

Architectural
Reference

INSIDE MICROSOFT®
,·/

•

Microsoft®

Serge Lidin

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2002 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Lidin, Serge, 1956-

Inside Microsoft .NET IL Assembler I Serge Lidin.
p. cm.

Includes index.
ISBN 0-7356-1547-0
1. Assembling (Electronic computers) I. Title.

QA76.76.A87 L545 2002
005.2'768--dc21

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 7 6 5 4 3 2

Distributed in Canada by Penguin Books Canada Limited.

2001058690

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Age of Empires, DirectX, Microsoft, Microsoft Press, MS-DOS, MSDN, the .NET logo, Visual Basic,
Visual C++, Visual C#, Visual Studio, Win32, and Windows are either registered trademarks or trade
marks of Microsoft Corporation in the United States and/or other countries. Other product and company
names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Acquisitions Editor: Danielle Bird
Project Editor: Devon Musgrave
Technical Editor: Julie Xiao

Body Part No. X08-56864

To my family, for all their patience with me.

I
Part I

1 Simple Sample 3
2 Enhancing the Code 27

Part II
3 The Structure of a Managed Executable File 39
4 Metadata Tables Organization 75

Part Ill
5 Modules and Assemblies 97
6 Namespaces and Classes 125
7 Primitive Types and Signatures 155
8 Fields and Data Constants 179
9 Methods 201

Part IV
10 IL Instructions 237
11 Structured Exception Handling 271

Part V
12 Events and Properties 291
13 Custom Attributes 307
14 Security Attributes 329

Part VI
15 Managed and Unmanaged Code Interoperation 349
16 Multilanguage Projects 377

v

vi

Appendixes
A IL Assembler Grammar Reference 393
B Metadata Tables Reference 409
C IL Instruction Set Reference 421
D IL Assembler and Disassembler Command-Line Options 429
E Offline Verification Tool Reference 435

I
Introduction xvii

Part I

1 Simple Sample 3
Basics of the Common Language Runtime 4
A Simple Sample 8

Program Header 9
Class Declaration 10
Field Declaration 13
Method Declaration 14
Global Items 19
Mapped Fields 21
Data Declaration 22
Value Type as Placeholder 22
Calling Unmanaged Code 23

Forward Declaration of Classes 25
Summary 26

2 Enhancing the Code 27
Code Retention 27
Protecting the Code 30
Summary 36

Part II

3 The Structure of a Managed Executable File 39
PE/GOFF Headers 41

MS-DOS Stub and PE Signature 42
GOFF Header 42
PE Header 47
Section Headers 53

vii

viii Table of Contents

Common Language Runtime. Header 56
Header Structure 56
Flags Field 58
EntryPointToken Field 59
VTableFixups Field 60
StrongNameSignature Field 61

Relocation Section 61
Text Section 63
Data Sections 65

Data Constants 65
V-Table 66
Unmanaged Export Table 66
Thread Local Storage 68

Resources 70
Unmanaged Resources 70
Managed Resources 72

Summary 73

4 Metadata Tables Organization 75
What Is Metadata? 75
Heaps and Tables 78

Heaps 78
General Metadata Header 79
Metadata Table Streams 82

RIDs and Tokens 87
RI Os 87
Tokens 87
Coded Tokens 89

Metadata Validation 93
Summary 94

Part Ill

5 Modules and Assemblies 97
What Is an Assembly? 97

Private and Shared Assemblies 98
Application Domains as Logical Units of Execution 99

Table of Contents ix

Manifest 101
Assembly Metadata Table and Declaration 103
AssemblyRef Metadata Table and Declaration 104
The Loader in Search of Assemblies 107
Module Metadata Table and Declaration 109
ModuleRef Metadata Table and Declaration 110
File Metadata Table and Declaration 110
Managed Resource Metadata and Declaration 112
ExportedType Metadata Table and Declaration 115

Order of Manifest Declarations in ILAsm 117
Single-Module and Multimodule Assemblies 118
Metadata Validity Rules 119

Assembly Table Validity Rules 120
AssemblyRef Table Validity Rules 120
Module Table Validity Rules 121
ModuleRef Table Validity Rules 121
File Table Validity Rules 121
ManifestResource Table Validity Rules 122
ExportedType Table Validity Rules 122

6 Namespaces and Classes 125
Class Metadata 127

TypeDef Metadata Table 128
TypeRef Metadata Table 129
lnterfacelmpl Metadata Table 129
NestedClass Metadata Table 130
ClassLayout Metadata Table 130

Namespace and Full Class Name 130
ILAsm Naming Conventions 131
Namespaces 132
Full Class Names 133

Class Attributes 135
Flags 135
Class References 138
Parent of the Type 138
Interface Implementations 139
Class Layout Information 140

x Table of Contents

Interfaces 140
Value Types 141

Boxed and Unboxed Values 142
Instance Members of Value Types 142
Derivation of Value Types 143

Enumerators 143
Delegates 144
Nested Types 147
Class Augmentation 149
Metadata Validity Rules 151

TypeDef Table Validity Rules 151
Enumerator-Specific Validity Rules 152
TypeRef Table Validity Rules 153
lnterfacelmpl Table Validity Rules 153
NestedClass Table Validity Rules 154
ClassLayout Table Validity Rules 154

7 Primitive Types and Signatures 155
Primitive Types in the Common Language Runtime 155

Primitive Data Types 156
Data Pointer Types 157
Function Pointer Types 160
Vectors and Arrays 160
Modifiers 162
Native Types 165
Variant Types 168

Representing Classes in Signatures 170
Signatures 171

Calling Conventions 171
Field Signatures 172
Method and Property Signatures 173
MemberRef Signatures 174
Indirect Call Signatures 174
Local Variables Signatures 175
Type Specifications 175

Signature Validity Rules 176

Table of Contents xi

8 Fields and Data Constants 179
Field Metadata 180
Instance and Static Fields 184
Default Values 184
Mapped Fields 187
Data Constants Declaration 189
Explicit Layouts and Union Declaration 191
Global Fields 194
Constructors vs. Data Constants 195
Metadata Validity Rules 198

Field Table Validity Rules 198
Field Layout Table Validity Rules 199
FieldRVA Table Validity Rules 199
FieldMarshal Table Validity Rules 199
Constant Table Validity Rules 200
MemberRef Table Validity Rules 200

9 Methods 201
Method Metadata 202

Method Table Record Entries 202
Method Flags 204
Method Name 206
Mett10d Implementation Flags 207
Method Parameters 208
Referencing the Methods 210
Method Implementation Metadata 211

Static, Instance, Virtual Methods 212
Explicit Method Overriding 216
Method Header Attributes 220
Local Variables 221
Class Constructors 224
Instance Constructors 224
Instance Finalizers 226
Variable Argument Lists 227
Global Methods 229
Metadata Validity Rules 230

xii Table of Contents

Method Table Validity Rules 230
Param Table Validity Rules 232
Methodlmpl Table Validity Rules 233

Part IV

10 IL Instructions 237
Long-Parameter and Short-Parameter Instructions 239
Labels and Flow Control Instructions 239

Unconditional Branching Instructions 239
Conditional Branching Instructions 240
Comparative Branching Instructions 240
The switch Instruction 242
The break Instruction 243
SEH Block Exiting Instructions 243
SEH Block Ending Instructions 243
The ret Instruction 244

Arithmetical Instructions 244
Stack Manipulation 244
Constant Loading 245
Indirect Loading 246
Indirect Storing 246
Arithmetical Operations 247
Overflow Arithmetical Operations 248
Bitwise Operations 249
Shift Operations 250
Conversion Operations 250
Overflow Conversion Operations 251
Logical Condition Check Operations 252
Block Operations 253

Addressing Arguments and Local Variables 254
Method Argument Loading 254
Method Argument Address Loading 254
Method Argument Storing 255
Method Argument List 255
Local Variable Loading 255

Table of Contents xiii

Local Variable Reference Loading 256
Local Variable Storing 256
Local Block Allocation 256
Prefix Instructions 257

Addressing Fields 257
Calling Methods 258

Direct Calls 259
Indirect Calls 260
Tail Calls 261

Addressing Classes and Value Types 261
Vector Instructions 265

Vector Creation 265
Element Address Loading 266
Element Loading 266
Element Storing 267

Code Verifiability 268

11 Structured Exception Handling 271
SEH Clause Internal Representation 272
Types of SEH Clauses 274
Label Form of SEH Clause Declaration 275
Scope Form of SEH Clause Declaration 278
Processing the Exceptions 281
Exception Types 283

Loader Exceptions 283
JIT Compiler Exceptions 284
Execution Engine Exceptions 284
Interoperability Exceptions 286
Subclassing the Exceptions 286
Unmanaged Exception Mapping 287

SEH Clause Structuring Rules 287

PartV

12 Events and Properties 291
Events and Delegates 291
Event Metadata 294

xiv Table of Contents

The Event Table 295
The EventMap Table 296
The MethodSemantics Table 296

Event Declaration 297
Property Metadata 300

The Property Table 301
The PropertyMap Table 302

Property Declaration 302
Metadata Validity Rules 304

Event Table Validity Rules 304
EventMap Table Validity Rules 304
Property Table Validity Rules 304
PropertyMap Table Validity Rules 305
MethodSemantics Table Validity Rules 305

13 Custom Attributes 307
Concept of a Custom Attribute 308
CustomAttribute Metadata Table 309
Custom Attribute Value Encoding 310
Custom Attribute Declaration 312
Classification of Custom Attributes 315

Execution Engine and JIT Compiler 317
Interoperation Subsystem 318
Security 320
Remoting Subsystem 322
Visual Studio .NET Debugger 323
Assembly Linker 323
Common Language Specification (CLS) Compliance 325
Pseudocustom Attributes 325

Metadata Validity Rules 327

14 Security Attributes 329
Declarative Security 330
Declarative Actions 331
Security Permissions 333

Access Permissions 333
Identity Permissions 338

Table of Contents xv

Custom Permissions 340
Permission Sets 343

Declarative Security Metadata 343
Security Attribute Declaration 345

Metadata Validity Rules 346

Part VI

15 Managed and Unmanaged Code Interoperation 349
Thunks and Wrappers 350

P!lnvoke Thunks 351
Implementation Map Metadata and Validity Rules 353

IJW Thunks 353
COM Callable Wrappers 354

Runtime Callable Wrappers 355
Data Marshaling 357

Blittable Types 358
In/Out Parameters 358
String Marshaling 359
Object Marshaling 361

Class Marshaling 363
Array Marshaling 363
Delegate Marshaling 364

Providing Managed Methods as Callback for Unmanaged 365
Managed Methods as Unmanaged Exports 369

16 Multilanguage Projects 377
IL Disassembler 378
Principles of Round-Tripping 383
Creative Round-Tripping 384
Using Class Augmentation 385

Module Linking Through Round-Tripping 386

Compiling in Debug Mode 388

A IL Assembler Grammar Reference 393
393

393

Lexical Tokens

Data Type Nonterminals

xvi Table of Contents

Identifier Nonterminals 394
Module-Level Declarations 394
External Source Declarations 394
V-Table Fixup Declaration 395
Namespace and Type Declarations 395
Signature Type Specifications 396
Native Type Declarations 397
Field Declarations 399
Data Declarations 400
Method Header Declarations 401
Method Body Declarations 402
Event Declarations 404
Property Declarations 405
Custom Attribute Declarations 405
Security Declarations 406
Manifest Declarations 406

B Metadata Tables Reference 409
c IL Instruction Set Reference 421
D IL Assembler and Disassembler Command-Line Options 429

IL Assembler 429
IL Disassembler 431

Options for Output Redirection 431
ILSAsm Code Formatting Options (PE Files Only) 431
Options for File Output (PE Files Only) 432
Options for File or Console Output (PE Files Only) 432
Metadata Summary Option 433

E Offline Verification Tool Reference 435
Error Codes and Messages 437

Index 453

Introduction

Why This Book Was Written
To tell the truth, I don't think I had much choice in this matter. Let me explain.
With Microsoft .NET technology taking the world by storm, with more and
more information professionals getting involved, large numbers of books cov
ering various aspects of this technology have started to arrive-and none too
soon. Alas, virtually all of these books are dedicated to .NET-based program
ming in high-level languages and rapid application development (RAD) envi
ronments. No doubt this is extremely important, and I am sure all these books
will have to be reprinted to satisfy the demand. But what about the plumbing?

The .NET universe, like other information technology universes, resem
bles a great pyramid turned upside down and standing on its tip. The tip on
which the .NET pyramid stands is the common language runtime. The runtime
converts the intermediate language (IL) binary code into platform-specific
(native) machine code and executes it. Resting on top of the runtime are the
.NET Framework class library, the compilers, and environments such as
Microsoft Visual Studio .NET. And above them begin the layers of application
development, from instrumental to end-user-oriented. The pyramid quickly
grows higher and wider.

This book is not exactly about the common language runtime-even
though it's only the tip of the .NET pyramid, the runtime is too vast a topic to
be described in detail in any book of reasonable (say, luggable) size. Rather,
this book focuses on the next best thing: the .NET IL Assembler. IL assembly
language (ILAsm) is a low-level language, specifically designed to describe
every functional feature of the common language runtime. If the runtime can do
it, ILAsm must be able to express it.

Unlike high-level languages, and like other assembly languages, ILAsm is
platform-driven rather than concept-driven. An assembly language usually is an
exact linguistic mapping of the underlying platform, which in this case is the com
mon language runtime. It is, in fact, so exact a mapping that this language is used
for describing aspects of the runtime in the ECMA standardization documents
regarding the .NET common language infrastructure. (ILAsm itself, as a part of the
common language infrastructure, is a subject of this standardization effort as well.)
As a result of the close mapping, it is impossible to describe an assembly language

xvii

xviii

without going into significant detail about the underlying platform. So, to a great
extent, this book is about the common language runtime after all.

IL assembly language is very popular among .NET developers. No, I am
not claiming that all .NET developers prefer to program in ILAsm rather than in
Microsoft Managed C++, Microsoft Visual C# .NET, or Microsoft Visual Basic
.NET. But all .NET developers use the IL Disassembler (ILDASM) now and then,
and many use it on a regular basis. A cyan thunderbolt-the ILDASM icon (a
silent praise for David Drake)-glows on the computer screens of .NET devel
opers regardless of their language preferences and problem areas. And ILDASM
text output is ... ? Yes, ILAsm source code.

Virtually all books on .NET-based programming that are devoted to high
level programming languages, such as Visual C# .NET or Visual Basic .NET, or
to techniques such as ADO.NET at some moment mention the IL Disassembler
as a tool of choice to analyze the innards of a .NET IL executable. But these vol
umes stop short of explaining what the disassembly text means and how to
interpret it. This is an understandable choice, given the topics of these books;
the detailed description of metadata structuring and IL assembly language rep
resents a separate issue.

Now perhaps you see what I mean when I say I had no choice but to write
this book. Someone had to, and because I had been given the responsibility of
designing and developing IL Assembler and ILDASM, it was my obligation to
see it through all the way.

History of ILAsm, Part I
The first versions of IL Assembler and ILDASM (under the names Asm and
Dasm, respectively) were developed in early 1998 by Jonathan Forbes. The cur
rent language is very different from this original one, the only distinct common
feature being the leading dots in the directive keywords. The assembler and
disassembler were built as purely internal tools facilitating the ongoing devel
opment of the common language runtime and were used rather extensively
inside the runtime development team.

When Jonathan went to work on Microsoft Messenger in the beginning of
1999, the assembler and disassembler fell in the lap of Larry Sullivan, head of a
development group with the colorful name CROEDT (Common Runtime Odds
and Ends Development Team). In April of that year, I joined the team, and Larry
passed the assembler and disassembler to me. When an alpha version of the
common language runtime was presented at a Technical Preview in May 1999,
Asm and especially Dasm attracted significant attention, and I was told to
rework the tools and bring them up to production level. So I did, with great
help from Larry, Vance Morrison, and Jim Miller. Because the tools were still

Introduction xix

considered internal, we (Larry, Vance, Jim, and I) could afford to redesign the
language-not to mention the implementation of the tools-radically.

A major breakthrough occurred in the second half of 1999, when IL
Assembler input and ILDASM output were synchronized enough to achieve lim
ited round-tripping. Round-tripping means that you can take a managed (IL)

executable compiled from a particular language, disassemble it, add or change
some ILAsm code, and reassemble it back into a modified executable. Round
tripping technique opened new avenues, and shortly thereafter it began to be
used in certain production processes both inside Microsoft and by its partners.

At about the same time, third-party .NET-oriented compilers that used
ILAsm as a base language started to appear. The best-known is probably
Fujitsu's COBOL.NET, which made quite a splash at the Professional Develop
ers Conference in July 2000, where the first pre-beta version of the common
language runtime, along with the .NET Framework class library, compilers, and
tools, was released to the developer community.

Since the release of the beta 1 version in late 2000, IL Assembler and
ILDASM have been fully functional in the sense that they reflect all the features
of metadata and IL, support complete round-tripping, and maintain synchroni
zation of their changes with the changes in the runtime itself.

Who Should Read This Book
This book targets all the .NET-oriented developers who, because they work at
a sufficiently advanced level, care about what their programs compile into or
who are willing to analyze the end results of their programming. Here these
readers will find the information necessary to interpret disassembly texts and
metadata structure summaries, allowing them to develop more efficient pro
gramming techniques.

Because this analysis of disassemblies and metadata structuring is crucial
in assessing the correctness and efficiency of any .NET-oriented compiler, this
book should also prove especially useful for compiler developers who are tar
geting .NET. A narrower but growing group of readers who will find the book
extremely helpful includes developers who use IL assembly language directly:
for example, compiler developers targeting ILAsm as an intermediate step,
developers contemplating multilanguage projects, and developers willing to
exploit the capabilities of the common language runtime that are inaccessible
through the high-level languages.

Finally, this book can be valuable in all phases of software development,
from conceptual design to implementation and maintenance.

xx

Organization of This Book
I begin in Part I, "Quick Start," with a quick overview of ILAsm and common
language runtime features, based on a simple sample program. This overview is
in no way complete; rather, it is intended to convey a general impression about
the runtime and ILAsm as a language.

The following parts discuss features of the runtime and corresponding
ILAsm constructs in a detailed, bottom-up manner. Part II, "Underlying Struc
tures," describes the structure of a managed executable file and general meta
data organization. Part III, "Fundamental Components," is dedicated to the
components that constitute a necessary base of any application: assemblies,
modules, classes, methods, fields, and related topics. Part IV, "Inside the Execu
tion Engine," brings you, yes, inside the execution engine, describing the exe
cution of IL instructions and managed exception handling. Part V, "Special
Components," discusses metadata representation and usage of the additional
components: events, properties, and custom and security attributes. And Part
VI, "Interoperation," describes the interoperation between managed and
unmanaged code and discusses practical applications of IL Assembler and
ILDASM to multilanguage projects.

The book's five appendixes contain references concerning ILAsm gram
mar, metadata organization, and the IL instruction set and tool features, includ
ing IL Assembler, ILDASM, and the offline metadata validation tool.

About the Companion CD
The book contains a companion CD. If you have the Autorun feature of
Microsoft Windows enabled, the CD autorun interface will start when you insert
the CD in your CD-ROM drive; otherwise, you can manually run StartCD.exe
from the root directory of the companion CD. The StartCD menu provides you
with links to the book in eBook format, which is contained on the CD; an instal
lation program for the book's sample files; and a link to the Microsoft Devel
oper Network (MSDN), where you can download the Microsoft .NET
Framework Software Development Kit (SDK), which you'll need in order to
compile and run the samples. Notice that this link is accessible to MSDN sub
scribers only.

Installing the Sample Files
The sample files for the book are located in the Code folder. You can view the
samples from the CD, or you can install them on your hard disk by using the
installer from StartCD. Installing the sample files requires approximately 18 KB

eBook

Introduction xxi

of disk space. If you have trouble running any of these files, refer to the
Readme.txt file in the root directory of the companion CD.

The companion CD contains an electronic version of the book. This eBook
allows you to view the book text on screen and to search the contents. For
information on installing and using the eBook, see the Readme.txt file in the
\eBook folder.

System Requirements
To work with the samples, you will need to install the .NET Framework with its
SDK. At a bare minimum, you need the common language runtime, the .NET
Framework class library, and the SDK. Visual Studio .NET and command-line
compilers-except, of course, the ILAsm compiler-are not required.

Acknowledgments
First I would like to thank the editing team from Microsoft Press who worked
with me on this book: Danielle Bird, Alice Turner, Robert Lyon, Mary Renaud
(who didn't allow me to use propositions to end the sentences with), Julie Xiao
(who learned ILAsm while looking for errors in my tables and samples and per
haps can now apply for a developer position at Microsoft), and especially
Devon Musgrave. Devon, who was my editor, undoubtedly gained some gray
hair working on this book: I am a professional programmer on active duty, and
the things I write in human languages are usually limited to e-mail messages.

I would also like to thank my colleagues who, despite being unbelievably
busy, agreed to review the draft of the book and gave me some very good
advice on the contents: development leads Larry Sullivan (Runtime Platform
Services), Bill Evans (Runtime Metadata), Chris Brumme (Runtime Execution
Engine), Vance Morrison (Runtime JIT Compiler), program managers Erik
Meijer (Runtime) and Ronald Laeremans (Visual C++), and orie of our best test
engineers Kevin Ransom. I greatly appreciate their help and all those "What
were you thinking when you wrote ... " and "No, it's exactly the other way
around ... " e-mails.

And of course I wish to thank all members of the common language
runtime team who helped me by answering my questions, discussing the
specification documents, and diving into the source code with me: Suzanne
Cook, Shajan Dasan, Jim Hogg, Jim Miller, Craig Sinclair, Mei-Chin Tsai, and
many others.

xxii

Microsoft Press Support Information
Every effort has been made to ensure the accuracy of the book and the contents
of this companion CD. Microsoft Press provides corrections for books through
the World Wide Web at:

http.//www.microsoft.com/mspress/support/.
If you have comments, questions, or ideas regarding the book or this CD,

or questions that are not answered by querying the Knowledge Base, please
send them to Microsoft Press via e-mail to:

mspinput@microsoft.com

or via postal mail to:

Microsoft Press
Attn: Inside Microsoft .NET IL Assembler Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that product support is not offered through the above
addresses.

Part I

Simple Sample
Basics of the Common Language Runtime 4
A Simple Sample 8
Forward Declaration of Classes 25

Summary 26

This chapter offers a general overview of the MSIL assembly language (ILAsm).
(MSIL stands for Microsoft intermediate language, which will soon be discussed
in this chapter.) We'll review a relatively simple program written in ILAsm, and
then I'll suggest some modifications that illustrate how the concepts and ele
ments of Microsoft .NET programming are expressed in this language.

This chapter does not teach you how to write programs in ILAsm. But it
should help you to understand what the ILAsm compiler and the IL Disassem
bler (ILDASM) do and to use that understanding to analyze the internal struc
ture of a .NET-based program with the help of these ubiquitous tools. You'll
also learn some intriguing facts about the mysterious affairs that take place
behind the scenes, within the common language runtime-intriguing enough, I
hope, to prompt you to read the rest of the book.

For your sake and mine, I'll abbreviate IL assembly language as
ILAsm throughout this book. Don't confuse it with ILASM, which is used
as the abbreviation for the ILAsm compiler in the .NET documentation.

3

4 Part I Quick Start

Basics of the Common Language Runtime
The .NET common language runtime is but one of many aspects of the .NET
concept, but it's the core of .NET. (Note that, for variety's sake, I'll sometimes
refer to the common language runtime as the runtime.) Rather than focusing on
an overall description of the .NET platform here, then, let's concentrate on the
part of .NET where the action really happens: the common language runtime.

For excellent discussions of the general structure of .NET
and its components, see Introducing Microsoft .NET (Microsoft Press,
2001), by David S. Platt, and Inside C# (Microsoft Press, 2001), by
Tom Archer.

Simply put, the common language runtime is a run-time environment in
which .NET applications run. It provides an operating layer between the .NET
applications and the underlying operating system. In principle, the common
language runtime is similar to the runtimes of interpreted languages such as
GBasic or Smalltalk or to the Java Virtual Machine. But this similarity is only in
principle: the common language runtime is not an interpreter.

The .NET applications generated by .NET-oriented compilers (such as
Microsoft Visual C# .NET, Microsoft Visual Basic .NET, ILAsm, and many others)
are represented in an abstract, intermediate form, independent of the original
programming language and of the target machine and its operating system.
Because they are represented in this abstract form, .NET applications written in
different languages can interoperate very closely, not only on the level of
ca1ling each other's functions but also on the level of class inheritance.

Of course, given the differences in programming languages, a set of rules
must be established for the applications to allow them to get along with their
neighbors nicely. For example, if you write an application in Visual C# .NET
and name three items MYITEM, Myltem, and myitem, Visual Basic .NET, which
is case-insensitive, will have a hard time differentiating them. Likewise, if you
write an application in ILAsm and define a global method, Visual C# .NET will be
unable to call the method because it has no concept of global (out-of-class) items.

The set of rules guaranteeing the interoperability of .NET applications is
known as the common language specification (CLS), outlined in Partition I of
the Common Language Infrastructure standardization proposal of the European
Computer Manufacturers Association (ECMA). It limits the naming conventions,
data types, function types, and certain other elements, forming a common

Chapter 1 Simple Sample 5

denominator for different languages. It is important to remember, however, that
the CLS is merely a recommendation and has no bearing whatsoever on com
mon language runtime functionality. If your application is not CLS-compliant, it
might be valid in terms of the common language runtime, but you have no
guarantee that it will be able to interoperate with other applications on all lev
els.

The abstract intermediate representation of the .NET applications,
intended for the common language runtime environment, includes two main
components: metadata and managed code. Metadata is a system of descriptors
of all structural items of the application-classes, their members and attributes,
global items, and so on-and their relationships. This chapter provides some
examples of metadata, and later chapters describe all the metadata structures.

The managed code represents the functionality of the application's methods
(functions) encoded in an abstract binary form known as Microsoft intermediate
language (MSIL), or common intermediate language (CIL). To simplify things,
I'll refer to this encoding simply as intermediate language (IL). Of course, other
intermediate languages exist in the world, but as far as our endeavors are con
cerned, let's agree that IL means CIUMSIL, unless specified otherwise.

The IL code is "managed" by the runtime. Common language runtime
management includes, but is not limited to, three major activities: type control,
structured exception handling, and garbage collection. Type control involves
verification and conversion of item types during execution. Structured excep
tion handling is functionally similar to "unmanaged" structured exception han
dling (C++-style), but it is performed by the runtime rather than by the
operating system. Garbage collection involves automatic identification and dis
posal of objects no longer in use.

A .NET application, intended for the common language runtime environ
ment, consists of one or more managed executables, each of which carries
metadata and (optionally) managed code. Managed code is optional because it
is always possible to build a managed executable containing no methods.
(Obviously, such an executable can be used only as an auxiliary part of an
application.) Managed .NET applications are called assemblies. (This statement
is somewhat simplified; for more details about assemblies, application domains,
and applications, see Chapter 5) The managed executables are referred to as
modules. You can create single-module assemblies and multimodule assem
blies. As illustrated in Figure 1-1, each assembly contains one prime module,
which carries the assembly identity information in its metadata.

6 Part I Quick Start

Figure 1-1 A multimodule .NET assembly.

Figure 1-1 also shows that the two principal components of a managed
executable are the metadata and the IL code. The two major common language
runtime subsystems dealing with each component are, respectively, the loader
and the JIT (just-in-time) compiler.

In brief, the loader reads the metadata and creates in memory an internal
representation and layout of the classes and their members. It performs this task on
demand, meaning that a class is loaded and laid out only when it is referenced.
Classes that are never referenced are never loaded. When loading a class, the
loader runs a series of consistency checks of the related metadata.

The]IT compiler, relying on the results of the loader's activity, compiles
the methods encoded in IL into the native code of the underlying platform.
Because the runtime is not an interpreter, it does not execute the IL code.
Instead, the IL code is compiled in memory into the native code, and the native
code is executed. The JIT compilation is also done on demand, meaning that a
method is compiled only when it is called. The compiled methods stay
cached in memory. If memory is limited, however, as in the case of a small
computing device such as a handheld PDA or a smart phone, the methods can
be discarded if not used. If a method is called again after being discarded, it is
recompiled.

Chapter 1 Simple Sample 7

The diagram shown in Figure 1-2 illustrates the sequence of creation and
execution of a managed .NET application.

~JO-I Managed compiler to- Meta data

IL code

Mana!Jed module

Internal data

1,.........,.,,.,_.......,.,...,..._,.,.,_E_x_e,,.,cu,,...r_10....,n,,..e_ng..,.i..,.ne __,....,..,.....,....,,,.,_....,-

Figure 1-2 The creation and execution of a managed .NET application.
Arrows with hollow circles at the base indicate data transfer; arrows with
black circles represent requests and control messages.

A managed executable can be precompiled from IL to the native code,
using the NGEN utility. You can do this when the executable is expected to run
repeatedly from a local disk, to save time on just-in-time compilation. This is
standard procedure, for example, for managed components of the .NET Frame
work, which are precompiled during the installation. (Tom Archer refers to this
as install-time code generation.) In this case, the precompiled code is saved to
the local disk or other storage, and every time the executable is invoked, the
precompiled native-code version is used instead of the original IL version. The
original file, however, must also be present because the precompiled version
does not carry the metadata.

With the roles of the metadata and the IL code established, let's consider
the ways you can use ILAsm to describe them.

8 Part I Quick Start

A Simple Sample
No, the sample is not going to be "Hello, World!" This sample is a simple man
aged console application that prompts the user to enter an integer and then
identifies the integer as odd or even. When the user enters something other
than a decimal number, the application responds, "How rude!" and terminates.
(See the source file Simple.il on the companion CD included with this book.)

The sample uses managed console APis from the .NET Framework class
library for console input and output, and it uses the unmanaged function sscanf
from the C run-time library for input string conversion to an integer.

To increase code accessibility throughout this book, all ILAsm
keywords will appear in bold.

//----------- Program header
.assembly extern mscorlib {}
.assembly OddOrEven { }
.module OddOrEven.exe
//----------- Class declaration
.namespace Odd.or {

.class public auto ansi Even extends [mscorlib]System.Object {
//----------- Field declaration

.field public static int32 val
//----------- Method declaration

.method public static void check() cil managed {
.entrypoint
. locals init (int32 Retval)

AskForNumber:
ldstr "Enter a number"
call void [mscorlib]System.Console::Writeline(string)
call string [mscorlib]System.Console: :Readline()
ldsflda valuetype CharArray8 Format
ldsflda 1nt32 Odd.or.Even::val
call vararg int32 sscanf(string,1nt8*, ... ,int32*)
stloc Retval
ldloc Retval
brfalse Error
ldsfld int32 Odd.or.Even: :val
ldc.i4 1
and
brfalse ItsEven

ldstr "odd!"
br PrintAndReturn

ItsEven:
ldstr "even!"
br PrintAndReturn

Error:
ldstr "How rude!"

PrintAndReturn:

Chapter 1 Simple Sample 9

call void [mscorlib]System.Console::Writeline(string)
ldloc Retval
brtrue AskForNumber
ret

} II End of method
II End of class

} II End of namespace
11----------- Global items
.field public static valuetype CharArrayB Format at FormatData
11----------- Data declaration
.data FormatData = bytearray(25 64 00 00 00 00 00 00) II
% d
11----------- Value type as placeholder
.class public explicit CharArrayB

extends [mscorlibJSystem.ValueType { .size 8}
11----------- Calling unmanaged code
.method public static pinvokeimplC"msvcrt.dll" cdecl)

vararg int32 sscanf(string,intB*) cil managed { }

In the following sections, we'll walk through this source code line by line.

Program Header
.assembly extern mscorlib { }
.assembly OddOrEven { }
.module OddOrEven.exe

.assembly extern mscorlib { } defines a metadata item named Assembly Ref

erence (or AssemblyRej), identifying the external managed application (assem
bly) used in this program. In this case, the external application is Mscorlib.dll,
the main assembly of the .NET Framework classes. (The topic of the .NET
Framework class library itself is beyond the scope of this book; for further infor
mation, consult the detailed specification of the .NET Framework class library
published as Partition IV of the proposed ECMA standard.)

The Mscorlib.dll assembly contains declarations of all the base classes from
which all other classes are derived. Although theoretically you could write an appli
cation that never uses anything from Mscorlib.dll, I doubt that such an applica
tion would be of any use. (One obvious exception is Mscorlib.dll itself.) Thus

10 Part I Quick Start

it's a good habit to begin a program in ILAsm with a declaration of AssemblyRef
to Mscorlib.dll, followed by declarations of other AssemblyRefs (if any).

The scope of an AssemblyRef declaration (between the curly braces) can
contain additional information identifying the referenced assembly, such as ver
sion or culture (previously known as locale). Because this information is not
mandatory for referencing Mscorlib.dU, I have omitted it from this sample.
(Chapter 5 describes this additional information in detail.)

Note that although the code references the assembly Mscorlib.dll, Assem
blyRef is declared by filename only, without the extension. Including the exten
sion causes the loader to look for Mscorlib.dll.dll or Mscorlib.dll.exe, resulting
in a run-time error .

. assembly OddOrEven { } defines a metadata item named Assembly,
which, to no one's surprise, identifies the current application (assembly). Again,
you could include additional information identifying the assembly in the assem
bly declaration-see Chapter 5 for details-but it is not necessary here. Like
AssemblyRef, the assembly is identified by its filename, without the extension.

Why must you identify the application as an assembly? If you don't, it will
not be an application at all; rather, it will be a nonprime module-part of some
other application (assembly)-and as such will not be able to execute on its
own. Giving the module an EXE extension changes nothing; only assemblies
·can be executed .

. module OddOrEven. exe defines a metadata item named Module, identifying
the current module. Each module, prime or otherwise, carries this identification
in its metadata. Note that the module is identified by its full filename, including
the extension. The path, however, must not be included.

Class Declaration
.namespace Odd.or {

.class public auto ansi Even extends [mscorlib]System.Object {

}

}

.namespace Odd.or { ... } declares a namespace. A namespace does not repre
sent a separate metadata item. Rather, a namespace is a common prefix of the
full names of all the classes declared within the scope of the namespace decla
ration .

. class public auto ansi Even extends [mscorlib]System.Object { _ }
defines a metadata item named Type Definition (TypeDej). Each class, structure,

Chapter 1 Simple Sample 11

or enumeration defined in the current module is described by a respective
TypeDef record in the metadata. The name of the class is Even. Because it is
declared within the scope of the namespace Odd.or, its full name, by which it
can be referenced elsewhere and by which the loader identifies it, is
Odd.or.Even.

The keywords public, auto, and ansi define the flags of the TypeDef item.
The keyword public, which defines the visibility of the class, means that the
class is visible outside the current assembly. (Another keyword for class visibility
is private, the default, which means that the class is for internal use only and
cannot be referenced from outside.)

The keyword auto defines the class layout style (automatic, the default),
directing the loader to lay out this class however it sees fit. Alternatives are
sequential (which preserves the specified sequence of the fields) and explicit
(which explicitly specifies the offset for each field, giving the loader exact
instructions for laying out the class).

The keyword ansi defines the mode of string conversion within the class,
when interoperating with the unmanaged code. This keyword, the default,
specifies that the strings will be converted to and from "normal" C-style strings
of bytes. Alternative keywords are unicode (strings are converted to and from
Unicode) and autochar (the underlying platform determines the mode of string
conversion).

The clause extends [mscorl ib]System.Object defines the parent, or base
class, of the class Odd.or.Even. The code [mscorlib]System.Object represents a
metadata item named Type Reference (TypeRej). This particular TypeRef has
System as its namespace, Object as its name, and AssemblyRef mscorlib as the
resolution scope. Each class defined outside the current module is addressed by
TypeRef You can even address the classes defined in the current module by
TypeRefe instead of TypeDefs, which is considered harmless enough but not nice.

By default, all classes are derived from the class System. Object defined in
the assembly Mscorlib.dll. Only System. Object itself and the interfaces have no
base class, as explained in Chapter 6

The structures-referred to as value types in .NET lingo-are derived
from the [mscorlib]System. ValueType class. The enumerations are derived
from the [mscorlib]System.Enum class. Because these two distinct kinds of
TypeDefs are recognized solely by the classes they extend, you must use the
extends clause every time you declare a value type or an enumeration.

12 Part I Quick Start

Using Pseudoflags to Declare
a Value Type and an Enumeration
You might want to know about a little cheat that will allow you to circum
vent the necessity of repeating the extends clause. ILAsm has two key
words, value and enum, that can be placed among the class flags to
identify, respectively, value types and enumerations if you omit the
extends clause. (If you include the extends clause, these keywords are
ignored.) This is, of course, not a proper way to represent the metadata,
because it can give one the incorrect impression that value types and
enumerations are identified by certain TypeDef flags. I am ashamed of the
fact that ILAsm contains such lowly tricks, but I am too lazy to type
extends [mscorlib]System. ValueType again and again. ILDASM never
resorts to these cheats and always truthfully prints the extends clause, but
ILDASM has the advantage of being a software utility.

You have probably noticed that the declaration of TypeDt;f in the sample
contains three default flags: public, auto, and ansi. Yes, in fact, you could
declare exactly the same TypeDef as .class public Even { ... }, but then we would
not be able to discuss the TypeDef flags and the extends clause.

Finally, I must emphasize one important fact about the class declaration in
ILAsm. (Please pay attention, and don't say I haven't told you!) The languages
such as Visual C# .NET and Visual Basic .NET require that all of a class's
attributes and members be defined within the lexical scope of the class, defining
the class as a whole in one place. ILAsm is similar except that the class needn't be
defined all in one place.

In ILAsm, you can declare a TypeDefwith some of its attributes and mem
bers, close the TypeDefs scope, and then reopen the same TypeDeflater in the
source code to declare more of its attributes and members. This technique is
referred to as class amendment.

When you amend a TypeDef, the flags, the extends clause, and the imple
ments clause (not discussed here, in the interests of keeping the sample simple)
are ignored. You should define these characteristics of a TypeDef the first time
you declare it.

There is no limitation on the number of TypeDef amendments or on how
many source files a TypeDef declaration might span. You are required, however, to
completely define a TypeDefwithin one module. Thus it is impossible to amend
the TypeDefs defined in other assemblies or other modules of the same assembly.

Chapter 6 provides extensive and detailed information about ILAsm class
declarations.

Chapter 1 Simple Sample 13

Field Declaration
.field public static int32 val

.field public static 1nt32 val defines a metadata item named Field
Definition (FieldDej). Because the declaration occurs within the scope of class
Odd.or.Even, the declared field belongs to this class.

The keywords public and static define the flags of the FieldDef The key
word public identifies the accessibility of this field and means that the field can
be accessed by any member for whom this class is visible. Alternative accessi
bility flags are as follows:

• The assembly flag specifies that the field can be accessed from any
where within this assembly but not from outside.

• The f amity flag specifies that the field can be accessed from any of
the classes descending from Odd.or.Even.

• The f amandassem flag specifies that the field can be accessed from
any of those descendants of Odd.or.Even that are defined in this
assembly.

• The f amorassem flag specifies that the field can be accessed from
anywhere within this assembly as well as from any descendant of
Odd.or.Even, evenif the descendant is declared outside this assembly.

• The private flag specifies that the field can be accessed from
Odd.or.Even only.

• The privatescope flag is the default. See the Caution reader aid for
important information about this flag.

Caution The privatescope flag is a special case, and I
strongly recommend that you do not use it. Private scope items
are exempt from the requirement of having a unique parent/
name/signature triad, which means that you can define two or
more private scope items within the same class that have the
same name and the same type. Some compilers emit private
scope items for their internal purposes. It is the compiler's
problem to distinguish one private scope item from another; if
you decide to use private scope items, you should at least give
them unique names.

14 Part I Quick Start

Because the default accessibility is privatescope, which can be a problem,
it's important to remember to specify the accessibility flags.

The keyword static means that the field is static-that is, it is shared by all
instances of class Odd.or.Even. If you did not designate the field as static, it
would be an instance field, individual to a specific instance of the class.

The keyword int32 defines the type of the field, a 32-bit signed integer.
(Types and signatures are described in Chapter 7 And, of course, valis the
name of the field.

You can find a detailed explanation of field declarations in
Chapter 8

Method Declaration

}

.method public static void check() cil managed {
.entrypoint
.locals init Cint32 Retval)

.method public static void check() cil managed { ... } definesametadata

item named Method Definition (MethodDej). Because it is declared within the

scope of Odd.or.Even, this method is a member method of this class.
The keywords public and static define the flags of MethodDef and mean

the same as the similarly named flags of FieldDef discussed in the preceding
section. Not all the flags of FieldDefs and MethodDefs are identical-see Chap
ter 8 as well as Chapter 9 for details-but the accessibility flags are, and the key
word static means the same for fields and methods.

The keyword void defines the return type of the method. If the method
had a calling convention that differed from the default, you would place the
respective keyword after the flags but before the return type. Calling conven
tion, return type, and types of method parameters define the signature of the
MethodDef Note that a lack of parameters is expressed as (), never as (void).
The notation (void) would mean that the method has one parameter of type
void-an illegal signature.

The keywords cil and managed define so-called implementation flags of
the MethodDef and indicate that the method body is represented in IL. A
method represented in native code rather than in IL would carry the implemen
tation flags native unmanaged.

Chapter 1 Simple Sample 15

Now, let's proceed to the method body. In ILAsm, the method body (or
method scope) generally contains three categories of items: instructions (com
piled into IL code), labels marking the instructions, and directives (compiled
into metadata, header settings, structured exception handling clauses, and so
on-in short, anything but IL code). Outside the method body, only directives
exist. Every declaration discussed so far has been a directive .

. entrypoi nt identifies the current method as the entry point of the appli
cation (the assembly). Each managed EXE file must have a single entry point.
The ILAsm compiler will refuse to compile a module without a specified entry
point, unless you use the /DLL command-line option .

. locals init (int32 Retval) defines the single local variable of the cur
rent method. The type of the variable is int32, and its name is Retval. The key
word init means that the local variables must be initialized before the method
executes. If the local variables are not designated with this keyword in even
one of the assembly's methods, the assembly will fail verification (in a security
check performed by the common language runtime) and will be able to run
only from a local disk, when verification is disabled. For that reason, you
should never forget to use the keyword init with the local variable declaration.
If you need more than one local variable, you can list them, comma-separated,
within the parentheses-for example, .locals init (int32 Retval, string Temp
Str).

AskForNumber:
ldstr "Enter a number"
call void [mscorlib]System.Console::Writeline(string)

AskForNumber: is a label. It needn't occupy a separate line; the IL Disas
sembler marks every instruction with a label on the same line as the instruction.
Labels are not compiled into metadata or IL; rather, they are used solely for the
identification of certain offsets within IL code at compile time.

A label marks the first instruction that follows it. Labels don't mark direc
tives. In other words, if you moved the AskForNumber label two lines up so that
the directives .entrypoint and .locals separated the label and the first instruction,
the label would still mark the first instruction.

An important note before we examine the instructions: IL is strictly a
stack-based language. Every instruction takes something (or nothing) from the
top of the stack and puts something (or nothing) onto the stack. Some instruc
tions have parameters and some don't, but the general rule does not change:
instructions take all required arguments (if any) from the stack and put the
results (if any) onto the stack. No IL instruction can address a local variable or
a method parameter directly, except the instructions of load and store groups,
which, respectively, put the value or the address of a variable or a parameter
onto the stack or take the value from the stack and put it into a variable or a
parameter.

16 Part I Quick Start

Elements of the IL stack are not bytes or words, but slots. When we talk
about IL stack depth, we are talking in terms of items put onto the stack, with
no regard for the size of each item. Each slot of the IL stack carries information
about the type of its current "occupant." And if you put an int32 item on the
stack and then invoke an instruction, which expects, for instance, a string, the
JIT compiler becomes very unhappy and very outspoken, throwing an Unex
pected Type exception and aborting the compilation.

ldstr "Enter a number" is an instruction that loads the specified string
constant onto the stack. The string constant in this case is stored in the meta
data. We can refer to such strings as common language runtime string constants
or metadata string constants. You can store and handle the string constants in
another way, as explained in a few moments, but ldstr deals exclusively with
common language runtime string constants, which are always stored in Uni
code format.

call void [mscorl i b]System.Consol e: :Writel i ne(string)is an instruc
tion that calls a console output method from the .NET Framework class library.
The string is taken from the stack as the method argument, and nothing is put
back, because the method returns void.

The parameter of this instruction is a metadata item named Member Refer
ence (MemberRej). It refers to the static method named WriteLine, which has
signature void(string); the method is a member of class System.Console,
declared in the external assembly mscorlib. The MemberRefs are members of
TypeRefs-discussed earlier in this chapter in the section "Class Declaration"
just as FieldDefs and MethodDefs are TypeDef members. However, there are no
separate FieldRefs and MethodRefs, the MemberRefs cover references to both
fields and methods.

You can distinguish field references from method references by their sig
natures. MemberRefs for fields and for methods have different calling conven
tions and different signature structures. Signatures, including those of
MemberRefs, are discussed in detail in Chapter 7.

How does the ILAsm compiler know what type of signature should be
generated for a MemberRefi Mostly from the context. For example, if a Mem
berRef is the parameter of a call instruction, it must be a MemberRef for a
method. In certain cases in which the context is not clear, the compiler requires
explicit specifications, such as method void Odd.or.Even::check() or field int32
Odd.or.Even::val.

call string [mscorlib]System.Console::Readline()
ldsflda valuetype CharArray8 Format
ldsflda int32 Odd.or.Even::val
call vararg int32 sscanf(string,int8*, ... ,int32*)

Chapter 1 Simple Sample 17

call string [mscorlib]System.Console::Readline() is an instruction
that calls a console input method from the .NET Framework class library. Nothing
is taken from the stack, and a string is put onto the stack as a result of this call.

ldsflda valuetype CharArray8 Format is an instruction that loads the
address of the static field Format of type valuetype CharArray8. (Both the field
and the value type are declared later in the source code and are discussed
later.) IL has separate instructions for loading instance and static fields (ld/ld
and ldsjld) or their addresses (ldjlda and ldsjlda). Also note that the "address"
loaded onto the stack is not exactly an address (or a C/C++ pointer), but rather
a reference to the item (a field in this sample).

As you probably guessed, valuetype CharArray8 Format is another Mem
berRef, to the field Format of type valuetype CharArray8. Because this Member
Ref is not attributed to any TypeRef, it must be a global item. (The following
section discusses declaration of global items.) In addition, this MemberRef is not
attributed to any external resolution scope, such as [mscorlib}. Hence, it must be
a global item defined somewhere in the current module.

l dsfl da i nt32 Odd. or. Even:: val is an instruction that loads the address
of the static field val, member of the class Odd.or.Even, of type int32. But
because the method we're discussing is also a member of Odd.or.Even, why do
we need to specify the full class name when referring to a member of the same
class? Such are the rules of ILAsm: all references must be fully qualified. It might
look a bit cumbersome, compared to most high-level languages, but it has its
advantages. You don't need to keep track of the context, and all references to
the same item look the same throughout the source code.

Because both class Odd.or.Even and its field val have been declared by the
time the field is referenced, the ILAsm compiler will not generate a MemberRef item
but instead will use a FieldDef item.

call vararg int32 sscanf(string,int8*, ... ,int32*) is an instruction
that calls the global static method sscanf This method takes three items cur
rently on the stack (the string returned from System.Console::ReadLine, the ref
erence to the global field Format, and the reference to the field
Odd.or.Even::va{) and puts the result of type int32 onto the stack.

This method call has two major peculiarities. First, it is a call to an unmanaged
method from the C runtime library. I'll defer explanation of this issue until we
discuss the declaration of this method. (I have a formal excuse for that because,
after all, at the call site managed and unmanaged methods look the same.)

The second peculiarity of this method is its calling convention, vararg,
which means that this method has a variable argument list. Vararg methods
have some (or no) mandatory parameters, followed by an unspecified number
of optional parameters of unspecified types-ui:ispecified, that is, at the

18 Part I Quick Start

moment of the method declaration. When the method is invoked, all the man
datory parameters (if any) plus all the optional parameters used in this invoca
tion (if any) should be explicitly specified.

Let's take a closer look at the list of arguments in this call. The ellipsis
refers to a pseudoargument of a special kind, known as a sentinel. A sentinel's
role can be formulated as "separating the mandatory arguments from the
optional ones," but I think it would be less ambiguous to say that a sentinel
immediately precedes the optional arguments and that it is a prefix of the
optional part of a vararg signature. ·

What is the difference? An ironclad common language runtime rule con
cerning the vararg method signatures dictates that a sentinel cannot be used
when no optional arguments are specified. Thus a sentinel can never appear in
MethodDef signatures-only mandatory parameters are specified when a
method is declared-and it should not appear in call site signatures when only
mandatory arguments are supplied. Signatures containing a trailing sentinel are
illegal. That's why I think it is important to look at a sentinel as the beginning
of optional arguments and not as a separator between mandatory and optional
arguments or (heaven forbid!) as the end of mandatory arguments.

For those less familiar with C runtime functions, I should note that the
function sscanf parses and converts the buffer string (first argument) according
to the format string (second argument), puts the results in the rest of the pointer
arguments, and returns the number of successfully converted items. In our sample,
only one item will be converted, so sscanfwill return 1 on success or 0 on failure.

stloc Retval
ldloc Retval
brfalse Error

stloc Retval is an instruction that takes the result of the call to sscanf
from the stack and stores it in the local variable Retval. We need to save this
value in a local variable because we will need it later.

l dl oc Retva 1 copies the value of Retval back onto the stack. We need to
check this value, which was taken off the stack by the stloc instruction.

brfal se Error takes an item from the stack and, if it is 0, branches
(switches the computation flow) to the label Error.

ldsfld int32 Odd.or.Even::val
ldc.14 1
and
brfalse ItsEven
ldstr "odd!"
br PrintAndReturn

Chapter 1 Simple Sample 19

ldsfld int32 Odd.or.Even: :val is an instruction that loads the value of
the static field Odd.or.Even::val onto the stack. If the code has proceeded this
far, the string-to-integer conversion must have been successful, and the value
that resulted from this conversion must be sitting in the field val. The last time
we addressed this field, we used the instruction ldsjlda to load the field address
onto the stack. This time we need the value, so we use ldsfld.

1de.i4 1 is an instruction that loads the constant 1 of type int32 onto the
stack.

and takes two items from the stack-the value of the field val and the
integer constant 1-performs a bitwise AND operation, and puts the result onto
the stack. Performing the bitwise AND operation with 1 zeroes all the bits of the
value of val except the least-significant bit.

brfalse Its Even takes an item from the stack (the result of the bitwise
AND operation) and, if it is 0, branches to the label ltsEven. The result of the pre
vious instruction is 0 if the value of val is even, and 1 if the value is odd.

1 dstr "odd!" is an instruction that loads the string odd! onto the stack.
br Pri ntAndReturn is an instruction that does not touch the stack and

branches unconditionally to the label PrintAndReturn.
The rest of the code in the Odd.or.Even::check method should be clear.

This section has covered all the instructions used in this method except ret,
which is fairly obvious: it returns whatever is on the stack. If the method's
return type does not match the type of the item on the stack, the]IT compiler
will disapprove, throw an exception, and abort the compilation. It will do the
same if the stack contains more than one item by the time ret is reached or if
the method is supposed to return void (that is, not return anything) and the
stack still contains an item.

Global Items
{

} // End of namespace
.field public static valuetype CharArray8 Format at FormatData

.field public static valuetype CharArray8 Format at FormatData
declares a static field named Format of type valuetype CharArray8. As you
might remember, we used a reference to this field in the method
Odd.or.Even::check. ·

This field differs from, for example, the field Odd.or.Even::val because it is
declared outside any class scope and hence does not belong to any class in par
ticular. It is thus a global item. Global items belong to the module containing
their declarations. As you've learned, a module is a managed executable file

20 Part I Quick Start

(EXE or DLL); one or more modules constitute an assembly, which is the pri
mary building block of a managed .NET application; and each assembly has
one prime module, which carries the assembly identification information in its
metadata.

Actually, a little trick is connected with the concept of global items not
belonging to any class. In fact, the metadata of every module contains one spe
cial TypeDef named <Module>, which represents ... any guesses? Yes, you are
absolutely right.

This TypeDef is always present in the metadata, and it always holds the
honorable first position in the TypeDef table. However, <Module> is not a
proper TypeDef, because its attributes are very limited compared to "normal"
TypeDefs (classes, value types, and so on). Sounds almost like real life-the
more honorable the position you hold, the more limited are your options.

<Module> cannot be private. <Module> can have only static members,
which means that all global fields and methods must be static. In addition,
<Module> cannot have events or properties because events and properties can
not be static. (Consult Chapter 12, "Events and Properties," for details.) The rea
son for this limitation is obvious: given that an assembly always contains exactly
one instance of every module, the concept of instantiation becomes meaningless.

The accessibility of global fields and methods differs from the accessibility
of member fields and methods belonging to a "normal" class. Even public glo
bal items cannot be accessed from outside the assembly. <Module> does not
extend anything-that is, it has no base class-and no class can inherit from
<Module>. However, all the classes declared within a module have full access
to the global items of this module, including the private ones.

This last feature is similar to class nesting and is quite different from class
inheritance. (Derived classes don't have access to the private items of their base
classes.) A nested class is a class declared within the scope of another class.
That other class is usually referred to as an enclosing class, or an encloser. A
nested class is not a member class or an inner class, in the sense that it has no
implicit access to the encloser's instance reference (this). A nested class is con
nected to its encloser by three facts only: it is declared within the encloser's lex
ical scope; its visibility is "filtered" by the encloser's visibility (that is, if the
encloser is private, the nested class will not be visible outside the assembly,
regardless of its own visibility); and it has access to all of the encloser's members.

Because all the classes declared within a module are by definition
declared within the lexical scope of the module, it is only logical that the rela
tionship between the module and the classes declared in it is that of an encloser
and nested classes.

As a result, global item accessibilities public, assembly, and famorassem all
amount to assembly; private,family, andfamandassem amount to private; and
privatescope is-well, privatescope. The metadata validity rules explicitly state

Chapter 1 Simple Sample 21

that only three accessibilities are permitted for the global fields and methods:
public (which is actually assembly), private, and privatescope. The loader, how
ever, is more serene about the accessibility flags of the global items: it allows
any accessibility flags to be set, interpreting them as just described (as assembly,
private, or privatescope).

Mapped Fields
.field public static valuetype CharArray8 Format at FormatData

The declaration of the field Format contains one more new item, the
clause at FormatData. This clause indicates that the Format field is located in
the data section of the module and that its location is identified by the data label
FormatData. (Data declaration and labeling are discussed in the following sec
tion.)

This technique of mapping fields to data is widely used by the compilers
for field initialization. It does have some limitations, however. First, mapped
fields must be static. This is logical. After all, the mapping itself is static, as it is
done at compile time. And even if you manage to map an instance field, all the
different instances of this field will be physically mapped to the same memory,
which means that you'll wind up with a static field anyway. Because the loader,
encountering a mapped instance field, decides in favor of "instanceness" and
completely ignores the field mapping, the mapped instance fields are laid out
just like all other instance fields.

Second, the mapped fields belong in the data section and hence are
unreachable for the garbage collection subsystem of the common language
runtime, which provides automatic disposal of unused objects. For this reason,
mapped fields cannot be of a type that is subject to garbage collection (such as
class or array). Value types are permitted as types of the mapped fields, as long
as these value types have no members of types that are subject to garbage col
lection. If this rule is violated, the loader throws a Type Load exception and
aborts loading the module.

Third, mapping a field to a predefined memory location leaves this field
wide open to access and manipulation. This is perfectly fine from the point of
view of security as long as the field does not have an internal structure whose
parts are not intended for public access. That's why the type of a mapped field
cannot be any value type that has nonpublic member fields. The loader
enforces this rule very strictly and checks for nonpublic fields all the way down.
For example, if the type of a mapped field is value type A, the loader will check
whether its fields are all public. If among these fields is one field of value type
B, the loader will check whether value type B's fields are also all public. If
among these fields are two fields of value types C and D-well, you get the pie-

22 Part I Quick Start

ture. If the loader finds a nonpublic field at any level in the type of a mapped
field, it throws a Type Load exception and aborts the loading.

Data Declaration
.field public static valuetype CharArray8 Format at FormatData
.data FormatData = bytearray(25 64 00 00 00 00 00 00)

.data FormatData = bytearray(25 64 00 00 00 00 00 00) defines a data
segment labeled FormatData. This segment is 8 bytes long, has ASCII codes of

characters % (Ox25) and d (Ox64) in the first 2 bytes and Os in the remaining 6
bytes.

The segment is described as bytearray, which is the most ubiquitous way
to describe data in ILAsm. The numbers within the parentheses represent the
hexadecimal values of the bytes, without the Ox prefix. The byte values should
be space-separated, and I recommend that you always use the two-digit form,
even if one digit would suffice (as in the case of 0, for example).

It is fairly obvious that you can represent literally any data as a bytearray.
For example, instead of using the quoted string in the instruction ldstr "odd!",
you could use a bytearray presentation of the string:

ldstr bytearray(6F 00 64 00 64 00 21 00 00 00)

The numbers in parentheses represent the Unicode characters o, d, d, !, and
zero terminator. When you use ILDASM, you can see bytearrays everywhere. A
bytearray is a universal, type-neutral form of data representation, and ILDASM
uses it whenever it cannot identify the type associated with the data as one of
the elementary types, such as int32.

On the other hand, the data FormatData could be defined as follows:

.data FormatData = int64(0x0000000000006425)

This would result in the same data segment size and contents. When you spec
ify a type declaring a data segment (for instance, int64), no record concerning
this type is entered into metadata or anywhere else. The ILAsm compiler uses
the specified type for two purposes only: to identify the size of the data segment
being allocated and to identify the byte layout within this segment.

Value Type as Placeholder
.field public static valuetype CharArray8 Format at FormatData
.data FormatData = bytearray(25 64 00 00 00 00 00 00)
.class public explicit CharArray8

extends [mscorlib]System.ValueType { .size 8 }

Chapter 1 Simple Sample 23

.class public explicit CharArray8 extends [mscorlib]System.ValueType {

. size 8 } declares a value type that has no members but that has an explicitly
specified size, 8 bytes. Declaring such a value type is a common way to declare
"just a piece of memory." In this case, we don't need to declare any members
of this value type because we aren't interested in the internal structure of this
piece of memory; we simply want to use it as a type of our global field Format,
to specify the field's size. In a sense, this value type is nothing but a place
holder.

Could we use an array of 8 bytes instead and save ourselves the declara -
tion of another value type? We could if we did not intend to map the field to the
data. Because arrays are subject to garbage collection, they are not allowed as
types of mapped fields.

Using value types as placeholders is popular with managed C/C++ com
pilers because of the need to store and address numerous ANSI string constants.
The Visual C# .NET and Visual Basic .NET compilers, which deal mostly with
Unicode strings, are less enthusiastic about this technique because they can
directly use the common language runtime string constants, which are stored in
metadata in Unicode format.

Calling Unmanaged Code
.method public static pinvokeimpl("msvcrt.dll" cdecl)

vararg int32 sscanf(string,int8*) cil managed { }

The line .method public static pinvokeimpl("msvcrt.dll" cdec])

vararg int32 sscanf(string,int8*) cil managed { } declares an unmanaged
method, to be called from managed code. The attribute pinvoke
impl("msvcrt.dll" cdecl) indicates that this is an unmanaged method, called
using the mechanism known as platform invocation, or P/Invoke. This attribute
also indicates that this method resides in the unmanaged DLL Msvcrt.dll and has
the calling convention cdecl. This calling convention means that the unmanaged
method handles the arguments the same way an ANSI C function does.

The method takes two mandatory parameters of types string and int8*
(the equivalent of CIC++ char*) and returns int32. Being a vararg method,
sscanf can take any number of optional parameters of any type, but, as you
know already, neither the optional parameters nor a sentinel is specified when
a vararg method is declared.

Platform invocation is the mechanism the common language runtime pro
vides to facilitate the calls from the managed code to unmanaged functions.
Behind the scenes, the runtime constructs the so-called stub, or thunk, which
allows addressing of the unmanaged function and conversion of managed argu-

24 Part I Quick Start

ment types to appropriate unmanaged types and back. This conversion is
known as parameter marshaling.

What is being declared here is not an actual unmanaged method to be
called, but a stub generated by runtime, as it is seen from the managed code.
Hence the implementation flags cil managed. Specifying the method signature
as int32(string, int8*), we specify the "managed side" of parameter marshaling.
The unmanaged side of the parameter marshaling is defined by the actual sig
nature of the unmanaged method being invoked.

The actual signature of the unmanaged function sscanf in C is int
sscanj(const char~ canst char~ .. .). So the first parameter is marshaled from
managed type string to unmanaged type char*. Recall that when we declared
the class Odd.or.Even, we specified the ansi flag, which means that the man
aged strings by default are marshaled as ANSI C strings, that is, char*. And
because the call to sscanfis made from a member method of class Odd.or.Even,
we don't need to provide special information about marshaling the managed
strings.

Because the second parameter of the sscanf declaration is int8*, which is
a direct equivalent of char*, little marshaling is required. (ILAsm has type char
as well, but it indicates a Unicode character rather than ANSI, equivalent to
"unsigned short" in C, so we cannot use this type here.)

The optional parameters of the original (unmanaged) sscanf are supposed
to be the pointers to items (variables) we want to fill while parsing the buffer
string. The number and base types of these pointers are defined according to
the format specification string (the second argument of sscanjJ. In this case,
given the format specification string 11%d11, ssca11f will expect a single optional
argument of type int*. When we call the managed thunk of sscanf, we provide
the optional argument of type int32*, which might require marshaling to a
native integer pointer only if we are dealing with a platform other than a 32-bit
Intel platform (for example, an Alpha or Intel 64-bit platform).

The P/Invoke mechanism is very useful because it gives you full access to
rich and numerous native libraries and platform APis. But don't overestimate
the ubiquity of P/Invoke. Different platforms tend to have different APis, so
overtaxing P/Invoke can easily limit the portability of your applications. It's bet
ter to stick with .NET Framework class library and take some consolation in the
thought that by now you can make a fair guess about what lies at the bottom of
this library.

Now that we've finished analyzing the source code, find the sample file
Simple.il on the companion CD, copy it into your working directory, compile it
using the console command ilasm simple (assuming that you have installed
.NET Framework and the Platform SDK), and try to run the resulting Sim
ple.exe.

Chapter 1 Simple Sample 25

Forward Declaration of Classes
You can carry out a little experiment with the sample code. Open the source file
Simple.ii in any text editor and modify it by moving the dedaration of the value
type CharArray8 in front of the declaration of the field Format:

{

} // End of namespace
.class public explicit CharArray8

extends [mscorlib]System.ValueType
.field public static valuetype CharArray8 Format

.size 8 }
at FormatData

Everything seems to be in order. But when you try to recompile the file,
ILAsm compilation fails with the error message Unresolved MemberRef 'Format'.

Now modify the source file again, this time moving the declaration of
value type CharArray8 before the declaration of the namespace Odd.or:

.class public explicit CharArray8
extends [mscorlibJSystem.ValueType { .size 8}

.namespace Odd.or {
.class public auto ansi Even extends [mscorlib]System.Object {

.field public static int32 val

.method public static void check() cil managed {

ldsflda valuetype CharArray8 Format

} // End of method
} // End of class

} // End of namespace
.field public static valuetype CharArray8 Format at FormatData

Now when you save the source code and try to recompile it, everything is
back to normal. What's going on here?

After the first change, when the field Format was being referenced in the
ldsflda instruction in the method check, the value type CharArray8 had not
been declared yet, so the respective TypeRef was emitted for it, and the signa
ture of the field reference received the TypeRef as its type.

Then the value type CharArray8 was declared, and a new TypeDefwas
created. After that, when the field Format was actually declared, its type was
recognized as a locally declared value type, and the signature of the field def
inition received the TypeDef as its type. But, no field named Format with a
TypeRef as its type was declared anywhere in this module. Hence the refer
ence-to-definition resolution failure.

26 Part I Quick Start

(This is an inviting moment to criticize the ILAsm compiler's lack of ability
to match the signatures on a pragmatic level, with type analysis and matching
the TypeRefs to TypeDefs by full name and resolution scope. Have patience,
however.)

After the second change in the source code, the value type CharArray8
was declared first so that all references to it, no matter where they happen, refer
to it as TypeDef A rather obvious solution.

The solution becomes not so obvious when we consider two classes,
members of which use each other's class as type. Which class to declare first?
Actually, both of them.

The discussion of class declaration mentioned the class amendment tech
nique, based on the fact that ILAsm allows you to reopen a class scope to
declare more class attributes and members. The general solution to the declara
tion/reference problem is to specify the empty-scope class definitions for all
classes first. Following that, you can specify all the classes in full, with their
attributes and members, as amendments. The "first wave" of class declarations
should carry all class flags, extends clauses, and implements clauses and should
include all nested classes (also with empty scopes). All the member declarations
should be left for later.

This technique of forward declaration of classes guards against declara
tion/reference errors and, as a side effect, reduces the metadata size because it
is unnecessary to emit redundant TypeRefs for locally defined classes.

(And the answer to the aforementioned criticism of the ILAsm compiler is
that the compiler does signature matching in the fastest possible way, without
needing more sophisticated and slower methods, as long as you use the class
forward declaration. It is possible, however, that the need for the class forward
declaration might be eliminated in future versions of the ILAsm compiler.)

Summary

We have touched briefly on the most important features of the common lan
guage runtime and ILAsm. You now know (in general terms) how the runtime
functions, how a program in ILAsm is written, and how to define the basic com
ponents (classes, fields, and methods). You have learned that the managed
code can interoperate with the unmanaged (native) code, and what the com
mon language runtime is doing to facilitate this interoperation.

In the next chapter, we shall continue working with our simple sample to
learn some more sophisticated features of the runtime and ILAsm.

Enhancing the Code
Code Retention 27

Protecting the Code 30
Summary 36

Let's continue tweaking our simple sample; maybe we can make it better. There
are two aspects of "better" I would like to discuss in this chapter: first, reducing
code size and, second, protecting our code from unpleasant surprises. Let's start
with the code size.

Code Retention
The sample code presented in the previous chapter is tight. If you don't believe
me, carry out a simple experiment: write a similar application in your favorite
high-level Microsoft .NET language, compile it to an executable-and make
sure it runs!-disassemble the executable, and compare the result to the sample
offered here. Now let's try to make the code tighter yet.

First, given what you now know about field mapping and value types as
placeholders, we don't need to continue employing this technique. If sscanf
accepts string as the first argument, it can just as well accept string as the sec
ond argument too. Second, we can use (and discuss) certain "shortcuts" in the
IL instruction set.

Let's have a look at our simple sample with slight modifications (source
file Simplel .il). The portions of interest are marked with the comment
CHANGE!.

27

28 Part I Quick Start

11----------- Program header
.assembly extern mscorlib { }
.assembly OddOrEven { }
.module OddOrEven.exe
11----------- Class declaration
.namespace Odd.or {·

.class public auto ansi Even extends [mscorlib]System.Object {
11----------- Field declaration

.field public static int32 val
11----------- Method declaration

CHANGE!

.method public static void check() cil managed {
.entrypoint
. locals init Cint32 Retval)

AskForNumber:
ldstr "Enter a number"
call void [mscorlib]System.Console::Writeline(string)
call string [mscorlib]System.Console::Readline()
ldstr "%d" II CHANGE!
ldsflda int32 Odd.or.Even::val
call vararg int32 sscanf(string,string, ...• int32*) II

stloc.0 II CHANGE!
ldloc.0 II CHANGE!
brfalse.s Error II CHANGE!
ldsfld int32 Odd.or.Even::val
ldc.i4.1 II CHANGE!
and
brfalse.s ItsEven II CHANGE!
ldstr "odd!"
br.s PrintAndReturn // CHANGE!

Its Even:
ldstr "even!"
br.s PrintAndReturn // CHANGE!

Error:
ldstr "How rude!"

PrintAndReturn:
call void [mscorlib]System.Console: :Writeline(string)
ldloc.0 II CHANGE!
brtrue.s AskForNumber II CHANGE!
ret

} // End of method
} // End of class

} //End of namespace
11----------- Calling unmanaged code
.method public static pinvokeimpl("msvcrt.dll" cdecl)

vararg int32 sscanf(string,string) cil managed { }

The program header, class declaration, field declaration, and method
header look exactly the same. The first change comes within the method
body, where the loading of the address of the global field Format is replaced

Chapter 2 Enhancing the Code 29

with the loading of a metadata string constant, ldstr 11%d 11• As noted earlier, we
can abandon defining and using an ANSI string constant as the second argu
ment of the call to sscanf in favor of using a metadata string constant (inter
nally represented in Unicode), relying on the marshaling mechanism provided
by P/lnvoke to do the necessary conversion work.

Because we are no longer using an ANSI string constant, the declarations
of the global field Format, the placeholder value type used as the type of this
field, and the data to which the field was mapped are omitted. As you've
undoubtedly noticed, there is no need to explicitly declare a metadata string
constant in IL assembly language (ILAsm)-the mere mention of such a constant
in the source code is enough for the ILAsm compiler to automatically emit this
metadata item. ,

Having thus changed the nature of the second argument of our call to
sscanf, we need to modify the signature of the sscanf P/Invoke thunk so that
necessary marshaling can be provided. Hence the changes in the signature of
sscanf, both in the method declaration and at the call site.

Another set of changes results from replacing the local variable loading/
storing instructions ldloc Retval and stloc Retval with the instructions ldloc. 0 and
stloc.O, respectively. IL defines special operation codes for loading/storing the
first four local variables on the list, numbered 0 to 3. We gain here because
while the canonic form of the instruction (ldloc Retva{) compiles into the opera
tion code (ldloc) followed by an unsigned integer indexing the local variable (in
this case 0), the instructions ldloc.n compile into single operation codes.

You might also notice that all branching instructions (br, brfalse, brtrue) in
the method check are replaced with the short forms of these instructions Cbr.s,
brfalse.s, brtrue.s). A standard (long) form of an instruction compiles into an
operation code followed by a 4-byte parameter (in the case of branching
instructions, offset from the current position), whereas a short form compiles
into an operation code followed by a 1-byte parameter. This limits the range of
branching to maximums of 128 bytes backward and 127 bytes forward from the
current point in the IL stream, but in this case we can safely afford to switch to
short forms because our method is rather small.

Short forms that take an integer or unsigned integer parameter are defined
for all types of IL instructions. So even if we declare more than four local variables,
we still could save a few bytes by using the instructions ldloc.s and stloc.s
instead of ldloc and stloc, as long as the index of a local variable does not
exceed 255.

The high-level language compilers, emitting the IL code, automatically
estimate the ranges and choose whether a long form or a short form of the
instruction should be used in each particular case. The ILAsm compiler, of
course, does nothing of the sort. If you specify a long or short instruction, the

30 Part I Quick Start

compiler takes it at face value-you are the boss, and you are supposed to
know better. But if you specify a short branching instruction and place the target
label out of range, the ILAsm compiler will diagnose an error.

Once, a colleague of mine came to me complaining that the ILAsm compiler
obviously could not compile the code the IL Disassembler (ILDASM) produced.
The disassembler and the compiler are supposed to work in absolute concert,
so I was quite startled by this discovery. A short investigation uncovered the
grim truth. In an effort to work out a special method for automatic test program
generation, my colleague was compiling the initial programs written in Visual
C# .NET and Microsoft Visual Basic .NET, disassembling the resulting executa
bles, inserting test-specific ILAsm segments, and reassembling the modified
code into new executables. The methods in the initial executables, produced
by Visual C# .NET and Visual Basic .NET compilers, were rather small, so the
compilers were emitting the short branching instructions, which, of course,
were shown in the disassembly as they were. And every time my colleague's
automatic utility inserted enough additional ILAsm code between a short
branching instruction and its destination, the branching instruction, figurative! y
speaking, kissed its target label good-bye.

One more change to note in the sample: the instruction ldc.i41 was replaced
with ldc.i4.1. The logic here is the same as in the case of replacing ldloc Retval
with ldloc.O: using a shortcut operation code to get rid of a 4-byte integer
parameter. The shortcuts ldc.i4.n exist for n from 0 to 8, and (-1) can be loaded
using the operation code ldc.i4.ml. The short form of the ldc.i4 instruction
ldc.i4.r-works for the integers in the byte range (from -128 to 127).

Now copy the source file Simplel.il from the companion CD, compile it
with the console command ilasm simplel into an executable (Simplel.exe), and
ensure that it runs exactly as Simple.exe does. Then disassemble both executa
bles side by side, using console commands ildasm simple.exe /bytes and ildasm
simplel .exe /bytes. (The /bytes option makes the disassembler show the actual
byte values constituting the IL flow.) Find the check methods in the tree views
of both instances of ILDASM, and double-click them to open disassembly win
dows, in which you can compare the two implementations of the same method
to see whether the code retention worked.

Protecting the Code
Thus far, we could have been quite confident that nothing bad would happen
when we called the unmanaged function sscanjfrom the managed code, so we
simply called it. But who knows what terrible dangers lurk in the deep shadows
of unmanaged code? I don't. So we'd better take steps to make sure that our

Chapter 2 Enhancing the Code 31

application behaves in an orderly manner. For this purpose, we can employ
the mechanism of structured exception handling, well known to C++ and Visual
C# .NET programmers.

Examine the following light modifications of the sample (source file
Simple2.il). As before, the modifications are marked with the comment
CHANGE!.

11----------- Program header
.assembly extern mscorlib { }
.assembly OddOrEven { }
.module OddOrEven.exe
11----------- Class declaration
.namespace Odd.or {

.class public auto ansi Even extends [mscorlib]System.Object {
11----------- Field declaration

.field public static int32 val
11----------- Method declaration

.method public static void check() cil managed {
.entrypoint
.locals init (int32 Retval)

AskForNumber:
ldstr "Enter a number"
call void [mscorlib]System.Console: :Writeline(string)
.try { II CHANGE!

II Guarded block begins
call string [mscorlib]System.Console::Readline()

II pop II CHANGE!
II 1 dnull I I CHANGE!
ldstr "%d"
ldsflda int32 Odd.or.Even::val
call vararg int32 sscanf(string,string, ... ,int32*)
stloc.0
leave.s DidntBlowUp II CHANGE!
II Guarded block ends

II CHANGE!
II CHANGE! --->
catch [mscorlib]System.Exception
{ II Exception handler begins

pop
ldstr "KABOOM!"
call void [mscorlib]System.Console::Writeline(string)
leave.s Return

} II Exception handler ends
DidntBlowUp:
II<--- CHANGE!

ldloc.0
brfalse.s Error

(continued)

32 Part I Quick Start

ldsfld int32 Odd.or.Even::val
ldc.i4.1
and
brfalse.s ItsEven
ldstr "odd!"
br.s PrintAndReturn

Its Even:
ldstr "even!"
br.s PrintAndReturn

Error:
ldstr "How rude!"

PrintAndReturn:
call void [mscorlib]System.Console::Writeline(string)
ldloc.0
brtrue.s AskForNumber

Return: II CHANGE!
ret

} II End of method
} II End of class

II End of namespace
11----------- Calling unmanaged code
.method public static pinvokeimplC"msvcrt.dll" cdecl)

vararg int32 sscanf(string,string) cil managed { }

What are these changes? One involves enclosing the "dangerous" part of
the code in the scope of the so-called try block (or guarded block), which
prompts the runtime to watch for exceptions thrown while executing this code
segment. The exceptions are thrown if anything out of order happens-for
example, a memory access violation or a reference to an undefined class or
method .

. try {

}

II Guarded block begins
call string [mscorlib]System.Console::Readline()
ldstr "%d"
ldsflda int32 Odd.or.Even::val
call vararg int32 sscanfCstring,string, int32*)
stloc.0
leave.s DidntBlowUp
II Guarded block ends

Note that the try block ends with the instruction leave.s DidntBlowUp. This
instruction-leave.s being a short form of leave-switches the computation flow
to the location marked with the label DidntBlowUp. We cannot use a branching
instruction here because, according to the rules of the common language
runtime exception handling mechanism, strictly enforced by the JIT compiler,
the only legal way out of a try block is via a leave instruction.

Chapter 2 Enhancing the Code 33

This limitation is caused by an important function performed by the leave
instruction: before switching the computation flow, it unwinds the stack (strips
off all the items currently on the stack) and, if these items are references to
object instances, disposes of them. That is why we need to store the value
returned by the sscanf function in the local variable Retval before using the
leave instruction; if we tried to do it later, the value would be lost.

catch [mscorlib]System.Exception indicates that we plan to intercept
any exception thrown within the protected segment and handle this exception:

leave.s DidntBlowUp
II Guarded block ends

catch [mscorlib]System.Exception
{ II Exception handler begins

pop

}

Because we are intercepting any exception, we specified a generic managed
exception type ([mscorlib]System.Exception), a type from which all managed
exception types are derived. Technically, we could call [mscorlib]System.Exception
the "mother of all exceptions," but the proper term is somehow less colloquial:
the "inheritance root of all exceptions."

Mentioning another, more specific, type of exception in the catch clause
that is, [mscorlib]System.NullReferenceException-would indicate that we are
prepared to handle only this particular type of exception and that exceptions of
other types should be handled elsewhere. This approach is convenient if you
want to have different handlers for different types of exceptions, and it's the
reason this mechanism is referred to as structured exception handling.

Immediately following the catch clause is the exception handler scope
(the handler block):

catch [mscorlib]System.Exception
{ II Exception handler begins

pop
ldstr "KABOOM!"
call void [mscorlib]System.Console::WritelineCstring)
leave.s Return

} II Exception handler ends

When an exception is intercepted and the handler block is entered, the
only thing present on the stack is always the reference to the intercepted
exception-an instance of the exception type. In implementing the handler, we
don't want to take pains analyzing the caught exception, so we can simply get

34 Part I Quick Start

rid of it using the instruction pop. In this simple application, it's enough to know
that an exception has occurred, without reviewing the details.

Then we load the string constant "KABOOM!" onto the stack, print this
string by using the console output method [mscorlib}System.Console:: Write
Line(string), and switch to the label Return by using the instruction leave.s. The
rule "leave only by leave" applies to the handler blocks as well as to the try
blocks. We could not simply load the string "KABOOM!" onto the stack and
leave to PrintAndReturn; the leave.s instruction would remove this string from
the stack, leaving nothing with which to call WriteConsole.

You might be wondering why, if we are trying to protect the call to the
unmanaged function sscanf, we included three preceding instructions in the try
block? Why not include only the call to sscanf in the scope of .try?

ldstr "Enter a number"
call void [mscorlib]System.Console: :Writeline(string)
. try {

}

II Guarded block begins
call string [mscorlib]System.Console::Readline()
ldstr "%d"
ldsflda int32 Odd.or.Even: :val
call vararg int32 sscanf(string.string, int32*)
stloc.0
leave.s DidntBlowUp
II Guarded block ends

According to the exception handling rules, a guarded segment (a try block)
can begin only when the method stack is empty. The closest such moment before
the call to sscanfwas immediately after the call to [mscorlib}System.Console:: Write
Line(string), which took the string "Enter a number" from the stack and put nothing
back. Because the three instructions immediately preceding the call to sscanf are
loading the call arguments onto the stack, we must open the guarded segment
before any of these instructions are executed.

Perhaps you're puzzled by what seems to be a rather strict limitation. We
cannot begin and end a try block anywhere we want, as we can in C++? Well,
the truth is that you can do it the same way you do it in C++, but no better.

The high-level language compilers work in such a way that every com·
pleted statement in a high-level language is compiled into a sequence of
instructions that begins and ends with the stack empty. In C++, our try block
would look like this:

try {
Retval = sscanf(System.Console::Readline(),

"%d". &val);
}

Chapter 2 Enhancing the Code 35

This feature of high-level language compilers is so universal that all high-level
language decompilers use these empty-stack points within the instruction
sequence to identify the beginnings and ends of completed statements.

The last task remaining is to test our protection. Copy the source file
Simple2.il from the companion CD into your working directory, and compile it
with the console command ilasm simple2 into the executable Simple2.exe. Test
it to ensure that it runs exactly as the previous samples do. Now let's simulate
A Horrible Disaster Within Unmanaged Code. Load the source file Simple2.il
into any text editor, and uncomment the instructions pop and ldnull within the
try block:

.try {
II Guarded block begins
call string [mscorlib]System.Console::Readline()
pop
l dnul l
ldstr "%d"
ldsflda int32 Odd.or.Even::val
call vararg int32 sscanf(string,string, ... ,int32*)
stloc.0
leave.s DidntBlowUp II CHANGE!
II Guarded block ends

} II CHANGE!

The instruction pop removes from the stack the string returned by ReadLine,
and ldnull loads a null reference instead. The null reference is marshaled to the
unmanaged sscanj as a null pointer. Sscanfis not prepared to take it and will try
to deref ere nee the null pointer. The platform operating system will throw the
unmanaged exception Memory Access Violation, which is intercepted by the
common language runtime and converted to a managed exception of type
System.NullRejerenceException, which in turn is intercepted by our protection.
The application will then terminate gracefully.

Recompile Simple2.il and try to run the resulting executable. You will get
nothing worse than KABOOM! displayed on the console.

You can then modify the source code in Simple.ii or Simplel.il, adding the
same two instructions pop and ldnull after the call to System.Console::ReadLine.
Recompile the source file to see how it runs without structured exception
handling protection.

36 Part I Quick Start

Summary

These first two chapters did make for a quick start, didn't they? Well, I promised
you a light cavalry raid into hostile territories, and you got just that. By now you
should be able to understand in general the text output the IL Disassembler
produces. I hope too that you are interested in a more detailed and systematic
discussion of what is going on inside the common language runtime and how
ILAsm is used to describe it.

From now on, our keywords are "detailed" and "systematic." No more
cavalry charges!

Part II

tr

The Structure of a
Managed Executable File

PE/COFF Headers 41

Common Language Runtime Header 56

Relocation Section 61
Text Section 63

Data Sections 65

Resources 70

Summary 73

Chapter 1, "Simple Sample," introduced the managed executable file, known as
a managed module and executed in the environment of the common language
runtime. In this chapter, we'll take a detailed look at the general structure of
such a file. The file format of a managed module is based on the standard
Microsoft Windows Portable Executable and Common Object File Format (PE/
COFF) and is an extension of this format. Thus, formally, any managed module
is a proper PE/COFF file, with additional features that identify it as a managed
executable file.

Because the file format of a managed module conforms to the Windows
PE/COFF standard, the operating system treats the managed module as an exe
cutable. And the extended, common language runtime-specific information
allows the runtime to immediately seize control over the module execution as
soon as the operating system invokes the module. Figure 3-1 shows the struc
ture of a managed PE/COFF file.

39

40 Part II Underlying Structures

PEICOFF headers
(inft>rmation consumed.by

the operl,ilting system)

Figure 3-1 The general structure of a managed executable file.

Because IL assembly language (ILAsm) produces PE files only, this chap
ter concentrates on managed PE files-executables, also known as image files
because they can be thought of as "memory images"-rather than pure COFF
object files. (Actually, only one of the current managed compilers, Microsoft
Managed C++ [MC++], produces object files as an intermediate step to PE files.)

This analysis of the managed PE file structure employs the following com
mon definitions:

• File pointer The location of an item within the file itself, before it
is processed by the loader. This location is a position (an offset)
within the file as it is stored on disk.

• Relative virtual address (RVA) The address of an item once it has
been loaded into memory, with the base address of the image file
subtracted from it-in other words, the offset of an item within the
image file loaded into memory. The RVA of an item almost always
differs from its position within the file on disk (the file pointer).

Chapter 3 The Structure of a Managed Executable File 41

• Virtual address (VA) The same as the RVA except that the base
address of the image file is not subtracted. The address is referred to
as virtual because the operating system creates a distinct virtual
address space for each process, independent of physical memory.
For almost all purposes, a virtual address should be considered as
simply an address. A virtual address is not as predictable as an RVA
because the loader might not load the image at its preferred location
if a conflict exists with any image file already loaded-a so-called
base address conflict.

• Section The basic unit of code or data within a PE/COFF file. In
addition to code and data sections, an image file can contain a num
ber of sections, such as .tis (thread local storage) or .reloc (reloca
tions), that have special purposes. All the raw data in a section must
be loaded contiguously.

Throughout this chapter (and indeed throughout the
book), I use the term managed compiler to mean a compiler
that targets the common language runtime and produces man
aged PE files. The term does not necessarily imply that the
compiler itself is a managed application.

PE/COFF Headers
Figure 3-2 illustrates the structure of operating system-specific headers of a PE
file. The headers include an MS-DOS stub, the PE signature, the COFF header,
the PE header, and section headers. All of these components-and the data
directory table in the PE header-are discussed in the following sections.

42 Part II Underlying Structures

Figure 3-2 The memory layout of operating system-specific headers.

MS-DOS Stub and PE Signature
The MS-DOS stub is present in image files only. Placed at the beginning of an
image file, it is a valid application that runs under MS-DOS. (Isn't that exciting!)
The default stub prints the message This program cannot be run in DOS mode
when the image file is run in MS-DOS. This is probably the least interesting part
of OS-specific headers; the only relevant fact is that the MS-DOS stub, at offset
Ox3C, contains the file pointer to the PE signature, which allows the operating
system to properly execute the image file.

The PE signature that follows the MS-DOS stub is a 4-byte item, identifying
the file as a PE format image file. The signature contains the characters P and E,
followed by 2 null bytes.

COFF Header
A standard COFF header is located immediately after the PE signature of an
image file. The COFF header provides the most general characteristics of a PE/
COFF file, applicable to both object and executable files. The structure of the
COFF header and the meaning of its fields are shown in Table 3-1.

Chapter 3 The Structure of a Managed Executable File 43

Table 3-1 The Format of a COFF Header

Offset Size Field Name Description

0 2 Machine Number identifying the type of target
machine. (See Table 3-2.) If the managed
PE file is intended for various machine
types, this field should be set to
IMAGE_FILE_MACHINE_I386 (Ox014C).

2 2 NumberOJSections Number of entries in the section table,
which immediately follows the headers.

4 4 TimeIJateStamjJ Time and date of file creation.

8 4 PointerToSymbolTable File pointer of the COFF symbol table.
Because this table is never used in man-
aged PE files, this field must be set to 0.

12 4 NumberOJSymbols Number of entries in the COFF symbol
table. This field must be set to 0 in man-
aged PE files.

16 2 SizeOfOjJtiona!Header Size of the PE header. This field is specific
to PE files; it is set to 0 in COFF files.

18 2 Characteristics Flags indicating the attributes of the file.
(See Table 3-3.)

The structure of the standard COFF header is defined in Winnt.h as follows:

typedef struct _IMAGE_FILE_HEADER {
WORD Machine;
WORD NumberOfSections;
DWORD TimeDateStamp;
DWORD PointerToSymbolTable;
DWORD NumberOfSymbols;
WORD SizeOfOptionalHeader;
WORD Characteristics;

} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

The Machine types are also defined in Winnt.h, as listed in Table 3-2.

Table 3-2 The Machine Field Values

Constant

IMAGE_FILE__MACHINE_UNKNOWN

IMAGE_FILE_MACHINE_I386

Value Description

0 Contents assumed to be applica
ble to any machine type-for
unmanaged PE files only.

Ox014c Intel 386 or later. For managed
PE files, contents are applicable
to any machine type.

(continued)

44 Part II Underlying Structures

Table 3-2 The Machine Field Values (continued)

Constant

IMAGE_FILE_MACHINE_R3000

IMAGE_FILE_MACHINE_R4000

IMAGE_FILE_MACHINE_Rl 0000

IMAGE_FILE_MACHINE_ WCEMIPSV2

IMAGE_FILE_MACHINE_ALPHA

IMAGE_FILE_MACHINE_POWERPC

IMAGE_FILE_MACHINE_SH3

IMAGE_FILE_MACHINE_SH3E

IMAGE_FILE_MACHINE_SH4

IMAGE_FILE_MACHINE_ARM

IMAGE_FILE_MACHINE_THUMB

IMAGE_FILE_MACHINE_IA64

IMAGE_FILE_MACHINE_MIPS16.

IMAGE_FILE_MACHINE_MIPSFPU

IMAGE_FILE_MACHINE_MIPSFPU16

IMAGE_FILE_MACHINE_ALPHA64

IMAGE_FILE_MACHINE_AXP64

Value

Ox0162

Ox0166

Ox0168

Ox0169

Ox0184

OxOlFO

Ox01a2

Ox01a4

Ox01a6

OxOlcO

Ox01c2

Ox0200

Ox0266

Ox0366

Ox0466

Ox0284

Ox0284

Description

MIPS little endian-the least sig
nificant byte precedes the most
significant byte. Ox0160 big
endian-the most significant
byte precedes the least signifi
cant byte.

MIPS little endian

MIPS little endian

MIPS little endian running
Microsoft Windows CE 2

Alpha AXP

IBM PowerPC little endian

SH3 little endian

SH3E little endian

SH4 little endian

ARM little endian

ARM processor with Thumb
decompressor

Intel IA64

MIPS

MIPS with FPU

MIPS16 with FPU

ALPHAAXP64

ALPHAAXP64

As noted in Tables 3-1 and 3-2, the best strategy for a managed
PE file is to specify IMAGE_FILE_MACHINE_/386 in the Machine
field. Doing so ensures that the PE file will be able to execute on any
machine that has the common language runtime installed.

The Characteristics field of a COFF header contains flags that indicate
attributes of the PE/COFF file. These flags are defined in Winnt.h as shown in
Table 3-3. Notice that the table refers to pure-IL managed PE files; the term
pure-IL indicates that the image file contains no embedded native code.

Chapter 3 The Structure of a Managed Executable File 45

Table 3-3 The Characteristics Field Values

Flag

IMAGE_FILE_RELOCS_STRIPPED

IMAGE_FILE_EXECUTABLE_IMAGE

IMAGE_FILE_LINE_NUMS_STRIPPED

IMAGE_FILE_LOCAL_SYMS_STRIPPED

IMAGE_FILE_AGGRESIVE_ WS_TRIM

Value Description

Ox0001 Image file only. This flag
indicates that the file con
tains no base relocations
and must be loaded at its
preferred base address.
In the case of base
address conflict, the
operating system loader
reports an error. This flag
should not be set for
managed PE files.

Ox0002 Flag indicates that the file
is an image file (EXE or
DLL). This flag should be
set for managed PE files. If
it is not set, this generally
indicates a linker error.

Ox0004 COFF line numbers have
been removed. This flag
should be set for managed
PE files because they do
not use the debug infor
mation embedded in the
PE file itself. Instead, the
debug information is
saved in accompanying
program database (PDB)
files.

Ox0008 COFF symbol table
entries for local symbols
have been removed. This
flag should be set for
managed PE files, for the
reason given in the pre
ceding entry.

Ox0010 Aggressively trim the
working set. This flag
should not be set for
pure-IL managed PE files.

(continued)

46 Part II Underlying Structures

Table 3-3 The Characteristics Field Values (continued)

Flag

1711AGE_FILE_LARGE_ADDRESS_AWARE

IMAGE_FILE_BYTES_REVERSED _LO

IMAGE_FILE_32BIT_MACHINE

Value Description

Ox0020 Application can handle
addresses beyond the
2-GB range. This flag
should not be set for
pure-IL managed PE files.

Ox0080 Little endian. This flag
should not be set for
pure-IL managed PE files.

OxOlOO Machine is based on 32-bit
architecture. This flag is
set by the current versions
of code generators pro
ducing managed PE files.

IMAGE_FILE_DEBUG_STRIPPED Ox0200 Debug information has
been removed from the
image file.

IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP Ox0400 If the image file is on
removable media, copy
and run it from the swap
file. This flag should not
be set for pure-IL man
aged PE files.

IMAGE_FILE_NET_RUN_FROM_SWAP Ox0800 If the image file is on a
network, copy and run it
from the swap file. This
flag should not be set for
pure-IL managed PE files.

IMAGE_FILE_SYSTEM OxlOOO The image file is a system

IMAGE_FILE_DLL

file (for example, a
device driver). This flag
should not be set for
pure-IL managed PE files.

Ox2000 The image file is a DLL
rather than an EXE. It
cannot be directly run.

Chapter 3 The Structure of a Managed Executable File 47

Table 3-3 The Characteristics Field Values (continued)

Flag

IMAGE_FILE_UP _SYSTEM_ONLY

IMAGE_FILE_BYTES_REVbl?SED_HI

Value Description

Ox4000 The image file should be
run on a uniprocessor
machine only. This flag
should not be set for
pure-IL managed PE files.

Ox8000 Big endian. This flag
should not be set for
pure-IL managed PE files.

The typical Characteristics value produced by existing code generators
the one employed by the MC++ compiler and linker as well as the one used by
all the rest of the managed compilers, including ILAsm-for an EXE image file
is OxOlOE (IMAGE_FILE_EXECUTABLE_IMAGE I IMAGE_FILE_LINE_NUMS_
STRIPPED I IMAGE_FILE_LOCAL_SYMS_STRIPPED I IMAGE_FILE_32BIT_
MACHINE). For a DLL image file, this value is Ox210E (IMAGE_FILE_
EXECUTABLE_IMAGE I IMAGE_FILE_LINE_NUMS_STRIPPED I IMAGE_FILE_
LOCAL_SYMS_STRIPPED I IMAGE_FILE_32BIT_MACHINE I IMAGE_FILE_DLL).

PE Header
The PE header, which immediately follows the COFF header, provides the
information for the OS loader. Although this header is sometimes referred to as
the optional header, it is optional only in the sense that object files usually don't
contain it. For PE files, this header is mandatory. .

The size of the PE header is not fixed. It depends on the number of data
directories defined in the header and is specified in the SizeQ{OptionalHeader
field of the COFF header. The structure of the PE header is defined in Winnth
as follows:

typedef struct _IMAGE_OPTIONAL_HEADER
II Standard fields
WORD Magic;
BYTE
BYTE
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
II NT
DWORD

MajorlinkerVersion;
MinorlinkerVersion;
SizeOfCode;
SizeOfinitializedData;
SizeOfUninitializedData;
AddressOfEntryPoint;
BaseOfCode;
BaseOfData;

additional fields
ImageBase;

(continued)

48 Part II Underlying Structures

DWORD SectionAlignment;
DWORD FileAlignment;
WORD MajorOperatingSystemVersion;
WORD MinorOperatingSystemVersion;
WORD MajorlmageVersion;
WORD MinorlmageVersion;
WORD MajorSubsystemVersion;
WORD MinorSubsystemVersion;
DWORD Win32VersionValue;
DWORD SizeOflmage;
DWORD SizeOfHeaders;
DWORD Checksum;
WORD Subsystem;
WORD DllCharacteristics;
DWORD SizeOfStackReserve;
DWORD SizeOfStackCommit;
DWORD SizeOfHeapReserve;
DWORD SizeOfHeapCommit;
DWORD LoaderFlags;
DWORD NumberOfRvaAndSizes;
IMAGE_DATA_DIRECTORY

DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

Table 3-4 describes the fields of the PE header.

Table 3-4 PE Header Fields

Offset
32/64

0

2

3

4

Size
32/64

2

1

1

4

Field

Magic

MajorLinkerVersion

MinorLinkerVersion

SizeOJCode

Description

"Magic number" identifying the state of the
image file. Acceptable values are OxOlOB for
a 32-bit PE file, Ox020B for a 64-bit PE file,
and Ox107 for a ROM image file. Managed PE
files must have this field set to OxOlOB.

Linker major version number. The MC++
compiler and linker set this field to 7; the
pure-IL code generator employed by other
compilers sets it to 6.

Linker minor version number.

Size of the code section (.text), or the sum
of all code sections if multiple code sec
tions exist. The ILAsm compiler always
emits the single code section.

Chapter 3 The Structure of a Managed Executable File 49

Table 3-4 PE Header Fields (continued)

Offset Size
Field Description

32/64 32/64

8 4 SizeQ(InitializedData Size of the initialized data section (held in
the field SizeOJRawData of the respective
section header), or the sum of all such sec-
tions. The initialized data is defined as spe-
cific values, stored in the disk image file.

12 4 SizeQ(UninitializedData Size of the uninitialized data section (.bss),
or the sum of all such sections. This data is
not part of the disk file and does not have
specific values, but the OS loader commits
space for the data.

16 4 AddressQfEntryPoint RVA of the entry point function. For unman-
aged DLLs, this can be 0. For managed PE
files, this value always points to the com-
mon language runtime invocation stub.

20 4 BaseQfCode RVA of the beginning of the file's code
section(s).

24/- 4/- BaseOJData RVA of the beginning of the file's data
section(s).

28/24 4/8 ImageBase Image's preferred starting virtual address. In
ILAsm, this field can be specified explicitly by
the directive .imagebase <integer value>
and/ or the command-line option
/BASE=<integer value>. The command-line
option takes precedence over the directive.

32 4 SectionAlignment Alignment of sections when loaded in
memory. This setting must be greater than
or equal to the value of the FileAlignment
field. The default is the memory page size.

36 4 FileAlignment Alignment of sections in the disk image file.
The value should be a power of 2, from 512
to 64 K. If SectionAlignment is set to less
than the memory page size, FileAlignment
must match SectionAlignment. In ILAsm, this
field can be specified explicitly by the direc-
tive file alignment <integer value> and/or
the command-line option /ALIGNMENT=
<integer value>. The command-line option
takes precedence over the directive.

40 2 MajorOperatingSystem Version Major version number of the required OS.

42 2 MinorOperatingSystem Version Minor version number of the required OS.

44 2 Ma:forlmage Version Major version number of the application.
(continued)

50 Part II Underlying Structures

Table 3-4 PE Header Fields (continued)

Offset
32/64

46
48

50

52

56

60

64
68

70

Size
32/64

2

2

2

4

4

4

4

2

2

Field

Minorlmage Version

MajorSubsystem Version

MinorSubsystem Version

Win32Version Value

SizeOjlmage

SizeOft!eaders

Checksum

Subsystem

Dl!Characteristics

Description

Minor version number of the application.

Major version number of the subsystem.

Minor version number of the subsystem.

Reserved.

Size of the image file (in bytes), including
all headers. This field must be set to a mul
tiple of the SectionAlignment value.

Sum of the sizes of the MS-DOS stub, the
COFF header, the PE header, and the sec
tion headers, rounded up to a multiple of
the FileAlignment value.

Checksum of the disk image file.

Subsystem required to run this image file.
The values are defined in Winnt.h and are
as follows:

• NATIVE (1) No subsystem required
(for example, a device driver)

• WINDOWS_ GUI (2) Runs in the
Windows GUI subsystem

• WINDOWS_ CUI (3) Runs in Win
dows console mode

• OS2_CUJ (5) Runs in OS/2 1.x con
sole mode

• POSIX_CUI (7) Runs in POSIX
console mode

• NATIVE_ WINDOWS (8) The image
file is a native Win9x driver

• WINDOWS_ CE_ GUI (9) Runs in
the Windows CE GUI subsystem.

In ILAsm, this field can be specified explicitly
by the directive .subsystem <integer value>
and/or the command-line option /SUB
SYSTEM=<integer value>. The command
line option takes precedence over the
directive.

Obsolete, set to 0.

Chapter 3 The Structure of a Managed Executable File 51

Table 3-4 PE Header Fields (continued)

Offset
32/64

72

76/80

Size
32/64

4/8

4/8

Field

SizeOJStackReserve

SizeOfStackCommit

Description

Size of virtual memory to reserve for the
initial thread's stack. Only the SizeQfStack
Commit field is committed; the rest is avail
able in one-page increments. The default is
1 MB.

Size of virtual memory initially committed
for the initial thread's stack. The default is
one page.

80/88 4/8 SizeOJHeapReserve Size of virtual memory to reserve for the
initial process heap. Only the SizeOJHeap
Commit field is committed; the rest is avail
able in one-page increments. The default is
1 MB.

84/96 4/8 SizeOJHeapCommit Size of virtual memory initially committed
for the process heap. The default is one
page.

88/104 4

92/108 4

LoaderFlags

NumberQfRvaAndSizes

Data Directory Table

Obsolete, set to 0.

Number of entries in the DataDirectory
array; at least 16. Although it is theoretically
possible to emit more than 16 data directo
ries, all existing managed compilers emit
exactly 16 data directories, with the six
teenth (last) data directory never used
(reserved).

The data directory table starts at offset 96 in a 32-bit PE header and at offset 112
in a 64-bit PE header. Each entry in the data directory table contains the relative
virtual address and size of a table or a string used by the operating system. The
data directory table entry is an 8-byte stmcture defined in Winnt.h as follows:

typedef struct _IMAGE_DATA_DIRECTORY {
DWORD VirtualAddress;
DWORD Size;

} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

The first field, named Virtua!Address, is, however, not a virtual address
but rather an RVA; it is the address of the table when the image file is loaded
into memory, relative to the base address of the image. The RVAs given in this
table do not necessarily point to the beginning of a section, and the sections
containing specific tables do not necessarily have specific names. The second
field is the size in bytes.

52 Part II Underlying Structures

Sixteen standard data directories are defined in the data directory table:

• Export Directory table address and size The Export Directory
table contains information about four other tables, which hold data
on unmanaged exports of the PE file. Among managed compilers,
only the MC++ compiler and linker and ILAsm are capable of expos
ing the managed methods exported by a managed PE file as unman
aged exports, to be consumed by an unmanaged caller. See Chapter
15, "Managed and Unmanaged Code Interoperation," for details.

• Import table address and size This table contains data on
unmanaged imports consumed by the PE file. Among managed com
pilers, only the MC++ compiler and linker make any nontrivial use of
this table, importing the unmanaged external functions used in the
embedded unmanaged native code. Because other compilers,
including the ILAsm compiler, do not embed the unmanaged native
code in the managed PE files, Import Address tables (IATs) of the
files produced by these compilers contain a single entry, that of the
runtime entry function.

• Resource table address and size Contains unmanaged resources
embedded in the PE file; managed resources aren't part of this data.

• Exception table address and size This table contains information
on unmanaged exceptions only.

• Certificate table address and size The address entry points to a
table of attribute certificates, which are not loaded into memory as
part of the image file. As such, the first field of this entry is a file
pointer rather than an RVA.

• Base Relocation table address and size

• Debug data address and size A managed PE file does not carry
embedded debug data, so both entries of this data directory are set to 0.

• Architecture data address and size

• Global pointer RVA of the value to be stored in the global pointer
register. The size must be set to 0.

• TLS table address and size Among managed compilers, only the
MC++ compiler and linker and the ILAsm compiler are able to pro
duce the code that would use the thread local storage data.

• Load Configuration table address and size

Chapter 3 The Structure of a Managed Executable File 53

• Bound Import table address and size

• Import Address table address and size

• Delay Import Descriptor address and size

• Common Language Runtime header address and size

• Reserved

Section Headers
The table of section headers must immediately follow the PE header. Because
the file header has no direct pointer to the section table, the location of this
table is calculated as the total size of the file headers plus 1.

The NumberOJSections field of the COFF header defines the number of
entries in the section header table. The section header enumeration in the table
is one-based, with the order of the sections defined by the linker. The sections
follow one another contiguously in the order set in the section header table,
with starting RVAs aligned by the value of the SectionAlignment field of the PE
header.

A section header is a 40-byte structure defined in Winnt.h as follows:

typedef struct _IMAGE_SECTION_HEADER {
BYTE Name[8];
union {

} Misc;

DWORD
DWORD

Physical Address;
Virtual Size;

DWORD VirtualAddress;
DWORD SizeOfRawData;
DWORD PointerToRawData;
DWORD PointerToRelocations;
DWORD PointerTolinenumbers;
WORD NumberOfRelocations;
WORD NumberOflinenumbers;
DWORD Characteristics;

} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

The fields contained in the IMAGE_SECTION_HEADER structure can be
described as follows:

• Name (8-byte ANSI string) Represents the name of the section.

Section names start with a dot (for instance, .reloc). If the section name
contains exactly eight characters, the null terminator is omitted. If the
section name has fewer than eight characters, the array Name is padded
with null characters. Image files cannot have section names with

54 Part II Underlying Structures

more than eight characters. In object files, however, section names
can be longer. (Imagine a long-winded code generator emitting a
section named .myownsectionnobodyelsecouldevergrok.) In this case,
the name is placed in the string table, and the field contains the I
(slash) character in the first byte, followed by an ANSI string containing
a decimal representation of the respective offset in the string table.

• Physica/Address/VirtualSize (4-byte unsigned integer) In
image files, this field holds the actual (unaligned) size in bytes of the
code or data in this section.

• Virtua/Address (4-byte unsigned integer) Despite its name, this

field holds the RVA of the beginning of the section.

• SizeOJR.awData (4-byte unsigned integer) In an image file, this
field holds the size in bytes of the initialized data on disk, rounded
up to a multiple of the FileAlignment value specified in the PE header.
If SizeOJRawData is less than VirtualSize, the rest of the section is
padded with null bytes.

• PointerToRawData (4-byte unsigned integer) This field holds
a file pointer to the section's first page. In image files, this value
should be a multiple of the FileAlignment value specified in the PE

header.

• PointerToRelocations (4-byte unsigned integer) This is a file
pointer to the beginning of relocation entries for the section. In
image files, this field is not used and should be set to 0.

• PointerToLinenumbers (4-byte unsigned integer) This field
holds a file pointer to the beginning of line-number entries for the
section. In managed PE files, the COFF line numbers are stripped
and this field must be set to 0.

• NumberojR.elocations (2-byte unsigned integer) In managed

image files, this field should be set to 0.

• NumberO.fLinenumbers (2-byte unsigned integer) In managed

image files, this field should be set to 0.

• Characteristics (4-byte unsigned integer) This field specifies
the characteristics of an image file and holds a combination of binary
flags, described in Table 3-5.

Chapter 3 The Structure of a Managed Executable File 55

The section Characteristics flags are defined in Winnt.h. Some of these
flags are reserved, and some are relevant to object files only. Table 3-5 lists the
flags that are valid for PE files.

Table 3-5 The Section Characteristics Flags in PE Files

Flag

IMAGE_SCN_SCALE_INDEX

IMAGE_SCN_CNT_CODE

Value Description

OxOOOOOOOl TLS index is scaled (.tis sec
tion only).

Ox00000020 Section contains the exe-
cutable code. In ILAsm
compiler-generated PE
files, only the .text section
carries this flag.

IMAGE_SCN_CNT_INITIALIZED_DATA Ox00000040 Section contains initialized
data.

IMAGE_SCN_CNT_UNINI11ALIZED_DATA Ox00000080 Section contains uninitial
ized data.

IMAGE_SCN_NO_DEFER_SPEC_EXC Ox00004000 Reset speculative exception
handling bits in the type
library (TLB) entries for this
section.

JMAGE_SCN_LNK_NRELOC_OVFL

IMAGE_SCN_MEM_DISCARDABLE

IMAGE_SCN_MEM_NOT_CACHED

IMAGE_SCN_MEM_NOT_FAGED

IMAGE_SCN_MEM_SHARED

IMAGE_SCN_MEM_EXECUTE

IMAGE_SCN_MEM_READ

IMAGE_SCN_MEM_ WRITE

Ox01000000 Section contains extended
relocations.

Ox02000000 Section can be discarded as
needed.

Ox04000000 Section cannot be cached.

Ox08000000 Section cannot be paged.

OxlOOOOOOO Section can be shared in
memory.

Ox20000000 Section can be executed as
code. In ILAsm compiler
generated PE files, only the
.text section carries this
flag.

Ox40000000 Section can be read.

Ox80000000 Section can be written to.
In ILAsm compiler-gener
ated PE files, only the
.sdata and .tis sections
carry this flag.

56 Part II Underlying Structures

The ILAsm compiler generates the following sections in a PE file:

• .text A read-only section containing the common language runtime
header, the metadata, the IL code, managed structured exception han
dling information, and managed resources.

• .sdata A read/write section containing data.

• .reloc A read-only section containing relocations.

• .rsrc A read-only section containing unmanaged resources.

• ~tis A read/write section containing thread local storage data.

Common Language Runtime Header
The fifteenth directory entry of the PE header contains the RVA and size of the
runtime header in the image file. The runtime header, which contains all of the
runtime-specific data entries and other information, should reside in a read
only, sharable section of the image file. The ILAsm compiler puts the common
language runtime header in the .text section.

Header Structure
The common language runtime header is defined in CorHdr.h-a header file
distributed as part of the Microsoft .NET Framework SDK-as follows:

typedef struct IMAGE_COR20_HEADER
{

ULONG cb;
USHORT MajorRuntimeVersion;
USHORT MinorRuntimeVersion;
II Symbol table and startup information
IMAGE_DATA_DIRECTORY MetaData;
ULONG Flags;
ULONG EntryPointToken;

Resources;
StrongNameSignature;

II Binding information
IMAGE_DATA_DIRECTORY
IMAGE_DATA_DIRECTORY
II Regular fixup and
IMAGE_DATA_DIRECTORY
IMAGE_DATA_DIRECTORY
IMAGE_DATA_DIRECTORY

binding information
CodeManagerTable;
VTableFixups;
ExportAddressTableJumps;

IMAGE_DATA_DIRECTORY
} IMAGE_COR20_HEADER;

ManagedNativeHeader;

Chapter 3 The Structure of a Managed Executable File 57

Table 3-6 takes a closer look at the fields of the header.

Table 3-6 Common Language Runtime Header Fields

Offset Size Field Description

0 4 Cb Size of the header in bytes.

4 2 MajorRuntime Version Major portion of the minimum version of the rnntime
required to run the program.

6 2 MinorRuntime Version Minor portion of the version of the runtime required
to run the program.

8 8 MetaData RVA and size of the metadata.

16 4 Flags Binary flags, discussed in the following section. In
ILAsm, this value can be specified explicitly by the
directive .cor_fiags <integer value> and/or the com-
mand-line option !FLAGS=< integer value>. The
command-line option takes precedence over the
directive.

20 4 EntryPointToken Metadata identifier (token) of the entry point for the
image file; can be 0 for DLL images. This field iden-
tifies a method belonging to this module or a mod-
ule containing the entry point method.

24 8 Resources RVA and size of managed.resources.

32 8 StrongNameSignature RVA and size of the hash data for this PE file, used
by the loader for binding and versioning.

40 8 CodeManagerTable RVA and size of the Code Manager table. In the first
release of the runtime, this field is reserved and
must be set to 0.

48 8 VTableFixups RVA and size in bytes of an array of virtual table (v-
table) fixups. Among current managed compilers,
only the MC++ compiler and linker and the ILAsm
compiler can produce this array.

56 8 ExportAd- RVA and size of an array of addresses of jump
dressTable]umps thunks. Among current managed compilers, only

the MC++ compiler and linker can produce this
table, which allows the export of unmanaged native
methods embedded in the managed PE file.

64 8 ManagedNativeHeader Reserved; set to 0.

58 Part II Underlying Structures

Flags Field
The Flags field of the common language runtime header can include one or
more of the following flags:

• COMIMAGE_FLAGS_ILONLY(OxOOOOOOOl) The image file con
tains IL code only, with no embedded native unmanaged code
except the startup stub. Because common language runtime-aware
operating systems (such as Windows XP) ignore the startup stub, for
all practical purposes the file can be considered pure-IL. However,
using this flag can cause certain ILAsm compiler-specific problems
when running under Windows XP. If this flag is set, Windows XP
ignores not only the startup stub but also the .reloc section. The
. reloc section can contain relocations for the beginning and end of
the .tis section as well as relocations for what is referred to as data
on-data (that is, data constants that are pointers to other data con
stants). Among existing managed compilers, only the MC++ compiler
and linker and the ILAsm compiler can produce these items. The
MC++ compiler and linker never set this flag because the image file
they generate is never pure-IL. Currently, the ILAsm compiler is the
only one capable of producing pure-IL image files that might require
a . reloc section. To resolve this problem, the ILAsm compiler, if TLS
based data or data-on-data is emitted, clears this flag and sets the
COMIMAGE_FLAGS_32BJTREQUIRED flag instead.

• COMIMAGE_FLAGS_32BITREQUIRED (Ox00000002) The image
file can be loaded only into a 32-bit process. This flag is set when
native unmanaged code is embedded in the PE file or when the
.reloc section is not empty.

• COMIMAGE_FLAGS_IL_LIBRARY (Ox00000004) This flag is
obsolete and should not be set. Setting it-as the ILAsm compiler
allows, using the .car.flags directive-will render your module
unloadable.

• COMIMAGE_FLAGS_STRONGNAMESIGNED (Ox00000008) The
image file is protected with a strong name signature. The strong
name signature includes the public key and the signature hash and
is a part of an assembly's identity, along with the assembly name,
version number, and the culture information. This flag is set when
the strong name signing procedure is applied to the image file. No
compiler, including ILAsm, can set this flag explicitly.

Chapter 3 The Structure of a Managed Executable File 59

• COMIMAGE_FIAGS_TRACKDEBUGDATA (OxOOOlOOOO) The loader
and the JIT (just-in-time) compiler are required to track debug infor
mation about the methods.

EntryPointToken Field
The EntryPointToken field of the common language runtime header contains a
token (metadata identifier) of either a method definition (MethodDej) or a file
reference (File). A MethodDeftoken identifies a method defined in the module
(a managed PE file) as an entry point method. A File token is used in one case
only: in the runtime header of the prime module of a multimodule assembly,
when the entry point method is defined in another module (identified by the
file reference) of this assembly. In this case, the module identified by the file
reference must contain the respective MethodDeftoken in the EntryPointToken
field of its runtime header.

EntryPointToken must be specified in runnable executables (EXE files).
The ILAsm compiler, for example, does not even try to generate an EXE file if
the source code does not define the entry point. The loader imposes limitations
on the signature of the entry point method: the method must return an
unsigned integer or void, and it must have at most one parameter of type string
or string[} (vector of strings).

With nonrunnable executables (DLL files), it's a different story. Pure-IL
DLLs don't need the entry point method defined, and the EntryPointToken field
in their runtime headers should be set to 0.

Mixed-code DLLs-DLLs containing IL and embedded native code
generated by the MC++ compiler and linker must run the unmanaged native
function DllMain immediately at the DLL invocation in order to perform the
initialization necessary for the unmanaged native components of the DLL. The
signature of this unmanaged function must be as follows:

int DllMain(HINSTANCE, DWORD, void *);

To be visible from the managed code and the runtime, the function Dll
Main must be declared as a platform invocation of an embedded native method
(local P/lnvoke, also known in enlightened circles as IJW-lt Just Works). See
Chapter 15 for details about the interoperation of managed and unmanaged
code.

60 Part II Underlying Structures

The method referred to by the EntryPointToken field of the
common language runtime header has nothing to do with the function
to which the AddressOfEntryPoint field of the PE header points.
AddressOfEntryPoint always points to the runtime invocation stub,
which is invisible to the runtime, is not reflected in metadata, and
hence cannot have a token.

VTableFixups Field
The VTableFixups field of the runtime header is a data directory containing the
RVA and the size of the image file's v-table fixup table. When a managed
method must be called from unmanaged code, the common language runtime
creates a marshaling thunk for it, and the address of this thunk is placed in the
respective address table. If the managed method is called from the unmanaged
native code embedded in the managed PE file, the thunk address goes to a
special internal v-table. If the managed method is exported as unmanaged and
is consumed somewhere outside the managed PE file, the address of the
respective v-table entry must also go to the Export Address table. At loading
time (and in the disk image file), the entries of this v-table contain the respec
tive method tokens.

These v-table fixups represent the initializing information necessary for
the runtime to create the thunks and lay out the respective tables. v-table fixup
is defined in CorHdr.h as follows:

typedef struct _IMAGE_COR_VTABLEFIXUP {
ULONG RVA;
USHORT Count;
USHORT Type;

} IMAGE_COR_VTABLEFIXUP;

In this definition, RVA points to the location of the v-table slot containing the
respective method token(s). Count specifies the number of entries in the slot if
multiple implementations of the same method exist, overriding one another.
Type is a combination of the following flags, providing the runtime with infor
mation about the slot and what to do with it:

• COR_VTABLE_32BIT(Ox0l) Each entry is 32 bits wide.

• COR_VTABLE_64BIT(Ox02) Each entry is 64 bits wide.

Chapter 3 The Structure of a Managed Executable File 61

• COR_ VTABLE_FROM_UNMANAGED (Ox04) The thunk created
by the common language runtime must provide data marshaling
between managed and unmanaged code.

• COR_ VTABLE_CALL_MOST_DERIVED (OxlO) This flag is not

currently used.

Obviously, the first two flags are mutually exclusive. The slots of the v-table
must follow each other immediately-that is, the v-table must be contiguous.

Because the v-table should be fixed up after the image has been loaded
into memory, this table is located in a read/write section. (In contrast, the v-table
in an unmanaged image is located in a read-only section.)

Among existing managed compilers, only the MC++ compiler and linker
and the ILAsm compiler can define the v-table and its fixups.

StrongNameSignature Field
The StrongNameSignature field of the common language runtime header con
tains the RVA and size of the strong name hash, which is used by the runtime
to establish the authenticity of the image file. After the image file has been cre
ated, it is hashed using the public and private encryption keys provided by the
producer of the image file, and the resulting hash blob is written into the space
allocated inside the image file.

If even a single byte in the image file is subsequently modified, the
authenticity check fails and the image file cannot be loaded. The strong name
signature does not survive a round-tripping procedure; if you disassemble a
strong-named module using the IL Disassembler and then reassemble it, the
module must be strong name signed again.

The ILAsm compiler puts the strong name signature in the .text section of
the image file.

Relocation Section
The .reloc section of the image file contains the Fixup table, which holds entries
for all fixups in the image file. The RVA and size of the .reloc section are defined
by the Base Relocation table directory of the PE header. The Fixup table con
sists of blocks of fixups, each block representing the fixups for a 4-KB page.
Blocks are 4-byte-aligned.

Each fixup describes the location of a specific address within the image
file as well as how the OS loader should modify the address at this location
when loading the image file into memory.

62 Part II Underlying Structures

Each fixup block starts with two 4-byte unsigned integers: the RVA of the
page containing the address to be fixed up and the size of the block. The fixup
entries for this page immediately follow. Each entry is a 2-byte unsigned inte
ger, of which 4 senior bits contain the type of relocation required. The remain
ing 12 bits contain the relocated address's offset within the page.

To relocate an address, the OS loader calculates the difference (delta)
between the preferred base address (the ImageBase field of the PE header) and
the actual base address where the image file is loaded. This delta is then
applied to the address according to the type of relocation. If the image file is
loaded at its preferred address, no fixups need be applied.

The following relocation types are defined in Winnt.h:

• IMAGE_REL_BASED_ABSOLUTE (0) This type has no meaning
in an image file, and the fixup is skipped.

• IMAGE_REL_BASED_HIGH (1) The high 16 bits of the delta are
added to the 16-bit field at the offset. The 16-bit field in this case is
the high half of the 32-bit address being relocated.

• IMAGE_REL_BASED_LOW (2) The low 16 bits of the delta are
added to the 16-bit field at the offset. The 16-bit field in this case is
the low half of the 32-bit address being relocated.

• IMAGE_REL_BASED_HIGHLOW (3) The delta is added to the
32-bit address at the offset.

• IMAGE_REL_BASED_HIGHADJ(4) The high 16 bits of the delta
are added to the 16-bit field at the offset. The 16-bit field in this case
is the high part of the 32-bit address being relocated. The low 16 bits
of the address are stored in the 16-bit word that follows this reloca
tion. A fixup of this type occupies two slots.

• IMAGE_REL_BASED_MIPSJMPADDR (5) The fixup applies to
a MIPS jump instruction.

• IMAGE_REL_BASED_SECTION (6) Reserved.

• IMAGE_REL_BASED_REL32 (7) Reserved.

• IMAGE_REL_BASED_MIPSJMPADDR16 (9) The fixup applies
to a MIPS16 jump function.

• IMAGE_REL_BASED_IA64_IMM64 (9) This is the same type as
IMAGE_REL_BASED_MIPSJMPADDRl 6.

• IMAGE_REL_BASED_DIR64 (10) The delta is added to the 64-bit
field at the offset.

Chapter 3 The Structure of a Managed Executable File 63

• IMAGE_REL_BASED_HIGH3ADJ (11) The fixup adds the high
16 bits of the delta to the 16-bit field at the offset. The 16-bit field is
the high one-third of a 48-bit address. The low 32 bits of the address
are stored in the 32-bit double word that follows this relocation. A
fixup of this type occupies three slots.

The only fixup type emitted by the existing managed compilers is
IMAGE_REL_BASED_HIGHLOW.

A pure-IL PE file, as a rule, contains only one fixup in the .reloc section.
This is for the benefit of the common language runtime startup stub, the only
segment of native code in a pure-IL image file. This fixup is for the image file's
IAT, containing a single entry: the runtime DLL.

Windows XP, as a common language runtime-aware operating system,
needs neither the runtime startup stub nor the IAT to engage the runtime. Thus,
if the common language runtime header flags indicate that the image file is
IL-only (COMIMAGE_FLAGS_ILONLY), the operating system ignores the .reloc
section altogether.

This optimization plays a bad joke with some image files generated by the
ILAsm compiler. This compiler produces pure-IL image files but needs reloca
tions executed if any data is located in thread local storage or if data-on-data is
defined. To have these relocations executed when the image file is loaded
under Windows XP, the ILAsm compiler is forced to cheat and set the common
language runtime header flags as if the image file contained embedded native
code (COMIMAGE_FLAGS_32BITREQUJRED).

Other compilers don't have these problems. Compilers generating pure-IL
image files (such as Microsoft Visual C# .NET and Microsoft Visual Basic .NET)
don't define TLS-based data or data-on-data.

Because the MC++ compiler and linker produce mixed-code image files,
the .reloc sections of these image files can contain any number of relocations.
But because mixed-code image files never carry IL-only common language
runtime header flags, their relocations are always executed.

Text Section
The .text section of a PE file is a read-only section. In a managed PE file, it con
tains metadata tables, IL code, an Import Address table, a common language
runtime header, and an unmanaged runtime startup stub. The image files gen
erated by the ILAsm compiler additionally contain managed resources, the
strong name signature hash, and unmanaged export stubs.

The ILAsm compiler emits data to the .text section in a particular order.
When the PE file generator is initialized during the ILAsm compiler startup,

64 Part II Underlying Structures

space is allocated in the .text section for the Import Address table-which
carries one lonely entry, for the startup routine of the runtime DLL-and for the
runtime header.

The IL code and the managed structured exception handling tables for
each method defined in the module are emitted to the .text section during the
parsing of the source code, as soon as parsing and compilation of the next
method are completed.

After all the source files representing the module have been parsed and all
IL code and structured exception handling tables have been emitted, the ILAsm
compiler, if so directed, allocates sufficient space in the .text section for the
strong name signature. The signature itself is emitted later, as the last step of the
file generation.

Then the ILAsm compiler analyzes and rearranges the metadata defined
during the parsing of the source files and emits the metadata tables to the .text
section. By this time, all the managed resources to be embedded in the image
file are analyzed and accounted for, and their respective offsets within the
managed resource directory are recorded as part of the metadata describing
these resources. At this time, all the necessary fixups are made in the already
emitted IL code. These fixups primarily deal with the metadata tokens, which
were unknown before the metadata analysis and rearrangement or were
changed during that process. Other fixups deal with references to global data
constants placed in the .sdata section that will be discussed later in this chapter.

After all metadata has been emitted, any managed resources to be embed
ded in the image file are read from the respective files and emitted to the .text
section. (For a discussion of embedding managed and unmanaged resources,
see "Resources" later in this chapter.)

The next set of data to be emitted to the .text section consists of the export
stubs for each managed method that will be exposed as an unmanaged export,
to be consumed by the external unmanaged executables. (For detailed informa
tion on managed and unmanaged code interoperatiop, see Chapter 15.)

The last item emitted to the .text section is the unmanaged runtime startup
stub, whose RVA is assigned to the AddressOJEntryPoint field of the PE header.

Figure 3-3 summarizes the general structure of the .text section of an
image file generated by the ILAsm compiler.

Chapter 3 The Structure of a Managed Executable File 65

Import Address table

Common language runtime header

IL code and managed structured

exception handling tables (optional)

Strong name signature hash (optional) .text

.-------------~ section
Metadata

Managed resources (optional)

Unmanaged export stubs (optional)

Runtime startup stub

Figure 3-3 Structure of a .text section emitted by the ILAsm compiler.

Data Sections
The data section (.sdata) of an image file generated by the ILAsm compiler is a
read/write section. It contains data constants, the v-table, the unmanaged
export table, and the thread local storage directory structure. The data declared
as thread-specific is located in a different section, the .tls section.

Data Constants
The term data constants might be a little misleading. Located in a read/write
section, data constants can certainly be overwritten, so technically they can
hardly be called "constants." The term, however, refers to the usage of the data
rather than to the nature of the data. Data constants represent the mappings of
the static fields and usually contain data initializing the mapped fields. (Chapter
1 described the peculiarities of this field mapping; see "Mapped Fields.")

Field mapping is a convenient way to initialize the static fields with ANSI
strings, blobs, or structures. An alternative way to initialize the static fields-and
a more orthodox way in terms of the common language runtime-is to do it
explicitly in class constructors, as discussed in the section "Constructors vs.
Data Constants" in Chapter 8, "Fields and Data Constants." But this alternative is
much more tedious, so no one can really blame the managed compilers for
resorting to field mapping for initialization. The MC++ compiler maps all the
global fields, whether they will be initialized or not.

66 Part II Underlying Structures

V-Table

Mapping static fields to data has its caveats. Fields mapped to the data sec
tion are, on the one hand, out of reach of runtime controlling mechanisms such
as type control and garbage collection and, on the other hand, wide open to
unrestricted access and modification. This causes the loader to prevent certain
field types from being mapped; types of mapped fields might contain no
references to objects, vectors, or arrays, nor to any nonpublic substructures. No
such problems arise if a class constructor is used for static field initialization.
Philosophically speaking, this is only natural: throughout the history of humanity,
deviations from orthodoxy, however tempting, have always brought some
unpleasant complications.

The v-table consists of entries, and each entry consists of one or more slots. The
v-table fixups we have already discussed earlier in the section "VTableFixups
Field" specify the number and width (4 or 8 bytes) of slots in each entry. Each
slot contains a metadata token of the respective method, which at execution
time is replaced with the address of the method itself or the address of a mar
shaling thunk representing the method. Because these fixups are performed at
execution time, the v-table of a managed PE file must be located in a read/write
section. The ILAsm compiler puts the v-table in the .sdata section, together with
other data.

V-tables of unmanaged image files are completely defined at link time and
need base relocation fixups only, performed by the OS loader. Because no
changes are made to v-tables at execution time, unmanaged image files carry
their v-tables in read-only sections.

Unmanaged Export Table
The unmanaged export table in an unmanaged image file occupies a separate
section named .edata. In image files generated by the ILAsm compiler, the
unmanaged export table resides in the .sdata section, together with the v-table
it references.

The unmanaged export table contains information about symbols that
other (unmanaged) image files can access through dynamic linking. The
unmanaged export table is not a single table but rather a contiguous set of five
tables: the Export Directory table, the Export Address table, the Name Pointer
table, the Ordinal table, and the Export Name table.

The unmanaged export information starts with the Export Directory table,
which describes the rest of the export information. It is a table with only one
element, containing the locations and sizes of other export tables. The structure
of the sole row of the Export Directory table is defined in Winnt.h as follows:

Chapter 3 The Structure of a Managed Executable File 67

typedef struct _IMAGE_EXPORT_DIRECTORY {
DWORD Characteristics;
DWORD TimeDateStamp;
WORD MajorVersion;
WORD MinorVersion;
DWORD Name;
DWORD Base;
DWORD NumberOfFunctions;
DWORD NumberOfNames;
DWORD AddressOfFunctions;
DWORD AddressOfNames;
DWORD AddressOfNameOrdinals;

} IMAGE_EXPORLDIRECTORY. *PIMAGE_EXPORLDIRECTORY;

Briefly, the fields of IMAGE_EXPORT_DIRECTORY are the following:

• Characteristics Reserved. This field should be set to 0.

• TimeDateStamp The time and date the export data was generated.

• MajorVersion The major version number. This field and the
MinorVersion field are for information only; the ILAsm compiler
does not set them.

• MinorVersion The minor version number.

• Name The RVA of the ANSI string containing the name of the
exporting module.

• Base The ordinal base (usually 1). This is the starting ordinal num
ber for exports in the image file.

• NumberOJFunctions The number of entries in the Export Address
table.

• NumberOJNames Number of entries in the Export Name table.

• AddressOJFunctions The RVA of the Export Address table.

• AddressOJNames The RVA of the Export Name table.

• AddressOJNameOrdinals The RVA of the Name Pointer table.

The Export Address table contains the RVAs of exported entry points. The
export ordinal of an entry point is defined as its zero-based index within the
Export Address table plus the ordinal base (the value of the Base field of
IMAGE_EXPORT_DIRECTORY structure).

In a managed file, the Export Address table contains the RVAs not of the
exported entry points (methods) themselves but rather of unmanaged· export
stubs representing these entry points. (See "Text Section" earlier in this chapter.)
Export stubs, in turn, contain references to respective v-table slots.

68 Part II Underlying Structures

An RVA in an Export Address table can be a so-called forwarder RVA, iden
tifying a re-exported entry point-that is, an entry point this module imports
from another module and exports as its own. In such a case, the RVA points to
an ANSI string containing the import name. The import name might be a DLL
name and the name of the imported entry (SomeDIL.someFunc) or a DLL name
and the imported entry's ordinal in this DLL (SomeDIL.#12).

Because the ILAsm compiler does not allow re-export, the entries in an
Export Address table of an image file generated by this compiler always repre
sent the RVAs of unmanaged export stubs.

The Name Pointer table contains RVAs of the export names from the
Export Name table. These RVAs are lexically ordered to facilitate binary
searches of the entry points by name.

The Ordinal table contains 2-byte indexes to the Export Address table. The
Name Pointer table and the Ordinal table form two parallel arrays and operate
as one intermediate lookup table, rearranging the entries so that they are lexi
cally ordered by name.

The Export Name table contains zero-terminated ANSI strings representing
the export names of the methods exported by the module. The export names
might differ from the names under which the methods were declared in the
module. An exported method might have no exported name at all if it is being
exported by ordinal only. In this case, its ordinal is not included in the Ordinal
table. The ILAsm compiler does not allow unnamed exports.

Chapter 15 examines unmanaged export information and the details of
exposing managed methods as unmanaged exports.

Thread Local Storage
ILAsm and MC++ allow you to define data constants belonging to thread local
storage and to map static fields to these data constants. TLS is a special storage
class in which a data object is not a stack variable but is nevertheless local to
each separate thread. Consequently, each thread can maintain a different value
for such a variable.

The TIS data is described in the TLS directory, which the ILAsm compiler
puts in the .sdata section. The structure of the TLS directory for 32-bit image
files is defined in Winnt.h as follows:

typedef struct _IMAGE_TLS_DIRECTORY32 {
DWORD StartAddressOfRawData;
DWORD EndAddressOfRawData;
PDWORD AddressOflndex;
PIMAGE_TLS_CALLBACK *AddressOfCallBacks;
DWORD Si zeOfZeroFi 11;
DWORD Characteristics;

} IMAGE_TLS_DIRECTORY32;

Chapter 3 The Structure of a Managed Executable File 69

The fields of this structure can be described as follows:

• StartAddressO.fRawData The starting virtual address (not an RVA)
of the TLS data constants. The TLS data constants plus uninitialized
TLS data together form the TLS template. The operating system
makes a copy of the TLS template every time a thread is created, thus
providing each thread with its "personal" data constants and field
mapping.

• EndAddressO.fRawData The ending VA of the TLS data con
stants. The rest of the TLS data (if any) is filled with zeros. Because
the ILAsm compiler allows no uninitialized TLS data, presuming that
TLS data constants represent the whole TLS template, nothing is left
for the zero fill.

• AddressOflndex The VA of the 4-byte TLS index, located in the
ordinary data section. The ILAsm compiler puts the TLS index in
the .sdata section, immediately after the TLS directory structure
and the callback function pointer array terminator.

• AddressOfCallBacks The VA of an array of TLS callback function
pointers. Because the array is null-terminated, this field points to 4
bytes set to 0 if no callback functions are supported. The ILAsm com
piler does not support TLS callback functions, so the entire array of
TLS callback function pointers consists of zero terminator. This zero
terminator immediately follows the TLS directory structure in the
.sdata section.

• SizeOJZeroFiU The size of the uninitialized part of the TLS tem
plate, filled with zeros when a copy of the TLS template is being
made. The ILAsm compiler sets this field to 0.

• Characteristics Reserved. This field should be set to 0.

Because the StartAddressOfRawData, EndAddressOfRawData,
AddressOjlndex, and AddressOJCallBacks fields hold VAs rather than RVAs,
base relocations must be defined for them in the . reloc section.

The RVA and size of the TLS directory structure are stored in the tenth data
directory (TLS) of the PE header. TLS data constants, which form the TLS tem
plate, are stored in the .tis section of the image file.

70 Part II Underlying Structures

Resources
Two distinct kinds of resources can be embedded in a managed PE file:
unmanaged platform-specific resources and managed common language runtime
specific resources. These two kinds of resources, which have nothing in com
mon, reside in different sections of a managed image file and are accessed by
different sets of APis.

Unmanaged Resources
Unmanaged resources reside in the .rsrc section of the image file. The starting
RVA and size of embedded unmanaged resources are represented in the
Resource data directory of the PE header.

Unmanaged resources are indexed by type, name, and language and are
binary-sorted by these three characteristics in that order. A set of Resource
directory tables represents this indexing as follows: each directory table is fol
lowed by an array of directory entries, which contain the ID or name of the
respective level (the type, name, or language level) and the address of the next
level directory table or of a data description (a leaf node of the tree). Because
three indexing characteristics are used, any data description can be reached by
analyzing at most three directory tables.

By the time the data description is reached, its type, name, and language
are known from the path the search algorithm traversed to arrive at the data
description.

The .rsrc section has the following structure:

• Resource directory tables and entries

• Resource directory strings Unicode strings representing the
string data addressed by the directory entries. These strings are 2-
byte-aligned. Each string is preceded by a 2-byte unsigned integer
representing the string's length.

• Resource data description A set of records addressed by direc
tory entries, containing the size and location of actual resource data.

• Resource data Raw undelimited resource data, consisting of indi
vidual resource data whose address and size are defined by data
description records.

Chapter 3 The Structure of a Managed Executable File 71

A Resource directory table structure is defined in Winnt.h as follows:

typedef struct _IMAGE_RESOURCE_DIRECTORY
DWORD Characteristics;
DWORD TimeDateStamp;
WORD MajorVersion;
WORD MinorVersion;
WORD NumberOfNamedEntries;
WORD NumberOfldEntries;

IMAGE_RESOURCE_DIRECTORY, *PIMAGE_RESOURCE_DIRECTORY;

The roles of these fields should be evident, in light of the preceding dis
cussion about structuring unmanaged resources and the Resource directory
tables. One exception might be the Characteristics field, which is reserved and
should be set to 0.

Name entries, which use strings to identify type, name, or language,
immediately follow the Resource directory table. After them, ID entries are
stored.

A Resource directory entry (either a name entry or an ID entry) is an 8-byte
structure consisting of two 4-byte unsigned integers, defined in Winnt.h as
follows:

typedef struct _IMAGE_RESOURCE_DIRECTORY_ENTRY {
union {

} ;

struct {
DWORD Name0ffset:31;
DWORD NamelsString:l;

} ;

DWORD
WORD

Name;
Id;

union {

} ;

DWORD OffsetToData;
struct {

} ;

DWORD
DWORD

OffsetToDirectory:31;
DatalsDirectory:l;

} IMAGE_RESOURCE_DIRECTORY_ENTRY, *PIMAGE_RESOURCE_DIRECTORY_ENTRY;

If the senior bit of the first 4-byte component is set, the entry is a name
entry and the remaining 31 bits represent the name string offset; otherwise, the
entry is an ID entry and the remaining bits hold the ID value.

If the senior bit of the second component is set, the item, whose offset is
represented by the remaining 31 bits, is a next-level Resource directory table;
otherwise, it is a Resource data description.

72 Part II Underlying Structures

A Resource data description is a 16-byte structure defined in Winnt.h as
follows:

typedef struct _IMAGE_RESOURCE_DATA_ENTRY {
DWORD OffsetToData;
DWORD Size;
DWORD CodePage;
DWORD Reserved;

} IMAGE_RESOURCE_DATA_ENTRY, *PIMAGE_RESOURCE_DATA_ENTRY;

The fields 0.ffsetToData and Size characterize the respective chunks of
resource data that constitute an individual resource. CodePage is the ID of the
code page used to decode the code point values in the resource data. Usually
this is the Unicode code page. Finally-no surprise here-the Resewed field is
reserved and must be set to 0.

The ILAsm compiler creates the .rsrc section and embeds the unmanaged
resources from the respective .RES file if this file is specified in command-line
options. The compiler can embed only one unmanaged resource file per module.

When the IL Disassembler analyzes a managed PE file and finds the . rsrc
section, it reads the data and its structure from the section and emits a .RES file
containing all the unmanaged resources embedded in the PE file.

Managed Resources
The Resources field of the common language runtime header contains the RVA
and size of the managed resources embedded in the PE file. It has nothing to do
with the Resource directory of the PE header, which specifies the RVA and size
of unmanaged platform-specific resources.

In PE files created by the ILAsm compiler, unmanaged resources reside in
the .rsrc section of the image file, whereas managed resources are located in
the .text section, along with the metadata, the IL code, and so on. Managed
resources are stored in the .text section contiguously. Metadata carries Mani
festResource records, one for each managed resource, containing the name of
the managed resource and the offset of the beginning of the resource from the
starting RVA specified in the Resources field. At this offset, a 4-byte unsigned
integer indicates the length in bytes of the resource. The resource itself imme
diately follows.

When the IL Disassembler processes a managed image file and finds
embedded managed resources, it writes each resource to a separate file, named
according to the resource name.

When the ILAsm compiler creates a PE file, it reads all managed resources
defined in the source code as embedded from the file according to the resource
names and writes them to the .text section, each preceded by its specified
length.

Chapter 3 The Structure of a Managed Executable File 73

Summary

Let's summarize the ways the ILAsm compiler creates a managed PE file. The PE
file creation is performed in four phases.

Phase One: Initialization

• Internal buffers are initialized.

• The empty template of a PE file is open in memory, including an
MS-DOS stub, a PE signature, a COFF header, and a PE header.

• The Import Address table and the runtime header are allocated in the
.text section.

Phase Two: Source Code Parsing

• The IL code is emitted to the .text section.

• Data constants are emitted to the .sdata and .tls sections.

• Metadata is collected in internal buffers.

Phase Three: Image Generation

• Space for the strong name signature is allocated in the .text section.

• Metadata is analyzed, rearranged, and emitted to the .text section.

• Managed resources are emitted to the .text section.

• Unmanaged export stubs are emittec,l to the .text section.

• Unmanaged export tables are emitted to the .sdata section.

• The TLS directory table is emitted to the .sdata section.

• The runtime startup stub is emitted to the .text section.

• Unmanaged resources are read from a .RES file and emitted to the
. rsrc section.

• Necessary base relocations are emitted to the .reloc section.

Phase Four: Completion

• The image file is written as a disk file.

• The strong name signing procedure is applied to the file.

74 Part II Underlying Structures

The ILAsm compiler allows you to explicitly set certain values in the
image file headers, by means of both source code directives and the compiler's
command-line options, as shown in Table 3-7. In all the cases discussed in this
chapter, the command-line options take precedence over the respective source
code directives.

Table 3-7 Directives and Command-Line Options for Setting Header Fields

Header Field Directive Command-Line Option

PE ImageBase .imagebase <integer value> /BASE=<integer value>

PE FileAlignment file alignment <integer value> /ALJGNMENT=<integer value>

PE Subsystem .subsystem <integer value> !SUBSYSTEM=<integer value>

CLR Flags .cor:flags <integer value> /FLAGS=< integer value>

Metadata Tables
Organization

What Is Metadata? 75

Heaps and Tables 78

RIDs and Tokens 87

Metadata Validation 93

Summary 94

This chapter provides a general overview of metadata and how it is structured.
It also describes metadata validation and the PEVerify tool, used to perform
validation and verification. Later chapters will analyze individual metadata
items based on the foundation presented here. I understand your possible
impatience-"When will this guy quit stalling and get to the real stuff?"-but
nevertheless I urge you not to skip this chapter. Far from stalling, I'm simply
approaching the subject systematically. It might look the same, but the motiva
tion is quite different.

What Is Metadata?
Metadata is, by definition, data that describes data. Like any general definition,
however, this one is hardly informative. In the context of the common language
runtime, metadata means a system of descriptors of all items that are declared
or referenced in a module. Because the common language runtime program
ming model is inherently object-oriented, the items represented in metadata are

75

76 Part II Underlying Structures

classes and their members, with their accompanying attributes, properties, and
relationships.

From a pragmatic point of view, the role played by metadata is similar to
that played by type libraries in the COM world. At this general level, however,
the similarities end and the differences begin. Metadata, which describes the
structural aspect of a module or an assembly in minute detail, is vastly richer
than the data provided by type libraries, which carry only information regarding
the COM interfaces exposed by the module. The important difference, of
course, is that metadata is embedded in a managed module, which allows each
managed module to carry a complete formal description of its logical structure.

Structurally, metadata is a normalized relational database. This means that
metadata is organized as a set of cross-referencing rectangular tables-as
opposed to, for example, a hierarchical database that has a tree structure. Each
column of each row of a metadata table contains either data or a reference to a
row of another table. Metadata does not contain any duplicate data fields; each
category of data resides in only one table of the metadata database. If another
table needs to employ the same data, it references the table that holds the data.

For example, as Chapter 1, "Simple Sample," explained, a class definition
carries certain binary attributes (flags). Because the behavior and features of
member methods of this class are affected by the class's flags, it would be
tempting to duplicate some of the class attributes, including flags, in a metadata
record describing one of the methods. But data duplication leads not only to
increased database size but also to the problem of keeping all the duplications
synchronized.

Instead, a method descriptor contains a reference to the descriptor of the
method's parent class. Such referencing does require resolving additional levels
of indirection, which results in burning more processor cycles. But for mas
sively distributed systems (and Microsoft .NET-based applications obviously
target such systems), processor speed is not the problem-communication
bandwidth and data integrity are.

But what do you do if, for instance, you need to find all the methods a cer
tain class implements? Browse the entire method descriptor table to find the
methods referring to this class's descriptor? No, that would be no fun at all.
Instead, the class descriptor (record) carries a reference to the record of the
method table that represents the first method of this class. The end of the
method records belonging to this class is defined by the beginning of the next
class's method records or (for the last class) by the end of the method table.

Obviously, this technique requires that the records in the method table
must be ordered by their parent class. The same applies to other table-to-table
relationships (class-to-field, method-to-parameter, and so on). If this requirement
is met, the metadata is referred to as optimized, or compressed. Figure 4-1
shows an example of such metadata. The ILAsm compiler always emits opti
mized metadata.

Chapter 4 Metadata Tables Organization 77

#2: Method 2 of Class 1

#3: Method 3 of Class 1

#1: Class 1 methods start at #1 #4: Method 4 of Class 1

#5: Method 1 of Class 2

#6: Method 2 of Class 2

#7: Method 3 of Class 2

#8: Method 1 of Class 3

#9: Method 2 of Class 3

Figure 4-1 An example of optimized metadata.

It is possible, however-perhaps as a result of sloppy metadata emis
sion-to have the child tables interleaved with regard to their parent classes.
For example, class record A might be emitted first, followed by class record B,
the method records of class B, and then the method records of class A; or the
sequence might be class record A, then some of the method records of class A,
followed by class record B, the method records of class B, and then the rest of
the method records of class A.

In such a case, additional intermediate metadata tables are engaged, pro
viding noninterleaved and ordered lookup tables. Instead of referencing the
method records, class records reference the records of an intermediate table (a
pointer table), which in turn reference the method records, as diagrammed in
Figure 4-2. Metadata that uses such intermediate lookup tables is referred to as
unoptimized, or uncompressed.

Uncompressed metadata structure is characteristic of an "edit
and-continue" scenario, in which metadata and the IL code of a module
are modified while the module is loaded in memory.

78 Part II Underlying Structures

#9: MethodPtr 2 of

Figure 4-2 An example of unoptimized metadata.

Heaps and Tables

Heaps

Logically, metadata is represented as a set of named streams, each stream rep
resenting a category of metadata. These streams are divided into two types:
metadata heaps and metadata tables.

A metadata heap is a storage of trivial structure, holding a contiguous sequence
of items. Heaps are used in metadata to store strings and binary objects. There
are three kinds of metadata heaps:

• String heap This type of heap contains zero-terminated character
strings, encoded in UTF-8. The strings follow each other immediately.
Because the first byte of the heap is always 0, the first string in the
heap is an empty string. The last byte of the heap must be 0 as well.

• GUID heap. This type of heap contains 16-byte binary objects,
immediately following each other. Because the size of the binary
objects is fixed, length parameters or terminators are not needed.

• Blob heap This type of heap contains binary objects of arbitrary
size. Each binary object is preceded by its length (in compressed
form). Binary objects are aligned on 4-byte boundaries.

Chapter 4 Metadata Tables Organization 79

The length compression formula is fairly simple. If the length
(which is an unsigned integer) is Ox7F or less, it is represented as 1
byte; if the length is greater than Ox7F but no larger than Ox3FFF, it is
represented as a 2-byte unsigned integer with the senior bit set. Oth
erwise, it is represented as a 4-byte unsigned integer with two senior
bits set. Table 4-1 summarizes this formula.

Table 4-1 The Length Compression Formula for the Blob

Value Range Compressed Size Compressed Value (Big-Endian)

O-Ox7F 1 byte <value>

Ox80-0x3FFF 2 bytes Ox8000 I <value>

Ox4000-0x1FFFFFFF 4 bytes OxCOOOOOOO I <value>

This compression formula is widely used in metadata. Of
course, the compression works only for numbers not exceeding
Ox1 FFFFFFF (536,870,911), but this limitation isn't a problem
because the compression is usually applied to such values as lengths
and counts.

General Metadata Header
A general metadata header consists of a storage signature and a storage header.
The storage signature has the following structure:

Type Field Description

DWORD !Signature "Magic" signature for physical metadata,
currently Ox424A5342

WORD iMajorVersion Major version (1 for the first release of the
common language runtime)

WORD iMinorVersion Minor version (1 for the first release of the
common language runtime)

DWORD iExtraData Reserved; set to 0

DWORD iLength Length of the version string

BYIE[} iVersionString Version string

80 Part II Underlying Structures

The storage header follows the storage signature, aligned on a 4-byte
boundary. Its structure is simple:

Type

BYTE

BYTE

WORD

Field

}Flags

iStreams

Description

Reserved; set to 0

fpadding]

Number of streams

The storage header is followed by an array of stream headers. The struc
ture of a stream header looks like this:

Type

DWORD

DWORD

char{16]

Field

iOffset

iSize

rcName

Description

Offset in the file for this stream

Size of the stream in bytes

Name of the stream; a zero-terminated ANSI
string no longer than seven characters

Six named streams can be present in the metadata:

• #Strings A string heap containing the names of metadata items
(class names, method names, field names, and so on). The stream
does not contain literal constants defined or referenced in the meth
ods of the module.

• #Blob A blob heap containing internal metadata binary objects,
such as default values. This stream does not contain binary objects
defined in the methods of the module.

• #GUID A GUID heap containing all sorts of globally unique
identifiers.

• #US A blob heap containing user-defined strings. This stream con
tains string constants defined in the user code. The strings are kept in
Unicode encoding. This stream's most interesting characteristic is
that the user strings can be explicitly addressed by the IL code (with
the ldstr instruction). In addition, because it is actually a blob heap,

the #US heap can store not only Unicode strings but any binary

object, which opens some intriguing possibilities.

• #- A compressed (optimized) metadata stream. This stream con

tains an optimized system of metadata tables.

Chapter 4 Metadata Tables Organization 81

• #- An uncompressed (unoptimized) metadata stream. This stream
contains an unoptimized system of metadata tables, including the
intermediate lookup tables (pointer tables).

The streams #- and #-are mutually exclusive-that is,
the metadata structure of the module is either optimized or
unoptimized; it cannot be both at the same time.

If no items are stored in a stream, the stream is absent (null), and the
iStreams field of the storage header is correspondingly reduced. At least three
streams are guaranteed to be present: a metadata stream (#- or #-), a string
stream (#Strings), and a GUID stream (#GU/D). Metadata items must be present
in at least minimal configuration in even the most trivial module, and these
metadata items must have names and GUIDs.

Figure 4-3 illustrates the general structure of metadata. In Figure 4-4, you
can see the way streams are referenced by other streams as well as by external
"consumers" such as metadata APis and the IL code.

I Storage signature I
I Storage header I
I Stream headers I

.··. · .. ··
····•.~· . ·.~ • ·.·•···z· ... ~

····~
<

String Blob GUID User string Metadata header
stream stream stream stream

Table record counts
I

f;.· #Strings #Blob #GUID #US I•
Metadata tables

i
(string heap) (blob heap) (GUID heap) (blob heap) I '

,.
Metadata stream f1

#-or#·
11

"T === };.; }2'~"'.I.~:.: zz: •• ·=2
===

~

Figure 4-3 The general structure of metadata.

82 Part II Underlying Structures

Figure 4-4 Stream referencing.

Metadata Table Streams
The metadata streams #- and #- begin with the following header:

Size Field

4 bytes Reserved

1 byte Major

1 byte Minor

1 byte Heaps

Description

Reserved; set to 0.

Major version of the table schema (1 for the first release of
the common language runtime).

Minor version of the table schema (O for the first release of
the common language runtime).

Binary flags indicate the offset sizes to be used within the
heaps.

A 4-byte unsigned integer offset is indicated by OxOl for a
string heap, Ox02 for a GUID heap, and Ox04 for a blob
heap.

If a flag is not set, the respective heap offset is presumed to
be a 2-byte unsigned integer.

Size Field

1 byte Rid

Chapter 4 Metadata Tables Organization 83

Description

A# stream can also have special flags set: flag Ox20, indicat
ing that the stream contains only changes made during an
edit-and-continue session, and flag Ox80, indicating that the
metadata might contain items marked as deleted.

Bit count of the maximal record index to all tables of the
metadata; calculated at run time (during the metadata
stream initialization).

8 bytes Mask Valid Bit vector of present tables, each bit representing one table
(1 if present).

8 bytes Sorted Bit vector of sorted tables, each bit representing a respective
table (1 if sorted).

This header is followed by a sequence of 4-byte unsigned integers indicat
ing the number of records in each table marked 1 in the Mask Valid bit vector.

Like any database, metadata has a schema. The schema is a system of
descriptors of metadata tables and columns-in this sense, it is "meta-meta
data." A schema is not a part of metadata, nor is it an attribute of a managed PE
file. Rather, a metadata schema is an attribute of the common language runtime
and is hard-coded. It should not change in the future unless there's a major
overhaul of the runtime.

Each metadata table has the following descriptors:

Type Field Description

pointer pColDejs Pointer to an array of column descriptors

BYTE cCols Number of columns in the table

BYTE iKey Index of the key column

WORD cbRec Size of a record in the table

Column descriptors, to which the pColDefs fields of table descriptors
point, have the following structure:

Type

BYTE

BYTE

BYIE

Field

Type

oColumn

cbColumn

Description

Code of the column's type

Offset of the column

Size of the column in bytes

Type, the first field of a column descriptor, is especially interesting. The
metadata schema of the first release of the common language runtime identifies
the following codes for column types:

84 Part II Underlying Structures

0-63

64-95

96

97
98

99
100

101

102

103

Column holds the record index (RID) to another table; the spe
cific value indicates which table. The width of the column is
defined by the Rid field of the metadata stream header.

Column holds a coded token referencing another table; the spe
cific value indicates the type of coded token. Tokens are refer
ences carrying the indexes of both the table and the record
being referenced. The table being addressed and the index of
the record are defined by the coded token value.

Column holds a 2-byte signed integer.

Column holds a 2-byte unsigned integer.

Column holds a 4-byte signed integer.

Column holds a 4-byte unsigned integer.

Column holds a 1-byte unsigned integer.

Column holds an offset in the string heap (the #Strings stream).

Column holds an offset in the GUID heap (the #GUID stream).

Column holds an offset in the blob heap (the #Blob stream).

The metadata schema defines 44 tables. Given the range of RID type
codes, the common language runtime definitely has room for growth. At the
moment, the following tables are defined:

• Module The current module descriptor.

• TypeRef Class reference descriptors.

• TypeDef Class or interface definition descriptors.

• Field.Ptr A class-to-fields lookup table, which does not exist in

optimized metadata (#- stream).

• Field Field definition descriptors.

• MethodPtr A class-to-methods lookup table, which does not exist

in optimized metadata (#- stream).

• Method Method definition descriptors.

• ParamPtr A method-to-parameters lookup table, which does not

exist in optimized metadata (#-stream).

• Param Parameter definition descriptors.

• lnterfacelmpl Interface implementation descriptors.

Chapter 4 Metadata Tables Organization 85

• MemberRef Member (field or method) reference descriptors.

• Constant Constant value descriptors that map the default values
stored in the #Blob stream to respective fields, parameters, and

properties.

• CustomAttribute Custom attribute descriptors.

• FieldMarshal Field or parameter marshaling descriptors for man

aged/unmanaged interoperations.

• DeclSecurity Security descriptors.

• ClassLayout Class layout descriptors that hold information about

how the loader should lay out respective classes.

• FieldLayout Field layout descriptors that specify the offset or
sequencing of individual fields.

• StandAloneSig Stand-alone signature descriptors. Signatures per
se are used in two capacities: as composite signatures of local vari
ables of methods, and as parameters of the call indirect (calli) IL

instruction.

• EventMap A class-to-events mapping table. This is not an interme
diate lookup table, and it does exist in optimized metadata.

• EventPtr An event-map-to-events lookup table, which does not
exist in optimized metadata (#- stream).

• Event Event descriptors.

• PropertyMap A class-to-properties mapping table. This is not an

intermediate lookup table, and it does exist in optimized metadata.

• PropertyPtr A property-map-to-properties lookup table, which

does not exist in optimized metadata (#-stream).

• Property Property descriptors.

• MethodSemantics Method semantics descriptors that hold infor
mation about which method is associated with a specific property or
event and in what capacity.

• Methodlmpl Method implementation descriptors.

86 Part II Underlying Structures

• ModuleRef Module reference descriptors.

• TypeSpec Type specification descriptors.

• ImplMap Implementation map descriptors used for the platform

invocation (P!Invoke) type of managed/unmanaged code interoperation.

• FieldRVA Field-to-data mapping descriptors.

• ENCLog Edit-and-continue log descriptors that hold information
about what changes have been made to specific metadata items during
in-memory editing. This table does not exist in optimized metadata
(#- stream).

• ENCMap Edit-and-continue mapping descriptors. This table does

not exist in optimized metadata (#- stream).

• Assembly The current assembly descriptor, which should appear

only in prime module metadata.

• AssemblyProcessor This table is unused in the first release of the

runtime.

• AssemblyOS This table is unused in the first release of the runtime.

• AssemblyRef Assembly reference descriptors.

• AssemblyRefProcessor This table is unused in the first release of

the runtime.

• AssemblyRefOS This table is unused in the first release of the

runtime.

• File File descriptors that contain information about other files in

the current assembly.

• ExportedType Exported type descriptors that contain information
about public classes exported by the current assembly, which are
declared in other modules of the assembly. Only the prime module
of the assembly should carry this table.

• ManifestResource Managed resource descriptors.

• NestedClass Nested class descriptors that provide mapping of

nested classes to their respective enclosing classes.

• TypeTyPar Reserved for future use.

• MethodTyPar Reserved for future use.

Chapter 4 Metadata Tables Organization 87

The structural aspects of the various tables and their validity rules are
discussed in later chapters, along with the corresponding ILAsm constructs.

RIDs and Tokens

RIDs

Tokens

Record indexes and tokens are the unsigned integer values used for indexing
the records in metadata tables. RIDs are simple indexes, applicable only to an
explicitly specified table, and tokens carry the information identifying metadata
tables they reference.

A RID is a record identifier, which is simply a one-based row number in the
table containing the record. The range of valid RIDs stretches from 1 to the
record count of the addressed table, inclusive. RIDs are used in metadata inter
nally only; metadata emission and retrieval APis do not use RIDs as parameters.

The RID column type codes (0-63) serve as zero-based table indexes.
Thus the type of the column identifies the referenced table, while the value of
the table cell identifies the referenced record. This works fine as long as we
know that a particular column always references one particular table and no
other. Now if we only could combine RID with table identification.

Actually, we can. The combined identification entity, referred to as a token, is
used in all metadata APls and in all IL instructions. A token is a 4-byte unsigned
integer whose senior byte carries a zero-based table index (the same as the
internal metadata RID type). The remaining 3 bytes are left for the RID.

There is a significant difference between token types and internal meta
data RID types, however: whereas internal RID types cover all metadata tables,
the token types are defined for only a limited subset of the tables, as noted in
Table 4-2.

Table 4-2 Token Types and Their Referenced Tables

Token Type Value (RID Type « 24) Referenced Table

mdtModule OxOOOOOOOO Module

mdtTypeRef OxOlOOOOOO TypeRef

mdtTypeDef Ox02000000 TypeDef

mdtFieldDef Ox04000000 Field

(continued)

88 Part II Underlying Structures

Table 4-2 Token Types and Their Referenced Tables (continued)

Token Type Value (RID Type « 24) Referenced Table

mdtMethodDef Ox06000000 Method

mdtParamDef OxOSOOOOOO Param

mdtlnterjace!mpl Ox09000000 Interfacelmpl

mdtMemberRef OxOAOOOOOO Member Ref

mdtCustomAttribute OxOCOOOOOO CustomAttribute

mdtPermission OxOEOOOOOO DeclSecurity

mdtSignature OxllOOOOOO StandAloneSig

mdtEvent Ox14000000 Event

mdtProperty Ox17000000 Property

mdtModuleRef OxlAOOOOOO ModuleRef

mdtTypeSpec OxlBOOOOOO TypeSpec

mdtAssembly Ox20000000 Assembly

mdtAssemblyRef Ox23000000 Assembly Ref

mdtFile Ox26000000 File

mdtExportedType Ox27000000 ExportedType

mdtManifestResource Ox28000000 ManifestResource

The 24 tables that do not have associated token types are not intended to
be accessed from "outside," through metadata APis or from IL code. These
tables (excluding the TypeTyPar and MethodTyPar tables, which are reserved
for future use) are of an auxiliary or intermediate nature and should be
accessed indirectly only, through the references contained in the "exposed"
tables, which have associated token types.

The validity of these tokens can be defined simply: a valid token has a
type from Table 4-2, and it has a valid RID-that is, a RID in the range 1 to the
record count of the table of a specified type.

An additional token type, quite different from the types listed in Table 4-2,
is mdtString (Ox70000000). Tokens of this type are used to refer to the user
defined Unicode strings stored in the #US stream.

Both the type component and the RID component of user-defined string
tokens differ from thos~ of metadata table tokens. The type component of a
user-defined string token (Ox70) has nothing to do with column types (the max
imal column type is 103 = Ox67), which is not surprising, considering that no
column type corresponds to an offset in the #US stream. Because metadata
tables never reference the user-defined strings, it's not necessary to define a col
umn type for the strings. In addition, the RID component of a user-defined

Chapter 4 Metadata Tables Organization 89

string token does not represent a RID because no table is being referenced.
Instead, the 3 lower bytes of a user-defined string token hold an offset in the
#US stream.

The definition of the validity of a user-defined string token is more com
plex. The RID component is valid if it is greater than 0 and if the string it defines
starts at a 4-byte boundary and is fully contained within the #US stream. The last
condition is checked in the following way: The bytes at the offset specified by
the RID component of the token are interpreted as the compressed length of
the string. (Don't forget that the #US stream is a blob heap.) If the sum of the
offset and the size of compressed length brings us to a 4-byte boundary, and if
this sum plus the calculated length are within the #US stream size, everything is
fine and the token is valid.

Coded Tokens
The discussion thus far has focused on the "external" form of tokens. You have
every right to suspect that the "internal" form of tokens, used inside the meta
data, is different-and it is.

Why can't the external form also be used as internal? Because the external
tokens are huge. Imagine, 4 bytes for each token, when we fight for each mea
sly byte, trying to squeeze the metadata into as small a footprint as possible.
(Bandwidth! Don't forget about the bandwidth!) Compression? Alas, because of
the type component occupying the senior byte, external tokens represent very
large unsigned integers and thus cannot be efficiently compressed, even though
their middle bytes are full of zeros. We need a fresh approach.

The internal encoding of tokens is based on a simple idea: A column must
be given a token type only if it might reference several tables. (Columns refer
encing only one table have a respective RID type.) But any such column cer
tainly does not need to reference all the tables.

So our first task is to identify which group of tables each such column
might reference and form a set of such groups. Let's assign each group a num
ber, which will be a coded token type of the column. Because coded token
types occupy a range from 64 to 95, we can define up to 32 groups.

Now, every group contains two or more table types. Let's enumerate them
within the group and see how many bits we will need for this enumeration.
This bit count will be a characteristic of the group and hence of the respective
coded token type. The number assigned to a table within the group is called
a tag.

This tag plays a role roughly equivalent to that of the type component of
an external token. But, unwilling to once again create large tokens full of zeros,
we will this time put the tag not in the most significant bits of the token but
rather in the least significant bits. Then let's left-shift the RID n bits and add the

90 Part II Underlying Structures

left-shifted RID to the tag, where n is the bit width of the tag. Now we've got a
coded token.

What about the coded token size? We know which metadata tables form
each group, and we know the record count of each table, so we know the max
imal possible RID within the group. Say, for example, that we would need m
bits to encode the maximal RID. If we can fit the maximal RID (m bits) and the
tag (n bits) into a 2-byte unsigned integer (16 bits), we win, and the coded
token size for this group will be 2 bytes. If we can't, we are out of luck and will
have to use 4-byte coded tokens for this group. No, we won't even consider 3
bytes-it's unbecoming.

To summarize, a coded token type has the following attributes:

• Number of referenced tables (part of the schema)

• Array of referenced table IDs (part of the schema)

• Tag bit width (part of the schema, derived from the number of refer
enced tables)

• Coded token size, either 2 or 4 bytes (computed at the metadata
opening time from the tag width and the maximal record count
among the referenced tables)

Table 4-3 lists the twelve coded token types defined in the metadata
schema of the first release of the common language runtime.

Table 4-3 Coded Token Types

Coded Token Type Tag

TypeDefOrRef (64): 3 referenced tables, tag size 2

Type Def 0

TypeRef 1

Type Spec 2

HasConstant (65): 3 referenced tables, tag size 2

Field 0

Param 1

Property 2

HasCustomAttribute (66): 19 referenced tables, tag size 5

Method 0

Field 1

Type Ref 2

TypeDef 3

Chapter 4 Metadata Tables Organization 91

Table 4-3 Coded Token Types (continued)

Coded Token Type

Param

Interfaceimpl

MemberRef

Module

DeclSecurity

Property

Event

StandAloneSig

ModuleRef

Type Spec

Assembly

Assembly Ref

File

ExportedType

ManifestResource

HasFieldMarshal (67): 2 referenced tables, tag size 1

Field

Param

HasDeclSecurity (68): 3 referenced tables, tag size 2

Type Def

Method

Assembly

MemberRejParent (69): 5 referenced tables, tag size 3

TypeDef

Type Ref

ModuleRef

Method

TypeSpec

HasSemantics (70): 2 referenced tables, tag size 1

Event

Property

MethodDefOrRef (71): 2 referenced tables, tag size 1

Method

Tag

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

0

1

0

1

2

0

1

2

3

4

0

1

0
(continued)

92 Part II Underlying Structures

Table 4-3 Coded Token Types (continued)

Coded Token Type

Member Ref

MemberForwarded (72): 2 referenced tables, tag size 1

Field

Method

Implementation (73): 3 referenced tables, tag size 2

File

AssemblyRef

Exported Type

CustomAttributeType (74): 5 referenced tables, tag size 3

Type Ref

TypeDef

Method

Member Ref

String

ResolutionScope (75): 4 referenced tables, tag size 2

Module

ModuleRef

Assembly Ref

Type Ref

Tag

1

0

1

0

1

2

0

1

2

3

4

0

1

2

3

The coded token type range (64-95) provides room to add
another twenty types in the future, should it ever become necessary.

Coded tokens are part of metadata's internal affairs. The ILAsm compiler,
like all other compilers, never deals with coded tokens. Compilers and other
tools read and emit metadata through the metadata import and emission APis,
either directly or through managed wrappers provided in the .NET Framework
class library-System.Reflection for metadata import and System.Reflection.Emit
for metadata emission. The metadata APis automatically convert standard 4-
byte tokens to and from coded tokens. IL code also uses only standard 4-byte
tokens.

Chapter 4 Metadata Tables Organization 93

Nonetheless, the preceding definitions are useful to us for two reasons.
First, we will need them when we discuss individual metadata tables in later
chapters. Second, these definitions provide a good hint about the nature of rela
tionships between the metadata tables.

Metadata Validation
This "good hint," however, is merely a hint. The definitions in the preceding
section provide information about which tables we can reference from a col
umn of a certain type. It does not mean that we should reference all the tables
we can. Some of the groups of token types listed in Table 4-3 are wider than is
actually acceptable in the first release of the common language runtime. For
example, the MemberRejParent group, which describes the tables that can con
tain the parents of a MemberRef record, includes the TypeDef table. But the
meta data emission AP Is will not accept a TypeDef token as the parent token of
a MemberRef; and even if such metadata was somehow emitted, the loader
would reject it.

Even AP Is provide very few safeguards (most of them fairly trivial) as far
as metadata validity is concerned. Metadata is an extremely complex system,
and literally hundreds of validity rules need to be enforced.

High-level language compilers, such as Microsoft Visual Basic .NET or
Microsoft Visual C# .NET compilers, provide a significant level of protection
against invalid metadata emission because they shield the actual metadata spec
ification and emission from programmers. Because high-level languages are
concept-driven and concept-based, and it is the compiler's duty to relate the
language concepts to the metadata structures and IL code constructs, a compiler
can be built to emit valid structures and constructs. (Well, more or less.) On the
other hand, ILAsm, like other assemblers, is a platform-oriented language and
allows a programmer to generate an enormously wide range of metadata struc
tures and IL constructs, only a fraction of which represent a valid subset.

In view of this bleak situation, we need to rely on external validation and
verification tools. (Speaking of "validation and verification" is not an exercise in
tautology-the term validation is usually applied to metadata, and verification
to IL code.) One such tool is the common language runtime itself. The loader
tests metadata against many of the validity rules, especially those whose viola
tion could break the system. The runtime subsystem responsible for JIT compi
lation performs IL code verification. These processes are referred to as run-time
validation and verification.

94 Part II Underlying Structures

PEVerify, a stand-alone tool included in the .NET Framework SDK, offers
more exhaustive validation and verification. PEVerify employs two independent
subsystems, MD Validator and IL Verifier. MD Validator can also be invoked
through the IL Disassembler.

You can find information about PEVerify and the IL Disassembler in the
appendixes. Later chapters discuss various validity rules along with the related
metadata structures and IL constructs.

Summary

Now that we know how the metadata is organized in principle, we are ready to
examine the particular metadata items and the tables representing them. All
further considerations shall concentrate on four metadata streams-#Strings,
#B/Ob, #US, and #--because the #GUID stream is referenced in one metadata
table only (the Module table) and the #- stream (unoptimized metadata) is
never emitted by the ILAsm compiler.

Here's some advice for those of you who wonder if it would be a good
idea to spoof the metadata header to get access to the data beyond the metadata
under the pretense of manipulating the metadata: forget it. The runtime loader
has safeguards analyzing the consistency of the metadata headers and the
metadata itself. If an inconsistency is detected, the loader refuses to open the
metadata streams. Tinkering with the metadata headers does not lead to erroneous
or unpredictable behavior of the module; instead, it renders the module
unloadable, period.

And on this cheerful note, let's proceed to discussion of the "real"
metadata items.

Part Ill

I

Modules and Assemblies
What Is an Assembly? 97

Manifest 101

Order of Manifest Declarations in ILAsm 117

Single-Module and Multimodule Assemblies 118

Metadata Validity Rules 119

This chapter discusses the organization, deployment, and execution of assemblies
and modules. It also provides a detailed examination of the metadata segment
responsible for assembly and module identity and interaction: the manifest. As
you might recall from Chapter 1, "Simple Sample," an assembly can include several
modules. Any module of a multimodule assembly can-and does, as a rule
carry its own manifest, but only one module per assembly carries the manifest
that contains the assembly's identity. This module is referred to as the prime
module. Thus each assembly, whether multimodule or single-module, contains
only one prime module.

What Is an Assembly?
An assembly is basically a deployment unit, a building block of a managed
application. Assemblies are reusable, allowing different applications to use the
same assembly. Assemblies carry a full self-description in their metadata,
including version information that allows the common language runtime to use
a specific version of an assembly for a particular application.

97

98 Part Ill Fundamental Components

This arrangement eliminates what's known as "DLL Hell," the situation
created when upgrading one application renders another application inopera
tive because both happen to use the same DLL(s). A typical example of DLL
Hell occurred with the release of the game Microsoft Age of Empires II, a sequel
to Age of Empires. Because the sequel used a more advanced version of the
Microsoft DirectX DLL, which was incompatible with Age of Empires, the orig
inal game ceased to work when the sequel was installed. To deal with the situ
ation, Microsoft had to issue a new version of the DirectX DLL that was
consumable by both games.

Private and Shared Assemblies
Assemblies are classified as either private or shared. Structurally and functionally,
these two kinds of assemblies are the same, but they differ in how they are
named and deployed and in the level of version checks performed by the loader.

A private assembly is considered part of a particular application, not
intended for use by other applications. A private assembly is deployed in the
same directory as the application or in a subdirectory of this directo1y. This kind
of deployment shields the private assembly from other applications, which
should not have access to it.

Being part of a particular application, a private assembly is usually created
by the same author (person, group, or organization) as other components spe
cific to this application and is thus considered to be primarily the author's
responsibility. Consequently, naming and versioning requirements are relaxed
for private assemblies, and the common language runtime does not enforce
these requirements. The name of a private assembly must be unique within the
application.

A shared assembly is not part of a particular application and is designed to
be used widely by various applications. Shared assemblies are usually authored
by groups or organizations other than those responsible for the applications
that use these assemblies. A prominent example of shared assemblies is the set
of assemblies constituting the Microsoft .NET Framework class library.

As a result of such positioning, the naming and versioning requirements
for shared assemblies are much stricter than those for private assemblies.
Names of shared assemblies must be globally unique. Additional assembly
identification is provided by strong names, which use cryptographic public/
private key pairs to ensure the name's uniqueness and to prevent name spoofing.
A strong name also provides the consumer of the shared assembly with infor
mation about the identity of the assembly publisher. If the common language
runtime cryptographic checks pass, the consumer can be sure that the assembly

Chapter 5 Modules and Assemblies 99

comes from the expected publisher, assuming that the publisher's private
encryption key was not compromised.

Shared assemblies are deployed into the global assembly cache (GAC).
The GAC stores multiple versions of shared assemblies side by side. The loader
typically looks for the shared assemblies in the GAC.

Note Under some circumstances, an application might need to
deploy a shared assembly in its directory to ensure that the appropri
ate version is loaded. In such a case, the shared assembly is being
used as a private assembly, so it is not in fact shared, whether it is
strong-named or not.

Application Domains as Logical Units of Execution
Operating systems and run times typically provide some form of isolation
between applications running on the system. This isolation is necessary to
ensure that code running in one application cannot adversely affect other, unre
lated applications. In modern operating systems, this isolation is achieved by
using process boundaries, where a process, occupying a unique virtual address
space, runs exactly one application and scopes the resources that are available
for that process to use.

Managed code execution has similar needs for isolation. Such isolation
can be provided at lower cost in a managed application, however, consider
ing that managed applications run under the control of the common language
runtime and are verified to be type-safe.

The runtime allows multiple applications to be run in a single operating
system process, using a construct called an application domain to isolate the
applications from one another. In many respects, application domains are the
common language runtime equivalent of an operating system process.

Specifically, isolation in managed applications means the following:

• Different security levels can be assigned to each application domain,
giving the host a chance to run the applications with varying security
requirements in one process.

• Applications can be independently stopped and debugged.

• Code running in one application cannot directly access code or
resources from another application. (Doing so could introduce a
security hole.)

100 Part Ill Fundamental Components

• Faults in one application cannot affect other applications by bringing
down the entire process.

• Each application has control over where the code loaded on its
behalf comes from and what version the code being loaded is. In
addition, configuration information is scoped by the application.

The following examples describe scenarios in which it is useful to run
multiple applications in the same process:

• ASP.NET runs multiple Web applications in the same process. In
ASP/IIS (Internet Information Services), application isolation was
achieved by process boundaries, which proved too expensive to
scale appropriately.

• Microsoft Internet Explorer runs code from multiple sites in the same
process as the browser code itself. Obviously, code from one site
should not be able to affect code from another site.

• Database engines need to run code from multiple user applications
in the same process.

• Application server products might need to run code from multiple
applications in a single process.

Hosting environments such as ASP.NET or Internet Explorer need to run
managed code on behalf of the user and take advantage of the application
isolation features provided by application domains. In fact, it is the host that
determines where the application domain boundaries lie and in what domain
user code is run, as these examples show:

• ASP.NET creates application domains to run user code. Domains are
created per application as defined by the Web server.

• Internet Explorer by default creates one application domain per site
(although developers can customize this behavior).

• In Shell EXE, each application launched from the command line runs
in a separate application domain occupying one process.

• Microsoft Visual Basic for Applications (VBA) uses the default appli
cation domain of the process to run the script code· contained in a
Microsoft Office document.

• Windows Foundation Classes (WFC) Forms Designer creates a sepa
rate application domain for each form being built. When a form is
edited and rebuilt, the old application domain is shut down, the code
is recompiled, and a new application domain is created.

Chapter 5 Modules and Assemblies 101

Because isolation demands that the code or resources of one application
must not be directly accessible from code running in another application, no
direct calls are allowed between objects in different application domains.
Cross-domain communications are limited to passing the objects, which are
either copied or accessed via proxy and which fall into one of the following
three categories:

• Unbound objects are marshaled by value across domains. This
means that the receiving domain gets a copy of the object to play
with instead of the original object.

• AppDomain-bound objects are marshaled by reference across
domains, which means that cross-domain access is always accom
plished through proxies.

• Context-bound objects are also marshaled by reference across
domains as well as between contexts within the same domain.

The common language runtime relies on the verifiable type safety of the
code to provide fault isolation between domains at a much lower cost than that
incurred by the process isolation used in operating systems. Because isolation is
based on static type verification, hardware ring transitions or process switches
are not necessary.

Manifest
The metadata that describes an assembly and its modules is referred to as a
manifest. The manifest carries the following information:

• Identity, including a simple textual name, an assembly version num
ber, an optional culture if the assembly contains localized managed
resources, and an optional public key if the assembly is strong
named. This information is defined in two metadata tables: Module
and Assembly (in the prime module only).

• Contents, including types and managed resources exposed by this
assembly for external use and the location of these types and
resources. The metadata tables that contain this information are
ExportedType (in the prime module only) and ManifestResource.

• Dependencies, including other (external) assemblies this assembly
references and, in the case of a multimodule assembly, other modules
of the same assembly. You can find the dependency information in
these metadata tables: AssemblyRef, ModuleRef, and File.

102 Part Ill Fundamental Components

• Requested permissions, specific to the assembly as a whole. More
specific requested permissions might also be defined for certain
types (classes) and methods. This information is defined in the
DeclSecurity metadata table. (Chapter 14, "Security Attributes,"
describes requested permissions and their declaration.)

• Custom attributes, specific to the manifest components. Custom
attributes provide additional information used by compilers and
other tools. The common language runtime recognizes a limited
number of custom attributes. Custom attributes are defined in the
CustomAttribute metadata table. (Refer to Chapter 13, "Custom
Attributes," for more information on this topic.)

The diagram in Figure 5-1 shows the mutual references that take place
between the metadata tables constituting the manifest.

Assembly
(assembly• identity;

Manifest Resource
(managed .resources

d~fineci in.this assembly
ordefined -OT us~d

in this module)

Module
(identity of this module)

Module Ref
(other modules of

the same assembly)

File

(types exposed by this
assembly and defined in

other modules:
prime module only)

Figure 5-1 Mutual references between the manifest's metadata tables.

Chapter 5 Modules and Assemblies 103

Assembly Metadata Table and Declaration
The Assembly metadata table contains at most one record, wb.ich appears in the
prime module's metadata. The table has the following column structure:

• HashAlgld (4-byte unsigned integer) The ID of the hash algo
rithm used in this assembly to hash the files. The value must be one
of the CALG_ *values defined in the header file Wincrypt.h. The
default hash algorithm is CALG_SHA (a.k.a. CALG_SHAJ) (Ox8004).
ECMA specifications consider this algorithm to be standard, offering
the best widely available technology for file hashing.

• MajorVersion (2-byte unsigned integer) The major version of
the assembly.

• MinorVersion (2-byte unsigned integer) The minor version of

the assembly.

• BuildNumber (2-byte unsigned integer) The build number of
the assembly.

• RevisionNumber (2-byte unsigned integer) The revision num
ber of the assembly.

• Flags (4-byte unsigned integer) Assembly flags indicating limita
tions on running different versions of this assembly side by side.

• PublicKey (offset in the #Blob stream) A binary object repre
senting a public encryption key for a strong-named assembly.

• Name (offset in the #Strings stream) The assembly name,
which must be nonempty and must not contain a path or a filename
extension.

• Locak (offset in the #Strings stream) The culture (formerly
known as locale) name, such as en-US (American English) or fr-CA
(Canadian French). The culture name must match one of hundreds
of culture names "known" to the runtime through the .NET Frame
work class library, but this validity rule is rather meaningless: to use
a culture, the specific language support must be installed on the tar
get machine. If the language support is not installed, it doesn't matter
whether the culture is "known" to the runtime.

In ILAsm, the Assembly is declared in the following way:

.assembly <flags> <name> { <assemblyDecl>* }

104 Part Ill Fundamental Components

where <flags> : : =

<none> II No limitations on side-by-side running of the assembly
I noappdomain II No side-by-side running within one AppDomain
I noprocess II No side-by-side running within one process
I nomachine II No side-by-side running on the same machine

and <assemblyDecl> ::=

.hash algorithm <int32> II Set hash algorithm ID
I .ver <int32>:<int32>:<int32>:<int32> II Set version numbers
I .publickey = C <bytes>) II Set public encryption key
I .locale <quotedString> II Set assembly culture
I <securityDec7> II Set requested permissions
I <customAttrDec7> II Define custom attribute(s)

In this declaration, <int32> denotes an integer number, at most 4 bytes in
size. The notation <bytes> represents a sequence of two-digit hexadecimal
numbers, each representing 1 byte; this form, bytearray, is often used in ILAsm
to represent binary objects of arbitrary size. Finally, <quotedString> denotes, in
general, a composite quoted string-that is, a construct such as
''ABC"+ "DEF"+ "GHI". The concatenation with the plus sign is useful for defining
very long strings, although in this case we don't need concatenation for strings
such as en-US or nl-BE.

Note In addition to the three flags related to side-by-side execution,
three more, which are not relevant to the discussion at hand, are avail-
able. One indicates whether the assembly holds a full public key. This
flag is never set explicitly; rather, it is set when a PublicKey
defined. The other two flags, EnableJ/TcompilerTracking and u1sao11~
J/Tcompileroptimizer, are related to the debug mode of the JIT
in-time) compiler and are set at the module load time.

AssemblyRef Metadata Table and Declaration
The AssemblyRef (assembly reference) metadata table defines the external
dependencies of an assembly or a module. Both prime and nonprime modules
can-and do, as a rule-contain this table. The only assembly that does not
depend on any other assembly, and hence has an empty AssemblyRef table, is
Mscorlib.dll, the root assembly of the .NET Framework class library.

Chapter 5 Modules and Assemblies 105

The column structure of the AssemblyRef table is as follows:

• MajorVersion (2-byte unsigned integer) The major version of

the assembly.

• MinorVersion (2-byte unsigned integer) The minor version of

the assembly.

• BuildNumber (2-byte unsigned integer) The build number of
the assembly.

• RevisionNumber (2-byte unsigned integer) The revision num

ber of the assembly.

• Flags (4-byte unsigned integer) Assembly reference flags, which
indicate whether the assembly reference holds a full unhashed
public key or a "surrogate" (public key token).

• PublicKeyOrToken (offset in the #Blob stream) A binary object
representing a public encryption key for a strong-named assembly or
a token of this key. A key token is an 8-byte representation of a
hashed public key.

• Name (offset in the #Strings stream) A referenced assembly
name, which must be nonempty and must not contain a path or a
filename extension.

• Locale (offset in the #Strings stream) The culture name.

• HashValue (offset in the #Blob stream) A binary object repre
senting a hash of the metadata of the referenced assembly's prime
module. Because this value is ignored by the loader in the first
release of the common language runtime, it can safely be omitted.

In ILAsm, an AssemblyRef is declared in the following way:

.assembly extern <name> { <assemblyRefDecl>* }

where <assemblyRejDecl> ::=

.ver <int32>:<int32>:<int32>:<int32> II Set version numbers

.publickey = C <byt.es>) II Set public encryption key

.publickeytoken = (<bytes>) II Set public encryption key token

.locale <quotedString> II Set assembly locale

.hash= (<bytes>) II Set hash value
<customAttrDecl> II 'Define custom attribute(s)

106 Part Ill Fundamental Components

As you might have noticed, ILAsm does not provide a way to set the flags
in the AssemblyRef declaration. The explanation is simple: the only flag relevant
to an AssemblyRef is the flag indicating whether the AssemblyRef carries a full
unhashed public encryption key, and this flag is set only when the publickey
directive is used.

When referencing a strong-named assembly, you are required to specify
publickeytoken (or .publickey, which is rarely used in AssemblyRejs) and .ver.
The only exception to this rule among the strong-named assemblies is
Mscorlib. dll.

If .locale is not specified, the referenced assembly is presumed to be
"culture-neutral."

An interesting situation arises when we need to use two or more versions
of the same assembly side by side. An assembly is identified by its name, version,
public key (or its token), and culture. It would be extremely cumbersome to list
all these identifications every time we reference an assembly: "I want to call
method Bar of class Foo from assembly SomeOtherAssembly, and I want the
version number such-and-such, the culture nl-BE, and ... " Of course, if we
didn't need to use different versions side by side, we could simply refer to an
assembly by name.

ILAsm provides an AssemblyRef aliasing mechanism to deal with such
situations. The AssemblyRef declaration can be extended as shown here:

.assembly extern <name> as <alias> { <assemblyRefDecl>* }

And whenever we need to reference this assembly, we can use its <alias>, as
seen in this example:

.assembly extern SomeOtherAssembly as OldSomeOther
{ .ver 1:1:1:1}
.assembly extern SomeOtherAssembly as NewSomeOther
{ .ver 1:3:2:1 }

call int32 [OldSomeOther]Foo::Bar(string)

call int32 [NewSomeOther]Foo: :Bar(string)

The alias is not a part of metadata. Rather, it is simply a language tool, needed
to identify a particular AssemblyRef among several same-name AssemblyRefs. IL
Disassembler generates aliases for AssemblyRefs whenever it finds same-name
AssemblyRefs in the module metadata.

Chapter 5 Modules and Assemblies 107

The Loader in Search of Assemblies
When we define an AssemblyRef in the metadata, we expect the loader to find
exactly this assembly and load it into the application domain. Let's have a look
at the process of finding an external assembly and binding it to the referencing
application.

Given an AssemblyRef, the process of binding to that assembly is influ
enced by these factors:

• The application base (AppBase), which is a URL to the referencing
application location (that is, to the directory in which your applica
tion is located). For executables, this is the directory containing the
EXE file. For Web applications, the AppBase is the root directory of
the application as defined by the Web server.

• Version policies specified by the application, by the publisher of the
shared assembly being referenced, or by the administrator.

• Any additional search path information given in the application con
figuration file.

• Any code base (CodeBase) locations provided in the configuration
files by the application, the publisher, or the administrator. The Code
Base is a URL to the location of the referenced external assembly.

• Whether the reference is to a shared assembly with a strong name or
to a private assembly.

As illustrated in Figure 5-2, the loader performs the following steps to
locate a referenced assembly:

1. Initiate the binding. Basically, this means taking the relevant Assem
blyRef record from the metadata and seeing what it holds-its exter
nal assembly name, whether it is strong-named, whether culture is
specified, and so on.

2. Apply the version policies, which are statements made by the appli
cation, by the publisher of the shared assembly being referenced, or
by the administrator. These statements are contained in XML con
figuration files and simply redirect references to a particular version
(or set of versions) of an assembly to a different version.

108 Part Ill Fundamental Components

The .NET Framework retrieves its configuration from a set of
configuration files. Each file represents settings that have different
scopes. For example, the configuration file supplied with the instal
lation of the common language runtime has settings that can affect
all applications that use that version of the runtime. The configura
tion file supplied with an application has settings that affect only that
one application.

3. Check the CodeBase. Now that the common language runtime
knows which version of the assembly it is looking for, it begins the
process of locating it. If the CodeBase has been supplied (in the same
XML configuration file), it points the runtime directly at the execut
able to load; otherwise, the runtime needs to look in the AppBase
and the GAC, as described in step 4. If the executable specified by
the CodeBase matches the assembly reference, the process of finding
the assembly is complete, and the external assembly can be loaded.
In fact, even if the executable· specified by the CodeBase does not
match the reference, the common language runtime stops searching.
In this case, of course, the search is considered a failure, and no
assembly load follows.

4. Check the GAC or the AppBase or both. If the CodeBase hasn't been
supplied, the remainder of the process depends on whether the ref
erenced assembly is private or strong-named.

If the reference is to a private assembly, the process probes the
AppBase. The probing involves consecutive searching in the directories
defined by the AppBase, the private binary path (binpath) from the
same XML configuration file, the culture of the referenced assembly,
and its name. The AppBase plus directories specified in the binpath
form a set of root directories {<rootk>, k=l.. .NJ. If the AssemblyRef
specifies the culture, the search is performed in directories <rootk>I
<culture> and then in <rootk>/<culture>/<name>; otherwise, the
directories <rootk> and then <rootk>/<name> are searched. When
searching for a private assembly, the process ignores the version
numbers. If the assembly is not found by probing, the binding fails.

If the assembly is strong-named, the process first looks in the
global assembly cache. If the strong-named assembly is not found in
the GAC, the process probes the AppBase as just described, and in
this case it also checks the version numbers.

Chapter 5 Modules and Assemblies 109

Step 1: Initiate the binding

Step 2:.Apply version policies
(application, publisher, administrator)

Probe in the CodeBase

Search in the global assembly cache

Yes

Probe in the AppBase

Figure 5-2 Searching for a referenced assembly.

Module Metadata Table and Declaration
The Module metadata table contains a single record that provides the identifi
cation of the current module. The column structure of the table is as follows:

• Generation (2-byte unsigned integer) Used only at run time, in

edit-and-continue mode.

• Name (offset in the #Strings stream) The module name, which
is the same as the name of the executable file with its extension but
without a path. The length should not exceed 512 characters, counting
the zero terminator.

11 O Part Ill Fundamental Components

• Mvid (offset in the #GUID stream) A globally unique identifier,
assigned to the module as it is generated.

• Encld (offset in the #GUID stream) Used only at run time, in
edit-and-continue mode.

• EncBaseld (offset in the #GUID stream) Used only at run time,
in edit-and-continue mode.

Because only one entry of the Module record can be set explicitly (the
Name entry), the module declaration in ILAsm is quite simple:

.module <name>

ModuleRef Metadata Table and Declaration
The ModuleRef metadata table contains descriptors of other modules refer
enced in the current module. The set of "other modules" includes subsets of
both managed and unmanaged modules.

The relevant managed modules are the other modules of the current
assembly. In ILAsm, they should be declared explicitly, and their declarations
should be paired with File declarations (discussed in the following section).

The unmanaged modules described in the ModuleRef table are simply
unmanaged DLLs containing methods called from the current module using
the platform invocation mechanism-P/lnvoke, discussed in Chapter 15,
"Managed and Unmanaged Code Interoperation." These ModuleRef records
should not be paired with File records. They need not be explicitly declared in
ILAsm because in ILAsm the DLL name is part of the P/lnvoke specification.

A ModuleRef record contains only one entry, the Name entry, which is an
offset in the #Strings stream. The ModuleRef declaration in ILAsm is not much
more sophisticated than the declaration of Module:

.module extern <name>

As in the case of Module, <name> in ModuleRef is the name of the executable
file with its extension but without a path, not exceeding 512 characters.

File Metadata Table and Declaration
The File metadata table describes other files of the same assembly that are
referenced in the current module. In single-module assemblies, this table is
empty. The table has the following column structure:

Chapter 5 Modules and Assemblies 111

• Flags (4-byte unsigned integer) Binary flags characterizing the
file. In this version, this entry is mostly reserved for future use; the
only flag currently defined is File contains no metadata
(Ox00000001). This flag indicates that the file in question is not a
managed PE file but rather a pure resource file.

• Name (offset in the #Strings stream) The filename, subject to
the same rules as the names in Module and ModuleRef This is the
only occurrence of data duplication in the metadata model: the File
name matches the name used in the ModuleRef with which this File
record is paired. However, because the names in both records are
not physical strings but rather offsets in the string heap, the data
might not actually be duplicated; instead, both records might refer
ence the same string in the heap.

• HashValue (offset in the #Blob stream) The blob representing
the hash of the file, used to authenticate the files in a multifile assembly.
Even in a strong-named assembly, the strong name signature resides
only in the prime module and covers only the prime module. Non
prime modules in an assembly are authenticated by their hash values.

The File declaration in ILAsm looks like the following:

.file <flag> <name> .hash = C <bytes>)

where <flag>::=

<none>
nometadata

II The file is a managed PE file
II The file is a pure resource file

If the hash value is not explicitly specified, the ILAsm compiler finds the
named file and computes the hash value using the hash algorithm specified in
the Assembly declaration.

The File declaration can also have a .entrypoint clause, as shown in this
example:

.file MainClass.dll

.hash = C01 02 03 04 05 06 _)

.entrypoint

This sort of File declaration can occur only in the prime module and only when
the entry point method is defined in a nonprime module of the assembly. This
clause of the File declaration does not affect the metadata, but it puts the appro
priate file token in the EntryPointToken entry of the common language runtime
header. See Chapter 3, "The Structure of a Managed Executable File," for details
about EntryPointToken and the runtime header.

112 Part 111 Fundamental Components

The prime module of an assembly, especially a runnable application
(EXE), must have a valid token in the EntryPointToken field of the common lan
guage runtime header; and this token must be either a Method token, if the
entry point method is defined in the prime module, or a File token. In the latter
case, the loader loads the relevant module and inspects its common language
runtime header, which must contain a valid Method token in the EntryPoint
Token field.

Managed Resource Metadata and Declaration
A resource is any nonexecutable data that is logically deployed as a part of an
application. The data can take any number of forms such as strings, images,
persisted objects, and so on. As Chapter 3 described, resources can be either
managed or unmanaged (platform-specific). These two kinds of resources have
different formats and are accessed using managed and unmanaged APis,
respectively.

An application often must be customized for different cultures. A culture
is a set of preferences based on a user's language, sublanguage, and cultural
conventions. In the .NET Framework, the culture is described by the Culture
Info class from the .NET Framework class library. A culture is used to customize
operations such as formatting dates and numbers, sorting strings, and so on.

You might also need to customize an application for different countries or
regions. A region defines a set of standards for a particular country or region of
the world. In the .NET Framework, the class library describes a region using the
Regionlnfo class. A region is used to customize operations such as formatting
currency symbols.

Localization of an application is the process of sharing the application's
executable code with the application's resources that have been customized for
specific cultures. Although a culture and a region together constitute a locale,
localization is not concerned with customizing an application to a specific
region. The· .NET Framework and the common language runtime do not sup
port localization of component metadata, instead relying solely on the managed
resources for this task.

The .NET Framework uses a hub-and-spoke model for packaging and
deploying resources. The hub is the main assembly, which contains the nonlo
calizable executable code and the resources for a single culture (referred to as
the neutral culture). The neutral culture is the fallback culture for the applica
tion. Each spoke connects to a satellite assembly that contains the resources for
a single culture. Satellite assemblies do not contain code.

The advantages of this model are obvious. First, resources for new cul
tures can be added incrementally after an application is deployed. Second, an
application needs to load only those satellite assemblies that contain the
resources needed for a particular run.

Chapter 5 Modules and Assemblies 113

The resources used in or exposed by an assembly can reside in one of the
following locations:

• In separate resource file(s) in the same assembly. Each resource file
can contain one or more resources. The metadata descriptors of such
files carry the nometadata flag.

• Embedded in managed modules of the same assembly.

• In another (external) assembly.

Because the resource data is not directly used or validated by the deploy
ment subsystem or the loader, it can be of any kind.

All resource data embedded in a managed PE file resides in a contiguous
block inside the .text section. The Resources data directory in the common lan
guage runtime header provides the relative virtual address (RVA) and size of
embedded managed resources. Each individual resource is preceded by a 4-
byte unsigned integer holding the resource's length in bytes. Figure 5-3 shows
the layout of embedded managed resources.

I Resource #1: Name = ResA Offset = OxOOOO

I Resource #2: Name = ResB.bmp Offset = Ox0020 I
I Resource #3: Name= ResC.wav Offset= Ox0200

Resource #2

Resource #2

Resource#3

Resource #3

Figure 5-.3 The layout of embedded managed resources.

114 Part Ill Fundamental Components

The ManifestResource metadata table, describing the managed resources,
has the following column structure:

• Offset (4-byte unsigned integer) Location of the resource within
the managed resource segment to which the Resources data directory
of the common language runtime header points. This is not an RVA;
rather, it is an offset within the managed resource segment.

• Flags (4-byte unsigned integer) Binary flags indicating whether
the managed resource is public (accessible from outside the assem
bly) or private (accessible from within the current assembly only).

• Name (offset in the #Strings stream) Nonempty name of the
resource, unique within the assembly.

• Implementation (coded token of type Implementation) Token
of the respective AssemblyRef record if the resource resides in
another assembly or of the respective File record if the resource
resides in another file of the current assembly. If the resource is
embedded in the current module, this entry is set to 0. If the resource
is imported from another assembly, the offset need not be specified;
the loader will ignore it.

ILAsm syntax for the declaration of a managed resource is as follows:

.mresource <flag> <name> { <mResourceDecl>* }

where <flag>::= public I private and <mResourceDecl> ::=

.assembly extern <aljas>

I . file <name> at (j nt32>

II Resource is imported from another
II assembly
II Resource resides in another
II file of this assembly;
II <int32> is the offset

I <customAttrDecl> II Define custom attribute for this resource

The default flag value is private.
The directives .assembly extern and file in the context of a managed

resource declaration refer to the resource's Implementation entry and are mutu
ally exclusive. If Implementation references the AssemblyRef or File before it
has been declared, the ILAsm compiler will diagnose an error.

If the Implementation entry is empty, the resource is presumed embedded
in the current module. In this case, the ILAsm compiler creates the PE file, loads
the resource from the file according to the resource's name, and writes it into
the .text section of the PE file, automatically setting the Offset entry of the Man
ifestResource record. When the IL Disassembler disassembles a PE file into a
text file, the embedded managed resources are saved into binary files named

Chapter 5 Modules and Assemblies 115

after these resources, which allows the ILAsm compiler to easily pick them up
if the PE file needs to be reassembled.

ILAsm does not off er any language constructs to address the managed
resources because IL lacks the means to do so. Managed APis provided by the
.NET Framework class library-specifically, the System.Resources.ResourceMan
ager class-are used to load and manipulate managed resources.

ExportedType Metadata Table and Declaration
The ExportedType metadata table contains information about the public classes
(visible outside the assembly) that are declared in nonprime modules of the
assembly. Only the prime module's manifest can carry this table.

This table is needed because the loader expects the prime module of an
assembly to hold information about all classes exported by the assembly. The
union of the classes defined in the prime module and those in the Exported
Type table gives the loader the full picture.

On the other hand, the intersection of the classes defined in the prime
module and those in the ExportedType table must be nil. As a result, the
ExportedType table can be nonempty only in the prime module of a multimo
dule assembly.

The ExportedType table has the following column structure:

• Flags (4-byte unsigned integer) Binary flags indicating accessi
bility of the exported type. The flags we are interested in are public
and nested public; other accessibility flags-identical to the class
accessibility flags discussed in Chapter 6, "Namespaces and
Classes,"-are syntactically admissible but are not used to define true
exported types. Other flags can be present in pseudo-ExportedTypes
only, which the loader can use to resolve unscoped type references
in multimodule assemblies.

Some explanation is in order. Any time a type (class) is refer
enced in a module, the resolution scope should be provided to indi
cate where the referenced class is defined (in the current module, in
another module of this assembly, or in another assembly). If the reso
lution scope is not provided, the referenced type should be declared
in the current module. However, if this type cannot be found in the
module referencing it, and if the manifest of the prime module carries
a same-name pseudo-ExportedType record indicating where the type
is actually defined, the loader is nevertheless able to resolve the type
reference. None of the current Microsoft managed compilers, includ
ing the ILAsm compiler, uses this rather bizarre technique.

116 Part Ill Fundamental Components

• TypeDefld (4-byte unsigned integer) An uncoded token refer
ring to a record of the TypeDef table of the module where the
exported class is defined. This is the only occasion in the entire
metadata model in which a module's metadata contains an explicit
value of a metadata token from another module. This token is used
as something of a hint for the loader and can be omitted without any
ill effects. If the token is supplied, the loader retrieves the specific
TypeDef record from the respective module's metadata and checks
the full name of ExportedType against the full name of TypeDef If the
names match, the loader has found the class it was looking for; if the
names do not match, or if the token was not supplied in the first
place, the loader finds the needed TypeDef by its full name. My
advice: never specify a TypeDeftd token explicitly when program
ming in ILAsm. This shortcut works only for automatic tools such as
the Assembly Linker (AL) and only under certain circumstances.

• TypeName (offset in the #Strings stream) Exported type's
name; must be nonempty.

• TypeNamespace (offset in the #Strings stream) Exported
type's namespace; can be empty. Class names and namespaces are
discussed in Chapter 6.

• Implementation (coded token of type Implementation) Token
of the File record indicating the file of the assembly where the
exported class is defined or the token of another ExportedType, if the
current one is nested in another one.

The exported types are declared in ILAsm as follows:

.class extern <flag> <namespace>.<name> { <expTypeDecl>* }

where <flag>::= public I nested public and <expTypeDecl> ::=

.file <name> II File where exported class is defined
I .class extern <namespace>.<name> II Enclosing exported type
I .class <int32> II Set TypeDefld explicitly
I <customAttrDecl> II Define custom attribute for this ExportedType

The directives file and .class extern define the Implementation entry and
are mutually exclusive. As in the case of the .mresource declaration, the File or
ExportedType must be declared before being referenced by the Implementation
entry.

It is fairly obvious that if Implementation is specified as .class extern, we
are dealing with a nested exported type, and Flags must be set to nested public.
Inversely, if Implementation is specified as file, we are dealing with a top-level
unnested class, and Flags must be set to public.

Chapter 5 Modules and Assemblies 117

Order of Manifest Declarations in ILAsm
The general rule in ILAsm (and not only in ILAsm) is "declare, then reference."
In other words, it's always safer, and in some cases outright required, to declare
a metadata item before referencing it. There are times when you can reference
a yet-undeclared item-for example, calling a method that is defined later in the
source code. But you cannot do this in the manifest declarations.

If we reexamine the diagram shown in Figure 5-1, which illustrates the
mutual references between the manifest metadata tables, we can discern the
following list of dependencies:

• Exported types reference files and enclosing exported types.

• Manifest resources reference files and external assemblies.

• Every manifest item can have associated custom attributes, and cus
tom attributes reference external assemblies and (rarely) external
modules. (See Chapter 13 for details.)

To comply with the "declare, then reference" rule, the following sequence
of declarations is recommended for ILAsm programs, with the manifest decla
rations preceding all other declarations in the source code:

1. AssemblyRef declarations (.assembly extern), because of the custom
attributes. The reference to the assembly Mscorlib should lead the
pack because most custom attributes reference this assembly.

2. ModuleRef declarations (.module extern), again because of the cus

tom attributes.

3. Assembly declaration (.assembly). Because the ILAsm compiler takes
different paths in compiling Mscorlib.dll and compiling other assem
blies, it is better to let it know which path to take as soon as possible.
However, this is less important if you are not compiling Mscorlib.dll;
by default the compiler assumes that it is compiling a "conventional"
module.

4. File declarations (file) because ExportedType and ManifestResource

declarations might reference them.

5. ExportedType declarations (.class extern), with enclosing Exported
Type declarations preceding the nested ExportedType declarations.

6. ManifestResource declarations (.mresource).

118 Part 111 Fundamental Components

Single-Module and Multimodule Assemblies
A single-module assembly consists of a sole prime module. Manifests of single
module assemblies carry neither File nor ExportedType tables: there are no
other files to declare, and all types are defined in the prime module.

The advantages of single-module assemblies include lower overhead, easier
deployment, and slightly greater security. Overhead is lower because only one
set of headers and metadata tables must be read, transmitted, and analyzed.
Assembly deployment is simpler because only one PE file must be deployed.
And the level of security can be slightly higher because the prime module of the
assembly can be protected with a strong name signature, which is extremely
difficult to counterfeit and virtually guarantees the authenticity of the prime
module. Nonprime modules are authenticated only by their hash values (refer
enced in File records of the prime module) and are theoretically easier to spoof.

Manifests of the modules of a multimodule assembly carry File tables, and
the manifest of the prime module of such an assembly might or might not carry
ExportedType tables, depending on whether any public types are defined in
nonprime modules.

The advantages of multimodule assemblies include easier development
and ... lower overhead. (No, I am not pulling your leg.) Both advantages stem
from the obvious modularity of the multimodule assemblies.

Multimodule assemblies are easier to develop because if you distribute the
functionality among the modules well, the modules can be developed indepen
dently and then incrementally added to the assembly. (I didn't say that a multi
module assembly was easier to design.)

Lower overhead at run time results from the way the loader operates: it
loads the modules only when they are referenced. So if only a part of your

Chapter 5 Modules and Assemblies 119

assembly's functionality is engaged in a certain execution session, only part of
the modules constituting your assembly might be loaded. Of course, you can
not count on any such effect if the functionality is spread all over the modules
and if classes defined in different modules cross-reference each other.

A well-known technique for building a multimodule assembly from a set
of modules is based on a "spokesperson" approach: the functional modules
are analyzed, and an additional prime module is created, carrying nothing but
the manifest and (maybe) a strong name signature. Such a prime module car
ries no functionality or positive definitions of its own whatsoever-it is only
a front for functional modules, a "spokesperson" dealing with the loader on
behalf of the functional modules. The Assembly Linker tool, distributed with
the .NET Framework, uses this technique to build multimodule assemblies.

Metadata Validity Rules
In this section, I'll summarize the validity rules for metadata contained in a man
ifest. Because some of these rules have a direct bearing on how the loader func
tions, the respective checks are performed at run time. Other rules describe
"well-formed" metadata; violating one of these rules might result in rather pecu
liar effects during the program execution, but it does not represent a crash or
security breach hazard, so the loader does not perform these checks. You can
find the complete set of metadata validity rules in Partition II of the ECMA Stan
dard Proposal; the sections that follow here review the most important of them.

ILAsm does allow you to generate invalid metadata. Thus,
it's extremely important to carefully check your modules after compilation.

To find out whether any of the metadata in a module is invalid, you can
run the PEVerify utility, included in the .NET Framework SDK, using the option
/MD (metadata validation). Alternatively, you can invoke the IL Disassembler by
using the option !ADV (advanced). Choose View, Metainfo, Validate, and then
press Ctrl+M. Both utilities use the Metadata Validator (MDValidator), which is
built into the common language runtime.

120 Part Ill Fundamental Components

Assembly Table Validity Rules
• The record count of the table must be no more than 1. This is not

checked at run time because the loader ignores all Assembly records
except the first one.

• The Flags entry must have bits set only as defined in the CorAssem
blyFlags enumeration in CorHdr.h. For the first release of the com
mon language runtime, the valid mask is OxC031.

• The Locale entry must be set to 0 or must refer to a nonempty string
in the string heap that matches a known culture name. You can
obtain a list of known culture names by using a call to the Culture
Info. GetCultures method, from the .NET Framework class library.

• [run time] If Locale is not set to 0, the referenced string must be no
longer than 1023 characters plus the zero terminator.

• [run time] The Name entry must refer to a nonempty string in the
string heap. The name must be the module filename excluding the
extension, the path, and the drive letter.

• [run time] The PublicKey entry must be set to 0 or must contain a
valid offset in the #Blob stream.

AssemblyRef Table Validity Rules
• The Flags entry can have only the least significant bit set (corre

sponding to the ajPublicKey value; see the CorAssemblyFlags enu
meration in CorHdr.h).

• [run time] The PublicKeyOrToken entry must be set to 0 or must con
tain a valid offset in the #Blob stream.

• The Locale entry must comply with the same rules as the Locale entry
of the Assembly table (discussed in the preceding section).

• The table must not have duplicate records with simultaneously
matching Name, Locale, PublicKeyOrToken, and all Version entries.

• [run time] The Name entry must refer to a nonempty string in the
string heap. The name must be the prime module filename excluding
the extension, the path, and the drive letter.

Chapter 5 Modules and Assemblies 121

Module Table Validity Rules
• [run time] The record count of the table must be at least 1.

• The record count of the table must be exactly 1. This is not checked
at run time because the loader uses the first Module record and
ignores the others.

• [run time] The Name entry must refer to a nonempty string in the
string heap, no longer than 511 characters plus the zero terminator.
The name must be the module filename including the extension and
excluding the path and the drive letter.

• The Mvid entry must refer to a nonzero GUID in the GUID heap. The
value of the Mvid entry is generated automatically and cannot be
specified explicitly in ILAsm.

ModuleRef Table Validity Rules
• [run time] The Name entry must refer to a nonempty string in the

string heap, no longer than 511 characters plus the zero terminator.
The name must be a filename including the extension and excluding
the path and the drive letter.

File Table Validity Rules
• The Flags entry can have only the least significant bit set (corre

sponding to the .f!ContainsNoMetaData value; see the CorFileFlags
enumeration in CorHdr.h).

• [run time] The Name entry must refer to a nonempty string in the
string heap, no longer than 511 characters plus the zero terminator.
The name must be a filename including the extension and excluding
the path and the drive letter.

• [run time] The string referenced by the Name entry must not match
S[N][[C)*J, where

S ::= con I aux I lpt I pm I nu! I com

N::= 0 .. 9

C::= $ I :
• [run time] The Hash Value entry must hold a valid offset in the #Blob

stream.

122 Part Ill Fundamental Components

• The table must not contain duplicate records whose Name entries
refer to matching strings.

• The table must not contain duplicate records whose Name entries
refer to strings matching this module's name.

ManifestResource Table Validity Rules
• [run time] The Implementation entry must be set to 0 or must hold a

valid AssemblyRef or File token.

• [run time] If the Implementation entry does not hold an AssemblyRef
token, the Offset entry must hold a valid offset within limits specified
by the Resources data directory of the common language runtime
header of the target file.

• [run time] The Flags entry must hold either 1 or 2-mrPublic or
mrPrivate, respectively.

• [run time] The Name entry must refer to a nonempty string in the
string heap.

• The table must not contain duplicate records whose Name entries
refer to matching strings.

ExportedType Table Validity Rules
• The record count of the table must be 0 if the Assembly table is

empty.

• The record count of the table must be 0 if the File table is empty.

• There must be no rows with TypeName and TypeNamespace match
ing Name and Namespace, respectively, of any row of the TypeDef
table.

• The Flags entry must hold one of the visibility flags of the enumera
tion CorTypeAttr (see CorHdr.h). Valid flags are 0 through 7.

• [run time] The Implementation entry must hold a valid ExportedType
or File token.

• [run time] The Implementation entry must not hold an ExportedType
token pointing to this record.

• If the Implementation entry holds an ExportedType token, the Flags
entry must hold a nested visibility value in the range 2-7.

Chapter 5 Modules and Assemblies 123

• If the Implementation entry holds a File token, the Flags entry must
hold the tdNonPublic or tdPublic visibility value (0 or 1).

• [run time] The TypeName entry must refer to a nonempty string in the
string heap.

• [run time] The TypeNamespace entry must be set to 0 or must ref er to
a nonempty string in the string heap.

• [run time] The combined length of the strings referenced by Type
Name and TypeNamespace must not exceed 1023 characters.

• The table must not contain duplicate records whose Implementation
entry holds a File token, and whose TypeName and TypeNamespace
entries refer to matching strings.

• The table must not contain duplicate records whose Implementation
entries hold the same ExportedType token and whose TypeName
entries refer to matching strings.

Namespaces and Classes
Glass Metadata 127

Namespace and Full Glass Name 130

Glass Attributes 135

Interfaces 140

Value Types 141

Enumerators 143

Delegates 144

Nested Types 147

Glass Augmentation 149

Metadata Validity Rules 151

As earlier chapters have discussed, the common language runtime computa
tional model is inherently object-oriented. The concept of class-or, to use
more precise runtime terminology, the concept of a type--is the central princi
ple around which the entire computational model is organized. The type of an
item-a variable, a constant, a parameter, and so on-defines both data repre
sentation and the behavioral features of the item. Hence one type can be sub
stituted for another only if both these aspects are equivalent for both types-for
instance, a derived type can be interpreted as the type from which it is derived.

The ECMA standard specification of the common language infrastructure
divides types into value types and reference types, depending on whether an
item type represents a data item itself or a reference (an address or a location
indicator) to a data item.

125

126 Part Ill Fundamental Components

Reference types include object types, interface types, and pointer types.
Object types-classes-are types of self-describing values, either complete or
partial. Types with partial self-describing values are called abstract classes.
Interface types are always types of partial self-describing values. Interfaces usu
ally represent subsets of behavioral features exposed by classes; a class is said
to implement the respective interface. Pointer types are simply references to
items, indicating item locations ..

The common language runtime object model supports only single type
inheritance, and multiple inheritance is simulated through implementation of
multiple interfaces. Because of that, the runtime object model is absolutely hier
archical, with the System.Object class at the root of the tree. (See Figure 6-1.)
Interface types, however, are not part of the type hierarchy because they are
inherently incomplete and have no implementation of their own.

System. Object

System.Delegate

?
System.MulticastDelegate System.Enum

Classes ~ ~
Delegates Enumerators

Figure 6-1 The common language runtime type hierarchy.

All types (except interfaces) are derived eventually from System.Object.
This chapter examines types and their declarations, dividing the types into five
categories: classes, interfaces, value types, enumerators, and delegates. These
categories are not mutually exclusive-for example, delegates are classes and
enumerators are value types-but the types of each category have distinct fea
tures.

Chapter 6 Namespaces and Classes 127

Class Metadata
From a structural point of view, all five categories of types have identical meta
data representations. Thus we can talk about class metadata, or type metadata,
in a general sense.

Class metadata is grouped around two distinct concepts: type definition
(TypeDej) and type reference (TypeRej). TypeDefs and related metadata describe
the types declared in the current module, whereas TypeRefs describe references
to types that are declared somewhere else. Because it obviously takes more
information to adequately define a type than to refer to one already defined,
TypeDefs and related metadata are far more complex than TypeRefs.

When defining a type, you should supply the following information:

• The name of the type being defined

• Flags indicating special features the type should have

• The type from which this type is derived

• The interfaces this type implements

• How the loader should lay out this class

• Whether this type is nested in another type-and if so, in which one

• Where fields and methods of this type (if any) can be found

When referencing a type, only its name and resolution scope need be
specified. The resolution scope indicates where the definition of the referenced
type can be found: in this module, in another module of this assembly, or in
another assembly. In the case of referencing the nested types, the resolution
scope is another TypeRef

Figure 6-2 shows the metadata tables that engage in type definition and
referencing but not the tables related to identification of type members-fields
and methods, for example, and their attributes. The arrows denote cross-table
referencing by means of metadata tokens. In the following sections, we'll have
a look at all the metadata tables involved.

128 Part Ill Fundamental Components

Figure 6-2 Metadata tables that engage in type definition and referencing.

TypeDef Metadata Table
The TypeDef table is the main table containing type definition information.
Each record in this table has six entries:

• Flags (4-byte unsigned integer) Binary flags indicating special
features of the type. Because the TypeDef flags are numerous and
important, this chapter discusses them separately; see "Class
Attributes."

• Name (offset in the #Strings stream) The name of the type.
This entry must not be empty.

• Namespace (offset in the #Strings stream) The namespace of
the type. This entry can be empty. The namespace plus the name
constitute the full name of the type.

• Extends (coded token of type TypeDefOrRej) A token of the
type's parent-that is, of the type from which this type is derived.
This entry must be set to 0 for all interfaces and for one class, the
type hierarchy root class System.Object. For all other types, this entry
should carry a valid reference to the TypeDef or TypeRef table.

• Fieldlist(record index [RID] to the Field table) An index to the
Field table, marking the start of the field records belonging to this
type.

• MethodList (RID to the Method table) An index to the Method
table, marking the start of the method records belonging to this type.

Chapter 6 Namespaces and Classes 129

TypeRef Metadata Table
The TypeRef metadata table has a much simpler structure than the TypeDef
table. Each record in this table has three entries:

• ResolutionScope (coded token of type ResolutionScope) An
indicator of the location of the type definition. This entry is set to 0
if the referenced type is defined in the current assembly-which IL
assembly language (ILAsm) does not allow-or to 1 (the Module
token) if the referenced type is defined in the same module. Resolu
tionScope can be a token referencing the ModuleRef table if the type
is defined in another module of the same assembly, a token referenc
ing the AssemblyRef table if the type is defined in another assembly,
or a token referencing the TypeRef table if the type is nested in
another type. Having TypeRefs for the types defined in the same
module does not constitute a metadata error, but it is redundant and
should be avoided if possible.

• Name (offset in the #Strings stream) The name of the refer
enced type. This entry must not be empty.

• Namespace (offset in the #Strings stream) The namespace of
the referenced type. This entry can be empty. The namespace plus
the name constitute the full name of the type.

lnterfacelmpl Metadata Table
If the defined type implements one or several interfaces, the corresponding
TypeDef record is referenced in one or several records of the Interfacelmpl
metadata table. This table serves as a lookup table, providing information about
"what is implementing what," and it is ordered by implementing type. The
Interfacelmpl table has only two entries in each record:

• Class (RID to the TypeDeftable) An index to the TypeDef table,
indicating the implementing type.

• Interface (coded token of type TypeDefOrR,ef) An indicator of
the implemented type, which can reside in either the TypeDef table
or the TypeRef table. The implemented type must be marked as an
interface.

130 Part Ill Fundamental Components

NestedClass Metadata Table
If the defined type is nested in another type, its TypeDef record is referenced in
another lookup table: the NestedClass metadata table. (For more information
about nesting, see "Nested Types" later in this chapter.) Like the Interfacelmpl
table, the NestedClass table has only two entries per record:

• NestedClass (RID to the TypeDef table) An indicator of the
nested type (the nestee).

B EnclosingClass (RID to the TypeDef table) An indicator of the
type in which the current type is nested (the encloser, or nester).

Because types of both entries are RIDs in the TypeDef table, the nestee
and the encloser cannot be defined in different modules or assemblies.

Classlayout Metadata Table
Usually, the loader has its own ideas about how to lay out the type being
loaded. Certain types, however, must be laid out in a specific manner, and they
carry metadata information regarding these specifics.

The ClassLayout metadata table provides additional information about the
packing order and total size of the type. In the section "Value Type as Place
holder" in Chapter 1, for example, when we declared a "placeholder" type with
out any internal structure, we used such additional information-the total size
of the type.

A record in the ClassLayout metadata table has three entries:

• PackingSize (2-byte unsigned integer) The alignment factor in
bytes. This entry must be set to 0 or to a power of 2, from 1 to 128.

• ClassSize (4-byte unsigned integer) The total requested layout
size of the type. If the type has instance fields and the summary size
of these fields, aligned by PackingSize, is different from ClassSize,
the loader allocates the larger of the two sizes for the type.

• Parent (RID to the TypeDef table) An index of the type defini
tion record to which this layout belongs. The ClassLayout table
should not contain any duplicate records with the same Parent entry
value.

Namespace and Full Class Name
It is time to talk seriously about names in the common language runtime and
ILAsm. So far, in Chapter 5, "Modules and Assemblies,'' you've encountered

Chapter 6 Namespaces and Classes 131

only names that were in fact filenames and hence had to conform to well
known filename conventions. From now on, however, you'll need to deal with
names in general, so it will be important to know the rules.

ILAsm Naming Conventions
Names in ILAsm are either simple or composite. Composite names are com
posed of simple names and special connection symbols such as a dot. For
example, System and Object are simple names, and System. Object is a compos
ite name. The length of either kind of name in ILAsm is not limited syntactically,
but metadata rules impose certain limitations on the name length.

The simplest form of a simple name is an identifier, which in ILAsm must
begin with an alphabetic character or one of the following characters:

#, $, @, -

and continue with alphanumeric characters or one of the following:

?, $, @, -

These are examples of valid ILAsm identifiers:

• Object

• _Never _Say _Never _Again_

• men@work

One obvious limitation on ILAsm identifiers: an
ILAsm identifier must not match any of the (rather numerous)
ILAsm keywords.

The common language runtime accepts a wide variety of names with very
few limitations. Certain names-for example, .ctor (an instance constructor),
.cctor (a class constructor), and _Deleted* (a metadata item marked for deletion
during an edit-and-continue session)-are reserved for internal use by the runt
ime. Generally, however, the runtime is liberal about names. As long as a name
serves its purpose-identifying a metadata item unambiguously-and cannot
be misinterpreted, it is perfectly fine.

132 Part Ill Fundamental Components

To cover this variety, ILAsm offers an alternative way to present a simple
name: as a single-quoted literal. For example, these are valid ILAsm simple
names:

• '123'

• 'Space Between'

• '&%!'

One of the most frequently encountered kinds of composite names is the
dotted name, a name composed of simple names separated by a dot:

<dotted_name> : := <simple_name>[.<simple_name>*]

Examples of dotted names include the following:

• System. Object

• '123'.'456'.'789'

• Foo.Bar.'&%!'

Namespaces
Simply put, namespaces are the common prefixes of the full names of classes.
The full name of a class is a dotted name; the last simple name it contains is the
class name, and the rest is the namespace of the class.

It takes longer, perhaps, to explain what namespaces are not. Namespaces
are not metadata items-they do not have an associated metadata table, and
they cannot be referenced by tokens. Namespaces also have no direct bearing
on assemblies. The name of an assembly might or might not match in full or in
part the namespace(s) used in the assembly. One assembly might use several
namespaces, and the same namespace can be used in different assemblies.

So why does the metadata model even bother with namespaces and class
names instead of simply using the full class names? The answer is simple: econ
omy of space. Let's suppose that we define two classes with the full names
Foo.Bar and Foo.Baz. Since the names are different, in the full-name model we
would have to store two full names in the string heap: Foo.Bar\OFoo.Baz\0.
But if we split the full names into namespaces and names, we need to store
only Foo \OBar\OBaz\0. This is quite a difference when you consider the num
ber of possible classes.

Namespaces in ILAsm are declared in the following way:

.namespace MyNamespace
{

: // Classes declared here

Chapter 6 Namespaces and Classes 133

11 Have full name "MyNamespace. <simple_name>"
}

Namespaces can be nested, as shown here:

.namespace MyNamespace
{

}

; II Classes declared here
II Have full name "MyNamespace.<simple_name>"
.namespace X
{

; II Classes declared here
II Have full name "MyNamespace.X.<simple_name>"

}

Or they can be unnested. This is how the IL Disassembler represents
namespaces in the disassembly text:

.namespace MyNamespace
{

; II Classes declared here
II Have full name "MyNamespace.<simple_name>''

.namespace MyNamespace.X
{

; II Classes declared here
11 Have full name "MyNamespace.X. <simple_name>"

Full Class Names
As the preceding section explained, a full class name is a dotted name, com
posed of the class's namespace and the name of the class. The loader resolves
class references by their full names and resolution scopes, so the general rule is
that no classes with identical full names should be defined in the same module.
For multimodule assemblies, an additional (less strict) rule prohibits defining
public classes-classes visible outside the assembly-with identical full names
in the same assembly.

In ILAsm, a class is always referenced by its full name, even if it is refer
enced from within the same namespace. This makes class referencing context
independent.

The name of a class should be simple. Theoretically, a class name could
contain a dot without violating metadata rules, but I recommend avoiding dot
ted class names, because they bring at best mild confusion.

134 Part Ill Fundamental Components

ILAsm does not allow dotted names as class names, but you can bypass
this restriction by quoting the dotted name, thus turning it into a simple name
and avoiding a syntax error:

.namespace X
{

}

.class public 'Y.Z'
{

}

And because a class is always referenced by its full name, a class with a
dotted name will not pose any resolution problems (it will be referenced as
X. Y.Z anyway), and the module will compile and work. But if you disassemble
the module, you'll find that the left part of the dotted name of the class has
migrated to the namespace, courtesy of the metadata emission API:

.namespace X.Y
{

}

.class public z
{

}

Although this is not what you intended, it has no dire consequences-just
a case of mild confusion. If you know and expect this effect, and don't get con
fused that easily, you can even forgo the namespace declarations altogether and
declare classes by their full names, to match the way they are referenced:

.class public 'X.Y.Z'
{

}

The first release of the common language runtime imposes a limitation on
the full class name length, specifying that it should not exceed 1023 bytes in
UTF-8 encoding. The ILAsm compiler, however, does not enforce this limita
tion. Single quotes, should they be used for simple names in ILAsm, are a
purely lexical tool and don't make it to the metadata; thus they don't contribute
to the total length of the full class name.

Chapter 6 Namespaces and Classes 135

Class Attributes

Flags

An earlier section ("Class Metadata") listed the various pieces of information
included in a type definition. In the simplest case, when only the TypeDef
metadata table is involved, the ILAsm syntax for a type definition is as follows:

.namespace <dotted_name> {

.class <flags> <simple_name> extends <class_ref>

}

}

The <dotted_name> value specified in the . namespace directive defines
the TypeDej's Namespace entry, <simple_name> specified in the .class directive
defines the TypeDej's Name entry, <class_ref> specified in the extends clause
defines the Extends entry, and <flags> defines the Flags entry.

The numerous TypeDej flags can be divided into several groups, as described
here.

• Visibility flags (binary mask Ox00000007):

private (OxOOOOOOOO) The type is not visible outside the
assembly. This is the default.

public (OxOOOOOOOl) The type is visible outside the assembly.

nested public (Ox00000002) The nested type has public
visibility.

nested private (Ox00000003) The nested type has private
visibility.

nested family (Ox00000004) The nested type has family vis
ibility-that is, it is visible to descendants of the enclosing class
only.

nested assembly (Ox00000005) The nested type is visible
within the assembly only.

-l nestedfamandassem(Ox00000006) The nested type is vis
ible to the descendants of the enclosing class residing in the
same assembly.

136 Part Ill Fundamental Components

nestedfamorassem (Ox00000007) The nested type is visi
ble to the descendants of the enclosing class either within or
outside the assembly and to every type within the assembly
with no regard to "lineage."

• Layout flags (binary mask Ox00000018):

auto (OxOOOOOOOO) The type fields are laid out automati
cally, at the loader's discretion. This is the default.

sequential (Ox00000008) The loader should preserve the
order of the fields.

explicit (OxOOOOOOlO) The type layout is specified explic
itly, and the loader should follow it. (See Chapter 8, "Fields and
Data Constants," for information on field declaration.)

• Type semantics flags (binary mask Ox000005AO):

interface (Ox00000020) The type is an interface. If this flag
is not specified, the type is presumed to be a class or a value
type; if this flag is specified, the default parent is set to nil.

abstract (OxOOOOOOSO) The class is abstract-that is, it has
abstract member methods. As such, this class cannot be instan
tiated and can be used only as a parent of another type or
types. This flag is invalid for value types.

sealed (OxOOOOOlOO) No types can be derived from this
type. All value types and enumerators must carry this flag.

specialname (Ox00000400) The type has a special name.
How special depends on the name itself. This flag indicates to
the metadata API and the loader that the name has a meaning
in which they might be interested-for instance, _Deleted*.

• Type implementation flags (binary mask Ox00103000):

import (OxOOOOlOOO) The type (a class or an interface) is
imported from a COM type library.

serializable (Ox00002000) The type can be serialized into
sequential code by the serializer provided in the Microsoft .NET
Framework class library.

beforefieldinit (OxOOlOOOOO) The type can be initialized
any time before the first access to a static field. If this flag is not
set, the type is initialized before the first access to one of its
static fields or methods.

Chapter 6 Namespaces and Classes 137

• String formatting flags (binary mask Ox00030000):

LJ ansi (OxOOOOOOOO) When interoperating with native meth
ods, the managed strings are by default marshaled to and from
ANSI strings. Managed strings are instances of the System.String
class defined in the .NET Framework class library. Marshaling
is a general term for data conversion on the managed and
unmanaged code boundaries. (See Chapter 15, "Managed and
Unmanaged Code Interoperation," for detailed information.)
String formatting flags specify only default marshaling and are
irrelevant when marshaling is explicitly specified. This flag,
ansi, is the default flag for a class and hence represents a
"default default" string marshaling.

:::J unicode (OxOOOlOOOO) By default, managed strings are mar
shaled to and from Unicode.

autocbar (Ox00020000) The default string marshaling is
defined by the underlying platform.

• Reserved flags (binary mask Ox0004080):

rtspecialname (Ox00000800) The name is reserved by the
common language runtime and has a special meaning. This flag
is legal only in combination with the specialname flag. The
keyword rtspecialname has no effect in ILAsm and is provided
for informational purposes only. The IL Disassembler uses this
keyword to show the presence of this reserved flag. Reserved
flags cannot be set at will-this flag, for example, is set auto
matically by the metadata emission API when it emits an item
with the specialname flag set and the name recognized as spe
cific to the common language runtime.

<no keyword> (Ox00040000) The type has declarative
security metadata associated with it. This flag is set by the meta
data emission API when respective declarative security meta
data is emitted.

• Semantics pseudoflags (no binary mask) These are not true
binary flags that define the Flags entry of a TypeDej record but rather
are lexical pseudoflags modifying the default parent of the class:

value The type is a value type. The default parent is Sys
tem. ValueType.

enum The type is an enumerator. The default parent is Sys
tem.Enum.

138 Part Ill Fundamental Components

Class References
The nonterminal symbol <class_ref> in the extends clause represents a refer
ence to a type and translates into a TypeDef or a TypeRef The general syntax of
a class reference is as follows:

<class_ref>

where

[<reso7ution_scope>J<fu77_type_name>

<resolution_scope> ::= [<assembly_ref_alias>]

I [.module <module_ref_name>]

Note that the square brackets in the definition of <resolution_scope> are syntac
tic elements; they do not indicate that any portion of the definition is optional.

Here are a few examples of class references:

[mscorlib]System.ValueType //Type is defined in another assembly
[.module Second.dll]Foo.Bar //Type is defined in another module
Foo.Baz // Type is defined in this module

If the resolution scope of a class reference points to an external assembly
or module, the class reference is translated into a TypeRef metadata record, with
the full type name providing values for the Name and Namespace entries and
the resolution scope providing an AssemblyRef or a ModuleRef token for the
ResolutionScope entry.

If the resolution scope is not defined-that is, if the referenced type is
defined somewhere in the current module-the class reference is translated
into the respective TypeDef record.

Parent of the Type
Having resolved the class reference to a TypeRef or TypeDef token, we thus pro
vided the value for the Extends entry of the TypeDef record under construction.
This token references the type's parent-that is, the type from which the cur
rent type is derived.

The type referenced in the extends clause must not be sealed and must
not be an interface; otherwise, the loader will fail to load the type. When a type
is sealed, no types can be derived from it.

If the extends clause is omitted, the ILAsm compiler assigns a default par
ent depending on the flags specified for the type:

• Interface No parent. The interfaces are not derived from other types.

• value The parent is [mscorlib]System. ValueType.

Chapter 6 Namespaces and Classes 139

• enum The parent is [mscorlib)System.Enum.

• None of the above The parent is [mscorlib)System.Object.

If the extends clause is present, the value and enum flags are ignored, and the
interface flag causes a compilation error.

If the type layout is specified as sequential or explicit, the type's parent
must also have the corresponding layout, unless the parent is [mscorlib)Sys
tem. Object, [mscorlib)System. ValueType, or [mscorlib)System.Enum. The ratio
nale is that the type might inherit fields from its parent, and the type cannot
have a mixed layout-that is, it cannot have some fields laid out automatically
and some laid out explicitly or sequentially. However, an auto-layout type can
be derived from a type having any layout; in this case, information about the
parent's field layout plays no role in laying out the derived type.

Interface Implementations
If the type being defined implements one or more interfaces, the type declara
tion has an additional clause, the implements clause, as shown here:

.namespace <dotted_name> {

}

.class <flags> <simple_name>
extends <class_ref>
implements <class_refs> {

}

The nonterminal symbol <class_refs> simply means a comma-separated
list of class references:

<class_refs> <cl ass_ref>[, <class_ref>*]

For example:

.namespace MyNamespace {

}

.class public MyClass
extends MyNamespace.MyClassBase
implements MyNamespace.IOne,

MyNamespace.ITwo,
MyNamespace.IThree

}

140 Part Ill Fundamental Components

The types referenced in the implements clause must be interfaces. A type
implementing an interface must provide implementation for all of the interface's
instance methods. The only exception to this rule is an abstract class.

The implements clause of a type declaration creates as many records in the
Interfaceimpl metadata table as there are class references listed in this clause. In
our preceding example, three lnterfacelmpl records would be created.

Class Layout Information
To provide additional information regarding type layout (field alignment, total
type size, or both), you need to use the .pack and .size directives, as shown in
this example:

.namespace MyNamespace {

.class public value explicit MyStruct {
.pack 4
.size 1024

}

The pack and .size directives appear wi'thin the scope of the type decla
ration, in any order. If .pack is not specified, the field alignment defaults to 1. If
.pack or .size is specified, a ClassLayout record is created for this TypeDef

Integer values specified in a .pack directive must be 0 or a power of 2, in
the range 2° to 27 (1 to 128). Breaking this rule results in a compilation error.
When the value is 0, the field alignment defaults to the value defined by the
underlying platform.

Class layout information should not be specified for the auto-layout types.
Formally, defining the class layout information for an auto-layout type repre
sents invalid metadata. In reality, however, it is simply a waste of metadata
space; when the loader encounters an auto-layout type, it never checks to see
whether this type has a corresponding ClassLayout record.

Interfaces
An interface is a special kind of type, defined in Partition I of the ECMA Stan
dard Proposal as "a named group of methods, locations and other contracts that
shall be implemented by any object type that supports the interface contract of
the same name." In other words, an interface is not a "real" type but merely a
named descriptor of methods and properties exposed by other types. Concep-

Chapter 6 Namespaces and Classes 141

tually, an interface in the common language runtime is similar to a COM inter
face-or at least the general idea is the same.

Not being a real type, an interface is not derived from any other type, nor
can other types be derived from an interface. But an interface can "implement"
other interfaces. This is not a true implementation, of course. When we say that
"interface IA implements interfaces IB and IC," we mean only that the contracts
defined by IB and IC are subcontracts of the contract defined by IA.

As a descriptor of items (methods, properties, events) exposed by other
types, an interface cannot offer its own implementation of these items and thus
is, by definition, an abstract type. When you define an interface in ILAsm, you
can omit the keyword abstract because the compiler adds this flag automati
cally when it encounters the keyword interface.

For the same reason, an interface cannot have instance fields, because a
declaration of a field is the field's implementation. However, an interface can
and must offer implementation of its static members-the items shared by all
instances of a type-if it has any. Bear in mind, of course, that the definition of
static as "shared by all instances" is general for all types and does not imply that
interfaces can be instantiated. They cannot be. Interfaces are inherently abstract
and cannot even have instance constructors.

Static members (fields, methods) of an interface are not part of the con
tract defined by the interface and have no bearing on the types that implement
the interface. A type implementing an interface must implement all instance
members of the interface, but it has nothing to do with the static members of
the interface.

The nature of an interface as a descriptor of items exposed by other types
requires that the interface itself and all its members must be public, which
makes perfect sense- we are, after all, talking about exposed items.

Interfaces have several limitations. One is obvious: because an interface is
not a real type, it does not have layout. It simply doesn't make sense to talk
about the packing size or total size of a contract descriptor.

Another limitation is npt so obvious: interfaces should not be sealed. This
might sound contradictory because, as just noted, no types can be derived from
interfaces-which is precisely the definition of sealed. But a more general rule,
applicable to all types, dictates that an abstract type cannot be sealed. Formally,
an interface is a type, and it is inherently abstract; ergo, it cannot be marked as
sealed, notwithstanding the fact that no type can be derived from it.

Value Types
Value types are the closest thing in the common language runtime model to
C++ structures. These types are values with either trivial structure (for example,

142 Part Ill Fundamental Components

a 4-byte integer) or complex structure. When you declare a variable of a class
type, you don't automatically create a class instance. You create only a refer
ence to the class, initially pointing at nothing. But when you declare a variable
of value type, the instance of this value type is created immediately, by the vari
able declaration itself, because a value type is primarily a data structure. As
such, a value type must have instance fields or size defined. A zero-size value
type (with no instance fields and no total size specified) represents invalid
metadata; however, as in many other cases, the loader is more forgiving than
the official metadata validity rules: when it encounters a zero-size value type,
the loader assigns it a 1-byte size by default.

Although an instance of a value type is created at the moment a variable
having this value type is declared, the instance constructor method (should it be
defined for the value type in question) is not called at this moment. (See Chap
ter 9, "Methods," for information about the instance constructor method.)
Declaring a variable creates a "blank" instance of the value type, and if this
value type has an instance constructor, it should be called explicitly.

Boxed and Unboxed Values
As a data structure, a value type must sometimes be represented as an object, to
satisfy the requirements of certain generic APis, which expect object references
as input parameters. The common language runtime provides the means to pro
duce a class representation of a value type and to restore a value type (data
structure) from its class representation. These operations, called boxing and
unboxing, respectively, are defined for every value type.

Recall from the beginning of this chapter that types can be classified as
either value types or reference types. Simply put, boxing transforms a value
type into a reference type (an object reference), and unboxing does just the
opposite. We can box any value type and get an object reference, but this does
not mean, however, that we can unbox any object and get a value type.

When we declare a value type variable, we create a data structure. When
we box this variable, an object (a class instance) is created whose data part is
an exact bit copy of the data structure. Then we can deal with this instance the
same way we would deal with an ordinary object-for example, we could use
it in a call to a method, which takes a generic object reference as a parameter.
It is important to understand that the "original" variable does not go anywhere
when it is being boxed.

Instance Members of Value Types
Value types, like other types, can have static and instance members, including
methods and fields. To access an instance member of a class, we need to pro-

Chapter 6 Namespaces and Classes 143

vide the instance pointer (known in C++ as this). In the case of a value type, we
simply use a managed reference as an instance pointer.

Let's suppose, for example, that we have a variable of type 4-byte integer.
(What can be more trivial than that, except maybe type fewer-byte integer?) This
value type is defined as [mscorlib}System.Int32 in the .NET Framework class
library. Instead of boxing this variable and getting a reference to an instance of
System.Int32 as the class, we can simply take the reference to this variable and
call the instance methods of this value type, say, ToString(), which returns a
string representation of the integer in question:

. locals init (int32 J) II Declare variable J as value type

ldc.i4 12345
stloc J II J = 12345

ldloca J II Get managed reference to J as instance pointer
II Call method of this instance
call instance string [mscorlib]System.Int32::ToString()

Derivation of Value Types
All value types are derived from the [mscorlib}System. ValueType class. More
than that, anything derived from [mscorlib}System. ValueType is a value type by
definition, with one important exception: the [mscorlib}System.Enum class,
which is a parent of all enumerators (discussed in the next section).

Unlike C++, in which derivation of a structure from another structure is
commonplace, the common language runtime object model does not allow any
derivations from value types. All value types must be sealed. (And you probably
thought I was too lazy to draw further derivation branches from value types in
Figure 6-1!)

Enumerators
Enumerators (a.k.a. enumeration types, a.k.a. enums) make up a special subset
of value types. All enumerators are derived from the [mscorlib}System.Enum

class, which is the only class derived from [mscorlib}System. ValueType. Enumer
ators are possibly the most primitive of all types, and the rules regarding them
are the most restrictive.

Unlike other value types in their boxed form, enumerators don't show any
of the characteristics of a "true class." Enumerators can have only fields as mem
bers-no methods, properties, or events. Enumerators cannot implement inter-

144 Part Ill Fundamental Components

faces; because enumerators cannot have methods, the question of implementing
interfaces is moot.

Even with the fields the enumerators have no leeway: an enumerator must
have exactly one instance field and at least one static field. The instance field of
an enumerator represents the value of the current instance of the enumerator
and must be of integer, Boolean, or string type. The type of the instance field is
the underlying type of the enumerator. The enumerator itself as a value type is
completely interchangeable with its underlying type in all operations except
boxing. If an operation, other than boxing, expects a Boolean variable as its
argument, a variable of a Boolean-based enumeration type can be used instead,
and vice versa. A boxing operation, however, always results in a boxed enu
merator and not in a boxed underlying type.

The static fields represent the values of the enumeration itself and have
the type of the enumerator. As values of the enumeration, these fields must be
not only static (shared by all instances of the enumerator) but also literal-they
represent constants defined in the metadata. The literal fields are not true fields
because they do not occupy memory allocated by the loader when the enumer
ator is loaded. (Chapter 8 discusses this and other aspects of fields.)

Generally speaking, you can think of an enumerator as a restriction of its
underlying type to a predefined, finite set of values. As such, an enumerator
obviously cannot have any specific layout requirements and must have the auto
layout flag set.

Delegates
Delegates are a special kind of reference type, designed with the specific pur
pose of representing function pointers. All delegates are derived from the
[mscorlib}System.MulticastDelegate class, which in turn is derived from the
[mscorlib}System.Delegate class. Because delegates themselves are sealed, no
types can be derived from them.

Limitations imposed on the structure of a delegate are as strict as those
imposed on the enumerator structure. Delegates have no fields, events, or
properties. They can have only member methods, either two or four of them,
and the names and signatures of these methods are predefined.

Two mandatory methods of a delegate are the instance constructor (.ctor)
and Invoke. The instance constructor returns void (as all instance constructors
do) and takes two parameters: the object reference to the type defining the
method being delegated and the integer value of the function pointer to the
managed method being delegated. (See Chapter 9 for details about instance
constructors.)

Chapter 6 Namespaces and Classes 145

This leads to a question: If we can get a function pointer per se, why do
we need delegates at all? Why not use the function pointers directly? We could,
but then we would need to introduce fields or variables of function pointer
types to hold these pointers-and function pointer types are considered a secu
rity risk and deemed unverifiable. If a module is unverifiable, it can be executed
only from a local drive in full trust mode, when all security checks are disabled.
Another drawback is that managed function pointers cannot be marshaled to
unmanaged function pointers when calling unmanaged methods, whereas del
egates can be. (See Chapter 15 for information on managed and unmanaged
code interoperation.)

Delegates are secure, verifiable, and type-safe representations of function
pointers and as such are preferable over function pointer types. Besides, dele
gates can offer additional useful features, as I'll describe in a moment.

The second mandatory method (Invoke) must have the same signature as
the delegated method. Two mandatory methods (.ctor and Invoke) are suffi
cient to allow the delegate to be used for synchronous calls, which are the
usual method calls when the calling thread is blocked until the called method
returns. The first method (.ctor) creates the delegate instance and binds it to the
delegated method. The Invoke method is used to make a synchronous call.

Delegates also can be used for asynchronous calls, when the called
method is executed on a separate thread created by the common language
runtime for this purpose and does not block the calling thread. So that it can be
called asynchronously, a delegate must define two additional methods, Begin
Invoke and Endinvoke.

Begininvoke is a thread starter. It takes all the parameters of the delegated
method plus two more: a delegate of type [mscorlib]System.AsyncCallback rep
resenting a callback method that is invoked when the call completes, and an
object we choose to indicate the final status of the call thread. Begininvoke
returns an instance of the interface [mscorlib]System.IAsyncResult, carrying the
object we passed as the last parameter. Remember that because interfaces, del
egates, and objects are reference types, when we say "takes a delegate" or
"returns an interface,'' we actually mean a reference.

If we want to be notified immediately when the call is completed, we
must specify the AsyncCallback delegate. The respective callback method is
called upon completion of the asynchronous call. This event-driven technique
is the most widely used way to monitor the asynchronous calls.

We might choose another way to monitor the status of the asynchronous
call thread: polling from the main thread. The returned interface has the method
boot getJsCompleted(), which returns true when the asynchronous call is com
pleted. We can call this method from time to time from the main thread to find
out whether the call is finished.

146 Part Ill Fundamental Components

We can also call another method of the returned interface,
get_AsyncWaitHandle, which returns a wait handle, an instance of the [mscor
lib}System.Threading. WaitHandle class. After we get the wait handle, we can
monitor it any way we please (similar to the use of the Win32 APis WaitForS
ingleObject and WaitForMultipleObjects). If you are curious, disassemble Mscor
lib.dll and take a look at this class.

Of course, if we have chosen to employ a polling technique, we can forgo
the callback function and specify null instead of the System.AsyncCallback del
egate instance.

The Endlnvoke method takes the [mscorlib}System.JAsyncResult interface,
returned by Beginlnvoke, as its single argument and returns void. Because this
method waits for the asynchronous call to complete, blocking the calling
thread, calling it immediately after Beginlnvoke is equivalent to a synchronous
call using Invoke. Endlnvoke must be called eventually in order to clear the cor
responding runtime threading table entry, but it should be done when we
know that the asynchronous call has been completed.

All four methods of a delegate are virtual and runtime-implemented.
When defining a delegate, we can simply declare the methods without provid
ing implementation for them, as shown here:

.class public sealed MyDelegate

{

}

extends [mscorlib]System.MulticastDelegate

.method public hidebysig instance
void .ctor(object MethodsClass,

native unsigned int MethodPtr)
runtime managed { }

.method public hidebysig virtual instance
int32 Invoke(void* Argl, void* Arg2)

runtime managed { }

.method public hidebysig newslot virtual instance
class [mscorlib]System.IAsyncResult

Beginlnvoke(void* Argl, void* Arg2,
class [mscorlib]System.AsyncCallback callBkPtr,
object) runtime managed { }

.method public hidebysig newslot virtual instance
void Endlnvoke(class [mscorlib]System.IAsyncResult res)

runtime managed { }

Chapter 6 Namespaces and Classes 147

Nested Types
Nested types are types (classes, interfaces, value types) that are defined within
other types. However, being defined within another type does not make the
nested type anything like the member classes or inner classes. The instance
pointers (this) of a nested type and its enclosing type are in no way related. A
nested class does not automatically get access to the this pointer of its enclosing
class when the instance of the enclosing class is created.

In addition, instantiation of the enclosing class does not involve instantia
tion of the class(es) nested in it. The nested classes must be instantiated sepa
rately. Instantiation of a nested class does not require the enclosing class to be
instantiated.

Type nesting is not about membership and joint instantiation; rather, it's
all about visibility. As explained earlier in "Class Attributes," nested types at any
level of nesting have their own specific visibility flags. When one type is nested
in another type, the visibility of the nested type is "filtered" by the visibility of
the enclosing type. If, for example, a class whose visibility is set to nested public
is nested in a private class, this nested class will not be visible outside the
assembly despite its own specified visibility.

This visibility filtering works throughout all levels of nesting. The final vis
ibility of a nested class is defined by its own declared visibility and then is lim
ited in sequence by the visibilities of all classes enclosing it, directly or
indirectly.

Nested classes are defined in ILAsm the same way they are defined in
other languages-that is, the nested classes are declared within the lexical
scope of their encloser declaration:

.namespace MyNS {
.class public Encl {

.class nested public Nestdl {

.class nested family Nestd2 {

}

}

}

}

According to this declaration, the Nestd2 class is nested in the Nestdl class,
which in turn is nested in MyNS.Encl, which is not a nested class.

Because nested classes belong to their enclosers rather than to
namespaces, a nested class name is always the full name. Having said that, let's

148 Part Ill Fundamental Components

return for a moment to the experiment with dotted class names described ear
lier in this chapter, in the section "Full Class Names." In that case, we defined a
class with a dotted name, only to find that the left part of the dotted name was
moved to the namespace by the metadata emission APL The same thing will
happen if we try to define a nested class with a dotted name. Although this
"name redistribution" has no ill effect on the top-level classes, which are always
referenced by their full names, it does have quite an effect on nested classes,
which are not supposed to have namespaces and are addressed by name only.
Don't use dotted names for nested classes.

While on the subject of referencing the classes, let's see how the nested
classes are referenced in ILAsm:

<nested_class_ref> <encloser_ref> I <simple_name>

where

<enc 7 oser _ref> : : = <nested_c 7 ass_ref> I <c 7 ass_ref>

and <class_ref> has already been defined earlier as follows:

<class_ref> : := [<reso7ution_scope>J<fu77_type_name>

According to these definitions, classes Nestdl and Nestd2 will be referenced
respectively as MyNS.Encl/Nestdl and MyNS.Encl/Nestdl/Nestd2. Names of
nested classes must be unique within their nester, as opposed to the full names
of top-level classes, which must be unique within the module or (for public
classes) within the assembly.

Unlike Microsoft Visual C# .NET, which uses a dot delimiter for all hier
archical relationships without discrimination-so that One. Two. Three might
mean "class Three of namespace One. Two" or "class Three nested in class Two
of namespace One" or even "field Three of class Two nested in class One"
ILAsm uses different delimiters for different hierarchies. A dot is used for the
full class name hierarchy; a forward slash (/) indicates the nesting hierarchy;
and a double colon(::), as in C++, denotes the class-member relationship.

Thus far, the discussion has focused mainly on what nested classes are
not. One more important negative to note: nested classes have no effect on the
layout of their enclosers. If you want to declare a substructure of a structure,
you must declare a nested value type (substructure) within the enclosing value
type (structure) and then define a field of the substructure type:

.class public value Struct {

.class nested public value Substruct {

}

.field public valuetype Struct/Substruct Substr
}

Chapter 6 Namespaces and Classes 149

Now I need to say something positive about nested classes. Members of a
nested class have access to all members of the enclosing class without excep
tion, including access to private members. In this regard, the nesting relation
ship is even stronger than inheritance and stronger than the member class
relationship in C++, where member classes don't have access to private mem
bers of their owner. Of course, to get access to the encloser's instance members,
the nested type members should first obtain the instance pointer to the
encloser. This "full disclosure" policy works one-way only; the encloser has no
access to private members of the nested class.

Nested types can be used as base classes for other types that don't need to
be nested:

.class public X {

.class nested public Y {

}

}

.class public z extends X/Y {

}

Of course, class Z, derived from a nested class (Y), does not have any
access rights to private members of the encloser (X). The "full disclosure" priv
ilege is not inheritable.

A nested class can be derived from its encloser. In this case, it retains
access to the encloser's private members, and it also acquires an ability to over
ride the encloser's virtual methods. The enclosing class cannot be derived from
any of its nested classes.

A metadata validity rule states that a nested class must be
defined in the same module as its encloser. In ILAsm, however, the
only way to define a nested class is to declare it within the encloser's
lexical scope, which means that you could not violate this validity rule
in ILAsm even if you tried.

Class Augmentation
In ILAsm, as in Microsoft Visual Basic .NET and Visual C# .NET, all members,
attributes, and nested classes of a class are declared within the lexical scope of that

150 Part Ill Fundamental Components

class. However, ILAsm, unlike Visual Basic .NET and Visual C# .NET, allows you to
reopen a once-closed class scope and define additional items:

.class public X extends Y implements IX.IV {

}

II Later in the source, possibly in another source file ...
. class X {

: II More items defined
}

This reopening of the class scope is known as class augmentation. A class
can be augmented any number of times throughout the source code, and the
augmenting segments can reside in different source files. The following simple
safety rules govern class augmentation:

• The class must be fully defined within the module-in other words,
you cannot augment a class that is defined somewhere else.

• Class flags, the extends clause, and the implements clause must be
fully defined at the lexically first opening of class scope, because
these attributes are ignored in augmenting segments.

• None of the augmenting segments can contain duplicate item decla
rations. If you declare field X in one segment and then declare it in
another segment, the ILAsm compiler will not appreciate the fact that
you probably have the same field in mind and will read it as an
attempt to define two identical fields in the same class, which is not
allowed.

• The augmenting segments are not explicitly numbered, and the class
is augmented according to the sequence of augmenting segments in
the source code. This means that the sequence of class item declara
tions will change if you swap augmenting segments, which in turn
might affect the class layout.

A good strategy for writing an ILAsm program is to use forward class dec
laration, explained in the Chapter 1 section "Forward Declaration of Classes."
This strategy allows you to declare all classes of the current module, including
nested ones, without any members and attributes and to define the members
and attributes in augmenting segments. This way, the ILAsm compiler gets the
full picture of the module's type declaration structure before any type is refer
enced. By the time locally declared types are referenced, they all are already
defined and have corresponding TypeDef metadata records.

Chapter 6 Namespaces and Classes 151

Manifest declarations, described in Chapter 5, followed by forward class
declarations look a lot like a program header, so I would not blame you if you
put them in a separate source file. Just don't forget that this file must be first on
the list of source files when you assemble your module.

Metadata Validity Rules
Recall that the type-related metadata tables include the TypeDef, TypeRef,
Interfacelmpl, NestedClass, and ClassLayout tables. The records of these tables
contain the following entries:

• The TypeDef table contains the Flags, Name, Namespace, Extends,
FieldList, and MethodList entries.

• The TypeRef table contains the ResolutionScope, Name, and
Namespace entries.

• The Interfacelmpl table contains the Class and Interface entries.

• The NestedClass table contains the NestedClass and EnclosingClass
entries.

• The ClassLayout table contains the PackingSize, ClassSize, and Par
ent entries.

TypeDef Table Validity Rules
• The Flags entry can have only those bits set that are defined in the

enumeration CorTypeAttr in CorHdr.h (validity mask: Ox00173DBF).

• [run time] The Flags entry cannot have the sequential and explicit
bits set simultaneously.

• [run time] The Flags entry cannot have the unicode and autochar bits
set simultaneously.

• If the rtspecialname flag is set in the Flags entry, the Name field must
be set to _Deleted*, and vice versa.

• [run time] If the bit Ox00040000 is set in the Flags entry, either a
DeclSecurity record or a custom attribute named SuppressUnman
agedCodeSecurityAttribute must be associated with the TypeDef, and
vice versa.

• [run time] If the interface flag is set in the Flags entry, abstract must
be also set.

152 Part Ill Fundamental Components

• [run time] If the interface flag is set in the Flags entry, sealed must
not be set.

• [run time] If the interface flag is set in the Flags entry, the TypeDef
must have no instance fields.

• [run time] If the interface flag is set in the Flags entry, all the
TypeDef's instance methods must be abstract.

• [run time] The visibility flag of a nonnested TypeDef must be set to
private or public.

• [run time] If the visibility flag of a TypeDef is set to nested public,
nested private, nested family, nested assembly, nestedfamorassem, or
nested famandassem, the TypeDef must be referenced in the Nested
Class entry of one of the records in the NestedClass metadata table,
and vice versa.

• The Name field must reference a nonempty string in the #Strings
stream.

• The combined length of the strings referenced by the Name and
Namespace entries must not exceed 1023 bytes.

• The TypeDef table must contain no duplicate records with the same
full name (the namespace plus the name) unless the TypeDef is
nested or deleted.

• [run time] The Extends entry must be nil for TypeDefs with the inter
face flag set and for the TypeDef System.Object of the Mscorlib
assembly.

• [run time] The Extends entry of all other TypeDefs must hold a valid
reference to the TypeDef or TypeRef table, and this reference must
point at a nonsealed class (not an interface or a value type).

• [run time] The Extends entry must not point to the type itself or to
any of the type descendants (inheritance loop).

• [run time] The FieldList entry can be nil or hold a valid reference to
the Field table.

• [run time] The MethodList entry can be nil or hold a valid reference to
the Method table.

Enumerator-Specific Validity Rules
If the TypeDef is an enumerator-that is, if the Extends entry holds the reference
to the class [mscorlib]System.Enum-the following additional rules apply:

Chapter 6 Namespaces and Classes 153

• [run time) The interface, abstract, sequential, and explicit flags must
not be set in the Flags entry.

• The sealed flag must be set in the Flags entry.

• The TypeDef must have no methods, events, or properties.

• The TypeDef must implement no interfaces-that is, it must not be
referenced in the Class entry of any record in the Interfacelmpl table.

• [run time) The TypeDef must have at least one instance field of inte
ger type, or of type boo! or string.

• [run time] All static fields of the TypeDef must be literal.

• The type of the static fields of the TypeDef must be the current Type
D~f itself.

TypeRef Table Validity Rules
• [run time) The ResolutionScope entry must hold either 0 or a valid ref

erence to the AssemblyRef, ModuleRef, Module, or TypeRef table. In
the last case, TypeRef refers to a type nested in another type (a
nested TypeRej).

• If the ResolutionScope entry is nil, the ExportedType table of the
prime module of the assembly must contain a record whose Type
Name and TypeNamespace entries match the Name and Namespace
entries of the TypeRef record, respectively.

• [run time) The Name entry must reference a nonempty string in the
#Strings stream.

• [run time) The combined length of the strings referenced by the
Name and Namespace entries must not exceed 1023 bytes.

• The table must contain no duplicate records with the same full name
(the namespace plus the name) and ResolutionScope value.

lnterfacelmpl Table Validity Rules
A Class entry set to nil means a deleted lnterfacelmpl record. If the Class entry
is non-nil, however, the following rules apply:

• [run time) The Class entry must hold a valid reference to the TypeDef
table.

• [run time) The Interface entry must hold a valid reference to the
TypeDef or TypeRef table.

154 Part Ill Fundamental Components

• If the Interface field references the TypeDef table, the corresponding
TypeDef record must have the interj ace flag set in the Flags entry.

• The table must contain no duplicate records with the same Class and
Interj ace entries.

NestedClass Table Validity Rules
• The Nested Class entry must hold a valid reference to the TypeDef

table.

• [run time) The EnclosingClass entry must hold a valid reference to
the TypeDef table, one that differs from the reference held by the
NestedClass entry.

• The table must contain no duplicate records with the same Nested
Class entries.

• The table must contain no records with the same EnclosingClass
entries and NestedClass entries referencing TypeDef records with
matching names-in other words, a nested class must have a unique
name within its encloser.

• The table must contain no sets of records forming a circular nesting
pattern-for example, A nested in B, B nested in C, C nested in A.

Classlayout Table Validity Rules
A Parent entry. set to nil means a deleted ClassLayout record. However, if the
Parent entry is non-nil, the following rules apply:

• The Parent entry must hold a valid reference to the TypeDef table,
and the referenced TypeDef record must have the Flags bit explicit or
sequential set and must have the interface bit not set.

• [run time) The PackingSize entry must be set to 0 or to a power of 2
in the range 1 to 128.

• The table must contain no duplicate records with the same Parent
entries.

Primitive Types and
Signatures

Primitive Types in the Common Language Runtime 155

Representing Classes in Signatures 170

Signatures 171

Signature Validity Rules 176

Having looked at how types are defined in the common language runtime and
IL assembly language (ILAsm), let's proceed to the question of how these types
and their derivatives are assigned to program items-fields, variables, methods,
and so on. The constructs defining the types of program items are known as the
signatures of these items. Signatures are built from encoded references to vari
ous classes and value types; I'll discuss signatures in detail in this chapter.

But before we start analyzing the signatures of program items, let's con
sider the building blocks of these signatures.

Primitive Types in the Common Language Runtime
All types have to be defined somewhere. The Microsoft .NET Framework class
library defines hundreds of types, and other assemblies build their own types
based on the types defined in the class library. Some of the types defined in the
class library are recognized by the common language runtime as primitive types
and are given special encoding in the signatures. This is done only for the sake

155

156 Part Ill Fundamental Components

of performance-theoretically, the signatures could have been built from type
tokens only, given that every type is defined somewhere and hence has a
token. But resolving all these tokens simply to find that they reference trivial
items such as a 4-byte integer or a Boolean value can hardly be considered a
sensible way to work in the runtime.

Primitive Data Types

Table 7-1

Code

OxOl

Ox02

Ox03

Ox04

Ox05

Ox06

Ox07

Ox08

The term primitive data types refers to the types defined in the .NET Framework
class library that are given specific individual type codes to be used in signa
tures. Because all these types are defined in the assembly Mscorlib and all
belong to the namespace System, I have omitted the prefix [mscorlib}System
when supplying the class library type name for a type.

The individual type codes are defined in the enumeration CorElementType
in the header file CorHdr.h. The names of all these codes begin with
ELEMENT_TYPE_, which I have either omitted in this chapter or abbreviated as
E_T_.

Table 7-1 describes primitive data types and their respective 11.Asm notation.

Primitive Data Types Defined in the Runtime

Constant .NET Framework ILAsm
Name Type Name Notation

VOID Void void

BOOLEAN Boolean boot

CHAR Char char

11 SByte int8

U1 Byte unsigned int8

12 lnt16 int16

U2 Ulnt16 unsigned
int16

14 lnt32 int32

Comments

Single-byte value,
true = l ,false = 0

2-byte unsigned inte
ger, representing a
Unicode character

Signed 1-byte inte
ger, the same as char
in CIC++

Unsigned 1-byte
integer

Signed 2-byte integer

Unsigned 2-byte
integer

Signed 4-byte integer

Chapter 7 Primitive Types and Signatures 157

Table 7·1 Primitive Data Types Defined in the Runtime (continued)

Code Constant
Name

Ox09 U4

OxOA 18

OxOB U8

OxOC R4

OxOD RB

Ox16 TYPED BY-
REF

Ox18 I

Ox19 u

.NET Framework
Type Name

Ulnt32

Int64

Ulnt64

Single

Double

'T:yfJedRej'erence

IntPtr

UJntPtr

ILAsm
Notation

unsigned
int32

int64

unsigned
int64

float32

float64

t:yfJedrej'

native int

native
unsigned int

Comments

Unsigned 4-byte
integer

Signed 8-byte integer

Unsigned 8-byte
integer

4-byte floating-point

8-byte floating-point

Typed reference,
carrying both refer
ence to a type and
information identify
ing the referenced
type

Pointer-size integer;
size dependent on
the underlying plat
form, hence use of
the keyword native

Pointer-size
unsigned integer

Data Pointer Types
Two data pointer types are defined in the common language runtime: the man
aged pointer, which is a reference, and the unmanaged pointer, which is a
pointer in the conventional sense. The difference is that a managed pointer is
managed by the runtime's garbage collection subsystem and stays valid even if
the referenced item is moved in memory during the process of garbage collec
tion, whereas an unmanaged pointer can be safely used only in association
with "unmovable" items.

Both pointer types have no meaning per se and must be followed by the
base types, which are the types to which the pointer types point. As derivatives
from base types, the pointer types have no corresponding types defined in the
.NET Framework class library and cannot be boxed. Table 7-2 describes the two
pointer types and their ILAsm notations. Neither of them has a respective .NET
Framework type associated.

158 Part Ill Fundamental Components

Table 7-2 Pointer Types Defined in the Runtime

Code

OxOF

OxlO

Constant Name ILAsm Notation Comments

PTR

BYREF

<type>*

<type>&

Unmanaged pointer to <type>

Managed pointer to <type>

Note that although ILAsm notation places the pointer sign after
the pointed type, in signatures E_ T_PTR and E_ T_BYREF always
precede the pointed type.

Pointers of both types are subject to standard pointer arithmetic: an inte
ger can be added to or subtracted from a pointer, resulting in a pointer; and one
pointer can be subtracted from another, resulting in an integer value. The dif
ference between pointer arithmetic in, say, C/C++ and in IL (intermediate lan
guage) is that in IL-and hence in ILAsm-the increments and decrements of
pointers are always specified in bytes, regardless of the size of the item the
pointer represents.

C/C++:
long L, *PL=&L;

pl+= 4; II pl is incremented by 4*sizeof(long)

ILAsm:
.locals initCint32 L, int32& pl)
ldloca L II Load pointer to Lon stack
stloc pl II pl= &L

ldloc pl
ldc.i4 4
add

II Load pl on stack
II Load 4 on stack

16 bytes

stloc pl II pl+= 4, pl is incremented by 4 bytes

By the same token-now, this is just a common expression. I'm not
referring to metadata tokens. (I think I'd better be extra careful with phrases
like "by the same token" or "token of appreciation" in this book.) In the same

Chapter 7 Primitive Types and Signatures 159

way, the delta of two pointers in IL is always expressed in bytes, not in the
items pointed at.

Using unmanaged pointers in IL is not considered nice. Because of the
unlimited access that C-style pointer arithmetic gives to anybody for anything,
IL code, which has unmanaged pointers dereferenced, is deemed unverifiable
and can be run only from a local drive with run-time code verification disabled.

Managed pointers are tamed, domesticated pointers, fully owned by the
common language runtime type control and the garbage collection subsystem.
These pointers dwell in a safe but not too spacious corral, fenced along the fol
lowing lines:

• Managed pointers are always references to an item in existence-a
field, an array element, a localvariable, a method argument.

• Managed pointer types can be used only for method attributes
local variables, parameters, or a return type.

• Array elements and fields cannot have managed pointer types. Local
variables and method parameters can, and it is not a simple coinci
dence that all these items are stack-allocated.

• Managed pointers that point to "managed memory" (the garbage col
lector heap, which contains object instances and arrays) cannot be
converted to unmanaged pointers.

• Managed pointers that don't point to the garbage collector heap can
be converted to unmanaged pointers, but such conversion renders
the IL code unverifiable.

• The underlying type of a managed pointer cannot be another
pointer, but it can be an object reference.

Managed pointers are different from object references. In Chapter 6,
"Namespaces and Classes," which described boxing and unboxing of the value
types, we saw that it takes boxing to create an object reference to a value type.
Using a simple reference-that is, a managed pointer-is not enough.

The difference is that an object reference points to the method table of an
object, whereas a managed pointer points to the value (data) part of the item.
When you take a managed pointer to an instance of a value type, you address
the data part. You can have only this much because instances of value types,
not being objects, have no method tables.

When you box a value type instance, you create an object, a class instance
with its own method table and data part copied from the value type instance.
This object is represented by an object reference.

160 Part Ill Fundamental Components

Function Pointer Types
Chapter 6 briefly described the use of managed function pointers and com
pared them with delegate types. Managed function pointers are represented by
type E_T_FNPTR, which is indicated by the value OxlB and doesn't have a .NET
Framework type associated.

Just like a data pointer type, a function pointer type does not exist by itself
and must be followed by the full signature of the function to which it points.
(Method signatures are discussed later in this chapter; see "Signatures.")

The ILAsm notation for a function pointer is as follows:

<call_conv> <return_type> * <<type>[.<type>*])

where <call_conv> is a calling convention, <return_type> is the return type,
and the <type> sequence in the parentheses is the argument list. You'll find
more details in the "Signatures" section.

Vectors and Arrays
The common language runtime recognizes two types of arrays: vectors and
multidimensional arrays, as described in Table 7-3. Vectors are single-dimen
sional arrays with a zero lower bound. Multidimensional arrays, which I'll refer
to as arrays, can have more than one dimension and nonzero lower bounds.
Neither of these two types of arrays has a respective .NET Framework type
associated.

Table 7-3 Arrays Supported in the Runtime

Code

OxlD

Ox14

Constant Name

SZARRAY

ARRAY

ILAsm Notation

<type>[l
<type>[<bounds>
l <bounds>*}}

Comments

Vector of <type>

Array of <type>

All vectors and arrays are objects (class instances) derived from the
abstract class [mscorlib}System.Array. This is a very peculiar class; in fact, it is a
construct known as a generic.

Vector encoding is very simple: E_T_SZARRAY followed by the encoding
of the underlying type, which can be anything except void. The size of the vec
tor is not part of the encoding. Because arrays and vectors are object references,
it is not enough to simply declare an array-you must create an instance of it,
using the instruction newarr for a vector or calling an array constructor. It is at
that point that the size of the vector or array instance is specified.

Chapter 7 Primitive Types and Signatures 161

Array encoding is more sophisticated:

E_ T _ARRAY <under lyi ng_type><rank><num_s i zes><s i zel> ... <s i zeN>

<num_ 7 ower _bounds><l ower _bound1> ... <7 ower _boundM>

where the following is true:

<underlying_type> cannot be void
<rank> is the number of array dimensions (K>0)
<num_sizes> is the number of specified sizes for dimensions (N = Kl
<sizen> is an unsigned integer specifying the size (n = l,_,N)
<num_lower_bounds> is the number of specified lower bounds CM= K)
<lower_boundm> is a signed integer specifying the lower bound (m =
1, ... , M)

All the above unsigned integer values are compressed according to the length
compression formula discussed in Chapter 4, "Metadata Tables Organization." To
save you a trip three chapters back, I will repeat this formula in Table 7-4.

Table 7-4 The Length Compression Formula for Unsigned Integers

Value Range

O-Ox7F

Ox80-0x3FFF

Ox4000-0x1FFFFFFF

Compressed Size

1 byte

2 bytes

4 bytes

Compressed Value (Big-Endian)

<value>

Ox8000 I <value>

OxCOOOOOOO I <value>

Signed integer values (lower bound values) are compressed according to
a different compression procedure. First the signed integer is encoded as an
unsigned integer by taking the absolute value of the original integer, shifting it
left by 1 bit, and setting the least significant bit according to the most significant
(sign) bit of the original value. Then compression is applied according to the
formula shown in Table 7-4.

If size and/ or the lower bound for a dimension are not specified, they are
not presumed to be O; rather, they are marked as not specified. The specifica
tion of size and lower bound cannot have "holes"-that is, if you have an array
of rank 5 and want to specify size (or lower bound) for its third dimension, you
must specify size (or lower bound) for the first and second dimensions as well.

An array specification in ILAsm looks like this:

<type> [<bounds>[, <bounds>*] J

where

<bounds> : := [<lower_bound>] ... [<upper_bound>]

162 Part Ill Fundamental Components

The following is an example:

int32[_, _] II Two-dimensional array with undefined lower bounds
II And sizes

int32[2_5] II One-dimensional array with lower bound 2 and size 4
int32[0_, 0_] II Two-dimensional array with zero lower bounds

II And undefined sizes

If neither lower bound nor upper bound is specified for a dimension in a
multidimensional array declaration, the ellipsis can be omitted. Thus
int32[... , .. .} and int32[,J mean the same: a two-dimensional array with no lower
bounds or sizes specified.

This omission does not work in the case of single-dimensional arrays,
however. The notation int32!l indicates a vector (<E_T_SZARRAY><E_T_I4>),
and int32!. ..] indicates an array of rank 1 whose lower bound and size are
undefined (<E_T_ARRAY><E_T_I4><1><0><0>).

The common language runtime treats multidimensional arrays and vectors
of vectors (of vectors, and so on) completely differently. The specifications
int32[,J and int32[][J result in different type encoding, are created differently,
and are laid out differently when created:

• int32[,] This specification has the ,encoding <E_T_ARRAY><E_T_
14><1><0><0>, is created by a single call to an array constructor,
and is laid out as a contiguous two-dimensional array of int32.

• int32{][] This specification has the encoding <E_T_SZARRAY><E_T_
SZARRAY><E_T_I4>, is created by a series of newarr instructions, and is
laid out as a vector of vector references, each pointing to a contiguous
vector of int32, with no guarantee regarding the location of each vector.
Vectors of vectors are useful for describing jagged arrays, when the size
of the second dimension varies depending on the first dimension index.

Modifiers
Four built-in common language runtime types, described in Table 7-5, do not
denote any specific data or pointer type but rather are used as modifiers of data
and pointer types. None of these modifiers have a respective .NET Framework
type associated.

Table 7-5

Code

OxlF

Ox20

Ox41

Ox45

Chapter 7 Primitive Types and Signatures 163

Custom Modifiers Defined in the Runtime

Constant Name ILAsm Notation

CMOD_REQD modreq(
<class_ref>)

CMOD_OPT modopt(
<class_ref>)

SENTINEL

PINNED pinned

Comments

Required C modifier

Optional C modifier

Start of optional argu
ments in a vararg
method call

Marks a local variable
as unmovable by the
garbage collector

The modifiers modreq and modopt indicate that the item to which they are
attached-an argument, a return type, or a field, for example-must be treated
in some special way. These modifiers are followed by TypeDef or TypeRef
tokens, and the classes corresponding to these tokens indicate the special way
the item is to be handled.

The tokens following modreq and modopt are compressed according to
the following algorithm. As you might remember, an uncoded (external) meta
data token is a 4-byte unsigned integer, which has the token type in its senior
byte and a record index (RID) in its 3 lower bytes. It so happens that the tokens
appearing in the signatures and hence requiring compression are of three types
only: TypeDef, TypeRef, or TypeSpec. (See "Signatures" later in this chapter for
information about TypeSpecs.) Because of that, only 2 bits, rather than a whole
byte, are required for the token type: 00 denotes TypeDef, 01 is used for Typ
eRef, and 10 for TypeSpec. The token compression procedure resembles the
procedure used to compress the signed integers: the RID part of the token is
shifted left by 2 bits, and the 2-bit type encoding is placed in the least significant
bits. The result is compressed just as any unsigned integer would be, according
to the formula shown earlier in Table 7-4.

The modifiers modreq and modopt are used primarily by tools other than
the common language runtime, such as compilers or program analyzers. The
modreq modifier indicates that the modifier must be taken into account,
whereas modopt indicates that the modifier is optional and can be ignored. The
ILAsm compiler does not use these modifiers for its internal purposes.

The only use of the modreq and modopt modifiers recognized by the com
mon language runtime is when these modifiers are applied to return types or
parameters of methods subject to managed/unmanaged marshaling. For exam
ple, to specify that a managed method must have the cdecl calling convention

164 Part Ill Fundamental Components

when it is marshaled as unmanaged, we can use the following modifier
attached to the method's return type:

modopt([mscorlib]System.Runtime.InteropServices.CallConvCdecl)

When used in the context of managed/unmanaged marshaling, the
modreq and modopt modifiers are equivalent.

Although the modreq and modopt modifiers have no effect on the man
aged types of the items to which they are attached, signatures with and without
these modifiers are considered different. The same is true for signatures differ
ing only in classes referenced by these modifiers.

The sentinel modifier(...) was introduced in Chapter 1, "Simple Sample,"
when we analyzed the declaration and calling of methods with a variable
length argument list (vararg methods). (See "Method Declaration.") A sentinel
signifies the. beginning of optional arguments supplied for a vararg method
call. This modifier can appear in only one context: at the call site, because the
optional parameters of a vararg method are not specified when such a method
is declared. The runtime treats a sentinel appearing in any other context as an
error. The method arguments at the call site can contain only one sentinel, and
the sentinel is used only if optional arguments are supplied:

II Declaration of vararg method - mandatory parameters only:
.method public static vararg int32 Print(string Format)
{

}

II Calling vararg method with two optional arguments:
call vararg int32 Print(string, -· int32, int32)

II Calling vararg method without optional arguments:
call vararg int32 Print(string)

The pinned modifier is applicable to the method's local variables only. Its
use means that the local variable cannot be relocated by the garbage collector
and must stay put throughout the method execution. If a local variable is
"pinned," it is safe to convert a managed pointer to this variable to an unman
aged pointer and then to dereference this unmanaged pointer, because the
unmanaged pointer is guaranteed to still be valid when it is dereferenced:

.locals init(int32 A, int32 pinned B, int32* pA, int32* pB)
ldloca A
stloc pA II pA &A
ldloca B
stloc pB II pB &B

ldloc pA
ldc.14 123
st1nd.14
ldloc pB
ldc.14 123
st1nd.14

Chapter 7 Primitive Types and Signatures 165

II *pA=123 - unsafe, A could have been moved

II *PB=123 - safe, B is pinned and cannot move

Native Types
When managed code calls unmanaged methods or exposes managed fields to
unmanaged code, it is sometimes necessary to provide specific information
about how the managed types should be marshaled to and from the unman
aged types. The unmanaged types recognizable by the common language runt
ime are referred to as native, and they are listed in CorHdr.h in the enumeration
CorNativeType. All constants in this enumeration have names that begin with
NATIVE_ TYPE_*; for purposes of this discussion, I have omitted this part of the
names or abbreviated it as N_T_. The same constants are also listed in the .NET
Framework class library in the enumerator System.Runtime.lnteropSer
vices. UnmanagedType.

Some of the native types are obsolete and are ignored by the runtime
interoperability subsystem. But since these native types are not retired alto
gether, ILAsm must have ways to denote them-and since ILAsm denotes these
types, I cannot help but list obsolete types along with others, all of which you'll
find in Table 7-6.

Table 7-6 Native Types Defined in the Runtime

Code

OxOl

Ox02

Ox03

Ox04

Ox OS

Constant
Name

VOID

BOOLEAN

I1

U1

12

.NET
Framework
Type Name

Boo!

I1

Ul

12

ILAsm
Notation

void

boo!

int8

unsigned int8

int16

Comments

Obsolete and thus
should not be used;
recognized by ILAsm
but ignored by the
runtime interoperabil
ity subsystem

4-byte Boolean value;
true= nonzero,false =

0

Signed 1-byte integer

Unsigned 1-byte inte
ger

Signed 2-byte integer
(continued)

166 Part Ill Fundamental Components

Table 7-6 Native Types Defined in the Runtime (continued)

Constant
.NET

ILAsm
Code Framework Comments

Name
Type Name

Notation

Ox06 U2 U2 unsigned int16 Unsigned 2-byte inte-
ger

Ox07 I4 I4 int32 Signed 4-byte integer

Ox08 U4 U4 unsigned int32 Unsigned 4-byte inte-
ger

Ox09 I8 I8 int64 Signed 8-byte integer

OxOA U8 U8 unsigned int64 Unsigned 8-byte inte-
ger

OxOB R4 R4 float32 4-byte floating-point

OxOC R8 R8 .fioat64 8-byte floating-point

OxOD SYS CHAR syschar Obsolete

OxOE VARIANT variant Obsolete

OxOF CURRENCY Currency currency Currency value

OxlO PTR * Obsolete; use native
int

Oxll DECIMAL decimal Obsolete

Ox12 DATE date Obsolete

Ox13 BSTR BS tr bstr Unicode Visual Basic-
style string

Oxl4 LPSTR LPStr lpstr Pointer to a zero-ter-
minated ANSI string

Ox15 LPWSTR LPWStr lpwstr Pointer to a zero-ter-
minated Unicode
string

Ox16 LP TS TR LP TS tr lptstr Pointer to a zero-ter-
minated ANSI or Uni-
code string,
depending on plat-
form

Oxl7 FIXED- ByValTStr fixed sysstring Fixed-system string of
SYSSTRING [<size>] size <size> bytes;

applicable to field
marshaling only

Oxl8 OB]ECTREF objectref Obsolete

Ox19 !UNKNOWN !Unknown iunknown !Unknown interface
pointer

OxlA !DISPATCH !Dispatch idispatch !Dispatch interface
pointer

Chapter 7 Primitive Types and Signatures 167

Table 7-6 Native Types Defined in the Runtime (continued)

Constant .NET IIAsm
Code Framework Comments

Name Type Name Notation

OxlB STRUCT Struct struct C-style structure, for
marshaling the format-
ted managed types

OxlC INTF Interface interface Interface pointer

OxlD SAFEARRAY SafeArray safearray Safe array of type
<variant_type> <variant_type>

OxlE FIXED ARRAY By Va/Array fixed array Fixed-size array, of
[<size>} size <size> bytes

OxlF INT IntPtr int Signed pointer-size
integer

Ox20 UINT UlntPtr unsigned int Unsigned pointer-size
integer

Ox21 NESTED- nested struct Obsolete; use struct
STRUCT

Ox22 BYVALSTR VBByRefStr byvalstr Visual Basic-style
string in a fixed-length
buffer

Ox23 ANSIBSTR AnsiBStr ansi bstr ANSI Visual Basic-
style string

Ox24 TBSTR TBS tr tbstr bstr or ansi bstr,
depending on the
platform

Ox25 VARJANTBOOL VariantBool variant bool 2-byte Boolean;
true= -1,false = 0

Ox26 FUNG FunctionPtr method Function pointer

Ox28 A SANY AsAny as any Object; type defined
at run time

Ox2A ARRAY LP Array <n_type> Fixed-size array of a
[<sizes>} native type <n_type>

Ox2B LPSTRUCT LPStruct lpstruct Pointer to a C-style
structure

Ox2C CUSTOMMAR- CustomMar- custom Custom marshaler
SHALER shaler (<class_str>,

<cookie_str>)

Ox2D ERROR Error error Maps int32 to
VT_HRESULT

168 Part 111 Fundamental Components

The <sizes> parameter in the ILAsm notation for ARRAY, shown in Table 7-
6, can be empty or can be formatted as <size> + <size_param_number>:

<sizes> : := <>
I <size>
J + <size_param_number>
J <size> + <sfze_param_number>

If <sizes> is empty, the size of the native array is derived from the size of the
managed array being marshaled.

The <size> parameter specifies the native array size in array items. The
zero-based method parameter number <size_param_number> indicates which
of the method parameters specifies the size of the native array. The total size of
the native array is <size> plus the additional size specified by the .method
parameter that is indicated by <size_param_number>.

A custom marshaler declaration (shown in Table 7-6) has two parameters,
both of which are quoted strings. The <class_str> parameter is the name of the
class representing the custom marshaler, using the string conventions of Reflec
tion.Emit. The <cookie_str> parameter is an argument string (cookie) passed to
the custom marshaler at run time. This string identifies the form of the marshal
ing required, and its notation is specific to the custom marshaler.

Variant Types

Table7-7

Code

OxOO

OxOl

Ox02

Ox03

Ox04

Variant types are defined in the enumeration VARENUM in the Wtypes.h file,
which is distributed with Microsoft Visual Studio. Not all variant types are appli
cable as safe array types, according to Wtypes.h, but ILAsm provides notation
for all of them nevertheless, as shown in Table 7-7. It might look strange, con
sidering that variant types appear in ILAsm only in the context of safe array
specification, but we should not forget that one of ILAsm's principal applica
tions is the generation of test programs, which contain known, preprogrammed
errors.

Variant Types Defined in the Runtime

Constant Name Applicable to ILAsm Notation Safe Array?

Vf_EMPTY No <empty>

VI'_NUU No null

VI'_I2 Yes int16

VI'_I4 Yes int32

VI'_R4 Yes float32

Chapter 7 Primitive Types and Signatures 169

Table 7-7 Variant Types Defined in the Runtime (continued)

Code Constant Name
Applicable to

ILAsm Notation
Safe Array?

OxOS VT_R8 Yes .fioat64

Ox06 VT_CY Yes currency

Ox07 VT_DATE Yes date

Ox OS VT_BSTR Yes bstr

Ox09 VT_DISPATCH Yes idispatch

OxOA VT_ERROR Yes error

OxOB VT_BOOL Yes boot

OxOC VT_ VARIANT Yes variant

OxOD VT_ UNKNOWN Yes iunknown

OxOE VT_DECJMAL Yes decimal

OxlO VT_ll Yes int8

Oxll VT_Ull Yes unsigned int8

Ox12 VT_U/2 Yes unsigned int16

Ox13 VT_U/4 Yes unsigned int32

Ox14 VT_l8 No int64

OxlS VT_U/8 No unsigned int64

Ox16 VT_!NT Yes int

Ox17 VT_UINT Yes unsigned int

Ox18 VT_VOID No void

Ox19 VT_HRESULT No hresult

OxlA VT_PTR No ·•
OxlB VT_SAFEARRAY No safearray

OxlC VT_CARRAY No carray

OxlD VT_USERDEFINED No userdefined

OxlE VT_LPSTR No lpstr

OxlF VT_LPWSTR No lpwstr

Ox24 VT_RECORD Yes record

Ox40 VT_FILETIME No filetime

Ox41 VT_BLOB No blob

Ox42 VT_ STREAM No stream

Ox43 VT_STORAGE No storage

Ox44 VT_STREAMED _OB]ECT No streamed_object

Ox45 VT_STORED_OB]ECT No stored_ object
(continued)

170 Part Ill Fundamental Components

Table 7-7 Variant Types Defined in the Runtime (continued)

Code Constant Name
Applicable to

IIAsm Notation
Safe Array?

Ox46 VT_BLOB-'OB]ECT No blob_object

Ox47 VT_CF No cf

Ox48 VT_CLSID No clsid

OxlOOO VT_ VECTOR Yes <v _type> vector

Ox2000 VT_ARRAY Yes <v_type> r j
Ox4000 VT_BYREF Yes <v_type> &

Representing Classes in Signatures
The classes and value types in general are represented in signatures by their
TypeDef or TypeReftokens, preceded by E_T_CLASS or E_T_ VALUETYPE,
respectively, as shown in Table 7-8.

Table 7-8 Representation of CLASS and VALUETYPE

Code

Oxll

Ox12

OxOE

OxlC

Constant .NET
Framework Name
Type Name

VALUETYPE

CLASS

STRING String

OBJECT Object

ILAsm Notation

valuetype
<class_ref>

class <class_ref>

string

object

Comments

Value type

Class or interface,
except [mscorlib}Sys
tem. Object and [mscor
lib}System.String

[mscorlib}System.String
class

[mscorlib}System. Object
class

As you can see in Table 7-8, two classes, String and Object, are assigned
their own codes and hence should have been listed along with primitive data
types in Table 7-1, if it were not for their class nature. This is important: if a type
(class or value type) is given its own code, it cannot be referenced in signatures
other than by this code. In other words, the class [mscorlib]System. Object must
appear in signatures as E_T_OB]ECTand never as E_T_CLASS<token_of_Object>,

Chapter 7 Primitive Types and Signatures 171

and the value type [mscorlib]System.lnt32 must appear in signatures as E_T_f 4
and never as E_T_ VALUETYPE<token_of_Int32>.

The JIT (just-in-time) compiler does not accept "long forms" of type
encoding for types that have dedicated type codes assigned to them, and run
time signature validation procedures reject such signatures.

Signatures

Important If a type (class or value type) is given its own code, it can
not be referenced in signatures other than by this code.

Now that you know more about type encoding, let's look at how the item types
are set in the common language runtime. Program items such as fields, meth
ods, and local variables are not characterized by encoded types; rather, they are
characterized by signatures. A signature is a binary object containing one or
more encoded types and residing in the #Blob stream of metadata.

The following metadata tables refer to the signatures:

• Field table Field declaration signature

• Method table Method declaration signature

• Property table Property declaration signature

• MemberRef table Field or method referencing signature

• StandAloneSig table Local variables or indirect call signature

• TypeSpec table Type specification signature

Calling Conventions
The first byte of a signature defines the calling convention of the signature,
which in turn identifies the type of the signature. The CorHdr.h file defines the
following calling convention constants in the enumeration CorCallin:gConven
tion:

• IMAGE_CEE_CS_CALLCONV_DEFAULT(OxO) Default ("nomal")
method with a fixed-length argument list. ILAsm has no keyword for
this calling convention.

• IMAGE_CEE_CS_CALLCONV_ VARARG (Ox5) Method with a
variable-length argument list. The ILAsm keyword is vararg.

172 Part Ill Fundamental Components

• IMAGE_CEE_CS_CALLCONV_FIELD (Ox6) Field. ILAsm has no
keyword for this calling convention.

• IMAGE_CEE_CS_CALLCONV_LOCAL_SIG (Ox7) Local variables.
ILAsm has no keyword for this calling convention.

• IMAGE_CEE_CS_CALLCONV_PROPERTY (Ox8) Property. ILAsm
has no keyword for this calling convention.

• IMAGE_CEE_CS_CALLCONV_UNMGD (Ox9) Unmanaged calling
convention, not currently used by the common language runtime and
not recognized by ILAsm.

• IMAGE_CEE_CS_CALLCONV_HASTHIS (Ox20) Instance method
that has an instance pointer (this) as an implicit first argument. The
ILAsm keyword is instance.

• IMAGE_CEE_CS_CALLCONV_EXPLICIITHIS (Ox40) Method call
signature. The first explicitly specified parameter is the instance
pointer. The ILAsm keyword is explicit.

The calling conventions instance and explicit are the modifiers of the
default and vararg method calling conventions. The calling convention explicit
can be used only in conjunction with instance and only at the call site, never in
the method declaration.

Calling conventions for field, property, and local variables signatures don't
need special ILAsm keywords because they are inferred from the context.

Field Signatures
A field signature is the simplest kind of signature. It consists of a single encoded
type (SET), which of course follows the calling convention byte:

<field_sig> : := <callconv_field> <SET>

Although this type encoding (SET) can be quite long, especially in the case of
a multidimensional array or a function pointer, it is nevertheless a single type
encoding. In a field signature, SET cannot have & or pinned or sentinel modifi
ers, and it cannot be void.

The field calling convention is always equal to IMAGE_CEE_CS_CALL
CONV_FIEW, regardless of whether the field is static or instance. The informa
tion is inferred from the context in which the field is referenced.

Chapter 7 Primitive Types and Signatures 173

Method and Property Signatures
The structures of method and property signatures (and I am talking about
method and property declarations here) are similar:

<method_sig> : := <ca77conv_method> <num_of_args> <return_type>
[<arg_type>[.<arg_type>*] J

<prop_sig> ::= <ca77conv_prop> <num_of_args> <return_type>
[<arg_type>[.<arg_type>*] J

The difference is in the calling convention. The calling convention for a
method signature is the following:

< ca77conv_method > : := <default> II Static method, default
II calling convention

vararg II Static vararg method
instance II Instance method, default

II calling convention
instance vararg II Instance vararg method

The calling convention for a property signature is always equal to
Ill1AGE_CEE_CS_CAUCONV_PROPERTY.

Having noted this difference, we might as well forget about property sig
natures and concentrate on method signatures. The truth is that a property sig
nature-excluding the calling convention-is a composite of signatures of the
property's access methods, so it is no great wonder that method and property
signatures have similar structures.

Remember that in the method calling convention, the combined calling
conventions, such as instance vararg, are the products of bitwise OR opera
tions performed on the respective calling convention constants.

The value <num_of_args>, a compressed unsigned integer, is the number
of parameters, not counting the return type. The values <return_type> and
<arg_type> are SETs. The difference between them and the field's SET is that
the modifier & is allowed in both <return_type> and <arg_type>. The difference
between <return_type> and <arg_type> is that <return_type> can be void and
<arg_type> cannot.

Instance methods have the implicit first argument this, which is not
reflected in the signature. This implicit argument is a reference to the instance
of the method's parent type. It has a class reference type for classes and inter
faces and a managed pointer for value types.

174 Part Ill Fundamental Components

MemberRet Signatures
Member references, which are kept in the MemberRef metadata table, are the
references to fields and methods, usually those defined outside the current
module. There are no specific MethodRefs and FieldRejs, so you must look at
the calling convention of a MemberRef signature to tell a field reference from a
method reference.

MemberRef signatures for field references are the same as the field decla
ration signatures discussed earlier; see "Field Signatures." MemberRej signatures
for method references are structurally similar to method declaration signatures,
although you should note two differences concerning the values of signature
components:

• The calling convention can contain the modifier explicit, which indi
cates that the instance pointer of the parent object (this) is explicitly
specified in the method signature as the first parameter.

• In the argument list of a vararg method reference, a sentinel can pre
cede the optional arguments. The sentinel itself does not count as an
additional argument, so if you call a vararg method with one man
datory argument and two optional arguments, the MemberRef signa
ture will have an argument count of three and an argument list
structure that looks like this:

<mandatory_arg> <sentine7><opt_argl><opt_arg2>

Indirect Call Signatures
To call methods indirectly, IL has the special instruction calli. This instruc
tion takes argument values plus a function pointer from the stack and uses
the StandAloneSig token as a parameter. The signature indexed by the token
is the signature by which the call is made. Effectively, calli takes a function
pointer and a signature and presumes that the signature is the correct one to
use in calling this function:

ldc.i4.0
1de.i4 .1
ldftn
ca 11 i

II Load first argument
II Load second argument

void Foo::Bar(int32, int32) II Load function pointer
void(int32, int32) II Call Foo::Bar indirectly

Indirect call signatures are similar to the method signatures of Member
Rejs, but their calling convention might be one of the unmanaged calling con
ventions, if the method called indirectly is in fact unmanaged.

Unmanaged calling conventions are defined in CorHdr.h in the CorUn
managedCallingConvention enumeration as follows:

Chapter 7 Primitive Types and Signatures 175

• IMAGE_CEE_UNMANAGED_CALLCONV_C (Oxl) C/C++-style
calling convention. The call stack is cleaned up by the caller. The
ILAsm notation is unmanaged cdecl.

• IMAGE_CEE_UNMANAGED_CALLCONV_STDCALL (Ox2) Win32
API calling convention. The call stack is cleaned up by the callee. The
ILAsm notation is unmanaged stdcall.

• IMAGE_CEE_UNMANAGED_CALLCONV_THISCALL (Ox3) C++
member method (non-vararg) calling convention. The callee cleans
the stack, and the this pointer is pushed on the stack last. The ILAsm
notation is unmanaged thiscall.

• IMAGE_CEE_UNMANAGED_CALLCONV_FASTCALL (Ox4) Argu
ments are passed in registers when possible. The ILAsm notation is
unmanaged fastcall. This calling convention is not supported in the
first release of the runtime.

Local Variables Signatures
Local variables signatures are the second type of signatures referenced by the
StandAloneSig metadata table. Each such signature contains type encodings for
all local variables used in a method. The method header can contain the Stand
AloneSig token, which identifies the local variables signature. This signature is
retrieved by the loader when it prepares the method for JIT compilation.

Local variables signatures are to some extent similar to method declaration
signatures, with two differences:

• The calling convention is IMAGE_CEE_CS_CALLCONV_LOCAL_SIG.

• Local variables signatures have no return type. The local variable
count is immediately followed by the sequence of encoded local
variable types:

<locals_sig> ::= <callconv_locals> <num_of_vars>
<var_type>[.<var_type>*] J

• <var _type> is the same SET as <arg_type> in method declaration sig
natures-it can be anything except void.

Type Specifications
Type specifications are special metadata items residing in the TypeSpec table
and representing type constructs-as opposed to TypeDefs and TypeRefs, which
represent types (classes, interfaces, and value types).

A common example of a type construct is a vector or an array of classes
or value types. Consider the following code snippet:

176 Part Ill Fundamental Components

.locals 1n1t(1nt32[0_,0_] iArr) II Declare 2-dim array reference
ldc.14 5 II Load size of first dimension
ldc.14 10 II Load size of second dimension
II Create array by calling array constructor:
newobj instance void int32[0_,0_]::.ctorC1nt32,1nt32)
stloc iArr II Store reference to new array in iArr

In the newobj instruction, we specified a MemberRef of the constructor method,
parented not by a type but by a type construct, int32!0 ... ,0 .. .}. The question is,
"Whose .ctor is it, anyway?"

You might recall that arrays and vectors are generics and can be actualized
only in conjunction with some nongeneric type, producing a new class-in our
case, a two-dimensional array of 4-byte integers with zero lower bounds. So the
constructor we called was the constructor of this class.

And, of course, a natural way to represent such a type construct is by a
signature. That's why TypeSpec records have only one entry, containing an off
set in the #Blob stream, pointing at the signature. Personally, I think it's a pity
the TypeSpec record contains only one entry; a Name entry could be of some
use. We could go pretty far with named TypeSpecs.

The TypeSpec signature has no calling convention and consists of one SET,
which, however, can be fairly long. Consider, for example, a multidimensional
array of function pointers that have function pointers among their arguments.

TypeSpec tokens can be used with all IL instructions that accept TypeDef or
TypeRef tokens. In addition, as you've seen, MemberRefs can be scoped to
TypeSpecs as well as TypeRefs. The only places where TypeSpecs cannot replace
TypeDefs or TypeRefs are the extends and implements clauses of the class dec
laration.

Two additional kinds of TypeSpecs, other than vectors and arrays, are
unmanaged pointers and function pointers which are not true generics, in that
no abstract class exists from which all pointers inherit. Of course, both types of
pointers can be cast to the value type int ([mscorlib}System.lntPtr), but this can
hardly help-the int value type is oblivious to the type being pointed at, so
such casting results only in loss of information. Pointer kinds of TypeSpecs are
rarely used, compared to array kinds, and have limited application.

Signature Validity Rules
Let's wrap up the basic facts discussed in this chapter:

• [run time] Signature entries of records in the Method, Field, Property,
MemberRef, StandaloneSig, and TypeSpec metadata tables must hold
valid offsets in the #Blob stream. Nil values of these entries are not
acceptable.

Chapter 7 Primitive Types and Signatures 177

• Signatures are built from SETs. Each SET describes the type of a field,
a parameter, or other such item.

• [run time) Each SET is a sequence of pnm1tive type codes and
optional integer parameters, such as metadata tokens or array dimen
sion sizes. A SET cannot end with the following primitive types: a
sentinel, *, &, [], or pinned. These primitive types are modifiers for
the types that follow them in the SET.

• [run time) A field signature, which is referenced from the Field or
MemberRef table, consists of the calling convention IMAGE_CEE_CS
_CALLCONV_FIELD and one valid SET, which cannot be void or
<type>& and cannot contain a sentinel or a pinned modifier.

• A method reference signature, which is referenced from the Mem
berRef table, consists of a calling convention, an argument count, a
return SET, and a sequence of argument SETs, corresponding in
number to the argument count.

• [run time) The calling convention of a method reference signature is
one of the following: the default, vararg, instance, instance vararg,
instance explicit, or instance explicit vararg.

• [run time) The return SET of a method reference signature cannot
contain a sentinel or a pinned modifier.

• [run time) No more than one argument SET of a method reference
signature can contain a sentinel, and it can do so only if the calling
convention includes vararg.

• [run time) The argument SETs of a method reference signature can
not be void and cannot contain a pinned modifier.

• A method declaration signature, which is referenced from the
Method table, has the same structure as a method reference signature
and must comply with the same requirements, plus the following
restrictions: the explicit calling convention cannot be used, and no
argument SET can contain a sentinel.

• A property declaration signature, which is referenced from the Prop
erty table, has the same structure as a method declaration signature
and must comply with the same requirements except that the calling
convention of a property declaration signature must be
IMAGE_CEE_CS_CALLCONV_PROPER1Y.

178 Part Ill Fundamental Components

• An indirect call signature, which is referenced from the StandAlone
Sig table, has the same structure as a method reference signature and
must comply with the same requirements except that the calling con
vention of an indirect call to an unmanaged method can be unman
aged cdecl, unmanaged stdcall, unmanaged thiscall, or unmanaged
fastcall.

• A local variables signature, which is referenced from the StandAlone
Sig table, consists of the calling convention IMAGE_CEE_CS_CALL
CONV_LOCAL_SIG, a local variable count, and a sequence of vari
able SETs, corresponding in number to the variable count.

• [run time] No variable SET can be void or can contain a sentinel.

• A type specification signature, which is referenced from the TypeSpec
table, consists of one SET not preceded by the calling convention. The
SET must represent an array, a vector, an unmanaged pointer, or a
function pointer, and it cannot contain a pinned modifier.

Fields and Data Constants
Field Metadata 180

Instance and Static Fields 184

Default Values 184

Mapped Fields 187

Data Constants Declaration 189

Explicit Layouts and Union Declaration 191

Global Fields 194

Constructors vs. Data Constants 195

Metadata Validity Rules 198

Fields are one of two kinds of typed and named data locations, the second kind
being method local variables, which are discussed in Chapter 9, "Methods."
Fields correspond to the member variables and global variables of the C++
world. Apart from their own characteristics, fields can have additional informa
tion associated with them defining the way the fields are laid out by the loader,
how they are allocated, how they are marshaled to unmanaged code, and
whether they have default values. This chapter examines all aspects of member
and global fields and the metadata used to describe these aspects.

179

180 Part Ill Fundamental Components

Field Metadata
To define a field, you must first provide basic information: the field's name and
signature and flags indicating the field's characteristics, stored in the Field meta
data table. Then comes optional information, specific to certain kinds of fields:
field marshaling information, found in the FieldMarshal table; field layout infor
mation in the FieldLayout table; field mapping information in the FieldRVA
table; and a default value in the Constant table.

To reference a field, you must know its owner-TypeRef, TypeDej; or Mod
uleRef-as well as the field's name and signature. The references to the fields
are kept in the MemberRef table. The general structure of the field metadata
group is shown in Figure 8-1.

TypeRef

table

TypeOef

table

Field Layout

table

FieldRVA

table

ModuleRef

table

Constant

table

FieldMarshal

table

Figure 8-1 Field metadata group.

The central metadata table of the group, the Field table, has the associated
token type mdtFieldDef (Ox04000000). A record in this table has three entries:

• Flags (2-byte unsigned integer) Binary flags indicating the
field's characteristics.

• Name (offset in the #Strings stream) The field's name.

• Signature (offset in the #Blob stream) The field's signature.

As you can see, a Field record does not contain one vital piece of infor
mation: which class or value type owns the field. The information about field
ownership is furnished by the class descriptor itself: records in the TypeDef
table have FieldList entries, which hold the RID (record index) of the Field table
where the type's fields can be found.

Chapter 8 Fields and Data Constants 181

In the simplest case, when only the Field metadata table is involved, the IL
assembly language (ILAsm) syntax for a field declaration is as follows:

.field <flags> <type> <name>

The owner of a field is the class or value type in the lexical scope of which the
field is defined.

A field's binary flags are defined in the CorHdr.h file in the enumeration
CorFieldAttr and can be divided into four groups, as described in the following
list. I'm using ILAsm keywords instead of the constant names from CorFieldAttr,
as I don't think the constant names are relevant.

• Accessibility flags (mask Ox0007):

w privatescope (OxOOOO) This is the default accessibility. A
private scope field is exempt from the requirement of having a
unique triad of owner, name, and signature and hence must
always be referenced by a FieldDeftoken and never by a Mem
berRej token (OxOAOOOOOO). Otherwise, this accessibility is the
same as that specified by the private flag.

O private (OxOOOl) The field is accessible from its owner and
from classes nested in the field's owner.

D famandassem (Ox0002) The field is accessible from types
belonging to the owner's family-that is, the owner itself and
all its descendants-defined in the current assembly.

assembly (Ox0003) The field is accessible from types
defined in the current assembly.

family (Ox0004) The field is accessible from the owner's family.

famorassem (Ox0005) The field is accessible from the owner's
family and from all types defined in the current assembly.

public (Ox0006) The field is accessible from any type.

• Contract flags (mask Ox02FO):

static (OxOOlO) The field is static, shared by all instances of
the type.

initonly (Ox0020) The field can only be initialized and can
not be written to later. Initialization takes place in an instance
constructor (.ctor) for instance fields and in a class constructor
(.cctor) for static fields.

literal (Ox0040) The field is a compile-time constant. The

182 Part Ill Fundamental Components

loader does not lay out this field and does not create an internal
handle for it. The field cannot be directly addressed from IL and
can be used only as a Reflection reference to retrieve an asso
ciated metadata-held constant. If you try to access a literal field
directly-for example, through the ldsfld instruction-the JIT
(just-in-time) compiler throws a MissingField exception and
aborts the task.

notserialized (Ox0080) The field does not have to be serial
ized when the owner is remoted. This flag has meaning only for
instance fields of the serializable types.

specialname (Ox0200) The field is special in some way, as
defined by the name.

• Interoperability flag:

pinvokeimpl (Ox2000) The field is unmanaged and is
accessed from the managed code via the platform invocation
mechanism (P/lnvoke). In the first release of the Microsoft .NET
common language runtime, the P/lnvoke mechanism works for
methods only, so this flag should never be set. ILAsm does not
allow the flag to be set.

• Reserved flags (cannot be set explicitly; mask Ox9500):

rtspecialname (Ox0400) The field has a special name that is
reserved for the internal use of the common language runtime.
Two field names are reserved: value_, for instance fields in
enumerators; and _Deleted*, for fields marked for deletion but
not actually removed from metadata. The keyword rtspecial
name is ignored by the ILAsm compiler and is displayed by the
IL Disassembler for informational purposes only. This flag must
be accompanied by a specialname flag.

marshal(<native_type>) (OxlOOO) The field has an associ
ated FieldMarshal record specifying how the field must be mar
shaled when consumed by unmanaged code. The ILAsm
construct marshal(<native_type>) defines the marshaling infor
mation emitted to the FieldMarshal table but does not set the
flag directly. Rather, the flag is set behind the scenes by the
metadata emission API when the marshaling information is
emitted. Native types are discussed in Chapter 7, "Primitive
Types and Signatures."

[no ILAsm keyword] (Ox8000) The field has an associated

Chapter 8 Fields and Data Constants 183

Constant record. The flag is set by the metadata emission API
when the respective Constant record is emitted. See the section
"Default Values," later in this chapter.

[no ILAsm keyword] (OxOlOO) The field is mapped to data
and has an associated FieldRVA record. The flag is set by the
metadata emission API when the respective FieldRVA record is
emitted. See the section "Mapped Fields," later in this chapter.

In the field declaration, the type of the field (<type>) is the ILAsm notation
of the appropriate single encoded type, which together with the calling conven
tion forms the field's signature. If you forgot what a field signature looks like,
see the section "Field Signatures," in Chapter 7.

The name of the field (<name>), also included in the declaration, should
be a simple name. ILAsm does not allow composite field names, although one
can always cheat and put a composite name in single quotation marks, turning
it into a simple name.

Examples of field declarations include the following:

.field public static marshal(int) int32 I

.field family string S

.field private int32& pJ // ERROR! ByRef in field signature!

Field references in ILAsm have the following notation:

<field_ref> : := <field_type>[<class_ref>::]<field_name>

where <class_ref>--as we know from Chapter 6, "Namespaces and Classes"
is defined as

<class_ref> [<resolution_scope>]<full_type_name>

where

<resolution_scope> : := [<assembly_ref_alias>]
I [.module <module_ref_name>]

For instance, this example uses the IL instruction ldfld, which loads the
field value on the stack:

ldfld int32 [.module Another.dll]Foo.Bar: :idx

When it is difficult to infer from the context whether the referenced mem
ber is a field or a method, <field_ref> is sometimes preceded by the keyword
field. Note that the keyword does not contain a leading dot. This example uses
the IL instruction ldtoken, which loads an item's runtime handle on the stack:

ldtoken field int32 [.module Another.dll]Foo.Bar::idx

184 Part Ill Fundamental Components

The field references reside in the MemberRef metadata table, which has
associated token type OxOAOOOOOO. A record of this table has only three entries:

• Class (coded token of type MemberRefParent) This entry refer
ences the TypeRef or the ModuleRef table. Method references, resid
ing in the same table, can have their Class entries referencing the
Method and the TypeSpec tables as well.

• Name (offset in the #Strings stream)

• Signature (offset in the #Blob stream)

Instance and Static Fields
Instance fields are created every time a type instance is created, and they belong to
the type instance. Static fields, which are shared by all instances of the type, are cre
ated when the type is loaded. Some of the static fields (literal and mapped fields)
are never allocated. The loader simply notes where the mapped fields reside and
addresses these locations whenever the fields are to be addressed. And the literal
fields are replaced with the constants at compile time.

A field signature contains no indication of whether the field is static or
instance. But because the loader keeps separate books for instance fields and
for two out of three kinds of static fields-not for literal fields-the kind of ref
erenced field is easily discerned from the field's token. When a field token is
found in the IL stream, the]IT compiler does not have to dive into the meta
data, retrieve the record, and check the field's flags; by that time, all the fields
have been accounted for and duly classified by the loader.

IL has two sets of instructions for field loading and storing. The instruc
tions for instance fields are ldfld, ldflda, and sifld; those for static fields are lds
fld, ldsflda, and stsfld. An attempt to use a static field instruction with an
instance field would result in a]IT compilation failure. The inverse combination
would work, but it requires loading the instance pointer on the stack, which is,
of course, completely redundant for a static field.

Default Values
Default values reside in the Constant metadata table. Three kinds of metadata
items can have a default value assigned and therefore can reference the Con
stant table: fields, method parameters, and properties. A record of the Constant
table has three entries:

• Type (unsigned 1-byte integer) The type of the constant, one of
the ELEMENT_TYPE_* codes. (See Chapter 7.)

Chapter 8 Fields and Data Constants 185

• Parent (coded token of type HasConstant) A reference to the
owner of the constant, a record in the Field, Property, or Param
table.

• Value (offset in the #Blob stream) A constant value blob.

The current implementation of the common language runtime and ILAsm
allows the constant types described in Table 8-1. (As usual, I've dropped the
ELEMENT_1YPE_ part of the name.)

Table 8-1 Constant Types

Constant Type ILAsm Notation Comments

I1

12

!4

!8

R4

RB

CHAR

BOOLEAN

STRING

CLASS

Int8

int16

int32

int64

float32

float64

char

boo!

<quoted_string>,
bytearray

null ref

Signed 1-byte integer.

Signed 2-byte integer.

Signed 4-byte integer.

Signed 8-byte integer.

4-byte floating-point.

8-byte floating-point.

2-byte Unicode character.

1-byte Boolean, true= l,false = 0.

Unicode string.

Null object reference. The value of the con
stant of this type must be a 4-byte integer
containing 0.

The ILAsm syntax for defining the default value of a field is as follows:

<field_def_const> : := .field <flags> <type>
<name>= <const_type> [(<value>)]

The value in parentheses is mandatory for all constant types except null
ref For example:

.field public int32 i = int32(123)

.field public static literal bool b = boolCtrue)

.field private float32 f = float32Cl.2345)

.field public static int16 ii = int16(0xFFE0)

.field public object o = nullref

Defining integer and Boolean constants-not to mention nullref-is
pretty straightforward, but floating-point constants and strings can present
some difficulties.

HS6 Part Ill Fundamental Components

Floating-point numbers have special cases, such as positive infinity and
negative infinity, that cannot be presented textually in simple floating-point for
mat. In these special cases, the floating-point constants can alternatively be rep
resented as integer values with a matching byte count. The integer values are
not converted to floating-point values; instead, they represent an exact bit
image of the floating-point values. For example:

.field public float32 fPoslnf = float32(0x7F800000)

.field public float32 fNeginf = float32(0xFF800000)

.field public float32 fNAN = float32(0xFFC00000)

Like all other constants, string constants are stored in the #Blob stream. In
this regard, they differ from user-defined strings, which are stored in the #US

stream. What both kinds of strings have in common is that they are supposed to
be Unicode. I say "supposed to be" because the only Unicode-specific restrictions
imposed on these strings are that their sizes are reported in Unicode characters
and that their byte counts must be even. Otherwise, these strings are simply
binary objects and might or might not contain invalid Unicode characters.

Notice that the type of the constant does not need to match the type of the
item to which this constant is assigned-in this case, the type of the field.

In ILAsm, a string constant can be defined either as a composite quoted
string or as a byte array:

.field public static string strl

.field public static string str2
"Isn't"+" it"+ "marvellous!"
bytearray(00 01 FF FE lA 00 00)

When a string constant is defined as a composite quoted string, this string
is converted to Unicode before being stored in the #Blob stream. In the case of
a bytearray definition, the specified byte sequence is stored "as is," and padded
with 1 zero byte if necessary to make the byte count even. In the example
shown here, the default value for the str2 field will be padded to bring the byte
count to 8 (four Unicode characters). And if the bytes specified in the bytearray
are invalid Unicode characters, it will surely be discovered when we try to print
the string, but not before.

Assigning default values to fields (and parameters) seems to be such a
compelling technique that you might wonder why we did not employ it in the
simple sample discussed in Chapter 1, "Simple Sample." Really, defining the
default values is a great way to initialize fields-right? Wrong. Here's a tricky
question. Suppose that we define a member field as follows:

.field public static int32 ii = int32(12345)

What will the value of the field be when the class is loaded? Correct answer: 0.
Why? Because default values specified in the Constant table are not used by the
loader to initialize the items to which they are assigned. If we want to initialize

Chapter 8 Fields and Data Constants 187

a field to its default value, we must explicitly call the respective Reflection
method to retrieve the value from metadata and then store this value in the
field. This doesn't sound too nice, but, on the other hand, we should not forget
that these are default values rather than initial values, so formally the loader
might be right.

Let me remind you once again that literal fields are not true fields. They are
not laid out by the loader, and they cannot be directly accessed from IL. From the
point of view of metadata, however, literal fields are nevertheless valid fields hav
ing valid tokens, which allow the constant values corresponding to these fields to
be retrieved by Reflection methods. The common language runtime does not
provide an implicit means of accessing the Constant table, which is a pity. It
would certainly be much nicer if the JIT compiler would compile the ldsfld
instruction into the retrieval of the respective constant value instead of failing,
when the ldsfld instruction is applied to a literal field. But such are the facts of life,
and I am afraid we cannot do anything about it at the moment.

Given this situation, literal fields without associated Constant records are
legal from the loader's point of view, but they are utterly meaningless. They
serve no purpose except to inflate the Field metadata table.

But how do the compilers handle literal fields? If every time a constant
from an enumerator-represented, as we know, by a literal field-was used the
compiler emitted a call to the Reflection API to get this constant value, one
could imagine where it would leave the performance. Most compilers are
smarter than that and resolve the literal fields at compile time, replacing refer
ences to literal fields with explicit constant values of these fields, so that the lit
eral fields never come into play at run time. So much for having the literal fields
in the metadata and devising a special kind of TypeDef for enumerators.

ILAsm, following common language runtime functionality to the letter,
allows the definition of the Constant metadata but does nothing about the sym
bol-to-value resolution at compile time. From the point of view of ILAsm and
the runtime, the enumerators are real, as distinctive types, but the symbolic
constants listed in the enumerations are not.

Mapped Fields
It is possible to provide unconditional initialization for static fields by mapping
the fields to data defined in the PE file and setting this data to the initializing
values. The syntax for mapping a field to data in ILAsm is the following:

<mapped_field_decl> ::= .field <flags> <type> <name> at <data_label>

Here's an example:

.field public static int64 ii at data_ii

HHS Part 111 Fundamental Components

The nonterminal symbol <data_label> is a simple name labeling the data
segment to which the field is mapped. The ILAsm compiler allows a field to be
mapped either to the "normal" data section (.sdata) or to the thread local stor
age (.tls), depending on the data declaration to which the field mapping refers.
A field can be mapped only to data residing in the same module as the field
declaration. (For information about data declaration, see the following section,
"Data Constants Declaration.")

Mapping a field results in emitting a record of the FieldRVA table, which
contains two entries:

• RVA (4-byte unsigned integer) The relative virtual address of the
data to which the field is mapped.

• Field (RID to the Field table) The index of the Field record being
mapped.

Two or more fields can be mapped to the same location, but each field
can be mapped to one location only. Duplicate FieldRVA records with the same
Field values and different RVA values are therefore considered invalid metadata.
The loader is not particular about duplicate FieldRVA records, however; it sim
ply uses the first one available for the field and ignores the rest.

The field mapping technique has some catches. The first catch (well, not
much of a catch, actually) is that, obviously, only static fields can be mapped.
Even if we could map instance fields, each instance would be mapped to the
same physical memory, making the fields de facto static-shared by all
instances-anyway. Mapping instance fields is considered invalid metadata, but
it has no serious consequences for the loader-if a field is not static, the loader
does not even check to see whether the field is mapped. The only real effect of
mapping instance fields is a bloated FieldRVA table. The ILAsm compiler treats
mapping of an instance field as an error and produces an error message.

The second catch is that a field cannot be mapped if its type contains
object references (objects or arrays). Because the data sections are out of the
garbage collector's reach, the validity of object references placed in the data
sections cannot be guaranteed. If the loader finds object references in a
mapped field type, it throws a TypeLoad exception and aborts the loading, even
if the code is run in full trust mode from a local drive and all security-related
checks are disabled. The loader checks for the presence of object references on
all levels of the field type-in other words, it checks the types of all the fields
that make up the type, and checks the types of fields that make up those types,
and so on.

The third catch is that a field cannot be mapped if its type contains non
public instance fields. The reasoning behind this limitation is that if we map a
field with a type containing nonpublic members, we can map another field of

Chapter 8 Fields and Data Constants 189

some all-public type to the same location and, through this second mapping,
get unlimited access to nonpublic member fields of the first type. The loader
checks for the presence of nonpublic members on all levels of the mapped field
type and throws a TypeLoad exception if it finds such members. This check,
unlike the check for object references, is performed only when code verifica
tion is required; it is disabled when the code is run from the local drive in full
trust mode.

Note, however, that a mapped field itself can be declared nonpublic with
out ill consequences. This is based on the simple assumption that if developers
decide to overlap their own nonpublic field and thus defy the accessibility con
trol mechanism of the common language runtime object model, they probably
know what they are doing.

The last catch worth mentioning is that the initialization data is provided
"as is," exactly as it is defined in the PE file. And if you run the code on a plat
form other than the one on which the PE file was created, you can face some
unpleasant consequences. As a trivial example, suppose that you map an int32
field to data containing bytes OxAA, OxBB, OxCC, and OxDD. On a little endian
platform (for instance, an Intel platform), the field is initialized to
OxDDCCBBAA, while on a big endian platform ... well, you get the picture.

All these catches do not preclude the compilers from using field mapping
for initialization.

Data Constants Declaration
A data constant declaration in ILAsm has the following syntax:

<data_decl> : := .data [tls J [<data_label> = J <data_items>

where <data_label> is a simple name, unique within the module, and

<data_ items> { <data_item> [, <data_item>* J } I <data_item>

where

<data_item> : := <data_type> [(<value>) J [[<count> J J

Data constants are emitted to the .sdata section or the .tis section, depend
ing on the presence of the tis keyword, in the same sequence in which they
were declared in the source code. The unlabeled data declarations can be used
for padding between the labeled data declarations and probably for nothing
else, since without a label it's impossible to map a field to this data. Unla
beled-or, more precisely, unreferenced-data might not survive round-trip
ping (disassembly-reassembly) because the IL Disassembler outputs only
referenced data.

The nonterminal symbol <data_type> specifies the data type. (See Table
8-2.) The data type is used by the ILAsm compiler exclusively for identifying the

190 Part Ill Fundamental Components

size and byte layout of <value> and is not emitted as any part of metadata or
the data itself. Having no way to know what the type was intended to be when
the data was emitted, the IL Disassembler always uses the most generic form, a
byte array, for data representation.

If <value> is not specified, the data is initialized to a default value (usually
a value with all bits set to zeros). Thus it is still "initialized data" in terms of the
PE file structure-meaning that this data is part of the PE file disk image.

The optional <count> in square brackets indicates the repetition count of
the data item. Here are some examples:

.data tls T_01 = int32(1234)
II 4 bytes in .tls section, value 0x00000402
.data tls int32
II 4 bytes padding in .tls section, value doesn't matter
.data 0_01 = int32(1234)[32J II 32 4-byte integers in .sdata section,

II Each equal to 0x000004D2

Table 8-2 Types Defined for Data Constants

Data Type Size

float32 4 bytes

.float64 8 bytes

int64 8 bytes

int32 4 bytes

int16 2 bytes

int8 1 byte

bytearray var

Value

Floating-point, single pre
cision

Floating-point, double
precision

8-byte signed integer

4-byte signed integer

2-byte signed integer

1-byte signed integer

Sequence of two-digit
hexadecimal numbers,
without the Ox prefix

Comments

If an integer value is used, it
is converted to floating-point.
If the value overflows float32,
the ILAsm compiler issues a
warning.

If an integer value is used, it
is converted to floating-point.

If the value overflows int32,
the ILAsm compiler issues a
warning.

If the value overflows int16,
the ILAsm compiler issues a
warning.

If the value overflows int8,
the ILAsm compiler issues a
warning.

The value cannot be omitted
since it defines the size. The
repetition parameter
([<count>]) cannot be used.

(continued)

Chapter 8 Fields and Data Constants 191

Table 8-2 Types Defined for Data Constants (continued)

Data Type Size

char* var

& 4 bytes

Value

Composite quoted string

Another data label

Comments

The value cannot be omitted
since it defines the size. The
repetition parameter
([<count>]) cannot be used.
The string is converted to Uni
code before being emitted to
data.

Data-on-data; the data con
taining the value of the
unmanaged pointer-the vir
tual address-of another
named data segment. The
value cannot be omitted, and
the repetition parameter
([<count>]) cannot be used.
The referenced data segment
must be declared before
being referenced in a data-on
data declaration.

Explicit Layouts and Union Declaration
Although instance fields cannot be mapped to data, it is possible to manipulate
the positioning of these fields directly. As you might remember from Chapter 6,
a class or a value type can have an explicit flag, a special flag indicating that the
metadata contains exact instructions for the loader regarding the layout of this
class. This information is kept in the FieldLayout metadata table, whose records
contain these two entries:

• OfjSet (4-byte unsigned integer) The relative offset of the field
in the class layout (not an RVA).

• Field (RID to the Field table) The index of the field for which the
offset is specified.

In ILAsm, the field offset is specified by putting the offset value in square
brackets immediately after the field keyword, as shown here:

.class public value sealed explicit MyStruct
{

}

.field [OJ public int32 11

.field [4] public float64 dd

.field [12] public bool bb

192 Part Ill Fundamental Components

Only instance fields can have offsets specified. Because static fields are
not part of the class instance layout, specifying explicit offsets for them is mean
ingless and is considered a metadata error. If an off set is specified for a static
field, the loader behaves the same way it does with mapped instance fields: if
the field is static, the loader does not check to see whether the field has an off
set specified. Consequently, FieldLayout records referencing the static fields are
nothing more than a waste of memory.

In a class that has an explicit layout, all the instance fields must have spec
ified offsets. If one of the instance fields does not have an associated FieldLay
out record, the loader throws a TypeLoad exception and aborts the loading.
Obviously, a field can have only one offset, so duplicate FieldLayout records
that have the same Field entry are illegal. This is not checked at run time
because this metadata invalidity is not critical: the loader takes the first available
FieldLayout record for the current field and ignores any duplicates.

The placement of object references (classes, arrays) is subject to a general
limitation: the fields of object reference types must be aligned on pointer size
either 4 or 8 bytes, depending on the platform:

.class public value sealed explicit MyStruct
{

}

.field [0] public int16 ii

.field [2] public string str //Illegal on 32-bit and 64-bit

.field [6] public intl6 jj

.field [8] public int32 kk

.field [12] public object oo //Illegal on 64-bit platform

.field [16] public int32[] iArr //Legal on both platforms

Explicit layout is a standard way to implement unions in IL. By explicitly
specifying field offsets, we can make fields overlap however we want. Let's
suppose, for example, that we want to treat a 4-byte unsigned integer as such,
or as a pair of 2-byte words, or as 4 bytes. In C/C++ notation, the respective
constructs look like this:

union MultiDword {
DWORD dw;
union {

struct {
WORD wl;
WORD w2;

} ;

struct {
BYTE bl;
BYTE b2;
BYTE b3;
BYTE b4;

Chapter 8 Fields and Data Constants 193

} ;

} ;

} ;

In ILAsm, the same union will be written like so:

.class public value sealed explicit MultiDword
{

.field [0] public unsigned int32 dw

.field [0] public unsigned int16 wl

.field [2] public unsigned int16 w2

. field [0] public unsigned int8 bl

.field [1] public unsigned int8 b2

.field [2] public unsigned int8 b3

.field [3] public unsigned int8 b4
}

The only limitation imposed on the explicit-layout unions is that if the
overlapping fields contain object references, these object references must not
overlap with any other field:

.class public value sealed explicit StrAndindex
{

}

.field [0] public string Str II Reference, size 4 bytes
II on 32-bit platform

.field [4] public unsigned int32 Index

.class public value sealed explicit MyUnion
{

}

.field [0] public valuetype StrAndindex str_and_index

.field [0] public unsigned int64 whole_thing II Illegal!

.field [0] public string str II Illegal!

.field [2] public unsigned int32 half_and_half II Illegal!

.field [4] public unsigned int32 index II Legal, object reference
II not overlapped

Such "unionizing" of the object references would provide the means for directly
modifying these references, which could thoroughly disrupt the functioning of
the garbage collector. The loader checks explicit layouts for object reference
overlap; if any is found, it throws a TypeLoad exception and aborts the loading.

A field can also have an associated FieldLayout record if the owner of
the field has a sequential layout. In this case, the OJJSet entry of the FieldLay
out record holds a field ordinal rather than an offset. The fields belonging to
a sequential-layout class needn't have associated FieldLayout records, but if
one of the class's fields has such an associated record, all the rest must have
one too.

194 Part Ill Fundamental Components

Global Fields
Fields declared outside the scope of any class are known as global fields. They
don't belong to a class but instead belong to the module in which they are
declared. Because a module is represented by a special TypeDef record under
the name <Module>, all the formalities that govern how field records are iden
tified by reference from their parent TypeDef records are observed.

Global fields must be static. Since only one instance of the module exists
when the assembly is loaded, and because it is impossible to create alternative
instances of the module, this limitation seems obvious.

Global fields can have public, private, or privatescope accessibility flags
at least that's what the metadata validity rules say. As we saw in Chapter 1, how
ever, a global item (a field or a method) can have any accessibility flag, and the
loader interprets this flag only as assembly, private, or privatescope. The public,
assembly, and famorassem flags are all interpreted as assembly, while the fam
ily, jamandassem, and private flags are all interpreted as private. The global
fields cannot be accessed from outside the assembly, so they don't have true
public accessibility. And because no type can be derived from <Module>, the
question about family-related accessibility is moot.

Global fields can be accessed from anywhere within the module, regard
less of their declared accessibility. In this regard, the classes that are declared
within a module and use the global fields have the same access rights as if they
were nested in the module. The metadata contains no indications of such nest
ing, of course.

A reference to a global field declared in the same module has no
<class_ref>:: part:

<global_field_ref> ::=[field] <field_type> <field_name>

The keyword field is used in particular cases when the nature of the reference
cannot be inferred from the context.

A reference to a global field declared in a different module of the assem
bly also lacks the class name but has resolution scope:

<global_field_ref> ::=[field] [.module <mod_name>]::<field_name>

The following are two examples of such declarations:

ldsfld int32 globallnt
ldtoken field int32 [.module supporting.dll]::globallnt

Since the global fields are static, we cannot explicitly specify their layout
except by mapping them to data. Thus our 4-2-1-byte union MultiDword would
look like this if we implemented it with global fields:

Chapter 8 Fields and Data Constants 195

. field public static unsigned int32 dw at D_00

.field public static unsigned int16 wl at D_00

. field public static unsigned 1nt16 w2 at D_02

.field public static unsigned int8 bl at D_00

.field public static unsigned int8 b2 at D_01

.field public static unsigned int8 b3 at D_02

.field public static unsigned int8 b4 at D_03

.data D_00 int8(0)

.data D_01 int8(0)

.data D_02 int8(0)

.data 0_03 int8(0)

l de .11.1
stsfld unsigned int8 b3 II Set value of third byte

Fortunately, we don't have to do that every time we need a global union.
Instead, we can declare the value type MultiDword exactly as before and then
declare a global field of this type:

.field public static valuetype MultiDword multi_dword

l dc.11.1
ldsflda valuetype MultiDword multi_dword
II Load reference to the field
II As instance of MultiDword
stfld unsigned int8 MultiDword::b3 II Set value of third byte

Constructors vs. Data Constants
We've already taken a look at field mapping as a technique of field initializa
tion, and I've listed the drawbacks and limitations of this technique. Field map
ping has this distinct "unmanaged" scent about it, but the compilers routinely
use it for field initialization nevertheless. Is there a way to get the fields initial
ized without mapping them? Yes, there is.

The common language runtime object model provides two special meth
ods, the instance constructor (.ctor) and the class constructor (.cctor), a.k.a. the
type initializer. We're getting ahead of ourselves a bit here; methods in general
and constructors in particular are discussed in Chapter 9, so we won't concen
trate on details here. For now, all we need to know about .ctor and .cctor is that
.ctor is executed when a new instance of a type is created, and .cctor is exe
cuted after the type is loaded and before any one of the type members is
accessed. Because class constructors are static and can deal with static members
of the type only, we have a perfect setup for field initialization: .cctors take care
of static fields, and .ctors take care of instance fields.

196 Part Ill Fundamental Components

But how about global fields? The good news is that we can define a global
.cctor. (Don't try this in the second beta version of the common language runt
ime, if you can still find a copy; global class constructors were not allowed in
this beta version.) Field initialization by constructors is vastly superior to field
mapping, with none of its limitations, as described earlier in the section
"Mapped Fields." The catch? Unfortunately, initialization by constructors must
be executed at run time, burning processor cycles, whereas mapped fields sim
ply "are there" after the module has been loaded. The mapped fields don't
require additional operations for the initialization. Whether this price is worth
the increased freedom and safety regarding field initialization depends on the
concrete situation, but in general I think it is.

Let me illustrate the point by building an alternative enumerator.
Because all the values of an enumerator are stored in literal fields, which are
inaccessible from IL directly, the compilers replace references to these fields
with the respective values at compile time. We can use a very simple enumer
ator as a model:

.class public enum sealed MagicNumber
{

}

.field private specialname int32 value_

.field public static literal valuetype
MagicNumber MagicOne = int32(123)

.field public static literal valuetype
MagicNumber MagicTwo = int32(456)

.field public static literal valuetype
MagicNumber MagicThree = int32(789)

Let's suppose that our code uses the symbolic constants of an enumerator
declared in a third-party assembly. We compile the code, and the symbolic con
stants are replaced with their values. Forget for a moment that we must have
that third-party assembly available at compile time. But we will need to recom
pile the code every time the enumerator changes, and we have no control over
the enumerator because it is defined outside our jurisdiction. In another sce
nario, when we declare an enumerator in one of our own modules, we must
recompile all the modules that reference this enumerator once it is changed.

Let's suppose also-for the sake of an argument-that we don't like this
situation, so we decide to devise our own enumerator:

.class public value sealed MagicNumber
{

.field public int32 _value_ II Specialname value_ is
II reserved for enums

.field public static valuetype MagicNumber MagicOne at 0_00

.field public static valuetype MagicNumber MagicTwo at 0_04

Chapter 8 Fields and Data Constants 197

.field public static valuetype MagicNumber MagicThree at 0_08
}

.data 0_00

.data 0_04

.data 0_08

int32(123)
int32(456)
int32(789)

This solution looks good, except in the platform-independence depart
ment. We conquered the recompilation problem and can at last address the
symbolic constants by their symbols (names), through field access instructions.
This approach presents two problems, though. First, the fields representing the
symbolic constants can be written to. Second, it works fine with integers, but
what if we need a string enumeration?

Let's try again with a class constructor; refer to the sample MyEnums.il on
the companion CD .

. class public value sealed MagicNumber
{

.field private int32 _value_ II Specialname value~ is
II reserved for enums

.field public static initonly valuetype MagicNumber MagicOne

.field public static initonly valuetype MagicNumber MagicTwo

.field public static initonly valuetype MagicNumber MagicThree

.method public static specialname void .cctor()
{

}

ldsflda valuetype MagicNumber MagicNumber::MagicOne
ldc.i4 123
stfld int32 MagicNumber::_value_

ldsflda valuetype MagicNumber MagicNumber: :MagicTwo
ldc.i4 456
stfld int32 MagicNumber::_value_

ldsflda valuetype MagicNumber MagicNumber::MagicThree
ldc.i4 789
stfld int32 MagicNumber::_value_

ret

.method public int32 ToBase()
{

}

ldarg.0 II Instance pointer
ldfld int32 MagicNumber::_value_
ret

All the remaining problems seem to be solved. The initonly flag on the
static fields protects them from being overwritten outside the class constructor.

198 Part Ill Fundamental Components

Embedding the numeric values of symbolic constants in the IL stream takes care
of platform dependence. Because we are not mapping the fields, we are free to
use any type as the underlying type of our enumerator. And, of course, declar
ing the _value_ field private protects it from having arbitrary values assigned to
it.

Alas, there is a hidden problem with this solution: the initonly flag does
not provide full protection against arbitrary field overwriting. In the first release
of the runtime, the operations ldflda (ldsflda) and sifld (stifld) on initonly fields
are unverifiable outside the constructors. Unverifiable but not impossible,
which means that if the verification procedures are disabled, the initonly fields
can be overwritten in any method.

Metadata Validity Rules
The field-related metadata tables include the Field, FieldLayout, FieldRVA, Field
Marshal, Constant, and MemberRef tables. The records of these tables have the
following entries:

• The Field table contains the Flags, Name, and Signature entries.

• The FieldLayout table contains the O.f!Set and Field entries.

• The FieldRVA table contains the RVA and Field entries.

• The FieldMarshal table contains the Parent and NativeType (native
signature) entries.

• The Constant table contains the Type, Parent, and Value entries.

• The MemberRef table contains the Class, Name, and Signature
entries.

Field Table Validity Rules
• The Flags entry can have only those bits set that are defined in the

enumeration CorFieldAttrEnum in CorHdr.h (validity mask: OxB7F7).

• [run time] The accessibility flag (mask Ox0007) must be one of the
following: privatescope, private, famandassem, assembly, family,
famorassem, or public.

• The literal and initonly flags are mutually exclusive.

• If the literal flag is set, the static flag must also be set.

• If the rtspecialname flag is set, the specialname flag must also be set.

• [run time] If the flag OxlOOO (fdHasFieldMarshal) is set, the FieldMarshal
table must contain a record referencing this Field record, and vice versa.

Chapter 8 Fields and Data Constants 199

• [run time] If the flag Ox8000 (jdHasDef ault) is set, the Constant table
must contain a record referencing this Field record, and vice versa.

• [run time] If the flag OxOlOO (jdHasFieldRVA) is set, the FieldRVA table
must contain a record referencing this Field record, and vice versa.

• [run time] Global fields, owned by the TypeDef <Module>, must have
the static flag set.

• [run time] The Name entry must hold a valid reference to the #Strings
stream, indexing a nonempty string no more than 1023 bytes long in
UTF-8 encoding.

• [run time] The Signature entry must hold a valid reference to the
#Blob stream, indexing a valid field signature. Validity rules for field
signatures are discussed in Chapter 7.

• No duplicate records-attributed to the same TypeDef and having the
same Name and Signature values-can exist unless the accessibility
flag is privatescope.

• Fields attributed to enumerators must comply with additional rules,
described in Chapter 6.

Fieldlayout Table Validity Rules
• The Field entry must hold a valid reference to the Field table.

• The field referenced in the Field entry must not have the static flag set.

• [run time] If the referenced field is an object reference type and
belongs to TypeDefs that have an explicit layout, the O.f!Set entry
must hold a value that is a multiple of sizeof(void*).

• [run time] If the referenced field is an object reference type and
belongs to TypeDefs that have an explicit layout, this field must not
overlap with any other field.

FieldRVA Table Validity Rules
• [run time] The RVA entry must hold a valid nonzero relative virtual

address.

• The Field entry must hold a valid index to the Field table.

• No duplicate records referencing the same field can exist.

FieldMarshal Table Validity Rules
• The Parent entry must hold a valid reference to the Field or Param table.

200 Part Ill Fundamental Components

• No duplicate records that contain the same Parent value can exist.

• The NativeType entry must hold a valid reference to the #Blob
stream, indexing a valid marshaling signature. Native types that make
up the marshaling signatures are described in Chapter 7.

Constant Table Validity Rules
• The Type entry must hold a valid ELEMENT_ TYPE_* code, one of the

following: boo!, char, a signed or unsigned integer of 1 to 8 bytes,
string, or object.

• The Value entry must hold a valid offset in the #Blob stream.

• The Parent entry must hold a valid reference to the Field, Property,
or Param table.

• No duplicate records that contain the same Parent value can exist.

MemberRef Table Validity Rules
• [run time] The Class entry must hold a valid reference to one of the

following tables: TypeRef, TypeSpec, ModuleRef, MemberRef, or
Method.

• [run time] The Class entry of a MemberRef record referencing a field
must hold a valid reference to the TypeRef or ModuleRef table.

• [run time] The Name entry must hold a valid offset in the #Strings
stream, indexing a nonempty string no longer than 1023 bytes in
UTF-8 encoding.

• [run time] The name defined by the Name entry must not match the
common language runtime reserved names _Deleted* or _ VtblGap*.

• [run time] The Signature entry must hold a valid offset in the #Blob
stream, indexing a valid MemberRef signature. Validity rules for
MemberRef signatures are discussed in Chapter 7.

• No duplicate records with all three entries matching can exist.

• An item (field or method) that a MemberRef record references must
not have the accessibility flag privatescope.

Methods
Method Metadata 202

Static, Instance, Virtual Methods 212
Explicit Method Overriding 216

Method Header Attributes 220

Local Variables 221

Class Constructors 224

Instance Constructors 224

Instance Finalizers 226

Variable Argument Lists 227

Global Methods 229

Metadata Validity Rules 230

Methods are the third and the last leg of the tripod supporting the entire concept
of managed programming, the first two being types and fields. When it comes
down to execution, types, fields, and methods are the central players, with the
rest of the metadata simply providing additional information about this triad.

Method items can appear in three contexts: a method definition, a method
reference (for example, when a method is called), and a method implementa
tion (when a method provides implementation of another method).

201

202 Part Ill Fundamental Components

Method Metadata
Similar to field-related metadata, method-related metadata involves definition
specific and reference-specific metadata. In addition, method-related metadata
includes method implementation, discussed later in this chapter, as well as
method semantics, method interoperability, and security metadata. (Chapter 12,
"Events and Properties," describes method semantics; Chapter 15, "Managed
and Unmanaged Code Interoperation," examines method interoperability; and
Chapter 14, "Security Attributes," includes method security.) The diagram in Fig
ure 9-1 shows the metadata tables involved in method definition and referenc
ing implementation and their mutual dependencies. To avoid cluttering the
illustration, I have not included metadata tables involved in the other three
method-related aspects: method semantics, method interoperability, and secu
rity metadata.

Figure 9-1 Metadata tables related to method definition and referencing.

Method Table Record Entries
The central table for method definition is the Method table, which has the asso
ciated token type mdtMethodDef (Ox06000000). A record in the Method table
has six entries:

• RVA (4-byte unsigned integer) The relative virtual address (RVA)
of the method body in the module. The method body consists of
header, IL code, and structured exception handling descriptors. The
RVA must point to a read-only section of the PE file.

Chapter 9 Methods 203

• ImplFlags (2-byte unsigned integer) Implementation binary
flags indicating the specifics of the method implementation.

• Flags (2-byte unsigned integer) Binary flags indicating the
method's accessibility and other characteristics.

• Name (offset in the #Strings stream) The name of the method.
This entry must mdex a string of positive length no longer than 1023
bytes in UTF-8 encoding.

• Signature (offset in the #Blob stream) The method signature.
This entry must index a blob of positive size and must comply with
the method definition signature rules described in Chapter 7, "Prim
itive Types and Signatures."

• ParamList (RID to the Param table) The record index of the
start of the parameter list belonging to this method. The end of the
parameter list is defined by the start of the next method's parameter
list or by the end of the Param table.

As in the case of field definition, Method records carry no information
regarding the parent class of the method. Instead, the Method table is refer
enced in the MethodList entries of TypeDef records, indexing the start of Method
records belonging to each particular TypeDef

The RVA entry must be 0 or must hold a valid relative virtual address
pointing to a read-only section of the image file. If the RVA value points to a
read/write section, the loader will reject the method unless the application is
run from a local drive with all security checks disabled. If the RVA entry holds
0, it means that this method is implemented somewhere else (imported from a
COM library, platform-invoked from an unmanaged DLL, or simply imple
mented by descendants of the class owning this method). All these cases are
described by special combinations of method flags and implementation flags.

The IL assembly language (ILAsm) syntax for method definition is the
following:

<method_def> : :=
.method <flags> <ca77_conv> <ret_type> <name>C<arg_list>) <imp7> {

<method_body> }

where <call_conv>, <ret_type>, and <arg_list> are the method calling conven
tion, the return type, and the argument list defining the method signature.

204 Part Ill Fundamental Components

Method Flags
The nonterminal symbol <flags> identifies the method binary flags, which are
defined in the enumeration CorMethodAttr in CorHdr.h and are described in the
following list.

• Accessibility flags (mask Ox0007), which are similar to the accessibil
ity flags of fields:

O privatescope (OxOOOO) This is the default accessibility. A
private scope method is exempt from the requirement of hav
ing a unique triad of owner, name, and signature and hence
must always be referenced by a MethodDeftoken and never by
a MemberRef token. Otherwise, this accessibility is the same as
that specified by the private flag.

a private (OxOOOl) The method is accessible from its owner
and from classes nested in the method's owner.

a famandassem (Ox0002) The method is accessible from
types belonging to the owner's family-that is, the owner itself
and all its descendants-defined in the current assembly.

O assembly (Ox0003) The method is accessible from types
defined in the current assembly.

a family (Ox0004) The method is accessible from the
owner's family.

O famorassem (Ox0005) The method is accessible from the
owner's family and from all types defined in the current
assembly.

O public (Ox0006) The method is accessible from any type.

• Contract flags (mask OxOOFO):

O static (OxOOlO) The method is static, shared by all instances
of the type.

O final (Ox0020) The method cannot be overridden. This flag
must be paired with the virtual flag.

O virtual (Ox0040) The method is virtual. This flag cannot be
paired with the static flag.

O hidebysig (Ox0080) The method hides all methods of the
parent classes that have a matching signature and name (as
opposed to having a matching name only). This flag is ignored

Chapter 9 Methods 205

by the common language runtime and is provided for the use
of compilers only. The ILAsm compiler recognizes this flag but
does not use it for its own purposes.

• Virtual method table (v-table) control flag (mask OxOlOO):

:J newslot (OxOlOO) A new slot is created in the class's v-table
for this virtual method so that it does not override the virtual
method of the same name and signature this class inherited
from its base class. This flag can be used only in conjunction
with the virtual flag.

• Implementation flags (mask Ox2C08):

O abstract (Ox0400) The method is abstract; no implementa
tion is provided. This method must be overridden by the non
abstract descendants of the class owning the abstract method.
Any class owning an abstract method must have its own
abstract flag set. The RVA entry of an abstract method record
must be 0.

D specialname (Ox0800) The method is special in some way,
as described by the name.

O pinvokeimpl(<pinvoke_spec>) (Ox2000) The method
has unmanaged implementation and is called through the plat
form invocation mechanism P!Invoke, discussed in Chapter 15.
<pinvoke_spec> in parentheses defines the implementation
map, which is a record in the ImplMap metadata table specify
ing the unmanaged DLL exporting the method and the
method's unmanaged calling convention. If <pinvoke_spec> is
provided, the method's RVA must be 0, since the method is
implemented externally. If <pinvoke_spec> is not provided
that is, the parentheses are empty-the defined method is a
local P!Invoke, implemented in unmanaged native code
embedded in the current PE file; in this case, its RVA must not
be 0.

a unmanagedexp (Ox0008) The managed method is exposed
as an unmanaged export. This flag is not currently used by the
common language runtime.

• Reserved flags (cannot be set explicitly; mask OxDOOO):

O rtspecialname (OxlOOO) The method has a special name
reserved for the internal use of the runtime. Four method
names are reserved: .ctor for instance constructors, .cctor for ·

206 Part Ill Fundamental Components

class constructors, _ Vtb!Gap* for v-table placeholders, and
_Deleted* for methods marked for deletion but not actually
removed from metadata. The keyword rtspecialname is ignored
by the ILAsm compiler and is displayed by the IL Disassembler
for informational purposes only. This flag must be accompa
nied by a specialname flag.

O [no ILAsm keyword] (Ox4000) The method either has an
associated Dec!Security metadata record that holds security
details concerning access to the method or has the associated
custom attribute System.Security.SuppressUnmanagedCodeSe
curityAttribute.

O reqsecobj(OxSOOO) Because this method calls another method
containing security code, it requires an additional stack slot for a
security object. This flag is formally under the Reserved mask, so it
cannot be set explicitly. Setting this flag requires emitting the
pseudocustom attribute System.Security.DynamicSecurityMethod
Attribute. When the ILAsm compiler encounters the keyword
reqsecobj, it does exactly that: emits the pseudo-custom attribute
and thus sets this "reserved" flag.

Method Name

I've used the word implementation here and there
rather extensively; perhaps some clarification is in order, to
avoid confusion. First, note that method implementation in the
sense of one method providing implementation for another is
discussed later in this chapter. Implementation-specific flags of
a method are not related to that topic; rather, they indicate the
features of implementation of the current method. Second, a
Method record contains two binary flag entries: Flags and
Imp/Flags (implementation flags). It so happens that part of
Flags (mask Ox2C08) is also implementation-related. Thus far,
I have been talking about this part of Flags. For information
about Imp/Flags, see "Method Implementation Flags" later in
this chapter.

A method name in ILAsm is either a simple name or one of the two keywords
.ctor or .cctor. As you already know, .ctor is the reserved name for instance
constructors, while .cctor is reserved for class constructors, or type initializers.

Chapter 9 Methods 207

In ILAsm, .ctor and .cctor are keywords, so they should not be single-quoted as
any other irregular simple name.

The general requirements for a method name are straightforward: the
name must contain 1 to 1023 bytes in UTF-8 encoding, and it should not match
one of the four reserved method names-unless you really mean it. If you give
a method one of these reserved names, the common language runtime treats
the method according to this name.

Method Implementation Flags
The nonterminal symbol <imp!> in the method definition form denotes the
implementation flags of the method (the Imp/Flags entry of a Method record).
The implementation flags are defined in the enumeration CorMethod!mpl in
CorHdr.h and are described in the following list.

• Code type (mask Ox0003):

O cil (OxOOOO) The default. The method is implemented in
common intermediate language (CIL, a.k.a. IL, MSIL).

o native (OxOOOl) The method is implemented in native plat
form-specific code.

O optil (Ox0002) The method is implemented in optimized IL.
Because the optimized IL is not supported in the first release of
the common language runtime, this flag should not be set.

O runtime (Ox0003) The method implementation is provided
by the runtime itself. If this flag is set, the RVA of the method
must be 0.

• Code management (mask Ox0004):

O managed (OxOOOO) The default. The code is managed. In
the first release of the runtime, this flag cannot be paired with
the native flag.

O unmanaged (Ox0004) The code is unmanaged. This flag
must be paired with the native flag.

• Implementation and interoperability (mask OxlODS):

o forwardref(OxOOlO) The method is defined, but the IL code
of the method is not supplied. This flag is used primarily in edit
and-continue scenarios and in managed object files, produced by
the Microsoft Managed C++ (MC++) compiler. This flag should
not be set for any of the methods in a managed PE file.

208 Part Ill Fundamental Components

D preservesig (OxOOSO) The method signature must not be
mangled during the interoperation with classic COM code,
which is discussed in Chapter 15.

D internalcall (OxlOOO) Reserved for internal use. This flag
indicates that the method is internal to the runtime and must be
called in a special way. If this flag is set, the RVA of the method
must be 0.

D synchronized (Ox0020) The method must be executed in
single-threaded mode only. Methods belonging to value types
cannot have this flag set.

D noinlining (OxOOOS) The runtime is not allowed to inline the
method-that is, to replace the method call with explicit inser
tion of the method's IL code.

Take a look at the examples shown here:

.method public static int32 Diff(int32,int32) cil managed
{

}

.method public void .ctor() runtime internalcall {}

Method Parameters
Method parameters reside in the Param metadata table, whose records have
three entries:

• Flags (2-byte unsigned integer) Binary flags characterizing the
parameter.

• Sequence (2-byte unsigned integer) The sequence number of
the parameter, with 0 corresponding to the method return.

• Name (offset in the #Strings stream) The name of the parame
ter, which can be zero-length. For the method return, it must be
zero-length.

Parameter flags are defined in the enumeration CorParamAttr in CorHdr.h
and are described in the following list.

• Input/output flags (mask Ox0013):

D in (OxOOOl) Input parameter.

D out (Ox0002) Output parameter.

D opt (OxOOlO) Optional parameter.

Chapter 9 Methods 209

• Reserved flags (cannot be set explicitly; mask OxFOOO):

O [no ILAsm keyword] (OxlOOO) The parameter has an asso
ciated Constant record. The flag is set by the metadata emission
API when the respective Constant record is emitted.

O marshal(<native_type>) (Ox2000) The parameter has an
associated FieldMarshal record specifying how the parameter
must be marshaled when consumed by unmanaged code. This
is similar to the marshal(. . .) construct of a field.

To describe the ILAsm syntax of parameter definition, let me remind you
of the method definition form:

<method_def> : : =
.method <flags> <call_conv> <ret_type> <name><<arg_list>) <impl> {

<method_body> }

where

<ret_type> <type> [marshal(<native_type>)],
<arg_list> ::= [<arg> [,<arg>*] J.
<arg> : := [[<in_out_flag>]* J <type> [marshal (<native_type>)]

[<p_name>J
<in_out_flag> ::=in I out I opt

Obviously, <p_name> is the name of the parameter, which, if provided, must
be a simple name.

Notice the difference in positioning of the marshaling specification in a
parameter and in a field definition: in a parameter definition, the marshaling
specification follows the <type>; in a field definition, the marshaling specifica
tion precedes the <type>. Here is an example of parameter definitions:

.method public static int32 marshal(int) Diff(
[in] int32 marshal(int) First,
[in] 1nt32 marshal(intl Second)
{

}

The syntax just shown takes care of all the entries of a Param record
(Flags, Sequence, Name) and, if needed, those of the associated FieldMarshal
record (Parent, NativeType). To set the default values for the parameters, which
are records in the Constant table, we need to add parameter specifications
within the method scope:

<param_const_def> ::= .param [<sequence>]= <const_type> [<<value>) J

210 Part Ill Fundamental Components

<sequence> is the parameter's sequence number. This number should not be 0,
because a 0 sequence number corresponds to the return type, and a "default
return value" does not make sense. <const_type> and <value> are the same as
for field default value definitions, described in Chapter 8, "Fields and Data Con
stants." For example:

.method public static 1nt32 marshal(1nt) Diff(
[1n] 1nt32 marshal(int) First,
[opt] 1nt32 marshal(int) Second)
{

.param [2] = 1nt32(0)

}

According to the common language runtime metadata model, it is not nec
essary to emit a Param record for each return or argument of a method. Rather,
it must be done only if we want to specify the name, flags, marshaling, or
default value. The ILAsm compiler emits Param records for all arguments
unconditionally and for a method return only if marshaling is specified. Name,
flags, and default value are not applicable to a method return.

Referencing the Methods
Method references, like field references, translate into either MethodDef tokens
or MemeberReftokens. As a rule, a reference to a locally defined method trans
lates into a MethodDef token. However, even a locally defined method can be
represented by a MemberReftoken; and in certain cases, such as references to
vararg methods, it must be represented by a MemberRef token.

The ILAsm syntax for method referencing is as follows:

<method_ref> : :=
[method] <call_conv> <ret_type> <class_ref>::<name>(<arg_ljst>)

The method keyword, with no leading dot, is used in the following two
cases in which the kind of metadata item being referenced is not clear from the
context:

• When a method is referenced as an argument of the ldtoken instruc
tion.

• When a method is referenced in an explicit specification of a custom
attribute's owner. (See Chapter 13, "Custom Attributes," for more
information.)

The same rules apply to the use of the field keyword in field references.
The method keyword is used in one additional context: when specifying a func-

Chapter 9 Methods 211

tion pointer as a type of field, variable, or parameter. That case, however,
involves not a method reference but a signature definition.

Flags, implementation flags, and parameter-related information (names,
marshaling, and so on) are not specified in a method reference. As you know,
a MemberRef record holds only the member's parent token, name, and signa
ture-the three elements needed to identify a method or a field unambiguously.
Here are a few examples of method references:

call instance void Foo: :Bar(int32,int32)
ldtoken method instance void Foo::Bar(int32,int32)

In the case of method references, the nonterminal symbol <class_ref> can
be a TypeDef, TypeRef, TypeSpec, or ModuleRef

call instance void Foo: :Bar(int32,int32)
call instance void [OtherAssembly]Foo: :Bar(int32,int32)
call instance void Foo[]::Bar(int32,int32)
call void [.module Other.dll]::Bar(int32,int32)

Method Implementation Metadata
Method implementations represent specific metadata describing method over
riding, in which one method's implementation is substituted for another
method's implementation. The method implementation metadata is held in the
Methodimpl table, which has the following structure:

• Class (RID to the TypeDef table) The record index of the Type
Def implementing a method-in other words, replacing the method's
implementation with that of another method.

• MethodBody (coded token of type MethodDefOrRej) A token
indexing a record in the Method table that corresponds to the imple
menting method-that is, to the method whose implementation sub
stitutes for another method's implementation. A coded token of this
type can point to the MemberRef table as well, but this is illegal in
the first release of the common language runtime. The method
indexed by MethodBody must be virtual. In the first release of the
runtime, the method indexed by MethodBody must belong to the
class indexed by the Class entry.

• MethodDecl (coded token of type MethodDefOrRej) A token
indexing a record in the Method table· or the MemberRef table that
corresponds to the implemented method-that is, to the method
whose implementation is being replaced by another method's imple
mentation. The method indexed by MethodDecl must be virtual.

212 Part Ill Fundamental Components

Static, Instance, Virtual Methods
We can classify methods in many ways: global methods vs. member methods,
variable argument lists vs. constant argument lists, and so on. Global and
vararg methods are discussed in later sections. In this section, we'll focus on
static vs. instance methods. Take a look at the diagram shown in Figure 9-2.

Static methods are shared by all instances of a type. They don't require an
instance pointer (this) and cannot access instance members unless the instance
pointer is provided explicitly. When a type is loaded, static methods are placed
in a separate typewide table.

Figure 9-2 Method classification.

The signature of a static method is exactly as it is specified, with the first
specified argument being number 0:

.method public static void BarCint32 i. float32 r)
{

ldarg.0 // Load int32 i on stack

}

Instance methods are instance-specific and have the this instance pointer
as an unlisted first (number 0) argument of the signature:

.method public instance void Bar(int32 i. float32 r)
{

}

ldarg.0 // Load instance pointer on stack
ldarg.1 // Load int32 i on stack

Chapter 9 Methods 213

Note Be careful about the use of the keyword instance in specifying
the method calling convention. When a method is defined, its flags
including the static flag-are explicitly specified. Because of this, at
definition time it's not necessary to specify an instance calling conven
tion-it can be inferred from the presence or absence of the static flag.
When a method is referenced, however, its flags are not specified, so
in this case the instance keyword must be specified explicitly for
instance methods; otherwise, the referenced method is presumed
static. This creates a seeming contradiction: a method when declared
is instance by default (no static flag specified), and the same method
when referenced is static by default (no instance specified). But static
is a flag and instance is a calling convention, so in fact we're dealing
with two different default options here.

Instance methods are divided into virtual and nonvirtual methods, identi
fied by the presence or absence of the virtual flag. The virtual methods of a
class are called through the virtual method table (v-table) of this class, which
adds another level of indirection to implement so-called late binding. Virtual
methods can be overridden in derived classes by their own virtual methods of
the same signature and name-and even of a different name, although such
overriding requires an explicit declaration, as described later in this chapter. Vir
tual methods can be abstract or might off er some implementation.

If you have a nonvirtual method declared in a class, it does not mean that
you can't declare another nonvirtual method with the same name and signature
in a class derived from the first one. You can, but it will be a different method,
having nothing to do with the method declared in the base class. Such a
method in the derived class hides the respective method in the base class, but
the hidden method can still be called if you explicitly specify the owning class.

If you do the same with virtual methods, however, the method declared in
the derived class actually replaces, or overrides, the method declared in the
base class. This is true unless, of course, you specify the newslot flag on the
overriding method, in which case the overriding method will occupy a new
entry of the v-table and hence will not really be overriding anything.

To illustrate this point, take a look at the following code from the sample
file Virt_not.il on the companion CD:

.class public A
{

.method public specialname void .ctor() { ret }

.method public void Foo()
{

(continued)

214 Part Ill Fundamental Components

}

}

ldstr "A::Foo"
call void [mscorlibJSystem.Console::WritelineCstring)
ret

.method public virtual void Bar()
{

ldstr "A: :Bar"
call void [mscorlibJSystem.Console::WriteLineCstring)
ret

}

.method public virtual void Baz()
{

}

ldstr "A::Baz"
call void [mscorlib]System.Console::Writeline(string)
ret

.class public B extends A
{

}

.method public specialname void .ctor() { ret}

.method public void Foo()
{

ldstr "B:: Foo"
call void [mscorlib]System.Console::Writeline(string)
ret

}

.method public virtual void Bar()
{

}

ldstr "B::Bar"
call void [mscorlib]System.Console::Writeline(string)
ret

.method public virtual newslot void Baz()
{

}

ldstr "B: :Baz"
call void [mscorlib]System.Console::Writeline(string)
ret

.method public static void Exec()
{

.entrypoint
newobj instance void B::.ctor() II Create instance of derived class
castclass class A II Cast it to base class

dup II We need 3 instance pointers

}

dup II On stack for 3 calls

call instance void A::Foo()
callvirt instance void A: :Bar()
callvirt instance void A::Baz()
ret

Chapter 9 Methods 215

If we compile and run the sample, we'll receive this output:

A: Foo
B: Bar
A:Baz

Because the method A::Foo is nonvirtual, declaring B::Foo does not affect
A::Foo in any way. So when we cast B to A and call A::Foo, B::Foo does not
enter the picture-it's a different method.

Because the A::Bar method is virtual, as is B::Bar, when we create an
instance of B, B::Bar replaces A::Bar in the v-table. Casting B to A after that
does not change anything: B::Bar is sitting in the v-table of the class instance,
and A::Bar is gone. So when we call A::Bar, the "usurper" B::Bar is called
instead.

Both the A::Baz and B::Baz methods are virtual, but B::Baz is marked
newslot. Thus, instead of replacing A::Baz in the v-table, B::Baz takes a new
entry and peacefully coexists with A::Baz. Since A::Baz is still present in the v
table of the instance, the situation is practically (oops, almost wrote "virtually";
should watch it; can't have puns in such a serious book) identical to the situa
tion with A::Foo and B::Foo, except that the calls are done through the v-table.
The Microsoft Visual Basic .NET compiler likes this concept and uses it rather
extensively.

If we don't want a virtual method to be overridden in the class descen
dants, we can mark it with the final flag. If you try to override a final method,
the loader fails and throws a TypeLoad exception.

Unboxed value types don't have v-tables. It is perfectly legal to declare the
virtual methods as members of a value type, but these methods can be called
only from a boxed instance of the value type:

.class public value XXX
{

.method public void YYYC
{

}

.method public virtual void ZZZC)
{

}
(continued)

216 Part Ill Fundamental Components

}

.method publfc statfc vofd Exec()
{

.locals fnftCvaluetype xxx xxx> II Variable xxx is an
Instance of XXX

}

ldloca xxx
call instance void XXX::YYYC)

II
II
II
II

Load managed ptr to xxx
Legal: access to value
Type member

ldloca xxx
callvfrt instance vofd

ldloc xxx
box valuetype XXX
callvirt instance void

II By managed ptr

XXX::ZZZC) II Illegal: access to virtual
II Methods possible only
II By object reference.
II Load instance of XXX.
II Convert it to object reference.

XXX::ZZZC) II Legal

Explicit Method Overriding
Thus far, I've discussed implicit virtual method overriding-that is, a virtual
method defined in a class overriding another virtual method of the same name
and signature, defined in the class's ancestor or an interface the class imple
ments. But implicit overriding covers only the simplest case.

Consider the following problem: class A implements interfaces IX and IY,
and each of these interfaces defines its own virtual method int32 Foo(int32). It
is known that these methods are different and must be implemented separately.
Implicit overriding can't help in this situation. It's time to use the Methodlmpl
metadata table.

The Methodlmpl metadata table contains descriptors of explicit method
overrides. An explicit override states which method overrides which other
method. To define an explicit override in ILAsm, the following directive is used
within the scope of the overriding method:

.override <class_ref>::<method_name>

The signature of the method need not be specified because the signature
of the overriding method must match the signature of the overridden method,
and the signature of the overriding method is known: it's the signature of the
current method. For example:

.class public interface IX {
.method public abstract virtual int32 FooCint32) { }

}

.class public interface IV {
.method public abstract virtual int32 Foo(int32) { }

}

Chapter 9 Methods 217

.class public A implements IX,IY {

}

.method public virtual int32 XFooCint32) {
.override IX::Foo

}

.method public virtual int32 YFoo(int32) {
.override IY::Foo

}

Not surprisingly, we can't override the same method with two different
methods within the same class: there is only one slot in the v-table to be over
ridden. However, we can use the same method to override several virtual meth
ods. Let's have a look at the following code from the sample file Override.il on
the companion CD:

.class public A
{

}

.method public specialname void .ctor() { ret}

.method public void Foo()
{

ldstr "A:: Foo"
call void [mscorlib]System.Console::Writeline(string)
ret

.method public virtual void Bar()
{

}

ldstr "A: :Bar"
call void [mscorlib]System.Console::Writeline(string)
ret

.method public virtual void Baz()
{

}

ldstr "A: :Baz"
cal 1 void [mscorl i b]System. Console: :Wri tel i ne(string)
ret

.class public B extends A
{

.method public specialname void .ctor() { ret}

.method public void Foo()
{

}

ldstr "B:: Foo"
call void [mscorlib]System.Console::Writeline(string)
ret

(continued)

218 Part Ill Fundamental Components

.method public virtual void BarBaz()
{

}

.override A: :Bar

.override A::Baz
ldstr "B: :BarBaz"
call void [mscorlib]System.Console::Writeline(string)
ret

.method public static void Exec()
{

}

.entrypoint
newobj instance void B: :.ctor() II Create instance of derived class
castclass class A II Cast it to base class

dup
dup

II We need 3 instance pointers
II On stack for 3 calls

call instance void A::Foo()
call vi rt instance void A: :Bar()
callvirt instance void A::Baz()

ret

The output of this code demonstrates that the method B: :BarBaz over
rides both A::Bar and A::Baz:

A:: Foo
B::BarBaz
B::BarBaz

Virtual method overriding, both implicit and explicit, is propagated to the
descendants of the overriding class, unless the descendants themselves override
those methods. The second half of the sample file Override.il demonstrates this:

.class public C extends B
{

}

.method public specialname void .ctor() { ret }
II No overrides; let's inherit everything from B

.method public static void Exec()
{

.entrypoint

newobj instance void C::.ctor() II Create instance of derived class

}

Chapter 9 Methods 219

castclass class A II Cast it to "grandparent"

dup II We need 3 instance pointers
dup II On stack for 3 calls

call instance void A: :Foo()
callvirt instance void A::Bar()
callvirt instance void A::Baz()
ret

The output is the same, which proves that class Chas inherited the over
ridden methods from class B:

A:: Foo
B::BarBaz
B::BarBaz

ILAsm supports an extended form of the explicit override directive, placed
within the class scope:

.override <class_ref>::<method_name> with <method_ref>

For example, the overriding effect would be the same in the preceding
code if we defined class B like so:

.class public B extends A
{

}

.method public specialname void .ctor() { ret }

.method public void Foo()
{

}

ldstr "B::Foo"
call void [mscorlib]System.Console: :Writeline(string)
ret

.method public virtual void BarBaz()
{

}

ldstr "B: :BarBaz"
call void [mscorlib]System.Console::Writeline(string)
ret

.override A::Bar with instance void B: :BarBaz()

.override A::Baz with instance void B::BarBaz()

In the extended form of the .override directive, the overriding method
must be fully specified because the extended form is used within the overriding
class scope, not within the overriding method scope.

To tell the truth, the extended form of the .override directive is not very
useful in the first version of the common language runtime because the over
riding methods are restricted to those of the overriding class. Under these cir-

220 Part Ill Fundamental Components

cumstances, the short form of the directive is sufficient, and I doubt that anyone
would want to use the more cumbersome extended form. But I've noticed that
in this industry the circumstances tend to change.

Method Header Attributes
The RVA value of a Method record-if it is nonzero and if the method is not
implemented as embedded native code-points to the method body. The
method body consists of a method header, IL code, and an optional structured
exception handling (SEH) table, as shown in Figure 9-3.

Figure 9-3 Managed method body structure.

Two types of method headers-fat and tiny-are defined in CorHdr.h. The
first two bits of the header indicate its type: bits 10 stand for the tiny format, and
bits 11 stand for the fat format. Why do we need two bits for a simple dichot
omy? Because, speaking hypothetically, the day might come when more
method header types are introduced.

A tiny method header is only 1 byte, with the first two (least significant)
bits holding the type-10-and the 6 remaining bits holding the method IL
code size in bytes. A method is given a tiny header if it has neither local vari
ables nor structured exception handling, if it works fine with the default evalu
ation stack depth of 8 slots, and if its size is less than 64 bytes. A fat header is
12 bytes in size and has the structure described in Table 9-1. The fat headers
must begin at 4-byte boundaries. The structures of both tiny and fat method
headers are shown in Figure 9-4.

Chapter 9 Methods 221

Table 9-1 The Fat Header Structure

Entry Size Description

WORD The lower 2 bits hold the fat header type code (Ox3); the next 10 bits hold
Flags. The upper 4 bits hold the size of the header in double words and
must be set to 3. Currently used flags are Ox2, which indicates that more
sections follow the IL code-that is, an SEH table is present-and Ox4,
which indicates that local variables must be initialized.

WORD MaxStack is the maximal evaluation stack depth in slots. Stack size in IL is
measured not in bytes but in slots, with each slot able to accept one item
regardless of the item's size. The default value is 8 slots, and it can be set
explicitly in ILAsm by the directive .maxstack <integer> used inside the
method scope. Be careful about trying to economize the method size by
specifying .maxstack lower than the default: if the specified stack depth
differs from the default depth, the method automatically gets a fat header
even if it has no local variables, no SEH table, and a code size less than 64
bytes.

DWORD CodeSize is the size of the IL code in bytes.

DWORD Loca!VarSigTok is the token of the local variables signature (token type
OxllOOOOOO). The structure of the local variables signature is discussed in
Chapter 7. If the method has no local variables, this entry is set to 0.

Local Variables
Local variables are the typed data items that are declared within the method
scope and exist from the moment the method is called until it returns. ILAsm
allows us to assign names to local variables and reference them by name, but IL
instructions address the local variables by their zero-based ordinals.

When the source code is compiled in debug mode, the local variable
names are stored in the program database (PDB) file accompanying the mod
ule, and in this case the local variable names might survive round-tripping. In
general, however, these names are not preserved because they, unlike the
names of fields and method parameters, are not part of the metadata.

All the local variables, no matter when they are declared within the
method scope, form a single signature, kept in the StandAloneSig metadata
table (token type OxllOOOOOO).The token referencing the respective signature is
part of the method header.

Local variables are declared in ILAsm as follows:

.method public void Foo(int32 ii. int32 jj)
{

.locals init (float32 ff, float64 dd, object oo, string ss)

}

222 Part Ill Fundamental Components

Tiny header

IL code size

Fat header

Figure 9-4 The structures of tiny and fat method headers.

The init keyword sets the flag Ox4 in the method header, indicating that
the]IT compiler must initialize all local variables before commencing the
method execution. Initialization means that for all variables of value types the
corresponding default constructors are called, and all variables of object refer
ence types are set to null. Code that contains methods without a local variable
initialization flag set is deemed unverifiable and can be run from a local drive
only with verification disabled.

ILAsm does not require that all local variables be declared in one place;
the following is perfectly legal:

.method public void Foo(int32 ii. int32 jj)
{

Chapter 9 Methods 223

.locals init Cfloat32 ff, float64 dd, object oo, string ss)

{

.locals Cint32 kk. bool bb)

.locals Cint32 mm, float32 f)

}

In this case, the summary local variables signature will contain the types
float32, float64, object, string, int32, bool, int32, and float32. Repeating init in
subsequent local variable declarations of the same method is not necessary
because any one of the .locals init directives sets the local variable initialization
flag.

It's obvious enough that we have a redundant local variable slot in the
composite signature: by the time we need mm, we don't need kk any more, so
we could reuse the slot and reduce the composite signature. In ILAsm, we can
do that by explicitly specifying the 0-based slot numbers for local variables:

.method public void FooCint32 ii, int32 jj)
{

}

.locals init ([0Jfloat32 ff, [1Jfloat64 dd,
[2Jobject oo, [3Jstring ss)

{

. locals ([4Jint32 kk, [5Jbool bb)

}

{

.locals ([4Jint32 mm, [6Jfloat32 f)

}

Could we also reuse slot 5 for variable./? No, because the type of slot 5 is
bool, and we need a slot of type float32 for J Only the slots holding local vari
ables of the same type and used within nonoverlapping scopes can be reused.

224 Part Ill Fundamental Components

Important The number of local variables declared in a method is
completely unrelated to the .maxstack value, which depends only on
how many items you might have to load simultaneously for computa
tional purposes. For example, if you declare 20 local variables, you
don't need to declare .maxstack 20; but if your method is calling
another method that takes 20 arguments, you need to ensure that the
stack has sufficient depth.

Class Constructors
Class constructors, or type initializers, are the methods specific to a type as a
whole that run after the type is loaded and before any of the type's members
are accessed. You've already encountered class constructors in the preceding
chapter, which discussed approaches to static field initialization. That is exactly
what class constructors are used for: static field initialization.

Class constructors are static, have specialname and rtspecialname flags,
have neither parameters nor return value-that is, the return type is void-and
have the name .cctor, which in ILAsm is a keyword rather than a name. Only
one class constructor per type is permitted, and it cannot use the vararg calling
convention.

Normally, class constructors are never called from the IL code. If a type
has a class constructor, this constructor is executed automatically after the type
is loaded. However, a class constructor, like any other static method, can be
called explicitly. As a result of such a call, the global fields of the type are reset
to their initial values. Calling .cctor explicitly does not lead to type reloading.

Instance Constructors
Instance constructors, unlike class constructors, are specific to an instance of a
type and are used to initialize both static and instance fields of the type. Func
tionally, instance constructors in IL are a direct analog of C++ constructors.
Instance constructors can have parameters but must return void, must be
instance, must have specialname and rtspecialname flags, and have the name
.ctor, which is also an ILAsm keyword. Like class constructors, instance con
structors cannot use the vararg calling convention. In the first release of the
common language runtime, instance constructors are not allowed to be virtual.
A type can have multiple instance constructors, but they must have different
parameter lists because the name (.ctor) and the return type (void) are fixed.

Usually, instance constructors are called during the execution of the
newobj instruction, when a new type instance is created:

Chapter 9 Methods 225

.class public Foo
{

}

.field private int32 tally

.method public void .ctor(int32 tally_init)
{

}

ldarg.0 II Load the instance reference
ldarg.1 II Load the initializing value
stfld int32 Foo::tally II This->tally = tally_init;
ret

.method public static void Exec(
{

}

.locals init (class Foo foo)
II Foo is a reference but not an instance
ldc.i4 128 II Put 128 on stack as Foo's constructor argument
newobj instance void Foo::.ctor(int32)
II Instance of Foo is created
stloc.0 II foo =new Foo(128);

But, as is the case for class constructors, an instance constructor can be
called explicitly. Calling the instance constructor resets the fields of the type
instance and does not create a new instance. The only problem with calling
class or instance constructors explicitly is that sometimes the constructors
include type instantiations, if some of the fields to be initialized are of object
reference type. In this case, additional care should be taken to avoid multiple
type instantiations.

Warning Calling the class and instance constructors explicitly, how
ever possible in principle, renders the code unverifiable. This limitation
is imposed on the constructors of the reference types (classes) only
and does not concern those of the value types. The only place where
an instance constructor of a class can be called explicitly is within an
instance constructor of the class's direct descendant.

Constructors of the classes cannot be the arguments of the ldftn
instruction. In other words, you can't obtain a function pointer to a .ctor
or .cctor of a class.

I repeat: all these limitations can be bypassed only if your code is
run from the local drive with verification disabled. Constructors of the
value types are not subject to these limitations.

226 Part Ill Fundamental Components

Class and instance constructors are the only methods allowed to set the
values of the fields marked initonly. If an initonly field is initialized by the
.cctor of the current type, it can subsequently be modified by a .ctor of this type
but not by any other method. Methods belonging to some other class, including
.ctor and .cctor, cannot modify the initonly field, even if the field accessibility
permits. Subsequent explicit calls to .ctor and .cctor can modify the initonly
fields as well as the first, implicit initializing calls.

Because value types are not instantiated using the newobj instruction,
instance constructors make less sense for them. If an instance constructor is
specified for a value type, it should be called explicitly by using the call instruc
tion, even though declaring a variable of a value type creates an instance of this
value type. Interfaces cannot have instance constructors at all; there is no such
thing as an interface instance.

Instance Finalizers
Another special method characteristic of a class instance is a finalizer, which is
in many aspects similar to a C++ destructor. The finalizer must have the follow
ing signature:

.method family virtual instance void Finalize()
{

}

Unlike instance constructors, which cannot be virtual, instance destruc
tors-sorry, I mean finalizers-must be virtual. This requirement and the strict
limitations imposed on the finalizer signature and name result from the fact that
any particular finalizer is an override of the virtual method Finalize of the inher
itance root of the class system, the [mscorlib]System.Object class, the ultimate
ancestor of all classes in the Microsoft .NET universe. To tell the truth, the
Object's finalizer does exactly nothing. But Object, full of fatherly care, declares
this virtual method anyway, so Object's descendants could override it, should
they desire to do something meaningful at the inevitable moment of their
instances' demise.

The finalizer is executed by the garbage collection (GC) subsystem of the
runtime when that subsystem decides that a class instance should be disposed
of. No one knows exactly when this happens; the only solid fact is that it occurs
after the instance is no longer used and has become inaccessible. But how soon
after is anybody's guess.

If you prefer to execute the instance's last will and testament-that is, call
the finalizer-when you think you don't need the instance any more, you can

Chapter 9 Methods 227

do exactly that by calling the finalizer explicitly. But then you should notify the
GC subsystem that it does not need to call the finalizer again when in due time
it decides to dispose of the abandoned class instance. You can do this by calling
the .NET Framework class library method [mscorlib]System.GC-:SuppressFinal
ize, which takes the object (a reference to the instance) as its sole argument
the instance is still there; you simply called its finalizer but did not destroy it
and returns void.

If for some reason you change your mind afterward, you can notify the
GC subsystem that the finalizer must be run after all by calling the [mscorlib]Sys
tem. GC::ReRegisterForFinalize method with the same signature, void(object).
You needn't fear that the GC subsystem might destroy your long-suffering
instance without finalization before you call ReRegisterForFinalize-as long as
you can still reference this instance, the GC will not touch it. Both methods for
controlling finalization are public and static, so they can be called from any
where.

Variable Argument Lists
Encounters with variable argument list (vararg) methods in earlier chapters
revealed the following information:

• The calling convention of these methods is vararg.

• Only mandatory parameters, if any, are specified in the vararg
method declaration:

.method public static vararg void Print(string Format)
{ ... }

• If and only if optional parameters are specified in a vararg method
reference at the call site, they are preceded by a sentinel-an ellipsis
in ILAsm notation-and a comma:

call vararg void Print(string, int32, float32, string)

I'm not sure that requiring the sentinel to appear as an independent
comma-separated argument was a good idea. After all, a sentinel is not a true
element type but is a modifier of the element type immediately following. Nev
ertheless, such is ILAsm notation in the first release of the common language
runtime, and we'll have to live with it at least for a while.

The vararg method signature at the call site obviously differs from the sig
nature specified when the method is defined, because it carries information
about optional parameters. That's why the vararg methods are always refer-

228 Part Ill Fundamental Components

enced by MemberRef tokens and never by MethodDef tokens, even if the
method is defined in the current module. (In that case, the MemberRef record
corresponding. to the vararg call site will have the respective MethodDef as its
parent, which is slightly disturbing, but only at first sight.)

Now let's see how the vararg methods are implemented. IL offers no spe
cific instructions for argument list parsing beyond the arglist instruction, which
merely creates the argument list structure. To work with this structure and iter
ate through the argument list, you need to work with the .NET Framework class
library value type [mscorlib}System.Arglterator. This value type should be initial
ized with the argument list structure, which is an instance of the value type
[mscorlib}System.RuntimeArgumentHandle, returned by the arglist instruction.
Arglterator offers such useful methods as GetRemainingCount and GetNextArg.

To make a long story short, let's review the following code snippet from
the sample file Vararg.il on the companion CD:

II Compute sum of undefined number of arguments
.method public static vararg unsigned int64

{
Sum(/* all arguments optional */)

.locals init(value class [mscorlib]System.Argiterator Args,
unsigned int64 Sum,

ldc. i8 0
stloc Sum

ldloca Args

int32 NumArgs)

arglist // Create argument list structure
II Initialize Argiterator with this structure:
call instance void [mscorlib]System.Arglterator::.ctor(

value class [mscorlib]System.RuntimeArgumentHandle)

II Get the optional argument count:
ldloca Args
call instance int32 System.Argiterator::GetRemainingCount()
stloc NumArgs

II Main cycle:
LOOP:

ldloc NumArgs
brfalse RETURN // if(NumArgs

II Get next argument:
ldloca Args

0) goto RETURN;

call instance typedref [mscorlib]System.Argiterator::GetNextArg()

II Interpret it as unsigned int64:
refanyval [mscorlib]System.Uint64

Chapter 9 Methods 229

ldind.u8

II Add it to Sum:
ldloc Sum
add
stloc Sum II Sum+= *((int64*)&next_arg)
II Decrease NumArgs and go for next argument:
ldloc NumArgs
ldc.i4.ml
add
stloc NumArgs
br LOOP

RETURN:
ldloc Sum
ret

In this code, we did not specify any mandatory arguments and thus took
the return value of GetRemainingCount for the argument count. Actually,
GetRemainingCount returns only the number of optional arguments, which
means that if we had specified N mandatory arguments, the total argument
count would have been greater by N.

The GetNextArg method returns a typed reference, typedref, which is cast
to a managed pointer to an 8-byte unsigned integer by the instruction refanyval
[mscorlib)System. Ulnt64. If the type of the argument cannot be converted to the
required type, the JIT compiler throws an InvalidCast exception.

Global Methods
Global methods, similar to global fields, are defined outside any class scope.
Most of the features of global fields and global methods are also similar: global
methods are all static, and the accessibility flags for both mean the same.

Of course, one global method worth a special mention is the global class
constructor, .cctor. As the preceding chapter discussed, a global .cctor is the
best way to initialize global fields. The following code snippet from the sample
file Gcctor.il on the companion CD provides an example:

.field private static string Hello

.method private static void .cctorC
{

ldstr "Hi there! What's up?"
stsfld string Hello

(continued)

230 Part Ill Fundamental Components

ret
}

.method public static void Exec()
{

}

.entrypoint
ldsfld string Hello II Global fields are accessible

II within the module
call void [mscorlib]System.Console::Writeline(string)
ret

Metadata Validity Rules
Method-related metadata tables discussed in this chapter include the Method,
Param, FieldMarshal, Constant, MemberRef, and Methodlmpl tables. The
records in these tables have the following entries:

• The Method table: RVA, ImplFlags, Flags, Name, Signature, and
ParamList.

• The Param table: Flags, Sequence, and Names.

• The FieldMarshal table: Parent and NativeType (native signature).

• The Constant table: Type, Parent, and Value.

• The MemberRef table: Class, Name, and Signature.

• The Methodlmpl table: Class, MethodBody, and MethodDecl.

Chapter 8 summarized the validity rules for the FieldMarshal, Constant,
and MemberRef tables. The only point to mention here regarding the Member
Ref table is that, unlike field-referencing MemberRef records, method-referenc
ing records can have the TypeSpec or Method table referenced in the Parent
entry. The Method table can be referenced exclusively by the MemberRef
records representing vararg call sites.

Method Table Validity Rules
• The Flags entry can have only those bits set that are defined in the

enumeration CorMethodAttr in CorHdr.h (validity mask OxFDF7).

• [run time] The accessibility flag (mask Ox0007) must be one of the
following: privatescope, private, famandassem, assembly, family,
famorassem, or public.

• The static flag must not be combined with any of the following flags:
final, virtual, newslot, or abstract.

• The pinvokeimpl flag must be paired with the static flag (but not vice

Chapter 9 Methods 231

versa).

• Methods having privatescope accessibility must not have the virtual,
final, newslot, specialname, or rtspecialname flag set.

• The abstract, newslot, and final flags must be paired with the virtual
flag.

• The abstract flag and the implementation flag forwardref are mutu
ally exclusive.

• [run time] If the flag Ox4000 is set, the method must either have an
associated DeclSecurity metadata record that holds security informa
tion concerning access to the method or have the associated custom
attribute System.Security.SuppressUnmanagedCodeSecurityAttribute.
The inverse is true as well.

• [run time] Methods belonging to interfaces must have either the static
flag or the virtual flag set.

• [nm time] Global methods must have the static flag set.

• If the rtspecialname flag is set, the specialname flag must also be set.

• The Imp/Flags entry must have only those bits set that are defined in
the enumeration CorMethodlmplAttr in CorHdr.h (validity mask
OxlOBF).

• The implementation flag forwardref is used only during in-memory
edit-and-continue scenarios and in object files (generated by the
MC++ compiler) and must not be set for any method in a managed
PE file.

• [run time] The implementation flags cil and unmanaged are mutually
exclusive.

• [run time] The implementation flags native and managed are mutu
ally exclusive.

• The implementation flag native must be paired with the unmanaged
flag.

• [run time] The implementation flag synchronized must not be set for
methods belonging to value types.

• [run time] The implementation flags runtime and internalcall are for
internal use only and must not be set for methods defined outside
.NET Framework system assemblies.

• [run time] The Name entry must hold a valid reference to the #Strings

232 Part Ill Fundamental Components

stream, indexing a nonempty string no more than 1023 bytes long in
UTF-8 encoding.

• [run time] If the method name is .ctor, .cctor, _ VtblGap*, or _Deleted*,
the rtspecialname flag must be set, and vice versa.

• [run time] A method named .ctor-an instance constructor-must not
have the static flag or the virtual flag set.

• [run time] A method named .cctor-a class constructor-must have
the static flag set.

• [run time] The Signature entry must hold a valid reference to the
#Blob stream, indexing a valid method signature. Validity rules for
method signatures are discussed in Chapter 7.

• [run time] A method named .ctor-an instance constructor-must
return void and must have the default calling convention.

• [run time] A method named .cctor-a class constructor-must return
void, can take no parameters, and must have the default calling con
vention.

• No duplicate records-attributed to the same TypeDef and having the
same name and signature-should exist unless the accessibility flag
is privatescope.

• [run time] The RVA entry must hold 0 or a valid relative virtual
address pointing to a read-only section of the PE file.

• [run time] The RVA entry holds 0 if and only if

O The abstract flag is set, or

O The implementation flag runtime is set, or

D The implementation flag internalcall is set, or

D The class owning the method has the import flag set, or

D The pinvokeimpl flag is set, the implementation flags native and
unmanaged are not set, and the ImplMap table contains a
record referencing the current Method record.

Param Table Validity Rules
• The Flags entry can have only those bits set that are defined in the

enumeration CorParamAttr in CorHdr.h (validity mask Ox3013).

• [run time] If the flag Ox2000 (pdHasFieldMarshal) is set, the FieldMar-

Chapter 9 Methods 233

shal table must contain a record referencing this Param record, and
vice versa.

• [run time] If the flag OxlOOO (pdHasDejault) is set, the Constant table
must contain a record referencing this Param record, and vice versa.

• [run time] The Sequence entry must hold a value no larger than the
number of mandatory parameters of the method owning the Param
record.

• If the method owning the Param record returns void, the Sequence
entry must not hold 0.

• The Name entry must hold 0 or a valid reference to the #Strings
stream, indexing a nonempty string no more than 1023 bytes long in
UTF-8 encoding.

Methodlmpl Table Validity Rules
• [run time] The Class entry must hold a valid index to the TypeDef

table.

• [run time] The MethodDecl entry must index a record in the Method
or MemberRef table.

• [run time] The method indexed by MethodDecl must be virtual.

• [run time] The method indexed by MethodDecl must not be final.

• [run time] If the parent of the method indexed by MethodDecl is not
the TypeDef indexed by Class, the method indexed by MethodDecl
must not be private.

• [run time] The parent of the method indexed by MethodDecl must
not be sealed.

• [run time] The signatures of the methods indexed by MethodDecl and
MethodBody must match.

• [run time] The MethodBody entry must index a record in the Method
table.

• [run time] The method indexed by MethodBody must be virtual.

• [run time] The parent of the method indexed by MethodBody must
be the TypeDef indexed by Class.

Part IV

Inside the Execution
Engine

IL Instructions
Long-Parameter and Short-Parameter Instructions 239

Labels and Flow Control Instructions 239

Arithmetical Instructions 244

Addressing Arguments and Local Variables 254

Addressing Fields 257

Calling Methods 258

Addressing Classes and Value Types 261

Vector Instructions 265

Code Verifiability 268

When a method is executed, three categories of local memory plus one cate
gory of external memory are involved. All of these categories represent typed
data slots, not simply an address interval as is the case in the unmanaged world.
The external memory manipulated from the method is the community of the
fields the method accesses. The internal memory categories include an argu
ment table, a local variable table, and an evaluation stack. The diagram shown
in Figure 10-1 describes data transitions between these categories. As you can
see, all IL instructions resulting in data transfer have the evaluation stack as a
source or a destination, or both.

237

238 Part IV Inside the Execution Engine

Fields accessed ;

by the method

Figure 10-1 Method memory categories.

The number of slots in the argument table is inferred from the method sig
nature at the call site (not from the method signature specified when the
method is defined-remember vararg methods). The number of slots in the
local variable table is inferred from the local variable signature whose token is
specified in the method header. The number of slots in the evaluation stack is
defined by the MaxStack value of the method header, specified in IL assembly
language (ILAsm) by the .maxstack directive.

The slots of the argument and local variable tables have static types, which
can be any of the types defined in the system. The slots of the evaluation stack
have dynamic types, which change as the computations progress and the same
stack slots are used for different values. The execution engine of the common
language runtime implements a coarser type system for the evaluation stack:
the only types a stack slot can have at a given moment are int32, native int,
int64, Float (the current implementation uses 80-bit floating-point representa
tion, which covers both float32 and float64 types), & (a managed pointer), or
ObjectRef (an object reference, an instance pointer to an object).

The IL instruction sequences that make up the IL code of a method can
be valid or verifiable, or both, or neither. The concept of validity is easy to
grasp: invalid instruction sequences are rejected by the JIT (just-in-time) com
piler, so nothing really bad can happen if you emit an invalid sequence
except that your code won't run.

Verifiability of the code is a security issue, not a compilation issue.
Because verifiable code is not capable of any malice or hidden hacks, you can
download a verifiable component from a remote location and run it without
fear. If the code is deemed unverifiable-that is, if the code contains segments
that just might contain a hack-the runtime security system will not allow it to
be run except from a local disk. (I'll discuss the verifiability of IL code at the
end of this chapter.) Generally, it's a good idea to check your executables with
the PEVerify utility, distributed with the Microsoft .NET Framework SDK. This

Chapter 10 IL Instructions 239

utility provides metadata validation and IL code verification, which includes
checking both aspects-code validity and verifiability.

IL instructions consist of an operation code (opcode), which for some
instructions is followed by an instruction parameter. Opcodes are either 1 byte
or 2 bytes long; in the latter case, the first byte of the opcode is always OxFE. In
later sections of this chapter, opcodes are specified in parentheses following the
instruction specification. Some instructions have synonyms, which I've also
listed in parentheses immediately after the principal instruction name.

Long-Parameter and Short-Parameter Instructions
Many instructions that take an integer or an unsigned integer as a parameter
have two forms. The long-parameter (original) form requires a 4-byte integer,
and the short-parameter form, recognized by the suffix .s, requires a 1-byte inte
ger. Short-parameter instructions are used when the value of the parameter is in
the range -128 through 127 for signed parameters and in the range 0 through
255 for unsigned parameters. The long-parameter form of an instruction can
also be used for parameters within these ranges, but it leads to unnecessary
bloating of the IL code.

Instructions that take a metadata token as a parameter don't have short
forms: metadata tokens are always used in the IL stream in uncompressed and
uncoded form, as 4-byte unsigned integers.,

The byte order of the integers embedded in the IL stream must be little
endian-that is, the least significant byte comes first.

Labels and Flow Control Instructions
Flow control instructions include branching instructions, switch instructions,
exiting and ending instructions used with structured exception handling (SEH)
blocks, and a return instruction.

Unconditional Branching Instructions
Unconditional branching instructions take no arguments from the stack and
have a signed integer parameter. The parameter specifies the offset in bytes
from the current position within the IL stream. The ILAsm notation does allow
you to specify the offset explicitly (for example, br -234), but this practice is not
recommended for an obvious reason: it's difficult to calculate the offset cor
rectly when you're writing in a programming language.

240 Part IV Inside the Execution Engine

It is much safer and less troublesome to use labels instead, letting the
ILAsm compiler calculate the correct offsets. Labels, which you've already
encountered many times, are simple names followed by a colon:

Loop:

br Loop

The ILAsm compiler does not automatically choose between long-parame
ter and short-parameter forms. Thus, if you specify a short-parameter instruction
and put the target label farther than the short parameter permits, the calculated
offset is truncated to 1 byte, and the ILAsm compiler issues an error message.

Unconditional branching instructions take nothing from the evaluation
stack and put nothing on it.

• br <int32> (Ox38) Branch <int32> bytes from the current position.

• br.s <int8> (Ox2B) The short-parameter form of br.

Conditional Branching Instructions
Conditional branching instructions differ from the unconditional instructions in
one aspect only: they take one <value> from the evaluation stack, check to see
whether the condition specified by the opcode is true, and, if it is, branch
according to the instruction parameter.

• brfalse (brnul~ brzero) <int32> (Ox39) Branch if <value> is 0.

• brfalse.s <int8> (Ox2C) The short-parameter form of brfalse.
Note that the synonyms brnull.s and brzero.s do not exist.

• brtrue (brinst) <int32> (Ox3A) Branch if <value> is nonzero.

• brtrue.s <int8> (Ox2D) The short-parameter form of brtrue. No
synonyms exist.

Comparative Branching Instructions
Comparative branching instructions take two values (<value1 >, <value2>) from
the evaluation stack and compare them according to the condition specified by
the opcode. Not all combinations of types of <value1> and <value2> are valid;
Table 10-1 lists the valid combinations.

Chapter 10 IL Instructions 241

Table 10-1 Valid Type Combinations in Comparison Instructions

Type of <valuei> Can Be Compared with Type

int32

int64

native int

Float

int32, native int.

int64.

int32, native int, & (equality or nonequality comparisons
only).

Float. Without exception, all floating-point comparisons are
formulated as <condition> or unordered. Unordered is true
when at least one of the operands is NaN (not a number). A
bizarre concept, if you ask me, but of course no one does.

& (managed pointer) native int (equality or nonequality comparisons only),&.
Unless the compared values are pointers to the same array or
value type or pointers to pinned variables, comparing two
managed pointers should be limited to equality or nonequality
comparisons, because the garbage collection subsystem (GC)
might move the managed pointers in an unpredictable way at
unpredictable moments.

ObjectRef ObjectRef(equality or nonequality comparisons only). "Greater
than" unsigned comparison is also admissible and is used to
compare an object reference to null, because objects are sub
ject to garbage collection, and their references can be changed
by the GC at will. I strongly recommend avoiding the compari
son to null. It is much safer and more logical to use brtrue,
and it also saves loading a null reference on the stack.

• beq <int32> (Ox3B) Branch if <value1> is equal to <value2>.

• beq.s <int8> (Ox2E) The short-parameter form of beq.

• bne.un <int32> (Ox40) Branch if the two values are not equal.
Integer values are interpreted as unsigned.

• bne.un.s <int8> (Ox33) The short-parameter form of bne.un.

• bge <int32> (Ox3C) Branch if greater or equal.

• bge.s <int8> (Ox2F) The short-parameter form of bge.

• bge.un <int32> (Ox41) Branch if greater or equal. Integer values
are interpreted as unsigned.

• bge.un.s <int8> (Ox34) The short-parameter form of bge.un.

• hgt <int32> (Ox3D) Branch if greater.

• bgt.s <int8> (Ox30) The short-parameter form of hgt.

242 Part IV Inside the Execution Engine

• bgt.un <int32> (Ox42) Branch if greater. Integer values are inter-
preted as unsigned.

• bgt.un.s <int8> (Ox35) The short-parameter form of bgt.un.

• ble <int32>(0x3E) Branch if less or equal.

• ble.s <int8> (Ox31) · The short-parameter form of ble.

• ble.un <int32> (Ox43) Branch if less or equal. Integer values are
interpreted as unsigned.

• ble.un.s <int8> (Ox36) The short-parameter form of ble.un.

• blt <int32> (Ox3F) Branch if less.

• blt.s <int8> (Ox32) The short-parameter form of bit.

• blt.un <int32> (Ox44) Branch if less. Integer values are interpreted
as unsigned.

• blt.un.s <int8> (Ox37) The short-parameter form of blt.un.

The switch Instruction
The switch instruction implements a jump table. This instruction is unique in
the sense that it has not one, not two, but N + 1 parameters following it, where
N is the number of cases in the switch. The first parameter is a 4-byte unsigned
integer specifying the number of cases, and the following N parameters are 4-
byte signed integers specifying offsets to the targets (cases). The ILAsm notation
is as follows:

sw1tch(Labell, Label2,_,LabelN)
II Default case

Labell:

Label 2:

LabelN:

As in the case of branching instructions, ILAsm syntax allows you to replace the
labels in a switch(. ..) instruction with explicit offsets, but I definitely do not rec
ommend this.

The instruction takes one value from the stack and converts it to an
unsigned integer. It then switches to the target according to the value of this
unsigned integer. A 0 value corresponds to the first target offset on the list. If
the value is greater than or equal to the number of targets, the switch instruction

Chapter 10 IL Instructions .243

is ignored, and control is passed to the instruction immediately following the
switch. In this sense, the default case in IL is always the first case of the switch.

• switch <unsigned int32> <int32> ... <int32> (Ox45) Branch to
one of the <unsigned int32> offsets.

The break Instruction
This break instruction is not equivalent to the break statement in C, which is
used as an exit from the switch cases. The break instruction in IL inserts a
breakpoint into the IL stream and is used for debugging only. This instruction
does not have parameters and does not touch the evaluation stack.

• break (OxOl) Debugging breakpoint.

SEH Block Exiting Instructions
The blocks of code involved in structured exception handling cannot be
entered or exited by simple branching because of the strict stack state require
ments imposed on them. The leave instruction, or its short-parameter form, is
used to exit a guarded block (a try block) or an exception handler block. You
cannot use this instruction, however, to exit a filter, finally, or fault block. (For
more details about these blocks, see Chapter 11, ·"Structured Exception Han
dling.")

The instruction has one integer parameter specifying the offset of the tar
get and works the same way as an unconditional branching instruction except
that it empties the evaluation stack before the branching. The ILAsm notation
for this instruction is similar to the notation for unconditional branching instruc
tions: leave <label> or leave <int32>, the latter one highly unrecommended.

• /,eave <int32> (OxDD) Clear the stack and branch <int32> bytes
from the current point.

• leave.s <int8> (OxDE) The short-parameter form of leave.

SEH Block Ending Instructions
IL has two specific instructions to mark the end of filter, finally, and fault blocks.
Unlike leave, these instructions mark the lexical end of a block rather than an
algorithmic end, or point of exit. These instructions have no parameters.

• endfilter (OxFE Oxll) The lexical end of a filter block. The
instruction takes one 4-byte integer value from the evaluation stack
and signals the execution engine whether the associated exception
handler should be engaged (a value of 1) or whether the exception
identification should be continued (a value other than 1), because
this filter doesn't know what to do with this particular exception.

244 Part IV Inside the Execution Engine

• endfinaUy (endfault) (O:xDC) The lexical end of a finally or fault
block. This instruction clears the evaluation stack.

The rel Instruction
The return instruction-ret-returns from a called method to the call site. It has
no parameters. If the called method should return a value of a certain type,
exactly one value of the required type must be on the evaluation stack at the
moment of return. The ret instruction causes this value to be removed from the
evaluation stack of the called method and put on the evaluation stack of the
calling method. If the called method returns void, its evaluation stack must be
empty at the moment of return.

• ret (Ox2A) Return from a method.

Arithmetical Instructions
Arithmetical operations deal with numeric data processing and include stack
manipulation instructions, constant loading instructions, indirect (by pointer)
loading and storing instructions, arithmetical operations, bitwise operations, data
conversion operations, logical condition check operations, and block operations.

Stack Manipulation
Stack manipulation instructions work with the evaluation stack and have no
parameters.

• nop (OxOO) No operation; a placeholder only. The nop instruction
is not exactly a stack manipulation instruction, since it does not
touch the stack, but I've included it here rather than creating a sepa
rate category for it. The nop instruction is somewhat useful only in
that, because it is a distinct opcode, a line of source code can be
bound to it in the program database (PDB) file containing the debug
information. The Microsoft Visual Basic .NET compiler introduces a
lot of nop instructions because it wants to bind each and every line
of the source code to the IL code. The reasoning behind this is not
clear; perhaps the Visual Basic .NET programmers wish to be able to
put breakpoints on comment lines.

• dup (Ox25) Duplicate the value on the top of the stack. If the stack
is empty, the JIT compiler fails because of the stack underflow.

Chapter 10 IL Instructions 245

• pop (Ox26) Remove the value from the top of the stack. The value
is lost. If the stack is empty, the JIT compiler fails. It's not healthy to
invoke dup or pop on an empty stack.

Constant Loading
Constant loading instructions take at most one parameter (the constant to
load) and load it on the evaluation stack. Some instructions have no parame
ters because the value to be loaded is specified by the opcode itself. The
ILAsm syntax requires explicit specification of the constants, in decimal or
hexadecimal form:

ldc.14 -1
ldc.14 0xFFFFFFFF

Note that the slots of the evaluation stack are either 4 or 8 bytes wide, so the
constants being loaded are converted to the suitable size.

• ldc.i4 <int32> (Ox20) Load <int32> on the stack.

• ldc.i4.s <int8> (OxlF) Load <int8> on the stack.

• ldc.i4.ml (ldc.i4.Ml) (Ox15) Load -1 on the stack.

• ldc.i4.0 (Ox16) Load 0 .

• ldc.i4.1 (Ox17) Load 1 .

• ldc.i4.2 (OxlS) Load 2 .

• ldc.i4.3 (Ox19) Load 3 .

• ldc.i4.4 (OxlA) Load 4 .

• ldc.i4.5 (OxlB) Load 5 .

• ldc.i4.6 (OxlC) Load 6.

• ldc.i4. 7 (OxlD) Load 7 .

• ldc. i4. 8 (OxlE) Load 8. (I should have listed these in reverse order
so then we could imagine ourselves on Cape Canaveral.)

• ldc.i8 <int64> (Ox21) Load <int64> on the stack.

• ldc.r4 <jloat32> (Ox22) Load <float32> (single-precision) on the
stack.

• ldc.r8 <jloat64> (Ox23) Load <float64> (double-precision) on the
stack. ILAsm permits the use of integer parameters in both the ldc.r4
and ldc.r8 instructions; in such cases, the integers are interpreted as
binary images of the floating-point numbers.

246 Part IV Inside the Execution Engine

Indirect Loading
An indirect loading instruction takes a managed pointer(&) or an unmanaged
pointer (native int) from the stack, retrieves the value at this pointer, and puts
the value on the stack The type of the value to be retrieved is defined by the
opcode. The indirect loading instructions have no parameters.

• ldind.il (Ox46) Load a signed 1-byte integer from the location
specified by the pointer taken from the stack

• ldind.ul (Ox47) Load an unsigned 1-byte integer.

• ldindi2 (Ox48) Load a signed 2-byte integer.

• ldindu2 (Ox49) Load an unsigned 2-byte integer.

• ldind.i4 (Ox4A) Load a signed 4-byte integer.

• ldind.u4 (Ox4B) Load an unsigned 4-byte integer.

• ldind.i8 (ldindu8) (Ox4C) Load an 8-byte integer, signed or
unsigned.

• ldind.i (Ox4D) Load native int, an integer the size of a pointer.

• ldind.r4 (Ox4E) Load a single-precision floating-point value.

• ldind.r8 (Ox4F) Load a double-precision floating-point value.

• ldind.ref(Ox50) Load an object reference.

Indirect Storing
Indirect storing instructions take a value and an address, in that order, from the
stack and store the value at the location specified by the address. The address
can be a managed or an unmanaged pointer. The type of the value to be stored
is specified in the opcode. These instructions have no parameters.

• stind.ref(Ox5l) Store an object reference .

• stindil (Ox52) Store a 1-byte integer .

• stind.i2 (Ox53) Store a 2-byte integer.

• stindi4 (Ox54) Store a 4-byte integer .

• stind.i8 (Ox55) Store an 8-byte integer .

• stindi (OxDF) Store a pointer-size integer .

• stind. r4 (Ox56) Store a single-precision floating-point value .

• stind.r8 (Ox57) Store a double-precision floating-point value.

Chapter 10 IL Instructions 247

Arithmetical Operations
All arithmetical operations except the negation operation take two operands
from the stack and put the result on the stack. If the result value does not fit the
result type, the value is truncated. Table 10-2 lists the admissible type combina
tions of operands and their corresponding result types.

Table 10-2 Admissible Operand Types and Their Result Types in Arithmetical
Operations

Operand Type Operand Type Result Type

int32

int32

int32

int64

native int

Float

&

int32

native int

& (addition only, unverifiable)

int64

& (addition only, unverifiable)

Float (except unsigned division)

& (addition or subtraction,
unverifiable)

int32

native int

&

int64

&

Float

native int

The arithmetical operation instructions are as follows:

• add (Ox58) Addition.

• sub (Ox59) Subtraction.

• mul (Ox5A) Multiplication. For floating-point numbers, which
have the special values infinity and NaN(not a number), the follow
ing rule applies:

0 * infinity = NaN

• div (Ox5B) Division. For integers, division by 0 results in a Divide
ByZero exception. For floating-point numbers:

0 I 0 = NaN, infinity I infinity = NaN, x I infinity = 0

• div.un (Ox5C) Unsigned division (integer types only).

• rem (Ox5D) Remainder, modulo. For integers, modulo 0 results in
a DivideByZero exception. For floating-point numbers:

248 Part IV Inside the Execution Engine

infinity rem x = NaN, x rem 0 = NaN, x rem infinity = x

• rem.un (Ox5E) The remainder of unsigned operands (integer
operands only).

• neg (Ox65) Negate-that is, invert the sign. This is the only unary
arithmetical operation. It takes one operand rather than two from the
evaluation stack and puts the result back. This operation is not appli
cable to pointer types. With integers, a peculiar situation can occur,
in which the maximum negative number does not change after nega
tion because of the overflow condition during the operation, as
shown in this example:

ldc.14 0x80000000 II Max. negative number for int32,
11-2147483648

neg
call void [mscorlib]System.Console::Writeline(int32)
II Output: -2147483648;
II The same effect with subtraction:
1de.i4. 0
ldc.i4 0x80000000
sub
call void [mscorlib]System.Console::Writeline(int32l
II Output: -2147483648;

Floating-point numbers don't have this problem. Negating NaN returns
NaN because NaN, which is not a number, has no sign.

Overflow Arithmetical Operations
Overflow arithmetical operations are similar to the arithmetical operations
described in the preceding section except that they work with integer operands
only and generate an Overflow exception if the result does not fit the target
type. The ILAsm notation for the overflow arithmetical operations contains the
suffix .ovf following the operation kind. The type compatibility list, shown in
Table 10-3, is very similar to the list shown in Table 10-2.

Table 10-3 Acceptable Operand Types and Their Result Types in Overflow
Arithmetical Operations

Operand Type

int32

int32

Operand Type

int32

native int

Result Type

int32

native int

Chapter 1 O IL Instructions 249

Table 10-3 Acceptable Operand Types and Their Result Types in Overflow
Arithmetical Operations (continued)

Operand Type Operand Type Result Type

int32

int64

native int

&

& (addition only, unverifiable)

int64

& (addition only, unverifiable)

& (addition or subtraction, unverifiable)

• add.ovf(OxD6) Addition.

&

int64

&

native int

• add.ovf.un (OxD7) Addition of unsigned operands.

• sub.ovf(OxDA) Subtraction.

• sub.ovf.un (OxDB) Subtraction of unsigned operands.

• muLovf(OxD8) Multiplication.

• muLovf.un (OxD9) Multiplication of unsigned operands.

Bitwise Operations
Bitwise operations have no parameters and are defined for integer types only;
floating-point, pointer, and object reference operands are not allowed. As a
result, the related operand type compatibility list, shown in Table 10-4, is pretty
simple.

Table 10-4 Acceptable Operand Types and Their Result Types in Bitwise Operations

Operand Type Operand Type Result Type

int32

int32

int64

int32

native int

int64

int32

native int

int64

Three of the bitwise operations are binary, taking two operands from the
stack and placing one result on the stack; and one is unary, taking one operand
from the stack and placing one result on the stack:

• and (Ox5F) Bitwise AND (binary).

• or (Ox60) Bitwise OR (binary).

250 Part IV Inside the Execution Engine

• xor (Ox61) Bitwise exclusive OR (binary).

• not (Ox66) Bitwise inversion (unary). This operation, rather than
neg, is recommended for integer sign inversion because neg has a
problem with the maximum negative numbers:

ldc.i4 0x80000000 II Max. negative number for int32,
II -2147483648

not
call void [mscorlib]System.Console::WritelineCint32)
II Output: 2147483647 (0x7FFFFFFF);
II Of course, it's not +2147483648,
II which cannot be with int32,
II but at least we have the max. positive number

Shift Operations
Shift operations have no parameters and are defined for integer operands only.
The shift operations are binary: they take from the stack the shift count and the
value being shifted, in that order, and put the shifted value on the stack. The
result always has the same type as the operand being shifted, which can be of
any integer type. The type of the shift count cannot be int64 and is limited to
int32 or native int.

• shl (Ox62) Shift left.

• sbr (Ox63) Shift right.

• shr.un (Ox64) Shift right, treating the shifted value as unsigned.

Conversion Operations
The conversion operations have no parameters. They take a value from the
stack, convert it to the type specified by the opcode, and put the result back on
the stack. The specifics of the conversion obviously depend on the type of the
converted value and the target type (the type to which the value is converted).
If the type of the value on the stack is the same as the target type, no conver
sion is necessary, and the operation itself is doing nothing more than bloating
the IL code.

For integer source and target types, several rules apply. If the target inte
ger type is narrower than the source type (for example, int32 to intl 6, or int64
to int32), the value is truncated-that is, the most significant bytes are thrown
away. If the situation is the opposite-if the target integer type is wider than the
source-the result is either sign-extended or zero-extended, depending on the

Chapter 10 IL Instructions 251

type of conversion. Conversions to signed integers use sign-extension, and con
versions to unsigned integers use zero-extension.

If the source type is a pointer, it can be converted to either unsigned int64
or native unsigned int. In either case, if the converted pointer was managed, it
is dropped from the GC tracking and is not automatically updated when the GC
rearranges the memory layout. A pointer cannot be used as a target type.

If both source and target types are floating-point, the conversion merely
results in a change of precision. In float-to-integer conversions, the values are
truncated toward 0-for example, the value 1.1 is converted to 1, and the value
-2.3 is converted to -2. In integer-to-float conversions, the integer value is sim
ply converted to floating-point, possibly losing fewer significant mantissa bits.

Object references cannot be subject to conversion operations either as a
source or as a target.

• conv.il (Ox67) Convert the value to int8.

• conv.ul (OxD2) Convert the value to unsigned int8.

• conv.i2 (Ox68) Convert the value to int16.

• conv.u2 (OxDl) Convert the value to unsigned int16.

• conv.i4 (Ox69) Convert the value to int32.

• conv.u4 (Ox6D) Convert the value to unsigned int32.

• conv.i8 (Ox6A) Convert the value to int64.

• conv.u8 (Ox6E) Convert the value to unsigned int64. This opera
tion can be applied to pointers.

• conv.i (OxD3) Convert the value to native int.

• conv.u (OxEO) Convert the value to native unsigned int. This
operation can be applied to pointers.

• conv.r4 (Ox6B) Convert the value to float32.

• conv.r8 (Ox6C) Convert the value to float64.

• conv.r.un (Ox76) Convert an unsigned integer value to floating
point.

Overflow Conversion Operations
Overflow conversion operations differ from the conversion operations
described in the preceding section in two aspects: the target types are exclu
sively integer types, and an Overflow exception is thrown whenever the value

252 Part IV Inside the Execution Engine

must be truncated to fit the target type. In short, the story is the same as it is
with overflow arithmetical operations and arithmetical operations.

• conv.ovf.il (OxB3) Convert the value to int8.

• conv.ovf.ul (OxB4) Convert the value to unsigned int8.

• conv.ovf.il.un (Ox82) Convert an unsigned integer to int8.

• conv.ovf.ul.un (Ox86) Convert an unsigned integer to unsigned
int8.

• conv.ovf.i2 (OxB5) Convert the value to int16.

• conv.ovf.u2 (OxB6) Convert the value to unsigned int16.

• conv.ovf.i2.un (Ox83) Convert an unsigned integer to int16.

• conv.ovf.u2.un (Ox87) Convert an unsigned integer to unsigned
intl6.

• conv.ovf.i4 (OxB7) Convert the value to int32.

• conv.ovf.u4 (OxBS) Convert the value to unsigned int32.

• conv.ovf.i4.un (Ox84) Convert an unsigned integer to int32.

• conv.ovf.u4.un (Ox88) Convert an unsigned integer to unsigned
int32.

• conv.ovf.i8 (OxB9) Convert the value to int64.

• conv.ovf.u8 (OxBA) Convert the value to unsigned int64.

• conv.ovf.i8.un (Ox85) Convert an unsigned integer to int64.

• conv.ovf.u8.un (Ox89) Convert an unsigned integer to unsigned
int64.

• conv.ovf.i (OxD4) Convert the value to native int.

• conv.ovf.u (OxD5) Convert the value to native unsigned int.

• conv.ovf.i.un (OxSA) Convert an unsigned integer to native int.

• conv.ovf.u.un (OxSB) Convert an unsigned integer to native
unsigned int.

Logical Condition Check Operations
Logical condition check operations are similar to conditional branching opera
tions except that they result not in branching but in putting the condition check
result on the stack. The result type is int32, its value is equal to 1 if the condi
tion checks and 0 otherwise. The two operands being compared are taken from

Chapter 1 O IL Instructions 253

the stack, and, because no branching is performed, the condition check opera
tions have no parameters.

The admissible combinations of operand types are the same as for condi
tional branching instructions. (See Table 10-1.) There are, however, fewer con
dition check operations than conditional branching operations.

• ceq (OxFE OxOl) Check whether the two values on the stack are
equal.

• cgt (OxFE Ox02) Check whether the first value is greater than the
second value. It's the stack we are working with, so the "second"
value is the one on the top of the stack.

• cgt.un (OxFE Ox03) Check whether the first value is greater than
the second, with both values considered unsigned.

• clt (OxFE Ox04) Check whether the first value is less than the sec
ond value.

• clt.un (OxFE Ox05) Check whether the first value is less than the
second, with both values considered unsigned.

• definite (OxC3) This unary operation, which takes only one value
from the stack, is applicable to floating-point values only. It throws
an Arithmetic exception if the value is +infinity, -infinity, or NaN
and puts 1 on the stack otherwise.

Block Operations
Two IL instructions deal with blocks of memory regardless of the type or types
that make up this memory. Because of this type blindness, both instructions are
unverifiable.

• cpblk (OxFE Ox17) Copy a block of memory. The instruction has
no parameters and pops three operands from the stack in the follow
ing order: the size of the block to be copied (unsigned int32), the
source address (a pointer or native int), and the destination address
(a pointer or native int). The source and destination addresses must
be aligned on the size of native int unless the instruction is prefixed
with the unaligned. instruction, described in "Prefix Instructions,"
later in this chapter. The cpblk instruction puts nothing on the stack.

• initblk (OxFE Ox18) Initialize a block of memory. The instruction
has no parameters and takes three operands from the evaluation
stack: the size of the block (unsigned int32), the initialization value
(int8), and the block start address (a pointer or native int). The

254 Part IV Inside the Execution Engine

alignment rules mentioned above apply to the block start address.
The initblk instruction puts nothing on the stack As a result of this
operation, each byte within the specified block is assigned the initial
ization value.

Addressing Arguments and Local Variables
A special group of IL instructions is dedicated to loading the values of method
arguments and local variables on the evaluation stack and storing the values
taken from the stack in local variables and method arguments.

Method Argument Loading
The following instructions are used for loading method argument values on the
evaluation stack:

• ldarg <unsigned int16> (OxFE Ox09) Load the argument num
ber <unsigned int16> on the stack The argument enumeration is
zero-based, but it's important to remember that instance methods
have an "invisible" argument not specified in the method signature:
the class instance pointer, this, which is always argument number 0.
Because static methods don't have such an "invisible" argument, for
them argument number 0 is the first argument specified in the
method signature.

• ldarg.s <unsigned int8> (OxOE) The short-parameter form of
ldarg.

• ldarg.O (Ox02) Load argument number 0 on the stack

• ldarg.1 (Ox03) Load argument number 1 on the stack

• ldarg.2 (Ox04) Load argument number 2 on the stack

• ldarg.3 (Ox05) Load argument number 3 on the stack

Method Argument Address Loading
These two instructions are used for loading method argument addresses on the
evaluation stack:

• ldarga <unsigned intl 6> (OxFE OxOA) Load the address of argu
ment number <unsigned intl 6> on the stack

• ldarga.s <unsigned int8> (OxOF) The short-parameter form of
ldarga.

Chapter 10 IL Instructions 255

Method Argument Storing
These two instructions are used for storing a value from the stack in a method
argument slot:

• starg <unsigned intl 6> (OxFE OxOB) Take a value from the stack
and store it in argument slot number <unsigned int16>. The value on
the stack must be of the same type as the argument slot or must be
convertible to the type of the argument slot. The convertibility rules
and effects are the same as those for conversion operations, dis
cussed earlier in this chapter. With vararg methods, the starg instruc
tion cannot target the arguments of the variable part of the signature.

• starg.s <unsigned int8> (OxlO) The short-parameter form of
starg.

Method Argument List
The following instruction is used exclusively in vararg methods to retrieve the
method argument list and put an instance of the value type [mscorlib}Sys
tem.RuntimeArgumentHandle on the stack. Chapter 9, "Methods,'' discusses the
application of this instruction.

• arglist (OxFE OxOO) Get the argument list handle.

Local Variable Loading
Local variable loading instructions are similar to argument loading instructions
except that no "invisible" items appear among the local variables, so local vari
able number 0 is always the first one specified in the local variable signature.

• ldloc <unsigned intl 6> (OxFE OxOC) Load the value of local vari
able number <unsigned int16> on the stack. Local variable numbers
can range from 0 to OxFFFE.

• ldloc.s <unsigned int8> (Oxll) The short-parameter form of
ldloc.

• ldloc.O (Ox06) Load the value of local variable number 0 on the
stack.

• ldloc.1 (Ox07) Load the value of local variable number 1 on the
stack.

• ldloc.2 (Ox08) Load the value of local variable number 2 on the
stack.

• ldloc.3 (Ox09) Load the value of local variable number 3 on the
stack.

256 Part IV Inside the Execution Engine

Local Variable Reference Loading
The following instructions load references (managed pointers) to the local vari
ables on the evaluation stack:

• ldloca <unsigned int16> (OxFE OxOD) Load the address of local
variable number <unsigned intl 6> on the stack. The local variable
number can vary from 0 to OxFFFE.

• ldloca.s <unsigned int8> (Ox12) The short-parameter form of
ldloca.

Local Variable Storing
It would be strange to have local variables and be unable to assign values to
them. The following two instructions take care of this aspect of our life:

• stloc <unsigned int16> (OxFE OxOE) Pop the value from the
stack and store it in local variable slot number <unsigned int16>.
The value on the stack must be of the same type as the argument slot
or must be convertible to the type of the argument slot. The convert
ibility rules and effects are the same as those for the conversion
operations, discussed earlier in this chapter.

• stloc.s <unsigned int8> (Ox13) The short-parameter form of
stloc. You've probably noticed that using short-parameter forms of
argument and local variable manipulation instructions results in a
double gain against the standard form: not only is the parameter 1
byte instead of 2, but also the opcode is shorter.

Local Block Allocation
With all due respect to the object-oriented approach, sometimes it is necessary
(or just convenient) to obtain a plain, C-style chunk of memory. The IL instruc
tion set provides an instruction for such allocation. It is to be noted, however,
that the chunk of memory is allocated on the thread stack rather than on the
heap. I'm talking about the native stack and heap now, used by the }IT-com
piled code.

• localloc (OxFE OxOF) Allocate a block of memory on the native
thread stack. The instruction takes the block size (native unsigned int)
from the evaluation stack and puts a managed pointer(&) to the allo
cated block on the evaluation stack. If not enough space is available
on the native thread stack, a StackOvet:flow exception is thrown. This
instruction must not appear within any structured exception handling
block. Like any other block instruction, localloc is unverifiable.

Chapter 10 IL Instructions 257

Prefix Instructions
The prefix instructions listed in this section have no meaning per se but are
used as prefixes for the pointer-consuming instructions-that is, instructions
that take a pointer value from the stack-that immediately follow them, such as
ldind. *, stind. *, ld:fld, stfld, ldobj, stobj, initblk, and stblk. When they are used as
prefixes of instructions that don't consume pointers, the prefix instructions are
ignored and do not carry on to the nearest pointer-consuming instruction.

• unaligned. <unsigned int8> (OxFE Ox12) Indicates that the
pointer(s) on the stack are <unsigned int8>-aligned rather than
aligned on the pointer size. The <unsigned int8> parameter must be
1, 2, or 4.

• volatile. (OxFE Ox13) Indicates that the pointer on the stack is
volatile-that is, it can be modified from another thread of execution
and the results of its dereferencing therefore cannot be cached for
performance considerations.

A prefix instruction affects only the immediately following instruction and
does not mark the respective pointer as unaligned or volatile throughout the
entire method. Both prefixes can be used with the same instruction-in other
words, the pointer on the stack can be marked as both unaligned and volatile;
in such a case, the order of appearance of the prefixes does not matter.

The ILAsm syntax requires the prefix instructions to be separated from the
next instruction by at least a space symbol:

volatile. ldind.14 // Correct

volatile.
ld1nd.14 // Correct

volat1le.ldind.14 //Syntax error

Such a mistake is unlikely with the unaligned. instruction because it requires an
integer parameter:

unaligned. 4 ldind.14

Addressing Fields
Six instructions can be used to load a field value or an address on the stack or
to store a value from the stack in a field. Because a field signature does not indi
cate whether the field is static or instance, the IL instruction set defines separate
instructions for dealing with instance and static fields. Instructions dealing with

258 Part IV Inside the Execution Engine

instance fields take the instance pointer-an object reference if the field
addressed belongs to a class, and a managed pointer if the field belongs to a
value type-from the stack.

• ldfld <token> (Ox7B) Pop the instance pointer from the stack and
load the value of an instance field on the stack. <token> must be a
valid FieldDef or MemberRef token, uncompressed and uncoded.

• ldsfld <token> (Ox7E) Load the value of a static field on the stack.

• ldflda <token> (Ox7C) Pop the instance pointer from the stack
and load a managed pointer to the instance field on the stack.

• ldsflda <token> (Ox7F) Load a managed pointer to the static field
on the stack.

• sf/ld <token> (Ox7D) Pop the value from the stack, pop the
instance pointer from the stack, and store the value in the instance
field.

• stsfld <token> (Ox80) Store the value from the stack in the static
field.

The ILAsm notation requires full field specification, which is resolved to
<token> at compile time:

ldfld 1nt32 Foo.Bar::ii

The applicable conversion rules when loading and storing values are the
same as those discussed earlier. Note also that the fields cannot be of managed
pointer type.

Calling Methods
Methods can be called directly or indirectly. In addition, you can also use the
special case of a so-called tail call, discussed in this section. Because the
method signature indicates whether the method is instance or static, separate
instructions for instance and static methods are unnecessary. What the method
signature doesn't hold, however, is information about whether the method is
virtual. As a result, separate instructions are used for calling virtual and nonvir
tual methods.

Method call instructions have one parameter: a token of the method being
called, either a MethodDef or a MemberRef The arguments of the method call
should be loaded on the stack in order of their appearance in the method sig
nature, with the last signature parameter being loaded last. Instance methods
have an "invisible" first argument (an instance pointer) not present in the signa-

Chapter 1 O IL Instructions 259

ture; when an instance method is called, this instance pointer should be loaded
on the stack first, preceding all arguments corresponding to the method signa
ture.

Unless the called method returns void, the return value is placed on the
stack when the call is completed.

Direct Calls
The IL instruction set contains three instructions intended for the direct
method calls:

• jmp <token> (Ox27) Abandon the current method and jump to
the target method, specified by <token>, transferring the current
arguments. At the moment jmp is invoked, the evaluation stack must
be empty, and the arguments are transferred automatically. Because
of this, the signature of the target method must match the signature
of the method invoking jmp. This instruction should not be used
within SEH blockS-:-try, catch, filter, fault, or finally blocks, discussed
in Chapter 11-or within a synchronized region. The jmp instruction
is unverifiable.

• call <token> (Ox28) Call a nonvirtual method. You can also call a
virtual method, but in this case it is called not through the instance's
v-table but through its type-specific method table. (If this sounds
somehow vague to you, you might want to return to Chapter 9 and,
more precisely, to the section "Static, Instance, Virtual Methods" and
the sample file Virt_not.il.) The real difference between virtual and
nonvirtual instance methods becomes obvious when you create an
instance of a class, cast it to the parent type of the class, and then call
instance methods on this "child-posing-as-parent" instance. Because
nonvirtual methods are called through the type's method table, the
parent's methods will be called in this case. Virtual methods are
called through the v-table specific to the class instance, and hence
the child's methods will be called. The call instruction works through
the type's method table and ignores the instance's v-table, so the par
ent's methods will be called whether they are virtual or not. To con
firm this, carry out a simple experiment: open the sample file
Virt_not.il in a text editor and change callvirt instance void A: :Bar()
to call instance void A::Bar(). Then recompile the sample and run it.

• callvirt <token> (Ox6F) Call the virtual method specified by
<token>. This type of method call is conducted through the
instance's v-table. It is possible to call a nonvirtual instance

260 Part IV Inside the Execution Engine

method using callvirt. In this case, the method is called through
the type's method table simply because the method cannot be
found in the v-table. But unlike call, the callvirt instruction first
checks the validity of the object reference (this pointer) before
doing anything else, which is a very useful feature. The Microsoft
Visual C# .NET compiler exploits it shamelessly, emitting callvirt
to call both virtual and nonvirtual instance methods of classes. I
say "of classes" because callvirt requires an object reference as
the this pointer and will not accept a managed pointer to a value
type instance.

Indirect Calls
Methods in IL can be called indirectly through the function pointer loaded on
the evaluation stack. This allows us to make calls to computed targets-for
example, to call a method by a function pointer returned by another method.
Function pointers used in indirect calls are unmanaged pointers represented by
native int. Two instructions load a function pointer to a specified method on
the stack, and one other instruction calls a method indirectly:

• ldftn <token> (OxFE Ox06) Load the function pointer to the
method specified by <token> of MethodDef or MemberRef type. The
method is looked up in the class's method table.

• ldvirtftn <token> (OxFE Ox07) Pop the object reference (the
instance pointer) from the stack and load the function pointer to the
method specified by <token>. The method is looked up in the
instance's v-table.

• calli <token> (Ox29) Pop the function pointer from the stack, pop
all the arguments from the stack, and make an indirect method call
according to the method signature specified by <token>. <token>
must be a valid StandAloneSig token. The function pointer must be
on the top of the stack. If the method returns a value, it is pushed on
the stack at the completion of the call. The calli instruction is unver
ifiable, which is not surprising, considering that the call is made via
an unmanaged pointer, which is itself unverifiable.

It's easy enough to see that the combination ldftn/ calli is equivalent to
call, as long as we don't consider verifiability, and the combination ldvirt.ftn/
calli is equivalent to callvirt.

The ILAsm notation requires full specification of the method in the ld.ftn
and ldvirtftn instructions, similar to the call and callvirt instructions. The

Chapter 10 IL Instructions 261

method signature accompanying the calli instruction is specified as
<call_conv> <ret_type>(<arg_list>). For example:

.locals init (native int fnptr)

ldftn void [mscorlib]System.Console::WriteLine(int32)
stloc.0 // Store function pointer in local variable

ldc.i4 12345 // Load argument
ldloc.0 // Load function pointer
calli void(int32)

Tail Calls
Tail calls are similar to method jumps (jmp) in the sense that both lead to aban
doning the current method, discarding its stack frame, and passing the argu
ments to the tail-called (jumped-at) method. However, because the arguments
of a tail call have to be loaded on the evaluation stack explicitly, a tail call
unlike a jump-does not require the entire signature of the called method to
match the signature of the calling method; only the return types must be the
same or compatible. In short, a jump is the equivalent of loading all the current
method's arguments on the stack and invoking a tail call.

Tail calls are distinguished by the prefix instruction tail. immediately pre
ceding a call, callvirt, or calli instruction:

• tail (OxFE Ox14) Mark the following call instruction as a tail call.
This instruction has no parameters and does not work with the stack.
In ILAsm, this instruction-like the other prefix instructions
unaligned. and volatile., discussed earlier-must be separated from
the call instruction that follows it by at least a space symbol.

The difference between a jump and a tail call is that the tail call instruction
pair is verifiable in principle, subject to the verifiability of the call arguments, as
long as it is immediately followed by the ret instruction. As is the case with
other prefix instructions, it is illegal to bypass the prefix and branch directly to
the prefixed instruction, in this case, call, callvirt, or calli.

Addressing Classes and Value Types
Being object-oriented in its base, IL offers quite a few instructions dedicated
specifically to manipulating class and value type instances:

262 Part IV Inside the Execution Engine

• ldnull (Ox14) Load a null object reference on the stack.

• ldobj <token> (Ox71) Load an instance value type specified by
<token> on the stack. This instruction pops from the stack the man
aged pointer to the value type instance to be loaded. <token> must
be a valid TypeDef or TypeRef token. The name of the instruction is
somewhat misleading, for it deals with value type instapces rather
than objects (class instances). The ILAsm notation requires full spec
ification of the value type so that it can be resolved to the token. For
example:

ldobj [.module other.dll]Foo.Bar

• stobj <token> (Ox81) Pop the value type value-no, that's not a
typo-from the stack, pop the managed pointer to the value type
instance from the stack, and store the value type value in the
instance. <token> indicates the value type and must be a valid Type
Def or TypeRef token. The ILAsm notation is similar to that used for
ldobj.

• ldstr <token> (Ox72) Load a string reference on the stack.
<token> is a token of a user-defined string, whose RID portion is
actually an offset in the #US blob stream. This instruction performs a
lot of work: by the token, the Unicode string is retrieved from the
#US stream, an instance of the [mscorlib}System.String class is created
on the base of the retrieved string, and the object reference is pushed
on the stack. In ILAsm, the string is specified explicitly either as a
composite quoted string:

ldstr "Hello"+" World!"

or as a byte array:

ldstr bytearray(Al 00 A2 00 A3 00 A4 00 A5 00 00 00)

In the first case, at compile time the composite quoted string is
converted to Unicode before being stored in the #US stream. In the
second case, the byte array is stored "as is" without conversion. It
can be padded with one 0 byte to make the byte count even. Storing
a string in the #US stream gives the compiler the string token, which
it puts into the IL stream.

• cpobj <token> (Ox70) Copy the value of one value type instance
to another instance. This instruction pops the source and the target
instance pointers and pushes nothing on the stack. Both instances

Chapter 10 IL Instructions 263

must be of the value type specified by <token>, either a TypeDej or
a TypeReftoken. The ILAsm notation for this instruction is similar to
that used for ldobj or stobj.

• newobj <token> (Ox73) Allocate memory for a new instance of a
class-not a value type-and call the instance constructor method
specified by <token>. This instruction pushes the object reference on
the stack. <token> must be a valid MethodDef or MemberRef token.
The instruction pops from the stack all the arguments explicitly spec
ified in the constructor signature but does not pop the instance
pointer. (No instance exists yet; it's being created.) The newobj
instruction is also used for array creation:

newobj instance void [mscorlib]System.Object::.ctor(
newobj instance void int32[0 ... ,0 ... J::.ctor(int32, int32)

An array conmstructor takes as many parameters as there are
undefined lower bounds and sizes of the array being created. (And
hence the same number of integer values must be loaded on the
stack before newobj is invoked.) In the example just shown, both
lower bounds of the two-dimensional array are specified in the array
type, so we need to specify only two sizes.

• initobj <token> (OxFE Ox15) Initialize the value type instance.
This instruction takes an instance pointer-a managed pointer to a
value type instance-from the stack. <token> specifies the value type
and must be a valid TypeDef or TypeRef token. The initobj instruction
zeroes all the fields of the value type instance, so if you need more
sophisticated initialization, you might want to define .ctor or .cctor
and call it instead.

• castclass <token> (Ox74) Cast a class instance to the class speci
fied by <token>. This instruction takes the object reference to the
original instance from the stack and pushes the object reference to
the cast instance on the stack. <token> must be a valid TypeDej or
TypeRej token.

• isinst <token> (Ox75) Check to see whether the object reference
on the stack is an instance of the class specified by <token>. <token>
must be a valid TypeDej or TypeRej token. This instruction pops the
object reference from the stack and pushes the result on the stack. If
the check succeeds, the result is an object reference, as if caste/ass
had been invoked; otherwise, it is a null reference, as if ldnull had
been invoked. The check succeeds under the following conditions:

If <token> indicates a class and the object reference on the
stack is an instance of this class or of any class derived from it

264 Part IV Inside the Execution Engine

0 If <token> indicates an interface and the object reference is an
instance of the class implementing this interface

If <token> indicates a value type and the object reference is a
boxed instance of this value type

• box <token> (Ox8C) Convert a value type instance to an object
reference. <token> specifies the value type being converted and
must be a valid TypeDef or TypeRef token. This instruction pops the
value type instance from the stack, creates a new instance of the type
as an object, and pushes the object reference to this instance on the
stack.

• unbox <token> (Ox79) Revert a boxed value type instance from
the object form to its value type form. <token> specifies the value.
type being converted and must be a valid TypeDef or TypeRef token.
This instruction takes an object reference from the stack and puts a
managed pointer to the value type instance on the stack. .

• mkrefany <token> (OxC6) Pop a pointer-either managed or
unmanaged-from the stack and convert it to a typed reference
(typedrej). The typed reference is an opaque handle that carries both
type information and an instance pointer. The type of the created
typedref is specified by <token>, which must be a valid TypeDef or
TypeRef token. Typically, this instruction is used to create the type
dref values to be passed as arguments to methods that expect type
dref parameters. These methods split the typed references into type
information and instance pointers using the refanytype and refany
val instructions.

• refanytype (OxFE OxlD) Pop a typed reference from the stack,
retrieve the type information, and push the [internal] type [handle] on
the stack. This instruction has no parameters.

• refanyval (OxC2) Pop a typed reference from the stack, retrieve
the instance pointer (&or native int), and push it on the stack. This
instruction has no parameters.

• ldtoken <token> (OxDO) Convert <token> to an internal metadata
handle to be used in calls to the [mscorlib}System.Rejlection methods
in the .NET Framework class library. The admissible token types are
MethodDef, MemberRef, TypeDef, TypeRef, and FieldDej The handle
pushed on the stack is an instance of one of the following value
types: [mscorlib}System.RuntimeMethodHandle, [mscorlib}Sys
tem.RuntimeTypeHandle, or [mscorlib}System.RuntimeFieldHandle.

The ILAsm notation requires full specification for classes (value
types), methods, and fields used in ldtoken. This instruction is the

Chapter 10 IL Instructions 265

only IL instruction that is not specific to methods only or fields only,
and thus the keyword method or field must be used:

ldtoken [mscorlib]System.String
ldtoken method instance void [mscorlib]System.Object: :.ctor(

)

ldtoken field int32 Foo.Bar::ff

• sizeof <token> (OxFE OxlC) Load the size in bytes of the value
type specified by <token> on the stack. <token> must be a valid
TypeDef or TypeRef token.

• throw (Ox7A) Pop the object reference from the stack and throw
it as a managed exception. See Chapter 11 for details about struc
tured exception handling.

• rethrow (OxFE OxlA) Throw the caught exception again. This
instruction can be used exclusively within exception handlers.

Vector Instructions
Arrays and vectors are the only true generics implemented in the first release of
the common language runtime. Vectors are "elementary" arrays, with one
dimension and a zero lower bound. In signatures, vectors are represented by
type ELEMENT_TYPE_SZARRAY, whereas "true" arrays are represented by
ELEMENT_TYPE_ARRAY We can, of course, declare a single-dimensional, zero
lower-bound array (whose ILAsm notation is <type>[O. ..]), which will be a true
array, as opposed to a vector (whose ILAsm notation is <type>[]).

The IL instruction set defines specific instructions dealing with vectors but
not with arrays. To handle array elements and arrays themselves, you need to
call the methods of the .NET Framework class [mscorlib}System.Array, from
which all arrays are derived.

Vector Creation
In order to work with a vector, it is necessary to create one. The IL instruction
set contains special instructions for vector creation and vector length querying:

• newarr <token> (Ox8D) Create a vector. <token> specifies the
type of vector elements and must be a valid TypeDef, TypeRef, or
TypeSpec token. This instruction pops the number of vector elements
(native int) from the stack and pushes an object reference to the ere-

266 Part IV Inside the Execution Engine

ated vector on the stack. If the operation fails, an OutOjMemory
exception is thrown. If the number of elements happens to be nega
tive, an Overflow exception is thrown. The elements of the newly
created vector are zero-initialized. Because newarr takes a token as
a parameter, in ILAsm the full class names must be used for elemen
tary types rather than the respective keywords. For example:

.locals init (1nt32[J arr)
ldc.14 123
newarr [mscorlib]System.Int32
stloc.0

For specific details about array creation, see the description of the
newobj instruction.

• ldlen (Ox8E) Get the element count of a vector. This instruction
takes an object reference to the vector instance from the stack and
puts the element count (native int) on the stack.

Element Address Loading
You can obtain the managed pointer to a single vector element by using the fol
lowing instruction:

• ldelema <token> (Ox8F) Get the address (a managed pointer) of
a vector element. <token> specifies the type of the element and must
be a valid TypeDef, TypeRef, or TypeSpec token. This instruction pops
the element index (native int) and the vector reference (an object
reference) from the stack and pushes the managed pointer to the ele
ment on the stack. To get an address of an array element, the Sys
tem.Array class provides the Address method.

Element Loading
Element loading instructions load a vector element of an elementary type on
the stack. All of these instructions take the element index (native int) and the
vector reference (an object reference) from the stack and put the value of the
element on the stack. If the vector reference is null, the instructions throw a
Nul!Reference exception. If the index is negative or greater than or equal to the
element count of the vector, an IndexOutO.fRange exception is thrown. If the
type of the vector element does not correspond to the type of the instruction, a
TypeMismatch exception is thrown.

• ldelem.il (Ox90) Load a vector element of type int8.

Chapter 10 IL Instructions 267

• ldelem.ul (Ox91) Load a vector element of type unsigned int8.

• ldelem.i2 (Ox92) Load a vector element of type int16.

• ldelem.u2 (Ox93) Load a vector element of type unsigned int16.

• ldelem.i4 (Ox94) Load a vector element of type int32.

• ldelem.u4 (Ox95) Load a vector element of type unsigned int32.

• ldelem.i8 (ldelem.u8) (Ox96) Load a vector element of type
int64.

• ldelem.i (Ox97) Load a vector element of type native int.

• ldelem.r4 (Ox98) Load a vector element of typejloat32.

• ldelem. r8 (Ox99) Load a vector element of type jloat64.

• ldelem.ref(Ox9A) Load a vector element of object reference type.

Element Storing
Element storing instructions store a value from the stack in a vector element of
an elementary.type. All of these instructions take the value to be stored, the ele
ment index (native int), and the vector reference (an object reference) from the
stack and put nothing on the stack. Generally, the instructions can throw the
same exceptions as the ldelem. *instructions described in the preceding section.

• stelem.i (Ox9B) Store a value in a vector element of type native
int.

• stelem.il (Ox9C) Store a value in a vector element of type int8.

• stelem.i2 (Ox9D) Store a value in a vector element of type int16.

• stelem.i4 (Ox9E) Store a value in a vector element of type int32.

• stelem.i8 (Ox9F) Store a value in a vector element of type int64.

• stelem.r4(0xAO) Store a value in a vector element oftypefloat32.

• stelem.r8(0xAl) Store a value in a vector element of typefloat64.

• stelem.ref(OxA2) Store a value in a vector element of object ref
erence type. This instruction involves casting of the object on the
stack to the type of the vector element, so an InvalidCast exception
can be thrown.

Special stelem. * instructions for unsigned integer types are missing for an
obvious reason: the stelem.i* instructions are equally applicable to signed and
unsigned integer types.

268 Part IV Inside the Execution Engine

Code Verifiability
The verification algorithm associates IL instructions with valid evaluation stack
states and, first of all, with the number of stack slots occupied and available at
each moment. Stack overflows and underflows render the code not only unver
ifiable but invalid as well. The verification algorithm also presumes all local
variables are zero-initialized before the method execution begins. As a result,
the .locals directive-at least one, if several of these are used throughout the
method-must have the init clause in order for the method to be verifiable.

The verification algorithm simulates all possible control flow paths and
branchings, checking to see whether legal stack states correspond to every
reachable instruction. It is impossible, of course, to predict the actual values
stored on the evaluation stack at every moment, but the number of stack slots
occupied and the types of the slots can be assessed.

As mentioned, the evaluation stack type system is coarser than the meta
data type system used for field, argument, and local variable types. Hence, the
type validity of instructions transferring data between the stack and other typed
memory categories depends on the type conversion performed during such
transfers. Table 10-5 lists type conversions between different type systems.

Table 10-s Evaluation Stack Type Conversions

Metadata Type

[unsigned} int8, boot

[unsigned} int16, char

[unsigned} int32

[unsigned} int64

native [unsigned} int, function
pointer

float32

float64

Value type

Object

Stack Type

int32

int32

int32

int64

native int

Float

Float

Same type (see substitution
rules in this section)

Same type (see substitution
rules in this section)

Managed Pointer to
Type

int8&

int16&

int32&

int64&

native int&

float32&

float64&

Same type&

Same type&

According to verification rules, type A can be replaced with type B in the
following cases only:

Chapter 10 IL Instructions 269

• If A is a class and B is the same class or any class derived from A

• If A an interface and B is a class implementing this interface

• If both A and B are interfaces and the implementation of B requires
the implementation of A

• If A is a class or an interface and B is a null reference

• If both A and B are vectors and their element types can be respec
tively substituted

• If both A and B are arrays of the same rank and their element types
can be respectively substituted

• If both A and B are function pointers and the signatures of their
respective methods match

These substitution rules set the limits of "type leeway" allowed for the IL
code to remain verifiable. As the verification algorithm proceeds from one
instruction to another along every possible path, it checks the simulated stack
types against the types expected by the next instruction. Failure to comply with
the substitution rules results in verification failure and possibly indicates invalid
IL code.

A few verification rules, rather heuristic than formal, are based on the
question, "Is it possible in principle to do something unpredictable using this
construct?":

• Any code containing embedded native code is unverifiable.

• Any code using unmanaged pointers is unverifiable.

• Any code containing calls to methods that return managed pointers
is unverifiable. The reason: theoretically, the called method might
return a managed pointer to one of its local variables or another
"perishable" item.

• An instance constructor of a class must call the instance constructor
of the base class. The reason: until the base class .ctor is called, the
instance pointer (this) is considered uninitialized; and until this is ini
tialized, no instance methods should be called.

• When a delegate is being instantiated-its constructor takes a func
tion pointer as the last argument-the newobj instruction must be
immediately preceded by the ldftn or ldvirtftn instruction, which
loads the function pointer. If anything appears between these two
instructions, the code becomes unverifiable.

A great many additional rules regulate structured exception handling, but
the place to discuss them is the next chapter.

Structured Exception
Handling

SEH Clause Internal Representation 272

Types of SEH Clauses 27 4

Label Form of SEH Clause Declaration 275

Scope Form of SEH Clause Declaration 278

Processing the Exceptions 281

Exception Types 283

SEH Clause Structuring Rules 287

Usually the exception handling model of a programming language is consid
ered the domain of that particular language's runtime. Under the hood, each
language has its own way of detecting exceptions and locating an appropriate
exception handler. Some languages perform exception handling completely
within the language runtime, whereas others rely on the structured exception
handling (SEH) mechanism provided by the operating system-which in our
case is Win32.

In the world of managed code, exception handling is a fundamental fea
ture of the common language runtime execution engine. The execution
engine is fully capable of handling exceptions without regard to language,
allowing exceptions to be raised in one language and caught in another. At
that, the runtime does not dictate any particular syntax for handling excep-

271

272 Part IV Inside the Execution Engine

tions. The exception mechanism is language-neutral in that it is equally effi
cient for all languages.

No special metadata is captured for exceptions other than the metadata for
the exception classes themselves. No association exists between a method of a
class and the exceptions that the method might throw. Any method is permitted
to throw any exception at any time.

Although we talk about managed exceptions thrown and caught within
managed code, a common scenario involves a mix of both managed and
unmanaged code. Execution threads routinely traverse managed and unman
aged blocks of code through the use of the common language runtime's plat
form invocation mechanism (P!Invoke) and other interoperability mechanisms.
(See Chapter 15, "Managed and Unmanaged Code Interoperation.") Conse
quently, during execution, exceptions can be thrown or caught in either man
aged or unmanaged code.

The runtime exception handling mechanism integrates seamlessly with the
Win32 SEH mechanism so that exceptions can be thrown and caught within
and between the two exception handling systems.

SEH Clause Internal Representation
Structured exception handling tables are located immediately after a method's
IL code, with the beginning of the table aligned on a double word boundary. It
would be more accurate to say that "additional sections" are located after the
method IL code, but the first release of the common language runtime allows
only one kind of additional section-the exception handling section.

This additional section begins with the section header, which contains two
entries, Kind and DataSize. In a small header, DataSize is represented by 1
byte, whereas in a fat header, DataSize is 3 bytes long. A Kind entry can con
tain the following binary flags:

• Reserved (OxOO)

• EHTable (OxOl) The section contains an exception handling
table. This bit must be set.

• OptILTable (Ox02) Not used in the first release of the runtime.
This bit must not be set.

• FatFormat (Ox40) The section header has a fat format-that is,
DataSize is represented by 3 bytes.

• MoreSects (Ox80) More sections follow this one.

Chapter 11 Structured Exception Handling 273

The section header-padded with 2 bytes if small-is followed by a
sequence of exception handling (EH) clauses, which can also have small or fat
format. Each EH clause describes a single triad made up of a guarded block, an
exception identification, and an exception handler. The entries of small and fat
EH clauses have the same names and meanings but different sizes, as shown in
Table 11-1.

Table 11-1 EH Clause Entries

EH Clause Entry
Size in Small
Clause
(bytes)

Size in Fat
Clause
(bytes)

Description

Flags 2

TryO.ffset 2

Try Length 1

4

4

4

Binary flags specifying the type
of the EH clause, which is the
type of the exception identifi
cation method.

Offset, in bytes, of the begin
ning of the guarded code block
from the beginning of the
method IL code. The guarded
block can begin only at code
points where the evaluation
stack is empty.

Length, in bytes, of the
guarded block.

HandlerQ[fset 2 4 Offset of the exception handler
block.

Handler Length 1 4 Length of the exception han
dler block.

ClassToken/FilterO.ff 4 4 Exception type token or offset
of the exception filtering block,
depending on the type of the
EH clause.

set

Branching into or out of guarded blocks and handler blocks is illegal. A
guarded block must be entered "through the top"-that is, through the instruc
tion located at TryO.ffset-and handler blocks are entered only when they are
engaged by the exception handling subsystem of the execution engine. To exit
guarded and handler blocks, you must use the instruction leave (or leave.s).
You might recall that in Chapter 2, "Enhancing the Code," this principle was for
mulated as "leave only by leave." Another way to leave any block is to throw an
exception using the throw or rethrow instruction.

274 Part IV Inside the Execution Engine

Types of SEH Clauses
Exception handling clauses are classified by the algorithm of the handler
engagement. Four mutually exclusive EH clause types are available, and
because of that the Flags entry must hold one of the following values:

• OxOOOO The handler must be engaged if the type of the exception
object matches the type identified by the token specified in the
ClassToken entry or any of its descendants. Theoretically, any object
can be thrown as an exception, but it's strongly recommended that
all exception types be derived from the [mscorlib}System.Exception
class. This is because throughout Microsoft .NET Framework classes
the construct catch [mscorlib}System.Exception is used in the sense of
"catch any exception"-it is an analog of catch(. .) in C++. In other
words, [mscorlib}System.Exception is presumed to be the ultimate
base class for all exceptions. This type of EH clause is called a catch
type.

• OxOOOl A dedicated block of the IL code, called filter, will process
the exception and define whether the handler should be engaged.
The offset of the filter block is specified in the FilterO.ffset entry.
Since we cannot specify the filter block length-the EH clause struc
ture contains no entry for it-a positioning limitation is associated
with the filter block: the respective handler block must immediately
follow the filter block, allowing the length of the filter block to be
inferred from the offset of the handler. The filter block must end with
the end.filter instruction, described in Chapter 10, "IL Instructions." At
the moment endfilter is invoked, the evaluation stack must hold a
single int32 value, equal to 1 if the handler is to be engaged and
equal to 0 otherwise. This EH clause type is called a filter type.
Branching into or out of the filter block is illegal.

• Ox0002 The handler will be engaged whether or not an exception
has occurred. The EH clause entry ClassToken/FilterO.ffset is ignored.
This EH clause type is called a finally type. The finally handlers are
not meant to process an exception but rather to perform any cleanup
that might be needed when leaving the guarded block. The finally
handlers must end with the end.finally instruction. If no exception
has occurred within the guarded block, the finally handler is exe
cuted at the moment of leaving that block. If an exception has been
thrown within the guarded block, the finally handler is executed
after any preceding handler is executed or, if no preceding handler
was engaged, before any following handler is executed. If no catch

Chapter 11 Structured Exception Handling 275

or filter handlers are engaged-that is, the exception is uncaught
the finally handler has no chance to be engaged either, because it
does not catch exceptions by itself.

Figure 11-1 illustrates this process. If an exception of type A is
thrown within the guarded block, it is caught and processed by the
first handler (catch A), and the.finally handler is engaged when the
first handler invokes the leave instruction. If an exception of type B
is thrown, it is caught by the third handler (catch B), and the finally
handler is executed before the third handler. If no exception is
thrown within the guarded block, the finally handler is engaged
when the guarded block invokes the leave instruction.

• Ox0004 The handler will be engaged if any exception occurs. This
type of EH clause is called a fault type. A.fault handler is similar to
a finally handler in all aspects except one: the fault handler is not
engaged if no exception has been thrown within the guarded block
and everything is nice and quiet. The fault handler must also end
with the endfinally instruction, which for this specific purpose has
been given the synonym end:f ault.

Label Form of SEH Clause Declaration
The most generic form of IL assembly language (ILAsm) notation of an EH
clause is as follows:

.try <label> to <label> <EH_type_specific> handler <label> to <label>

where <EH_~ype_specific> ::=

catch <class_ref>
filter <label> I
finally I
fault

Take a look at this example:

BeginTry:

leave KeepGoing
BeginHandler:

leave KeepGoing
KeepGoing:

ret
.try BeginTry to BeginHandler catch [mscorlib]System.Exception

handler BeginHandler to KeepGoing

276 Part IV Inside the Execution Engine

Guarded Block 3

Guarded Block 1

leave L1

I ~~~--~~~~~

1 -~L1:

L2:

L3:

Figure 11-1 Engagement of the finally exception handler.

In the final lines of the example, the code .try <label> to <label> defines
the guarded block, and handler <label> to <label> defines the handler block. In
both cases, the second <label> is exclusive, pointing at the first instruction after
the respective block. ILAsm imposes a limitation on the positioning of the EH
clause declaration directives: all labels used in the directives must have already
been defined. Thus, the best place for EH clause declarations in the label form
is at the end of the method scope.

In the case just presented, the handler block immediately follows the
guarded block, but we could put the handler block anywhere within the
method, provided it does not overlap with the guarded block or other handlers:

br AfterHandler // Can't enter the handler block on our own
BeginHandler:

leave KeepGoing
AfterHandler:

BeginTry:

leave KeepGoing
KeepGoing:

ret

Chapter 11 Structured Exception Handling 277

.try BeginTry to KeepGoing catch [mscorlib]System.Exception
handler BeginHandler to AfterHandler

A single guarded block can have several handlers:

br AfterHandler2 // Can't enter the handler block(s) on our own
BeginHandlerl:

leave KeepGoing
AfterHandlerl:

BeginHandler2:

leave KeepGoing
AfterHandler2:

BeginTry:

leave KeepGoing
KeepGoing:

ret
.try BeginTry to KeepGoing

catch [mscorlib]System.StackOverflowException
handler BeginHandlerl to AfterHandlerl

.try BeginTry to KeepGoing catch [mscorlib]System.Exception
handler BeginHandler2 to AfterHandler2

In the case of multiple handlers-catch or filter, but not finally or fault
the guarded block declaration need not be repeated:

.try BeginTry to KeepGoing
catch [mscorlib]System.StackOverflowException

handler BeginHandlerl to AfterHandlerl
catch [mscorlib]System.Exception

handler BeginHandler2 to AfterHandler2

The lexical order of handlers belonging to the same guarded block is the
order in which the ILAsm compiler emits the EH clauses, and hence is the same
order in which the execution engine of the runtime processes these clauses. We
must be careful about ordering the handlers. For instance, if we swap the han
dlers in the preceding example, the handler for [mscorlib]System.Exception will

278 Part IV Inside the Execution Engine

always work and the handler for [mscorlib}System.StackOverjlowException will
never work. This is because all exceptions are derived, eventually, from [mscor
lib}System.Exception, and hence all exceptions are caught by the first handler,
leaving the other handlers unemployed.

The finally and fault handlers cannot peacefully coexist with other han
dlers, so if a guarded block has a finally or fault handler, it cannot have any
thing else. To combine a finally or fault handler with other handlers, we need
to nest the guarded and handler blocks within other guarded blocks, as shown
in Figure 11-1, so that each finally or fault handler has its own personal
guarded block.

Scope Form of SEH Clause Declaration
The label form of the EH clause declaration is universal, ubiquitous, and close
to the actual representation of the EH clauses in the EH table. The only quality
the label form lacks is convenience. In view of that, ILAsm offers an alternative
form of EH clause description: a scope form. You've already encountered the
scope form in Chapter 2, which discussed protecting the code against possible
surprises in the unmanaged code being invoked. Just to remind you, here's
what the protected part of the method (from the sample file Simple2.il on the
companion CD) looks like:

.try {

}

II Guarded block begins
call string [mscorlib]System.Console::Readline()
II pop
II ldnull
ldstr "%d"
ldsflda int32 Odd.or.Even: :val
call vararg int32 sscanf(string,string, ... ,int32*)
stloc.0
leave.s DidntBlowUp
II Guarded block ends

catch [mscorlib]System.Exception
{ II Exception handler begins

pop
ldstr "KABOOM!"
call void [mscorlib]System.Console::Writeline(string)
leave.s Return

} II Exception handler ends
DidntBlowUp:

The scope form can be used only for a limited subset of all possible EH
clause configurations: the handler blocks must immediately follow the previous

Chapter 11 Structured Exception Handling 279

handler block or the guarded block. If the EH clause configuration is different,
we must resort to the label form or a mixed form:

br AfterHandler
HandlerBegins:

II The exception handler code

leave KeepGoi ng
AfterHandler:

. try {
II Guarded code

leave KeepGoing
}

catch [mscorlib]System.Exception
handler HandlerBegins to AfterHandler

KeepGoing:

The IL Disassembler by default outputs the EH clauses in the scope
form-at least those clauses that can be represented in this form. However, we
have the option to suppress the scope form and output all EH clauses in their
generic label form. But let's suppose for the sake of convenience that we can
shape the code in such a way that the contiguity condition is satisfied, allowing
us to use the scope form.

A single guarded block with multiple handlers in scope form will look
like this:

.try {
II Guarded code

leave KeepGoing
}

catch [mscorlib]System.StackOverflowException {
II The exception handler #1 code

leave KeepGoing

catch [mscorlib]System.Exception {
II The exception handler #2 code

leave KeepGoing
}

KeepGoing:

280 Part IV Inside the Execution Engine

Much more readable, isn't it? The nested EH configuration shown earlier
in Figure 11-1 is easily understandable when written in scope form:

. try {
.try {

.try {
II Guarded code

1 eave L1
}

catch A {
II This code works when exception A is thrown

leave L2
}

} II No need for leave here!
finally {

II This code works in any case

endfinally
}

} II No need for leave here either!
catch B {

II This code works when exception B is thrown in guarded code

leave L3

The filter EH clauses in scope form are subject to the same limitation: the
handler block must immediately follow the guarded block. But because in a.fil
ter clause the handler block includes first the filter block and then, immediately
following it, the actual handler, the scope form of a filter clause looks like this:

. try {
II Guarded code

leave KeepGoing

filter {

} {

II Here we decide whether we should invoke the actual handler

ldc.i4.1 II OK, let's invoke the handler
endfilter

II Actual handler code

leave KeepGoing

Chapter 11 Structured Exception Handling 281

And, of course, we can easily switch between scope form and label form
within a single EH clause declaration. The general ILAsm syntax for an EH
clause declaration is as follows:

<EH_clause> .try <guarded_block>
<EH_type_specific> <handler_block>

Where
<guarded_block> <label> to <label> I <scope>
<EH_type_specific> ::=catch <class_ref> I

filter <label> I filter <scope> I
finally I
fault

<handler_block> : := handler <label> to <label> I <scope>

The nonterminals <label> and <class_ref> must be familiar by now, and the
meaning of <scope> is obvious: "code enclosed in curly braces."

Processing the Exceptions
The execution engine of the runtime processes an exception in two passes. The
first pass determines which, if any, of the managed handlers will process the
exception. Starting at the top of the EH table for the current method frame, the
execution engine compares the address where the exception occurred to the
TryOJJset and TryLength entries of each EH clause. If it finds that the exception
happened in a guarded block, the execution engine checks to see whether the
handler specified in this clause will process the exception. (The "rules of
engagement" for catch and filter handlers were discussed in previous sections.)
If this particular handler can't be engaged-for example, the wrong type of
exception has been thrown-the execution engine continues traversing the EH
table in search of other clauses that have guarded blocks covering the excep
tion locus. The finally and fault handlers are ignored during the first pass.

If none of the clauses in the EH table for the current method are suited to
handle the exception, the execution engine steps up the call stack and starts
checking the exception against EH tables of the method that called the method
where the exception occurred. In these checks, the call site address serves as
the exception locus. This process continues from method frame to method
frame up the call stack, until the execution engine finds a handler to be
engaged or until it exhausts the call stack. The latter case is the end of the story:
the execution engine cannot continue with an unhandled exception on its con
science, and the runtime either aborts the application execution or offers the
user a choice between aborting the execution and invoking the debugger,
depending on the runtime configuration.

If a suitable handler is found, the execution engine swings into the second
pass. The execution engine again walks the EH tables it worked with during the
first pass and invokes all relevant finally and fault handlers. Each of these han
dlers ends with the endfinally instruction (or endfault, its synonym), signaling

282 Part IV Inside the Execution Engine

the execution engine that the handler has finished and that it can proceed
browsing the EH tables. Once the execution engine reaches the catch or filter
handler it found on its first pass, it engages the actual handler.

What happens to the method's evaluation stack? When a guarded block is
exited in any way, the evaluation stack is discarded. If the guarded block is
exited peacefully, without raising an exception, the leave instruction discards
the stack; otherwise, the evaluation stack is discarded the moment the excep
tion is thrown.

During the first pass, the execution engine puts the exception object on
the evaluation stack every time it invokes a filter block. The filter block pops
the exception object from the stack and analyzes it, deciding whether this is a
job for its actual handler block. The decision, in the form of int32 having the
value 1 or 0, is the only thing that must be on the evaluation stack when the
endfilter instruction is reached; otherwise, the IL verification will fail. The end
filter instruction takes this value from the stack and passes it to the execution
engine.

During the second pass, the finally and fault handlers are invoked with an
empty evaluation stack. Because these handlers do nothing about the exception
itself and work only with method arguments and local variables, the execution
engine doesn't bother providing the exception object. If anything is left on the
evaluation stack by the time the endfinally (or endfault) instruction is reached,
it is discarded by endfinally (or endfault).

When the actual handler is invoked, the execution engine puts the excep
tion object on the evaluation stack. The handler pops this object from the stack
and handles it to the best of its abilities. When the handler is exited by using the
leave instruction, the evaluation stack is discarded.

Table 11-2 summarizes the stack evolutions.

Table 11-2 Changes in the Evaluation Stack

When the block is entered, the stack. .. is exited, the stack. ..

try

filter

handler

finally, fault

must be empty

holds the exception object

holds the exception object

is empty

is discarded

must hold a single int32
value, equal to 1 or 0, con
sumed by endfilter

is discarded

is discarded

Two IL instructions are used for raising an exception explicitly: throw and
rethrow. The throw instruction takes the exception object (ObjectRej) from the

Chapter 11 Structured Exception Handling 283

stack and raises the exception. This instruction can be used anywhere, within
or outside any EH block.

The rethrow instruction can be used within actual handlers only (not
within the filter block), and it does not work with the evaluation stack. This
instruction signals the execution engine that the handler that was supposed to
take care of the caught exception has for some reason changed its mind and
that the exception should therefore be offered to the higher-level EH clauses.
The only blocks where the words "caught exception" mean something are the
actual handler block and the filter block, but invoking rethrow within a filter
block, though theoretically possible, is illegal. It is legal to throw the caught
exception from the filter block, but it doesn't make much sense to do so: the
effect is the same as if the filter simply refused to handle the exception, by load
ing 0 on the stack and invoking endfilter.

Rethrowing an exception is not the same as throwing the caught excep
tion, which we have on the evaluation stack upon entering an actual handler.
The rethrow instruction preserves the call stack trace of the original exception
so that the exception can be tracked down to its point of origin. The throw
instruction starts the call stack trace anew, giving us no way to determine where
the original exception came from.

Exception Types
Chapter 10 mentioned some of the exception types that can be thrown during
the execution of IL instructions. Earlier chapters mentioned some of the excep
tions thrown by the loader and the JIT (just-in-time) compiler. Now it's time to
review all these exceptions in an orderly manner.

All managed exceptions defined in the .NET Framework classes are
descendants of the [mscorlib}System.Exception class. This base exception type,
however, is never thrown by the common language runtime. In the following
sections, I've listed the exceptions the runtime does throw, classifying them by
major runtime subsystems. Enjoying the monotonous repetition no more than
you do, I've omitted the [mscorlib}System. part of the names, common to all
exception types. As you can see, many of the exception type names are self
explanatory.

Loader Exceptions
The loader represents the first line of defense against erroneous applications,
and the exceptions it throws are related to the file presence and integrity.

• AppDomainUnloadedException

• CannotUnloadAppDomainException

284 Part IV Inside the Execution Engine

• BadlmageFormatException Corrupt file headers or segments
that belong in read-only sections (such as the runtime header, meta
data, and IL code) are located in writeable sections of the PE file.

• ArgumentException This exception is also thrown by the JIT
compiler and the interoperability services.

• Security.Cryptography. CryptographicException

• FileLoadException

• MissingFieldException

• MissingMethodException

• TypeLoadException This exception, which is most frequently
thrown by the loader, indicates that the type metadata is illegal.

• UnauthorizedAccessException A user application is attempting
to directly manipulate the system assembly Mscorlib.dll.

• OutO.fMemoryException This exception, which is also thrown
by the execution engine, indicates memory allocation failure.

JIT Compiler Exceptions
The JIT compiler throws only two exceptions. The second one can be thrown
only when the security services are engaged.

• InvalidProgramException This exception, which is also thrown
by the execution engine, indicates an error in IL code.

• VerificationException This exception, which is also thrown by
the execution engine, indicates that IL code verification has failed.

Execution Engine Exceptions
The execution engine throws a wide variety of exceptions, most of them related
to the operations on the evaluation stack. A few exceptions are thrown by the
thread control subsystem of the engine.

• ArithmeticException

• ArgumentOutOjR.angeException

• ArrayTypeMismatchException This exception is also thrown by
the interoperability services .

. • DivideByZeroException

• DuplicateWaitObjectException

Chapter 11 Structured Exception Handling 285

• ExecutionEngineException This is the generic exception, indi
cating that some sequence of IL instructions has brought the execu
tion engine into a state of complete perplexity-as a rule, by
corrupting the memory. Verifiable code cannot corrupt the memory
and hence does not raise exceptions of this type.

• FieldAccessException This exception indicates, for example, an
attempt to load from or store to a private field of another class.

• FormatException

• IndexOutO.fRangeException

• InvalidCastException

• InvalidOperationException

• MethodAccessException This exception indicates an attempt to
call a method to which the caller does not have access-for example,
a private method of another class.

• NotSupportedException

• NullReferenceException This exception indicates an attempt to
dereference a null pointer (a managed or unmanaged pointer, or an
object reference).

• OverflowException

• RankException This exception is thrown when a method specific
to an array is being called on a vector instance.

• RemotingException

• Security.SecurityException

• StackOverjlowException

• Threading.SynchronizationLockException This exception is
thrown when an application tries to manipulate or release a lock it
has not acquired-for example, by calling the Wait, Pulse, or Exit
method before calling the Enter method of the [mscorlib}Sys
tem. Threading .Monitor class.

• Threading. ThreadAbortException

• Threading. ThreadlnterruptedException

• Threading. ThreadStateException

• Threading. ThreadStopException

• TypelnitializationException This exception is thrown when a
type-a class or a value type-failed to initialize.

286 Part IV Inside the Execution Engine

Interoperability Exceptions
The following exceptions are thrown by the interoperability services of the
common language runtime, which are responsible for managed and unman
aged code interoperation:

• DllNotFoundException This exception is thrown when an
unmanaged DLL specified as a location of the unmanaged method
being called cannot be found.

• ApplicationException

• EntryPointNotFoundException

• InvalidComObjectException

• Runtime.lnteropServices.InvalidOleVariantTypeException

• MarshalDirectiveException This exception is thrown when data
cannot be marshaled between managed and unmanaged code in the
specified way.

• Runtime.InteropServices.SafeArrayRankMismatchException

• Runtime.InteropServices.SafeArrayTypeMismatchException

• Runtime.InieropServices.COMException

• Runtime.InteropServices.SEHException This is the generic man
aged exception type for unmanaged exceptions.

Subclassing the Exceptions
In addition to the plethora of exception types already defined in the .NET
Framework classes, you can always devise your own types tailored to your
needs. The best way to do this is to derive your exception types from the "stan
dard" types listed in the preceding sections.

The following exception types are sealed and can't be subclassed. Again,
I've omitted the [mscorlib}System. portion of the names.

• lnvalidProgramException

• TypelnitializationException

• Threading.ThreadAbortException

• StackOver:flowException

Chapter 11 Structured Exception Handling 287

As mentioned earlier, I must warn you against
devising your own exception types not derived from {mscor
lib]System.Exception or some other exception type of the
.NET Framework classes.

Unmanaged Exception Mapping
When an unmanaged Win32 exception occurs within a native code segment,
the execution engine maps it to a managed exception that is thrown in its stead.
The different types of unmanaged exceptions, identified by their status code,
are mapped to the managed exceptions as described in Table 11-3.

Table 11-3 Mapping Between the Managed and Unmanaged Exceptions

Unmanaged Exception Status Code

STATUS_FLOAT_INEXACT_RESULT

STATUS_FLOAT_INVALID_OPERATION

STATUS_FLOAT_STACK_CHECK

STATUS_FLOAT_UNDERFLOW

STATUS_FLOAT_ OVERFLOW

STATUS_INTEGER_OVERFLOW

STATUS_FLOAT_DIVIDE_BY_ZERO

STATUS_INTEGER_DIVIDE_BY_ZERO

STATUS_FLOAT_DENORMAL_OPERAND

STATUS_ACCESS_ VIOLATION

STATUS_ARRAY_BOUNDS_EXCEEDED

STATUS_NO_MEMORY

STATUS_STACK_OVERFLOW

All other status codes

SEH Clause Structuring Rules

Mapped to Managed Exception

ArithmeticException

ArithmeticException

ArithmeticException

ArithmeticException

OverffowException

Overflow Exception

DivideByZeroE.xception

DivideByZeroException

FormatException

Nul!ReferenceException

IndexOutq{RangeE.xception

OutO.fMemoryException

StackOverflowException

Runtime.InteropServices.SEHException

The rules for structuring EH clauses within a method are neither numerous nor
overly complex:

All the blocks-try, filter, handler, finally, and fault-of each EH clause
must be fully contained within the method code. No block can protrude from
the method.

288 Part IV Inside the Execution Engine

Blocks belonging to the same EH clause or different EH clauses can't par
tially overlap. A block either is fully contained within another block or is com
pletely outside it. If one guarded block (A) is contained within another guarded
block (B) but is not equal to it, all handlers assigned to A must also be fully con
tained within B.

A handler block of an EH clause can't be contained within a guarded
block of the same clause, and vice versa. Neither can a handler block be con
tained in another handler block that is assigned to the same guarded block.

A filter block can't contain any guarded blocks or handler blocks.
All blocks must start and end on instruction boundaries-that is, at offsets

corresponding to the first byte of an instruction. Prefixed instructions must not
be split, meaning that you can't have constructs such as tail .. try {call ... }.

A guarded block must start at a code point where the evaluation stack is
empty.

The same handler block can't be associated with different guarded blocks:

.try Labell to Label2 catch A handler Label3 to Label4

.try Label4 to Label5 catch B handler Label3 to Label4 II Illegal!

If the EH clause is a filter type, the filter's actual handler must immediately
follow the filter block. Since the filter block must end with the endfilter instruc
tion, this rule can be formulated as "the actual handler starts with the instruction
after endfilter."

If a guarded block has a finally or fault handler, the same block can have
no other handler. If you need other handlers, you must declare another
guarded block, encompassing the original guarded block and the handler:

. try {

}

.try {
. try {

II Code that needs finally, catch, and fault handlers

leave KeepGoing
}

finally {

endfinally
}

catch [mscorlib]System.StackOverflowException
{

leave KeepGoing
}

fault {

endfault
}

Part V

Events and Properties
Events and Delegates 291

Event Metadata 294

Event Declaration 297

Property Metadata 300

Property Declaration 302

Metadata Validity Rules 304

Events and properties are special metadata components that are intended to
make life easier for the high-level language compilers. The most intriguing fea
ture of events and properties is that the]IT compiler and the execution engine
are completely unaware of them. Can you recall any IL instruction that deals
with an event or a property? That's because none exist.

To understand the indifference of the JIT compiler and the execution
engine toward events and properties, you need to understand the way these
items are implemented.

Events and Delegates
The managed events I'm talking about here are not synchronization elements,
similar to Win32 event objects. Rather, they more closely resemble Microsoft
Visual Basic events and On<event> functions. Managed events provide a means
to describe asynchronous execution of methods, initiated by certain other
methods.

291

292 Part V Special Components

The general sequence of activities is illustrated in Figure 12-1. A program
unit-known as the publisher, or source, of an event-defines the event. We
can think of this program unit as a class, for the sake of simplicity. Other pro
gram units (classes)-known as subscribers, or event listeners, or event sinks-
define the methods to be executed when the event occurs and pass this infor
mation to the event publisher. When the event publisher raises, or fires, the
event by calling a special method, all the subscriber's methods associated with
this event are executed.

Subscribe

Publisher Subscribers

Fi re the event

Figure 12-1 The interaction of an event publisher and subscribers.

In a nutshell, to implement a managed event we need an entity that can
collect the callback methods (event handlers) from the event subscribers and
execute these methods when the publisher executes a method that signifies
the event.

We have a type (a class) designed to do exactly that: the delegate type,
which is discussed in Chapter 6, "Namespaces and Classes." As you might
remember, delegates are classes derived from the class [mscorlib]System.Multi
castDelegate and play the role of "politically correct" function pointers in the
managed world. The actual function pointer to a delegated method is passed to
the delegate as an argument of its constructor, and the delegated method can
subsequently be executed by calling the delegate's Invoke method.

What Chapter 6 doesn't mention is that several delegates can be aggre
gated into one delegate. Calling the Invoke method of such an aggregated del
egate invokes all the delegated methods that make up the aggregate-which is
exactly what we need to implement an event.

The [mscorlib]System.MulticastDelegate class defines the virtual methods
Combinelmpl and Remove/mp!, adding a delegate to the aggregate and remov-

Chapter 12 Events and Properties 293

ing a delegate from the aggregate, respectively. These methods are defined in
Mscorlib.dll as follows. (I have omitted the resolution scope [mscorlib} of dele
gate types here because the methods are defined in the same assembly; this
doesn't mean you can omit the resolution scope when you refer to these types
in your assemblies.)

.method family hidebysig final virtual
instance class System.Delegate
CombineimplCclass System.Delegate follow) cil managed

{ }

.method family hidebysig fi na 1 virtual
instance class System.Delegate
Removelmpl (class System.Delegate 'value') cil managed

}

The methods take the object reference to the delegate being added (or
removed) as the argument and return the object reference to the aggregated
delegate. The parameter and return type of both methods is System.Delegate
rather than System.MulticastDelegate, but this isn't contradictory: System.Multi
castDelegate is derived from System.Delegate and hence can be used in its
stead.

The principle of the delegate-based implementation of an event is more or
less clear. Each event subscriber creates a delegate representing its event han
dler and then subscribes to the event by combining the handler delegate with
the aggregate delegate, held by the event publisher. To raise the event, the pub
lisher simply needs to call the Invoke method of the aggregate delegate, and
everybody's happy.

One question remains, though: what does the publisher's aggregate dele
gate look like before any event subscriber has subscribed to the event? The
answer is, it doesn't exist at all. The aggregate delegate is a result of combining
the subscribers' handler delegates. As long as there are no subscribers, the pub
lisher's aggregate delegate does not exist. This poses a certain problem: Com
bine/mp! is an instance method, which has to be called on the instance of the
aggregated delegate, and hence each subscriber must worry about whether it is
the first in line (in other words, whether the aggregated delegate exists yet).
That's why the subscribers usually use the static methods Combine and Remove,
inherited by System.MulticastDelegate from System.Delegate:

.method public hidebysig static class System.Delegate
Combine(class System.Delegate a.

class System.Delegate b)

{ }

.method public hidebysig static class System.Delegate
Remove(class System.Delegate source,

class System.Delegate 'value')
{ }

294 Part V Special Components

If one of the arguments of these methods is a null reference, the methods
simply return the non-null argument. If both arguments are null references, the
methods return a null reference. If the arguments are incompatible-that is, if
the delegated methods have different signatures-Combine, which internally
calls Combinelmpl, throws an Argument exception and Remove, which inter
nally calls Removelmpl, simply returns the aggregated delegate unchanged.

In general, delegates are fascinating types, with more features than this
book can discuss. The best way to learn more about delegates first-hand is to
disassemble Mscorlib.dll and have a look at how System.Delegate and Sys
tem.MulticastDelegate are implemented and used. The same advice is applica
ble to other Microsoft .NET Framework classes you happen to be interested in:
when in doubt, disassemble the respective DLL and see for yourself.

Events, of course, can be implemented without delegates. But given the
functionality needed to implement events, I don't see why anyone would waste
time on an alternative implementation when the delegates offer a complete and
elegant solution.

Managed Synchronization Elements
You're probably wondering whether managed code has any elements
equivalent to the synchronization events and APis of the unmanaged
world. It does, although this aspect is unrelated to the events discussed in
this chapter. The synchronization elements of the managed world are
implemented as classes of the .NET Framework class library. You can
learn a lot about them by disassembling Mscorlib.dll and having a look at
the namespace System.1breadin~and especially at the WaitHandle class
of this namespace. (You've already encountered the System. Thread
ing. WaitHandle class in the discussion of asynchronous invocation of del
egates in Chapter 6.) The WaitHandle class is central to the entire class
system of the System. Threading namespace and implements such meth
ods as WaitOne, WaitAll, and WaitAny. Sounds familiar, doesn't it? The
AutoResetEvent, Manua!ResetEvent, and Mutex classes, derived from the
WaitHandle class, are also worth a glance.

Event Metadata
To define an event, we need to know the event type, which, as a rule, is
derived from [mscorlib}System.MulticastDelegate; the methods associated with
the event (methods to subscribe to the event, to unsubs.cribe, to fire the event,
and perhaps to carry out other tasks we might define); and, of course, the class

Chapter 12 Events and Properties 295

defining the event. Because events are never referenced in IL instructions, we
needn't worry about the syntax for referencing the events.

The event metadata group includes the Event, EventMap, TypeDef, TypeRef,
Method, and MethodSemantics tables. Figure 12-2 shows the mutual references
between the tables of this group.

Type Def Method

table I table

Event li J1 table
EventMap MethodSemantics

table l table

Type Ref

table

Figure 12-2 The event metadata group.

The Event Table
The Event table has the associated token type mdtEvent (Ox14000000). An Event
record has three entries:

• EventFlags (2-byte unsigned integer) Binary flags of the event
characteristics.

• Name (offset in the #Strings stream) The name of the event,
which must be a simple name no longer than 1023 bytes in UTF-8
encoding.

• EventType (coded token of type TypeDefOrRej) The type asso
ciated with the event. The coded token indexes a TypeDej or TypeRf:!f
record. The class indexed by this token is either a delegate or a class
providing the necessary functionality similar to that of a delegate.

Only two flag values are defined for events, and only one of them can be
set explicitly:

• specialname (Ox0200) The event is special in some way, as spec
ified by the name.

• rtspecialname (Ox0400) The event has a special name reserved
for the internal use of the common language runtime. This flag can't
be set explicitly. The IL Disassembler (ILDASM) outputs this flag for
information purposes, but the IL assembly language (ILAsm) com
piler ignores the keyword.

296 Part V Special Components

To my knowledge, the primary use of these event flags is to mark deleted
events in edit-and-continue scenarios. When an event record is marked as
deleted, both flags are set and its name is changed to _Deleted. Some compilers,
however, might find certain uses for the specialname flag. After all, an event as
a metadata item exists solely for the benefit of the compilers.

The EventMap Table
The EventMap table provides mapping between the classes defining the events
(the TypeDef table) and the events themselves (the Event table). An EventMap
record has two entries:

• Parent (record index [RID] to the TypeDef table) The type
declaring the events.

• EventList (RID to the Event table) The beginning of the events
declared by the type indexed to the Parent entry. The mechanism of
addressing the events in this case is identical to the mechanism used
by TypeDef records to address the Method and Field records belong
ing to a certain TypeDef In the optimized metadata model (the #
stream), the records in the Event table are ordered by the declaring
type. In the unoptimized model (the #-stream), the event records
are not ordered and an intermediate lookup metadata table,
EventPtr, is used. (The metadata models and intermediate tables are
described in Chapter 4, "Metadata Tables Organization.")

The MethodSemantics Table
The MethodSemantics metadata table connects events and properties with their
associated methods and provides information regarding the type of this associ
ation. A record in this table has three entries:

• Semantic (2-byte unsigned integer) The type of method
association.

• Method (RID to the Method table) The index of the associated
method.

• Association (coded token of type HasSemantics) A token
indexing an event or a property the method is associated with.

The Semantic entry can have the following values, which look like binary
flags but in fact are mutually exclusive:

• msSetter (OxOOOl) The method sets a value of a property.

• msGetter (Ox0002) The method retrieves a value of a property.

Chapter 12 Events and Properties 297

• msOther (Ox0004) The method has another meaning for a prop
erty or an event

• msAddOn (Ox0008) The method subscribes to an event.

• msRemoveOn (OxOOlO) The method removes the subscription to
an event.

• msFire (Ox0020) The method fires an event.

The same method can be associated in different capacities with different
events or properties. An event must have one subscribing method and one
unsubscribing method. These methods return void and have one parameter of
the same type as the event's associated type (the EventType entry of the respec
tive Event record). The Microsoft Visual C# .NET and Visual Basic .NET compilers
use uniform naming for subscribing and unsubscribing methods:
add_ <event_name> and remove_ <event_name>, respectively. In addition, these
compilers mark these methods with the specialname flag.

An event can have at most one firing method. The firing method usually
boils down to an invocation of the delegate implementing the event. The Visual
C# .NET and Visual Basic .NET compilers, for example, never bother to define
a firing method for an event-that is, the method invoking the delegate is there,
but it is never associated with the event as a firing method. Such an approach
contains a certain logic: the firing method is a purely internal affair of the event
publisher and need not be exposed to the event subscribers. And because the
compilers, as a rule, use the event metadata to facilitate subscription and unsub
scription, associating a firing method with an event is not necessary. If an event
does have an associated firing method, however, this method must return void.

Event Declaration
In ILAsm, the syntax for an event declaration is as follows:

.event <class_ref> <name> <method_semantics_decl>* }

where <class_ref> represents the type associated with the event, <name> is a
simple name, and

<method_semantics_decl> <semantics> <method_ref>
<semantics> .addon .removeon .fire I .other

The following is an example of an event declaration:

II The delegate implementing the event
.class public sealed MyEventlmpl

extends [mscorlib]System.MulticastDelegate
{

(continued)

298 Part V Special Components

}

.method public hidebysig specialname
void .ctor(object 'object',

native int 'method') runtime managed
{ }

.method public
Invoke(int32
{ }

hidebysig
EventCode,

virtual
string

instance void
Msg) runtime managed

II The event publisher
.class public A
{

.field private class MyEventimpl evimpl
II Aggregate delegate

.method public specialname void .ctor()
{

}

ldnull
ldarg.0
stfld class MyEventimpl A::evimpl
ret

.method public void Subscribe(class MyEventimpl aHandler)
{

}

ldarg.0
ldfld class
ldarg.1
call class

ldarg.0

MyEventimpl A:: evlmpl

[mscorlib]System.Delegate
A::CombineCclass · [mscorlib]System.Delegate,
class [mscorlib]System.Delegate)

stfld class MyEventimpl A::evimpl
ret

.method public void Unsubscribe(class MyEventimpl aHandler)
{

}

ldarg.0
ldfld class
ldarg.1
call class

ldarg.0

MyEventimpl A:: evimpl

[mscorlib]System.Delegate
A::Remove(class [mscorlib]System.Delegate,
class [mscorlib]System.Delegate)

stfld class MyEventimpl A: :evimpl
ret

.method public void Raise(int32 EventCode, string Msg)
{

ldarg.0
ldfld class MyEventimpl A: :evimpl

}

1 da rg .1
ldarg.2

Chapter 12 Events and Properties 299

call void MyEventimpl::Invoke(int32, string)
ret

.method public bool HasSubscribers()
{

}

ldc. i 1.0
ldarg.0
ldfld class MyEventlmpl A: :evlmpl
brnul 1 L1
pop
1de.i1.1

L1: ret

.event MyEventlmpl MyEvent
{

}

.addon instance void A::Subscribe(class MyEventlmpl)

.removeon instance void A::Unsubscribe(class MyEventlmpl)

.fire instance void A: :Raise(int32, string)

.other instance bool A: :HasSubscribers()

II Other class members

} II The end
II The event
.class public
{

of the publisher
subscriber
B

class

.method public void MyEvtHandler(int32 EventCode, string Msg)
{

}

II If EventCode > 100, print the message
ldarg.1
ldc.i4 100
ble.s Return
ldarg.2
call void [mscorl i b]System. Console: :Writel i ne(string)

Return:
ret

.method private void SubscribeToMyEvent(class A Publisher)
{

II Publisher->Subscribe(new MyEventlmpl
II (this,(int)(this->MyEvtHandler)))

1 da rg .1
1darg.0
dup
ldftn instance void MyEvtHandler(int32, string)
newobj instance void MyEventlmpl ::.ctor<object. native

(continued)

300 Part V Special Components

int)

}

call instance void A::Subscribe(class MyEventimpl)
ret

II Other class members

} II The end of the subscriber class

Property Metadata
Properties are considerably less fascinating than events. Typically, a property is
some characteristic of the class that declares it-for example, the value of a pri
vate field-accessible only through the so-called accessor methods. Because of
this, the only aspects of a property the common language runtime is concerned
with are the property's accessors.

Let's suppose that a property is based on a private field. Let's also suppose
that both read and write accessors are defined. What is the sense in declaring
such a property, when we could simply make the field public and be done with
it? At least two reasons argue for declaring it: the accessors can run additional
checks to ensure that the field has valid values at all times, and the accessors
can fire events signaling that the property has been changed or accessed. I'm
sure you can think of other reasons for implementing properties, even leaving
aside cases in which the property is not field-based or has only a read accessor
or only a write accessor.

A property's read and write accessors are referred to as getters and setters,
respectively. The Visual C# .NET and Visual Basic .NET compilers follow these
naming conventions for the property accessors: setters are named
set_ <property_name>, and getters are namedget_ <property_name>. Both meth
ods are marked with the specialname flag.

The property metadata group includes the following tables: Property,
PropertyMap, TypeDef, Method, MethodSemantics, and Constant. The structure
of the property metadata group is shown in Figure 12-3. The following sections
describe the Property and PropertyMap tables. The MethodSemantics table was
discussed in the preceding section of this chapter, and Chapter 8, "Fields and
Data Constants," contains information about the Constant table.

Chapter 12 Events and Properties 301

Type Def Method

table table

Property _L il table
PropertyMap MethodSemantics

table I table

Constant ~
.~

table

Figure 12-3 The property metadata group.

The Property Table
The Property table has the associated token type mdtProperty (Oxl 7000000),
and its records have three entries:

• PropFlags (2-byte unsigned integer) Binary flags of the prop
erty characteristics.

• Name (offset in the #Strings stream) The name of the property,
which must be a simple name no longer than 1023 bytes in UTF-8
encoding.

• Type (offset in the #Blob stream) The property signature.

The Type entry holds an offset to the property signature residing in the
#Blob metadata stream. The structure of the property signature is similar to that
of the method signature, except that the calling convention is JMAGE_CEE_CS_
CALLCONV_PROPERTY (OxOS). The return type and the parameter types of the
property should correspond to those of the getter. The runtime, of course, pays
no attention to what the property signature looks like, but the compilers do
care.

Three flag values are defined for properties, and, as in the case of events,
only one of them can be set explicitly:

• specialname (Ox0200) The property is special in some way, as
specified by the name.

• rtspecialname (Ox0400) The event has a special name reserved
for the internal use of the common language runtime. This flag can't
be set explicitly.

• [no ILAsm keyword] (OxlOOO) The property has a default value,
which resides in the Constant table.

302 Part V Special Components

Like the event flags, the specialname and rtspecialname flags are used by
the runtime for marking deleted properties in edit-and-continue scenarios. The
deleted property name is changed to _Deleted. The flag OxlOOO is set by the
metadata emission API when a Constant record is emitted for this property, sig
nifying the property's default value.

The PropertyMap Table
The PropertyMap table serves the same purpose for properties as the EventMap
table does for events: it provides mapping between the TypeDef table and the
Property table. A PropertyMap record has two entries:

• Parent (RID to the TypeDef table) The type declaring the prop
erties.

• PropertyList (RID to the Property table) The beginning of the
properties declared by the type referenced by the Parent entry.

In the unoptimized model (the #-stream), an intermediate lookup meta
data table, PropertyPtr, is used to remap the properties so that they are ordered
by parent.

Property Declaration
The ILAsm syntax for a property declaration is as follows:

.property <flags> <ret_type> <name>C<param_type>[.<param_type>*]

<const_dec 7 > { <method_semantics_decl>* }

where

<method_semantics_decl> <semantics> <method_ref>
<semantics> .set .get .other
<const_dec 7 > <const_type> [(<value>

The <ret_type> and the sequence of <param_type> nonterminals define
the property's signature. <semantics> defines the type of the associated meth
ods: .set for the setter, .get for the getter, and .other for any other method
defined for this property. The optional <const_decl> is the declaration of the
property's default value, similar to that of a field or a method parameter. The
parent of the property is the class in whose scope the property is declared, as
is the case for other class members (fields, methods, and events).

Now, as an exercise, let's declare a simple property:

Chapter 12 Events and Properties 303

.class public A
{

.field private
II Constructor:
.method public
{

unsigned int32
set Tally to

void .ctorC)

theTally = int32(0xFFFFFFFF)
0xFFFFFFFF (not used yet)

ldarg.0
call instance void [mscorlib]System.Object: :.ctor()
ldc.i4 0xFFFFFFFF
ldarg.0
stfld unsigned int32 A::theTally
ret

}

II Setter: set Tally to Val if Val
.method public void set_Tally(unsigned
{

is not 0xFFFFFFFF
int32 Val)

ldarg.1
ldc.i4 0xFFFFFFFF
beq.s Return
ldarg.1
ldarg.0
stfld unsigned int32 A::theTally

Return:
ret

}

II Getter: return the
.method public unsigned
{

ldarg.0

value
int32

of Tally
get_Tally()

ldfld unsigned int32 A: :theTally
ret

}

II Other
.method

method: reset the value
public void reset_Tally()

of Tally

{

}

ldc.i4 0xFFFFFFFF
ldarg.0
stfld unsigned int32 A: :theTally
ret

.property unsigned int32 Tally(unsigned int32)
int32(0xFFFFFFFF)

{

to 0xFFFFFFFF

.set instance void A: :set_Tally(unsigned int32)

.get instance unsigned int32 A::get_Tally()

.other instance void A: :reset_Tally()
}

II The end of class A

304 Part V Special Components

Metadata Validity Rules
The event-related and property-related metadata tables are Event, EventMap,
Property, PropertyMap, Method, MethodSemantics, TypeDef, TypeRef, and
Constant. Earlier chapters have discussed the validity rules for Method, Type
Def, TypeRef, and Constant tables. The records of the remaining tables have the
following entries:

• The Event table: EventFlags, Name, and EventType.

• The EventMap table: Parent and EventList.

• The Property table: PropFlags, Name, and Type.

• The PropertyMap table: Parent and PropertyList.

• The MethodSemantics table: Semantic, Method, and Association.

Event Table Validity Rules
• The EventFlags entry must contain 0, or must have the specialname

flag set (Ox0200), or must have both the specialname and rtspecial
name flags set (Ox0600).

• The Name entry must contain a valid offset in the #Strings stream,
indexing a string no longer than 1023 bytes in UTF-8 encoding.

• If the specialname and rtspecialname flags are set, the event name
must.be _Deleted*.

• No duplicate records-those with the same name belonging to the
same class-can exist unless the event name is _Deleted*.

• The Event Type entry must contain a valid reference to the TypeDef
or TypeRef table.

EventMap Table Validity Rules
• The Parent entry must hold a valid reference to the TypeDef table.

• The EventList entry must hold a valid reference to the Event table.

Property Table Validity Rules
• The PropFlags entry must contain 0 or a combination of the binary

flags specialname (Ox0200), rtspecialname (Ox0400), and OxlOOO.

• If the rtspecialname flag is set, the specialname flag must also be set.

Chapter 12 Events and Properties 305

• If the OxlOOO flag is set, the Constant table must contain a valid
record whose Parent entry holds the reference to this Property
record, and vice versa.

• The Name entry must contain a valid offset in the #Strings stream,
indexing a string no longer than 1023 bytes in UTF-8 encoding.

• If the specialname and rtspecialname flags are set, the property
name must be _Deleted*.

• No duplicate records-those with the same name and signature
belonging to the same class-can exist unless the property name is
_Deleted*.

• The Type entry must contain a valid offset in the #Blob stream, index
ing a valid property signature. The validity rules for property signa
tures were discussed in Chapter 7, "Primitive Types and Signatures."

PropertyMap Table Validity Rules
• The Parent entry must hold a valid reference to the TypeDef table.

• The PropertyList entry must hold a valid reference to the Property
table.

MethodSemantics Table Validity Rules
• The Semantic entry must contain one of the following values: msSet

ter (OxOOOl), msGetter (Ox0002), msOther (Ox0004), msAddOn
(Ox0008), msRemoveOn (OxOOlO), msFire (Ox0020).

• The Method entry must contain a valid index to the Method table.

• The Association entry must contain a valid reference to the Event or
Property table.

• If the Semantic entry contains msSetter or msGetter, the Association
entry must reference the Property table:

• If the Semantic entry contains msAddOn, msRemoveOn, or msFire,
the Association entry must reference the Event table.

• No duplicate records that have the same Method and Association
entries can exist.

• No duplicate records that have the same Association and Semantic
entries can exist unless the Semantic entry contains msOther.

306 Part V Special Components

• For each Event record referenced in the Association entry, the table
can contain one and only one MethodSemantics record with a
Semantic entry equal to msAddOn.

• For each Event record referenced in the Association entry, the table
can contain one and only one MethodSemantics record with a
Semantic entry equal to msRemoveOn.

Ii For each Event record referenced in the Association entry, the table
can contain no more than one MethodSemantics record with a
Semantic entry equal to msFire.

Custom Attributes
Concept of a Custom Attribute 308

CustomAttribute Metadata Table 309

Custom Attribute Value Encoding 31 O

Custom Attribute Declaration 312

Classification of Custom Attributes 315

Metadata Validity Rules 327

Every system worth its name needs extensibility. The languages that describe an
extensible system and their compilers need extensibility as well; otherwise, they
are describing not the system but rather its glorious past.

A system and the associated languages can be extended in three ways. The
first way is to tinker with the system itself, changing its inner structure and chang
ing the languages accordingly. This approach is good as long as the system has a
negligible number of users, because each new version of the system (and hence
the languages) is basically different from the previous version. This approach is
characteristic of the early stages of the life cycle of a complex system.

The second way is to leave the system and the languages as they are and
build a parallel system (and parallel languages and their compilers) providing
additional functionality. A classic example of this approach was the introduc
tion of the remote procedure call (RFC) standard and the interface description
language (IDL) in parallel with existing C runtime and C/C++ compilers.

The third way is to build into the system (and the languages) some formal
means of extensibility and then employ these means when needed. This
approach allows the system developers to sneak in new features and sub-

307

308 Part V Special Components

systems without changing the basic characteristics of the system. The only chal
lenge is to devise a means of extensibility that is both efficient and universal
efficient because we need productivity, and universal because we don't know
what we'll need tomorrow or a year from now. These requirements are contra
dictory, and usually universality wins out. If efficiency wins at universality's
expense, sooner or later the designers run out of options and must switch to the
second way.

The Microsoft .NET platform, including the common language runtime,
the .NET Framework, and the compilers, has a universal extensibility mecha
nism built in. This mechanism is known as custom attributes.

Concept of a Custom Attribute
A custom attribute is a metadata item specifically designed as a universal tool
for metadata extension. Custom attributes do not, of course, change the meta
data schema, which is hard-coded and a sacrosanct part of the common lan
guage runtime. Neither do custom attributes play any role similar to the
generics, creating new types based on some "templates." Rather, custom
attributes provide a way to specify additional information about metadata items,
information not represented by a metadata item itself.

The information carried by custom attributes is intended mostly for vari
ous tools such as compilers, linkers, and debuggers. The runtime recognizes
only a small subset of custom attributes.

Custom attributes are also a lifesaver for compilers. If the designers of
compilers and languages discover, to their surprise, that more features are
required to describe a problem area than were initially built into a language or
its compiler, they can easily extend the descriptive power of the language by
introducing new custom attributes. Of course, the language and its compiler
must recognize the concept of a custom attribute to begin with, but it's hardly
a problem-all managed languages and their compilers do this.

I've heard some slanderous statements to the effect that the number of
custom attributes used by a tool is in direct proportion to the degree of wisdom
acquired by the tool designers after the fact. But of course this can't be true.

Jokes aside, custom attributes are an extremely useful tool. Think of the
following simple example. If we want managed code to interoperate with
classic COM applications, we need to play by the classic COM rules. One of
these rules is that every exported interface must have a globally unique iden
tifier, a GUID, assigned to it. The runtime generates GUIDs on the fly, but we
might need not just any GUID but rather a specific GUID assigned to a class.
What do we do? Add another field to the TypeDej record to store an offset in
the #GUJD stream? This would surely help to reduce the size of the metadata

Chapter 13 Custom Attributes 309

tables, especially when we consider that only a small fraction of all TypeDefs
might ever be used in COM interoperation. To solve the problem, we can
introduce a GUID-carrying custom attribute-actually, we have one already:
System.Runtime.InteropServices. GuidAttribute-and assign this attribute to
any TypeDef participating in the COM interoperation.

The problem with custom attributes is that they are very expensive in
terms of resources. They bloat the metadata. Because they represent metadata
add-ons; the IL code has no means of accessing them directly. As a result, cus
tom attributes must be resolved through Reflection methods, an approach that
approximates having a lively chat by means of mailing letters written in Morse
code-fun if you have an eternity at your disposal.

There's good news regarding custom attributes, and there's also bad news.
The bad news is that custom attributes keep breeding at an astonishing rate as
new tools and new features are introduced. And sometimes custom attributes
are invented not because of need but because "I can" or because someone
wonders, "Why should I do it the hard way?" It's so easy to use, no wonder
Ahem! The good news, however, is that most custom attributes are specific to
certain tools and only a small fraction are actually used at run time.

CustomAttribute Metadata Table
The CustomAttribute table contains data that can be used to instantiate custom
attributes at run time. A record in this CustomAttribute table has three entries:

• Parent (coded token of type HasCustomAttribute) This entry
references the metadata item to which the attribute is assigned.

• Type (coded token of type CustomAttributeType) This entry
defines the type of the custom attribute itself.

• Value (offset in the #Blob stream) This entry is the binary rep
resentation of the custom attribute's parameters.

Given their nature, as informational add-ons to other metadata items, cus
tom attributes can be attached to any metadata item that has a specific token
type assigned to it. The one exception is that custom attributes cannot be
attached to another custom attribute. Chapter 4, "Metadata Tables Organiza
tion," described the 21 token types. The token type mdtString (Ox70000000) is
assigned to user strings, which are not part of the metadata tables, and mdtCus
tomAttribute (OxOCOOOOOO) belongs to the custom attributes themselves. This
leaves us with 19 tables providing potential owners of custom attributes: Mod
ule, TypeRef, TypeDef, Field, Method, Param, Interfacelmpl, MemberRef,
DeclSecurity, StandAloneSig, Event, Property, ModuleRef, TypeSpec, Assembly,

31 O Part V Special Components

AssemblyRef, File, ExportedType, and ManifestResource. No metadata table ref
erences the CustomAttribute table. Note that a custom attribute can be assigned
to a specific type (TypeRef, TypeDej), but not to an instance of the type.

The Type entry of a custom attribute is a coded token of type CustomAt
tributeType and hence theoretically can be one of the following: TypeRef, Type
Def, Method, MemberRef, or String. (See the section "Coded Tokens" in Chapter
4.) In fact, in the first release of the common language runtime, the choice is
limited to Method or MemberR~fbecause of the requirement that the type of a
custom attribute must be an instance constructor and nothing else. The class
whose instance constructor represents the custom attribute type should be
derived from the abstract class [mscorlib}System.Attribute.

The Value entry of a custom attribute is a blob whose contents depend on
the nature of the custom attribute. If we were allowed to use a user-defined
string as the custom attribute type, Value would contain the Unicode text. But
because the custom attribute type is limited to instance constructors, the Value
blob contains the encoded arguments of the constructor. If the constructor has
no parameters, because the mere presence of the custom attribute is considered
sufficiently informational, the Value entry can hold 0.

Custom Attribute Value Encoding
The Value blob of a custom attribute might contain two categories of data:
encoded argument values of the instance constructor, and additional encoded
name/value pairs specifying the initialization values of the fields and properties
of the custom attribute class.

The Value blob encoding is based on serialization type codes enumerated
in CorSerializationType in the CorHdr.h file. The serialization codes for the
primitive types, strings, and vectors are the same as the respective
ELEMENT_ TYPE_* codes-that is, ELEMENT_TYPE_BOOLEAN, and so on, as
described in Chapter 7, "Primitive Types and Signatures." Additional serializa
tion codes include TYPE (Ox50), TAGGED_OB]ECT(Ox5l), FIELD (Ox53), PROP
ERTY (Ox54), and ENUM (Ox55). All the constant names include the prefix
SERIALIZA710N_TYPE_, which I omit because of my inherent laziness.

The encoded blob begins with the prolog, which is always the 2-byte
value OxOOOl. The prolog is followed by the values of the constructor argu
ments. Size and byte layout of these values are inferred from the constructor's
signature. For example, the value Ox1234 supplied as an argument of type int32
is encoded as the following sequence of bytes:

0x34 0x12 0x00 0x00

Chapter 13 Custom Attributes 311

If the argument is a vector, its encoding begins with a 4-byte element
count, followed by the element values. For example, a vector of the three
unsigned int16 values Oxll22, Ox3344, and Ox5566 is encoded as follows:

0x03 0x00 0x00 0x00 0x22 0xll 0x44 0x33 0x66 0x55

If the argument is a string, its encoding begins with the compressed string
length, followed by the string itself in UTF-8 encoding, without the terminating
0 byte. The length compression formula was discussed in Table 4-1. For exam
ple, the string Common Language Runtime is encoded as the following byte
sequence, with the leading byte (Oxl 7) representing the string length (23 bytes):

0xl7 0x43 0x6F 0x6D 0x6D 0x6F 0x6E 0x20 0x4C 0x61 0x6E 0x67 0x75 0x61
0x67 0x65 0x20 0x52 0x75 0x6E 0x74 0x69 0x6D 0x65

If the argument is an object reference to a boxed primitive value type
hool, char, one of the integer types, or one of the floating-point types-the
encoding consists of 1-byte primitive type encoding, followed by the value of
the primitive value type.

Finally, if the argument is a type (class), its encoding is similar to that of a
string, with the type's fully qualified name playing the role of the string con
stant. The rules of the fully qualified type name formatting applied in the cus
tom attribute blob encoding are those of Reflection, which differ from IL
assembly language (ILAsm) conventions. The full class name is formed in
Reflection and ILAsm almost identically, except for the separator symbols that
denote the class nesting. ILAsm notation uses a forward slash:

MyNamespace.MyEnclosingClass/MyNestedClass

whereas the Reflection standard uses a plus sign:

MyNamespace.MyEnclosingClass+MyNestedClass

We find greater difference, however, in the way resolution scope is desig
nated. In ILAsm, the resolution scope is expressed as the external assembly's
alias in square brackets preceding the full class name. In Reflection notation,
the resolution scope is specified after the full class name, comma-separated
from it. In addition, the concept of the external assembly alias is specific to
ILAsm, and Reflection does not recognize it. Thus, if the version, public key
token, or culture must be specified, it is done explicitly as a part of the resolu
tion scope specification. The following is an ILAsm example:

.assembly extern OtherAssembly as OtherAsm2
{

}

.ver 1:2:3:4

.publickeytoken

. locale "fr-CA"
(01 02 03 04 05 06 07 08)

[OtherAsm2JMyNamespace.MyEnclosingClass/MyNestedClass

312 Part V Special Components

In contrast, here is a Reflection example:

MyNamespace.MyEnclosingClass+MyNestedClass, OtherAssembly,
Version=l.2.3.4, PublicKeyToken=0102030405060708, Culture=fr-CA

According to Reflection conventions, the resolution scope specification
can be omitted if the referenced class is defined in the current assembly or in
Mscorlib.dll. In ILAsm, as you know, the resolution scope is omitted only if the
class is defined in the current module.

The byte sequence representing the prolog and the constructor arguments
is followed by the 2-byte count of the name/value pairs. A name/value pair
specifies which particular field or property must be initialized to a certain value.

The name/value pair encoding begins with the serialization code of the
target: FIEW or PROPERTY. The next byte is the serialization code of the target
type, which is limited to the primitive types, string, and TYPE. After the target
type comes the name of the target, encoded the same way a string argument
would be: the compressed length, followed by the string itself in UTF-8 encod
ing, without the 0 terminator. Immediately after the target name is the target ini
tialization value, encoded similarly to the arguments. For example, the name/
value pair initializing a field (Ox53) of type bool (Ox02) named Inherited (length
Ox09) to trne (OxOl) is encoded as this byte sequence:

0x53 0x02 0x09 0x49 0x6E 0x68 0x65 0x72 0x69 0x74 0x65 0x64 0x01

Custom Attribute Declaration
The ILAsm syntax for declaring a custom attribute is as follows:

.custom <attribute_type> [= C <hexbytes>) J

or, considering the limitation imposed on <attribute_type> in the first release of
the common language runtime:

.custom instance void <class_ref>::.ctorC<arg_list>)
[= C <hexbytes>) J

where <class_ref> is a fully qualified class reference, <arg_list> is an argument
list of the instance constructor, and <hexbytes> is the sequence of two-digit
hexadecimal numbers representing the bytes in the custom attribute's blob.

You might have noticed a regrettable omission in the first release of
ILAsm: the language does not allow you to specify the custom attribute value in
"civilized" terms, requiring an explicit specification of the blob contents. For
example, instead of writing

.custom instance void MyAttribute::.ctorCbool) =(true)

Chapter 13 Custom Attributes 313

you must write

.custom instance void MyAttribute::.ctorCbool) = (01 00 01 00 00)

I expect this omission to be remedied in later releases of ILAsm and its compiler.
The owner of the custom attribute, or the metadata item to which the

attribute is attached, is defined by the positioning of the custom attribute dec
laration. At first glance, the rule regarding the declaration of metadata items is
simple: If the item declaration has a scope (for example, an assembly, a class,
or a method), the custom attributes declared within this scope belong to the
item. Otherwise-that is, if the item declaration has no scope (such items as a
file, a module, or a field)-the custom attributes declared immediately after the
item declaration belong to the item. For example, take a look at these excerpts
from the disassembly of Mscorlib.dll:

.assembly mscorlib
{

}

.custom instance void System.CLSCompliantAttribute::.ctorCbool)
= (01 00 01 00 00)

.custom instance void
System.Resources.NeutralResourceslanguageAttribute::.ctorCstring

= (01 00 05 65 6E 20 55 53 00 00) II ... en-US ..

.module CommonlanguageRuntimelibrary

.custom instance void
System.Security.UnverifiableCodeAttribute: :.ctor()
= (01 00 00 00)

.class interface public abstract auto ansi !Enumerable
{

.custom instance void
System.Runtime.InteropServices.GuidAttribute::.ctorCstring)
= (01 00 24 34 39 36 42 30 41 42 45 20 43 44 45 45

20 31 31 64 33 20 38 38 45 38 20 30 30 39 30 32
37 35 34 43 34 33 41 00 00)

.method public h1debysig newslot virtual abstract
instance class System.Collections.IEnumerator
GetEnumerator() cil managed

{

.custom instance void
System.Runtime.InteropServices.OispldAttribute::.ctorCint32)
= (01 00 FC FF FF FF 00 00)

} JI End of method IEnumerable::GetEnumerator

} II End of class !Enumerable

314 Part V Special Components

This is in stark contrast to the way custom attributes are declared, for
instance, in Microsoft Visual C# .NET, where a custom attribute belonging to an
item immediately precedes the item declaration. For example, the following is
an excerpt showing the Visual C# .NET declaration of the interface !Enumerable
mentioned in the preceding code:

[Guid("496B0ABE-CDEE-lld3-88E8-00902754C43A")]
public interface !Enumerable
{

[Displd(-4)]
!Enumerator GetEnumerator();

}

The ILAsm rule specifying that custom attribute ownership is defined by
the position of the attribute declaration can play tricks on you if you don't pay
attention, however. Don't forget that when a nonscoped item is declared within
the scope of another item, the custom attribute's ownership immediately
switches to this newly declared item. Because of that, the custom attributes
belonging to a scoped item cannot be declared just anywhere within the item's
scope. The following code snippet illustrates the point:

.class public MyClass
{

}

.custom instance void MyClassAttribute::.ctor()=(01 00 00 00)

.field 1nt32 MyField

.custom instance void MyFieldAttribute::.ctor()=(01 00 00 00)

.method public int32 MyMethod([optJ1nt32 J)
{

}

.custom instance void MyMethodAttr1bute::.ctor<>=C01 00 00 00)

.param[lJ = 1nt32C123456)

.custom instance void MyParamAttribute::.ctor()=(01 00 00 00)

To avoid possible confusion about the ownership of a custom attribute, it's bet
ter to declare an item's custom attributes as soon as the item scope is opened.

The preceding discussion covers the rules for assigning custom attributes
to items that are declared explicitly. Obviously, these rules cannot be applied to
metadata items, which are declared implicitly, simply by their appearance in
ILAsm directives and instructions. After all, such metadata items as TypeRefs,
TypeSpecs, and MemberRefs might want their fair share of custom attributes, too.

To resolve this problem, ILAsm offers another form of the custom attribute
declaration, with explicit specification of the custom attribute owner:

Chapter 13 Custom Attributes 315

.custom (<owner_spec>) instance void <class_ref>::.ctor(<arg_list>)
[= (<hexbytes>) J

where

<owner_spec> : := <class_ref> I <type_spec>
I method <method_ref> I field <field_ref>

For example:

.custom ([mscorlib]System.String)
instance void MyTypeRefAttribute: :.ctor()=(01 00 00 00)

.custom ([mscorlib]System.String[J)
instance void MyTypeSpecAttribute: :.ctor()=(01 00 00 00)

.custom (method instance void Foo::Bar(int32,int32))
instance void MyMemberRefAttributel:: .ctor()=(01 00 00 00)

.custom (field int32 Foo: :Baz)
instance void MyMemberRefAttribute2:: .ctorCl=C01 00 00 00)

Custom attribute declarations in their full form can appear anywhere
within the ILAsm source code, because the owner of a custom attribute is
specified explicitly and doesn't have to be inferred from the positioning of the
custom attribute declaration. The IL Disassembler (ILDASM) puts the custom
attribute declarations in full form at the end of the source code dump, before
the data dump.

Two additional categories of metadata items can in principle own custom
attributes: lnterfacelmpls and StandAloneSigs. The first release of ILAsm offers
no language means to define custom attributes belonging to these items,
another omission to be corrected in future revisions of ILAsm and its compiler.
Of course, so far no compiler or other tool has generated custom attributes for
these items, but you never know. The tools develop quickly, and the custom
attributes proliferate even more quickly, so sooner or later somebody will man
age to assign a custom attribute to an interface implementation or a stand-alone
signature.

On the other hand, many custom attributes are intended for the compilers'
internal consumption and never make it past the complete compilation process.
ILAsm needs to be concerned only with those custom attributes that are recog
nized by the common language runtime or the tools operating with managed
PE files, such as the assembly linker (AL) or the debuggers.

Classification of Custom Attributes
Having decided to concentrate on the custom attributes recognized by the com
mon language runtime or the tools dealing with managed PE files, let's see which
custom attributes are intended for various subsystems of the runtime and tools.

316 Part V Special Components

Before proceeding, however, I must mention one custom attribute that
stands apart from any classification and is truly unique. It is the attribute Sys-

. tem.AttributeUsageAttribute, which can (and should) be owned only by the cus
tom attribute types. Make no mistake-custom attributes can't own custom
attributes, but the type of a custom attribute is always an instance constructor of
some class. This class should own the custom attribute System.AttributeUsage
Attribute, which identifies what kinds of metadata items can own the custom
attributes typed after this class, whether these custom attributes are inheritable,
and whether multiple custom attributes of this type can be owned by the same
metadata item. Because all operations concerning custom attributes are per
formed through Reflection, AttributeUsageAttribute can be considered the only
custom attribute intended exclusively for Reflection itself. The instance con
structor of the AttributeUsageAttribute type has one int32 parameter, represent
ing the binary flags for various metadata items as potential owners of the
custom attribute typed after the attributed class. The flags are defined in the
enumeration System.AttributeTargets.

The following should save you the time of looking up this enumeration in
the disassembly of Mscorlib.dll:

.class public auto ansi serializable sealed AttributeTargets
extends System.Enum

{

II The following custom attribute is intended for the compilers
II And indicates that the values of the enum are binary flags
II And hence can be bitwise OR'ed
.custom instance void System.FlagsAttribute::.ctor()

= (01 00 00 00)
.field public specialname rtspecialname int32 value_
.field public static literal valuetype System.AttributeTargets

Assembly = int32(0x00000001)
.field public static literal valuetype System.AttributeTargets

Module= int32(0x00000002)
.field public static literal valuetype System.AttributeTargets

Class= int32(0x00000004)
.field public static literal valuetype System.AttributeTargets

Struct = int32(0x00000008) II Value type
.field public static literal valuetype System.AttributeTargets

Enum = int32(0x00000010)
.field public static literal valuetype System.AttributeTargets

Constructor = int32(0x00000020)
.field public static literal valuetype System.AttributeTargets

Method = int32(0x00000040)
.field public static literal valuetype System.AttributeTargets

Property = int32(0x00000080)
.field public static literal valuetype System.AttributeTargets

Field = int32(0x00000100)

Chapter 13 Custom Attributes 317

.field public static literal valuetype System.AttributeTargets
Event = int32(0x00000200)

.field public static literal valuetype System.AttributeTargets
Interface = int32(0x00000400)

.field public static literal valuetype System.AttributeTargets
Parameter = int32(0x00000800)

.field public static literal valuetype System.AttributeTargets
Delegate = int32(0x00001000)

.field public static literal valuetype System.AttributeTargets
ReturnValue = int32(0x00002000)

.field public static literal valuetype System.AttributeTargets
All = int32(0x00003FFF)

} II End of class AttributeTargets

As you can see, Reflection's list of potential custom attribute owners is
somewhat narrower than the metadata's list of 19 tables. Perhaps we needn't
worry about the custom attributes of the interface implementations and stand
alone signatures just yet.

The remaining two characteristics of AttributeUsageAttribute-the Bool
ean properties Inherited and AllowMultiple-must be defined through the
name/value pairs. The defaults are All for the potential custom attribute owners,
true for Inherited, and false for AllowMultiple.

You'll find this information useful when (note that I'm not saying "if") you
decide to invent your own custom attributes. And now, back to our classifica
tion scheme.

Execution Engine and JIT Compiler
The execution engine and the JIT (just-in-time) compiler of the common lan
guage runtime recognize three custom attributes:

• System.Diagnostics.DebuggableAttribute This attribute, which
can be owned by the assembly or the module, sets a special debug
mode for the JIT compQ_er. The instance constructor has two Boolean
parameters, the first enabling the JIT compiler tracking the extra
information about the generated code, and the second disabling JIT
compiler optimizations. The ILAsm compiler automatically emits this
custom attribute when the /DEBUG command-line option is speci
fied. The ILDASM outputs this attribute but comments it out.

• System.Security. UnverifiableCodeAttribute This attribute, which
can be owned by the module, indicates that the module contains unver
ifiable code. Thus, because the result is known, IL code verification pro
cedures don't have to be performed. The instance constructor has no
parameters.

318 Part V Special Components

• System.ThreadStaticAttribute This attribute, which can be
owned by a field, indicates that the static field is not shared
between the threads. Instead, the common language runtime cre
ates an individual copy of the static field for each thread. The effect
is approximately the same as mapping the static field to the thread
local storage (TLS) data, but this effect is achieved on the level of
the runtime rather than that of the operating system.

Interoperation Subsystem
All the custom attribute types in this group belong to the namespace System.
Runtime.InteropServices. The following list refers to them by their class names
only:

• ClasslnterfaceAttribute This attribute, which can be owned by
the assembly or a TypeDef (class), specifies whether a COM class
interface is generated for the attributed type. This attribute type has
two instance constructors, each having a single parameter. The first
constructor takes a value of enumerator Classlnter:f aceType; the sec
ond takes an int16 argument. The acceptable argument values are 0
(no automatic interface generation), 1 (automatic !Dispatch interface
generation), or 2 (automatic dual interface generation).

• ComAliasNameAttribute This attribute, which can be owned by
a parameter (including the return value), a field, or a property, indi
cates the COM alias for the attributed item. The instance constructor
has a single string parameter.

• ComConversionLossAttribute This attribute, which can be
owned by any item, indicates that information about a class or an
interface was lost when it was imported from a type library to an
assembly. The instance constructor has no parameters.

• ComRegisterFunctionAttribute This attribute, which can be
owned by a method, indicates that the method must be called when
an assembly is registered for use from COM. This allows for the exe
cution of user-defined code during the registration process. The
instance constructor has no parameters.

• ComUnregisterFunctionAttribute This attribute, which can be
owned by a method, indicates that the method must be called when
an assembly is unregistered from COM. The instance constructor has
no parameters.

• ComSourcelnterfacesAttribute This attribute, which can be
owned by a TypeDef, identifies a list of interfaces that are exposed

Chapter 13 Custom Attributes 319

as COM event sources for the attributed type. This attribute type
has five instance constructors; the most useful one has a single
string parameter, the value of which should contain a space-sepa
rated list of all interface types in Reflection notation. (See "Custom
Attribute Value Encoding," earlier in this chapter.)

• ComVisibleAttribute This attribute, which can be owned by the
assembly, a TypeDef, a method, a field, or a property, indicates
whether the attributed item is visible to classic COM. The instance
constructor has one Boolean parameter having a value of true if the
item is visible.

• DispldAttribute This attribute, which can be owned by a method,
a field, a property, or an event, specifies the COM Displd of the
attributed item. The instance constructor has one int32 parameter,
the value of the Displd.

• GuidAttribute This attribute, which can be owned by the assem
bly or a TypeDef, specifies an explicit GUID if the GUID automati
cally generated by the runtime is for some reason not guid-I mean,
good-enough. The instance constructor has one string parameter,
which should contain the GUID value in standard literal representa
tion without the surrounding curly braces.

• ImportedFromTypeLibAttribute This attribute, which can be
owned by the assembly, indicates that the types defined within the
assembly were originally defined in a COM type library. The attribute
is set automatically by the Tlblmp.exe utility. The instance construc
tor has one string parameter, which should contain the filename of
the imported type library.

• InterfaceTypeAttribute This attribute, which can be owned by a
TypeDef (interface), indicates the COM-specific interface type this
interface is exposed as. The instance constructor has one intl 6
parameter. A value of 0 indicates a dual interface, a value of 1 indi
cates !Unknown, and a value of 2 indicates !Dispatch.

• ProgldAttribute This attribute, which can be owned by a TypeDef
(class), explicitly specifies the COM Progld of the attributed class.
Normally, the Progld strings are generated automatically as a full
class name (namespace plus name), but the Progld length is limited
to 39 bytes plus a 0 terminator. The namespaces and class names in
.NET are rather long-winded, so there's a good chance 39 bytes
won't even cover the names pace. The instance constructor has one
string parameter, which should contain the Progld string.

320 Part V Special Components

Security

• TypeLibFuncAttribute This attribute, which can be owned by a
method, specifies the COM function flags that were originally
imported from the type library. (The COM function flags are
described in COM literature and on the Microsoft Developer Net
work [MSDN].) This attribute is generated automatically by the
Tlbimp.exe utility. The instance constructor has one int16 parameter,
the flags' value.

• TypeLibTypeAttribute This attribute, which can be owned by a
TypeDef, is similar to TypeLibFuncAttribute except that COM type
flags are specified instead of COM function flags.

• TypeLibVarAttribute This attribute, which can be owned by a
field, is similar to TypeLibFuncAttribute and TypeLibTypeAttribute
except that the flags in question are COM variable flags.

Security-related custom attributes are special attributes that are converted to
Dec!Security metadata records. Usually, the security custom attributes don't
make it past the compilation stage-they are converted and cease to exist. In
one scenario, however, the security custom attributes do "survive" the compila
tion and are emitted into the PE file. This happens when the security attributes
owned by the assembly are specified in the assembly modules, further linked to
the assembly by the assembly linker tool. In this case, the assembly-owned
security attributes are converted to Dec!Security metadata records by the assem
bly linker, but they remain in the assembly modules, although they play no role.

One of the security custom attributes belongs to the namespace Sys
tem .Security:

• SuppressUnmanagedCodeSecurityAttribute This attribute, which
can be owned by a method or a TypeDef, indicates that the security
check of the unmanaged code invoked through the P/Invoke mecha
nism must be suppressed. The instance constructor has no parameters.
This custom attribute differs from other security attributes in that it is not
converted to Dec!Security metadata and hence stays intact once emitted.

The rest of the security custom attributes belong to the namespace Sys
tem.Security.Permissions. The ownership of all security custom attributes is lim
ited to the assembly, a TypeDef (class or value type), and a method. The
instance constructors of these attributes have one int16 parameter, the action

Chapter 13 Custom Attributes 321

type code. Chapter 14, "Security Attributes," discusses the security action types
and their respective codes as well as various types of permissions.

The following list offers a brief description of the security custom
attributes; you can find further details in Chapter 14.

• SecurityAttribute This generic security attribute is the base class
of all other security attributes.

• CodeAccessSecurityAttribute This attribute is the base class of the
code access security attributes. Other attributes derived from this one
are used to secure access to the resources or securable operations.

• EnvironmentPermissionAttribute This attribute sets the security
action for the environment permissions that are to be applied to the
code.

• FileDialogPermissionAttribute This attribute sets the security
action for file open/save dialog permissions.

• FileIOPermissionAttribute This attribute sets the security action
for the file input/output permissions (read, write, append and so on).

• IsolatedStorageFilePermissionAttribute This attribute sets
the security action for the permissions related to the isolated stor
age files (available storage per user, the kind of isolated storage
containment).

• PermissionSetAttribute This attribute sets the security action not
for one permission but for a whole permission set, specified in a
string or an XML file or a named permission set.

• PrincipalPermissionAttribute This attribute sets the security
action for the principal security permissions (security checks against
the active principal).

• PublisherldentityPermissionAttribute This attribute sets the
security action for the security permissions related to the software
publisher's identity.

• ReflectionPermissionAttribute This attribute sets the security
action for the Reflection permissions.

• RegistryPermissionAttribute This attribute sets the security
action for the registry access permissions (read, write, create a key).

• SecurityPermissionAttribute This attribute sets the security
action for the security permissions.

• SiteldentityPermissionAttribute This attribute sets the security
action for the site identity permissions.

322 Part V Special Components

• StrongNameldentityPermissionAttribute This attribute sets
the security action for the assembly's strong name manipulation
permissions.

• UIPermissionAttribute This attribute sets the security action for
the user interface permissions (window flags, Clipboard manipula
tion flags).

• UrlldentityPermissionAttribute This attribute sets the security
action for the URL permissions.

• ZoneldentityPermissionAttribute This attribute sets the security
action for the security zone (MyComputer, Intranet, Internet, Trusted,
Untrusted).

Remoting Subsystem
The following custom attributes are recognized by the remoting subsystem of
the common language runtime and can be owned by a TypeDf!f

• System.Runtime.Remoting. Contexts. ContextAttribute This cus
tom attribute class, which sets the remoting context, is a base class of
all context attribute classes. It provides the default implementations of
the interfaces IContextAttribute and IContextProperty. The instance
constructor has one string parameter, the attribute name.

• System.Runtime.Remoting.Contexts.SynchronizationAttribute
This custom attribute specifies the synchronization requirement and
the re-entrance capability of the attributed class. It defines the class
behavior in the synchronized contexts (contexts having the Synchro
nization property). The presence of an instance of this property in a
context enforces a synchronization domain for the context (and all
contexts that share the same instance). This means that at any
instant, at most one thread could be executing in all contexts that
share this property instance. The synchronization requirement flags
are as follows:

1 The class should not be instantiated in a context that has synchronization

2 It is irrelevant to the class whether or not the context has synchronization

4 The class should be instantiated in a context that has synchronization

8 The class should be instantiated in a context with a new instance of the
Synchronization property

This attribute type has four instance constructors, as follows:

Chapter 13 Custom Attributes 323

Constructor with no parameters Defaults the synchronization requirement to 1
and the re-entrancy flag to false

Constructor with one int32
parameter

Constructor with one Boolean
parameter

Constructor with int32 and
Boolean parameters

Sets the synchronization requirement and
defaults the re-entrancy flag

Sets the re-entrancy flag and defaults the syn
chronization requirement

Sets both values

• System.Runtime.Remoting.Activation. Ur/Attribute This attribute
is used at the call site to specify the URL of the site where the activa
tion will happen. The instance constructor has one string parameter,
which contains the target URL.

The information provided here is rather brief, but a protracted discussion
of the topics related to remoting implementation goes far beyond the scope of
this book. This is one of those occasions when one has to remember that mod
esty is a virtue.

Visual Studio .NET Debugger
The following two custom attributes are recognized by the Microsoft Visual
Studio .NET debugger. They are not recognized by the .NET Framework
debugger (Cordbg.exe). Both of these custom attributes belong to the
names pace System .Diagnostics.

• DebuggerHiddenAttribute This attribute, which can be owned
by a method or a property, signals the debugger not to stop in the
attributed method and not to allow a breakpoint to be set in the
method. The instance constructor has no parameters.

• DebuggerStepThroughAttribute This attribute is the same as
DebuggerHiddenAttribute except that it does allow a breakpoint to
be set in the method.

Assembly Linker
The five custom attributes listed in this section are intended for the assembly
linker tool (Al.exe). They specify the characteristics of the assembly that the
assembly linker is about to create from several modules.

The most fascinating aspect of these attributes is their ownership. Think
about it: when the attributes are declared, no assembly exists yet; if it did, we
wouldn't need these attributes in the first place. Hence, the attributes are

324 Part V Special Components

declared in one or more of the modules that will make up the future assem
bly. What in a module might serve as an owner of these attributes? The solu
tion is straightforward: the .NET Framework class library defines the
System.Runtime.CompilerServices.AssemblyAttributesGoHere class, and the
assembly-specific attributes are assigned to the TypeRej of this class. Owner
ship of the assembly-specific attributes is the only reason this class exists.

All of the assembly-specific attributes, described in the following list,
belong to the namespace System.Reflection:

• AssemblyCultureAttribute This attribute specifies the culture of
the assembly. The instance constructor has one string parameter,
which contains the culture identification string.

• AssemblyVersionAttribute This attribute specifies the version of
the assembly. The instance constructor has one string parameter,
which contains the text representation of the version: dot-separated
decimal values of the major version, the minor version, the build,
and the revision. Everything beyond the major version can be omit
ted. If major and minor versions are specified, the build and/or the
revision can be omitted or specified as an asterisk, which leads to
automatic computation of these values at the assembly linker run
time. The build number is computed as the present day's number
counting since January 1, 2000. The revision number is computed as
the number of seconds that have elapsed since midnight, local time,
modulo 2.

• AssemblyKeyFileAttribute This attribute specifies the name of
the file containing the key pair used to generate the strong name sig
nature. The instance constructor has one string parameter.

• AssemblyKeyNameAttribute This attribute specifies the name of
the key container holding the key pair used to generate the strong
name signature. The instance constructor has one string parameter.

• AssemblyDelaySignAttribute This attribute specifies whether the
assembly is signed immediately at the time of generation or delay
signed-in other words, fully prepared to be signed later by the
strong name signing utility (Sn.exe). The instance constructor has
one Boolean parameter, true, indicating that the assembly is delay
signed.

Chapter 13 Custom Attributes 325

Common Language Specification (CLS) Compliance
The following two custom attributes are intended for the compilers and similar
tools. Types of both of the custom attributes belong to the System namespace.

• ObsoleteAttribute This attribute, which can be owned by a Type
Def, a method, a field, a property, or an event, indicates that the item
is not to be used any more. The attribute holds two characteristics: a
string message to be produced when the obsolete item is used, and a
Boolean flag indicating whether use of the item should be treated as
an error. This attribute type has three instance constructors, as follows:

Constructor with no parameters

Constructor with a string parameter

Produces no message and no error

Produces a message but no error

Constructor with string and Boolean Produces a message and an error flag
parameters

• CLSComplianceAttribute This attribute, which can be owned by
anything, indicates the (claimed) CLS compliance or noncompliance of
the attributed item. Assigning this attribute to an assembly doesn't
make the assembly CLS-compliant or noncompliant; it's simply an
expression of your opinion on the matter. The instance constructor has
one Boolean parameter; a value of true indicates CLS compliance.

Pseudocustom Attributes
As mentioned earlier, custom attributes are a lifesaver for compilers. Once a lan
guage is given the syntax to express a custom attribute, it's free to use this syn
tax to describe various metadata oddities its principal syntax can't express. The
parallel evolution of the common language runtime and the managed compil
ers, with the runtime getting ahead now and then, created the concept of the
so-called pseudocustom attributes. These attributes are perceived and treated
by the compilers as other custom attributes are, but they are never emitted as
such. Instead of emitting these attributes, the metadata emission API sets spe
cific values of the metadata.

The following are the 13 pseudocustom attributes:

• System.Runtime.InteropServices. ComlmportAttribute This
attribute sets the import flag of a type definition. The instance
constructor has no parameters.

• System.Runtime.InteropServices.DlllmportAttribute This
attribute sets the method flag pinvokeimpl, the implementation
flag preservesig, and the name of the unmanaged library from
which the method is imported. The instance constructor has one

326 Part V Special Components

string parameter, the name of the unmanaged library. The entry
point name and the marshaling flags are specified through the
name/value pairs of the EntryPoint, CharSet, SetLastError,
ExactSpelling, and CallingConvention properties.

• System.SerializabkAttribute This attribute sets the serializable
flag of a type definition. The instance constructor has no parameters.

• System.NonSerializedAttribute This attribute sets the notserial
ized field flag. The instance constructor has no parameters.

• System.Runtime.InteropServices.InAttribute This attribute sets
the parameter flag in. The instance constructor has no parameters.

• System.Runtime.InteropServices.OutAttribute This attribute sets
the parameter flag out. The instance constructor has no parameters.

• System.Runtime.InteropServices.OptionalAttribute This attribute
sets the parameter flag opt. The instance constructor has no parameters.

• System.Runtime.CompilerServices.MethodlmplAttribute This
attribute sets the method implementation flags. The instance con
structor has one int16 parameter, the implementation flags.

• System.Runtime.InteropServices.MarshalAsAttribute This
attribute is used on fields and method parameters for managed/
unmanaged marshaling. The instance constructor has one intl 6
parameter, the native type.

• System.Runtime.lnteropServices.PreserveSigAttribute This
attribute sets the preservesig method implementation flag. The
instance constructor has no parameters.

• System.Runtime.InteropServices.StructLayoutAttribute This
attribute sets the layout flags of a type definition (auto, sequen
tial, or explicit), the string marshaling flags (ansi, unicode, or
autochar), and the characteristics .pack and .size. The instance
constructor has one intl 6 parameter, the layout flag. The .pack
and .size characteristics and the string marshaling flags are speci
fied through the name/value pairs of the Pack, Size, and CharSet
properties, respectively.

• System.Runtime.lnteropServices.FieldOffsetAttribute This
attribute sets the field offset (ordinal) in explicit or sequential
class layouts. The instance constructor has one int32 parameter,
the offset or ordinal value.

• System.Security.DynamicSecurityMethodAttribute This attribute
sets the method flag reqsecobj. The instance constructor has no parame
ters.

Chapter 13 Custom Attributes 327

ILAsm syntax is adequate to describe all the parameters and characteristics
listed here and does not use the pseudocustom attributes.

As a matter of fact, I should warn you against using the
pseudocustom attributes instead of ILAsm keywords and constructs.
Using pseudocustom attributes rather than keywords is not a bright
idea in part because the keywords are shorter than the custom
attribute declarations. In addition, you should not forget that the ILAsm
compiler, which has no use for custom attributes, treats them with
philosophical resignation-in other words, it emits them just as they
are, without analysis. Hence, if you specify important flags through
pseudocustom attributes, the compiler will not see these flags and as
a result could come to the wrong conclusions.

Metadata Validity Rules
A record of the CustomAttribute table has three entries: Parent, Type, and
Value. The metadata validity rules for the custom attributes are rather simple:

• The Parent entry must hold a valid index to one of the following
tables: Module, TypeRef, TypeDef, Field, Method, Param, Interface
Impl, MemberRef, DeclSecurity, StandAloneSig, Event, Property,
ModuleRef, TypeSpec, Assembly, AssemblyRef, File, ExportedType,
or ManifestResource.

• The Type entry must hold a valid index to the Method or MemberRef
table, and the indexed method must be an instance constructor.

• The Value entry must hold either 0 or a valid offset in the #Blob
stream.

• The blob indexed in the Value entry must be encoded according to
the rules described earlier in this chapter; see "Custom Attribute
Value Encoding."

• The fields and properties listed in the name/value pairs of the Value
blob must be accessible from the custom attribute owner (referenced
in the Parent entry).

Security Attributes
Declarative Security 330

Declarative Actions 331

Security Permissions 333

Declarative Security Metadata 343

Security Attribute Declaration 345

Metadata Validity Rules 346

As a platform for massively distributed operations, the Microsoft .NET Frame
work must have an adequate security mechanism. We all know that distributed
platforms, especially those exposed to the Internet, are the favorite targets of all
sorts of pranks and mischief, which can sometimes be very destructive.

The security system of the .NET Framework includes two major compo
nents: security policies and embedded security requirements. Security policies
are part of the .NET Framework setup and reflect the opinions of the system
administrator and the system user regarding what managed applications can
and cannot do. Which policies are established can depend in part on the gen
eral origin of the application (for example, whether the application resides on
the local drive of a machine, is taken from a closed intranet, or comes from the
Internet), on the software publisher (for example, whether the system adminis
trator feels differently about applications published by Microsoft or IBM and
those published by tailspintoys.com), on the URL specifying the application's
origin, on a particular application, and so forth. Important as they are, these
security policies and their definition are beyond the scope of this book, and,
with regret, I will forgo a detailed discussion of this topic.

329

330 Part V Special Components

Embedded security requirements are embedded in the applications them
selves. Effectively, the embedded security requirements tell the common lan
guage runtime which rights an application needs in order to execute. The
runtime checks the application's security requirements against the policy under
which the application is executed and decides whether it's a go or a no-go.

Embedded security requirements are of two kinds: imperative security,
which is part of the application's code; and declarative security, which is part of
the application's metadata. Imperative security explicitly describes the opera
tions necessary to perform a security check-for example, calling a method to
query the runtime whether the application is given a certain right. Declarative
security is a set of security attributes assigned to certain metadata items (the
assembly as a whole or a certain class or method). Each of these attributes
describes the rights that the corresponding item needs in order to be loaded
and executed.

This chapter concentrates on declarative security because it is an impor
tant part of metadata and because you need to know how it is defined in IL
assembly language (ILAsm). Besides, I have a feeling that many aspects of
imperative security, and even security policies, can be deduced from an analy
sis of declarative security.

Declarative Security
Compared to imperative security, declarative security has two main advantages:

• Being part of the metadata, declarative security can be identified and
assessed without exhaustive analysis of the application's IL code.

• Declarative security can be developed and modified independent of
the functional code. As a result, a division of labor is possible: devel
oper X the functionality guru writes the application, and developer Y
the security guru tinkers with the security attributes.

A disadvantage of declarative security is its coarse targeting. Declarative
security can be attributed to a class as a whole but not to the parts of the class
and not to specific instances. Declarative security can be attributed to a method
as a whole, without exact specification of when and under what circumstances
the special rights might be needed. Imperative security, in contrast, allows the
method to behave more flexibly-" ... can I do this? No? OK, then I'll do it some
other way. Let's see. Can I do· that? ... "

Chapter 14 Security Attributes 331

Declarative Actions
A declarative security attribute has three characteristics: the target, the metadata
item to which it is attributed; the permission, a description of the rights that
interest the target; and the action, a description of the precise way the target is
interested in these rights.

The nine declarative security actions are intended for different targets
and take effect at different stages of the application execution. The earliest
stage of execution is the initial loading of the assembly's prime module and
analysis of its manifest. Three declarative actions, targeting the assembly, take
effect at this stage:

• Request Minimum This action specifies that the permission is a
minimum requirement for the assembly to be executed. If the mini
mal permissions are not specified, the assembly is granted all rights
according to the existing security policy. These rights, however,
might be reduced by other already running parts of the application,
by means of a Deny or Permit Only action.

• Request Optional This action specifies that the permission is use
ful to have but is not vital for the assembly execution.

• Request Refuse This action specifies that the permission should
not be granted even if the security policy is willing to grant it. This
action might be used to ·ensure that the assembly does not have
rights it does not need, thus providing a shield against possible bugs
in the assembly itself and against malicious code that might try to
coerce the assembly to do something it shouldn't.

The next stage of the application execution is the loading of its classes and
their members. Only one declarative action, targeting classes and methods,
plays a role at this stage:

• Inheritance Demand For classes, this action specifies the permis
sion that all classes descending from this one must have. For meth
ods, this action specifies the permission that all methods overriding
this one must have. Obviously, this action makes sense for virtual
methods only.

After the classes and their members have been loaded, the IL code of the
methods is JIT (just-in-time) compiled. The declarative action targeting classes
and methods takes effect at this stage:

332 Part V Special Components

• Link Demand This action specifies the permission that all callers of
this method must have--or, if the target is a class, the permission that
any method of this class must have. For example, if you have a
method that formats the system drive, you want to ensure that this
method cannot be successfully called from some rogue code that has
no right to do so. This action is limited to the immediate caller only. If
method A link-demands permission P, and method B calling A has this
permission, but method C calling B does not, the call will go through.

The last stage of the application execution is the run time, when the JIT
compiled code is actually executed. The declarative actions taking effect at this
last stage and targeting classes and methods are as follows:

• Demand This action is similar to Link Demand, but it demands
that all callers in the call chain have the specified permission.

• Assert This action specifies the permission that any caller on the
call stack must have. If any caller at any level has the specified per
mission, the security check succeeds. This action obviously weakens
the declarative security model and should be applied with caution.
You cannot apply this action unless the code has the access permis
sion SecurityPermission, which is discussed later in this chapter.

• Deny This action specifies the permission that must be disabled for
all callers along the call stack for the duration of the called method.
If a caller never had the specified permission in the first place, the
action has no effect on it.

• Permit Only This action specifies the permission that must not be
disabled for all callers along the call stack, presuming that the rest of
the permissions must be disabled. The action seems excessively
cruel (to strip the poor callers of all their privileges except one), but
you must not forget that the target might have multiple security
attributes. Using a series of Permit Only actions, you can create a set
of permissions that remain for the callers to enjoy while all other per
missions are temporarily revoked. To clarify this, consider the fol
lowing example. If the called method has security attributes Deny P
and Deny Q, all callers will have their permissions P and Q sus
pended. If the called method has security attributes Permit Only P
and Permit Only Q, all permissions except P and Q of all callers will
be suspended.

And now, let's see what these Ps and Qs stand for.

Chapter 14 Security Attributes 333

Security Permissions
Security permissions define the kinds of activities the code requests (or
demands, or denies, and so on) the right to perform. The same permissions are
used in security policy definitions, specifying what sort of applications have the
right to perform these activities and under what circumstances.

These permissions are represented by special classes of the .NET Frame
work class library. Each permission class is accompanied by a permission
attribute class, a class whose instance constructor is used as a type of security
custom attribute. Applying a security custom attribute to a metadata item leads
to instantiation of the security object targeting the associated metadata item.

In some sense, it's easier to describe the permissions in terms of the
accompanying attribute classes, because the permission classes have instance
constructors of different signatures, whereas the instance constructors of the
security attribute classes invariably have one parameter-the security action
code-and all the parameters of the instance constructor(s) of the respective
permission class are represented by the attribute's properties, set through
name/value pairs.

The permissions form three groups. The first group includes the permis
sions related to access rights to certain resources. The second group consists of
permissions related to identity characteristics of the code, including its origin.
The third group represents custom permissions, invented by .NET Framework
users for their particular purposes. It seems to be a general principle of the .NET
Framework that if you can't find something satisfactory within the Framework,
it at least provides you with the means to build your own better mousetrap.

Because most of the permission classes belong to the namespace Sys
tem.Security.Permissions, of the Mscorlib.dll assembly, I've specified the assem
bly and namespace in the following sections only when they are different.

Access Permissions
The access permissions control access rights to various resources. The group
includes the following nine permissions:

• [System.mrectoryServices]System.mrectoryServices.
mrectoryServicesPermission This permission defines access to
the Active Directory. The attribute class has two properties: .

O Path (type string) indicates the path for which the permission is
specified.

0 PermissionAccess (type int32) specifies the type of access: a
value of 0 indicates no access, a value of 2 indicates browse
access, and a value of 6 indicates write access.

334 Part V Special Components

• [System]System.Net.DnsPermission This permission defines the
right to use the Domain Name Services (DNS). The attribute class has
no properties because there are no details to specify: either you can
use DNS or you can't.

• EnvironmentPermission This permission defines the right to
access the environment variables. The attribute class has three prop
erties, all of type string, which specify the names of the environment
variables affected:

All specifies the name of the environment variable that can be
accessed in any way.

Read specifies the name of the environment variable that can
be read.

Write specifies the name of the environment variable that can
be written to.

• FileDialogPermission This permission defines the right to access
a file selected through the standard Open or Save As dialog. The
attribute class has two properties, both of type boot, for which true
indicates that the access is to be granted and false indicates that it is
to be denied:

Open grants or denies the right to read the file.

Save grants or denies the right to write to the file.

• FileIOPermission This permission defines the right to access
specified directories or individual files. The attribute class has five
properties, all of type string, which contain a path or a full-path file
specification. If the path is specified, the permission is propagated to
the whole directory subtree starting at this path. The attribute class
properties are as follows:

All indicates full access to the specified path or file.

Read indicates read access to the specified path or file.

Write indicates write access, including file overwriting and new
file creation.

Append indicates append access-in other words, the existing
file can be appended but not overwritten, and a new file can be
created.

PathDiscovery indicates browse access-for example, querying
the current directory, getting a filename back from the file dia
log, and so on.

Chapter 14 Security Attributes 335

• IsolatedStorageFilePermission This perm1ss1on defines the
right to access the isolated storage. Briefly, the isolated storage is a
storage space allocated specifically for the user's application, provid
ing a configurationless data store independent of the structure of the
local file system. Data compartments within the isolated storage are
defined by the identity of the application or component code. Thus,
there's no need to work magic with the file paths to ensure that the
data storages specific to different applications don't overlap. The
attribute class has two properties:

UsageAllowed (int32-based enumeration IsolatedStorageCon
tainment) indicates the isolated storage type.

UserQuota (type int64) indicates the maximum size in bytes of
the isolated storage that can be allocated for one user.

The UsageAllowed property can be . assigned the following
int32 values:

None (OxOO)
DomainlsolationByUser (OxlO)
Assembly!solationByUser (Ox20)
DomainlsolationByRoaming User (Ox50)
AssemblylsolationByRoaming User (Ox60)
AdministerlsolatedStorageByUser (Ox70)
UnrestrictedlsolatedStorage (OxFO)

• ReflectionPermission This permission defines the right to invoke
Reflection methods on nonpublic class members and to create
dynamic assemblies at run time using the methods of Reflec
tion.Emit. The attribute class has four properties:

MemberAccess (type boot) grants or denies the right to access
the nonpublic members through Reflection methods.

Typelnformation (type boot) grants or denies the right to
invoke Reflection methods to retrieve information about the
class, including information about the nonpublic members.

Re.flectionEmit (type boot) grants or denies the right to invoke
Reflection.Emit methods.

Flags (int32-based enumeration Re.flectionPermissionFlag)
summarizes the three preceding properties, using a binary OR
combination of flags OxOl for Typeln:formation, Ox02 for Mem
berAccess, and Ox04 for Re.flectionEmit.

336 Part V Special Components

• RegistryPermission This permission defines the right to manipu
late the registry keys and values. This permission is analogous in all
ways to File!OPermission except that it specifies the access rights to
the registry rather than to the file system. The attribute class has four
properties, all of type string, which contain the registry path:

O Create grants the right to create the keys and values anywhere
in the registry subtree, starting with the node specified in the
property.

Read grants the right to read the keys and values.

Write grants the right to change the existing keys and values.

All grants all of the three preceding rights.

• SecurityPermission This permission defines a set of 13 essential
rights to modify the behavior of the common language runtime secu
rity subsystem itself. The attribute class has 13 properties of type boot
(one for each right) plus one property (int32-based enumeration
SecurityPermissionFlag) representing an OR combination of binary
flags corresponding to the Boolean properties:

Assertion defines the right to override a security check for any
granted permission. The respective binary flag is OxOOOl.

UnmanagedCode defines the right to invoke the native unman
aged code, for example, through P/lnvoke or COM interopera
tion (flag Ox0002). If this right is granted, it is asserted every
time the unmanaged code is invoked, which results in a signif
icant performance hit. To avoid this, the custom attribute Sys
tem.Security.SuppressUnmanagedCodeSecurityAttribute can be
used. The presence of this attribute suppresses the repetitive
security checks when the unmanaged code is invoked.

Skip Verification defines the right to run the code without the IL
verification procedures at JIT compilation time (flag Ox0004).
This is an extremely dangerous right. To avoid inviting trouble,
this right should be granted only to code that is known to be
safe and that comes from a trusted source.

Execution defines the right to run the code (flag Ox0008). This
right, which is granted to almost any code, is the opposite of
Skip Verification. The right can be revoked by the administrator
or by user security policies regarding specific applications or
specific sources that are known for or suspected of being the
purveyors of malicious code.

Chapter 14 Security Attributes 337

i.J ControlThread defines the right to perform thread control oper
ations, such as suspending, interrupting, stopping a thread,
changing the thread priority, and so on (flag OxOOlO).

O ControlEvidence defines the right of the domain host to give
evidence to the applications loaded in the domains created by
this host (flag Ox0020). The evidence in question usually
includes information about the origin and strong name signa
ture of the loaded assembly. If the domain host does not have
this right, it gives its own evidence instead.

O ControlPolicy defines the right to access and modify security
policies, both user-specific and machinewide (flag Ox0040).
This is another extremely dangerous right that must be granted
with great caution.

O SerializationFormatter defines the right to perform the serial
ization formatting operations and to retrieve and change the
characteristics of any nontransient members of the serializable
types, regardless of the accessibility of these members (flag
Ox0080). This permission resembles RejlectionPermission in the
sense that both are of very low opinion about the accessibility
rules and allow you to access and invoke private class members
at will.

O ControlDomainPolicy defines the right of the domain host to
specify domainwide security policy (flag Ox0100).

O ControlPrincipal defines the right to replace the Principal
object (carrying the user's identity characteristics) for a given
thread, for example, in order to implement role-based security
(flag Ox0200). In the role-based security model, the security
actions depend on the identity (Principal object) of the "code
runner" and the role in which the "code runner" operates.

o ControlAppDomain defines the right to create and manipulate
the application domains (flag Ox0400).

O RemotingConfiguration defines the right to configure the
remoting types and channels (flag Ox0800).

O Infrastructure defines the right to plug the code into the com
mon language runtime infrastructure, such as adding remoting
context sinks, envoy sinks, and dynamic sinks (flag OxlOOO).

O Flags is a summary binary representation of the 13 rights just
listed. The validity mask is OxlFFF.

338 Part V Special Components

Identity Permissions
The access permissions describe the resources to be accessed and the actions to
be performed. The identity permissions describe the identities of the agents
who are accessing these resources and performing these actions. As a trivial
example, suppose that you've created a method or a component so atrocious
that you want only components written by your company to be able to access
it, because you can't trust anyone else to keep the beast in check.

It's a good practice to use identity permissions to extend rather than limit
the rights granted to the code of a specific origin. Limiting the rights on the
basis of the code's identity is a poor protection technique because the identity
information of the code can easily be suppressed. A software publisher you
particularly dislike can simply neglect to sign its malicious software, for
instance, and you'll never know that this particular code must be treated with
extra caution. Or the obnoxious snooping marketing site you'd love to block
can start operating through a different Web server or spoof its IP address.

The five identity permissions all belong to the namespace System.Secu
rity.Permissions and are defined in the Mscorlib.dll assembly:

• ZoneldentityPermission This permission identifies the zone
from which the calling code originates. The zones are defined and
mapped from the URLs by APis of IInternetSecurityManager and
related interfaces. The zones are not overlapping, and any particular
URL can belong to only one zone. The attribute class has one prop
erty, Zone (int32-based enumeration [mscorlib]System.Security.Secu
rityZone). The values of the enumeration are as follows:

CJ MyComputer (OxO) means that the application is run from the
local drive.

CJ Intranet (Oxl) means that the application is run from a closed
intranet.

CJ Trusted (Ox2) means that the application is run from a trusted
server.

CJ Internet (Ox3) means that the application originates from the
Internet.

CJ Untrusted (Ox4) means that the application's origin is suspicious
and that a high level of security is required.

CJ NoZone (OxFFFFFFFF) means that no zone information is
available.

Chapter 14 Security Attributes 339

• StrongNameldentityPermission This perm1ss1on identifies an
assembly by its strong name attributes-namely, by the assembly
name, the assembly version, and the public encryption key. The
public encryption key of the assembly must exactly match the one
specified in the permission.

The assembly name, however, might only partially match the
one specified in the permission because a wildcard character (*) can
be used in the assembly name specification in the permission. The
name of the assembly is usually a dotted name, such as Sys
tem.DirectorySeroices, and any right part of the name can be
replaced with the wildcard character. Thus, System.DirectorySeroices
denotes this specific assembly only, System.* denotes any assembly
whose name starts with System. (including the assembly System), and
*denotes any assembly. If, for example, the permission includes the
Microsoft private encryption key and the assembly name is given as
System.DirectorySeroices, the permission identifies the assembly Sys
tem.DirectorySeroices from the .NET Framework. If the assembly
name included is System.*, the permission identifies it as any
Microsoft assembly whose name begins with System. If the assembly
name is given simply as *, the permission identifies it as any assem
bly produced and signed by Microsoft. It is illegal to replace the left
part of the name with the wildcard character (for example, *.Directo
rySeroices).

The assembly version includes four components: the major ver
sion, the minor version, the build number, and the revision number.
The fourth or both the third and the fourth components can be omit
ted, but the first two components must be specified, unless the ver
sion is not specified at all. The attribute class has three properties, all
of type string:

0 Name is the name of the assembly, possibly with a wildcard
character in the right part.

O PublicKey is the encoded hexadecimal representation of the
public encryption key.

O Version is the literal representation of the version-for exam
ple, 1.12.123.1 or 1.12.

• PublisherldentityPermission This permission specifies the soft
ware publisher's identity, based on the public key defined by an
X509v3 certificate. This certificate is issued by a trusted certification
authority and contains encrypted information authenticating the

340 Part V Special Components

publisher's public encryption key. The name of the publisher is
ignored. The associated attribute class has three properties, all of
type string. Only one of the properties can be set, because they rep
resent alternate ways of obtaining the certificate:

X509Certi:ftcate contains the explicit X509v3 certificate in a
coded form.

CertFile contains the name of the file containing the certificate.

SignedFile contains the name of the file strong name signed
with this certificate, so that the certificate can be obtained from
the file's strong name signature.

• SiteldentityPermission This permission identifies the Web site
from which the code originates. The attribute class has one property,
Site, of type string, which contains part of the Web site's URL with a
stripped protocol specification at the start and the filename at the
end-for example, www.microsoft.com in the URL http://
www.microsoft.com/ms.htm. The protocol is presumed to be HTTP,
HTTPS, or FTP. The wildcard character (*) is allowed in the site spec
ifications, this time as the left part of the specification.

• UrlldentityPermission This permission identifies the full URL of
the site from which the code originates. The attribute class has one
property, Ur!, of type string, which contains the full URL specifica
tion, including the protocol specification and file specification-for
example, http://oursite.microsoft.com/appslfoo/zzz.html. The wild
card character is permitted, this time as the right part of the specifi
cation-for example, http://oursite.microsoft.com/appslfoo/*.

Custom Permissions
The custom permissions, similar to those already defined in the .NET Frame
work class library, describe access rights to various resources. Once defined, a
custom permission can be used in exactly the same way as any "standard" per
mission. Custom permissions are introduced, as a rule, when it's necessary to
describe access to some new kind of resource not covered by existing permis
sions, such as a new input or output device.

Chapter 14 Security Attributes 341

Tip It's a bad practice to try to redefine existing permissions as cus
tom permissions. It is possible to do so, but having multiple permis
sions pertaining to the same resource can only create pain for the
system administrators, who must then keep an eye on all alternative
"doors" leading to the resource. As a matter of practical advice: don't
make system administrators any unhappier than they already are; it
might cost you.

To define a custom permission, you'll need to do the following:

1. Define the new permission class.

2. Define constructors and methods of the permission class according
to the permission semantics.

3. Define the methods implementing the [mscorlib]System.Security.!Per
mission interface: Copy, Intersect, Union, IsSubsetOf, and Demand.

4. If, in principle, full access to the resource can be granted, define the
lsUnrestricted method implementing [mscorlib]System.Security.IUn
restrictedPermission.

5. Define the methods implementing the [mscorlib]System.Security.!Se
curityEncodable interface that provide the XML encoding and decod
ing of the permission: FromXml, ToXml.

6. If necessary, define the GetObjectData method implementing the
[mscorlib]System.Runtime.Serialization.!Serializable interface.

7. Define the accompanying attribute class.

8. Add support for declarative security.

9. Add the mechanism enforcing the permission wherever the associ
ated resource is exposed.

10. Modify the security policies to take your new permission into
account.

Needless to say, the preceding list is meant to discourage you from defin
ing custom permissions

The best way to define a custom permission is to pick a standard permis
sion whose semantics resemble your intended semantics most closely and use

342 Part V Special Components

it as an example. It's always a good idea to derive the custom permission
classes from [mscorlib]System.Security.CodeAccessPermission and the accompa
nying attribute classes from [mscorlib]System.Security.Permissions.CodeAc
cessSecurityAttribute.

One of the major design problems in defining a custom permission is the
question of the granularity of the resource access description. In other words,
what level of detail is adequate to describe the protected resource? If you were
designing RegistryPermission, for example, your choice of granularity could
range from a 1-bit indication of whether or not full access to the registry is
granted to a detailed description of a specific kind of access to a specific regis
try node.

Generally, four basic principles should guide your approach to permission
granularity:

• Total Boolean, which grants or denies access to the resource.

• Total enumerated, which grants one of the specified (enumerated)
forms of access to the resource.

• Listed Boolean, which grants or denies access to the resource com
ponents listed in the permission declaration.

• Listed enumerated, which grants one of the specified forms of
access to the resource components listed in the permission.

Although additional questions might arise about the level of detail
involved in the access form enumeration and the resource components list, the
four basic principles, I think, stand. You are welcome to introduce a fifth and
put me to shame.

A custom permission class must implement the ISecurityEncodable inter
face with its methods ToXml and FromXml, to encode the permission in XML
form and restore the permission object from the XML text. The outermost tag of
the XML encoding is Permission:

<Permiss~on class="MyPermission, MyOtherAssembly.dll" version="l">

<!Permission>

To support the declarative security mechanism built into the common
language runtime, the custom permission class must be accompanied by the
attribute class. The attribute class must have properties that correspond to
the parameters of the permission class's constructors. The attribute class
must also implement at least one variant of the CreatePermission method.
The custom attribute System.AttributeUsageAttribute must be assigned to the
attribute class, defining its possible targets, inheritance, and multiplicity, as

Chapter 14 Security Attributes 343

described in the section "Classification of Custom Attributes," in Chapter 13,
"Custom Attributes."

Enforcing a newly created custom permission is the easy part; the items
dealing with the new resource must create security objects from the custom
permission and also security actions, such as Demand, Assert, and so on. The
simplest way to do this is to assign the security custom attribute to the respec
tive item.

The last step in creating a custom permission is updating the security pol
icies to include the permission. This is done by writing an XML descriptor of the
custom permission and invoking the code access security policy tool,
Caspol.exe:

caspol -addset cust_perm.xml cust_perm_name

Then, again by using the Caspol.exe utility, a new code group must be
added or the existing one changed, to specify the code identities that will be
granted the custom permission. Operation of the Caspol utility is rather compli
cated and well beyond the scope of this book; for information, you can refer to
the documentation on Caspol and security administration included in the .NET
Framework SDK.

Permission Sets
Individual permission objects (the instances of the permission classes) can be
combined into permission sets. A permission set is an instance of the [mscor
lib}System. Security .PermissionSet class or of the [mscorlib}System.Secu
rity.NamedPermissionSet class, which is derived from the former. A permission
set can be constructed, for example, by combining all permissions relevant to a
certain resource or to a certain metadata item (the assembly, a class, or a
method).

The PermissionSet class, after its constituent permission classes, imple
ments the interface !Permission with its methods Copy, Intersect, Union, IsSub
setOJ, and Demand.

The unnamed permission sets constructed on a per-data-item basis, perti
nent to a certain type of security action, form the metadata representation of the
declarative security.

Declarative Security Metadata
The declarative security metadata resides in the metadata table DeclSecurity. A
record in this table has the three entries described in the following list.

344 Part V Special Components

• Action (2-byte unsigned integer) The security action code.

• Parent (coded token of type HasDec/Security) The index to
the Assembly, TypeDef, or Method metadata table, indicating the
metadata item with which the Dec!Security record is associated.

• PermissionSet (offset in the #Bl.ob stream) Encoded represen
tation of the permission set associated with a specific security action
and a specific metadata item.

The following security action codes and their respective ILAsm keywords
are defined for the security actions listed in the "Declarative Actions" section of
this chapter and for special-purpose security actions:

• Request: code OxOOO 1, ILAsm keyword request.

• Demand: code Ox0002, ILAsm keyword demand.

• Assert: code Ox003, ILAsm keyword assert.

• Deny: code Ox0004, ILAsm keyword deny.

• Permit Only: code OxOOOS, ILAsm keyword permitonly.

• Link Demand: code Ox0006, ILAsm keyword linkcheck.

• Inheritance Demand: code Ox0007, ILAsm keyword inheritcheck.

• Request Minimum: code Ox0008, ILAsm keyword reqmin.

• Request Optional: code Ox0009, ILAsm keyword reqopt.

• Request Refuse: code OxOOOA, ILAsm keyword reqrefuse.

• Pre-]IT Grant (persisted grant, set at pre-JIT compilation time by the
Ngen.exe utility): code OxOOOB, ILAsm keyword prejitgrant.

• Pre-j!T Deny (persisted denial, set at pre-JIT compilation time): code
OxOOOC, ILAsm keyword prejitdeny. This security action is not sup
ported in the first release of the common language runtime.

• Non-CAS Demand: code OxOOOD, ILAsm keyword noncasdemand.
This action is similar to Demand, but the permission classes that
make up the permission set must not be derived from System.Secu
rity.Permissions.GodeAccessPermission.

• Non-CAS Link Demand: code OxOOOE, ILAsm keyword noncaslinkde
mand. This action is similar to Link Demand but has the same limi
tation as Non-GAS Demand.

• Non-CAS Inheritance Demand: code OxOOOF, ILAsm keyword non
casinheritance. This action is similar to Inheritance Demand but has
the same limitation as Non-GAS Demand.

Chapter 14 Security Attributes 345

The blob indexed in the PermissionSet entry of the Dec!Security record
contains an encoded representation of the permission set object. In the first
release of the common language runtime, the blob contains a Unicode-encoded
XML description of the permission set.

Security Attribute Declaration
ILAsm syntax offers two forms of security attribute declaration: as separate per
missions and as permission sets. The owner of the security attribute is the item
whose scope contains the security attribute declaration. The syntax for the per
mission declaration is as follows:

.permission <sec_action> <class_ref> [(<name_value_pairs>)]

where <sec_action> is one of the security action keywords listed in the preced
ing section, <class_ref> is a class reference to the attribute class associated with
the permission class, and optional <name_value_pairs> define the values of the
attribute class's properties, as shown here:

<name_value_pairs> ::= <nv_pair>[.<nv_pair>*]
<n v_pa i r > <prop_name> = <prop_ va 7 ue>

<prop_name> is the property name of the attribute class, specified as a
quoted string. The form of <prop_value> depends on the type of property:

<prop_value> true I false II For Boolean properties
I <int32>
<class_ref>

I int32(<int32>) II For integer properties
(<int32>) II For enumerated properties,
II <class_ref> specifies the enumerator

<class_ref>(<int_type> <int32>) II <int_type>::=int8
II I intl6 I int32

<quoted_string> II For string properties

For example:

.method private void WriteToSystemDrive(string Str2BWritten)
{

}

.permission demand
[mscorlib]System.Security.Permissions.FileIOPermissionAttribute

("Wri te"="C: \ \")

346 Part V Special Components

The ILAsm compiler combines separate permission declarations into per
mission sets before emitting the DeclSecurity metadata. However, a permission
set can be declared explicitly using

.permissionset <sec_action> = <hexbytes>

where <hexbytes> is a byte array representing the PermissionSet blob. This byte
array is usually fairly long-a "live" example would take a couple of pages. To
see such an example, you can simply disassemble any .NET Framework assem
bly (Mscorlib.dll or System.dll, for instance) and have a look.

Given that the PermissionSet blob is in fact a Unicode-encoded XML rep
resentation of the permission set, use of <hexbytes> in the permission set dec
laration is another obvious shortcoming of ILAsm, which should be corrected in
future releases.

The IL Disassembler always uses the .permissionset directive to reflect the
Dec!Security metadata records.

Metadata Validity Rules
A record of the DeclSecurity metadata table has three entries: Action, the secu
rity action code; Parent, the metadata item to which the security record is
attached; and PermissionSet, the blob containing the XML descriptor of the per
mission set. The metadata validity rules for the Dec!Security metadata records
are as follows:

• [run time] The Action entry must hold a valid security action code in
the range Oxl through OxF.

• The Parent entry must hold a valid reference to the Assembly, Type
Def, or Method tables.

• If the Parent entry references a TypeDef record, this record must not
define an interface.

• If the Parent entry references a TypeDef or Method record, the meta
data item referenced in the Parent entry must have its respective
HasSecurity flag set (Ox00040000 for TypeDef records, Ox4000 for
Method records).

• [run time] The PermissionSet entry must hold a valid offset in the
#Blob heap. The blob at this offset must contain a legal XML repre
sentation of the permission set, Unicode-encoded.

Part VI

Managed and Unmanaged
Code Interoperation

Thunks and Wrappers 350

Data Marshaling 357

Providing Managed Methods as Callback for Unmanaged 365

Managed Methods as Unmanaged Exports 369

There can be no question about the need to provide seamless interoperation
between managed and unmanaged code, and I'm not going to waste time dis
cussing this obvious point.

Depending on the type and the role of the unmanaged code, managed
and unmanaged code can interoperate in several different scenarios. First of all,
the unmanaged code participating in the interoperation can be either "tradi
tional" code, exposed as a set of functions, or classic COM code, exposed as a
set of COM interfaces. Second, the unmanaged code can play the role of either
a server, with the managed code initiating the interaction, or a client, with the
unmanaged code initiating the interaction. Third, the unmanaged code can
reside in a separate executable, or it can be embedded in the managed module.
The embedding option exists only for a "traditional" unmanaged server, and its
use is limited to the specifics of the Microsoft Managed C++ (MC++) compiler
implementation.

These three dichotomies result in the classification of the interoperation
scenarios shown in Figure 15-1.

349

350 Part VI Interoperation

Figure 15-1 A classification of interoperation scenarios.

We have five basic scenarios here:

• An external COM server, implemented through the COM interopera
bility subsystem of the common language runtime and runtime call
able wrappers (RCW)

• An external COM client, implemented through the same subsystem
and COM callable wrappers (CCW)

• An external "traditional" server, implemented through the platform
invocation (P/Invoke) subsystem of the runtime

• An embedded "traditional" server, implemented through a special
case of P/lnvoke known as IJW ("it just works")

• An external "traditional" client, implemented through the unman
aged export of the managed methods

Thunks and Wrappers
The interoperation between managed and unmanaged code requires the com
mon language runtime to build special interface elements that provide the tar
get identification and necessary data conversion, or marshaling. These runtime
generated interface elements are referred to as thunks, or stubs, in interopera
tion with "traditional" unmanaged code; in COM interoperation, they are
referred to as wrappers.

Chapter 15 Managed and Unmanaged Code Interoperation 351

PJ/nvoke Thunks
In order to build a client thunk for managed code to call unmanaged code, the
common language runtime needs the following information:

• The name of the module exporting the unmanaged method-for
example, Kernel32.dll

• The exported method's name or ordinal in the export table of the
unmanaged module

• Binary flags reflecting specifics of how the unmanaged method is
called and marshaled

All these items constitute the metadata item known as an implementation map,
discussed in the following section.

The binary flag values and the respective IL assembly language (ILAsm)
keywords are as follows:

• nomangle (OxOOOl) The exported method's name must be
matched literally.

• ansi (Ox0002) The method parameters of type string must be mar
shaled as ANSI zero-terminated strings unless explicitly specified
otherwise.

• unicode (Ox0004) The method parameters of type string must be
marshaled as Unicode strings.

• autochar (Ox0006) The method parameters of type string must
be marshaled as ANSI or Unicode strings, depending on the under
lying platform.

• lasterr (Ox0040) The native method supports the last error que
rying by the Win32 API GetLastError.

• winapi (OxOlOO) The native method uses the calling convention
standard for the underlying platform.

• cdecl (Ox0200) The native method uses the C/C++-style calling
convention, and the call stack is cleaned up by the caller.

• stdcall (Ox0300) The native method uses the standard Win32 API
calling convention, and the call stack is cleaned up by the callee.

• thiscall(Ox0400) The native method uses the C++ member method
(non-vararg) calling convention. The call stack is cleaned up by the
callee, and the instance pointer (this) is pushed on the stack last.

• fastcall (Ox0500) The arguments are passed to the native method
in registers when possible.

352 Part VI Interoperation

The name of the exported method can be replaced with the method's
ordinal in the unmanaged module's export table. The ordinal is specified as a
decimal number, preceded by the# character-for example, #10.

If the specified name is a regular name rather than an ordinal, it is
matched to the entries of the Export Name table of the unmanaged module. If
the nomangle flag is set, the name is matched literally. Otherwise,. things get
more interesting.

Let's suppose, for example, that the name is specified as Hello. If the
strings are marshaled to ANSI and the Export Name table does not contain
Hello, the P/lnvoke mechanism tries to find HelloA. If the strings are marshaled
as Unicode, the P/Invoke mechanism looks for Hello W; only if Hello Wis not
found does P/Invoke look for Hello. If it still can't find a match, it tries the man
gled name _Hello@N, where N is a decimal representation of the size of the
method's destination buffer in bytes. The destination buffer is the buffer hold
ing all method parameters. For example, if method Hello has two 4-byte param
eters (either integer or floating-point), the mangled name would be _Hello@B.
Because this kind of function name mangling is characteristic only of the stdcall
functions, if the calling convention is different and the name is mangled in
some other way, the P/lnvoke mechanism will not find the exported method.

The thunk is perceived by the managed code as simply another method,
and hence it must be declared as any method would be. The presence of the
pinvokeimpl flag in the respective Method record signals the. runtime that this
method is indeed a client thunk and not a true managed method. You have
already encountered the following declaration of a P/Invoke thunk in Chapter 1,
"Simple Sample":

.method public static pinvokeimplC"msvcrt.dll" cdecl)
vararg int32 sscanf(string,int8*) cil managed { }

The parameters within the parentheses of the pinvokeimpl clause represent the
implementation map data. The string marshaling flag is not specified, and the
marshaling defaults to ANSI. The method name need not be specified because
it is the same as the declared thunk name. If you want to use sscarif but would
rather call it Foo (sscanj is such a reptilian name!), you could declare the thunk
as follows:

.method public static pinvokeimplC"msvcrt.dll" as "sscanf" cdecl)
vararg int32 FooCstring,int8*) cil managed { }

Because the unmanaged method resides somewhere else and the thunk is
generated by the runtime, the Method record of a "true" P/Invoke thunk has its
RVA entry set to 0.

Chapter 15 Managed and Unmanaged Code Interoperation 353

Implementation Map Metadata and Validity Rules
The implementation map metadata resides in the ImplMap metadata table. A
record in this table has four entries:

• MappingFlags (unsigned 2-byte integer) Binary flags, which
were described in the previous section. The validity mask is Ox0747.

• MemberForwarded (coded token of type MemberFor
warded) An index to the Method table, identifying the Method
record of the P/Invoke thunk. This must be a valid index. The
indexed method must have the pinvokeimpl and static flags set.
The token type MemberForwarded can, in principle, index the
Field table as well; but the first release of the common language
runtime does not implement the P/Invoke mechanism for fields,
and ILAsm syntax does not permit you to specify pinvokeimpl(. . .)
in field definitions.

• ImportName (offset in the #Strings stream) The name of the
unmanaged method as it is defined in the export table of the unman
aged module. The name must be nonempty and fewer than 1024
bytes long in UTF-8 encoding.

• ImportScope (record index [RID] to the ModuleReftable) The
index of the ModuleRef record containing the name of the unman
aged module. It must be a valid RID.

IJW Thunks
IJW thunks, similar in structure and function to "true" P/Invoke thunks, are
created without the implementation map information. The information
regarding the identity of the unmanaged method is not needed because the
method is embedded in the same PE file and can be identified by its relative
virtual address (RVA). IJW thunks cannot have an RVA value of 0, as opposed
to P/Jnvoke thunks, which must have an RVA value of 0.

The calling convention of the unmanaged method is defined by the thunk
signature rather than by the binary flags of the implementation map. The IJW
thunk signature usually has the modifier modopt or modreq--for example,
modopt([mscorlib]System .Runtime .InteropServices. Cal!ConvCdecl). The string
marshaling default is ansi.

To distinguish IJW thunks from P/Invoke thunks, the loader first looks at
the implementation flags; IJW thunk declarations should have the flags native
and unmanaged set. If the loader doesn't see these flags, it presumes that this
is a "true" P/Invoke thunk and tries to find its implementation map. If the map
is not found, the loader realizes that this is an IJW thunk after all and proceeds

354 Part VI Interoperation

accordingly. That's why I noted that the native and unmanaged flags should be
set rather than specified that they must be set. The loader will discover the truth
even without these flags, but not before it tries to find the implementation map
and fails.

The following is a typical example of an IJW thunk declaration; it is a snip
pet from a disassembly of an MC++-generated mixed-code PE file:

.method public static pinvokeimpl(I* No map *I)

{
unsigned int32 _mainCRTStartup() native unmanaged preservesig

.entrypoint

.custom instance void [mscorlib]
System.Security.SuppressUnmanagedCodeSecurityAttribute::.ctor()
= (01 00 00 00)

II Embedded native code
II Disassembly of native methods is not supported
II Managed TargetRVA = 0xl06f

} II End of global method _mainCRTStartup

As you can see, a thunk can be declared as an entry point, and custom
attributes and security attributes can be assigned to it. In these respects, a thunk
has the same privileges as any other method.

As you can also see, neither the IL Disassembler nor ILAsm can handle the
embedded native code. The mixed-code PE files, employing the IJW interoper
ation, cannot be round-tripped (disassembled and reassembled).

COM Callable Wrappers
Classic COM objects are allocated from the standard operating system heap and
contain internal reference counters. The COM objects must self-destruct when
they are not referenced any more-in other words, when their reference
counters reach 0.

Managed objects are allocated from the common language runtime inter
nal heap, which is controlled by the garbage collection subsystem (the GC
heap). Managed objects don't have internal reference counters. Instead, the
runtime traces all the object references, and the GC automatically destroys
unreferenced objects. But the references can be traced only if the objects are
being referenced by managed code. Hence, it would be a bad idea to allow
unmanaged COM clients to access managed objects directly.

Instead, for each managed object, the runtime creates a COM callable
wrapper, which serves as a proxy for the object. Because a CCW is not subject
to the GC mechanism, it can be referenced from unmanaged code without
causing any ill effects.

Chapter 15 Managed and Unmanaged Code Interoperation 355

In addition to lifetime control of the managed object, a CCW provides data
marshaling for method calls and handles managed exceptions, converting them
to HRESULT returns, which is standard for COM. If, however, a managed
method is designed to return HRESULT (in the form of unsigned int32) rather
than throw exceptions, it must have the implementation flag preservesig set. In
this case, the method signature is exported exactly as defined.

The runtime carefully maintains a one-to-one relationship between a man
aged object and its CCW, not allowing an alternative CCW to be created. This
guarantees that all interfaces of the same object relate to the same !Unknown
and that the interface queries are consistent.

Any CCW generated by the runtime implements !Dispatch for late binding.
For early binding, which is done directly through the v-table, the runtime must
generate the type information in a form consumable by COM clients-namely,
in the form of a COM type library. The Microsoft .NET Framework SDK includes
the type library exporting utility TlbExp.exe, which generates an accompanying
COM type library for any specified assembly. Another tool, RegAsm.exe, also
included in the .NET Framework SDK, registers the types exposed by an assem
bly as COM classes and generates the type library.

When managed classes and their members are exposed to COM, their
exposed names might differ from the originals. First, the type library exporters
consider all names that differ only in case to be a single form-for example,
Hello, hello, HELLO, and hElLo are exported as Hello. Second, classes are
exported by name only, without the namespace part, except in the case of a
name collision. If a collision exists-if, for example, an assembly has classes
A.B.!Hello and C.D.!Hello defined-the classes are exported by their full names,
with underscores replacing the dots: A_B_!Hello, C_D_!Hello.

Other COM parameters characterizing the CCW for each class are defined
by the COM interoperability custom attributes, listed in the section "Custom
Attribute Classification" in Chapter 13, "Custom Attributes." Because all informa
tion pertinent to exposing managed classes as COM servers is defined through
custom attributes, ILAsm does not have any linguistic constructs specific to this
aspect of the interoperation.

Runtime Callable Wrappers
A runtime callable wrapper is created by the common language runtime as a
proxy of a classic COM object that the managed code wants to consume. The rea
sons for creating an RCW are roughly the same as those for creating a CCW: the
managed objects know nothing about reference counting and expect their coun
terparts to belong to the GC heap. An RCW is allocated from the GC heap and
caches the reference-counted interface pointers to a single COM object. In short,

356 Part VI Interoperation

from the runtime point of view, an RCW is a "normal" managed server; and from
the COM point of view, RCW is a "normal" COM client. So everyone's happy.

An RCW is created when a COM object is instantiated-for example, by a
newobj instruction. There are two approaches to binding to the COM classes:
early binding, which requires a so-called interop assembly, and late binding by
name, which is performed through Reflection methods.

An interop assembly is a managed assembly either produced from a
COM type library by means of running the utility Tlblmp.exe (included in
the .NET Framework SDK) or, at run time, produced by calling methods of
the class [mscorlib]System.Runtime.InteropServices. TypeLibConverter. From
the point of view of the managed code, the interop assembly is simply
another assembly, all classes of which happen to carry the import flag. This
flag is the signal for the runtime to instantiate an RCW every time it is com
manded to instantiate such a class.

Late binding through Reflection works in much the same way as !Dispatch
does, but it has nothing to do with the interface itself. The COM classes that
implement !Dispatch can be early-bound as well. Neither is late binding
restricted to imported classes only. "Normal" managed types can also be late
bound by using the same mechanism:

Late binding is achieved by consecutive calls to the [mscorlib]Sys
tem. Type:: GetTypeFromProg!D and [mscorlib]System .Activator:: Createlnstance
methods, followed when necessary by calls to the [mscorlib]System. Type::lnvoke
Member method. For example, if you want to instantiate a COM class Bar residing
in the COM library Foo.dll and then call its Baz method, which takes no argu
ments and returns an integer, you could write the following code:

.locals init (class [mscorlib]System.Type Typ,
object Obj,
int32 Ret)

II Typ = Type::GetTypeFromProgID("Foo.Bar"l;
ldstr "Foo.Bar"
call class [mscorlib]System.Type

[mscorlib]System.Type: :GetTypeFromProgID(string)
stloc Typ

II Obj =Activator: :Createlnstance(Typ);
ldloc Typ
call instance object [mscorlib]System.Activator: :Createlnstance(

class [mscorlib]System.Type)
stloc Obj

II Ret = (int)Typ->InvokeMember("Baz",BindingFlags: :InvokeMethod,
II NULL,Obj,NULL);

ldloc Typ
ldstr "Baz"
ldc.14 0xl00
l dnull
ldloc Obj
l dnull
call instance

Chapter 15 Managed and Unmanaged Code Interoperation 357

II System.Reflection.BindingFlags::InvokeMethod
II Reflection.Binder - don't need it

II Parameter array - don't need it
object [mscorlibJSystem.Type::InvokeMember(string,
valuetype System.Reflection.BindingFlags,
class System.Reflection.Binder,
object,
object[])

unbox
stloc

valuetype [mscorlib]System.Int32
Ret

An RCW converts the HRESULT returns of COM methods to managed
exceptions. The only problem with this is that the RCW throws exceptions only
for failing HRESULT values, so subtleties such as S_FALSE go unnoticed. The
only way to deal with this situation is to set the implementation flag preservesig
on the methods that might return S_FALSE and revert their signatures to the
original form.

Another problem arises when the COM method has a variable-length array
as one parameter and the array length as another. The type library carries no
information about which parameter is the length, and the runtime is thus
unable to marshal the array correctly. In this case, the signature of the method
must be modified to include explicit marshaling information.

Yet another problem requiring manual intervention involves unions with
overlapped reference types. Perfectly legal in the unmanaged world, such
unions are outlawed in managed code. Therefore, these unions are converted
into value types with pack and .size parameters specified but without the mem
ber fields.

The manual intervention mentioned usually involves disassembling the
interop assembly, editing the text, and reassembling it. Because the interop
assemblies don't contain embedded native code, this operation can easily be
performed.

Data Marshaling
All thunks and wrappers provide data conversions between managed and
unmanaged data types, which is referred to as marshaling. Marshaling informa
tion is kept in the FieldMarshal metadata table, which is described in Chapter 8,
"Fields and Data Constants." The marshaling information can be associated with
Field and Param metadata records.

358 Part VI Interoperation

Blittable Types
One significant subset of managed data types directly corresponds to unman
aged types, requiring no data conversion on managed and unmanaged code
boundaries. These types, which are referred to as .blittable, include pointers
(not references), function pointers, signed and unsigned integer types, and
floating-point types. Formatted value types (the value types having sequential
or explicit class layout) that contain only blittable elements are also blittable.

The nonblittable managed data types that might require conversion during
marshaling because of different or ambiguous unmanaged representation are as
follows:

• boot Cl-byte, true = 1, false = O) can be converted either to native
type boot (4-byte, true = 1, false = O) or to variant boot (2-byte, true
= OxFFFF,false = 0).

• char (Unicode character, unsigned 2-byte integer) can be con
verted either to int8 (an ANSI character) or to unsigned int16 (a
Unicode character).

• string (class System.String) can be converted either to an ANSI or a
Unicode zero-terminated string (an array of characters) or to bstr (a
Unicode Visual Basic-style string).

• object (class System.Object) can be converted either to a structure or
to an interface pointer.

• class can be converted either to an interface pointer or, if the class is
a delegate, to a function pointer.

• valuetype (nonblittable) is converted to a structure with a fixed layout.

• An array and a vector can be converted to a safe array or a C-style
array.

The references (managed pointers) are marshaled as unmanaged pointers.
The managed objects and interfaces are references in principle, so they are mar
shaled as unmanaged pointers as well. Consequently, references to the objects
and interfaces (class !Foo&) are marshaled as double pointers (!Foo**).

In/Out Parameters
The method parameter flags in and out can be (but are not necessarily) taken
into account by the marshaler. When that happens, the marshaler can optimize
the process by abandoning the marshaling in one direction. By default, param
eters passed by reference (including references to objects but excluding the

Chapter 15 Managed and Unmanaged Code Interoperation 359

objects) are presumed to be in/out parameters, whereas parameters passed by
value (including the objects, even though managed objects are in principle ref
erences) are presumed to be in parameters. The exceptions to this rule are the
[mscorlib}System. Text.StringBuilder class, which is always marshaled as in/out,
and classes and arrays containing the blittable types that can be pinned
which, if the in and out flags are explicitly specified, can be two-way marshaled
even when passed by value.

Considering that managed objects don't necessarily stay in one place and
can be moved any time the garbage collector does its job, it is vital to ensure
that the arguments of an unmanaged call don't wander around while the call is
in progress. This can be accomplished in the following two ways:

• Pin the object for the duration of the call, preventing the garbage col
lector from moving it. This is done for the instances of formatted,
blittable classes that have fixed layout in memory, invariant to man
aged or unmanaged code.

• Allocate some unmovable memory. If the parameter has an in flag,
marshal the data from the argument to this unmovable memory. Call
the method, passing this memory as the argument. If the parameter
has an out flag, marshal this memory back to the original argument
upon completion of the call.

The ILAsm syntax for explicit marshaling definition of fields and method
parameters is described in Chapter 8 and in Chapter 9, "Methods." Chapter 7,
"Primitive Types and Signatures," discusses the native types used in explicit
marshaling definitions. Rather than reviewing that information here, let's dis
cuss some interesting marshaling cases instead.

String Marshaling
String marshaling is defined in at least three places: a string conversion flag of
a TypeDef (ansi, unicode, or autochar), a similar flag of a P/Invoke implemen
tation map, and, explicitly, in marshal(. .) clauses.

As method arguments, managed strings (instances of the System.String
class) can be marshaled as the following native types:

• lpstr, a pointer to a zero-terminated ANSI string

• lpwstr, a pointer to a zero-terminated Unicode string

• lptstr, a pointer to a zero-terminated ANSI or Unicode string, depend
ing on the platform

• bstr, a Unicode Visual Basic-style string with a prepended length

360 Part VI Interoperation

• ansi bstr, an ANSI Visual Basic-style string with a prepended length

• tbstr, an ANSI or Unicode Visual Basic-style string, depending on the
platform

The COM wrappers marshal the string arguments as lpstr, lpwstr, or bstr
only. Other unmanaged string types are not COM-compatible.

At times, a string buffer must be passed to an unmanaged method in order
to be filled with some particular contents. Passing a string by value does not
work in this case because the called method cannot modify the string contents.
Passing the string by reference does not initialize the buffer to the required
length. The solution, then, is to pass not a string (an instance of System.String)
but rather an instance of System. Text.StringBuilder, initialized to the required
length:

.method public static pinvokeimpl("user32.dll" stdcall)
int32 GetWindowText(int32 hndl.

class [mscorlib]System.Text.StringBuilder s,
int32 nMaxLen) { }

.method public static string GetWText(int32 hndl)
{

}

.locals init(class [mscorlib]System.Text.StringBuilder sb)
ldc.i4 1024 // Buffer size
newobj instance void

[mscorlib]System.Text.StringBuilder::.ctor(int32)
stloc.0
ldarg.0 // Load hndl on stack
ldloc.0 // Load StringBuilder instance on stack
ldc.i4 1024 // Buffer size again
call int32 GetWindowText(int32,

class [mscorlib]System.Text.StringBuilder,
1nt32)

pop // Discard the result
ldloc.0 // Load StringBuilder instance (filled in) on stack
call instance string

[mscorlib]System.Text.StringBuilder::ToString()
ret

The string fields of the value types are marshaled as lpstr, lpwstr, lptstr,
bstr, or fixed sysstring[<size>J, which is a fixed-length array of ANSI or Uni
code characters, depending on the string conversion flag of the field's parent
Type Def

Chapter 15 Managed and Unmanaged Code Interoperation 361

Object Marshaling
The fields and method parameters of an object type are marshaled as struct
(converted to a COM-style variant), interface (converted to !Di:-.patch if possible
and otherwise to !Unknown), iunknown (converted to !Unknown), or idispatch
(converted to !Dispatch). The default marshaling is as struct.

When an object is marshaled as struct to a COM variant, the type of the
variant can be explicitly set by those object types that implement the [mscor
lib}System.!Convertible interface. The types that do not implement this interface
are marshaled to and from variants as shown in Table 15-1. All listed types
belong to the System namespace.

Table 15-1 Marshaling of Managed Objects to and from COM Variants

Type of object marshaled
... COM variant type ...

.. . marshaled to type of
to ... object

Null reference VT_EMPTY Null reference

DBNull VT_ NULL DBNull

Runtime.InteropServices. VT_ERROR U!nt32
Error Wrapper

Reflection.Missing VT_JJRROR with U!nt32
E_PARAMNOTFOUND

Runtime.InteropServices. VT_DISPATCH _ComObject or null refer-
I dispatch Wrapper ence if the variant value is null

Runtime.InteropServices. V7:._UNKNOW'N _ComObject or null refer-
!unknown Wrapper ence if the variant value is null

Runtime.InteropServices. VT_CY Decimal
Currency Wrapper

Boolean VT_BOOL Boolean

Sbyte VT_Il Sbyte

Byte VT_Uil Byte

Int16 VT_I2 Jnt16

U!nt16 VT_UI2 U!ntl6

Int32 VT_I4 Int32

U!nt32 VT_UI4 U!nt32

Int64 VT_I8 Int64

U!nt64 VT_UI8 U!nt64

Single VT_R4 Single

Double VT_R8 Double

Decimal VT_DECIMAL Decimal

(continued)

362 Part VI Interoperation

Table 15-1 Marshaling of Managed Objects to and from COM Variants (continued)

Type of object marshaled
... COM variant type ...

.. . marshaled to fype of
to ...

Date Time

String

IntPtr

UintPtr

Array

object

VT_ DATE Date Time

VT_BSTR String

VT_INT Int32

VT_UINT Ulnt32

VT_ARRAY Array

If you wonder why, for example, System.Intl 6 and System.Boolean should
be used instead of intl 6 and boo!, respectively, I should remind you that our
discussion concerns the conversion of the objects.

When a managed object is passed to unmanaged code by reference, the
marshaler creates a new variant and copies the contents of the object reference
into this variant. The unmanaged code is free to tinker with the variant con
tents, and these changes are propagated back to the referenced object when the
method call is completed. If the type of the variant has been changed within the
unmanaged code, the back-propagation of the changes can result in a change
of the object type, so you might find yourself with a different type of object
after the call. The same story happens (in reverse order) when unmanaged
code calls a managed method, passing a variant by reference: the type of the
variant can be changed during the call.

The variant can contain a pointer to its value rather than the value itself.
(In this case, the variant has its type flag VT_BYREF set.) Such a "reference vari
ant,'' passed to the managed code by value, is marshaled to a managed object,
and the marshaler automatically dereferences the variant contents and retrieves
the actual value. Despite its reference type, the variant is nonetheless passed by
value, so any changes made to the object in the managed code are not propa
gated back to the original variant.

If a "reference variant" is passed to the managed code by reference, it
is marshaled to an object reference, with the marshaler dereferencing the
variant contents and copying the value into a newly constructed managed
object. But in this case, the changes made in the managed code are propa
gated back to the unmanaged code only if they did not lead to a change in
the variant type. If the changes did affect the variant type, the marshaler
throws an InvalidCast exception.

Chapter 15 Managed and Unmanaged Code Interoperation 363

Class Marshaling
Managed classes are always marshaled by COM wrappers as the interfaces.
Every managed class can be seen as implementing an implicit interface that
contains all nonprivate members of the class.

When a type library is generated from an assembly, a class interface and
a coclass are produced for each accessible managed class. The class interface is
marked as a default interface for the coclass.

A CCW generated by the common language runtime for each instance of
the exposed managed class also implements other interfaces not explicitly
implemented by the class. In particular, a CCW automatically implements !Un
known and !Dispatch.

When an interop assembly is generated from a type library, the coclasses
of the type library are converted to the managed classes. The member sets of
these classes are defined by the default interfaces of the coclasses.

An RCW generated by the runtime for a specific instance of a COM class
represents this instance and not a specific interface exposed by this instance.
Hence, an RCW must implement all interfaces exposed by the COM object. This
means that the identity of the COM object itself must be determined by one of
its interfaces because COM objects are not passed as method arguments but
their interfaces are. In order to do this, the runtime queries the passed interface
for JProvideClasslnjo2. If this interface is unavailable, the runtime queries the
passed interface for IProvideClasslnjo. If either of the interfaces is available, the
runtime obtains the CLSID (class identifier) of the COM class exposing the inter
face-by calling the IProvideC!asslnjo2::GetGUJD() or IProvideC!asslnfo::Get
Classlnjo() method-and uses it to retrieve full information about the COM
class from the registry. If this action sequence fails, the runtime instantiates a
generic wrapper, System._ComObject.

Array Marshaling
Unmanaged arrays can be either C-style arrays of fixed or variable length or
COM-style safe arrays. Both kinds of arrays are marshaled to managed vectors,
with the unmanaged element type of the array marshaled to the respective
managed element type of the vector. For example, a safe array of BSTR is mar
shaled to string[}.

The rank and bound information carried by a safe array is lost in the tran
sition. If this information is vital for correct interfacing, manual intervention is
required again: the interop assembly produced from the COM type library must
be disassembled, the array definitions must be manually edited, and the assem
bly must be reassembled. For example, if a three-dimensional safe array of

364 Part VI Interoperation

BSTR is marshaled as string[], the respective type must be manually edited to
string[O .. ., 0 .. ., 0 .. .] in order to restore the rank of the array.

C-style arrays can have either a fixed length or a length specified by
another parameter of the method. Both values, the length and the length
parameter's zero-based ordinal, can be specified for the marshaler so that a vec
tor of appropriate size can be allocated. The ILAsm syntax for specifying the
array length is described in Chapter 7. For example:

II Fixed array length
.method public static pinvokeimplC"unmanaged.dll" stdcalll

void FooCstring[J marshal(bstr[128Jl StrArrayl {}

II Array length is specified by arrlen (parameter #1)
.method public static pinvokeimplC"unmanaged.dll" stdcalll

void Boo(string[J marshal(bstr[+l]) StrArray, int32 arrlenl {}

II Base length is 128, additional length specified by morelen
.method public static pinvokeimplC"unmanaged.dll" stdcalll

void Goo(int32 morelen, string[] marsha1Cbstr[l28+0Jl StrArray) {}

The managed vectors and arrays can be marshaled as safe arrays or as C
style arrays. Marshaling as safe arrays preserves the rank and boundary infor
mation of the managed arrays. This information is lost when the managed
arrays are marshaled as C-style arrays. Vectors of vectors-for example,
int32[][~cannot be marshaled.

Delegate Marshaling
Delegates are marshaled as interfaces by COM wrappers and as unmanaged
function pointers by P/Invoke thunks. The type library Mscorlib.tlb defines the
_Delegate interface, which represents delegates in the COM world. This inter
face exposes the Dynamiclnvoke method, which allows the COM code to call
a delegated managed method.

Marshaling a delegate as an unmanaged function pointer represents a cer
tain risk. Because the common language runtime does not count this as a live
reference to the delegate, the delegate might be destroyed by the garbage col
lector before the call to the unmanaged method is completed. The calling man
aged code must take steps to ensure the delegate's survival for the duration of
the method call.

Chapter 15 Managed and Unmanaged Code Interoperation 365

Providing Managed Methods as Callback for Unmanaged
In a P/Invoke interaction, the initiative must come from the managed code's
side. The process starts in managed mode and makes calls to the unmanaged
functions. However, the exchange can't always go in only one direction; that
model would be too simplistic to be usable.

Many unmanaged methods require callback functions, and the managed
code must have the means to provide those functions. Thus, it's necessary to
have a way to pass a managed method pointer to an unmanaged function, per
mitting the unmanaged function to call the managed method. The managed
method in question might be simply a P/Invoke thunk of another unmanaged
method, but that changes nothing-it's still a managed method.

The way to pass managed methods as callbacks to unmanaged functions
involves the use of delegates. The delegates are marshaled by P/Invoke thunks
as unmanaged function pointers, which makes them suitable for the task.

Let's look at a sample to review the way delegates are used for callback
specifications. You can find this sample, Callback.il, on the companion CD. The
sample implements a simple program that sorts 15 integer values in ascending
order, employing the well-known C function qsort, called through P/Invoke.
The difference between the P/Invoke calls you've encountered so far and this
one is that qsort requires a callback function, which performs the comparison of
two elements of the array being sorted, thus defining the sorting order.

Let the sample speak for itself:

II Necessary preliminaries
.assembly extern mscorlib {}
.assembly callback { }
.module callback.exe

II Here is the unsorted data we want to sort. With minor
II improvements, I could get the data from a file or the console,
II but it would not serve any illustrative purpose.
II Feel free to try modifying the code to include this feature .
. class private value explicit sealed SixtyBytes { .pack 1 .size 60 }
.field public static valuetype SixtyBytes OataToSort at 0_0001
.data 0_0001 = {int32(10), int32(32), int32(-l), int32(567),

int32(3), int32C18), int32(1), int32(-51), int32C789), int32(2345),
int32C-43), int32(788), int32(-345), int32(345), int32(0)}

II To show that the sorting really happens, I am going to print
II out data before and after the sorting. Rather than using the
II [mscorlib]System.Console::Writeline, I will use PIInvoke
II to call the C function int printf(char* Format, ...) .
. method public hidebysig static pinvokeimplC"msvcrt.dll" ansi cdecl)

(continued)

366 Part VI Interoperation

vararg int32 printfCstring) preservesig {}

II And this is a managed printing method, invoking printf .
. method public static void printint32Cvo1d* pBuff, int32 N)
{

.locals in1tCint32 i, void* pb)
II i = 1;
ldc.i4.1
stloc.0
II pb = pBuff;
ldarg.0
stloc.1

Next: II if(i > N) goto Return;
ldloc.0
ldarg.1
bgt Return

II printf("%2.2d : %d\n",i ,*(int*)pb);
ldstr "%2.2d : %d\n"
ldloc.0
ldloc.1
ldind.i4
call vararg int32 printf(string, ... ,int32,int32)
pop

II i += 1;
ldloc.0
ldc.i4.1
add
stloc.0

II pb += 4; In C, this would be an illegal operation because
II pb is void*, and the absolute pointer increment could not be
II calculated. In IL, however, the pointer increment is always
II absolute.
ldloc.1
ldc.i4.4
add
stloc.1
br Next

Return:
ret

}

II I can't pass the managed method pointer to the unmanaged function,
II and even the ldftn instruction will .not help me. ·
II This delegate will serve as an appropriate vehicle.

Chapter 15 Managed and Unmanaged Code Interoperation 367

.class public sealed CompareDelegate

{

}

extends [mscorlib]System.MulticastDelegate

.method public hidebysig specialname
instance void .ctor(object Object,

native unsigned int MethodPtr)
runtime managed {}

II Note the modopt modifier of the Invoke signature--it's very
II important. Without it, the calling convention of the callback
II function is marshaled as stdcall (callee cleans the stack).
II But qsort expects the callback function to have the cdecl
II calling convention (caller clears the stack). If we supply the
II callback with the stdcall calling convention, qsort blows
II the stack away and causes a memory access violation. You are
II welcome to comment out the modopt line and see what happens.
II Note also that the modopt modifier is placed on the delegate's
II Invoke signature, not on the signature of the delegated method .
. method public hidebysig virtual instance int32

modopt([mscorlib]System.Runtime.CompilerServices.CallConvCdecl)
Invoke(void*, void*) runtime managed {}

II Well, I don't really need asynchronous invocation here,
II but, you know, dura lex sed lex .
. method public hidebysig newslot virtual

instance class [mscorlib]System.IAsyncResult
Begininvoke(object,

class [mscorlib]System.AsyncCallback,
object) runtime managed {}

.method public hidebysig newslot virtual instance
void Endinvoke(class [mscorlib]System.IAsyncResult)

runtime managed {}

II The hero of the occasion: the qsort function .
• method public hidebysig static pinvokeimpl("msvcrt.dll" ansi cdecll

void qsort(void*,int32,int32,class CompareDelegatel preservesig {}

II This is the comparison method I'm going to offer as
II a callback to qsort. What can be simpler than comparing
II two integers?
~method public static int32 compint32(void* argl,void* arg2)
{

II return(*argl - *arg2);
ldarg.0
ldind.i4
ldarg.1
ldind.i4

(continued)

368 Part VI Interoperation

}

sub
ret

II And now, let's put this show on the road .
. method public static void Exec()
{

}

.entrypoint

.locals init(class CompareDelegate)

II Print the unsorted values.
ldstr "Before Sorting:\n"
call vararg int32 printf(string)
pop
ldsflda valuetype SixtyBytes DataToSort
ldc.i4 15
call void printlnt32(void*, int32)

II Create the delegate.
II Null object ref indicates the global method.
l dnul 1
ldftn int32 complnt32(vo1d*,VOid*)
newobj instance void

CompareDelegate::.ctor(object,native unsigned int)
stloc.0

11 Invoke qsort.
ldsflda valuetype SixtyBytes DataToSort II Pointer to data
ldc.i4 15 II Number of items to sort
ldc.i4 4 II Size of an individual item
ldloc.0 II Callback function pointer
call void qsort<void*,int32,int32,class CompareDelegate)

II Print the sorted values.
ldstr "After Sorting:\n"
call vararg int32 printf(string)
pop
ldsflda valuetype SixtyBytes DataToSort
ldc.i4 15
call void printlnt32(vo1d*, i~t32)

ret

Chapter 15 Managed and Unmanaged Code Interoperation 369

Managed Methods as Unmanaged Exports
Exposing managed methods as unmanaged exports provides a way for unman
aged, non-COM clients to consume the managed services. In fact, this tech
nique opens the managed world in all its glory-with its secure and type-safe
computing and with all the wealth of its class libraries-to unmanaged clients.

Of course, the managed methods are not exposed as such. Instead, the
inverse P/lnvoke thunks, automatically created by the common language
runtime, are exported. These thunks provide the same marshaling functions
as "conventional" P/Invoke thunks, but in the opposite direction.

In order to expose managed methods as unmanaged exports, the
ILAsm compiler builds a v-table, a v-table fixup (VTableFixup) table, and a
group of unmanaged export tables, which include the Export Address table,
the Name Pointer table, the Ordinal table, the Export Name table, and the
Export Directory table. All of these tables, their structure, and their position
ing within a managed PE file are discussed in Chapter 3, "The Structure of a
Managed Executable File."

The VTableFixup table is an array of VTableFixup descriptors, with each
descriptor carrying the RVA of a v-table entry, the number of slots in the entry,
and the binary flags indicating the size of each slot (32-bit or 64-bit) and any
special features of the entry. One special feature is creation of the marshaling
thunk to be exposed to the unmanaged client.

The v-table and the VTableFixup table of a managed module serve two
purposes. One purpose-relevant only to the MC++ compiler, the only com
piler that produces mixed-code modules-is to provide the managed/unman
aged linking capabilities for mixed-code modules. Another purpose is to
facilitate the unmanaged export of managed methods.

Each slot of a v-table in a PE file carries the token of the method the slot
represents. At run time, the v-table fixups are executed, replacing the method
tokens with actual method addresses.

The ILAsm syntax for a v-table fixup definition is as follows:

.vtfixup [<num_slots>] <flags> at <data_label>

where square brackets are part of the definition and do not mean that
<num_slots> is optional. <num_slots> is an integer constant, indicating the
number of v-table slots grouped into one entry because their flags are identical.
This grouping has no effect other than saving some space-you can emit a sin
gle slot per entry, but then you'll have to emit as many v-table fixups as there
are slots.

The flags specified in the definition can be those that are described in the
following list.

370 Part VI Interoperation

• int32 Each slot in this v-table entry is 4 bytes wide.

• int64 Each slot in this v-table entry is 8 bytes wide. The int32 and
int64 flags are mutually exclusive.

• fromunmanaged The entry is to be called from the unmanaged
code, so the marshaling thunk must be created by the runtime.

• callmostderived This flag is not currently used.

The order of appearance of .vtfixup declarations defines the order of the
respective VTableFixup descriptors in the VTableFixup table.

The v-table entries are defined simply as data entries. Note that the v-table
must be contiguous-in other words, the data definitions for the v-table entries
must immediately follow one another.

For example:

.vtfixup [lJ int32 fromunmanaged at VT_01

.vtfixup [lJ int32 at VT_02

.data VL01

.data VL02
int32(0x0600001A)
int32(0x0600001B)

The actual data representing the method tokens is automatically generated
by the ILAsm compiler and placed in designated v-table slots. To achieve that,
it is necessary to indicate which method is represented by which v-table slot.
ILAsm provides the .vtentry directive for this purpose:

.vtentry <entry_number> : <slot_number>

where <entry_number> and <slot_number> are one-based integer constants.
The .vtentry directive is placed within the respective method's scope, as shown
in the following code:

.vtfixup [lJ int32 fromunmanaged at VT_01

.method public static void Foo()
{

.vtentry 1:1 // Entry 1, slot 1

}

.data VL01 int32(0) //The slot will be filled automatically.

Chapter 15 Managed and Unmanaged Code Interoperation 371

The export table group consists of five tables:

• The Export Address table (EAT), containing the RVA of the exported
unmanaged functions

• The Export Name table (ENT), containing the names of the exported
functions

• The Name Pointer table (NPT) and the Ordinal table (OT), together
forming a lookup table that rearranges the exported functions in lex
ical order of their names

• The Export Directory table, containing the location and size informa
tion about the other four tables

Location and size information concerning the Export Directory table itself
resides in the first of 16 data directories in the PE header. The structure of the
export table group is shown in Figure 15-2.

EAT

O:Addr.of Yabba()

1 :Addr.of Dabba{)

2:Addr.of Doo()

Export directory table

OT NPT

2

0

"Yabba"

"Dabba"

"Doo"

Figure 15-2 The structure of the export table group.

ENT

In an unmanaged PE file, the EAT contains the RVA of the exported
unmanaged methods. In a managed PE file, the picture is more complicated.
The EAT cannot contain the RVA of the managed methods because it's not the
managed methods that are exported-rather, it's their marshaling thunks, gen
erated at run time.

372 Part VI Interoperation

The only way to address a yet-to-be-created thunk is to define a slot in a
v-table entry for the exported managed method and a VTableFixup descriptor
for this entry, carrying the fromunmanaged flag. In this case, the contents of
the v-table slot (a token of the exported method) are replaced at run time with
the address of the marshaling thunk. (If the fromunmanaged flag is not speci
fied, the thunk is not created, and the method token is replaced with this
method's address; but this is outside the scenario being discussed.)

For each exported method, the ILAsm compiler creates a tiny native
stub-yes, you've caught me: the ILAsm compiler does produce embedded
native code after all-consisting of the x86 command jump indirect (Ox25FF)
followed by the RVA of the v-table slot allocated for the exported method. The
EAT contains the RVA of these tiny stubs.

The tiny stubs are necessary because the EAT must contain solid addresses
of the exported methods as soon as the operating system loads the PE file. Oth
erwise, the unmanaged client won't be able to match the entries of its Import
Address table (IAT) to the entries of the managed module's EAT. The addresses
of the methods or their thunks don't exist at the moment the file is loaded. But
the tiny stubs exist and have solid addresses. It's true that at that moment they
cannot perform any meaningful jumps, because the v-table slots they are refer
encing contain method tokens instead of addresses. But by the time the stubs
are called, the methods and thunks will have been generated and the v-table
slots will be fixed up, the method tokens replaced with thunk addresses.

The diagram shown in Figure 15-3 illustrates this scenario.

EAT

voicf YabJ;a()
(OX06000001)

voidDabbaO
(0x060()0002)

void Doo()
(Oxo6000003)

Managed

methods

Jump stubs

.
··········•:

··········•: . .

--· -··

.................

.... ·····

Marshaling thunks

(created at run time)

,

,

, , , ,

, , ,

. . ,
' ,
,

. . .

V-table

. . . .
int32 tromvnmanagecf

Figure 15-3 Indirect referencing of v-table entries from the EAT.

Chapter 15 Managed and Unmanaged Code Interoperation 373

The unmanaged exports require that relocation fixups are executed at
the module load time. When a program runs under the Microsoft Windows
XP operating system, this requirement can create a problem similar to those
encountered with thread local storage (TLS) data and data-on-data. As
described in Chapter 3, if the common language runtime header flag
COMIMAGE_FLAGS_ILONLY is set, the loader of Windows XP ignores the
.reloc section, and the fixups are not executed. To avoid this, the ILAsm com
piler automatically replaces the COMIMAGE_FLAGS_ILONLY flag with COM
IMAGE_FLAGS_32B!TREQUIRED whenever the source code specifies TLS
data or data-on-data. Unfortunately, the compiler neglects to do this automat
ically when unmanaged exports are specified in the source code, and it is
thus necessary to explicitly set the runtime header flags using the directive
.car.flags Ox00000002.

The ILAsm syntax for declaring a method as an unmanaged export is very
simple:

.export [<ordinal>] as <export_name>

where <ordinal> is an integer constant. The <export_name> provides an alias
for the exported method. It is necessary to specify <export name> even if the
method is exported under its own name.

The .export directive is placed within the scope of the respective method
together with the .vtentry directive, as shown in this example:

.corflags 0x00000002

.vtfixup [lJ int32 fromunmanaged at VT_01

.method public static void Foo()
{

.vtentry 1:1 // Entry 1, slot 1

.export [1] as Bar // Export #1. Nime="Bar"

.data VT_01 = int32(0) //The slot will be filled automatically.

The source code for the small sample described earlier in Figure 15-2
could look like the following, which is taken from the sample file YDD.il on the
companion CD:

.assembly extern mscorlib {

.assembly YOO { }

.module YOO.dll
(continued)

374 Part VI Interoperation

.corflags 0x00000002

.vtfixup [1] int32 fromunmanaged at VT_01 // First v-table fixup

.vtfixup [1] int32 fromunmanaged at VT_02 // Second v-table fixup

.vtfixup [1] int32 fromunmanaged at VT_03 //Third v-table fixup

.data VT 01 int32(0) // First v-table entry

.data VT_02 = int32(0) // Second v-table entry

.data VT_03 = int32(0) //Third v-table entry

.method public static void Yabba()
{

.vtentry 1:1

.export [1] as Yabba
ldstr "Yabba"
call void [mscorlib]System.Console::Writeline(string)
ret

.method public static void Dabba()
{

.vtentry 2:1

.export [2] as Dabba
ldstr "Dabba"
call void [mscorlib]System.Console::Writeline(string)
ret

.method public static void Dao()
{

.vtentry 3:1

.export [3] as Dao
ldstr "Dool"
call void [mscorlib]System.Console::Writeline(string)
ret

Now you can compile the sample to a managed DLL, remembering to use
the /DLL command-line option of the ILAsm compiler, and then write a small
unmanaged program that calls the methods from this DLL. This unmanaged
program can be built with any unmanaged compiler-for example, Microsoft
Visual C++ 6-but don't forget that YDD.dll cannot run unless the .NET Frame
work is installed. It's still a managed assembly, even if your unmanaged pro
gram does not know about it.

As you've probably noticed, all .vifixup directives of the sample sport
identical flags. This means that three single-slot v-table entries can be grouped
into one three-slot entry:

.vtfixup [3] int32 fromunmanaged at VT_01

.data VT_01 = int32[3J

Then the .vtentry directives of the Dabba and Dao methods must be changed to
.vtentry 1:2 and .vtentry 1:3, respectively.

Chapter 15 Managed and Unmanaged Code Interoperation 375

It's worth making a few additional points about the sample. First, it's a
good practice to define all VTableFixup and v-table entries in the beginning of
the source code, before any methods or other data constants are defined. This
ensures that you will not attempt to assign a nonexistent v-table slot to a
method and that the v-table will be contiguous.

Second, in the sample, the export ordinals correspond to v-table entry
numbers. In fact, no such correspondence is necessary. But if you're using the
v-table only for the purpose of unmanaged export, it might not be a bad idea
to maintain this correspondence simply to keep track of your v-table slots. It
won't do you any good to assign the same v-table slot or the same export ordi
nal to two different methods.

Third, you should remember that the export ordinals are relative. The
Export Directory table has a Base entry, which contains the base value for the
export ordinals. The ILAsm compiler simply finds the lowest ordinal used in the
.export directives throughout the source code and assigns this ordinal to the
Base entry. If you start numbering your exports from 5, it does not mean that
the first four entries in the EAT will be undefined. The common practice is to
use one-based export ordinals.

Multilanguage Projects
IL Disassembler 378

Principles of Round-Tripping 383

Creative Round-Tripping 384

Using Class Augmentation 385

Module Linking Through Round-Tripping 386

Compiling in Debug Mode 388

The Microsoft .NET paradigm is in principle multilanguage. You can derive your
class from another class that has been declared in an assembly produced by
someone else, and you don't need to worry about how the language you are
using relates to the language used to write the other assembly. You can create a
multimodule assembly, each module of which is written in a different language.

What you can't do so easily, however, is to build a single-module assem
bly using different languages. This means that once you've selected a develop
ment language for your single-module assembly, you must accept all the
limitations of the selected language.

IL assembly language (ILAsm) offers a way to resolve this problem. ILAsm,
as a platform-oriented and ideologically neutral language, provides a natural
common base for the high-level, pure-IL languages. Because of this, ILAsm can
be used as an intermediate stage for multilanguage projects. Most of the high
level language compilers don't actually use ILAsm as their base language, but
this can be easily helped by the use of the IL Disassembler (ILDASM).

377

378 Part VI Interoperation

IL Disassembler
The IL Disassembler tool, Ildasm.exe, is distributed with the .NET Framework
SDK and is one of the most popular tools among developers working on .NET
based programs. Virtually every book dedicated to .NET themes at least men
tions ILDASM and briefly describes its features.

ILDASM is a dual-mode application-that is, it can run either as a console or
as a GUI application. Two ILDASM command-line options-!OUF:<file_name> and
/TEXT-set the disassembler mode. If either /TEXT or /OUT: CON is specified,
ILDASM outputs the disassembly text to the console window from which it was
started. If !OUT:<file_name> is specified, ILDASM dumps the disassembly text into
the specified file. If neither !TEXT nor !OUT is specified, ILDASM switches to graph
ical mode.

The graphical user interface of ILDASM is rather modest and strictly func
tional. The disassembled module is represented as a tree. The module itself is
shown as the root, namespaces and classes as tree nodes, and members-meth
ods, fields, events, and properties-as tree leaves. Double-clicking a tree leaf
displays a disassembly window containing the ILAsm source text of the corre
sponding item of the module, as shown in Figure 16-1.

.custoN instance void SystePt.Reflec:=tion,.AsseAblyDesc.riptionA:tt ·'

.custo111 instance Yoid System.CLSColllPliantAttd.bute:: .ctor(bool

.custo111 instance uoid Sy:ste111;.Runtiane. tnteropseruices.GuidAttri'<

Figure 16-1 The IL Disassembler in graphical mode ..

The tree leaf MANIFEST corresponds to all module-level information,
including manifest metadata, module metadata, and v-table fixups.

Chapter 16 Multilanguage Projects 379

Each tree node representing a type has special leaves providing informa
tion about the type: a class leaf, an extends leaf (if the type is derived from
another type), and one implements leaf for each interface the type implements.
Double-clicking a class leaf displays a disassembly window containing full class
information except for the disassembly of the class members. Double-clicking
an extends leaf or an implements leaf moves the cursor in the tree view to the
respective class or interface if it is defined in the current module.

The disassembler provides numerous viewing options that allow you to
control the disassembly text presentation. In graphical mode, these options are
listed on the View menu, as shown in Figure 16-2.

euto ami1eriabablebsfa~
Ol;eci

S.Y$lem.10iepogable
ferSize:PtNatesteticiter-int32 ___ S,.....IO.Binar)'W1Mlo

IM\ly dim S,Yttem.IO.Stream
... , • .;g.,,,!intiD

_ . piivatedmS~Teiit.Erc>ding
; · • jargeB~llfer: piJvate undgned int8LJ
, · t- _mexth11• : private int32

4' _"1<>0"'°"'8\ilel:priv,..cholll ·-.. • .c:lOf; ¥oid(clat$ Sy;tem.10,Stream)
• ,ctor: ~dad Syitom.10.StrMn,clo!!u S}lstem.T elel
•. otor:vokQ

' ..• O...:wid{}
llD :voic(bool)

.J:lfi:i:i""''•C:•," '. o~-;l:;f.f;' ·,'-'

Figure 16·2 Disassembler viewing options.

The module opened in ILDASM's graphical mode can be dumped to a file
but not to a console window. To dump the module to a file, choose Dump from
the File menu, set the dump options as shown in Figure 16-3, and click OK. In
the Save As dialog box displayed, specify a directory and the name of an output
file. To dump a text representation of the fully expanded tree view to a speci
fied file, choose DumpTree from the File menu.

380 Part VI Interoperation

For reasons I won't discuss here, the disassembler does not
offer all possible viewing options by default. To access all the options,
you must use the /ADVANCED (or /ADV, because ILDASM options are
recognized by their first three characters) command-line option. I
strongly recommend that you make it a habit to invoke the disassem
bler as ildasm /adv< ... other options ... > to avoid the frustration of being
unable to access the option you need and being forced to close and
restart ILDASM. And, yes, I know it's inconvenient.

Certain options are available only in advanced mode. Among
them, the group of IMETAINFO options, which provide various sum
maries of the module metadata, are very useful. Two others are
rarely used: /STATISTICS, a summary of the PE file characteristics;
and /CLASSLIST, a list of types defined in the module, available for
file or console dump only.

Figure 16-3 Selecting file dump options.

All of the disassembly options shown in Figure 16-3 are available as com
mand-line options in ILDASM, but the inverse is not quite true. Appendix D, "IL
Assembler and Disassembler Command-Line Options," contains a complete list

Chapter 16 Multilanguage Projects 381

of all the command-line options. The following list focuses only on the most
important of these options:

• The !ADVANCED option is the first item you should specify when
invoking the disassembler.

• The /UTFB and /UNICODE options set the encoding of the output file.
The default encoding is ANSI.

• The !TOKENS option includes hexadecimal token values as com
ments in the disassembly text.

• The !BYTES option includes the hexadecimal representation of IL
instructions as comments in the disassembly text.

• The lrTEM=<item_description> option limits the disassembly to the
specified item: a class or a member method. For example, /rTEM=''Foo"
dumps the Foo class and all its members, !ITEM=''Foo::Bar" dumps all
member methods named Bar in the Foo class, and /rTEM=''Foo::Bar
(int32(int32, string))" dumps the method int32 Foo::Bar(int32,
string).· This option has no effect if the disassembler is invoked in
graphical mode.

• The !VISIBILITY=<vis>[+<vis>*J option limits the disassembly to the
items that have the specified visibility and accessibility flags. The
<vis> suboptions are three-letter abbreviations of all possible visibil
ity and accessibility flags:

0 PUB Public

D PRI Private

0 FAM Family

0 ASM Assembly

0 FAA Family and assembly

D FOA Family or assembly

D PSC Private scope

For example, !VIS=PUB+FAM+FOA limits the disassembly output
to only those items that can be accessed from outside the assembly.

• The !NOIL option suppresses the ILAsm source text output. You can
use this option when you are interested not in a disassembly but in
file statistics, a metadata summary, and so on. This option has no
effect if the disassembler is invoked in graphical mode.

• The !RAWEH option forces all structured exception handling clauses
to be dumped in canonic form at the end of each method scope.

382 Part VI Interoperation

• The !LINENUM option includes the .language and .line directives in
the disassembly text, to allow the reassembled code to be bound to
the original source files rather than the ILAsm source file. (The sec
tion "Compiling in Debug Mode," later in this chapter, discusses the
use of these directives in detail.) This option has no effect if the PE
file being disassembled is not accompanied by a program database
(PDB) file that contains all the debug information.

• The !NOBAR option suppresses the pop-up window showing the
disassembly progress. This option is useful if the disassembler is
invoked from batch files as part of an automatic process running in
the background.

• The /METAINFO[=<met_opt>J option dumps the metadata summary.
The <met_opt> suboptions indicate the specifics of this summary:

O HEX Add hexadecimal representation of the signatures

D CSV Provide the sizes of string, blob, and GUID heaps and
sizes of the metadata tables and their records

D MDH Provide the metadata header details

O UNR Provide a list of unresolved method references and
method definitions without implementation

0 VAL Run metadata validation

The metadata suboptions can't be concatenated using the plus
character, as the visibility suboptions can be. Instead, multiple occur
rences of IMETAINFO options are permitted in order to set multiple
suboptions. For example, ildasm /adv /nail /met=hex /met=mdh
MyModule.dll /out:MyModule.txt.

All of these options are recognized by their first three letters (/NOBAR
means the same as !NOB, for instance) and are case-insensitive (/NOB means
the same as /nob). The colon character(:) and the equality character(=) are
interchangeable; for example, /vis=pub means the same as /vis.pub.

When a PE file is disassembled in full to a file, the managed and unman
aged resources are automatically saved to respective files so that they can be
picked up by the assembler and incorporated into a new PE file during the reas
sembly. "In full" means that neither /NOIL nor /ITEM nor !VIS options are spec
ified, because these options result in a partial disassembly, whose text is not
suitable for reassembling. The unmanaged resources are saved in a file that has
the same name as the output file and has the extension RES. The managed
resources are saved in files named according to the managed resource names
specified in the metadata. The resource files are not saved when a PE file is dis
assembled to a console window using the option !TEXT or !OUT: CON.

Chapter 16 Multilanguage Projects 383

Principles of Round· Tripping
The round-tripping of managed PE files includes two steps. The first step is to
disassemble the PE file into an ILAsm source file and the managed and unman
aged resource files:

ildasm MyModule.dll /out:MyModule.il

You can forgo the !ADV option in this case. You usually don't need advanced
presentation options for round-tripping, since the output is intended for the
ILAsm compiler.

The second step of round-tripping is to invoke the ILAsm compiler to pro
duce a new PE file from the results of the disassembler's activities:

ilasm /dll MyModule.il /out:MyModuleRT.dll /res:MyModule.res

The command-line options of the ILAsm compiler are listed in full in
Appendix D. The most important of these options are the following:

• The /OUT:<file_name> option specifies the name of the resulting PE
file. The default name is the name of the first source file with the
extension DLL or EXE.

• The /DLL option creates a dynamic-link library module. The default
is to create an executable (EXE) PE file. The file extension of the out
put file does not matter: if you specify !OUT:MyModule.dll and
neglect to specify /DLL, the result is an executable PE file (EXE)
named MyModule.dll. You can try to sell such a PE file to Barnum,
but you won't be able to do much more than that.

• The !RES:<unmanaged_resourcejlle_name> option indicates that
the compiler must incorporate the specified unmanaged resource file
into the PE file. The managed resources are specified in the ILAsm
source code and are picked up by the compiler automatically,
whereas an unmanaged resource has no metadata representation
and hence must be explicitly specified in a command-line option.

• The /DEBUG option has two effects: a PDB file is created, and the
(mscorlib}System.Diagnostics.DebuggableAttribute custom attribute is
assigned to the Assembly or Module metadata record. See "Compiling
in Debug Mode," later in this chapter, for more details.

• The /KEY.<private_keyJile_name> or /KEY.@<private_key_source_
name> option generates the strong name signature of the PE file.
Only the prime module of an assembly can carry a strong name sig
nature. If you are round-tripping a strong name signed prime mod
ule and don't have the private key-if, in other words, it's someone

384 Part VI Interoperation

else's assembly-you can leave the module unsigned. In this case,
you'll be able to use it as a private assembly only. If you decide not
to sign the module, you must delete or comment out the .publickey
directive in the .assembly scope. Otherwise, you will produce a
delayed-signed assembly-that is, an assembly that must be strong
name signed at some moment after the compilation and before it can
be used. (Alternatively, you can sign the prime module with your
own private key and say that it was your own assembly all along. Do
this only if you find true joy in litigation.)

A few items that might be present in a managed PE file don't survive round
tripping. For example, any embedded native code is lost. The exceptions to this
rule are the tiny pieces of native code that are automatically generated during the
compilation: the common language runtime startup stub and the unmanaged
export stubs. Strictly speaking, even these tiny pieces don't really round-trip: they
are generated anew rather than reproduced from the disassembly.

Another item that does not survive round-tripping is data-on-data, which
is a data constant containing the address of another data constant. Fortunately,
this kind of data is rather rare and not very useful, thanks to the strict limitations
the runtime imposes on operations with unmanaged pointers. Among the com
pilers producing pure-IL modules, only the ILAsm compiler is capable of gen
erating such data.

Local variable names survive round-tripping only if the PDB file accompa
nying the original PE file is available. The local variable names are part of the
debug information rather than the metadata.

Creative Round· Tripping
Simple two-step round-tripping, involving only disassembly and reassembly, is
not very interesting, unless you are testing the round-tripping capabilities of the
IL assembler and disassembler. A more creative scheme involves three steps:
disassembly, tinkering with the IIAsm source code, and reassembly.

Generally speaking, you can alter the ILAsm source code during this cre
ative round-tripping in only three ways:

• You can change the code emitted by a high-level compiler or a tool
in a way the compiler (the tool) would not allow you to do. From the
section "Thunks and Wrappers" in Chapter 15, "Managed and
Unmanaged Code Interoperation," you might recall mention of the
"manual intervention" necessary to correct the interop assemblies
produced by the Tlbimp.exe tool. Other scenarios can also call for
editing original code. For example, let's suppose that you don't

Chapter 16 Multilanguage Projects 385

believe me when I say that the common language runtime does not
permit overriding the final virtual methods. You write a test program
in Microsoft Visual Basic .NET, only to discover that the compiler will
not let you explicitly override a final method. Without explicit over
riding, the compiler automatically sets the newslot flag of the overrid
ing method, and, alas, there goes your experiment. Then you recall
that the ILAsm compiler doesn't have such inhibitions. You disassem
ble your test application, remove the newslot flag, reassemble the
test application, run it, and find out that I was right. As another
example, let's suppose that you have a nice assembly written in
Microsoft Visual C# .NET that can do a lot of nice things, but your
retrograde colleagues insist that in order to be useful your assembly
must expose its functionality to the unmanaged legacy components.
And those components are so far on the legacy side that they don't
even use COM. Then you recall that ILAsm allows you to export the
managed methods as unmanaged entry points, and ... I don't think I
need to continue.

• You can add the items written in ILAsm to extend your application's
functionality beyond the capabilities of a high-level compiler.

• Finally, you can disassemble several modules and reassemble them
into one module.

Using Class Augmentation
The ILAsm-specific technique of class augmentation can be useful when you
want to add new components written in ILAsm to your application written in a
high-level language. If you need to add new types, an obvious solution is to
declare these classes in a separate ILAsm source file, disassemble your applica
tion, and reassemble it with this additional .il file. Class augmentation allows
you to apply the same approach if you need to add new members to some of
the types defined in your application. In other words, you don't need to edit the
disassembly text of your application, inserting new members in the type defini
tions, because you can augment the respective type definitions in a separate
source file.

For example, suppose that you would like to have a thread local storage
(TLS) mapped field in class X and a vararg method in class Y, but the high-level
language of your choice does not allow you to specify such items. You can
write the following amendment file, Amend.il:

.class X
{

.field public static int32 tlsField at TLSD001
}

(continued)

386 Part VI Interoperation

.data tls TLSD001

.class Y
{

int32Cl234)

.method public vararg int64 Sum()
{

}

Then you can disassemble your original (incomplete) module and reas
semble it with an amendment:

ildasm MyApp.exe /out:MyApp.il
ilasm MyApp Amend

The last line is so laconic because it uses three defaults: the default source file
extension (IL), the default output file type and extension (EXE), and the default
output file name (the same as the name of the first source file).

Module Linking Through Round-Tripping
Now let's assume that instead of writing the amendment file in ILAsm, you
wrote it in another high-level language, compiled it to a module, and then dis
assembled it. Can you do that? Yes, you can, and it means that round-tripping
can be used for linking several modules together to form one. The original lan
guage used to write each module does not matter as long as all the modules are
pure-IL. The modules must be pure-IL simply because any mixed-code module
will fail to round-trip.

Brad Abrams, a program manager I work with, has written a small tool
called "Lame Linker," which performs managed module linking through round
tripping. You can have a look at this tool at GotDotNet, http://www.gotdot
net.com/userarea/keywordsrch.aspx?keyword=Lame%20Link. As Brad explains
it, he calls his linker "lame" because it doesn't have many of the features of a
good linker. Lame or not, this linker is used rather extensively and has proven
to be a useful tool.

The basic problem with linking multiple modules through round-tripping
is that you inevitably run into duplicate declarations. When you write amend
ment files in ILAsm, you don't need to make sure that these files compile per se;
they must compile together with the disassembly of the original module. But
each module you link has been compiled per se, and a significant part of its
metadata overlaps with the metadata of other modules being linked.

Let's review the potential effects of multiple declarations of different meta
data items.

Chapter 16 Multilanguage Projects 387

Multiple Assembly declarations (.assembly) should be avoided. The ILAsm
compiler ignores repetitive Assembly declarations as long as the assembly name
is the same, but if one of any subsequent declarations specifies a name that dif
fers from that of the first declaration, the compiler diagnoses an error.

Multiple AssemblyRef declarations (.assembly extern) are harmless. The
ILAsm compiler ignores them. The same is true for Module declarations (.mod
ule), ModuleRef declarations (.module extern), File declarations (file), and
ExportedType declarations (.class extern).

Duplicate ManifestResource declarations (.mresource) should be avoided.
The ILAsm compiler will not emit a new ManifestResource record for each dec
laration encountered, but it will incorporate a copy of the respective managed
resource for each .mresource declaration in the output PE file. The resulting PE
file will perform as expected, but it will be bloated.

Duplicate member declarations (field, .method, .event, .property) must be
avoided because their presence leads to compilation failure. Duplicate member
declarations can happen in two cases only: if you declare a type in one module
and amend it in another, or if you declare global fields or methods. I can't say
how likely the first scenario is-somehow, the feasibility of declaring part of a
type in one module and another part in another module, with the parts over
lapping, escapes me. But the second scenario is very likely indeed: you usually
don't pay much attention to naming global fields and methods because they are
an "internal affair" of the module. But when you link several modules together
to form one, all global fields and methods from each module wind up as glo
bals in the resulting module.

Multiple declarations of the module entry point (.entrypoint) must be
avoided as well, for they also cause compilation failure.

If several of your original modules use mapped fields, you should watch
for duplicate data declarations. ILDASM automatically generates the data
labels-D_ <data_RVA> for usual data and T_ <data_RVA> for TLS data-when it
disassembles each original module, so the data labels are almost guaranteed to
overlap. Duplicate data labels cause compilation failure.

The Lame Linker I mentioned earlier eliminates multiple Assembly decla -
rations, but nothing else.

The list of hazards to watch for in the process of linking through round
tripping looks endless, but in fact all these limitations are reasonable, and their
analogs can be found in the traditional linking of object files. Actually, tradi
tional linking is even less tolerant of duplicate definitions. And avoiding (or get
ting rid oD the dangerous duplications is not rocket science.

Module linking is necessary whenever you want to create a single-module
assembly from a multimodule assembly. And it does not matter how you came
into possession of the multimodule assembly in the first place. Perhaps you

388 Part VI Interoperation

developed different modules using different languages. Or perhaps you split
your application into subsystems to be developed independently. Or perhaps
you split your application for independent development, and the developers of
each subsystem chose their own development language.

Compiling in Debug Mode
When a managed compiler compiles source code in debug mode, you can
expect at least two occurrences. First, the resulting module has the custom
attribute [mscorlib]System.Diagnostics.DebuggableAttribute attached to the
Module record or, if it is a prime module, to the Assembly record. Second, the
compiler produces a PDB file containing data about the source files and the
compiler, the local variable names, and the tables binding source lines and col
umns to the code offsets. Of course, the compiler can perform other tasks as
well in debug mode-for example, emitting different IL code.

When a module is round-tripped, or when a high-level compiler produces
the ILAsm source code as an intermediate step, it is usually desirable to pre
serve the debug information binding the original source code to the final IL
code. ILAsm provides two directives facilitating this:

• The .language <Language_GUID>{,<Vendor_GUID>{,<Document_
GUID>]] directive defines the source language and, optionally, the
compiler ve:u. . .'.~. ~"d the source document type.

• The .line <line_num>{<column_num> !<file_name>]] directive
identifies the line and column in the original source file that are
"responsible" for the IL code that follows the .line directive.

For example, the following Visual C# .NET code

using System;

public class arr
{

}

private static int[,] MakeArray() {

}

return (int[,J)Array.Createinstance(typeof(int),
new int[J{2,3}, new int[J{-1, 0});

private static void Main() {
int[,] _aTgt = Make~rray();
foreach (int i in _aTgt) {

Console.Write(i +" ");
}

}

Chapter 16 Multilanguage Projects 389

compiled in debug mode, is disassembled, using the option ILINENUM, into the
following ILAsm code:

.class public auto ansi beforefieldinit arr
extends [mscorlib]System.Object

.method private hidebysig static int32[0 ... ,0 ... J
MakeArray() cil managed

II Code size
.maxstack 5

53 (0x35)

.locals init ([0] int32[0 .. .,0 ... J CS$00000003$00000000,
[1] int32[J CS$00000002$00000001,
[2] int32[] CS$00000002$00000002)

.language '{3F5162F8-07C6-11D3-9053-00C04FA302Al}'.

.line 6:3
IL_0000:
IL_0005:

'{994B45C4-E6E9-11D2-903F-00C04FA302Al}',
'{5A869D0B-6611-11D3-BD2A-0000F80849BD}'
'C:\\MyDirectory\\arr.cs'
ldtoken [mscorlib]System.Int32
call class [mscorlib]System.Type
[mscorlib]System.Type::GetTypeFromHandle(

IL_000a:
valuetype [mscorlib]System.RuntimeTypeHandle)

ldc.14.2
IL_000b:
IL_0010:
I L_0011:
IL_0012:
IL_0013:
IL_0014:
IL_0015:
IL_0016:
IL_0017:
IL_0018:
IL_0019:
IL_001a:
IL_00lb:
IL_0020:
IL_0021:
IL_0022:
IL_0023:
IL_0024:
IL_0025:
IL_0026:

IL_002b:

newarr [mscorlib]System.Int32
stloc.1
ldloc.1
ldc.i4.0
ldc.i4.2
stelem.i4
ldloc.1
ldc.i4.1
ldc.i4.3
stelem.14
ldloc.1
l de. i 4. 2
newarr [mscorlib]System.Int32
stloc.2
ldloc.2
ldc.i4.0
ldc.i4.ml
stelem.i4
ldloc.2
call class [mscorlib]System.Array
[mscorlib]System.Array: :Createlnstance(

class [mscorlib]System.Type,
int32[J,
int32[J)

castclass int32[0 ... ,0 ... J
(continued)

390 Part VI Interoperation

IL_0030: stloc.0
IL_0031: br.s IL_0033

.line 7:2
IL_0033: ldloc.0
IL_0034: ret

} II End of method arr: :MakeArray

.method private hidebysig static void Main() cil managed
{

.entrypoint
II Code size
.maxstack 3

103 (0x67)

.locals init ([0] int32[0 ... ,0 ... J _aTgt,
[1] int32 i,
[2] int32[0 ... ,0 ...] CS$00000007$00000000,
[3] int32 CS$00000264$00000001,
[4] int32 CS$00000265$00000002,
[5] int32 CS$00000008$00000003,
[6] int32 CS$00000009$00000004)

.line 10:3
IL_0000: call
IL_0005: stloc.0
.line 11:21

int32[0 ... ,0 ...] arr::MakeArray()

IL_0006: ldloc.0
IL_0007: stloc.2
IL_0008: ldloc.2
IL_0009: ldc.i4.0
IL_000a: callvirt instance int32

IL_000f:
IL_0010:
I L_0011:
IL_0012:

IL_0017:
IL_0019:
IL_001a:
IL_00lb:

IL_0020:
IL_0022:

IL_0024:
IL_0025:
IL_0026:

IL_002b:
IL_002d:

[mscorlib]System.Array::GetUpperBoundCint32)
stloc.3
ldloc.2
ldc.i4.1
call vi rt instance int32
[mscorlib]System.Array: :GetUpperBound(int32)
stloc.s CS$00000265$00000002
ldloc.2
1de.i4. 0
callvirt instance int32
[mscorlib]System.Array::GetLowerBound(int32)
stloc.s CS$00000008$00000003
br.s IL_0061

ldloc.2
ldc.i4.1
callvirt instance int32
[mscorlib]System.Array: :GetlowerBound(int32)
stloc.s CS$00000009$00000004
br.s IL_0055

.line 11:12
IL_002f: ldloc.2
IL_0030: ldloc.s
IL_0032: ldloc.s
IL_0034: call

Chapter 16 Multilanguage Projects 391

CS$00000008$00000003
CS$00000009$00000004

instance int32 int32[0 ...• 0 ... J::Get(int32. int32)
IL_0039: stloc.1
.line 12:8
IL_003a: ldloc.1
IL_003b: box [mscorlib]System.Int32
I L_0040: l dstr
IL_0045: call string

[mscorlib]System.String::Concat(object, object)
IL_004a: call void [mscorlib]System.Console::Write(string)
. line 11: 3
IL_004f: ldloc.s
IL_0051: ldc.i4.1
IL_0052: add
IL_0053: stloc.s
IL_0055: ldloc.s
IL_0057: ldloc.s
IL_0059: ble.s

IL_005b: ldloc.s
IL_005d: ldc. i4.1
IL_005e: add
IL_005f: stloc.s
IL_0061: ldloc.s
IL_0063: ldloc.3
IL_0064: ble.s

.line 14:2
I L_0066: ret

CS$00000009$00000004

CS$00000009$00000004
CS$00000009$00000004
CS$00000265$00000002
IL_002f

CS$00000008$00000003

CS$00000008$00000003
CS$00000008$00000003

IL_0024

} II End of method arr::Main

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed

{

II Code size 7 (0x7)
.maxstack 1
I L_0000: l darg. 0
I L_0001: call

instance void [mscorlib]System.Object::.ctor()
I L_0006: ret

} II End of method arr::.ctor

} II End of class arr

392 Part VI Interoperation

The .language directive sets the GUIDs for all following code until it is
superseded by another .language directive.

You'll encounter a slight problem with the .line directive in the first release
of the ILAsm compiler and disassembler: the directive specifies the starting line
and column of the original source statement that has been compiled into ILAsm
code following the .line directive. This doesn't bode well for the Microsoft
Visual Studio .NET debugger, which wants to see the line/column interval
(starting line and column and ending line and column) for each original source
statement. This problem will be corrected in future releases of the ILAsm com
piler and disassembler.

In short, if you want the resulting code bound to the original source code,
you need to do the following:

• If your compiler generates ILAsm source code, it must insert .lan
guage and .line directives at appropriate points.

• If you are round-tripping a module compiled from a high-level lan
guage, use the disassembler option /LINENUM (or !LIN).

• In any case, don't forget to use the option /DEBUG (or /DEB) of the
ILAsm compiler.

IL Assembler Grammar Reference 395

V· Table Fixup Declaration
<vtfixupDecl> ::= .vtfixup [<int32>] <vtfixupAttr> at <id>

<vtfixupAttr> ::= /* EMPTY*/
<vtfixupAttr> int32
<vtfixupAttr> int64
<vtfixupAttr> fromunmanaged
<vtfixupAttr> callmostderived

Namespace and Type Declarations
<nameSpaceHead> ::= .namespace <compName>

<classHead> ::= .class <classAttrs> <id> <extendsClause>
<imp/Clause>

<classAttrs> ::= /* EMPTY */ I <classAttrs> <classAttr>

<classAttr> : := <classAttr> public
I <classAttr> private
I <classAttr> nested public
I <classAttr> nested private
I <classAttr> nested family
I <classAttr> nested assembly
I <classAttr> nested famandassem
I <classAttr> nested famorassem
I <classAttr> value
I <classAttr> en um
I <classAttr> interface
I <classAttr> sealed
I <classAttr> abstract
I <classAttr> auto
I <classAttr> sequential
I <classAttr> explicit
I <classAttr> ansi
I <classAttr> uni code
I <classAttr> autochar
I <classAttr> import
I <classAttr> serializable
I <classAttr> beforefieldinit
I <classAttr> special name
I <classAttr> rtspecialname

<extendsClause> ::= /* EMPTY*/ I extends <classRef>

<imp/Clause> ::=I* EMPTY*/ I implements <classRefs>

<classRefs> : := <classRefs>. <classRef> I <classRef>
(continued)

396 Appendix A

<classRef> ::= [<compName> J <slashedName>
I [.module <compName> J <slashedName>
I <s 7 ashedName>

<slashedName> ::= <compName>
I <slashedName>l<compName>

<classDecls> ::= f* EMPTY *f I <classDecls> <classDecl>

<classDecl> : := <methodHead> <methodDecls> }
I <classHead> { <classDecls> }
I <eventHead> { <eventDecls> }
I <propHead> { <propDecls> }
I <fieldDecl>
I <dataDecl>
I <secDecl>
I <extSourceSpec>
I <customAttrDecl>
I .size <fnt32>
I • pack <i nt32>
I .override <typeSpec>: :<methodName>

with <ca77Conv> <type> <typeSpec>::<methodName>(
<sigArgs>)

<7anguageDec7>

Signature Type Specifications
<type>::= class <classRef>

object
string
value class <classRef>
valuetype <classRef>
<type> [J
<type> [<bounds> J
<type> &
<type> *
<type> pinned
<type> modreq(<classRef>)
<type> modopt(<classRef>)
method <ca77Conv> <type>*(<sigArgs>)
typed ref
char
void
bool
int8
intl6
int32

IL Assembler Grammar Reference 397

int64
fl oat32
fl oat64
unsigned int8
unsigned int16
unsigned int32
unsigned int64
native int
native unsigned int

<bounds> : := <bound>
I <bounds>.<bound>

<bound> : := I* EMPTY *I
I
I <int32>
I <int32> <int32>
I <int32>

<ca77Conv> ::=instance <callConv>
I explicit <ca77Conv>
I <ca77Kind>

<cal/Kind> : := /* EMPTY */
I default
I vararg

unmanaged cdecl
unmanaged stdcall
unmanaged thiscall
unmanaged fastcall

Native Type Declarations
<nativeType> ::= /* EMPTY*/

I custom(<compOstring>, <compQstring>
I fixed sysstring[<int32>J
I fixed array[<int32>J
I variant
I currency
I syschar
I void
I bool
I inta
I i nt16
I int32
I int64
I fl oat32
I fl oat64

(continued)

398 Appendix A

<variantType>

error
unsigned int8
unsigned int16
unsigned int32
unsigned int64
<native Type>*
<nativeType>[J
<native Type>[<in t32> J
<nativeType>[<int32> + <int32>]
<nativeType>[+ <int32>]
decimal
date
bstr
lpstr
lpwstr
lptstr
object ref
i unknown
idispatch
struct
interface
safearray <variantType>
safearray <variantType>,<compQstring>
int
unsigned int
nested struct
byvalstr
ansi bstr
tbs tr
variant bool
method
as any
l pstruct

f* EMPTY */
null
variant
currency
void
bool
int8
intl6
int32
int64
fl oat32
fl oat64
unsigned int8
unsigned int16
unsigned int32

IL Assembler Grammar Reference 399

Field Declarations

unsigned int64

*
<variantType>
<variantType> vector
<variantType> &
decimal
date
bstr
l pstr
l pwstr
i unknown
idispatch
safearray
int
unsigned int
error
hresult
car ray
userdefined
record
filetime
blob
stream
storage
streamed_object
stored_object
blob_object
cf
clsid

<fieldDecl> ::= .field <repeatOpt> <fieldAttr> <type> <id>
<atOpt> <initOpt>

<repeatOpt> : := /* EMPTY */
I C<int32>J

<fieldAttr> ::= /* EMPTY*/
<fieldAttr> public
<fieldAttr> private
<fieldAttr> family
<fieldAttr> assembly
<fieldAttr> famandassem
<fieldAttr> famorassem
<fieldAttr> privatescope
<fieldAttr> static
<fieldAttr> initonly

(continued)

400 Appendix A

<atOpt>

<fieldAttr> rtspecialname
<fieldAttr> specialname
<fieldAttr> marshal(<nativeType>
<fieldAttr> literal
<fieldAttr> notserialized

/* EMPTY */
at <id>

<initOpt> I* EMPTY */
I = <fieldlnit>

<fieldlnit> ::= float32C<float64>)
I float64C<float64>)
I float32C<int64>)
I float64C<int64>)
I int64C <int64>)
I int32(<int64>)
I int16C<int64>)
I char(<int64>)
I int8(<int64>)
I bool(<truefalse>)
I <compOstring>
I bytearray(<bytes>
I null ref

Data Declarations
<dataDecl> <dataHead> <dataBody>

<dataHead> .data <tis> <id> =
.data <tis>

<tis> I* EMPTY *I
I tls

<dataBody> : := { <dataltemlist> }
I <dataltem>

<dataltemlist> ::= <dataltem>.<dataltemList>
I <dataltem>

<dataltem> : :=char*(<compOstring>)
I &C <id>)
I bytearray = C <bytes>
I float32C<float64>) <repeatOpt>
I float64C<float64>) <repeatOpt>
I int64C<int64>) <repeatOpt>

IL Assembler Grammar Reference 401

1nt32(<int32>) <repeatOpt>
1nt16(<int32>) <repeatOpt>
1nt8C<int32>) <repeatOpt>
float32 <repeatOpt>
float64 <repeatOpt>
int64 <repeatOpt>
int32 <repeatOpt>
1nt16 <repeatOpt>
int8 <repeatOpt>

Method Header Declarations
<methodHead> : := .method <methAttr> <ca77Conv> <paramAttr> <type>

<methodName><<sigArgs>) <imp7Attr> {
.method <methAttr> <ca77Conv> <paramAttr> <type>

marshalC<nativeType>)
<methodName>C<sigArgs>) <imp7Attr> {

<methAttr> ::= /* EMPTY*/
<methAttr> static
<methAttr> public
<methAttr> private
<methAttr> family
<methAttr> assembly
<methAttr> famandassem
<methAttr> famorassem
<methAttr> privatescope
<methAttr> final
<methAttr> virtual
<methAttr> abstract
<methAttr> hidebysig
<methAttr> newslot
<methAttr> reqsecobj
<methAttr> specialname
<methAttr> rtspecialname
<methAttr> unmanagedexp

<methAttr> pinvokeimplC<compOstring>
as <compOstring> <pinvAttr>)

<methAttr> pinvokeimplC<compOstring> <pinvAttr>)
<methAttr> pinvokeimplC<pinvAttr>)

<pinvAttr> : := /* EMPTY */
I <pinvAttr> nomangle
I <pinvAttr> ans1
I <pinvAttr> unicode
I <pinvAttr> autochar

(continued)

402 Appendix A

<pinvAttr> lasterr
<pinvAttr> winapi
<pinvAttr> cdecl
<pinvAttr> stdcall
<pinvAttr> thiscall
<pinvAttr> fastcall

<methodName> ::= .ctor
I . cctor
I <compName>

<paramAttr> ::= f* EMPTY *f
I <paramAttr> [in]
I <paramAttr> [out]
I <paramAttr> [opt]

<imp7Attr> : := /* EMPTY */
I <imp7Attr> native
I <imp7Attr> cil
I <imp7Attr> optil
I <imp7Attr> managed
I <imp7Attr> unmanaged
I <imp7Attr> forwardref
I <imp7Attr> preservesig
I <imp7Attr> runtime
I <imp7Attr> internalcall
I <imp7Attr> synchronized
I <imp7Attr> noinlining

<sigArgs> : := /* EMPTY */
I <sigArglist>

<sigArglfst> : := <sigArg>

<s i gArg>

I <sigArgList>.<sigArg>

<paramAttr> <type>
<paramAttr> <type> <id>
<paramAttr> <type> marshal(<nativeType>
<paramAttr> <type> marshal(<nativeType> <id>

Method Body Declarations
<methodDecls> : := /* EMPTY */

I <methodDecls> <methodDecl>

<methodDec7> : := .emitbyte <int32>
I .maxstack <int32>

IL Assembler Grammar Reference 403

I .locals(<sigArgs> l
I .locals init (<sigArgs>
I • entrypoi nt
I. .zeroinit
I .export [<int32> J
I .export [<int32> J as <id>

.vtentry <int32>:<int32>

.override <typeSpec>: :<methodName>
<scopeBlock>
.param [<int32> J <initOpt>
<id>:
<sehBlock>
<instr>
<secDecl>
<extSourceSpec>
<languageDecl>
<customAttrDecl>
<dataDecl>

<typeSpec> : := <classRef>
<compName>

[.module <compName>
<type>

<scopeBlock> ::= { <methodDecls>}

<sehBlock> <tryBlock> <sehClauses>

<tryBlock> .try <scopeBlock>
.try <id> to <id>
.try <int32> to <int32>

<sehClauses> ::= <sehClause> <sehClauses>
I <sehClause>

<sehClause> ::=catch <classRef> <handlerBlock>
I finally <handlerBlock>
I fault <handlerBlock>
I <filterClause> <handlerBlock>

<filterClause> : := filter <scopeBlock>
I filter <id>
I filter <int32>

<handlerBlock> : := <scopeBlock>
I handler <id> to <id>
I handler <int32> to <int32>

<instr> INSTR_NONE II nop
(continued)

404 Appendix A

INSTR_VAR <int32> II ldarg,ldarga,starg,ldloc,
II ldloca,stloc

INSTR_VAR <id>
INSTR_I <int32>
I NS TR_ I 8 <in t64>
INSTR_R <float64>
INSTR_R <int64>
INSTR_R (<bytes>

II ldc.i4
II ldc.i8
II ldc.r8

INSTR_BRTARGET <int32> II br,brtrue,brfalse,beq,bne, ...
INSTR_BRTARGET <id>
INSTR_METHOD <methodRef>

II call ,callvirt,jmp,newobj,ldftn,ldvirtftn
INSTR_FIELD <type> <typeSpec>::<id>

II ldfld,ldsfld,ldflda,ldsflda,stfld,stsfld
INSTR_FIELD <type> <id>
INSTR_TYPE <typeSpec> II ldobj,stobj,box,unbox,newarr, ...
INSTR_STRING <compQstring> II ldstr
INSTR_STRING bytearray = (<bytes>)
INSTR_SIG <callConv> <type> (<sigArgs>
INSTR_TOK <ownerType>
INSTR_SWITCH (<labels>)

II calli
11 1 dtoken
I I switch

<methodRef> : :=
<callConv> <type> <typeSpec>::<methodName>(<sigArgs>)

I <callConv> <type> <methodName>(<sigArgs>)

<labels>::= I* EMPTY *I
I <id>.<labels>
I <int32>.<labels>
I <id>
I ont32>

<ownerType> : := <typeSpec>
I <memberRef>

<memberRef> ::=method <methodRef>
I field <type> <typeSpec>::<id>
I field <type> <id>

Event Declarations
<eventHead> .event <eventAttr> <typeSpec> <id>

I .event <eventAttr> <id>

<eventAttr> ::=I* EMPTY *I
I <eventAttr> rtspecialname
I <eventAttr> specialname

IL Assembler Grammar Reference 405

<eventDecls> ::= /* EMPTY */
I <eventDecls> <eventDec7>

<eventDec7> : := .addon <methodRef>
I .removeon <methodRef>
I • fire <method Ref>
I • other <methodRef>
I <customAttrDec7>
I <extSourceSpec>
I <7anguageDec7>

Property Declarations
<propHead> ::= .property <propAttr> <type>

<id>(<sigArgs>) <initOpt>

<propAttr> : := /* EMPTY */
I <propAttr> rtspecialname
I <propAttr> specialname

<propDecls> ::= /* EMPTY*/
I <prop Dec 7 s> <propDec 7 >

<propDec7> : := .set <methodRef>
I .get <methodRef>
I .other <methodRef>
I <customAttrDec7>
I <extSourceSpec>
I <7anguageDec7>

Custom Attribute Declarations
<customAttrDecl> ::=.custom <customType>

.custom <customType> = <compOstring>

.custom <customType> = (<bytes>)

.custom <customType> = <compOstring>

.custom (<ownerType>) <customType>

.custom (<ownerType>) <customType> =
<compOstring>

.custom (<ownerType>) <customType> = (<bytes>

<customType> <ca77Conv> <type> <typeSpec>::.ctor(<sigArgs>)
I <ca77Conv> <type> .ctor(<sigArgs>)

406 Appendix A

Security Declarations
<secDecl> ::= .permission <secActjon> <typeSpec> (<nameValPajrs>

I .permission <secAcUon> <typeSpec>
I .permissionset <secAcUon> = (<bytes>

<nameValPajrs> ::= <nameValPajr>
I <nameVa7Pafr>.<nameVa7Pafrs>

<nameValPajr> : := <compOstdng> = <caValue>

<ca Value> <truefalse>
(jnt32>
int32((jnt32>
<compQstrjng>
<classRef> (int8: (jnt32>)
<classRef> (int16: (jnt32>)
<classRef> (int32: <jnt32>)
<classRef> ((jnt32>)

<secActjon> ::=request
demand
assert
deny
permitonly
1 i nkcheck
inheritcheck
reqmin
reqopt
reqrefuse
prejitgrant
prejitdeny
noncasdemand
noncaslinkdemand
noncasinheritance

Manifest Declarations
<moduleHead> ::= .module

I .module <compName>
I .module extern <compName>

<fileDecl> ::= .file <fileAttr> <compName> <fileEntry>
.hash = (<bytes>) (fjleEntry>

I .file <fjleAttr> <compName> <fjleEntry>

IL Assembler Grammar Reference 407

<fileAttr> ::= /* EMPTY *f
I <fileAttr> nometadata

<fileEntry> ::= /* EMPTY*/
I . entrypoi nt

<assemblyHead> ::= .assembly <asmAttr> <compName>

<asmAttr> ::=/*EMPTY*/
I <asmAttr> noappdomain
I <asmAttr> noprocess
I <asmAttr> nomachine

<assemblyDecls> ::= /* EMPTY*/
I <assemblyDecls> <assemblyDecl>

<assemblyDecl> ::= .hash algorithm <int32>
f <secDecl>
I <asmOrRefDecl>

<asmOrRefDecl> : := .publickey = (<bytes>)
f .ver <int32>:<int32>:<int32>:<int32>
I .locale <compQstring>
I • locale = (<bytes>)
I <customAttrDecl>

<assemblyRefHead> ::= .assembly extern <compName>
I .assembly extern <compName> as <compName>

<assemblyRefDecls> ::= /* EMPTY *f
f <assemblyRefDecls> <assemblyRefDecl>

<assemblyRefDecl> : := .hash = (<bytes>
I <asmOrRefDec 7 >
I .publickeytoken = C <bytes>

<expTypeHead> ::= .class extern <exptAttr> <compName>

<exptAttr> ::= /* EMPTY */
<exptAttr> private
<exptAttr> public
<exptAttr> nested public
<exptAttr> nested private
<exptAttr> nested family
<exptAttr> nested assembly
<exptAttr> nested famandassem
<exptAttr> nested famorassem

(continued)

408 Appendix A

<expTypeDecls> ::=I* EMPTY*/
I <exp TypeDec 7 s> <exp TypeDec 7 >

<exp Type Dec 7 > : : = • file <comp Name>
I • cl ass extern <compName>
I .class <int32>
I <customAttrDecl>

<manifestResHead> ::= .mresource <manresAttr> <compName>

<manresAttr> ::= /* EMPTY*/
I <manresAttr> public
I <manresAttr> private

<manifestResDecls> ::=/*EMPTY*/
I <manifestResDecls> <manifestResDecl>

<manifestResDecl> ::= .file <compName> at <int32>
I .assembly extern <compName>
I <customAttrDecl>

Metadata Tables Reference

Entry Types

BYTE

SHORT

USHORT

UL ONG

RID: <table>

STRING

GUID

BLOB

<coded_token_type>

Unsigned 1-byte integer

Signed 2-byte integer

Unsigned 2-byte integer

Unsigned 4-byte integer

Record index to <table>

Offset in the #Strings stream

Offset in the #GUJD stream

Offset in the #Blob stream

Coded token (see the Coded Token Types table at the end of
the Appendix)

Module; RID type: 00; Token type: OxOOOOOOOO; Metadata {MD) streams: #-, #-

Entry Name Entry Type Comments

Generation USHORT For edit-and-continue

Name STRING No longer than 512 bytes

Mvid GUID Generated automatically

Encld GUID For edit-and-continue

EncBaseld GUID For edit-and-continue

TypeRef; RID type: 01; Token type: Ox01000000; MD streams: #-, #-

Entry Name

ResolutionScope

Name

Namespace

Entry Type

ResolutionScope

STRING

STRING

Comments

409

410 Appendix 8

TypeDef; RID type: 02; Token type: Ox02000000; MD streams: #-, #-

Entry Name Entry Type Comments

Flags UL ONG Validity mask: Ox001173DBF

Name STRING

Namespace STRING

Extends TypeDefOrRef Base type

FieldList RID: Field

MethodList RID: Method

FieldPtr; RID type: 03; Token type: none; MD stream: #-

Entry Name Entry Type Comments

Field RID: Field

Field; RID type: 04; Token type: Ox04000000; MD streams:#-,#-

Entry Name

Flags

Name

Signature

Entry Type

USHORT

STRING

BLOB

Comments

Validity mask: OxB7F7

No longer than 1023 bytes

Cannot be 0

MethodPtr; RID type: 05; Token type: none; MD stream:#-

Entry Name Entry Type Comments

Method RID: Method

Method; RID type: 06; Token type: Ox06000000; MD streams: #-, #-

Entry Name Entry Type Comments

RVA

ImplFlags

Hags

Name

ULONG

USHORT

USHORT

STRING

Must be 0 or point at read-only section

Validity mask: OxlOBF

Validity mask: OxFDF7

No longer than 1023 bytes

(continued)

Metadata Tables Reference 411

Method; RID type: 06; Token type: Ox06000000; MD streams: #-, #- (continued)

Entry Name

Signature

ParamList

Entry Type

BLOB

RID: Param

Comments

Cannot be 0

ParamPtr; RID type: 07; Token type: none; MD stream:#-

Entry Name Entry Type Comments

Pa ram RID: Param

Param; RID type: 08; Token type: Ox08000000; MD streams: #-, #-

Entry Name

Flags

Sequence

Name

Entry Type

USHORT

USHORT

STRING

Comments

Validity mask: Ox3013

0 means return value

lnterfacelmpl; RID type: 09; Token type: Ox09000000; MD streams: #-, #-

Entry Name

Class

Interface

Entry Type

RID: TypeDef

TypeDefOrRef

Comments

Class implementing the interface

Implemented interface

MemberRef; RID type: 1 O; Token type: OxOAOOOOOO; MD streams: #-, #-

Entry Name

Class

Name

Signature

Entry Type

A1.emberRejParent

STRING

BLOB

Comments

Cannot be TypeDef

No longer than 1023 bytes

Cannot be 0

412 Appendix B

Constant; RID type: 11; Token type: none; MD streams: #-, #-

Entry Name

Type

Parent

Value

Entry Type

BYTE

HasConstant

BLOB

Comments

CustomAttribute; RID type: 12; Token type: OxOCOOOOOO; MD streams:#-,#-

Entry Name

Parent

Type

Value

Entry Type

HasCustomAttribute

CustomAttributeType

BLOB

Colll1llents

FieldMarshal; RID type: 13; Token type: none; MD streams: #-, #-

Entry Name

Parent

Native Type

Entry Type

HasFieldMarshal

BLOB

Colll1llents

Cannot be 0

DeclSecurity; RID type: 14; Token type: OxOEOOOOOO; MD streams: #-, #-

Entry Name

Action

Parent

PermissionSet

Entry Type

SHORT

HasDec!Security

BLOB

Comments

Classlayout; RID type: 15; Token Type: none; MD streams: #-, #-

Entry Name

PackingSize

ClassSize

Parent

Entry Type

US HORT

UL ONG

RID: TypeDef

Colll1llents

Power of 2, from 1 through 128

Metadata Tables Reference 413

Fieldlayout; RID type: 16; Token type: none; MD streams:#-,#-

Entry Name

O.ffSet

Field

Entry Type

ULONG

RID: Field

Comments

Offset in bytes or ordinal

StandAloneSig; RID type: 17; Token type: Ox11000000; MD streams: #-, #-

Entry Name Entry Type Comments

Signature BLOB Cannot be 0

EventMap; RID type: 18; Token type: none; MD streams:#-,#-

Entry Name

Parent

EventList

Entry Type

RID: TypeDef

RID: Event

Comments

EventPtr; RID type: 19; Token type: none; MD stream: #-

Entry Name Entry Type Comments

Event RID: Event

Event; RID type: 20; Token type: Ox14000000; MD streams:#-,#-

Entry Name

EventFlags

Name

EventType

Entry Type

USHORT

STRING

TypeDejOrRef

Comments

OxOOOO, Ox0200, or0x0600

PropertyMap; RID type: 21; Token type: none; MD streams: #-, #-

Entry Name

Parent

Property List

Entry Type

RID: TypeDef

RID: Property

Comments

414 Appendix B

PropertyPtr; RID type: 22; Token type: none; MD stream: #-

Entry Name Entry Type Comments

Property RID: Property

Property; RID type: 23; Token type: Ox17000000; MD streams:#-,#-

Entry Name

PropFlags

Name

Type

Entry Type

USHORT

STRING

BLOB

Comments

Validity mask: Ox1600

Property signature

MethodSemantics; RID type: 24; Token type: none; MD streams: #-, #-

Entry Name

Semantic

Method

Association

Entry Type

USHORT

RID: Method

HasSemantic

Comments

Methodlmpl; RID type: 25; Token type: none; MD streams: #-, #-

Entry Name

Class

MethodBody

MethodDeclaration

Entry Type

RID: TypeDef

MethodDefOrRef

MethodDefOrRef

Comments

Overriding method

Overridden method

ModuleRef; RID type: 26; Token type: Ox1AOOOOOO; MD streams:#-, #-

Entry Name Entry Type Comments

Name STRING No longer than 512 bytes

Metadata Tables Reference 415

TypeSpec; RID type: 27; Token type: Ox18000000; MD streams: #-, #-

Entry Name Entry Type Comments

Signature BLOB Cannot be 0

Table: ENCLog; RID type: 28; Token type: none; MD stream: #-

Entry Name

Token

FuncCode

Entry Type

UL ONG

UL ONG

Comments

Table: lmplMap; RID type: 29; Token type: none; MD streams: #-, #-

Entry Name Entry Type Comments

MappingFlags USHORT Validity mask: Ox0747

MemberForwarded MemberForwarded Method only

ImportName STRING Entry point name

ImportScope RID: ModuleRef ModuleRefto unmanaged DLL

ENCMap; RID type: 30; Token type: none; MD stream:#-

Entry Name Entry Type Comments

Token UL ONG

FieldRVA; RID type: 31; Token type: none; MD streams: #-, #-

Entry Name

RVA

Field

Entry Type

UL ONG

RID: Field

Comments

416 Appendix B

Assembly; RID type: 32; Token type: Ox20000000; MD streams: #-, #-

Entry Name Entry Type Comments

HashAlg!d UL ONG

Major Version USHORT

Minor Version USHORT

BuildNumber USHORT

RevisionNumber USHORT

Flags UL ONG Validity mask: OxOOOOC031

PublicKey BLOB

Name STRING No path, no extension

Locale STRING

AssemblyProcessor; RID type: 33; Token type: none; Unused

Entry Name Entry Type Comments

Processor UL ONG

Table: AssemblyOS; RID type: 34; Token type: none; Unused

Entry Name

OSPlaiformld

OSMajorVersion

OSMinorVersion

Entry Type

UL ONG

UL ONG

UL ONG

Comments

AssemblyRef; RID type: 35; Token type: Ox23000000; MD streams: #-, #-

Entry Name Entry Type Comments

Major Version USHORT

Minor Version USHORT

BuildNumber US HORT

RevisionNumber USHORT

Flags UL ONG OxOOOOOOOO or OxOOOOOOOl

PublicKeyOrToken BLOB

Name STRING No path, no extension
(continued)

Metadata Tables Reference 417

AssemblyRef; RID type: 35; Token type: Ox23000000; MD streams: #-, #- (continued)

Entry Name

Locale

Hash Value

Entry Type

STRING

BLOB

Comments

AssemblyRefProcessor; RID type: 36; Token type: none; Unused

Entry Name Entry Type Comments

Processor UL ONG

Assembly Ref RID: AssemblyRef

AssemblyRefOS; RID type: 37; Token type: none; Unused

Entry Name Entry Type Comments

OSPlatformid UL ONG

OSMajor Version UL ONG

OSMinorVersion UL ONG

Assembly Ref RID: AssemblyRef

File; RID type: 38; Token type: Ox26000000; MD streams: #-, #-

Entry Name

Flags

Name

Hash Value

Entry Type

UL ONG

STRING

BLOB

Comments

OxOOOOOOOO or OxOOOOOOO 1

No path

ExportedType; RID type: 39; Token type: Ox27000000; MD streams: #-, #-

Entry Name

Flags

TypeDeftd

TypeName

TypeNamespace

Implementation

Entry Type

UL ONG

UL ONG

STRING

STRING

Implementation

Comments

Validity mask: Ox00000007

TypeDef token in another module

File, ExportedType

418 Appendix B

ManifestResource; RID type: 40; Token type: Ox28000000; MD streams: #-, #-

Entry Name Entry Type Comments

Offset UL ONG

Flags UL ONG OxOOOOOl or Ox000002

Name STRING

Implementation Implementation 0, File, AssemblyRef

NestedClass; RID type: 41; Token type: none; MD streams:#-,#-

Entry Name

NestedClass

EnclosingClass

Coded Token Types

Type

Entry Type

RID: TypeDef

RID: TypeDef

TypeDefOrRef(64): 3 referenced tables, tag size 2

Type Def

TypeR(ff

TypeSpec

HasConstant (65): 3 referenced tables, tag size 2

Field

Pa ram

Property

Comments

HasCustomAttribute (66): 19 referenced tables, tag size 5

Method

Field

TypeRef

Type Def

Pa ram

Interface!mpl

MemberRef

Module

DeclSecurity

Tag

0

1

2

0

1

2

0

1

2

3

4

5

6

7

8
(continued)

Coded Token Types (continued)

Type

Property

Event

StandAloneSig

ModuleRef

Type Spec

Assembly

Assembly Ref

File

ExportedType

ManifestResource

HasFieldMarshal (67): 2 referenced tables, tag size 1

Field

Pa ram

HasDeclSecurity (68): 3 referenced tables, tag size 2

Type Def

Method

Assembly

MemberRefParent (69): 5 referenced tables, tag size 3

TypeDef

Type Ref

ModuleRej

Method

TypeSpec

HasSemantics (70): 2 referenced tables, tag size 1

Event

Property

MethodDe.fOrRef (71): 2 referenced tables, tag size 1

Method

MemberRef

MemberForwarded (72): 2 referenced tables, tag size 1

Field

Method

Metadata Tables Reference 419

Tag

9

10

11

12

13

14

15

16

17

18

0

1

0

1

2

0

1

2

3

4

0

1

0

1

0

1

(continued)

420 Appendix B

Coded Token Types (continued)

Type Tag

Implementation (73): 3 referenced tables, tag size 2

File

Assembly Ref

ExportedType

CustomAttrlbuteType (74): 5 referenced tables, tag size 3

TypeRef

Type Def

Method

MemberRef

String

ResolutionScope (75): 4 referenced tables, tag size 2

Module

ModuleRef

Assembly Ref

Type Ref

0

1

2

0

1

2

3

4

0

1

2

3

Appendix C

IL Instruction Set Reference

Instruction Parameter Types

Type

int8

uint8

int32

uint32

int64

float32

float64

<Method>

<Field>

<Type>

<Signature>

<String>

Evaluation Stack Types

Type

int32

int64

Float

&

0

Description

Signed 1-byte integer

Unsigned 1-byte integer

Signed 4-byte integer

Unsigned 4-byte integer

Signed 8-byte integer

4-byte floating point number

8-byte floating point number

MethodDef or MemberRef token

FieldDef or MemberRef token

TypeDef, TypeRef, or TypeSpec token

StandAloneSig token

User-defined string token

Description

Signed 4-byte integer

Signed 8-byte integer

80-bit floating point number

Managed or unmanaged pointer

Object reference

Unspecified type

421

422 Appendix C

IL Instructions

Opcode Name Parameter(s) Pop Push

00 nap

01 break

02 ldarg.O

03 ldarg.1

04 ldarg.2

05 ldarg.3

06 ldloc.O

07 ldloc.l

08 ldloc.2 *

09 ldloc.3

OA stloc.O

OB stloc.1

oc stloc.2

OD stloc.3

OE ldarg.s uint8

OF ldarga.s uint8 &

10 starg.s uint8

11 ldloc.s uint8

12 ldloca.s uint8 &

13 stloc.s uint8

14 ldnull &=O

15 ldc.i4.ml int32=-1

ldc.i4.Ml

16 ldc.i4.0 int32=0

17 ldc.i4.l int32=1

18 ldc.i4.2 int32=2

19 ldc.i4.3 int32=3

lA ldc.i4.4 int32=4

(continued)

IL Instruction Set Reference 423

IL Instructions (continued)

Opcode Name Parameter(s) Pop Push

1B ldc.i4.5 int32=5

lC ldc.i4.6 int32=6

1D ldc.i4.7 int32=7

1E ldc.i4.8 int32=8

lF ldc.i4.s int8 int32

20 ldc.i4 int32 int32

21 ldc.i8 int64 int64

22 ldc.r4 float32 Float

23 Ide.rs float64 Float

25 dup ••
'

26 pop

27 jmp <Method>

28 call <Method> N arguments Ret.value

29 calli <Signature> N arguments Ret.value

2A ret

2B br.s int8

2C brfalse.s int8 int32

brnull.s

brzero.s

2D brtrue.s int8 int32

brinsts

2E beq.s int8 ••
'

2F bge.s int8 ••
'

30 bgt.s int8 ••
'

31 ble.s int8 * * '
32 blt.s int8 ••

'
33 bne.un.s int8 ••

'
34 bge.un.s int8 ••

'
35 bgt.un.s int8 ••

'

(continued)

424 Appendix C

IL Instructions (continued)

Opcode Name Parameter(s) Pop Push

36 ble.un.s int8 * * '
37 blt.un.s int8 * * '
38 br int32

39 brfalse int32 int32

brnull

brzero

3A brtrue int32 int32

brinst

3B beq int32 * * '
3C bge int32 ••

'
3D bgt int32 ••

'
3E ble int32 * * '
3F blt int32 * * '
40 bne.un int32 ••

'
41 bge.un int32 • *

'
42 bgt.un int32 * * '
43 ble.un int32 * * '
44 blt.un int32 ••

'
45 switch (uint32= N) + ••

' N(int32)

46 ldind.il & int32

47 ldind.ul & int32

48 ldind.i2 & int32

49 ldind.u2 & int32

4A ldind.i4 & int32

4B ldind.u4 & int32

4C ldind.i8 & int64

ldind.u8

4D ldind.i & int32

4E ldind.r4 & Float

4F ldind.r8 & Float

50 ldind.ref & &

51 stind.ref &,&

52 stind.il int32,&

IL Instruction Set Reference 425

IL Instructions (continued)

Opcode Name Parameter(s) Pop Push

S3 stind.i2 int32,&

S4 stind.i4 int32,&

S5 stind.i8 int32,&

S6 stind.r4 Float,&

S7 stind.r8 Float,&

S8 add ••

S9 sub • *

SA mul ••
SB div • *

SC div.un • *

SD rem ••
SE rem.un ••

'
SF and ••
60 or ••

'
61 xor ••
62 sh! *.

'
63 shr ••
64 shr.un ••

65 neg

66 not

67 conv.il int32

68 conv.i2 int32

69 conv.i4 • int32

6A conv.i8 int64

6B conv.r4 Float

6c conv.r8 • Float

6D conv.u4 int32

6E conv.u8 int64

6F callvirt <Method> N arguments Ret.value

70 cpobj < &,&

Type

>

71 ldobj <Type> &

(continued)

426 Appendix C

IL Instructions (continued)

Opcode Name Parameter(s) Pop Push

72 ldstr <String> 0

73 newobj <Method> N arguments 0

74 castclass <Type> 0 0

75 is inst <Type> 0 int32

76 conv.r.un Float

79 unbox <Type> 0 &

7A throw 0

7B ldfld <Field> o/&

7C ldflda <Field> o/& &

7D stfld <Field> o/&,*

7E ldsfld <Field>

7F ldsflda <Field> &

80 stsfld <Field>

81 stobj <Type> &*
'

82 conv. ovf.i 1. un int32

83 conv.ovf.i2.un int32

84 conv.ovf.i4.un int32

85 conv.ovf.i8.un int64

86 conv.ovf.ul.un int32

87 conv.ovf.u2.un int32

88 conv.ovf.u4.un int32

89 conv.ovf.u8.un int64

8A conv.ovf.i.un int32

8B conv.ovf.u.un int64

8C box <Type> 0

8D newarr <Type> int32 0

8E ldlen 0 int32

8F ldelema <Type> int32,o &

90 ldelem.il int32,o int32

91 ldelem.ul int32,o int32

92 ldelem.i2 int32,o int32

93 ldelem.u2 int32,o int32

94 ldelem.i4 int32,o int32

95 ldelem.u4 int32,o int32

IL Instruction Set Reference 427

IL Instructions (continued)

Opcode Name Parameter(s) Pop Push

96 ldelem.i8 int32,o int64

ldelem.u8

97 ldelem.i int32,o int32

98 ldelem.r4 int32,o Float

99 ldelem.r8 int32,o Float

9A ldelem.ref int32,o al&

9B stelem.i int32, int32, o

9C stelem.il int32, int32, o

9D stelem.i2 int32, int32, o

9E stelem.i4 int32, int32, o

9F stelem.i8 int64, int32, o

AO stelem.r4 Float, int32, o

Al stelem.r8 Float, int32, o

A2 stelem.ref o/&, int32, o

B3 conv.ovf.il int32

B4 conv.ovf.ul int32

B5 conv.ovf.i2 int32

B6 conv.ovf.u2 int32

B7 conv.ovf.i4 int32

B8 conv.ovf.u4 int32

B9 conv.ovf.i8 int64

BA conv.ovf.u8 int64

C2 refanyval <Type> &

C3 ckfinite Float

c6 mkrefany <Type> &

DO ldtoken <Type>/ &
<Field>/
<Method>

D1 conv.u2 int32

D2 conv.ul int32

D3 conv.i int32

D4 conv.ovf.i int32

D5 conv.ovf.u int32

D6 add.ovf ..
D7 add.ovf.un • *

'
DS mul.ovf • *

'
(continued)

428 Appendix C

IL Instructions (continued)

Opcode Name Parameter(s) Pop Push

D9 mul.ovf.un * *

DA sub.ovf * *

DB sub.ovf.un * *
'

DC endfinally

endfault

DD leave int32

DE leave.s int8

DP stind.i int32,&

EO conv.u int32

FE 00 arglist &

FE 01 ceq * * int32
'

FE 02 cgt * * int32
'

FE 03 cgt.un * * int32
'

FE 04 clt * * int32
'

FE 05 clt.un * * int32
'

FE 06 ldftn <Method> &

FE 07 ldvirtftn <Method> 0 &

FE 09 ldarg uint32

FE OA uint32 &

ldarga

FE OB starg uint32

FE QC ldloc uint32

FE OD ldloca uint32 &

FE OE stloc uint32

FE OF localloc int32 &

FE 11 endfilter int32

FE 12 unaligned. uint8

FE 13 volatile.

FE 14 tail.

FE 15 initobj <Type> &

FE 17 cpblk int32,&,&

FE 18 initblk int32, int32,&

FE lA re throw

FE lC sizeof <Type> int32

FE 1D refanytype &

Appendix D

IL Assembler and Disassembler
Command-Line Options

IL Assembler
The command-line structure of IL Assembler is as follows:

ilasm [<options>] <sourcefile> [<options>][<sourcefile>*]

The default source file extension is IL. Multiple source files are parsed in the
order of their appearance on the command line. Because options do not need
to appear in a prescribed order, options and names of source files can be inter
mixed. All options specified on the command line are pertinent to the entire set
of source files.

All options are recognized by the first three characters following the
option key, and all are case-insensitive. The option key can be a forward slash
(/)or a hyphen(-). In options that specify parameters, the equality character(=)
is interchangeable with the colon character(:). The following option notations
are equivalent:

!OUTPUT=MyModule.dll

-OUTPUT:MyModule.dll

/out:MyModule.dll

-Outp:MyModule.dll

The following command-line options are defined for IL Assembler:

• /LISTING Type a formatted listing of the compilation result.

• /NOLOGO Suppress typing the logo and copyright statement.

• /QUIET Suppress reporting the compilation progress.

• /DLL Compile to a dynamic-link library.

• /EXE Compile to a runnable executable (the default).

• /DEBUG Include debug information and create a program data
base (PDB) file.

429

430 Appendix D

• /CLOCK Measure and report the compilation times.

• /RESOURCE=<resJile> Link the specified unmanaged resource
file (*.res) into the resulting PE file. <resJile> must be a full filename,
including the extension.

• /OUTPUT=<targeifile> Compile to the file whose name is speci
fied. The file extension must be specified explicitly; there is no default.
If this option is omitted, IL Assembler sets the name of the output file
to that of the first source file and sets the extension of the output file
to DLL if the /DU option is specified and to EXE otherwise.

• /KEY=<keyfile> Compile with a strong name signature. <keyfile>
specifies the file containing the private encryption key.

• /KEY=@<keysource> Compile with a strong name signature.
<keysource> specifies the name of the source of the private encryp
tion key.

• /SUBSYSTEM=<int> Set the Subsystem value in the PE header. The
most frequently used <int> values are 3 (Microsoft Windows console
application) and 2 (Microsoft Windows GUI application).

• /FLAGS=<int> Set the Flags value in the common language runtime
header. The most frequently used <int> values are 1 (pure-IL code)
and 2 (mixed code). The third bit of the <int> value, indicating that the
PE file is strong name signed, is ignored.

• /ALIGNMENT=<int> Set the FileAlignment value in the PE header.
The <int> value must be a power of 2, in the range 512 to 65536.

• /BASE=<int> Set the ImageBase value in the PE header.

• /ERROR Attempt to create the PE file even if compilation errors
have been reported.

Using the /ERROR option does not guarantee that the PE file
will be created: some errors are abortive, and others lead specifically
to a failure to create the PE file. This option also disables the follow
ing IL Assembler autocorrection features:

D An unsealed value type is marked sealed.

O A method declared as both static and instance is marked static.

D A nonabstract, nonvirtual instance method of an interface is
marked abstract and virtual.

D A global abstract method is marked nonabstract.

O Nonstatic global fields and methods are marked static.

IL Assembler and Disassembler Command-Line Options 431

Don't use the /ERROR command-line option unless
you're positive that you know what you're doing. It is very dan
gerous! You can create a monster that will crash your system.

IL Disassembler
The command-line structure of IL Disassembler is as follows:

ildasm [<options>] [<in_filename>] [<options>]

If no filename is specified, the disassembler starts in graphical mode. You can
then open a specific file by using the File Open menu command or by dragging
the file to the disassembler's tree view window.

All options are recognized by the first three characters following the
option key, and all are case-insensitive. The option key can be a forward slash
(/) or a hyphen (-). In options that specify parameters, the equality character (=)

is interchangeable with the colon character (:).
The !ADVANCED (/AD\!) option sets the advanced mode of the disassem

bler, which offers additional viewing and dumping options. The /ADV option
must be specified before any of the advanced-only options. I recommend that
you place the !ADV option ahead of all other options.

Options for Output Redirection
• /OUT=<out_filename> Direct the output to a file rather than to

a GUI.

• /OUT=CON Direct the output to a console window rather than
to a GUI.

• /TEXT A shortcut for !OUT=CON.

If the !OUT option or the !TEXT option is specified, the <inJllename> must be
specified as well.

ILAsm Code Formatting Options (PE Files Only)
• /BYTES Show the actual IL stream bytes (in hexadecimal notation)

as instruction comments.

• /RAWEH Show structured exception handling clauses in canonical
(label) form.

432 Appendix D

• /TOKENS Show metadata token values as comments.

• /SOURCE Show original source lines as comments. This requires
the presence of the PDB file accompanying the PE file being dis
assembled and the original source files. If the original source files
cannot be found at the location specified in the PDB file, the dis
assembler tries to find them in the current directory.

• /LINENUM Include references to original source lines (.line direc
tives). This requires the presence of the PDB file accompanying the
PE file being disassembled.

• /VISIBILITY=<vis>[+<vis> ...] Disassemble only the items with
specified visibility. Visibility suboptions (<vis>) include the following:

PUB Public

PRI Private

FAM Family

ASM Assembly

FAA Family and assembly

FOA Family or assembly

PSC Private scope

• /PUBONLY A shortcut for !VIS=PUB.

• /QUOTEALLNAMES Enclose all names in single quotation marks.
By default, only names that don't match the ILAsm definition of a
simple name are quoted.

• /NOBAR Suppress the pop-up window showing the disassembly
progress bar.

Options for File Output (PE Files Only)
• /UTFB Use UTF-8 encoding for output. The default is ANSI.

• /UNICODE Use Unicode encoding for output.

Options for File or Console Output (PE Files Only)
• /NOIL Suppress ILAsm code output.

• /HEADER Include PE header information and runtime header
information in the output.

IL Assembler and Disassembler Command-Line Options 433

• /ITEM=<class>[::<method>[(<sig>)] Disassemble the specified
item only. If <sig> is not specified, all methods named <method> of
<class> are disassembled. If <method> is not specified, all members of
<class> are disassembled. For example, IITEM=''Foo" produces the full
disassembly of the Foo class and all its members; /ITEM=''Foo::Bar"
produces the disassembly of all methods named Bar in the Foo class;
/ITEM="Foo::Bar(void(int32,string))" produces the disassembly of a
single method, void Foo::Bar(int32,string).

• /STATS Include statistics of the image file; an advanced option.

• /CLASSLIST Include the list of classes defined in the module; an
advanced option.

• I ALL Combine the /HEADER, /BYIES, and /TOKENS options and,
in advanced mode, the /CLASSLIST and /STATS options.

Metadata Summary Option
The metadata summary option is available in advanced mode only. It is suitable
for file or console output, and it is the only option that works for both PE and
COFF managed files. If an object file or an object library file is specified as an
input file, the IL Disassembler in advanced mode automatically invokes the
metadata summary, ignoring all other options. In nonadvanced mode, the dis
assembler does nothing.

• /METAINFO[=<specifier>] Show the metadata summary. The
optional <specifier> is one of the following:

O MDH Show the metadata header information and sizes.

O HEX Show the hexadecimal representation of the signatures.

O CSV Show the sizes of the #Strings, #Blob, #US, and #GU/D
streams and the sizes of the metadata tables and their records.

O UNR Show the list of unresolved method references and
unimplemented method definitions.

0 VAL Invoke the metadata validator and show its output.

• /OBJECTFILE=<obj_file_name> Show the metadata summary of
a single object file in the object library. This option is valid for man
aged LIB files only.

..
I

Offline Verification Tool
Reference

An offline verification tool for managed PE files, PEVerify.exe, is distributed
with the Microsoft .NET Framework SDK. The tool includes two components:
the metadata validator, MDValidator, and the IL verifier, ILVerifier.

MDValidator works on the module level, running validity checks of the
metadata of a specified managed module (PE file). It does not matter whether
the specified module is a prime module or an auxiliary. If the specified module
is a prime module of an assembly, MDValidator does not automatically check
other modules of the same assembly.

ILVerifier works on the assembly level, loading the assembly in full in
memory, resolving internal references, and verifying the IL code of the methods
contained in the assembly. Consequently, ILVerifier fails if the specified PE file
is not the prime module of the assembly.

The result of this discrepancy in the approaches taken by MDValidator and
ILVerifier is that only single-module assemblies can be fully validated and veri
fied in one pass of the verification tool.

The PEVerify tool sets the exit code to 1 if errors are found during the PE
file verification and sets the code to 0 otherwise.

The command-line format is as follows:

peverify <PE_file> [<option>*]

Unlike the IL Assembler and the IL Disassembler, the PEVerify tool does not
allow arbitrary positioning of filename and options on the command line;
rather, the name of the PE file being verified must be the first command-line
parameter. Also, unlike the assembler and disassembler options, which are rec
ognized by their first three characters only, PEVerify options must be fully
spelled out.

PEVerify options are case-insensitive, and the option key can be a forward
slash (/) character or a hyphen (-) character. The equality character (=) cannot
be replaced with the colon character (:).

435

436 Appendix E

The command-line options include the following:

• /IL Check the PE structure and verify the IL code.

• /MD Check the PE structure and validate the metadata. If neither
/MD nor /IL is specified, the metadata validation is performed first;
then, if no metadata errors were found, the IL verification is per
formed. If either the /MD or /IL option is specified, only the meta
data validation or the IL verification, respectively, is performed. If
both /MD and /IL options are specified, the metadata validation is
performed, followed by the IL verification, regardless of whether
errors were found during the metadata validation phase.

• /UNIQUE Disregard repeating error codes; report only the first
occurrence of each error type.

• /HRESULT Display error codes in hexadecimal format.

• /CLOCK Measure and report validation and verification times.

• /IGNORE=<err _code>[, <err _code> ...] Ignore the specified error
codes. Error codes must be specified in hexadecimal format.

• /IGNORE=@<err _codeJile> Ignore the error codes specified in
<err_codeJile>, which is a text file containing comma-separated
and/or line-separated hexadecimal error codes.

• /BREAK=<maxErrorCount> Abort verification after <maxError
Count> errors. The value of <maxErrorCount> is a decimal number;
if it is negative or unspecified, <maxErrorCount> is set to 1.

• /QUIET Suppress reporting the errors; report only the file being
verified and the end result of the verification.

The following example shows verification of an exceptionally buggy PE
file, created using IL Assembler with the /ERROR option:

D:\MTRY>peverify mtry.exe /md /il /hresult /unique

Microsoft (R) .NET Framework PE Verifier Version 1.0.3304.0
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

[MDJ(0x8013121D): Error: TypeDef is marked ValueType but not marked
Sealed. [token:0x02000002]
[MDJ(0x80131256): Error: TypeDef is not marked Nested but has an
encloser type. [token:0x02000006J
[MDJ(0x8013126D): Error: Global item (field.method) must be Public,
Private, or PrivateScope. [token:0x04000002]
[MDJ(0x8013126E): Error: Global item (field.method) must be Static.
[token:0x04000002J

Offline Verification Tool Reference 437

[MDJ(0x8013126A): Error: Field name value~ is reserved for Enums only.
[token:0x04000008J
[MDJ(0x80131B24): Error: Illegal use of type 'void' in signature.
[token:0x06000001J
[MDJ(0x801312DB): Error: Constructor, initializer must return void.
[token:0x06000005]
[MD](0x801312DF): Error: ELEMENT_TYPE_SENTINEL is only allowed in
MemberRef signatures. [token:0x06000009J
[MD](0x801312E2): Error: Trailing ELEMENT_TYPE_SENTINEL in signature.
[token:0x06000009J
[MDJ(0x80131239): Error: Signature has invalid calling convention=0x000
00023. [token:0x0600000DJ
[MD](0x801312E0): Error: Signature containing ELEMENT_TYPE_SENTINEL
must be VARARG. [token:0x0A000006J
[MD](0x801312El):. Error: Multiple ELEMENT_TYPE_SENTINEL in signature.
[token:0x0A000006J
[MDJ(0x80131230): Error: Fieldlayout2 record has Field token=0x04000003
marked Static. [token:0x00000001J
13 Errors Verjfying mtry.exe

Error Codes and Messages
In the following tables, 0xff, 0xffff, and 0xffffffff denote hexadecimal num
bers, and 99 denotes a decimal number.

Metadata Validation Error Codes and Messages

HRESULT

0x80131203

0x80131204

0x80131205

0x80131206

0x80131207

0x80131208

0x80131209

0x8013120A

0x8013120B

0x8013120C

Error Message

Error (Structural): Table=0xffffffff, Col=0xffffffff,
Row=0xffffffff, has rid out of range.

Error (Structural): Table=0xffffffff, Col=0xffffffff,
Row=0xffffffff, has coded token type out of range.

Error (Structural): Table=0xffffffff, Col=0xffffffff,
Row=0xffffffff, has coded rid out of range.

Error (Structural): Table=0xffffffff, Col=0xffffffff,
Row=0xffffffff, has an invalid String offset.

Error (Structural): Table=0xffffffff, Col=0xffffffff,
Row=0xffffffff, has an invalid GUID offset.

Error (Structural): Table=0xffffffff, Col=0xffffffff,
Row=0xffffffff, has an invalid BLOB offset.

Error: Multiple module records found.

Error: Module has no MVID.

Error: Type Ref has no name.

Error: Type Ref has a duplicate, token=0xffffffff.

(continued)

438 Appendix E

Metadata Validation Error Codes and Messages (continued)

HRESULT

0x8013120D

0x8013120E

0x8013120F

0x80131210

0x80131211

0x80131212

0x80131213

0x80131214

0x80131215

0x80131216

0x80131217

0x80131218

0x80131219

0x8013121A

0x8013121B

0x8013121C

0x8013121D

0x8013121E

0x8013121F

0x80131220

0x80131221

0x80131222

0x80131223

0x80131224

0x80131225

0x80131226

Error Message

Error: TypeDef has no name.

Error: TypeDef has a duplicate based on name+namespace,
token=0xffffffff.

Warning: TypeDef has a duplicate based on GUID, token=0xffffffff.

Error: TypeDef that is not an Interface and not the Object
class extends Nil token.

Error: TypeDef for Object class extends token=0xffffffff which
is not nil.

Error: TypeDef extends token=0xffffffff which is marked Sealed.

Error: TypeDef is a Deleted record but not marked RTSpecialName.

Error: TypeDef is marked RTSpecialName but is not a Deleted
record.

Error: Methodimpl overrides private method (token=0xffffffff).

Error: Assembly name contains path and/or extension.

Error: File has a reserved system name.

Error: Methodimpl has static overriding method (token=0xffffffff).

Error: TypeDef is marked Interface but not Abstract.

Error: TypeDef is marked Interface but extends non-Nil
token=0xffffffff.

Warning: TypeDef is marked Interface but has no GUID.

Error: Methodimpl overrides final method (token=0xffffffff).

Error-: TypeDef is marked ValueType but not marked Sealed.

Error: Parameter has invalid flags set 0xffffffff.

Error: Interfaceimpl has a duplicate, token=0xffffffff.

Error: MemberRef has no name.

Error: MemberRef name starts with _VtblGap.

Error: MemberRef name starts with _Deleted.

Error: MemberRef parent is Nil but the module is a PE file.

Error: MemberRef signature has invalid calling convention=
0xffffffff.

Error: MemberRef has MethodDef parent, but calling convention
is not VARARG (parent:0xffffffff; callconv: 0xffffffff).

Error: MemberRef has different name than parent MethodDef,
token=0xffffffff.

Offline Verification Tool Reference 439

Metadata Validation Error Codes and Messages (continued)

HRESULT

0x80131227

0x80131228

0x80131229

0x8013122A

0x8013122B

0x8013122C

0x8013122D

0x8013122E

0x8013122F

0x80131230

0x80131231

0x80131232

0x80131233

0x80131234

0x80131235

0x80131236

0x80131237

0x80131238

0x80131239

0x8013123A

0x8013123B

0x8013123C

0x8013123D

0x8013123E

Error Message

Error: MemberRef has fixed part of signature different from
parent MethodDef, token=0xffffffff.

Warning: MemberRef has a duplicate, token=0xffffffff.

Error: Classlayout has parent TypeDef token=0xffffffff marked
Auto Layout.

Error: Classlayout has invalid PackingSize; valid set of values
is {1,2,4, ... ,128} (parent: 0xffffffff; PackingSize: 99).

Error: Classlayout has a duplicate (parent: 0xffffffff; dupli
cate rid: 0xffffffff).

Error: Fieldlayout2 record has invalid offset (field:
0xffffffff; offset: 0xffffffff).

Error: Fieldlayout2 record for Field token=0xffffffff has Type
DefNil for parent.

Error: Fieldlayout2 record for field of type that has no Class
Layout record (field: 0xffffffff; type: 0xffffffff).

Error: Explicit offset specified for field of type marked Auto
Layout (field: 0xffffffff; type: 0xffffffff).

Error: Fieldlayout2 record has Field token=0xffffffff marked
Static.

Error: Fieldlayout2 record has a duplicate, rid=0xffffffff.

Error: ModuleRef has no name.

Warning: ModuleRef has a duplicate, token=0xffffffff.

Error: TypeRef has invalid resolution scope.

Error: TypeDef is marked Nested but has no encloser type.

Warning: Type extends TypeRef which resolves to TypeDef in the
same module (TypeRef: 0xffffffff; TypeDef: 0xffffffff).

Error: Signature has zero size.

Error: Signature does not have enough bytes left at
byte=0xffffffff as indicated by the compression scheme.

Error: Signature has invalid calling convention=0xffffffff.

Error: Method is marked Static but calling conven
tion=0xffffffff is marked HASTHIS.

Error: Method is not marked Static, but calling conven
tion=0xffffffff is not marked HASTHIS.

Error: Signature has no argument count at byte=0xffffffff.

Error: Signature missing element type after modifier (modifier:
0xff; offset: 0xffffffff).

Error: Signature missing token after element 0xffff.
(continued)

440 Appendix E

Metadata Validation Error Codes and Messages (continued)

HRESULT

0x8013123F

0x80131240

0x80131241

0x80131242

0x80131243

0x80131244

0x80131245

0x80131246

0x80131247

0x80131248

0x80131249

0x8013124A

0x8013124B

0x8013124C

0x8013124D

0x8013124E

0x8013124F

0x80131250

0x80131251

0x80131252

0x80131253

0x80131254

0x80131255

0x80131256

0x80131257

Error Message

Error: Signature has an invalid token (token: 0xffffffff; off
set: 0xffffffff).

Error: Signature missing function pointer at byte=0xffffffff.

Error: Signature has function pointer missing argument count at
byte=0xffffffff.

Error: Signature missing rank at byte=0xffffffff.

Error: Signature missing count of sized dimensions of array
byte=0xffffffff.

Error: Signature missing size of dimension of array at
byte=0xffffffff.

Error: Signature missing count of lower bounds of array at
byte=0xffffffff.

Error: Signature missing lower bound of array at
byte=0xffffffff.

Error: Signature has invalid ELEMENT_TYPE_* (element type:
0xffffffff; offset: 0xffffffff).

Error: Signature missing size for VALUEARRAY at
byte=0xffffffff.

Error: Field signature has invalid calling conven
tion=0xffffffff.

Error: Method has no name.

Error: Method parent is Nil.

Error: Method has a duplicate, token=0xffffffff.

Error: Field has no name.

Error: Field parent is Nil.

Error: Field has a duplicate, token=0xffffffff.

Error: Multiple assembly records found.

Error: Assembly has no name.

at

Error: Token 0xffffffff following ELEMENT_TYPE_CLASS
(_VALUETYPE) in signature is a ValueType (Class, respectively).

Error: Classlayout has parent TypeDef token=0xffffffff marked
Interface.

Error: AssemblyOS entry has invalid platform id=0xffffffff.

Error: AssemblyRef has no name.

Error: TypeDef is not marked Nested but has an encloser type.

Error: AssemblyRefOS entry for AssemblyRef=0xffffffff has
invalid platform id=0xffffffff.

Offline Verification Tool Reference 441

Metadata Validation Error Codes and Messages (continued)

HRESULT

0x80131258

0x80131259

0x8013125A

0x8013125B

0x8013125C

0x8013125D

0x8013125E

0x8013125F

0x80131260

0x80131262

0x80131263

0x80131264

0x80131265

0x80131267

0x80131268

0x80131269

0x8013126A

0x8013126B

0x8013126C

0x8013126D

0x8013126E

0x80131270

0x80131271

0x80131272

0x80131273

0x80131274

0x80131275

Error Message

Error: File has no name.

Error: ExportedType has no name.

Error: TypeDef extends its own child.

Error: ManifestResource has no name.

Error: File has a duplicate, token=0xffffffff.

Error: File name is fully-qualified, but should not be.

Error: ExportedType has a duplicate, token=0xffffffff.

Error: ManifestResource has a duplicate by name,
token=0xffffffff.

Error: ManifestResource is not marked Public or Private.

Error: Field value_ (token=0xffffffff) in Enum is marked static.

Error: Field value_ (token=0xffffffff) in Enum is not marked
RTSpecialName.

Error: Field (token=0xffffffff) in Enum is not marked static.

Error: Field (token=0xffffffff) in Enum is not marked literal.

Error: Signature of field (token=0xffffffff) in Enum does not
match enum type.

Error: Field value_ (token=0xffffffff) in Enum is not the
first one.

Error: Field (token=0xffffffff) is marked RTSpecialName but not
named value_.

Error: Field name value_ is reserved for Enums only.

Error: Instance field in Interface.

Error: Non-public field in Interface.

Error: Global item (field.method) must be Pµblic, Private, or
PrivateScope.

Error: Global item (field.method) must be Static.

Error: Type/instance constructor has zero RVA.

Error: Field is marked marshaled but has no marshaling
information.

Error: Field has marshaling information but is not marked
marshaled.

Error: Field is marked HasDefault but has no canst value.

Error: Field has const value but is not marked HasDefault.

Error: Item (field.method) is marked HasSecurity but has no
security information.

(continued)

442 Appendix E

Metadata Validation Error Codes and Messages (continued)

HRESULT

0x80131276

0x80131277

0x80131278

0x80131279

0x8013127A

0x8013127B

0x8013127C

0x8013127D

0x8013127E

0x8013127F

0x80131280

0x80131281

0x80131282

0x80131283

0x80131284

0x80131285

0x80131286

0x80131287

0x80131288

0x80131289

0x8013128A

0x8013128B

0x8013128C

0x8013128D

0x8013128E

0x8013128F

0x80131290

Error Message

Error: Item (field.method) has security information but is not
marked HasSecurity.

Error: Pinvoke item (field.method) must be Static.

Error: Pinvoke item (field.method) has no Implementation Map.

Error: Item (field.method) has Implementation Map but is not
marked Pinvoke.

Warning: Item (field.method) has invalid Implementation Map.

Error: Implementation Map has invalid Module Ref, token
0xffffffff.
Error: Implementation Map has invalid Member Forwarded, token
0xffffffff.

Error: Implementation Map has no import name.

Error: Implementation Map has invalid calling convention 0xff.

Error: Item (field.method) has invalid access flag.

Error: Field marked both InitOnly and Literal.

Error: Literal field must be Static.

Error: Item (field.method) is marked RTSpecialName but not
Special Name.

Error: Abstract method in non-abstract type (token=0xffffffff).

Error: Neither static nor abstract method in interface
(token=0xffffffff).

Error: Non-public method in interface (token=0xffffffff).

Error: Instance constructor in interface (token=0xffffffff).

Error: Global constructor.

Error: Static instance constructor in type (token=0xffffffff).

Error: Constructor/initializer in type (token=0xffffffff) is
not marked SpecialName,RTSpecialName.

Error: Virtual constructor/initializer in type (token=0xffffffff).

Error: Abstract constructor/initializer in type
(token=0xffffffff).

Error: Non-static type initializer in type (token=0xffffffff).

Error: Method marked Abstract/Runtime/InternalCall/Imported
must have zero RVA. and vice versa.

Error: Method marked Final/NewSlot but not Virtual.

Error: Static method can not be Final or Virtual.

Error: Method can not be both Abstract and Final.

Offline Verification Tool Reference 443

Metadata Validation Error Codes and Messages (continued)

HRESULT

0x80131291

0x80131292

0x80131293

0x80131294

0x80131295

0x80131296

0x80131297

0x80131298

0x80131299

0x8013129A

0x8013129B

0x8013129C

0x8013129E

0x8013129F

0x801312Al

0x801312A4

0x801312A5

0x801312A6

0x801312A7

0x801312A8

0x801312A9

0x801312AA

0x801312AB

0x801312AC

0x801312AD

Error Message

Error: Abstract method marked ForwardRef.

Error: Abstract method marked Pinvokeimpl.

Error: Abstract method not marked Virtual.

Error: Nonabstract method not marked ForwardRef.

Error: Nonabstract method must have RVA or be Pinvokeimpl or
Runtime.

Error: PrivateScope method has zero RVA.

Error: Global method marked Abstract.Virtual.

Error: Signature contains long form (such as ELEMENT_TYPE_CLASS
<token of System.String>).

Warning: Method has multiple semantics.

Error: Method has invalid semantic association
0token=0xffffffff).

Error: Method has semantic association (token=0xffffffff) that
does not ex~ ct_.

Error: Methodlmpl overrides non-virtual method (token=0xffffffff).

Error: Method has multiple semantic flags set for association
(token=0xffffffff).

Error: Method has no semantic flags set for association
(token=0xffffffff).

Warning: Unrecognized Hash Algorithm ID (0xffffffff).

Error: Constant parent token (0xffffffff) is out of range.

Error: Invalid Assembly flags (0x%ffff).

Warning: TypeDef (token=0xffffffff) has same name as TypeRef.

Error: Interfaceimpl has invalid implementing type
(0xffffffff).

Error: Interfaceimpl has invalid implemented type (0xffffffff).

Error: TypeDef has security information but is not marked Has
Security.

Error: TypeDef is marked HasSecurity but has no security
information.

Error: Type constructor must have no arguments.

Error: ExportedType has invalid Implementation (token=0xffffffff).

Error: Methodimpl has body from another TypeDef
(token=0xffffffff).

(continued)

/

444 Appendix E

Metadata Validation Error Codes and Messages (continued)

HRESULT

0x801312AE

0x801312AF

0x801312B0

0x801312Bl

0x801312B2

0x801312B3

0x801312B4

0x801312B5

0x801312B6

0x801312B7

0x801312B8

0x801312BA

0x801312BB

0x801312BC

0x801312BD

0x801312BE

0x801312BF

0x801312C0

0x801312Cl

0x801312C2

0x801312C3

0x801312C4

0x801312C5

0x801312C6

0x801312C7

0x801312C8

0x801312CA

Error Message

Error: Type constructor has invalid calling convention.

Error: Methodlmpl has invalid Type token=0xffffffff.

Error: Methodlmpl declared in Interface (token=0xffffffff).

Error: Methodlmpl has invalid MethodDeclaration
token=0xffffffff.

Error: Methodlmpl has invalid MethodBody token=0xffffffff.

Error: Methodlmpl has a duplicate (rid=0xffffffff).

Error: Field has invalid parent (token=0xffffffff).

Warning: Parameter out of sequence (parameter: 99; seq.num: 99).

Error: Parameter has sequence number exceeding number of argu
ments (parameter: 99; seq.num: 99; num.args: 99).

Error: Parameter #99 is marked HasFieldMarshal but has no mar
shaling information.

Error: Parameter #99 has marshaling information but is not
marked HasFieldMarshal.

Error: Parameter #99 is marked HasDefault but has no const value.

Error: Parameter #99 has const value but is not marked Has
Defaul t.

Error: Property has invalid scope (token=0xffffffff).

Error: Property has no name.

Error: Property has no signature.

Error: Property has a duplicate (token=0xffffffff).

Error: Property has invalid calling convention (0xff).

Error: Property is marked HasDefault but has no const value.

Error: Property has const value but is not marked HasDefault.

Error: Property has related method with invalid semantics
(method: 0xffffffff; semantics: 0xffffffff).

Error: Property has related method with invalid token
(0xffffffff).

Error: Property has related method belonging to another type
(method: 0xffffffff; type: 0xffffffff).

Error: Constant of type (0xff) must have null value.

Error: Constant of type (0xff) must have non-null value.

Error: Event has invalid scope (token=0xffffffff).

Error: Event has no name.

Offline Verification Tool Reference 445

Metadata Validation Error Codes and Messages (continued)

HRESULT

0x801312CB

0x801312CC

0x801312CD

0x801312CE

0x801312CF

0x801312D0

0x801312Dl

0x801312D2

0x801312D3

0x801312D4

0x801312D5

0x801312D6

0x801312D7

0x801312D8

0x801312DB

0x801312DC

0x801312DD

0x801312DE

0x801312DF

0x801312E0

0x801312El

0x801312E2

0x801312E3

0x801312E4

0x801312E5

0x801312E6

0x801312E7

Error Message

Error: Event has a duplicate (token=0xffffffff).

Error: Event has invalid EventType (token=0xffffffff).

Error: Event's EventType (token=0xffffffff) is not a class
(flags=0xffffffff).

Error: Event has related method with invalid semantics (method:
0xffffffff; semantics: 0xffffffff).

Error: Event has related method with invalid token (0xffffffff).

Error: Event has related method belonging to another type
(method: 0xffffffff; type: 0xffffffff).

Error: Event has no AddOn related method.

Error: Event has no RemoveOn related method.

Error: ExportedType has same namespace+name as TypeDef, token
0xffffffff.

Error: ManifestResource refers to non-PE file but offset is not 0.

Error: Deel.Security is assigned to invalid item
(token=0xffffffff).

Error: Deel.Security has invalid action flag (0xffffffff).

Error: Deel.Security has no associated permission BLOB.

Error: ManifestResource has invalid Implementation
(token=0xffffffff).

Error: Constructor, initializer must return void.

Error: Event's Fire method (0xffffffff) must return void.

Warning: Invalid locale string.

Error: Constant has parent of invalid type (token=0xffffffff).

Error: ELEMENT_TYPE_SENTINEL is only allowed in MemberRef
signatures.

Error: Signature containing ELEMENT_TYPE_SENTINEL must be VARARG.

Error: Multiple ELEMENT_TYPE_SENTINEL in signature.

Error: Trailing ELEMENT_TYPE_SENTINEL in signature.

Error: Signature is missing argument # 99.

Error: Field of byref type.

Error: Synchronized method in ValueType (token=0xffffffff).

Error: Full name length exceeds maximum allowed (length: 99:
max: 99).

Error: Duplicate Assembly Processor record (0xffffffff).
(continued)

446 Appendix E

Metadata Validation Error Codes and Messages (continued)

HRESULT

0x801312E8

0x801312E9

0x801312EA

0x801312E8

0x801312EC

0x801312ED

0x801312EE

0x801312EF

0x801312F0

0x801312Fl

0x801312F2

0x801312F3

0x801312F4

0x801312F5

0x801312F6

0x801312F7

0x801312F8

0x801312F9

0x801312FA

0x801312FB

0x801312FC

0x80131B00

0x80131B01

0x80131B02

0x80131B03

0x80131B04

0x80131B05

0x80131B06

0x80131B07

0x80131B09

0x80131B0A

0x80131B0B

Error Message

Error: Duplicate Assembly OS record (0xffffffff).

Error: ManifestResource has invalid flags (0xffffffff).

Warning: ExportedType has no TypeDefid.

Error: File has invalid flags (0xffffffff).

Error: File has no hash BLOB.

Error: Module has no name.

Error: Module name is fully-qualified.

Error: TypeDef marked as RTSpecialName but not SpecialName.

Error: TypeDef extends an Interface (token=0xffffffff).

Error: Type/instance constructor marked Pinvokeimpl.

Error: System.Enum is not marked Class.

Error: System.Enum must extend System.ValueType.

Error: Methodimpl 's Deel and Body method signatures do not match.

Error: Enum has method(s).

Error: Enum implements interface(s).

Error: Enum has properties.

Error: Enum has one or more events.

Error: TypeDef has invalid Method List <> Nmethods+l).

Error: TypeDef has invalid Field List (> Nfields+l).

Error: Constant has illegal type (0xff).

Error: Enum has no instance field.

Error: Interfaceimpl 's implemented type (0xffffffff) not marked
tdinterface.

Error: Field is marked HasRVA but has no RVA record.

Error: Field is assigned zero RVA.

Error: Method has both RVA!=0 and Implementation Map.

Error: Extraneous bits in Flags (0xffffffff).

Error: TypeDef extends itself.

Error: System.ValueType must extend System.Object.

Warning: TypeDef extends TypeSpec (0xffffffff), not supported
in Version 1.

Error: Value class has neither fields nor size parameter.

Error: Interface is marked Sealed.

Error: NestedClass token (0xffffffff) in NestedClass record is
not a valid TypeDef.

Offline Verification Tool Reference 447

Metadata Validation Error Codes and Messages · (continued)

HRESULT

0x80131B0C

0x80131B0D

0x80131B0E

0x80131B0F

0x80131Bl0

0x80131Bll

0x80131B12

0x80131B13

0x80131B14

0x80131B15

0x80131B16

0x80131B17

0x80131B18

0x80131B19

0x80131B1A

0x80131B1B

0x80131B1C

0x80131B1D

0x80131B1E

0x80131B1F

0x80131B20

0x80131B21

0x80131B22

0x80131B23

0x80131B24

Error Message

Error: EnclosingClass token (0xffffffff) in NestedClass record
is not a valid TypeDef.

Error: Duplicate NestedClass record (0xffffffff).

Error: Nested type token has multiple EnclosingClass tokens
(nested: 0xffffffff; enclosers: 0xffffffff, 0xffffffff).

Error: Zero RVA of field 0xffffffff in FieldRVA record.

Error: Invalid ffeld token in FieldRVA record (field:
0xffffffff; RVA: 0xffffffff).

Error: Same RVA in another FieldRVA record (RVA: 0xffffffff;
field: 0xffffffff).

Error: Same field in another FieldRVA record(field: 0xffffffff;
record: 0xffffffff).

Error: Invalid token specified as EntryPoint in CLR header.

Error: Instance method token specified as EntryPoint in CLR
header.

Error: Invalid type of instance field(0xffffffff) of an Enum.

Error: Method has invalid RVA (0xffffffff).

Error: Literal field has no canst value.

Error: Class implements interface but not method
(class:0xffffffff; interface:0xffffffff; method:0xffffffff).

Error: CustomAttribute has invalid Parent token (0xffffffff).

Error: CustomAttribute has invalid Type token (0xffffffff).

Error: CustomAttribute has non-constructor Type (0xffffffff).

Error: CustomAttribute's Type (0xffffffff) has invalid
signature.

Error: CustomAttribute's Type (0xffffffff) has no signature.

Error: CustomAttribute's blob has invalid prol og (0xffff).

Error: Method has invalid local signature token (0xffffffff).

Error: Method has invalid header.

Error: EntryPoint method has more than one argument.

Error: EntryPoint method must return void, int or unsigned int.

Error: EntryPoint method must have vector of strings as argu
ment, or no arguments.

Error: Illegal use of type 'void' in signature.

448 Appendix E

IL Verification Error Codes and Messages

HRESULT

0x80131810

0x80131811

0x80131812

0x80131818

0x80131819

0x8013181A

0x80131820

0x80131821

0x80131822

0x80131823

0x80131824

0x80131825

0x80131826

0x80131827

0x80131828

0x80131829

0x8013182A

0x8013182B

0x8013182C

0x8013182D

0x8013182E

0x8013182F

0x80131830

0x80131831

0x80131832

0x80131833

0x80131834

0x80131835

0x80131836

0x80131837

0x80131838

0x80131839

0x8013183A

0x8013183B

Error Message

Unknown opcode [0xffffffff].

Unknown calling convention [0xffffffff].

Unknown ELEMENT_TYPE [0xffffffff].

Internal error.

Stack is too large.

Array name is too long.

fall thru end of the method

try start >= try end

try end > code size

handler >= handler end

handler end > code size

filter >=code size

Try starts in the middle of an instruction.

Handler starts in the middle of an instruction.

Filter starts in the middle of an instruction.

Try block overlap with another block.

Try and filter/handler blocks are equivalent.

Try shared between finally and fault.

Handler block overlaps with another block.

Handler block is the same as another block.

Filter block overlaps with another block.

Filter block is the same as another block.

Filter contains try.

Filter contains handler.

Nested filters.

filter >= code size

Filter starts in the middle of an instruction.

fallthru the end of an exception block

fallthru into an exception handler

fallthru into an exception filter

Leave from outside a try or catch block.

Rethrow from outside a catch handler.

Endfinally from outside a finally handler

Endfilter from out~ide an exception filter block

Offline Verification Tool Reference 449

IL Verification Error Codes and Messages (continued)

HRESULT

0xS0131S3C

0xS0131S30

0xS0131S3E

0xS0131S3F

0xS0131S40

0xS0131S41

0xS0131S42

0xS0131S43

0xS0131S44

0xS0131S45

0xS0131S46

0xS0131S47

0xS0131S4S

0xS0131S49

0xS0131S4A

0xS0131S4B

0xS0131S4C

0xS0131S40

0xS0131S4E

0xS0131S4F

0xS0131S50

0xS0131S51

0xS0131S52

0xS0131S53

0xS0131S54

0xS0131S55

0xS0131856

0xS0131S57

0xS0131S5S

0xS0131S59

0xS0131S5A

0xS0131S5B

0xS0131S5C

0xS0131S50

Error Message

Missing Endfilter.

Branch into try block.

Branch into exception handler block.

Branch into exception filter block.

Branch out of try block.

Branch out of exception handler block.

Branch out of exception filter block.

Branch out of finally block.

Return out of try block.

Return out of exception handler block.

Return out of exception filter block.

jmp I exception into the middle of an instruction

Non-compatible types depending on path.

!nit state for this differs depending on path.

Non-compatible types on stack depending on path.

Stack depth differs depending on path.

Instance variable (this) missing.

Uninitialized this on entering a try block.

Store into this when it is uninitialized.

Return from ctor when this is uninitialized.

Return from ctor before all fields are initialized.

Branch back when this is uninitialized.

Expected byref of value type for this parameter.

Non-compatible types on the stack.

Unexpected type on the stack.

Missing stack slot for exception.

Stack over fl ow.

Stack underflow.

Stack empty.

Uninitialized item on stack.

Expected I, 14, or I8 on the stack.

Expected R, R4, or RS on the stack.

Unexpected R, R4, RS, or IS on the stack.

Expected numeric type on the stack.

(continued)

450 Appendix E

IL Verification Error Codes and Messages (continued)

HRESULT

0x8013185E

0x8013185F

0x80131860

0x80131861

0x80131862

0x80131863

0x80131864

0x80131865

0x80131866

0x80131867

0x80131868

0x80131869

0x8013186A

0x8013186B

0x8013186C

0x8013186D

0x8013186E

0x8013186F

0x80131870

0x80131871

0x80131872

0x80131873

0x80131874

0x80131875

0x80131876

0x80131877

0x80131878

0x80131879

0x8013187A

0x8013187B

0x8013187C

0x80131870

0x8013187E

0x8013187F

Error Message

Expected an Objref on the stack.

Expected address of an Objref on the stack.

Expected Byref on the stack.

Expected pointer to function on the stack.

Expected single dimension array on the stack.

Expected value type instance on the stack.

Expected address of value type on the stack.

Unexpected value type instance on the stack.

Local variable is unusable at this point.

Unrecognized local variable number.

Unrecognized argument number.

Unable to resolve token.

Unable to resolve type of the token.

Expected memberRef/memberDef token.

Expected memberRef/fieldDef token.

Expected signature token.

Instruction can not be verified.

Operand does not point to a valid string ref.

Return type is BYREF, TypedReference, ArgHandle, or
Argiterator.

Stack must be empty on return from a void function.

Return value missing on the stack.

Stack must contain only the return value.

Return uninitialized data.

Illegal array access.

Store non Object type into Object array.

Expected single dimension array.

Expected single dimension array of pointer types.

Array field access is denied.

Allowed only in vararg methods.

Value type expected.

Method is not visible.

Field is not visible.

Item is unusable at this point.

Expected static field.

Offline Verification Tool Reference 451

IL Verification Error Codes and Messages (continued)

HRESULT

0x80131880

0x80131881

0x80131882

0x80131883

0x80131884

0x80131885

0x80131886

0x80131887

0x80131888

0x80131889

0x8013188A

0x8013188B

0x8013188C

0x8013188D

0x8013188E

0x8013188F

0x80131890

0x80131891

0x80131892

0x80131893

0x80131894

0x80131896

0x80131897

0x80131898

0x80131899

0x8013189A

0x8013189B

0x8013189C

0x8013189D

0x8013189E

0x8013189F

0x801318A0

0x801318Al

0x801318A2

Error Message

Expected non-static field.

Address of not allowed for this item.

Address of not allowed for byref.

Address of not allowed for literal field.

Can not change initonly field outside its ctor.

Can not throw this object.

Callvirt on a value type method.

Call signature mismatch.

Static function expected.

Ctor expected.

Can not use callvirt on ctor.

Only super::ctor or typeof(this)::ctor allowed here.

Possible call to ctor more than once.

Unrecognized signature.

Can not resolve Array type.

Array of ELEMENT_TYPE_PTR.

Array of ELEMENT_TYPE_BYREF or ELEMENT_TYPE_TYPEDBYREF.

ELEMENT_TYPE_PTR can not be verified.

Unexpected vararg.

Unexpected Void.

BYREF of BYREF

Code size is zero.

Unrecognized use of vararg.

Missing call/callvirt/calli.

Can not pass byref to a tail call.

Missing ret.

Void ret type expected for tail call.

Tail call return type not compatible.

Stack not empty after tail call.

Method ends in the middle of an instruction.

Branch out of the method.

Finally handler blocks overlap.

Lexical nesting.

Missing ldsfld/stsfld/ldind/stind/ldfld/stfld/ldobj/stobj/
in itb l k/ cpb l k · (continued)

452 Appendix E

IL Verification Error Codes and Messages (continued)

HRESULT

0x801318A3

0x801318A4

0x801318A5

0x801318A6

0x801318A7

0x801318A9

0x801318AA

0x801318AB

0x801318AC

0x801318AD

0x801318AE

0x801318AF

0x801318B0

0x801318Bl

0x801318B2

0x801318B3

0x801318B4

0x801318B5

0x801318B6

0x801318B7

0x801318B8

0x801318B9

0x801318BA

0x801318BB

0x801318BC

0x801318BD

0x801318F0

0x801318Fl

0x801318F2

0x801318F3

0x801318F4

Error Message

Missing ldind/stind/ldfld/stfld/ldobj/stobj/initblk/cpblk.

Innermost exception blocks should be declared first.

Calli not allowed on virtual methods.

Call not allowed on abstract methods.

Unexpected array type on the stack.

Attempt to enter a try block with nonempty stack.

Unrecognized arguments for delegate ctor.

Delegate ctor not allowed at the start of a basic block when
the function pointer argument is a virtual method.

Dup, ldvirtftn, newobj delegate::.ctor() pattern expected (in
the same basic block).

Ldftn/ldvirtftn instruction required before call to a delegate
ctor.

Attempt to load address of an abstract method.

ELEMENT_TYPE_CLASS ValueClass in signature.

ELEMENT_TYPE_VALUETYPE non-ValueClass in signature.

Box operation on TypedReference, ArgHandle, or Argiterator.

Byref of TypedReference, ArgHandle, or Argiterator.

Array of TypedReference, ArgHandle, or Argiterator.

Stack not empty when leaving an exception filter.

Unrecognized delegate ctor signature; expected I.

Unrecognized delegate ctor signature; expected Object.

Mkrefany on TypedReference, ArgHandle, or Argiterator.

Value type not allowed as catch type.

filter block should immediately precede handler block

ldvirtftn on static

callvirt on static

initlocals must be set for verifiable methods with one or more
local variables.

branch/leave to the beginning of a catch/filter handler

Unverifiable PE Header/native stub.

Unrecognized metadata, unable to verify IL.

Unrecognized appdomain pointer.

Type load failed.

Module load failed.

Index

Send feedback about this index to mspindex@microsoft.com

Symbols and Numbers
#- compressed (optimized) metadata stream, 80,

81, 82-83
#-uncompressed (unoptimized) metadata stream,

81, 82-83, 94

A
abstract classes, 126
access permissions, 333-37
accessor methods, 300
actions, 331-32
add instruction, 247
add.ovf and add.ovf.un instructions, 249
addressing arguments and local variables

local block allocation, 256
local variables

loading, 255
reference loading, 256
storing, 256

method arguments
address loading, 254
list, 255
loading, 254
storing, 255

prefix instructions, 257
addressing classes and value types, 261-65
addressing fields, 257-58
AddressOfEntryPoint field, 60
I ADVANCED disassembler option, 380, 381
ansi keyword, 11
appDomain-bound objects, 101
application base (AppBase), 107, 108
application domains, 99-101
ArgumentException exception, 284
arithmetical instructions

arithmetical operations, 247-48
bitwise operations, 249-50
block operations, 253-54
constant loading, 245

conversion operations, 250-51
indirect loading, 246
indirect storing, 246
logical condition check, 252-53
overflow arithmetical operations, 248-49
overflow conversion operations, 251-52
shift operations, 250
stack manipulation, 244-45

arithmetical operations, 247-48
array marshaling, 363---64
arrays, 160-62
ArrayTypeMismatchException exception, 284
assemblies

application domains, 99-101
interop, 356
introduced, 5, 97
loader in search of, 107-9
main, 112
manifests

assembly metadata table, 103-4, 120
AssemblyRef metadata table, 104-6, 120
ExportedType metadata table, 115-16, 122-23
File metadata table, 110-12, 121-22
introduced, 101-2
managed resource metadata, 112-15, 122
metadata validity rules, 119-23
Module metadata table, 109-10, 121
ModuleRef metadata table, 110, 121
order of declarations in ILAsm, 117-18
single-module and multimode assemblies,

118-19
private and shared, 98-99
satellite, 112

Assembly declarations (.assembly), 9-10, 13, 20,
21, 103-4, 117, 118, 387

.assembly extern directive, 105-7, 117, 387
assembly language. See ILAsm
assembly linker, 323-24
assembly metadata table, 103-4, 120

453

454 Assembly References (AssemblyRefs)

Assembly References (AssemblyRefs), 9-10
AssemblyCultureAttribute attribute, 324
AssemblyDelaySignAttribute attribute, 324
AssemblyKeyFileAttribute attribute, 324
AssemblyKeyNameAttribute attribute, 324
AssemblyRef declarations (.assembly extern),

105-7, 117, 387
AssemblyRef metadata table, 104-6, 120
AssemblyVersionAttribute attribute, 324
Assert action, 332
AsyncCallback delegate, 145
asynchronous calls, 145
attributes. See custom attributes; security

attributes
AttributeUsageAttribute attribute, 316
auto keyword, 11
autochar keyword, 11

B
BadimageFormatException exception, 284
Beginlnvoke method, 145, 146
beq and beq.s instructions, 241
bge and bge.s instructions, 241
bge.un and bge.un.s instructions, 241
bgt and bgt.s instructions, 241
bgt.un and bgt.un.s instructions, 242
bitwise operations, 249-50
ble and ble.s instructions, 242
ble.un and ble.un.s instructions, 242
blittable types, 358
blob heaps, 78-79
#Blob metadata stream, 80, 81, 82
block operations, 253-54
blt and blt.s instructions, 242
blt.un and blt.un.s instructions, 242
bne.un and bne.un.s instructions, 241
box instruction, 264
boxing, 142
brand br.s instructions, 19, 240
branching instructions

comparative, 240-42
conditional, 240
unconditional, 239-40

break instruction, 243
brfalse and brfalse.s instructions, 18, 19, 240
brtrue and brtrue.s instructions, 240
bytearray keyword, 22
/BYTES disassembler option, 381

c
call instruction, 16, 226, 259
callbacks, managed methods as callback for

unmanaged, 365-68
calli instruction, 17 4, 260
calling methods

direct calls, 259-60
indirect calls, 260-61
tail calls, 261

calling unmanaged code, 23-24
callvirt instruction, 259-60
castclass instruction, 263
catch type of EH clause, 33, 274
.cctor (class constructor), 195-96, 197-98, 206-7,

224, 226, 229
cdecl keyword, 23
ceq instruction, 253
cgt and cgt.un instructions, 253
CIL (common intermediate language), 5
cil keyword, 14, 23, 24
ckfinite instruction, 253
class amendments, 12
class attributes

class layout information, 140
class references, 138
flags

layout, 136
reserved, 137
semantics pseudoflags, 137
string formatting, 137
type implementation, 136
type semantics, 136
visibility, 135-36

interface implementations, 139-40
parents of types, 138-39

class augmentation, 149-51, 385-86
class constructor (.cctor), 195-96, 197-98, 206-7,

224, 226, 229
class declaration, 10-12, 23
class layout information, 140
class leafs, 379
class marshaling, 363
class metadata

ClassLayout metadata table, 130
Interfacelmpl metadata table, 129
introduced, 127-28
NestedClass metadata table, 130
TypeDef metadata table, 128
TypeRef metadata table, 129

class references, 138
classes. See also types

abstract, 126
addressing, 261-65
Culturelnfo, 112
enclosing, 20
Even, 11
forward declaration of, 25-26
full class names, 133-34
generic, 160
implementing interfaces, 126
[mscorlib]System.Attribute, 310
[mscorlib]System.Exception, 283, 287
[mscorlib]System.MulticastDelegate, 144, 292-95
[mscorlib]System.Security .N amedPermissionSet,

343
[mscorlib]System.Security.PermissionSet, 343
nested, 20, 147-49
PermissionSet, 343
private, 147
public, 133
Regionlnfo, 112
representing, in signatures, 170--71
System.Enum, 11
System.Object, 11, 126
System.Resources.ResourceManager, 115
System.ValueType, 11
WaitHandle, 294

ClasslnterfaceAttribute attribute, 318
ClassLayout metadata table, 130, 154
/CLASSLIST disassembler option, 380
CLS (Common Language Specification), 4-5, 325
CLSComplianceAttribute attribute, 325
cit and clt.un instructions, 253
code base (CodeBase), 107, 108
code interoperation

data marshaling
array marshaling, 363-64
blittable types, 358
class marshaling, 363
delegate marshaling, 364
In/Out parameters, 358-59
introduced, 357
object marshaling, 361-62
string marshaling, 359-60

introduced, 349-50

CorMethodAttr enumeration 455

managed methods as unmanaged exports,

369-75
providing managed methods as callback for

unmanaged, 365-68
thunks and wrappers

COM callable wrappers, 354-55
IJW thunks, 353-54
implementation map metadata and validity

rules, 353
P/Invoke thunks, 351-52
runtime callable wrappers, 355-57

code verification, 93, 268-69
CodeAccessSecurityAttribute attribute, 321
coded tokens, 89-93
COFF header, 42-47
COM callable wrappers, 354-55
ComAliasNameAttribute attribute, 318
Combine method, 293, 294
Combinelmpl method, 292-94
ComConversionLossAttribute attribute, 318
COMIMAGE_FLAGS_• values in the .NET

common language runtime header, 58-59
common intermediate language (CIL), 5
common language runtime. See .NET common

language runtime entries
Common Language Specification (CLS), 4-5, 325
comparative branching instructions, 240-42
compiling in debug mode, 388-92
compressed (optimized) metadata, 76-77
ComRegisterFunctionAttribute attribute, 318
ComSourcelnterfacesAttribute attribute, 318-19
ComUnregisterFunctionAttribute attribute, 318
ComVisibleAttribute attribute, 319
conditional branching instructions, 240
constant loading instructions, 245
Constant metadata table, 184-85, 198, 200
Constant records, 187
constructors vs. data constants, 195-98
context-bound objects, 101
conv." instructions, 251
conversion operations, 250--51
conv.ovf." instructions, 252
CorCallingConvention enumeration, 171
CorElementType enumeration, 156
CorFieldAttr enumeration, 181
CorMethodAttr enumeration, 204

456 CorMethodlmpl enumeration

CorMethodimpl enumeration, 207
CorParamAttr enumeration, 208
CorSerializationType enumeration, 310
CorUnmanagedCallingConvention enumeration,

174
COR_ VTABLE_* values in the VTableFixups field,

60-61
cpblk instruction, 253
cpobj instruction, 262
. ctor (instance constructor), 144, 145, 195, 206-7,

224-26
Culturelnfo class, 112
cultures, 112
custom attributes

classification of
assembly linker, 323-24
common language specification (CLS)

compliance, 325
execution engine and JIT compiler, 317-18
interoperation subsystem, 318-20
introduced, 315-17
pseudocustom attributes, 325-27
remoting subsystem, 322-23
security, 320-22
Visual Studio .NET debugger, 323

CustomAttribute metadata table, 309-10
declaration, 312-15
introduced, 307-9
metadata validity rules, 327 ·
value encoding, 310-12

.custom directive, 312-15
custom permissions, 340-43
CustomAttribute metadata table, 309-10, 327

D
data constants

constructors vs., 195-98
declaration, 189-91

data declaration, 22, 188-90
.data directive, 22, 189-90
data directory table, 42, 51-53
data marshaling

array marshaling, 363-64
blittable types, 358
class marshaling, 363
delegate marshaling, 364

In/Out parameters, 358-59
introduced, 137, 357
object marshaling, 361-62
string marshaling, 359-60

data pointer types, 157-59
data sections (.sdata)

data constants, 65-66
TLS, 68-69
unmanaged export tables, 66-68 .
V-table, 66

data structures, 141-42
data types, primitive, 156-57
/DEBUG compiler option, 383, 392
debug mode, compiling in, 388-92
debugger in Visual Studio .NET, 323
DebuggerHiddenAttribute attribute, 323
DebuggerStepThroughAttribute attribute, 323
declarative actions, 331-32
declarative security

advantages and disadvantages, 330
introduced, 330
metadata, 343-45
metadata validity rules, 346

DeclSecurity metadata table, 320, 343-45, 346
default values for fields, 184-87
delegate marshaling, 364
delegates, 144-46, 291-94
Demand action, 332
Deny action, 332
Displd.Attribute attribute, 319
div and div.un instructions, 247
/DLL compiler option, 383
DLL Hell, 98
DllMain function, 59
DllNotFoundException exception, 286
dotted names, 132, 134
dup instruction, 244
Dynamiclnvoke method, 364

E
embedded security requirements, 330
enclosers, 20
enclosing classes, 20
endfault (endfinally) instruction, 244, 274, 275,

281-82
endfilter instruction, 243, 274, 288

endfinally (endfault) instruction, 244, 274, 275,
281-82

Endlnvoke method, 145, 146
.entrypoint directive, 15, 111, 387
EntryPointToken field in the .NET common

language runtime header, 59-60
enumerations, pseudoflags to declare, 12
enumerators (enumeration types, enums), 143-44
EnvironmentPermission permission, 334
EnvironmentPermissionAttribute attribute, 321
evaluation stack type system, 268
.event directive, 297-300, 387
Event metadata table, 295-96, 304
EventMap metadata table, 296, 304
events

declaration, 297-300, 387

delegates and, 291-94
firing (raising), 292

metadata

Event table, 295-96
EventMap table, 296
introduced, 294-95
MethodSemantics table, 296-97

metadata validity rules, 304
publishers (sources) of, 292

subscribers (listeners, sinks) of, 292

example. See Simple example
exceptions. See also SEH

ArgumentException, 284
ArrayTypeMismatchException, 284

BadimageFormatException, 284

Dl!NotFoundException, 286

ExecutionEngineException, 285

FieldAccessException, 285

InvalidCast, 362

InvalidProgramException, 284

Marsha!DirectiveException, 286
MethodAccessException, 285

Nul!ReferenceException, 285

OutOfMemoryException, 284

Overflow, 251-52

processing, 281-83
RankException, 285

Runtime.InteropServices.SEHException, 286

Threading.SynchronizationLockException, 285

TypelnitializationException, 285

TypeLoadException, 21, 188, 189, 192, 193,
215, 284

fields 457

types
execution engine exceptions, 284-85
interoperability exceptions, 286
JIT compiler exceptions, 284
loader exceptions, 283-84
subclassing, 286-87
unmanaged exception mapping, 287

UnauthorizedAccessException, 284
Unexpected Type, 16

VerificationException, 284

executable files, managed. See PE!COFF files
execution engine

custom attributes, 317-18

exceptions, 284-85
ExecutionEngineException exception, 285
explicit keyword, 23, 172
explicit layouts, 191-93
explicit method overriding, 216-20
explicit sequential keyword, 11
export tables, unmanaged, 66-68
ExportedType declarations (.class extern), 116,

117, 118
ExportedType metadata table, 115-16, 122-23
.extends directive, 11, 12, 23, 26
extends leafs, 379
extern keyword, 9-10

F
famandassem keyword, 13, 20
family keyword, 13, 20
famorassem keyword, 13, 20
fat method headers, 220, 221, 222
fault type of EH clause, 275, 278, 281-82, 287,

288
field declaration, 13-14, 19, 21, 22, 181, 187-88,

387
Field Definitions (FieldDefs), 13-14
field metadata, 180-84
Field metadata table, 198-99
field signatures, 172
FieldAccessException exception, 285
FieldLayout metadata table, 191, 198, 199
FieldLayout records, 191-93
FieldMarshal metadata table, 198, 199-200
FieldRVA metadata table, 198, 199
fields

addressing, 257-58
default values, 184-87

458 fields

fields, (continued)
global, 194-95
initonly, 226
instance, 184
mapped, 21, 187-89
metadata validity rules, 198-200
static, 184

File declarations (.file), 111-12, 117
File metadata table, 110-12, 121-22
file pointers, PE/COFF files, 40
FileDialogPermission permission, 334
FileDialogPermissionAttribute attribute, 321
FileIOPermission permission, 334
FileIOPermissionAttribute attribute, 321
filter type of EH clause, 274, 280, 288
finalizers, instance, 226-27
finally type of EH clause, 274-75, 276, 278,

281-82, 287, 288
firing (raising) events, 292
Flags field of .NET common language runtime

header, 58-59
flow control instructions

break, 243
comparative branching, 240-42
conditional branching, 240
ret, 244
SEH block ending, 243-44
SEH block exiting, 243
switch, 242-43
unconditional branching, 239-40

forward declaration of classes, 25-26
full class names, 133-34
function pointer types, 160

G
generic class, 160
getters, 300
global fields, 194-95
global items, 19-21
global methods, 229-30
globally unique identifiers (GUIDs), 308-9
guarded block, 35
GUID heaps, 78
#GUID metadata stream, 80, 81, 82, 94
GuidAttribute attribute, 319
GUIDs (globally unique identifiers), 308-9

H
handler block, 33-34
.hash directive, 111
heaps, metadata, 78-79

!Convertible interface, 361
identifiers, 131
identity permissions, 338-40
!Dispatch interface, 355, 361, 363
!Enumerable interface, 314
IJW thunks, 353-54
IL, 5, 6

assembly language. See ILAsm
IL Disassembler (ILDASM), 378-82
ILAsm

compiler options, 383-84
naming conventions, 131-32
order of manifest declarations in, 117-18

ILDASM (IL Disassembler), 378-82
image files. See PE/COFF files
IMAGE_COR20_HEADER structure, 56-57
_IMAGE_COR_ VTABLEFIXUP structure, 60-61
_IMAGE_DATA_DIRECTORY structure, 51
_IMAGE_EXPORT_DIRECTORY structure, 67
IMAGE_FILE_* characteristics values in COFF

headers, 45-47
_IMAGE_FILE_HEADER structure, 43
IMAGE_FILE_MACHINE_* values in COFF

headers, 43-44
_IMAGE_OPTIONAL_HEADER structure, 47-51
IMAGE_REL_BASED_* relocation types, 62-63
_IMAGE_RESOURCE_DATA_ENTRY structure, 72
_IMAGE_RESOURCE_DIRECTORY structure, 71
_IMAGE_RESOURCE_DIRECTORY _ENTRY

structure, 71
IMAGE_SCN_* characteristics values in section

headers, 55
_IMAGE_SECTION_HEADER structure, 53-54
_IMAGE_TLS_DIRECTORY structure, 68-69
imperative security, 330
implementation map metadata, 353
implements keyword, 12, 26
implements leafs, 379
implicit virtual method overriding, 216
ImplMap metadata table, 353
ImportedFromTypeLibAttribute attribute, 319

indirect call signatures, 17 4-75
indirect loading instructions, 246
indirect storing instructions, 246
Inheritance Demand action, 331
init keyword, 15, 221-23
initblk instruction, 253-54
initobj instruction, 263
initonly fields, 226
In/Out parameters, 358-59
install-time code generation, 7
instance constructor (.ctor), 144, 145, 195, 206-7,

224-26
instance fields, 184
instance finalizers, 226-27
instance keyword, 172, 213
instance members of value types, 142-43
instance methods, 212-16
instance pointer (this), 142-43, 147
instruction parameters, 239
instructions

addressing arguments and local variables
local block allocation, 256
local variable loading, 255
local variable reference loading, 256
local variable storing, 256
method argument address loading, 254
method argument list, 255
method argument loading, 254
method argument storing, 255
prefix instructions, 257

addressing classes and value types, 261-65
addressing fields, 257-58
arithmetical

arithmetical operations, 247-48
bitwise operations, 249-50
block operations, 253-54
constant loading, 245
conversion operations, 250-51
indirect loading, 246
indirect storing, 246
logical condition check, 252-53
overflow arithmetical operations, 248-49
overflow conversion operations, 251-52
shift operations, 250
stack manipulation, 244-45

calling methods
direct calls, 258-60

!Unknown interface 459

indirect calls, 260-61
tail calls, 261

code verifiability, 268-69
flow control

break instruction, 243
comparative branching instructions, 240-42
conditional branching instructions, 240
ret instruction, 244
SEH block ending instructions, 243-44
SEH block exiting instructions, 243
switch instruction, 242-43
unconditional branching instructions, 239-40

long-parameter, 239
short-parameter, 239
vector

element address loading, 266
element loading, 266-67
element storing, 267
vector creation, 265-66

int8* keyword, 23
int32 keyword, 14, 15, 17, 23
int32[,) specification, 162
int32[)[) specification, 162
int64 keyword, 22
interface implementations, 139-40
Interfacelmpl metadata table, 129, 153-54
Interfacelmpls metadata item, 315
interfaces, 140, 141

classes implementing, 126
InterfaceTypeAttribute attribute, 319
intermediate language. See IL
interop assemblies, 356
interoperability exceptions, 286
interoperation. See code interoperation
interoperation subsystem custom attributes,

318-20
InvalidCast exception, 362
InvalidProgramException exception, 284
Invoke method, 144, 145, 292, 293
!Permission interface, 343
isinst instruction, 263-64
IsolatedStorageFilePermission permission, 335
IsolatedStorageFilePermissionAttribute attribute,

321
/ITEM disassembler option, 381, 382
!Unknown interface, 355, 361, 363

460 JIT compiler

J
]IT compiler

custom attributes, 317-18
exceptions, 284

jmp instruction, 259
just-in-time compiler. See]IT compiler

K
/KEY compiler option, 383-84

L
label form of SEH clause declaration, 275-78
labels, 15
Lame Linker tool, 386, 387
.language directive, 388, 392
ldarga and ldarga.s instructions, 254
ldc.* instructions, 19, 245
ldelem.* instructions, 266-67
ldelema instruction, 266
ldfld instruction, 184, 258
ldflda instruction, 184, 198, 258
ldftn instruction, 225, 260
ldind.* instructions, 246
ldlen instruction, 266
ldloc and ldloc.s instructions, 18, 255
ldloc.O, ldloc.1, ldloc.2, and ldloc.3 instructions,

255
ldloca and ldloca.s instructions, 256
ldnull instruction, 261
ldobj instruction, 261-62
ldsfld instruction, 19, 184, 187, 258
ldsflda instruction, 17, 184, 198, 258
ldstr instruction, 262
ldstr keyword, 16, 19, 22
ldtoken instruction, 183, 264-65
ldvirtftn instruction, 260
leave and leave.s instructions, 32-35, 243, 275
.line directive, 388, 392
/LINENUM disassembler option, 382, 389, 392
Link Demand action, 332
linker, 323-24
listeners (sinks, subscribers) of events, 292
literal fields, 144
literals, single-quoted, 132
loader

exceptions, 283-84
in search of assemblies, 107-9

local block allocation, 256
local variable loading, 255
local variable reference loading, 256
local variable storing, 256
local variables, 221-24. See also addressing

arguments and local variables
local variables signatures, 175
locales, 112
localization of applications, 112
localloc instruction, 256
.locals directive, 15
logical condition check instructions, 252-53
long-parameter instructions, 239

M
Machine types in COFF headers, 43-44
main assembly, 112
managed code, 5

unmanaged code and. See code interoperation
managed executable files, 5, 7, See PE/COFF files
managed keyword, 23, 24
managed methods

callback for unmanaged, 365-68
unmanaged exports, 369-75

managed pointers, 157-59
managed resource declarations (.mresource), 114,

117
managed resource metadata, 112-15, 122
ManifestResource declarations (.mresource), 387
ManifestResource metadata table, 114, 122
manifests

assembly metadata table, 103-4, 120
AssemblyRef metadata table, 104-6, 120
ExportedType metadata table, 115-16, 122-23
File metadata table, 110-12, 121-22
introduced, 101-2
managed resource metadata, 112-15, 122
metadata validity rules, 119-23
Module metadata table, 109-10, 121
ModuleRef metadata table, 110, 121
order of declarations in ILAsm, 117-18
single-module and multimodule assemblies,

118-19
mapped fields, 21, 187-89
MarshalDirectiveException exception, 286

marshaling. See data marshaling
.maxstack directive, 224, 238
mdt* token types, 87-88, 180, 202, 295, 301, 309
Member References (MemberRefs), 16, 210
MemberRef metadata table, 198, 200
MemberRef signatures, 174
metadata

classes
ClassLayout metadata table, 130
Interfacelmpl metadata table, 129
NestedClass metadata table, 130
type metadata, 127
TypeDef metadata table, 128
TypeRef metadata table, 129

declarative security, 343-45

defined, 75-76

events

Event table, 295-96
EventMap table, 296
introduced, 294-95
MethodSemantics table, 296-97

fields, 180-84

headers, 79-82

heaps, 78-79
implementation map, 353

manifests

assembly metadata table, 103-4, 120
AssemblyRef metadata table, 104--6, 120
ExportedType metadata table, 115-16, 122-23
File metadata table, 110-12, 121-22
introduced, 101-2
managed resource metadata, 112-15, 122
Module metadata table, 109-10, 121
ModuleRef metadata table, 110, 121
validity rules, 119-23

methods

method flags, 204-6
method implementation flags, 207-8
method implementation metadata, 211
method name, 206-7
method parameters, 208-10
Method table record entries, 202-3
referencing the methods, 210-11

optimized (compressed), 76--77

PEVerify tool for, 94

methods 461

properties, 300-302
Property table, 301-2
PropertyMap table, 302

record identifiers (RIDs) in, 87

schema, 83

tablestags in, 89-90

tokens

coded, 89-93
external, 87-89

unoptimized (uncompressed), 77-78

validation, 93-94
metadata streams

#-compressed (optimized) metadata stream,

80, 81, 82-83
#-uncompressed (unoptimized), 81, 82-83, 94

#Blob, 80, 81, 82

#GUID, 80, 81, 82, 94
#Strings, 80, 81, 82

#US, 80, 81, 82, 88-89

metadata table streams, 82-87
metadata validity rules

custom attributes, 327

declarative security, 346

events, 304

fields, 198-200

methods, 230-33, 305-6

properties, 304-5

types, 151-54
/METAINFO disassembler option, 380, 382
method argument address loading, 254
method argument list, 255
method argument loading, 254
method argument storing, 255
method declaration, 14--19, 23, 387
Method Definitions (MethodDefs), 14-19, 210
Method metadata table, 202-3, 230-32
method signatures, 173
MethodAccessException exception, 285
Methodlmpl metadata table, 230, 233
methods

calling, 258-261

direct calls, 259-60
indirect calls, 260-61
tail calls, 261

class constructors (.cctors), 224, 226

explicit method overriding, 216-20

462 methods

methods, (continued)
global, 229-30
header attributes, 220-21, 222
implicit virtual method overriding, 216
instance, 212-16
instance constructors (.ctors), 224-26
instance finalizers, 226-27
local variables, 221-24
metadata

introduced, 202
method flags, 204-6
method implementation flags, 207-8
method implementation metadata, 211
method name, 206-7
method parameters, 208-10
Method table record entries, 202-3
referencing the methods, 210-11

metadata validity rules, 230-33, 305-6
nonvirtual, 213, 215
static, 212
variable argument lists (vararg), 227-29
virtual, 213-16

MethodSemantics metadata table, 296-97, 304,
305-6

Microsoft intermediate language. See MSIL
mkrefany instruction, 264
modifiers for primitive types, 162-65
modopt modifier, 163-64
modreq modifier, 163-64
module entry point declarations (.entrypoint), 15,

111, 387
.module extern directive, 110, 117
module keyword, 10
module linking through round-tripping, 386-88
Module metadata table, 109-10, 121
ModuleRef declarations (.module extern), 110,

117
ModuleRef metadata table, 110, 121
modules. See assemblies
.mresource directive, 114, 117, 387
[mscorlib]System.Attribute class, 310
[mscorlib]System.Diagnostics.Debuggable-

Attribute attribute, 388
[mscorlib]System.Exception class, 283, 287
[mscorlib]System.MulticastDelegate class, 144,

292-95
[mscorlib]System.Security.NamedPermissionSet

class, 343

[mscorlib]System.Security.PermissionSet class, 343
MS-DOS stub, 42
MSIL, 5

assembly language. See ILAsm
mul instruction, 247
mul.ovf and mul.ovf.un instructions, 249
multilanguage projects

class augmentation, 385-86
compiling in debug mode, 388-92
creative round-tripping, 384-85
IL Disassembler (ILDASM), 378-82
module linking through round-tripping, 386-88
principles of round-tripping, 383-84

multimodule assemblies, 118-19

N
names, full class, 133-34
.namespace directive, 10-12, 132-33
namespaces, 132-33
naming conventions, 131-32
native keyword, 14
native types, 165-68
neg instruction, 248
nested classes, 20
nested types, 20, 147-49
NestedClass metadata table, 130, 154
.NET common language runtime basics, 4-7
.NET common language runtime header

EntryPointToken field, 59-60
Flags field, 58-59
StrongNameSignature field, 61
structure, 56-57
VTableFixups field, 60-61

neutral cultures, 112
newarr instruction, 160, 162, 265-66
newobj instruction, 176, 224-25, 226, 263
/NOBAR disassembler option, 382
/NOIL disassembler option, 381, 382
nonvirtual methods, 213, 215
nop instruction, 244
nullref keyword, 185
NullReferenceException exception, 285

0
object marshaling, 361-62
ObsoleteAttribute attribute, 325
operation codes (opcodes), 239

optimized (compressed) metadata, 76-77
/OUT compiler option, 383
/OUT disassembler option, 378, 382
OutOf.MemoryException exception, 284
overflow arithmetical operations, 248--49
overflow conversion operations, 251-52
Overflow exception, 251-52
.override directive, 219-20

p
P/Invoke (platform invocation), 23-24
.pack directive, 140
Param metadata table, 230, 232-33
parameter marshaling, 23-24
parameters in instructions, 239
parents of types, 138-39
PE header, 42, 47-53
PE signature, 42
PE/COFF files

data sections (.sdata)
data constants, 65-66
TLS, 68-69
unmanaged export tables, 66-68
V-table, 66

file pointers, 40
headers

COFF header, 42-47
MS-DOS stub, 42
PE header, 42, 47-53
PE signature, 42
section headers, 42, 53-56

.NET common language runtime header
EntryPointToken field, 59-60
Flags field, 58-59
StrongNameSignature field, 61
structure, 56-57
VTableFixups field, 60--61

relative virtual addresses (RVAs), 40
relocation (.reloc) section, 61-63
resources (.rsrc)

managed, 72
unmanaged, 70--72

sections, 41
structure, 39-41
summarized, 73-74
.text section, 63-65

protected block 463

virtual addresses (VAs), 41
.permission directive, 345-46
permission sets, 343
permissions, defined, 331
PermissionSet class, 343
.permissionset directive, 346
PermissionSetAttribute attribute, 321
Permit Only action, 332
PEVerify tool, 94
pinned modifier, 164-65
P/Invoke thunks, 351-52
pinvokeimpl keyword, 23
placeholders, value types as, 22-23
platform invocation (P/Invoke), 23-24
polling from the main thread, 145
pop instruction, 245
Portable Executable and Common Object File

Format. See PE/COFF files
prefix instructions, 257
prime module, 97
primitive types

arrays, 160--62
data, 156-57
data pointer, 157-59
function pointer, 160
modifiers for, 162-65
native, 165-68
variant, 168-70
vectors, 160--62

PrincipalPermissionAttribute attribute, 321
private assemblies, 98-99
private classes, 147
private keyword, 11, 13, 20, 21
privatescope keyword, 13-14, 20, 21
ProgidAttribute attribute, 319
program header, 9-10
properties

declaration, 302-3, 387
metadata, 300--301

Property table, 301-2
PropertyMap table, 302

metadata validity rules, 304-5
Property metadata table, 301-2, 304-5
property signatures, 173
PropertyMap metadata table, 302, 304, 305
protected block, 34

464 pseudocustom attributes

pseudocustom attributes, 325-27
public classes, 133
public keyword, 11, 13, 14, 19, 20, 21, 22, 23
PublisherldentityPermission permission, 339-40
PublisherldentityPermissionAttribute attribute,

321
publishers (sources) of events, 292

R
raising (firing) events, 292
RankException exception, 285
/RAWEH disassembler option, 381
record identifiers (RIDs), 87
refanytype instruction, 264
refanyval instruction, 264
reference types, 125-26
Reflection methods, 186-87
ReflectionPermission permission, 335
ReflectionPermissionAttribute attribute, 321
Regionlnfo class, 112
regions, 112
RegistryPermission permission, 336
RegistryPermissionAttribute attribute, 321
relative virtual addresses (RVAs), 40, 113
relocation (.reloc) section of PE/COFF files,

61-63
rem and rem.un instructions, 247-48
remoting subsystem custom attributes, 322-23
Remove method, 293, 294
Removelmpl method, 292-94
Request Minimum action, 331
Request Optional action, 331
Request Refuse action, 331
/RES compiler option, 383
resources (.rsrc)

managed, 72
unmanaged, 70-72

Resources data directory, 113
ret instruction, 19, 244
rethrow instruction, 265, 283
RIDs (record identifiers), 87
round-tripping

creative, 384-85
module linking through, 386-88
principles of, 383-84

runtime. See .NET common language runtime
entries

runtime callable wrappers, 355-57
run-time validation and verification, 93
Runtime.lnteropServices.SEHException

exception, 286
RVAs (relative virtual addresses), 40, 113

s
satellite assemblies, 112
schema, 83
scope form of SEH clause declaration, 278--81
sealed types, 138, 141
section headers, 42, 53-56
sections of PE/COFF files, 41
security

declarative
advantages and disadvantages, 330
metadata, 343-45
metadata validity rules, 346

imperative, 330
security attributes

declaration, 345-46
declarative actions, 331-32

security custom attributes, 320-22
security permissions

access permissions, 333-37
custom permissions, 340-43
identity permissions, 338-40
permission sets, 343

security policies, 329
security requirements, embedded, 330
SecurityAttribute attribute, 321
SecurityPermission permission, 336-37
SecurityPermissionAttribute attribute, 321
SEH. See also exceptions

block ending instructions, 243-44
block exiting instructions, 243
catch type of EH clause, 33, 274
clauses

internal representation, 272-73
label form of declaration, 275-78
scope form of declaration, 278--81
structuring rules, 287-88
types, 274-75

fault type of EH clause, 275, 278, 281-82, 287,
288

System. Runtime. I nteropServices. FieldOffsetAttribute attribute 465

filter type of EH clause, 274, 280, 288
finally type of EH clause, 274-75, 276, 278,

281-82, 287, 288
guarded block, 35
handler block, 33-34
introduced, 271-72
leave keyword, 32-35
protected block, 34
Simple example (Simple.exe), 31-35
throw instruction, 265, 282-83
.try keyword, 32, 34-35, 275-81

sentinels, 18
sequential layout, 193
SET encoding, 172
setters, 300
shared assemblies, 98-99
shift operations, 250
sh! instruction, 250
shr and shr.un instructions, 250
signatures

calling conventions, 171-72
defined, 155
field, 172
indirect call, 174-75
local variables, 175
MemberRef, 174
method, 173
property, 173
representing classes in, 170-71
type specifications (TypeSpecs), 175-76
validity rules, 176-78

single-module assemblies, 118-19
single-quoted literals, 132
sinks (listeners, subscribers) of events, 292
SiteidentityPermission permission, 340
SiteidentityPermissionAttribute attribute, 321
.size directive, 23, 140
sizeof instruction, 265
sources (publishers) of events, 292
sscanf function, 17, 18, 23, 24, 27, 29, 30, 33-35
stack manipulation instructions, 244-45
StandAloneSigs metadata item, 315
static fields, 184
static keyword, 13, 14, 19, 21, 22, 23, 213
static methods, 212
/STATISTICS disassembler option, 380
stelem. • instructions, 267
stfld instruction, 184, 198, 258

stind. • instructions, 246
stloc and stloc.s instructions, 18, 256
stobj instruction, 262
string heaps, 78
string keyword, 17, 23
string marshaling, 359-60
#Strings metadata stream, 80, 81, 82
strong names, 98, 99
StrongNameidentityPermission permission, 339
StrongNameidentityPermissionAttribute attribute,

322
StrongNameSignature field in the .NET common

language runtime header, 61
structured exception handling. See SEH
structures, 141-42
stsfld instruction, 184, 198, 258
stubs. See thunks
sub instruction, 247
sub.ovf and sub.ovf.un instructions, 249
subscribers (listeners, sinks) of events, 292
Suppress UnmanagedCodeSecurity Attribute

attribute, 320
switch instruction, 242-43
synchronous calls, 145
[System.DirectoryServices]System.Directory-

Services.DirectoryServicesPermission
permission, 333

System namespace, 325
System.AttributeUsageAttribute attribute, 316
System.Diagnostics namespace, 323
System.Diagnostics.DebuggableAttribute

attribute, 317
System.Enum class, 11
System.NonSerializedAttribute attribute, 326
System.Object class, 11, 126
System.Reflection class library, 92
System.Reflection namespace, 324
System.Reflection.Emit class library, 92
System.Resources.ResourceManager class, 115
System.Runtime.CompilerServices.Methodimpl-

Attribute attribute, 326
System.Runtime.InteropServices namespace, 318
System.Runtime.InteropServices.Comlmport

Attribute attribute, 325
System.Runtime .InteropServices.Dllimport

Attribute attribute, 325-26
System.Runtime.InteropServices.FieldOffset

Attribute attribute, 326

466 System.Runtime.lnteropServices.GuidAttribute attribute

System.Runtime.lnteropServices. Guid.Attribute
attribute, 309

System.Runtime.InteropServices.lnAttribute
attribute, 326

System.Runtime.InteropServices.MarshalAs
Attribute attribute, 326

System.Runtime.InteropServices.Optional
Attribute attribute, 326

System.Runtime.InteropServices.OutAttribute
attribute, 326

System.Runtime.InteropServices.PreserveSig
Attribute attribute, 326

System.Runtime.InteropServices.StructLayout
Attribute attribute, 326

System.Runtime.InteropServices. Unmanaged
Type enumerator, 165

System.Runtime.Remoting.Activation.Ur!Attribute
attribute, 323

System.Runtime.Remoting. Contexts. Context
Attribute attribute, 322

System.Runtime .Remoting. Contexts.Synchroniza
tionAttribute attribute, 322-23

System.Security namespace, 320
System. Security .DynamicSecurityMethodAttribute

attribute, 326
System.Security.Permissions namespace, 320,

333, 338
System.Security. UnverifiableCodeAttribute

attribute, 317
System.SerializableAttribute attribute, 326
[System]System.Net.DnsPermission permission,

334
System.Theading namespace, 294
System.ThreadStaticAttribute attribute, 318
System.ValueType class, 11

T
tags in metadata tables, 89-90
tail. instruction, 261
targets, 331
/TEXT disassembler option, 378, 382
.text section of PE/COFF files, 63-65
this (instance pointer), 142-43, 147
thread local storage (TLS), 68-69
Threading.SynchronizationLockException

exception, 285

throw instruction, 265, 282-83
thunks. See also wrappers

IJW, 353-54
P/lnvoke, 351-52

tiny method headers, 220, 222
TLS (thread local storage), 68-69
/TOKENS disassembler option, 381
tokens, metadata

coded,89-93
external, 87-89

.try directive, 32, 34-35, 275-81
type conversions, evaluation stack, 268
Type Definitions (TypeDefs), 10-12, 20, 127, 128
Type References (TypeRefs), 127, 128
type specifications (TypeSpecs), 175-76
TypeDef metadata table, 128, 151-53
TypelnitializationException exception, 285
TypeLibFuncAttribute attribute, 320
TypeLibTypeAttribute attribute, 320
TypeLibVarAttribute attribute, 320
TypeLoadException exception, 21, 188, 189, 192,

193, 215, 284
TypeRef metadata table, 129, 153
types. See also classes

blittable, 358
data constants, 190-91
delegates, 144-46
enumerators (enumeration types, enums),

143-44
interfaces, 140-41
metadata validity rules, 151-54
nested, 20, 147-49
parents of, 138-39
primitive

arrays, 160-62
data, 156-57
data pointer, 157-59
function pointer, 160
modifiers for, 162-65
native, 165--68
variant, 168-70
vectors, 160-62

reference, 125-26
sealed, 138, 141
values

addressing, 261--65

types, (continued)

u

boxed and unboxed values, 142
derivation of, 143
instance members of, 142-43
as placeholders, 22-23
pseudoflags to declare, 12
types, 11, 126, 141-42

UIPermissionAttribute attribute, 322
unaligned. prefix, 257
UnauthorizedAccessException exception, 284
unbound objects, 101
unbox instruction, 264
unboxing, 142
uncompressed (unoptimized) metadata, 77-78
unconditional branching instructions, 239-40
Unexpected Type exception, 16
Unicode, user-defined strings, 88-89
/UNICODE disassembler option, 381
unicode keyword, 11
union declaration, 192-93
unmanaged code

calling, 23-24
managed code and. See code interoperation

unmanaged export tables, 66-68
unmanaged keyword, 14
unmanaged methods

managed methods as callback for, 365-68
managed methods as unmanaged exports,

369-75
unmanaged pointers, 157-59
unoptimized (uncompressed) metadata, 77-78
UrlldentityPermission permission, 340
UrlldentityPermissionAttribute attribute, 322
#US metadata stream, 80, 81, 82, 88-89
/UTF8 disassembler option, 381

v
validation of metadata, 93-94
value types. See values
valuetype keyword, 17, 19, 21, 22
vararg (variable argument lists), 227-29
vararg keyword, 17-18, 23, 172
vararg method, 164, 174
VARENUM enumeration, 168

ZoneldentityPermissionAttribute attribute 467

variable argument lists (vararg), 227-29
variant types, 168-70
VAs (virtual addresses), 41
vector instructions

element address loading, 266
element loading, 266-67
element storing, 267
vector creation, 265-66

vectors, 160-62
VerificationException exception, 284
virtual addresses (VAs), 41
virtual methods, 213-16
/VISIBILITY disassembler option, 381, 382
Visual Studio .NET debugger, 323
void keyword, 14, 16, 19
volatile. prefix, 257
V-table, 66
VTableFixups field in the .NET common language

runtime header, 60--61
.vtentry directive, 370, 373-74
.vtfixup directive, 369, 370, 373-74

w
WaitHandle class, 294
wrappers. See also thunks

x

COM callable, 354-55
defined, 350
runtime callable, 355-57

xor instruction, 250

z
ZoneidentityPermission permission, 338
ZoneidentityPermissionAttribute attribute, 322

Serge Lidin
Serge Lidin has worked as a software developer
for about 20 years-in different countries, in dif
ferent languages and platforms, and in different
areas, including astrophysic models, industrial
process simulations, transaction processing in
financial systems, and many others. For the last
three years he has worked on the Microsoft .NET
Common Language Runtime team. His responsi
bilities include design and development of the IL
Assembler, IL Disassembler, Metadata Validator,
and run-time metadata validation in the execu
tion engine. He still has nostalgic memories of
the times when he lugged around a bagful of
punched cards but likes his present IBM laptop
much better: it weighs less and holds more stuff.
When not writing software or sleeping, he plays
tennis and reads books (his literary taste is below
any criticism). Serge shares his time between
Vancouver, BC, where his heart is, and Redmond,
WA, where his brain i:s.

Serge Lidin shaves head of the
development lead Mike
Magruder (Summer 2000).
Runtime development man
ager Jason Zander and leads
Larry Sullivan and Mike
Magruder made a bet with the
rest of the runtime team that the
team would blow an important
deadline. As a wager, they pro
posed to dye Jason's hair yellow
and Larry's hair green and to
shave Mike's head. They lost.

Drafting Compass

The drafting compass, an instrument for taking measurements and drawing circles, consists of two
straight and equal legs connected at one end by a movable joint. The word encompass, "to encircle
something:• comes from the same source. The famous poem "A Valediction: Forbidding Mourning" by
the 17th-century metaphysical poet John Donne uses the metaphor of twin compass legs to represent
separated lovers.

Tools are central to the progress of the human race. People are adept at building and using tools to
accomplish important (and unimportant) tasks. Software is among the most powerful of tools moving us
forward, and Microsoft is proud to create tools used by millions worldwide and to contribute to continu
ing innovation.

The manuscript for this book was prepared and galleyed using Microsoft Word. Pages were composed
by Microsoft Press using Adobe FrameMaker+SGML for Windows, with text in Garamond and display
type in Helvetica Condensed. Composed pages were delivered to the printer as electronic prepress files.

Cover Designer:

Interior Graphic Designer:

Principal Compositor:

Interior Artist:

Principal Copy Editor:

Indexer:

Methodologie, Inc.

James D. Kramer

Kerri Devault

Michael Kloepfer

Lisa Pawlewicz

Hugh Maddocks

Drill down into the details of the .NET runtime and
the IL assembly language with help from one of the
language's designers!

Most books about .NET programming are devoted to high-level languages in RAD

environments. But what about the plumbing? This book drills down into the internal

structures and operations of the .NET common language runtime and teaches you

how to master the IL assembly language (ILAsm), which fully describes these

structures and operations. The rule of thumb is that if the runtime can do it, ILAsm

must be able to express it. You 'll learn everything you need to know about this low

level language from the developer who designed and implemented the IL Assembler,

IL Disassembler, and metadata validation tools . The book is ideal for compiler

developers, developers working on multi language projects, and anyone else who

wants to develop tighter, faster code for the .NET Framework platform.

Topics covered include:

> Overview of ILAsm and the common

language runtime, plus a sample program

> Enhancing your code

> Managed executable file structure

> Metadata tables organization

> Modules and assemblies

> Namespaces and classes

> Primitive types and signatures

> Fields and data constants

> Methods

G Analyzing
~ Business
• Requirements

> IL instructions

> Structured exception handling

> Events and properties

> Custom and security attributes

> Managed and unmanaged code

interoperation

> Multilanguage projects

> Appendixes: ILAsm grammar, metadata

organization, the IL instruction set,

compiler options, and the offline

metadata validation tool

Testing/
Debugging Deployment

Maintenance/
Troubleshooting

IS BN 0-7356-1547-0

°' <O
00
<O
l!l
00
~
0 z
t::
~ 7 90 145 154 70 9 780 735 6154 72

U.S.A. $49.99
Canada $72.99
[Recommended]

Programming/Microsoft
Visual Studio .NET

