

The single parameter is a pointer to a not-so-simple SHNOTIFICATION
DATA structure defined as

typedef struct _SHNOTIFICATIONDATA
DWORD cbStruct;
DWORD dwID;
SHNP npPriority;
DWORD csDuration:
HICON hicon;

DWORD grfFlags;
CLSID clsid;
HWND hwndSink;
LPCTSTR pszHTML;
LPCTSTR pszTitle;
LPARAM lParam;

SHNOTIFICATIONDATA;

Chapter 17 Programming the Pocket PC 861

The initial field, cbStruct, is the obligatory size field that must be initialized
to the size of the structure. The dw!D field will be the ID value for the notifica
tion. The ID value will be used to identify any user responses to the notifica
tion. The npPriorizy field is set to either SHNP _ICONIC to have the notification
simply display an icon on the navigation bar or to SHNP_INFORM if the notifi
cation is to display the bubble text immediately. In the case of SHNP_ICONIC,
if the user taps the icon, the bubble text is then displayed. The csDuration field
specifies how long the notification should be displayed before the system auto
matically removes the icon and bubble. Unlike almost every other time param
eter in Windows, this csDuration is measured in seconds, not milliseconds. The
hlcon field should be set to a 16-by-16 icon that will be used in the navigation
bar to display the notification.

The grjFlags flags field can be set with a series of flags that configure the
notification. The SHNF_CRJ11CAL flag changes the color of the title and border
of the bubble. The SHNF_FORCEMESSAGE flag displays the bubble even if the
registry settings of the device are configured to not display notification bubbles.
The SHNF_DISPLAYON flag turns on the display if it's off when the notification
is displayed.

The clsid field has two uses. First, it's an identifier for the notification. It
should be set to a GUID defined by the application. The second use is to identify
a COM in-proc server. The in-proc server is one way the shell can provide feed
back to the application. The hwndSink field can also be used in the feedback
mechanism. If the hwndSink field is set to a valid window handle, the shell will
provide feedback via WM_N011FY messages to that window. Feedback is sent
when the text bubble is displayed, when it is closed, and when the user taps on
any hyperlinks in the HTML text in the bubble. If the clsid field is set to the
CLSID of a COM in-proc server that exposes an JShellNotificationCallback inter
face, the feedback is delivered using calls to the interface's OnShow, OnDismiss,
OnCommandSelected, and OnLinkSelected methods. The difference between
OnCommandSelected and OnLinkSelected will be explained momentarily.

The pszHTML field can be NULL, in the case of an icon-only notification or
either unformatted Unicode text or HTML Unicode text. The HTML text allows
for surprisingly elaborate formatting of the text in the bubble. Paragraph breaks,

862 Part IV Device Programming

links, and even simple controls can be displayed in the bubble. The following
HTML was used to display the bubble shown in Figure 17-4:

<html><body><p>This is a list<!p>

Item l<lli>
Item 2<1li>
Item 3<1li>

<lul>
<input type=\"button\" value=\"Yes\" name=\"cmd:200\">
<input type=\"button\" value=\"No\" name=\"cmd:201\">
<input type=\"button\" value=\"Cancel\" name=\"cmd:202\"><!p>

<p> <lp>
<p>Click here<la> to follow a link.<lp>
<lbody><lhtml>"; <!html>

5 Thisisalist
0

• ll:aml
• Item2
• ltam3

Cf<!< here to follow a ink.

Figure 17-4 Complex HTML displayed in a notification bubble

The pszTitle field should point to a text string that will be the title of the
bubble. The final field, !Param, is an application-defined value that will be
passed back in the feedback WM_NOTIFY messages or in the callback to the in
proc server.

The feedback received by the application depends on how the user
responds to the notification. When the user clicks on the notification icon, the
system sends a WM_NOTIFY to the window specified in the hwndSink field. If
the application returns a zero, the text bubble will be displayed. If the applica
tion returns a nonzero value, the bubble will not be displayed. In this case, the
application needs to provide whatever feedback it deems necessary to the user.

The HTML text can contain two types of feedback elements. The first is
the standard hyperlink, as shown at the top of the next page.

Chapter 17 Programming the Pocket PC 863

Click here<Ja> to go to MSNBC

If the user clicks on a hyperlink, the notification system sends a
WM_NOTIFY message to the window with a notification code of
SHNN_LINKSEL. The notification structure provides the text of the URL as well
as the data defined in the !Param field of SHNOTIFICATIONDATA. If the HREF
is in the format CMD:n, as in

Click here<Ja> to go to MSNBC

the system sends a WM_ COMMAND message instead of a WM_NOTIFY to the
window. In this case, the value n is the ID value of the message, and the ID of
the notification is returned in lParam. For the in-proc server, clicking the stan
dard hyperlink results in a call to the interface's OnLinkSelected method while
clicking on links with the CMD:n format results in the OnCommandSelected
method being called. The CMD value 0 is reserved, a value of 1 sends a notifi
cation but does not dismiss the bubble, and a command value of 2 does not dis
miss the bubble nor does it result in a WM_COMMAND message being sent.
Applications should generally use CMD values greater than 2.

When the user dismisses the bubble either by clicking a hyperlink or by
clicking on the bubble itself, a final notification that the bubble is being dis
missed is sent either by message or to the in-proc server.

Modifying a Notification
Configuration data can be queried from a notification by calling the
SHNot~ficationGetData function. Its prototype is shown here:

LRESULT SHNotificationGetData (canst CLSID * pclsid,
DWORD dwID, SHNOTIFICATIONDATA * pndBuffer);

The first two parameters are pclsid, which points to the CLSID of the notifica
tion, and dw!D, which specifies the ID of the notification. The function fills in
the SHNOTIFICATIONDATA structure pointed to by the third parameter, pnd
Buffer.

The notification can then be modified by changing the relevant data in the
SHNOTIFICATIONDATA structure and calling SHNotificationUpdate, prototyped as

LRESULT SHNotificationUpdate (DWORD grnumUpdateMask,
SHNOTIFICATIONDATA *pndNew);

The grnumUpdateMask parameter is a set of flags that indicate which of the
fields in the SHNOTIFICATIONDATA structure pointed to by pndNew should be
used to update the notification. The flags are SHNUM_PRIORITY to change the
priority of the notification, SHNUM_DURATION to change the duration,

864 Part IV Device Programming

SHNUM_ICON to change the icon, SHNUM_HTML to change the bubble text,
and SHNUM_TITLE to change the bubble title text.

Removing a Notification
If the notification is simply an icon, it will be automatically removed when the
notification times out. However, if the notification displays a bubble, the time
out value of the notification is used to automatically dismiss the bubble, not the
icon. If the bubble text doesn't have a link or command, the user can dismiss
the text bubble, but the icon remains. In this case and in the case where the
timeout is set to infinite, there needs to be a way for the application to remove
the notification. Removing the notification is accomplished with the aptly
named SHNotificationRemove function, defined as

LRESULT SHNotificationRemove Cconst CLSID * pclsid, DWORD dwID);

The two parameters are the CLSID and ID value of the notification.

Dialog Boxes
In my experience, creating a well-designed dialog box is one of the program
mer's more difficult tasks. The problem lies in presenting the user with an intu
itive interface that allows quick interaction with an application. The task is
doubly difficult on a Pocket PC, which has a small screen and a keyboard that
keeps popping up over the bottom third of the screen. In this section, I'll
explain creating dialog boxes and the assistance that the Pocket PC shell pro
vides. However, it is always good to remember the cardinal rule: keep it simple.
The Pocket PC provides a number of functions that help with dialog boxes, but
the best programs don't use all these functions at once.

Because the Pocket PC is based on Windows CE, dialog boxes act by
default as they do in any Windows system: They are created with the standard
Win32 functions such as CreateDialog, they are created by the dialog manager
based on dialog box resource templates, and they have dialog box procedures.
However, the user interface guidelines for the Pocket PC specify that dialog
boxes should be full screen so as not to confuse the user. In addition, property
sheets on the Pocket PC have their tabs on the bottom of the window instead
of the top. Windows CE doesn't support these characteristics by default; conve
niently though, the Pocket PC provides extensions to assist the developer.

Chapter 17 Programming the Pocket PC 865

Full-Screen Dialog Boxes
To assist programmers in creating full-size dialog boxes, the Pocket PC shell
implements a function named SH/nitDialog. As the name implies, the function
should be called during the handling of the WM_INITDIALOG message. The
function is prototyped as

BOOL SHinitDialog (PSHINITDLGINFO pshidi);

The function takes a single parameter, a pointer to an SHINITDLGINFO
structure defined as

typedef struct tagSHINITDIALOG{
DWORD dwMask;
HWND hDlg;
DWORD dwFlags;

SHINITDLGINFO:

The dwMask field must be set to the single flag currently supported,
SHIDIM_FLAGS. The hDlg field should be set to the window handle of the dia
log. The third parameter, dwFlags, specifies a number of different initialization
options. The SHIDIF_DONEBUTTON specifies that the navigation bar across the
top of the screen contain an OK button in the upper right corner. This flag is
typically set because the user interface guidelines specify that dialogs have an
OK button in the navigation bar, and the guidelines specify that there be no
Cancel button. While one could argue with this specification, the user interface
provides no automatic way to provide a Cancel button.

The SHIDIF_S!PDOWN flag closes the SIP when the dialog is displayed.
This flag should be set for informational dialogs that have no text input fields.
Note that the absence of this flag doesn't automatically display the SIP. It sim
ply means that the state of the SIP remains unchanged when the dialog box is
displayed.

Three other flags can be set in the dwFlags field:

• SHIDIF_SIZEDLG

• SHIDIF_SIZEDLGFULLSCREEN

• SHIDIF_FULLSCREENNOMENUBAR

These flags deal with how the dialog box will be sized. The
SHIDIF_SIZEDLG flag tells the system to size the dialog box depending on the
state of the SIP. If the SIP is displayed, the dialog box will be sized to fit above
the SIP. If the SIP is hidden, the dialog will be sized to fit just above the menu
bar. If, however, you have a floating SIP, the dialog box doesn't size correctly.
This is a rare occurrence because neither of the bundled input methods that

866 Part IV Device Programming

ship with the Pocket PC can be undocked. However, the example input method
in Chapter 18 does have the ability to float.

The SHIDIF_SIZEDLGFUUSCREEN and SHIDIF_FUUSCREENNOMENUBAR
flags size the dialog to fit the entire screen regardless of the state of the SIP. The
difference between the two flags is that SHIDIF_FULLSCREENNOMENUBAR
does not leave room for the menu bar at the bottom of the screen.

Input Dialogs
In general, it's helpful to divide dialogs into informational dialogs and input dia
logs. Information dialogs deliver information to the user and for the most part
don't need text input. Input dialogs are dialogs that require lines of text to be
entered, such as passwords or IP addresses. For input dialogs, you can group
the controls in the top two thirds of the dialog so that those fields aren't covered
up by the SIP, which will almost always be displayed.

Whether the dialog is an input dialog or an informational dialog, another
Pocket PC function that is typically called during WM_INITDIALOG is

BOOL SHSipPreference (HWND hwnd, SIPSTATE st);

This function sets the preferred state of the SIP. I say preferred state
because the action of this function depends on the state of the SIP prior to
when it was called. The two parameters are the handle to the window, which
can be a dialog box or a custom control, and a set of SIP state flags listed here:

• SIP _UP Displays the SIP.

• SIP _DOWN Requests to hide the SIP. The SIP is lowered only after
a predetermined period of milliseconds in case the user switches
back to a window that is displaying the SIP.

• SIP _.FORCEDOWN Immediately forces the SIP to hide.

• SIP _UNCHANGED Leaves the SIP alone or cancels a previous call
to SHSipPreference.

SHSipPreference is quite useful for writing custom controls that require SIP
input. When the control receives the focus, it can call SHSipPreference to
request the SIP be displayed. When the control loses the focus, it can call
SHSipPreference to request the SIP be hidden. If the control receiving focus
then calls SHSipPreference to display the SIP, this call will override the request
to hide the SIP and the SIP will remain displayed without an annoying flash of
the SIP.

Chapter 17 Programming the Pocket PC 867

If the dialog is an informational dialog, the call to SHSipPreference requests
that the SIP be lowered. The dialog box can then display information in the
entire area of the dialog. However, using SHlnitDialog and SHSipPreference
doesn't change the state of the SIP when the dialog is displayed. The dialog box
should handle the WM_AC71VATE message and call SHHandleWMActivate, as in
the HelloPPC example earlier in the chapter. This call ensures that if the user
switches away from the dialog and displays the SIP in another application,
switching back to the informational dialog will hide the SIP.

For input dialogs, managing the SIP is somewhat more difficult. You must
display the SIP as needed when the focus window is a control that requires text
input. The Pocket PC provides a couple of ways to interactively manage the SIP
for your dialog. First, the dialog box can display the SIP when the dialog is cre
ated and keep it up for the life of the dialog. Another technique is to display the
SIP only when the user is working with a control that requires keyboard input.

To display the SIP and keep it displayed while the dialog has focus, simply
insert a call to the function SHlnputDialog in your dialog procedure so that it is
called for every message sent to the dialog box. The function prototype for
SHlnputDialog is

void SH!nputDialog (HWND hwnd, UINT uMsg, WPARAM wParam);

The parameters are the window handle, message, and wParam for the current
message. This helper function appropriately commands the SIP to show or
hide, depending on whether the dialog box is gaining or losing focus.

To have the SIP interactively show and hide itself depending on the con
trol that has focus in the dialog box, you use a special control, WC_SIPPREF,
which can be inserted into a dialog box. Typically you'll do this by specifying
a line in the dialog box template. The resource editor doesn't insert this control
by default. You must insert it either by inserting a User Control in the dialog box
editor or by manually editing the dialog box resource. Editing the resource file
manually might be more reliable because the WC_SIPPREF control must be the
last control specified in the dialog box template. Adding the control is as simple
as inserting the following text as the last line in the dialog box template:

CONTROL "",-1,"SIPPREF",NOT WS_VISIBLE,-10,-10,6,6

Because this control is one of the Pocket PC special controls, your application
must initialize it by calling

BOOL SH!nitExtraControls (void);

SHlnitExtraControls should be called once during your application's initializa
tion to initialize any of the Pocket PC special controls such as CAPEDIT and
SIPP REF.

868 Part IV Device Programming

Property Sheets
Another area where the Pocket PC's look and feel differs from generic Windows
CE builds is in the display of property sheets. Property sheets in Pocket PC
applications are full screen, with tabs at the bottom of the sheet instead of the
top. To conform to this look, an application must create property sheets with a
special flag specified and then intercept the creation notification of the sheet to
modify the sheet style. Figure 17-5 shows the property sheet created by the Dlg
Demo example from Chapter 6 on a Pocket PC.

ta~
D Check Box

D Auto check box

D Auto 3-st!te box

@ Auto radio button 1
0 Auto radio button 2

Figure 17-5 A property sheet on the Pocket PC has tabs across the bottom.

To create a property sheet that is full screen and that has tabs on the bot
tom, add the flags PSH_MAXIMIZE and PSH_USECALLBACK in the dwFlags
field of the PROPSHEETHEADER structure. PSH_MAXIMIZE tells the dialog
manager to make the property sheet a full-screen window. The
PSH_USECALLBACK flag is a standard Win32 property sheet flag that tells the
dialog to call back to the application when certain events occur in the property
sheet. Specifically, the message we are interested in is the Windows CE unique
PSCB_INITIALIZED notification, which indicates that the property sheet's Tab
control has been created. To field the PSCB_INITIALIZED notification, the appli
cation must provide a callback function with the following prototype:

UINT CALLBACK PropSheetPageProc (HWND hwnd, UINT uMsg,
LPPROPSHEETPAGE ppsp);

The parameters sent back to the application are a handle value docu
mented to be reserved, the notification code in the uMsg parameter, and, on
some notifications, a pointer to a PROPSHEETPAGE structure. For our purposes,
the callback function can simply employ the following code:

Chapter 17 Programming the Pocket PC 869

int CALLBACK PropSheetProcCHWND hwndDlg, UINT uMsg, LPARAM lParam) {

if CuMsg == PSCB_INITIALIZED) {
II Get tab control
HWND hwndTabs = GetDlgltem ChwndDlg, 0x3020);

DWORD dwStyle = GetWindowLong (hwndTabs, GWL_STYLE);
SetWindowLong ChwndTabs, GWL_STYLE, dwStyle I TCS_BOTTOM);

else if (uMsg == PSCB_GETVERSION)
return COMCTL32_VERSION;

return l;

The source of this rather strange code comes from the MFC source code
provided with the Pocket PC SDK. During the PSCB_INITIAL!ZE notification,
the handle of the Tab control of the property sheet is queried using the pre
defined control ID Ox3020. The style bits of the Tab control are then modified
to have the control place the tabs on the bottom instead of the top by setting
the TCS_BOTTOM style flag.

Two additional callback notifications are available exclusively on the
Pocket PC. The PSCB_GETLINKTEXT notification is sent to query the title of the
property sheet. This text is displayed on the sheet itself, not on the navigation
bar at the top of the screen.

The PSCB_GETLINKTEXT notification is sent to the callback procedure to
see if the application wants to display a hyperlink string below the tabs on the
property sheet. The string is copied to the buffer pointed to by lParam. The
hyperlink within the string should be in the following form:

TEXT ("Launch the calculator by tapping <file:calc.exe{here}>.")

The hyperlink is enclosed in angle brackets (<>). The text displayed for
the link is enclosed in curly brackets ({}). When the hyperlink is tapped, the
Pocket PC will launch calc.exe. The hyperlink can also be a data file such as
Bookl.pxl or Memo.pwd.

Auto Run
The Pocket PC has a feature that can automatically launch an application when
any new external storage is detected such as the insertion of a CompactFlash or
Secure Digital card. This feature is typically used to provide an auto-install fea
ture for software. However, there is no reason the application launched has to
be an installation program.

870 Part IV Device Programming

When the shell detects that a storage card has been inserted, it looks in the
root directory of that card for a directory with a specific name. If that directory
exists and contains an application named autorun.exe, the application is first
copied to the \windows directory, and then launched with a command line
string install. When the card is removed, the copy of autorun in the \windows
directory is again launched, this time with a command line of uninstall.

The directory that the Pocket PC searches for depends on the type of CPU
in the device because an application must be compiled specifically for a CPU.
The autorun directory names match the CPU type value returned from the Get
Systemlnfo function. The following list shows the values for a few of the more
popular CPUs. All the CPU values are defined in Winnt.h.

MIPS (41xx series and 3910) 4000

SH3 10003

SH4 10005

StrongARM 2577

XScale 1824

When autorun.exe is launched, it might need to know which directory it
was copied from on the storage card. The application can't use GetModuleFile
Name because it was copied and launched from the \windows directory. To
determine the fully specified autorun path, an application can call

BOOL SHGetAutoRunPath (LPTSTR pAutoRunPath);

The single parameter is the address of a TCHAR buffer of at least MAX_PATH
characters. The function will fail if no storage card is found. If a card is inserted,
the function returns the expected autorun directory whether or not the actual
folder exists on the storage card. For example, for a system with a StrongARM
CPU and an Autorun.exe file in the appropriate directory, the directory returned
is \storage card\2577\autorun.exe.

SHGetAutoRunPath can optionally be supported by systems based on
Windows CE .NET 4.2 or later. However, the Explorer shell does not automati-

Chapter 17 Programming the Pocket PC 871

cally launch applications from storage cards. An OEM could easily add this fea
ture if needed.

Additional Pocket PC Shell Functions
The Pocket PC has a few functions provided to support applications. Most of
these functions are unique to the Pocket PC and are available to solve specific
issues that Pocket PC applications need to deal with occasionally. These func
tions are also available on embedded systems that support the aygshell compo
nent but their implementation is OEM specific.

Full-Screen Windows
The SHFullScreen function allows an application to control the visibility of
items such as the Start icon on the navigation bar, the navigation bar itself, and
the SIP button. The function is prototyped as

BOOL SHFullScreen CHWND hwndRequester, DWORD dwState);

The first parameter is the handle of the window requesting the change. The
dwState parameter can be a combination of the following:

• SHFS_HIDETASKBAR Hide the navigation bar.

• SHFS_SHOWTASKBAR Show the navigation bar.

• SHFS_HIDESIPBUITON Hide the SIP button on the menu bar.

• SHFS_SHOWSIPBUITON Show the SIP button on the menu bar.

• SHFS_HIDESTARTICON Hide the Windows icon on the naviga
tion bar. This disables the Start menu.

• SHFS_SHOWSTARTICON Show the Windows icon on the naviga
tion bar. This enables the Start menu.

The flags that hide the navigation bar, the SIP button, and the Start icon
can be passed only if the handle passed in the first parameter of SHFullScreen
is the handle to the foreground window.

Freeing Memory
Another handy function allows an application to request that the system free a
specified amount of memory so that memory can be allocated. The function is

BOOL SHCloseApps CDWORD dwMemSought);

872 Part IV Device Programming

This parameter is the amount of memory that the application needs. When this
function is called, the Pocket PC checks the current memory state to determine
whether the amount of memory requested is available. If so, the function returns
immediately. If not, the Pocket PC uses various methods, including closing appli
cations, to attempt to free that amount of memory. SHCloseApps will return TRUE
if the amount of memory is available and FALSE if it could not free the amount
requested. Because this function closes applications and therefore must wait for
each application to properly shut down, it can take a few seconds to complete.

Controlling the SIP
SHSiplnfo is an omnibus function that lets you control the soft keyboard. On the
Pocket PC, SHSiplnfo has limited usefulness because most applications should
use SHSipPreference instead of SHSiplnjo. Still, SHSiplnfo is handy because it is
the only way to query the state and location of the SIP. It also allows an appli
cation to change the default input method. The function is prototyped as

BOOL SHSipinfo (UINT uiAction, UINT uiParam, PVOID pvParam,
UINT fWi nini);

The first parameter to SHSiplnfo, uiAction, should be set with a flag that speci
fies the action you want to perform with the function. The allowable flags are

• SPI_SETSIPINFO Sets the SIP configuration, including its location
and its visibility (Obsolete. Use SHSipPreference.)

• SPI_GETSIPINFO Queries the SIP configuration

• SPI_SETCURRENTIM Sets the current default input method

• SPI_GETCURRENTIM Queries the current default input method

Because the behavior of SHSiplnfo is completely different for each of the
flags, I'll describe the function as if it were three different function calls. I won't
discuss SPI_SETSIPINFO because its function is superseded by SHSipPreference.
For each of the flags, the second and fourth parameters, uiParam and JWinlni,
must be set to 0.

Querying the State of the SIP
To query the current state of the SIP, call SHSiplnfo with the SPI_GETSIPINFO
flag in the uiAction parameter. In this case, the function looks like this:

BOOL SHSipinfo (SPI_GETSIPINFO, 0, SIPINFO *psi. 0);

The third parameter must point to a SIPINFO structure, which is defined as

typedef struct {
DWORD cbSize;
DWORD fdwFl ags;
RECT rcVisibleDesktop;
RECT rcSipRect;
DWORD dwlmDataSize;
VOID *PVlmData;

SIPINFO;

Chapter 17 Programming the Pocket PC 873

The structure's first field, ebSize, must be set to the size of the SIPINFO
structure before a call is made to SHSiplnfo. The second field in SIPINFO, fdw
Flags, can contain a combination of the following flags:

• SIPF_ON When set, the SIP is visible.

• SIPF_DOCKED When set, the SIP is docked to its default location
on the screen.

• SIPF_LOCKED When set, the visibility state of the SIP can't be
changed by the user.

The next two fields of SIPINFO provide information on the location of the
SIP. The field reVisibleDesktop is filled with the screen dimensions of the visible
area of the desktop. If the SIP is docked, this area is the rectangle above the SIP.
If the SIP is undocked, this rectangle contains the full desktop area minus the
taskbar, if the taskbar is showing. This field is ignored when you set the SIP
configuration. Some SIPs might have a docked state that doesn't run from edge
to edge of the screen. In this case, the rectangle describes the largest rectangu
lar area of the screen that isn't obscured by the SIP.

The reSipReet field contains the location and size of the SIP. If the SIP is
docked, the rectangle is usually the area of the screen not included by re Visible
Desktop. But if the SIP is undocked, reSipReet contains the size and position of
the SIP while reVisibleDesktop contains the entire desktop not obscured by the
taskbar, including the area under the SIP. Figure 17-6 shows the relationship
between re VisibleDesktop and reSipReet.

The final two fields of SIPINFO allow you to query information specific to
the current input method. The format of this information is defined by the input
method. To query this information, set the pvlmData field to point to a buffer
to receive the information and set dwlmDataSize to the size of the buffer. It is
up to the application to know which input methods provide what specific data.
For most input methods, these two fields should be set to 0 to indicate that no
IM-specific data is being queried.

874 Part IV Device Programming

~-----rcVisibleDesktop

.__ _____ rcSipRect

Docked SIP

~-----rcVisibleDesktop

'------rcSipRect

Undocked SIP

Figure 17-6 The relationship between rcVisibleDesktop and rcSipRect
in the SIPINFO structure

Changing the Default Input Method
You can use SHSiplnfo to query and to change the current SIP. To query the cur
rent SIP, you call SHSiplnfo with the SP!_ GETCURRENTJM flag in the uiAction
parameter, as in

BOOL SHSipinfo (SPI_GETCURRENTIM, 0, CLSIO *pclsid, 0);

In this case, the third parameter points to a CLSID variable that receives the
CLSID of the current input method.

To set the current input method, call SHSiplnfo with the uiAction param
eter set to SPI_SETCURRENTJM, as in

BOOL SHSipinfo (SPI_SETCURRENTIM, 0, CLSID *PClsid, 0);

Here again, the third parameter of SHSiplnfo is a pointer to a CLSID value. In
this case, the value must contain a CLSID of a valid input method.

This chapter has covered a fair amount of ground. However, the Pocket
PC is more than applications. It's possible to extend the basic shell of the
Pocket PC in a number of ways. In the next chapter, we'll extend the Today
screen and create a new input method for the SIP.

Extending the Pocket PC
In Chapter 17, I talked about how to write applications for the Pocket PC. In
this chapter, I'll talk about ways to extend the basic functionality of parts of the
Pocket PC shell. Specifically, I'll demonstrate how to create custom items for the
Today screen and how to write a custom input method. The examples are sim
ple, but in both cases they demonstrate the functions necessary for much more
complex extensions.

Custom Today Screen Items
The Today screen is the home page of the Pocket PC. It's automatically dis
played after the system isn't used for a predetermined period of time. It con
tains a snapshot of the relevant data from the applications bundled with the
Pocket PC. By using a simple DLL, you can extend the Today screen to allow
other applications to summarize their data or to allow stand-alone Today screen
inserts that provide data only through the Today screen. Figure 18-1 shows the
Today screen with five items: the Today title bar, the Owner Info item, the Tasks
item, the Inbox item, and the Calendar item.

Today screen items are implemented as simple Windows CE DLLs with
two predefined entry points. The system finds the extensions by looking under
a specific registry key. It then loads the DLL, asks the item its desired height,
and asks it to display its data. The Today Control Panel applet allows users to
selectively enable and disable individual items as well as set the order of the
items on the Today screen. The user can also configure an individual item
through the Today Control Panel applet. When the user selects an item from a
list of all the Today screen items and taps the Options button, the item's DLL is

875

876 Part IV Device Programming

loaded and a dialog box is created by using a dialog box procedure exported
from the DLL. This dialog box is created using resources stored in the DLL.

Figure 18-1 The Pocket PC Today screen

Implementing a Today Screen Item
The requirements for a Today screen item DLL start with an exported entry
point, InitializeCustomltem, which must be exported as ordinal 240. The DLL
can also optionally support a configuration dialog box. If it does, the DLL must
export another entry point, CustomltemOptionsDlgProc, at ordinal 241, which is
used as the dialog box procedure for the options dialog. In addition, the
resource for the options dialog must be included in the DLL's resource and have
a resource ID of ID_TODAy_cuSTOM.

The InitializeCustomltem function is prototyped as

HWND APIENTRY InitializeCustomitem (TODAYLISTITEM *ptli, HWND hwndParent);

The first parameter is a pointer to a TODAYLISTITEM structure; the second
parameter is the handle of a window that will be the parent of the item window
created by the extension. Because the TODAYLISTITEM structure is used
throughout the Today screen interface, this is as good a place as any to describe
it. Many of the fields in this structure might not be useful or even relevant in this
call. However, the structure tends to be passed back to the DLL on almost every
call, so most of the fields are used at some time in the life of the DLL. The struc
ture is defined as

typedef struct _TODAYLISTITEM
TCHAR szName[MAX_ITEMNAME];
TODAYLISTITEMTYPE tlit;
DWORD dwOrder;

DWORD cyp;
BOOL fEnabled;
BOOL fOptions;
DWORD grfFlags;
TCHAR szDLLPath[MAX_PATH];
HINSTANCE hinstDLL;
HWND hwndCustom;
BOOL fSizeOnDraw;
BYTE *prgbCachedData;
DWORD cbCachedData;

TODAYLISTITEM;

Chapter 18 Extending the Pocket PC 877

When InitializeCustomltem is called, the szName field is filled with the
name of the registry key that identified the item. This name is handy for finding
the item's registry key to retrieve custom data. The second field is tlit, a TODAY
LJSTITEMTYPE enumeration that defines the type of extension. For custom
extensions this field will always be tlitCustom. The dwOrder field will be set to
the order index of this item. The cyp field contains the height of the item in pix
els. Items are ordered from the lowest to the highest value starting at the top of
the Today screen. The user controls the order through the Control Panel applet.
For most situations, an extension's order in the Today window shouldn't affect
the extension's behavior.

The ./Enabled field indicates whether the user has enabled your Today
item in the Control Panel. This field should be queried when InitializeCustom
Item is called; if it is 0, you should return immediately with a return code of 0.
The]Options flag reflects whether the Today item has an options dialog. This
flag is taken from the registry entry for this item.

Let's skip the grjFlags field for a moment. The szDLLPath field contains
the filename of the DLL that contains the code for the item. The hinstDLL field
is the DLL's instance handle. The hwndCustom field will contain the handle of
the item's child window when this structure is passed after the item's child win
dow has been created. The Today screen item manager uses the fSizeOnDraw
field internally.

The last two fields, prgbCachedData and cbCachedData, along with the
grjFlags field, allow the DLL to store, or cache, custom data about the state of
its window and the data it is displaying. The goal here is to prevent the item
from having to query a file or database every time the Today screen is asked to
repaint itself. The grjFlags field can be set to anything the DLL requires. Like
wise, if the DLL needs to store additional data, a memory block can be allo
cated. A pointer to the memory block is saved in prgbCachedData, and the size
of the memory block is saved in cbCachedData. Since these values are passed
back to the DLL on a regular basis, these fields free the DLL from having to store
data internally in statically defined structures.

878 Part IV Device Programming

Creating the Item Window
When InitializeCustomltem is called, the DLL should create its child window
that will display the data for that item. The window should be a child window
with its parent set to the window handle passed in the hwndParent parameter.
The function should return the handle to the child window if the initialization
was successful, or 0 otherwise.

Of course, to create a window, you will first need to register a class for
that window. The class registration can take place either during the processing
of the InitializeCustomltem call or during the PROCESS_A7TACH notification to
DllMain when the DLL is loaded. If the registration is performed during the
InitializeCustomltem call, be sure not to return failure from the function if the
call to RegisterClass fails. Because InitializeCustomltem is called more than
once, the second call to register the class will fail if the DLL attempts to repeat
the class registration. The DLL should also be designed to unregister the win
dow class when the DLL is unloaded. This design feature is quite helpful for
debugging purposes, when the DLL will change as the code develops.

The Item Window
Once the item's window is created, the Today screen will send a custom mes
sage, WM_TODAYCUSTOM_QUERYREFRESHCACHE, to the child window.
When the message is sent, the wParam parameter points to the TODAYLISTITEM
structure that was passed in the call to InitializeCustomltem. The message is sent
to ask the item if the data it is presenting to the user has changed and therefore
the window needs updating. If so, the window should set the cyp field of the
TODAYLISTITEM structure to the height in pixels for the item window. The win
dow should return TRUE for the message. If no update is necessary, the window
should respond to the message with FALSE. It is important that the item window
return TRUE only when necessary, since returning TRUE causes the Today
screen to repaint itself. Having this happen too often-especially when nothing
on the screen changes-distracts the user and wastes power.

The item shouldn't draw in its window during the handling of the
WM_TODAYCUSTOM_QUERYREFRESHCACHE message. If the data changes
and the item returns TRUE, the item's window will be invalidated by the item
manager, causing a WM_PAINTmessage to be sent to the item window, which
is where the window should be redrawn.

The WM_TODAYCUSTOM_QUERYREFRESHCACHE message is sent to the
item's window every few seconds, allowing the item to check whether it needs
to modify the currently displayed data. Since the item has a chance to modify
the cyp field, this is also the place where the item can ask to be resized to a
taller or shorter window. The width of the window will be the full width of the
Pocket PC screen minus the width of the scroll bar if present.

Chapter 18 Extending the Pocket PC 879

The look of the item window needs to blend in with the user's Today
screen theme. Part of the theme is the color of the font being used in the Today
screen items. The color to use can be queried by sending a
TODAYM_GETCOLOR message to the item's parent window, as in

rgbColor = (COLORREF)SendMessage (GetParent ChWnd), TODAYM_GETCOLOR,
(WPARAMlTODAYCOLOR_TEXT, NULL);

In addition, any text should be drawn in transparent mode. This can be
accomplished with a call to SetBkMode passing the TRANSPARENT flag.

The item window should process the erase background
(WM_ERASEBKGND) message to properly display the theme colors of the
Today screen in the item window. During the processing of this message, the
item window should send a TODAYM_DRAWWATERMARK message to its par
ent. The wParam should be set to 0, and the !Param should point to a TODAY
DRAWWATERMARKINFO structure defined as

typedef struct
{

HDC hdc;
RECT re;
HWND hwnd;

TODAYDRAWWATERMARKINFO;

The item window should initialize this structure before sending the mes
sage. A possible erase routine might look like this:

case WM_ERASEBKGND:
{

TODAYDRAWWATERMARKINFO wmi;
wmi .hwnd = hwnd;
wmi .hdc = CHDC)wParam;
GetClientRect(hwnd, &wmi .re);
SendMessage(GetParent(hwnd), TODAYM_DRAWWATERMARK. 0, (LPARAMl&dwi);
return l;

The window should return a one from WM_ERASEBKGND to indicate that
it has processed the message.

Interacting with the User
The custom item interacts with the user by painting its data onto its window in
response to WM_PAINTmessages. Because the custom item is a window, it also
receives any mouse messages. Given that the user interface guidelines recom
mend a single click for most actions, the typical thing to do is monitor for a

880 Part IV Device Programming

WM_LBUITONUP event and provide a default action. For example, the item
might launch the application that can edit the data the item shows.

Because the item is simply a child window of the Today screen, it can do
almost anything a window can do, with these limitations: The Today screen
controls the size and position of the item child window, so the item shouldn't
try to move or size itself. Also, the Today screen is designed to scroll if more
items are being displayed than can fit on the screen. Because of this feature, the
item manager can move your child window at any time.

Unloading the Custom Item
When the Today screen item manager needs to completely refresh the items on
the Today screen, it notifies each window by sending a
WM_TODAYCUSTOM_CLEARCACHE message. Here again, the wParam param
eter points to the item's TODAYLISTITEM structure, allowing the individual
items to free the memory they have allocated during the life of the item. Gen
erally, this means freeing the data block pointed to by the prgbCachedData
field if the item had previously allocated such a block of data.

The Options Dialog
Today items must implement their options dialog in a rather strange way. The
DLL doesn't simply export a function that the Today item manager could call to
instruct the item to display an options dialog. Instead, the DLL is required to
export a specific function, the Options dialog box procedure, and provide in its
resource block a dialog box template with a specific ID number. With a pointer
to a dialog procedure and a dialog template, the item manager can call Create
Dialog itself.

The dialog box procedure provided by the item should conform to Pocket
PC user interface guidelines and call SHinitDialog to make itself full screen. In
addition, the documentation suggests that the Options dialog box be written to
look like the Today screen Control Panel applet, with blue header text and a
separator line above whatever dialog controls you see fit to use. The example
program at the end of this section has an Options dialog box that conforms to
these suggestions. The configuration data should be stored in the registry so
that the item window can query it when the Today screen loads the item.

Registering the Custom Item
The Today screen locates the custom items by looking in the registry for a list
of items. The registry key that contains the list is [HKEY _LOCAL_MACHINE]
\Software\Microsoft\ Today\Items. Each custom Today screen item should cre
ate a subkey under the key listed above. This subkey name will be the name

Chapter 18 Extending the Pocket PC 881

shown to the user in the Today screen configuration dialog, so it must be local
ized for the appropriate language. Under the item's subkey, a number of values
must be set. The values are

• Name String value containing the name of the item.

• DLL String value containing the fully specified path name of the
DLL implementing the item.

• Flags User-defined DWORD value returned in the grjFlags field of
TODAYLISTITEM.

• Options DWORD value set to 1 if the item supports an Options
dialog box.

• Enabled DWORD value set to 1 if the item is enabled.

• Type Custom items must set this DWORD value to 4.

The Today screen looks at these registry entries when it loads the items on
the Today screen, which happens when the system boots and when the user
closes the Today screen Control Panel applet.

Debugging a Custom Item
One of the problems with developing a Today screen item is how to force the
Today screen to unload a custom item so that a developer can download a
revised copy of that item. When the Today screen starts, it loads all the DLLs
listed under the Items key previously described. The DLLs remain loaded even if
the user doesn't enable them. It's difficult to update a registered Today screen
item because a DLL can't be overwritten until the Today screen unloads that DLL.

In my experience, the best way to force the Today screen to unload an
item is to open a registry editor on the Pocket PC or use the Windows CE
Remote Registry Editor and change the name of the DLL listed under the DLL
value for your item. You then open the Today screen Control Panel and enable
or disable another item and close the Control Panel. This series of actions
causes the Today screen to free all DLLs and reload the ones listed in the reg
istry. Because you have just changed the DLL value to some filename that
doesn't exist, the Today screen can't load that DLL, thereby allowing Microsoft
eMbedded Visual C++ to download a new copy.

The PowerBar Custom Today Screen Item
The PowerBar example is a Today screen extension that displays the status of
the battery as a bar running across the item window. PowerBar includes an

882 Part IV Device Programming

options dialog that conforms to the look and feel of the options dialogs of the
other Today screen items. Using the options dialog, you can change the height
of the PowerBar item from a wide bar that displays an icon and a text display
of the battery state to a thin 5-pixel bar that takes up very little room on your
Today screen. Tapping the PowerBar item launches the Power Control Panel
applet.

To install PowerBar, you need to edit the Pocket PC registry to add an
entry for PowerBar under [HKEY_LOCAL_MACHINE]\Software\Microsoft
\ Today\Items, as I explained earlier. For the DLL name, use \Windows
\Powerbar.dll. Figure 18-2 shows the Today screen with the PowerBar custom
item. Listing 18-1 shows the PowerBar source code.

Figure 18-2 The Today screen with the PowerBar
custom item displayed

This example has an additional source code file, PowerBar.def. Def files
provide a method for defining specific ordinal values for exported functions. In
the case of Today screen items, the exported function InitializeCustomltem and
the options dialog box procedure must be assigned ordinals 240 and 241,
respectively.

Listing 18-1 The PowerBar example

Chapter 18 Extending the Pocket PC 883

PowerBar.rc
II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
#include "windows.h"
#include "aygshell.h"
#include "todaycmn.h"
#include "PowerBar.h"

IO_ICON ICON "PowerBar.ico"
11--
11 Options dialog box template
II
IOD_TODAY_CUSTOM DIALOG DISCARDABLE 0, 15, 134, 145
STYLE DS_CONTROL I WS_POPUP I WS_VISIBLE
CAPTION "Settings"
BEGIN

LTEXT "Today PowerBar Options",
IDC...;STATIC_TITLE, 4, 3, 124, 10

END

ICott IO_ICON, ·l, 3, 20, 10, 10
LTEXT "PowerBar - Written .for the book Programming Windows \

CE Copyright 2003 Douglas Boling"
-1, 30, 20, 102, 30

LTEXT "Bar Height", -1, 3, 60, 124, 10
AUTO RAD IO BUTTON "Short", IO_SHORT, 7. 72, 124, 10
AUTORADIOBUTTON "Medium", IO_MEO, 7. 84, 124, 10
AUTORADIOBUTTON "Tall", IO_ TALL, 7. 96, 124, 10

PowerBar.h
//========================~===
I I Header file
II
II Written for the book Programming Windows CE
II Copyright CC) 2003 Douglas Boling
II
//==========~==~========
II Returns number of elements
#define dim(xl ~stzeof(xl I sizeof(x[0J))

(continued)

884 Part IV Device Programming

Listing 18-1 (continued)

Chapter 18 Extending the Pocket PC 885

PowerBar.cpp
II==
II PowerBar - An example Today screen item
II
II Written for the book Programming Windows CE
II Copyright CC) 2003 Douglas Boling
II==
#include <windows.h>
4h ncl ude <aygshel 1. h>
#include <todaycmn.h>
#include "PowerBar.h"

II Returns number of elements

II For all that Windows stuff
II Pocket PC includes
II Today screen includes
II PowerBar includes

#define TODAYWND TEXT ("MyPowerBarWnd")

II Procedure defs
II
II Gl oba 1 data
II
HINSTANCE hlnst;
int nBattValue = 0;
BOOL fAC = FALSE;
BOOL fCharging = FALSE;
BOOL fNewData = TRUE;
int nFontHeight;

II Message dispatch table for TodayWindowProc
canst struct decodeUINT MainMessages[J = (

} ;

WM_CREATE, DoCreateMain,
WM_PAINT, DoPaintMain,
WM_LBUTTONUP, DoLButtonUpMain,
WM_ERASEBKGND, DoEraseBackgroundMain,
WM_TODAYCUSTOM_CLEARCACHE, DoClearCacheMain,
WM_TODAYCUSTOM_QUERYREFRESHCACHE, DoQueryRefreshCacheMain,

II==
II DllMain - DLL initialization entry point
II
BOOL WINAPI DllMain (HANDLE hinstDLL, DWORD dwReason,

LPVOID lpvReserved) {
switch (dwReason) (
case DLL_PROCESS_ATTACH:

hinst = CHINSTANCE) hinstDLL;
break;

case DLL_PROCESS_DETACH:

(continued)

886 Part IV Device Programming

Listing 18-1 (continued)

{HWND hWnd, UINT wMsg, WPARAM wParam, LPARAM 1 Pa ram)

Chapter 18 Extending the Pocket PC 887

II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, lParam);

return DefW1ndowProc (hWnd, wMsg, wParam, lParam);

11--
11 DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
HOC hdc;
TEXTMETRIC tm:

II Query height of default font.
hdc = GetDC (hWndl:
GetTextMetrics (hdc, &tml:
nFontHeight = tm.tmHeight + tm.tmExternalLeading;
ReleaseDC (hWnd, hdcl:

nBattValue = -1: II Initialize the old battery value.
return 0:

11--
11 DoQueryRefreshCacheMain - Process WM_TODAYCUSTOM_QUERYREFRESHCACHE
II message for window.
II
LRESULT DoQueryRefreshCacheMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParaml {

TODAYLISTITEM *Ptl1 = CTODAYLISTITEM *lwParam;
SYSTEM_POWER__STATUS_EX sps;

II Set the height of our entry.
if ((ptli->grfF1ags < 5) I I (pt1i->grfF1ags > 23))

ptli->cyp = 20:
else

ptli->cyp ptl1->grfFlags;

II Check the power status.
GetSystemPowerStatusEx <&sps. FALSE);

II Save AC status.
if (sps.ACLineStatus ll

(continued)

888 Part IV Device Programming

Listing 18-1 (continued)

fAC = TRUE;

II Save charging status.
if (sps.BatteryFlag & 0X08)

fCharging TRUE;
else

fCharging FALSE;

II If the battery value has changed since the last check.
II set the flag to force a redraw of the Today screen.
if (sps.BatterylifePercent != nBattValuel {

nBattValue = sps.BatteryLifePercent;
fNewDate TRUE:

else
fNewData FALSE;

return fNewData;

//~------~---~-------~--------~-----~------~-----"----------·--------"--
/I DoCl e.arCacheMain - Process WM~TODAYCUSTOM_CLEARCACHE message
II for window.
//
LRESUIT Do Clea rCacheMa in CHWND hWnd, UINT wMsg, WP AR.AM wPa ram.

}

LPARAM 1 Pa ram) {
If Nothing td do here since the example doesn't.cache data
return 0;

II -------------------
II DoLButtonUpMaih - Process WM_LBUTTONUP message for window.
l/
LRESULT DoLButtonUpMain (HWND hWnd, UINT wMsg, WPARAM wPar<Hn.

SHELLEXECUTE1NFO se;
DWORD dwAttr;

LP A RAM 1 Pa ram) {

II Launch the Control Panel's power applet.
memset C&se. 0, si zeof (sel):
se.cbSize = sizeof (Se);
se.hwnd = hWhd:
se.lpFile =TEXT ("ctlpnl .exe"l;
se~lpVerb = TEXTC"open"):
se. lpDirectory = TEXT ("\\windows");
se. lpParameters =TEXT ("powerg.cpl"l;

Chapter 18 Extending the Pocket PC 889

II See if power cpl is a standalone exe.
dwAttr = GetFileAttributes (TEXT("\\windows\\powerg.exe"ll;
if (dwAttr != (DWORD)-1)

se.lpFile =TEXT ("powerg.exe");

ShellExecuteEx l&se);
return 0;

II Launch the Control Panel.

11--
11 DoEraseBackgroundMain - Process WM_ERASEBKGND message for window.
II
LRESULT DoEraseBackgroundMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

TODAYDRAWWATERMARKINFO wmi;
wmi .hwnd = hWnd;
wmi .hdc = IHDC)wParam;
GetClientRect (hWnd, &wmi .re);
SendMessage (GetParent (hWnd), TODAYM_DRAWWATERMARK, 0,

(LP A RAM) &wmi);
return l;

11---c--------------
/I DoPaintMain - Process WM_PAINT message for window.
II
LRESULT DoPaintMain IHWND hWnd, UINT wMsg. WPARAM wParam,

LPARAM lParam) {
PAINTSTRUCT ps;
RECT re ct;
HOC hdc;
TCHAR szText[32];
int nPercent;
COLORREF rgbLeft RGB (0, 255, 0), rgbText;
HICON hlcon;
HBRUSH hbr;

II Ensure a valid battery value.
nPercent = nBattValue;
if (nBattValue == 255) {

nPercent = 100;
if (! fCha rgi ng && !fACl

rgbLeft = RGB (255, 0.
} else if <nBattValue < 33) {

rgbLeft = RGB (255, 0, 0);

}

hdc = BeginPaint (hWnd, &ps);
GetClientRect (hWnd, &rect);

0);

(continued)

890 Part IV Device Programming

Listing 18-1 (continued)

Chapter 18 Extending the Pocket PC 891

static HFONT hFont:
WORD w!D:
int i :

switch <wMsg) {
case WM_INITDIALOG:

{

TEXTMETRIC tm:
LOGFONT lf;
HOC hdc;
SHINITDLGINFO shidi:

II Create a Done button and size dialog.
shidi .dwMask = SHIDJM_FLAGS;
shidi .dwFlags = SHIDIF_DONEBUTTON J SHIDIF_S!ZEDLG:
shidi .hDlg = hWnd:
SHinitDialog<&shidi):

ptli = (TODAYLISTITEM *)lParam;

II Jump through hoops to look like
II other Today Options dialogs.
hdc = GetDC (hWnd);
GetTextMetrics (hdc, &tm);
memset (&lf, 0, sizeof (lf)):
II Create proper font. It's not 8 or 9 pt; it must be 8.5.
lf.lfHeight ·1 *

(17 * GetDeviceCaps (hdc, LOGPIXELSY)l72)12:
lf.lfWeight FW_SEMIBOLD:
lf.lfPitchAndFamily = tm.tmPitchAndFamily;
lstrcpy (lf.lfFaceName, TEXT<"Tahoma"ll;
hFont = CreateFontlndirect (&lf);
ReleaseDC (hWnd, hdc);
II Query bar size setting from registry.
MyGetSetTodayltemReg (&i, TRUE);
if (i == 0) i = 23:
if(i<16)

w!D = !D_SHORT:
else if (i < 20)

w!D !D_MED;
else

w!D = !D_TALL:
CheckRadioButton (hWnd, ID_SHORT, ID_ TALL, w!Dl:

break:

case WM_DESTROY:
if (hFont)

(continued)

892 Part IV Device Programming

Listing 18-1 (continued)

GetClfentRett (hWnd, &l'E;!Gt);

hdc = BeginPaint ChWrid ·• &ps):
rect.top = r.ect .. top + 23:

Chapter 18 Extending the Pocket PC 893

}

case IDCANCEL:
EndDialog (hWnd, 0);
break;

break;

return FALSE:

!!--
// MyGetSetTodayitemReg - Writes the Flags value of the Today item's
II registry entry
II
int MyGetSetTodayitemReg (int *pnFlagData. BDOL fRead) {

HKEY hKey, hSubKey = 0;
int re, i = 0:
DWORD dwType, dwSize;
TCHAR *pName, szKey[128], szDll[MAX_PATH], szName[MAX_PATH];

GetModuleFileName (hlnst, szName, dim (szName));
for (pName = szName + lstrlen (szName);

(pName > szName) && (*pName !=TEXT('\\')); pName--);
if (*pName ==TEXT('\\')) pName++;

II Open the Today screen's item key.
re = RegOpenKeyEx (HKEY_LOCAL__MACHINE,

TEXT ("Software\\Microsoft\\today\\items"),
0, 0, &hKey);

II Enumerate the item list until
II we find a key with our DLL name.
while (re == ERROR__SUCCESS) {

dwSize = siz~of (szKey);
re= RegEnumKeyEx (hKey, i++, szKey, &dwSize,

NULL. NULL. NULL, NULL):
if (re l= ERROR__SUCCESS)

break;
II Open the subkey.
re= RegOpenKeyEx (hKey, szKey, 0, 0, &hSubKey);
if (re == ERROR__SUCCESS) {

II Get DLL name.
dwSize = sizeof (szDlll:
re= RegQueryValueEx (hSubKey, TEXT ("OLL"), 0, &dwType,

(PBYTE)szDll, &dwSize);
if (re== ERROR__SUCCESS) {

II See if this is us.
if (1 strcmpi (szDll • pName) 0)

break; //Yes!

RegCloseKey (hSubKey):

(continued)

894 Part IV Device Programming

Listing 18-1 (continued)

hSubKey =, 0:
}

}

0. &dwType,

The code that displays the Today screen item is not complex. In the
InitializeCustomltem call, PowerBar registers the window class and creates
the child window. In the window procedure, the code that handles the
WM_TODAYCUSTOM_QUERYREFRESHCACHE message sets the cyp field of
the TODAYLISTITEM structure to the proper height, which is configurable
through the options dialog. The routine then checks the power status of the sys
tem by calling GetSystemPowerStatusE.x. If the battery level has changed since
the last check, the routine returns TRUE, forcing the Today screen to redraw the
item. In the WM_PAINT handler, the bar is drawn across the window using the
rectangle function. Depending on the height of the window, the icon is drawn
and the power level is printed in the window.

The options dialog procedure, CustomltemOptionsDlgProc, goes to great
lengths to provide the proper look to the· dialog box. To this end, a custom font,
8.5-point Tahoma, is used to display the top line of text in the dialog box. In
addition, this line of text is displayed in blue and a solid line is drawn 23 pixels
below the top of the dialog. These customizations match the look of the Today
items dialog.

The font is created in the WM_INITDIALOG message. To override the
drawing of the top line of text, the dialog procedure fields the
WM_CTZCOLORSTATIC message. The following code shows how-after check
ing which control is being drawn-the dialog box procedure sets the text color
and the font so that the text is displayed with the customized look.

Chapter 18 Extending the Pocket PC 895

case WM_CTLCOLORSTATIC:
II Modify the color and font of the header text string.
if ((HWNO)lParam != GetOlgitem (hWnd, IDC_STATIC_TITLE))

break;
SelectObject ((HDC)wParam, hFont);
SetTextColor ((HDC)wParam, RGB (0, 0, 156));
SetBkColor ((HDClwParam, RGB (255, 255, 255));
return (BOOL)GetStockObject CWHITE_BRUSH);

The Today screen is an example of the extensibility of the Pocket PC shell.
Applications that provide an additional Today screen item to summarize their
data provide that extra bit of integration that users appreciate.

Custom Input Methods
The soft input panel, or SIP, provides Pocket PC users with a method of "key
board"-style input. I put keyboard in quotes because although the application
sees keyboard messages from the SIP, the user might be entering those charac
ters using a handwriting recognizer. The Pocket PC comes bundled with a few
ways of entering character data. The user can use either a tiny drawing of a key
board on which the user can tap in characters or some type of handwriting rec
ognizer that interprets strokes that the user makes with a stylus. You can also
design your own method of input rather easily. A component that provides this
functionality is called an input method (IM), and it's merely a COM object that
exports an IlnputMethod interface, and optionally an IlnputMethod2 interface.

The IlnputMethod2 interface adds new methods for dealing with the Input
Method Editor (IME). The IME is used to propose a series of candidate charac
ters in response to input in the SIP. The SIP doesn't provide enough room to
allow the user to enter thousands of discrete characters, so the IME is used
when working with Asian languages. Unless your SIP needs to interface with
the IME, the IlnputMethod interface should be sufficient since it is compatible
with all versions of Windows CE that support a SIP. No matter which interface
is exposed, the purpose of the COM object is to create an input method win
dow in response to requests from the input panel.

The Components of a SIP
A SIP is composed of two main components-the input panel and the input
method. The input panel is supplied by the system. It creates the input panel
window and provides both the message loop processing for the SIP and the
window procedure for the input panel window. The input panel cooperates

896 Part IV Device Programming

with the taskbar or another shell program to provide the user with the ability to
switch between a number of installed input methods.

The input method is the installable portion of the SIP. It's responsible for
translating pen strokes and taps into keyboard input. The input method is also
responsible for the look and feel of the SIP. In almost all cases, the input
method creates a window that is a child of the input panel window. Within that
child window, the input method draws its interface and interprets mouse mes
sages. The input method then calls back to the input panel when it wants to
generate a key event.

Each of these two components implements a COM interface, which then
becomes the interface between them. The input method implements one of the
IlnputMethodxx interfaces, while the input panel implements three very similar
interfaces: IIMCallback, IIMCallbackEx, and IIMCallback2. In the following
paragraphs, I'll talk about the IlnputMethod, llnputMethod2, IIMCallback, and
IIMCallback2 interfaces.

The interaction between the input panel and the input method is driven
by the input panel. For the most part, the input method simply responds to calls
made to its IlnputMethod methods. Calls are made when the input method is
loaded, when it's unloaded, and when it's shown or hidden. In response, the
input method must draw in its child window, interpret the user's actions, and
call methods in the IIMCallback interface to send keys to the system or to con
trol the input panel's window.

Input methods are implemented as COM in-proc servers. Because of this,
they must conform to the standard COM in-proc server specifications. This
means that an input method is implemented as a DLL that exports Dl!GetClass
Object and Dl!CanUnloadNow functions. Input methods must also export Dll
RegisterServer and DllUnregisterServer functions that perform the necessary
registry registration and deregistration for the server DLL.

Threading Issues with Input Methods
Because the input panel and input method components are so tightly interre
lated, you must follow a few rules when writing an input method. While you
can use multiple threads in an input method, the interaction between the input
panel and the input method is strictly limited to the input panel's primary
thread. This means that the input method should create any windows during
calls to methods in the IlnputMethod interface. This ensures that these windows
will use the same message loop as the input panel's window. This, in turn,
allows the input panel to directly call the input method's window procedures,
as necessary. In addition, that same thread should make all calls made back to
the IIMCallback interface.

Chapter 18 Extending the Pocket PC 897

In short, try not to multithread your input method. If you must use multi
ple threads, create all windows in your input method using the input panel's
thread. Secondary threads can be created, but they can't call the IIMCallback
interface and they shouldn't create any windows.

The llnputMethod and llnputMethod2 Interlaces
The I!nputMethod interface is the core of an IM. Using the interface's methods,
an IM should create any windows, react to any changes in the parent input
panel window, and provide any cleanup when it's released. The I!nputMethod
interface exports the following methods in addition to the standard !Unknown
methods:

• IlnputMethod·:Select The user has selected the IM. The IM
should create its window.

• IlnputMethod·:Deselect The user has selected another IM. The
IM should destroy its window.

• IlnputMethod·:Showing The IM window is about to be shown.

• IlnputMethod::Hiding The IM window is about to be hidden.

• IlnputMethod·:Getlnfo The system is querying the IM for infor
mation.

• IlnputMethod::ReceiveSiplnfo The system is providing informa
tion to the IM.

• IlnputMethod::RegisterCallback The system is providing a pointer
to the IIMCallback interface.

• IlnputMethod·:GetlmData The IM is queried for IM-specific data.

• IlnputMethod::SetlmData The IM is provided IM-specific data.

• llnputMethod::UserOptionsDlg The IM should display an options
dialog box to support the SIP Control Panel applet.

In addition to the preceding methods, the I!nputMethod2 interface has the
following methods:

• IlnputMethod2::RegisterCallback2 The system is sending a pointer
to the IIMCallback2 interface.

• IlnputMethod2::SetIMMActiveContext The system is informing
the IM of the current state of the IME.

898 Part IV Device Programming

Let's now look at these methods in detail so that we can understand the
processing necessary for each. The descriptions of the methods for the Ilnput
M eth od interface also apply for the similarly named methods in the
IlnputMethod2 interface.

llnputMethod::Select
When the user chooses your input method, the DLL that contains your IM is
loaded and the Select method is called. This method is prototyped as

HRESULT IlnputMethod: :Select (HWND hwndSip);

The only parameter is the handle to the SIP window that's the parent of your
input method's main window. You should return S_OK to indicate success or
E_FAIL if you can't create and initialize your input method successfully.

When the Select method is called, the IM will have just been loaded into
memory and you'll need to perform any necessary initialization. This includes
registering any window classes and creating the input method window. The IM
should be created as a child of the SIP window because the SIP window is what
will be shown, hidden, and moved in response to user action. You can call Get
ClientRect with the parent window handle to query the necessary size of your
input window.

llnputMethod::Getlnfo
After the input panel has loaded your IM, it calls the Getlnfo method. The input
panel calls this method to query the bitmaps that represent the IM. These bit
maps appear in the SIP button on the taskbar. In addition, the IM can provide
a set of flags and the size and location on the screen where it would like to be
displayed. This method is prototyped as

HRESULT IlnputMethod: :Getinfo CIMINFO *pimi);

The only parameter is a pointer to an IMINFO structure that the IM must fill out
to give information back to the SIP. The IMJNFO structure is defined as

typedef struct {
DWORD cbSize;
HANDLE hlmageNarrow;
HANDLE himageWide;
int iNarrow;
int iWide;
DWORD fdwFl ags;
RECT rcSipRect;

IMINFO;

The first field, cbSize, must be filled with the size of the IMINFO structure.
The next two fields, hlmageNarrow and hlmage Wide, should be filled with

Chapter 18 Extending the Pocket PC 899

handles to image lists that contain the bitmaps that will appear on the taskbar
SIP button. The Pocket PC's menu bar uses the narrow image. However, for
embedded systems, the shell has the flexibility to use either the wide 32-by-16-
pixel bitmap or the narrow 16-by-16-pixel bitmap, depending on its needs. The
input method must create these image lists and pass the handles in this struc
ture. The IM is responsible for destroying the image lists when a user or an
application unloads it. You can create these image lists in the Getlnfo method as
long as you design your application to know not to create the image lists twice
if Getlnfo is called more than once. Another strategy is to create the image lists
in the Select method and store the handles as member variables of the Ilnput
Method object. Then when Getlnfo is called, you can pass the handles of the
already created image lists to the input panel.

The next two fields, iNarrow and iWide, should be set to the index in the
image lists for the bitmap you want the SIP to use. For example, you might have
two different bitmaps for the SIP button, depending on whether your IM is
docked or floating. You can then have an image list with two bitmaps, and you
can specify the index depending on the state of your IM.

The fdwFlags field should be set to a combination of the flags SIPF_ON,
SJPF_DOCKED, SIPF_LOCKED, and SIPF_DISABLECOMPLETION, all of which
define the state of the input panel. The first three flags are the same flags that I
described in Chapter 17. When the SIPF_DISABLECOMPLETION flag is set, the
auto-completion function of the SIP is disabled.

Finally, the rcSipRect field should be filled with the default rectangle for
the input method. Unless you have a specific size and location on the screen
for your IM, you can simply query the client rectangle of the parent SIP win
dow for this rectangle. Note that just because you request a size and location
of the SIP window doesn't mean that the window will have that rectangle. You
should always query the size of the parent SIP window when laying out your
IM window.

l/nputMethod::ReceiveSiplnto
The ReceiveSiplnfo method is called by the input panel when the input panel is
shown and then again when an application moves or changes the state of the
input panel. The method is prototyped as

HRESULT IInputMethod::ReceiveSipinfo (SIPINFO *psi);

The only parameter is a pointer to a SIPINFO structure that I described in Chap
ter 17. When this method is called, only two of the fields are valid-the fdw
Flags field and the rcSipRect field. The rcSipRect field contains the size and
location of the input panel window, while the fdwFlags field contains the

900 Part IV Device Programming

SIPF_xxx flags previously described. In response to the ReceiveSiplnfo method
call, the IM should save the new state flags and rectangle.

llnputMethod::RegisterCallback
The input panel calls the RegisterCallback method once, after the input method
has been selected. The method is prototyped as

HRESULT IInputMethod: :RegisterCallback CIIMCallback *lpIMCallback);

This method is called to provide a pointer to the IIMCallback interface. The
only action the IM must take is to save this pointer so that it can be used to pro
vide feedback to the input panel.

llnputMethod::Showing and llnputMethod::Hiding
The input panel calls the Showing and Hiding methods just before the IM is
shown or hidden. Both these methods have no parameters and you should
simply return S_OK to indicate success. The Showing method is also called
when the panel is moved or resized. This makes the Showing method a handy
place for resizing the IM child window to properly fit in the parent input panel
window.

llnputMethod::GetlmOata and llnputMethod::SetlmOata
The GetlmData and SetlmData methods give you a back door into the IM for
applications that need to have a special communication path between the
application and a custom IM. This arrangement allows a specially designed IM
to provide additional data to and from applications. The two methods are pro
totyped as

HRESULT IInputMethod::GetimData CDWORD dwSize, void* pvimData);

HRESULT IInputMethod: :SetimData CDWORD dwSize, void* pvimData);

For both functions, pvlmData points to a block of memory in the application.
The dwSize parameter contains the size of the memory block.

When an application is sending data to a custom IM, it calls SHSiplnfo
with the SPI_SETSIPINFO flag. The pointer to the buffer and the size of the
buffer are specified in the pvlmData and dwlmDataSize fields of the SJPJNFO
strncture. If these two fields are nonzero, the input panel then calls the Setlm
Data method with the pointer and the size of the buffer contained in the two
parameters of the method. The input method then accepts the data in the buff er
pointed to by pvlmData. When an application calls SHSiplnfo with the
SPI_GETSIPINFO structure and nonzero values in pvlmData and dwlmData
Size, the input panel then calls the GetlmData method to retrieve data from the
input method.

Chapter 18 Extending the Pocket PC 901

llnputMethod::Deselect
When the user or a program switches to a different default IM, the input panel
calls Deselect. Your input method should save its state (its location on the
screen, for example), destroy any windows it has created, and unregister any
window classes it has registered. It should also destroy any image lists it's still
maintaining. The prototype for this method is

HRESULT IlnputMethod: :Deselect (void);

After the Deselect method is called, the SIP will unload the input method DLL.

llnputMethod::UserOptionsD/g
The UserOptionsDlg method isn't called by the input panel. Instead, the input
panel's Control Panel applet calls this method when the user taps the Options
button. The IM should display a dialog box that allows the user to configure
any settable parameters in the input method. The UserOptionsDlg method is
prototyped as

HRESULT IlnputMethod::UserOptionsDlg (HWND hwndParent);

The only parameter is the handle to the window that should be the parent win
dow of the dialog box. Because the IM might be unloaded after the dialog box
is dismissed, any configuration data should be saved in a persistent place such
as the registry, where it can be recalled when the input panel is loaded again.

The following two methods are supported only in the IlnputMethod2
interface. The I!nputMethod2 interface is derived from llnputMethod; all the
methods previously described are therefore implemented in I!nputMethod2.

llnputMethod2::RegisterCallback2
The input panel calls the RegisterCallback2 method once, after the input
method has been selected. The method is prototyped as

HRESULT IlnputMethod2::RegisterCallback2 CIIMCallback2 *lpIMCallback);

This method is called to provide a pointer to the IIMCallback2 interface. The
only action the IM must take is to save this pointer so that it can be used to pro
vide feedback to the input panel.

llnputMethod2::SetlMMActiveContext
The input panel calls Set!MMActiveContext to inform the input method of
changes in state of the IME. The method is prototyped as

HRESULT SetIMMActiveContext (HWND hwnd, BOOL bOpen, DWORD dwConversion,
DWORD dwSentence, DWORD hkl);

902 Part IV Device Programming

The hwnd parameter is the handle of window control that has changed state.
The bOpen parameter indicates whether the IME is on or off. The dwConversion
and dwSentence parameters provide status on the current mode of the IME. The
hkl parameter contains the handle to the current active keyboard layout.

The llMCallback and llMCallback21nterfaces
The JJMCallback interface allows an IM to call back to the input panel for ser
vices such as sending keys to the operating system. Aside from the standard
!Unknown methods that can be ignored by the IM, JIMCallback exposes only
four methods:

• IIMCallback::Setiminfo Sets the bitmaps used by the input panel
as well as the location and visibility state of the input method

• IIMCallback::SendVirtualKey Sends a virtual key to the system

• IIMCallback::SendCharEvents Sends Unicode characters to the
window with the current focus

• IIMCallback::SendString Sends a string of characters to the win
dow with the current focus

It's appropriate that the IIMCallback interface devotes three of its four
methods to sending keys and characters to the system because that's the pri
mary purpose of the IM.

The IIMCallback2 interface adds one method:

• IIMCallback2::SendAlternatives2 Sends data from the input
method to the IME

Let's take a quick look at each of these methods.

llMCallback:: Setlmlnto
The Setlmlnfo method allows the IM control over its size and location on the
screen. This method can also be used to set the bitmaps representing the IM.
The method is prototyped as

HRESULT IIMCallback::Setiminfo (IMINFO *Pimi);

The only parameter is a pointer to an IMINFO structure. This is the same struc
ture that the IM uses when it calls the Getlnfo method of the IlnputMethod inter
face, but I'll repeat it here for clarity.

typedef struct {
DWORD cbSize;
HANDLE himageNarrow;

HANDLE hlmageWide;
int iNarrow;
int iWide;
DWORD fdwFlags;
RECT rcSipRect;

IMINFO;

Chapter 18 Extending the Pocket PC 903

This structure enables an IM to provide the input panel with the informa
tion that the IM retrieved in Getlnfo. The IM must correctly fill in all the fields
in the IMINFO structure because it has no other way to tell the input panel to
look at only one or two of the fields. You shouldn't re-create the image lists
when you're calling Setlmlnfo; instead, use the same handles you passed in
Getlnfo--unless you want to change the image lists used by the input panel. In
that case, you'll need to destroy the old image lists after you've called Setlmlnjo.

You can use Setlmlnjo to undock the input panel and move it around the
screen by clearing the SIPF_DOCKED flag infdwFlags and specifying a new size
and location for the panel in the rcSipRect field. Because Windows CE doesn't
provide system support for dragging an input panel around the screen, the IM
is responsible for providing such a method. The sample IM that I present begin
ning on page 907 supports dragging the input panel around by creating a grip
per area on the side of the panel and interpreting the stylus messages in this
area to allow the panel to be moved around the screen.

llMCallback::SendVirtua/Key
The SendVirtualKey method is used to send virtual key codes to the system.
The difference between this method and the SendCharEvents and SendString
methods is that this method can be used to send noncharacter key codes, such
as those from cursor keys and shift keys, that have a global impact on the sys
tem. Also, key codes sent by SendVirtualKey are affected by the system key
state. For example, if you send an a character and the Shift key is currently
down, the resulting WM_CHAR message contains an A character. SendVirtual
Key is prototyped as

HRESULT IIMCallback: :SendVirtualKey (BYTE bVk, DWORD dwFlags);

The first parameter is the virtual key code of the key you want to send. The sec
ond parameter can contain one or more flags that help define the event. The
flags can be either 0 or a combination of flags. You would use
KEYEVENTF_KEYUP to indicate that the event is a key up event as opposed to
a key down event and KEYEVENTF_SILENT, which specifies that the key event
won't cause a key click to be played for the event. If you use SendVirtualKey to
send a character key, the character will be modified by the current shift state of
the system.

904 Part IV Device Programming

llMCallback::SendCharEvents
The SendCharEvents method can be used to send specific characters to the win
dow with the current focus. The difference between this method and the Send
VirtualKey method is that SendCharEvents gives you much more control over
the exact information provided in the WM_KEYxxx and WM_CHAR messages
generated. Instead of simply sending a virtual key code and letting the system
determine the proper character, this method allows you to specify the virtual
key and associate a completely different character or series of characters gener
ated by this event. For example, in a simple case, calling this method once
causes the messages WM_KEYDOWN, WM_CHAR, and WM_KEYUP all to be
sent to the focus window. In a more complex case, this method can send a
WM_KEYDOWN and multiple WM_ CHAR messages, followed by a WM_KEYUP
message.

This method is prototyped as

HRESULT IIMCallback: :SendCharEvents (UINT uVK, UINT uKeyFlags,
UINT uChars, UINT *puShift, UINT *puChars);

The first parameter is the virtual key code that will be sent with the
WM_KEYDOWN and WM_KEYUP messages. The second parameter is an
unsigned integer containing the key flags that will be sent with the
WM_KEYDO"W1Y and WM_KEYUP messages. The third parameter is the number
of WM_CHAR messages that will be generated by this one event. The next
parameter, puShift, should point to an array of key state flags, while the final
parameter, puChars, should point to an array of Unicode characters. Each entry
in the shift array will be joined with the corresponding Unicode character in the
character array when the WM_CHAR messages are generated. This allows you
to give one key on the IM keyboard a unique virtual key code and to generate
any number of WM_CHAR messages, each with its own shift state.

llMCal/back::SendString
You use the SendString method to send a series of characters to the focus win
dow. The advantage of this function is that an IM can easily send an entire word
or sentence, and the input panel will take care of the details such as key down
and key up events. The method is prototyped as

HRESULT IIMCallback: :SendString (LPTSTR ptszStr, DWORD dwSize);

The two parameters are the string of characters to be sent and the number of
characters in the string.

Chapter 18 Extending the Pocket PC 905

llMCallback2::SendA/ternatives2
The SendAlternatives2 method provides a mechanism for the input method to
send alternative characters to the IME. For languages with hundreds or thousands
of characters, the input method might have to guess at the intended character
entered by the user. These guesses or alternative characters are sent using
SendAlternatives2 to the IME so that it can present the alternatives to the active
control. If the control doesn't handle the alternative suggestions, the first character
in the list is used as the correct character. The prototype of SendAlternatives2 is

HRESULT SendAlternatives2(LMDATA * plmd);

The one parameter is a pointer to an LMDATA structure defined as

typedef struct _tagLMDATA
DWORD dwVersion;
DWORD flags;
DWORD cnt;
DWORD dwOffsetSymbols;
DWORD dwOffsetSkip;
DWORD dwOffsetScore;

}LMDATA;

The version field should be set to OxlOOOO. The flags field describes the
format of the data in the table provided. The cnt field contains the number of
entries in the table. The dwOffsetSymbols, dwOffsetSkip, and dwOffsetScore
fields contain the offset of the start of the respective tables containing the alter
native data. The data in the tables vary depending on how the IME and the
input method agree to share data.

The NumPanel Example Input Method
The NumPanel example code demonstrates a simple IM. NumPanel gives a user
a simple numeric keyboard including keys 0 through 9 as well as the four arith
metic operators: +, -, *,and I and the equal sign key(=). Although it's not par
ticularly useful to the user, NumPanel does demonstrate all the requirements of
an input method. The NumPanel example is different from the standard IMs
that come with the Pocket PC in that it can be undocked. The NumPanel IM has
a gripper bar on the left side of the window that can be used to drag the SIP
around the screen. When a user double-taps the gripper bar, the SIP snaps back
to its docked position. Figure 18-3 shows the NumPanel IM in its docked posi
tion, while Figure 18-4 shows the same panel undocked.

906 Part IV Device Programming

Figure 18-3 The NumPanel IM window in its docked position

Figure 18-4 The NumPanel IM window undocked

The source code that implements NumPanel is divided into two main files,
IMCommon.cpp and NumPanel.cpp. IMCommon.cpp provides the COM inter
faces necessary for the IM, including the IlnputMethod interface and the JC!ass
Factory interface. IMCommon.cpp also contains Dl!Main and the other
functions necessary to implement a COM in-proc server. NumPanel.cpp con
tains the code that implements the NumPanel window. This code comprises the
NumPanel window procedure and the supporting message-handling proce
dures. The source code for NumPanel is shown in Listing 18-2.

Chapter 18 Extending the Pocket PC 907

NumPanel.def

;Standard COM library DEF file

LIBRARY NUMPANEL.DLL

EXPORTS
DllCanUnloadNow
DllGetClassObject
DllRegisterServer

@1 PRIVATE
@2 PRIVATE
@3 PRIVATE

DllUnregisterServer @4 PRIVATE

IMCommon.rc
II==
II Resource file
II
II Written for the book Programming Windows CE
11 Copyri.ght {C) 2003 Douglas 601 ing
ll=============================;:==
#include "windows.h"
#include "NumPanel .h"

/I For all that Windows stuff
II Program-specific stuff

II--·---~---------------------------~-----------------------------------

II Icons and bitmaps
II
JD_ICON ICON "NumPanel. i co" II Module icon

NarrowBmp BITMAP 0 nkbd.bmp" II Bmp used in image list
NarrowMask BITMAP "nmask.bmp" II Mask used in image list
WideBmp BITMAP "widekbd.bmp" II Bmp used in image list
WideMask BITMAP "widemask.bmp" II Mask used in image list

IMCommon.h
If;:===
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
//==
/fodefi ne IO_ICON

JI **** Start of Generic COM d~clarations ****
II==

Listing 18-2 The NumPanel source code (continued)

908 Part IV Device Programming

Listing 18-2 (continued)

Chapter 18 Extending the Pocket PC 909

HRESULT STDMETHODCALLTYPE Deselect (void);
HRESULT STDMETHODCALLTYPE Showing (void);
HRESULT STDMETHODCALLTYPE Hiding (void);
HRESUL T STDMETHODCALLTYPE Getlnfo (IMINFO ~RPC_FAR *pimi);
HRESULT STDMETHODCALLTYPE ReceiveSiplnfo (SIPINFO ~RPC_FAR *PS i);
HRESULT STDMETHODCALLTYPE RegisterCallback (

IIMCallback ~RPC_FAR *lpIMCallback);
HRESULT STDMETHODCALLTYPE GetimData (DWORD dwSize, LPVOID pvimData);
HRESULT STDMETHODCALLTYPE SetlmData (DWORD dwSize, LPVOID pvlmData);
HRESULT STDMETHODCALLTYPE UserOptionsDlg (HWND hwndParent);

llIInputMethod2
HRESULT STDMETHODCALLTYPE SetIMMActiveContext(HWND hwnd, BOOL bOpen.

DWORD dwConversion, DWORD dwSentence, DWORD hkl);
HRESULT STDMETHODCALLTYPE RegisterCallback2 (

IIMCallback2 ~RPC_FAR *lpIMCallback);
} ;

NumPanel.h
II==
II NPWnd.h - An include file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==

#ifdef ~cplusplus
extern "C"{
#endif

II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

struct decodeUINT
UINT Code;

II Structure associates
II messages
II with a function.

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);
} ;

#define MYSIPCLS TEXT ("MyNumPanelWndCls")
#define MYMSG_METHCALL (WM_USER+100) II Used to pass info
#define MSGCODE_REGCALLBACK 0 II Notification codes for
#define MSGCODE_GETINFO 1 II MYMSG_METHCALL
#define MSGCODE_SETINFO 2
#define MSGCODE_REGCALLBACK2 3

(continued)

910 Part IV Device Programming

Listing 18·2 (continued)

RECT rectooeked:
f)DQL fMoving;
f>OINTptMovBasis;
POINT·lltMovstar.t:
IMINPO imt;
RECT rectl..ast;

} SIPWNDSTRUCT, *LPSIPWNDSTRUCT;
INT DrawButton (HOC Me. RECT. :l'prect, LPTSTR pChar, BOO:L fPressed):

II
I! Prot(it,Ype$ Jor functions implemerite.d by. eustom IM code
II
HWND CreateIMWin(low (HWND hw.ndParent);
int D.estroyINWindow (f'.IWND hw.nd);

LRESlJLT CALLBACK NPWndProc (HWND; U INT. WP A RAM, LP A RAM);

LRESUL T CALLaACJ<,DoCreateSi p CHWND, .llINT, WPARAM.. LPARAM):
LRESULT CALLBACK, DoSetSipinfo (HWND. UINT .• WPARAM,. LPARAM);
LR~SULT CA.~L~ACK DoPa.intSiP. CHWND. UU:IT ~ WPARAM. LP.ARAM):
LRESUL.T CALLBAcKDOMouseSip <HWND, UINT. WPARAM. LP.ARAM):
LRESULT CALLBACK DoDestroySi p (HWND, UI NT, WP A RAM, LP A RAM);

lfi f<lef _cpluspl us
}

ifendif

IMCommon;cpp

11 IMCommon - Common code for a. Windows CE input !Jiethod

II
!/Written.for the book Programming Windows CE

Chapter 18 Extending the Pocket PC 911

II Copyright (Cl 2003 Douglas Boling
II==
#include <windows.h>
#include <commctrl .h>
#define INITGUID
#include <initguid.h>
#include <coguid.h>
#include <sip.h>

#include "IMCommon.h"
#include "NumPanel .h"
long g_DllCnt = 0;

extern "C" {
HINSTANCE hinst;
}

II

II For all that Windows stuff
II Command bar includes

II SIP includes

II My IM common includes
II IM window specific includes
II Global DLL reference count

II DLL instance handle

II GUID defines for my input method. Create a new one with GUIDGEN.
II
canst GUID CLSID_NumPanel2 =
{ 0xc83llf61, 0xl2df,0x4107,{0xb5,0xea,0xb0,0xb0,0xd5,0x5c,0xec,0x50}};

canst TCHAR szCLSIDNumPanel2[] =
TEXT ("{C8311F61-12DF-4107-B5EA-B0B0D55CEC50}");
const TCHAR szFriendlyName[] =TEXT ("Numeric Keypad");

II==
II DllMain - DLL initialization entry point
II
BOOL WINAPI DllMain (HANDLE hinstDLL, DWORD dwReason,

LPVOID lpvReservedl {
hinst = CHINSTANCE)hinstDLL;
return TRUE;

II==
II DllGetClassObject - Exported function called to get pointer to
II Class factory object.
II
STDAPI DllGetClassObject CREFCLSID rclsid, REFIID riid, LPVOID *ppv) {

MyClassFactory *PCf;
HRESULT hr;

II See if caller wants us.
if (IsEqualCLSID (rclsid, CLSID_NumPanel2))

II Create IClassFactory object.
pcf =new MyClassFactory();

(continued)

912 Part IV Device Programming

Listing 18-2 (continued)

if Cpcf == f!ULU
return E~OUTOFMEMORY;

11 Cal 1 cl ass factory• s query interface method .. ·
hr = pcfc>Quer.yinterface (ri id, ppv);
II This will cause an obj delete unless interface found.
pcf->Rel ease.();
return hr;

return CLASS_LCLASSNOTAVAILABLE;

II DllCanUnloadNow •~ Exported function called when DLL can unload
II
STDAPI DllCanUnloadNow

if (g_DllCnt)

11 ==================================<==.================"'"'==o==,.=====;:=====
fl DllRegisterServer - Exported
//
STDAPI Dl lRegi sterServer () {

TCHAR szName[MAx_PATH+2J;
TCHAR szTmp[l28]:
DWORO dwDisp;
HKEY hKey, hSubKey;
INT re;

if
return E_FAIL;

11 Set the friendly nam~ of· the SIP.
RegSetValueEx (hKey, TEXT(''''}, 0,REG_SZ;

II Create ~ubkeys.
fl Set .the module name
re. = RegCreateKeyEx {hKeY, TEXT (" InProcServer32"l.

0, 0, NULL, &hSubKey, &dwDispl;
re= RegSetValueEx (hSubKey, TEXT (0

"}, 0,. REG.c.Sl.. (PBYTE)szName.,

Chapter 18 Extending the Pocket PC 913

}

(lstrlen (szName)+l) * sizeof (TCHARll;
RegCloseKey (hSubKey):

II Set the default icon of the server.
RegCreateKeyEx (hKey, TEXT ("Defaulticon"), 0, TEXT(""),

0, 0, NULL. &hSubKey, &dwDisp);
lstrcat CszName, TEXT (",0"));
RegSetValueEx (hSubKey, TEXT(""). 0, REG_SZ, (PBYTE)szName,

Clstrlen CszName)+l) * sizeof CTCHAR));
RegCloseKey (hSubKeyl:

II Set the flag indicating this is a SIP.
RegCreateKeyEx (hKey, TEXT ("IsSIPinputMethod"), 0, TEXT(""),

0, 0, NULL, &hSubKey, &dwDisp);
lstrcpy (szTmp, TEXT ("1")):
RegSetValueEx ChSubKey, TEXT(""). 0, REG_SZ, CPBYTE)szTmp, 4):
RegCloseKey ChSubKey);

RegCloseKey ChKey);
return 5-0K:

II==
II DllUnregisterServer - Exported function called to remove the server
II information from the registry
II
STDAPI DllUnregisterServer()

INT re:

}

TCHAR szTmp[l28];

wsprintf (szTmp, TEXT C"CLSID\\%s"), szCLSIDNumPanel2);
re = RegDeleteKey CHKEY_CLASSES_ROOT, szTmp);
if (re == ERROR_SUCCESS)

return 5-0K:
return E_FAIL:

II**
II MyClassFactory Object implementation
ll------------·------------C--
11 Object constructor
MyClassFactory::MyClassFactory () {

m_ l Ref = 1: 11 Set ref count to 1 on create.
return:

}

11--c-----------------
ll Object destructor
MyClassFactory::-MyClassFactory () {

return:

(continued)

914 Part IV Device Programming

Listing 18·2 (continued)

Chapter 18 Extending the Pocket PC 915

11--
11 Createinstance - Called to have class factory object create other
II objects
STDMETHODIMP MyClassFactory::Createinstance CLPUNKNOWN pUnkOuter,

REFIID riid,

}

MyIInputMethod *pMyIM;
HRESULT hr;

if CpUnkOuter)
return CCLASS_E_NOAGGREGATION);

LPVOID *PPV) {

if (IsEqualIID (riid, IID_IUnknown) I I
IsEqual IID (riid, IID_IInputMethod) 11
IsEqualIID Criid, llD_IlnputMethod2)) {

}

II Create Input method object.
pMyIM •new MyIInputMethod{);
1f (lpMyIM)

r.etl!rn E_Q . .!JTOFMEMORY:

II See if Object e•ports"the p~oper interface.
hr• pMyIM->Queryinterface Criid, ppv);
/I This will cavse an obj delete vnless. interface,.found.;
pMylM->Release O:

. return hr:

return E_NOlNTERFACE;

//**
II MyIInputMethod Object implementation
11--
11 Object constructor
MyIInputMethod::MylinputMethod {) {

}

m.JRef = 1:
g_Dll Cnt++:
return:

II Set ref count to 1 ~n create~

11--~-----~-------------------------------··---~---------·-----"~-------
11 Object destructcir
MyIInputMethod: :..,.MyIInputMethOd {) {

g_DllCnt--;
return;

}

11--·---------------
// Querylnterface • Called to see what interfaces this object supports

(continued)

916 Part IV Device Programming

Listing 18-2 (continued)

Chapter 18 Extending the Pocket PC 917

II Create image list for narrow (16x16) image.
m_himlNarrow = Imagelist_Create (16, 16, ILC_COLOR [ILC_MASK,

1. 0);

hBmp = LoadBitmap Chlnst, TEXT C"NarrowBmp"));
hbmpMask = LoadBitmap Chlnst, TEXT C"NarrowMask"));
Imagelist_Add (m_himlNarrow, hBmp, hbmpMask);
DeleteObject ChBmp);
DeleteObject ChbmpMask);

II Create image list for wide (32x16) image.
m_himlWide = ImageLisLCreate (32, 16, ILG_COLOR ILC_MASK, 1. 0);
hBmp = LoadBitmap (h!nst, TEXT C"WideBmp"));
hbmpMask = LoadBitmap Chlnst, TEXT C"WideMask"));
Imagelist_Add Cm_himlWide, hBmp, hbmpMask);
DeleteObject (hBmp);
DeleteObject ChbmpMask);

II Create SIP window.
m_hwndMyWnd = Create!MWindow ChwndSip);
if C!IsWindow Cm_hwndMyWnd))

return E_FAIL;

return S_OK;

11----------------- --

11 Deselect - The IM is about to be unloaded.
II
HRESULT STDMETHODCALLTYPE My!InputMethod: :Deselect (void) {

Destroy!MWindow (m_hwndMyWnd);
Imagelist_Destroy (m_himlNarrow);
Imagelist_Destroy (m_himlWide);
return S_OK;

11-------- ---

11 Showing - The IM is about to be made visible.
II
HRESULT STDMETHODCALLTYPE My!InputMethod::Showing (void) {

return S_OK;

11---------------------- --

11 Hiding - The IM is about to be hidden.
II
HRESULT STDMETHODCALLTYPE MyIInputMethod::Hiding (void) {

return S_OK;

(continued)

918 Part IV Device Programming

Listing 18-2 (continued)

i'a~s· tit~' sip. 1rifo 'dat~ t<> tn.e wtn:~9~·;
SendMes~ac;ie (rrl_hwndMyWJ1d •. ~YMSG,::,METHCAL.L,
. ·· . <LP:ARAMl .p;sf{: . . .

RegJstel'CHJ ~ii ck-
7/~h.e' I lMCa llba ck 1nterface.
II

.·· HRESULT STDMETHbo'cA.UTYPE MYI InputMeth.od:: RegisterCal lbacl<c c
IIMCal,'lba.C.k RPC....FAR *lplMCallback) {

JlL.:pJMC:allback .. lplMCaHback: .. • .·
~~stMess.age. Crit...hwndMyWnd •. MYMSG_MEJHCALL.

• •. (~'PAMMJm,...plMCa.llbackJi

't(Ge·tlilloata - Ah api)ltcatfbn· is.'passing 1M-specffic·.ctata •·to the'!M. // . .· · • .. . ·. ··.· .. ··.

HRESULTSJ.DMHHODCALL TYPE ... M;YLlnputM~thod: :GetimData .·<.DWORD dwSJte, ..
LPV(lfD pvlniOata) {

Chapter 18 Extending the Pocket PC 919

11--
11 SetimData - An application is querying IM-specific data from the IM.
II
HRESULT STDMETHODCALLTYPE MyIInputMethod: :SetimData (DWORD dwSize,

LPVOID pvimDatal
return S_OK;

11--
11 UserOptionsDlg - The SIP Control Panel applet is asking for a
II configuration dialog box to be displayed.
II
HRESULT STDMETHODCALLTYPE MyIInputMethod::UserOptionsDlg

HWND hwndParentl
MessageBox (hwndParent, TEXT ("UserOptionsDlg called."),

TEXT ("NumPanel"l, MB_OK);
return S_OK;

11--··-----·----·----·-·
II SetIMMActiveContext - Provides information about the IME
II
HRESULT STDMETHODCALLTYPE MyIInputMethod: :SetIMMActiveContext(HWND hwnd,

BOOL bOpen. DWORD dwConversion,
DWORD dwSentence, DWORD hkl) {

return S_OK;

11---···-·----·---·--------------------------·------------------··----·-
ll RegisterCallback2 · The SIP is providing the IM with the pointer to
II the IIMCallback interface.
II
HRESULT STDMETHODCALLTYPE MyIInputMethod::RegisterCallback2

IIMCallback2 ~RPC_FAR *lpIMCallback)
m_pIMCallback = lpIMCallback;
PostMessage (m_hwndMyWnd, MYMSG_METHCALL, MSGCODE_REGCALLBACK2,

(LPARAMlm_pIMCallback);
return S_OK:

NumPanel.cpp
II==
I I NumPanel - An IM window
II
II Written for the book Programming Windows CE
II Copyright CC) 2003 Douglas Boling
//===~===============~

#include <windows.h>
#define COBJMACROS

II For all that Windows stuff

(continued)

920 Part IV Device Programming

Listing 18-2 (continued)

#inc1ude <sip.h>

#include <keybd.h>

#include "NumPanel .h"

extern "C" HINSTANCE hlnst:

II
II Local variables for number panel

II
TCHAR g_tcBtnChar[] = {

II SIP includes

II Keyboard flag includes

II Includes for this window

TEXTC'.1'), TEXTC'2'), TEXT('3'), TEXT('-'), TEXT('*'),

TEXTC'A'), TEXTC'5'), TEXTC'6'), TEXTC'+'), TEXT('/'),

TEXTC'7'), TEXTC'8'), TEXTC'9'), TEXH'0'), TEXT('='),

} ;

UINT g:...BtnVChars[] = {

} :

'.l ' .• '2', '3', VK_HYPHEN. VK_MULTIPLY.

'4', '5', '6', Vl<~ADD, VK_SLASH,

'7', '8', '9', '0', VK_EQUAL,

// Message dispatch table for Si pWi ndowProc

canst struct decodeUINT SipMessages[J = {

WM...oCR~ATE. DoCreateSip,

J;

WM_PAINT, DoPaintSip,

MYMSG-'-METHCALL, Do.SetSipinfo,

WM_LBUTTONDOWN,DoMouseSip,

WM_MOUSEMQVE, DoMouseSip,

WM:...LBUTTONUP, DoMouseSip,

WM:...tBUTTONOBLCLK, DoMouseSip,

WM~DESTROY, DoDestroyS i p,

II---"~'~~-·--'-"

II CreateIMWtndow " .Create the .. input method window.

//
HWND CreateIMWindow CHWND hwndParent) {

WNDCLASS we:

RECT rect:

HWND hwnd:

II RegiSter Sip window class.

memset C&wc, 0, .sizeof <weH:

we.style = C5-0BLCLi<S I CS:...VREDRAW CS_HREDRAW;

wc .lpfhWndProc = NPWnciProc: // Callback function

wc,hinstance = hlnst; II Owner handle

we. hbr~atkgrouhd = (HBRUSH) GetStockObj eet (WHlTE_BRUSH) .;

wc.lpszClassName = MYSI.PCLS: II Window. class name

if (RegisterClass (&we) == 0) return 0:

Chapter 18 Extending the Pocket PC 921

II Create SIP window.
GetClientRect (hwndParent, &rect);
hwnd = CreateWindowEx (0, MYSIPCLS, TEXT(""),

WS_VISIBLE I WS_CHILD I WS_BORDER, rect.left,
rect.top, rect.right - rect.left.
rect.bottom - rect.top, hwndParent. (HMENUl100,
hinst. 0);

if (!IsWindow (hwnd))
return 0;

return hwnd;

II-···--····-··---···--··--··········-··········--··------·-···--------·
II DestroyIMWindow · Destroy the input method window.
II
int DestroyIMWindow (HWND hwndl {

II Clean up since we're about to be unloaded.
DestroyWindow (hwnd);
UnregisterClass (MYSIPCLS, hinst):
return 0:

11==================;==•=;=========================7==================.,===
II NPWndProc - Window procedure for SIP
II
LRESULT CALLBACK NPWndProc (HWND hWnd. UINT wMsg, WPARAM wParam,

LP A RAM 1 Pa ram) {
INT i:
II Call routine to handle control message.
for (i = 0; i < dimCSipMessages): i++) {

if (wMsg == SipMessages[iJ.Code)
return (•SipMessages[iJ.Fxn><hWnd, wMsg, wParam. lParaml:

return DefWindowProc (hWnd, wMsg, wParam. lParam);

ll···········---
11 DoCreateSip - Process WM_CREATE message for window.
II
LRESU LT CALLBACK DoCreateSi p <HWND hWnd, UlNT wMsg, WP A RAM wPa ram.

LPARAM lParam) {
LPSIPWNDSTRUCT pWndData:
II Allocate a data structure for the sip keyboard window.
pWndData = (LPSIPWNDSTRUCT)LocalAlloc (LPTR, sizeof (SIPWNDSTRUCT));
if (lpWnctData) {

DestroyWindow (hWnd);
return 0:

memset (pWndData, 0, sizeof (SIPWNDSTRUCT));
GetWindowRect (GetParent (hWnd), &pWndData->rectOocked):

(continued)

922 Part IV Device Programming

Listing 18-2 (continued)

Chapter 18 Extending the Pocket PC 923

}

pWndData = (LPSIPWNDSTRUCT)GetWindowlong (hWnd, GWL_USERDATA);

hdc = BeginPaint (hWnd, &ps);
GetClientRect (hWnd, &rect);

ex= (rect.right - rect.left - 3 - GRIPWIDTH) I CXBTNS;
cy = (rect.bottom - rect.top 3) I CYBTNS:
cxBtn ex - 3;
cyBtn = cy - 3;

II Select a brush for the gripper.
hOld = (HBRUSHlSelectObject (hdc, GetStockObject (GRAY_BRUSH));
Rectangle (hdc, rect.left, rect.top, rect.left + GRIPWIDTH,

rect.bottom);
SelectObject (hdc, hOld);

k = 0;
y = 3;
for (i "" 0; i < CYBTNS; i++) {

x = 3 + GRIPWIDTH:
for (j = 0; j < CXBTNS; j++)

}

y +=

SetRect <&rectBtn, x, y, x + cxBtn, y + cyBtn);
DrawButton (hdc, &rectBtn, &g_tcBtnChar[k],

pWndData->dwBtnDnFlags & (1 <<kl);
k++;
x += ex:

cy;

EndPaint (hWnd, &ps);
return 0;

11---···--------··--···-·-
ll ComputeFloatRect - Compute the location and size of the drag rect.
II
int ComputeFloatRect (HWND hwnd, LPSIPWNDSTRUCT pWndData, POINT pt,

RECT *prectOut) {

pt.x -= pWndData·>ptMovBasis.x;
pt.y -= pWndData->ptMovBasis.y;
prectDut->right = FLOATWIDTH;
prectOut->bottom = FLOATHEIGHT;
prectOut->left = pt.x;
prectOut->top = pt.y;
prectOut->right += pt.x;
prectOut->bottom += pt.y;
return 0;

(continued)

924 Part IV Device Programming

Listing 18-2 (continued)

Chapter 18 Extending the Pocket PC 925

ClientToScreen ChWnd, &pt);
ComputeFloatRect (hWnd, pWndData, pt, &rectFloat);
II Erase old drag rectangle.
if (pWndData->rectLast.left != -1)

DrawFloatRect (hWnd, pWndData->rectLast);
II Draw new drag rectangle.
DrawFloatRect ChWnd, rectFloat);
pWndData->rectLast = rectFloat;
break;

case WM_LBUTTONUP:
if (!pWndData->fMoving)

return 0;
II Free up dragging stuff.
ReleaseCapture();
pWndData->fMoving = FALSE;
ClientToScreen (hWnd, &pt);
II Erase last drag rectangle.
ComputeFloatRect (hWnd, pWndData, pt, &rectFloat);
if CpWndData->rectLast.left != -1)

DrawFloatRect ChWnd, pWndData->rectLast);
pWndData->rectLast.left = -1;
ShowWindow (GetParent(hWnd), SW_SHOW);
II Don't move SIP if really small move.
if ((abs (pWndData->ptMovStart.x - pt.x) < 3) &&

(abs CpWndData->ptMovStart.y - pt.y) < 3))
break;

II Tell the Input Manager about the move.
pWndData->imi .rcSipRect = rectFloat;
pWndData->imi .fdwFlags &= ~SIPF_DOCKED;
pWndData->imi .fdwFlags I= SIPF_ON;
pWndData->pIMCallback->Setiminfo(&pWndData->imi);
break;

case WM_LBUTTONDBLCLK:
if (pt.x > GRIPWIDTH+3)

return 0;
ReleaseCapture();
pWndData->fMoving = FALSE;
II Embedded SIP manager doesn't use SIPF_DOCKED so only use on PPC.

#if defined(WIN32_PLATFORM_PSPC)

#end if
pWndData->imi .fdwFlags I= (SIPF_DOCKED / SIPF_ON);

pWndData->imi .rcSipRect = pWndData->rectDocked;
pWndData->pIMCallback->Setiminfo(&pWndData->imi);
break;

pWndData->dwBtnDnFlags 0; II If we moved, no buttons down.

(continued)

926 Part IV Device Programming

Listing 18-2 (continued)

return l;
}

//:·· -'.- •• - ".. -.- •• - - • - - - • - ' - - - - - - - - - - - - - c - - - - - •

N DoMou$eSi p " Process mouse button messages for window. WM_LBUTTONDOWN
IJ
LRgULT CALLBACK D9MouseS1 p (HWND hWnd. U INT wMsg, WP A RAM wParam.

LPARAM lPar.eml .{
RECT re ct:

•INT i, x; y., ex, cy:
UINT n.Cha r. unS hi ft.Fl a.gs = .0:
DWDRP.BtnDnFlags;
~~SIPWNDSTRUCT pWndOata;
pWndData. = (LPS I PWNDSTRUCT) GetWi ndowLong (hWnd, GWL_USERDATA);

gripper or gripper tap.
ChWnd, pWnctona. wMsg, lParamll

- rect.lefft c 3 - GRIPWIDTH) I CXBnlS;
" rect.top - 3) I CY8TNS;

C~Paraml·3·6RlPWIOTH)· I cxli
tJParam) "3) / cyl:

II 4 now contains btn index.

Do sm~ll amount. of message-specific processing.
~witch lwM~g) (·
case WM_LBLITWNDOWN.:

case.

Chapter 18 Extending the Pocket PC 927

InvalidateRect (hWnd, NULL, FALSE);
else {

i = 3+GRIPWIDTH: II Compensate for the gripper on left side.
SetRect (&rect, X*CX+i. Y*CY, (x+l)*CX+i. (y+l)*CY);
JnvalidateRect (hWnd, &rect, FALSE);

pWndData->dwBtnDnFlags = BtnDnFlags;
return 0;

11--
11 DoDestroySip - Process WM_DESTROY message for window.
II
LRESULT CALLBACK DoDestroySip (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

}

LPSIPWNDSTRUCT pWndData;

pWndData = (LPSIPWNDSTRUCT)GetWindowLong (hWnd, GWL_USERDATA);
LocalFree (pWndData);
return 0;

11---
11 DrawButton - Draws a button
II
INT DrawButton CHDC hdc, RECT *prect, LPTSTR pChar, BOOL fPressed) {

}

if (!fPressed) {
SelectObject (hdc, GetStockObject (BLACK_PEN));
SelectObject (hdc, GetStockObject CWHITE_BRUSH));
SetBkColor Chdc, RGB <255, 255, 255));
SetTextColor (hdc, RGB (0, 0, 0));

else {
SelectObject (hdc, GetStockObject (BLACK_BRUSH));
SelectObject (hdc, GetStockObject (WHITE_PEN));
SetTextColor (hdc, RGB (255, 255, 255));
SetBkColor (hdc, RGB (0, 0, 0));

Rectangle (hdc, prect->left, prect->top, prect->right,
prect->bottom);

Rectangle (hdc, prect->left+l, prect->top+l, prect->right+l,
prect->bottom+l):

DrawText (hdc, pChar, 1. prect, DT_CENTERIDT_VCENTERIDT_SINGLELINE);
return 0;

Although NumPanel is divided into two source files, both the
IlnputMethod2 interface and the NumPanel window procedure run in the same

928 Part IV Device Programming

thread. In response to a call to the Select method of IlnputMethod2, the Num
Panel window class is registered and the window is created as a child of the
IM's window. The image lists used by the IM are also created here with the han
dles stored in member variables in the MyIInputMethod object. The only other
work of interest performed by the code in IMCommon.cpp is the code for the
Getlnfo method. In this method, the image list handles are provided to the IM
along with the requested dimensions of the undocked window. The dimen
sions of the docked window are provided by the system.

For four other methods, all MyIInputMethod does is post messages to the
window procedure of the NumPanel window. In NumPanel.c, these messages
are fielded in the MYMSG_METHCALL user-defined message. The four methods
make available to the window a pointer to the IIMCallback and IIMCallback2
interfaces and notify the NumPanel window that the window is about to be dis
played or that the state of the input panel is changing.

The other code in the NumPanel window draws the keys on the window
and processes the stylus taps. The DoPaintSip routine handles the painting. The
routine draws a grid of 3 rows and 5 columns of buttons. In each button, a char
acter is drawn to label it. A separate bit array contains the up or down state of
each button. If the button is down, the background of the button is drawn in
reverse colors.

Two routines-DoMouseSip and HandleGripper-handle the mouse mes
sages. The mouse messages all initially go to DoMouseSip, which calls Handle
Gripper. If the routine determines that the mouse message is on the gripper or
that the window is currently being dragged, HandleGripper handles the mes
sage. Otherwise, if the DoMouseSip routine determines that a mouse tap occurs
on one of the buttons, it calls the SendCharEvent method of IIMCallback to
send the character to the focus window.

When the window is dragged to a new location on the screen, the
HandleGripper routine clears the SIPF_DOCKED flag and sets the new size and
location of the SIP by calling the Setlmlnfo method of IJMCallback. When the
user double-taps the gripper, HandleGripper sets the SJPF_DOCKED flag, for
Pocket PC systems, and sets the SIP rectangle to the original docked rectangle
that was saved when the NumPanel window was first created.

These last two chapters have covered the Pocket PC extensively, but I've
pushed off any discussion of what is becoming the central feature of mobile
devices, communication. The Pocket PC Phone Edition combines the intelli
gence of the PDA with the connectivity of the cellular phone. Another device,
the Smartphone, combines the same features but in a cell phone-like package
instead of a PDA. In the next chapter, I turn the discussion to the Smartphone
and the communication features common across the Smartphone and the
Pocket PC Phone edition.

Programming the
Smartphone

Given the inevitability of Moore's Law, Windows CE-powered devices become
both smaller and more powerful each year. One result is convergence, the
merging of two or more separate smart devices into one. The Smartphone is
one result of the trend toward convergence.

The Smartphone is a Windows CE-based cellular phone. Like the Pocket
PC, all Smartphones regardless of manufacturer share the same configuration of
Windows CE. Also, Smartphones come bundled with a set of applications such
as an address book, calendar, and e-mail program. Microsoft produces a stan
dard Smartphone build that individual manufacturers and cellular providers can
then enhance with branding and additional applications.

Smartphones are one of the more unique implementations of Windows CE
devices. First, they are quite small, with screen resolutions of 176 by 220. They
don't have touch screens and have a limited set of hardware buttons. Because
Smartphones need to be on to receive calls, but also require long battery life,
the CPUs used by these devices are slower than is standard in Pocket PCs.
Finally, because cellular phones are used by people while they are doing other
tasks such as working, walking, or even driving, the user interface of the appli
cation has to be much simpler than is normal on a PC or a Pocket PC. All of
these things radically change the requirements of a Smartphone application.

Another challenge of developing software for the Smartphone is security.
Unlike the Pocket PC, the cellular provider that sells the phone might limit the
device's ability to load and run programs. The Smartphone implements the
Windows CE module-based security scheme discussed in Chapter 10. Because
of this restriction, a locked cell phone might either restrict unsigned applica-

929

930 Part IV Device Programming

tions or not run them at all. Depending on the provider, applications might
need to be signed with an encryption key supplied by the provider or a trusted
third party. Unfortunately, some cellular providers see this restriction as a pos
sible revenue stream to extract money from either the user or the application
developer or both.

Fortunately, this chapter isn't completely in vain even if developers are
limited in writing Smartphone applications because the sections on communi
cation features such as Telephony API (TAPI), Short Message Service (SMS), and
the Software Installation Manager (SIM) apply not only to the Smartphone but
also to the Pocket PC Phone edition. Pocket PCs don't have the restrictions on
third-party applications, so applications will run on those devices.

Introducing the Smartphone
The Smartphone user interface is an integration of the hardware implementa
tion of the device and the implementation of the application being run on the
device. More so than applications on other devices, Smartphone applications
depend on the use of a small set of hardware buttons dedicated to particular
tasks. This in itself forces a certain conformity across Smartphone applications.

Figure 19-1 shows a diagram of a hypothetical Smartphone. Notice the
two buttons immediately below the screen. These two buttons provide the
major application-defined input to the application. Of course, the other buttons
on the numeric keypad and the simple joystick provide input, but typically the
device defines their function. The other buttons on this hypothetical device are
the Home button, for returning the phone to the home screen, and the Back
button, used to return to the previous screen.

The Smartphone display has a layout similar to the Pocket PC. The top of
the display has the navigation bar, which shows the title text of the foreground
window and status icons for the phone, battery, and application notification
icons. At the bottom of the screen is the phone's specialized MenuBar control,
which is much simplified over the Pocket PC's MenuBar control. The applica
tion's data is displayed in between.

The home screen of the Smartphone contains a summary of the various
installed applications on the system. The joystick can be used to scroll to each
of the items on the home screen to select the associated application. The home
screen MenuBar also provides a Programs menu that is the Smartphone's ver
sion of a Start menu. The default action of the right button is to dial the voice
mail service for the phone.

Soft Button1

Call Button
Home Button

Chapter 19 Programming the Smart Phone 931

Nav Bar

Work Area

Soft Button 2

End Button
Back Button

Keypad

Figure 19-1 The diagram of a Smartphone device

Figure 19-2 shows the Programs menu from the Home screen. Notice that
each menu item has a number associated with it. The user can use the keypad
to select the menu item associated with the number on the keypad, allowing
quick selection of a menu item. Alternatively, the user can use the joystick to
highlight the proper menu item and select it by pressing in on the joystick. All
menus displayed in the Smartphone have these item numbers displayed by
default.

Figure 19-2 The Programs menu on the Home screen

932 Part IV Device Programming

A Smartphone Application
As with the Pocket PC, Smartphone applications have to perform certain tasks
so they will operate correctly. Like Pocket PC applications, Smartphone appli
cations must ensure that only one instance of itself must be running any one
time. Also like the Pocket PC, the application should create a control with
SHCreateMenuBar, although the function creates a simplified menu bar. The
application might need to override the function of the Back button. For the
main window, the Back button is passed on to the shell so that it can restore the
previous application's window. Finally, and this can't be overemphasized, the
application user interface must be simple. Figure 19-3 shows HelloSP running
on a Smartphone. The text is centered in the client window, which has been
sized to fit the area between the navigation bar and the MenuBar control.

Hello Smartphone!

Figure 19-3 The HelloSP example running on a Smartphone

Listing 19-1 shows the first example in this chapter, HelloSP.

HelloSP.rc

II Resource file
II
II Written for the book Programmi~g Windows CE
II Copyright <Cl 2003 Douglas Boling
II==
#include "windows.h" II Windows stuff
#include "aygshell.h" II Pocket PC stuff
/}include "HelloSP.h'~ I/ Program·specific stuff

11----------------------- --
/! Icons and bitmaps
II
!D_ICON ICON "HelloSP.ico"

Listing 19-1 The HelloSP source code

I I Program icon

Chapter 19 Programming the Smart Phone 933

ID_MENU RCDATA
BEGIN

0.
1,

l_IMAGENONE, IDM_EXIT, TBSTATE_ENABLED,
TBSTYLE_BUTTON I TBSTYLE_AUTOS!ZE. IDS_OK, 0, NOMENU,

END

STRINGTABLE DISCARDABLE
BEGIN

IDS_OK "OK"
END

HelloSP.h
II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11--- --------------------------

11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*FXn)(HWND, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD {
UINT Code;
LRESULT (*Fxn)(HWND, WORD, HWND, WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

11-------------------------------- -------------------------------------

11 Generic defines used by application
#define ID_MENU 10
#define IDM_EXIT
#define IDS_OK

100

1001

11----------------- --

11 Function prototypes
II

(continued)

934 Part IV Device Programming

Listing 19-1 (continued)

HWND Initinstance (HINSTANCE. LPWSTR, int):
int Termlnstance CHINSTANCE. inti;

II Window procedures
LRESULT CALLBACK .MainWndProc CHWND, UINT. WPARAM, LPARAM);

II Message handlers
LRESULT DoCreateMain CHWND, UINT; WPARAM, LPARAM);
LRESULT DoPaintMain CHWND, UINT, WPARAM. LPARAMI;
LRESULT DoCommandMain CHWND, UINT, W~ARAM. LPARAM):
LRESULT DoDestroyMain (HWND, UINT. WPARAM, LPARAMl;

II WM_COMMAND message hand1ers
LPARAM DoMainCommandExit CHWND, WORD, HWND. WORD!:

HeHoSP.cpp

II HelloSP - A simple
II
I I Written for the book Programming .Windows
II Cdpyrtght CO 2003 Douglas Bo 1 i ng

#include <windows.ti>
#include <commctrl.~>
flincllide qygshell.h>
1Hnclude "'1.ellosp.h''

u &tobal dat.a
//

II
//
I/:

cohst f.CHAR szAppNainetl ;=. TEXT("H·el 1 iJSP''}/
HIN$TANCE hlnst; · I; F>~c;igram tristal)ce ha.ndle

II Message dispatch table :for MainWi ndowPro<::
canst st ruct <Jec.o<JeU.INT Mi!i nMessages [J "" {

};

fl

WM,..CREATE, ... oo.Cre~teM~in.,
WM_PAlNJ, DoPaint.Main .•
WM--CQMMAND, DoComllJ~ndMain,

. W.M~DESTROY' DqDi;istroYMai n.

Chapter 19 Programming the Smart Phone 935

int WINAPI WinMain CHINSTANCE hinstance, HINSTANCE hPrevinstance,
LPWSTR lpCmdLine, int nCmdShow) {

MSG msg;
int re = 0:
HWND hwndMain;

II Initialize this instance.
hwndMain = Initinstance (hlnstance, lpCmdLine, nCmdShow);
if (hwndMain == 0) return 0x10;

II Application message loop
while (GetMessage C&msg, NULL, 0, 0)) {

TranslateMessage C&msg);
DispatchMessage <&msg);

}

II Instance cleanup
return Terminstance (hlnstance, msg.wParam):

11--
11 1nitinstance. - Instance initialization
II
HWND Initlnstance <HINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow) {

WNDCLASS we;
HWND hWnd;

II Save program instance handle in global variable.
hinst = hinstance;

II Allow only one instance of the application.
hWnd = FindWindow (szAppName, NULL);
if (hWnd) {

SetForegroundWindow ((HWND)(((DWORDlhWnd) I 0x01));
return 0:

II Register application main window class.
we.style= CS_VREDRAW I CS_HREDRAW; II Window style
wc.lpfnWndProc = MainWndProc; II Callback function
wc.cbClsExtra = 0; II Extra class data
wc.cbWndExtra = 0; II Extra window data
wc.hinstance = hinstance; II Owner handle
wc.hicon =NULL, II Application icon
wc.hCursor = LoadCursor (NULL. IDC_ARROW); II Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject CWHITE_BRUSH);
wc.lpszMenuName = NULL; //Menu name
wc.lpszClassName = szAppName: II Window class name

if (RegisterClass (&we) == 0) return 0;

(continued)

936 Part IV Device Programming

Listing 19-1 (continued)

JI Create main window.

hWnd = CreateWindow (szAppName,

TEXT("Hello"),

W5_VISIBLE,

CW_USEDEFAU LT,

CW_USEDEFAULT,

CILUSEDEFAULT;

CW._USEDEFAULT,

NULL.

NULL,

hinstance,

NULL);

if (1IsWindow <hWnd)) return 0;

ll Standard show and update calls

ShowWindow (hWnd, nCmdShow);

UpdateWindow ChWnd1:

return hWn.d.;

II Window class

I I Wi.n.dow title

II Style flags

fl x position

fly position

// lnit1 al width

fl Initial height

l/ Pa rent

II Menu, must be null

II App~ication instance

II Pointer to create

// parameters

I I Fail if not created.

I l Termlns.tance - Program cleanup

II
int Terminstance <HINSTANCE hinstance, int nDefRC) {

//

!!-·---~~---~------ --- --··-------·--·-·---·---·-·-·-------·
l/ Ma1nWndPr6c -<Callback function for application window

//
LRESULT CALLBACK MainWndProc CHWND hWnd, U I NT wMsg, WPARAM

LPARAM lParam) {

I NT i :

//
II Search message li~t to see if we need to handle .this

II message. If in list, call procedure.

II
for (i = 0; i < dim{MainMessages); i++) {

if CwMsg == MainMes5qges[i].Code)

return (*MainMessages[t].Fxn)(hWnd, wMsg, wParam, lParam);

r'.eturn DefWindowProc (hWnd, wMsg, wParam. lParam);

Chapter 19 Programming the Smart Phone 937

IJ--
11 DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
SHMENUBARINFO mbi;

II Create a MenuBar.
memset(&mbi, 0, sizeof(SHMENUBARINFO));
mbi .cbSize = sizeof(SHMENUBARINFO);
mbi .hwndParent = hWnd;
mbi .nToolBarld = ID_MENU;

II Zero structure
JI Size field
II Parent window
II ID of tool bar resource

mbi .hlnstRes = hlnst; II Inst handle of app

II Create bar and check for errors.
if (!SHCreateMenuBar(&mbi)) {

}

MessageBox (hWnd, TEXT("Couldn\'t create menu bar"),
szAppName, MB_OK);

DestroyWindow (hWnd);

II Size the window to fit above the MenuBar
RECT rect, rectDesk;
int ex, cy;
GetWindowRect (mbi .hwndMB, &rect);
GetWindowRect (GetDesktopWindow (), &rectDesk);
ex= rectDesk~right-rectDesk. left;
cy = (rectDesk.bottom - rectDesk.top) - (rect.bottom - rect.top);
SetWindowPos (hWnd, NULL, 0, 0, ex, cy, SWP_NOMOVE I SWP_NOZORDER);

SHSetNavBarText (hWnd, TEXT("Hello"));
return 0;

11--
11 DoCommandMain - Process WM_COMMAND message for window.
II
LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
WORD idltem. wNotifyCode;
HWND hwndCtl ;
INT i;

II Parse the parameters.
idltem = (WORD) LOWORD (wParam);
wNotifyCode = (WORD) HIWORD (wParam);
hwndCtl = <HWND) lParam;

(continued)

938 Part IV Device Programming

Listing 19-1 (continued)

Chapter 19 Programming the Smart Phone 939

II==
II Command handler routines
11--
11 DoMainCommandExit - Process Program Exit command.
II
LPARAM DoMainCommandExit CHWND hWnd. WORD idltem, HWND hwndCtl.

WORD wNotifyCodel {
SendMessage ChWnd, WM_CLOSE, 0, 0);
return 0;

The structure of the program is similar to all the examples in the book.
The point of the example is to show that a Smartphone application is a Win
dows application with the same entry point, the same message loop, and the
same general message handlers.

The unique parts of the application start with the Pocket PC-like check for
whether another instance of the application is running. There's some difference
of opinion on what should happen when the user starts a second instance of an
application. Some style guides suggest that an application ought to close the
previous instance and show the new instance. This behavior would provide the
user with a clean copy of the application each time they select it. The problem
with this concept is that few, if any, of the bundled applications that come with
the Smartphone act this way. Instead, the bundled applications place the previ
ous running instance in the foreground, restoring the state of the application as
the user left it.

The example code also queries the height of the MenuBar control and
adjusts the size of the main window to fit above it. Unlike Pocket PC applica
tions, there's no need to dynamically respond to the SIP popping up over the
window because there's no SIP on the Smartphone.

Another major difference in HelloSP is the MenuBar control. It's created
with a call to ShCreateMenuBar, but its function and action are quite differ
ent-different enough to handle it as a separate topic. Let's dive into the Smart
phone's MenuBar control and see how it works.

The Smartphone's MenuBar Control
The Smartphone MenuBar is a simplified version of the MenuBar control used
by the Pocket PC. Because the Smartphone lacks a touch screen, the user inter
acts with the Smartphone MenuBar using two buttons at the base of the screen.

940 Part IV Device Programming

The two buttons are aligned with the two possible buttons on the control. The
buttons can either be implemented to display a menu or to perform an action
directly.

As I mentioned earlier, when a menu is displayed, the first 10 items on the
menu are automatically prefixed with a number from 1 through 9 and then 0
corresponding to the 10 digits on the phone keyboard. When the menu is dis
played the user can easily select an item by pressing a key on the phone. With
the automatic addition of the menu item numbers, there's no reason to specify
underlined navigation characters in the menu items.

Although it's possible to put more than 10 items on a menu, the small size
of the phone necessitates that the menu scroll, which isn't a very friendly inter
face design. Another less-than-friendly interface design is cascaded menus. The
Smartphone MenuBar control does support cascaded menus, but the extra level
of action required by the user causes more work than a cascaded menu pro
vides benefits.

Creating a Smartphone MenuBar Control
Just as on the Pocket PC, the MenuBar creation function SHCreateMenuBar is
used to create a MenuBar on the Smartphone. The format of the parameters is
the same as in the Pocket PC, as is the format of the SHMENUBARINFO structure
used to define the structure of the control. The combination toolbar and menu
resource used by the Smartphone MenuBar is also the same. The difference is
that on the Smartphone, the MenuBar is much less flexible. The toolbar
resource must define one or two buttons. The MenuBar buttons can be
designed either to provide a direct action or to display a menu when the asso
ciated button is pressed.

For review, the prototype of SHCreateMenuBar and SHMENUBARINFO is
shown here:

BOOL SHCreateMenuBar (SHMENUBARINFO *pmb);

typedef struct tagSHMENUBARINFO
DWORD cbSize;
HWND hwndParent;
DWORD dwFlags;
UINT nToolBarid;
HINSTANCE hinstRes;
int nBmpid;
int cBmpimages;
HWND hwndMB;
COLORREF cl rBk;

SHMENUBARINFO;

Chapter 19 Programming the Smart Phone 941

In the Smartphone MenuBar control, the cbSize, hwndParent, hlnstRes,
and hwndMB fields are used, as in the standard menu bar, to confirm the size
of the structure, indicate the control parent, provide the instance handle of the
module containing the resource, and return the handle of the created control.
However, some fields are limited in comparison to their use in the standard
menu bar. The nBmp!d and cBmplmages fields must be 0 or the call to create
the control will fail. The clrBk field is ignored even if the corresponding
SHCMBF_COLORBK flag is set in the dwFlags field. The other defined flags in
dwFlags also don't make sense in the limited MenuBar control.

The nToolBar!d field must identify a resource structured identically to the
menu bar resource described in Chapter 5. That format is shown here.

<Menu ID>, <Number of buttons (1 or 2J>.
l_IMAGENONE, <CmdlID>. <BtnlState>, <BtnlStyle>. <StringlID>. 0, <Menullndex>
l_IMAGENONE, <Cmd2ID>. <Btn2State>, <Btn2Style>. <String2ID>. 0, <Menu2Index>

The first field of the resource is the resource ID of any menu resource
being used by the control. The second field can be either 1 or 2 depending on
if the control will have one or two buttons on the bar. The remainder of the
resource describes one or both buttons on the control. In the previous example,
the second and third lines describe the two buttons.

The first field should be set to I_IMAGENONE to indicate that the button is
text, not a bitmap. Bitmaps are not supported on the Smartphone MenuBar.
The second field contains the ID value that will be sent to the owner window
if the button is not a menu and is pressed. The third field describes the initial
state of the button using toolbar state flags. The fourth field describes the style
of the button using toolbar style flags. The String ID field must refer to a valid
string resource ID that contains the text for that button. The next to last field
should be set to 0, and the last field is the submenu index into the menu iden
tified by the first field in the resource. This field can be NOMENU if the button
doesn't display a menu when pressed.

An example S[!ftKeyBar control is shown in Figure 19-4.

ffelli!S~ '• . 1' ~; 1 ·~~~
ow

..
2 Month View
3 VearViePi

4 Options
•.·Dim~ ± Menu

Figure 19-4 A SoftKeyBar control where the menu button has been
pressed

942 Part IV Device Programming

Figure 19-4 shows a Smartphone MenuBar with a Done button on the left
and a Menu button on the right. This placement of direct action assigned to the
left button and an optional menu assigned to the right button is the recom
mended arrangement suggested by the Smartphone user interface guide. In the
figure, the Menu button has been pressed, displaying a short menu on the
screen. The two-part resource that describes the MenuBar control in Figure 19-
4 is shown here:

ID_BTNBARRES RCDATA MOVEABLE PURE
BEGIN

ID_MENU, 2,
I_IMAGENONE, IDM_EXIT, TBSTATE_ENABLED, TBSTYLE_AUTOSIZE I TBSTYLE_BUTTON,

IDS_DONE, 0, NOMENU,
LIMAGENONE, IDM_POP, TBSTATE_ENABLED, TBSTYLE_AUTOSIZE I TBSTYLE_DROPDOWN,

IDS_MENU, 0, 0,

END

ID_MENU MENU DISCARDABLE
BEGIN

END

POPUP "&Dummy"
BEGIN

MENU ITEM "Week View",
MENU ITEM "Month View"
MENU ITEM "Year View",
MENU ITEM SEPARATOR
MENU ITEM "Options",

END

IDM_VIEWWEEK
IDM_VIEWMONTH
IDM_V I EWYEAR

IDM_OPTIONS

The ID_BTNBARRES resource describes the two buttons. The first button
is a direct action button and the second is a button that displays a menu. One
difference between the two buttons, aside from the string resource references,
is the different style flag, TBSTYLE_BUTTON vs. TBSTYLE_DROPDOWN.
Another difference is the NOMENU index in the first button description, in
which the second button uses a menu index of 0. The 0 index indicates the first,
and in this case only, submenu of the ID_MENU menu resource.

Working with the Buttons and Menus
As on the Pocket PC, the buttons and menus hosted by the MenuBar control
can be modified after the control has been created. The key to modifying
MenuBar is the use of the TB_GETBUTTONINFO and TB_SETBUTTONINFO
messages. These toolbar control messages work on the MenuBar control
because it's derived from the toolbar.

Chapter 19 Programming the Smart Phone 943

To query the current settings for a button send a TB_GETBUITONINFO
message to the MenuBar. The wParam parameter should have the command
ID identifying the button, and lParam should point to a TBBUITONINFO struc
ture. The TBBUITOMNFO structure is defined as

typedef struct {
UINT cbSize:
DWORD dwMask;
int idCommand:
int ilmage;
BYTE fsState;
BYTE fsStyle;
WORD ex;
DWORD lParam;
LPTSTR pszText;
int cchText:

TBBUTTONINFO, *LPTBBUTTONINFO;

The cbSize and dwMask fields of TBBUITONINFO should be initialized
before the message is sent. The cbSize field should be filled with the size of the
structure. The dwMask field should be set with flags indicating what data is
being queried from the control. For the MenuBar control, the only flags
allowed are TBIF_TEXT, TBIF_STATE, TBIF_LPARAM, and TBIF_COMMAND,
which specify the text, state, user-defined parameter, and command ID, respec
tively.

Setting the parameters of a button is just as simple with the use of a
TB_SETBUITONINFO message. Here again, wParam should contain the ID of
the button, and !Param should point to a TBBUITONINFO structure. The fol
lowing code disables a button by first querying the state of the button and then
clearing the TBSTATE_ENABLED flag in the fsState field.

int DisableButton CHWND hwndMainWnd, DWORD dwID)

HWND hwndMB = SHFindMenuBar ChwndMainWnd);
TBBUTTONINFO tbi:
if (! hwndMB)

return -1;

memset C&tbi, 0, sizeof (tbi));
tbi .cbSize = sizeof (tbi):
tbi .dwMask = TBIF_STATE;
if(!SendMessage (hwndMB, TB_GETBUTTONINFO, dwID, (LPARAM)&tbi))

return -2:

tbi .fsState &= ~TBSTATE_ENABLED:
SendMessage (hwndMB, TB_SETBUTTONINFO, dwID, (LPARAM)&tbi);

return 0;

944 Part IV Device Programming

}

The menus displayed by the Smartphone MenuBar can also be modified
by the application. The same messages used to get the menu handles for the
MenuBar control can be used in the Smartphone version of the control. Send
ing a SHCMBM_ GETMENU message to the MenuBar control returns the menu
attached to the control. The wParam and !Param parameters are ignored in this
message. Sending SHCMBM_GETSUBMENUto the control returns the submenu
attached to a specific button. In this case, !Param should contain the ID of the
button, whereas wParam is ignored. The following code disables the Options
menu item by first getting the handle of the submenu attached to the menu but
ton and then using EnableMenu to disable the menu item.

HWND hwndMB = SHFindMenuBar (hwndMainWnd);
if (hwndMB) {

}

HMENU hMenu;
hMenu = (HMENU)SendMessage (hwndMB, SHCMBM_GETSUBMENU, 0, IDM_PQP);
EnableMenuitem (hMenu, IDM_OPTIONS, MF_BYCOMMAND I MF_GRAYED);

The other menu functions can be used to manipulate the menus on the
MenuBar as easily as EnableMenu was used in the previous example.

The Back Button and Other Interesting Buttons
One of the more important components of the Smartphone interface is the Back
button. This button allows the user to return to the previous screen from the
current screen at any time. For the most part, the Back button works as
designed without any assistance from the foreground application. There are,
however, times when the Back button needs to act differently, and that's when
the application has to do a bit of work.

The rules for the operation of the Back button are as follows:

• If the current window is not a dialog box and does not have an edit
box, the Back button activates the window that was displayed before
the current window was activated. The current window isn't
destroyed, it's simply covered by the previous window, which now
becomes the active window.

• If the current window is a message box or a modal dialog box with
out an edit control, the Back button dismisses the message box or
dialog box and returns the cancel return code. For message boxes,
this value is either IDNO, IDCANCEL, or !DOK for message boxes
with only an OK button. For dialog boxes, a WM_CO.MMAND mes-

Chapter 19 Programming the Smart Phone 945

sage is sent to the dialog window with the command ID IDCANCEL.

• If the window currently displayed contains an edit control, the Back
button erases the last character in the control and moves the entry
cursor one character to the left.

In the case of the first two rules, the system will provide the default action
for the Back button. For the final rule, concerning edit boxes, the application
must override the default action and forward the key to the appropriate child
control in the window. Fortunately, the Smartphone shell does most of the
work through a couple of helper functions.

If a window contains an edit box, it must override the default action of the
Back key in order to pass the key to the child control. To do this, the window
sends a SHCMBM_OVERRIDEKEY message to the MenuBar control for the win
dow. The wParam parameter defines the key to override. The following keys
are supported for override:

Key

VK_TBACK

VK_TSOFI'l

VK_TSOFT2

VK_TVOLUMEUP

VK_TVOLUMEDOWN

VK_TRECORD

Meaning

Back button

Left SoftKeyBar button

Right SoftKeyBar button

Up volume button

Down volume button

Record button

The !Param parameter designates the keys to override and the action to
take. The lower word of !Param contains a mask of flags that designates which
flags are valid. The action flags are in the upper word. The first flag that can be
set indicates whether a key is to be overridden and the second indicates
whether a WM_HOTKEY message is sent to the window when the key is
pressed. For example, to override the action of the Back button and to be noti
fied by a WM_HOTKEY message, a window would send the following message
to the MenuBar:

SendMessage (SHFindMenuBar (hWnd), SHCMBM_OVERRIDEKEY, VK_TBACK,
MAKELPARAM (SHMBOF_NODEFAULT J SHMBOF_NOTIFY,

SHMBOF_NODEFAULT J SHMBOF_NOTIFY));

This line sends a SHCMBM_OVERRIDEKEY message to the MenuBar con
trol owned by hWnd. The wParam parameter, VK_TBACK, indicates the key
being overridden. The MAKELPARAM macro forms a DWORD from two 16-bit

946 Part IV Device Programming

words. The first parameter of MAKELPARAM, which will become the low word
of !Param, is the mask field. Here, the SHMBOF_NODEFAULT flag is used to
indicate that the override state of the Back key is to be set or cleared. The
SHMBOF_NOTIFY flag indicates that the notification flag will also be set or
cleared. The upper word of !Param is created from the second parameter of the
MAKELPARAM macro. Here, the flag SHMBOF_NODEFAULT indicates that the
Back key will be overridden. The second flag, SHMBOF_NOTIFY, tells the
MenuBar to notify its parent when the Back key is pressed.

To override the Back key but not be notified when it's pressed, the follow
ing line could be used:

SendMessage CSHFindMenuBar (hWnd), SHCMBM_OVERRIDEKEY, VK_TBACK,
MAKELPARAM (SHMBOF_NODEFAULT I SHMBOF_NOTIFY,

SHMBOF_NODEFAULT));

To restore the Back key to its original function, the following line could be
used:

SendMessage CSHFindMenuBar (hWnd), SHCMBM_OVERRIDEKEY, VK_TBACK,
MAKELPARAM (SHMBOF_NODEFAULT I SHMBOF_NOTIFY,

0));

In the previous line, the first parameter of MAKELPARAM (the mask bits)
indicates that the message is going to set the state of both the default action and
the notification state of the button. The second MAKELPARAM parameter is 0,
which indicates that the default action is to be restored and that notification is
to be sent to the MenuBar owner.

When WM_HOTKEY is received by the window, the wParam value con
tains an ID value for the key that was pressed. The IDs reported by the
MenuBarare

Key Value

VK_TSOFI'l 0

VK_TSOFI'2 1

VK_TBACK 2

VK_TVOLUMEUP 3
VK_TVOLUMEDOWN 4
VK_TRECORD 5

Chapter 19 Programming the Smart Phone 947

The lParam value also indicates the key but in a different way. The high
word of lParam will contain the virtual key code of the key that was pressed.
The lower word of lParam contains the modifier flags for the key. The only flag
that is of interest on the Smartphone is MOD _KEYUP, which is set if the key is
being released. Other modifier flags are documented, such as the Shift, Alt, and
Control keys, but those flags are seldom used because the Smartphone doesn't
have these keys.

For windows that contain edit controls, the notification of a Back key
press needs to be forwarded to the proper child control. This forwarding is
done by using a SHCMBM_OVERRIDEKEY message to redirect the Back key.
Once the key is overridden, a press of the key sends a WM_HOTKEY message
to the owner of the MenuBar. To fully support passing the backspace to the
edit control, each WM_HOTKEY message received as a result of a Back key
press needs to be forwarded to the control with the function SHSendBackToFo
cus Window, defined as

void SHSendBackToFocusWindow (UINT uMsg, WPARAM wp, LPARAM lp):

The three parameters are the message being handled as well as the wParam
and lParam values for the message. The following code fragment shows the
use of this function.

case WM_HOTKEY:
if (HIWORD (lParam) == VK_TBACK)

SHSendBackToFocusWindow (wMsg, wParam, lParam):

The override state of a key changed by a SHCMBM_OVERRIDEKEY mes
sage is removed when the corresponding MenuBar control is destroyed, so
there's no need to manually restore the default state before the window is
destroyed.

Message Boxes
MessageBox, the standard Windows CE function for displaying message boxes,
works on the Smartphone with some limitations. Because of the limit of two
buttons on the SoftKeyBar, message boxes are limited to one or two buttons.
The supported flags are MB_OK, MB_OKCANCEL, MB_RETRYCANCEL, and
MB_YESNO. Using the flags MB_ABORTRETRYIGNORE or MB_YESNOCANCEL,
which would normally result in message boxes with three buttons, will cause
MessageBox to fail. Figure 19-5 shows a typical message box.

948 Part IV Device Programming

Figure 19-5 A message box on the Smartphone

The message box in Figure 19-5 is created with the following line:

MessageBox (hWnd, TEXT("Do you want to delete the file?"), TEXTC"Box Title''),
MB_OKCANCEL I MB_ICONEXCLAMATION);

The interesting thing about the message box is the bold text, Alert, that is not
part of the text passed to the MessageBox function. The Smartphone places this
text on the message box depending on the icon specified in the MessageBox
call. The text displayed depends on the language settings of the phone and
optionally the customization done by the service provider, but for a U.S. English
phone, the text is

MessageBox Flag Text Icon

MB_ICONEXCLAMA110N Alert Exclamation mark within a circle

MB_ICONHAND Error Exclamation mark within a circle

MB_ICONQUES110N Confirm Question mark within a circle

MB_ICONASTERISK Info Lowercase I within a circle

The message text is displayed in smaller text below the large, bold prompt
text. The title text is displayed on the caption bar across the top of the screen.

If the message box has OK as one of the options, the user can press the
action button on the phone to return !DOK. For other button settings such as
Yes/No or Retry/Cancel, the action button has no effect and the user has to
press one of the two buttons associated with the MenuBar. If the user presses
the Back button, the message box is dismissed and the function returns the neg
ative response, either No for a Yes/No choice, Cancel for Yes/Cancel, or OK if
the message box only has an OK button.

Chapter 19 Programming the Smart Phone 949

Dialog Boxes
Message boxes will only get you so far on a Smartphone. Dialog boxes, or dia
logs, can be created on the Smartphone as long as a few rules are observed. As
on the Pocket PC, dialog boxes on the Smartphone must be sized to fit the full
screen. This is accomplished with a call to SH!nitDialog during the handling of
the WM_INITDIALOG message. Smartphone dialogs must also create a SojtKey
Bar control to provide a place for key input and to handle the Back button if
the dialog contains one or more edit boxes.

The following code shows the handling of a WM_!N!TDIALOG message
for a typical Smartphone dialog box that contains at least one edit control.

II Specify that the dialog box should stretch full screen
SHINITDLGINFO shidi;

memset (&shidi, 0, sizeof(shidi));
shidi .dwMask = SHIDIM_FLAGS;
shidi .dwFlags = SHIDIF_SIZEDLGFULLSCREENl*SHIDIF_FULLSCREENNOMENUBAR*/;
shidi .hDlg = hWnd;
if(!SH!nitDialog(&shidi))

return FALSE;

II set up MenuBar menu
SHMENUBARINFO mbi;

memset (&mbi, 0, sizeof(SHMENUBARINFO));
mbi .cbSize = sizeof(SHMENUBARINFO);
mbi .hwndParent = hWnd;
mbi .nToolBarld = ID_MENUDLG;
mbi .hlnstRes = hinst;

II If we could not initialize the dialog box, return an error
if (!SHCreateMenuBar(&mbi))

DestroyWindow (hWnd);
return FALSE;

II Override back key since we have an edit control
SendMessage(mbi .hwndMB, SHCMBM_OVERRIDEKEY, VK_TBACK,

MAKELPARAM (SHMBOF_NODEFAULT I SHMBOF_NOTIFY,
SHMBOF_NODEFAULT I SHMBOF_NOTIFY));

II set the title bar
SHSetNavBarText (hWnd, TEXT("Dialog Title Text"));

Navigating controls in a Smartphone dialog is different from a standard
Windows CE system because the Smartphone doesn't have a Tab key to transfer

950 Part IV Device Programming

focus between controls. Instead, controls within a Smartphone dialog box are
organized vertically, and the Up and Down cursor keys are used to switch focus
to the next control in the tab order. (The control order is still referred to as tab
order even though the Smartphone lacks a Tab key.) Each individual control
has been modified to use the left and right cursor keys to provide navigation
and selection within the control.

Scrolling Dialogs
Implementing a dialog box that scrolls is typically not an easy task. On the
Smartphone, with its tiny screen, it's sometimes a necessity. Fortunately, the
shell makes implementing scrolling dialogs fairly painless. All that is required is
that the dialog box template have the WS_ VSCROLL style flag set. When the
user changes focus from control to control, if the next control is below the vis
ible part of the screen, the shell scrolls the dialog automatically. If the focus is
at the bottom most control and the user presses the Down cursor key, the
Smartphone switches the focus back to the first control and scrolls the dialog
back to the top.

If the application repositions any of the controls on a scrolling dialog, it
needs to tell the dialog manager about the new positions. This is done with the
Smartphone unique message, DM_RESETSCROLL. If the controls are reposi
tioned in the WM_INITDIALOG message or in any message before
WM_INITDIALOG, sending DM_RESETSCROLL isn't required.

Smartphone Controls
The limited display and lack of touch screen or mouse on the Smartphone have
driven Microsoft to modify the behavior of some of the standard controls. The
goal is to make controls that are navigable from simple cursor commands as
well as use very little space.

The standard Windows CE controls still exist on the Smartphone. It's pos
sible to create a standard list box in a Smartphone window, but once you nav
igate into a list box using the cursor keys, the control won't relinquish focus to
other controls in the window because it uses the Up and Down cursor keys for
internal navigation between the items in the list box. Standard multiline edit
controls have the same problem. Other controls such as combo boxes don't
make much sense in the limited screen space of a Smartphone. Because of this,
Smartphone windows or dialog boxes use a limited and somewhat different set
of controls. One of these enhanced controls is the oft-overlooked edit control.

Chapter 19 Programming the Smart Phone 951

Text Controls
Inputting text is a bit of a challenge on a Smartphone. The keyboard is limited
to a number pad and a handful of cursor keys and is not conducive to text
input. The Smartphone relies on the developer providing a context for the con
tents of the edit field, such as whether the control will contain numbers, words,
or names. Depending on the context, the edit box can interpret taps on the
numeric keypad in different ways.

Most OEMs support two different text input modes on their Smartphones.
The first is referred to as multitap and is familiar to anyone who has entered
text on a cellular phone during the last 10 years. In multitap mode, multiple
presses of each number key result in the system scrolling through the letters
assigned to that number. The letters assigned are derived from the standard let
ter assignment that was set by American Telephone and Telegraph eons ago.
Because that original assignment didn't include the letters Q and Z (a great trivia
question, by the way), the layout has been slightly modified and is now an
international standard. The layout is shown in Figure 19-6.

1 2 3
Punctuation ABC DEF

4 5 6
GHI JKL MNO

7 8 9
PQRS TUV WXYZ

* #
Shift

0
Space

Figure 19-6 The standard letter assignments on a telephone keypad

When the user wants to enter a letter, the number assigned to the letter is
tapped multiple times until that letter appears. For example to enter a K, the user
would tap the 5 key twice. Each number scrolls through its assigned letters fol
lowed by its number. So tapping the 8 key multiple times would scroll through
the characters T, U, V, and 8. Pausing between taps for a short time locks in the
selection and moves the cursor to the right. The 1 key is used to enter standard
punctuation characters such as . , ? ! - ' @ : 1. Tapping the * key makes the next
letter upper case. The #key inserts spaces, and the 0 key enters 0.

952 Part IV Device Programming

There are special cases for some keys. Pressing and holding the # key dis
plays a screen of symbols. The user can then use the cursor keys to select the
symbol needed. Pressing and holding the #key switches between multitap
mode, T9 mode, and numeric mode.

T9 mode is a text-entry scheme that makes amazingly accurate guesses at
what the user is trying to enter. The user taps the number key assigned to each
letter and then types in the number for the next letter of the word, and so on.
The T9 system makes a guess at the word from the possible combination of the
letters possible from the first number and the letters from the second number.
As more numbers are entered, the system predicts the word being entered with
an almost uncanny accuracy. T9 works great with standard words but does
have trouble with names.

A third entry mode is numeric. As you might guess, this mode simply takes
the assigned number for each key entered and places it in the edit box.

Edit controls on the Smartphone have an enhanced interface over the
standard run-of-the-mill Windows edit control. The first enhancement is the
ability for the edit control to be switched between the various text input modes.

The EM_SE11NPUI'MODE message sets the input mode of the control. The
wParam value isn't used, but !Param can contain one of the following values:
EIM_SPELL for multitap mode, EIM_AMBIG for ambiguous or T9 mode,
EIM_NUMBERS for numeric mode, and EIM_TEXTfor the default entry mode set
by the user.

In addition to the text mode, modifier flags can also be passed to set the
shift state or the caps lock state. To change the shift state, the IMMF_SHIFI'flag
is combined with the text mode. To set the shift state, combine IMMF_SHIFI'
with IMMF_SETCLR_SHIFT. To clear the shift state, use IMMF_SHIFI'alone. The
caps lock state can be set in a similar manner. Passing the IMMF_CAPSLOCK
flag indicates that the caps lock state is being modified. Combining
IMMF_CAPSLOCK with IMMF_SETCLR_CAPSLOCK sets the caps lock state,
whereas. passing IMMF_CAPSLOCK alone clears the caps lock state.

The current mode can be queried with the EM_GE11NPUI'MODE message.
To query the default input mode of the control, pass FALSE in !Param. Passing
TRUE in !Param returns the default input mode for the control if it does not
have focus or the actual input mode if it does have focus. The actual and default
can be different because the user can change the input mode by pressing and
holding the# key.

The EM_SETSYMBOLS message sets the symbols that are displayed when
the user presses the 1 key. For this message, !Param points to a string that con
tains the symbols to be made available to the user.

The EM_SETEXTENDEDSTYLE message sets the extended edit style bits for
the control. The wParam parameter contains a mask defining which of the

Chapter 19 Programming the Smart Phone 953

extended style bits are to be changed. The state of each flag is set in !Param.
So, to clear a particular extended style flag, the flag would be passed in
wParam, but the corresponding bit in !Param would be 0 to indicate that the
new state of the flag is to be 0.

The only extended style bit currently defined is ES_EX_CLEAR
ONBACKPRESSHOW. This flag causes the control to interpret a press and hold
of the Back key as a command to clear the contents of the edit control. To pre
vent this action, this style bit can be cleared by the application. This flag is set
by default on single-line edit controls and cleared by default on multiline edit
controls.

Expandable Edit Controls
Edit controls on the Smartphone can be made expandable with an up-down
buddy control. In a dialog resource, the combination might look like the fol
lowing:

EDI TT EXT
CONTROL

IDD_TEXT, 5, 60, 75, 12, WS_TABSTOP I ES_MULTILINE
IDD_UDEDIT, UPDOWN_CLASS, UDS_AUTOBUDDY I
UDS_ALIGNRIGHT I UDS_EXPANDABLE I UDS_NOSCROLL,

0, 0. 0, 0

The first line defines the edit control, the up-down control is declared
immediately afterward. The CONTROL resource tag is used for this control
because the resource compiler doesn't use a specific keyword such as EDIT to
declare an up-down control. The up-down control is assigned an ID value to
identify the source of WM_N011FY messages it sends to its parent. The control
doesn't need a position because its position will be defined by the location of
the edit control. The up-down control's style flags configure it for this specific
use. The UDS_AUTOBUDDY flag tells the control to associate itself with the
closest control in the z-order. Because the edit box was declared immediately
before the up-down control, the edit box will be closest in the z-order. The
UDS_ALIGNRJGHT flag tells the control to attach to the right side of the edit
control.

UDS_NOSCROLL tells the up-down control not to display Up and Down
arrows like a scroll bar. The Up and Down arrows can be used for incrementing
and decrementing numbers in an associated edit control. Here, we simply want
the Right arrow to indicate to the user that the edit control is expandable.

Finally, the UDS_EXPANDABLE flag indicates that the edit control is
expandable. When the edit control has the focus and the user hits the action
key, the edit control will be expanded to fill the entire screen, showing as much
of the contents of the edit control as possible. The expanded mode is much like
a multiline edit control in that the action key moves the cursor to a new line. A

954 Part IV Device Programming

MenuBar is automatically created with OK and Cancel buttons to accept or dis
card any changes made in expanded mode. Figure 19-7 shows an expandable
edit control in both normal and expanded modes.

MasageText

I Now is the time for all gol ~ I

Edit obc'jf1

Now is the time for all good
men to come tll the aid of
their cotmby

Figure 19·7 An expandable edit control in normal and expanded modes

An expandable edit control can be created manually as well as through
dialog resource definitions. The following code creates an expandable edit con
trol manually.

hwndEdit = CreateWindow CTEXT("edit"), NULL, WS_VISIBLE I
WS_TABSTOP I ES_AUTOHSCROLL I ES_AUTOVSCROLL
ES_MULTILINE, 9, 15, 100, 75, hWnd,
(HMENUlIDD_TEXT, hlnst, 0L);

hwndUpDown = CreateWindow (UPDOWN_CLASS, NULL, WS_VISIBLE I UDS_AUTOBUDDY I
UDS_ALIGNRIGHT I UOS_EXPANDABLE I UDS_NOSCROLL,
0, 0, 0, 0, hWnd, (HMENU)IDD_UDTEXT, hlnst, 0L);

SendMessage(hwndUpDown, UDM_SETBUDDY, (WPARAMlhwndEdit, 0);

The only difference between this code and the dialog resource is the sending of
a UDM_SETBUDDY message to the up-down control to associate it with the edit
control.

Spinner Controls
The spinner is a modified list box control buddied with an up-down control.
The result is a single line control that can be spun to display each item in the list
box. Unlike the standard list box, the spinner control uses the Left and Right
cursor keys to spin between items in the box. As with other Smartphone con
trols, the Up and Down cursor keys transfer focus to the next control in the tab
order.

Chapter 19 Programming the Smart Phone 955

Creating a spinner consists of creating both the list box and up-down con
trols. In a dialog resource, the combination would look like the following:

LI STBOX
CONTROL

IDD_L!STCITIES, 5, 60, 75, 12, WS_TABSTOP
IDD_C!TIESUD, UPDOWN_CLASS,

UDS_AUTOBUDDY I UDS_HORZ I UDS_ALIGNRIGHT I UDS_ARROWKEYS I
UDS_SETBUDDYINT I UDS_WRAP I UDS_EXPANDABLE. 0. 0, 0, 0

The first line defines the list box. The only unusual thing about the decla
ration is that the list box is only 12 dialog units high, just tall enough for one
itern. The up-down control is declared immediately after the list box. The CON
TROL resource tag is used for this control because the resource compiler
doesn't use a specific keyword such as LJSTBOX to declare an up-down control.
The large number of style flags configures the control for this specific use. Many
of the same style flags are used when creating expandable edit controls, so I'll
only cover the new ones. The UDS_HORZ and flag tells the control to create
Left and Right arrows instead of Up and Down arrows attached to the list box.

The UDS_SETBUDDYINT flag tells the up-down control to manipulate the
text of its buddy, in this case the list box, and have it scroll among the different
items in the list. The UDS_ WRAP flag tells the control to wrap the list so that if
the list box is at the last item in the list and the user presses the right button, the
list box will show the first item in the list.

The up-down control can have the additional style flag of
UDS_NOSCROLL. This flag prevents the user from spinning the data with the
Left and Right cursor keys. This style isn't much use unless it's combined with
the UDS_EXPANDABLE flag so that the control can be expanded, allowing the
user to change the selection. When the user expands the spinner, it sends a
WM_N011FY message to the parent window with the UDN_EXPANDING com
mand. Figure 19-8 shows a spinner control in both normal and expanded
modes.

List of Items
lnem 1 1+1

Item 2
Item 3
Item4
!tern 5
Item 6
!tern 7
Items
Item 9

Figure 19-8 A spinner control in normal and expanded modes

956 Part IV Device Programming

A spinner can also be created manually with two calls to CreateWindow,
as shown here:

HWND hwndList = CreateWindow (TEXT("listbox"), NULL, WS_VISIBLE I
WS_BDRDER I WS_TABSTOP, 5, 5, 75, 20, hWnd,
(HMENU)IDD_LISTCITIES, hlnst, 0L);

HWND hwndUpDown = CreateWindow (UPDOWN_CLASS, NULL, WS_VISIBLE I UDS_HORZ I
UDS_ALIGNRIGHT I UDS_ARROWKEYS I
UDS_SETBUDDYINT I UDS_WRAP I UDS_EXPANDABLE,
0, 0, 0, 0, hWnd, 0, hlnst, 0L);

SendMessage (hwndUpDown, UDM_SETBUDDY, (WPARAM)hwndList, 0);

Here, like in the expandable edit control, the only difference between the
two methods is the extra message sent to the up-down control to tell it the ID
of its buddy list box and a few manually added style flags needed when creat
ing the list box.

File Operation in the Smartphone
Unlike the Pocket PC, data in the object store of the Smartphone is volatile.
When the phone is turned off, the data goes away. Fortunately, there is a way
to persistently save data in the file system.

The Smartphone implements an external file system using flash memory
internal to the phone. This file system is just like a file system that would appear
if a Compact Flash or SD card was inserted into the system, but in this case the
file system is not removable. The room in the internal persistent store is limited,
so it's not a great area for storing huge databases or MP3 files. Still, it does pro
vide a place to store application state data or other information. Although the
method for finding external file systems was discussed in Chapter 8, the Smart
phone extends a standard shell call that will return the proper subdirectory in
which an application can store its data.

The function SHGetSpecialFolderPath was covered in Chapter 16. The
Smartphone adds an additional constant, CSIDL_APPDATA. Using this CSIDL
value will return the name of the application data folder that is persistent. An
application can then create a subdirectory under the persistent folder where it
can store its data. Because the persistent folder is used by all applications, you
should be careful to uniquely name your application's directory. The following
code demonstrates finding the application data folder and creating a directory.

Chapter 19 Programming the Smart Phone 957

int CreateAppFolder CHWND hWnd, TCHAR *pszAppFolder, int nMax) {

canst TCHAR szMyAppFolderName[J
TCHAR szPath[MAX_PATH];

TEXT ("ProgWinCESpSample");

II It doesn't help to have a path longer than MAX_PATH
if CnMax > MAX_PATH)

nMax = MAX_PATH;

BOOL f SHGetSpecialFolderPath ChWnd, szPath, CSIDL_APPDATA, FALSE);

II See if everything will fit in output string
int nLen = lstrlen (szPath);
if CnLen + 2 + (intllstrlen (szMyAppFolderName) > nMax)

return -2;

II Copy app folder name to parameter
lstrcpy CpszAppFolder, szPath);

II Append directory separator character as needed
if (szPath[nLen] !=TEXT('\\'))

lstrcat (pszAppFolder. TEXT("\\"));

II Append my folder name
lstrcat (pszAppFolder, szMyAppFolderName);

II See if directory exists.
if (GetFileAttributes CpszAppFolder) == 0xffffffff)

II See why call failed
if (GetLastError () == ERROR_PATH_NOT_FOUND) {

II Wasn't there, create the directory

else

if (!CreateDirectory (pszAppFolder, NULL))
return -3;

else
return -4; II Dir created but inaccessible

return 1·
return 0;

II Indicate directory already exists
II Indicate directory created

Data stored in the registry is persistent. The Smartphone takes steps to
save and restore the registry when the system shuts down and starts back up.

958 Part IV Device Programming

Communication
The Smartphone would be nothing but a small PDA with a limited interface if
it weren't for its communication features. An intelligent, mobile device, in a
pocket and always connected to the Internet, is a powerful platform. The com
munication features discussed in this section are also implemented on the
Pocket PC Phone edition, which is quite helpful for the learning curve of devel
opers, who can apply their knowledge both on the Pocket PC and the Smart
phone.

Communication services cover a number of areas, from dialing voice calls
to sending messages to other phones to connecting to the Internet through
either a wired or wireless connection. For the most part, these services are
accessed through easy-to-use shell APis that wrap the traditional but more com
plex Windows APis such as TAPI, the Telephone API.

The folks that create communication functions design the most flexible
and therefore most complex functions possible. The functions I describe in this
section have what at times seems like dozens of parameters, each with a dozen
options. Complete books can be, and have been, written about many of the fol
lowing topics, so I can't cover completely each of the topics in a single part of
a chapter. Still, this discussion will provide a good introduction to these func
tions and should give you a good start on adding communication features in
your applications.

Phone API
The phone API provides a basic set of functions to make calls and query the call
log. The phone API is convenient because it avoids the need for most applica
tions to dive directly into the TAPI and make calls with that rather involved
interface. TAPI is supported on the Smartphone and Pocket PC Phone edition,
but you need not use it unless you're creating the most manipulative of appli
cations.

Dialing the Phone
The first communication feature likely to be tried by a programmer new to the
Smartphone or Pocket PC Phone edition is to dial the phone. The system pro
vides a simple and effective function for this, PhoneMakeCall, prototyped as

LONG PhoneMakeCall (PHONEMAKECALLINFO *ppmci);

The PHONEMAKECALLINFO structure is defined as

typedef struct tagPHONEMAKECALLINFO{
DWORD cbSize;

DWORD dwFlags;
PCWSTR pszDestAddress;
PCWSTR pszAppName;
PCWSTR pszCalledParty:
PCWSTR pszComment:

Chapter 19 Programming the Smart Phone 959

PHONEMAKECALLINFO, * PHONEMAKECALLINFO:

The first field is the standard size field that needs to be filled with the size
of the structure. The dwFlags field can contain one of two flags:
PMCF_PROMPTBEFORECALLING, which tells the system to prompt the user
before initiating the call, or PMCF_DEFAULT, which tells the system to make the
call without asking the user whether the call should be made. Even with the
PMCF_DEFAULT flag, the system will display a notification that the call is being
made. The pszDestAddress field should point to a string containing the phone
number to call. The string can contain the standard phone number separator
characters such as dashes, spaces, and parentheses. The pszCalledParty field
should point to a string that identifies the called party. This string is displayed,
along with the number, on the call-in-progress notification that is displayed when
the call is made. The pszAppName and pszComment fields should be set to 0.

Viewing the Call Log
The system maintains a log of all calls made to and from the phone. The call log
is a simple database that keeps information such as the time of the call, its dura
tion, and the number of the other phone, as well as details such as whether the
call was incoming, the phone is roaming, and so on. The call log can be
accessed with a few simple functions. To open the call log, call the aptly named
PhoneOpenCallLog, prototyped as

HRESULT PhoneOpenCallLog (HANDLE* ph);

The function returns S_OK if successful and ERROR_FAIL otherwise. An
extended error code can be retrieved with GetlastError. Some Smartphone sys
tems don't allow the call log to be opened. There might or might not be a sys
tem reason for getting this error, but many phones don't allow this function to
succeed. There isn't an issue with Pocket PC phone edition systems. Also,
opening the call log isn't necessary for calling PhoneMakeCall. If PhoneOpen
CallLog is successful, a handle will be placed in the value pointed to by the
parameter ph, and the seek pointer of the call log will be set to point to the first
entry in the log.

Once opened, entries in the call log can be queried with the function
PhoneGetCallLogEntry, prototyped as

HRESULT PhoneGetCallLogEntry (HANDLE h, PCALLLOGENTRY pentry);

960 Part IV Device Programming

The handle is the one received from the call to PhoneOpenCallLog. The dbSize
field of the CALUOGENTRY structure needs to be initialized with the size of the
structure before the function is called.

If the function returns without error, pentry points to a structure that con
tains data about the call, and the seek pointer of the call log is moved to the
next entry. Repeated calls to PhoneGetCallLogEntry will enumerate the entire
call log. When no more entries are in the log, the function will fail with the
extended error code 259 indicating no more entries are available.

The CALUOGENTRY structure is defined as

typedef struct {
DWORD cbSize;
FILETIME ftStartTime;
FILETIME ftEndTime;
IOM iom;
BOOL fOutgoing:l;
BOOL fConnected:l;
BOOL fEnded:l;
BOOL fRoam:l;
CALLERIDTYPE cidt;
PTSTR pszNumber;
PTSTR pszName;
PTSTR pszNameType;
PTSTR pszNote;

} CALLLOGENTRY, * PCALLLOGENTRY;

The ftStartTime and ftEndTime fields are FILE11ME structures that provide
the start and end times of the call. The iom field contains an enumeration indi
cating if the call was incoming, was outgoing, or was missed. The next four
fields are Booleans detailing the conditions of the call: fOutgoing is TRUE if the
call was made from the device;fConnected is set if the call actually made a con
nection; jEnded is TRUE if the call was terminated by the callers and FALSE if
the call was dropped; and .fRoam is set if the call was made from outside the
phone's home area. The cidt field is an enumeration indicating if the caller ID
for the call was available, blocked, or unavailable.

The pszNumber field points to a string indicating the number of the phone
number of the calling phone or the phone being called. The pszName field
identifies the name associated with the number. The pszNameType field points
to a string that indicates which number-home, work, or mobile-was associ
ated with the contact. The string is in the form of a character, typically either h,
w, or m for home, work, or mobile, respectively. The pszNote field is a string
that is supposed to point to a string containing the name of a notes. file for the
call. This field isn't always filled in by the system.

Chapter 19 Programming the Smart Phone 961

The seek pointer of the call log can be moved with

HRESULT PhoneSeekCallLog (HANDLE h, CALLLOGSEEK seek, DWORD iRecord,
LPDWORD piRecord);

The handle value is the handle returned by PhoneOpenCallLog. The seek
value can be set to either CALLLOGSEEK_BEG/NNING or CALLLOGSEEK_END,
depending on whether the passed offset is based from the beginning or end of
the log. The parameter iRecord is the zero-based offset from the beginning or
end of the log. The piRecord parameter points to a DWORD that receives the
index, from the beginning of the log, of the resulting record. Once the seek
pointer is moved to a specific record, the record can then be read with Phone
GetCallLogEntry.

The phone log should be closed with a call to PhoneCloseCallLog, proto
typed as

HRESULT PhoneCloseCallLog (HANDLE h);

The single parameter is the handle returned from PhoneOpenCallLog.

The Connection Manager
The connection manager is a centralized location to request a connection to
external data networks regardless of the connection method. The connection
manager presents both a single point of connection configuration to the user
and a single place where applications can go to programmatically connect to
the network. The connection manager also frees the application from having to
know what connections are the best to use given the different costs and speeds
of the various connections. For example, the connection manager knows it's
better to access the Internet via ActiveSync if possible instead of connecting via
a cellular connection.

Connecting
An application can connect to a network in three ways using the connection
manager. An application can request a connection synchronously, request a
connection asynchronously, or schedule a time for a connection to be made.
Typically, an application will call ConnMgrEstablishConnection to request a
connection be made asynchronously and then be notified when the connection
is made. The prototype is

HRESULT ConnMgrEstablishConnection CCONNMGR_CONNECTIONINFO * pConnlnfo,
HANDLE* phConnection):

962 Part IV Device Programming

The function returns an HRESULT and, if successful, a handle to the con
nection in the variable pointed to by phConnection. The other parameter of the
call is a pointer to a CONNMGR_CONNEC710NNFO structure, defined as

typedef struct _CONNMGR_CONNECTIONINFO
DWORD cbSize;
DWORD dwParams:
DWORD dwFlags;
DWORD dwPriority;
BOOL bExclusive;
BOOL bDisabled;
GUID guidDestNet;
HWND hWnd;
UINT uMsg;
LPARAM lParam;
ULONG ulMaxCost;
ULONG ulMinRcvBw;
ULONG ulMaxConnlatency;

CONNMGR_CONNECTIONINFO;

The traditional size field should be set to the size of the structure. The
dwParams field indicates which optional fields in the structure are filled with
valid data. I'll mention the flags in this field as I discuss the optional fields. The
dwFlags field indicates the proxies supported by the application. The supported
flags include proxy flags for HTTP, Wireless Application Protocol (WAP),
SOCKS4 and SOCKSS. If no flags are specified, only a direct Internet connection
is attempted.

The dwPriority field indicates how important the connection is to the
application. The priority ranges from CONNMGR_PRIORI1Y_ VOICE for a voice
connection, the highest priority, to CONNMGR_PRIORI7Y_LOWBKGND, which
indicates a connection will only be made if another connection is currently
active that satisfies the request. The bExclusive field should be set to TRUE if the
connection should not be shared among the other applications in the system. If
bDisabled is TRUE, ConnMgrEstablishConnection will check the connection to
see whether it can be made, but the connection won't actually be made. The
guidDestNet field indicates the network to connect to. The GUID of the various
network connections can be determined using ConnMgrEnumDestinations dis
cussed later. This field will be used only if the dwParams field contains the
CONNMGR_PARAM_DESTNE71D flag.

The next three fields, h Wnd, wMsg, and !Param, are used to provide feed
back to the application about the connection. The connection manager sends
message values of wMsg indicating progress of the connection to the window
indicated by h Wnd. The !Param value is passed in the progress message in the
!Param value. The wParam value of the message provides a connection status.

Chapter 19 Programming the Smart Phone 963

The status values are defined in the ConnMgr.h include file. Additional connec
tion status can be queried by calling ConnMgrConnectionStatus. This function,
along with the various connection states, is discussed later.

The final three parameters, ulMaxCost, ulMinRcvBw, and ulMaxConnLa
tency, define additional conditions that the connection manager should use
when choosing what path to use when making a connection. These fields are
only used if the corresponding flag is set in the dwParams parameter.

To connect synchronously, an application can call ConnMgrEstablishCon
nectionSync, prototyped as

HRESULT ConnMgrEstablishConnectionSync CCONNMGR_CONNECTIONINFO *pConnlnfo,
HANDLE *PhConnection.
DWORD dwTimeout, DWORD *pdwStatus);

The parameters are similar to ConnMgrEstablishConnection with the addition of
dwTimeout, which defines the time in milliseconds that the function should
wait for a connection to be made, and pdwStatus, which points to a DWORD
that is filled in with the resulting status of the connection.

The connection manager can also be requested to make a connection at a
scheduled time using the function ConnMgrRegisterScheduledConnection. If
the device is off when the scheduled time arrives, it will automatically turn on
and attempt the connection. ConnMgrRegisterScheduledConnection is defined
as

HRESULT ConnMgrRegisterScheduledConnection CSCHEDULEDCONNECTIONINFO *pSCI);

The single parameter is a pointer to a SCHEDULEDCONNECTIONINFO struc
ture, defined as

typedef struct _SCHEDULEDCONNECTIONINFO
GUID guidDest:
UINT64 uiStartTime:
UINT64 uiEndTime:
UINT64 uiPeriod;
TCHAR szAppName[MAX_PATH]:
TCHAR szCmdline[MAX_PATH]:
TCHAR szToken[32]:
BOOL bPiggyback:

SCHEDULEDCONNECTIONINFO:

The guidDest field defines the network to connect to. The szToken field
should be set to a string that uniquely identifies this scheduled connection. This
string will be used if the connection needs to be canceled.

The uiStartTime and uiEndTime fields define the time that the requests
should start and stop, and uiPeriod defines how often the requests should be
repeated. These times are defined in the structure as 64-bit numbers that are
100 nanosecond intervals since January 1, 1601. Conveniently, this format is the

964 Part IV Device Programming

same as the FILETIME structure. The uiPeriod value can be set to 0 to indicate
that the system will never automatically attempt the connection.

When the connection is made, the application name pointed to by szApp
Name will be launched with the command line specified in szCmdLine. If the
bPiggyback field is set to TRUE, the application will be launched whenever a
connection is made to the network matching the guidDest field. Setting this
field to TRUE and setting uiPeriod to 0 allows an application to monitor any
connection to a specific network without scheduling a connection of its own.

The scheduled connection can be canceled with a call to ConnMgrUnreg
isterScheduledConnection, defined as

HRESULT ConnMgrUnregisterScheduledConnection CLPCWSTR pwszToken);

The single parameter is the 32-character token string passed in the szToken field
of SCHEDULEDCONNECTIONINFO when the connection was scheduled.

Setting and Querying Status
Querying the status of a connection can be accomplished with a call to

HRESULT ConnMgrConnectionStatus (HANDLE hConnection, DWORD *pdwStatus);

The parameters are the handle to a current connection handle and a pointer to
a DWORD that will receive the current status. The status flags are listed in the
following table.

Status Value Description

Unknown 00 Status unknown.

Connected OxlO The connection is up.

Disconnected Ox20 The connection is disconnected.

Connection failed Ox21 The connection attempt failed.

Connection canceled Ox22 The user aborted the connection.

Connection disabled Ox23 The connection is ready to connect but is dis-
abled.

No path to destination Ox24 No network path could be found to destination.

Waiting for path Ox25 The connection is waiting for a path to the des-
tination.

Waiting for phone Ox26 A voice call is in progress.

Waiting connection Ox40 Attempting to connect.

Waiting for resource Ox41 Resource is in use by another connection.

Waiting for network Ox42 No path could be found to destination.

Waiting disconnection Ox80 The connection is being brought down.

Waiting connection abort Ox81 The connection attempt is being aborted.

Chapter 19 Programming the Smart Phone 965

The various connections can be enumerated using the function Con
nMgrEnumDestinations, prototyped as

HRESULT ConnMgrEnumDestinations (int nlndex,
CONNMGR_DESTINATION_INFO *pDestinfo);

To use this function, an application calls ConnMgrEnumDestinations repeat
edly, the first time with the nlndex set to 0 and then incrementing nlndex for
each call. If the function is successful, data about the connection will be pro
vided in the CONNMGR_DESTINATION_INFO structure pointed to by pDestln:fo.
The structure is defined as

typedef struct _CONNMGR_DESTINATION_INFO
GUID guid;
TCHAR szDescription[CONNMGR_MAX_DESCJ;

CONNMGR_DESTINATION_INFO;

The structure has two fields, the GUID of the specific network and a string
describing the network. The G UID of the network can be used to specify the
network when connecting.

SMS Messaging
The Short Message Service, or SMS, is a popular way, as the name implies, to
exchange short text messages between cellular phones. By default, the InBox
application on both the Smartphone and the Pocket PC Phone edition reads
SMS messages. On the Smartphone, the Pocket InBox is also responsible for
composing and sending SMS messages. On the Pocket PC, SMS messages can
be composed and sent from a menu on the phone application. In addition to
these applications, both systems expose a set of functions that allows third
party applications to send and receive SMS messages.

The process of sending and receiving SMS messages involves getting an
SMS handle for sending and another for receiving. The message is composed,
and the address is defined as the phone number of the receiving phone. Instead
of sending the message directly to the phone, however, the message is sent to the
SMS Service Center, which forwards the message on to the destination phone.

Receiving a message involves blocking on an event that is signaled when
a message has been received. The message can then be read with a call to the
SMS system. Because of the blocking nature of the reading process, this task is
usually accomplished with a secondary thread.

The SMS system doesn't provide any way of saving the read messages.
Instead, the application that is responsible for receiving the messages is respon
sible for saving the messages in a database if the user wants them saved. On the
Pocket PC and Smartphone, Pocket Inbox saves the messages in the e-mail
database.

966 Part IV Device Programming

Accessing the SMS System
The task of sending or receiving messages starts with accessing the SMS sub
system using SmsOpen, prototyped as

HRESULT SmsOpen (canst LPCTSTR ptsMessageProtacal,
canst DWORD dwMessageMades, SMS_HANDLE* canst psmshHandle,
HANDLE* const phMessageAvailableEvent);

The first parameter is a string that describes the type of message that the
application is interested in sending or receiving. For sending and receiving
basic text messages, the SMS_MSGTYPE_TEXT protocol should be used. The
include file Sms.h defines a number of other protocols that can be used for
broadcast, status, and a couple of control protocols. The dwMessageModes
parameter should be set for either SMS_MODE_RECEIVE or SMS_MODE_SEND
depending on if the open is to send or receive messages. The psmshHandle
parameter points to an SMS_HANDLE value that will receive the SMS handle if
the function is successful.

The final parameter, phMessageAvailableEvent, points to an event handle
but is used only when opening to receive messages. When asking for a handle
to send SMS messages, the parameter should be NULL. When asking for a han
dle to receive messages, this parameter must point to a standard Windows CE
event handle that was previously created by the application. This event handle
should be an auto-reset event, not initially signaled. The event will be signaled
when a message has been received by the system. The application should not
set the event or close the event handle. The event will be closed when the
application calls SmsClose.

The return value of SmsOpen will be ERROR_SUCCESS if the call was suc
cessful. Otherwise, an error code will be returned.

Sending a Message
Sending a message is accomplished by calling the rather involved SmsSendMes
sage function, prototyped as

HRESULT SmsSendMessage (canst SMS_HANDLE smshHandle,
canst SMS_ADDRESS * canst psmsaSMSCAddress,
const SMS_ADDRESS * canst psmsaDestinatianAddress,
canst SYSTEMTIME * const pstValidityPeriad,
canst BYTE * canst pbData, canst DWORD dwDataSize,
canst BYTE * const pbProviderSpecificData,
canst DWORD dwPraviderSpecificDataSize,
canst SMS_DATA_ENCODING smsdeDataEncoding,
canst DWORD dwOptians,
SMS_MESSAGE_ID * psmsmidMessageID);

Chapter 19 Programming the Smart Phone 967

The first parameter is an SMS handle that was opened for sending a mes
sage. The psmsaSMSCAddress parameter points to an SMS_ADDRESS structure
that contains the phone number of the SMS service center. In most cases, this
parameter can be NULL to indicate that the system should use the default SMS
center address. The psmsaDestinationAddress parameter points to another
SMS_ADDRESS structure that contains the destination address of the message.
I'll discuss the format of the SMS_ADDRESS structure in a moment.

The fourth parameter of SmsSendMessage, pstValidityPeriod, sets the
length of time the message can remain undelivered at the server before it is
deleted. Contrary to the parameter's SYSTEMTIME type, the format of this field
is not a SYSTEMTIME but a data type defined by the SMS specification. This
parameter can he NULL.

The next two fields are the pointer to the message text and the length in
bytes of the text. The maximum length of a single message is 140 bytes or 160
7-bit characters. The format of the data is defined in the smsdeDataEncoding
parameter discussed later.

The pbProviderSpecificData parameter points to optional provider
specific data. The provider-specific data is a structure specialized to the mes
sage format being used when sending the data. The format of the
TEXT_PROVIDER_SPECIFJC_DATA structure, used when sending standard text
messages, is described later. The dwProviderSpecificDataSize parameter should
be set to the size of the structure pointed to by pbProviderSpecificData. See the
discussion of the TEXT_PROVIDER_SPECIFIC_DATA structure for special han
dling of this parameter.

The smsdeDataEncoding parameter describes how the message data is
encoded. For most messages, the parameter should be set to SMSDE_OPTIMAL
to tell the SMS code to define the optimal encoding. The other values are
SMSDE_GSM to use the 7-bit GSM encoding and SMSDE_UCS2 to specify a Uni
code UCS2 encoding. The dwOptions parameter specifies how the service cen
ter will handle retries. If the parameter is set to SMS_OPTION_DELIVERY_NONE,
the service center will retry sending the message. If SMS_OPTION_DELIVERY_
NO_RETRY is specified, the message won't retry the delivery.

The final parameter points to a DWORD that will receive a message ID
value. The message ID can be used to get status of the message using the func
tion SmsGetMessageStatus. This parameter can be NULL if the message ID isn't
needed.

The return value of SmsSendMessage is a standard HRESULT value, with
S_OK (O) indicating success. The function can take a short but noticeable

968 Part IV Device Programming

amount of time to complete, so it's best to display a wait cursor or use some
other method to prevent the user from thinking the system is momentarily
locked up.

The structures used by SmsSendMessage included the SMS_ADDRESS and
TEXT_PROVIDER_SPECIFIC_DATA structures. The SMS_ADDRESS structure is
defined as

typedef struct sms_address_tag {
SMS_ADDRESS_TYPE smsatAddressType;
TCHAR ptsAddress[SMS_MAX_ADDRESS_LENGTHJ;

SMS_ADDRESS, *LPSMS_ADDRESS;

The first field of the structure is the address type. For most uses, this field can
be set to SMSAT_INTERNATIONAL. The second field is the address; for
SMSAT_INTERNATIONAL, the address is in the form of a phone number com
plete with country code and area code, as in +12225551212.

When sending standard text messages, the provider-specific data structure
used is TEXT_PROVIDER_SPECIFIC_DATA, shown here. Other structures can
be used when sending other types of message, but for brevity I'll describe only
this structure.

typedef struct text_provider_specific_data_tag {
DWORD dwMessageOptions;
PROVIDER_SPECIFIC_MESSAGE_CLASS psMessageClass;
PROVIDER_SPECIFIC_REPLACE_OPTION psReplaceOption;
DWORD dwHeaderDataSize;
BYTE pbHeaderData[SMS_DATAGRAM_SIZE];
BOOL fMessageContainsEMSHeaders;
DWORD dwProtocolID;

TEXT_PROVIDER_SPECIFIC_DATA;

This structure definition is somewhat misleading because only the first three
fields are used when sending a standard text message. The additional fields are
used only for message concatenation. The first field is the message options field
that can request that various message bits be set, such as reply path, discard, or
status. The message class value ranges from PS_MESSAGE_CLASSO through
PS_MESSAGE_CLASS3 and PS_MESSAGE_CLASSUNSPECIFIED. The message
class indicates how the service center handles the message. For text messages,
PS_MESSAGE_CLASSO is used. The psReplaceOption field contains PSRO_NONE
for standard messages. The field can be set to PSRO_REPLACE_1YPEn, where n
is a value from 1 through 7. If a replace type field is set, the message will
replace a message at the destination with the same parameters and the same
replace type value.

A function of this complexity deserves an example. The following code
calls SmsOpen, fills in the proper structures, and then sends the message. The
SMS handle is then closed with SmsClose.

Chapter 19 Programming the Smart Phone 969

SMS_HANDLE smshHandle;
SMS_ADDRESS smsaDestination;
TEXT_PROVIDER_SPECIFIC_DATA tpsd;
SMS_MESSAGE_ID smsmidMessageID = 0;

II try to open an SMS Handle
HRESULT hr= SmsOpen(SMS_MSGTYPE_TEXT, SMS_MODE_SEND, &smshHandle, NULL);
if (hr != ERROR_SUCCESS) (

printf ("SmsOpen fail %x %d", hr, GetLastError());
return 0;

II Create the destination address
memset (&smsaDestination, 0, sizeof (smsaDestination));
smsaDestination.smsatAddressType = SMSAT_INTERNATIONAL;
lstrcpy(smsaDestination.ptsAddress, TEXT("+l8005551212"));

II Set up provider specific data
tpsd.dwMessageOptions = PS_MESSAGE_OPTION_NONE;
tpsd.psMessageClass = PS_MESSAGE_CLASS0;
tpsd.psReplaceOption = PSRO_NONE;

char szMessage[] = "Watson! Come here, I need you!";

II Send the message, indicating success or failure
hr = SmsSendMessage (smshHandle, NULL, &smsaDestination, NULL.

(PBYTE) szMessage, strlen(szMessage)+l,
(PBYTE) &tpsd, 12, SMSDE_OPTIMAL.
SMS_OPTION_DELIVERY_NONE, &smsmidMessagelD);

if (hr == ERROR_SUCCESS)
printf ("Message sent");

SmsClose (smshHandlel;

SmsOpen is called with SMS_MODE_SEND to open a handle for sending.
Notice that the final parameter is NULL because there isn't a need for the read
event handle. The destination address is then filled in with a 10-digit phone
number. The provider-specific data is constructed with no options and message
class 0. The message is then constructed, and the call to SmsSendMessage is
made. Notice that the size of the provider-specific data is not set to sizeof
(TEXT_PROVIDER_SPECIFJCJJATA) because this is a simple, standalone mes
sage and the last few fields of TEXT_PROVIDER_SPECIFIC_DATA aren't used.
After the message is sent, the handle is closed with SmsClose, which has the
handle as the single parameter.

Receiving a Message
Receiving a message is accomplished with the function SmsReadMessage. When
opening an SMS handle for reading, an event handle must be passed as the last

970 Part IV Device Programming

parameter. The SMS system will use this handle to signal the application when
a message has been received.

When the event is signaled, the application can get an idea of the size of
the incoming message by calling SmsGetMessageSize, prototyped as

HRESULT SmsGetMessageSize (const SMS_HANDLE smshHandle,
DWORD * const pdwDataSize);

The two parameters are the SMS handle that was opened previously and a
pointer to a DWORD that will receive the message size. The size received is not
necessarily the exact size of the message. Instead, it is an upper bound that can
be used to allocate the buffer that receives the message.

With a buffer allocated, the message can be read using SmsReadMessage,
prototyped as

HRESULT SmsReadMessage (const SMS_HANDLE smshHandle,
SMS_ADDRESS * const psmsaSMSCAddress,
SMS_ADDRESS * const psmsaSaurceAddress,
SYSTEMTIME * canst pstReceiveTime,
BYTE * canst pbBuffer, DWORD dwBufferSize,
BYTE * canst pbPraviderSpecificBuffer,
DWORD dwPraviderSpecificDataBuffer,
DWORD* pdwBytesRead);

The first parameter is an SMS handle that was opened in receive mode.
The second parameter is an optional SMS_ADDRESS structure that can receive
the number of the SMS service center that sent the message. If the message cen
ter address is of no interest, this parameter can be set to NULL. The third param
eter points to an SMS_ADDRESS structure that will be filled in with the address
of the message received. The pstReceiveTime parameter points to a SYSTEM
TIME structure that will receive the UTC-based time of the message. This
parameter can be NULL if the time isn't required. The next two parameters,
pbBu.ffer and dwBu.fferSize, are the pointer to the buff er to receive the data and
the size of the buffer. The pbProviderSpecificBu.ffer parameter points to a buffer
that will receive the provider-specific data that accompanies the message, and
dwProviderSpecificDataBu.ffer contains the size of the buffer. The final param
eter points to a DWORD that will receive the size of the message received.

SmsReadMessage will fail if there is no message to be read, so the appli
cation must block on the event used when SmsOpen was called and only read
the message when the event is signaled. The blocking nature of the process
means that SmsReadMessage, or at least the wait on the event object, should
be done in a secondary thread. The following code is a separate thread that
creates an event, opens an SMS handle, blocks on the event, and if signaled
reads the message.

Chapter 19 Programming the Smart Phone 971

DWDRD ThreadRead (PVDID pArg) {
SMS_ADDRESS smsaDestination;
TEXT_PROV!DER_SPECIFIC_DATA tpsd;
SMS_HANDLE smshHandle;

HANDLE hRead = CreateEvent (NULL, FALSE, FALSE, NULL);
II Open an SMS Handle
HRESULT hr= SmsOpen (SMS_MSGTYPE_TEXT. SMS_MODE_RECEIVE,

&smshHandle. &hRead);
if (hr != ERROR_SUCCESS) {

printf ("SmsOpen fail %x %d\r\n", hr, GetLastError());
return 0;

II Wait for message to come in.
int re= WaitForSingleObject (hRead, 30000);
if (re != WAIT_OBJECT_0) {

printf ("WaitForSingleObject %d\r\n", re);
SmsClose (smshHandle);
return 0;

memset (&smsaDestination, 0, sizeof (smsaDestination));
DWORD dwSize, dwRead = 0;

hr= SmsGetMessageSize (smshHandle, &dwSize);
if (hr != ERROR_SUCCESS)

dwSize = 1024;
return 0;

char *pMessage =(char *)malloc (dwSize+l);
memset (&tpsd, 0, sizeof (tpsd));
hr= SmsReadMessage (smshHandle, NULL. &smsaDestination, NULL,

(PBYTE)pMessage, dwSize,
(PBYTE)&tpsd, sizeof(TEXT_PROVIDER_SPECIFIC_DATA),
&dwRead);

if (hr == ERROR_SUCCESS) {
printf ("Ost Address >%s<\r\n", smsaDestination.ptsAddress);
printf ("Msg: >%s<". pMessage);

else
printf ("Failed %x LastErr:%d\r\n", hr, GetLastError());

free CpMessage);
SmsClose (smshHandle);
printf ("ThreadExit");
return 0;

This code could be better written to check the length of the received data and
to insure that the message is zero terminated.

972 Part IV Device Programming

Configuring the SMS System
There are a number of functions in the SMS API that are provided for querying
the state and managing the SMS system. The SMS phone number for the device
can be queried with a call to SmsGetPhoneNumber, defined as

HRESULT SmsGetPhoneNumber (SMS_ADDRESS• const psmsaAddress);

The only parameter is an SMS_ADDRESS structure that is filled in with the
phone number of the device.
The status of a sent message can be queried with SmsQueryMessageStatus, pro
totyped as

HRESULT SmsGetMessageStatus (const SMS_HANDLE smshHandle,
SMS_MESSAGE_ID smsmidMessageID,
SMS_STATUS_INFORMATION * const psmssiStatusinformation,
const DWORD dwTimeout);

The first two parameters are the SMS handle and the message ID that was
returned by SmsSendMessage. The dwTimeout value is the time, in milliseconds,
that the function should wait for status information from the SMS service center.
If the function returns successfully, the SMS_STATUS_INFORMA110N structure is
filled with status information about the message. The structure is defined as

typedef struct sms_status_information_tag
SMS_MESSAGE_ID smsmidMessageID;
DWORD dwMessageStatus0;
DWORD dwMessageStatusl;
SMS_ADDRESS smsaRecipientAddress;
SYSTEMTIME stServiceCenterTimeStamp;
SYSTEMTIME stDischargeTime;

SMS_STATUS_INFORMATION, *LPSMS_STATUS_INFORMATION;

The first field is the ID of the message. The next two fields contain status
flags that define the state of the message. There are two fields because there are
more than 32 status flags defined. The SMS_ADDRESS field is filled with the des
tination address of the message. The stServiceCenterTimeStamp field contains
the time the message was received by the service center. The stDischargeTime
field is a time that depends on the status flags returned in the two dwMessage
Status fields.

The SMS service center number can be queried and set with the functions
SmsGetSMSC and SmsSetSMSC, prototyped as

HRESULT SmsGetSMSC (SMS_ADDRESS* const psmsaSMSCAddress);

and

HRESULT SmsSetSMSC (const SMS_ADDRESS * const psmsaSMSCAddress);

Chapter 19 Programming the Smart Phone 973

Both functions take a single parameter, a pointer to an SMS_ADDRESS structure.
Typically, the telephony provider preconfigures this service center number in
the phone.

The current time can be estimated with a call to SmsGetTime, prototyped
as

HRESULT SmsGetTime CSYSTEMTIME * canst ptsCurrentTime,
DWORD * canst pdwErrarMargin);

The time returned is based on the time received by the SMS service center the
last time the system received a timestamp. The time is a UTC number, so it
needs to be corrected for the local time zone. The pdwErrorMargin parameter
should point to a DWORD that receives an estimated error margin, in seconds,
for the time. If an error margin can't be determined, the error margin will be set
to OxFFFFFFFF.

An application can ask to be started when a message is received by calling
the function SmsSetMessageNot?fication, prototyped as

HRESULT SmsSetMessageNatificatian (canst SMSREGISTRATIONDATA * psmsrd);

The single parameter is a pointer to an SMSREGISTRATIONDATA structure,
defined as

typedef struct smsregistratiandata_tag {
DWORD cbSize;
TCHAR tszAppName[SMS_MAX_APPNAME_LENGTH];
TCHAR tszParams[SMS_MAX_PARAMS_LENGTHJ;
TCHAR tszPratocalName[SMS_MAX_PROTOCOLNAME_LENGTH];

SMSREGISTRATIONDATA, •LPSMSREGISTRATIONDATA;

The cbSize field should be set with the size of the structure before calling
the function. The tszAppName and tszParams fields specify the application
name and command line for the application when it is launched. The tszProto
colName field should be set to the message protocol for the messages the appli
cation wants to receive. For example, if the application wants to receive
standard text messages, the field should be set to SMS__]v1SGTYPE_TEXT

When the application no longer wants to be notified when messages are
received, it can call SmsClearMessageNotification, prototyped as

HRESULT SmsClearMessageNatificatian (canst LPCTSTR tszPratacalName);

The single parameter is the message protocol that was specified when SmsSet
MessageNot?fication was called.

974 Part IV Device Programming

The SMSTalk Example
The following example uses a number of the techniques discussed in this chap
ter to create an application that sends and receives SMS messages. SMSTalk is a
dialog-based, multithreaded application that monitors the SMS read queue as
well as provides a method for the user to compose and send SMS messages.

The example is designed to run both on the Smartphone and the Pocket
PC phone edition. The example is designed for binary compatibility, as
opposed to source code compatibility. Notice that SMSTalk checks for the
Smartphone and makes the necessary changes to the user interface at run time.
Figure 19-9 shows the SMSTalk main dialog on both a Smartphone and a Pocket
PC phone edition device.

a SMS Talk ®.O '."' ~E 3:37 G
Ul'lread messages

3/29/03 3:35:18 call me

Message iooosss1212

Watson, come he<e, I want to see

Figure 19-9 The SMSTalk application running on both a Smartphone
and a Pocket PC

The dialogs look different because the application uses different dialog
box templates depending on the device the application is running on. The
source code, shown in Listing 19-2, has a rather long resource file because all
the dialogs must be described twice, once for each device. The resource file
also contains different menu bar templates for the two devices.

SIVISTalkic
//=='=="'="'=======================#=="'=='"'======"='==="'=;=;="="'"'="========'=====
I I Resour.ce file
II
II Written for the book Progra111ming Windows CE
II CopYright {Cl 2003 Douglas Boling
!!======='==:;=='==========="===='=====;===================================;=;:=

Listing 19-2 The SMSTalk source code

Chapter 19 Programming the Smart Phone 975

#include "windows.h"
#include "aygshell.h"
#include "SMSTalk.h" II Program-specific stuff

11--
11 Icons and bitmaps
II
ID_ICON ICON "SMSTalk.ico" II Program icon

11--
11 Main window dialog template for Pocket PC
II
SMSTalk_PPC DIALOG discardable 25, 5, 120, 98
STYLE WS_OVERLAPPED I WS_VISIBLE I WS_SYSMENU I DS_MODALFRAME
CAPTION "SMS Talk"
FONT 8, "System"
BEGIN

LTEXT "Received Messages", -1, 4, 4, 128, 10,
LISTBOX IDD_MSGLIST, 4, 14, 128, 48, WS_TABSTOP

LTEXT "Message",
EDITTEXT

-1, 4, 62, 32, 10,
IDD_MSGADDR, 36, 60, 96, 12, WS_TABSTOP

ES_NUMBER
ED ITT EXT

PUSHBUTTON "&New",

IDD_MSGTEXT,
ES_MULTILINE

!D_CMDNEW,

4, 74, 128, 60, WS_TABSTOP I
ES_WANTRETURN I ES_AUTOVSCROLL
4, 137, 40, 12, WS_TABSTOP

PUSHBUTTON "&Reply", !D_CMDREPLY, 48, 137, 40, 12. WS_TABSTOP
END
11--
11 Main window dialog template for Smartphone
II
SMSTalk_SP DIALOG discardable 25, 5, 120, 98
STYLE WS_OVERLAPPED I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I

DS_CENTER I DS_MODALFRAME
CAPTION "SMS Talk"
BEGIN

LTEXT "Unread messages", -1,
LI STBOX IDD_MSGLI ST.

2.
2.

2, 96.
11, 96,

8.
12, WS_TABSTOP

CONTROL IDD_MSGLISTUD, UPDOWN_CLASS,
UDS_AUTOBUDDY I UDS_HORZ I UDS_ALIGNRIGHT I UDS_ARROWKEYS I

UDS_SETBUDDYINT I UDS_WRAP I UDS_EXPANDABLE,
0. 0. 0, 0

LTEXT "Number", -1, 2, 24, 34, 8,
EDITTEXT IDD_MSGADDR, 36, 23, 62, 10, ES_READONLY

LTEXT "Message Text", -1, 2, 34, 96, 8,

(continued)

976 Part IV Device Programming

Listing 19-2 (continued)

EDI TT EXT

CONTROL '"',

END

IDD_MSGTEXT. 2, 43, 96, 40, WS_TABSTOP I
ES_MUL.TIUNE I ES_READONLY

IDQ_MSGTEXTUD, UPDOWN_CLASS, UDS_AUTOBUDDY I
UD.S_HORZ I UDS_ARROWKEYS I UDS_SETBUDDYINT I
UDS_WRAP I UDS_EXPANDABLE I UDS_NOSCROLL,

0. 0. 0, 0

/!---------·----------------------------------- --- ----- -------------
11 Compose window dialog template for Pocket PC
II

25, 5, 120, 98 WriteMsgDlg_PPC DIALOG discardable
STYLE ws_OVERLAPPED I ws~vrsrBLE I
CAPTION "Compose Message"

WS_SYSMENU I 05-MODALFRAME

BEGIN
LTEXT "Number", -1. 4,
ED ITT EXT IDD_MSGADDR. 36,

LTEXT "Message Text", -1. 4,
EDITTEXT IDD_MSGTEXT, 4,

6, 32, 10,
4. 96, 12, WS_TA8STOP

E$_NUMBER
20, 128, 10,
30, 128. 54, WS_TABSTOP I

ES_MULTILINE ES .. WANTRETURN I E$_AUTOVSC RO LL
PUSHBUTTON "&Send", ID_CMDSEND, 4. 90, 40, 12. WS .. TABSTOP
PUSHBUTTON "&Cancel", IDCANCEL. 48, 90, 40, 12, WS_TABSTOP

END
ll- -
II Compose window dialo~ template for Smartphone
II
WriteMsgDlg_SP DIALOG di~cardable 25, 5, 120, 98
STYLE WS_OVERLAPPED I WS_VISIBLE I WS_CAPTION I WS_SYSMENU

DS_CENTER I DS .. MODALFRAME
CAPTION "SMS Talk"
BEGIN

LTEXT "Number",
EDITTEXT

-1. 2. 2. 96, 8.
IDD_MSGADDR, 2, 11, 96, 10, WS_TABSTOP

LTEXT "Message Text", -1. 2, 24, 96, 8,
EDITTEXT IDD_MSGTEXT. 2, 33, 96, 50, WS_TABSTOP I

CONTROL "",

END

ES_MUL TI LINE
IDD .. MSGTEXTUD. UPDOWN_CLASS, UDS_AUTOBUDDY
UDS_HORZ I UDS_ARROWKEYS I UDS_SETBUDDYINT
UDS_WRAP I UDS_EXPANDABLE I UDS_NOSCROLL,

0. 0. 0. 0

//-•--------~-~~---------~-------·-------------------- --·-----·--------
11 String resource t~ble
II
STRINGTABLE DISCARDABLE

Chapter 19 Programming the Smart Phone 977

BEGIN
IDS_EXIT "Exit"
IDS_MENU "Menu"
IDS_MSG "Message"
IDS_FI LE "Fi 1 e"
!DS_OK "OK"
IDS_CANCEL "Cancel"
IDS_SEND "Send"

END
/!--
// SoftKeyBar resource on main window for Smartphone
II
ID_MENU_SP RCDATA MOVEABLE PURE
BEGIN

ID_MENU_SP, 2,
I_IMAGENONE, !DOK, TBSTATE_ENABLED, TBSTYLE_BUTTON I

TBSTYLE_AUTOSIZE, IDS_EXIT, 0, NOMENU,
I_IMAGENONE. IDPOP, TBSTATE_ENABLED, TBSTYLE_DROPDOWN I

TBSTYLE_AUTOSIZE, IDS_MENU, 0, 0,
END

ID_MENU_SP MENU D!SCARDABLE
BEGIN

END

PO PUP "&File"
BEGIN

END

MENUITEM "Reply",
MENUITEM "New Message"
MENUITEM SEPARATOR
MENUITEM "Delete",

ID_CMDRE PLY
ID_CMDNEW

ID_CMDDEL

11--
11 SoftKeyBar resource on Compose dialog for Smartphone
II
ID_DLGMENU_SP RCDATA MOVEABLE PURE
BEGIN

IO_MENU_SP, 2,
I_IMAGENONE, !D_CMDSEND, TBSTATE_ENABLED, TBSTYLE_BUTTON I

TBSTYLE_AUTOSIZE, IDS_SEND, 0, NOMENU.
I_IMAGENONE. IDCANCEL, TBSTATE_ENABLED, TBSTYLE_BUTTON I

TBSTYLE_AUTOSIZE. IDS_CANCEL, 0, NOMENU,
END
11--
11 Menu bar resource main window for Pocket PC
II
ID_MENU_PPC RCDATA MOVEABLE PURE

(continued)

978 Part IV Device Programming

Listing 19-2 (continued)

Chapter 19 Programming the Smart Phone 979

11--
11 Program defines used by application
II
typedef struct {

SMS_ADDRESS smsAddr;
SYSTEMTIME stMsg;
int nSize;
WCHAR wcMessage[l60];

MYMSG_STRUCT, *PMYMSG_STRUCT;

#define MAX_MSGS 250
typedef struct {

int nMsgCnt;
MYMSG_STRUCT pMsgs[MAX_MSGS];

MYMSG_DBASE, *PMYMSG_DBASE;

11--------- ------------------'----------------------cC---------
11 Generic defines used by application

/fdefi ne MYMSG_TELLNOTIFY (WM_US.ER + 100)

/fdefi ne ID_!CON

//define IO_MENU_SP 100
#define IO_MENU_PPC 101
#define IO_DLGMENU_SP 102

#define IDD_MSGLIST 110 11 Control IDs
/fdefi ne IDD_MSGLISTUD 111
#define IDD_MSGTEXT 112
ffdefi ne IDD_MSGTEXTUD 113
jfdefi ne IDD_MSGADDR 114

#define IDM_EXIT 200
ffdefi ne ID_CMDSEND 201
f/defi ne !D_CMDNEW 202
fldefi ne ID_CMDREPLY 203
#define ID_CMDDEL 204
#define !D_CMDREAD 205
//define IDM_ABOUT 206
ffdefi ne IDFILE 207
#define ID POP 208

#define IDS_EXIT 401
#define IDS_MENU 402

(continued)

980 Part IV Device Programming

Listing 19-2 (continued)

Chapter 19 Programming the Smart Phone 981

#include <windows.h>
#include <aygshell .h>
#include <tpcshell .h>
#include <sms.h>
#include "SMSTalk.h"

II For all that Windows stuff
II Extended shell defines

II SMS functions
II Program-specific stuff

#define MY_MSGWAITING_STRING TEXTC"SMSMsgReadEvent"l
#define EMPTY_MSG_LIST TEXTC"<No new messages>")
#define MAXMESSAGELEN 4096
11-- --- - - -- - - - - - --- -- - - - - -- - - - - - - - - - -- - -- - -- - - - - - -- - - - - -- - - -- - - - - - - -- - - -

II Global data
II
const TCHAR szAppName[J =TEXT C"SMSTalk"l;
const TCHAR szOtherApp[J = TEXTC"Another application already \
has the SMS system open.\n\nPlease close the (email?) application");
HINSTANCE hlnst; II Program instance handle
HWND g_hMain = 0;
HANDLE g_hReadEvent = 0;
HANDLE g_hQuitEvent = 0;
BOOL g_fContinue = TRUE;
BOOL g_fOnSPhone = FALSE;
PMYMSG_DBASE g_pMsgDB = 0;

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[J = {

WM_CREATE, DoCreateDialogMain,
WM_INITDIALOG, DoinitDialogMain,
WM_COMMAND, DoCommandMain,

} ;

WM_HOTKEY, DoHotKeyMain,
MYMSG_TELLNOTIFY, DoTellNotifyMain,

II Command Message dispatch for MainWindowProc
const struct decodeCMD MainCommanditems[J = {

} ;

IDD_MSGLIST. DoMainCommandMsgList,
!DOK, DoMainCommandExit,
IDCANCEL, DoMainCommandExit,
ID_CMDREPLY, DoMainCommandReplyMessage,
ID_CMDNEW, DoMainCommandNewMessage,
ID_CMDDEL, DoMainCommandDelMessage,
IDM_ABOUT, DoMainCommandAbout,

II==
II Program entry point
II
int WINAPI WinMain CHINSTANCE hlnstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) {
INT i;

(continued)

982 Part IV Device Programming

Listing 19-2 (continued)

for timer event notification.
fl then try to open an SMS Handle for reading messages.
g_hQui tEvent = Cre<1teEvent (NlfLL FALSE, FALSE, NULL):
g_hReadEvent = Crt:;ateEvent (NULL, FALSE, FALSE, .. NULL);
HRESULT hr = SmsOpen { SMS_MSGTYPE ... JEXT, SMS'-"MODE.,..RECEIVE,

&smshHandJe, &g_hReadtventl;
(hr ·==SMS...cE.:.:RECEIVEHANDLEALREADYOF'ENl {

ErrorBox (hWnd. c LPCTSTRlszOtherApp):
return 0;

else H. (hr != .E:RROILSUCCESS) {
TEXJ("SmsOpen fail %X %d"}, hr, GetLastError()) ;

Chapter 19 Programming the Smart Phone 983

hThread = CreateThread (NULL, 0, MonitorThread. (PVOID)smshHandle,
0, CDWORD *)&i):

if ChThread == 0)
return -1;

II Display dialog box as main window. Use different template if
II running on the smartphone
if (g_fOnSPhone)

_tcscpy (szDlgTemplate. TEXTC"SMSTalk_SP"));
else

_tcscpy (szDlgTemplate, TEXTC"SMSTalk_PPC"));

DialogBoxParam (hlnstance, szDlgTemplate, NULL, MainDlgProc,
(LPARAM)lpCmdLine);

II Signal notification thread to terminate
g_fContinue = FALSE:
SetEvent (g_hQuitEvent):
WaitForSingleObject (hThread, 1000);
CloseHandle ChThread):
CloseHandle (g_hQuitEvent): II Don't close ReadEvent, SMS does that
if (g_pMsgDB) LocalFree (g_pMsgDBl:
return 0:

}

II==
II Message handling procedures for main window
11--
11 MainDlgProc - Callback function for application window
II
BOOL CALLBACK MainDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
INT i;

II
II Search message list to see if we need to handle this
II message. If in list. call procedure.
II
for Ci = 0: i < dim(MainMessages); i++) {

if CwMsg == MainMessages[iJ.Code)
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, lParam);

}

return FALSE:
}

11--
11 DoCreateDialogMain - Process WM_CREATE message for window.
II
BOOL DoCreateDialogMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

(continued)

984 Part IV Device Programming

Listing 19-2 (continued)

}

if {!g_fOnSPhone) {

}

11 set up Menu bar for Pocket PC
SHMENUBARINFO mbi:

memset C&mb1, 0. sizeofCSHMENUBARINFO));
mbi.cbSize = s1zeof(SHMENUBARINFO);

mbi.hwndParent = hWnd:
mbi.nToolBarid = ID_MENU_PPC: II IDM_MENU:

mbi.hinstRes = hinst:

II If we could not initi~lize the dialog box, return an error
if C!SHCreateMenuBar(&mbi)J {

ErrorBox (hWnd, TEXT("Menubar failed")):

OestroyWindow ChWnd):
return ~ALSE:

return TRUE:

I I· - - - · - · · - · - - - - - - c • - - ·- - • - - - - - - • • • -· - - • • - - - - • • • • - - - • - - - - - ~ - • • - - • - - - - - - - • -

II DoinitDialogMain , Process WM_INITDIALOG message for .window.

II
BOOL DoinitDia]ogMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParamJ {

II Save the window handle
g_hMain = hWnd:

I/. Specify that the di al og box should stretch full screen
SHINITDLGINFO shidi;

memset C&sh.i di. 0. si zeof(shi di)):

shidi .dwMask = SHIDIM_FLAGS;
shidi~dwFlags = SHIDIF_SIZEDLG ://SHIDIF_SIZEOLGFULLSCREEN
shidi .hDlg = hWnd;

if(!SHinitDialog(&shidi))

return FALSE:

II Create menubar
SHMENUBARINFO mbi:

mernset C&mbi. 0. sizeof(SHMENUBARINFQ));

mbi;cbSize = sizeofCSHMENUBARINFOl:
rnbi.hwndParerit·= hWnd:

if (g30nSPhone)

mbLnTpolBarid = ID_MENU • .:SP:

else

mbi .• nTool Bar Id = ID_MENU_PPC:

mbt.hinstRes = hinst;

}

Chapter 19 Programming the Smart Phone 985

II If we could not initialize the dialog box, return an error
if C!SHCreateMenuBarC&mbill {

ErrorBox (hWnd, TEXTC"Menubar failed"));
DestroyWindow (hWnd);
return FALSE;

II This is only needed on the smartphone
if (g_fOnSPhone) {

II Override back key since we have an edit control
SendMessage (SHFindMenuBar ChWnd), SHCMBM_OVERRIDEKEY, VK_TBACK,

MAKELPARAM CSHMBOF_NODEFAULT j SHMBOF_NOTIFY,
SHMBOF_NODEFAULT I SHMBOF_NOTIFY));

II set the title bar
SHSetNavBarText ChWnd, TEXT("SMS Talk")):

SendDlgitemMessage ChWnd, IDD_MSGLIST, LB_ADDSTRING, 0,
(LPARAM)EMPTY_MSG_LIST);

SetButtons ChWnd);
return TRUE:

11---"------------------
ll DoCommandMain - Process WM_COMMAND message for window.
II
BOOL DoCommandMain CHWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParaml{

WORD iditem, wNotifyCode:

}

HWND hwndCtl ;
INT i:

II Parse the parameters.
iditem = CWORDl LOWORD CwParam);
wNotifyCode =(WORD) HIWORD CwParaml:
hwndCtl = (HWND) lParam;

II Call routine to handle control message.
for Ci = 0: i < dim(MainCommanditemsl: i++l {

}

if Ciditem == MainCommanditems[i].Code) {
(*MainCommanditems[i].Fxn)(hWnd, idltem, hwndCtl,

wNot i fyCode l:
return TRUE:

}

return FALSE:

(continued)

986 Part IV Device Programming

Listing 19·2 (continued)

Chapter 19 Programming the Smart Phone 987

LPARAM DoMainCommandReplyMessage (HWND hWnd, WORD idltem, HWND hwndCtl,
WORD wNotifyCode) {

intnSel;
LPCTSTR lpTemplate;
LPARAM 1 p = 0;
nSel = SendDlgitemMessage (hWnd, IDD_MSGLIST, LB_GETCURSEL.0,0);
if CnSel != LB_ERR)

lp = (LPARAMl&g_pMsgDB->pMsgs[nSel].smsAddr;

II Display reply dialog box.
if (g_fDnSPhone)

lpTemplate = TEXTC"WriteMsgDlg_SP");
else

lpTemplate = TEXTC"WriteMsgDlg_PPC");

DialogBoxParam Chinst, lpTemplate, NULL, WriteDlgProc, lp);
return 0;

11--
11 DoMainCommandNewMessage - Process New message button.
II
LPARAM DoMainCommandNewMessage CHWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {
LPCTSTR lpTemplate;
II Display reply dialog box.
if (g_fOnSPhone)

l pTempl ate TEXT("Wri teMsgDl g_SP");
else

lpTemplate = TEXTC"WriteMsgDlg_PPC");

DialogBoxParam Chinst, lpTemplate, NULL, WriteDlgProc, 0);
return 0;

11--
11 DoMainCommandAbout - Process About menu item.
II
LPARAM DoMainCommandAbout CHWND hWnd, WORD idltem, HWND hwndCtl.

}

WORD wNotifyCode) {
TCHAR szAbout[] = TEXTC"SMS Talk\nCopyright 2003\nDouglas Boling"):

II Display about information in a message box.
MessageBox ChWnd, szAbout, TEXTC"About"), MB_OK I MB_ICONASTERISK);
return 0;

(continued)

988 Part IV Device Programming

Listing 19-2 (continued)

Chapter 19 Programming the Smart Phone 989

BOOL fReply = FALSE;
TCHAR szText[128];
LPTSTR pMsg =TEXT(""), pNum =TEXT("");

nSel = SendDlgitemMessage (hWnd, IDD_MSGLIST, LB_GETCURSEL, 0, 0);
if (nSel != LB_ERR) {

SendDlgitemMessage (hWnd, IDD_MSGLIST. LB_GETTEXT, nSel,
(LPARAM)szText);

if (_tcscmp (szText, EMPTLMSG_LIST)) {
fReply = TRUE;
pNum g_pMsgDB->pMsgs[nSelJ.smsAddr.ptsAddress;
pMsg = g_pMsgDB->pMsgs[nSelJ.wcMessage;

EnableWindow (GetDlgitem (hWnd, ID_CMDREPLY), fReply);

II Set the text in the number and message fields
SetWindowText (GetDlgitem ChWnd, IDD_MSGADDRl. pNuml;
SetWindowText CGetDlgitem (hWnd, IDD_MSGTEXTl. pMsg);

II Disable the menu bar button if necessary
TBBUTTONINFO tbi;
HWND hwndMB = SHFindMenuBar (hWndl;
memset (&tbi, 0, sizeof (tbi));
tbi .cbSize = sizeof (tbi);
tbi .dwMask = TBIF_STATE;
if(SendMessage (hwndMB. TB_GETBUTTONINFO, IDPOP, (LPARAMl&tbi)) {

if (fReply)
tbi .fsState I= TBSTATE_ENABLED;

else
tbi .fsState &= -TBSTATE_ENABLED;

SendMessage ChwndMB, TB_SETBUTTONINFO, IDPOP, CLPARAMl&tbil;

return nSel;

11--
11 SendSmsMessage - Send an SMS message
II
HRESULT SendSmsMessage CHWND hWNd, SMS_ADDRESS smsDest. LPTSTR pMsg) {

HRESULT hr;
SMS_HANDLE smshHandle;
TEXT_PROVIDER_SPECIFIC_DATA tpsd;
SMS_MESSAGE_ID smsmidMessageID = 0;

(continued)

990 Part IV Device Programming

Listing 19-2 (continued)

11 try to open an SMS .. Handle
hr= Sms0pen(SMS~MS$TYFLTEXT, SMS;...MODE_SEND, .&smshHandle, NULL);

(hr !=. ERROR .. 5UCCtsSl

.Set .up provider specific data
tpsd.dwMessage.Options =" P$_MESSAGE~OPUON_NONE;
tpso.psMessageClass =PLMESSAGLCLASS0;
tpsd.psReplaceOptfon = PSRO_NONE;
tpsd.dwHeadt;!rDahSize = .0;

Send the message., in di cat i ng success or failure
(smshHandle, NULL, &smsDest •. NULL, (PBYTE)pMsg,
lstrlen(pMsg) * sizeof CTCHARl,
CPBYTE) &tpsd. 12. SMSDLOPTlMAL,
SMS_OPTION""'DEL;IVERY_NDNE. &smsmidMessageID);

//=;'=-"'-="'"'==o;==="'="'===========o=============:===============================
II Wrtt¢Msg. D1'al()g procedure
ll
1$0()t: .. CAWLBACkWriteOl g Proc

SHINI'J'D.LG!NFOshi d r:
static SMS, ... ,ADGRESS. smsDest;
TCHMf szMsg[SMS_DATAGRAM.:.sr ZE+2];
HRE:SU~ T hr;

~Hlnputili aJ og
switch (WMs.g)
case •. WM_:_INHD IA LOG;

//specify.that the dialog box should
memset <&shi di, 0., ... stzeof(shidi.));

SHitJlM,,_FLAGS;
SH l.DlF SlZ EDLGFUUSCREEN;

WPARAM wParam,

I= SHJDIF_DONEBUTTON;

Chapter 19 Programming the Smart Phone 991

mbi .cbSize = sizeofCSHMENUBARINFO);
mbi .hwndParent = hWnd;
mbi .nToolBarid = IO_OLGMENU_SP;
mbi .hinstRes = hinst;

II If we could not initialize the dialog box, return an error
if (!SHCreateMenuBarC&mbi)) {

ErrorBox (hWnd, TEXT("Menubar failed"));
DestroyWindow (hWnd);
return FALSE;

II Override back key since we have an edit control
SendMessage (SHFindMenuBar (hWnd), SHCMBM_OVERRIDEKEY, VK_TBACK.

MAKELPARAM CSHMBOF_NOOEFAULT I SHMBOF_NOTIFY,
SHMBOF_NODEFAULT I SHMBOF_NOTIFYll;

II Set input mode of number field to numbers
SendDlgitemMessage (hWnd, IDO_MSGADDR, EM_SETINPUTMOOE, 0,

EIM_NUMBERS);

SendOlgltemMessage (hWnd, IOO_MSGTEXT, EM_LIMITTEXT,
SMS_DATAGRAM_SIZE, 0);

II If there is a reply address passed, place it in control
if (lPa ram) {

II Copy dest address
smsDest = *(SMS_AODRESS *llParam;
SetDlg!temText (hWnd, IDO_MSGADDR, smsDest.ptsAddress);
SetFocus (GetOlgltem (hWnd, IDD_MSGTEXTll;
return FALSE;

else {
smsDest.smsatAddressType = SMSAT_INTERNATIONAL;
memset (smsDest.ptsAddress. 0,

sizeof (smsDest.ptsAddress));

return TRUE;

case WM_HOTKEY:
SHSendBackToFocusWindow <wMsg, wParam, lParam);
return TRUE;

case WM...cCOMMANO:
switch (LOWORD <wParam)) {

case IO_CMDSEND:
GetOlgitemText ChWnd,IOO_MSGADDR, smsDest.ptsAddress,

(continued)

992 Part IV Device Programming

Listing 19-2 (continued)

break:
}

dim (smsDest.ptsAddress));
GetDlgiternText ChWnd,IDD_MSGTEXT, szMsg, dim (szMsg));
hr= SendSmsMessage (hWnd, smsDest, szMsg);
if (hr == 0)

else

MessageBox (hWnd, TEXT("Message Sent"), szAppName,
MB_OK I MB_ICONASTERISK);

ErrorBox ChWnd, TEXT ("Send message fail %x %d"),
hr, GetLastError(l);

case IDOK:
case IOCANCEL:

EndDialog ChWnd, 0l;
return TRUE:

return FALSE;

// - - - -- - -- - -- - --- --- - --- - -- --- - ---- -- - ----- - - -- - -- - - -- - -- - - - - - -- - -- - --.
II ErrorBox - Displays a message box with a formatted string
II
void ErrorBox CHWND hWnd, LPCTSTR lpszFormat, ...) {

int nBuf;
TCHAR szBuffer[512];

va_list args;
va_start(args, lpszFormat);

nBuf = _vstprintfCszBuffer. lpszFormat, args);
MessageBox ChWnd, szBuffer, TEXT("Error Msg"), MB_OK);
va_end(args);

11--
11 OnSmartPhone - Determines if we're running on a smartphone
II
BOOL OnSmartPhone (void) {

TCHAR szPlat[l28];
int re;
re= SystemParameterslnfoCSP!_GETPLATFORMTYPE, dim(szPlat),szPlat,0l;
if Crc) {

ff (lstrcmpi (szPlat, TEXTC"Smartphone"l) == 0)
return TRUE;

return FALSE;

Chapter 19 Programming the Smart Phone 993

II==
II MonitorThread - Monitors event for timer notification
II
DWORD WINAPI MonitorThread (PVOID pArg) {

TEXT_PROVJDER_SPECIFJC_DATA tpsd;
SMS_HANDLE smshHandle = (SMS_HANDLE)pArg;
PMYMSG_STRUCT pNextMsg;
BYTE bBuffer[MAXMESSAGELEN];
PBYTE pin;
SYSTEMTJME st;
HANDLE hWait[2];
HRESULT hr;
int re;
DWORD dwinSize, dwSize, dwRead = 0;

II Need two events since it isn't hWait[0]
hWait[l]

g_hReadEvent;
g_hQuitEvent; II allowed for us to signal SMS event.

while (g_fContinue) {
re= WaitForMultipleObjects (2, hWait, FALSE, INFINITE);
if (!g_fContinue I I (re != WAIT_OBJECT_0))

break;
II Point to the next free entry in the array
pNextMsg = &g_pMsgDB->pMsgs[g_pMsgDB->nMsgCnt];

II Get the message size
hr= SmsGetMessageSize (smshHandle, &dwSizel;
if (hr != ERROR_SUCCESS) continue;

II Check for message larger than std buffer
if (dwSize > sizeof (pNextMsg->wcMessage))

if (dwSize > MAXMESSAGELEN)
continue:

pin = bBuffer;
dwlnSize = MAXMESSAGELEN;

else {
pln = (PBYTE)pNextMsg->wcMessage;
dwlnSize = sizeof (pNextMsg->wcMessage);

II Set up provider specific data
tpsd.dwMessageOptions = PS_MESSAGE_OPTION_NONE:
tpsd.psMessageClass = PS_MESSAGE_CLASS0;
tpsd.psReplaceOption = PSRO_NONE;
tpsd.dwHeaderDataSize = 0;

(continued)

994 Part IV Device Programming

Listing 19-2 (continued)

.return

II If using alt buffer, copy to std buff
if C<DWORD)pin == <DWORDlpNextMsg->wcMessage) {

pNextMsg->nSize =(int) dwRead;
else {

mems.et (pNextMsg~ >wcMessage 0,

memcpy

pNextMsg->nSi ze =

1 ncrelTientmesf ag~•
{9'~pMsgDB">n~sgCnt

1f(g:JiMain)

(smshHandle):

The example illustrates a number of techniques used in a Smartphone appli
cation. The dialog templates use both expandable edit fields and spinner con
trols. The Back button is overridden in both the main dialog and the Compose
dialog because both contain edit controls. The edit control that holds the destina
tion number in the Compose dialog has its input mode overridden to numeric
mode because the address to be entered is more than likely a phone number.

The SMS code in the application uses a separate thread, appropriately
named MonitorThread, to monitor incoming SMS messages and uses a send

Chapter 19 Programming the Smart Phone 995

routine, SendSmsMessage, that sends messages. Before the monitor thread is
launched, the SmsOpen is called to request a read-access handle. This call will
fail if another application currently has an open SMS handle with read access.
If the open fails, SMSTalk displays a message box notifying the user of the prob
lem and terminates. On the Pocket PC, this failure is quite likely because the e
mail program Pocket Inbox stays running in the background. Pocket Inbox can
be closed by selecting the Inbox from the Start menu and then entering Ctrl-Q
on the soft keyboard.

Sending an SMS message is accomplished by selecting the Reply or the
New menu item. First a dialog is displayed so that the message can be com
posed. If the user selects to send the message, the program calls SendSmsMes
sage. This routine opens an SMS handle for write access, fills in the appropriate
structures, and sends the message in the simple text format.

Incoming messages are saved in an array in memory. The messages can
then be viewed by highlighting a message in the list box on the Pocket PC, or
in the spinner on the Smartphone. SMSTalk does not save the messages
because the goal is to demonstrate the features of the SMS system and the
Smartphone with the least amount of clutter. Because of this arrangement, any
messages received by SMSTalk will be lost when the program terminates. Sav
ing the messages in a file would be a great enhancement and is left as a task for
the reader.

Smartphone Security
The Smartphone has one significant difference from the Pocket PC in that it
implements Windows CE's module-level security scheme. This means that
unless a specific device has been "unlocked," all applications and DLLs have to
be certified to run on the device. As I mentioned in Chapter 10, the system can
prevent modules, EXEs, and DLLs from being run at all. Even when allowed to
run, there are two levels of run-time privilege that can be granted, trusted and
run. Trusted modules have full run of the operating system. They can call any
function and modify any registry key. Run-level modules, sometimes called
untrusted modules, can call only a limited set of the API and are prevented from
modifying certain critical sections of the registry. Not that the limited set of
functions is all that limited-a run-level module can still call 95 percent of the
functions-it's just that the module can't call the set of functions that might
compromise the integrity of the system. In addition to the restricted functions
listed in Listing 10-1 in Chapter 10, the Smartphone restricts an additional set of
communication-related functions. A list of these additional functions is shown
in Figure 19-10.

996 Part IV Device Programming

ExTAPI
]j neRegi st er
7 tneSetCa .1 7 BarringPassword
1ine5et.Ca77 Bar.rt ngSta t1:

l i neUnregis ter
7 ineSetPreferredQpe.rator
71neSet£quipmentState
lineGetGenerallnfo
I ineManageCa 7 7 s
7ineSetGprsC7ass
7ineGetNumberCa77s
7ineSetHSCSDState
7i neGetUSSD
7ineSendUSSD
7ineSetSendCa77erIDState
7ineSetCa77WaftingState

Short Message Service
SmsSetMessageNoti f:ka tion .
SmsC7 earMessageNot i ff cation
SmsRece i veA 17MessagesFromSIM
SmsSetSMSC

*

SIM
simUnlockPhone
stmSetLockingStatqs
s1mGetSmsStorageStatus
s i mChangeLock 7 ngPa ss':'lord
simReadMessage
simWrtteMessage
simDel e.teMessage
s imReadRecord
sfmWrfteRecord
simGetRecordlnfo

CPM
CPMRegister
CPMShutdown
CPMStatus
CPMRegisterTest

Connection Manag~r
ConnMgrProviderMessage

Radio Interface Layer
Al 1. Radio. lnterface layer functions

* The system can be configured to all ow the Rll functions to be cal) ed
by untrusted a~p1ications

Figure 19-1 O The list of restricted communication functions in the
Smartphone

The level of security implemented on a particular Smartphone is set by the
telecommunication service that sells the phone. The service defines the protec
tion level after considering security on its network, its phones, and the profit
potential of restricting all software to be sold through its own service. Market
pressures will drive this issue's evolution.

These last few chapters have covered the Pocket PC and the Smartphone
in detail. Now it's time for some fun and games. Both the Smartphone and the
Pocket PC support a unique API, called the Game API, to assist game writers in
implementing cool games on these devices. GAPI is simple, fairly straightfor
ward, and kind of neat, as you'll see in Chapter 20.

GAPI, the Game API
Microsoft Windows CE devices sport microprocessors of surprising power.
These small CPUs provide the oomph to support a full 32-bit operating system
with virtual memory, an extensive window manager, and a RAM-based, trans
action-based file system. For game developers, this would be nirvana-if only
the operating system weren't there. Game developers love powerful CPUs but
they dislike the layers of operating systems that, though helpful to the typical
developer, hinder the developer who likes to write code directly to the hard
ware. To provide a path to the hardware, the Pocket PC and the Smartphone
support the Game API (GAPI), a lightweight set of functions to provide the
game developer access to the screen and keyboard of a Windows CE device.

GAPI isn't DirectX, which provides a much more extensive set of functions
to the game developer. Although Windows CE supports Direct X, Microsoft
decided not to provide the DirectX support on the current Pocket PC. In an
attempt to make up for this slight, GAPI is supported instead.

GAPI contains a handful of functions that provide access to the display's
frame buffer, the area of memory that holds the pixel information displayed on
screen. In addition, GAPI enables an application to assume control of all but
tons, even those that are normally captured by the shell. Finally, and perhaps
most important, GAPI provides information about the display and the button
layout in a consistent way across the divergent hardware provided by different
Pocket PC manufacturers.

GAPI is provided as a single DLL, GX.DLL. This DLL comes with the
Pocket PC 2003 but was not distributed with earlier Pocket PC devices. Instead,
it is distributed by the application that uses it. When an application is installed,
it should check for GX.DLL in the \windows directory. If GX.DLL isn't found,
place it in its install directory, not in the \windows directory. The current ver
sions of GAPI don't support any type of versioning. Instead, an application is

997

998 Part IV Device Programming

required to keep its own version of the GAPI DLL in its own application direc
tory to avoid the problem lovingly called DLL Hell. In DLL Hell, one application
installs an older copy of a shared DLL in the place of a newer version of the
DLL, thereby causing problems for the previously installed applications.
Although there are a number of ways to avoid DLL Hell-including some that
require entire operating system revisions-the simplest solution is to distribute
version-sensitive DLLs with the application and keep them in the application's
directory. As it stands today, GX.DLL is smaller than 20 KB, so the overhead of
maintaining a few of these DLLs in a system is not huge.

To build a GAPI application, the program must include gx.h, which spec
ifies the function prototypes and necessary structures. To provide the proper
DLL import information, the program must also link to gx.lib. These files are
available in the Pocket PC and Smartphone SDKs.

Table 20-1 lists the GAPI functions.

Table 20-1 GAPI Functions

Function Name

GXOpenDisplay

GXCloseDisplay

GXBeginDraw

GXEndDraw

GXGetDisplayProperiies

GXOpenlnput

GXCloselnput

GXGetDefaultKeys

GXSuspend

GXResume

GXIsDisplayDRAMBuffer

GXSet Viewport

GAPI Initialization

Description

Initializes GAPI. Can be called only once in an applica
tion.

Closes GAPI. Cleans up GAPI resources.

Called to access the frame buffer for drawing.

Called when drawing is complete.

Provides information on the display device.

Captures the buttons for the game.

Frees the buttons for normal use.

Provides information on the suggested buttons.

Suspends GAPI subsystem to allow other applications to
gain focus.

Resumes GAPI operation when the game regains focus.

Suspends GAPI operations.

Allows GDI drawing and GAPI access to the same frame
buffer.

An application using GAPI must initialize the GAPI subsystem by calling the fol
lowing function:

int GXOpenDisplay (HWND hWnd, DWORD dwFlags);

Chapter 20 GAPI, the Game API 999

The two parameters are the handle to the application's window and a flag
parameter that can be either 0 or the constant GX_FULLSCREEN. Using
GX_FULLSCREEN indicates to GAPI that the application will assume control
over the entire screen. If the flag isn't set, GAPI assumes the application won't
be overwriting the navigation bar. GXOpenDi~play should be called only once
during the life of an application. Subsequent calls will fail.

Getting Display Information
GAPI provides three functions to query the hardware support. The first func
tion, GXGetDisplayProperties, returns information about the display and is
prototyped as

GXDisplayProperties GXGetDisplayProperties();

The function returns a GXDisplayProperties structure, defined as

struct GXDisplayProperties
DWORD cxWidth;
DWORD cyHeight;
long cbxPitch;
long cbyPitch;
long cBPP;
DWORD ffFormat;

} ;

The first two fields, ex Width and cyHeight, specify the width and height of
the display in pixels. The next two fields, cbxPitch and cbyPitch, specify the
distance, in bytes, between adjacent pixels in the frame buffer. For example, if
the application has a pointer to pixel x and needs to address the pixel to the
immediate right of the current pixel, the address would be at the current
address plus the value in cbxPitch. To access the pixel immediately below the
current pixel, the value in cbyPitch would be added to the address of the cur
rent pixel. These values aren't necessarily obvious and can even be negative
depending on the layout of the frame buffer.

For frame buffers that have less than 8 bits per pixel (bpp), the addressing
is somewhat more complex. In these cases, the pixel offset must be divided by
the pixels per byte, which in a 4-bpp display is 8 I 4 = 2. So the formula to com
pute the address in the frame buffer of a pixel that has a 4-bpp display would be

pPxl = frame_base + ((x I 2) + (y * cbyPitch));

This line isn't complete. To get to the specific pixel, the application has to read
the byte, modify only the appropriate upper or lower half, and then write the
byte back. This example also assumes the frame buffer is in a portrait configu
ration, in which the adjacent bytes of the display are on the same row. In a
landscape configuration, adjacent bytes are in the same column.

1000 Part IV Device Programming

The final field in the GXDisplayProperties structure is the .ffFormat field,
which describes the format of the frame buffer. The flags in this field are

• ~andscape The frame buffer is oriented on its side. Sub-8bpp
displays have consecutive column pixels in the same byte.

• ~alette The frame buffer is palettized.

• kjDirect The frame buffer colors are directly mapped.

• kjDirect555 The format is a 16 bpp with 5 bits per color.

• kjDirect565 The format is 16 bpp with 6 bits for green and 5 each
for red and blue.

• kjDirect888 The format is 24 bpp with 8 bits per color.

• kjDirectinverted The monochrome frame buffer has inverted
color format with 1 representing black and 0 representing white.

Querying Button Information
The next informational function, GXGetDefaultKeys, returns the suggested lay
out for the buttons. The prototype for this function is

GXKeylist GXGetDefaultKeys (int iOptions);

The one parameter is the system orientation: GX_NORMALKEYS for portrait ori
entation and GX_LANDSCAPEKEYS for landscape orientation.

The structure returned is defined as

struct GXKeyList
short vkUp;
POINT ptUp;
short vkDown;
POINT ptDown;
short vkleft;
POINT ptleft;
short vkRight;
POINT ptRight;
short vkA;
POINT ptA;
short vkB;
POINT ptB;
short vkC;
POINT ptC;
short vkStart;
POINT ptStart;

} ;

Chapter 20 GAPI, the Game API 1001

Each field starting with vk in the structure specifies the suggested virtual key
code to use for that action. The pt fields represent the physical coordinates of
the buttons in relation to the screen.

Accessing the Buttons
When a GAPI application is ready to start its game, it can take control of the
buttons on the Pocket PC by calling

int GXOpenlnput();

This function redirects all button input to the GAPI application. Clearly, once
this function is called it is the responsibility of the GAPI application to provide
a way to quit the game and restore the buttons to the system.

Drawing to the Screen
Of course, the meat of GAPI is the ability it provides an application to write to
the display buffer. To gain access to the buffer, a GAPI application calls

void* GXBeginDraw();

This function returns the address of the frame buffer, or 0 if the buffer cannot
be accessed for some reason. At this point, a GAPI application has free rein to
modify the frame buff er using the pixel computations described in the previous
section.

The pointer returned isn't necessarily the lowest address of the frame
buffer. Some systems are configured with negative offsets in the cbxPitch or
cbyPitch values. This really isn't important as long as you rigorously use the
pitch values to compute pixel addresses in the frame buffer.

One word of caution: although having a pointer to the frame
buffer is powerful, it's also dangerous. The pointer directly accesses
an area of system memory that itself directly accesses the physical
address space of the hardware. Errant pointers can, and most likely
will, be destructive to data on your device. A classic symptom is the file
system reporting corrupt data in the object store. This can easily hap
pen if incorrect pointer arithmetic results in writing of the physical RAM
that contains the object store. Programmers should be exceedingly
careful when checking that they access only the frame buffer and not
other parts of the system address space.

1002 Part IV Device Programming

When the drawing to the frame buffer is complete, call the following
function:

int GXEndDraw();

This call does little on systems with direct access to the frame buffer. However,
on systems that don't provide direct access to the frame buffer, calling GXEnd
Draw signals the display driver to copy the data from the phantom frame buffer
to the actual frame buffer. Regardless of whether the application has direct
access to the frame buffer, all GAPI applications should call GXEndDraw, if
only for forward compatibility.

Indirect Access to the Frame Buffer
On some systems, applications can't directly access the frame buffer using
GAPI. For these systems, the display driver provides a phantom frame buffer for
the application and then copies the data to the real frame buffer. Although this
scheme hinders performance somewhat, it does provide compatibility for GAPI
applications. One side effect is that it is difficult for GAPI applications to merge
their directly written pixel data with the GDI's pixel data, which is natively writ
ten to the frame buff er.

Although many games just want to take over the entire display, some
GAPI applications require that the system display GAPI data on one part of the
display and paint standard Windows controls on the other part. To merge the
two streams of data, GAPI provides a function called GXSetViewport to indicate
what part of the screen the GAPI program controls. The display driver can then
use the GAPI data for that area of the screen and the GDI data for the remainder
of the frame buffer. The GXSetViewport function looks like this:

int GXSetViewport CDWORD dwTop, DWORD dwHeight, DWORD dwReservedl,
DWORD dwReserved2);

The current implementation of GXSetViewport is somewhat limited in that
it can describe only a band across the screen where the GAPI data will be writ
ten. The parameter dwTop specifies the first line on the display reserved for
GAPI. Any lines above this value are written by the system. The dwHeight
parameter is the height of the band of data, in lines, that the GAPI program will
write. Any lines below dwTop+dwHeight will be written by GDI.

It's important to note that GXSetViewport doesn't clip data. It simply
defines the area that GDI won't write. An errant GAPI application certainly can
overwrite the screen area reserved for GDI.

Chapter 20 GAPI, the Game API 1003

To determine whether the system is exposing a phantom frame buffer to
GAPI instead of the real frame buffer, an application can call

BOOL GXIsDisplayDRAMBuffer();

This function returns TRUE if the application is using a phantom frame buffer
and FALSE if the application will be accessing the actual frame buffer. An appli
cation can do little with this information except to ensure that it's calling GXSet
Viewport if it's mixing GAPI and GDI data and to indicate somewhat reduced
performance for the dual buffer systems.

GAPI Maintenance
You can suspend the GAPI application in place to allow other applications
access to the screen and keyboard. The two functions that suspend and resume
the GAPI functions are appropriately named

int GXSuspend();

and

int GXResume();

When the GAPI application calls GXSuspend, the GAPI library temporarily
releases its control over the buttons in the system, allowing other applications
to operate normally. The desktop is also redrawn. When GXResume is called,
the buttons are redirected back to the GAPI application. The GAPI application
is responsible for restoring the screen to the state it was in before GXSuspend
was called. It's the responsibility of the GAPI application to stop accessing the
frame buffer when another application gains the focus.

The suggested place for these two functions is in the WM_SETFOCUS and
WM_KILLFOCUS message handlers of your main window. This way, if another
application rudely interrupts your game by setting itself into the foreground,
your application will handle it gracefully.

Cleaning Up
When the game has ended, a GAPI application should release the buttons by
calling

int GXCloseinput();

In addition, the display should release a call to

int GXCloseDisplay();

1004 Part IV Device Programming

This function instructs the GAPI DLL to free any resources it was maintaining to
support the frame buffer access of the application.

The GAPIShow Example
The following example is a very simple demonstration of GAPI. The game (of
sorts) in this case is a star field drawn to appear to the viewer as though it's
moving through space. The effect is similar to the Starfield screen saver on
desktop versions of Windows with the exception that the objects are simply
white dots.

When the game first starts, it displays the information returned by GXGet
DisplayProperties, such as the pitch of the pixels and the format of the frame
buffer. Selecting Play from the Game menu starts the star field animation. Tap
ping on the screen stops the animation and brings the user back to the informa
tion screen. Contrary to Pocket PC guidelines, GAP/Show has an Exit menu item
to ease shutting down the example. Listing 20-1 shows the GAPIShow source
code. Since the resources in this example were wizard-generated, the .re file isn't
listed here. Of course, the complete source code is on the companion CD.

GAPIShow.h
//;================================.,=="'==;=;=,,;=="'==========================
I I Header fi 1

//
II
II

1fdefine .PARSEFLAGCa,b) (a & b) HXTUfb) : TEXT("\0")

II--•~"-·-----~·"•·---•·"~·---~---···-~~·-·-~~·--,-----·-- -------------
11 Generic.defines and data types

JI
~trLlct decodeUINT

lJINT. Code;

LRESULT (*Fxn) (HWND. UINT; WPARAM, LPARAMJ;
} ;

strl.lct decodeCMD {
UINT Code;
LRESULT (*FXn HHWND, WORD. HWND. WORD);

} ;

Listing 20-1 The GAPIShow source code

fl Structure assoc.i ates
ll messages
II with. a function.

ll Structure associates
II menu ros with a
II function.

Chapter 20 GAPI, the Game API 1005

#define ID_TIMER 1

#define MAX_STARS
#define SHFT
#define MALX
#define MALY
#define MID_X
#define MID_Y
typedef struct

int x;
int y;
int dist;

40
3

1024*2
1024*2
CMALXl2)
(MALY 12)

STARINFO, *PSTARTINFO;

11-------------- ------- ------ --

11 Function prototypes
II
HWND Initlnstance CHINSTANCE, LPWSTR, int);
int Termlnstance CHINSTANCE. int);
int InitGame CHWND hWnd);
int EndGame (HWND hWnd);
HWND MyCreateMenuBar (HWND hWnd);

int ClearScreen_l6 (PVOID lpBuff, COLORREF rgb);
int DrawScreen_l6 (PVOID lpBuff, int dx, int dy, int dv);
int InitScreen_l6 (PVOID lpBuff);

#define ClearScreen ClearScreen_l6a
#define DrawScreen DrawScreen_l6a

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);
II Dialog procedures
BOOL CALLBACK AboutDlgProc (HWND, UINT, WPARAM, LPARAM);

II Message handlers
LRESULT DoTimerMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoKeyDownMain (HWND, UINT. WPARAM. LPARAM);
LRESULT DoCreateMain (HWND, UINT, WPARAM. LPARAM);
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoLButtonDownMain CHWND. UINT. WPARAM, LPARAM);
LRESULT DoSetFocusMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoKillFocusMain (HWND. UINT. WPARAM, LPARAM);
LRESULT DoCommandMain (HWND. UINT, WPARAM, LPARAM);
LRESULT DoSettingChangeMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoActivateMain CHWND. UINT, WPARAM, LPARAM);
LRESULT DoHibernateMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

(continued)

1006 Part IV Device Programming

Listing 20-1 (continued)

I I WM_COMMAND message h.anct1 ers
LPARAM DoMainCommandExH. UIWND, WORD, HWND, WORD):
LPARAM DoMainCommandPlaY CHWND. WORD, HWND, WORO~;

LPARAM DoMainCommandAbout (HWND, WORO, HWND, WORD};

GAPIShow.cpp.

II GAP!Sbow - .A Games API example program for the Pocket PC
II
II Written for the book Programming Windows t.E
II Copyright;IC) 210Y Do~glas ~olind

#fnclude "stdafi.h"
ffoi nclude <aygsbell. h.:>
1h ncl~de <gx

ffincl.ude ''G~piShow .• h."
#t11clucte

Jf Wizard includes
fl Pocket. PC. includes
I I GAl'I ·.inc 1 udes

lf-~'.~-.'- - -'~ .. '- - - ~ -:.., ~,.., _,., .;- .. - - - - - - --;,- .. ,-'-'--'---. - ,.. - ->- -,- :.. - .. ,.. •• ., .. ;;. -- - - -

11 Gl.o.tral da.t11
II
const TC.HAR szAppN11me(] = TEXH"Gapi Show"):
HINSTANCE hlnst; II Program instance handle

I I Pocket PC glop al s
HWNP hwndMenuBar ~ NULL;
BO.OL fHi he.rnl;'lted. = FALS·E;
BOOL fPlaying ; FALSE;
B.OOL fResuming, "';.·FALSE;
SHACTIVATEI.NFO sai:
RECl. rectNorm;
.fnt cyFont "' 0;

int nSpeed ~ 2, ndX ~ 0, ndY • 0;
int CxScfeen, CyScreen;

int nCnt "" 0;

STARINFO. ptStars[MAJLSTARS];

GXDl spl ayProperties gxdp;
GXKeyL i.st gxkl;

IJ Hanctle of menu bar control
IL Indicates h.i pern.ated state
II Indicates Gapi access ~ct1ve
II Used ~hen ~egatning ioc~s
I I Used t.o adjust wi.ndow .for SIP

II star field tnfo

II GAPI display info structure
II GAPl keyboard info structure

If Message dispatch table for MainWindowProc
• const struct decodeUTNT MainMessages[J = {

WM_ TIMER, Do Ti merMai n,
WM_KEYDOWN, DokeyDownMain,
WM-CREATE' DoCreateMain'

Chapter 20 GAPI, the Game API 1007

} ;

WM_PAINT. DoPaintMain,
WM_LBUTTONDOWN, DoLButtonDownMain,
WM_SETFOCUS, DoSetFocusMain,
WM_KILLFOCUS, DoKillFocusMain,
WM_COMMAND, DoCommandMain,
WM_SETTINGCHANGE, DoSettingChangeMain,
WM_ACTIVATE, DoActivateMain,
WM_HIBERNATE, DoHibernateMain,
WM_DESTROY, DoDestroyMain,

II Command Message dispatch for MainWindowProc
canst struct decodeCMD MainCommanditems[] = {

} ;

!D_GAME_EXIT. DoMainCommandExit,
ID_GAME_PLAY, DoMainCommandPlay,
ID_TOOLS_ABOUT, DoMajnCommandAbout,

/!==
II Program entry point
II
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) {
MSG msg;
int re = 0:
HWND hwndMain:
HACCEL hAccel;

JI Initialize application.
hwndMain = Initinstance lhinstance, lpCmdLine. nCmdShowl:.
if (hwndMain == 0) return 0x10:

hAccel = LoadAcceleratorslhinstance,
MAKE I NTRESOURCE (IDR_ACCELERATORl));

II Application message loop
while CGetMessage (&msg, NULL, 0, 0)) {

II Translate accelerator keys
if (!TranslateAccelerator(hwndMain, hAccel, &msg)) {

TranslateMessage l&msg);
DispatchMessage l&msg);

JI Instance cleanup
return Terminstance (hlnstance, msg.wParam);

//---
// Initinstance - Instance initialization
II

(continued)

1008 Part IV Device Programming

Listing 20-1 (continued)

HWND Initlnstarice CHINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow) {
WNDCLASS we;
HWNO hWnd;

II Save program fnstance handle in global variable.
hinst = hlnstance;

If Allow only one instance of the application.
hWnd = Fi ndwi ndow (szAppName, NULL):
if ChWnd) {

SetForegroundWindow ((HWNO)(((DWORD)hWnd) I 0x01));
return 0:

}

II Register application main window class.
we.style= CS_VREDRAW I CS~HREDRAW: II Window style
wc.lpfnWndProc = MainWndProc; II Callback function
wc.~bClsExtra = 0; II Extra class data
wc.cbwndExtra = 0: II Extra window data
wc.hinstance = hlnstance; //Owner handle
wc.hlcon =NULL, //Application icon
wc.hCursor = .LoadCursor (NUU. IDG_ARROWl: I/ Default cursor
wc.hbrBackground • (HBRUSH) GetStbckObject CWHITE_BRUSH1;
wc. 1 pszMenuName c= NULL: I I Menu name
wc.lpszClassName ~ szAppName; /) Window class name

if (RegtsterClass C&wc) == 0) retu~n 0;

II Clear GAPI info structures:
memset (&gxdp, 0, sizeof lgxdp));
me.mset l&gxkl. 0, sizeof (gxkl));
cxscreen = GetSystemMetrics CSM_CXSCREEN);
CyScreen = GetSystemMetrics (SM"'"CYSCREENl;
II Create main window.
hWnd ~ CreateWindow (szAppName,

TEXT(0 GAPI Show"J,
ws_VISIBLE.
CW_USEDEFAU LT,
C\LUSEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hlnstance,
NULL):

if CIIsWindow (hWnd)) return 0:

II
II
fl
II
II
II
II
II
fl
II
II
II
II

Window class
Window title
Style flags
x position
y position
Initial width
Initial height
Parent
Menu, must be null
Application instance
Pointer to create
parameters
Fail if not created.

Chapter 20 GAPI, the Game API 1009

II Query GAPI parameters.
if CGXOpenDisplay(hWnd. GX_FULLSCREENll {

gxdp GXGetDisplayProperties();
gxkl = GXGetDefaultKeys(GX_NORMALKEYS);

else
MessageBox (hWnd, TEXT ("GXOpenDisplay failed"),

szAppName, MB_OKl;

JI Standard show and update calls
ShowWindow ChWnd, nCmdShowl;
UpdateWindow (hWndl;

return hWnd;

!!--

// Terminstance - Program cleanup
II
int Terminstance (HINSTANCE hinstance, int nDefRCl {

GXCloseDisplay();
return nDefRC;

!!==

II Message handling procedures for main window
II
/!--······-·
II MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParaml {
INT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
JI
for (i = 0; i < dimCMainMessages); i++) {

if CwMsg == MainMessages[iJ.Code)
return (*MainMessages[iJ.FxnlChWnd, wMsg, wParam, lParam);

return DefWindowProc (hWnd, wMsg, wParam, lParaml;

!/--
// DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParaml {
SIPINFO si;
int ex, cy;

(continued)

1010 Part IV Device Programming

Listing 20-1 (continued)

TEXTMETRIC tm;
HOC hdc;
II Query the hei [lht. of the def a ult font.

(

ex"' sLrcVis1bleOe.sktop.'.right ;·Si ,rcVisilHeDesktop.Jeft;
cy = si,rcVisibleDesktop.bottom - si.rcVisibleDesktop.top;
II If the si.p is not sho.wn, or: is showing but not docked. t.he

desktop rect doesn't include the height of the menu bar.
Hsi;fdwFlags· .. &>SIPF-ON) /J

~fdwflag.s .& SIPL.ONl &$.Hsi.fdWFlags
_.,. 26.; tIMeigtlt of menubar control

(hWl'Jd•. NIJU •.. 0.!0~ ~x. cy,swi .. ::.NQM.0\/E l SWP • .NOZORDER);

/ /- ~ - - • -- - • - - - - • .: •• - - - - - - - - - - - - • - - - - - - - • - - - '" c - •.• - - - - - ~ - • - - - - " - - - - - - - • - "

II DoTimerMain - Process. WM,...TIMER message for window.
II

(HWND hWnd, UINT wMsg,
L~ARAM.lParam) {

Chapter 20 GAPI, the Game API 1011

} else {
KillTimer (hWnd, ID_TIMER);

return 0;

11--
11 DoKeyDownMain - Process WM_KEYDOWN message for window.
II
LRESULT DoKeyDownMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

if (fPlaying) {
II Up
if (wParam == (DWORD)gxkl .vkUp)

if (ndY > -100) ndY -= 10;
II Down
} else if (wParam == (DWORD)gxkl.vkDown)

if (ndY < 100) ndY += 10;
II Left
} else if (wParam == (DWORD)gxkl.vkleft)

if (ndX > -100) ndX -= 10:
II Right
} else if <wParam == CDWORD)gxkl .vkRight) {

if (ndX < 100) ndX += 10;
II Fast
} else if CwParam == (DWORD)gxkl .vkAl

if <nSpeed < 10) nSpeed += 1:
II Slow
} else if (wParam == (DWORD)gxkl.vkB)

if (nSpeed > 1) nSpeed -= 1:
else nSpeed = 1;

} else if (wParam == (DWORD)gxkl .vkC)
ndX = 0;
ndY = 0;
nSpeed = 2;

return 0;

11--
11 OoLButtonDownMain - Process WM_LBUTTONDOWN message for window.
II
LRESULT DoLButtonDownMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
II If playing, stop the game.
if (fPlaying)

SendMessage (hWnd, WM_COMMANO, MAKELONG (IO_GAME_PLAY, 0), 0);
return 0;

(continued)

1012 Part IV Device Programming

Listing 20·1 (continued)

Chapter 20 GAPI, the Game API 1013

//-- ---------------
// DoPaintMain - Process WM_PAINT message for window.
II
LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParaml (
PAINTSTRUCT ps;
RECT rect;
TCHAR szTxt[l28];
HOC hdc;
int i , y = 5;
static hOldPlaying;

hdc = BeginPaint (hWnd, &ps);
GetClientRect (hWnd, &rect);

II If not playing, display the GAP! information about the device.
if (!fPlaying) {

wsprintf (szTxt, TEXT ("Gapi values:"));
ExtTextOut (hdc, 5' y, 0, &rect, szTxt, lstrlen (szTxtl, 0) ;

y += cyFont;

wsprintf (szTxt, TEXT ("cxWidth: %d")' gxdp.cxWidthl;
ExtTextOut (hdc, 10, y, 0' &rect, szTxt, l strl en (szTxt),
y += cyFont;

wsprintf (szTxt, TEXT ("cyHeight: %d")' gxdp.cyHeightl;
ExtTextOut (hdc, 10' y, 0' &rect, szTxt, lstrlen (szTxt),
y += cyFont;

wsprintf (szTxt, TEXT ("cbxPitch: %d")' gxdp.cbxPitch);
ExtTextOut (hdc, 10' y, 0' &rect, szTxt, lstrlen (szTxt),
y += cyFont;
wspri ntf (szTxt, TEXT ("cbyPitch: %d"). gxdp.cbyPitchl;
ExtTextOut (hdc, 10' y, 0' &rect, szTxt, l strl en (szTxt),
y += cyFont;

wsprintf (szTxt, TEXT ("cBPP: %d")' gxdp.cBPPl;
ExtTextOut (hdc, 10, y, 0' &rect, szTxt, l strl en (szTxt),
y += cyFont;

wspri ntf (szTxt, TEXT ("ffFormat: %08x"), gxdp.ffFormat);
ExtTextOut (hdc, 10' y, 0' &rect, szTxt, 1 strl en (szTxt),
y += cyFont;

lstrcpy (szTxt, PARSEFLAG(gxdp.ffFormat, kflandscapell;
if (i = lstrlen (szTxt)) (//Assignment in if

ExtTextOut (hdc, 20, y, 0, &rect, szTxt, i, 0);
y += cyFont;

0);

0);

0);

0) ;

0) ;

0);

(continued)

1014 Part IV Device Programming

Listing 20-1 (continued)

1 &trcp.Y • (s zTxt,
(.t =i. lstrl E!n (szTxt})
ExtTextOuf (hdc;:,

· ll Noti.f.Yshell oJ ... •.·• .· ..•.. ·. .· mE!ssagE!.
SH~qndleWMSetti.ngChange(hWnd, wParam,lP.aram; &sai);

Chapter 20 GAPI, the Game API 1015

return 0;

11--
11 DoActivateMain - Process WM_ACTIVATE message for window.
II
LRESULT DoActivateMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

II If activating, restore any hibernated stuff.
if ((LOWORD (wParam) != WA_INACTIVE) && fHibernated)

fHibernated = FALSE;

II Notify shell of our activate message.
SHHandleWMActivate(hWnd, wParam, lParam, &sai, 0);
return 0;

II ---
11 DoHibernateMain - Process WM_HIBERNATE message for window.
II
LRESULT DoHibernateMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {

II

II If not the active window, reduce our memory footprint.
if (GetActiveWindow() != hWnd) {

fHibernated = TRUE;

return 0;

II DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
if (fPl aying) {

II Clean up if playing game.
KillTimer (hWnd, ID_TIMER);
GXCloseinput();

GXCl oseDi splay();
PostQuitMessage (0);
return 0;

II==~=======================

II Command handler routines
11---·-··-----·-
ll DoMainCommandExit - Process Program Exit command.
II

(continued)

1016 Part IV Device Programming

Listing 20-1 (continued)

LPARAM DoMafoCommandExit (HWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) {

SendMessage (hWnd, WM_CLOSE, 0, 0);

return 0;

jf--'--C-•---•-•---····~----··c·c•--~----•------~---·---7--'------------

1/ DoMainCommandPlay , Process Play command.

II
LPARAM DoMainCommandPl ay CHWNb hWnd, WORD idltem, HWND hwndCtL

WORD wNoti fyCode) {

if (!fPlaying) {

if (! (gxdp. ffForma t & (kfDlrect555 I kfDi rect565)) l
MessageBox (hWTid,

return 0;

InitGame (hWndl;

}else.{

EndGame ChWndl;
}

return 0:

TEXT ("GAPIShow supports only 16 bpp displays"),

szAppName. MB_OK);

I I - - ' - - - - - - - - - ' - - - ' - ' - - ' - - - - - - - , - - - - - , - - _, - - - - - - '· , - - - - , - - - - - - - - - - - - - , , - -
If DoMainCommandAbout - Process. the Tools I About menu command.

II
LP A RAM Do Mai nCommandAbout (HWN D hWnd, .WORD id Item, HWN D hwndCt 1 ,

}

WORD wNotifyCodel {

/I Use DialogBox to create modal d1alog.

DialogBox Ch!nst. MAKEINTRESOURCE (IDD:...ABOUTl, hWnd, AboutDlgProc);

return 0;

ll===o='=========o=o============="'="'

fl About Dialog procedure

II
BOOL CALLBACK AboutDl gProc (HWND hWnd, U I NT wMsg, WP A RAM wParam,

LPARAM. 1 Pa ram l {

switch (wMsg) {

case WM_INITDIALOG:
{

SHINITDLGINFO idi.;

idi .dwMask = SHIDIMJLAGS;

idi .dwF]ags = SHIOIF_OONEBUTiON I SHIDILSIZEDLGFULLSCREEN I
SHIDIF _SIPDOWN;

idi .hDlg = hWnd;

SHinitDialog C&idil;

Chapter 20 GAPI, the Game API 1017

break;
case WM_COMMAND:

switch (LOWORD (wParam))
case IDOK:
case IDCANCEL:

break;

EndDialog ChWnd, 0);
return TRUE;

return FALSE;

11---------------------------------------·---··---·-·-------------------
ll MyCreateMenuBar - Create the menu bar for the program.
II
HWND MyCreateMenuBar (HWND hWnd) {

SHMENUBARINFO mbi;

II Create a menu bar.
memsetC&mbi, 0, sizeof(SHMENUBARINFOll: II Zero structure
mbi .cbSize • sizeof(SHMENUBARINFOl: II Size field
mbi .hwndParent = hWnd:
mbi. nTool Bar Id = IDR_MENUBARl;
mbi .hinstRes • hinst;

II Create menu bar and check for errors.
if (!SHCreateMenuBar(&mbi))

return 0:
return mbi .hwndMB:

II Parent window
II ID of toolbar resource
II Inst handle of app

11--
11 InitGame - Start game by capturing the keyboard, drawing star field,
II and starting timer.
II
int InitGame (HWND hWndl

PBYTE pBuff;

II Make our window topmost and cover the entire screen.
GetWindowRect (hWnd, &rectNorm);
SetWindowPos (hWnd, HWND_TOPMOST, 0, 0, CxScreen, CyScreen. 0);
DestroyWindow (hwndMenuBarl:
ValidateRect (hWnd, NULL):

II Grab the keyboard.
GXOpen Input ():
fPlaying =TRUE:

(continued)

1018 Part IV Device Programming

Listing 20·1 (continued)

Chapter 20 GAPI, the Game API 1019

}

else if (gxdp.ffFormat I kfDirect555)
wPixel = <WORD) ((GetRValue(rgb) >> 3) << 10

(GetGValue(rgb) >> 3) << 5
(GetBValue(rgb) >> 3));

I I Do rows.
pbline = (PBYTE)lpBuff;
for (y = 0; y < gxdp.cyHeight; y++) {

II Do columns.
pbPixel = pbline;
for (x = 0; x < gxdp.cxWidth; x++) {

II Cast ptr and write.
*(PWORD)pbPixel = wPixel;
pbPixel += gxdp.cbxPitch; II Move to the next pixel.

pbline += gxdp.cbyPitch; II Move to the next line.

return 0;

11--------------------------------····--········-----··-····-···········
II DrawScreen_l6 · Compute new position for each star; redraw if it
II has moved.
II
int DrawScreen_l6 (PVOID lpBuff, int dx, int dy, int dv) {

int i, nOldDist;
PBYTE pNew = 0;
PBYTE pOld = 0;
static nOldDX. nOldDY:

for (i = 0; i < MAX_STARS: i++)
II Remove old star.
if (((ptStars[i].x >> SHFT) < CxScreen+2) &&

((ptStars[iJ.y >> SHFTl < CyScreen+2ll
pOld = (PBYTE)lpBuff +

(ptStars[iJ.x >> SHFT) * gxdp.cbxPitch +
(ptStars[iJ,y >> SHFTl • gxdp.cbyPitch;

nOldDist = ptStars[iJ.dist;
II Update pos. New pos is related to its pos from middle of the
II screen. This pushes the stars to the edges.
ptStars[iJ.x += C(ptStars[iJ.x~MrD_X)l4 * dv + dxlll6+1;
ptStars[i].y += ((ptStars[i].y·MID_Y)/4 * dv + dy)l16+1;
ptStars[iJ.dist++;

II If new position off screen. regenerate the star.
if ((ptStars[iJ.x < 0) I I (ptStars[iJ.y < 0) I I

((ptStars[i].x >> SHFTl >= CxScreen) I I
((ptStars[i].y >> SHFT) >= CyScreen)) {

(continued)

1020 Part IV Device Programming

Listing 20-1 (continued)

ptStars[t];x = RandomO

ptStan.EtJ.,y = Random(·)
ptStars[iJ.;di.st .= 0;

CornpL(t~ pointer to new star.
C(Cpt$.t a rs[i}•X >> s H FT) <
C(ptStars[iJ,Y >> SHFT)

(Pl3YTOlpBuff +
(ptStars[iJ .x SHFTY * gxdp.cbxPitch +
CptStars[iJ•Y >> SHFT) * gxdp.c;byPitch;

Star$ older t;han 15 generations get bigger.

(n0Jd01$t.> 15) .. {
*{PWQBDU pOld. + gxqp.cbxPttch) .. = 0;
*{PWORD) (pOld t gxdp.5byPttch}•· ... =· .0:
*(PW.ORD)fpOl ct•.+· gxdp.cbxP.i tch.•+

gxdpicbyPitCh). = 0:

Chapter 20 GAPI, the Game API 1021

ptStars[i].y =Random() & MAX_Y-1;
ptStars[iJ.dist = 0;

JI If on the screen. draw star.
if (((ptStars[iJ.x >> SHFT) < CxScreen) &&

((ptStars[i].y >> SHFT) < CyScreen))
pNew = CPBYTE)lpBuff +

_try {
if (pNew)

(ptStars[i].x >> SHFT) * gxdp.cbxPitch +
(ptStars[i].y >> SHFT) * gxdp.cbyPitch;

*(PWORD)pNew = 0xffff;

_except (EXCEPTION_EXECUTE_HANDLER) {
wsprintf (szTxt, TEXTC"Exception %d %08x (%d,%d)"), i,

pNew, ptStars[i].x, ptStars[i].y);
MessageBox (NULL, szTxt, szAppName, MB_OK);
break;

return 0;

The GAPIShow example has support to access a 16-bpp display, which is
the standard format for most Pocket PCs. I'll leave it to you to extend GAPI
Show to other screen formats.

The code to draw in the frame buffer is isolated to three routines:
InitScreen_16, DrawScreen_16, and ClearScreen_16. The _16 suffix indicates
that the routines assume a 16-bpp screen. You can change the code to support
8-bpp displays by simply changing the cast of the writing of each pixel and
modifying the pixel formation routine in ClearScreen_16. Although this example
supports it, other pixel formats can be supported with very basic changes. You
might notice the writing of the pixel in the InitScreen_l 6 routine is enclosed in
a _try block to detect exceptions. This is a helpful technique for catching prob
lems with the code that computes the pixel location in the buffer pointer.

In the next chapter, I step back from application programming and look at
system programming issues. Chapter 21 explains how the different components
of Windows CE work together while presenting a unified Win32-compatible
operating system.

Part V
111111

I

System Programming
This chapter takes a slightly different tack from the previous chapters of the
book. Instead of touring the API of a particular section of Windows CE, I'll
show you Windows CE from a systems perspective.

Windows CE presents standard Windows programmers some unique chal
lenges. First, because Windows CE supports a variety of different microproces
sors and system architectures, you can't count on the tried and true IBM/Intel
PC-compatible design that can be directly traced to the IBM PC/ AT released in
1984. Windows CE runs on devices that are more different than alike. Different
CPUs use different memory layouts, and while the sets of peripherals are simi
lar, they have totally different designs.

In addition to using different hardware, Windows CE itself changes,
depending on how it's ported to a specific platform. While all Pocket PCs of a
particular version have the same set of functions, that set is slightly different
from the functions provided by Windows CE for the Handheld PC. In addition,
Windows CE is designed as a collection of components so that OEMs using
Windows CE in embedded devices can remove unnecessary small sections of
the operating system, such as the Clipboard APL

All of these conditions make programming Windows CE unique and, I
might add, fun. This chapter describes some of these cross-platform program
ming issues. I'll begin the chapter by describing the system memory architecture.

The Windows CE Memory Architecture
In operating system circles, much is made of the extent to which the operating
system goes to protect one application's memory from other applications.
Microsoft Windows Me uses a single address space that provides minimal pro-

1025

1026 Part V Advanced Windows CE

tection between applications and the Windows operating system code. Win
dows XP, on the other hand, implements completely separate address spaces
for each Win32 application, although old 16-bit applications under Windows XP
do share a single address space.

Windows CE implements a single 2-GB virtual address space for all appli
cations, but the memory space of an application is protected so that it can't be
accessed by another application. A diagram of the lower half of the Windows
CE virtual address space is shown in Figure 21-1. A little over half of the user
mode virtual address space is divided into thirty-three 32-MB slots. As applica
tions are launched, each is assigned a slot where it will live for the life of the
application. Slots 2 through 32 are assigned to applications. Slot 0 is reserved
for the running process, while slot 1 is reserved for execute-in-place (XIP) DLLs.
These two slots are seen by the application as a single 64-MB application space.
I describe the layout of the application's virtual address space in Chapter 7.

When a thread in a process is running, the slot of the process that owns
the thread is cloned into slot 0. This is not a copy of the original slot; instead,
the operating system manipulates the page table entries of the CPU to map the
physical memory into the virtual space at both the original slot and slot 0.
Because of this cloning, any change to slot 0 is also reflected in the process's
original slot. Application threads by default have access rights to their own slot
and slot 1. When a thread in another process runs, its process slot is mapped
into slot 0. Because of this swapping, processes assume that they are always
running in slot 0 since any time they are running they are in slot 0 and when
they aren't running, it really doesn't matter that they aren't in slot 0.

The region of the address space above the 33 slots and below 32 MB
under the 2-GB boundary is used by the operating system for mapping mem
ory-mapped files. The final user-mode area just below the 2-GB boundary is
where Windows CE 4.2 or later loads resource-only DLLs. Figure 21-1 shows
the layout of the bottom 2 GB of the system address space.

The address space above the 2-GB boundary, addresses 8000 0000
through FFFF FFFF, is reserved for the operating system and isn't accessible to
applications and drivers running in user mode. However, many Windows CE
systems, including the Pocket PC, always run in kernel mode. Staying in kernel
mode all the time removes the time needed to transition between user and ker
nel mode, which improves performance.

The upper 2 GB of kernel space is divided into four regions. The first
512-MB memory region, from addresses 8000 0000 to AOOO 0000, is linearly
mapped to the first 512 MB of the physical address space. So reading address
8000 1234 in kernel mode is a read of physical address 0000 1234. Memory
accesses through this window are cached in the CPU's data cache to improve
performance.

8000 0000

Large Memory Area
(Memory-mapped files

and large VAllocs)

4200 0000

• • •

0000 0000

-

3

Chapter 21 System Programming 1027

Resource only
DLLs

3 Slots

Application in
slots 0 and 1

Figure 21-1 A diagram of the lower half of the Windows CE memory map

The second 512-MB region, from AOOO 0000 through BFFF FFFF, is also
mapped to the first 512 MB of the physical memory space. The difference
between this window and the window at 8000 0000 is that accesses through the
AOOO 0000 window are not cached. While the performance is slower through
this window, the noncached access is necessary when you read registers in
devices that might change independently of the execution of the CPU.

The remaining area, from COOO 0000 to the top of the memory space at
FFFF FFFF, is used by the kernel. This area includes a space at C200 0000,
where the kernel, NK.exe, was moved when the memory space was reorga
nized with the release of Windows CE .NET 4.0. Figure 21-2 shows the layout
of the full 4-GB address space.

1028 Part V Advanced Windows CE

FFFF FFFF

cooo 0000

AOOO 0000

Kernel mode
virtual space

Large Memory Area

Slot area

Figure 21-2 A diagram of the entire 4-GB Windows CE memory map

Writing Cross-Platform Windows CE Applications
Over the years, Windows programmers have had to deal concurrently with dif
ferent versions of the operating system. Part of the solution to the problem this
situation posed was to call GetVersion or GetVersionEx and to act differently
depending on the version of the operating system you were working with. You
can't do that under Windows CE. Because of the flexible nature of Windows CE,
two builds of the same version of Windows CE can have different APis. The
question remains, though, how do you support multiple platforms with a com
mon code base? How does the operating system version relate to the different
platforms?

Platforms and Operating System Versions
To understand how the different platforms relate to the different versions of Win
dows CE, it helps to know how the Windows CE development team is organized

Chapter 21 System Programming 1029

within Microsoft. Windows CE is supported by a core operating system group
within Microsoft. This team is responsible for developing the operating system,
including the file system and the various communication stacks.

Coordinating efforts with the operating system team are the various plat
form teams, working on the Pocket PC, Smart Display, and many other plat
forms. Each team is responsible for defining a suggested hardware platform,
defining applications that will be bundled with the platform, and deciding
which version of the operating system the platform will use. Because the oper
ating system team works continually to enhance Windows CE, planning new
versions over time, each platform team generally looks to see what version of
Windows CE will be ready when that team's platform ships.

The individual platform teams also develop the shells for their platforms.
Because each team develops its own shell, many new functions or platform
specific functions first appear as part of the shell of a specific platform. Then if
the newly introduced functions have a more general applicability, they're
moved to the base operating system in a later version. You can see this process
in both the Notification API and the SIP APL Both these sets of functions started
in their specific platform group and have now been moved out of the shell and
into the base operating system.

Table 21-1 shows some of the different platforms that have been released
and the version of Windows CE that each platform uses.

Table 21-1 Versions for Windows CE Platforms

Platform Windows CE Version

Original H/PC 1.00

Japanese release of H/PC 1.01

Handheld PC 2.0 2.00

Original palm-size PC 2.01

Handheld PC Pro 3.0 2.11

Palm-size PC 1.2 2.11

Pocket PC 3.0

Handheld PC Pro 2000 3.0

Pocket PC 2002 3.0

Smartphone 2002 3.0

Smart Display 1.0 4.1

Pocket PC 2003 4.2

Smartphone 2003 4.2

1030 Part V Advanced Windows CE

You can choose from a number of ways to deal with the problem of dif
ferent platforms and different versions of Windows CE. Let's look at a few.

Compile-Time Versioning
The version problem can be tackled in a couple of places in the development
process of an application. At compile time, you can use the preprocessor defi
nition _ WIN32_ WCE to determine the version of the operating system you're
currently building for. By enclosing code in a #if preprocessor block, you can
cause code to be compiled for specific versions of Windows CE.

Following is an example of a routine that's tuned for both the original
Palm-size PC and the new Pocket PC. For the Palm-size PC, the routine uses the
old SHSiplnfo function to raise and lower the SIP. For the Pocket PC, the routine
uses the preferred function SHSipPreference.

int MyShowSip CHWND hWnd, BOOL fShow) {

#if WIN32_WCE < 300
SIPINFO si;

memset C&si, 0, sizeof (si));
si .cbSize = sizeof (SIPINFO);
SHSipinfo (SPl_GETSIPINFO, 0, &si, 0);
if (fShow)

si .fdwFlags J= SIPF_ON;
else

si .fdwFlags &= SIPF_ON;
SHSiplnfo(SPl_SETSIPINFO, 0, &si, 0);

#else
if CfShow)

SHSipPreference ChWnd, SIP_UP);
else

SHSipPreference (hWnd, SIP_DOWN);
#end if

return 0;

A virtue of this code is that the linker links the appropriate function for the
appropriate platform. Without this sort of compile-time code, you couldn't sim
ply put a run-time if statement around the call to SHSip!nfo because the pro
gram would never load on anything but a Pocket PC. The loader wouldn't be
able to find the exported function SHSiplnfo in Coredll.dll because it's not
present on Palm-size PC versions of Windows CE.

Chapter 21 System Programming 1031

As I mentioned in Chapter 17, builds for the Pocket PC have an additional
define set named WIN32_PLATFORM_PSPC. So you can block Pocket PC code
in the following way:

#ifdef WIN32_PLATFORM_PSPC
II Insert Pocket PC code here.

#end if

There are platform-specific defines for other Windows CE platforms. Table
21-2 shows some of these defines.

Table 21-2 Defines for Windows CE Platforms

Platform

Pocket PC 2003

Smartphone 2003

Pocket PC 2002

Smartphone 2002

Handheld PC 2000

Pocket PC 2000

Palm-size PC

Handheld PC Professional

Define

WIN32_PLATFORM_PSPC (= 400)

WIN32_FLATFORM_ WFSP (= 200)

WIN32_PLATFORM_PSPC (= 310)

WIN32_PLATFORM_ WFSP (= 100)

WIN32_FLATFORM_HPC2000

WIN32_FLATFORM_PSPC

WIN32_PLATFORM_FSPC

WIN32_FLATFORM_HPCPRO

To distinguish between the Pocket PC and earlier versions of the Palm-size
PC, you must also provide a check of the target Windows CE version using the
WIN32_ WCE definition, as in

#if defined(WIN32_PLATFORM_PSPC)
#if WIN32_PLATFORM_PSPC >= 400)

II Pocket PC 2003
#elseif WIN32_PLATFORM_PSPC = 310)

II Pocket PC 2002
#elseif (WIN32_WCE >= 300)

II Pocket PC 2000
#else

II Palm-size PC
#endif II ifdef WIN32_PLATFORM_PSPC

The only issue with using conditional compilation is that while you still
have a common source file, the resulting executable will be different for each
platform.

1032 Part V Advanced Windows CE

Explicit linking
You can tackle the version problem other ways. Sometimes one platform
requires that you call a function different from one you need for another plat
form you're working with but you want the same executable file for both plat
forms. A way to accomplish this is to explicitly link to a DLL using LoadLibrary,
GetProcAddress, and FreeLibrary. These functions were covered in Chapter 10.

Run-Time Version Checking
When you're determining the version of the Windows CE operating system at
run time, you use the same function as under other versions of Windows-Get
VersionEx, which fills in an OSVERSIONINFO structure defined as

typedef struct _OSVERSIONINFO{
DWORD dwOSVersionlnfoSize;
DWORD dwMajorVersion;
DWORD dwMinorVersion;
DWORD dwBuildNumber;
DWORD dwPlatformld;
TCHAR szCSDVersion[128];

OSVERSIONINFO;

Upon return from GetVersionEx, the major and minor version fields are
filled with the Windows CE version. This means, of course, that you can't simply
copy desktop Windows code that branches on classic version numbers like 3.1 or
4.0. The dwPlatformld field contains the constant VER_PLATFORM_ WIN32_CE
under Windows CE.

Although you can differentiate platforms by means of their unique Win
dows CE versions numbers, you shouldn't. For example, you can identify the
current Pocket PC by its unique Windows CE version, 4.2, but newer versions
of the Pocket PC will be using different versions of Windows CE. Instead, you
should call SystemParameterslnfo with the SPI_GETPLATFORMTYPE constant,
as in

TCHAR szPlat[256];
INT re;

re= SystemParameterslnfo CSPl_GETPLATFORMTYPE, sizeof CszPlat),
szPlat, 0);

if Clstrcmp (szPlat, TEXT ("PocketPC"")) == 0) {
II Running on Pocket PC 2002 or Pocket PC 2003

else if Clstrcmp CszPlat, TEXT ("Palm PC2")) == 0)
II Running on a Pocket PC

Chapter 21 System Programming 1033

Aside from the differences in their shells, though, the platform differences
aren't really that important. The base operating system is identical in all but
some fringe cases. 1 The best strategy for writing cross-platform Windows CE
software is to avoid differentiating among the platforms at all-or at least as lit
tle as possible.

For the most part, discrepancies among the user interfaces for the different
consumer Windows CE devices can be illustrated by the issue of screen dimen
sion. The Pocket PC's portrait-mode screen requires a completely different lay
out for most windows compared with many embedded systems with landscape
mode screens. So instead of looking at the platform type to determine what
screen layout to use, you'd do better to simply check the screen dimensions
using GetDeviceCaps.

Power Management
Windows CE is typically used in battery-powered systems, which makes power
management critical for the proper operation of the system. Applications are for
the most part blissfully unaware of the power issues of a Windows CE device,
but sometimes you might need to address these issues.

When the user powers down a battery-powered Windows CE device, the
power system isn't powered off the way a PC powers off. Instead, the system is
suspended. When the user powers up the device, the device isn't rebooted like
a PC-it resumes, returning to the same state it was in before it was suspended.
As a result, an application running before the system was suspended is still run
ning when the system resumes. In fact, the application won't know that it was
suspended at all unless it explicitly requested to be notified when the system
was suspended. From an application perspective, power management has three
aspects: querying the power state, changing the power state, and occasionally
preventing the power state from changing.

Querying the Power State
To query the current power state of the system, you can call

DWDRD GetSystemPowerStatusEx2 CPSYSTEM_PDWER_STATUS_EX2 pSystemPowerStatusEx2,
DWDRD dwlen, BOOL fUpdate);

1. For example, many of the shell functions starting with SHxx are specific to a platform. So you
wouldn't want to implicitly link to any of the platform-specific shell AP!s if you wanted an application
that ran on both the Pocket PC and embedded versions of Windows CE.

1034 Part V Advanced Windows CE

This function takes three parameters: a pointer to a SYSTEM_POWER_
STATUS_EX2 structure, the length of that structure, and a Boolean value that
tells the operating system if it should query the battery driver during the call to
get the latest information or to return the cached battery information. The sys
tem queries the battery approximately every 5 seconds, so if this third parame
ter is FALSE, the data is still not too stale. The SYSTEM_POWER_STATUS_EX2
structure is defined as

typedef struct _SYSTEM_POWER_STATUS_EX2
BYTE ACLineStatus;
BYTE BatteryFlag;
BYTE BatteryLifePercent;
BYTE Reserved!;
DWORD BatterylifeTime;
DWORD BatteryFulllifeTime;
BYTE Reserved2;
BYTE BackupBatteryFlag;
BYTE BackupBatterylifePercent;
BYTE Reserved3;
DWORD BackupBatterylifeTime;
DWORD BackupBatteryFulllifeTime;
WORD BatteryVoltage;
DWORD BatteryCurrent;
DWORD BatteryAverageCurrent;
DWORD BatteryAverageinterval;
DWORD BatterymAHourConsumed;
DWORD BatteryTemperature;
DWORD BackupBatteryVoltage;
BYTE BatteryChemistry;

SYSTEM_POWER_STATUS_EX2;

Before I describe this rather large structure, I must warn you that the data
returned in this structure is only as accurate as the system's battery driver. This
same structure is passed to the battery driver to query its status. Windows CE
doesn't validate the data returned by the battery driver. The data returned by
this function depends on the battery driver and therefore varies across different
systems. For example, many systems won't report an accurate value for the bat
tery level when the system is on AC power; other systems will. Applications
using GetSystemPowerStatusEx2 should program defensively and test on all sys
tems that might run the application.

The first field, ACLineStatus, contains a flag indicating whether the system
is connected to AC power. The possible values are AC_LINE_OFFLINE, indicat
ing that the system isn't on AC power; AC_LINE_ONLINE, indicating that the sys
tem is on AC power; AC_LINE_BACKUP_POWER; and AC_LINE_UNKNOWN.

Chapter 21 System Programming 1035

The BatteryFlag field, which provides a gross indication of the current state of
the battery, can have one of the following values:

• BA.1TERY_FLAG_HIGH The battery is fully or close to fully charged.

• BA.1TERY_FLAG_LOW The battery has little charge left.

• BA.1TERY_FLAG_CRITICAL The battery charge is at a critical state.

• BA.1TERY_FLAG_CHARGING The battery is currently being charged.

• BA.1TERY_FLAG_NO_BA1TERY The system has no battery.

• BA.1TERY_FLAG_UNKNOWN The battery state is unknown.

The BatteryLifePercent field contains the estimated percentage of charge
remaining in the battery. Either the value will be between 0 and 100 or it will be
255, indicating that the percentage is unknown. The BatteryLifeTime field con
tains the estimated number of seconds remaining before the battery is
exhausted. If this value can't be estimated, the field contains
BATTERY_LIFE_UNKNOWN. The BatteryFullLifeTime field contains the esti
mated life in seconds of the battery when it is fully charged. If this value can't
be estimated, the field contains BATIERY_LIFE_UNKNOWN. Note that on many
systems, these lifetime values are difficult if not impossible to accurately mea
sure. Many OEMs simply fill in BATIERY_LIFE_UNKNOWN for both fields.

The next four fields (not counting the reserved fields) replicate the fields
previously described except that they contain values for the system's backup
battery. Again, because many of these values are difficult to measure, many sys
tems simply return an "unknown" value for these fields.

The remaining fields describe the electrical state of the battery and backup
battery. Because many systems lack the capacity to measure these values, these
fields are simply filled with the default "unknown" values. The final field, Bat
teryChemistry, contains a flag indicating the type of battery in the system. The
currently defined self-describing values are

• BATTERY_CHEMISTRY_ALKALINE

• BATIERY_CHEMISTRY_NICD

• BATTERY_CHEMISTRY_NIMH

• BATTERY_CHEMISTRY_LION

• BATIERY_CHEMISTRY_LIPOLY

• BATTERY_ CHEMISTRY_ UNKNOWN

1036 Part V Advanced Windows CE

Changing the Power State
Applications can change the power state of the system by using a series of
methods. In newer systems based on Windows CE .NET, the preferred method
is to use the Power Manager, discussed later in this chapter. However, there are
plenty of systems based on earlier versions of Windows CE as well as systems
that use Windows CE .NET but do not contain the Power Manager. For these
systems, the following techniques are handy.

Powering Down
An application can suspend the system by calling the little-documented
GwesPowerO.ffSystem function. This function has been available for many ver
sions of Windows CE but has only recently been documented. In fact, most
SDKs don't include the prototype for the function, so you might have to pro
vide the prototype. The function is defined as

void GwesPowerOffSystem(void);

The use of GwesPowerO.ffSystem is simple: simply call, and the system sus
pends.

To those who prefer to avoid little-documented functions, you can also
power off the system by simulating the action of a user pressing the Off button.
You can easily enable your application to suspend the system by using the
keybd_event function, as in

keybd_event (VK_OFF, 0, KEYEVENTF_SILENT, 0);
keybd_event (VK_OFF, 0, KEYEVENTF_SILENT I KEYEVENTF_KEYUP, 0);

The two calls to keybd_event simulate the press and release of the power
button, which has the virtual key code of VK_OFF. Executing the preceding two
lines of code will suspend the system. Because the virtual key code has to be
seen and acted on by GWES, the two functions probably will both return and a
few more statements will be executed before the system actually suspends. If it
is important that your program stop work after calling the keybd_event func
tions, add a call to Sleep to cause the application to pause for a number of mil
liseconds, allowing time for GWES to truly suspend the system.

Turning Off the Screen
On systems with color backlit displays, the main power drain on the system
isn't the CPU-it's the backlight. In some situations, an application needs to
run, but doesn't need the screen. An example of this might be a music player
application when the user is listening to the music, not watching the screen. In
these situations, the ability to turn off the backlight can significantly improve
battery life.

Chapter 21 System Programming 1037

Of course, any application that turns off the backlight needs to have a sim
ple and user-friendly way of reenabling the screen when the user wants to look
at the screen. Also, remember that users typically think the unit is off if the
screen is black, so plan accordingly. For example, a user might attempt to
power on the system when it is already running, and in doing so, accidentally
turn off the device. Also, when the system powers down the display in this
fashion, it also disables the touch screen. This means that you can't tell the user
to tap the screen to turn it back on. Instead, you need to use some other event
such as a set time, the completion of a task, or the user pressing a button.
Finally, the method discussed here, useful on most systems based on Windows
CE 3.0 and later, has been superseded by the method provided by the Power
Manager that was introduced in Windows CE .NET 4.0. For newer systems,
check to see whether the Power Manager is available, and control the screen
through it. If that fails, the ExtEscape method might work.

On Windows CE, the control of the display is exposed through the Ext
Escape function, which is a back door to the display and printer device drivers.
Windows CE display drivers support a number of device escape codes, which
are documented in the Platform Builder. For our purposes, only two escape
codes are needed: SETPOWERMANAGEMENTto set the power state of the dis
play and QUERYESCSUPPORT to query if the SETPOWERMANAGEMENT escape
is supported by the driver. The following routine turns the display on or off on
systems with display drivers that support the proper escape codes:

II
II Defines and structures taken from pwingdi .h in the Platform Builder
II
#define QUERYESCSUPPORT
#define SETPOWERMANAGEMENT
#define GETPOWERMANAGEMENT

typedef enum _VIDEO_POWER_STATE
VideoPowerOn = 1,
VideoPowerStandBy,
VideoPowerSuspend,
VideoPowerOff

8
6147
6148

VIDEO_POWER_STATE, *PVIDEO_POWER_STATE;

typedef struct _VIDEO_POWER_MANAGEMENT
ULONG Length;
ULONG DPMSVersion;
ULONG PowerState;

VIDEO_POWER_MANAGEMENT, *PVIDEO_POWER_MANAGEMENT;
(continued)

1038 Part V Advanced Windows CE

ll------------------------------c---------------------------------------
11 SetVideoPower - Turns on or off the display
II
int SetVideoPower (BOOL fOn) {

VIDEO_POWER_MANAGEMENT vpm;
int re, fQueryEsc;

}

HOC hdc;

II Get the display de.
hdc = GetDC (NULL);
II See if supported.
fQueryEsc = SETPOWERMANAGEMENT;
re= ExtEscape (hdc, QUERYESCSUPPORT, sizeof (fQueryEsc),

(LPSTRl&fQueryEsc, 0, 0);
if (re == 0) {

II No support, fail.
ReleaseDC (NULL, hdc);
return -1;

II Fill in the power management structure.
vpm.Length = sizeof (vpm);
vpm.DPMSVersion = 1;
if (fOn)

vpm.PowerState = VideoPowerOn;
else

vpm.PowerState VideoPowerOff;

II Tell the driver to turn on or off the display.
re= ExtEscape (hdc, SETPOWERMANAGEMENT, sizeof (vpm),

(LPSTR)&vpm, 0, 0);

II Always release what you get.
ReleaseDC (NULL, hdc);
return 0;

The preceding code queries to see whether the escape is supported by
calling ExtEscape with the command QUERYESCSUPPORT. The command being
queried is passed in the input buffer. If the SETPOWERMANAGEMENT com
mand is supported, the routine fills in the VIDEO_POWER_MANAGEMENT
structure and calls ExtEscape again to set the power state.

Although these escape codes allow applications to turn the display on and
off, Windows CE has no uniform method to control the brightness of the back
light. Each system has its own OEM-unique method of backlight brightness con
trol. If there's a standard method of brightness control in the future, it will
probably be exposed through this same ExtEscape function.

Chapter 21 System Programming 1039

Powering Up the System
When the system is suspended, applications aren't running, so it seems that an
application would have no control on when the system resumes. However,
there are a few methods for waking a suspended device. First, an application
can schedule the system to resume at a given time by using the Notification API
discussed in Chapter 11. In addition, OEMs can assign some interrupt condi
tions so that they power up, or in power management talk resume, the system.
An example of this behavior is a system that resumes when it is placed in a syn
chronization cradle.

Preventing the System from Powering Down
The opposite problem-preventing the system from suspending-can also be
an issue. Windows CE systems are usually configured to automatically suspend
after some period of no user input. To prevent this automatic suspension, an
application can periodically call the following function:

void WINAPI SystemidleTimerReset (void):

This function resets the timer that Windows CE maintains to monitor user input.
If the timer reaches a predefined interval without user input, the system auto
matically suspends itself. Because the suspend timeout value can be changed,
an application needs to know the timeout value so that it can call Systemldle
TimerReset slightly more often. The system maintains three timeout values, all
of which can be queried using the SystemParameterslnfo function. The different
values, represented by the constant passed to SystemParameterslnfo, are shown
here:

• SPI_GETBA1TERYIDLETIMEODT Time from the last user input
when the system is running on battery power

• SPI_GETEX'TERNALIDLETIMEODT Time from the last user
input when the system is running on AC power

• SPI_GE1WAKEUPIDLETIMEODT Time from the system auto
powering before the system suspends again

To prevent the system from suspending automatically, you need to query
these three values and call SystemldleTimerReset before the shortest time
returned. If any timeout value is 0, that specific timeout is disabled.

The Power Manager
A new, separate power management component was introduced in Windows
CE .NET 4.0. This Power Manager replaced much of the functionality that GWES

1040 Part V Advanced Windows CE

previously performed. The Power Manager defines a series of power states as
DO, Dl, D2, and D3. These rather cryptic names are then mapped to more
friendly names at the system level.

For embedded systems, OEMs define the system power states. Examples
of power states might be something like On, Idle, and Suspend. Other power
states can be defined, such as ScreenOff, InCradle, and OnBattery.

From an application perspective, the new Power Manager provides the
ability to be notified when the power state changes as well as a uniform
method of changing the power state of the system through a series of functions.

The power states for the system are defined in the registry. The SDK
defines PWRMGR_REG_KEY so that you don't have to know the registry string,
but for the times when the constant isn't defined, the Power Manager's registry
data is kept at HKEY _LOCAL_MACHINE\System \ CurrentControlSet\ Con
trol\Power. The power states are then defined as subkeys under the key State.

Power Notifications
One of the more welcome features of the Power Manager is its ability to notify
an application when the power state of the system changes. This ability frees
the application from polling the battery state manually to monitor the power.
An application can request that the Power Manager send a notification to the
application when the power state of the system changes by calling RequestPow
erNotifications. The Power Manager then sends the notifications through a mes
sage queue that has been previously created by the application.

RequestPowerNoti/ications is prototyped as

HANDLE RequestPowerNotifications (HANDLE hMsgQ, DWORD Flags);

The first parameter is the handle to a message queue that the application has
previously created. The second parameter is a series of flags indicating which
notifications the application wants to receive. The flags, which can be ORed
together, are as follows:

• PBT_TRANSITION Receive notifications when the power state
changes-for example, when the system goes from On to Suspend.

• PBT_RESUME Receive notifications when the system resumes.

• PBT_POWERSTATUSCHANGE Receive notifications when the
system transitions between AC and battery power.

• PBT_POWERINFOCHANGE Receive notifications when the
power information, such as the battery level, changes.

• POWER_NOTIFY_ALL Receive all power notifications.

Chapter 21 System Programming 1041

The RequestPowerNotifications function returns a handle to the power notifica
tion, or NULL if the function fails. The message queue should be created with
read access by the application since it will be reading the power notifications
from the queue.

To receive the notifications, an application should block on the queue
handle by using WaitForSingleObject. As discussed in Chapter 10, the handle
will be signaled when a notification is placed in the queue. The actual notifica
tion is received in the form of a POWER_BROADCAST structure defined as fol
lows:

typedef struct _POWER_BROADCAST
DWORD Message;
DWORD Flags;
DWORD Length;
WCHAR SystemPowerState[l];

POWER_BROADCAST, *PPOWER_BROADCAST;

First note that this structure is a variable-length structure. The last field,
SystemPowerState, is defined as an array of WCHARs but can be filled with
other, nonstring, data. The first field is the identifier of the notification itself.
This field is filled with one of the PBT_ flags listed earlier. The Flags field can
contain the following flags, depending on the notification being received:

• POWER_STATE_ON The system is on.

• POWER_STATE_OFF The system is off.

• POWER_STATE_CRITICAL The system is performing a critical
off.

• POWER_STATE_BOOT The system is booting.

• POWER_STATE_IDLE The system is idle.

• POWER_STATE_SUSPEND The system is suspended.

• POWER_STATE_RESET The system is starting after a reset.

The final two parameters are related. The Length field is the length of the
data in the SystemPowerState field. The data contained in the SystemPowerState
field depends on the notification being sent. For the PBT_TRANSITION notifica
tion, the SystemPowerState field contains a string that identifies the new power
state. This string is not zero terminated. To terminate the string, use the Length
field to determine the length of the string. Note that the Length field is in bytes,
while the characters are 2-byte Unicode characters, so to obtain the length of
the string in characters, divide the Length field by the size of TCHAR.

1042 Part V Advanced Windows CE

For the PBT_POWERINFOCHANGE notification, the SystemPowerState
field contains a PPOWER_BROADCAST_POWER_INFO structure defined as fol
lows:

typedef struct _POWER_BROADCAST_POWER__INFO
DWORD dwNumLevels:
DWORD dwBatteryLifeTime:
DWORD dwBatteryFullLifeTime:
DWORD dwBackupBatteryLifeTime;
DWORD dwBackupBatteryFullLifeTime;
BYTE bACLineStatus:
BYTE bBatteryFlag;
BYTE bBatteryLifePercent;
BYTE bBackupBatteryFlag;
BYTE bBackupBatteryLifePercent;

POWER_BROADCAST_POWER_INFO, *PPOWER_BROADCAST_POWER_INFO;

Notice that the fields are similar in name and function to many of the fields pre
viously discussed in the SYSTEM_POWER_STATUS_EX2 structure.

Setting the Power State
Functions provided by the Power Manager also allow applications to control
the power state. There are two methods for controlling the power. The first
method has the application demand a given power setting. The second method
has the application request that the power not drop below a given level.

An application can request a specific power state by calling the function
SetSystemPowerState. This function is prototyped as

DWORD SetSystemPowerState (LPCWSTR psState, DWORD StateFlags,
DWORD Options);

The power state being requested can be specified in either the first or the sec
ond parameter of the function. If the first parameter is nonzero, it points to a
string that identifies the state being requested. The string should match one of
the power states enumerated in the registry.

If psState is NULL, the second parameter, StateFlags, defines the requested
power state. This parameter is one of the same power states, from
POWER_STATE_ON to POWER_STATE_RESET, that were described in the
PO WER_BROADCAST structure earlier.

Of particular interest is the flag POWER_STATE_RESET. This flag requests
that the system reset. This method of resetting the system using SetSystemPow
erState is much better than directly calling KernelloControl with the IOCTL
command IOCTL_HAL_REBOOT since using SetSystemPowerState will cause the
system to flush any buffered data to the file system before the function resets
the device.

Chapter 21 System Programming 1043

While calling SetSystemPowerState is a direct method of changing the
power state, a more subtle method is to request that the system maintain the
minimal power state needed by the application by calling SetPowerRequire
ment. Using SetSystemPowerState assumes the application knows best, while
calling SetPowerRequirement allows the system to optimize the power settings
while still meeting the needs of the application. An example of a situation in
which SetPowerRequirement is handy occurs when an application is using a
serial port and needs the port to stay powered while communication is active.
SetPowerRequirement is defined as

HANDLE SetPowerRequirement CPVOID pvDevice,
CEDEVICE_POWER_STATE DeviceState,
ULONG DeviceFlags, PVOID pvSystemState,
ULONG StateFlags);

The first parameter specifies the device that the application needs to remain at
a given power state. The DeviceState parameter defines the power state for the
device. The enumeration CEDEVICE_POWER_STATE specifies the state, ranging
from DO (meaning that the device must remain fully powered) to D4 (meaning
that the device is powered off). The DeviceFlags parameter can be a combina
tion of two flags: POWER_NAME, indicating that the device name is valid; and
POWER_FORCE, indicating that the device should remain in that state even if
the system suspends. If the pvSystemState is not NULL, it indicates that the
power requirement is valid only for the power state named in pvSystemState.
The device might not be able to change to the requested state.

As soon as possible, the application should remove the power require
ment with a call to ReleasePowerRequirement, prototyped as

DWORD ReleasePowerRequirement (HANDLE hPowerReq);

The only parameter is the handle returned from SetPowerRequirement.
In the next chapter, I'll continue to explore system issues with a look at

Windows CE stream device drivers and services. Although most application
developers might never have to write a device driver or a service, knowing how
they are put together is rather enlightening. Let's take a look.

Device Drivers and
Services

Device drivers are modules that provide the interface between the operating
system and the hardware. Device drivers take on an air of mystery because
they're a mix of operating system-specific code and hardware customization.
Most application developers are quite happy to let the real operating system
junkies handle writing device drivers. This chapter shows you that while deal
ing with hardware can be a pain, the basic structure of a Windows CE driver is
actually quite simple. An application developer might even have reasons to
write a driver every now and then.

Real operating system junkies also know about services. Under Windows
XP, a service is a background application that typically runs in the background.
Services can be automatically started when the operating system boots, or be
manually started. They can also be stopped and restarted as needed. Windows
CE .NET supports services, although not with the same architecture as Windows
XP services. Instead, Windows CE services are quite similar to Windows CE
drivers, as we will see. In this chapter, I'll first introduce drivers, because the
basics of that discussion is important to both drivers and services, and then I'll
dive into how to write a Windows CE service.

Basic Drivers
Before I dive into how to write a device driver, we must take a brief look at
how Windows CE handles drivers in general. Windows CE separates device
drivers into three main groups: native, bus, and stream interface. Native drivers,
sometimes called built-in drivers, are those device drivers that are required for

1045

1046 Part V Advanced Windows CE

the hardware and were created by the OEM when the Windows CE hardware
was designed. Among the devices that have native drivers are the keyboard, the
touch panel, and audio. These drivers might not support the generic device
driver interface I describe shortly. Instead, they might extend the interface or
have a totally custom interface to the operating system. Native drivers fre
quently require minor changes when a new version of the operating system is
released. These drivers are designed using the Platform Builder product sup
plied by Microsoft. However these drivers are developed, they're tightly bound
to the Windows CE operating system and aren't usually replaced after the
device has been sold.

Bus drivers manage the system busses such as a PCI bus. PCMCIA, Com
pactFlash, and SDIO slots are also considered busses. Bus drivers are in charge
of interrogating the hardware on the bus to determine what hardware is
installed and allocating resources. The bus driver also asks the Device Manager
to load the proper drivers for the hardware on the bus and provides a system
independent method of accessing the hardware registers without the device
drivers from having to know the physical memory map of the system.

Stream interface device drivers (which are sometimes referred to as install
able drivers) can be supplied by third-party manufacturers to support hardware
added to the system. Although some Windows CE systems have a PCI bus for
extra cards, the additional hardware is usually installed via a Personal Computer
Memory Card International Association (PCMCIA), a CompactFlash, or a Secure
Digital 1/0 (SDIO) slot. In this case, the device driver would use functions pro
vided by the bus driver to access the hardware.

In addition, a· device driver might be written to extend the functionality of
an existing driver. For example, you might write a driver to provide a com
pressed or encrypted data stream over a serial link. In this case, an application
would access the encryption driver, which would in turn use the serial driver to
access the serial hardware.

Device drivers under Windows CE operate at the same protection level as
applications. They differ from applications in that they're DLLs. Most drivers are
loaded by the Device Manager process (Device.exe) when the system boots. All
these drivers, therefore, share the same process address space. Some of the
built-in drivers, on the other ha9d, are loaded by GWES.exe. These drivers
include the display driver (DDI.dll) as well as the keyboard and touch panel (or
mouse) drivers.

Driver Names
Stream interface device drivers are identified by a three-character name fol
lowed by a single digit, as in COM2: this scheme allows for 10 device drivers of
one name to be installed on a Windows CE device at any one time. Instance

Chapter 22 Device Drivers and Services 1047

values are numbered from one to nine, with the tenth instance having an
instance number of zero. Here are a few examples of some three-character
names currently in use:

• COM Serial driver

• ACM Audio compression manager

• WAV Audio wave driver

• CON Console driver

When referencing a stream interface driver, an application uses the three
character name, followed by the single digit, followed by a colon (:). The colon
is required under Windows CE for the system to recognize the driver name.

Bus drivers typically don't have a stream-style three-letter name. One con
sequence of this is that bus drivers are not accessible to applications such as
stream drivers. Bus drivers are however loaded by the Device Manager and in
most ways are loaded and managed like stream drivers.

The Device Driver Load Process
When Device.exe loads, it looks in the registry under [HKEY _LOCAL_
MACHINE]\Drivers for a string value named RootKey. This value points to the
registry key that lists the drivers that should be loaded when the system boots.
Traditionally, this key is named Builtln. In addition, an optional key named DLL
can be present listing the registry enumerator, the DLL that actually reads and
interprets the registry structure. If no DLL key is found, the default enumerator
Regenum.dll is used.

The Device Manager then uses the registry enumerator to read the key
specified by RootKey for the list of the drivers it must load when it initializes.
This list is contained in a series of keys. The names of the keys don't matter
it's the values contained in the keys that define which drivers to load and the
order in which to load them. Figure 22-1 shows the contents of the WaveDev
key. The Wave driver is the audio driver.

The four values under this key are the basic four entries used by a device
driver under Windows CE. The DLL key specifies the name of the DLL that
implements the driver. This is the DLL that the registry enumerator loads. The
Order value ranges from 0 through 255 and specifies the order in which the
drivers are loaded. The registry enumerator loads drivers with lower Order val
ues before drivers with higher Order values in the registry.

1048 Part V Advanced Windows CE

~,Ga Active
F tOlBuiltln

··GI AFD
G:i autnras
;;,;i Button
iil:l Ethman
l1"l FlshDrv
QJ ipv6hlp

"li.\J lrCOM'4
G!N:>IS
GJ NdlsPower
@N)!SUIO
:illCH:l
<r:ilPCMC!A
<r:il PINRBUTTON
"'11S!P

··l:ilTAPI
lioliWAP!MAN ell-

Figure 22-1 The registry key for the Wave driver

·r······1·····

The Prefix value defines the three-letter name of the driver. This value is
mandatory for stream drivers but typically not used for bus drivers. Applications
that want to open this driver use the three-letter key with the number that Win
dows CE appends to create the device name. The Index value is the number
that will be appended to the device name.

As the registry enumerator reads each of the registry keys, it loads the DLL
specified, creates an Active key for the driver and then calls either ActivateDe
vice or ActivateDeviceEx to register the DLL as a device driver with the system.
The registry enumerator maintains a table of device handles that are returned
by ActivateDevice.

ActivateDevice creates a new key under [HKEY _LOCAL_MACHINE\Driv
ers \Active and initializes it. It then finds a free index for the driver if one wasn't
specified in the original registry key. ActivateDevice then calls RegisterDevice to
complete the load. RegisterDevice loads the driver in memory using the Load
Device function. LoadDevice is similar to LoadLibrary but loads the entire DLL
into memory and locks the pages so they can't be discarded. RegisterDevice
then attempts to get function pointers to the 10 external entry points in the
driver. For named, stream, drivers, the entry points !nit, Deinit, Open, Close,
and at least one, of the Read, Write, Seek, or IOControl entry points must exist
or the driver load fails. For unnamed bus drivers, RegisterDevice tries to get all
10 entry points, but fails only if the !nit and Deinit functions can't be found.

Chapter 22 Device Drivers and Services 1049

Once the entry points have been saved, RegisterDevice calls the driver's
!nit function. If !nit returns a nonzero value, the driver is added to the device
chain and RegisterDevice returns. If !nit returns zero, the driver is unloaded and
the driver initialization fails.

Although this is the standard load procedure, another registry value can
modify the load process. If the driver key contains a Flags value, the load pro
cess can change in a number of ways. The following values are currently valid
for the Flags value:

• DEVFLAGS_UNLOAD Unload the driver after the call to !nit
returns.

• DEVFLAGS_LOADLIBRARY Use LoadLibrary to load the driver
instead of LoadDriver.

• DEVFLAGS_NOLOAD Don't load the driver at all.

• DEVFLAGS_NAKEDENTRIES The driver entry points aren't pre
fixed by the driver name.

Another way the driver load process can be modified depends on the now
deprecated registry value named Entry. If this value is found, the DLL is loaded,
and then, instead of calling ActivateDevice, the system calls the entry point in the
driver named in Entry. The driver itself is then responsible for calling the
ActivateDevice function if it's to be registered as a driver with the system.

If the Entry value is present, another value, Keep, can also be specified.
Specifying the Keep value tells the system not to unload the driver after it calls
the driver's entry point. This arrangement allows the driver DLL to avoid calling
RegisterDevice and therefore avoid being a driver at all. Instead, the DLL is sim
ply loaded into the process space of Device.exe.

Device drivers can also be loaded manually by applications. The preferred
function for loading a device driver is ActivateDeviceEx prototyped as

HANDLE ActivateDeviceEx (LPCWSTR lpszDevKey, LPCVOID lpRegEnts,
DWORD cRegEnts, LPVO ID l pvPa ram);

The first parameter is the name of a registry key under [HKEY _LOCAL_
MACHINE) where the driver information is saved. The format of the registry key
is identical to the format discussed earlier. The next two parameters, lpRegEnts
and cRegEnts, describe an array of REG/NI structures that define a series of reg
istry values that will be added to the device's Active key. Generally, adding val
ues is done only for bus drivers. The final parameter is a pointer that is passed
to the device driver's !nit function when the driver is loaded. This pointer can
point to any device-specific information. The driver must use the new, two
parameter definition of the !nit function to receive this value.

1050 Part V Advanced Windows CE

The return value from ActivateDeviceEx is the handle to the instance of
the device. If the return value is zero, the load failed. In this case, use Getlast
Error to determine why the function failed. The returned handle can't be used
to read or write to the device; instead, the driver should be opened with Cre
ateFile. The handle should be saved in case the driver needs to be unloaded in
the future.

An older method of loading a driver is RegisterDevice. RegisterDevice is
dangerous because drivers loaded with this function will not have an Active key
associated with the driver. The only reason for discussing the function at all is
that it doesn't require a registry key to load the driver, which can be handy
when writing a quick and simple test program that loads and later unloads the
driver.

RegisterDevice is prototyped as

HANDLE RegisterDevice (LPCWSTR lpszType, DWORD dwlndex,
LPCWSTR lpszlib, DWORD dwlnfo);

The first two parameters are the three-character prefix of the driver and the
instance number of the device. To load COM3, for example, lpszType would
point to the string COM and dw!ndex would have a value of 3. If an instance of
the driver is already loaded the function will fail, so it's important to check the
return value to see whether the function fails and determine why the failure
occurred.

The lpszlib parameter identifies the name of the DLL that implements the
driver. The final parameter, dwlnjo, is passed to the driver in the !nit call in the
dwContext value. Because most drivers expect the dwContext value to point to
a string naming a registry key, this value should at least point to a zero-termi
nated null string. RegisterDevice returns the handle to the instance of the driver
if the load was successful and zero otherwise.

A driver can be unloaded with

BOOL DeregisterDevice (Handle hDevice);

The only parameter is the handle that was returned with ActivateDeviceEx
or RegisterDevice.

Enumerating the Active Drivers
The most reliable way to find a device driver is to use FindFirstFileEx and set
the jSearchOp parameter to FindExSearchLimitToDevices. Using the search
string * and repeatedly calling FindNextFile results in a list of the stream drivers
loaded. Unfortunately, there's a bug in the implementation of FindFirstFileEx in
the original Pocket PCs. When you used the FindExSearchLimitToDevices
jSearchOp parameter with FindFirstFileEx, the original Pocket PCs would throw
an exception. The only way to catch this is to bracket the call to FindFirstFileEx

Chapter 22 Device Drivers and Services 1051

with a _try, _except block. As a result, a more general method to search for
device drivers is to simply check the registry.

The more general method for determining what drivers are loaded onto a
Windows CE system is to look in the registry under the key \Drivers\Active
under HKEY _LOCAL_MACHINE. The Device Manager dynamically updates the
subkeys contained here as drivers are loaded and unloaded from the system.
Contained in this key is a list of subkeys, one for each active driver loaded with
ActivateDevice. The contents of these subkeys might change in future versions
of Windows CE, but knowing what these subkeys contain can be helpful in
some situations.

The name of the key is simply a placeholder; the values inside the keys
are what indicate the active drivers. Figure 22-2 shows the registry key for the
COMl serial driver.

2JComm
Q Con1ro1Panel

Drivers
,; Q Active

2J01
2302
2303
Cliii04
e::ios
2306
2307
c:ioo
Q09
::i 10
Q11
::J 12

Data
(value not set)
378576
COM!:

Figure 22-2 The registry's active list values for the serial device driver
for COM1

In Figure 22-2, the Name value contains the official five-character name
(four characters plus a colon) of the device. The Hnd value is a handle used
internally by Windows CE. The interesting entry is the Key value. This value
points to the registry key where the device driver stores its configuration infor
mation. This second key is necessary because the active list is dynamic, chang
ing whenever a device is installed. Instead, the driver should open the registry
key specified by the Key value in the active list to determine the driver's perma
nent configuration data. The configuration data for the serial driver is shown in
Figure 22-3.

1052 Part V Advanced Windows CE

1
0
Serial Cable on COM1:
20 00 00 0005 00 0000 10 010000004BOO 0000 0000 00 00 0000 00

Figure 22-3 The registry entry for the serial driver

You can look in the serial driver registry key for such information as the
name of the DLL that actually implements the driver, the three-letter prefix
defining the driver name, the order in which the driver wants to be loaded, and
something handy for user interfaces, the friendly name of the driver. Not all
drivers have this friendly name, but when they do, it's a much more descriptive
name than COM2 or NDSl.

Drivers for PCMCIA or CompactFlash cards have an additional value in
their active list key. The Pnp!d value contains the Plug and Play ID string that
was created from the card's ID string. Some PCMCIA and CompactFlash cards
have their Pnp!d strings registered in the system if they use a specific device
driver. If so, a registry key for the Pnp!d value is located in the Drivers\FCMCIA
key under HKEY_LOCAL_MACHINE. For example, a PCMCIA card that had a
Pnp!d string This_is_a_pc_card would be registered under the key \/Jriv
ers\FCMCIA\This_is_a_pc_card. That key may contain a FriendlyName string
for the driver. Other PCMCIA cards use generic drivers. For example, most
CompactFlash storage cards use the ATADISK driver registered under \Driv
ers\PCMCIA \ATADISK.

Reading and Writing Device Drivers
Applications access device drivers under Windows CE through the file I/0 func
tions, CreateFile, ReadFile, WriteFile, and CloseHandle. The application opens
the device using CreateFile, with the name of the device being the five-charac
ter (three characters plus digit plus colon) name of the driver. Drivers can be
opened with all the varied access rights: read only, write only, read/write, or
neither read nor write access.

Chapter 22 Device Drivers and Services 1053

Once a device is open, data can be sent to it using WriteFile and can read
from the device using ReadFile. As is the case with file operations, overlapped
I/0 isn't supported for devices under Windows CE. The driver can be sent con
trol characters using the function DeviceloControl. The function is prototyped
this way:

BOOL DeviceloControl (HANDLE hDevice, DWORD dwloControlCode,
LPVOID lplnBuffer, DWORD nlnBufferSize,
LPVOID lpOutBuffer, DWORD nOutBufferSize,
LPDWORD lpBytesReturned,
LPOVERLAPPED lpOverlapped);

The first parameter is the handle to the opened device. The second param
eter, dw!oControlCode, is the IOCTL (pronounced eye-OC-tal) code. This value
defines the operation of the call to the driver. The next series of parameters are
generic input and output buffers and their sizes. The use of these buffers is
dependent on the IOCTL code passed in dwloControlCode. The lpBytesRe
turned parameter must point to a DWORD value that will receive the number of
bytes returned by the driver in the buffer pointed to by lpOutBuffer.

Each driver has its own set of IOCTL codes. If you look in the source code
for the example serial driver provided in the Platform Builder, you'll see that the
following IOCTL codes are defined for the COM driver. Note that these codes
aren't defined in the Windows CE SDK because an application doesn't need to
directly call DeviceloControl using these codes.

IOCTL_SERIAL_SET_BREAK_ON IOCTL_SERIAL_5ET_BREAK_OFF

IOCTL_SERIAL_SET_DTR IOCTL_SERIAL_ CLR_DTR

IOCTL_SERIAL_SET_RTS IOCTL_SERIAL_CLR_RTS

IOCTL_SERIAL_SET_XOFF IOCTL_SERIAL_SET_XON

IOCTL_SERIAL_ GET_ WAIT_MASK IOCTL_SERIAL_SET_ WAIT_MASK

IOCTL_SERIAL_ WAIT_ ON_MASK IOCTL_SERIAL_GET_COMMSTATUS

IOCTL_SERIAL_GET_MODEMSTATUS IOCTL_SERIAL_GET_PROPERTIES

IOCTL_SERIAL_SET_TJMEOUTS IOCTL_SERIAL_GET_TJMEOUTS

IOCTL_SERIAL_FURGE IOCTL_SERIAL_SET_QUEUE_SIZE

IOCTL_SERIAL_IMMEDIATE_CHAR IOCTL_SERIAL_GET_DCB

IOCTL_SERIAL_SET_DCB IOCTL_SERIAL_ENABLE_IR

IOCTL_SERIAL_DISABLE_IR

As you can see from the fairly self-descriptive names, the serial driver
IOCTL functions expose significant function to the calling process. Windows
uses these IOCTL codes to control some of the specific features of a serial port,

1054 Part V Advanced Windows CE

such as the handshaking lines and timeouts. Each driver has its own set of
IOCTL codes. I've shown the preceding ones simply as an example of how the
DeviceloControl function is typically used. Under most circumstances, an appli
cation has no reason to use the DeviceloControl function with the serial driver.
Windows provides its own set of functions that then call down to the serial
driver using DeviceloControl.

Okay, we've talked enough about generic drivers. It's time to sit down to
the meat of the chapter-writing a driver.

Writing a Windows CE Stream Device Driver
As I mentioned earlier, Windows CE device drivers are simply DLLs. So on the
surface, writing a device driver would seem to be a simple matter of writing a
Windows CE DLL with specific exported entry points. For the most part, this is
true. You have only a few issues to deal with when writing a Windows CE
device driver.

A device driver isn't loaded by the application communicating with the
driver. Instead, the Device Manager, Device.exe, loads most drivers, including
all stream drivers. This state of affairs affects the driver in two ways. First, an
application can't simply call private entry points in a driver as it can in a DLL.
The only way an application could directly call an entry point would be if it
called Loadlibrary and GetProcAddress to get the address of the entry point so
the entry point could be called. This situation would result in the DLL that
implemented the driver (notice I'm not calling it a driver anymore) being
loaded in the process space of the application, not in the process space of the
Device Manager. The problem is that this second copy of the DLL isn't the
driver-it's the DLL that implemented the driver. The difference is that the first
copy of the DLL (the driver)-when properly loaded by the Device Manager
has some state data associated with it that isn't present in the second copy of
the DLL loaded by the application. Perversely, the calls to Loadlibrary and Get
ProcAddress will succeed because the driver is a DLL. In addition, calling the
entry points in the driver results in calling the correct code. The problem is that
the code will be acting on data present only in the second copy of the DLL, not
in the proper data maintained by the driver. This situation can, and usually
does, result in subtle bugs that can confuse and even lock up the hardware the
driver is managing. In short, never interact with a driver by calling LoadLibrary
and GetProcAddress.

The second effect of the driver being loaded by the Devke Manager is that
if a driver DLL is used for more than one instance of a piece of hardware, for
example, on a serial driver being used for both COMl and COM2, the Device
Manager will load the DLL only once. When the driver is "loaded" a second
time, the driver's initialization entry point, COM_Init, is simply called again.

Chapter 22 Device Drivers and Services 1055

The reason for this dual use of the same DLL instance is that under Win
dows CE a DLL is never loaded twice by the same process. Instead, if an appli
cation asks to load a DLL again, the original DLL is used and a call is made to
Dl/Main to indicate that a second thread has attached to the DLL. So if the
Device Manager, which is simply another process under the operating system,
loads the same driver for two different pieces of hardware, the same DLL is
used for both instances of the hardware.

Drivers written to handle multiple instances of themselves must not store
data in global variables because the second instance of the driver would over
write the data from the first instance. Instead, a multi-instance driver must store
its state data in a structure allocated in memory. If multiple instances of the
driver are loaded, the driver will allocate a separate state data structure for each
instance. The driver can keep track of which instance data structure to use by
passing the pointer to the instance data structure back to the Device Manager as
its "handle,'' which is returned by the device driver's /nit function.

One final issue with Windows CE device drivers is that they can be reen
tered by the operating system, which means that a driver must be written in a
totally thread-safe manner. References to state data must be protected by critical
sections, interlock functions, or other thread-safe methods.

The Stream Driver Entry Points
A stream driver exposes 10 external entry points-summarized in the following
list-that the Device Manager calls to talk to the driver. I'll describe each entry
point in detail in the following sections.

• xxx_Init Called wheri an instance of the driver is loaded

• xxx_Deinit Called when an instance of the driver is unloaded

• xxx_Open Called when a driver is opened by an application with
CreateFile

• xxx_Close Called when a driver is closed by the application with
Closehandle

• xxx_Read Called when the application calls ReadFile

• xxx_ Write Called when the application calls WriteFtle

• xxx_Seek Called when the application calls SetFilePointer

• xxx_IOControl Called when the application calls Device/oControl

• xxx_PowerDown Called just before the system suspends

• xxx_PowerUp Called just before the system resumes

1056 Part V Advanced Windows CE

The xxx preceding each function name is the three-character name of the
driver if the driver has a name. For example, if the driver is a COM driver, the
functions are named COM_Init, COM_Deinit, and so on. For unnamed drivers,
those without a prefix value specified in the registry, the entry points are the
name without the leading xxx, as in /nit and Deinit. Also, although the preced
ing list describes applications talking to the driver, there's no reason one driver
can't open another driver by calling CreateFile and communicate with it just as
an application can.

xxx_lnit
When the Device Manager first loads an instance of the driver, the Device Man
ager calls the driver's !nit function. The /nit function has one of two prototypes.
For newer drivers built for Windows CE .NET 4.0 and later, the prototype is

DWORD XXX_Init (LPCTSTR pContext, LPCVOID lpvBusContext);

The first parameter, pContext, typically contains a pointer to a string identifying
the Active key created by the Device Manager for the driver. I say typically
because an application using RegisterDevice can load the device to pass any
value, including 0, in this parameter. The moral of the story is to look for a
string but plan for the dwContext value to point to anything. The second param
eter is a pointer to driver specific data structure. This pointer is actually what
ever the fourth parameter to ActivateDeviceEx so it can be used for whatever
data needs to be passed from the caller of ActivateDeviceEx to the driver.

The legacy prototype of the !nit function is prototyped as

DWORD XXX_Init (DWORD dwContext);

Here again, the first, and this time only, parameter almost always contains a
pointer the name of the Active key in the registry. Although the newer function
prototype is recommended, drivers using the old /nit prototype work just as
well.

The driver should respond to the /nit call by verifying that any hardware
that the driver accesses functions correctly. The driver should initialize the hard
ware, initialize its state, and return a nonzero value. If the driver detects an
error during its initialization, it should set the proper error code with SetLastEr
ror and return 0 from the !nit function. If the Device Manager sees a 0 return
value from the /nit function, it unloads the driver and removes the Active key
for the driver from the registry.

The device driver can pass any nonzero value back to the Device Man
ager. The typical use of this value, which is referred to as the device context
handle, is to pass the address of a structure that contains the driver's state data.
For drivers that can be multi-instanced (loaded more than once to support more
than one instance of a hardware device), the state data of the driver must be
independently maintained for each instance of the driver.

Chapter 22 Device Drivers and Services 1057

xxx_Oeinit
The Deinit entry point is called when the driver is unloaded. This entry point
must be prototyped as

BOOL XXX_Deinit CDWORD hDeviceContext);

The single parameter is the device-context value the driver returned from the
!nit call. This value allows the driver to determine which instance of the driver
is being unloaded. The driver should respond to this call by powering down
any hardware it controls and freeing any memory and resources it owns. The
driver will be unloaded following this call.

xxx_Open
The Open entry point to the driver is called when an application or another
driver calls CreateFile to open the driver. The entry point is prototyped as

DWORD XXX_Open CDWORD hDeviceContext, DWORD AccessCode, DWORD ShareMode);

The first parameter is the device context value returned by the !nit call. The
AccessCode and ShareMode parameters are taken directly from CreateFile's
dwDesiredAccess and dwShareMode parameters and indicate how the applica
tion wants to access (read/write or read only) and share (FILE_SHARE_READ or
FJLE_SHARE_ WRITE) the device. The device driver can refuse the open for any
reason by simply returning 0 from the function. If the driver accepts the open
call, it returns a nonzero value.

The return value is traditionally used, like the device context value
returned by the !nit call, as a pointer to an open context data structure. If the
driver allows only one application to open it at a time, the return value is usu
ally the device context value passed in the first parameter. This arrangement
allows all the functions to access the device context structure directly, because
one of these two values-the device context or the open context value-is
passed in every call to the driver. The open context value returned by the Open
function is not the handle returned to the application when the CreateFile func
tion returns.

Windows CE typically runs on hardware that's designed so that individual
components in the system can be separately powered. Windows CE drivers that
are designed to work without the Power Manager typically power the hardware
they control only when the device is opened. The driver then removes power
when the Close notification is made. This means that the device will be pow
ered on only when an application or another driver is actually using the device.

1058 Part V Advanced Windows CE

xxx_Close
The Close entry point is called when an application or driver that has previously
opened the driver closes it by calling CloseHandle. The entry point is proto
typed as

BOOL XXX_Close (DWORD hOpenContext);

The single parameter is the open context value that the driver returned from the
Open call. The driver should power down any hardware and free any memory
or open context data associated with the open state.

xxx_Read
The Read entry point is called when an application or another driver calls Read
File on the device. This entry point is prototyped as

DWORD XXX_Read (DWORD hOpenContext, LPVOID pBuffer, DWORD Count);

The first parameter is the open context value returned by the Open call. The
second parameter is a pointer to the calling application's buffer, where the read
data is to be copied. The final parameter is the size of the buffer. The driver
should return the number of bytes read into the buffer. If an error occurs, the
driver should set the proper error code using SetLastError and return <;$MI>l.
A return code of 0 is valid and indicates that the driver read no data.

A device driver should program defensively when using any passed
pointer. The following series of functions tests the validity of a pointer:

BOOL IsBadWritePtr (LPVOID lp, UINT ucb);
BOOL IsBadReadPtr (const void *lp, UINT ucb);
BOOL IsBadCodePtr (FARPROC lpfn);

The parameters are the pointer to be tested and, for the Read and Write
tests, the size of the buffer pointed to by the pointer. Each of these functions
verifies that the pointer passed is valid for the use tested. However, the access
rights of a page can change during the processing of the call. For this reason,
always couch any use of the pBuffer pointer in a _try, _except block. This will
prevent the driver from causing an exception when the application passes a
bad pointer. For example, you could use the following code:

DWORD xxx_Read CDWORD dwOpen, LPVOID pBuffer, DWORD dwCount) {
DWORD dwBytesRead;

II Test the pointer.
if (lsBadReadPtr CpBuffer, dwCount)) {

SetlastError CERROR_INVALID_PARAMETER);
return -1;

Chapter 22 Device Drivers and Services 1059

_try {
dwBytesRead = InternalRead CpBuffer, dwCount);

_except CEXCEPTION_EXECUTE_HANDLER) {
SetlastError CERROR_INVALID_PARAMETER);
return -1;

return dwBytesRead;

In the preceding code, the pointer is initially tested by using lsBadReadPtr
to see whether it's a valid pointer. The code that actually performs the read is
hidden in an internal routine named lnternalRead. If that function throws an
exception, presumably because of a bad pBuffer pointer or an invalid dwCount
value, the function sets the error code to ERROR_INVALID_PARAMETER and
returns <;$MI>l to indicate that an error occurred.

xxx_Write
The Write entry point is called when the application that has opened the device
calls WriteFile. The entry point is prototyped as

DWORD XXX_Write CDWORD hOpenContext, LPCVOID pBuffer, DWORD Count);

As with the Read entry point, the three parameters are the open context value
returned by the Open call, the pointer to the data buffer containing the data,
and the size of the buffer. The function should return the number of bytes writ
ten to the device or <;$MI>l to indicate an error.

xxx_Seek
The Seek entry point is called when an application or driver that has opened the
driver calls SetFilePointer on the device handle. The entry point is prototyped
as

DWORD XXX_Seek CDWORD hOpenContext, long Amount, WORD Type);

The parameters are what you would expect: the open context value returned
from the Open call, the absolute offset value that is passed from the SetFile
Pointer call, and the type of seek. There are three types of seek: FILE_BEGIN
seeks from the start of the device, FILE_ CURRENT seeks from the current posi
tion, and FILE_END seeks from the end of the device. The Seek function has
limited use in a device driver but it is provided for completeness.

xxx_PowerDown
The PowerDown entry point is called when the system is about to suspend. For
legacy drivers without a power management interface, the device driver should

1060 Part V Advanced Windows CE

power down any hardware it controls and save any necessary hardware state.
The entry point is prototyped as

void XXX_PowerDown (DWORD hDeviceContextl:

The single parameter is the device context handle returned by the !nit call.
The device driver must not make any Win32 API calls during the process

ing of this call. Windows CE allows only two functions, SetlnterruptEvent and
CeSetPowerOnEvent, to be called during the PowerDown notification. Setlnter
ruptEvent tells the kernel to signal the event that the driver's interrupt service
thread is waiting for. SetlnterruptEvent is prototyped as

BOOL SetlnterruptEvent (DWORD idlnt);

The single parameter is the interrupt ID of the associated interrupt event.
The function CeSetPowerOnEvent is prototyped as

BOOL CeSetPowerOnEvent (HANDLE hEvt);

The parameter is the handle of an event that will be signaled when the
system resumes.

xxx_PowerUp
The PowerUp entry point is called when the system resumes. Legacy drivers
without a power management interface can use this notification to know when
to power up and restore the state to the hardware it controls. The PowerUp noti
fication is prototyped as

void XXX_PowerUp CDWORD hDeviceContext);

The hDeviceContext parameter is the device context handle returned by the !nit
call. As with the PowerDown call, the device driver can make no Win32 API
calls during the processing of this notification.

Although the PowerUp notification allows the driver to restore power to
the hardware it manages, well-written drivers restore only the minimal power
necessary for the device. Typically, the driver will power the hardware only on
instruction from the Power Manager.

xxx_IOControl
Because many device drivers don't use the Read, Write, Seek metaphor for their
interface, the JOControl entry point becomes the primary entry point for inter
facing with the driver. The IOControl entry point is called when a device or
application calls the DeviceJOControl function. The entry point is prototyped as

BOOL XXX_IOControl CDWORD hOpenContext, DWORD dwCode, PBYTE pBufln,
DWORD dwlenln, PBYTE pBufOut, DWORD dwlenOut,
PDWORD pdwActualOut);

Chapter 22 Device Drivers and Services 1061

The first parameter is the open context value returned by the Open call. The
second parameter, dwCode, is a device-defined value passed by the application
to indicate why the call is being made. Unlike Windows NT/2000/XP, Windows
CE does very little processing before the IOCTL code is passed to the driver.
This means that the device driver developer ought to be able to pick any values
for the codes. However, this behavior might change in the future so it's prndent
to define IOCTL codes that conform to the format used by the desktop versions
of Windows. Basically, this means that the IOCTL codes are created with the
CTL_CODE macro, which is defined identically in the Windows Driver Devel
opment Kit and the Windows CE Platform Builder. The problem with applica
tion developers creating conforming IOCTL code values is that the CTL_CODE
macro might not be defined in some SDKs. So, developers arc sometimes
forced to define CTL_CODE manually to create conforming IOCTL codes.

The next two parameters describe the buffer that contains the data being
passed to the device. The pBuf!n parameter points to the input buffer that con
tains the data being passed to the driver; the dwLenln parameter contains the
length of the data. The next two parameters are pBujOut and dwLenOut. The
parameter pBufOut contains a pointer to the output buffer, and dwLenOut con
tains the length of that buffer. These parameters aren't required to point to valid
buffers. The application calling DeviceloControl might possibly pass Os for the
buffer pointer parameters. It's up to the device driver to validate the buffer
parameters given the IOCTL code being passed.

The final parameter is the address of a DWORD value that receives the
number of bytes written to the output buffer. The device driver should return
TRUE if the function was successful and FALSE otherwise. If an error occurs, the
device driver should return an error code using SetLastError.

The input and output buffers of DeviceloControl calls allow for any type of
data to be sent to the device and returned to the calling application. Typically,
the data is formatted using a structure with fields containing the parameters for
the specific call.

The serial driver makes extensive use of DeviceloControl calls to configure
the serial hardware. For example, one of the many IOCTL calls is one to set the
serial timeout values. To do this, an application allocates a buffer, casts the
buffer pointer to a pointer to a COMMTIMEOUTS structure, fills in the structure,
and passes the buffer pointer as the input buffer when it calls DeviceloControl.
The driver then receives an JOControl call with the input buffer pointing to the
COMMTIMEOUTS structure. I've taken the serial driver's code for processing this
IOCTL call and shown a modified version here:

BOOL COM_IOControl CPHW_OPEN_INFO pOpenHead, DWORD dwCode,

PBYTE pBufln, DWORD dwlenln,

(continued)

1062 Part V Advanced Windows CE

PBYTE pBufOut, DWORD dwLenOut,
PDWORD pdwActualOut) {

BOOL RetVal = TRUE: II assume success
COMMTIMEOUTS *pComTO;

switch (dwCode) {
case IOCTL_SERIAL_SET....:TIMEOUTS

if ((dwLenin < sizeof(COMMTIMEOUTS)) I I (NULL== pBuf!n)) {
SetLastError (ERROR_INVALID_PARAMETER);
RetVal = FALSE:
break:

pComTO = (COMMTIMEOUTS *)pBufln:
ReadlntervalTimeout = pComTO->ReadintervalTimeout;
ReadTotalTimeoutMultiplier = pComTO->ReadTotalTimeoutMultiplier:
ReadTotalTimeoutConstant = pComTO->ReadTotalTimeoutConstant:
WriteTotalTimeoutMultiplier = pComTO->WriteTotalTimeoutMultiplier:
WriteTotalTimeoutConstant = pComTO->WriteTotalTimeoutConstant:
break:

return RetVal:

Notice how the serial driver first verifies that the input buffer is at least the
size of the timeout structure and that the input pointer is nonzero. If either of
these tests fails, the driver sets the error code to ERROR_INVALID_PARAMETER
and returns FALSE. Otherwise, the driver assumes that the input buffer points to
a COMMTJMEOUTS structure and uses the data in that structure to set the time
out values. Although the preceding example doesn't enclose the pointer access
in _try, _except blocks, a more robust driver might.

The preceding scheme works fine as long as the data being passed to or
from the driver is all contained within the structure. However, if you pass a
pointer in the structure and the driver attempts to use the pointer, an exception
will occur. To understand why, you have to remember how Windows CE man
ages memory protection across processes. (At this point, you might want to
review the first part of Chapter 21.)

As I explained in the preceding chapter, when a thread in an application
is running, that application is mapped to slot 0. If that application allocates a
buffer, the returned pointer points to the buffer allocated in slot 0. The problem
occurs when the application passes that pointer to a device driver. Remember
that a device driver is loaded by Device.exe, so when the device driver receives
an JOControl call, the device driver and Device.exe are mapped into slot 0. The
pointer passed from the application is no longer valid because the buffer it
pointed to is no longer mapped into slot 0.

Chapter 22 Device Drivers and Services 1063

If the pointer is part of the parameter list of a function-for example, the
pBujln parameter passed in the DeviceloControl-the operating system auto
matically converts, or maps, the pointer so that it points to the slot containing
the calling process. Because any buffer allocated in slot 0 is also allocated in the
application's slot, the mapped pointer now points to the buffer allocated before
the application made the DeviceloControl call.

The key is that when an application is running, slot 0 contains a clone of
the slot it was assigned when the application was launched. So any action to
slot 0 is also reflected in the application's slot. This cloning process doesn't
copy memory. Instead, the operating system manipulates the page table entries
of the processor to duplicate the memory map for the application's slot in slot
0 when that application is running.

The operating system takes care of mapping any pointers passed as
parameters in a function. However, the operating system can't map any pointers
passed in structures during a DeviceloControl call because it has no idea what
data is being passed to the input and output buffers of a DeviceloControl call.
To use pointers passed in a structure, the device driver must manually map the
pointer.

You can manually map a pointer using the following function:

LPVOID MapPtrToProcess (LPVOID lpv, HANDLE hProc);

The first parameter is the pointer to be mapped. The second parameter is the
handle of the process that contains the buffer pointed to by the first parameter.
To get the handle of the process, a driver needs to know the handle of the
application calling the driver, which you can query by using the following func
tion:

HANDLE GetCallerProcess (void);

Typically, these two functions are combined into one line of code, as in

pMapped = MapPtrToProcess (pin, GetCallerProcess());

The application can also map a pointer before it passes it to a device driver,
although this is rarely done. To do this, an application queries its own process
handle using

HANDLE GetCurrentProcess (void);

Although both GetCurrentProcess and GetCallerProcess are defined as returning
handles, these are actually pseudohandles and therefore don't need to be
closed. For programmers using eMbedded Visual C++ to build a driver, MapPtr
ToProcess and GetCallerProcess are not prototyped in the standard include files.
If you want to use these functions without warnings, add function prototypes to
the include files for the driver.

1064 Part V Advanced Windows CE

As an example, assume a driver has an IOCTL function to checksum a
series of buffers. Because the buffers are disjointed, the pointers to the buffers
are passed to the driver in a structure. The driver must map each pointer in the
structure, checksum the data in the buffers, and return the result, as in the fol
lowing code:

#define IOCTL_CHECKSUM 2
#define MAX_BUFFS 5
typedef struct {

int nSize;
PBYTE pData;

BUFDAT, *PBUFDAT;

typedef struct {
int nBuffs;
BUFDAT bd[MAX_BUFFS];

CHKSUMSTRUCT, *PCHKSUMSTRUCT;

DWORD xxx_IOControl (DWORD dwOpen, DWORD dwCode, PBYTE pln, DWORD dwln,
PBYTE pOut, DWORD dwOut, DWORD *pdwBytesWritten) {

switch (dwCode)

case IOCTL_CHECKSUM:
{

PCHKSUMSTRUCT pchs;
DWORD dwSum = 0;
PBYTE pData;
inti. j;

II Verify the input parameters.
if (!pln I I (dwln < sizeof (CHKSUMSTRUCT)) I I

!pOut 11 (dwOut < sizeof <DWORD))) {
SetlastError (ERROR_INVALID_PARAMETER);
return FALSE;

II Perform the checksum. Protect against bad pointers.
pchs = (PCHKSUMSTRUCT)pln;
_try {

for (i = 0; (i < pchs->nBuffs) && (i < MAX_BUFFS); i++)

II Map the pointer to something the driver can use.
pData = (PBYTE)MapPtrToProcess (pchs->bd[i].pData,

GetCallerProcess());
II Checksum the buffer.
for (j = 0; j < pchs->bd[i].nSize; j++)

dwSum += *pData++;

Chapter 22 Device Drivers and Services 1065

II Write out the result.
*(DWORD *lpOut = dwSum;
*pdwBytesWritten = sizeof CDWORD);

~except CEXCEPTION_EXECUTE_HANDLER) {
SetLastError CERROR_INVALID_PARAMETER);
return FALSE;

return TRUE;

default:
SetLastError (ERROR_INVALID_PARAMETER);
return FALSE;

SetLastError (err);
DEBUGMSG (ZONE_FUNC, (DTAG TEXT("GEN_IOControl--\r\n")));
return TRUE;

In the preceding code, the driver has one IOCTL command,
IOCTL_CHECKSUM. When this command is received, the driver uses the struc
tures passed in the input buffer to locate the data buffers, map the pointers to
those buffers, and perform a checksum on the data they contain.

The 10 entry points that I described in this section, from !nit to JOControl,
are all that a driver needs to export to support the Windows CE stream driver
interface. Now let's look at how IOCTL commands have been organized.

Device Interface Classes
In a generic sense, the driver is free to define any set of commands to respond
to in the IOControl function. However, it would be nice if drivers that imple
ment similar functions agreed on a set of common IOCTL commands that
would be implemented by all the common drivers. In addition, there is addi
tional functionality that all drivers may optionally implement. For drivers that
implement this common functionality, it would be convenient if they all
responded to the same set of IOCTL commands.

Driver interface classes are a way to organize and describe these common
IOCTL commands. For example, Windows CE defines a set of IOCTL com
mands that are used by the Power Manager to control the power use of a driver.
Drivers that respond to these power management IOCTLs are said to support

1066 Part V Advanced Windows CE

the power management interface class. The list of driver interface classes grows
with each release of Windows CE, but here is a short summary:

• Power Management interface

• Block Driver interface

• Card services interface

• Keyboard interface

• NDIS miniport interface

• Generic Stream interface

In addition to grouping like sets of IOCTL commands, device drivers can
advertise their support of one or more interfaces. Other drivers, or even appli
cations, can be informed when a driver is loaded that supports a given inter
face. Interface classes are uniquely identified with a GUID defined in the
Platform Builder include files. Unfortunately, the GUID definitions are distrib
uted across the different include files relevant to the different driver types
related to the specific interface so finding them can be a challenge.

Advertising an Interface
Drivers that support a given interface need to tell the system that they support
it. Advertising support for an interface can be accomplished in a couple of
ways. First, the registry key specifying the driver can contain an !Class value
that specifies one or more GUIDs identifying the interface classes the driver
supports. For drivers that support a single interface, the !Class value is a string.
For drivers that support multiple interfaces, the !Class value is a multi-z string
with each individual string containing a GUID.

A driver can manually advertise an interface by calling Advertiselnterf ace
defined as

BOOL Advertiseinterface (canst GUID* devclass, LPCWSTR name, BOOL fAddl;

The first parameter is the GUID for the interface being advertised. The second
parameter is a string that uniquely identifies the name of the driver. The easiest
way to do this is to provide the name of the driver, such as DSKl:. Recall that
the name of a driver can be found in its Active key. The last parameter, /Add,
should be TRUE if the interface is now available and FALSE if the interface is no
longer available. It is important to advertise the removal of the interface if the
driver is being removed. Otherwise the Device Manager won't free the memory
used to track the interface.

Chapter 22 Device Drivers and Services 1067

Monitoring for an Interface
Applications or drivers can ask to be notified when a driver advertises an inter
face being either created or removed. To be notified, a message queue should
be created with read access. Set the maximum message length to
MAX_DEVCLASS_NAMELEN. The message queue handle is then passed to the
RequestDeviceNotifications function defined as:

HANDLE RequestDeviceNotifications Cconst GUID* devclass. HANDLE hMsgQ,
BOOL fAll);

The first parameter is a string representing the GUID of the interface that the
application or driver wants to monitor. The string PMCLASS_GENERIC_DEVICE
provides a method for being notified when any power-managed stream device
is loaded or unloaded. This parameter can be set to NULL to receive all notifi
cations. However, it isn't recommended to monitor all interfaces for perfor
mance reasons. The second parameter is the handle to the previously created
message queue. The final parameter is a Boolean that should be set to TRUE to
receive all past notifications or FALSE to only receive notifications from the time
of the call forward.

After the call, the application or driver should create a thread to block on
the message queue handle that will be signaled when a message is inserted in
the queue. The message format depends on the specific notification being sent.

To stop the notifications, call the function StopDeviceNotifications proto
typed as

BOOL StopDeviceNotifications (HANDLE hl;

The only parameter is the handle returned by RequestDeviceNotifications.
The interface class scheme provides a handy way for a developer to know

what IOCTL commands to support for a given driver. The classic example of
this system is power management. The power management methodology was
radically redesigned with the release of Windows CE .NET 4.0. However, the
stream interface couldn't be changed without causing all the drivers to be rede
signed. Instead, the new power management support was exposed through a
newly defined power management interface class.

Device Driver Power Management
Windows CE .NET introduced a new Power Manager that greatly increased the
power management capabilities of the systems. The basics of this Power Man
ager are discussed in Chapter 21. Device drivers support the Power Manager by
exposing a power management interface that allows the Power Manager to
query the power capabilities of the device and to control its state. The control
of the Power Manager is tempered by the actual response of the driver, which
might not be in position to change its power state at the time of the request.

1068 Part V Advanced Windows CE

Power Management Functions for Devices
The power state of a device is defined to be one of the following:

• DO Device fully powered. All devices are fully powered and run-
ning.

• Dl Device is fully functional, but in a power-saving mode.

• D2 Device is in standby.

• D3 Device is in sleep mode.

• D4 Device is unpowered.

These power states are defined in CEDEVICE_POWER_STATE enumeration,
which also defines additional values for PwrDeviceUnspecified and PwrDevice
Maximum.

When a device wants to set its own power state, it should call the Device
PowerNotify function defined as

DWORD DevicePowerNotify (PVOID pvDevice, CEDEVICE_POWER_STATE DeviceState,
DWORD Flags);

The pvDevice parameter points to a string naming the device driver to change.
The second parameter is CEDEVICE_POWER_STATE enumeration. The dwDe
viceFlags parameter should be set to POWER_NAME.

When changing its own power state, the device should not immediately
change to the state requested in the SetDevicePower call. Instead, the device
should wait until it is instructed to change its power state through an IOCTL
command sent by the Power Manager. The driver should not assume that just
because it requests a given state that the Power Manager will set the device to
that state. There might be system reasons for leaving the device in a higher
power state.

Now let's look at the IOCTL commands that are sent to a device driver that
supports the power management interface class.

/OCTL_POWER_CAPABILITIES
This IOCTL command is sent to query the power capabilities of the device. The
input buffer of the JoControl function is filled with a POWER_RELATIONSHJP
structure that describes any parent-child relationships between the driver and a
bus driver. The output buffer contains a POWER_CAPABILITIES structure that
should be filled in by the driver. The structure is defined as

typedef struct _POWER_CAPABILITIES
UCHAR DeviceDx;
UCHAR WakeFromDx;

UCHAR InrushDx;
DWORD Power[5];
DWORD Latency[5};
DWORD Flags;

Chapter 22 Device Drivers and Services 1069

POWER_CAPABILITIES. *PPOWER_CAPABILITIES;

The DeviceDx field is a bitmask that indicates which of the power states,
from DO to Dn, the device driver supports. The WakeFromDx field is also a bit
mask. This field indicates which of the device states the hardware can wake
from if an external signal is detected by the device. The lnrunshDx field indi
cates which entries of the Power array are valid. The Power array contains
entries that specify amount of power used by the device, in milliwatts, for each
given power state. The Latency array describes the amount of time, in millisec
onds, that it takes the device to return to the DO state from each of the other
power states. Finally, the Flags field should be set to TRUE if the driver wants to
receive an IOCTL_REGISTER_POWER_RELATIONSHJP command to manage
other child devices.

The level of detail involved in filling out the POWER_CAPABILJTIES struc
ture can be intimidating. Many drivers only fill out the first field, DeviceDx, to
at least indicate to the system which power levels the device supports and set
the remaining fields to zero.

/OCTL_REGISTER_PO WER_RELATIONSHIP
This command is sent to a driver that wants to control the power management
of any child drivers. During this call, the parent driver can inform the Power
Manager of any devices it controls.

/OCTL_POWER_GET
This command is sent to the device to query the current power state of the
device. The output buffer points to a DWORD that should be set to one of the
CEDEVICE_POWER_STATE enumeration values.

/OCTL_POWER_OUERY
This command is sent to ask the device whether it will change to a given power
state. The input buffer points to a POWER_REIATJONSHIP structure while the out
put buffer contains a CEDEVICE_POWER_STATE enumeration containing the
power state that the Power Manager wants the device to enter. If the device
wishes to reject the request, it should set the CEDEVICE_POWER_STATE enumer
ation to PwrDeviceUnspecified. Othe1wise, the Power Manager assumes the driver
is willing to enter the requested power state. The driver shouldn't enter the state
on this command. Instead it should wait until it receives an JOCTL_POWER_SET
command. Be warned that the simple implementation of the Power Manager in
Windows CE doesn't call this IOCTL, so a driver shouldn't depend on receiving
this command before an JOCTL_POWER_SET command is received.

1070 Part V Advanced Windows CE

IOCTL_POWER_SET
This command is sent to instruct the device to change to a given power state.
The input buffer points to a POWER_REIATIONSHIP structure whereas the out
put buffer contains a CEDEVICE_POWER_STATE enumeration containing the
power state that the device should enter. The device should respond by config
uring its hardware to match the requested power state.

Building a Device Driver
Building a device driver is as simple as building a DLL. Although you can use
the Platform Builder and its more extensive set of tools, you can easily build
stream drivers by using eMbedded Visual C++. All you need to do is create a
Windows CE DLL project, export the proper entry points, and write the code.
The most frequently made mistake I see is in not declaring the entry points as
extern C so that the C++ compiler doesn't mangle the exported function names.

Debug Zones
Debug zones allow a programmer or tester to manipulate debug messages from
any module, EXE or DLL, in a Windows CE system. Debug zones are typically
used by developers who use Platform Builder because debug zones allow
developers to access the debug shell that allows them to interactively enable
and disable specific groups, or zones, of debug messages. Another feature of
debug zone messages is that the macros that are used to declare the messages
insert the messages only when compiling a debug build of the module. When
a release build is made, the macros resolve to 0 and don't insert any space-hog
ging Unicode strings. The value of debug zones isn't just that developers can
use them; it's that all the modules that make up Windows CE have debug builds
that are packed full of debug messages that can be enabled.

Using debug zones in applications or DLLs is a fairly straightforward pro
cess. First, up to 16 zones can be assigned to group all the debug messages in
the module. The zones are declared using the DEBUGZONE macro, as in

#define ZONE_ERROR
#define ZONE_WARNING
#define ZONE_!NIT

DEBUGZONE(0)
DEBUGZONE(l)
DEBUGZONE(2)

Then debug messages are inserted in the code. Instead of directly calling
OutputDebugString, which was the old way of sending strings to a debug port,
the messages should be enclosed in a DEBUGZONE macro, defined as

DEBUGMSG (zone, (printf expression));

Chapter 22 Device Drivers and Services 1071

The zone parameter is one of the 16 zones declared. The prinif expression can
be any prinif style string plus the parameters. Note the additional parentheses
around the prinif expression. These are needed because DEBUGMSG is a macro
and requires a fixed number of parameters. The following is an example of
using DEBUGMSG:

DEBUGMSG CZONE_ERROR, CTEXTC"Read failed. rc=%d\r\n"l, GetLastError()));

In addition to inserting the debug messages, a module must declare a
structure named dpCurSettings of type DBGPARAM, defined as

typedef struct _DBGPARAM {
WCHAR 1pszName[32];
WCHAR rglpszZones[16][32];
ULONG ulZoneMask:

DBGPARAM, *LPDBGPARAM;

The first field is the debug name of the module. Typically, but not always,
this is the name of the file. The second field is an array of strings. Each string
identifies a particular zone. These names can be queried by the system to tell
the programmer what zones are in a module. The final field, u!ZoneMask, is a
bitmask that sets the zones that are enabled by default. Although this field is a
32-bit value, only the first 16 bits are used.

The only action a module must take at run time to enable debug zones is
to initialize the zones with the following macro:

DEBUGREGISTERCHANDLE hlnstance):

The only parameter is the instance handle of the EXE or DLL. Typically this call
is made early in WinMain for applications and in the process attach call to Lib
Main for DLLs. The GenDriver example shown in Listing 22-1 demonstrates the
use of debug zones.

Unfortunately for application developers, the debug messages produced
by debug zones are sent to the debug port, which is generally not available on
shipping systems. Some systems, however, do allow the primary serial port on
the system to be redirected so that it's used as a debug port, instead of as
COMl. Because each OEM will have a different method of enabling this redi
rection, you will need to contact the specific OEM for information on how to
redirect the serial port. Nonetheless, debug zones are a powerful tool for
debugging Windows CE systems.

The Generic Driver Example
The following example, GenDriver, is a simple stream driver. Although it
doesn't talk to any hardware, it exports the proper 10 entry points and can be
loaded by any Windows CE system. To have a system load GenDriver, you can

1072 Part V Advanced Windows CE

add an entry under [HKEY_LOCAL_MACHINE]\Drivers\Builtin to have the
driver loaded when the system boots, or you can write an application that cre
ates the proper driver keys elsewhere and calls ActivateDevice.

GenDriver.h
//======================,.============================;:==;:===============
II Header file
II
II Written for the book Programming Windows CE
II Copyright (Cl 2003 Douglas Boling
II==

II
II Declare the external entry points here. Use declspec so we don't
II need a .def file. Bracketed with extern C to avoi.d mangling in C++.
II
#ifdef _cplusplus
extern "C" {
#endif /l_cp.luspll!s
_declspec(dllexport) DWORD GEN_Init (DWORD dwContext);
_declspec(dllexportl BOOL GEN_Deinit CDWORD dwContextJ;
_declspec(dllexport) DWORD GEN_Open (DWORD dwContext, DWORD dwAccess,

DWORD dwShare);
_decl spec(dl 1 export J BOOL GEN_Cl ose <DWORD dwOpen);
_de cl spec(dll export J DWORD GEN::_Read (DWORD dwOpen, LPVO I.D pBuffer,

OW.ORD dwCountJ.;
_ctecl spec (dll export J DWORD GEN~Wri te <DWORD dwOpen, LPVOID pBUffer,

DWORD dwCount);
_declspec(dllexport) DWORD GEN_Seek (DWORD dwOpen, long 1Delta,

WORD wType) :
_ct eel spec (dllexport) DWORD GEN_IOContro l (D.WdRD dwOpen, DWORD dwCod.e.

PBYTE pin,. DWORD dwln,
PBYTE pOut. DWORD dwOut,
OWORD *PdWBytesWritten);

_declspec(dllexport) void GEN_PowerDown CDWORD dwContextl;
_declspec(dllexportl void GEN_PowerUp (DWORD dwContext);
#ifdef _cplusplus
} II extern "C"
#endif ll_cplusplus
II Suppress warnings by declaring the undeclared.
#ifndef GetCurrentPermissjons
DWORD GetCurrentPermissions{void);

Listing 22-1 The GenDriver example

Chapter 22 Device Drivers and Services 1073

DWORD SetProcPermissions (DWORD);
DWORD GetCallerProcess(void);
PVOID MapPtrToProcess (PVOID, DWORD);
#endif llGetCurrentPermissions

DWORD GetConfigData CDWORDl:
II
II Driver instance structure
II
typedef struct {

DWORD dwSize;
INT nNumOpens;

DRVCONTEXT, *PDRVCONTEXT;

Gen Driver.cpp
II==
II GenDriver - Generic stream device driver for Windows CE
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
#include <windows.h>
#include "GenDriver.h"

II
II Globals
II
HINSTANCE hinst;

II
II Debug zone support
II
#i fdef DEBUG

II For all that Windows stuff
II Local program includes

II DLL instance handle

II Used as a prefix string for all debug zone messages.
#define DTAG TEXT ("GENDrv: ")

II Debug zone constants
#define ZONE_ERROR DEBUGZONE(0)
#define ZONE_WARNING DEBUGZONE(l)
#define ZONE_FUNC
#define ZONE_INIT
#define ZONE_DRVCALLS
#define ZONE_EXENTRY

DEBUGZONE(2)
DEBUGZONE C 3 l
DEBUGZONEC4)

(ZONE_FUNC I ZONE_DRVCALLS)

(continued)

1074 Part V Advanced Windows CE

Listing 22-1 (continued)

Chapter 22 Device Drivers and Services 1075

if (pDrv) {
II Initialize structure.
memset ((PBYTE) pDrv, 0, sizeof CDRVCONTEXT)):
pDrv->dwSize = sizeof (DRVCONTEXT);

II Read registry to determine the size of the disk.
GetConfigData CdwContext):

} else
DEBUGMSG (ZONE_INIT J ZONE_ERROR,

CDTAG TEXT<"GEN_Init failure. Out of memory\r\n")));
DEBUGMSG (ZONE_FUNC, CDTAG TEXT("GEN_Init-- pDrv: %x\r\n"), pDrv));
return (DWORD>pDrv:

}

II==
II GEN_Deinit - Driver de-initialization function
II
BOOL GEN_Deinit (DWORD dwContext) {

PDRVCONTEXT pDrv = CPDRVCONTEXT) dwContext:

DEBUGMSG (ZONE_EXENTRY,
CDTAG TEXT("GEN_Deinit++ dwContex:%x\r\n"), dwContextl):

if (pDrv && (pDrv->dwSize == sizeof (DRVCONTEXT))) {

}

II Free the driver state buffer.
LocalFree ((PBYTE)pDrv>:

DEBUGMSG (ZONE_FUNC, CDTAG TEXT("GEN_Deinit·-\r\n")));
return TRUE:

II==
II GEN_Open - Called when driver opened
II
DWORD GEN_Open (DWORD dwContext, DWORD dwAccess. DWORD dwShare) {

PDRVCONTEXT pDrv = (PDRVCONTEXTl dwContext:

DEBUGMS.G (ZONE_EXENTRY,
(DTAG TEXT<"GEN:..Open++ dwContext: %x\r\n''), dwContext)):

II Verify that the context handle is valid.
if CpDrv && {pDrv->dwSize I= sizeof CDRVCONTEXT))) {

}

DEBUGMSG (ZONE_ERROR, (OTAG TEXT("GEN_Open failed\r\n")));
return 0;

II Count the number of opens.
Interlockedincrement ((long *)&pDrv->nNumOpens):
DEBUGMSG (ZONE_FUNC, CDTAG TEXT("GEN~Open--\r\n")));
return CDWORDJpDrv:

(continued)

1076 Part V Advanced Windows CE

Listing 22·1 (continued)

,, ··-,;

ong. ltielta;diORt(wType{ { . ..·...... . •· ... · ... •
TE.XJi{"GErl,$ee;k,i;,f ·:d~-Ope~ :%X %d %~\r\n''),

Chapter 22 Device Drivers and Services 1077

dwOpen, lDelta, wType));

DEBUGMSG (ZONE_EXENTRY, (DTAG TEXT("GEN_Seek- -\r\n"))):
return 0:

II==
II GEN_IOControl - Called when DeviceIOControl called
II
DWORD GEN_IOControl CDWORD dwOpen, DWORD dwCode, PBYTE pin, DWORD dwin,

PBYTE pOut, DWORD dwOut, DWORD *pdwBytesWritten) {
PDRVCONTEXT pState:
DWORD err = ERROR_INVALID_PARAMETER:

DEBUGMSG (ZONE_EXENTRY,
(DTAG TEXT("GEN_IOControl++ dwOpen: %x dwCode: %x\r\n"),
dwOpen, dwCode));

pState (PDRVCONTEXT) dwOpen:
switch (dwCode) {

II Insert IOCTL codes here.

default:
DEBUGMSG CZONE_ERROR,

(DTAG TEXT("GEN_IOControl: unknown code %x\r\n"), dwCode));
return FALSE:

SetLastError (err);
DEBUGMSG (ZONE_FUNC, (DTAG TEXT("GEN_IOControl--\r\n")));
return TRUE:

II==
II GEN_PowerDown - Called when system suspends
II
II NOTE: No kernel calls. including debug messages, can be made from
II this call.
II
void GEN_PowerDown (DWORD dwContext) {

return:

II==
II GEN_PowerUp - Called when resumes
II
II NOTE: No kernel calls, including debug messages, can be made from
II this call.
II
void GEN_PowerUp (DWORD dwContext) {

return:

(continued)

1078 Part V Advanced Windows CE

Listing 22·1 (continued)

}

Chapter 22 Device Drivers and Services 1079

DEBUGMSG (ZONE_ERROR, CTEXTC"Error opening key\r\n"))):
} else

DEBUGMSG CZONE_ERROR, CTEXTC~Error opening Active key\r\n"))):

DEBUGMSG C ZONE_FUNC, (DTAG TEX TC "GetConfi gData- - \ r\n") l l;
return 0:

The majority of the lines of code in GenDriver are DEBUGZONE macros.
The messages are handy for learning exactly when and how the different entry
points of the driver are called. The GetConfigData routine at the end of the
code shows how to test the Context value to determine whether the value
passed to the !nit function was a pointer to a string or merely a number.

The preceding driver template is a good starting point for any stream
driver you want to write. Simply change the three-character name GEN to what
ever your driver is named and go from there.

Asynchronous Driver 1/0
When I described the file system functions in Chapter 8, I mentioned that the
ReadFile and WriteFile functions don't support asynchronous I/0. This limita
tion means that the Windows CE implementation of the file system API doesn't
support having the operating system provide data back to the application after
the function returns. For file reads and writes, an application can get around
this problem simply by spawning a separate thread to perform the read or write
and then signaling the primary thread when the data transfer is complete. At
times, however, it might be better to have a device driver perform the asynchro
nous data transfer and notify the calling application or driver when the transfer
is complete. This tactic simplifies the application and allows the driver to tune
the secondary thread to provide the best performance when reading or writing
the data. The question is, how can a device driver perform asynchronous I/0 if
the operating system doesn't? The answer is simple: just because Windows CE
doesn't support a feature doesn't mean you can't implement it yourself. Before
I go into more detail about asynchronous drivers, I need to provide some back
ground information.

One question you might have asked when I was talking about mapping
pointers was how a device driver can write to a buffer that's in another appli
cation's slot. And if a driver can access another slot, can any application write
into any slot? The answers to both questions lie in how Windows CE memory
protection works.

1080 Part V Advanced Windows CE

As I mentioned earlier, each application is assigned a slot when it
launches. While a thread in the application is running, its slot is cloned into slot
0. While the application is running, it can access slot 0 and its own slot.
Attempting to read or write data in the other slots will result in a memory pro
tection exception.1 This way, applications are protected from one another.

When an application calls an operating system function, the part of the
operating system that processes the function, NK, FileSys, Device, or GWES, is
granted access to the calling process's slot for the duration of the function. This
is also true for calls to device drivers. While the device driver is processing the
call-whether it's Read, Write, or JOControl-the driver can write to the buffers
located in the calling application's slot. As soon as the function is complete, the
driver loses access to the calling application's slot.

If we apply this knowledge to asynchronous 1/0, we see that the driver
has a problem. Although it can map a pointer back to the calling application's
slot, it doesn't have access rights to that slot after the call to the driver com
pletes.

However, one Windows CE-specific function allows an application to
modify the slot protection scheme. This function is SetProcPermissions and is
prototyped as

DWORD SetProcPermissions (DWORD newperms);

The single parameter is a bitmask, one bit for each slot. When a bit is set to 1,
the application will have access to the corresponding slot. For example, to
enable access to slot 1, set the least significant bit to 1. A function prototype for
SetProcPermissions isn't defined in the SDK include files, only in the Platform
Builder. The description of SetProcPermissions just might make some program
mers sit up in their chairs. Yes, this function is essentially the keys to the king
dom. A quick call to SetProcPermissions with the newperms parameter set to
OxFFFFFFFF enables an application to write to every slot in the system. One
caveat: just because you can doesn't mean you should.

Memory protection exists for the benefit of programmers. By throwing
exceptions when an errant memory access is made, the operating system
catches the mistake the programmer made. So although applications can dis
able the Windows CE slot protection scheme, there is no reason they should,
and plenty of reasons they shouldn't. Instead, applications should query the
permissions they are currently granted and, if necessary, modify them for the
situation. To query an application's permissions, use the function

DWORD GetCurrentPermissions (void);

1. This is not technically true because the operating system might enable a thread to access slots con
taining operating system processes as needed.

Chapter 22 Device Drivers and Services 1081

The function returns the slot permission bitmap for the current applicatlon. If
this function is called from within a driver, the permission mask will include the
slot containing the Device Manager and the calling process's slot. Remember,
during the life of the call, the driver has access to the caller's slot.

At this point, we have all the tools necessary for asynchronous 1/0. We
can create a secondary thread; we learned how to do that in Chapter 10. We can
map pointers back to the calling process's slot. Finally, we can query the cur
rent permissions and set them when necessary. However, you should consider
a few more items when implementing asynchronous 1/0.

First, the rights to access other slots that can be changed with SetProcPer
missions are thread-specific, not process-specific, which means that setting the
permission mask of one thread in a process doesn't affect the other thread's
permissions. So the secondary thread must call SetProcPermissions, not the
thread processing the call to the driver.

Second, any mapping of pointers must take place in the call to the driver,
not in the secondary thread because the function GetCallerProcess, which is
used in conjunction with MapPtrToProcess, needs a calling process. The sec
ondary thread wasn't called; it was started-so calling GetCallerProcess in the
secondary thread will fail.

Finally, the secondary thread will need some way to signal the calling pro
cess that the 1/0 is complete. You can achieve this by means as simple as the
driver posting a message to a window owned by the calling process or by sig
naling an event. The following code implements an IOCTI. command that uses
asynchronous 1/0 to fill a buffer:

II Structure passed by application to driver
typedef struct {

PBYTE pBuff;
int nSize;
HWND hWnd;

II Pointer to destination buffer
II Size of buffer
II Window handle to send message when done

UINT wMsg; II Message to send to app when done
ASYNCSTRUCT, *PASYNCSTRUCT;

II Structure passed from primary driver thread to secondary thread
typedef struct {

ASYNCSTRUCT asy; II Copy of caller's data
DWORD dwCurrPermissions; II Calling thread's permissions

THREADASYNCSTRUCT, *PTHREADASYNCSTRUCT;

II SetProcPermissions is defined only in the Platform Builder include files.
#ifndef SetProcPermissions
DWORD SetProcPermissions (DWORD);
#endif llSetProcPermissions

(continued)

1082 Part V Advanced Windows CE

II==
II AsyncThread - Secondary thread that performs async IIO
II
int AsyncThread CPVOID pArg) {

DWORD dwOldPerms;
PTHREADASYNCSTRUCT ptArgs;
int i, re = ERROR_SUCCESS;

}

if (!pArg) return -1:
ptArgs = CPTHREADASYNCSTRUCTlpArg;

II Set thread permissions.
dwOldPerms = SetProcPermissions (ptArgs->dwCurrPermissions);

II Write the "data."
_try {

}

for Ci = 0; Ci < 10) && Ci < ptArgs->asy.nSize); i++) {
*ptArgs->asy.pBuff++ = i;
Sleep (1000); II This call makes this loop take a while.

}

_except CEXCEPTION_EXECUTE_HANDLER) {
re = ERROR_BUFFER_OVERFLOW;

}

II We're done: notify calling application.
if (IsWindow (ptArgs->asy.hWnd))

PostMessage (ptArgs->asy.hWnd, ptArgs->asy.wMsg, re, 0);

II We don't really need to do this since we're terminating, but
II it's better to set a good example.
SetProcPermissions (dwOldPerms);

II Clean up.
LocalFree ((PVOID)ptArgs);
return 0; II Terminate thread by returning.

II==
II IOControl - Driver IOControl entry point
II
DWORD xxx_IOControl (DWORD dwOpen, DWORD dwCode, PBYTE pln, DWORD dwln,

PBYTE pOut, DWORD dwOut, DWORD *pdwBytesWritten) {
PDRVCONTEXT pState;

pState = (PDRVCONTEXT) dwOpen;
switch CdwCode) {

case IOCTL_ASYNC:
{

PTHREADASYNCSTRUCT ptArgs;

Chapter 22 Device Drivers and Services 1083

PASYNCSTRUCT pAppAsyncin:
HANDLE hThread:

II Validate input parameters.
if C!pin I I (dwin < sizeof CASYNCSTRUCTlll

SetLastError(ERROR_INVALID_PARAMETERl:
return FALSE:

II Cast input buff ptr to struct pointer we can understand.
pAppAsyncin CPASYNCSTRUCTlpin:

II Allocate a buffer to pass data to secondary thread.
ptArgs = (PTHREADASYNCSTRUCT)LocalAlloc (LPTR,

sizeof CTHREADASYNCSTRUCTll:

II Copy input structure from application since some applications
II forget and put this kind of stuff on the stack.
ptArgs->asy = *pAppAsyncin:
ptArgs->dwCurrPermissions = GetCurrentPermissions();

II Map pointer to app buffer.
ptArgs->asy.pBuff = MapPtrToProcess CpAppAsyncin->pBuff,

GetCallerProcess());
II Create async thread.
hThread = CreateThread (NULL, 0, AsyncThread,(PVOIDlptArgs,

0, 0):
if (! hThread) {

SetLastError(ERROR_NOT_ENOUGH_MEMORYl: II Catchall error
LocalFree ((PVOID)ptArgs):
return FALSE:

II Always close handles.
CloseHandle (hThreadl:

return TRUE;

default:
DEBUGMSG (ZONE_ERROR,

(DTAG TEXT("GEN_IOControl: unknown code\r\n"lll:
return FALSE:

return TRUE:

The preceding code contains a driver IOControl entry point and a routine
AsyncThread that executes the secondary thread. When the IOCTL_ASYNC
command is received, the driver allocates a structure for the data and copies the
data passed from the application. The driver then maps the pointer contained in

1084 Part V Advanced Windows CE

the structure and saves its current permissions mask. The secondary thread is
then created by means of a call to CreateTbread. The AsyncTbread routine then
starts. The routine sets its permissions mask to match the mask that was passed
from the driver's primary thread. The data is then written with a Sleep statement
to kill some time and thereby simulate the time it might take to read data from
real hardware. Once the data is written, a message is sent to the window handle
passed in the original call. AsyncTbread then frees the buffer containing the
information passed from the primary thread and terminates.

Windows CE provides an IOCTL command to assist drivers that have com
mands pending within a driver from an application that is being terminated. If
an application is a multithreaded application that has an open handle to a
driver, Windows CE sends an IOCTL_PSL_NOTIFY command to the driver to
inform the driver that the application is terminating. This command allows a
driver to clean up any pending operations for the terminating application that
might be in progress.

Although most application programmers will never need to know how to
implement asynchronous I/0 in a driver, understanding the fundamental con
cepts of this technique is a good foundation for understanding how Windows
CE works under the covers. Now that the foundation has been laid with the dis
cussion of device drivers, it's time to look at Windows CE services, which are
derived from the basic stream driver architecture.

Services
Before Windows CE .NET 4.0, Windows CE did not have the concept of a ser
vice. To make up for the lack of service support, so-called device drivers were
written, not to interface with hardware, but rather to manage some software
interface such as a telnet server. The problem with this design was that these
services ran in the same process as most of the other device drivers. If there was
a bug in the service code, the service could corrupt a device driver, some of
which are critical to the operation of the system.

Starting with Windows CE .NET 4.0, a new component was provided by
the operating system, the Services Manager. The Services Manager is quite sim
ilar in design to the Device Manager; it loads services when the operating sys
tem boots by looking at a list in the registry, the manager can also load services
upon request from an application, and finally, it expects the service to be
implemented as a DLL with the same 10 external entry points expected of a
Windows CE device driver.

In addition to the similarities, the Services Manager has a quite convenient
capability beyond the Device Manager. The Services Manager implements a

Chapter 22 Device Drivers and Services 1085

super seroice that monitors upon request connections to TCP/IP ports on the
device. Because many of the services implemented for Windows CE are server
related, such as a telnet server or Web server, the super service alleviates the
need for a number of services to create a thread and open a socket just to mon
itor a port. Instead, the super service does this and notifies the service that has
requested monitoring when the port is connected.

Service Architecture
The architecture of a Windows CE service belies the history of using device
drivers as service providers under Windows CE. A Windows CE service is a DLL
that is constructed almost identically to a stream device driver. Like a stream
driver, a Windows CE service exports the same 10 entry points, from xxx_Init to
xxx_PowerDown. Also, like a stream driver, a service has a three-character pre
fix that, along with an instance number, is used to identify the loaded service.

One convenient characteristic of a service is that the Services Manager
doesn't require that all 10 stream functions be exported from a service. If the
service isn't intended to be exposed as an interface by the standard stream func
tions, the service only needs to export xxx_Init, xxx_Deinit, and
xxx_IOControl. Although this arrangement generally just saves writing and
exporting a handful of null functions, it's still a handy feature.

To aid in debugging, or in the rare cases where a service needs to be iso
lated in its own process space, a service can be loaded in a standalone copy of
the Services Manager. When run in an isolated process, the service isn't enu
merated with the other services. Also, the service can't be opened by other
applications using the File APL It's preferable to avoid using isolated services,
not just because of the limited functionality, but also because the isolated copy
of the Services Manager uses an addition process slot.

The Life of a Service
Services are always in one of two basic states, started or stopped, or transition
ing between these two states. When stopped, the service should not respond to
net connections or perform any local processing that the service was designed
to support. The service can be programmatically started and stopped by appli
cations with an IOCTL command.

Services can be loaded on reset or manually loaded by an application. To
load a service automatically on reset, add a registry key under the key
[HKEY _LOCAL_MACHINE]\Services. The name of the key created is used by
the Services Manager to identify the service. The contents of the key are quite

1086 Part V Advanced Windows CE

similar to the contents of a device driver key. The same values used in device
key~DLL, frefix, Context, and.so forth-are used in the Services key. Figure
22-4 shows the registry key for the OBEX service.

"-•My Computer
i!J. • 38.JlDA Device

itJ . .a. H<EY _a.ASSES_ROOT
iii II H<EY _a..RRENT J.JSER
*II H<EY J.OCAL_MAO-Uf\E
i i!ifllllAudlo
I rti•eomm
I ili•0r1vers
l iii lill Explcrer
i $ liiil ExtModems
i $ iii HARDWARE

i II !dent
! llllnlt
' Iii Loader

; ~ llillnls
: ii Platform

: Ill lilt Prlnblrs
' r. lilt SErvlces

l

Figure 22-4 The registry key for the OBEX service

· There. are. a few differences between a registry entry for a device and a
service. The ser\rice entry must contain thelndex value that is optional for a
device. Also, the Context value in the registry has a defined use. It's used to
determine what state the service is in when it loads. Context can be one of the
following valu(!s:

• () Indicates that the service should auto-start itself.

• 1 Indi.cates that the service is initially stopped. If a Super Service
key is present, the super service is automatically started.

• 2 Indicates that the service will be loaded in a standalone copy of
the Services Manager.

These values. correspond to the values SERVICE_INIT_STARTED,
SERVICE_INIT_STOPPED, and. SERVICEjNIT_STANDALONE discussed in the
service !nit routine .on page 1088.

However the service is loaded, the Services Manager will load the DLL
implementing the service into its process space. Using the information gathered
from the registry or the RegisterService function, the Services Manager uses the

Chapter 22 Device Drivers and Services 1087

prefix to generate the names of the entry points to the service and uses Get
ProcAddress to get their addresses. Aside from the required !nit, Deinit, and
JOControl entry points, pointers to any of the other entry points that aren't
found are simply redirected to a dummy routine that returns the error code
ERROR_NOT_SUPPORTED.

Once the DLL is loaded, the service's !nit function is called. The single
parameter is the Context value either read from the registry or passed in the
RegisterService function. If the service returns a nonzero value, the !nit call is
deemed to be a success and the service is then added to the chain of active ser
vices.

The service can be started and stopped by sending it IOCTL commands
using either ServiceloControl, or, if the service supports the full stream function
set, DeviceloControl. If the service receives a start command and it's currently
stopped, it should start any processing that is the task of the service. If running,
the service can be stopped by another IOCTL command. A stopped service isn't
unloaded. Instead, it waits in memory until restarted or unloaded. Aside from
stopping super service support, the Services Manager doesn't prevent a stopped
service from performing any action. It's up to the service to heed the start and
stop commands.

When the service is requested to be unloaded, the Services Manager sends
an IOCTL command to the service asking if it can be unloaded. If the service
refuses, the service remains in memory and the unload command fails. Other
wise, the Deinit function of the service is called, and the DLL is unloaded from
the process space of the Services Manager.

Application Control of a Service
Applications can load, unload, and communicate to a service using a series of
dedicated functions. An application can load a service using one of two calls. If
the service has a registry key defined, the function ActivateService function can
be used. ActivateService is defined as

HANDLE ActivateService (LPCWSTR lpszDevKey, DWORD dwClientlnfo);

The first parameter is the name of the registry key that provides load informa
tion on the service. The registry key must be located under [HKEY _LOCAL_
MACHINE]\Services. The format of the key must be the same as mentioned ear
lier for service registry keys. The second parameter is reserved and must be set
to zero.

An application can also load a service with the function RegisterService.
Like RegisterDevice, RegisterService doesn't require a registry entry for the ser
vice to load. The function is defined as

1088 Part V Advanced Windows CE

HANDLE RegisterService (LPCWSTR lpszType, DWORD dwindex, LPCWSTR lpszLib,
DWORD dwI nfo);

The parameters are quite similar to RegisterDevice; the prefix string of the ser
vice is passed in the first parameter, the index value in the second, the name of
the DLL implementing the service in the third, and the context value, passed to
the !nit function, in the fourth parameter.

The return value for RegisterService as well as ActivateService is the handle
to the instance of the service. This value can be used later to send IOCTL com
mands to the service or unload the service.

The handle to a service can also be obtained by calling GetServiceHandle
defined as

HANDLE GetServiceHandle (LPWSTR szPrefix, LPWSTR szDllName,
DWORD *pdwDllBuf);

The first parameter, szPrefix, is somewhat misnamed because the parameter
should be set to the complete name of the service, which is the prefix plus the
instance number, as in SRVO:, not just SRV The szDllName string receives the
name of the DLL that implements the service. (If you don't need to know the
name of the DLL implementing the service, szDllName can be NULL.) The
pdwDllBuf parameter should point to a DWORD that initially contains the size
of the szDllName buffer, in bytes.

The service handle can be used to send IOCTL commands to a service
using the function ServiceloControl. Its definition is identical to the definition of
DeviceloControl, but it's listed here for convenience.

BOOL ServiceioControl (HANDLE hService, DWORD dwioControlCode, LPVOID lpinBuf,
DWORD ninBufSize, LPVOID lpOutBuf, DWORD nOutBufSize,
LPDWORD lpBytesReturned, LPOVERLAPPED lpOverlapped);

Both ServiceloControl and DeviceloControl can be used to send IOCTL
commands to services. The difference is in the definition of the first parameter
of both calls, the handle to the service. In ServiceloControl, the handle is the
service handle returned by ActivateService, RegisterService, or GetServiceHan
dle. For DeviceloControl, the handle must be a valid file handle returned by
CreateFile. If the service doesn't implement the functions, Open, CreateFile will
fail leaving ServiceloControl as the only method of sending IOCTL commands.
Also, without a valid file handle, the other standard file functions, ReadFile and
WriteFile, cannot be used.

A list of the currently running services can be obtained with the EnumSer
vices function. One limitation of this function is that services running in standa
lone copies of the Services Manager are not enumerated. EnumServices is
defined as

Chapter 22 Device Drivers and Services 1089

BOOL EnumServices (PBYTE pBuffer, DWORD *pdwServiceEntries,
DWORD *pdwBufferLen);

The pB11ffer parameter points to a buffer that will be filled with an array of Ser
viceEnumlnfo structures combined with a series of strings containing the names
of the DLLs implementing the services. The function places one ServiceEnum
Info structure for each service managed by the Services Manager. The pdwSer
viceEntries parameter points to a DWORD that will be filled with the number of
ServiceEnumlnfo structures placed in the buffer by the function. The pdw
Bufferlen parameter points to a DWORD that should be initialized with the size
of the buffer pointed to by pBuffer. When the function returns, the value is set
to the number of bytes placed in the buffer.

The ServiceEnumlnfo structure is defined as

typedef struct_ServiceEnumlnfo
WCHAR szPrefix[6];
WCHAR szDllName;
HANDLE hServiceHandle;
DWORD dwServiceState;

ServiceEnumlnfo;

Each instance of the structure describes one service. The somewhat misnamed
szPrf!f'ix field contains the complete name of the service, as in SRVO:, which is
a combination of the three-character service prefix along with its instance num
ber and a trailing colon. The szDllName field points to a string naming the DLL
implementing the service. The hServiceHandle field contains the handle of the
service, whereas the dwServiceState field contains the current state, running,
stopped, and so forth, of the service.

A service can be unloaded with the function DeregisterService defined as

BOOL DeregisterService (HANDLE hDevice);

The only parameter is the handle to the service. The Services Manager will first
ask the service if it can be unloaded. If the service assents, the service will be
unloaded; otherwise, the function will fail.

The Service DLL Entry Points
Because the architecture of the services is so similar to a device driver, I'm only
going to discuss the differences between the service and the driver. The first dif
ference is in how the service is initialized, so let's look at the !nit function.

xxx_lnit
The !nit function follows the legacy !nit prototype as in

DWORD xxx_Init (DWORD dwData);

1090 Part V Advanced Windows CE

The only parameter is a flag indicating the initial state of the service. The
parameter can contain one of the following flags: SERVICE_INIT_STARTED indi
cates the service should provide its own initialization to start the service,
SERVICE_INIT_STOPPED indicates that the service is currently stopped but may
be started by the super service, and SERVICE_INIT_STANDALONE indicates that
the service has been loaded in a standalone copy of the Services Manager.

Like a device driver, a service should perform any necessary initialization
during the call to the !nit function. If an error is discovered, the !nit function
should return a zero indicating that the service should fail to load. The Services
Manager will then unload the DLL implementing the service. The Services Man
ager interprets any nonzero value as a successful initialization. Also, as with a
driver, the service isn't really a service until the !nit function returns. This means
that the !nit function can't make any call that expects the service to be up and
running.

xxx_Deinit
The Deinit function is called when the service is unloaded. The prototype of
Deinit shown here matches the device driver Deinit function.

DWORD xxx_Deinit (DWORD dwContext);

The only parameter is the value that was returned from the !nit function.

xxx_IOControl
The JOControl function is much more structured than the similarly named coun
terpart in a device driver. Instead of being a generic call that the driver can use
as it pleases, in a service the JOControl call must support a series of commands
used both by the Services Manager and by applications communicating with the
service.

The prototype of the JOControl entry point is shown here.

DWORD xxx_IOControl (DWORD dwData, DWORD dwCode, PBYTE pBufin, DWORD dwlenln,
PBYTE pBufOut, DWORD dwlenOut, PDWORD pdwActualOut);

The parameters are the same as the ones used in xxx_IOControl for the device
driver. The dwData parameter can either contain the value returned by the ser
vice's Open function or the value returned by the !nit function. The service
must be written to accept the value returned by !nit or the values returned by
both !nit and Open if it implements an Open function. Because there is an
extensive list of commands, they are discussed individually in the following
section.

Chapter 22 Device Drivers and Services 1091

Other Entry Points
The other entry points to the driver, Open, Close, Read, Write, Seek, PowerUp,
and PowerDown, are optional. However, if the service doesn't export at least
Open and Close, applications will not be able to open the service to send it
IOCTL commands through DeviceloControl. The application could still use Ser
viceloControl using the handle returned by GetServiceHandle.

The Service IOCTL Commands
A Windows CE service must field a series of IOCTL commands sent through the
IOControl function. These commands can be grouped into a series of categories
such as commands used to control the service, those used to query the state of
the service, those commands used to help debug the service and those com
mands used for super service support.

For each of the following commands, the service should return TRUE if the
command was successful and FALSE if an error occurred. Extended error infor
mation should be sent by calling SetLastError before returning.

IOCTL_ SERVICE_ START
The first command, IOCTL_SERVICE_START, is sent to the service to start it. This
command isn't sent by the system when the service is loaded. Instead, it's only
sent by an application that wants to start a stopped service. If not already run
ning, the service should make any connections or perform any initialization
necessary to provide the service for which it was designed.

If the service has registry entries that have the super service automatically
start port monitoring, the super service will start and bind to the specified ports
if this IOCTL command returns a nonzero value.

IOCTL_ SERVICE_ STOP
The IOCTL_SERVICE_STOP command is sent by applications to stop a currently
running service. The service won't be unloaded from memory just because it
was stopped.

If the service has a super service running and the registry entry for the ser
vice is configured to auto-start a super service, the super service will be shut
down if the service returns a nonzero value from this command.

IOCTL_SERVICE_REFRESH
The IOCTL_SERVICE_REFRESH command is sent by an application or the Ser
vices Manager to tell the service to reread its configuration data from the regis
try. Any changes in the configuration read should immediately be reflected in
the service.

1092 Part V Advanced Windows CE

IOCTL_SERVICE_INSTALL
This optional command is sent to have the service modify the registry to have
the service automatically started on reset. This command is similar in action to
the DllRegisterServer function of a COM in-proc server. Although optional, the
command is convenient to have because any installation program for the ser
vice will not have to have knowledge of the registry entries required by the ser
vice. The registry entries needed for auto-load are described later in the "Super
Service" section.

IOCTL_SERVICE_UNINSTALL
The complement to the IOCTL_SERVICE_JNSTALL command, also optional, is
the IOCTL_SERVICE_UNINSTAU command, which removes the registry entries
that cause the driver to load on boot. An install/remove application can use this
command to have a service remove its own registry entries so that the applica
tion need not enumerate the registry to find the installation entries.

This completes the list of IOCTL commands sent by applications; now let's
look at the queries that are sent by both applications and the Services Manager
to query the state of the service.

IOCTL_ SERVICE_ STATUS
The IOCTL_SERVICE_STATUS command is sent to query the state of the service.
The state is returned in the output buffer pointed to by the pout parameter of
the IOControl call. The service should verify that pout is nonzero and that
dwOut indicates the buffer is large enough to hold a DWORD.

The service state can be one of the following, rather self-explanatory, val-
ues.

• SERVICE_STATE_ OFF

• SERVICE_STATE_ON

• SERVICE_STATE_STAR11NG_UP

• SERVICE_STATE_SHU171NG_DOWN

• SERVICE_STATE_UNLOADING

• SERVICE_STATE_UNINI11ALIZED

• SERVICE_STATE_UNKNOWN

IOCTL_SERVICE_QUERY_CAN_OEINIT
This command is sent by the Services Manager to ask the service whether it can
be unloaded. This command is typically sent in response to an application call
ing DeregisterService. If the service can be unloaded, it should place a nonzero ,,

Chapter 22 Device Drivers and Services 1093

value in the first DWORD of the output buffer. If the service can't be unloaded,
the DWORD should be set to zero. The service should verify that the output
buffer exists and is large enough to hold the DWORD before writing the value.

If the service can always uninstall, it doesn't have to respond to this com
mand. If this command returns FALSE, which is the default response to any
unhandled command, the Services Manager assumes that the service can be
removed.

IOCTL_ SERVICE_ CONSOLE
This optional command is sent to have the service display a service console. A
service does not have to implement this command, but it can be handy in some
situations.

The command is sent with a string in the input buffer. If the string is "On",
or if the input buffer pointer is NULL, the service should display a service con
sole. If the input buffer contains the string "Off'', the service should remove the
service console.

IOCTL_ SERVICE_ CONTROL
This command is basically the IOCTL of the IOCTL commands. That is, it's a
generic command that can be used by the applications to communicate custom
commands to the service. The format of the input and output buffers is defined
by the service-defined command.

IOCTL_SERVICE_DEBUG
This command is sent to set the debug zone bitmask for the service. The first
DWORD of the input buffer contains the new state for the zone bitmap. The ser
vice should verify that the input buffer exists and is at least a DWORD in size.

Because the debug zone structure dpCurrParams is typically only defined
for debug builds of the service, the code fielding this command is typically
couched in an #~f def block to prevent it from being compiled in a nondebug
build.

There are examples of where this command has been extended to per
form debug duties beyond the settings of the zone mask. To extend the func
tionality, the service can use the size of the input buffer, specified in dwln, to
determine the meaning of the input buffer data. To be compatible, the service
should default to setting the debug zone mask if dwln is set to the size of a
DWORD.

1094 Part V Advanced Windows CE

IOCTL_SERVICE_ CALLBACK_FUNCTIONS
This command, introduced in Windows CE .NET 4.2, is used if the service is
loaded with a standalone copy of the Services Manager. The input buffer points
to a SeroicesExeCallbackFunctions structure, defined as

typedef struct _ServicesExeCallbackFunctions
PFN_SERVICE_SHUTDOWN pfnServiceShutdown;

} ServicesExeCallbackFunctions;

The only field in this structure is a pointer to a callback routine, in the Services
Manager, that can be called to control the standalone copy of the Services Man
ager. The structure currently provides one field that points to a function that
will shut down the standalone Services Manager.

IOCTL_SERVICE_SUPPORTED_OPTIONS
This command, supported in Windows CE .NET 4.2 and later, queries the cur
rently supported options of the service. The option flags are returned in a
DWORD in the output buffer.

Super Service
The super service provides all services with a convenient method for monitor
ing TCP /IP ports without having to have customized code to monitor the port
inside the service. The super service can either work automatically, if the
proper registry settings are in place for the service, or manually through a series
of function calls. It's more convenient to use the registry method for configuring
the super service, so I will cover that method first.

If the service wants the super service to start automatically when the ser
vice is loaded, a subkey, named Accept, must be present under the service's
key. Under the Accept key, there should be one or more subkeys each provid
ing the IP address of port to monitor. The Services Manager doesn't use the
name of the subkey under the Accept key, although the key is traditionally
named TCP-xxx, where xxx is the port number to be monitored. Each subkey
should contain a binary value named SockAddr. The data in SockAddr should
comprise bytes that make up a SOCKADDR structure that describes the port
being monitored. The subkey can optionally contain a Protocol value that spec
ifies the protocol for the socket. If this value isn't present, the protocol value is
assumed to be zero. The following code initializes a SOCKADDR structure and
then writes it to the registry.

int AddRegSuperServ (HKEY hKey, WORD wPort, DWORD dwProtocol) {
SOC KADDR_I N s a;
HKEY hSubKey;
TCHAR szKeyName[l28];

Chapter 22 Device Drivers and Services 1095

DWORD dw;
int re;

memset (&sa, 0, sizeof (sall;
sa.sin_family = AF_INET;
sa.sin_port = htons(wPort);
sa.sin_addr.s_addr = INADDR_ANY;

II Create accept key for this service
wsprintf (szKeyName, TEXT("Accept\\TCP-%d"), wPort);
re= RegCreateKeyEx (hKey, szKeyName, 0, NULL, 0, NULL,

NULL, &hSubKey, &dw);
if (re == ERROR_SUCCESS)

re RegSetValueEx (hSubKey, TEXT("SockAddr"),
(PBYTE)&sa, sizeof (sa));

re RegSetValueEx (hSubKey, TEXT("Protocol"),
(PBYTEl&dwProtocol, sizeof

return re;

0' REG_BINARY,

0' REG_DWORD,
(DWORD));

As we will soon see, the ServiceAddPort function has the capability to cre
ate this registry key as well. It's still handy to be able to write the key manually
in the case in which the service doesn't want to start the super service when it's
writing the key.

In addition to the Accept keys, the registry entry for the service must have
a Context value of 1. If the Context value is 0, the super service will not start,
nor will it start if the service is loaded in a standalone copy of the Services Man
ager.

When a service is started either during system startup or with the Activate
Service function, the service is loaded, its !nit function is called, and then, if the
Context value is 1, the super service queries the service through an IOCTL com
mand to determine whether it wants super service support. If so, the super ser
vice enumerates the Accept keys and creates sockets to monitor the ports
described in the keys. As each socket is opened and bound to the appropriate
address, the service is notified, through an IOCTL command, that the socket is
being monitored. Then, once all sockets are opened, and if the service is first
being loaded, it sends a final IOCTL indicating that all the sockets are listening.

When a connection is made to one of the listening sockets, another IOCTL
command is sent to the service along with the socket handle of the connection.
The service then must create a new thread to handle the communication with
the socket. The IOCTL call must return quickly because the calling thread is
necessary for monitoring other ports. After the communication is complete, the
service should close the socket handle passed during the connection notifica-

1096 Part V Advanced Windows CE

tion. When the service shuts down, IOCTL commands are sent to the service
notifying it that the sockets monitoring the ports have been closed.

Programmatically Controlling the Super Service
It's possible to have super service support without entries in the registry but it's
more complicated. In this scheme, the service must tell the super service about
each port to be monitored. This can be done with the function ServiceAddPort,
defined as

ServiceAddPort (HANDLE hService, SOCKADDR pSockAddr, INT cbSockAddr,
INT iProtocol, WCHAR szRegWritePath);

The first parameter is the handle to the service, which, ironically, is somewhat
difficult for the service to get. The SOCKADDR structure should be initialized
with the address information for the listening socket. The iProtocol value
should contain the protocol to be used by the socket. The szReg WritePath
parameter can optionally specify a registry key name where this information
will be written so that the next time the service is started, the super service will
start automatically.

The issue with a service getting its own handle is that GetServiceHandle
requires not just the three-character prefix of the service but also the instance
number of the service. If the service was loaded with RegisterService, determin
ing the service instance isn't easy. If, however, the service was loaded because
of a registry key entry, the instance value is specified in the registry. Of course,
if the service was loaded due to a registry entry, it's just as convenient to have
the registry key also specify that the super service automatically start.

A specific port can be closed for monitoring by calling the ServiceClose
Port function. Its prototype is

BOOL ServiceClosePort (HANDLE hService, SOCKADDR* pSockAddr, int cbSockAddr,
int i Protocol, BOOL fRemoveFromRegi stry);

The parameters are identical to the ServiceAddPort function with the exception
of the last parameter, jRemoveFromRegistry, which is a Boolean flag that tells
the function whether the corresponding registry entry should be removed for
the port.

To close all the ports being monitored by a service, ServiceUnbindPorts
can be used.

BOOL ServiceUnbindPorts (HANDLE hService);

The only parameter is the handle to the service.

Chapter 22 Device Drivers and Services 1097

SuperService IOCTLs
Services that use the super service must respond to a series of additional IOCTL
commands. These commands are either queries to check for support or are
notifications indicating an event has occurred within the super service.

IOCTL_SERVICE_REGISTER_SOCKAOOR
This command is sent at least twice during the initialization of the super service.
The super service first sends this command to query whether the service will
accept super service support. In this case, the input buffer pointer, pin, is NULL.

The super service next sends this command again, once for each port the
service is monitoring to verify the socket has been created to monitor the
requested address. During these subsequent calls to verify the individual
addresses, pin points to a SOCKADDR structure that describes the socket
address being monitored.

IOCTL_ SERVICE_ STARTED
This notification is sent when the super service completes its initialization after
the service is first loaded. When this notification has been received, the service
can assume that the super service is listening on all the ports requested. This
notification isn't sent when the service is restarted after it has been stopped.

/OCTL_SERVICE_OEREG/STER_SOCKADOR
This notification is sent after the super service has closed the socket monitoring
a given socket address. The pin parameter points to the SOCKADDR structure
that describes the socket address. This notification can be sent if the service is
being stopped or because the service is being unloaded.

IOCTL_ SERVICE_ CONNECTION
The IOCTL_SERVICE_CONNECTION notification is sent when another applica
tion connects to the socket address being monitored by the super service. The
input parameter pin points to a socket handle for the connected socket. It's the
responsibility of the service to spawn a thread to handle communication on this
socket. The service must also close the socket when communication is com
plete.

IOCTL_SERVICE_NOTIFY_AOOR_CHANGE
For systems running Windows CE .NET 4.1 or later, this notification is sent if the
system's IP address changes. The input buffer is filled with an IP _ADAPTER_
INFO structure defined as

typedef struct _!P_ADAPTER_!NFO {
struct _!P_ADAPTER_!NFO* Next;

(continued)

1098 Part V Advanced Windows CE

DWORD Comboindex;
Char AdapterName[MAX_ADAPTER_NAME_LENGTH + 4];
char Description[MAX_ADAPTER_DESCRIPTION_LENGTH + 4];
UINT Addresslength;
BYTE Address[MAX_ADAPTER_ADDRESS_LENGTH];
DWORD Index;
U!NT Type;
UINT DhcpEnabled;
PIP_ADDR_STRING CurrentipAddress;
IP_ADDR_STRING IpAddresslist;
IP_ADDR_STRING Gatewaylist;
IP_ADDR_STRING DhcpServer;
BOOL HaveWins;
IP_ADDR_STRING PrimaryWinsServer;
IP_ADDR_STRING SecondaryWinsServer;
time_t LeaseObtained;
time_t LeaseExpires;

IP_ADAPTER_INFO, *PIP_ADAPTER_INFO;

The fairly self-explanatory IP _ADDRESS_INFO structure contains everything
from the IP address of the system to gateway, Dynamic Host Configuration Pro
tocol (DHCP), and Windows Internet Naming Service (WINS) information.

Services.axe Command Line
In addition to being the Services Manager for the system, the application ser
vices.exe also has a command-line interface. For systems with a console, simply
type:

services help

This command produces a list of the available commands. Services can list the
current services, start them and stop them, load them and unload them, and
even add and remove them from them from the registry.

For systems without console support, services can be launched with an
-f command-line switch and the name of a file to send the output to, as in

services -f Outfile.txt

Other command-line parameters include -d to send the output to the debug
serial port and -q to suppress output entirely.

TickSrv Example Service
The TickSrv example demonstrates a service that uses the super service. TickSrv
monitors port 1000 on a Windows CE device and, for any application that con
nects, provides the current tick count and the number of milliseconds the sys-

Chapter 22 Device Drivers and Services 1099

tern has been running since it was reset. TickSrv is implemented as a standard
Windows CE service. Because there is no reason for a local application to use
the service, it doesn't implement the standard stream exports, Open, Close,
Read, Write, or Seek. The source code for TickSrv is shown in Listing 22-2.

TickSrv.h
II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (Cl 2003 Douglas Boling
II==
#define dim(a) (sizeof Ca)lsizeof(a[0]))
II
II Declare the external entry points here. Use declspec so we don't
II need a .def file. Bracketed with extern C to avoid mangling in C++.
II
#ifdef _cplusplus
extern "C" {
#endif ll_cplusplus
_declspec(dllexportl DWDRD TCK_Init <DWORD dwContextl;
_declspec(dllexport) BOOL TCK_Deinit CDWORD dwContext);
_declspec(dllexport) DWORD TCK_IOControl CDWORD dwOpen, DWORD dwCode,

PBYTE pln, DWORD dwln,
PBYTE pOut, DWORD dwOut,
DWORD *pdwBytesWritten);

_declspec(dllexport) void TCK_PowerDown CDWORD dwContextl;
_declspecCdllexport) void TCK_PowerUp (DWORD dwContext);
#ifdef _cplusplus
} II extern "C"
#endif ll_cplusplus

II Suppress warnings by declaring the undeclared.
#ifndef GetCurrentPermissions
DWORD GetCurrentPermissions<voidl;
DWORD SetProcPermissions (DWORD);
DWORD GetCallerProcess(void);
PVOID MapPtrToProcess (PVOID, DWORD);
#endif llGetCurrentPermissions

int RegisterService (void);
int DeregisterService (void);
DWORD WINAPI AcceptThread (PVOID pArg);

Listing 22-2 The TickSrv example
(continued)

1100 Part V Advanced Windows CE

Listing 22-2 (continued)

//
II
//
typedef struct {

OW ORD. dWSi z.e:
CRITlCAL_SECTION
int servState;

If .C.rit Section protecting
II se.rvi ce state

} SRVCONTEXT, *PSRVCONTEXT;

TickSrv.cpp

If TickSrv - Simple example se~vice for Windows CE
ll
// Written fO.r the book Programming Windows
ll Copyright.(C) 2003 Dougla$B.oling

<winsock,h>
"service. hn

#include "TickSrv.h"

II For all that Windows stuff
l! Socket support
II Ser\/.tce. includes

// Local program includes

#define REGNAME
/fdefin e PORTNUM

TEXT("Ti ckSrv") // Reg name under services key
1000 // Port number .to.monitor

II
ll Globals
II
HINSTANCE hlnst;

II
fl Debug zone support
II
#ifdef DESUG

// DLL inst1;1nce handle

11 Used as a prefix string for all de.bug zone messages.
tfdefi ne DTAG TEXT C"Ti ckSrv: ")

// Debug zone constants
4fdefine ZONE_E:RROR
ifdefine ZONE_WARNlNG
11def1 ne Z.ONE...:.FUNC
tfdeftne·ZONE_INIT
#define ZONE'"'DRVCALLS
1fdefine. ZONE_IQCTLS
fide.fine ZONCTHREAD
1fdefi ne. ZONE EXtNTRY

OfBUGZONE(0)
DEBUGZONE (1.)

DE0UGZDNEt2)
[)EBUC1Z.DNEC3)
OEBUGZONE(4)
OEBUGZONE(5)
DE.BlfGZONE C6)
(ZONLFUNC. I

Chapter 22 Device Drivers and Services 1101

II Debug zone structure
DBGPARAM dpCurSettings =

} ;

TEXT("TickSrv"), {
TEXT("Errors"),TEXT("Warnings"),TEXTC"Functions"l,
TEXTC"Init"),TEXTC"Driver Calls"),TEXTC"Undefined"),
TEXT("IOCtls"),TEXTC"Thread"). TEXTC"Undefined"),
TEXTC"Undefined"),TEXTC"Undefined"),TEXTC"Undefined"),
TEXT("Undefined"l.TEXTC"Undefined"l,TEXTC"Undefined"),
TEXTC"Undefined"l },
0x0003

#endi f //DEBUG

//==
II DllMain - DLL initialization entry point
II
BOOL WINAPI DllMain (HANDLE hinstDLL, DWORD dwReason,

LPVOID lpvReservedl {
h!nst = CHINSTANCElhinstDLL;

switch CdwReason) {
case DLL_PROCESS_ATTACH:

DEBUGREGISTER(hlnst);
II Improve performance by passing on thread attach calls
DisableThreadlibraryCalls Chlnstl;

break;

case DLL_PROCESS_DETACH:
DEBUGMSGCZONE_INIT. (DTAG TEXTC"DLL_PROCESS_DETACH\r\n")));
break;

return TRUE;

//==
II TCK_lnit - Driver initialization function
II
DWORD TCK_lnit CDWORD dwContext) {

PSRVCONTEXT pSrv;

DEBUGMSG CZONE_INIT I ZONE_EXENTRY,
(DTAG TEXTC"TCK_lnit++ dwContext:%x\r\n"), dwContext));

II !nit WinSock
WSADATA wsaData;
WSAStartup(0xl01,&wsaDatal;

II Allocate a drive instance structure.
pSrv = CPSRVCONTEXT)LocalAlloc (LPTR, sizeof (SRVCONTEXT));

(continued)

1102 Part V Advanced Windows CE

Listing 22-2 (continued)

Chapter 22 Device Drivers and Services 1103

PBYTE pOut, DWORD dwOut, DWORD *PdwBytesWritten) {
PSRVCONTEXT pSrv:
DWORD err = ERROR_INVALID_PARAMETER;

pSrv = CPSRVCONTEXT) dwOpen;

OEBUGMSG CZONE_EXENTRY.
(DTAG TEXT("TCK_IOControl++ dwOpen: %x dwCode: %x %d\r\n"),
dwOpen, dwCode, pSrv->servState));

switch (dwCode) {
II -------------
// Commands
II --·----------

II Cmd to start service
case IOCTL_SERVICE_START:

DEBUGMSG (ZONE_IOCTLS. (DTAG TEXT("IOCTLSERVICLSTART\r\n")));
EnterCriticalSection C&pSrv->csData);
if (CpSrv·>servState SERVICE_STATE_OFF) I

CpSrv->servState == SERVICE_STATE_UNKNOWNl)

pSrv->servState = SERVICE_STATE_ON;
err = 0;

else
err = ERROR_SERVICE_ALREADY_RUNNING;

LeaveCriticalSection C&pSrv->csData);
break;

II Cmd to stop service
case IOCTL_SERVICE_STOP:

DEBUGMSG CZONLIOCTLS, CDT AG TEXT("IOCTLSERVICLSTOP\r\n")));
EnterCriticalSection (&pSrv->csData);
if ((pSrv->servState == SERVICE_STATE_ON)) {

pSrv->servState = SERVICE_STATE_SHUTTING_DOWN;
else

err = ERROR_SERVICE_NOT_ACTIVE;
LeaveCriticalSection C&pSrv->csData);
break:

//Reread service reg setting
case IOCTLSERVICE_REFRESH:

DEBUGMSG CZONLIOCTLS, CDTAG TEXTC"IOCTL_SERVICLREFRESH\r\n")));
II No settings in example service to read
break:

//Config registry for auto load on boot

(continued)

1104 Part V Advanced Windows CE

Listing 22-2 (continued)

case IOCTL_SERVICE_INSTALL:
DEBUGMSG (ZONE_IOCTLS, (DTAG TEXT("IOCTL_St:RVICE_INSTALL\r\n")));
err= Regi~terService();
break;

//Clear registry of auto load stuff
case IOCTL_SERVICE_UNINSTALL:

DEBUGMSG (ZONE_IQCTLS, (DTAG TEXTC"IOCTL_SERVICE_UNINSTALL\r\n"))):
err= DeregisterService(l;
break;

//Clear registry of auto load stuff
case IOCTL_SERVICE_CONTROL:

DEBUGMSG (ZONE_I OCTLS, (DTAG TEXT(" IOCTL_SERVICE_CONTROL \r\n".)}):
err = 0:
break:

4h fdef DEBUG
II Set debug zones
case IOCTL_SERV!CE_DESUG:

#end if

DE:BUGMSG (ZONLIOCTLS, (DTAG TEXT(" IOCTL_SERVI CE_DEBUG\r\n"))):
if (!pin I I (dwin < sizeof IDWORDJ))

break;
_try {

dpCurSettings.ulZoneMask = •(DWORD •)pin:
err = 0;

_except CEXCEPTION_EXt:CUTE_HANDLERl

}

II -------------
11 Queries
II -------- ----

II Query for current service state
case IOCTL_SERVICE_STATUS:

DEBUGMSG (ZONE_! OCTLS, (DTAG TEXT(" IOCTLSERVI CE_STATUS\ r\n" l)):
if (lpOut I I (dwOut < sizeof (DWORD)))

break:
_try {

•(DWORD •lpOut = pSrv->servstate:
if (pdwBytesWritten)

•pdwBytesWritten = sizeof CDWORD};
err = 0:

_except (EXCEPTION_EXECUTE_HANDLERl

Chapter 22 Device Drivers and Services 1105

break;

II Query for unload.
case IOCTL_SERVICE_QUERY_CAN_DEINIT:

DEBUGMSG CZONE_IOCTLS,
(DTAG TEXT(" IOCTL_SERV I CE_QUERLCAN_DEI NIT\ r\n")));

if (!pOut I I (dwOut < sizeof CDWORD)))
break;

_try {
*(DWORD *)pOut = 1; II non-zero== Yes, can be unloaded.
if (pdwBytesWritten)

*pdwBytesWritten sizeof CDWORD);
err = 0;

_except CEXCEPTION_EXECUTE_HANDLER)

break;

II Query to see if sock address okay for monitoring
case IOCTL_SERVICE_REGISTER_SOCKADDR:

DEBUGMSG CZONE_IOCTLS,
CD TAG TEXT(" IOCTL_SERV ICE_REGISTER_SOCKADDR\ r\n" l l):

II Calling to see if service can accept super service help
if (!pin 11 Cdwin < si zeof CDWORD))) {

if ((pSrv->servState == SERVICE_STATE_OFF) I
(pSrv->servState == SERVICE_STATE_UNKNOWN))

pSrv->servState = SERVICE_STATE_STARTING_UP;
err = 0;
break;

II Confirming a specific sock address
DEBUGMSG CZONE_IOCTLS, CDTAG TEXT("Socket:%x\r\n"), *Pln));
err = 0:
break;

II ------------
// Notifications
II -------------

II Notify that sock address going away
case IOCTL_SERVICE_DEREGISTER_SOCKADDR:

DEBUGMSG CZONE_IOCTLS,
CDTAG TEXTC"IOCTL_SERVICE_DEREGISTER_SOCKADDR\r\n")));

EnterCriticalSection C&pSrv->csData);

(continued)

1106 Part V Advanced Windows CE

Listing 22-2 (continued)

(pS rv 9>s ~rvstate ;.,,, SERvJ.cE:.STAT~SHUTT I NG~DOWN}
. pSry.:>servstate =. <SERllICLSTATE..:,oFE:;. .

',>",",, ':>,<: >,,' , ":' ';":-:>
te.av!IC.rHi cillSecti on C&pSr\i.: >cs Data);

11 Al1 super service ports open
case IOCTL_SERV!CLSTARTED:

DEBUGMSG (ZONLIOCTLS, (DTAG TEXH"IOCTL_SERVICE_STARTED\r\n"))):
EnterCriticalSection <&pSrv·>csData);
if ((pSrv • >servState == SERVICLSTATLSTARTING_UP)

(pSrv·>servState == SERVICE_STATE_UNKNOWN))
pSrv·>servState = SERVICE_STATE_ON;

LeaveCritical~ection C&pSrv->csData);
err = 0;
break;

lJ NotHication that conne.ct has oce.urr.ed
case. IDCTL....SERVICE_CONNECTION:

DEBUGMSG CZONE_IOCTLS,
IDTAG TEXT< "IOCTL_SERV I CE-CONNECTION\ r\n"))):

if (!pln 11 (dwin < si zeof (DWORD)))
breql<;

(! Cttate thread to ha&dle the socket
(NtJll; 0, Ac;cep1;Thr~aq., (PVOID)*CDW.ORD*)pln,

• NULL);

>fZONLERROR I ZONE_IOCTLS,
CDT AG .. TEXT {''Unsupported l OCTL code %x
dwCode, (d.wCode &. 0x00ff) I 4)) :

return FALSE;

SetLast.Error. (er.r);
DE.BJJGMSG CZONE_FUNC. IDTAG .TEXTC"TCICIOConfrol ·· %d\r\n"), err));
return (err •= 0) ? TRUE : FALSE;

I I TCLPoweroown • ca 11 ed when system .suspends
//
//>~O.TE: No k!Irnel ca1.ls, including .depug.ll)ess.ages.

this <;a.l L

Chapter 22 Device Drivers and Services 1107

II
void TCK_PowerDown (DWORD dwContext) {

return;
}

II==
II TCK_PowerUp - Called when resumes
II
II NOTE: No kernel calls, including debug messages. can be made from
II this call.
II
void TCK_PowerUp (DWORD dwContext) {

return;

11--
11 AddRegString - Helper routine
II
int AddRegString (HKEY hKey, LPTSTR lpName, LPTSTR lpStr) {

return RegSetValueEx (hKey, lpName, 0, REG_SZ, (PBYTE)lpStr.
(lstrlen (lpStr) + 1) * sizeof (TCHAR));

11---,-----,
II AddRegDW - Helper routine
II
int AddRegDW (HKEY hKey, LPTSTR lpName, DWORD dw) {

return RegSetValueEx (hKey, lpName, 0, REG_DWORD, (PBYTE>&dw. 4);
}

l/·---·--··---··-·-··-c-··---"·--•---···---,-~-----··-·-··-··---------•-

11 AddRegSuperServ - Helper routine
II
int AddRegSuperServ (HKEY hKey, WORD wPort) {

SOCKADDR_IN sa;
HKEY hSubKey;
TCHAR szKeyName[128]:
DWORD dw;
int re;

DEBUGMSG (ZONE_FUNC, (DTAG TEXT("AddRegSuperServ++ %d\r\n"), wPort)};

memset (&sa. 0, sizeof (sa));
sa.sin_family = AF_INET:
sa.sin_port = htons<wPort);
sa.sin_addr.s_addr = INADDR_ANY:

II Create key for this service
wsprintf (szKeyName, TEXTC"Accept\\TCP~%d"), wPort);
re = RegCreateKeyEx ChKey, szKeyName, 0, NULL. 0, NULL,

NULL, &hSubKey., &dw};

(continued)

1108 Part V Advanced Windows CE

Listing 22-2 (continued)

Chapter 22 Device Drivers and Services 1109

DEBUGMSG (ZONE_ERROR, (TEXT("Error creating key\r\n")));

RegCloseKey(hKey);
else

DEBUGMSG CZDNE_ERROR, CTEXT("Error opening key\r\n")));

return (re == ERROR_SUCCESS l ? 0 : -1;

11-------------- ---

11 DeregisterService - Remove auto load settings from registry
II
int DeregisterService () {

HKEY hKey;
int re;

II Open the Services key
re= RegOpenKeyExCHKELLOCAL_MACHINE,TEXT("Services"),0, 0, &hKey);
if (re == ERROR_SUCCESS) {

II Delete key for this service
re= RegDeleteKey (hKey, REGNAME);
if (re != ERROR_SUCCESS)

DEBUGMSGCZONE_ERROR, CDTAG TEXTC"Error deleting key %d\r\n"),
GetlastError()));

RegCloseKey(hKey);
else

DEBUGMSG CZONE_ERROR, CTEXT("Error opening key\r\n")));
return (re == ERROR_SUCCESS) ? 0 : -1;

II==
II AcceptThread - Thread for managing connected sockets
II
DWORD WINAPI AcceptThread (PVOID pArg) {

SOCKET sock;
int re;
DWORD dwCmd, dwTicks;

sock = (SOCKETlpArg;

DEBUGMSG (ZONE_ THREAD. CTEXT("AcceptThread++ %x\r\n"), pArg));

II Simple task, for any nonzero received byte, sent tick count back
re= recv (sock, (char *l&dwCmd, sizeof CDWORD). 0);
while ((re != SOCKET_ERROR) && (dwCmd != 0)) {

DEBUGMSG (ZONE_THREAD, (TEXT("Recv cmd %x\r\n"), dwCmd));

dwTicks = GetTickCount ();
DEBUGMSG (ZONE_THREAD, (TEXT("sending %d\r\n"), dwTicks));
re= send (sock, (char *)&dwTicks, 4, 0);

(continued)

1110 Part V Advanced Windows CE

Listing 22-2 (continued)

The service interface is quite simple. Applications can query the tick count
of the device by sending a nonzero DWORD to the device. The service will dis
connect when the DWORD received is zero.

To install TickSrv, copy TickSrv to the Windows CE device and run the fol
lowing short Windows CE application, TSinst, provided with the companion
files. The relevant code is shown here:

HANDLE hDrv = RegisterService (TEXT("TCK"), 0, TEXT("TickSrv.dll"), 0);
if (hDrv) {

printf ("Service loaded. %x\r\n", hDrv);

DWORD dwBytes;
ServiceioControl (hDrv, IOCTL_SERVICE_INSTALL, 0, 0, 0, 0,

&dwBytes, NULL);
printf ("Install complete\r\n");
DeregisterService (hDrv);

else
printf ("Service failed to load. re %d\r\n", GetLastError());

The install application uses RegisterDevice and ServiceloControl to have TickSrv
update the registry. TickSrv will load on the next system reset, but it can also be
loaded manually using the Services Manager. Run the following command line
to load TickSrv manually:

services load TickSrv

Listing 22-3 is a simple PC-based client written in Visual Studio .NET that
will open port 1000 on a specified device, send it a command to receive the tick
count, wait a few milliseconds, ask again, and then terminate the connection
and quit.

Chapter 22 Device Drivers and Services 1111

PCClient.cpp
II==
II PCClient.cpp : Simple client for the tick server example
II
II Written for the book Programming Windows CE
II Copyright (C) 2003 Douglas Boling
II==
#include "stdafx.h"

int _tmain(int argc, _TCHAR* argv[])
{

SOCKET sock;
SOCKADDR_IN dest_sin;
WORD wPort = 1000;
int re:

if (argc < 2) {
printf ("Syntax: %s <IP Addr> %d\r\n", argv[0], argc):
return 0;

II Init winsock
WSADATA wsaData;
if ((re= WSAStartup(0x101,&wsaData)) != 0) {

printf <"WSAStartup failed\r\n");
WSACleanup();
return 0;

II Create socket
sock= socket(AF_INET. SOCK_STREAM, 0);
if (sock== INVALID_SOCKET) {

return INVALID_SOCKET;

II Set up IP address to access
memset (&dest_sin, 0, sizeof (dest_sin));
dest_sin.sin_family = AF_INET;
dest_sin.sin_addr.S_un.S_addr = inet_addr (argv[l]);
dest_sin.sin_port = htons(wPort);

printf ("Connecting to %s Port %d\r\n",
inet_ntoa (dest_sin.sin_addr), wPort);

II Connect to the device
re== connect(sock, (PSOCKADDR) &dest_sin, sizeof(dest_sin));
if (re == SOCKET_ERROR) {

Listing 22-3 The PCClient example (continued)

1112 Part V Advanced Windows CE

Listing 22-3 (continued)

}

printf ("Err in connect. %d\r\n". WSAGetLastError());
c1osesocket(sock) ;
return INVALID~SOCKET;

DWORD dWCmd =1, dwTicks = 0:

II. Ask for ticks
send (sock, (Char *l&dwCmd. 4. 0);
recv (sock, (char •l&dwticks, 4, Bl:
printf ("Ticks: %d\r\n~. dwticks);

II Wait 1!4 second and ask again
Sleep(250);
send (sock, (char *l&dwCmd, 4, 0):
recv (sock, (char •l&dwTicks, 4, 0);
printf ("Ticks: %d\r\n'', dwTicks);

11 Terminate connection and close socket
dwCmc;i· = ••. 0:
send (sock, (char *l&dwCmd, 4, 0):
sreep000l;
clusesocket (suck);
return 0;

The Services Manager is a great addition to Windows CE. It provides sup
port for those background tasks that are so often needed in embedded systems.
Using a service instead of writing a standalone application also reduces the
number of applications running on the device. Considering that Windows CE
supports only 32 applications at any one time, writing a handful of services
instead of writing a number of applications can be the difference in the system
running or not.

In the last chapter of the book, I will turn away from C, C++, and what is
now referred to as unmanaged or native code. Instead, I will introduce the
next wave of embedded programming tools, the .NET Compact Framework.
Programs written in the Compact Framework are compiled to an intermediate
language instead of to CPU instructions. This arrangement makes the applica
tions CPU independent. The Compact Framework is a cool new technology.

Programming the .NET
Compact Framework

"Toto, I have a feeling we're not in Kansas anymore." That sums up the feeling
of many embedded programmers as they are introduced to the .NET Compact
Framework. The days of the embedded programmer nee electrical engineer
huddled over an assembly listing counting bytes of code have only recently
been left behind. Over the past few years, the embedded industry has moved to
devices that are powered by 32-bit operating systems such as Windows CE. But
even that is changing.

The .NET Compact Framework runs code in a protected environment, iso
lated from the actual hardware. The applications aren't even compiled in
machine language. Instead, they're compiled to an intermediate language that's
compiled into machine language as it's first executed, a process called just-in
time (JIT) compilation. This chapter takes you in a completely different direction
from the previous chapters. Instead of describing how to work with Windows
CE, this chapter discusses a separate topic, a run-time environment that can (but
doesn't have to) run on top of Windows CE, the .NET Compact Framework.

It's Becoming a Managed World
Aficionados of .NET divide the world into two types of code: managed and
unmanaged. Managed code is compiled to an intermediate language called the
Common Intermediate Language (CIL) that is run from within the .NET Frame
work. The .NET runtime verifies the proper execution of the managed code at

1113

1114 Part V Advanced Windows CE

run time. 1 When data is transferred between variables, the data type is checked
to see whether it's compatible with the destination type, or that the proper con
version has been applied. Array indexes are checked to ensure that they are
within the range of the array. Because of the use of a CPU-neutral byte code used
by the runtime, a single managed binary can run on many different CPU types.

Unmanaged, or native, code is code written the good old-fashioned way.
Routines are compiled directly to machine code when compiled on the devel
oper's machine. Unmanaged applications are written to talk either to the oper
ating system's API or to a class library that wraps that API. Unmanaged
applications depend on the compiler to verify the correctness of data types and
array indexes. Few unmanaged compilers produce code to make these checks
at run time.

The advocates of managed code preach its advantages with almost a reli
gious fervor. The problem with theological discussions of technical issues is that
engineers tend to concentrate on their side of the argument without recognizing
the valid issues contradicting their opinions. Managed code has many advan
tages over unmanaged code, but also some significant disadvantages. In an
embedded environment, the balance of the arguments differs somewhat from
the evaluations of the desktop and server spaces. My advice is to use what
works best for a particular situation.

To . NET or Not to . NET
There are a number of advantages of managed code in the embedded environ
ment. First and foremost, managed applications don't care about the type of
CPU on the system, so only one executable needs to be distributed for custom
ers instead of separate versions for ARM, x86, SHx, and MIPS. This abstraction
greatly simplifies both distribution and support of your applications. CPU inde
pendence is much more important for us in the embedded world. Everyone on
the desktop, with the exception of a handful of Macintosh systems, executes the
true universal byte code set, x86 machine code.

The managed runtime also enforces a number of requirements with respect
to the application, which makes the managed code much more robust. The run
time enforces type safety, which helps in reducing bugs introduced by the pro
grammer as well as avoiding the execution of malicious code that takes
advantage of data type mismanagement and unverified data to hack into systems.

Another advantage touted by advocates of managed code is the simplicity
and speed in development of managed applications. It's quite true that the lat
est tools provide a productive environment for producing amazingly powerful

1. The initial release of the .NET Compact Framework runtime doesn't perform run-time type verification.

Chapter 23 Programming the .NET Compact Framework 1115

applications in shorter time than is typical with unmanaged code. I personally
don't feel that this increased productivity is as much a credit to the concept of
managed code as to the quality of the tools, including the new languages, pro
ducing the managed code. Regardless of the core reason, the process of gener
ating managed applications is both easier and quicker than that of generating
unmanaged applications with the previous generation of tools.

The disadvantage of managed code is chiefly speed and responsiveness.
Here again, this is not so much of an issue on the desktop, where the latest x86-
compatible CPUs are so powerful that they don't even break a sweat running typ
ical business software. That said, managed code executes more slowly than
unmanaged code. This difference can either have an impact or not depending on
the application and the hardware. Managed code can also be nonresponsive if an
ill-timed garbage collection happens. During garbage collection, all threads in a
managed application are suspended. In worst-case situations, these garbage col
lections can take seconds to complete. Not a comforting thought for applications
that are supporting some commercial task in front of an impatient customer.

Should you develop your new applications in managed code? There are
many reasons to say yes. So are the previous 22 chapters of this book a waste
of time? Even if you decide to write your embedded applications in managed
code, the answer is no. The current implementation of the .NET Compact
Frameworks, although quite functional, is anything but complete. There are sig
nificant gaps in the functionality of the runtime that will require all but the most
platform-agnostic application to access the underlying operating system to
accomplish some task or another. Actions as simple as saving configuration
information in the registry or integrating as tightly with the shell as a native
application require calling outside the managed environment into the underly
ing unmanaged operating system.

In this single chapter, I can't hope to describe everything about the .NET
Compact Framework. Even single books have trouble being complete, which is
why there are entire series of books from publishers describing the .NET initia
tive from Microsoft. Microsoft Press, the publisher of this book, alone has more
than 50 books dedicated to .NET. Instead, I'll use this chapter to introduce the
.NET Compact Frameworks as they are implemented on Windows CE devices.
After that introduction, this chapter walks through the architecture of a Win
dows Forms application. Then the handful of classes not on the desktop but
supported by Compact Framework are covered. The remaining sections of this
chapter concentrate on providing information to enable applications that run as
fast and are as tightly integrated with the underlying operating system as their
unmanaged counterparts. Let's start with the basics.

1116 Part V Advanced Windows CE

A Brief Introduction to Managed Applications
As mentioned previously, managed applications are compiled to an intermedi
ate byte code called the Common Intermediate Language. This language is sim
ply a series of byte codes that define an opcode set for a virtual stack-based
processor. A run-time engine, implemented in native CPU instructions, converts
the byte codes to native instructions and then has the CPU execute the native
instructions. This process, called just-in-time compilation, differs from conven
tional interpreters because the native instructions are cached. If the method is
executed again, the cached native instructions are directly called instead of the
original byte codes being reinterpreted as in an interpreter. One can argue the
merits of waiting to convert virtual instructions to native instructions at run time;
this text simply accepts that the .NET runtime uses this process.

Performance of a JIT runtime, although inferior to that of native compiled
code, isn't as bad as you might think. The compilation takes place only on the
code paths being executed in the module, so any code not executed isn't com
piled. Also, because most routines execute many times, the average speed of a
routine will eventually approach the speed of precompiled native code. As long
as the system retains enough free memory, the cache will retain the code for the
application, alleviating the need to recompile the methods.

In low-memory conditions, the execution engine tries to recover memory
in a process called garbage collection. During garbage collection, the runtime
finds all the discarded heap objects and recovers that memory for reuse. The
remaining objects that are still in use are relocated to the start of the heap.
Because this process involves moving in-use objects, all threads in the applica
tion are suspended during the garbage collection. If the garbage collection
doesn't free enough memory, parts of the code cache can be purged in a pro
cess called code pitching. If code for a method is pitched and that method is
executed again, the original byte codes are reloaded and recompiled.

Microsoft currently supports two high-level languages for generating CIL
byte codes for execution on the Compact Framework runtime: Visual Basic
.NET and Visual C#. Both tools come with components that generate Compact
Framework applications and automatically deploy the application to devices or
emulators. Visual Studio also has a remote debugger that debugs the code on
the device remotely from a connected PC. Microsoft doesn't provide a tool for
generating managed code for the Compact Framework with its C++ compiler.

Although many embedded developers are familiar with Visual Basic, if only
to sneer at Visual Basic developers, C# (pronounced C shatp) is a new language
created by the developers at Microsoft to be a better C++. C# retains most of
C++'s syntax while providing improvements that tend to encourage safer code.

HelloCF

Chapter 23 Programming the .NET Compact Framework 1117

Regardless of opinions and snobbery of some developers, the runtime
doesn't care about the high-level language used to create a Compact Framework
application as long as the compiler produces the IL byte codes supported by the
runtime. One of the nicer features of the .NET environment is that the full power
of the runtime and its accompanying class library is available to all languages
equally. As a result, Visual Basic .NET programmers can now create applications
just as powerful, fast, and functional as can be created with Visual C#.

In the spirit of the Chapter 1 discussion introducing Windows CE applications,
the following HelloCF example introduces a basic Compact Framework applica
tion. This first HelloCF example is written in C#, although I'll present a Visual
Basic .NET example shortly. The first version of HelloCF is shown in Listing 23-1.

public class Hello
{

}

static void Main()
{

System.Console.Writeline ("Hello Compact Framework");

Listing 23-1 HelloCF source code

A C# program is encapsulated in one or more classes; in the preceding
program, the class is Hello. The only method of this class is the static method
Main, which is the entry point to the program. In this example, Main takes no
parameters and returns no values, although both are possible in C#.

The static keyword indicates that this method is associated with the class,
not an instance of the class. This essentially means that the method is accessible
by referencing the class Hello instead of having to create an instance of the class
Hello and then calling the method. In the case of the entry point of the appli
cation, this distinction is important since an instance of the class Hello has not
been created when the application is launched. In most cases, Main will create
an instance of its encapsulating class, as we'll see in later examples.

The single line of code in Main is a call to the WriteLine method of the
Console class. As you can guess, WriteLine displays the string on the console
associated with the application. If a console driver is not present on the system,
as with the Pocket PC, the line doesn't get displayed at all. After calling Write
Line, Main exits, terminating the program.

"
1118 Part V Advanced Windows CE

Namespaces
Notice th,at the text System.Console. WriteLine specifies the call to WriteLine.
Going from right to left, WriteLine is the i;iame of the method in the class Con
sole. System is. the name~pace where the Console class is defined. The concept
of namespaces is used extensively throughout .NET languages. Namespaces
are constructs that organize the naming scheme of the application and the
library of classes the application references. Namespaces prevent naming con
flicts across independently created classes by enclosing those classes in unique
namespace names.

For example, two class libraries developed independently can both contain
classes named. Bob. As long as the namespaces of the two libraries are unique,
the application can reference each of the Classes by prefixing the reference with
the namespace containing the desired class. So if one namespace is named Big
CorpClassLib arid the other is named UpAndComingClassLib, the classes will be
referenced as BigCorpClassLib.Bob and UpAndComingClassLib.Bob.

To avoid having to explicitly reference the namespace of each class, C#
provides the using directive to declare that the compiler should check refer
ences in the file with the definitions in the namespace in the using directive.
Multiple using directives can be declared in a file. Listing 23-2 shows HelloCF
with a using statement.

Listing 23-2 HelloCF with a using statement

Regardless of whether a using directive is declared, the application can
still reference the class explic;:itly by specifying the namespace that encapsulates
the class. This scheme allows an application to use a using directive for simplic
ity but still reference a class in another namespace that happens to have a name
that conflicts with a class in the current namespace. For example, if HelloCF
wanted to reference. both the Console class in System, which was referenced in
the using directive, and a class named Console in BigCorpClassLib, the
namespace could be explicitly referenced, as in

Console.WriteLine ("Hello Compact Framework");
BigCorpClassLib.Console.WriteLine ("Hello Compact Framework");

Chapter 23 Programming the .NET Compact Framework 1119

Traditionally, all but the most trivial of "Hello World" applications also
declare a namespace of their own. This leads us to the last of the HelloCF
examples written in C#, shown in Listing 23-3.

using System:
namespace HelloCF
{

}

public class Hello
{

static void Main()
{

Console.WriteLine ("Hello Compact Framework");
}

Listing 23-3 HelloCF that defines its own namespace

The namespace can be any name, although the Visual C# code wizard will
create a namespace that matches the name of the project. The namespace
encloses all the structures, classes, and other definitions within the namespace.
In addition, multiple files can specify the same namespace. The code resulting
from a compilation of multiple files each specifying the same namespace will
then be combined in the resulting module.

Visual Basic . NET
But what of our Visual Basic cousins? Although all of the examples in this book
have been written in C, C++, or C# for valid reasons, the truth of the matter is
that the audience of Basic programmers is significantly larger than that of C and
C++ programmers. The same Hello World program written in Visual Basic .NET
would look like the version shown in Listing 23-4.

Imports System

Module Module!
Sub Main()

Console.WriteLine("Hello Compact Framework.")
Ehd Sub

End Module

Listing 23-4 HelloCF written in Visual Basic .NET

The difference between the Visual Basic example and the C# example is
frankly not that great. Of course, there is the difference in the text used to mark
subroutines vs. methods, and the use of the Imports keyword instead of the

1120 Part V Advanced Windows CE

using directive. Still, the structure of the two programs is remarkably similar.
The key similarity is that both examples use the same class library! This means
that a Visual Basic .NET program can do anything that a C# program can do.
This is a huge improvement over the old days, when languages weren't picked
for their syntax but for their function. The remaining examples in this chapter
will be written in C# for consistency, but everything presented in this chapter
can be applied equally well to Visual Basic and C# applications.

Common language Runtime Basics
The common language runtime (CLR) is the foundation of all .NET languages.
The runtime, along with the Framework Class Library, defines everything from
the base data types to methods to connect to the Internet. Such an ambitious
foundation deserves a bit of coverage here.

Value vs. Reference Types
Data types in the CLR are divided into two categories, value types and reference
types. Instances of value types contain the data for that instance. Value types are
data types such as signed and unsigned integers, shorts, and bytes. Structures are
also value types in the CLR. Assigning a value to a value type causes the data to
be held by the instance of that type. The data contained by the instance of the
type can be copied to another instance of the type with a simple assignment, as in

x = y;

Reference types are those wherein the instance of the type refers to the
data for the type instead of containing it. From a C perspective, reference types
are pointers to data, whereas value types are the data itself. In C#, any class is
a reference type. When a reference type is assigned to another reference type,
the reference is copied instead of the data.

Understanding the difference between value types and reference types is
critical to .NET languages. Consider the following scenario with two instances
(A and B) of some data type:

A.x = 3;
B = A;
B.x = 4;

Given this sequence, what result does the property A.x end up with? Well, it
depends: are A and B value types or reference types? If A and B are structures,
the assignment of B to A simply copies the data from structure A to structure B
because structures are value types. So the data in the structures A and B remains
independent. When B.x is assigned 4, the x property of Bis modified but the
same property of A is unchanged. A.x remains 3 because B was a copy of A.

Chapter 23 Programming the .NET Compact Framework 1121

If A and Bare classes, they are reference types. In this case, the statement
B =A simply copies a reference of the class referenced by A to B. So the assign
ment of B.x to 4 sets the x property of the class referred to by B to 4. Since both
A and B refer to the same class, B.x refers to the same property x of the class
as A.x. The expression A.x in this case results in the data 4.

Another consideration close to the heart of any embedded programmer is
the implementation details of value types vs. reference types. Value types are
maintained on the virtual stack of the machine. They are not subjected to gar
bage collection because their data is contained on the self-managing stack. The
data for reference types is maintained in the system heap, with the reference to
the data maintained on the stack. Think of a pointer to data being kept on the
stack while the data itself is in the heap.

Aside from defining structures instead of classes, the programmer has little
control over using reference types vs. value types. The value types are limited
to the standard integer types known to all programmers. Everything else is a
reference type.

Passing value types to methods can be accomplished by passing either the
value or a reference to the value. If the value is passed, a copy of the data is
placed on the stack and passed to the called method. Any changes to the value
made by the called method do not change the value in the calling routine. If a
reference is passed, a reference to the data type is passed to the called method.
In this case, the called method can modify the value in the calling routine
because the reference refers to the original data. The following short code frag
ment demonstrates this:

private void CallingRoutine ()
{

int a, b, c;

a = 1 ·
b = 2;
c = 3·
testl (a, ref b, out c);
II Will produce a:l b:6: c:7
Console.Writeline ("a:{0} b:{l} c:{2}", a, b, c);
return;

private void testl (int a, ref int b, out int c)
{

a = 5;

b = 6;

c = 7;

return;

1122 Part V Advanced Windows CE

The function prototype of the called routine, testl, shows the C# syntax
for passing parameters. The parameter a is passed as a value type, so any
changes in the called routine won't affect its original value in the calling rou
tine. The parameter b is passed as a reference type. This means that any
changes to b in testl are reflected in the original value in the calling routine.
The ref keyword also causes the C# compiler to require that a type parameter
be set before calling testl. The final parameter, c, is marked as an out parame
ter. Out parameters are reference parameters with a twist: they don't have to be
initialized before they're passed to the called routine, but the called routine
must set any out parameters before returning.

Events and Delegates
Another somewhat interesting aspect of .NET programming is the concept of
delegates and events. Although the names are new, the concepts are not. Adel
egate is the managed version of a typed function pointer. C++ programmers are
familiar with declaring a callback function of a specific type. In the following
unmanaged code, the type POWERCBPROC is defined as a function prototype
that can be used as a callback to the application in case of a power change.

II Callback function prototype
typedef BOOL (CALLBACK* POWERCBPROC)(DWORD);

In C#, the corresponding delegate would be defined as follows:

public delegate bool PowerEventHandler (uint data);

The public designation allows the delegate to be referenced outside the class
where it was defined. The public designation is common because delegates are
typically used by classes to define methods that will be called from other
classes. The delegate keyword defines this line as a delegate. The remainder of
the line is the prototype of all the methods that will be called when the event
tied to this delegate is fired.

An event is an object that contains a list of methods matching a specific
prototype. The methods can then be called by invoking the event. From a C++
perspective, think of an event as an array of function pointers. The process of
raising an event results in the code calling each of the function pointers in the
array. In managed code, each method in the event list must match the specific
function prototype specified in an associated delegate. The following code
declares an event named PowerEvent of type CbEventHandler, which was
declared in the preceding delegate discussion.

public event PowerEventHandler PowerEvent;

Chapter 23 Programming the .NET Compact Framework 1123

The event declared here is PowerEvent. Its type is the delegate Power
EventHandler. As you can see, the event can't be declared without the corre
sponding delegate type being defined as well. Referring back to the C++
comparison, a list of function pointers shouldn't be defined without a corre
sponding function prototype defining the functions pointed to in the list.

Once a class defines both a delegate and an event, classes can register for
the event by creating a method that matches the delegate and then adding a ref
erence to that method to the event. The creation of the method is simple
because all it has to do is match the parameter list and return a value defined
by the delegate. The following code shows a skeleton of an event handler rou
tine that matches the PowerEventHandler delegate:

bool MyPowerEventHandler (uint data)
{

II Do something here.
return true;

Registering with the event is syntactically different, depending on the language.
For C#, registering with the event is accomplished with the +=operator, as in

PowerEvent +=new PowerEventHandler (MyPowerEventHandler);

The new keyword is needed because the code needs to create a new event that
points to the MyPowerEventHandler method. The new event instance is then
added to the event chain with the += operator. It's important not to use the =
operator because the direct assignment would remove any other event handlers
from the event list.

In Visual Basic .NET, the syntax for attaching to an event is as follows:

AddHandler PowerEvent AddressOf MyPowerEventHandler;

Regardless of the language, understanding events and delegates is critical
to understanding how .NET applications work. When a Visual Studio designer
tool is used, the part of the tool that provides forms-based code generation typ
ically inserts the proper references and automatically creates the skeletons of
the event handlers, so all that's necessary is to fill in the code. Although the
designer is quite helpful, using it doesn't take the place of understanding what's
really going on in the code.

Strings
The subtleties of managed strings are important to understand. The standard
string class maintains what is called an immutable string, one that can't be
changed. This means that anytime you modify a string, the Framework creates
a new string class with the new characters and, unless the application keeps the

1124 Part V Advanced Windows CE

original string in scope, discards the old string to be garbage collected some
time in the future. For example, consider the following:

string str = "abcdef";
str = str + "g";
str = str + "h";
str = str + "i";
str = str + "j";
Console.Writeline (strl;

In this code, five different string objects are created before the string is finally
displayed with the WriteLine method. Each time the string is modified by
appending a character, the original string instance is discarded and a new one
created. Clearly, poorly designed managed applications can produce huge
amounts of discarded strings that will eventually require a garbage collection to
recover.

To avoid excessively generating discarded strings, the Framework provides
a StringBuilder class. This stringlike class maintains a mutable string, one that
can be modified in place. An instance of a StringBuilder class is analogous to a
self-managing character buffer. When an instance is created, either a size of the
buffer is specified by the application or a default size is used. Once the instance
is created, characters can be added, trimmed, or changed without the overhead
of discarding the current instance of the class. Individual characters in the string
can be referenced by its index into the array of characters. For example

II Create a string builder with the string abcdef and a max capacity of 256.
StringBuilder sb =new StringBuilder ("abcdef", 256);
char c = sb[4];
Console.Writeline (c.ToString());
sb[3] = 'z';
Console.Writeline (sb.ToString());

II This displays the character 'e'.

II This displays the string "abczef".

The StringBuilder class is great for string manipulation, but it's not a
string. So after the string is constructed, the characters in StringBuilder are typ
ically converted to a string for use. Although both C# and Visual Basic .NET
make it simple to use the standard string class, any involved string formatting
routines should use the StringBuilder class to avoid excessive load on the heap.

The string class has one method that deserves special attention. The static
Format method provides a sprintf-style function that formats parameters into a
string. The prototype of string.Format looks like the following:

public static string Format(string, object, object, object);

As with sprint/, the first parameter is the formatting string. The remaining
parameters in the variable-length parameter list are the objects whose string
representations will be used in the formatting placeholders in the format string.

Chapter 23 Programming the .NET Compact Framework 1125

The formatting characters used in the Framework are different from the
standard C format characters such as %d and %x. Instead, the parameter place
holders in the string are enclosed in curly brackets and reference the individual
parameters explicitly. For example, to reference the first parameter in the
parameter list, the placeholder is (OJ. The placeholder (1} is used to reference
the second parameter, (2} references the third parameter, and so on. The objects
in the parameter list all must be able to be converted to a string. For standard
numbers and strings, this conversion happens automatically, but for complex
types, the ToString method, available in all objects in the Framework, must be
explicitly used to create a string representation of the object.

Individual placeholders can also specify how the object is presented. For
example, a number can be presented in decimal, hexadecimal, or any numher of
other formats. The formatting characters are specified in each of the placeholders
by adding a colon followed by the formatting string. For example, the following
string represents the number 100 in decimal, hexadecimal, and scientific formats:

string str =string.Format ("a:{0:d}, b:{l:x}, c:{l:e}", 100, 100, 1001;
II Results in the output
a:l00, b:64, c:l.000000e+002

In addition, significant digits both before and after the decimal point can be
specified in the formatting string. Notice how the Format method is referenced
by specifying the string type, not an instance of a string. This is because Format
is a static method of the string class.

String formatting characters can also be used in the ToString methods of
many of the objects in the Framework. For example, the string created previ
ously with the Format method can also be created with the following statement:

string str= "a:"+ 100.ToString() +"a:"+ 100.ToString("x")
+"a:"+ 100.ToString("e");

The Framework supports a number of other formatting characters. A com
plete list of the capabilities of formatting strings can be found in the .NET Com
pact Framework documentation.

The Framework Class Library
Visual C# and Visual Basic .NET provide the language syntax for describing the
program flow, but to get anything done besides adding numbers, the applica
tion needs to use the Framework Class Library (FCL). 2 On the desktop version

2. Even adding numbers could be interpreted as needing the FCL since the base types such as Int32 are
defined in the class library. The high-level language simply uses aliases to these base value types that
conform to the syntax of the language.

1126 Part V Advanced Windows CE

of .NET, the FCL provides an outstanding amount of functionality, easily seduc
ing the most skeptical of programmers with support for the most complex of
tasks. The class library that comes with the Compact Framework is significantly
less functional but still quite powerful.

The class library in the Compact Framework supports most of the major
functional groups supported by the desktop, albeit with fewer classes and
methods. The Compact Framework supports threading, file operations, the 2D
drawing functions, socket programming, Web service clients, and many of the
other parts of the standard FCL.

What isn't supported is the GDI+ drawing method, remoting, generic seri
alization, and classes designed for server operation. The criteria for deciding
what went into the Compact Framework FCL are based on which classes were
needed for basic client Windows Forms applications that access data both on
the local device and through the Internet. The size of the resulting runtime was
also a chief consideration because the larger the runtime, the greater the need
for OEMs to use larger, more expensive Flash chips in their devices.

Windows Forms Applications
Almost every managed application created for the Compact Framework will be
a Windows Forms application. Because of this, this section of the Framework
deserves some special attention. Windows Forms applications relate to simple
managed applications as Windows applications relate to console applications.
Windows Forms applications create one or more windows on the Windows
desktop. This top-level window is referred to as a form. The form almost always
contains many child windows, typically predefined controls provided by the
Framework but also controls created by the application.

Visual Studio makes creating Windows Forms applications almost trivial
with its powerful application designer. While all programmers, including me,
use the designer to create Windows Forms applications, understanding the
underlying code is important. For this reason, I'm going to briefly dive into the
nuts and bolts of Windows Forms applications, not from a designer perspective,
but from a code perspective. This short introduction can provide all the details
inquisitive programmers would want. The best source of how Windows Forms
applications work is Charles Petzold's two books Programming Microsoft Win
dows with C# and Programming Microsoft Windows with Visual Basic .NET,
both from Microsoft Press.

The Windows Forms library can be considered analogous to the GWE
functionality of Windows CE. It provides extensive classes for creating windows
and controls as well as drawing elements such as brushes, pens, and bitmaps.

Chapter 23 Programming the .NET Compact Framework 1127

The limitations in the Windows Forms classes center around the reduction in
the exposed methods and properties that are available on the desktop version
of the FCL.

One significant difference in the Compact Framework implementation of
the Windows Forms classes is the lack of a WndProc method in the Control
class. On the desktop, this method can be overridden so that the managed
application can intercept any unmanaged window message, such as WM_SIZE,
and deal with the message as the managed code sees fit. On the Compact
Framework, the Control class does not expose this method, effectively isolating
the managed code from the underlying operating system. Even using tech
niques to discover the true window handle of a managed control can be dan
gerous. The Compact Framework pools window handles and can reuse them
unexpectedly. To throw a bone to those programmers who need access to win
dow messages, a special Compact Framework class, the Message Window class,
is supported that does expose the WndProc method. That class is discussed
later in this chapter.

Just as Windows applications have a message queue and a corresponding
message loop to handle the messages, Windows Forms applications also man
age window messages, although in the case of managed applications the
Framework hides the grisly details of the message loop.

A Basic Windows Forms Application
A Windows Forms application is signified by the declaration and creation of
one or more form classes along with a call to the Run method of the Applica
tion class to start the window message-processing infrastructure under the cov
ers. A trivial Windows Forms application is shown here:

using System;
using System.Windows.Forms;

namespace FirstWindowsForms
{

class WindowsFormsl : Form

static void Main()

WindowsFormsl f =new WindowsFormsl();
f.Text ="Form Title";
Application.Run Cf);

1128 Part V Advanced Windows CE

The structure of the application looks somewhat strange because a method in
the class is actually creating an instance of the class; however, this is the tradi
tional structure of a Windows Forms application. The Run method of the Appli
cation class is a statically defined method that starts the message loop
processing under the covers of the application. Like a message loop, the Run
method doesn't return until the form passed as its single parameter is destroyed.
When this happens, the Run method returns, Main exits, and the application
terminates.

The Form class is derived from the Control class, which is the basis for
windows in a Windows Forms application. The methods and properties of the
Control and Form class are too numerous to list in this short discussion, but
they provide the typical information that would be expected for a window,
such as size, position, client area, window text, and such. Figure 23-1 shows
this first Windows Forms application as it appears on an embedded Windows
CE platform.

Figure 23-1 A simple Windows Forms application

Painting
The Control class, and by inheritance the Form class, contains a series of methods
that can be overridden to customize the look and feel of a window. Most of these
methods correspond to window messages. For example, the OnPaint method is
called when the form needs to paint some region of its window. In the following
code, the OnPaint method is overridden to draw an ellipse in the window.

using System;
using System.Drawing;
using System.Windows.Forms;

namespace FirstWindowsForms
{

Chapter 23 Programming the .NET Compact Framework 1129

cl ass WindowsFormsl : Form

static void Main()

WindowsFormsl f =new WindowsFormsl();
f.Text = "Form Title";
Application.Run (f);

private Color c = Color.Blue;
protected override void OnPaint(PaintEventArgs e)
{

Rectangle re = new Rectangle (0, 0,
ClientRectangle.Width - 1,
ClientRectangle.Height - l);

Brush br =new SolidBrush (c);
e.Graphics.FillEllipse (br, re);
br. Dispose();
base.OnPaint (e);

Figure 23-2 shows the results of the code.

Figure 23-2 A Windows Forms application
that draws an ellipse in its form

The ellipse is drawn in the OnPaint method. The single PaintEventArgs
parameter provides two properties: the self-explanatory ClipRectangle and an
instance of a Graphics class. The Graphics class wraps the device context (DC)

1130 Part V Advanced Windows CE

for the window. The Graphics class contains a large number of properties and
methods for integrating the state of the device context and drawing in the DC.
The preceding simple example uses the DrawEllipse method to draw the ellipse
on the form.

Adding Controls
Many Windows Forms applications never override the OnPaint method.
Instead, they create forms with a number of controls that provide the entire user
interface needed for the application. Providing a control on a form is a multi
step process. First a member variable of the specific control class type is defined
in the form class. An instance of the control is then created, and the necessary
properties of that form are initialized. The control is then added to the control
collection of the form. Finally the form handles any relevant events that the
control fires.

In the following example, a button control is added to the form so that
when it is pressed, the color of the ellipse changes from red to green to blue.
First a member variable is defined of class Button, as shown here:

protected Button btnChangeColor;

The member variable is declared as protected because although there is no
need for outside classes to manipulate the control, if the program were rewrit
ten to derive a class from the form, the derived form might want to access the
button.

Next an instance of the button must be created. This is best done when
the form class is created. Once the form class is created, the size and location
of the button are set along with its text. The following code shows the form
constructor routine that creates and initializes the instance of the button:

public WindowsFormsl ()
{

btnChangeColor =new Button();
btnChangeColor.Location =new Point (5, 5);
btnChangeColor.Size =new Size (70, 25);
btnChangeColor.Text ="Click Me!";

The location and size properties of the button are initialized with Point and Size
structures, respectively. These structures need to be created-hence the new
keyword that creates and, in combination with their constructor routines, initial
izes the structures.

A common mistake of programmers who hand-generate Windows Forms
code is to forget the next step: the control that has been created must be added
to the collection of controls that the form class owns. This task is accomplished

Chapter 23 Programming the .NET Compact Framework 1131

with the following line of code, which must be placed after the child control
has been created:

this.Controls.Add (btnChangeColor);

All classes based on Control, including Form, have a Controls property, which
is a ControlCollection class that maintains a list of the controls in the window.
The ControlCollections class has an Add method that is used to add a new con
trol to the list. At this point, the application can be recompiled and the button
will appear in the window. Figure 23-3 shows the window with the button in
the upper left corner.

Figure 23-3 The Windows Forms application with a button
in the upper left corner of the form

Adding an Event Handler
The control has been added, but clicking on it has no effect. To have the appli
cation be notified when the user clicks the button, an event handler needs to be
added to the code. While the designer makes adding an event handler a point
and-click affair, programmers should understand the underlying code.

Adding an event handler is done in two parts: first the event handler rou
tine has to be added to the application, and second the routine has to hook the
event chain for the control. The delegate of the event handler depends on the
event being handled, but traditionally, Windows Forms controls throw events
with a delegate that looks similar to the following:

void EventHandler (object o, EventArgs e);

The object is the source of the event, and EventArgs is a dummy class that,
although providing no additional information, is the base class for argument
classes that do provide information. For example, a mouse event passes a Mouse-

1132 Part V Advanced Windows CE

EventArgs class derived from EventArgs that provides information such as the
mouse coordinates. To add a button click handler, the default function proto
type is used since the button click event doesn't return any additional data. The
handler for the click event is shown here:

protected void MyClickEventHandler (object o, EventArgs e)
{

if Cc== Color.Blue)
c Color.Red;

else if (c ==Color.Red)
c = Color.Green;

else if (c ==Color.Green)
c = Color.Blue;

this.Invalidate();

For the second part, adding the event handler to the list of handlers, the follow
ing single line is used:

btnChangeColor.Click +=new EventHandler(MyClickEventHandler);

This code creates a new event handler that is then added to the button's Click
event. When the example is now recompiled and run, clicking on the button
will cause the ellipse to be redrawn in a different color.

Where Is All This Code?
So, you might ask, where is all this code when I use the designer to generate a
Windows Forms application? If you check out the code of any designer-gener
ated Windows Forms application in Visual Studio, you'll find the following lines
of code:

protected override void Dispose(bool disposing)
{

base.Dispose(disposing);

#region Windows Form Designer generated code
Ill <summary>
Ill The main entry point for the application.
Ill <!summary>

static void Main()

Application.Run(new Forml());

Chapter 23 Programming the .NET Compact Framework 1133

Notice the line #region Windows Form Designer generated code. This line hides
a large amount of autogenerated code that the designer inserts in the applica
tion as controls are dragged and dropped into the form by the developer.

Opening up that region of hidden code by clicking on the line shows that
the designer-generated code simply sets the location, size, and other properties
of the controls, as was done in the preceding examples. One of the interesting
features of the .NET languages is that all information on the layout of the forms
is contained in the source code, not in a separate resource file as is done in
unmanaged Windows code. Resources are available in managed applications,
but they're used for storing language-specific strings, cursors, bitmaps, and
such; they're not used for dialog box templates.

Configuring a Top-Level Form
The Compact Framework supports a handful of different methods for configur
ing the look and feel of the top-level form. Forms can be made to cover the full
screen, have an OK button instead of a smart Close button, and, on non-Pocket
PC systems, change the default size and location of the window.

On a Pocket PC, the standard smart Minimize button, which looks like a
Close box but actually minimizes the application, can be converted to an OK
button that closes the window by setting the MinimizeBox property to false. The
button can be removed completely by setting the Contro!Box property to false.

To hide the navigation bar, set the form's FormWindowState property to
Maximized. The only other setting supported is the default state, Normal. You
can remove the menu bar by deleting the MenuBar class, which the designer
adds automatically. In addition, the size and location of the top-level form can't
be changed on a Pocket PC unless the FormBorderStyle property is set to null.
In this case, the form can be placed anywhere on the desktop, but it won't have
a border.

On embedded systems, the properties have a somewhat different action.
Setting the ControlBox property to false removes the caption bar. Setting the
MinimizeBox and MaximizeBox parameters to false removes the Minimize and
Maximize buttons from the caption bar. Setting the WindowState parameter to
Maximized maximizes the window. Adding a MenuBar class to the form causes
a command bar control to be placed at the top of the client area of the form.
Finally, the Size and Location parameters are used, even if the ControlBox
parameter is true.

1134 Part V Advanced Windows CE

Compact Framework Unique Classes
The Compact Framework supports a series of classes that are not on the stan
dard desktop version of the .NET Framework class library. These classes are
provided to support a few of the unique situations that mobile applications
encounter. They include classes for dealing with the soft keyboard, or soft input
panel (SIP); infrared communication; and interprocess communication.

Message Window
The Message Window class provides a method for unmanaged code to send
standard window messages to Compact Framework applications. On the desk
top, the Control class provides a WndProc method that can be overridden to
see all the window messages sent to the control. Because most window classes
in the framework are derived from the Control class, this lets a desktop appli
cation monitor window messages for almost every window in the application.
In the Compact Framework, however, the Control class doesn't provide a Wnd
Proc method, so there's no way to see the window messages sent to the con
trols in the application. The MessageWindow class, unique to the Compact
Framework, is an exception. This class creates a hidden window and provides
not only a WndProc method to monitor messages sent to the window but also
an Hwnd property that provides the handle to the window.

Instead of creating an instance of the MessageWindow class, applications
derive a class from Message Window and then override the WndProc method so
that the message sent to the window can be seen. The WndProc method is
defined as

protected virtual new void MessageWindow.WndProc (Message ml;

The only parameter is an instance of a Message structure that describes the
message received by the window. The Message structure has the following
properties:

public I ntPt r Message.HWnd;
public int Message.Msg;
public IntPtr Message.WParam;
public IntPtr Message. LP a ram;
public IntPtr Message.Result;

The properties represent the standard parameters of a call to a window proce
dure: the handle to the window, the message value, the wParam value, and the
lParam value. The additional property, Result, is the value returned by the mes
sage. The Message structure also has one interesting method, Create, shown here:

public static Create (IntPtr hwnd, Int32 msg, IntPtr wparam, IntPtr lparam);

Chapter 23 Programming the .NET Compact Framework 1135

This method provides a single-line initialization function for the other proper
ties in the structure.

The following code fragment shows how the Message Window class can be
used.

using Microsoft.WindowsCE.Forms;

public class MyMsgWnd : MessageWindow
{

protected override void WndProc (ref Message m)
{

II WM_USER is defined as 0x400
if (m.Msg == 0x400)

strings= string.Format
"WM_USER received wParam:{0:X} lParam:{l:X} "
m.WParam.Toint32(), m.LParam.Toint32());

MessageBox.Show (s);

base.WndProc (ref m);

This code fragment shows the declaration of the MyMsg Wnd class derived from
MessageWindow. MyMsgWnd overrides the WndProc method and displays a
message box when a window receives a WM_ USER message created by MyMsg
Wnd. Because this is a managed application, there is no declaration for all the
standard window messages. A glance at any Windows CE SDK will show that
WM_USER is defined as Ox400 in Winuser.h.

The Message Window class has two static methods that can be used to send
or post window messages to other windows. They are the appropriately named
SendMessage and PostMessage, shown here:

public static void MessageWindow.PostMessage (Message m);
public static void MessageWindow.SendMessage (Message m);

The two methods each take a Message structure as their single argument.
MessageWindow also exposes the handle of the window created by the

class in the read-only property Hwnd, defined as

public IntPtr MessageWindow.Hwnd;

The Hwnd property is unique in the Compact Framework because it's the only
place where a real window handle is exposed to managed code. Other controls
in the Compact Framework don't expose their window handles and therefore
can't be sent to other applications. The MessageWindow class will be used in
the IrSquirtCF example later in this chapter.

1136 Part V Advanced Windows CE

lnputPanel
The InputPanel class provides Compact Framework applications information
regarding the state of the SIP (the soft keyboard) on the Pocket PC or other
embedded devices with a soft keyboard. In addition, the InputPanel class can
be used to control the state of the SIP, enabling the application to show or hide
the SIP as needed. The methods and properties of the InputPanel class are
shown here:

public void InputPanel.InputPanel C);

public Rectangle. InputPanel. Bounds;
public Rectangle InputPanel .VisibleDesktop;
public bool InputPanel. Enabled;
public event EventHandl er Inputpanel. Ena bl edChanged;

Interestingly, the methods of the InputPanel class are not marked static, so to
monitor or control the SIP, the class must first be instantiated. The InputPanel
constructor takes no arguments. The InputPanel read-only properties Bounds
and VisibleDesktop, both defined as rectangles, provide information about the
size and position of the SIP as well as the size of the desktop area not obscured
by the SIP.

The VisibleDesktop property provides the rectangle that is the area of the
desktop not covered by the SIP. This rectangle changes depending on whether
the SIP is displayed or hidden. When the SIP is displayed, the rectangle ranges
from just below the navigation bar to just above the top of the SIP window.
When the SIP is hidden, the rectangle includes all of the area of the screen
below the navigation bar, including the area of the menu bar if one was created
by the application.

The Bounds rectangle describes the size and location of the SIP when it's
displayed. This rectangle doesn't change if the SIP is hidden. Instead, it always
shows the location and size of the SIP as if it were being displayed. Applica
tions wanting to adjust their windows to avoid being covered by the SIP should
use the VisibleDesktop property instead of the Bounds property.

The Enabled property is set to true if the SIP is displayed and false if the
SIP is hidden. The property is settable, providing the application the ability to
show or hide the SIP simply by changing this property.

The InputPanel class contains an event that can be hooked to notify the
application when the state of the SIP changes from hidden to shown or shown
to hidden. The delegate associated with this event contains only the default
object and the EventArgs parameters, so when the event fires, the event handler
must query the new state of the SIP using the Enabled parameter.

Working with the SIP Unless the FormBorderStyle property of the Form class is
set to null, the Pocket PC implementation of the runtime overrides the Size and

Chapter 23 Programming the .NET Compact Framework 1137

Location properties, preventing an application from resizing a form in response
to the SIP being shown or hidden. A workaround for this issue is to create a
Panel control or a property sheet on the form and then place all the other con
trols for the form on that control. An example of using the EnableChanged
event can be seen in the IrSquirtCF example later in this chapter. In the exam
ple, the EnableChanged event is overridden to adjust the size of the output list
box control.

lrDA Classes
The Compact Framework supports managed classes for Infrared Data Associa
tion (IrDA) communication. The classes are extensions of the Socket class pro
vided both in the desktop version of the Framework Class Library and in the
Compact Framework. The extensions center around two classes: IrDAClient,
which provides the interface to the IrDA socket stream, discovery information,
and status information about the current connection; and IrDAListener, which
provides server support for listening for other devices that want to initiate an
infrared (IR) connection with the device. A number of other classes provide
support for these two major classes.

lrOAC/ient The IrDAClient class provides the following methods and proper
ties:

public void IrDAClient () ;

public void IrDAClient C IrDAEndPoint);
public void IrDAClient (string);
public void Connect(IrDAEndPoint);
public void Connect(string);
public void Close();
public IrDADeviceinfo[] DiscoverDevices(int);
public static IrDADeviceinfo[] DiscoverDevices(int, Socket);
static string GetRemoteMachineName (Sockets);
public Stream GetStream();
public string RemoteMachineName:

This variety of methods and properties provides most of the functionality
needed for IR communication. To initiate communication with another device,
an application first uses the DiscoverDevices method to determine whether any
devices are in range. This process is shown in the following code fragment:

IrDAClient irClient;
irClient =new IrDAClient();
IrDADeviceinfo[] di = irClient.DiscoverDevices(4);
if (di. Length > 0)

foreach ClrDADeviceinfo device in di)

(continued)

1138 Part V Advanced Windows CE

Console.Writeline ("Device:"+device.DeviceName+" discovered.");

else
Console.Writeline ("No devices discovered.");

The single parameter DiscoverDevices is the maximum number of devices to
return.

Once a device has been detected, the application can connect to a specific
service on the device by calling the Connect method on an IrDAClient class.
Connect can take one of two different parameters, either an lrDAEndPoint class
describing the device and service to connect to or simply a string requesting a
connection to a specific named service provided by the other device.

After a connection is made successfully, the GetStream method is called to
get an instance of a stream class to communicate with the other device. The
stream class is the same class that forms the basis for the filestream classes used
elsewhere in the Framework. The stream class contains the requisite read and
write methods for sending and receiving bytes from the other device.

When communication is completed with the other device, the stream class
and the IrDAClient class should be closed. In addition, after the Close methods
have been called, the Dispose methods on both classes should be called before
the class goes out of scope. This ensures that any system resources used by
those classes will be freed immediately instead of waiting until a garbage col
lection occurs.

lrDAListener The IrDAListener class is used to create an lrDA server socket that
can listen for incoming connection requests. The interesting methods and prop
erties of IrDAListener are shown here:

public IrDAListener(IrDAEndPointl;
public IrDAListener(string);
public IrDAEndPoint LocalEndpoint {get;}
public IrDAClient AcceptlrDAClient();
public Socket AcceptSocket();
public bool Pending();
public void Start();
public void Stop();

The IrDAListener constructor can specify either an lrDAEndPoint class or sim
ply the name of the infrared service that the server should advertise. Once an
instance of the class is created, the start method is called to listen for any incom
ing requests for connections. Connections can be detected by calling the Pend
ing method. The Pending method will return true when another device has
requested an infrared connection. Once a connection request is detected, the
server calls the AcceptSocket method, which returns an instance of an IrDA
Client class that is then used for communication.

Chapter 23 Programming the .NET Compact Framework 1139

The following code fragment shows the process of creating an IrDA
Listener class and waiting for a connection:

IrDAListener irlisten;
IrDAClient irClientSrv;
Streams;

irlisten =new IrDAListener("MySquirt");
irlisten.Start();

while (isRunning)
{

if (irlisten.Pending())
break;

if (isRunning)
Thread.Sleep (500);

irClientSrv = irlisten.AcceptlrDAClient();
s = irClientSrv.GetStream();

Notice that the Pending method call is made within a polling loop. Unfortu
nately, Pending doesn't block, so a server thread must continually call Pending
to determine when a client device wants to connect. Because polling must be
done relatively infrequently in a Windows CE device to avoid running down the
battery, the preceding code sleeps the thread for half a second before checking
again for a connection. This polling process is best done on a thread other than
the primary thread of the application.

The IrSquirtCF example later in this chapter demonstrates the use of the
IrDA classes. That example demonstrates device discovery, operating as an IR
server, and operating as an IR client.

Accessing the Underlying Operating System
Even with the new classes provided by the Compact Framework, the functional
ity of the Compact Framework base class library is significantly less than that of
its desktop counterpart. The need to keep the run-time libraries small to reduce
the hardware impact, the decision to focus on client-side processing, and the
pressure to ship a version 1.0 product on time all resulted in a class library that,
although functional, lacks some of the basics expected by .NET programmers.

Because of the limited class library, Compact Framework applications fre
quently need to escape the bounds of the .NET runtime sandbox and call
unmanaged routines. The process of calling outside the .NET environment is
called Process Invoke, almost always referred to by the abbreviation P/Invoke.

1140 Part V Advanced Windows CE

P/lnvoke
The task of calling unmanaged code begins with declaring a static external
method in a class with parameters that match the calling parameters of the
unmanaged function. The method is then marked with a special attribute to
indicate its purpose to the compiler. At run time, the method is simply called
like any other method in the class. The call to the method results in the Com
pact Framework loading the DLL containing the function to be called, marshal
ing the calling parameters onto the stack, and calling the function.

The following is a simple but contrived example of calling outside the
framework. Before I dive into the discussion of this example, be aware that
there are managed ways of computing elapsed time without calling into
unmanaged code. I'm simply using GetTickCount since it's a simple function
with no parameters.

public class SomeClass
{

private uint OldCnt;
public void SomeClass()
{

OldCnt = 0;

[Dll Import ("coredll. dll ") J
private static extern uint GetTickCount ();

public uint TicksSincelast (){
uint ticks= GetTickCount();
uint diff = ticks - OldCnt;
OldCnt = ticks;
return diff;

This code shows a class that contains two methods, GetTickCount and Ticks
SinceLast. The GetTickCount method is marked as static, meaning that it's
defined by the class, not an instance of the class; and extern, meaning that the
method body is defined outside the class. In this case, the method body is actu
ally implemented in unmanaged code.

Just above the definition of GetTickCount is the Dlllmport attribute
enclosed in the square brackets. The Dlllmport attribute marks the method as
being a P/Invoke call to unmanaged code. The single parameter for Dlllmport,
in this case, is the name of the unmanaged DLL that implements the function
GetTickCount. The DLL, Coredll.dll, is the standard API DLL for Windows CE
and exposes most of the functions supported by the Windows CE operating sys
tem, including GetTickCount.

Chapter 23 Programming the .NET Compact Framework 1141

The TicksSinceLast method calls GetTickCount just as it would any other
managed method in the class. No special syntax is necessary for the method
when the class calls it. There is also no need for the P /Invoke method to be
marked private, although it typically is good practice since the programmer
who wrote the class knows the method is a P /Invoke call and can provide
proper precautions such as couching the call in a try, catch block to catch
exceptions specific to the P /Invoke call.

The Dlllmport attribute class can specify more than simply the name of the
DLL to call. Although the Compact Framework supports other fields in Dll
Import, only two are useful to the application: EntryPoint and SetLastError.

The EntryPoint field of Dlllmport allows the application to specify a name
for the unmanaged entry point in the DLL that's different from the name of the
managed method. The EntryPoint field is handy when calling a Windows CE
API that has a string as a parameter. Win32 API convention specifies that the
real name of a function with a string parameter have a suffix of either W or A,
depending on whether the function expects Unicode- or ANSI-formatted
strings. Even though Windows CE supports only Unicode entry points, the
names of the functions exported by Coredll.dll have the W suffix. C and C++
applications don't normally see the W suffix because the .h files in the SDK
redefine the generic function names used in the application without the W or A
to the specific API name that's used when the application is compiled. The fol
lowing code fragment shows an example of specifying the function name when
calling the unmanaged API SetWindowText:

[Dlllmport ("coredll .dll", EntryPoint="SetWindowTextW"l]
private static extern void SetWindowText (IntPtr h, strings);

The name traditionally used for the entry point is SetWindowText. However,
Coredll.dll exports the function as SetWindowTextW The use of the EntryPoint
field in the Dlllmport attribute specifies the correct entry point name while
retaining the traditional name for references within the managed code.

The other useful field in the Dlllmport attribute class is SetLastError. This
field is defined as a boo!. Setting this field to true tells the runtime to save the
last error value set by the call to the unmanaged code. This allows the managed
code to later call the GetLastWin32Error method of the Marshal class to retrieve
the last error value. If the SetLastError field is not set to true, the default is not
to save the last error value of the P /Invoke call.

None of the other fields in the Dlllmport attribute class that are supported
by the .NET Compact Framework have much use. The CharSet field allows the
application to specify whether the strings being passed to the unmanaged code
should be converted to ANSI or remain Unicode. On the Compact Framework,
the only values supported for the CharSet field are Auto and Unicode. Since

1142 Part V Advanced Windows CE

Auto defaults to Unicode on the Compact Framework, these two values mean
the same thing. The CallingConvention field can also be set, but here again, the
single value supported by the Compact Framework has no real effect on the
processing of the P /Invoke call .

. P/lnvoke Arguments
While declaring methods that call outside the run-time environment is easy,
sometimes declaring the proper parameters for passing and receiving data can
be a bit of a challenge. The Compact Framework is limited in the data types that
can be easily passed between managed and unmanaged code.

Simple Types
The process of gathering the data and passing it to and from unmanaged code
is called marshaling. The marshaling support in the Compact Framework is lim
ited to blittable data types. Blittable types are represented in managed and
unmanaged code in the same format and therefore do not require translation on
the call stack between the two environments. Essentially, this definition covers
all simple numeric and character data types in the Compact Framework, such as
signed and unsigned longs, ints, shorts, bytes, and characters. The Compact
Framework also supports passing one-dimensional arrays of blittable types and
structures that contain blittable types. Strings can also be passed as parameters,
although they are always passed as Unicode strings.

Table 23-1 relates managed types to their corresponding unmanaged
types.

Table 23-1 Cross-Reference Between Managed Data Types and Their
Unmanaged C++ Counterparts

Managed Type Passed by Value Passed by Reference

byte, sbyte BYTE, char byte *, char *
short, ushort SHORT, WORD SHORT*, WORD *

int, uint Int, DWORD int*, DWORD *

long unsupported INT64 *
float unsupported float*

double unsupported double*

IntPtr PVOID PVOID*

boot BYTE* BYTE*

Chapter 23 Programming the .NET Compact Framework 1143

Table 23-1 Cross-Reference Between Managed Data Types and Their
Unmanaged C++ Counterparts (continued)

Managed Type

string

StringBuilder

* A nonzero value is true.

Passed by Value

LPCWSTRt.

LPWSTR

Passed by Reference

unsupported

unsupported

t * The string type should be treated as read-only by the unmanaged routine.

Structures and Arrays
Simple structures can also be passed by reference in P/lnvoke calls. A simple
structure is one that contains only blittable types. The structure can't contain
arrays or strings. The following code shows two code fragments, one managed
and the other unmanaged. The simple structure passed from the managed to
the unmanaged code contains three integers and must be defined in both the
managed and the unmanaged code.

[Structlayout(LayoutKind.Sequential)]
public struct Size3D
{

public uint height;
public uint width;
public uint depth;

[Dlllmport ("Unmanaged.dll"l]
private static extern uint GetContainerSize (ref Size3D b);

private uint ComputeVolume()
{

II

Size3D siz;
II Provide default size
siz.height = 1;
siz.width = l;
siz.depth = 1;
II Call the unmanaged code
GetContainerSize (ref siz);
uint Volume= siz.height * siz.width * siz.depth;

II Unmanaged code
II
typedef struct {

DWORD dwHeight;

(continued)

1144 Part V Advanced Windows CE

DWORD dwWidth;
DWORD dwDepth;

SIZE3D;

DWORD GetContainerSize CSIZE3D *PSiz) {

pSiz->dwHeight = 43;
pSiz->dwWidth 12;
pSiz->dwDepth = 2;
return 1:

The definition of the managed structure, Size3D, is preceded by a StructLayout
attribute. The single parameter is the enumeration LayoutKind. The only enu
meration value defined in the initial version of the Compact Framework is
Sequential. Although this is the default layout in the Compact Framework, it's a
good technique to specify this attribute for every structure being passed to
unmanaged code because it's typically required on the desktop version of the
.NET runtime. Specifying it here makes it easy to remember to use it if the code
is reused on the desktop.

Arrays can be passed as well, with some limitations. One-dimensional
arrays of blittable types can be passed. For example, an array of integers can be
passed to unmanaged code, as shown in the following code:

[Dlllmport ("UMTest.dll")]
private static extern int DiffFromAve (int[] a, int cnt);
int ManagedRoutine ()

II

II Declare and initialize the array
int[] array = new int[4J:
array[0] 10;
array[!] 15;
array[2] 4;
array[3] 30;
II Call the unmanaged routine
int ave= DiffFromAve (array, array.Length);
Console.Writeline C"ave:{0} {1} {2} {3} {4}", ave,

array[0], array[!], array[2], array[3]);
return ave:

II Unmanaged code
II
DWORD DiffFromAve (int *pnArray, int nCnt) {

int i, sum= 0, ave = 0;
if CpnArray) {

Chapter 23 Programming the .NET Compact Framework 1145

II Compute sum
for Ci = 0; i < nCnt; i++)

sum+= pnArray[i];

II Compute ave
ave = sum I nCnt;

II Set differnce from ave
for Ci = 0; i < nCnt; i++)

pnArray[i] -=ave;

return ave;

This code shows an array of four elements being passed to unmanaged code.
Notice that the unmanaged code can read and write the elements of the array.
The example is of course contrived since nothing is done in the unmanaged
code that couldn't be accomplished in managed code. However, the example
does show the process.

Working with Strings
One of the more nettlesome issues with calling unmanaged code is how to deal
with strings. On the desktop, programmers actually have a somewhat more dif
ficult time since they have to deal with both ANSI and Unicode strings. In the
Compact Framework, we typically deal only with Unicode strings since the
operating system we're calling, Windows CE, uses Unicode strings almost
exclusively.

Passing a string down to unmanaged code is actually quite simple. A string
class can simply be passed in the parameter list as it would be for any other
method. The string appears to the unmanaged code as a pointer to a constant
Unicode string. The constant modifier is necessary since the string can't be
modified by the unmanaged code. The following routine passes down a string
to an unmanaged routine:

int ManagedRoutine ()

uint len = MyGetlength ("This is a string");

II
II Unmanaged code
II
DWORD MyGetlength (LPCWSTR pszStr) {

DWORD dwlen;

(continued)

1146 Part V Advanced Windows CE

dwlen = lstrlen (pszStr);
return dwlen;

To have the unmanaged routine modify the string takes a bit more work.
Instead of passing a string class, the managed routine must pass a StringBuilder
class. To do this, create a StringBuilder class large enough to hold the string
that will be returned. The class can also be initialized with a string if the unman
aged code expects an initialized string. In the following code, the managed
code calls the Windows CE function GetWindowText, which takes three param
eters: the handle of the window to query, a buffer to hold the title text of the
window, and the maximum number of characters that the buffer can hold.

[Dl 1 Import("coredl 1 .dl l", EntryPoi nt="GetWi ndowTextW")]
public static extern int GetWindowText (IntPtr h, StringBuilder str,

int size);
public int ManagedRoutine ()
{

StringBuilder strWndText =new StringBuilder (256);
GetWindowText (h, strWndText, strWndText.Capacity);

This code first declares the external method GetWindowText, which is defined
in Coredll.dll as GetWindowTextW since it returns a Unicode string. The man
aged routine simply creates a StringBuilder class of some large length and then
passes it to the method. The Capacity method of StringBuilder returns the max
imum number of characters that the instance of the class can hold.

The third way a string can be used in a P /Invoke call comes into play
when an unmanaged routine returns a pointer to a string as the return value.
The Compact Framework can't marshal any return parameter larger than 32 bits,
but since the return value is a pointer to a string, this condition is satisfied.

When an unmanaged routine returns a pointer to a string, it should be cast
as an IntPtr. The string pointed to by the IntPtr can then be converted to a man
aged string using the Marshal class's PtrToStringUni method. The following
routine calls the GetCommandLine Windows API, which returns a pointer to
the command line as its return value.

[Dl 1 Import ("coredl 1. dl l ")]
public static extern IntPtr GetCommandline();

public int ManagedRoutine ()
{

IntPtr pCmdline = GetCommandline();
string strCmdline = Marshal .PtrToStringUni (pCmdline):

Chapter 23 Programming the .NET Compact Framework 1147

The lrSquirtCF Example
The IrSquirtCF example program demonstrates many of the features of the
Compact Framework as well as some of the techniques discussed in this chap
ter. IrSquirtCF is a managed version of the IrSquirt program provided with the
Pocket PC and the Smartphone, discussed in Chapter 14. The two programs are
compatible. It's possible to send or receive a file using IrSquirtCF to or from
another Windows CE system or a Windows XP system running IrSquirt. The
source code for IrSquirtCF is shown in Listing 23-5.

MyMsgWindow.cs
using System:
using System.Text:
using System.Runtime.InteropServices:
using Microsoft.WindowsCE.Forms:

namespace MySquirtCF
{

Ill <summary>
Ill Summary description for MyMsgWindow.
Ill <!summary>
public class MyMsgWindow : MessageWindow
{

public MyMsgWindow()
{

}

II
II TODD: Add constructor logic here
II

public string Text
{

}

get
{

}

set
{

StringBuilder sbText =new StringBuilder (256);
GetWindowText (this.Hwnd, sbText, sbText.Capacity):
return sbText.ToString():

SetWindowText (this.Hwnd, value):

public static IntPtr FindOtherWindow (string strTitle)
{

Listing 23-5 The lrSquirtCF source code (continued)

1148 Part V Advanced Windows CE

Listing 23-5 (continued)

.. booJ fP?cketPC = fahe: > · .. ·

Str1ng/:luilder ~b new ;Stfing/:lt:J:ilder f25o):
PrivGetPJ.atstrtng < 257,. sb .c.apacity. sb, 0);
s:t;fihg strPlat ~ sb.ToStrtng(); · ·

·i .1 f .e's tr Plat·.;.,:; "PocketPC")
··· f P-0¢.ketPc ;;;·itrµeJ ·. · ·

' !

... lJse'd. bJ.)sI'qcketPC routine ;to get t.h~ J)'la:t.for~ st.dM ..
,rPlllnip-Ort '('1Cor9d1l .dl1 '', · EntryPoint"'"SYst~mparametersinfoW" l J
· phivat~. sia,Uc :extern b.ool NtvGetPlatStriiyg <int Cmd, .

Strieu.' Str.i.rigBuilqer.:.strP.l at; irit .f:Wi nln n:
"-'.· t .. ,•. .' '";;I " ·,;.' : .. ,•:.· , ' : . .'..'. .. '.' . ,

'LQ,li Import('i•c,orea1 l.,'. dl 1'', .'Entr_yPoint,.''Fi ndWtndowW'' >l
•private' st'atic' extern'Intp,tr JfridWindow.•<strins strCl ass.

: .: , · · . ' ' strfh1.FstrUtle)i .

toffrili'tio~t c•::c()·r'edl1 ::ilfin~C Ent~;P~iii·t,;_;;se'uh nrlql/lrextW" > 1
Pr~v;ate·.~t~ttc .. li!xt~rn· voi 1:1 .se:t~tnciowTe1<t · ... (:rntPtt: Ii'• .§trrn9 s > r·

[•• ol•1• •. l~p6hc·;,''c-Oredl1 •• dl•T''; ... EilttYP.bJnt~''GetWi.ndowvextW;'lJ ·.
publ:.Yi(static ex~er.n '1ni G.etWi'ni;lo~tex~ (Int'Ptt' fr,

· stri ngBu.iltjiir sysOi r61.i'ffer, int si'41e .) ;

Chapter 23 Programming the .NET Compact Framework 1149

using System.Net.Sockets;
using System.IO;
using System.Text;
using System.Threading;

namespace MySquirtCF
{

Ill <summary>
Ill Summary description for Forml.
Ill <!summary>
public class Forml : System.Windows.Forms.Form
{

private System.Windows.Forms.MainMenu mainMenul;
private System.Windows.Forms.Button btnGo;
private System.Windows.Forms.Label labell;
private System.Windows.Forms.Button btnBrowse;
private System.Windows.Forms.TextBox textFileName;
private System.Windows.Forms.ListBox listOut;
private System.Windows.Forms.OpenFileDialog openFileDialogl;
private Microsoft.WindowsCE.Forms.InputPanel inputPanell;

private bool m_fPocketPC;
private bool isRunning;
private Thread thServ:
private Menuitem menuFile;
private Menuitem menuExit:
public Forml()
{

II
II Required for Windows Form Designer support
II
InitializeComponent();

II See if we're running on a Pocket PC
if (MyMsgWindow.IsPocketPC())

m_fPocketPC = true:

if (m_fPocketPC)
{

II On a Pocket PC, adjust control position since
II Commandbar isn't used.

this.labell.Location =new Point (4, 5):
this.textFileName.Location =new Point (46, 4);
this.btnBrowse.Location = new Point (4, 30);
this.btnGo.Location =new Point (100, 30);
this.listOut.Location =new Point (4, 54);

(continued)

1150 Part V Advanced Windows CE

Listing 23·5 (continued)

Chapter 23 Programming the .NET Compact Framework 1151

this.labell =new System.Windows.Forms.Label();
this.textFileName =new System.Windows.Forms.TextBox();
this.btnBrowse =new System.Windows.Forms.Button();
this.listOut =new System.Windows.Forms.ListBox();
this.openFileDialogl =new System.Windows.Forms.OpenFileDialog();
this.inputPanell =new Microsoft.WindowsCE.Forms.InputPanel();
II
II btnGo
II
this.btnGo.Location =new System.Drawing.Point(l60, 58);
this.btnGo.Size =new System.Drawing.Size(80, 20);
this.btnGo.Text = "Send";
this.btnGo.Click +=new System.EventHandler(this.btnGo_Click);
II
II labell
II
this.labeil.Location =new System.Drawing.Point(8, 33);
this.labell.Size new System.Drawing.Size(32, 20);
this.labell.Text = "File:";
II
II textFileName
ll
this.textFileName.Location new System.Drawing.Point(48, 32);
this.textFileName.Size =new System.Drawing.Size(192, 22);
this.textFileName.Text "":
II
II btnBrowse
II
this.btnBrowse,Location =new System.Drawing.Point(8, 58):
this.btnBrowse.Size =new System.Drawing.Size(80, 20);
this.btnBrowse.Text = "Browse";
this.btnBrowse.Click += new

System.EventHandler(this.btnBrowse_Click);
II
II listOut
II
this.listOut.Location new System.Drawing.Point(8, 82);
this. listOut.Size =new System.Drawing.Size(232, 198);
II
/I i nputPanel 1
II
this.inputPanell.EnabledChanged +=new

System.EventHandler(this.inputPanell_EnabledChangedl:
II
II Forml
II
this.ClientSize =new System.Drawing.Size(250, 292);
this.Controls.Add(this.listOut):

(continued)

1152 Part V Advanced Windows CE

Listing 23-5 (continued)

this.Controls.Add(this.btnBrowse);
this.Controls.Add(this.textFileName);
this.Controls.Add(this.labelll:
this.tontrols.Add(this.btnGol~

this.MaximizeBox = false;
this.Menu = this.mainMenul;
this.Text= "Forml";
this.Closing+= new

System.ComponentModel .CancelEventHandler(this.Forml_Closing)

this.Load+= new System.EventHandler(this.Forml_Load);

tfendregion

Ill <summary>
Ill The main entry point for the application.
Ill <!summary>

static void Main(l
{

Application.Run(new Forml());
}

private void Forml_LoadCobject sender, System.EventArgs e)
{

isRunning = true;
this.thServ =new Thread (new ThreadStartCthis.SrvRoutineJ);
this.thServ.Start();

private void FormLClosing(object sender .•
System.ComponentModel .CancelEventArgs el

isRunning =false:
Thread.Sleep(550J;

private void menuExit_Click(object sender, System.EventArgs el
{

this.Close();

private void btnBrowse_Click(object sender, System.EventArgs e)
{

DfalogResult dr = this.openFileDialogl.ShowDialog();
if Cdr != DialogResult.OKl

Chapter 23 Programming the .NET Compact Framework 1153

return;
this.textFileName.Text openFileDialogl.FileName;

private void inputPanell_EnabledChanged(object sender,
System.EventArgs e)

II Adjust the listbox to avoid being covered by the SIP.
if (m_fPocketPC)

int height= this.inputPanell.VisibleDesktop.Height -
this.listOut.Top;

if (!this.inputPanell.Enabled)
height -= 26;

this.listOut.Size =new Size (this.listOut.Width,
height);

private void btnGo_Click(object sender, System.EventArgs e)
{

string strFileName = this.textFileName.Text;

if (strFileName.Length > 0)
SendFileToIR (strFileName);

private void StringOut (string str)
{

this.listOut.Items.Add (str);
return;

Ill <summary>
Ill Sends a file to the other device
Ill <!summary>
Ill <param name="strFileName"><!param>
private void SendFileTo!R (string strFileName)
{

Streams;
FileStream fs;
int re;
IrDAClient irClient;

try
{

fs new FileStream (strFileName, FileMode.Open,
FileAccess.Read);

catch (!OException ex)

(continued)

1154 Part V Advanced Windows CE

Listing 23-5 (continued)

Chapter 23 Programming the .NET Compact Framework 1155

II Allocate transfer buffer
byte[] buff= new byte[4096]:

II Send name length
StringOut ("Sending file name"):
if (!SendDWord (s, nlen+lll
{

StringOut (string.Format ("Error sending name length")):
return:

II Send name
UTF8Encoding UTF8enc =new UTF8Encoding():
UTF8enc.GetBytes (strNameOnly, 0, nlen, buff, 0):
buff[nLenJ = 0:
try
{

s.Write (buff, 0, nlen+ll:

catch (SocketException ex)
{

StringOut (string.Format ("Sock Write exception {0}",
ex. ErrorCode)):

StringOut ("Sending file"l:
II Send file length
nlen = (int)fs.Length:
if (!SendDWord Cs, nlenll
{

StringOut ("Error sending file list"):

II Read back file open return code
StringOut ("Reading file create ack"l:
RecvDWord (s, out rel:
if <re != 0)
{

}

StringOut (string.Format ("Bad Ack code {0}", rel):
fs.Close():
irClient.Close(l:
s.Close():
return;

StringOut ("ack received");

II Send file data
while (nlen > 0)
{

int j = -1:

(continued)

1156 Part V Advanced Windows CE

Listing 23-5 (continued)

},

} ,

, ·4 .. en.Len)1 buff;.~engthi/? fa1ff~ t.engJ;J}' : , riten i , ·.··•
· st~tngOut tsi;r1ng.Form~tf'·s1;i.r1din:g {a}· byte$1' •. Ji>:

ts .. ~ea'd £buff; 0;/:n:
s.wrfte {'buff; ·0: J)j •

. nLen -= j:

if (.!RecvDWord (s. out j))

break:
if (j != 0)
{

StringOut ("Error ack"):
break:

catch · rn:icketExcepti on socex)
{ , ,

}

StrtngOut ·(st-ring, Format ~;~.5 .scrck Err {01 Clll. {2}",
. socex:Error~ode, riLen .• Jn:

break.:

catC!i (l'OException ioexl
{

StrtngOut <strfng.f:ormat <''File Er_ror .{0}.".

}

ll ATTow: other eye'nt•s to
· Applicatior1.0oE11erits(

Stri.ngQut <s.tring,form~t(''File sent''.n:

s.Close():
i rel ient. Close();
fs.Close();
return:

11 Cl,ose the, str.eam
Ii Close the· socket
ll Cfose the fi 1 e .

Ill <summary>
II I Sends a DWORO
Ill <!summary>'
I I/ <param name.;.i•s•;><ipararri>"
I II <param name='\1 "></p'ay>am;>>

· Ill <returns><freturns> ·
bool SendDWor:-d (Stream s'. int

·{

bYte[]
:try

Chapter 23 Programming the .NET Compact Framework 1157

s.Write (b, 0, 4):

catch (SocketException ex)
{

StringOut (string.Format ("Err {0} writing dword",
ex.ErrorCode));

return false;

return true;

Ill <summary>
Ill Receiveds a DWORD from the other device
Ill <!summary>
Ill <param name="s"><lparam>
Ill <param name="i"><lparam>
Ill <returns><!returns>
bool RecvDWord (Stream s. out int i)
{

byte[] b =new byte[4];
try
{

s.Read (b, 0, 4);

catch (SocketException ex)
{

StringOut (string.Format ("Err {0} reading dword",
ex.ErrorCode));

i = 0;

return false;

BitConverter.Tolnt32 (b, 0);
return true;

Ill <summary>
Ill Server thread
Ill <!summary>
public void SrvRoutine()
{

IrDAListener irlisten;
FileStream fs;
string strFileName:
int nlen:
IrDAClient irClientSrv;
Stream s;
byte[] buff= new byte[4096J;

(continued)

1158 Part V Advanced Windows CE

Listing 23-5 (continued)

try
{ irlisteh = new IrDAListener("MySqui rt'')~

i rl i sten ,start(l;

}
cat.ch cso:cketException ex)

stri ngOut (stri r1!;1 ;FormatC"Err {0} creatit\9 I rDALi stener''. (

ex. Er rorcbde l) :

return:
}
StringOut ("1 rdali stener creat.ed~') l

while UsRunning)

{
H (irLi.sten.Pendin.90)

{

trY
t Str.i ngOut< (°Calli.n9AcceptlrDAC1 te~t"l •. ~·.

i rC1 i ent,Sr~. = ;rli sten ,Acceptl rDAC14en1;;P;
Str1 ng0µ1;; C"Ac.ce:i>'tlrMC1 ient retu.~J1ed'');
s "'.trc,1entSf'V:$etS1;;feam.o ·

Chapter 23 Programming the .NET Compact Framework 1159

s.Close();
continue;

ex.ErrorCode));

UTFBEncoding UTFBenc =new UTFBEncoding();
//Trim terminating zero
char[] ch= UTFBenc.GetChars (buff, 0, nlen-1);
strFileName =new string (ch);
StringOut ("Receiving file "+ strFileName);

II Get file length
if (!RecvDWord (s, out nlen))
{

StringOut ("Error getting file length");

StringOut (string.Format ("File len: {0}", nlenll;
try
{

fs new FileStream CstrFileName,
FileMode.Create,
FileAccess.ReadlFileAccess.Write);

}

catch (IOException ioex)

StringOut (string.Format(~Error opening file"));
StringOut (ioex.Message);
SendDWord (s, -3);

s.Close();
continue:

StringOut ("File opened");

II Send file open return code
StringOut ("Send file create ack");
if (!SendDWord (s, 0))
{

StringOut ("fail sending ack code");
fs. Close();
s.Close();
break;

int nTotal = 0;
JI Send file data
while (nlen > 0)
{

int BlkSize = -1;
try

(continued)

1160 Part V Advanced Windows CE

Listing 23-5 (continued)

{

BlkSize = (nLe~ >buff.Length)?

int k = 0. Bytes Read = 0;
while (SlkSfze >kl
{

11 Wait for data

buff. Length nlen:

if (!({NetworkStream)s).DataAvailable)

}

Thread.Sleep(l00);
I I Read it
BytesRead = s.Read (buff, k, BlkSize-k);
StringOut (string.Format ("Bytes: {0}",

Bytes Read));

k += BytesRead:

fs.Write (buff. 0, Bl kSize);
St~tngOut ("Send Ack"):
if CISendDWord (s, 0))

StringOut ("Error s.ending ack"l;

bre<1k:

nlen ~· Bl.kSize;
nTotal +"' BlkStze;

catch CSocketExceptibh socex)
{

StringQut (string.Format ("Sock Err {0}",

socex.ErrorCode)};
break;

ioex)

StringOut (string.Format (ftFile Err {0}~.

ioex.Message));
StringQUt (ioex.Message);
break;

StringOut Cstring.Forma.t("File re.ceived {Bl bytes.",
nTotall);

RecvOWbrd (s, out nlen);
fs .Close(};
s,Close();

i.f (isRunning)

Chapter 23 Programming the .NET Compact Framework 1161

Thread.Sleep (500);

irlisten.Stop();
return;

The user interface code of IrSquirt was generated with the designer in
Visual Studio .NET. There are places, however, where the designer doesn't pro
vide the flexibility necessary for this example. IrSquirtCF can run on both
Pocket PC and embedded Windows CE devices. Because the menu in the appli
cation is implemented with a command bar on embedded devices and a menu
bar on Pocket PCs, the controls need to be moved up over the blank spot left
for the command bar when the program is running on a Pocket PC. In addition,
the list box that's used to provide status messages is resized if the SIP is dis
played so that the SIP doesn't cover any text when it's enabled. Figure 23-4
shows IrSquirtCF running on a Pocket PC, and Figure 23-5 shows the same pro
gram running on an embedded Windows CE device.

Figure 23-4 lrSquirtCF running on a Pocket PC

IrSquirtCF contains a second class, MyMsgWindow, that contains a number
of handy routines used by the program. The IsPocketPC method returns true
when running on a Pocket PC. The routine is implemented by calling the Win
dows CE API, SystemParameterslnfo, to get the platform string for the device.
IsPocketPC compares the platform string returned with the expected strings for
a Pocket PC and returns true if the strings match.

1162 Part V Advanced Windows CE

Figure 23-5 lrSquirtCF running on an embedded Windows CE device

The other routines of MyMsgWindow provide a method for finding other
instances of the application already running on the device. Whereas the Com
pact Framework runtime on the Pocket PC automatically enforces the single
instance requirement of a Pocket PC application, the IrSquirtCF program checks
for other copies when it's running on non-Pocket PC systems. Because the
IrDA port is a shared resource, it doesn't make sense to have two copies of the
application potentially receiving the same file at the same time on the same
device. Detecting another copy of the application is accomplished by using a
Message Window class. The window text of the message window is set when the
Text property of the class is set. Using a unique name for the window along
with a call to the Windows CE function FindWindow provides a simple way to
locate other copies of the application.

Like IrSquirt, IrSquirtCF is a multithreaded application. The program cre
ates a separate thread for monitoring the infrared port waiting for other devices
to send files using the IrSquirt protocol. This routine, named SrvRoutine, dem
onstrates the use of the IrDAListener class, which monitors the IR port.

The SendFileToIR routine encloses the code that sends a file from one
device to the other. It uses an IrDAClient class to detect devices in range, con
nect to the IrSquirt service on the other device, and read and send the bytes of
the file.

Chapter 23 Programming the .NET Compact Framework 1163

This overview of the .NET Compact Framework barely scratches the sur
face of the capabilities of the runtime. The overview also covers only the first
version of the Compact Framework, which I expect to be greatly enhanced over
the next few versions. Still, the information presented in this chapter should pro
vide a running start for those developers wanting to leave Kansas and try their
hand at this new and radically different approach to embedded programming.

Implementing a version of the .NET Compact Framework on Windows CE
provides the best of both worlds to the embedded programmer. The managed
runtime provides a great infrastructure for quickly creating a highly functional
user interface, while the speed and flexibility of calling into unmanaged code
provides the baseline support for doing just about anything necessary for get
ting the program working. Viewed in this light, the Compact Framework is
more a new feature of Windows CE than a competitor that requires program
mers to choose a favorite.

This book has attempted to be a guide to the many features of Windows
CE, from its base threading API to the managed runtime of the .NET Compact
Framework. The componentized design of Windows CE, coupled with both a
Win32-standard API and a .NET standard runtime, provides a unique combina
tion of flexibility and familiarity that is unmatched among today's operating sys
tems. All in all, it's not a bad operating system. Have fun programming
Windows CE. I do.

Index

A
A through Z keys, 94
ABC widths, 56
Abort method, 722
accelerators, keyboard

examples, 187-204
overview, 185-186

accept function, 640, 643, 669
Accept key, 1094
accepting connections, 643
AcceptSocket method, 1138
access rights, 369-371, 388
AccessCode parameter, 1057
acknowledging notifications, 562-563
AC_LINE_BACKUP _POWER, 1034
AC_LINE_OFFLINE, 1034
AcLineStatus field, 1034
AC_LINE_UNKNOWN, 1034
ActionFlags field, 560
ActivateDevice function, 1048, 1051
ActivateDeviceEx function, 1049
ActivateService function, 1087, 1095
Active key, 1048, 1049
active window, 92
ActiveSync. See also RAPI (remote API)

CeUtil DLL functions, 777-781
described, 747
direct socket connections, 795
Hello World applications, 11
notifications, 781-794

Add method, 1131
adding

combo boxes, 219
command bands, 238-242
command bar buttons, 211-215
command bar menus, 209-210
New menu, 849
Pocket PC notifications, 860-863
property pages, 312

Addltem function, 549

AcldName method, 720
address space

application, 362-364, 1025-1027
overview, 1025-1027
virtual memory and, 359

addresses, binding socket to, 641-642
addressFamily field, 642
AddTarget method, 719
Advertiselnterface function, 1066
advertising driver interfaces, 1066
Advise method, 715, 784-785
af parameter, 641
AF_BT, 641-642, 685
AF_INET, 641
AF _!RDA, 641-642
alert messages, 531
aligning text, 45
allocating memory. See also memory

management
heaps, 371-375
hibernate mode, 380-381
low-memory conditions, 380-384
overview, 364
stack, 375-376
static data, 376-379
strings, 379
thresholds, 381-384
type selection, 379-380
virtual, 365-371

AllocationBase field, 369
AllocationProtect field, 369
Alt key, 94, 98, 109, 117
alternative characters, input method, 905
ambiguous text input mode, 952
animation control, 296
annunciators, 808, 809-816, 834
ANSI, 9
apostrophe key, 96
AppendMenu function, 179-181
Application class, 1127

1165

1166 applications

applications. See also memory management;
Pocket PC; power management; shortcuts;
Smartphone

address space, 362-364, 1025-1027
callbacks, OBEX, 714-716
debugging, 822
launching, 806-807, 824-830, 869-871
notifications, 781-794
permissions, 1080
service controls, 1087-1089

Apply buttons, 308
appointments, calendar, 286-289
APP _RUN_TO_HANDLE_NOTIFICATION, 562
Arc function, 74
ArcTo function, 74
ARM, 3
Arrays, Platform Invoke, 1144
ASCII, 4
assigning icons to window, 184
asterisk, 410
asterisk key, 95
asynchronous connections, 638, 961
asynchronous device detections, 717-718
asynchronous driver I/0, 1079-1084
asynchronous I/0, serial communication, 588-589
AsyncThread function, 1083
attribute flags, 387, 389
attributes

device context, 44-46
file or directory, 392
supported, 388-389
window class, 15

audio drivers, 1046
automatic

application closing, 383
application launches, 869-871
event resetting, 513
power suspensions, 1036
service loading, 1085
service starting, 1092
super service starting, 1094
window resizing, 846

AUTORADIOBUTTON, 301
auto-repeat feature, 93
auto-repeat sequence, 97
AutoRun, 869-871
AutoStartOnConnect function, 782

B
Back buttons, 266, 932, 944-947
backgrounds

colors, 44, 46, 51, 178
Hello World applications, 21
Today screen items, 879

backlights, 1036-1038
backquote key, 95
backslash key, 95
backspace key, 93
backward compatibility, functions, 39
bands. See command bands control
BaseAddress field, 369
Baseband, 671
batteries. See power management
BatteryChemistry field, 1035
BATTERY_CHEMISTRY_ALKALINE, 1035
BATTERY_CHEMISTRY_LION, 1035
BATTERY_CHEMISTRY_LIPOLY, 1035
BATTERY_CHEMISTRY_NICD, 1035
BATTERY_ CHEMISTRY _NIMH, 1035
BATTERY_CHEMISTRY_UNKNOWN, 1035
BatteryFlag field, 1035
BATTERY_FLAG_CHARGING, 1035
BATTERY _FLAG_CRITICAL, 1035
BATTERY _FLAG_HIGH, 1035
BATTERY_FLAG_LOW, 1035
BATTERY _FLAG_NO_BATTERY, 1035
BATTERY _FLAG_UNKNOWN, 1035
BatteryFullLifeTime field, 1035
BatteryLifePercent field, 1035
BatteryLifeTime field, 1035
BATTERY _LIFE_UNKNOWN, 1035
baud rates, 590, 594
BaudRate field, 590
bDisabled field, 962
BEGIN keyword, 183, 301
BeginPaint function, 26-27, 41
beginthreadex function, 670
bEnable flag, 100
bErase parameter, 41
bExclusive field, 962
biBitCount, 70
BI_BITFIELDS, 70
biClrimportant field, 70
biClrUsed parameter, 70
biCompression field, 70

biHeight, 70
bind function, 640-641
binding socket to address, 641-642
BindToDevice method, 718
binheritHandle parameter, 498, 521
binitialOwner parameter, 520
blnitialState parameter, 512
BIOS (basic input/output system), 358
BiPlanes parameter, 70
BI_RGB, 70
biSizelmage parameter, 70
bit array organization, 70
BitBlt function, 72
BITMAPINFO structure, 69, 77
BITMAPINFOHEADER structure, 69, 77
bitmaps

brushes, 77-78
command bars, 211-212
custom input, 898-899, 903
device dependent, 67
device independent, 68
DIB sections, 68-71
drawing, 71-74
menu bars, 263, 267-268
overview, 66
resizing, 73
resource files, 186
services, 1093

BITSPIXEL, 45
biWidth, 70
biXPelsPerMeter field, 70
biYPelsPerMeter field, 70
BLACK_PEN, 75
blit functions, 72, 74
blittable data types, 1142
BLOB structure, 673
block mode, 762-763
blocked threads, 500
blocking vs. nonblocking sockets, 648-651
Bluetooth. See also stream sockets

client side, 686, 691
described, 637
discovery, 673-681
examples, 692-713
overview, 670-671

buffer parameter 1167

profiles supported, 670
server side, 685, 689
service publications, 682-685
stack, 671
virtual COM ports, 687-692
Winsock communication, 685-687

bManualReset parameter, 512
BN_CLICKED, 138
boilerplate, programs, 33
boldness, font, 53
BOOL data type, 440
bOpen parameter, 902
bounding rectangle, 79
Bounds property, 1136
bPiggyback field, 964
bReadAccess field, 532
break state, port, 595
brushes

hatched, 78, 89
Hello World applications, 21
origin location, 78
overview, 77-78

BS_3STATE, 138
BS_AUT03STATE, 138, 177
BS_AUTOCHECKBOX, 138, 177
BS_AUTORADIOBUTTON, 138, 177
BS_BOTTOM, 139
BS_CHECKBOX, 138
BS_LEFT, 139
BS_MULTILINE, 139
BS_OWNERDRAW, 139
BS_RADIOBUTTON, 138
BS_RIGHT, 139
BS_TOP, 139
bt_addr structure, 642
BT_ADDR_GIAC, 674
BthGetCurrentMode function, 672
BTHNS_INQUIRYBLOB, 674
BTHNS_LUP _NO_ADVANCE, 675
BTHNS_LUP _RESET_ITERATOR, 675
BTHNS_SETBLOB structure, 682
BTHPROTO_RFCOMM, 641
bubbles, notification, 859
buf parameter, 644
buffer parameter, 453

1168 buffers

buffers
asynchronous driver I/O, 1079
bitmaps, 69
custom RAPI functions, 765
enumerating network resources, 622-623
frame, 997, 999, 1001-1003
length, 5
network queries, 626
notification queries, 580
RAPI error handling, 751
serial communication, 593, 595
services, 1089
short text messages, 970
shortcuts, 804
SIP state, 873
string resources, 186, 203

built-in drivers, 1045
Builtin key, 1047
bus drivers, 1046
busy hourglass cursor, 110
Button class, 1130
button controls, 137-140
buttons

command bars, 211-218
flags, 13-14
GAPI, 1000-1001
grouping, 301
hardware keys, 824-830
menu bars, 265-268
Smartphone, 930, 939-947

bWaitAll parameter, 516
BY_HANDLE_FILE_INFORMATION structure, 395
bytes layout, bitmap, 67
ByteSize field, 591

c
C library I/0 functions, 817
c parameter, 1122
C++ exception handling, 549-552
C#, 1116-1118, 1122
cache, 510, 877, 1116
calendar control, 5
Calendar item, 875
calendars, 286-289
CALLBACK, 25
callback function, 66

callbacks, OBEX, 714-716
calling, phone. See cell phones
CallingConvention field, 1142
CALLLOGENTRY structure, 960
CALLLOGSEEK_BEGINNING, 961
CALLLOGSEEK_END, 961
CallWindowProc function, 134
Cancel buttons, 300, 304, 308, 313, 865, 947
Capacity method, 1146
CapEdit control, 207, 294
capitalization, 294
Caps Lock key, 94
CAPTION, 301
caret, 41, 98
Carrier Detect, 597
cascading menus, 179
catch keyword, 549-552
CB_ADDSTRING, 142
cbBufferSize parameter, 533
cbCachedData field, 877
cbClsExtra field, 21
CB_FINDSTRING, 142
CB_GETDROPPEDSTATE, 142
CB_GETEDITSELECT, 142
cbinput parameter, 763
cbinQue field, 597
CB_INSERTSTRING, 142
cBitspPerPel parameter, 67
cbMaxMessage field, 532
cBmpimages field, 263, 941
cbOutQue field, 597
CB_SETEDITSELECT, 142
CBS_EX_CONSTSTRINGDATA, 142
CB_SHOWDROPDOWN, 142
cbSize field

application launching, 808
bands, 239
device discovery, 674
input methods, 898
menu bars, 263
MenuBar control, 941
RAPI initialization, 750
right-button clicks, 118
scroll bars, 146
SIP changes, 846
SIP state queries, 873
SMS system, 973

cbStruct field, 861
cbStructure field, 620
cBufferSize parameter, 580
cbWndExtra field, 21, 132
cbxPitch field, 999, 1001
cbyPitch field, 999, 1001
cCharacters parameter, 99
ccs_ VERT, 238
cDayState field, 288
CDDB_ VALIDDBFLAGS, 444
CDDB_ VALIDMODTIME, 444
CDDB_ VALID NAME, 444
CDDB_ VALIDSORTSPEC, 444
CDDB_ VALIDTYPE, 444
CEBLOB data type, 440
CeCheckPassword function, 752
CeClearUserNotification function, 562
CeCloseHandle function, 752
CeCopyFile function, 752
CeCreateDatabase function, 755
CeCreateDatabaseEx function, 445, 447, 755
CeCreateDatabaseEx2 function, 443-447, 452
CeCreateDirectory function, 752
CeCreateFile function, 752
CeCreateProcess function, 752
CeDatabaseSeekEx function, 452
CEDB_ALLOWREALLOC, 453
CEDBASEINFO structure, 756
CEDBASEINFOEX structure, 444, 452, 458
CEDB_AUTOINCREMENT, 447
CEDB_EXNOTIFICATION, 448
CEDB_FIND_DATA structure, 756
CEDB_MAXPROPDATASIZE, 441
CEDB_MAXRECORDSIZE, 441
CEDB_NOCOMPRESS, 444
CEDB_PROPDELETE, 455
CEDB_PROPNOTFOUND, 455
CEDB_SEEK_BEGINNING, 450
CEDB_SEEK_CEOID, 450
CEDB_SEEK_CURRENT, 450
CEDB_SEEK_END, 450
CEDB_SEEK_ VALUEFIRSTEQUAL, 450
CEDB_SEEK_ VALUEGREATER, 450
CEDB_SEEK_ VALUENEXTEQUAL, 450
CEDB_SEEK_ VALUESMALLER, 450
CEDB_SORT_CASESENSITIVE, 446

CeGetUserNotification function 1169

CEDB_SORT_DESCENDING, 446
CEDB_SORT_IGNOREKANATYPE, 446
CEDB_SORT_IGNORENONSPACE, 446
CEDB_SORT_IGNORESYMBOLS, 446
CEDB_SORT_IGNOREWIDTH, 446
CEDB_SORT_NONNULL, 446
CEDB_SORT_UNIQUE, 445
CEDB_SORT_UNKNOWNFIRST, 446
CEDB_SYSTEMDB, 444
CeDeleteDatabaseEx function, 455, 755
CeDeleteFile function, 752
CeDeleteRecord function, 455, 755
CEDEVICE_POWER_STATE, 1043, 1068-1069
CEDIRINFO structure, 458
CeEnumDBVolumes function, 442, 755
CEFILEINFO structure, 457
CeFindAllDatabases function, 755-757
CeFindAllFiles function, 752-755, 762
CeFindClose function, 752
CE_FIND_DATA structure, 754, 762
CeFindFirstDatabase function, 755
CeFindFirstDatabaseEx function, 456, 755
CeFindFirstFile function, 752
CeFindNextDatabase function, 755
CeFindNextDatabaseEx function, 456, 755
CeFindNextFile function, 752
CE_FRAME, 597
CeGetCallerTrust function, 527
CeGetClassname function, 758
CeGetCurrentTrust function, 526
CeGetDesktopDeviceCaps function, 752
CeGetFileAttributes function, 752
CeGetFileSize function, 752
CeGetFileTime function, 752
CeGetLastError function, 751
CeGetOidGetinfo function, 754
CeGetSpecialFolderPath function, 757
CeGetStorageinformation function, 762
CeGetStoreinformation function, 751-752
CeGetSystemlnfo function, 752
CeGetSystemMetrics function, 752
CeGetSystemPowerStatusEx function, 752
CeGetTempPath function, 757
CeGetThreadPriority function, 505
CeGetThreadQuantum function, 506
CeGetUserNotification function, 580

1170 CeGetUserNotificationHandles function

CeGetUserNotificationHandles function, 580
Ce Get U serN otificationPreferences function,

561, 567
CeGetVersionEx function, 749, 752
CeGetWindow function, 758
CeGetWindowLong function, 758
CeGetWindowText function, 758
CeGlobalMemoryStatus function, 752
CEGUID, 441, 443, 447, 452, 456
CeHandleAppNotifications function, 562
cell phones. See also device-to-device

communication; Short Message Service
(SMS); Smartphone

dialing, 958
logs, 959-961
Pocket PC, 832-833

celt parameter, 71 7
CeMountDBVol function, 441, 755
CeMoveFile function, 752
CEM_UPCASEALLWORDS, 294
CENOTIFICATION structure, 448
CE_NOTIFICATION_INFO_HEADER

structure, 580
CE_NOTIFICATION_TRIGGER structure, 559,

562, 580
CENOTIFYREQUEST structure, 448
centering text, 43
cEntries parameter, 71
CEOID, 447
CeOidGetinfo function, 444, 755
CeOidGetinfoEx function, 755
CeOidGetinfoEx2 function, 457
CEOIDINFOEX structure, 457
CeOpenDatabase function, 755
CeOpenDatabaseEx function, 755
Ce0penDatabaseEx2 function, 447-449
CE_OVERRUN, 597
CEPROPID structure, 453
CEPROPVAL structure, 451, 455
CeRapiFreeBuffer function, 751, 755-756, 762
CeRapiGetError function, 751
CeRapiinit function, 750, 761, 777
CeRapiinitEx function, 750, 761
CeRapiinvoke function, 752, 762, 766-767, 776
CeRapiUninit function, 750-751, 762
CeReadFile function, 752

CeReadRecordProps function, 755, 757
CeReadRecordPropsEx function, 452-455, 755
CERECORDINFO structure, 458
CeRegCloseKey function, 757
CeRegCreateKeyEx function, 757
CeRegDeleteKey function, 757
CeRegDeleteValue function, 757
CeRegEnumKeyEx function, 757
CeRegEnumValue function, 757
CeRegOpenKeyEx function, 757
CeRegQueryinfoKey function, 757
CeRegQueryValueEx function, 757
CeRegSetValueEx function, 757
CeRemoveDirectory function, 752
CeRunAppAtEvent function, 557, 565
CeRunAppAtTime function, 557
CE_RXPARITY, 597
CeSeekDatabase function, 451, 755
CeSeekDatabaseEx function, 449
CeSetDatabaseinfo function, 755
CeSetDatabaseinfoEx function, 755
CeSetDatabaseinfoEx2 function, 452
CeSetEndOfFile function, 752
CeSetFileAttributes function, 752
CeSetFilePointer function, 752
CeSetFileTime function, 752
CeSetPowerOnEvent function, 1060
CeSetThreadPriority function, 505
CeSetThreadQuantum function, 506
CeSetUserNotification function, 557
CeSetUserNotificationEx function, 557-560,

563-565
CeSHCreateShortcut function, 757
CeSHGetShortcutTarget function, 757
CESVC_CUSTOM_MENU, 778
CeSvcDeleteVal function, 781
CESVC_DEVICES, 778
CESVC_DEVICE_SELECTED, 778
CESVC_DEVICEX, 778
CeSvcEnumProfiles function, 779
CESVC_FILTERS, 778
CeSvcGetBinary function, 781
CeSvcGetDword function, 781
CeSvcGetString function, 780-781
CeSvcOpen function, 777, 782
CeSvcOpenEx function, 779

CESVC_ROOT_MACHINE, 778
CESVC_ROOT_USER, 778
CESVC_SERVICES_ COMMON, 778
CESVC_SERVICES_USER, 778
CeSvcSetBinary function, 781
CeSvcSetDword function, 781
CeSvcSetString function, 781-782
CESVC_SYNC, 778
CESVC_SYNC_COMMON, 778
CE_TXFULL, 597
CeUnmountDBVol function, 443, 755
CE_USER_NOTIFICATION structure, 560-561, 580
CeUtil DLL functions, 777-780
CEVT_LPWSTR constant, 446
CeWriteFile function, 752
CeWriteRecordProps function, 455, 755
cFindData parameter, 756
cHandles parameter, 580
channel field, 689
char fields, 639
character sets, fonts, 54
characters. See also SIP (soft input panel)

cell distances, 44
clipping, 54
combined, 98
filenames, 387
Unicode, 4
virtual keys, 93-100, 185
widths, 53
wildcards, 410

CharSet field, 1141
check boxes, 138
check marks, 180
checked boxes or buttons, 138, 215
CheckMenultem function, 180
CheckPassword function, 752
child controls, 147
child driver power management, 1069
child windows, 129, 878
Choose Color dialog boxes, 315
Chord function, 74
chzAppName, 669
cidt field, 960
CIL (Common Intermediate Language), 1113, 1116
circles, 79
class field, 302

CNS_SIGNALLED 1171

class library, Compact Framework, 1125
class registration, Today screen, 878
class styles, 20
Clear key, 94
Clear to Send (CTS) signal, 597
ClearCommBreak function, 595-596
ClearCommError function, 597
clearing notifications, 562, 565-566
ClearType, 54
CLEARTYPE_COMPAT_QUALITY, 54
CLEARTYPE_QUALITY, 54
client window areas, 26
clipping characters, 54
clipping rectangles, 44
clipping regions, 41
Clone method, 717
Close buttons, 300, 304, 308, 313-314, 834
Close commands, 834
Close function, 1058, 1091
Close method, 1138
CloseHandle function, 391, 514, 519, 521, 586,

692, 1058
CloseMsgQueue function, 534
closesocket function, 645
closing

applications for low memory, 382
files, 391
phone logs, 961
Pocket PC application copies, 843
ports, 586, 1096
processes, 497-498
property sheets, 314
registry keys, 420
sockets, 644

CLR (common language runtime), 1120-1125
clrBack field, 240
clrBk field, 941
CLRBREAK, 596
CLRDTR, 596
clrFore field, 240
CLRIR, 596
CLRRTS, 596
clsid field, 861
CMDBAR_HELP, 220
CMDBAR_OK, 220
CNS_SIGNALLED, 581

1172 CNT_CLASSICTIME

CNT_CLASSICTIME, 562
CNT_PERIOD, 559
CNT_TIME, 559
CoCreatelnstance function, 714, 784-785
code fragments, Hello World applications, 28-37
code pitching, 1116
Colnitialize function, 784
color backlit displays, 1036-1038
COLOR_BTNFACE, 140
COLOR_BTNSHADOW, 140
COLORREF, 76, 287
colors

bitmaps, 67, 70
brushes, 77
controls, 178
month calendar control, 287
number supported, 44
overview, 4
owner-draw buttons, 140
Today screen items, 879

COLOR_STATIC, 178
COM connection notifications, 783-786
COM in-proc servers, 896
combined characters, 98
combo boxes

adding, 219
controls, 141
Smartphone, 950

comma key, 95
command bands control

adding, 238-242
configuring, 242-243
creating, 237-238
examples, 246-260
height, 245
hiding, 246
image lists, 237
messages, 245
overview, 236
saving layout, 243-245

command bar control
bitmaps, 211-212
buttons, 211-218
combo boxes, 219
creating, 209

design guidelines, 221
destroying, 221
examples, 221-236
height, 220
hiding, 220
image references, 213-215
initializing, 206
vs. menu bar, 260
menus, 209-210
overview, 209
resizing, 220
resources, 210
tooltips, 219
visibility, 221

CommandBands_AddAdornments function, 243
CommandBands_AddBands function, 238
CommandBands_Create function, 237, 242
CommandBands_GetCommandBar function, 242
CommandBands_GetRestorelnformation

function, 243, 260
CommandBands_Height function, 245
COMMANDBANDSRESTOREINFO structure,

244, 259
CommandBands_Show function, 246
CommandBar_AddAdornments function, 220
CommandBar_AddBitmap function, 211, 213, 216
CommandBar_AddButtons function, 213
CommandBar_AddToolTips function, 219
CommandBar_Align_Adornments function, 220
CommandBar_Create function, 209
CommandBar_Destroy function, 221
CommandBar_DrawMenuBar function, 210
CommandBar_GetMenu function, 210
CommandBar_InsertButton function, 214
CommandBar_InsertComboBox function, 219
CommandBar_InsertMenubar function, 209
CommandBar_InsertMenubarEx function, 210
CommandBar_IsVisible function, 221
CommandBar_Show function, 220
command-line interface services, 1098
command-line parameters, 9
CommCrtl.h file, 207
COMMTIMEOUTS structure, 592, 1061
committed virtual pages, 360

common controls. See also command bands
control; command bar control; menu bar
control

CapEdit, 294
date and time picker, 289-291
initializing, 206
list view, 292-294
month calendar, 286-289
overview, 205
programming, 206-208
progress bar, 295
status bar, 295
tab, 295
toolbar, 296
trackbar, 295
tree view, 296
unsupported, 296
up-down, 295

common dialog boxes, 314
Common Intermediate Language (CIL),

1113, 1116
common language runtime (CLR), 1120-1125
COMMPROP structure, 594
communication. See device-to-device

communication; interprocess
communication; serial communication

Compact Framework. See .NET Compact
Framework

comparing Windows CE to standard Windows, 3-7
compile targets, Hello World applications, 11
compile-time versioning, 1030-1031
componentization, 5
compression, 70, 393
COMSTAT structure, 597
concatenation, 968
concurrent versions, Hello World applications, 14
CONNDLG_RO_PATH, 618
connect function, 640, 643
Connect method, 669, 718, 1138
CONNECTDLGSTRUCT structure, 618
connectionless sockets, 644
connection-oriented connections. See stream

sockets

controls

connectivity. See also desktop connectivity;
networks

datagram, 639, 645
enumeration, 965
Hello World applications, 11
Smartphone connection manager, 961-965
status, 964-965
stream, 639-645

1173

CONNECT_UPDATE_PROFILE, 618-619
CONNMGR_CONNECTIONINFO structure, 962
ConnMgrConnectionStatus function, 963-964
CONNMGR_DESTINATION_INFO structure, 965
ConnMgrEnumDestinations function, 962, 965
ConnMgrEstablishConnection function, 961, 962
CONNMGR_PARAM_DESTNETID, 962
CONNMGR_PRIORITY_LOWBKGND, 962
CONNMGR_PRIORITY_VOICE, 962
ConnMgrRegisterScheduledConnection

function, 963
ConnMgrUnregisterScheduledConnection

function, 964
console

applications, 817-823
drivers, 818, 822-823
Hello World applications, 11
services, 1093, 1098
windows, 818

Console class, 1117-1118
const keyword, 378
Context registry value, 1086, 1095
CONTEXT structure, 555
CONTROL, 953, 955
Control class, 1127, 1134
CONTROL keyword, 185, 301
CONTROL statement, 301
Contro!Box property, 1133
control-break processing, 93
CONTROL_C_EXIT, 555
ControlCollection class, 1131
controls. See also common controls; dialog boxes;

soft keyboards
buttons, 137-140
colors, 178
combo boxes, 141
edit, 140

1174 Controls property

controls, continued
examples, 147-178
group boxes, 138
order, 950
overview, 5, 135-137
scroll bar, 143-147
Smartphone, 950--956
static, 142
Windows Forms applications, 1130--1131

Controls property, 1131
converting

ASCII and Unicode, 639
font point size, 53
thread to fiber, 507

ConvertThreadToFiber function, 507
coordinate transformations, 40
coordinates, text formatting, 44-45
CopyFile function, 409
copying files, 409
cPlanes parameter, 67
cPropID parameter, 455
CPUs, 3, 10, 501
crColor parameter, 76-77
Create method, 1134
CREATE_ALWAYS, 388-389, 442
CreateBitmap function, 67, 70
CreateCompatibleBitmap function, 67
CreateCompatibleDC function, 72
CreateDialog function, 307, 880
CreateDialoglndirect function, 307
CreateDialoglndirectParam function, 307
CreateDialogParam function, 307
CreateDIBPatternBrushPt function, 77, 89
CreateDIBSection function, 69-70
CreateDirectory function, 409
CreateEvent function, 512, 559
CreateFiber function, 508
CreateFile function, 388-390, 405, 586, 690, 1052
CreateFileForMapping function, 406-408
CreateFileMapping function, 529, 546
CreateFontlndirect function, 53, 54
CreateHatchBrush function, 78, 89
CREATE_INVALIDGUID macro, 442
CreateMenu function, 179
CreateMsgQueue function, 531
CreateMutex function, 520

CREATE_NEW, 388, 442
CREATE_NEW _CONSOLE, 495
CreateNewltem method, 850
CreatePen function, 76
CreatePenlndirect function, 76
CreatePopupMenu function, 179
CreateProcess function, 494-497, 516, 806
CreatePropertySheetPage function, 311
CreateSemaphore function, 519
CreateSolidBrushes function, 77
CREATESTRUCT structure, 127
CREATE_SUSPENDED, 495, 503
CREATE_SYSTEMGUID macro, 443, 456
CreateThread function, 376, 502-504, 670
CreateWindow function, 22-23, 130, 136, 177,

286, 845, 956
CreateWindowEx function, 22-23, 130, 136
cRegEnts parameter, 1049
critical memory state, 381-384
critical sections, 521-523
CRITICAL_SECTION structure, 522
cross-platform applications

overview, 1028
power management

changing, 1036-1039
overview, 1033
Power Manager, 1039-1043
querying state, 1033-1035

versions
compile-time, 1030--1031
explicit linking, 1032
overview, 1028-1030
run-time checking, 1032-1033

CSADDR_INFO structure, 675
CS_DBLCLKS, 20, 109
csDuration field, 861
CS_GLOBALCLASS, 20
CS_HREDRAW, 20, 847
CSIDL_APPDATA, 956
CSIDL_BITBUCKET, 801
CSIDL_DESKTOP, 801
CSIDL_DRIVES, 802
CSIDL_FAVORITES, 802
CSIDL_FONTS, 802
CSIDL_PERSONAL, 802
CSIDL_PROGRAMS, 802, 805

CSIDL_RECENT, 802
CSIDL_STARTMENU, 805
CSIDL_STARTUP, 802
CS_NOCLOSE, 20
CS_PARENTDC, 20
CS_ VREDRAW, 20, 847
CTL_CODE macro, 1061
CtlID field, 139
CtlType field, 139
Ctr! key, 94, 98, 109
Ctrl+Q, 847
CTS (Clear to Send) signal, 597
current

console settings, 822
databases, 456
directory, 385
file positions, 391
driver power state, 1069
memory state, 360-362
mounted database volumes, 442
point functions, 75
services running, 1088
SIP, 872, 874
time displays, 834
time estimates, 973

cursors. See mouse; touch screens
custom button appearance, 139
custom commands, service, 1093
custom controls, 866
custom date and time picker format, 290-291
custom pens, 76
custom Pocket PC input methods

components, 896
examples, 905-928
IIMCallback interface, 896-897, 902-905, 928
IIMCallback2 interface, 896, 902-905, 928
IInputMethod interface, 895-901, 907
IInputMethod2 interface, 895-902, 928
overview, 895
threads, 896

custom RAPI functions, 762-768
custom Start menu, 805
custom Today screen items

debugging, 881
examples, 881-895
implementing, 876-880

item window, 878-879
options dialog, 880
overview, 875
refreshing, 880
registering, 880
user interaction, 879

databases 1175

custom windows, 1128
CustomitemOptionsDlgProc function, 876, 894
customizing Windows CE, 5
Cut bitmap image, 268
CW_USEDEFAULT, 23, 845
cxideal field, 241
cxMinChild field, 240
cxWidth field, 999
cyHeight field, 999
cyMinChild field, 240
cyp field, 877-878, 894

D
dashed lines, 76
Data Set Ready (DSR) signal, 597
data transfers, sockets, 644
data types

CLR, 1120-1122
databases, 439-440
managed vs. unmanaged, 1142
overview, 5
registry, 419

databases
communication, 534
creating, 443-447
data types, 439-440
deleting, 455
designing, 440
enumerating, 456
examples, 458-488
indexes, 440
information queries, 457-458
mounted, 441-442
object store, 443
opening, 447-449
overview, 439-440
RAPI functions, 755-757
reading records, 452-455
searching records, 449-452
sort order, 452

1176 datagram connections

databases, continued
type values, 444
unmounted, 443
volumes, 441
writing records, 455

datagram connections, 639, 645
date and time picker control, 5, 206, 289-291
DATETIMEPICK_CLASS, 289
days, calendar, 286-289
DB_CEOID_CHANGED, 449
DB_CEOID_CREATED, 449
DB_CEOID_DATABASE_DELETED, 449
DB_CEOID_RECORD_DELETED, 449
DBGPARAM structure, 1071
dbSize field, 960
DC (device contexts). See device contexts (DC)
DCB structure, 589, 594
DCBlength field, 590
DCX_LOCKWINDOWUPDATE, 42
DCX_NORESETATTRS, 42
DCX_PARENTCLIP, 42
DCX_ VALIDATE, 42
DDBs (device dependent bitmaps), 67
dead characters, 98
debug zones, 1070-1071
debugging

console and, 822
service zone bitmaps, 1093
Today screen items, 881

DEBUG_ONLY _THIS_PROCESS, 495
DEBUG_PROCESS, 495
DEBUGREGISTER macro, 1071
DEBUGZONE macro, 1070, 1079
decommit virtual memory, 368
DEF (function definition) files, 765
default

file system, 386
fonts, 53, 55
local heaps, 364
stack size, 376

DEFAULT_QUALITY, 54
DefWindowProc function, 35-36
Deinit function, 1057, 1087, 1090
delegate keyword, 1122
delegates, CLR, 1122-1123
Delete key, 94

DeleteCriticalSection function, 523
DeleteDC function, 73
DeleteFiber function, 508
DeleteFile function, 409
DeleteObject function, 66
deleting

connections, 619
critical sections, 523
database records, 455
databases, 455
directories, 409
event objects, 514
fibers, 508
files, 409
fonts, 57
mutexes, 521
registry keys, 419
registry values, 419, 781
semaphores, 519

DeregisterDevice function, 692, 1050
DeregisterService function, 1089, 1092
Deselect method, 901
desktop connectivity

CeUtil DLL functions, 777-781
direct socket, 795
notifications

COM method, 783-786
examples, 786-794
overview, 781
registry method, 782-783
Windows CE side, 794

overview, 747
RAPI

custom functions, 762-768
ending sessions, 751
error handling, 750
examples, 758-762, 768-777
initializing, 750
overview, 748
pre-defined functions, 751-758
versions, 749

desktops, described, 129
DestroyCommandBand function, 260
destroying

command bars, 221
directories, 409

event objects, 514
fibers, 508
fonts, 57
mutexes, 521
semaphores, 519
separate heap, 375
windows, 27, 36

DestroyWindow function, 308
detecting running applications, 827
DEVFLAGS_LOADLIBRARY, 1049
DEVFLAGS_NAKEDENTRIES, 1049
DEVFLAGS_NOLOAD, 1049
DEVFLAGS_UNLOAD, 1049
device attributes, 388
device context handles, 1056
device contexts (DC)

attributes, 44-46
bitmaps, 71
described, 26
DIB, 69
fonts, 54-57
overview, 41-43
window regions, 41

device dependent bitmaps (DDBs), 67
device discovery

Bluetooth, 672-681
OBEX, 716-718

device drivers. See also stream device drivers
asynchronous I/0, 1079-1084
building, 1070-1071
debug zones, 1070-1071
enumerating, 1050-1052
examples, 1071-1079
interface classes, 1065-1067
load process, 1047-1050
names, 1046, 1052
overview, 1045
power management, 1067-1070
reading, 1052-1054
types, 1045-1046
unloading, 1050
writing, 1052-1054

device escape codes, 1037
device field, 689
device independent bitmaps (DIBs), 68-71, 77

dialog boxes, Save As 1177

Device Manager, 1046-1047, 1051, 1054-1056,
1084

DeviceDx field, 1069
DeviceFlags parameter, 1043
DeviceioControl function, 691, 1053, 1061, 1087
DEVICELIST structure, 646
DevicePowerNotify function, 1068
DeviceState parameter, 1043
device-to-device communication

Bluetooth
discovery, 672-681
examples, 692-713
overview, 670-671
service publications, 682-685
stack, 671
virtual COM ports, 687-692
Winsock, 685-687

IrSock, 645-651
OBEX

application callbacks, 714-716
communication process, 718-720
discovery, 716-718
examples, 720-744
initializing, 714
overview, 714

overview, 637
sockets, 638

DHCP (Dynamic Host Configuration Protocol),
1098

dialing. See cell phones
dialog boxes

Choose Color, 315
common, 314
creating, 302-303
examples, 316-353
File Open, 314
full-screen, 865-866
informational, 866-867
input dialogs, 866-867
modeless vs. modal, 307-308
overview, 297-298
Pocket PC, 864-869
Print, 315
procedures, 303-308
property sheets, 297, 308-314, 868-869
Save As, 315

1178 Dialog Manager

dialog boxes, continued
scrolling, 950
Smartphone, 949-950
styles, 300
templates, 298-302
title bars, 300
Today item options, 880, 882
types, 298
units, 299

Dialog Manager, 298
DialogBox function, 302-303
DialogBoxindirect function, 303
DialogBoxindirectParam function, 303-304
DialogBoxParam function, 302-304
dialogs. See dialog boxes
DIB_PAL_COLORS, 77
DIB_RGB_COLORS, 71, 77
DIBs (device independent bitmaps), 68-71, 77
dimensions, text, 43
direct memory access CDMA), 367
direct socket connectivity, 795
directories

creating, 409
current, 385
described, 800
destroying, 409
vs. drives, 413-415
information queries, 392-393
management functions, 409
moving, 409
names, 386, 409
searching, 410-413
special folders, 801-803

directory management RAPI functions, 752-755
DirectX, 997
disabled buttons, 138, 215
DisableThreadLibraryCalls function, 493
DISCARDABLE keyword, 183, 185
discardable keyword, 299
DISCDLGSTRUCT structure, 620
DISC_NO_FORCE, 620
Disconnect method, 721
disconnecting remote resources, 619-620
DiscoverDevices method, 1137
discovery process

Bluetooth, 672-681
OBEX, 716-718

DispatchMessage function, 24, 303, 307
display DC, 42, 44
displaying

menus, 181
Pocket PC notifications, 859
SIP, 846-847
text, 43

displays. See also drawing
GAPI, 999-1000
overview, 4
power management, 1036-1038
stylus, 109
user feedback, 110
writing storage, 110-116

Dispose method, 1138
DLGTEMPLATE structure, 303
DLL Hell, 998
DLL key, 1047
DllCanUnloadNow function, 896
DllGetClassObject function, 896
Dlllmport attribute, 1140
DllMain function, 492
DllRegisterServer function, 896
DLLs

debugging, 822
vs. EXE, 489-493
trusted vs. untrusted, 525-527

DLL_THREAD_ATTACH, 493
DLL_THREAD_DETACH, 493
DllUnregisterServer function, 896
DMA (direct memory access), 367
DM_RESETSCROLL, 950
DM_SETCHECK, 138
Do prefix, 35
DoCreateBtn Wnd function, 177
documents, recently used, 805
Documents submenu, 805
DoDestroyMain, 35
DoMouseSip routine, 928
DONT_RESOLVE_DLL_REFERENCES, 492
DoOpenMain, 405
DoPaintMain, 35
DoPaintSip routine, 928
Double data type, 440
double screen taps, 109
Down Arrow key, 94
down state, key, 98

down volume button, 945
dpCurrParams structure, 1093
DRAFT_QUALITY, 54
drag list control, 296
DrawButton function, 178
DrawEllipse method, 1130
drawing

bitmaps, 66-74
device contexts, 41-43
GAPI, 1001
lines, 74-75
overview, 39-40
pens, 75-77
regions, 40-41
shapes

brushes, 77-78
circles, 79
ellipses, 79
examples, 82-89
fill functions, 80-82
overview, 77
polygons, 80
rectangles, 78-80

WM_PAINT, 40-43
DRAWITEMSTRUCT structure, 139
DrawText function, 27, 43, 51
drivers. See also serial communication; stream

device drivers
asynchronous I/0, 1079-1084
Bluetooth, 687
building, 1070-1071
debug zones, 1070-1071
enumerating, 1050-1052
examples, 1071-1079
interface classes, 1065-1067
load process, 1047-1050
names, 1046, 1052
overview, 1045
power management, 1067-1070
reading, 1052-1054
types, 1045-1046
unloading, 1050
writing, 1052-1054

drives vs. directories, 386, 413-415
drop-down buttons, 216-218
drop-down combo boxes, 141

dwCurrentTxQueue field 1179

drop-down list combo boxes, 141
DS_ABSALIGN, 300
DS_CENTER, 300
DS_MODALFRAME, 300
DSR (Data Set Ready) signal, 597
DS_SETFONT, 300
DS_SETFOREGROUND, 300
DT_CALCRECT, 43, 51
DT_CENTER, 43
DTM_SETFORMAT, 290
DTN_FORMAT, 291
DTN_FORMATQUERY, 291
DTN_USERSTRING, 290
DTN_WMKEYDOWN, 291
DTR_CONTROL_DISABLE, 590
DTR_CONTROL_ENABLE, 591
DTR_CONTROL_HANDSHAKE, 591
DTS_APPCANPARSE, 290
DT_SINGLELINE, 43
DTS_LONGDATEFORMAT, 289
DTS_SHORTDATEFORMAT, 289
DTS_SHOWNONE, 289
DTS_TIMEFORMAT, 289
DTS_UPDOWN, 289
DTVCENTER, 43
duplicate synchronization handles, 521
DUPLICATE_CLOSE_ACCESS, 521
DuplicateHandle function, 521
DUPLICATE_SAME_ACCESS, 521
dwActiveProcessorMask field, 361
dwAdditionalFlags parameter, 412
dwAllocationGranularity field, 361
dwAvai!PageFile field, 362
dwAvailPhys field, 361
dwAvai!Virtual field, 362
dwBufferSize parameter, 970
dwBytes parameter, 374-375
dwCapability parameter, 719
dwContext registry value, 1050
dwControlFlags parameter, 682
dwConversion parameter, 902
dwCreationDistribution parameter, 388-389
dwCreationFlags parameter, 495, 497, 503
dwCurrentMessages field, 534
dwCurrentRxQueue field, 595
dwCurrentTxQueue field, 595

1180 dwData field

dwData field, 214
dwData parameter, 1090
dwDbaseType field, 444
dwDbaseType parameter, 456
dwDesiredAccess parameter, 388, 406, 521
dwDeviceFlags parameter, 1068
dwDevNum field, 619
dwDisplayType field, 622
dwEvent field, 559, 564
dwExStyle parameter, 22
dwFileAttributes field, 754
dwFlags field, 118, 263, 309, 448, 962
dwFlags parameter

database creation, 444
database opening, 447-448
keyboard functions, 99
memory allocations, 374
message queues, 532
modules, 492
mounted database volumes, 442
records, reading, 453
remote drives, 618
SIP changes, 847

dwFlagsAndAttributes parameter, 389, 586
dwFreeType parameter, 368
dwFunc parameter, 596
dwHeight parameter, 1002
dwID field, 861
dwID parameter, 863
dwlmDataSize field, 873
dwlndex parameter, 420
dwlnfo parameter, 1050
dwlnfoLevel parameter, 626
dwlnitialSize parameter, 374
dwloControlCode parameter, 1053
dwLength field, 361
dwLength parameter, 369
dwLenln parameter, 1061
dwLenOut parameter, 1061
DWL_MSGRESULT, 314
DWL_USER, 351
dwMacRxQueue field, 595
dwMacTxQueue field, 595
dwMask field, 865, 943
dwMaxBaud field, 594
dwMaximumSize parameter, 374

dwMaxMessages field, 532, 534
dwMaxQueueMessages field, 534
dwMemoryLoad field, 361
dwMessage parameter, 808
dwMessageModes parameter, 966
dwMessageStatus field, 972
dwMilliseconds function, 507
dwMilliseconds parameter, 514
dwMoveMethod parameter, 391
dwNameSpace field, 673, 682
dwNumberOfBytesToMap parameter, 407
dwNumberOfFrocessors field, 361
dwOffset parameter, 71
dwOffsetScore field, 905
dwOffsetSymbols field, 905
dwOID field, 395, 754
dwOptions parameter, 521
dwOrder field, 877
dwOut parameter, 1092
dwPageSize field, 361
dwParam field, 448
dwParams field, 962
dwPlatformld field, 1032
dwPriority field, 962
dwProcessorType field, 361
dwProvCapabilities field, 595
dwProviderSpecificDataBuffer parameter, 970
dwProviderSpecificDataSize parameter, 967
dwProvSpecl field, 595
dwProvSpec2 field, 595
dwProvSub field, 595
dwRop parameter, 72
dwScope parameter, 620
dwSeekType parameter, 450
dwSentence parameter, 902
dwServiceMask field, 595
dwServiceState field, 1089
dwSettableBaud field, 594
dwSettableData field, 595
dwSettableParams field, 595
dwSettableStopParity field, 595
dwShareMode parameter, 388
dwSize field, 309, 445, 449, 532, 673
dwSize parameter, 365, 368-369, 442, 534, 900
dwState parameter, 871
dwStyle parameter, 130, 219

dwStyles parameter, 237
dwTimeout field, 972
dwTimeout parameter, 533, 963
dwTop parameter, 1002
dwTotalPageFile field, 362
dwTotalPhys field, 361-362
dwTotalVirtual field, 362
dwType field, 559, 622
dwType parameter, 619
dwUsage parameter, 621
dwValue parameter, 451
dwVolumeSerialNumber field, 395
dwWakeMask, 517
Dynamic Host Configuration Protocol

(DHCP), 1098

E
echo requests, 641
edit boxes, Smartphone, 944, 951
edit controls, 5, 140, 301, 945-954
editing registry, 421
editing window structure values, 132-135
EDITTEXT, 301
E_FAIL, 750-751, 898
EIM_AMBIG, 952
EIM_NUMBERS, 952
EIM_SPELL, 952
EIM_TEXT, 952
Ellipse function, 79
ellipses, 79
eMbedded Visual C++, 10, 36
EM_GETINPUTMODE, 952
empty projects, 10
EM_SETEXTENDEDSTYLE, 952
EM_SETINPUTMODE, 952
EM_SETSEL, 140
EM_SETSYMBOLS, 952
emulators, Hello World applications, 10
EnableChanged event, 1137
Enabled property, 1136
EnableMenu function, 944
EnableMenultem function, 180
end, setting file, 392
End key, 94
END keyword, 183, 301
EndDialog function, 304, 308

ES_LOWERCASE 1181

ending RAPI sessions, 751
EndPaint function, 26-27, 41
Enter key, 94
EnterCriticalSection function, 522
entry points

application, 817
service DLL, 1089-1091
stream device drivers, 1054-1065
Today screen, 875

Entry registry value, 1049
EntryPoint field, 1141
EnumDevices method, 716
EnumerateFontFamilies function, 65
enumerating

connections, 965
databases, 456
drivers, 1050-1052
fonts, 57
mounted database volumes, 442
network resources, 620-625
processes, 527
registered devices, 779-780
registry keys, 420
services, 1088
windows, 131

EnumFontFamilies function, 58, 65
EnumProperties method, 722
EnumServices function, 1088
EnumWindows function, 131, 527
equal key, 95
erasing backgrounds, 879
ERROR_ALREADY _EXISTS, 389
ErrorChar field, 591
ERROR_FAIL, 959
ERROR_INSUFFICIENT_BUFFER, 533
ERROR_INVALID_PARAMETER, 1062
ERROR_NO_MORE_ITEMS, 420, 623, 780
ERROR_NO_NETWORK, 616
errors. See also exception handling

RAPI, 750
serial communication, 597

ERROR_SUCCESS, 966
escape codes, 1037
EscapeCommFunction function, 596
ES_EX_CLEARONBACKPRESSHOLD, 953
ES_LOWERCASE, 140

1182 ES_MULTILINE

ES_MULTILINE, 140
ES_PASSWORD, 140
ES_READONLY, 140
ES_UPPERCASE, 140
Ethernet links, 795
EV _BREAK, 588
EV_CTS, 588
EV_DSR, 588
EVENPARlTY, 591
Event parameter, 715
events

CLR, 1122-1123
memory state, 381-382
notifications, 563-566
objects, 512-514
window procedure, 15-17
Windows Forms applications, 1131-1132
Winsock, 638

EV_ERR, 588
EV _RLSD, 588
EV _RXCHAR, 588
EV _RXFLAG, 588, 592
EvtChar field, 592
EV_ TXEMPTY, 588
_except keyw-ord, 552-556
exception handling

C++, 549-552
overview, 549
Win32, 552-556

EXCEPTION_ACCESS_ VIOLATION, 555
EXCEPTION_CONTINUE_EXECUTION, 554
EXCEPTION_EXECUTE_HANDLER, 553
EXCEPTION_NONCONTINUABLE, 556
EXCEPTION_RECORD structure, 555
EXE files, 489-493
Execute in Place (XIP), 358, 362, 364, 387
Execute key, 94
exit codes, process, 497, 504
Exit commands, 834
ExitProcess function, 497
ExitThread function, 497, 504
expandable edit controls, 953-954
expanded memory, 359
explicit DLL loading, 490
explicit linking, 1032

Explorer shell
application launching, 806-807, 824-830
memory management, 817
namespace, 800
overview, 799-800
recent documents list, 805
shortcuts, 804
special folders, 801-803
Start menu, 805
taskbars, 808-816

EXSTYLE, 300
extended memory, 359
extended style flags, listed, 22
extensions, file, 387
external entry points, 25
external storage, 869
ExtEscape function, 1037
extra spaces, 21, 376
ExtTextOut function, 44, 45, 65

F
fAbortOnError field, 591
fAdd parameter, 1066
FAD_FLAGS, 756
FAD_NAME, 756
FAD_NUM_RECORDS, 756
FAD_NUM_SORT_ORDER, 756
FAD_OID, 756
FAD_SORT_SPEC, 756
FAD_TYPE, 756
FAF_ATTRIB_CHILDREN, 753
FAF_ATTRIB_NO_HIDDEN, 753
FAF _ATTRIBUTES, 753
FAF_CREATION_TIME, 753
FAF_FOLDERS_ONLY, 753
FAF _LASTACCESS_TIME, 753
FAF_LASTWRITE_TIME, 753
FAF _NAME, 753
FAF _NO_HIDDEN_SYS_ROMMODULES, 753
FAF _OID, 753
FAF _SIZE_HIGH, 753
FAF _SIZE_LOW, 753
family, font, 54, 58, 65
fBinary field, 590
FCL (Framework Class Library), 1125

fConnected field, 960
fCreate parameter, 778, 801
FD_CLR, 650
FD_ISSET, 650
FD_SET, 650
fd_set, 650
fDsrSensitivity field, 591
fDtrControl field, 590
fdwFlags field, 873, 899-900, 903
FD_ZERO, 650
feedback, user screen, 110
fEnabled field, 877
fEnded field, 960
fEor field, 597
fErase field, 27
fErrorChar field, 591
ffFormat field, 1000
fForce parameter, 619
FiberProc function, 508
fibers, 507-509
file API. See file system
file browsing service, 719
file communication, 534
file formats, modules, 489-493
File Index value, 395
file management RAPI functions, 752-755
File menu keys, 185
File Open dialog boxes, 314
file pointers, 390-391
file system. See also object store

closing files, 391
copying files, 409
creating directories, 409
creating files, 388-390
deleting files, 409
destroying directories, 409
drives vs. directories, 413-415
examples, 396-405
file times, 393-394
filename formats, 386, 410
finding files, 410-413
information queries, 392-395
1/0, 387
management functions, 409
memory-mapped, 406-408
moving files, 409

fill functions 1183

object store vs. other media, 387
opening files, 388-390
overview, 385-387
pointers, 391
reading files, 390, 406-408
security, 385
temporary files, 410
tnmcating files, 392
types, 387
writing files, 390, 406-408

FILE_ATTRIBUTE_ARCHIVE, 389
FILE_ATTRIBUTE_COMPRESSED, 392
FILE_ATTRIBUTE_DIRECTORY, 392
FILE_ATTRIBUTE_HAS_CHILDREN, 755
FILE_ATTRIBUTE_HIDDEN, 389
FILE_ATTRIBUTE_INROM, 392
FILE_ATTRIBUTE_NORMAL, 389
FILE_ATTRIBUTE_OFFLINE, 389
FILE_ATTRIBUTE_READONLY, 389
FILE_ATTRIBUTE_ROMMODULE, 392
FILE_ATTRIBUTE_SYSTEM, 389
FILE_ATTRIBUTE_TEMPORARY, 393, 413-414,

754
FILE_BEGIN, 391, 1059
FILE_CURRENT, 391, 1059
FILE_END, 391, 1059
FileFindFirst function, 616, 625
FileFindNext function, 616, 625
FILE_FLAG_BACKUP _SEMANTICS, 389
FILE_FLAG_DELETE_ON_CLOSE, 389
FILE_FLAG_NO _BUFFERING, 389
FILE_FLAG_OVERLAPPED, 387, 389, 586
FILE_FLAG_POSIX_SEMANTICS, 389
FILE_FLAG_RANDOM_ACCESS, 389, 535
FILE_FLAG_SEQUENTIAL_SCAN, 389
FILE_FLAG_ WRITE_ THROUGH, 389
FILE_MAP _ALL_ACCESS, 407
FILE_MAP _READ, 407
FILE_MAP _WRITE, 407
FILE_SHARE_READ, 388
FILE_SHARE_ WRITE, 388
FILETIME data type, 440
FILETIME structure, 393, 960
FileTimeToLocalFileTime function, 394
FileTimeToSystemTime function, 394
fill functions, 80-82

1184 filled rectangles

filled rectangles, 78
FillRect function, 80
_finally keyword, 556
FindClose function, 411
FindE:xinfoStandard constant, 412
FindExSearchLimitToDevices function, 1050
FindExSearchLimitToDirectories value, 412
FindExSearchNameMatch value, 412
FindFirstFile function, 410--413
FindFirstFileEx function, 412, 1050
finding files, 410--413
finding device drivers, 1050--1052
finding windows, 131
FindNextFile function, 411, 413
FindSrv function, 773
FindWindow function, 34, 131, 527-528, 563, 843
frnfn.T PuPlTrl n'lt"lmPtP.r A.1? ~ ~~-- ~- r~ ... ~, _ _. ... , ... ~-

FIONBIO, 649
FIONREAD, 649
flags

attribute, 387, 389
buttons and icons, 13-14
common controls, 206
extended, 22
supported, 388-389
text alignment, 45
text formatting, 43

Flags field, 1041, 1069
flags parameter, 42, 644
Flags value, 1049
flAllocationType parameter, 365
flash card volumes, opening, 390
flash memory, 956
flncUpdate field, 27
flNewProtect parameter, 369
flocal field, 689
flOptions parameter, 373
flProtect parameter, 366, 406
FlushFileBuffers function, 392
FlushViewOtFile function, 407
fMask field, 146, 239, 807
£Maximized field, 245
fmode, 45
fnBar field, 147
fnBar parameter, 146
fNull field, 591

focus, input, 92-92
folders, 800--803
Fontfamily function, 65
FontFamilyCallback function, 65
fonts

available, 57
boldness, 53
characteristics, 55-57
creating, 53-54
destroying, 57
enumerating, 57
examples, 58-66
family, 54, 58, 65
height, 53, 56
overview, 52-52
raster, 52
~P1Prt1no 1ntA rlPuirP rn.ntPvt '\A. 0 - _. , _., ...

sharpening, 54
TrueType, 52
types supported, 52
width, 53, 56

fOptions field, 682
fOptions flag, 877
foreground colors, text, 44, 51
Form class, 1128
Format method, 1124
formats

date and time picker control, 289-291
filenames, 386, 410
modules, 489'-493
text, 43

FormBorderStyle property, 1133, 1136
forms, top-level, 1133
FormWindowState property, 1133
fOutCtsFlow field, 590
fOutgoing field, 960
fOutX field, 591
fFarity field, 590
fragmenting local heaps, 373, 379
frame buffer, 997, 999, 1001-1003
Framework Class Library (FCL), 1125
fRedraw parameter, 146
Free method, 803
free space, 414-415
free virtual pages, 360

freeing
local heap memory, 372
memory, 871
resources, GAPI, 1003
separate heap, 375
separate heap memory, 374
virtual memory, 368

FreeLibrary function, 491
free-memory levels, 381-384
fRemoveFromRegistry parameter, 1096
fRestore field, 27
friendly names, driver, 1052
fRoam field, 960
fRtsControl field, 591
fSearchOp parameter, 412, 1050
fSecurity field, 682
fShow parameter, 221
fSizeOnDraw field, 877
fsModifiers parameter, 828
fsState field, 213, 943
fsStyle field, 214
fStyle field, 239
ftEndTime field, 960
ftLastModified field, 445
FTP service, 719
ftStartTime field, 960
fTXContinueOnXoff field, 591
fTxim field, 597
fuFlags field, 218
fuFlags parameter, 179
full-screen dialog boxes, 865-866
full-screen windows, 871
FuncName function, 763
function calls, 6
function definition (DEF) files, 765
function keys, 97
fWinlni parameter, 872

G
gaining window focus, 92
Game API (GAPI)

buttons, 1000-1001
displays, 999-1000
drawing to screen, 1001
examples, 1004-1021
frame buffer, 1001-1003

GetExceptionlnformation function 1185

functions, 998
hardware keys and, 829
initialization, 998-1001
overview, 997-998
partial screen display, 1002
Pocket PC, 997
releasing, 1003
resuming, 1003
Smartphone, 997
starting, 1001
suspending, 1003
versioning, 997

garbage collection, 1116
gateways, 1098
GDI (Graphics Device Interface), 40
GE_HWNDFIRST, 131
generic functions, 762
GENERIC_READ, 388, 406
GENERIC_ WRITE, 388, 406
Get method, 720
GetAsyncKeyState function, 99
GetCallerProcess function, 1063
GetCapture function, 117
getchar, 9
GetCharABCWidths function, 56
GetCharWiclth32 function, 57
GetClientRect function, 26, 898
GetCommMask function, 588
GetCommMoclemStatus function, 597
GetCommProperties function, 590, 594
GetCommState function, 589
GetCommTimeouts function, 592
GetConfigData function, 1079
GetCurrentPermissions function, 1080
GetCurrentPositionEx function, 74
GetCurrentProcess function, 521, 1063
GetDC function, 42
GetDCEx function, 42
GetDesktopWindow function, 132
GetDeviceCaps function, 40, 44, 53, 76, 752, 1033
GetDialogBaseUnits function, 299
GetDIBColorTable function, 71
GetDiskFreeSpaceEx function, 414, 762, 765
GetDlgitem function, 136, 219
GetEventData function, 514
GetExceptionCocle function, 555
GetExceptioninformation function, 555

1186 GetExitCodeProcess function

GetExitCodeProcess function, 497
GetExitCodeThread function, 504
GetFiberData function, 507
GetFileAttributes function, 392
GetFileinformationByHandle function, 395
GetFileSize function, 394, 405
GetFileTime function, 393
GetFocus function, 92
gethostbyname function, 795
GetimData method, 900
Getinfo method, 898-899, 928
Getiteminfo function, 488
GetKeyboardStatus function, 100
GetKeyState function, 98, 109, 117
GetLastError function, 389, 392, 618
GetMessage function, 23-24, 303, 307, 502
GPtl\lfnd11lPP-ilPl\T':lmP f11nrt1r'\n Q7() - -----~----·--- ---- ,----~ -~--~~.._....,.._ .. , ...,.,, ,..,.

GetMouseMovePoints function, 111
GetMsgQueueinfo function, 533
GetObject function, 73
GetParent function, 130
GetProcAddress function, 352, 491, 749,

1054, 1087
GetProcessHeap function, 375
GetRapiStat method, 767
GetScrollinfo function, 147
GetServiceHandle function, 1088, 1096
getsockopt function, 645, 647, 669
GetStockObject function, 21, 75, 77, 89
GetStoreinformation function, 362, 415, 751
GetStream method, 1138
GetStudioPathW function, 822
GetSysColor function, 140
GetSysColorBrush function, 178
GetSysteminfo function, 360, 870
GetSystemPowerStatusEx function, 894
GetSystemPowerStatusEx2 function, 1033
GetTempFileName function, 410
GetTextColor function, 44
GetTextExtentPoint function, 204
GetTextMetrics function, 55, 65
GetThreadPriority function, 505
GetTickCount method, 1140
GetVal, 303-304
GetVa!DlgProc, 303
GetVersionEx function, 1032

getwchar, 9
GetWindow function, 131
GetWindowDC function, 43
GetWindowLong function, 132, 134, 351
GetWindowRect function, 262
GetWindowText function, 1146
GetWindowThreadProcessid function, 498
global heaps, 364
GlobalMemoryStatus function, 361
glyphs, 57
GN_CONTEXTMENU, 118
goto statement, 556
GradientFill function, 81
GRADIENT_RECT structure, 82
graphics. See drawing
Graphics class, 1129
t:...--....-.1-..~,,...,.... n,..,. ~,.,.,...,. T t-C~~,,.. f,-.nT\ l.n
'-'.lU.,t-'.lJ..l'-Ll .L.''-VJ._,\,_, .L.l.ll\..--.l.l«'-'- \.'-1.L-'l-..f) ~V

Graphics Windowing and Event handler
(GWE), 40

grayed-out buttons, 138
grayscale, 77
Greenwich Mean Time, 394
grfFlags field, 861, 877
grfFlags parameter, 817
grippers, command band control, 236
grnumUpdateMask parameter, 863
group boxes, 138
grouping buttons, 301
guid field, 449
guidDest field, 963
guidDestNet field, 962
GUIDs, 684, 686
GW_CHILD, 131
GWE (Graphics Windowing and Event handler), 40
GwesPowerOffSystem function, 1036
GW_HWNDLAST, 131
GW_HWNDNEXT, 131
GW_HWNDPREV, 131
GWL_DLGPROC, 133
GWL_EXSTYLE, 132
GWL_ID, 132
GWL_MSGRESULT, 133
GWL_STYLE, 132
GWL_USER, 133
GWL_USERDATA, 132
GWL_ WNDPROC, 132

GX function, 998
GXBeginDraw function, 998, 1001
GXCloseDisplay function, 998, 1003
GXCloselnput function, 998, 1003
GXDisplayProperties structure, 999
GX.DLL, 997
GXEndDraw function, 1002
GX_FULLSCREEN, 999
GXGetDefaultKeys function, 998, 1000
GXGetDisplayProperties function, 99&-999, 1004
gx.h, 998
GXIsDisplayDRAl\.1Buffer function, 998, 1003
GX_LANDSCAPEKEYS, 1000
gx.lib, 998
GX_NORMALKEYS, 1000
GXOpenDisplay function, 998
GXOpeninput function, 998, 1001
GXResume function, 998, 1003
GXSetViewport function, 998, 1002
GXSuspend function, 998, 1003

H
Handheld PC, 381-384, 747
HandleGripper routine, 928
handles

device contexts, 26, 41-43
inheritance, 527
service, 1088

hard disk volumes, opening, 390
hardware. See drivers
hardware keys, 824-830
hatched brushes, 78, 89
hbmBack field, 240
hbrBackground field, 21
HCI (Host Controller Interface), 671
hComPort, 589
hCursor field, 21
HDC (handle to device context), 26
hDC field, 139
hdc field, 27
hdc parameter, 57
hDeviceContext parameter, 1060
hDlg field, 865
hDlg parameter, 304
header control, 206
HeapAlloc function, 374

hFile parameter 1187

HeapCreate function, 373
HeapDestroy function, 375
HeapFree function, 374, 455
HEAP _GENERATE_EXCEPTIONS, 373
HEAP _NO_SERIALIZE, 373-374
HeapReAlloc function, 374
HEAP _REALLOC_IN_PLACE_ONLY, 374
heaps

considerations for, 379
described, 364
global, 364
local, 364, 372-373
managed applications, 1116
overview, 371
separate, 364, 373-375

HeapSize function, 375
HEAP _ZERO_MEMORY, 374
heights

command bands, 245
command bars, 220
dialog boxes, 299
fonts, 53, 56
GAPI displays, 999, 1002
menu bars, 262
MenuBar control, 939
round rectangles, 80
Today screen items, 877-878, 882

Hello World applications
code fragments (HelloCE), 2&-37
concurrent versions, 14
console support, 11
creating, 10-11
message boxes (Hello2), 12-14
overview, 7-9
running, 11
Windows-based (Hello3)

message loops, 23-24
overview, 15-17
source code, 17-20
window class registration, 20-21
window creation, 22-23
window procedure, 24-28

Help buttons, 220, 300
Help key, 94
heRapilnit field, 750
hFile parameter, 492

1188 hHeap field

hHeap field, 448
hHeap parameter, 374, 454
hibernate mode, 380-381
hicon field, 21, 310, 809, 861
hicon/pszicon, 311
hidden application windows, 381
hidden directories, 801
hidden SIP, 846-847
hiding command bands, 246
hiding command bars, 220
Hiding method, 900
hiding navigation bars, 1133
hierarchies, registry, 416
HighPart field, 414
himageNarrow field, 899
himageWide field, 899
hlnst parameter, 210, 211
hlnst variable, 33
hinstance field, 21, 311
hlnstance parameter, 8, 23, 303
hinstApp field, 807
hinstDLL field, 877
hinstRes field, 263, 941
historical information, 286
Hitachi SHx constants, 361
hKey parameter, 418
HKEY_CLASSES_ROOT, 416
HKEY_CURRENT_USER, 416, 777
HKEY_LOCAL_MACHINE, 416, 777
hkl parameter, 902
hlMinRcvBw parameter, 963
hlOptions parameter, 418
hMem parameter, 373
hMenu field, 859
hMenu parameter, 130
Hnd registry value, 1051
hNotification parameter, 559
hOldFont, 65
hollow rectangles, 78
Home key, 94
Home screen, Smartphone, 930
horizontal scroll bars, 146
Horizontal Scrollbar Visibility value, 416
horizontal tap position, 109
horizontally centered text, 43
Host Controller Interface (HCI), 671

hot key control, 296
hot keys, 828
hourglass cursor, 110
how parameter, 645
hPrevlnstance parameter, 8
hProcess field, 807
hrpnC!ip parameter, 42
hrRapilnit field, 750
hSection parameter, 71
hServiceHandle field, 1089
hSrc parameter, 7 4
hSyncHandle, 518
hTemplate parameter, 389
hTemplateFile parameter, 406
Hungarian prefixes, 6-7
h Wnd field, 448, 808, 962
hwnd field, 807
hWnd parameter, 303
hwnd parameter, 99, 902
Hwnd property, 1135
HWND_BOTTOM, 133
hwndChild field, 240
hwndC!ient field, 118
hwndCustom field, 877
hwndFrom field, 207
hWndinsertAfter parameter, 133
hwndMB field, 263, 941
HWND_NOTTOPMOST, 133
hwndOwner field, 618, 620
hwndOwner parameter, 801
hwndPage field, 314
hwndParent field, 263, 844, 941
hwndParent parameter, 878
hwndSink field, 861
HWND_TOP, 133
HWND_TOPMOST, 133
hyphen key, 95

iBitmap field, 213
iButton parameter, 210, 215, 219
ICC_BAR_CLASSES, 206
ICC_CAPEDIT_CLASS, 207
ICC_COOL_CLASSES, 206
ICC_DATE_CLASSES, 206, 286, 289
ICC_LISTVIEW _CLASSES, 206, 292

ICC_PROGRESS_CLASS, 206
ICC_TAB_CLASSES, 206
ICC_TOOLTIP _CLASSES, 207
ICC_ TREEVIEW _CLASSES, 206
ICC_UPDOWN_CLASS, 207
!Class registry value, 1066
IClassFactory interface, 907
ICMP (Internet Control Message Protocol), 641
icons

flags, 13-14
resource files and, 184
Smartphone, 930,948
taskbar, 808-816

ID lists, item, 801
id parameter, 823
ID values, resource, 183
IDABORT, 14
idBitmap parameter, 211
IDB_STD_SMALL_COLOR, 211
ID_BTNBARRES, 942
IDB_ VIEW _SMALL_COLOR, 211
IDCANCEL, 14, 304, 306, 313
IDccMan interface, 784
IDccManSink interface, 784
idComboBox parameter, 219
identifying

files, 395
items, 800
microprocessors, 360
platforms, 1032
services, 677--681

IDeviceEnum interface, 717
idFrom field, 207
IDIGNORE, 14
ID_MENU, 942
idMenu parameter, 210
IDM_MENU, 265
IDM_NEWMENUMAX, 859
IDM_SHAREDNEW, 266, 849
IDM_SHAREDNEWDEFAULT, 266
idNewitem parameter, 179
IDNO, 14
IDOK, 14, 304, 306, 313, 948
IDRETRY, 14
ID_TODAY_CUSTOM, 876

ID_VIEWMENU, 269
IDYES, 14
if statement, 523
ifClipPrecision field, 54
ifFaceName field, 54

imtu field 1189

ifFitchAndFamily field, 54
IID_INewMenuitemServer interface, 849
ilmage field, 240, 242
UMAGENONE, 266, 941
IIMCallback interface, 89~97, 902-905, 928
IIMCallback2 interface, 896, 902-905, 928
IIMCallbackEx interface, 896
IInputMethod interface, 895-901, 907
IInputMethod2 interface, 895-902, 928
IM (input method), SIP

described, 895
examples, 905-928
IIMCallback interface, 89~97, 902-905, 928
IIMCallback2 interface, 896, 902-905, 928
IInputMethod interface, 895-901, 907
IInputMethod2 interface, 895-902, 928
overview, 896
threads, 896

image index values, 212-213, 268
image list control, 237
image references, command bar, 213-215
ImageList_Add function, 237
ImageList_Create function, 237
ImageList_Duplicate function, 216
IMalloc interface, 802
imaxmtu field, 689
iMaxSockets parameter, 639
iMaxUdpDg field, 639
IME (Input Method Editor), 895, 902
IMINFO structure, 898, 903
immediate painting, 42
immediately reserving memory blocks, 366
IMMF_CAPSLOCK, 952
IMMF _SETCLR_CAPSLOCK, 952
IMMF _SETCLR_SHIFT, 952
IMMF _SHIFT, 952
immutable strings, 1123
import tables, 490
Imports keyword, 1119
imtu field, 689

1190 iNarrow field

iNarrow field, 899
Inbox item, 875
Index registry value, 1048, 1086
index values, 212-213, 242, 268
indexes, 439-440
indirect frame buffer access, 1002-1003
informational dialogs, 866-867
infrared communication

described, 637
IrSock

blocking vs. nonblocking, 648-651
examples, 651-670
options, 647-648
overview, 645-647

Infrared Data Association (IrDA). See IrDA
(Infrared Data Association)

infrared links, 795
Init function, 1056, 1087, 1089, 1095
InitCommonControls function, 206, 292
InitCommonControlsEx function, 206, 286, 289
Initialize method, 714
InitializeCriticalSelection function, 522
InitializeCustomitem function, 876-879, 894
initialized read/write data, 378
initializing

common controls, 206
date and time picker control, 289
GAPI, 998-1001
month calendar control, 287
RAPI, 750
RAPI sessions, 761
Winsock, 638-639

Initinstance function, 33-34
Initinstance procedure, 545
inking, 110-116
input

keyboards
examples, 100-108
functions, 98-100
input focus, 92
messages, 92-98
overview, 91
testing for, 100

mouse messages, 109-110, 116-117
overview, 91
stylus messages, 110
touch screens

examples, 118-127

inking, 110-116
input focus, 116-117
overview, 110
right-button clicks, 117-118

input dialogs, 866-867
input focus, 92, 116-117
input method, Pocket PC. See Pocket PC shell
input method (IM), SIP

described, 895
examples, 905-928
IIMCallback interface, 902-905
IIMCallback2 interface, 902-905
IInputMethod interface, 897-901
IInputMethod2 interface, 897-902
overview, 896
threads, 896

Input Method Editor (IME), 895, 902
input panel, SIP, 896, 903
InputPanel class, 1136-1137
InrunshDx field, 1069
Insert key, 94
InsertMenu function, 179
installable drivers. See stream device drivers
instance handles, Hello World applications, 21, 23
interface classes, device, 1065-1067
interlocked variable access, 523-525
InterlockedCompareExchange function, 524
InterlockedCompareExchangePointer function, 525
InterlockedDecrement function, 524
InterlockedExchange function, 524
InterlockedExchangeAdd function, 525
InterlockedExchangePointer function, 525
Interlockedincrement function, 524
InterlockedTestExchange function, 524
international considerations, 54, 98
Internet Control Message Protocol (ICMP), 641
interprocess communication

databases, 534
examples, 535-549
files, 534
finding processes, 527-528
memory-mapped objects, 529-530
message queues, 531-534
overview, 527
WM_COPYDATA, 528

interrupt conditions, system power and, 1039
iNumimages parameter, 211

invalid window areas, 27, 40-41
InvalidateRect function, 41, 108
INVALID_HANDLE_VALUE, 389, 411, 586
INVALID_SOCKET, 641, 643
invoking user-defined RAPI functions, 762
1/0 control (IOCTL). See IOCTL commands
1/0 functions

closing files, 391
creating files, 388-390
examples, 396-405
file times, 393-394
information queries, 392-395
library functions, 817
opening files, 388-390
overview, 387
pointer adjustments, 391
reading files, 390
size queries, 394-395
truncating files, 392
writing files, 390

IObex interface, 714, 716
10bex2 interface, 714
IObexDevice interface, 714, 718
IObexSink interface, 714, 717
IOControl function, 1060-1065, 1090-1091
IOCTL codes, 1053, 1061
IOCTL commands

device interface classes, 1065-1067
passing to volume, 390
serial ports, 589
services, 1088-1094
super service, 1097-1098
virtual COM ports, 690-692

IOCTL_ASYNC, 1083
IOCTL_BLUETOOTH_GET _PEER_DEVICE, 692
IOCTL_BLUETOOTH_GET_RFCOMM_CHANNEL,

691
IOCTL_CHECKSUM, 1065
IOCTL_POWER_GET, 1069
IOCTL_POWER_QUERY, 1069
IOCTL_POWER_SET, 1070
IOCTL_FSL_NOTIFY, 1084
IOCTL_REGISTER_POWER_RELATIONSHIP, 1069
IOCTL_SERVICE_CALLBACK_FUNCTIONS, 1094
IOCTL_SERVICE_ CONNECTION, 1097
IOCTL_SERVICE_CONSOLE, 1093

IRLMP _SEND_PDU_LEN 1191

IOCTL_SERVICE_CONTROL, 1093
IOCTL_SERVICE_DEBUG, 1093
IOCTL_SERVICE_DEREGISTER_SOCKADDR, 1097
IOCTL_SERVICE_INSTALL, 1092
IOCTL_SERVICE_NOTIFY _ADDR_CHANGE, 1097
IOCTL_SERVICE_QUERY _CAN_DEINIT, 1092
IOCTL_SERVICE_REFRESH, 1091
IOCTL_SERVICE_REGISTER_SOCKADDR, 1097
IOCTL_SERVICE_START, 1091
IOCTL_SERVICE_STARTED, 1097
IOCTL_SERVICE_STATUS, 1092
IOCTL_SERVICE_STOP, 1091
IOCTL_SERVICE_SUPPORTED _OPTIONS, 1094
IOCTL_SERVICE_UNINSTALL, 1092
ioctlsocket function, 649
iom field, 960
IP addresses, 795
IP _ADAPTER_INFO structure, 1097
IPropertyBag interface, 715
iProtocol registry value, 1096
IRAPIStream interface, 767, 773, 776
IrDA (Infrared Data Association). See also stream

sockets
described, 637
IrSock

blocking vs. nonblocking, 648-651
examples, 651-670
options, 647-648
overview, 645-647
vs. Winsock, 645

.NET Compact Framework classes, 1137-1139
irdaAddressFamily field, 642
IrDAClient class, 1137, 1162
irdaDeviceID field, 642
IRDA_DEVICE_INFO structure, 646
IrDAListener class, 1138, 1162
irdaServiceName field, 642
iRecord parameter, 961
irecvquota field, 689
IRLMP _9WIRE_MODE, 648
IRLMP _ENUMDEVICES, 645, 648
IRLMP _IAS_QUERY, 648
IRLMP _IAS_SET, 648
IRLMP _IRLPT_MODE, 648
IRLMP _SEND_PDU_LEN, 648

1192 IRLMP _SHARP _MODE

IRLMP _SHARP _MODE, 648
IrSock

blocking vs. nonblocking, 648-651
examples, 651-670
options, 647-648
overview, 645-647
vs. Winsock, 645

IsDialogMessage function, 308
ISdpRecord interface, 680
isendquota field, 689
IShellN otificationCallback interface, 861
!Stream interface, 720, 767
iString field, 214
item IDs, 800
item window. See Today screen
itemAction field, 139
itemData field, 139
items, described, 800
itemState field, 139
iterating windows, 131
iUsage parameter, 71
!Val data type, 440
iWide field, 899
iWidth parameter, 219

J-K
JIT (just-in-time) compilation, 1113, 1116
KBDI_KEYBOARD_ENABLED, 100
KBDI_KEYBOARD_PRESENT, 100
Keep registry value, 1049
kernel, 40
kernel mode, 1026
Key registry value, 1051
keybd_eventfunction, 99, 1036
keyboard accelerators

examples, 187-204
overview, 185-186

keyboards. See also hardware keys; mouse;
Smartphone; touch screens

drivers, 1046
examples, 10(}-108
functions, 98--100
input focus, 92
keys not included, 93, 97
messages, 92-98

overview, 4, 91
soft, 91
testing for, 100
virtual keys, 93-100

KEYEVENTF _KEYUP, 99, 904
KEYEVENTF _SILENT, 99, 904
keys

hardware
application launching, 825-830
overview, 824
virtual codes, 824-826

keyboard accelerator
closing, 420
creating, 417
deleting, 419
enumerating, 420--421
opening, 417
overview, 415-416
protected, 525

KeyStateFlags function, 99
keystroke simulation, 99
kfDirect, 1000
kfDirectlnverted, 1000
kflandscape, 1000
kfFalette, 1000

L
languages (international), 54, 98
Latency array, 1069
LB_ADDSTRING, 141
LB_DIR, 141
LB_FIND, 141
LB_GETCURSEL, 141
LB_GETSELITEMS, 141
LB_INSERTSTRING, 141
LB_SETCURSEL, 141
LB_SETSEL, 141
LB_SETSELCOUNT, 141
LBS_EX_CONSTSTRINGDATA, 141-142
IDistanceToMove parameter, 391
LeaveCriticalSection function, 523
LEDs, 54
Left Alt key, 95
Left Arrow key, 94
Left Control key, 95

left bracket key, 95
Left Shift key, 95
left SoftKeyBar button, 945
left-button clicks, 4
left-justified text control, 301
len parameter, 644
length field, 674
letter input, Smartphone keypad, 951
letter spacing, 46
lfEscapement field, 53
lfHeight field, 53
lfOrientation field, 53
lfOutPrecision field, 54
lfQuality field, 54
lfWidth field, 53
limited memory state, 381-384
LINECAPS, 77
lines, 74-77
LineTo function, 75
llnitialCount parameter, 519
Link Manager Protocol, 671
linking versions explicitly, 1032
list box control, 141, 950, 954
list view control, 206, 292-294
listen function, 640, 642
listen mode, socket, 642
listening, connection request, 1138
ListView _Insertltem function, 208
lMaximumCount parameter, 519
LMDATA structure, 905
LMEM_FIXED, 372
LMEM_MOVEABLE, 373, 375
LMEM_ZEROINIT, 372-373
LOAD _LIBRARY _AS_DATAFILE, 492
LoadAccelerators function, 185
LoadBitrnap function, 186
LoadCursor function, 21
LoadDevice function, 1048
Loadlcon function, 809
Loadlmage function, 68, 184, 186, 809
loading

DLLs, 490--493
drivers, 1047-1050
services, 1085, 1087
super service, 1095

LoadLibrary function, 490, 749, 1054

IParam parameter 1193

LoadLibraryEx function, 492
LoadString function, 186, 203, 379, 492
local heaps, 364, 372-373, 379
LocaWloc function, 372
LocalFree function, 372, 455
LocalReAlloc function, 372
LocalSize function, 373
locating

device drivers, 1050--1052
files, 410--413
processes on system, 527-528
windows, 131

Location property, 1136
locations

input method, 899, 903
input panel, 900
shortcut, 804
SIP, 1136
top-level forms, 1133

LOGFONT structure, 53-54
logical fonts, 55
logical pixels, 53
Logical Service Access Point (LSAP), 642
LOGPEN structure, 76
LOGPIXELSY, 53
logs, phone call, 959-961
long filenames, 386
loops, message, 23-24
losing window focus, 92
low memory state, 381-384
lowercase, 294
low-memory conditions, 358, 376, 380--384, 817,

1116
LowPart field, 414
low-power waiting state, 501
lpAddress parameter, 365, 368-369
lpAddress pointer, 370
lpApplicationName parameter, 495
lParam field, 241, 962
lParam parameter

database opening, 448
font enumeration, 58, 65
keyboard messages, 93, 97, 100
menu commands, 181
mouse messages, 109

1194 lpArguments parameter

lParam parameter, continued
taskbars, 809
window procedures, 25
Windows controls, 136

lpArguments parameter, 556
lpBlob field, 673
lpBlob structure, 680
lpBuff parameter, 442
lpBuffer parameter, 186, 391, 532, 622, 626
lpBuffer pointer, 369
lpBytesReturned parameter, 1053
lpCaption parameter, 13
lpcbData parameter, 418
lpcCount parameter, 623
LPCE_FIND_DATA, 754
lpCharSet field, 54
lpClass parameter, 418
lpCmdLine parameter, 9, 496, 670
lpCommandLine parameter, 495
lpComment field, 623
lpConnRes field, 618
lpcPropID parameter, 453
lpData parameter, 418
lpDisposition parameter, 418
lpDistanceToMoveHigh parameter, 391
lpdwLen parameter, 823
lpEventAttributes parameter, 512
lpFile field, 807
lpFileName parameter, 412
lpflOldProtect parameter, 369
lpfnWndProc field, 21
lpHandles parameter, 516
lphEnum parameter, 622
lpLastWriteTime parameter, 394
lpLocalName field, 617, 620, 623
lpLocalName parameter, 625
lplpBuffer parameter, 453
lpMaximumApplicationAddress field, 361
lpMem parameter, 374-375
lpMinimumApplicationAddress field, 361
lpModemStat, 597
lpMutexAttributes parameter, 520
lpName parameter, 407, 512, 519-520, 619
lpNetResource parameter, 617, 621
lpnLength parameter, 625, 627
lpNumberOfBytesRead parameter, 390, 533

lpOutBuffer parameter, 1053
lpOverlapped parameter, 390, 588
lpParameter parameter, 503
lpParameters field, 807
lpPassword parameter, 617
lpPrefixString parameter, 410
lpPreviousCount parameter, 519
lpProcessinformation parameter, 495
lppt parameter, 78
lpRect parameter, 41
lpRegEnts parameter, 1049
lpRemoteName field, 618, 620-621
lpRemoteName parameter, 617, 625
lpSearchFilter parameter, 412
lpSecurityAttributes parameter, 388, 418
lpSemaphoreAttributes parameter, 519
lpStartAddress parameter, 503, 508
lpszApplication field, 559
lpszArguments field, 562, 564
lpszClassName parameter, 21
lpszDir parameter, 804
lpszLib parameter, 1050
lpszMenuName field, 21
lpszName parameter, 447
lpszPath parameter, 801
lpszServiceinstanceName field, 675
lpszValueName parameter, 418
lpText field, 240
lpThreadAttributes parameter, 503
lpToolTips parameter, 220
LPTR, 372
lpType parameter, 418
lpUserName parameter, 617, 627
lpVendorinfo, 639
lpVerb field, 807
LPWSTR data type, 440
lReleaseCount parameter, 519
LR_LOADFROMFILE, 68
LSAP (Logical Service Access Point), 642
LTEXT, 301
LUP _CONTAINERS, 673
LUP_RES_SERVICE, 678
LUP _RETURN_ADDRESS, 674
LUP _RETURN_BLOB, 675
LUP _RETURN_NAME, 674
Lval data type, 440

LVM_FINDTIME, 294
LVM_GETEXTENDEDLISTVIEWSTYLE, 292
LVM_INSERTITEM, 208
LVM_SETEXTENDEDLISTVIEWSTYLE, 292
LVM_SETITEMPOSITION, 293
LVN_GETDISPINFO, 293, 488
LVN_ODCACHEHINT, 293
LVN_ODFINDITEM, 293
LVS_AUTOARRANGE, 293
LVS_EX_CHECKBOXES, 292
LVS_EX_FLATSB, 293
LVS_EX_FULLROWSELECT, 292
LVS_EX_GRIDLINES, 292
LVS_EX_HEADERDRAGDROP, 292
LVS_EX_INFOTIP, 293
LVS_EX_ONECLICKACTIVATE, 292
LVS_EX_REGIONAL, 293
LVS_EX_SUBITEMIMAGES, 292
LVS_EX_TRACKSELECT, 293
LVS_EX_TWOCLICKACTIVATE, 293
LVS_OWNERDATA, 292-293
LVS_SORTASCENDING, 293
LVS_SORTDESCENDING, 293
lWhichEvent parameter, 566

M
main window creation, Hello World applications,

22-23
MainMessages table, 35
MainWndProc, 24, 34-35
MAKEINTRESOURCE macro, 184, 302
MAKELONG macro, 446
MAKELPARAM macro, 945
MAKEWORD macro, 638
managed applications

advantages, 1114-1115
common language runtime, 1120-1125
described, 1113
examples, 1117
namespaces, 1118-1119
overview, 1116-1117
Visual Basic .NET, 1119
Visual C#, 1117

managed types vs. unmanaged types, 1142

MCM_GETMINREQRECT 1195

manual
driver interface advertisements, 1066
driver loading, 1049
event resets, 513
file pointer adjustments, 391
file time setting, 394
service loading, 1085

map files, static data, 377-379
mapping

files to memory, 406-408
modes, 39
physical memory, 1026
remote drives, 616-619
virtual pages, 359

MapPtrToProcess function, 1063
MapViewOfFile function, 407, 546
MapVirtualKey function, 99
MapWindowPoints function, 218
MARKPARITY, 591
Marshal class, 1146
marshaling support, 1142
MaskBlt function, 74
masking image, 74
matching fonts, 54
MAX_PATH, 386, 801
MB_ABORTRETRYIGNORE, 13, 947
MB_DEFBUTIONl, 13
MB_DEFBUTION2, 13
MB_DEFBUTTON3, 13
MB_ICONASTERISK, 13, 948
MB_ICONERROR, 13
MB_ICONEXCLAMATION, 13, 948
MB_ICONHAND, 13, 948
MB_ICONINFORMATION, 13
MB_ICONQUESTION, 13, 948
MB_ICONSTOP, 13
MB_ICONWARNING, 13
MB_OK, 13, 947
MB_OKCANCEL, 13, 947
MB_RETRYCANCEL, 13, 947
MB_SETFOREGROUND, 14
MB_TOPMOST, 14
MB_YESNO, 13, 947
MB_YESNOCANCEL, 13, 947
MCM_GETMINREQRECT, 287

1196 MCM_SETCOLOR

MCM_SETCOLOR, 287
MCM_SETFIRSIDAYOFWEEK, 287
MCM_SETMAXSELCOUNT, 287
MCM_SETRANGE, 287
MCN_GETDAYSTATE, 288
MCN_SELCHANGE, 288
MCN_SELECT, 288
MCS_DAYSTATE, 287
MCS_MULTISELECT, 287
MCS_NOTODAY, 287
MCS_NOTODAYCIRCLE, 287
MCS_ WEEKNUMBERS, 287
MEM_AUTO_COMMIT, 366
MEM_COMMIT, 365
memcopy function, 72
MEM_DECOMMIT, 368
MEM_IMAGE, 370
MEM_MAPPED, 370
memory. See also memory allocation; memory

management
application launch keys, 829
architecture confirmation, 362
asynchronous driver I/0, 1080
code fragments, 35
device context, 72
fibers, 509
file system, 386-387, 393
fonts, 57
footprints, 381
fragmentation, 373, 379
frame buffer, 997, 999, 1001-1003
freeing, 368, 372, 374, 871
input method, 900
managed applications, 1116
mutexes, 520
Out Of Memory Error dialog box, 817
overview, 4
paged, 359-360
registry organization, 416
Smartphone, 956-957
states, 381-384
string resources, 186
Today screen items, 877
Windows CE architecture, 1025-1027

memory allocation
heaps, 371-375

hibernate mode, 380-381
low-memory conditions, 380-384
overview, 364
stack, 375-376
static data, 376-379
thresholds, 381-384
type selection, 379-380
strings, 379
virtual, 365-371

memory management
application address space, 362-364
current state, 360-362
overview, 357
RAM, 357-358, 361, 363, 376, 380
ROM, 358, 364, 377
virtual, 359-362

memory maps, device, 586
memory-mapped files, 406-408, 1026
memory-mapped objects, 406-408, 529-530
MEM_PRIVATE, 370
MEM_RELEASE, 368
MEM_RESERVE, 365
MEM_TOP _DOWN, 366
menu bar control

bitmaps, 268
vs. command bar, 260
configuring, 268
creating, 262-263
examples, 269-286
height, 262
menus, 269
overview, 5, 260-262
Pocket PC, 834, 844
resources, 263-268

MenuBar control
buttons, 939-947
creating, 940-942
described, 930
menus, 942-944
overview, 939

MENUITEM keyword, 183
menus. See also menu bar control; New menu

adding, 209-210
commands, 181
Document, 805
examples, 187-204

overview, 21, 179-181
Smartphone, 942-944
Start, 805

merging data streams, GAPI, 1002
message boxes, 12-14, 944, 947
message class values, 968
message structure, 1134
MessageBox function, 12-14, 947
messages. See also Short Message Service (SMS)

accelerators, 185
code fragments, 28--37
concatenation, 968
debug zones, 1070-1071
hibernation, 380-381
keyboards, 92-98, 100-108
loops, 23-24, 303, 307, 514, 517
mouse, 109-110, 116--117
queues, 16--17, 185, 531-534
scroll bar, 143-145
stylus, 110
waiting on, 517-518
window notifications, 15-17

MessageWindow class, 1127, 1134-1135, 1162
MF_BYCOMMAND, 179
MF _BYPOSITION, 179
MF_CHECKED, 179
MF_GRAYED, 179
MF _PO PUP, 180
MF_STRING, 179
microprocessor identification, 360
middle mouse button, 93
minimal power state, requesting, 1043
Minimize buttons, 262, 1133
MinimizeBox property, 1133
minimized windows, 844
minus key, 95
MIPS, 3
MM_TEXT mapping mode, 40
mobile devices. See also device-to-device

communication
colors supported, 44
Windows CE vs. standard Windows, 3-7

modal dialog boxes, 298, 303, 307-308, 944
MOD_CONTROL, 828
modeless dialog boxes, 298, 307-308

MultiByteToWideChar function 1197

modeless property sheets, 309
modem control signal status, 597
MOD_KEYUP, 828, 947
MOD_SHIFT, 828
module-level security, 995
modules

overview, 489-493
run-level, 995
security, 525-527
trusted, 995

MOD_ WIN, 828
monitoring driver interfaces, 1067
monitoring TCP/IP ports. See super service
monospaced fonts, 54
month calendar control, 206, 286--289
MONTHCAL_CLASS, 286
MONTHDAYSTATE, 288
mounted database volumes, 441-443
mouse

messages, 109-110, 116--117
overview, 4, 91
right button clicks, 117-118
vs. touch screens, 110
wheel rolls, 109

MOVEABLE, 265
MoveFile function, 409
MoveToEx function, 75
moving file pointers, 391
moving files and directories, 409
moving seek pointers, 961
MS_CTS_ON, 597
MS_DSR_ON, 597
MSG structure, 23-24
MSG_PEEK, 644
MSGQUEUE_ALLOW _BROKEN, 532-534
MSGQUEUEINFO structure, 533
MSGQUEUE_MSGALERT, 533
MSGQUEUE_NOPRECOMMIT, 532, 534
MSGQUEUEOPTIONS structure, 531
MsgWaitForMultipleObjects function, 514
MsgWaitForMultipleObjectsEx function, 517-518
MS_RING_ON, 597
MS_RLSD_ON, 597
multibyte strings, 639
MultiByteToWideChar function, 639, 753

1198 multilevel sort indexes

multilevel sort indexes, 440
multilingual considerations, 54, 98
multiple. See also cross-platform applications

objects waiting, 516
Smartphone instances, 939
text lines, 43
threads, input method, 896
using directives, 1118

multitap text input mode, 951
multitasking system. See interprocess

communication
multithreaded system. See threads
mutexes, 520-521, 546
MyCreateHatchBrush function, 89
MyIInputMethod object, 928
MYMSG_METHCALL, 928
MyPowerEventHandler method, 1123

N
Name value, 826
named memory-mapped objects, 529-530
namelen parameter, 641
names

application launch keys, 825
Bluetooth drivers, 687
connection notifications, 782
console drivers, 818
directories, 386, 409
drivers, 1046, 1052
files, 386, 409
mapping remote drives, 616-619
namespaces, 1118
RAPI functions, 748
registry subkeys, 420
shortcuts, 804
temporary files, 410
UNC syntax, 616

namespaces, 512, 800, 1118-1119
native code, 1114
native drivers, 1045
navigating file system

drives vs. directories, 413-415
finding files, 410-413
management functions, 409
overview, 408
temporary files, 410

navigation bar, Pocket PC, 834, 871
navigation buttons, 824
nBmpid field, 263, 941
nBufferMax parameter, 186
nCmdShow parameter, 9, 23, 33
.NET Compact Framework

examples, 1147-1162
Framework Class Library, 1125
managed applications

advantages, 1114-1115
common language runtime, 1120-1125
examples, 1117
namespaces, 1118-1119
overview, 1116-1117
Visual Basic .NET, 1119
Visual C#, 1117

managed vs. unmanaged code, 1113
overview, 1113-1115
Platform Invoke, 1139-1146
unique classes, 1134-1139
unmanaged code, 1113, 1140-1146
Windows Forms applications, 1126-1133

NETRESOURCE structure, 617, 621, 623
\network folder, 616
NETWORK folder, 413
networks. See also connectivity; device-to-device

communication
disconnecting remote resources, 619-620
enumerating resources, 620-625
examples, 627-635
functions, 616
mapping remote drives, 616-619
overview, 615-616
querying, 625-627
UNC names, 616

new keyword, 1123, 1130
New menu

adding, 849
from applications, 858-859
examples, 850-858
overview, 849

Next method, 717-718
nFileindexHigh field, 395
nFileindexLow field, 395
nFolder parameter, 801
nHeight parameters, 67

NIF_ICON, 809
NIF _MESSAGE, 809
NIM_ADD, 808
NIM_DELETE, 808
NIM_MODIFY, 808
nMax field, 146
nMaxSound field, 560
NMDAYSTATE, 288
NMHDR structure, 207, 288
nMin field, 146
NMN_GETAPPREGKEY, 858-859
NMN_INVOKECOMMAND, 270, 850, 859
NMNEWMENU structure, 858
NMN_NEWMENUDESTROY, 859
NMSELCHANGE structure, 288
nNumberOfArguments parameter, 556
nNumberOfLinks field, 395
NOMENU, 941
nonblocking sockets, 638, 648-651
nonclient window areas, 26
nondirectory directories, 413
nonshared mode, New menu, 849
nonsignaled states, event, 512
non-XIP DLLs, 364
NOPARITY, 591
normal memory state, 381-384
NOTIFICATION_EVENT_DEVICE_CHANGE, 565
NOTIFICATION_EVENT_RESTORE_END, 565
NOTIFICATION_EVENT_RS232_DETECTED, 565
NOTIFICATION_EVENT_SYNC_END, 565
NOTIFICATION_EVENT_TIME_CHANGE, 565
NOTIFICATION_EVENT_TZ_CHANGE, 565
NOTIFICATION_EVENT_ WAKEUP, 565
notifications. See also device-to-device

communication; services
bubbles, 859
combo boxes, 219
command bands, 245
common controls, 207
connections

COM method, 783-786
examples, 786-794
overview, 781
registry method, 782-783
Windows CE side, 794

controls, 136, 147, 177
date and time picker, 291

nYOrg parameter 1199

driver interfaces, 1067
drop-down buttons, 217
examples, 566-579
month calendar, 288
overview, 557
phone calls, 959
Pocket PC, 850, 858-864, 868-869
power, 1040-1042
property sheets, 310
querying, 580-581
super service, 1097
system event, 564-566
taskbar icons, 809
timer event, 563
user

acknowledging, 562-563
configuring, 561
overview, 557
setting, 558-560

virtual list view mode, 293
window, 15-17

Notify method, 715
NOTIFYICONDATA structure, 808
nPage field, 146
nPages field, 310
nParameter parameter, 504
nPos field, 146
npPriority field, 861
nPriority value, 505
nResult parameter, 304
nStartPage/pStartPage, 310
nToolBarid field, 263-264, 941
nTrackPos field, 146
NULL_PEN, 75
Num Lock key, 95, 97
numbers

querying, 972
Smartphone items, 940
Smartphone keypad, 951

NUMCOLORS, 45
Numeric keypad keys, 95
numeric text input mode, 952
numRange parameter, 678
num_responses field, 674
nWidth parameter, 67, 76
nXOrg parameter, 78
n YOrg parameter, 78

1200 ObexFTP

0
ObexFTP, 719
Object Exchange (OBEX)

application callbacks, 714-716
communication process, 718-720
discovery, 716-718
examples, 720-744
initializing, 714
overview, 714

object IDs, 395, 452, 455, 457-458
object store

databases, 443
described, 358, 386
vs. other media, 387
size, 387, 415, 751
space, 751

objects, memory-mapped, 406-408
OB)TYPE_DATABASE, 457
OB)TYPE_DIRECTORY, 457
OBJTYPE_FILE, 457
OBJTYPE_RECORD, 457
ODDPARITY, 591
OE_DEVICE_ARRIVAL, 715, 717
OE_DEVICE_DEPARTURE, 716
OE_DEVICE_UPDATE, 716, 718
OEM_CERTIFY_RUN, 527
OEM_CERTIFY_TRUST, 527
OE_ QUERY _pASSWORD, 715
oid field, 449
oidParent field, 449
oidRecord parameter, 455
OK buttons, 220, 300, 308, 313-314, 834, 865, 1133
OnCommandSelected method, 863
OnCreateMain function, 65
OnDismiss method, 861
ONE5STOPBITS, 591
ONESTOPBIT, 591
OnLinkSelected method, 863
OnLogActive method, 785
OnLogDisconnection method, 785
OnLoglpAddr method, 785
OnLogListen method, 785
OnPaint method, 1122
OnPaintMain function, 51, 65, 89
OnShow method, 861
opaque,44,46, 89
Open function, 1057, 1091

OPEN_ALWAYS, 388-389, 442
OPEN_EXISTING, 388, 442
opening

database volumes, 441
databases, 447-449
files, 388-390, 406
registry keys, 417
serial ports, 586
storage volumes, 390

OpenMsgQueue function, 532
OpenProcess function, 498
OpenSemaphore function, 519
operating systems. See also drivers; services

address space, 1025-1027
RAPl functions, 748
versions, 1028-1033

Options button, 901
options dialogs, 880, 882
optname parameter, 645
Order registry value, 1047
ordering bands, 245
origin, brush, 78
orphaned graphic resources, 57
OSVERSIONINFO structure, 1032
Out Of Memory Error dialog box, 817
Out parameter, 1122
OUT_IT_ONLY_pRECIS, 54
outlining shapes, 75-77
out-of-memory messages, 382
OutputDebugString function, 1070
overlapped 1/0, 387, 586-588
overriding application launch keys, 828-830
overriding Smartphone keys, 945
owned windows, 130
Owner Info item, 875
owner-draw buttons, 139
ownership, dialog box, 302

p
packed formats, 67, 77
pad bytes, 67
Page Down key, 94
Page Up key, 94
paged memory, 359-360
PAGE_EXECUTE, 366
PAGE_EXECUTE_READ, 366
PAGE_EXECUTE_READWRITE, 366

PAGE_GUARD, 366
PAGE_NOACCESS, 367, 371
PAGE_NOCACHE, 367
PAGE_READONLY, 366
PAGE_READWRITE, 366
pages

property
adding, 312
creating, 311-313
described, 308
procedures, 313
removing, 312
switching, 314

vs. regions, 367-368
PageSetupDialog function, 352
paging files, 362
PaintEventArgs parameter, 1129
PAINTFONTINFO structure, 65
painting

bitmaps, 71-74
device contexts, 41-43
overview, 40
regions, 40-41
windows, 25-27

PaintSingleFontFamily function, 65
PAINTSTRUCT structure, 26
palette, colors, 70
PAN (personal area networking), 637
parent oid, 458
parent windows, 23, 129-130
Parity field, 591
parseBlobToRecs routine, 680
partial screen displays, GAPI, 1002
Pascal language stack frames, 25
PatBlt function, 74
Pause key, 97
PauseDeviceEnum method, 714
pbBuffer parameter, 970
pbProviderSpecificBuffer parameter, 970
pbProviderSpecificData parameter, 967
PBT_POWERINFOCHANGE, 1040, 1042
PBT_POWERSTATUSCHANGE, 1040
PBT_RESUME, 1040
PBT_TRANSITION, 1040
pBuffer parameter, 1089
pBuffer pointer, 1058

PhoneOpenCalllog function 1201

pBufin parameter, 1061
pBufOut parameter, 1061
PBYTE variable, 763
PC connectivity. See desktop connectivity
pcbOutput parameter, 763
pcBytesNeedecl parameter, 580
PCEGUID parameter, 456
pceun parameter, 563
pcHandlesNeeded parameter, 580
pCharacterBuffer parameter, 99
pcimDataSize field, 901
pclsid parameter, 863
pContext parameter, 1056
pcRefCount field, 312
PCur value, 795
PDA devices, 5
PDA options, 832-833
pDestinfo, 965
pdwBufferLen parameter, 1089
pclwDl!Buf parameter, 1088
pdwErrorMargin parameter, 973
pclwFlags parameter, 533
pdwServiceEntries parameter, 1089
pdwStatus parameter, 963
PEGPROPIDs, 445
Pending method, 1138
pens, 75-78
period key, 95
permanent menu additions, 849
persistent connections, 618
personal area networking (PAN), 637
pfnCallBack field, 310
pfnDlgProc field, 311
pguid parameter, 442, 444
ph parameter, 959
phantom frame buffer, 1002-1003
phConnection parameter, 962
phkResult parameter, 418
phMessageAvailableEvent parameter, 966
phone. See cell phones
phone API, 958-961
PhoneCloseCallLog function, 961
PhoneGetCal!LogEntry function, 959
PhoneMakeCall function, 958-959
PHONEMAKECALLINFO structure, 958
PhoneOpenCallLog function, 959-961

1202 PhoneSeekCalllog function

PhoneSeekCallLog function, 961
phSvc parameter, 779
physical address space, 1026
physical memory, 359
pictures. See drawing; painting
pidls (pointer to an ID list), 801-802
Pie function, 74
pin parameter, 1097
pinput parameter, 763
P/Invoke

arguments, 1142-1146
arrays, 1144
data types, 1142
described, 1139
examples, 1140-1142
strings, 1145-1146
structures, 1143

piRecord parameter, 961
pixels

bitmaps, 67
brushes, 77
vs. dialog unit conversions, 299
fonts, 53-54
GAPI, 997, 999
lines, 75
overview, 4
rectangles, 78

placement, dialog box, 298-302
Platform Invoke

arguments, 1142-1146
arrays, 1144
data types, 1142
described, 1139
examples, 1140-1142
strings, 1145-1146
structures, 1143

platforms
address space, 1025-1027
Hello World applications, 10
versions, 1028-1033

plus sign key, 95
PMCF_DEFAULT, 959
PMCF _PROMPTBEFORECALLING, 959
PMCLASS_GENERIC_DEVICE, 1067
PMEMORY_BASIC_INFORMATION structure, 369
pMesh parameter, 82
PName value, 795

pndBuffer parameter, 863
Pnpid registry value, 1052
Pocket PC. See Pocket PC applications; Pocket PC

shell
connectivity, 747
dialog box support, 864-869
free-memory levels, 381-384
full-screen windows, 871
memory management, 871
navigation buttons, 824
New menu, 849-859
notifications, 859-864
overview, 5, 831-833
vs. Pocket PC-like devices, 831, 833
SIP control, 872-874
SMS messages, 965
Start menu, 805

Pocket PC applications
Ctrl+Q, 847
differences, 843-848
examples, 834-843
main window size, 845
menu bars, 844
overview, 834
project templates, 848-849
single instance, 834, 843
SIP, 846-847

Pocket PC AppWizard, 265
Pocket PC AutoRun, 869-871
Pocket PC Phone Edition, 832
Pocket PC shell

custom input methods
components, 896
examples, 905-928
IIMCallback interface, 896-897, 902-905, 928
IIMCallback2 interface, 896, 902-905, 928
IInputMethod interface, 895-901, 907
IInputMethod2 interface, 895-902, 928
overview, 895
threads, 896

vs. Explorer shell, 799-800
overview, 833-834
special folders, 801
Today screen

debugging, 881
described, 833
examples, 881-895

implementing, 876-880
item window, 878--879
options dialog, 880
overview, 875
refreshing, 880
registering, 880
user interaction, 879

paid parameter, 447
point size, fonts, 53
POINT structure, 74
pointer to an ID list (pidls), 801-802
pointers

database, 447, 449, 452
file, 390--391
window class extra space, 21

points, stylus, 111
PolyBezierTo function, 74
Polygon function, 80
polygons, 80
Polyline function, 74
pop-up menus, 179-183, 187, 266
port field, 642
PORTEMUPortParams structure, 688, 691
ports. See device drivers; serial communication;

super service
positions

stylus, 110
window, 23

PostKeybdMessage function, 99
PostMessage method, 1135
PostQuitMessage, 36
pOut parameter, 1092
Power array, 1069
Power button, 96
Power Control Panel applet, 882
power management

batteries, 358, 501, 882
changing

overview, 1036
preventing suspensions, 1039
screen displays, 1036-1038
suspending system, 1036
waking devices, 1039

drivers, 1067-1070
overview, 1033

previous key state 1203

powering down, 1036
powering up, 1039
serial communication, 598
states, 1033-1043

Power Manager
device drivers, 1067
notifications, 1040-1042
overview, 1039
setting state, 1042-1043

POWER_BROADCAST structure, 1041
POWER_CAPABILITIES structure, 1068
PowerDown function, 1059, 1091
PowerEventHandler delegate, 1123
POWER_FORCE, 1043
powering down, 1036
powering up, 1039
POWER_NAME, 1043, 1068
POWER_NOTIFY _ALL, 1040
POWER_RELATIONSHIP structure, 1068-1069
POWER_STATE_BOOT, 1041
POWER_STATE_CRITICAL, 1041
POWER_STATE_IDLE, 1041
POWER_STATE_OFF, 1041
POWER_STATE_ON, 1041
POWER_STATE_RESET, 1041-1042
POWER_STATE_SUSPEND, 1041
PowerUp function, 1060, 1091
ppFindData parameter, 756
ppFindDataArray parameter, 754
ppIRAPIStream parameter, 763, 767
ppOutput parameter, 763
PPOWER_BROADCAST_pOWER_INFO

structure, 1042
ppvBits parameter, 71
pRange array, 678
pRecord parameter, 682
predefined brushes, 21
predefined RAPI functions, 751-758
predefined sort orders, 452
predefined window classes. See controls
preempted threads, 523
Prefix registry value, 1048
prefixes, Hungarian, 6-7
preventing power suspensions, 1039
previous key state, 97

1204 prgbCachedData field

prgbCachedData field, 877, 880
Print dialog boxes, 315
Print Screen key, 94, 97
printer DC, 44
printf function, 818
printf statement, 9, 11, 13, 762, 776
printf style, 1071
priorities, thread scheduling, 499-501, 504-505
priority classes, 499
priority inversions, thread, 501
procedures

dialog boxes, 303-308
property pages, 313

PROCESS_ATIACH, 878
processes. See also interprocess communication

address space, 1026
creating, 494-497
described, 489
events, 512
overview, 493
terminating, 497-498
waiting on, 515

PROCESS_INFORMATION structure, 495, 516
PROCESSOR_ARCHITECTURE_ATM, 361
PROCESSOR_ARCHITECTURE_INTEL, 361
PROCESSOR_ARCHITECTURE_SHx, 361
PROCESSOR_HITACHI_SH3, 361
PROCESSOR_HITACHI_SH4, 361
program memory, 358
Programs folder, 801
Programs menu, 930
Programs submenu, 805
progress bar control, 206, 295
project templates, 848-849
properties, database, 439-440, 455
property IDs, 445, 451
property pages

adding, 312
creating, 311-313
described, 308
procedures, 313
removing, 312
switching, 314

property sheets
closing, 314
creating, 309-310

described, 297
examples, 352
modeless, 309
overview, 308
pages, 311-314
Pocket PC, 868-869

PropertyBag object, 718-719
PropertySheet function, 309
propidfield, 451
proportional fonts, 54
PROPSHEETHEADER structure, 309, 311, 868
PROPSHEETPAGE structure, 311, 313, 351, 868
PropSheetPageProc function, 868
Protect field, 370
protected functions, 525
protected registry keys, 525
Protocol registry value, 1094
protocols, SMS messages, 973
proxies, Smartphone connections, 962
PSCB_GETLINKTEXT, 310, 353, 869
PSCB_GETTITLE, 310
PSCB_GETVERSION, 310
PSCB_INITIALIZE, 352
PSCB_INITIALIZED, 310, 868
PSCB_PRECREATE, 310
PS_DASH, 76
pShiftStateBuffer parameter, 99
PSH_MAXIMIZE, 868
PSH_MODELESS, 309
PSH_PROPSHEETPAGE, 310
PSH_PROPTITLE, 309
PSH_USECALLBACK, 868
PSH_USEPSTARTPAGE, 310
PS_INSIDEFRAME, 79
PS_MESSAGE_CLASS, 968
PS_MESSAGE_CLASSUNSPECIFIED, 968
PSM_ADDPAGE, 312
PSM_REMOVEPAGE, 312
psmsaDestinationAddress parameter, 967
psmsaSMSCAddress parameter, 967
psmshHandle parameter, 966
PSN_APPLY, 314,351
PSN_KILLACTIVE, 314
PSN_QUERYCANCEL, 314
PSN_RESET, 314
PSNRET_NOERROR, 314

PSNRET_ VALID_NOCHANGEPAGE, 314
PS_NULL, 76
PSN_SETACTIVE, 314
pSort parameter, 447
PSP _DLGINDIRECT, 311
PSP_PREMATURE, 312-313
PSP _USECALLBACK, 312
PSP_USEREFPARENT, 312
PSP_USETITLE, 311
psReplaceOption field, 968
PSRO_NONE, 968
PSRO_REPLACE_TYPEn, 968
PS_SOLID, 76
PST_FAX, 595
PST_MODEM, 595
pstReceiveTime parameter, 970
pstValidityPeriod parameter, 967
pszAppName field, 959
pszCalledParty field, 959
pszCaption field, 309
pszComment field, 959
pszDestAddress field, 959
pszHTML field, 861
pszlcon field, 310
pszMenu parameter, 210
pszNameType field, 960
pszNewApp parameter, 826
pszNote field, 960
pszNumber field, 960
pszPath parameter, 778
pszTemplate/pResource, 311
pszTitle field, 311, 862
ptDown field, 118
PtlnRect function, 127
PtrToStringUni method, 1146
public designations, 1122
publishing services, Bluetooth, 682-685
puChar parameter, 904
pull model, 15
PulseEvent function, 513
PUN_DIALOG, 560
pUnkl parameter, 715
pUnk2 parameter, 715
PUN_LED, 560
PUN_REPEAT, 560
PUN_SOUND, 560

PUN_ VIBRATE, 560
PURE, 265
PurgeComm function, 595
PURGE_RXABORT, 596
PURGE_RXCLEAR, 596
PURGE_TXABORT, 596
PURGE_TXCLEAR, 596
push buttons, 137
push model, 15
Push protocol, 714
puShift parameter, 904
Put method, 720

querying 1205

pvDevice parameter, 1068
pvlmData field, 873, 900
pvSystemState, 1043
PwrDeviceMaximum, 1068
PwrDeviceUnspecified, 1068--1069
pwszBuf parameter, 823
pwszDialogText field, 560
pwszDialogTitle field, 560
pwszSound field, 560

Q
QS_ALLINPUT, 517
QS_INPUT, 517
QS_KEY, 517
QS_MOUSE, 517
QS_MOUSEBUTTON, 517
QS_MOUSEMOVE, 517
QS_PAlNT, 517
QS_POSTMESSAGE, 517
QS_SENDMESSAGE, 517
QS_TIMER, 517
quantums, 499, 506
QUERYESCSUPPORT, 1037
querying. See also discovery process

application permissions, 1080
call logs, 959
command band control, 244
console settings, 822
database information, 457-458
device power capabilities, 1068
device power changes, 1069
directory information, 392-393
driver power state, 1069
file information, 391-395

1206 question mark

querying, continued
font characteristics, 55-57
GAPI button information, 1000-1001
heap memory, 372, 374
networks, 625-627
notifications, 580-581
registry subkeys, 420
registry values, 418, 421
serial communication status, 597
serial port capabilities, 594-595
services, 678, 1092
SIP, 872, 874
SMS information, 972
super service acceptance, 1097
system colors, 140
system memory, 360-362
system power state, 1033-1035
thread information, 504-506
virtual memory access rights, 369-371
window structure, 131

question mark, 410

R
radio buttons, 138, 301
radio frequency communication

Bluetooth
discovery, 672-681
overview, 670-671
stack, 671

described, 637
RaiseException function, 555
RAM (random access memory), 293, 357-358,

361, 376, 380, 386
RAFI (remote API)

custom functions, 762-767
described, 747
ending sessions, 751
error handling, 750
examples, 758-762, 768-777
functions, 748
initializing, 750
overview, 748-749
predefined functions, 751-757
versions, 749

RapiFind method, 776
RAPIFindFile function, 773

RAPIGetDiskSize function, 765
raster fonts, 52
raw sockets, 641
RBBIM_CHILD, 240
RBBIM_CHILDSIZE, 240
RBBIM_COLORS, 240
RBBIM_ID, 240
RBBIM_IDEALSIZE, 241
RBBIM~LPARAM, 241
RBBIM_STYLE, 239
RBBS_BREAK, 239
RBBS_CHILDEDGE, 239
RBBS_FIXEDBMP, 239
RBBS_FIXEDSIZE, 239
RBBS_GRIPPERALWAYS, 239
RBBS_HIDDEN, 239
RBBS_NOGRIPPER, 239, 242, 260
RBBS_NOVERT, 239
RB_IDTOINDEX, 243-244
RBN_HEIGHTCHANGE, 245
RBS_AUTOSIZE, 237
RBS_BANDBORDERS, 237
RBS_FIXEDORDER, 238, 245
RBS_SMARTLABELS, 238, 240, 242, 259
RBS_ VARHEIGHT, 238, 242
RBS_ VERTICALGRIPPER, 238
RC (resource) files, 298
RCDATA, 265
rcPaint field, 27
rcSipRect field, 873, 899-900, 903
rcVisibleDesktop field, 873
read file access, 388
Read function, 1058, 1091
Read method, 768, 776
readable file times, 394
ReadDoneEvent function, 547
ReaderThread procedure, 545
ReadEvent function, 547
ReadFile function, 390, 587, 592, 692, 1053, 1058
reading

database records, 452-455
drivers, 1052-1054
files, 390, 406-408
registry values, 418, 780
serial port data, 587

Readlnterva!Timeout function, 592

ReadMsgQueue function, 533
read-only data, 363, 376
read-only data segments. See resources
ReadProcessMemory function, 498
ReadTotalTimeoutConstant function, 592
ReadTotalTimeoutMultiplier function, 592
read/write data, 363-364, 376, 378
read/write file access, 388
real-time key state, 98
rebar control, 206, 236
REBARBANDINFO structure, 238, 241, 259
Receive Line Signal Detect (RLSD), 597
ReceiveSiplnfo method, 900
receiving data, sockets, 644
receiving SMS messages, 969-971
recent documents list, 805
record button, 945
records, database

deleting, 455
described, 439
property limits, 440
reading, 452-455
searching for, 449-452
writing, 455

rect parameter, 44
RECT structure, 26
Rectangle function, 78-79
rectangle function, 894
rectangles, 78-80, 899
recv function, 640, 644
recvfrom function, 644
recycle bins, 801
redefining sort orders, 452
redirecting console input and output, 822-823
redirector files, 615
redrawing backgrounds, 21
redrawing menus, 210
reducing file size, 392
ref keyword, 1122
reference types, 1120-1122
referencing command bar images, 213-215
refreshing services, 1091 ·
refreshing Today screen items, 880
REG_BINARY, 419
RegCloseKey function, 420
RegCreateKeyEx function, 418

registry 1207

RegDeleteKey function, 419
RegDeleteValue function, 419
REG_DWORD, 419
REG_DWORD_BIG_ENDIAN, 419
REG_DWORD_LITTLE_ENDIAN, 419
RegEnumKeyEx function, 420
RegEnumValue function, 421
REG_EXPAND_SZ, 419
REGINI structure, 1049
regions, window, 40-41, 54, 367-368
RegionSize field, 369
RegisterBtService function, 713
RegisterCallback method, 900
RegisterCallback2 method, 901
RegisterClass function, 20-21, 109, 132, 878
RegisterDevice function, 688, 1048, 1050
RegisterHotKey function, 828
registering

driver DLLs, 1048
hot keys, 828
list view control, 292
Today screen custom items, 880
Today screen item windows, 878
virtual COM port drivers, 689
window class, 20-21, 33

RegisterService function, 690, 1086-1087, 1096
registry

application launch keys, 826-827
application launches, 782-783
CeUtil DLL functions, 777-781
closing keys, 420
command band control, 244
creating keys, 417
current drivers, 1051
data types, 419
deleting keys, 419
deleting values, 419
driver interface classes, 1066
driver load process, 1047
editing, 421
enumerating keys, 420
examples, 421-438
loading services, 1085, 1087
New menu, 849, 850
opening keys, 417
organization, 416

1208 REG_LINK

registry, continued
overview, 415
protected keys, 525
RAPI functions, 757
reading values, 418
services, 1092
super service, 1094, 1096
system power states, 1040
Today screen custom items, 880, 882
writing values, 419-420

REG_LINK, 419
REG_MULTI_SZ, 419
REG_NONE, 419
RegOpenKeyEx function, 417
RegQueryValueEx function, 418
REG_RESOURCE_LIST, 419
RegSetValueEx function, 419
REG_SZ, 419
RELEASE folder, 413
Release method, 773, 776
ReleaseCapture function, 117
ReleaseDC function, 73
ReleaseMutex function, 520, 547
ReleasePowerRequirement function, 1043
ReleaseSemaphore function, 519
releasing buttons and display, GAPI, 1003
remote API (RAPI). See RAPI (remote API)
remote drives, mapping, 616-619
remote resources, disconnecting, 619-620
RemoteAddr field, 675
REMOTE_NAME_INFO, 627
REMOTE_NAME_INFO_LEVEL, 626
RemoveDirectory function, 409
removing

directories, 409
Pocket PC notifications, 864
power requirements, 1043
property pages, 312
service registry entries, 1092

renaming files and directories, 409
reordering bands, 245
repeat count, key, 97
report mode, list view, 292-293
RequestDeviceNotifications function, 1067
requesting minimal power states, 1043
requesting specific power states, 1042
RequestPowerNotifications function, 1040

Reserved parameter, 418
reserved virtual pages, 360
reserving memory. See memory management
Reset method, 717
ResetCmd value, 826
ResetEvent function, 513
resetting device enumeration, 717
resetting user input timer, 1039
resizing

bitmaps, 73
command bars, 220
local heap memory, 372
main window, 845
separate heap memory, 374
Today screen items, 879

resolution, 4, 111
resource (RC) files, 298
RESOURCE_CONNECTED, 621
RESOURCEDISPLAYTYPE_DOMAIN, 622
RESOURCEDISPLAYTYPE_GENERIC, 622
RESOURCEDISPLAYTYPE_SERVER, 622
RESOURCEDISPLAYTYPE_SHARE, 622
RESOURCE_GLOBALNET, 621
RESOURCE_REMEMBERED, 621
resources

accelerators, 185-186
bitmaps, 186
examples, 187-204
icons, 184
leaks, 57
limitations, 4
menu bars, 263-268
overview, 181-182
scripts, 182-183
segments, application, 379
strings, 186
templates, 298-302
types, 183

RESOURCETYPE_DISK, 619, 622
RESOURCETYPE_PRINT, 619, 622
RESOURCEUSAGE_CONNECTABLE, 621
RESOURCEUSAGE_CONTAINER, 621
restarting sessions, 645
restoring Smartphone Back keys, 946
restricted functions, Smartphone, 995
Result property, 1134
ResumeThread function, 503, 506

resuming
device enumeration, 714
GAPI applications, 1003
suspended devices, 1039
threads, 506

Retiy/Cancel buttons, 947
return codes, memory allocation, 383
RF (radio frequency). See radio frequency

communication
RFCOMM channel, 684, 686, 689, 691
RFCOMM CHANNEL_MULTIPLE, 689
RFCOMM=PORT_FLAGS_AUTHENTICATE, 689
RFCOMM PORT_FLAGS_ENCRYPT, 689
RFCOMM - PORT FLAGS_KEEP _DCD, 689
RFCOMM=PORT=FLAGS_REMOTE_DCB, 689
RGB macro, 76-77
RGBQUAD structure, 69-71, 77
rgbReserved field, 27
rgdwFlags field, 446
rghNotifications parameter, 580
rgPropID field, 445
rgPropID parameter, 453
rgPropVal array, 455
rgSortSpecs field, 445
rich edit control, 296
Right Alt key, 95
Right Arrow key, 94
right bracket key, 96
Right Control key, 95
Right Shift key, 95
right SoftKeyBar button, 945
right-button clicks, 4, 93, 117-118
RLSD (Receive Line Signal Detect), 597
RNRSERVICE_DELETE, 683
RNRSERVICE REGISTER, 682
ROM (read o~ly memory), 358, 364, 377, 386, 393
root keys, 415-416
RootKey registry value, 1047
ROOT_KEY structure, 416
ROP codes, 72
round rectangles, 80
RoundRect function, 80
RTS_CONTROL_DISABLE, 591
RTS_CONTROL_ENABLE, 591
RTS_CONTROL_HANDSHAKE, 591
RTS_CONTROL_TOGGLE, 591

Run method, 1127
run-level modules, 995

scrolling dialogs 1209

run-time version checking, 1032-103.'3

s
samDesirecl parameter, 418
Save As dialog boxes, 315
saving band layout, 243-245
saving Smartphone data, 956-957
saving text messages, 965
SB_BUTTON, 145
SB_CTL, 146
SB_ENDSCROLL, 145
SB_HOKZ, 146
SB_LINExxx codes, 144
SB_PAGEDOWN, 204
SB_PAGEUP, 204
SB_PAGExxx codes, 144
SB_SETPOSITION, 143
SB_THUMBPOSITION, 143
SB_TI-IUMBTRACK, 143
SB_TOP, 145
SB_VERT, 146
scan code translations, 99
SCHEDULECONNECTIONINFO structure, 963
scheduled connections, 961, 963
scheduled notifications, 580-581
scheduling system resuming, 1039
scheduling threads, 499-502
SCI-IMBM_GETSUBMENU, 944
SCI-IMBM OVERRIDEKEY, 945, 947
screens. See also drawing

overview, 4
power management, 1036-1038
stylus, 109
user feedback, 110
writing storage, 110-116

scripts, resource, 182-183
scroll bar controls, 143-147
scroll codes, 144-145
Scroll Lock key, 95, 97
ScrollDC function, 108
SCROLLINFO structure, 146-147
scrolling buttons, 824
scrolling dialogs, 950

121 O scrolling text

scrolling text, 108
SD_BOTH, 645
sDLLPath field, 877
SDP (Service Discovery Protocol), 680, 682-685
SdpQueryUuid structure, 678
SDP _SERVICE_ATTRIBUTE_REQUEST, 678
SDP _SERVICE_SEARCH_ATTRIBUTE_REQUEST,

678
SDP _SERVICE_SEARCH_REQUEST, 678
SD_RECEIVE, 645
SD_SEND, 645
searching database records, 449-452
searching device drivers, 1050-1052
searching directories, 410-413
SearchThread function, 713
security

file system, 385
overview, 525-527
Smartphone, 929, 995-996

Seek function, 1059, 1091
seek pointers, call log, 959
seeking database records, 449-452
SEE_MASK_FLAG_NO_UI, 807
SEE_MASK_NOCLOSEPROCESS, 807
select function, 649
Select key, 94
Select method, 898--899, 928
SelectObject function, 55, 57, 66, 72
semaphore objects, 518--520
semicolon key, 95
send function, 640, 644
SendA!ternatives2 method, 905
SendCharEvent method, 928
SendCharEvents method, 904
SendDlgllemMessage function, 137
SenderThread procedure, 545
SendEvent function, 547
SendFile function, 669
sending data, sockets, 644
sending IOCTL commands to services, 1088
sending SMS messages, 966-969
SendMessage function, 137, 184, 208
SendMessage method, 1135
SendSmsMessage routine, 994
SendString method, 905
sendto function, 644
SendVirtualKey method, 903

separate heaps, 364, 373-375, 380
separator key, 95
sequence, keyboard messages, 100
serial communication

asynchronous I/0, 588-589
errors, 597
examples, 598--613
overview, 585-586
ports

closing, 586
configuring, 589-592
controlling, 595-596
opening, 586
overview, 585
querying capabilities, 594-595
reading from, 587
timeout values, 592-593
writing to, 587

power management, 598
status, 597

serial links, 795
serial numbers, volume, 395
serial ports, Bluetooth communication, 687-692
SD_RECEIVE, 645
SD_SEND, 645
ServerThread function, 713
service discovery, Bluetooth, 677-681
Service Discovery Protocol (SDP), 680, 682-685
service publications, Bluetooth, 682-685
ServiceAddPort function, 1095-1096
serviceClassid field, 642
ServiceClosePort function, 1096
ServiceEnuminfo structure, 1089
serviceHandle parameter, 678
SERVICE_INIT_STANDALONE, 1090
SERVICE_INIT_STARTED, 1090
SERVICE_INIT_STOPPED, 1090
ServiceloControl function, 1087-1088
services

application controls, 1087-1089
architecture, 1085
command-line interface, 1098
console, 1093
currently running, 1088
custom commands, 1093
described, 1045
entry points, 1089-1091

examples, 1098-1112
IOCTI commands, 1091-1094
life cycle, 1085-1087
loading, 1087
options supported, 1094
overview, 1084
refreshing, 1091
removing registry entries, 1092
starting, 1087, 1091-1092
state, 1092
stopping, 1087, 1091
super service, 1094-1098
unloading, 1087, 1089, 1092
zone bitmaps, 1093

Services Manager
Init function, 1090
overview, 1084
service architecture, 1085
service life cycle, 1086
standalone, 1094

ServicesExeCallbackFunctions structure, 1094
ServiceUnbindPorts function, 1096
SetBkMode function, 879
SETBREAK, 596
SetBrushOrgEx function, 78
SetCapture function, 116
SetCommBreak function, 595-596
SetCommMask function, 588
SetCommState function, 589
SetCommTimeouts function, 592
SetCursor function, 110
SetDevicePower function, 1068
SetDIBColorTable function, 71
SETDTR, 596
SetEndOfFile function, 392
SetEvent function, 513
SetEventData function, 513
SetFileAttributes function, 393
SetFilePointer function, 391, 1059
SetFileTime function, 394
SetFocus function, 92
SetForegroundWindow function, 34, 528, 844
SetlmData method, 900
Setlmlnfo method, 903, 928
SetlMMActiveContext method, 902
SetlnterruptEvent function, 1060

SHCMBM_GETSUBMENU 1211

SETIR, 596
SetLastError field, 1141
SetPassword method, 722
SetPath method, 721
SETPOWERMANAGEMENT, 1037
SetPowerRequirement function, 1043
SetProcPermissions function, 1080
SetRapiStat method, 767
SETRTS, 596
SetScrolllnfo function, 145-147
setsockopt function, 648
SetStudioPath W function, 823
SetSystemPowerState function, 1042
SetTextAlign function, 45
SetTextColor function, 44
SetThreadPriority function, 504
Settings key, 416
SetupComm function, 593
SetWindowLong function, 132, 134-135, 314
SetWindowPos function, 133-134
SETXOFF, 596
SETXON, 596
SHACTIVATEINFO structure, 846
SHAddToRecentDocs function, 806
SHA_INPUT DIALOG, 847
shapes

brushes, 77-78
circles, 79
ellipses, 79
examples, 82-89
fill functions, 80-82
overview, 77
polygons, 80
rectangles, 78-80

SHARD_PATH, 806
SHARD_PIDL, 806
shared mode, New menu, 849
ShareMode parameter, 1057
sharpening fonts, 54
SHCMBF _COLORBK, 263, 941
SHCMBF _EMPTYBAR, 263, 844
SHCMBF _HIDDEN, 263
SHCMBF _HIDESIPBUTTON, 263
SHCMBF _HMENU, 263
SHCMBM_GETMENU, 269, 944
SHCMBM_GETSUBMENU, 269

1212 SHCMBM_SETSUBMENU

SHCMBM_SETSUBMENU, 269
SHCreateMenuBar function, 262, 265, 492, 844,

932, 940
SHCreateShortcut function, 804, 805
SHCreateShortcutEx function, 804
sheets. See property sheets
shell management RAFI functions, 757
ShellExecuteEx function, 806
SHELLEXECUTEINFO structure, 806
Shell_Notifylcon function, 808-809
shells. See also Pocket PC shell

application launching, 806-807, 824-830
memory management, 817
namespace, 800
overview, 799-800
recent documents list, 805
shortcuts, 804
special folders, 801-803
Start menu, 805
taskbars, 808-816

SHFS_HIDESIPBUTTON, 871
SHFS_HIDESTARTICON, 871
SHFS_HIDETASKBAR, 871
SHFS_SHOWSIPBUTTON, 871
SHFS_SHOWSTARTICON, 871
SHFS_SHOWTASKBAR, 871
SHFullScreen function, 871
SHGetAppKeyAssoc function, 827
SHGetAutoRunPath function, 870
SHGetFromIDList function, 802
SHGetMalloc function, 802
SHGetShortcutTarget function, 804
SHGetSpecialFolderLocation function, 802, 805
SHGetSpecialFolderPath function, 801, 805, 956
SHHandleWMActivate function, 847, 867
SHHandleWMSettingChange function, 846
SHIDIF _DIPDOWN, 865
SHIDIF _DONEBUTTON, 865
SHIDIF _FULLSCREENNOMENUBAR, 866
SHIDIF_SIZEDLG, 865
SHIDIF _SIZEDLGFULLSCREEN, 866
SHIDIM_FLAGS, 865
Shift key, 94, 98, 109
SHlnitDialog function, 865, 867, 880, 949
SHINITDLGINFO structure, 865
SHinitExtraControls function, 867

SHlnputDialog function, '867
SHLoadDIBitmap function, 68, 184
SHMBOF _NODEFAULT, 946
SHMBOF _NOTIFY, 946
SHMENUBARINFO structure, 262, 264-265, 268,

844, 940
SHNF _CRITICAL, 861
SHNF _DISPLAYON, 861
SHNF _FORCEMESSAGE, 861
SHNN_LINKSEL, 863
SHNotificationAdd function, 860
SHNOTIFICATIONDATA structure, 860, 863
SHNotificationGetData function, 863
SHNotificationRemove function, 864
SHNotificationUpdate function, 863
SHNP _ICONIC, 861
SHNP _INFORM, 861
SHNUM_DURATION, 863
SHNUM_HTML, 864
SHNUM_ICON, 864
SHNUM_PRIORITY, 863
SHNUM_TITIE, 864
Short Message Service (SMS)

accessing, 966
configuring, 972-973
examples, 974-995
overview, 965
receiving messages, 969-971
saving messages, 965
sending messages, 966-969
service center numbers, 972

shortcuts, 185-186, 804, 824-830
Showing method, 900
ShowWindow function, 9
ShowWindow statement, 23
SHRecognizeGesture function, 118
SHRGINFO structure, 118
SHRG_LONGDELAY, 118
SHRG_NOTIFYPARENT, 118
SHRG_RETURNCMD, 118
SHSendBackToFocusWindow function, 947
SHSetAppKeyWndAssoc function, 828
SHShowOutOfMemory function, 817
SHSipinfo function, 845, 872, 874, 901, 1030
SHSipPreference function, 866, 872, 1030
shutdown function, 644

SHx, 3
SIF _DISABLENOSCROLL, 146
SIF _POS, 146
SIF_RANGE, 146
SIF_TRACKPOS, 147
signaled states, event, 512
simulating

keystrokes, 99
Off button, user pressing, 1036
right mouse clicks, 118
soft keyboards, 91

sin_family field, 641
single instance, Pocket PC, 834, 843
single lines, text, 43
SIP (soft input panel)

button, 261
.NET Compact Framework, 1136-1137
Pocket PC, 834, 846-847, 866-867, 871-874

SIP Control Panel applet, 901
SIP _DOWN, 866
SIPF _DISABLECOMPLETION, 899
SIPF_DOCKED, 873, 899, 903, 928
SIPP _LOCKED, 873, 899
SIPF _ON, 873, 899
SIP _FORCEDOWN, 866
SIPINFO structure, 872, 900-901
SIP _UNCHANGED, 866
SIP_UP, 866
size

dialog boxes, 298-302
drives, 414
file searches, 411
filenames, 386
files, 392, 394-395
fonts, 53
group boxes, 138
heap memory, 372, 374
icons, 184
input method, 899, 903
input panel, 900
object store, 387, 415
pages, 359
scroll bars, 146
separate heap, 374
shapes, 77-89
SIP, 1136

SMSDE_GSM 1213

stack, 375
static data areas, 377-379
text messages, 970
Today screen items, 879
top-level forms, 1133
windows, 23, 26, 37, 845

Size property, 1136
Skip method, 717
skipping enumeration devices, 717
slash mark key, 95
Sleep function, 507, 1036
slots, address space, 1026
Smartphone

applications, 932-939
buttons, 930, 944-947
communication features, 958
connection manager, 961-965
controls, 950-956
dialing, 958
dialog boxes, 949-950
file operation, 956-957
logs, 959-961
MenuBar control, 939-947
message boxes, 944, 947-948
multiple instances of, 939
overview, 833, 929-930
phone API, 958-961
restricted functions, 995
security, 995-996
user interface, 930-931

SM_MODE_RECEIVE, 966
SMS (Short Message Service)

accessing, 966
configuring, 972-973
examples, 974-995
overview, 965
receiving messages, 969-971
saving messages, 965
sending messages, 966-969
service center numbers, 972

SMS_ADDRESS structure, 967-968, 970, 972
SMSAT_INTERNATIONAL, 968
SmsClearMessageNotification function, 973
SmsClose function, 966, 968
smsdeDataEncoding parameter, 967
SMSDE_GSM, 967

1214 SMSDE_OPTIMAL

SMSDE_OPTIMAL, 967
SMSDE_UCS2, 967
SmsGetMessageSize function, 970
SmsGetMessageStatus function, 967
SmsGetPhoneNumber function, 972
SmsGetSMSC function, 972
SmsGetTime function, 973
SMS_HANDLE, 966
SMS_MODE_SEND, 966, 969
SMS_MSGTYPE_TEXT, 966, 973
SmsOpen function, 966, 968, 995
SMS_OPTION_DELIVERY _NONE, 967
SMS_OPTION_DELIVERY_NO_RETRY, 967
SmsQueryMessageStatus function, 972
SmsReadMessage function, 969-971
SMSREGISTRATIONDATA structure, 973
SmsSendMessage function, 966-969, 972
SmsSetMessageNotification function, 973
SmsSetSMSC function, 972
SMS_STATUS_INFORMATION structure, 972
SO_BTH_GET_MODE, 672
sockaddr, 642
SOCKADDR structure, 1094, 1096
SOCKADDR_BTH structure, 642--643, 675
SOCKADDR_IN structure, 641, 643
SOCKADDR_IRDA structure, 642--643
SOCK_DGRAM, 641
Socket class, 1137
socket function, 640-641
socket stream, 1137
SOCKET_ADDRESS, 675
SOCKET_ERROR, 675
sockets. See also stream sockets; super service

connectivity, 795
IrSock

blocking vs. nonblocking, 648--651
examples, 651-670
options, 647-648
overview, 645-647

nonblocking mode, 638
overview, 637

SOCK_STREAM, 641
soft input panel (SIP). See SIP (soft input panel)
soft keyboards, 91
SoftKeyBar control, 941, 949
Software key, 416

SO_LINGER, 648
SOL_IRLMP, 645
SOMAXCONN, 643
sort orders, database, 452
SORTORDERSPECEX structure, 445, 447
space

code fragments, 35
freeing memory, 368, 372, 374, 871
overview, 4
between text letters, 46

Spacebar, 94
SPACEPARITY, 591
special folders, 801-803
specifying registry keys, 415
SPI_GETBATTERYIDLETIMEOUT, 1039
SPI_GETCURRENTIM, 872, 874
SPI_ GETEXTERNALIDLETIMEOUT, 1039
SPI_GETPLATFORMTYPE, 1032
SPI_GETSIPINFO, 872, 901
SPI_GETWAKEUPIDLETIMEOUT, 1039
spinner controls, Smartphone, 954-956
SPI_SETCURRENTIM, 872
SPI_SETSIPINFO, 872, 901
sprintf-style function, 1124
SP _SERIALCOMM, 595
SQL_IRLMP, 648
SQL_SOCKET,. 648
square boxes, 138
SRCCOPY, 72
SrchDirectory function, 773
SRCINVERT, 72
SRCPAINT, 72
SS_BITMAP, 142
SS_CENTER, 142
SS_CENTERIMAGE, 143
SS_ICON, 142
SS_LEFT, 142
SS_LEFTNOWORDWRAP, 142
SS_NOPREFIX, 143
SS_NOTIFY, 143
SS_RIGHT, 142
stack, 364, 375-376, 380, 637, 671
stack frames, 25
STACK_SIZE_PARAM_IS_A_RESERVATION, 503
stand-alone control scroll bar, 146
standalone Services Manager, 1085, 1094

standard dialog boxes, 314
Start icon, 871
Start menu, 805, 833
StartDeviceEnum method, 716-717
starting games, 1001
starting services, 1087, 1091-1092
starting super service, 1094
State field, 369
StateFlags parameter, 1042
states

key, 97-98, 109, 117
querying service, 1092
virtual page, 360

static controls, 142
static data, 363-364, 376-379, 380
static keyword, 1117
status bar control, 206, 295
status information

checked/unchecked buttons, 215
connections, 964-965
exceptions, 555
keyboards, 100
memory state, 360--362, 381-384
modem control signals, 597
short text messages, 967, 972
system power state, 1033-1035

stDischargeTime field, 972
stEndTime field, 559
STILL_ACTIVE, 497, 504
stock brushes, 77
stock pens, 75
StopBits field, 591
StopDeviceEnum method, 716
StopDeviceNotifications function, 1067
stopping file searches, 411
stopping services, 1087, 1091
Storage Card directories, 386
storage cards, 869
storage volumes, opening, 390
STORE_INFORMATION structure, 415
storing content data. See resources
storing files. See file system
stream device drivers

described, 1046
entry points

overview, 1055
xxx_Close, 1058

subclassing windows 1215

xxx_Deinit, 1057
xxx_Init, 1056
xxx_IOControl, 1060--1065
xxx_Open, 1057
xxx_PowerDown, 1059
xxx_PowerUp, 1060
xxx_Reacl, 1058
xxx_Seek, 1059
xxx_ Write, 1059

names, 1046
overview, 1054-1055
services and, 1085

stream mode, 762, 767
stream sockets

client side, 643
closing, 644
connection acceptance, 643
connection process, 640
creating, 641
data transfers, 644
listen mode, 642
overview, 639-640
server side, 641-642

StretchBlt function, 72-73
string resources, 186
StringBuilder class, 1124, 1146
strings

common language runtime, 1123-1125
length, 5
memory allocation, 379
Platform Invoke, 1145-1146

structures, Platform Invoke, 1143
stServiceCenterTimeStamp field, 972
stStartTime field, 559
style flags, 13-14, 22, 133-134
styles, dialog box, 300
stylus

examples, 118-127
inking, 110--116
input focus, 116-117
messages, 110, 116-117
overview, 110
right-button clicks, 117-118
tap, 93
window changes, 116-117

subclassing windows, 134-135

1216 subfolders

subfolders, 805
subkeys, 417, 881
submenus, 179, 260, 269, 805
super service

controlling prograrnrnatically, 1096
examples, 1098-1112
IOCTI commands, 1097-1098
loading, 1095
overview, 1094-1096
starting, 1094

suspend counts, 506
suspending

device enumeration, 714
GAPI applications, 1003
system power, 1036
threads, 506

SuspendThread function, 506
switch statement, 25, 28
switching property pages, 314
SwitchToFiber function, 508
SWP _DRAWFRAME, 134
SWP _FRAMECHANGED, 134
SWP _HIDEWINDOW, 134
SWP _NOACTIVATE, 134
SWP _NOMOVE, 134
SWP _NOSIZE, 134
SWP _NOZORDER, 134
SWP _SHOWWINDOW, 134
Sync service, 719
synchronization

critical sections, 521-523
duplicate handles, 521
event objects, 512-514
interlocked variable access, 523-525
memory-mapped objects, 529
mutexes, 520-521
overview, 511
semaphore objects, 518-520
waiting, 514-518

synchronous connections, 961, 963
synchronous device detections, 716, 718
synchronous I/0, 588
system event notifications

examples, 566-579
overview, 564-566

system heap, 358
system information RAPI functions, 752
System.Console.WriteLine, 1118
SysternldleTimerReset function, 1039
SysternParameterslnfo function, 1039
SystemPowerState field, 1041
SYSTEM_POWER_STATUS_EX2 structure, 1034
systems programming. See also memory

management; power management
memory architecture, 1025-1027
overview, 1025

SYSTEMTIME structure, 288, 394, 967, 970
systemwide unique identifiers, 395
szAppName field, 33, 964
szCmdLine field, 964
szCmdLine parameter, 496
szDbaseName field, 444
szDescription field, 639
szDllName field, 1088
szName field, 877
szPrefix field, 1089
szPrefix parameter, 1088
szRegWritePath parameter, 1096
szShortcut parameter, 804
szSystemStatus field, 639
szTip field, 809
szToken field, 963, 964

T
T9 text input mode, 952
tab control, 206, 295
Tab key, 93
TA_BASELINE, 45
TA_BOTTOM, 45
TA_CENTER, 45
TA_LEFT,45
TA_NOUPDATECP, 45
TA_RIGHT, 45
tabs, 868-869, 950
tap-and-hold gestures, 118
TAPI (Telephony APO, 958
taps. See also mouse; Smartphone; touch screens

input focus, 116-117
screen position, 109
single vs. double, 109

task bars
described, 129
examples, 809-816
overview, 808-809

Tasks item, 875
TA_TOP, 45
TA_UPDATECP, 45
TB_AUTOSIZE, 220
TBBUTTON structure, 213-214
TBBUTTONINFO structure, 943
TB_CHECKBUTTON, 215
TB_GETBUTTONINFO, 214, 942
TB_GETIMAGELIST, 216
TB_GETRECT, 218
TBIF _COMMAND, 943
TBIF _LPARAM, 943
TBIF _STATE, 943
TBIF_TEXT, 943
TB_ISBUTTONCHECKED, 215
TB_LOADIMAGES, 216
TBN_DROPDOWN, 217
TB_SETBUTTONINFO, 214, 942
TB_SETDISABLEDIMAGELIST, 216
TBSTATE_AUTOSIZE, 267
TBSTATE_CHECKED, 214, 267
TBSTATE_DROPDOWN, 267
TBSTATE_ENABLED, 213, 267, 943
TBSTATE_HIDDEN, 213
TBSTATE_INDETERMINATE, 214
TBSTATE_PRESSED, 214
TBS_TRANSPARENT, 260
TBSTYLE_AUTOSIZE, 214
TBSTYLE_BUTTON, 214, 942
TBSTYLE_CHECK, 214
TBSTYLE_CHECKGROUP, 214
TBSTYLE_DROPDOWN, 214, 942
TBSTYLE_GROUP, 214
TBSTYLE_SEP, 214
TCS_BOTTOM, 353
TCS_EX_REGISTERDROP, 295
TCS_HOTTRACK, 295
telephones. See cell phones
Telephony API (TAPI), 958
templates

dialog boxes, 298-302
filenames, 410
Pocket PC, 848-849

threads 1217

temporary files, 410
temporary New menu additions, 849
Terminatelnstance function, 33
TerminateProcess function, 497
terminating processes, 497-498
terminating zeros, 186
testing for keyboards, 100
text. See also Short Message Service (SMS)

alignment, 45
background colors, 44
background mode, 46
device context attributes, 44-46
displaying, 43
entry cursor, 41
examples, 46-51
fonts, 52-54
foreground colors, 44
formatting, 43
overview, 43-44
scrolling, 108
Smartphone controls, 951-953
window, 22

TEXT macro, 23, 43, 753
TEXTMETRIC structure, 55, 66
TEXT_PROVIDER_SPECIFIC_DATA structure,

967-969
theme colors, Today screen, 879
third-party drivers, 1046
thread stack, 376
ThreadFunc function, 503
THREAD_PRIORITY _ABOVE_IDLE, 500
THREAD_PRIORITY_ABOVE_NORMAL, 500, 505
THREAD _PRIORITY _BELOW _NORMAL, 500
THREAD_PRIORITY_HIGHEST, 500
THREAD_PRIORITY_IDLE, 500, 504
THREAD_PRIORITY_LOWEST, 500
THREAD_PRIORITY_NORMAL, 500-501, 504
THREAD_PRIORITY_TIME_CRITICAL, 500, 504
ThreadProc routine, 509
threads

address space, 1026
described, 489
creating, 502-504
custom input methods, 896
fibers, 507-509
local storage, 509-511
overview, 499

1218 thresholds, memory

threads, continued
power management, 501
priority changes, 504-505
priority processing, 499-501
resuming, 506
scheduling,499-502
serial communication, 588
serial port data, 587
suspending, 506
synchronization

critical sections, 521-523
events, 512-514
examples, 535-549
interlocked variable access, 523-525
mutexes, 520--521
overview, 511
semaphores, 518-520
waiting, 514-518

time quantums, 499, 506
thresholds, memory, 381-384
throw keyword, 549-552
thumb positions, 143, 145
TicksSinceLast method, 1140
time

date and time picker control, 289-291
file access, 393-394
notification start and end, 559
OBEX device discovery, 716
process terminations, 498
SMS time estimates, 973
thread quantums, 499, 506
thread scheduling, 499-502
user input timer resets, 1039

time zone translations, 394
timeout parameter, 516
timeout values, serial communication, 592-593,

598
timeouts, preventing suspension, 1039
timer event notifications

examples, 566-579
overview, 563

TIMEVAL structure, 650
title bars, 133, 300
tlit field, 877
tlitCustom field, 877
TLS (thread local storage), 509-511

TlsAlloc function, 511
TlsFree function, 511
TlsGetValue function, 511
TLS_MINIMUM_AVAILABLE, 510
TlsSetValue function, 511
tmExternalLeading field, 56, 66
tmHeight field, 56, 66
Today screen

debugging, 881
described, 833
examples, 881--895
implementing, 876--880
item window, 878--879
options dialog, 880
overview, 875
refreshing, 880
registering, 880
user interaction, 879

Today screen Control Panel applet, 875, 877,
880--881

Today title bar, 875
TODAYDRAWWATERMARKINFO structure, 879
TODAYLISTITEM structure, 876, 878, 880, 894
TODAYLISTITEMTYPE enumeration, 877
TODAYM_DRAWWATERMARK, 879
TODAYM_GETCOLOR, 879
toggled state, key, 98
tool tip control, 207
toolbar control, 206, 296
tooltips, 219, 296
top-down Start menu, 833
top-level forms, 1133
top-level windows, 23, 129
ToString method, 1125
touch panel drivers, 1046
touch screens

examples, 118-127
inking, 110--116
input focus, 116-117
messages, 110
overview, 4, 110
right-button clicks, 117-118
stylus, 110
tap-and-hold gestures, 118
taps, 109, 116-117

TPMPARAMS structure, 181, 218

TPM_RETURNCMD, 181
TPM_ VERTICAL, 218
trackbar control, 206, 295
TrackingPopupMenu function, 181
TrackPopupMenuEx function, 218
transferring data, sockets, 644
transferring files. See Object Exchange (OBEX)
transition key state, 97
TranslateAccelerator function, 185
TranslateMessage function, 24, 307
translating file times, 394
translating virtual key codes, 99
TransmitCommChar function, 587, 597
TRANSPARENT, 879
transparent, 46, 73, 89
Transparentlmage function, 73
transport technologies. See device-to-device

communication
tree view control, 206, 296
triggering notifications. See notifications
TRlVERTEX structure, 81
TrueType fonts, 52, 54
TRUNCATE_EXISTING, 388, 442
truncating files, 392
trusted modules, 525-527, 995
try keyword, 549-556
TryEnterCriticalSection function, 522
tszAppName field, 973
tszParams field, 973
tszProtocolName field, 973
TVS_CHECKBOXES, 296
TVS_SINGLESEL, 296
TVS_TRACKSELECT, 296
TWOSTOPBITS, 591
Type field, 370
Type parameter, 641

u
uBand parameter, 242
uBytes parameter, 372-373
uCallbackMessage field, 808
UDM_SETBUDDY, 954
UDN_EXPANDING, 955
UDS_ALIGNRlGHT, 953
UDS_AUTOBUDDY, 953
UDS_EXPANDABLE, 953, 955

unmounted database volumes 1219

UDS_HORZ, 955
UDS_NOSCROLL, 953, 955
UDS_SETBUDDYINT, 955
UDS_ WRAP, 955
uEnable parameter, 180
uFirstChar parameter, 56
uFlag parameter, 373
uFlags field, 808
uFlags parameter, 179, 372
uiAction parameter, 872, 874
uID field, 808
uIDNewitem parameter, 180
uiEndTime field, 963
uiParam parameter, 872
uiPeriod field, 963
uiStartTime field, 963
UiVal data type, 440
ULARGE_INTEGER structure, 414
uLastChar parameter, 56
ulMaxConnLatency parameter, 963
ulMaxCost parameter, 963
ul_reason_for_call parameter, 493
ulRecordLength parameter, 682
UlVal data type, 440
ulZoneMask field, 1071
uMapType parameter, 100
uMsg parameter, 310, 868
Unadvise method, 784
unblocking threads, 501
UNC (Universal Naming Convention), 616,

623, 626
unchecked button state, 215
unchecked check boxes, 138
unchecked radio buttons, 138
undocking input panels, 903
Unicode, 4, 9, 33, 639
uninitialized read/write data, 378
UNIVERSAL_NAME_INFO_LEVEL, 626
unloading drivers, 1050
unloading services, 1087, 1089, 1092
unloading Today screen items, 880
unmanaged code, 1114, 1140-1146
unmanaged types, 1142
unmapping virtual pages, 368
UnmapViewOfFile function, 407
unmounted database volumes, 441, 443

1220 unnamed memory-mapped objects

unnamed memory-mapped objects, 529-530
UnregisterHotKey function, 829
unregistering hot keys, 829
unregistering Today screen item windows, 878
un-subclassing windows, 135
unsupported common controls, 296
untrusted modules, 525-527, 995
uNumToolTips parameter, 220
Up Arrow key, 94
up volume button, 945
UpdateWindow statement, 23
up-down control, 207, 295, 953-956
up/down state, key, 98
uppercase, 294
upportflags field, 689
User component, 40
user feedback, screen, 110
user input timers, resetting, 1039
user notifications

acknowledging, 562-563
configuring, 561
described, 557
examples, 566-579
overview, 557
querying, 580-581
setting, 558-560

user screen writing storage, 110-116
UserOptionsDlg method, 901
using directives, 1118
uStartindex, 71
uSvc flag, 778
UTC (universal time format), 394
uType field, 449
uType parameter, 13
uuidService field, 689
uUnique parameter, 410

v
val field, 451
valid window regions, 27, 40-41
ValidateRect function, 41
validating virtual pages, 359
value types, 1120-1122
values, registry

deleting, 419
overview, 415-416

reading, 418
subkeys, 421
writing, 419-420

variables
interlocked access, 523-525
prefixes, 6-7

VER_PLATFORM_ WIN32, 1032
versions

compile-time, 1030-1031
explicit linking, 1032
GAPI, 997
Hello World applications, 14
overview, 1028-1030
RAPI, 749
run-time checking, 1032-1033
Windows CE platforms, 1029

version-sensitive DLLs, 998
vertical progress bars, 295
vertical scroll bars, 146
Vertical Scrollbar Visibility value, 416
vertical tap position, 109
vertical text limitations, 295
vertically centered text, 43
VIDEO_FOWER_MANAGEMENT, 1038
virtual COM ports, Bluetooth communication,

687-692
virtual key codes, 824-826, 903
virtual keys, 93-100, 185
virtual list view mode, 293-294
virtual memory, 359-362, 365-371
virtual pages, 359-360, 365-371
virtual RAM disks, 358
virtual serial ports, 672
VirtuaWloc function, 365
VirtualFree function, 368
VirtualProtect function, 369
VirtualQuery function, 369
Virtualxxx functions, 364
visibility

command bar, 221
navigation items, 871
window, 130

VisibleDesktop property, 1136
Visual Basic .NET, 1116, 1119, 1123
Visual C#, 1116-1118, 1122
vkAppKey parameter, 826

VKey parameter, 99
Vk_LEFT, 825
VK_LWIN, 826
VK_MENU, 117
VK_OFF, 1036
VK_RETURN, 825
VK_RIGHT, 825
VK_TBACK, 945
VK_TRECORD, 945
VK_TSOFTl, 945
VK_TSOFT2, 945
VK_TVOLUMEDOWN, 945
VK_TVOLUMEUP, 945
VK_UP, 825
VK_xx, 93-100
volume buttons, 945
volumes

database, 441--443
opening, 390
serial numbers, 395

w
WAIT_ABANDONED, 515-516
waitable timers, 512
WaitCommEvent function, 588, 592
WAIT_FAILED, 515-516
WaitForMultiple functions, 514
WaitForMultipleObjects function, 516, 548
WaitForSingleObject function, 514, 520, 532, 546,

1041
waiting, synchronization, 514-518
WAIT_OBJECT_O, 515-516, 518
WAIT_TIMEOUT, 515-516
WakeFromDx field, 1069
waking suspended devices, 1039
WC_CAPEDIT, 294
WCE emulators, 10
WC_LISTVIEW, 292
wcProvChar field, 595
wcscpy, 9
WC_SIPPREF, 867
wDay field, 288
weeks, calendar, 286-289
wFlags field, 451, 455
wheel rotations, mouse, 109
WHEEL_DELTA, 110

while loop, 501, 507
WHITE_PEN, 75
wID field, 240

window 1221

wide dashed lines, 76
WideCharToMultiByte function, 639, 753
widths

combo boxes, 219
dialog boxes, 299
fonts, 53, 56
GAP! displays, 999
shapes, 77-89

wildcards, 410
Win32 exception handling, 552-556
Win32 subset, 6
WIN32_FIND_DATA structure, 411
WIN32_PLATFORM_HPC2000, 1031
WIN32_PLATFORM_HPCPRO, 1031
WIN32_PLATFORM_PSPC, 34, 849, 1031
WIN32_PLATFORM_ WFSP, 1031
WIN32_ WCE, 1031
window. See also controls; dialog boxes; drawing;

resources; text
areas, 26
child, 129
customizing, 1128
destroying, 27, 36
editing structure values, 132-135
enumerating, 131
finding, 131
full screen, 871
Hello World applications, 22-23
icons, 184
input focus, 92, 116-117
locations, 527-528
management functions, 130-135, 757
notifications, 15-17
overview, 129
painting, 25-27
positions, 23
procedures

code fragments, 28-37
vs. dialog box procedures, 304
Hello World applications, 24-28
overview, 15-17

regions, 40--41, 54
resizing, 845

1222 window classes

window, continued
size, 23, 26, 37
tooltips, 219, 296
validation, 27
visibility, 130

window classes, 15, 20-21, 33, 135-137, 184, 297
Windows CE. See also drivers; services

components, 40
configurations, 5
customizing, 5
memory map, 1025-1027
vs. other Windows platforms, 3-7
overview, 3-7
platform versions, 1029

Windows Context Menu key, 97
Windows controls. See controls
Windows Forms applications, 1126-1133
Windows matching fonts, 54
Windows message coordination, 15-17
Windows Networking. See WNet
Windows-based applications, 15-17
WinMain procedure, 497
WINS (Windows Internet Naming Service), 1098
Winsock

Bluetooth, 672, 685-687
initializing, 638-639
vs. IrSock, 645
overview, 638
stacks, 637
stream sockets, 639-645

wireless communication. See device-to-device
communication

wKeyFlags field, 445
wLenData field, 451
WM_ACTIVATE,846,867
WM_BUITONDOWN, 109
WM_CAPTURECHANGED, 117
WM_CHAR, 93, 96, 101, 824, 904
WM_CLOSE, 36, 497, 829
WM_COMMAND, 136, 181, 183, 207, 304, 351
WM_COPYDATA, 528-529
WM_CREATE, 23, 127, 176,304,405
WM_CTLCOLORBUITON, 178
WM_CTLCOLORSTATIC, 178, 894
WM_DBNOTIFICATION, 448
WM_DEADCHAR, 98

WM_DESTROY, 27
WM_DRAWITEM, 139, 178
WM_ENTERIDLE, 303
WM_ERASEBACKGROUND, 41
WM_ERASEBKGND, 21, 879
WM_GETTEXT, 140
WM_HELP, 220, 300
WM_HIBERNATE, 130, 380-382
WM_HOTKEY, 828, 945, 947
WM_HSCROLL, 143, 178
WM_INITDIALOG, 304-306, 351, 865-866,

894, 949
WM_KEYDOWN,93,96, 101,824,904
WM_KEYUP, 93, 96, 101, 824, 904
WM_KEYxx, 93
WM_KEYxxx, 904
WM_KILLFOCUS, 92, 1003
WM_LBUITONDBLCLK, 109
WM_LBUITONDOWN, 109-116, 134, 204
WM_LBUITONUP, 109-110, 880
WM_MBUTTONDOWN, 109
WM_MBUITONUP, 109
WM_MOUSEMOVE, 109, 111-116
WM_MOUSEWHEEL, 109
WM_NCxxx, 26
WM_NOTIFY, 118, 207, 217, 245, 351, 437, 488
wMonth field, 288
WM_PAINT, 23, 25-27, 40-43, 100, 108, 204, 245
WM_QUIT, 24, 27
WM_RBUTTONDOWN, 109, 117
WM_RBUTTONUP, 117
WM_SETFOCUS, 92, 1003
WM_SETTEXT, 140
WM_SETTINGCHANGE, 290, 846
wMsg field, 962
wMsg parameter, 25
WM_SIZE, 127, 176, 204, 794
WM_SYSCHAR,93,96
WM_SYSKEYDOWN, 93
WM_SYSKEYUP, 93
WM_SYSKEYxx, 93
WM_TODAYCUSTOM_CLEARCACHE, 880
WM_TODAYCUSTOM_QUERYREFRESHCACHE,

878, 894
WM_USER, 448, 808, 1135
WM_VSCROLL; 143, 178, 204

WM_xSCROLL, 147
WNDCLASS structure, 20-21, 132
WndProc method, 1127, 1134
WNet

disconnecting remote resources, 619-620
enumerating resources, 620-625
examples, 627-635
functions, 616
mapping remote drives, 616-619
overview, 615-616
querying, 625-627
UNC names, 616

WNetAddConnection functions, 616
WNetAddConnection2 function, 617
WNetAddConnection3 function, 616-618
WNetCancelConnection2 function, 619
WNetCloseEnum function, 623
WNetConnectionDialogl function, 618
WNetDisconnectDialog function, 619
WNetDisconnectDialogl function, 620
WNetEnumResource function, 622
WNetGetConnection function, 625
WNetGetLastError function, 618
WNetGetUniversalName function, 626
WNetGetUser function, 627
WNetOpenEnum function, 620-625
wNumProps field, 445
wNumReaders field, 534
wNumRecords field, 445
wNumSortOrder parameter, 444
wNumWriters field, 534
wPacketLength field, 594
wPacketVersion field, 594
wParam field, 962
wParam parameter, 24-25, 92-93, 96, 100, 109,

136, 181
wProcessorArchitecture field, 360
wProcessorLevel field, 361
wProcessorRevision field, 361
Wrap To Window value, 416
WrapString function, 204
write file access, 388
Write function, 1059, 1091
Write method, 768, 773
WriteFile function, 587, 592, 692, 1053, 1059
WriteFile parameter, 391
WriteLine method, 1117-1118, 1124

wYear field 1223

WriteMsgQueue function, 532
WriteProcessMemory function, 498
WriteTotalTimeoutConstant function, 592
WriteTotalTimeoutMultiplier function, 592
writing. See also text

custom functions, 763-767
database records, 455
drivers, 1052-1054
files, 390, 406-408
registry values, 419-420, 780
serial port data, 587

WSAAsync function, 648
WSAAsyncSelect function, 638
WSACleanup function, 639
WSAData structure, 638
WSA_E_NO_MORE, 675
WSAEWOULDBLOCK, 643
WSAGetLastError function, 639, 641
WSALookupServiceBegin function, 673-678
WSALookupServiceEnd function, 676
WSALookupServiceNext function, 674
WSAQUERYSET structure, 673, 678, 682
WSASetService function, 682-685
WSAStartup function, 638
WSAWOULDBLOCK, 649
WS_CAPTION, 133, 300-301
WS_CHILD, 130, 219
WS_EX_CAPTIONOKBTN, 300
WS_EX_CAPTIONOKBUTTON, 22
WS_EX_CLIENTEDGE, 22
WS_EX_CONTEXTHELP, 22, 300
WS_EX_NOACTIVATE, 22
WS_EX_NOANIMATION, 22
WS_EX_NODRAG, 22
WS_EX_OVERLAPPEDWINDOW, 22
WS_EX_STATICEDGE, 22
WS_EX_TOPMOST, 22
WS_EX_ WINDOWEDGE, 22
WS_GROUP, 301
WS_OVERLAPPED, 130, 380
WS_POPUP, 300
WS_SYSMENU, 300
WS_TABSTOP, 301
WS_VISIBLE, 23, 130, 176, 219, 380
WS_ VSCROLL, 950
wVersion field, 444-445
wYear field, 288

1224 x coordinates

x
x coordinates, 44-45
XIP (Execute in Place), 358, 362, 364, 387
XIP DLLs, 362
XOFF characters, 591, 597
XoffLim field, 591
XON characters, 591
XonLim field, 591
XON/XOFF control, 591
xxx_Close, 1058
xxx_Deinit, 1057, 1090
xxx_Init, 1056, 1089
xxx_IOControl, 1060-1065, 1090
xxx_Open, 1057 ·
xxx_PowerDown, 1059

xxx_PowerUp, 1060
xxx_Read, 1058
xxx_Seek, 1059
xxx_ Write, 1059

y
y coordinates, 44-45
Yes/No buttons, 947

z
zero terminated string resources, 186
zone bitmaps, 1093
Z-order, 92, 381

Douglas Boling
A contributing editor to Microsoft's MSDN Mag
azine, Douglas Boling has been working with
small computers since hanging out after school
at the Byte Shop in Knoxville, Tennessee, in the
mid 1970s. After graduating from single-board
computers to Apples to IBM PCs, he has now
returned to his roots in embedded systems. He
conceived the idea of Vadem Clio and worked
on its core design team. Doug teaches classes
on Microsoft Windows CE application develop
ment and OAL and driver development and has
taught many of the leading companies in the
Windows CE market. His consulting service assists companies developing Win
dows CE products. Both his teaching and consulting are done through his com
pany, Boling Consulting (www.bolingconsulting.com). Doug has degrees in
electrical engineering from the University of Tennessee and the Georgia Insti
tute of Technology. When not sitting in front of a computer monitor or speak
ing, Doug likes to play with his children, go out on dates with his wife, and
drive his convertible on a sunny day.

The definitive guide to programming the Windows CE API.

Design sleek, high-performance applications for the newest smart mobile devices

with the industry's most respected reference to Windows CE .NET. Now in its third

edition, this essential guide has been updated for Windows CE .NET 4.2 and the

Microsoft .NET Compact Framework. Author Douglas Boling expertly demonstrates

how to apply your Windows or embedded programming experience to the Windows

CE .NET environment to build fast, small-footprint applications for the Windows

Powered Pocket PC, Smartphone, and other next-generation devices. Accelerate your

expertise-and get to market faster-with Doug's professional-level instruction,

including source code and tools on the CD and the Web.

Learn how to:

> Use specialized techniques for handling memory, storage, and power constraints

> Enable communications to networks, PCs, or other devices-including using infrared and

Bluetooth technologies

> NEW-Use the .NET Compact Framework to build CPU-independent applications

> Develop applications for the Pocket PC and create custom extensions

> NEW- Program for the unique requirements of the Smartphone, including security features

> NEW-Use Short Message Service to write connected applications on the Pocket PC

Phone Edition and Smartphone

> NEW-Write your own device drivers, services, and super services

> Configure user and event notifications

> Program the Game API (GAPI)

G
Analyzing

· Business
• Requirements

"' 0
0

"' "' di
0
x
c:i z
t:'.

Defining
Technical

Architecture

ii:. 7 9 0145 188 44

ISBN 0-7356-1884-4

9 780 735 6 18848

Deployment
Maintenance/

Troubleshooting

U.S.A . $59.99
Canada $86.99

[Recommended)

Programming/
Microsoft Windows

