Developer Architectural Microsoft
: Reference

—

140SOdIIN 3AISNI

d319INISSY 11 1IN’

Lidin

§ .net | Serge Lidin

Architectural Microsoft
Reference

Microsoft®

Net Serge Lidin

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2002 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Lidin, Serge, 1956-
Inside Microsoft NET IL Assembler / Serge Lidin.
p. cm.
Includes index.
ISBN 0-7356-1547-0
1. Assembling (Electronic computers) I. Title.

QA76.76.A87 L545 2002 :
005.2'768--dc21 2001058690

Printed and bound in the United States of America.

123456789 QWT 765432

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa-
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Age of Empires, DirectX, Microsoft, Microsoft Press, MS-DOS, MSDN, the .NET logo, Visual Basic,
Visual C++, Visual C#, Visual Studio, Win32, and Windows are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries. Other product and company
names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Acquisitions Editor: Danielle Bird
Project Editor: Devon Musgrave
Technical Editor: Julie Xiao

Body Part No. X08-56864

To my family, for all their patience with me.

Part Il

3
4

Part lli
5
6
7
8
9

Part IV

10
11

Part ')

12
13
14

Part VI

15
16

The Structure 61 a Managed Executable File

Metadata Tables Organization

Modules and Assembhlies
Namespaces and Classes
Primitive Types and Signatures
Fields and Data Constants
Methods

Custom Attributes
Security Attributes

Multilanguage Projects

27

39
15

97
125
155
179
201

237
21

291
307
329

349
377

vi

mooOw>

Appendixes

IL Assembler Grammar Reference

Metadata Tables Reference

IL Instruction Set Reference

IL Assembler and Disassembler Command-Line Options
Offline Verification Tool Reference

393
409
421
429
435

Introduction

part1 Quick Start

1 Simple Sample

Basics of the Common Language Runtime
A Simple Sample

Program Header

Class Declaration

Field Declaration

Method Declaration

Global Items

Mapped Fields

Data Declaration

Value Type as Placeholder

Calling Unmanaged Code
Forward Declaration of Classes
Summary

2 Enhancing the Code
Code Retention

Protecting the Code
Summary

partn Underlying Structures
3 The Structure of a Managed Executable File
PE/COFF Headers
MS-DOS Stub and PE Signature
COFF Header

PE Header
Section Headers

XVii

© oo h W

10
13
14
19
21
22
22
23
25
26

27
27

30
36

39

4
42
42
47
53

vii

viii Table of Contents

Common Language Runtime Header
Header Structure
Flags Field
EntryPointToken Field
VTableFixups Field
StrongNameSignature Field
Relocation Section
Text Section
Data Sections
Data Constants
V-Table
Unmanaged Export Table
Thread Local Storage
Resources
Unmanaged Resources
Managed Resources
Summary

4 Metadata Tables Organization

What Is Metadata?
Heaps and Tables
Heaps
General Metadata Header
Metadata Table Streams
RIDs and Tokens
RIDs
Tokens
Coded Tokens
Metadata Validation
Summary

ratii Fundamental Components

5 Modules and Assemblies
What Is an Assembly?
Private and Shared Assemblies
Application Domains as Logical Units of Execution

96
56
58
59
60
61
61
63
65
65
66
66
68
70
70
72
73

75

75
78
78
79
82
87
87
87
89
93
94

97
97
98
99

Table of Contents ix

Manifest 101
Assembly Metadata Table and Declaration 103
AssemblyRef Metadata Table and Declaration 104
The Loader in Search of Assemblies 107
Module Metadata Table and Declaration 109
ModuleRef Metadata Table and Declaration 110
File Metadata Table and Declaration ‘ 110
Managed Resource Metadata and Declaration 112
ExportedType Metadata Table and Declaration 115

Order of Manifest Declarations in ILAsm 117

Single-Module and Multimodule Assemblies 118

Metadata Validity Rules 119
Assembly Table Validity Rules 120
AssemblyRef Table Validity Rules 120
Module Table Validity Rules 121
ModuleRef Table Validity Rules 121
File Table Validity Rules 121
ManifestResource Table Validity Rules 122

- ExportedType Table Validity Rules 122
6 Namespaces and Classes 125

Class Metadata 127
TypeDef Metadata Table 128
TypeRef Metadata Table 129
Interfacelmpl Metadata Table 129
NestedClass Metadata Table 130
ClassLayout Metadata Table 130

Namespace and Full Class Name 130
ILAsm Naming Conventions 131
Namespaces 132
Full Class Names 133

Class Attributes 135
Flags 135
Class References 138
Parent of the Type 138
Interface Implementations 139

Class Layout Information : : 140

X Table of Contents

Interfaces

Value Types
Boxed and Unboxed Values
Instance Members of Value Types
Derivation of Value Types

Enumerators

Delegates

Nested Types

Class Augmentation

Metadata Validity Rules
TypeDef Table Validity Rules
Enumerator-Specific Validity Rules
TypeRef Table Validity Rules
Interfacelmpl Table Validity Rules
NestedClass Table Validity Rules
ClassLayout Table Validity Rules

7 Primitive Types and Signatures

Primitive Types in the Common Language Runtime
Primitive Data Types
Data Pointer Types
Function Pointer Types
Vectors and Arrays
Modifiers
Native Types
Variant Types
Representing Classes in Signatures
Signatures
Calling Conventions
Field Signatures
Method and Property Signatures
MemberRef Signatures
Indirect Call Signatures
Local Variables Signatures
Type Specifications
Signature Validity Rules

140
141
142
142
143
143
144
147
149
151
151
152
153
153
154
154

155

155
156
157
160
160
162
165
168
170
171
171
172
173
174
174
175
175
176

Table of Contents xi

8 Fields and Data Constants 179
Field Metadata 180
Instance and Static Fields 184
Default Values 184
Mapped Fields 187
Data Constants Declaration 189
Explicit Layouts and Union Declaration 191
Global Fields 194
Constructors vs. Data Constants 195
Metadata Validity Rules 198

Field Table Validity Rules 198
FieldLayout Table Validity Rules 199
FieldRVA Table Validity Rules 199
FieldMarshal Table Validity Rules 199
Constant Table Validity Rules 200
MemberRef Table Validity Rules 200

9 Methods 201

Method Metadata 202
Method Table Record Entries 202
Method Flags 204
Method Name 206
Method Implementation Flags 207
Method Parameters 208
Referencing the Methods 210
Method Implementation Metadata 211

Static, Instance, Virtual Methods 212

Explicit Method Overriding 216

Method Header Attributes 220

Local Variables 221

Class Constructors 224

Instance Constructors 224

Instance Finalizers 226

Variable Argument Lists 227

Global Methods 229

Metadata Validity Rules 230

xii Table of Contents

Method Table Validity Rules 230
Param Table Validity Rules 232
MethodImpl Table Validity Rules 233

o8

partiv Inside the Execution Engine

10 IL Instructions 237
Long-Parameter and Short-Parameter Instructions 239
Labels and Flow Control Instructions 239

Unconditional Branching Instructions 239
Conditional Branching Instructions 240
Comparative Branching Instructions 240
The switch Instruction 242
The break Instruction 243
SEH Block Exiting Instructions 243
SEH Block Ending Instructions 243
The ret Instruction 244
Arithmetical Instructions 244
Stack Manipulation 244
Constant Loading 245
Indirect Loading 246
Indirect Storing 246
Arithmetical Operations 247
Overflow Arithmetical Operations 248
Bitwise Operations 249
Shift Operations 250
Conversion Operations 250
Overflow Conversion Operations 251
Logical Condition Check Operations 252
Block Operations 253
Addressing Arguments and Local Variables 254
Method Argument Loading 254
Method Argument Address Loading 254
Method Argument Storing 255
Method Argument List 255

Local Variable Loading 255

Table of Contents xiii

Local Variable Reference Loading 256
Local Variable Storing 256
Local Block Allocation 256
Prefix Instructions 257
Addressing Fields 257
Calling Methods 258
Direct Calls 259
Indirect Calls 260

Tail Calls 261
Addressing Classes and Value Types 261
Vector Instructions 265
Vector Creation 265
Element Address Loading 266
Element Loading 266
Element Storing 267
Code Verifiability 268
11 Structured Exception Handling 271
SEH Clause Internal Representation 272
Types of SEH Clauses 274
Label Form of SEH Clause Declaration 275
Scope Form of SEH Clause Declaration 278
Processing the Exceptions 281
Exception Types 283
Loader Exceptions 283

JIT Compiler Exceptions 284
Execution Engine Exceptions 284
Interoperability Exceptions 286
Subclassing the Exceptions 286
Unmanaged Exception Mapping 287
SEH Clause Structuring Rules 287

ratv Special Components
12 Events and Properties 291

Events and Delegates 291
Event Metadata 294

Xiv

Table of Contents

The Event Table
The EventMap Table
The MethodSemantics Table
Event Declaration
Property Metadata
The Property Table
The PropertyMap Table
Property Declaration
Metadata Validity Rules
Event Table Validity Rules
EventMap Table Validity Rules
Property Table Validity Rules
PropertyMap Table Validity Rules
MethodSemantics Table Validity Rules

Custom Attributes

Concept of a Custom Attribute
CustomAttribute Metadata Table
Custom Attribute Value Encoding
Custom Attribute Declaration
Classification of Custom Attributes

Execution Engine and JIT Compiler

Interoperation Subsystem

Security

Remoting Subsystem

Visual Studio .NET Debugger

Assembly Linker

Common Language Specification (CLS) Compliance

Pseudocustom Attributes
Metadata Validity Rules

Security Attributes

Declarative Security

Declarative Actions

Security Permissions
Access Permissions
Identity Permissions

295
296
296
297
300
301
302
302
304
304
304
304
305
305

307

308
309
310
312
315
317
318
320
322
323
323
325
325
327

329

330
331
333
333
338

Table of Contents XV

Custom Permissions 340
Permission Sets 343
Declarative Security Metadata 343
Security Attribute Declaration. 345
Metadata Validity Rules 346

Partvi ltierogeration

15 Managed and Unmanaged Code Interoperation 349
Thunks and Wrappers 350

P/Invoke Thunks 351
Implementation Map Metadata and Validity Rules 353

IJW Thunks 353

COM Callable Wrappers 354

Runtime Callable Wrappers 355

Data Marshaling 357

Blittable Types 358

In/Out Parameters 358

String Marshaling 359

Object Marshaling 361

Class Marshaling 363

Array Marshaling 363

Delegate Marshaling 364

Providing Managed Methods as Callback for Unmanaged 365

Managed Methods as Unmanaged Exports 369

16 Multilanguage Projects 371
IL Disassembler 378

Principles of Round-Tripping 383

Creative Round-Tripping 384

Using Class Augmentation 385

Module Linking Through Round-Tripping 386

Gompiling in Debug Mode 388

Appendixes

A IL Assembler Grammar Reference 393
Lexical Tokens 393

Data Type Nonterminals 393

xvi Table of Contents

Identifier Nonterminals ' 394
Module-Level Declarations 394
External Source Declarations 394
V-Table Fixup Declaration 395
Namespace and Type Declarations ’ 395
Signature Type Specifications : 396
Native Type Declarations - 397
Field Declarations 399
Data Declarations 400
Method Header Declarations 401
Method Body Declarations 402
Event Declarations ‘ 404
Property Declarations 405
Custom Attribute Declarations 405
Security Declarations 406
Manifest Declarations : : 406
B Metadata Tables Reference 409
C ILInstruction Set Reference 421
D IL Assembler and Disassembler Command-Line Options 429
IL Assembler ‘ 429
IL Disassembler 431
Options for OQutput Redirection 431
ILSAsm Code Formatting Options (PE Files Only) 431
Options for File OQutput (PE Files Only) 432
Options for File or Console Qutput (PE Files Only) 432 .
Metadata Summary Option’ 433
E Offline Verification Tool Reference . 435
Error Codes and Messages 437

Index 453

Introduction

Why This Book Was Written

To tell the truth, I don'’t think I had much choice in this matter. Let me explain.
With Microsoft .NET technology taking the world by storm, with more and
more information professionals getting involved, large numbers of books cov-
ering various aspects of this technology have started to arrive—and none too
soon. Alas, virtually all of these books are dedicated to .NET-based program-
ming in high-level languages and rapid application development (RAD) envi-
ronments. No doubt this is extremely important, and I am sure all these books
will have to be reprinted to satisfy the demand. But what about the plumbing?

The .NET universe, like other information technology universes, resem-
bles a great pyramid turned upside down and standing on its tip. The tip on
which the .NET pyramid stands is the common language runtime. The runtime
converts the intermediate language (IL) binary code into platform-specific
(native) machine code and executes it. Resting on top of the runtime are the
.NET Framework class library, the compilers, and environments such as
Microsoft Visual Studio .NET. And above them begin the layers of application
development, from instrumental to end-user-oriented. The pyramid quickly

~grows higher and wider.

This book is not exactly about the common language runtime—even
though it’s only the tip of the .NET pyramid, the runtime is too vast a topic to
be described in detail in any book of reasonable (say, luggable) size. Rather,
this book focuses on the next best thing: the .NET IL Assembler. IL assembly
language (JQLAsm) is a low-level language, specifically designed to describe
every functional feature of the common language runtime. If the runtime can do
it, ILAsm must be able to express it.

Unlike high-level languages, and like other assembly languages, ILAsm is
platform-driven rather than concept-driven. An assembly language usually is an
exact linguistic mapping of the underlying platform, which in this case is the com-
mon language runtime. It is, in fact, so exact a mapping that this language is used
for describing aspects of the runtime in the ECMA standardization documents
regarding the .NET common language infrastructure. (ILAsm itself, as a part of the
common language infrastructure, is a subject of this standardization effort as well.)
As a result of the close mapping, it is impossible to describe an assembly language

xvii

xviii

without going into significant detail about the underlying platform. So, to a great
extent, this book is about the common language runtime after all.

IL assembly language is very popular among .NET developers. No, I am
not claiming that all .NET developers prefer to program in ILAsm rather than in
Microsoft Managed C++, Microsoft Visual C# NET, or Microsoft Visual Basic
.NET. But all .NET developers use the IL Disassembler (ILDASM) now and then,
and many use it on a regular basis. A cyan thunderbolt—the ILDASM icon (a
silent praise for David Drake)—glows on the computer screens of .NET devel-
opers regardless of their language preferences and problem areas. And ILDASM
text output is...? Yes, ILAsm source code.

Virtually all books on .NET-based programming that are devoted to high-
level programming languages, such as Visual C# .NET or Visual Basic .NET, or
to techniques such as ADO.NET at some moment mention the IL Disassembler
as a tool of choice to analyze the innards of a .NET IL executable. But these vol-
umes stop short of explaining what the disassembly text means and how to
interpret it. This is an understandable choice, given the topics of these books;
the detailed description of metadata structuring and IL assembly language rep-
resents a separate issue.

Now perhaps you see what I mean when I say I had no choice but to write
this book. Someone had to, and because I had been given the responsibility of
designing and developing IL Assembler and ILDASM, it was my obligation to
see it through all the way.

History of ILAsm, Part |

The first versions of IL Assembler and ILDASM (under the names Asm and
Dasm, respectively) were developed in early 1998 by Jonathan Forbes. The cur-
rent language is very different from this original one, the only distinct common
feature being the leading dots in the directive keywords. The assembler and
disassembler were built as purely internal tools facilitating the ongoing devel-
opment of the common language runtime and were used rather extensively
inside the runtime development team. '

When Jonathan went to work on Microsoft Messenger in the beginning of
1999, the assembler and disassembler fell in the lap of Larry Sullivan, head of a
development group with the colorful name CROEDT (Common Runtime Odds
and Ends Development Team). In April of that year, I joined the team, and Larry
passed the assembler and disassembler to me. When an alpha version of the
common language runtime was presented at a Technical Preview in May 1999,
Asm and especially Dasm attracted significant attention, and I was told to
rework the tools and bring them up to production level. So I did, with great
help from Larry, Vance Morrison, and Jim Miller. Because the tools were still

Introduction Xix

considered internal, we (Larry, Vance, Jim, and D) could afford to redesign the
language—not to mention the implementation of the tools—radically.

A major breakthrough occurred in the second half of 1999, when IL
Assembler input and ILDASM output were synchronized enough to achieve lim-
ited round-tripping. Round-tripping means that you can take a managed (IL)
executable compiled from a particular language, disassemble it, add or change
some ILAsm code, and reassemble it back into a modified executable. Round-
tripping technique opened new avenues, and shortly thereafter it began to be
used in certain production processes both inside Microsoft and by its partners.

At about the same time, third-party .NET-oriented compilers that used
ILAsm as a base language started to appear. The best-known is probably
Fujitsu’'s COBOL.NET, which made quite a splash at the Professional Develop-
ers Conference in July 2000, where the first pre-beta version of the common
language runtime, along with the .NET Framework class library, compilers, and
tools, was released to the developer community.

Since the release of the beta 1 version in late 2000, IL Assembler and
ILDASM have been fully functional in the sense that they reflect all the features
of metadata and IL, support complete round-tripping, and maintain synchroni-
zation of their changes with the changes in the runtime itself.

Who Should Read This Book

This book targets all the .NET-oriented developers who, because they work at
a sufficiently advanced level, care about what their programs compile into or
who are willing to analyze the end results of their programming. Here these
readers will find the information necessary to interpret disassembly texts and
metadata structure summaries, allowing them to develop more efficient pro-
gramming techniques.

Because this analysis of disassemblies and metadata structuring is crucial
in assessing the correctness and efficiency of any .NET-oriented compiler, this
book should also prove especially useful for compiler developers who are tar-
geting .NET. A narrower but growing group of readers who will find the book
extremely helpful includes developers who use IL assembly language directly:
for example, compiler developers targeting ILAsm as an intermediate step,
developers contemplating multilanguage projects, and developers willing to
exploit the capabilities of the common language runtime that are inaccessible
through the high-level languages.

Finally, this book can be valuable in all phases of software development,
from conceptual design to implementation and maintenance.

XX

Organization of This Book

I begin in Part I, “Quick Start,” with a quick overview of ILAsm and common
language runtime features, based on a simple sample program. This overview is
in no way complete; rather, it is intended to convey a general impression about
the runtime and ILAsm as a language.

The following parts discuss features of the runtime and corresponding
ILAsm constructs in a detailed, bottom-up manner. Part II, “Underlying Struc-
tures,” describes the structure of a managed executable file and general meta-
data organization. Part III, “Fundamental Components,” is dedicated to the
components that constitute a necessary base of any application: assemblies,
modules, classes, methods, fields, and related topics. Part IV, “Inside the Execu-
tion Engine,” brings you, yes, inside the execution engine, describing the exe-
cution of IL instructions and managed exception handling. Part V, “Special
Components,” discusses metadata representation and usage of the additional
components: events, properties, and custom and security attributes. And Part
VI, “Interoperation,” describes the interoperation between managed and
unmanaged code and discusses practical applications of IL Assembler and
ILDASM to multilanguage projects.

The book’s five appendixes contain references concerning ILAsm gram-
mar, metadata organization, and the IL instruction set and tool features, includ-
ing IL Assembler, ILDASM, and the offline metadata validation tool.

About the Companion CD

The book contains a companion CD. If you have the Autorun feature of
Microsoft Windows enabled, the CD autorun interface will start when you insert
the CD in your CD-ROM drive; otherwise, you can manually run StartCD.exe
from the root directory of the companion CD. The StartCD menu provides you
with links to the book in eBook format, which is contained on the CD; an instal-
lation program for the book’s sample files; and a link to the Microsoft Devel-
oper Network (MSDN), where you can download the Microsoft .NET
Framework Software Development Kit (SDK), which you’ll need in order to
compile and run the samples. Notice that this link is accessible to MSDN sub-
scribers only.

Installing the Sample Files

The sample files for the book are located in the Code folder. You can view the
samples from the CD, or you can install them on your hard disk by using the
installer from StartCD. Installing the sample files requires approximately 18 KB

eBook

Introduction xxi

of disk space. If you have trouble running any of these files, refer to the
Readme.txt file in the root directory of the companion CD.

The companion CD contains an electronic version of the book. This eBook
allows you to view the book text on screen and to search the contents. For
information on installing and using the eBook, see the Readme.txt file in the
\eBook folder.

System Requirements

To work with the samples, you will need to install the .NET Framework with its
SDK. At a bare minimum, you need the common language runtime, the .NET
Framework class library, and the SDK. Visual Studio .NET and command-line
compilers—except, of course, the ILAsm compiler—are not required.

Acknowledgments

First I would like to thank the editing team from Microsoft Press who worked
with me on this book: Danielle Bird, Alice Turner, Robert Lyon, Mary Renaud
(who didn’t allow me to use propositions to end the sentences with), Julie Xiao
(who learned ILAsm while looking for errors in my tables and samples and per-
haps can now apply for a developer position at Microsoft), and especially
Devon Musgrave. Devon, who was my editor, undoubtedly gained some gray
hair working on this book: I am a professional programmer on active duty, and
the things I write in human languages are usually limited to e-mail messages.

I would also like to thank my colleagues who, despite being unbelievably
busy, agreed to review the draft of the book and gave me some very good
advice on the contents: development leads Larry Sullivan (Runtime Platform
Services), Bill Evans (Runtime Metadata), Chris Brumme (Runtime Execution
Engine), Vance Morrison (Runtime JIT Compiler), program managers Erik
Meijer (Runtime) and Ronald Laeremans (Visual C++), and one of our best test
engineers Kevin Ransom. I greatly appreciate their help and all those “What
were you thinking when you wrote...” and “No, it's exactly the other way
around...” e-mails.

And of course I wish to thank all members of the common language
runtime team who helped me by answering my questions, discussing the
specification documents, and diving into the source code with me: Suzanne
Cook, Shajan Dasan, Jim Hogg, Jim Miller, Craig Sinclair, Mei-Chin Tsai, and
many others.

xxii

Microsoft Press Support Information

Every effort has been made to ensure the accuracy of the book and the contents
of this companion CD. Microsoft Press provides corrections for books through
the World Wide Web at:

bttp.//www.microsoft.com/mspress/support/.

If you have comments, questions, or ideas regarding the book or this CD,
or questions that are not answered by querying the Knowledge Base, please
send them to Microsoft Press via e-mail to:

mspinput@microsoft.com
or via postal mail to:

Microsoft Press

Attn: Inside Microsoft .NET IL Assembler Editor
One Microsoft Way

Redmond, WA 98052-6399

Please note that product support is not offered through the above
addresses.

Part |

Simple Sample

Basics of the Common Language Runtime 4
A Simple Sample 8

Forward Declaration of Classes 25
Summary 26

This chapter offers a general overview of the MSIL assembly language (ILAsm).
(MSIL stands for Microsoft intermediate language, which will soon be discussed
in this chapter.) We'll review a relatively simple program written in ILAsm, and
then I'll suggest some modifications that illustrate how the concepts and ele-
ments of Microsoft .NET programming are expressed in this language.

This chapter does not teach you how to write programs in ILAsm. But it -
should help you to understand what the ILAsm compiler and the IL Disassem-
bler ILDASM) do and to use that understanding to analyze the internal struc-
ture of a .NET-based program with the help of these ubiquitous tools. You’ll
also learn some intriguing facts about the mysterious affairs that take place
behind the scenes, within the common language runtime—intriguing enough, I
hope, to prompt you to read the rest of the book.

Mote For your sake and mine, I'll abbreviate IL assembly language as
ILAsm throughout this book. Don’t confuse it with ILASM, which is used
as the abbreviation for the ILAsm compiler in the .NET documentation.

4

Part |

Quick Start

Basics of the Common Language Runtime

The .NET common language runtime is but one of many aspects of the .NET
concept, but it’s the core of .NET. (Note that, for variety’s sake, I'll sometimes
refer to the common language runtime as the runtime.) Rather than focusing on
an overall description of the .NET platform here, then, let’s concentrate on the
part of NET where the action really happens: the common language runtime.

More Info For excellent discussions of the general structure of NET
and its components, see Introducing Microsoft .NET (Microsoft Press,
2001), by David S. Platt, and Inside C# (Microsoft Press, 2001), by
Tom Archer.

Simply put, the common language runtime is a run-time environment in
which .NET applications run. It provides an operating layer between the .NET
applications and the underlying operating system. In principle, the common
language runtime is similar to the runtimes of interpreted languages such as
GBasic or Smalltalk or to the Java Virtual Machine. But this similarity is only in
principle: the common language runtime is not an interpreter.

The .NET applications generated by .NET-oriented compilers (such as
Microsoft Visual C# .NET, Microsoft Visual Basic .NET, ILAsm, and many others)
are represented in an abstract, intermediate form, independent of the original
programming language and of the target machine and its operating system.
Because they are represented in this abstract form, .NET applications written in
different languages can interoperate very closely, not only on the level of
calling each other’s functions but also on the level of class inheritance.

Of course, given the differences in programming languages, a set of rules
must be established for the applications to allow them to get along with their
neighbors nicely. For example, if you write an application in Visual C# .NET
and name three items MYITEM, Myltem, and myitem, Visual Basic .NET, which
is case-insensitive, will have a hard time differentiating them. Likewise, if you
write an application in ILAsm and define a global method, Visual C# .NET will be
unable to call the method because it has no concept of global (out-of-class) items.

The set of rules guaranteeing the interoperability of .NET applications is
known as the common language specification (CLS), outlined in Partition I of
the Common Language Infrastructure standardization proposal of the European
Computer Manufacturers Association (ECMA). It limits the naming conventions,
data types, function types, and certain other elements, forming a common

Chapter 1 Simple Sample 5

denominator for different languages. It is important to remember, however, that
the CLS is merely a recommendation and has no bearing whatsoever on com-
mon language runtime functionality. If your application is not CLS-compliant, it
might be valid in terms of the common language runtime, but you have no
guarantee that it will be able to interoperate with other applications on all lev-
els.

The abstract intermediate representation of the .NET applications,
intended for the common language runtime environment, includes two main
components: metadata and managed code. Metadata is a system of descriptors
of all structural items of the application—classes, their members and attributes,
global items, and so on—and their relationships. This chapter provides some
examples of metadata, and later chapters describe all the metadata structures.

The managed code represents the functionality of the application’s methods
(functions) encoded in an abstract binary form known as Microsoft intermediate
language (MSIL), or common intermediate language (CIL). To simplify things,
I'll refer to this encoding simply as intermediate language (IL). Of course, other
intermediate languages exist in the world, but as far as our endeavors are con-
cerned, let’s agree that IL means CIL/MSIL, unless specified otherwise.

The IL code is “managed” by the runtime. Common language runtime
management includes, but is not limited to, three major activities: type control,
structured exception handling, and garbage collection. Type control involves
verification and conversion of item types during execution. Structured excep-
tion handling is functionally similar to “unmanaged” structured exception han-
dling (C++-style), but it is performed by the runtime rather than by the
operating system. Garbage collection involves automatic identification and dis-
posal of objects no longer in use. v

A NET application, intended for the common language runtime environ-
ment, consists of one or more managed executables, each of which carries
metadata and (optionally) managed code. Managed code is optional because it
is always possible to build a managed executable containing no methods.
(Obviously, such an executable can be used only as an auxiliary part of an
application.) Managed .NET applications are called assemblies. (This statement
is somewhat simplified; for more details about assemblies, application domains,
and applications, see Chapter 5) The managed executables are referred to as
modules. You can create single-module assemblies and multimodule assem-
blies. As illustrated in Figure 1-1, each assembly contains one prime module,
which carries the assembly identity information in its metadata.

6

Part |

Quick Start

Metadata

Metadata Metadata

IL code

Metadata

IL code

Figure 1-1 A multimodule .NET assembly.

Figure 1-1 also shows that the two principal components of a managed
executable are the metadata and the IL code. The two major common language
runtime subsystems dealing with each component are, respectively, the loader
and the JIT (just-in-time) compiler.

In brief, the loader reads the metadata and creates in memory an internal
representation and layout of the classes and their members. It performs this task on
demand, meaning that a class is loaded and laid out only when it is referenced.
Classes that are never referenced are never loaded. When loading a class, the
loader runs a series of consistency checks of the related metadata.

The JIT compiler, relying on the results of the loader’s activity, compiles
the methods encoded in IL into the native code of the underlying platform.
Because the runtime is not an interpreter, it does not execute the IL code.
Instead, the IL code is compiled in memory into the native code, and the native
code is executed. The JIT compilation is also done on demand, meaning that a
method is compiled only when it is called. The compiled methods stay
cached in memory. If memory is limited, however, as in the case of a small
computing device such as a handheld PDA or a smart phone, the methods can
be discarded if not used. If a method is called again after being discarded, it is
recompiled.

Chapter 1 Simple Sample

7

The diagram shown in Figure 1-2 illustrates the sequence of creation and
execution of a managed .NET application.

Source code

Managed compiler | O— Metadata

Network

IL code

Managed module

Common language runtime

Metadata Loader O——| Internal data

—F , structures

IL code l /o BRI]

- Managed module. | JIT compiler O— Native code ~

Execution engine

Figure 1-2 The creation and execution of a managed .NET application.
Arrows with hollow circles at the base indicate data transfer; arrows with
black circles represent requests and control messages.

A managed executable can be precompiled from IL to the native code,
using the NGEN utility. You can do this when the executable is expected to run
repeatedly from a local disk, to save time on just-in-time compilation. This is
standard procedure, for example, for managed components of the .NET Frame-
work, which are precompiled during the installation. (Tom Archer refers to this
as install-time code generation.) In this case, the precompiled code is saved to
the local disk or other storage, and every time the executable is invoked, the
precompiled native-code version is used instead of the original IL version. The
original file, however, must also be present because the precompiled version

does not carry the metadata.

With the roles of the metadata and the IL code established, let’s consider

the ways you can use ILAsm to describe them.

8 Part| Quick Start

A Simple Sample

No, the sample is not going to be “Hello, World!” This sample is a simple man-
aged console application that prompts the user to enter an integer and then
identifies the integer as odd or even. When the user enters something other
than a decimal number, the application responds, “How rude!” and terminates.
(See the source file Simple.il on the companion CD included with this book.)

The sample uses managed ccnsole APIs from the .NET Framework class
library for console input and output, and it uses the unmanaged function sscanf
from the C run-time library for input string conversion to an integer.

Note To increase code accessibility throughout this book, all ILAsm
| keywords will appear in bold.

[]-=====----- Program header
.assembly extern mscorlib { }
.assembly 0ddOrEven { }
.module 0ddOrEven.exe
[]-=====-=--- Class declaration
.namespace 0dd.or {
.class public auto ansi Even extends [mscorlib]System.Object {
[[=======-=-- Field declaration
.field public static int32 val
[]=========-- Method declaration
.method public static void check() cil managed {
.entrypoint
.locals init (int32 Retval)
AskForNumber:
Tdstr "Enter a number”
call void [mscorlib]System.Console::WriteLine(string)
call string [mscorlib]System.Console::ReadLine()
1dsflda valuetype CharArray8 Format
1dsflda int32 0dd.or.Even::val
call vararg int32 sscanf(string,int8=,...,int32*)
stloc Retval
Tdloc Retval
brfalse Error
Tdsfld int32 0dd.or.Even::val
1dc.i4 1
and
brfalse ItsEven

~ Chapter 1 Simple Sample 9

Tdstr "odd!"

br PrintAndReturn
ItsEven:

ldstr "even!"

br PrintAndReturn
Error:

Tdstr "How rude!"
PrintAndReturn:

call void [mscorlib]System.Console::WriteLine(string)
Tdloc Retval
brtrue AskForNumber
ret
} // End of method
} // End of class
} // End of namespace

JVEEEEEEEEERS Global items

.field public static valuetype CharArray8 Format at FormatData
JVEEEEEEERERS Data declaration

.data FormatData = bytearray(25 64 00 00 00 00 00 00) //

% d . ..

[[====-=mm--- Value type as placeholder

.class public explicit CharArray8
extends [mscorlib]System.ValueType { .size 8 }
[]====--=---- Calling unmanaged code
.method public static pinvokeimpl("msvcrt.d11" cdecl)
vararg int32 sscanf(string,int8+) cil managed { }

In the following sections, we’ll walk through this source code line by line.

Program Header

.assembly extern mscorlib { }
.assembly 0ddOrEven { }
.module 0ddOrEven.exe

.assembly extern mscorlib { } defines a metadata item named Assembly Ref-
erence (or AssemblyRef), identifying the external managed application (assem-
bly) used in this program. In this case, the external application is Mscorlib.dll,
the main assembly of the .NET Framework classes. (The topic of the .NET
Framework class library itself is beyond the scope of this book; for further infor-
mation, consult the detailed specification of the .NET Framework class library
published as Partition IV of the proposed ECMA standard.)

The Mscorlib.dll assembly contains declarations of all the base classes from
which all other classes are derived. Although theoretically you could write an appli-
cation that never uses anything from Mscorlib.dll, I doubt that such an applica-
tion would be of any use. (One obvious exception is Mscorlib.dll itself.) Thus

10

Part |

Quick Start

it’s a good habit to begin a program in ILAsm with a declaration of AssemblyRef
to Mscorlib.dll, followed by declarations of other AssemblyRefs (if any).

The scope of an AssemblyRef declaration (between the curly braces) can
contain additional information identifying the referenced assembly, such as ver-
sion or culture (previously known as locale). Because this information is not
mandatory for referencing Mscorlib.dll, I have omitted it from this sample.
(Chapter 5 describes this additional information in detail.)

Note that although the code references the assembly Mscorlib.dll, Assem—
blyRef is declared by filename only, without the extension. Including the exten-
sion causes the loader to look for Mscorlib.dll.dll or Mscorlib.dll.exe, resulting
in a run-time error. :

.assembly 0ddOrEven. { } defines a metadata item named Assembly,
which, to no one’s surprise, identifies the current application (assembly). Again,
you could include additional information identifying the assembly in the assem-
bly declaration—see Chapter 5 for details—but it is not necessary here. Like
AssemblyRef, the assembly is identified by its filename, without the extension.

Why must you identify the application as an assembly? If you don’t, it will
not be an application at all; rather, it will be a nonprime module—part of some
other application (assembly)—and as such will not be able to execute on its
own. Giving the module an EXE extension changes nothing; only assemblies
can be executed.

.module 0ddOrEven.exe defines a metadata item named Module, identifying
the current module. Each module, prime or otherwise, carries this identification
in its metadata. Note that the module is identified by its full filename, including
the extension. The path, however, must not be included.

Class Declaration

.namespace 0dd.or {
.class public auto ansi Even extends [mscorlib]System.Object {

}

.namespace 0dd.or { .. } declares a namespace. A namespace does not repre-
sent a separate metadata item. Rather, a namespace is a common prefix of the
full names of all the classes declared within the scope of the namespace decla-
ration.

.class public auto ansi Even extends [mscorlib]System.Object { .. }
defines a metadata item named Type Definition (TypeDef). Each class, structure,

Chapter 1 Simple Sample 11

or enumeration defined in the current module is described by a respective
TypeDef record in the metadata. The name of the class is Even. Because it is
declared within the scope of the namespace Odd.or, its full name, by which it
can be referenced elsewhere and by which the loader identifies it, is
Odd.or.Even.

The keywords public, auto, and ansi define the flags of the TypeDef item.
The keyword public, which defines the visibility of the class, means that the
class is visible outside the current assembly. (Another keyword for class visibility
is private, the default, which means that the class is for internal use only and
cannot be referenced from outside.)

The keyword auto defines the class layout style (automatic, the default),
directing the loader to lay out this class however it sees fit. Alternatives are
sequential (which preserves the specified sequence of the fields) and explicit
(which explicitly specifies the offset for each field, giving the loader exact
instructions for laying out the class).

The keyword ansi defines the mode of string conversion within the class,
when interoperating with the unmanaged code. This keyword, the default,
specifies that the strings will be converted to and from “normal” C-style strings
of bytes. Alternative keywords are unicode (strings are converted to and from
Unicode) and autochar (the underlying platform determines the mode of string
conversion).

The clause extends [mscorlib]lSystem.Object defines the parent, or base
class, of the class Odd.or.Even. The code [mscorlib/System.Object represents a
metadata item named Type Reference (TypeRef). This particular TypeRef has
System as its namespace, Object as its name, and AssemblyRef mscorlib as the
resolution scope. Each class defined outside the current module is addressed by
TypeRef. You can even address the classes defined in the current module by
TypeRefs instead of TypeDefs, which is considered harmless enough but not nice.

By default, all classes are derived from the class System.Object defined in
the assembly Mscorlib.dll. Only System.Object itself and the interfaces have no
base class, as explained in Chapter 6

The structures—referred to as value types in .NET lingo—are derived
from the [mscorlib/System.ValueType class. The enumerations are derived
from the [mscorlib/System.Enum class. Because these two distinct kinds of
TypeDefs are recognized solely by the classes they extend, you must use the
extends clause every time you declare a value type or an enumeration.

12

Part |

Quick Start

Using Pseudoflags to Declare
a Value Type and an Enumeration

You might want to know about a little cheat that will allow you to circum-
vent the necessity of repeating the extends clause. ILAsm has two key-
words, value and enum, that can be placed among the class flags to
identify, respectively, value types and enumerations if you omit the
extends clause. (If you include the extends clause, these keywords are
ignored.) This is, of course, not a proper way to represent the metadata,
because it can give one the incorrect impression that value types and
enumerations are identified by certain TypeDef flags. I am ashamed of the
fact that ILAsm contains such lowly tricks, but I am too lazy to type
extends [mscorlib/System.ValueType again and again. ILDASM never
resorts to these cheats and always truthfully prints the extends clause, but
ILDASM has the advantage of being a software utility.

You have probably noticed that the declaration of TypeDef in the sample
contains three default flags: public, auto, and ansi. Yes, in fact, you could
declare exactly the same TypeDef as .class public Even { ... }, but then we would
not be able to discuss the TypeDef flags and the extends clause.

Finally, I must emphasize one important fact about the class declaration in
ILAsm. (Please pay attention, and don’t say I haven’t told you!) The languages
such as Visual C# .NET and Visual Basic .NET require that all of a class’s
attributes and members be defined within the lexical scope of the class, defining
the class as a whole in one place. ILAsm is similar except that the class needn’t be
defined all in one place.

In ILAsm, you can declare a TypeDef with some of its attributes and mem-
bers, close the TypeDef’s scope, and then reopen the same TypeDef later in the
source code to declare more of its attributes and members. This technique is
referred to as class amendment.

When you amend a TypeDef, the flags, the extends clause, and the imple-
ments clause (not discussed here, in the interests of keeping the sample simple)
are ignored. You should define these characteristics of a TypeDef the first time
you declare it.

There is no limitation on the number of TypeDef amendments or on how
many source files a TypeDef declaration might span. You are required, however, to
completely define a TypeDef within one module. Thus it is impossible to amend
the TypeDefs defined in other assemblies or other modules of the same assembly.

Chapter 6 provides extensive and detailed information about ILAsm class
declarations.

Chapter 1 Simple Sample

Field Declaration
.field public static int32 val

13

.field public static int32 val defines a metadata item named Field
Definition (FieldDef). Because the declaration occurs within the scope of class
Odd.or.Even, the declared field belongs to this class.
The keywords public and static define the flags of the FteldDejf The key-
word public identifies the accessibility of this field and means that the field can
be accessed by any member for whom this class is visible. Alternative accessi-
bility flags are as follows:

The assembly flag specifies that the field can be accessed from any-
where within this assembly but not from outside.

The family flag specifies that the field can be accessed from any of
the classes descending from Odd.or.Even.

The famandassem flag specifies that the field can be accessed from
any of those descendants of Odd.or.Even that are defined in this
assembly.

The famorassem flag specifies that the field can be accessed from
anywhere within this assembly as well as from any descendant of
Odd.or.Even, even if the descendant is declared outside this assembly.

The private flag specifies that the field can be accessed from
Odd.or.Even only.

The privatescope flag is the default. See the Caution reader aid for
important information about this flag.

Caution The privatescope flag is a special case, and |
strongly recommend that you do not use it. Private scope items
are exempt from the requirement of having a unique parent/
name/signature triad, which means that you can define two or
more private scope items within the same class that have the
same name and the same type. Some compilers emit private
scope items for their internal purposes. It is the compiler’s
problem to distinguish one private scope item from another; if
you decide to use private scope items, you should at least give
them unique names.

14

Part |

Quick Start

Because the default accessibility is privatescope, which can be a problem,
it's important to remember to specify the accessibility flags.

The keyword static means that the field is static—that is, it is shared by all
instances of class Odd.or.Even. If you did not designate the field as static, it
would be an instance field, individual to a specific instance of the class.

The keyword in132 defines the type of the field, a 32-bit signed integer.
(Types and signatures are described in Chapter 7 And, of course, val-is the
name of the field.

More Info You can find a detailed explanation of field declarations in.
Chapter 8

Method Declaration

.method public static void check() cil managed {
.entrypoint
.locals init (int32 Retval)

)

.method public static void check() cil managed { .. } defines a metadata
item named Method Definition (MethodDef). Because it is declared within the
scope of Odd.or.Even, this method is a member method of this class.

The keywords public and static define the flags of MethodDef and mean
the same as the similarly named flags of FieldDef discussed in the preceding
section. Not all the flags of FieldDefs and MethodDefs are identical—see Chap-
ter 8 as well as Chapter 9 for details—but the accessibility flags are, and the key-
word static means the same for fields and methods.

The keyword void defines the return type of the method. If the method
had a calling convention that differed from the default, you would place the
respective keyword after the flags but before the return type. Calling conven-
tion, return type, and types of method parameters define the signature of the
MethodDef. Note that a lack of parameters is expressed as (), never as (void).
The notation (void) would mean that the method has one parameter of type
void—an illegal signature.

The keywords cil and managed define so-called implementation flags of
the MethodDef and indicate that the method body is represented in IL. A
method represented in native code rather than in IL would carry the implemen-
tation flags native unmanaged.

Chapter 1 Simple Sample 15

Now, let’s proceed to the method body. In ILAsm, the method body (or
method scope) generally contains three categories of items: instructions (com-
piled into IL code), labels marking the instructions, and directives (compiled
into metadata, header settings, structured exception handling clauses, and so
on—in short, anything but IL code). Outside the method body, only directives
exist. Every declaration discussed so far has been a directive.

.entrypoint identifies the current method as the entry point of the appli-
cation (the assembly). Each managed EXE file must have a single entry point.
The ILAsm compiler will refuse to compile a module without a specified entry
point, unless you use the /DLL command-line option.

.locals init (7nt32 Retval) defines the single local variable of the cur-
rent method. The type of the variable is in¢32, and its name is Retval. The key-
word init means that the local variables must be initialized before the method
executes. If the local variables are not designated with this keyword in even
one of the assembly’s methods, the assembly will fail verification (in a security
check performed by the common language runtime) and will be able to run
only from a local disk, when verification is disabled. For that reason, you
should never forget to use the keyword init with the local variable declaration.
If you need more than one local variable, you can list them, comma-separated,
within the parentheses—for example, .Jocals init (int32 Retval, string Temp-
Str).

AskForNumber:
Tdstr "Enter a number"
call void [mscorlib]System.Console::WriteLine(string)

AskForNumber: is a label. It needn’t occupy a separate line; the IL Disas-
sembler marks every instruction with a label on the same line as the instruction.
Labels are not compiled into metadata or IL; rather, they are used solely for the
identification of certain offsets within IL code at compile time.

A label marks the first instruction that follows it. Labels don’t mark direc-
tives. In other words, if you moved the AskForNumber label two lines up so that
the directives .entrypoint and .Jocals separated the label and the first instruction,
the label would still mark the first instruction.

An important note before we examine the instructions: IL is strictly a
stack-based language. Every instruction takes something (or nothing) from the
top of the stack and puts something (or nothing) onto the stack. Some instruc-
tions have parameters and some don’t, but the general rule does not change:
instructions take all required arguments (if any) from the stack and put the
results (if any) onto the stack. No IL instruction can address a local variable or
a method parameter directly, except the instructions of load and store groups,
which, respectively, put the value or the address of a variable or a parameter
onto the stack or take the value from the stack and put it into a variable or a
parameter.

16

Part |

Quick Start

Elements of the IL stack are not bytes or words, but slots. When we talk
about IL stack depth, we are talking in terms of items put onto the stack, with
no regard for the size of each item. Each slot of the IL stack carries information
about the type of its current “occupant.” And if you put an 732 item on the
stack and then invoke an instruction, which expects, for instance, a string, the
JIT compiler becomes very unhappy and very outspoken, throwing an Unex-
pected Type exception and aborting the compilation.

1dstr "Enter a number" is an instruction that loads the specified string
constant onto the stack. The string constant in this case is stored in the meta-
data. We can refer to such strings as common language runtime string constants
or metadata string constants. You can store and handle the string constants in
another way, as explained in a few moments, but /dstr deals exclusively with
common language runtime string constants, which are always stored in Uni-
code format.

call void [mscorlib]System.Console::WriteLine(string)is an instruc-
tion that calls a console output method from the .NET Framework class library.
The string is taken from the stack as the method argument, and nothing is put
back, because the method returns void.

The parameter of this instruction is a metadata item named Member Refer-
ence (MemberRef). 1t refers to the static method named WriteLine, which has
signature void(string); the method is a member of class System.Console,
declared in the external assembly mscorlib. The MemberRefs are members of
TypeRefs—discussed earlier in this chapter in the section “Class Declaration”—
just as FieldDefs and MethodDefs are TypeDef members. However, there are no
separate FieldRefs and MethodRefs, the MemberRefs cover references to both
fields and methods.

You can distinguish field references from method references by their sig-
natures. MemberRefs for fields and for methods have different calling conven-
tions and different signature structures. Signatures, including those of
MemberRefs, are discussed in detail in Chapter 7.

How does the ILAsm compiler know what type of signature should be
generated for a MemberRef? Mostly from the context. For example, if a Mem-
berRef is the parameter of a call instruction, it must be a MemberRef for a
method. In certain cases in which the context is not clear, the compiler requires
explicit specifications, such as method void Odd.or.Even::check() or field int32
Odd.or.Even::val.

call string [mscorlib]System.Console::ReadLine()
ldsflda valuetype CharArray8 Format

1dsflda int32 0dd.or.Even::val

call vararg int32 sscanf(string,int8=,...,int32%)

Chapter 1 Simple Sample 17

call string [mscorlib]System.Console::ReadLine() is an instruction
that calls a console input method from the .NET Framework class library. Nothing
is taken from the stack, and a string is put onto the stack as a result of this call.

1dsflda valuetype CharArray8 Format is an instruction that loads the
address of the static field Format of type valuetype CharArray8. (Both the field
and the value type are declared later in the source code and are discussed
later.) IL has separate instructions for loading instance and static fields (/dfld
and ldsfld) or their addresses (ldflda and ldsflda). Also note that the “address”
loaded onto the stack is not exactly an address (or a C/C++ pointer), but rather
a reference to the item (a field in this sample).

As you probably guessed, valuetype CharArray8 Format is another Mem-
berRef, to the field Format of type valuetype CharArray8. Because this Member-
Ref is not attributed to any TypeRef, it must be a global item. (The following
section discusses declaration of global items.) In addition, this MemberRef is not
attributed to any external resolution scope, such as /mscorlib]. Hence, it must be
a global item defined somewhere in the current module.

1dsflda int32 0dd.or.Even::val is an instruction that loads the address
of the static field val, member of the class Odd.or.Even, of type int32. But
because the method we're discussing is also a member of Odd.or.Even, why do
we need to specify the full class name when referring to a member of the same
class? Such are the rules of ILAsm: all references must be fully qualified. It might
look a bit cumbersome, compared to most high-level languages, but it has its
advantages. You don’t need to keep track of the context, and all references to
the same item look the same throughout the source code.

Because both class Odd.or.Even and its field val have been declared by the
time the field is referenced, the ILAsm compiler will not generate a MemberRef item
but instead will use a FieldDef item.

call vararg int32 sscanf(string,int8+,...,int32*) is an instruction
that calls the global static method sscanf. This method takes three items cur-
rently on the stack (the string returned from System.Console::ReadLine, the ref-
erence to the global field Format, and the reference to the field
Odd.or.Even::val) and puts the result of type 32 onto the stack.

This method call has two major peculiarities. First, it is a call to an unmanaged
method from the C runtime library. I'll defer explanation of this issue until we
discuss the declaration of this method. (I have a formal excuse for that because,
after all, at the call site managed and unmanaged methods look the same.)

The second peculiarity of this method is its calling convention, vararg,
which means that this method has a variable argument list. Vararg methods
have some (or no) mandatory parameters, followed by an unspecified number
of optional parameters of unspecified types—unspecified, that is, at the

18

Part |

Quick Start

moment of the method declaration. When the method is invoked, all the man-
datory parameters (if any) plus all the optional parameters used in this invoca-
tion (if any) should be explicitly specified.

Let’s take a closer look at the list of arguments in this call. The ellipsis
refers to a pseudoargument of a special kind, known as a sentinel. A sentinel’s
role can be formulated as “separating the mandatory arguments from the
optional ones,” but I think it would be less ambiguous to say that a sentinel
immediately precedes the optional arguments and that it is a prefix of the
optional part of a vararg signature. '

What is the difference? An ironclad common language runtime rule con-
cerning the vararg method signatures dictates that a sentinel cannot be used
when no optional arguments are specified. Thus a sentinel can never appear in
MethodDef signatures—only mandatory parameters are specified when a
method is declared—and it should not appear in call site signatures when only
mandatory arguments are supplied. Signatures containing a trailing sentinel are
illegal. That’s why I think it is important to look at a sentinel as the beginning
of optional arguments and not as a separator between mandatory and optional
arguments or (heaven forbid!) as the end of mandatory arguments.

For those less familiar with C runtime functions, I should note that the
function sscanf parses and converts the buffer string (first argument) according
to the format string (second argument), puts the results in the rest of the pointer
arguments, and returns the number of successfully converted items. In our sample,
only one item will be converted, so sscanfwill return 1 on success or 0 on failure.

stloc Retval
1dloc Retval
brfalse Error

stloc Retval is an instruction that takes the result of the call to sscanf
from the stack and stores it in the local variable Retval. We need to save this
value in a local variable because we will need it later.

1dToc Retval copies the value of Retval back onto the stack. We need to
check this value, which was taken off the stack by the stloc instruction.

brfalse Error takes an item from the stack and, if it is 0, branches
(switches the computation flow) to the label Error.

Tdsfld int32 0dd.or.Even::val
1dc.i4 1

and

brfalse ItsEven

ldstr "odd!"

br PrintAndReturn

Chapter 1 Simple Sample 19

1dsf1d int32 0dd.or.Even::val is an instruction that loads the value of
the static field Odd.or.Even::val onto the stack. If the code has proceeded this
far, the string-to-integer conversion must have been successful, and the value
that resulted from this conversion must be sitting in the field val. The last time
we addressed this field, we used the instruction ldsflda to load the field address
onto the stack. This time we need the value, so we use ldsfld.

1dc.i4 1 is an instruction that loads the constant 1 of type i7t32 onto the
stack.

and takes two items from the stack—the value of the field val and the
integer constant I—performs a bitwise AND operation, and puts the result onto
the stack. Performing the bitwise AND operation with 1 zeroes all the bits of the
value of val except the least-significant bit.

brfalse ItsEven takes an item from the stack (the result of the bitwise
AND operation) and, if it is O, branches to the label ItsEven. The result of the pre-
vious instruction is O if the value of val is even, and 1 if the value is odd.

1dstr "odd!" is an instruction that loads the string odd! onto the stack.

br PrintAndReturn is an instruction that does not touch the stack and
branches unconditionally to the label PrintAndReturn.

The rest of the code in the Odd.or.Even::check method should be clear.
This section has covered all the instructions used in this method except ret,
which is fairly obvious: it returns whatever is on the stack. If the method’s
return type does not match the type of the item on the stack, the JIT compiler
will disapprove, throw an exception, and abort the compilation. It will do the
same if the stack contains more than one item by the time ret is reached or if
the method is supposed to return void (that is, not return anything) and the
stack still contains an item.

Global Items
{

} // End of namespace
.field public static valuetype CharArray8 Format at FormatData

.field public static valuetype CharArray8 Format at FormatData
declares a static field named Format of type valuetype CharArray8. As you
might remember, we used a reference to this field in the method
Odd.or.Even.:check. ‘

This field differs from, for example, the field Odd.or.Even::val because it is
declared outside any class scope and hence does not belong to any class in par-
ticular. It is thus a global item. Global items belong to the module containing
their declarations. As you’ve learned, a module is a managed executable file

20

Part |

Quick Start

(EXE or DLL); one or more modules constitute an assembly, which is the pri-
mary building block of a managed .NET application; and each assembly has
one prime module, which carries the assembly identification information in its
metadata.

Actually, a little trick is connected with the concept of global items not
belonging to any class. In fact, the metadata of every module contains one spe-
cial TypeDef named <Module>, which represents...any guesses? Yes, you are
absolutely right.

This TypeDef is always present in the metadata, and it always holds the
honorable first position in the TypeDef table. However, <Module> is not a
proper TypeDef, because its attributes are very limited compared to “normal”
TypeDefs (classes, value types, and so on). Sounds almost like real life—the
more honorable the position you hold, the more limited are your options.

<Module> cannot be private. <Module> can have only static members,
which means that all global fields and methods must be static. In addition,
<Module> cannot have events or properties because events and properties can-
not be static. (Consult Chapter 12, “Events and Properties,” for details.) The rea-
son for this limitation is obvious: given that an assembly always contains exactly
one instance of every module, the concept of instantiation becomes meaningless.

The accessibility of global fields and methods differs from the accessibility
of member fields and methods belonging to a “normal” class. Even public glo-
bal items cannot be accessed from outside the assembly. <Module> does not
extend anything—that is, it has no base class—and no class can inherit from
<Module>. However, all the classes declared within a module have full access
to the global items of this module, including the private ones.

This last feature is similar to class nesting and is quite different from class
inheritance. (Derived classes don’t have access to the private items of their base
classes.) A nested class is a class declared within the scope of another class.
That other class is usually referred to as an enclosing class, or an encloser. A
nested class is not a member class or an inner class, in the sense that it has no
implicit access to the encloser’s instance reference (¢his). A nested class is con-
nected to its encloser by three facts only: it is declared within the encloser’s lex-
ical scope; its visibility is “filtered” by the encloser’s visibility (that is, if the
encloser is private, the nested class will not be visible outside the assembly,
regardless of its own visibility); and it has access to all of the encloser’s members.

Because all the classes declared within a module are by definition
declared within the lexical scope of the module, it is only logical that the rela-
tionship between the module and the classes declared in it is that of an encloser
and nested classes.

As a result, global item accessibilities public, assembly, and famorassem all
amount to assembly; private, family, and famandassem amount to private, and
privatescope is—well, privatescope. The metadata validity rules explicitly state

Chapter 1 Simple Sample 21

that only three accessibilities are permitted for the global fields and methods:
public (which is actually assembly), private, and privatescope. The loader, how-
ever, is more serene about the accessibility flags of the global items: it allows
any accessibility flags to be set, interpreting them as just described (as assembly,
private, or privatescope).

Mapped Fields

.field public static valuetype CharArray8 Format at FormatData

The declaration of the field Format contains one more new item, the
clause at FormatData. This clause indicates that the Format field is located in
the data section of the module and that its location is identified by the data label
FormatData. (Data declaration and labeling are discussed in the following sec-
tion.)

This technique of mapping fields to data is widely used by the compilers
for field initialization. It does have some limitations, however. First, mapped
fields must be static. This is logical. After all, the mapping itself is static, as it is
done at compile time. And even if you manage to map an instance field, all the
different instances of this field will be physically mapped to the same memory,
which means that you’ll wind up with a static field anyway. Because the loader,
encountering a mapped instance field, decides in favor of “instanceness” and
completely ignores the field mapping, the mapped instance fields are laid out
just like all other instance fields.

Second, the mapped fields belong in the data section and hence are
unreachable for the garbage collection subsystem of the common language
runtime, which provides automatic disposal of unused objects. For this reason,
mapped fields cannot be of a type that is subject to garbage collection (such as
class or array). Value types are permitted as types of the mapped fields, as long
as these value types have no members of types that are subject to garbage col-
lection. If this rule is violated, the loader throws a Type Load exception and
aborts loading the module.

Third, mapping a field to a predefined memory location leaves this field
wide open to access and manipulation. This is perfectly fine from the point of
view of security as long as the field does not have an internal structure whose
parts are not intended for public access. That’s why the type of a mapped field
cannot be any value type that has nonpublic member fields. The loader
enforces this rule very strictly and checks for nonpublic fields all the way down.
For example, if the type of a mapped field is value type A, the loader will check
whether its fields are all public. If among these fields is one field of value type
B, the loader will check whether value type B’s fields are also all public. If
among these fields are two fields of value types C and D—well, you get the pic-

22 Part| Quick Start

ture. If the loader finds a nonpublic field at any level in the type of a mapped
field, it throws a Type Load exception and aborts the loading.

Data Declaration

.field public static valuetype CharArray8 Format at FormatData
.data FormatData = bytearray(25 64 00 00 00 00 00 00)

.data FormatData = bytearray(25 64 00 00 00 00 00 00) defines a data
segment labeled FormatData. This segment is 8 bytes long, has ASCII codes of
characters % (0x25) and d (0x64) in the first 2 bytes and Os in the remaining 6
bytes. ,

The segment is described as bytearray, which is the most ubiquitous way
to describe data in ILAsm. The numbers within the parentheses represent the
hexadecimal values of the bytes, without the 0x prefix. The byte values should
be space-separated, and I recommend that you always use the two-digit form,
even if one digit would suffice (as in the case of 0, for example).

It is fairly obvious that you can represent literally any data as a bytearray.
For example, instead of using the quoted string in the instruction Idstr "odd!”,
you could use a bytearray presentation of the string:

ldstr bytearray(6F 00 64 00 64 00 21 00 00 00)

The numbers in parentheses represent the Unicode characters o, d, d, /, and
zero terminator. When you use ILDASM, you can see bytearrays everywhere. A
bytearray is a universal, type-neutral form of data representation, and ILDASM
uses it whenever it cannot identify the type associated with the data as one of
the elementary types, such as int32.

On the other hand, the data FormatData could be defined as follows:

.data FormatData = int64(0x0000000000006425)

This would result in the same data segment size and contents. When you spec-
ify a type declaring a data segment (for instance, i12:64), no record concerning
this type is entered into metadata or anywhere else. The ILAsm compiler uses
the specified type for two purposes only: to identify the size of the data segment
being allocated and to identify the byte layout within this segment.

Value Type as Placeholder

.field public static valuetype CharArray8 Format at FormatData
.data FormatData = bytearray(25 64 00 00 00 00 00 00)
.class public explicit CharArray8

extends [mscorlib]System.ValueType { .size 8 }

Chapter 1 Simple Sample 23

.class public explicit CharArray8 extends [mscorlib]System.ValueType {
.size 8 } declares a value type that has no members but that has an explicitly
specified size, 8 bytes. Declaring such a value type is a common way to declare
“just a piece of memory.” In this case, we don’t need to declare any members
of this value type because we aren’t interested in the internal structure of this
piece of memory; we simply want to use it as a type of our global field Format,
to specify the field’s size. In a sense, this value type is nothing but a place-
holder.

Could we use an array of 8 bytes instead and save ourselves the declara-
tion of another value type? We could if we did not intend to map the field to the
data. Because arrays are subject to garbage collection, they are not allowed as
types of mapped fields.

Using value types as placeholders is popular with managed C/C++ com-
pilers because of the need to store and address numerous ANSI string constants.
The Visual C# NET and Visual Basic .NET compilers, which deal mostly with
Unicode strings, are less enthusiastic about this technique because they can
directly use the common language runtime string constants, which are stored in
metadata in Unicode format.

Calling Unmanaged Code

.method public static pinvokeimpl("msvcrt.d11" cdecl)
vararg int32 sscanf(string,int8+) cil managed { }

The line .method public static pinvokeimpl("msvcrt.d11" cdecl)
vararg int32 sscanf(string,int8*) cil managed { } declares an unmanaged
method, to be called from managed code. The attribute pinvoke-
impl("msvcrt.dll” cdecl) indicates that this is an unmanaged method, called
using the mechanism known as platform invocation, or P/Invoke. This attribute
also indicates that this method resides in the unmanaged DLL Msvcrt.dll and has
the calling convention cdecl. This calling convention means that the unmanaged
method handles the arguments the same way an ANSI C function does.

The method takes two mandatory parameters of types string and int8*
(the equivalent of C/C++ char®) and returns int32. Being a vararg method,
sscanf can take any number of optional parameters of any type, but, as you
know already, neither the optional parameters nor a sentinel is specified when
a vararg method is declared.

Platform invocation is the mechanism the common language runtime pro-
vides to facilitate the calls from the managed code to unmanaged functions.
Behind the scenes, the runtime constructs the so-called stub, or thunk, which
allows addressing of the unmanaged function and conversion of managed argu-

24

Part |

Quick Start

ment types to appropriate unmanaged types and back. This conversion is
known as parameter marshaling.

What is being declared here is not an actual unmanaged method to be
called, but a stub generated by runtime, as it is seen from the managed code.
Hence the implementation flags cil managed. Specifying the method signature
as int32(string, int8*), we specify the “managed side” of parameter marshaling.
The unmanaged side of the parameter marshaling is defined by the actual sig-
nature of the unmanaged method being invoked.

The actual signature of the unmanaged function sscanf in C is int
sscanficonst char*, const char* ...). So the first parameter is marshaled from
managed type string to unmanaged type char* Recall that when we declared
the class Odd.or.Even, we specified the ansi flag, which means that the man-
aged strings by default are marshaled as ANSI C strings, that is, char* And
because the call to sscanfis made from a member method of class Odd.or.Even,
we don’t need to provide special information about marshaling the managed
strings.

Because the second parameter of the sscanf declaration is i7¢8* which is
a direct equivalent of char* little marshaling is required. (ILAsm has type char
as well, but it indicates a Unicode character rather than ANSI, equivalent to
“unsigned short” in C, so we cannot use this type here.)

The optional parameters of the original (unmanaged) sscanf are supposed
to be the pointers to items (variables) we want to fill while parsing the buffer
string. The number and base types of these pointers are defined according to
the format specification string (the second argument of sscanf). In this case,
given the format specification string "%d", sscanf will expect a single optional
argument of type int* When we call the managed thunk of sscanf, we provide
the optional argument of type int32% which might require marshaling to a
native integer pointer only if we are dealing with a platform other than a 32-bit
Intel platform (for example, an Alpha or Intel 64-bit platform).

The P/Invoke mechanism is very useful because it gives you full access to
rich and numerous native libraries and platform APIs. But don’t overestimate
the ubiquity of P/Invoke. Different platforms tend to have different APIs, so
overtaxing P/Invoke can easily limit the portability of your applications. It’s bet-
ter to stick with .NET Framework class library and take some consolation in the
thought that by now you can make a fair guess about what lies at the bottom of
this library.

Now that we've finished analyzing the source code, find the sample file
Simple.il on the companion CD, copy it into your working directory, compile it
using the console command #asm simple (assuming that you have installed
NET Framework and the Platform SDK), and try to run the resulting Sim-
ple.exe.

Chapter 1 Simple Sample 25

Forward Declaration of Classes

You can carry out a little experiment with the sample code. Open the source file
Simple.il in any text editor and modify it by moving the declaration of the value
type CharArray8 in front of the declaration of the field Format:

{

} // End of namespace
.class public explicit CharArray8

extends [mscorlib]System.ValueType { .size 8 }
.field public static valuetype CharArray8 Format at FormatData

Everything seems to be in order. But when you try to recompile the file,
ILAsm compilation fails with the error message Unresolved MemberRef Format’.

Now modify the source file again, this time moving the declaration of
value type CharArray8 before the declaration of the namespace Odd.or:

.class public explicit CharArray8
extends [mscorlib]System.ValueType { .size 8 }
.namespace 0dd.or {
.class public auto ansi Even extends [mscorlib]System.0Object {
.field public static int32 val
.method public static void check() c¢il managed {

ldsflda valuetype CharArray8 Format

} // End of method
} // End of class
} // End of namespace
.field public static valuetype CharArray8 Format at FormatData

Now when you save the source code and try to recompile it, everything is
back to normal. What's going on here?

After the first change, when the field Format was being referenced in the
ldsflda instruction in the method check, the value type CharArray8 had not
been declared yet, so the respective TypeRef was emitted for it, and the signa-
ture of the field reference received the TypeRef as its type.

Then the value type CharArray8 was declared, and a new TypeDef was
created. After that, when the field Format was actually declared, its type was
recognized as a locally declared value type, and the signature of the field def-
inition received the TypeDef as its type. But, no field named Format with a
TypeRef as its type was declared anywhere in this module. Hence the refer-
ence-to-definition resolution failure.

26

Part |

Quick Start

(This is an inviting moment to criticize the ILAsm compiler’s lack of ability
to match the signatures on a pragmatic level, with type analysis and matching
the TypeRefs to TypeDefs by full name and resolution scope. Have patience,
however.)

After the second change in the source code, the value type Chardrray8
was declared first so that all references to it, no matter where they happen, refer
to it as TypeDef. A rather obvious solution.

The solution becomes not so obvious when we consider two classes,
members of which use each other’s class as type. Which class to declare first?
Actually, both of them.

The discussion of class declaration mentioned the class amendment tech-
nique, based on the fact that ILAsm allows you to reopen a class scope to
declare more class attributes and members. The general solution to the declara-
tion/reference problem is to specify the empty-scope class definitions for all
classes first. Following that, you can specify all the classes in full, with their
attributes and members, as amendments. The “first wave” of class declarations
should carry all class flags, extends clauses, and implements clauses and should
include all nested classes (also with empty scopes). All the member declarations
should be left for later.

This technique of forward declaration of classes guards against declara-
tion/reference errors and, as a side effect, reduces the metadata size because it
is unnecessary to emit redundant TypeRefs for locally defined classes.

(And the answer to the aforementioned criticism of the ILAsm compiler is
that the compiler does signature matching in the fastest possible way, without
needing more sophisticated and slower methods, as long as you use the class
forward declaration. It is possible, however, that the need for the class forward
declaration might be eliminated in future versions of the ILAsm compiler.)

Summary

We have touched briefly on the most important features of the common lan-
guage runtime and ILAsm. You now know (in general terms) how the runtime
functions, how a program in ILAsm is written, and how to define the basic com-
ponents (classes, fields, and methods). You have learned that the managed
code can interoperate with the unmanaged (native) code, and what the com-
mon language runtime is doing to facilitate this interoperation.

In the next chapter, we shall continue working with our simple sample to
learn some more sophisticated features of the runtime and ILAsm.

Enhancing the Code

Code Retention 27
Protecting the Code 30
Summary 36

Let’s continue tweaking our simple sample; maybe we can make it better. There
are two aspects of “better” I would like to discuss in this chapter: first, reducing
code size and, second, protecting our code from unpleasant surprises. Let’s start
with the code size.

Code Retention

The sample code presented in the previous chapter is tight. If you don’t believe
me, carry out a simple experiment: write a similar application in your favorite
high-level Microsoft .NET language, compile it to an executable—and make
sure it runs—disassemble the executable, and compare the result to the sample
offered here. Now let’s try to make the code tighter yet.

First, given what you now know about field mapping and value types as
placeholders, we don’t need to continue employing this technique. If sscanf
accepts string as the first argument, it can just as well accept string as the sec-
ond argument too. Second, we can use (and discuss) certain “shortcuts” in the
IL instruction set.

Let’s have a look at our simple sample with slight modifications (source
file Simplel.il). The portions of interest are marked with the comment
CHANGE!.

27

28 Part] Quick Start

[[======----- Program header
.assembly extern mscorlib { }
.assembly 0ddOrEven { }
.module 0ddOrEven.exe
[[=========--- Class declaration
.namespace 0dd.or {:
.class public auto ansi Even extends [mscorlib]System.Object {
JVEEEEEEEEEES Field declaration
.field public static int32 val
[/ Method declaration
.method public static void check() cil managed {
.entrypoint
.locals init (int32 Retval)
AskForNumber:
Tdstr "Enter a number"
call void [mscorlib]System.Console::WriteLine(string)
call string [mscorlib]System.Console::ReadLine()
1dstr "%d" // CHANGE!
1dsflda int32 0dd.or.Even::val
call vararg int32 sscanf(string,string,...,int32%) //
CHANGE!
stloc.0 // CHANGE!
1dloc.@ // CHANGE!
brfalse.s Error // CHANGE!
Tdsfld int32 0dd.or.Even::val
1dc.i4.1 // CHANGE!

and

brfalse.s ItsEven // CHANGE!

1dstr "odd!"

br.s PrintAndReturn // CHANGE!
ItsEven:

ldstr "even!"
br.s PrintAndReturn // CHANGE!

Error:
ldstr "How rude!"”
PrintAndReturn:

call void [mscorlib]System.Console::WriteLine(string)
1dloc.@ // CHANGE!
brtrue.s AskForNumber // CHANGE!
ret
} // End of method
} // End of class
} // End of namespace
[/-=--------- Calling unmanaged code
.method public static pinvokeimpl("msvcrt.d11" cdecl)
vararg int32 sscanf(string,string) cil managed { } .

The program header, class declaration, field declaration, and method
header look exactly the same. The first change comes within the method
body, where the loading of the address of the global field Format is replaced

Chapter 2 Enhancing the Code 29

with the loading of a metadata string constant, ldstr "%d". As noted earlier, we
can abandon defining and using an ANSI string constant as the second argu-
ment of the call to sscanf in favor of using a metadata string constant (inter-
nally represented in Unicode), relying on the marshaling mechanism provided
by P/Invoke to do the necessary conversion work.

Because we are no longer using an ANSI string constant, the declarations
of the global field Format, the placeholder value type used as the type of this
field, and the data to which the field was mapped are omitted. As you've
undoubtedly noticed, there is no need to explicitly declare a metadata string
constant in IL assembly language (ILAsm)—the mere mention of such a constant
in the source code is enough for the ILAsm compiler to automatically emit this
metadata item.

Having thus changed the nature of the second argument of our call to
sscanf, we need to modify the signature of the sscanf P/Invoke thunk so that
necessary marshaling can be provided. Hence the changes in the signature of
sscanf, both in the method declaration and at the call site.

Another set of changes results from replacing the local variable loading/
storing instructions ldloc Retval and stloc Retval with the instructions /dloc.0 and
stloc.0, respectively. IL defines special operation codes for loading/storing the
first four local variables on the list, numbered 0 to 3. We gain here because
while the canonic form of the instruction (/dloc Retval) compiles into the opera-
tion code (Idloc) followed by an unsigned integer indexing the local variable (in
this case 0), the instructions /dloc.n compile into single operation codes.

You might also notice that all branching instructions (br, brfalse, brtrue) in
the method check are replaced with the short forms of these instructions (br.s,
brfalse.s, brtrue.s). A standard (long) form of an instruction compiles into an
operation code followed by a 4-byte parameter (in the case of branching
instructions, offset from the current position), whereas a short form compiles
into-an operation code followed by a 1-byte parameter. This limits the range of
branching to maximums of 128 bytes backward and 127 bytes forward from the
current point in the IL stream, but in this case we can safely afford to switch to
short forms because our method is rather small.

Short forms that take an integer or unsigned integer parameter are defined
for all types of IL instructions. So even if we declare more than four local variables,
we still could save a few bytes by using the instructions Idloc.s and stloc.s
instead of /dloc and stloc, as long as the index of a local variable does not
exceed 255.

The high-level language compilers, emitting the IL code, automatically
estimate the ranges and choose whether a long form or a short form of the
instruction should be used in each particular case. The ILAsm compiler, of
course, does nothing of the sort. If you specify a long or short instruction, the

30

Part |

Quick Start

compiler takes it at face value—you are the boss, and you are supposed to
know better. But if you specify a short branching instruction and place the target
label out of range, the ILAsm compiler will diagnose an error.

Once, a colleague of mine came to me complaining that the ILAsm compiler
obviously could not compile the code the IL Disassembler (ILDASM) produced.
The disassembler and the compiler are supposed to work in absolute concert,
so I was quite startled by this discovery. A short investigation uncovered the
grim truth. In an effort to work out a special method for automatic test program
generation, my colleague was compiling the initial programs written in Visual
C# NET and Microsoft Visual Basic .NET, disassembling the resulting executa-
bles, inserting test-specific ILAsm segments, and reassembling the modified
code into new executables. The methods in the initial executables, produced
by Visual C# .NET and Visual Basic .NET compilers, were rather small, so the
compilers were emitting the short branching instructions, which, of course,
were shown in the disassembly as they were. And every time my colleague’s
automatic utility inserted enough additional ILAsm code between a short
branching instruction and its destination, the branching instruction, figuratively
speaking, kissed its target label good-bye.

One more change to note in the sample: the instruction /dc.i4 7 was replaced
with /dc.i4.1. The logic here is the same as in the case of replacing /dloc Retval
with Idloc.0: using a shortcut operation code to get rid of a 4-byte integer
parameter. The shortcuts ldc.i4.n exist for n from 0 to 8, and (-1) can be loaded
using the operation code /dc.i4.m1. The short form of the ldc.i4 instruction—
ldc.i4.s—works for the integers in the byte range (from —128 to 127).

Now copy the source file Simplel.il from the companion CD, compile it
with the console command dlasm simplel into an executable (Simplel.exe), and
ensure that it runs exactly as Simple.exe does. Then disassemble both executa-
bles side by side, using console commands ildasm simple.exe /bytes and ildasm
simplel .exe /bytes. (The /bytes option makes the disassembler show the actual
byte values constituting the IL flow.) Find the check methods in the tree views
of both instances of ILDASM, and double-click them to open disassembly win-
dows, in which you can compare the two implementations of the same method
to see whether the code retention worked.

Protecting the Code

Thus far, we could have been quite confident that nothing bad would happen
when we called the unmanaged function sscanf from the managed code, so we
simply called it. But who knows what terrible dangers lurk in the deep shadows
of unmanaged code? I don’t. So we’d better take steps to make sure that our

Chapter2 Enhancing the Code 31

application behaves in an orderly manner. For this purpose, we can employ
the mechanism of structured exception handling, well known to C++ and Visual
C# NET programmers.

Examine the following light modifications of the sample (source file
Simple2.iD). As before, the modifications are marked with the comment
CHANGE!.

[[-=-------- Program header
.assembly extern mscorlib { }
.assembly 0ddOrEven { }
.module 0ddOrEven.exe
[]-==mmm- Class declaration
.namespace 0dd.or {
.class public auto ansi Even extends [mscorlib]System.Object {
[]-=-=---- Field declaration
.field public static int32 val
[[-====--- Method declaration
.method public static void check() c¢il managed {
.entrypoint
.locals init (int32 Retval)
AskForNumber:
ldstr "Enter a number” .
call void [mscorlib]System.Console::WriteLine(string)
.try { // CHANGE!
// Guarded block begins
call string [mscorlib]System.Console::ReadLine()
// pop // CHANGE!
// 1dnull // CHANGE!

ldstr "%d"

1dsflda int32 Odd.or.Even::val

call vararg int32 sscanf(string,string,...,int32x*)
stloc.0

leave.s DidntBlowUp // CHANGE!
// Guarded block ends
} // CHANGE!
// CHANGE! --->
catch [mscorlib]System.Exception
{ // Exception handler begins
pop
ldstr "KABOOM!"™
call void [mscorlib]System.Console::WriteLine(string)
leave.s Return
} // Exception handler ends
DidntBlowUp:
// <--- CHANGE!
1d1oc.0
brfalse.s Error

(continued)

32

Part |

Quick Start

1dsfld int32 Odd.or.Even::val
1dc.i4.1
and
brfalse.s ItsEven
ldstr "odd!"
br.s PrintAndReturn
ItsEven:
1dstr "even!"
br.s PrintAndReturn
Error:
Tdstr "How rude!"
PrintAndReturn:
call void [mscorlib]System.Console::WritelLine(string)
1dloc.0
brtrue.s AskForNumber
Return: // CHANGE!
ret
} // End of method
} // End of class
} // End of namespace
[[-=-==------ Calling unmanaged code
.method public static pinvokeimpl("msvcrt.d11" cdecl)
vararg int32 sscanf(string,string) cil managed { }

What are these changes? One involves enclosing the “dangerous” part of
the code in the scope of the so-called try block (or guarded block), which
prompts the runtime to watch for exceptions thrown while executing this code
segment. The exceptions are thrown if anything out of order happens—for
example, a memory access violation or a reference to an undefined class or
method.

try {
// Guarded block begins
call string [mscorlib]System.Console::ReadLine()

Tdstr "%d"

Tdsflda int32 0dd.or.Even::val

call vararg int32 sscanf(string,string,...,int32x%)
stloc.0

leave.s DidntBlowUp
// Guarded block ends
}

Note that the try block ends with the instruction leave.s DidntBlowUp. This
instruction—/eave.s being a short form of leave—switches the computation flow
to the location marked with the label DidntBlowUp. We cannot use a branching
instruction here because, according to the rules of the common language
runtime exception handling mechanism, strictly enforced by the JIT compiler,
the only legal way out of a try block is via a leave instruction.

Chapter 2 Enhancing the Code 33

This limitation is caused by an important function performed by the leave
instruction: before switching the computation flow, it unwinds the stack (strips
off all the items currently on the stack) and, if these items are references to
object instances, disposes of them. That is why we need to store the value
returned by the sscanf function in the local variable Retval before using the
leave instruction,; if we tried to do it later, the value would be lost.

catch [mscorliblSystem.Exception indicates that we plan to intercept
any exception thrown within the protected segment and handle this exception:

(

leave.s DidntBlowUp

// Guarded block ends
}
catch [mscorlib]System.Exception
{ // Exception handler begins

pop
}

Because we are intercepting any exception, we specified a generic managed
exception type (/mscorlib/System.Exception), a type from which all managed
exception types are derived. Technically, we could call /mscorlib/System.Exception
the “mother of all exceptions,” but the proper term is somehow less colloquial:
the “inheritance root of all exceptions.”

Mentioning another, more specific, type of exception in the catch clause—
that is, /mscorlib/System.NullReferenceException—would indicate that we are
prepared to handle only this particular type of exception and that exceptions of
other types should be handled elsewhere. This approach is convenient if you
want to have different handlers for different types of exceptions, and it’s the
reason this mechanism is referred to as structured exception handling.

Immediately following the catch clause is the exception handler scope
(the handler block):

catch [mscorlib]System.Exception
{ // Exception handler begins
pop
Tdstr "KABOOM!"™
call void [mscorliblSystem.Console::WriteLine(string)
leave.s Return
} // Exception handler ends

When an exception is intercepted and the handler block is entered, the
only thing present on the stack is always the reference to the intercepted
exception—an instance of the exception type. In implementing the handler, we
don’t want to take pains analyzing the caught exception, so we can simply get

34

Part |

Quick Start

rid of it using the instruction pop. In this simple application, it’s enough to know
that an exception has occurred, without reviewing the details.

Then we load the string constant "KABOOM!" onto the stack, print this
string by using the console output method /mscorlib/System.Console:: Write-
Line(string), and switch to the label Return by using the instruction leave.s. The
rule “leave only by leave” applies to the handler blocks as well as to the try
blocks. We could not simply load the string "KABOOM!" onto the stack and
leave to PrintAndReturn; the leave.s instruction would remove this string from
the stack, leaving nothing with which to call WriteConsole.

You might be wondering why, if we are trying to protect the call to the
unmanaged function sscanf, we included three preceding instructions in the try
block? Why not include only the call to sscanf in the scope of .tr)?

Tdstr "Enter a number"
call void [mscorlib]System.Console::WriteLine(string)
try {

// Guarded block begins

call string [mscorlib]System.Console::ReadlLine()

ldstr "%d"

ldsflda int32 Odd.or.Even::val

call vararg int32 sscanf(string,string,...,int32%)
stloc.0

leave.s DidntBlowUp
// Guarded block ends
}

According to the exception handling rules, a guarded segment (a try block)
can begin only when the method stack is empty. The closest such moment before
the call to sscanf was immediately after the call to /mscorlibjSystem.Console:: Write-
Line(string), which took the string "Enter a number” from the stack and put nothing
back. Because the three instructions immediately preceding the call to sscanf are
loading the call arguments onto the stack, we must open the guarded segment
before any of these instructions are executed. :

Perhaps you’re puzzled by what seems to be a rather strict limitation. We
cannot begin and end a try block anywhere we want, as we can in C++? Well,
the truth is that you can do it the same way you do it in C++, but no better.

The high-level language compilers work in such a way that every com-
pleted statement in a high-level language is compiled into a sequence of
instructions that begins and ends with the stack empty. In C++, our try block
would look like this:

try {
Retval = sscanf(System.Console::ReadLine(),
"%d", &val);

Chapter 2 Enhancing the Code 35

This feature of high-level language compilers is so universal that all high-level
language decompilers use these empty-stack points within the instruction
sequence to identify the beginnings and ends of completed statements.

The last task remaining is to test our protection. Copy the source file
Simple2.il from the companion CD into your working directory, and compile it
with the console command ilasm simple2 into the executable Simple2.exe. Test
it to ensure that it runs exactly as the previous samples do. Now let’s simulate
A Horrible Disaster Within Unmanaged Code. Load the source file Simple2.il
into any text editor, and uncomment the instructions pop and Idnull within the
try block:

try {
// Guarded block begins
call string [mscorlib]System.Console::ReadLine()
pop
1dnull
Tdstr "%d"
1dsflda int32 Odd.or.Even::val
call vararg int32 sscanf(string,string,...,int32%)
stloc.0
leave.s DidntBlowUp // CHANGE!
// Guarded block ends
} // CHANGE!

The instruction pop removes from the stack the string returned by ReadLine,
and ldnull loads a null reference instead. The null reference is marshaled to the
unmanaged sscanf as a null pointer. Sscanf is not prepared to take it and will try
to dereference the null pointer. The platform operating system will throw the
unmanaged exception Memory Access Violation, which is intercepted by the
common language runtime and converted to a managed exception of type
System.NullReferenceException, which in turn is intercepted by our protection.
The application will then terminate gracefully.

Recompile Simple2.il and try to run the resulting executable. You will get
nothing worse than KABOOM! displayed on the console.

You can then modify the source code in Simple.il or Simplel.il, adding the
same two instructions pop and ldnull after the call to System.Console::ReadLine.
Recompile the source file to see how it runs without structured exception
handling protection.

36

Part |

Quick Start

Summary

These first two chapters did make for a quick start, didn’t they? Well, I promised
you a light cavalry raid into hostile territories, and you got just that. By now you
should be able to understand in general the text output the IL Disassembler
produces. I hope too that you are interested in a more detailed and systematic
discussion of what is going on inside the common language runtime and how
ILAsm is used to describe it.

From now on, our keywords are “detailed” and “systematic.” No more
cavalry charges!

Part Il

Underly

{4

ing Structur

ﬁ?

S

The Structure of a
Managed Executable File

PE/COFF Headers 41

Common Language Runtime Header 56
Relocation Section 61

Text Section 63

Data Sections 65

Resources 70

Summary 73

Chapter 1, “Simple Sample,” introduced the managed executable file, known as
a managed module and executed in the environment of the common language
runtime. In this chapter, we’ll take a detailed look at the general structure of
such a file. The file format of a managed module is based on the standard
Microsoft Windows Portable Executable and Common Object File Format (PE/
COFP) and is an extension of this format. Thus, formally, any managed module
is a proper PE/COFF file, with additional features that identify it as a managed
executable file.

Because the file format of a managed module conforms to the Windows
PE/COFF standard, the operating system treats the managed module as an exe-
cutable. And the extended, common language runtime-specific information
allows the runtime to immediately seize control over the module execution as
soon as the operating system invokes the module. Figure 3-1 shows the struc-
ture of a managed PE/COFF file.

39

40 Part Il Underlying Structures

- PE/COFF headers ‘
‘(information consumed by
the operating system)

Common language runtime:header
~+(information consumed by the
' ‘common language runtime)

Common language runtime data
(metadata, IL code,
managed structured

exception handling information)

Native data and code
(if any)

Figure 3-1 The general structure of a managed executable file.

Because IL assembly language (ILAsm) produces PE files only, this chap-
ter concentrates on managed PE files—executables, also known as image files
because they can be thought of as “memory images”—rather than pure COFF
object files. (Actually, only one of the current managed compilers, Microsoft
Managed C++ [MC++], produces object files as an intermediate step to PE files.)

This analysis of the managed PE file structure employs the following com-
mon definitions: '

B File pointer The location of an item within the file itself, before it
is processed by the loader. This location is a position (an offset)
within the file as it is stored on disk.

B Relative virtual address (RVA) The address of an item once it has
been loaded into memory, with the base address of the image file
subtracted from it—in other words, the offset of an item within the
image file loaded into memory. The RVA of an item almost always
differs from its position within the file on disk (the file pointer).

Chapter 3 The Structure of a Managed Executable File 41

B Virtual address (VA) The same as the RVA except that the base
address of the image file is not subtracted. The address is referred to
as virtual because the operating system creates a distinct virtual
address space for each process, independent of physical memory.
For almost all purposes, a virtual address should be considered as
simply an address. A virtual address is not as predictable as an RVA
because the loader might not load the image at its preferred location
if a conflict exists with any image file already loaded—a so-called
base address conflict.

B Section The basic unit of code or data within a PE/COFF file. In
addition to code and data sections, an image file can contain a num-
ber of sections, such as .#s (thread local storage) or .reloc (reloca-
tions), that have special purposes. All the raw data in a section must
be loaded contiguously.

Note Throughout this chapter (and indeed throughout the
book), | use the term managed compiler to mean a compiler
that targets the common language runtime and produces man-
aged PE files. The term does not necessarily imply that the
compiler itself is a managed application.

PE/COFF Headers

Figure 3-2 illustrates the structure of operating system-specific headers of a PE
file. The headers include an MS-DOS stub, the PE signature, the COFF header,
the PE header, and section headers. All of these components—and the data
directory table in the PE header—are discussed in the following sections.

42 Part Il Underlying Structures

: Sec léh héadéré -

Figure 3-2 The memory layout of operating system—specific headers.

MS-DOS Stub and PE Signature

The MS-DOS stub is present in image files only. Placed at the beginning of an
image file, it is a valid application that runs under MS-DOS. (Isn’t that exciting!)
The default stub prints the message This program cannot be run in DOS mode
when the image file is run in MS-DOS. This is probably the least interesting part
of OS-specific headers; the only relevant fact is that the MS-DOS stub, at offset
0x3C, contains the file pointer to the PE signature, which allows the operating
system to properly execute the image file.

The PE signature that follows the MS-DOS stub is a 4-byte item, identifying
the file as a PE format image file. The signature contains the characters P and E,
followed by 2 null bytes.

COFF Header

A standard COFF header is located immediately after the PE signature of an
image file. The COFF header provides the most general characteristics of a PE/
COFF file, applicable to both object and executable files. The structure of the
COFF header and the meaning of its fields are shown in Table 3-1.

Chapter 3 The Structure of a Managed Executable File 43

Table 3-1 The Format of a COFF Header
Offset Size Field Name Description
0 2 Machine Number identifying the type of target
machine. (See Table 3-2.) If the managed
PE file is intended for various machine
types, this field should be set to
IMAGE_FILE_MACHINE_I386 (0x014C).
2 2 NumberOfSections Number of entries in the section table,
which immediately follows the headers.
4 TimeDateStamp Time and date of file creation.
4 PointerToSymbolTable File pointer of the COFF symbol table.
Because this table is never used in man-
aged PE files, this field must be set to 0.
12 4 NumberOfSymbols Number of entries in the COFF symbol
table. This field must be set to 0 in man-
aged PE files.
16 2 SizeOfOptionalHeader Size of the PE header. This field is specific
to PE files; it is set to 0 in COFF files.
18 2 Characteristics Flags indicating the attributes of the file.

(See Table 3-3.)

The structure of the standard COFF header is defined in Winnt.h as follows:

typedef struct _IMAGE_FILE_HEADER {

WORD
WORD
DWORD
DWORD
DWORD
WORD
WORD

Machine;
NumberOfSections;
TimeDateStamp;

PointerToSymbolTable;

NumberOfSymbols;

SizeOfOptionalHeader;

Characteristics;

} IMAGE_FILE_HEADER, #*PIMAGE_FILE_HEADER;

Table 3-2 The Machine Field Values

The Machine types are also defined in Winnt.h, as listed in Table 3-2.

Constant

Value Description

IMAGE_FILE_MACHINE_UNKNOWN

IMAGE_FILE_MACHINE_I386

Contents assumed to be applica-
ble to any machine type—for
unmanaged PE files only.

0x014c Intel 386 or later. For managed

PE files, contents are applicable
to any machine type.

(continued)

Part Il

Underlying Structures

Table 3-2 The Machine Field Values (continued)

Constant Value Description
IMAGE_FILE_MACHINE_R3000 0x0162 MIPS little endian—the least sig-
nificant byte precedes the most
significant byte. 0x0160 big
endian—the most significant
byte precedes the least signifi-
cant byte.
IMAGE_FILE_MACHINE_R4000 0x0166 MIPS little endian
IMAGE_FILE_MACHINE_R10000 0x0168 MIPS little endian
IMAGE_FILE_MACHINE_WCEMIPSV2 0x0169 MIPS little endian running
Microsoft Windows CE 2
IMAGE_FILE_MACHINE_ALPHA 0x0184 Alpha AXP
IMAGE_FILE_MACHINE_POWERPC 0x01F0 IBM PowerPC little endian
IMAGE_FILE_MACHINE_SH3 0x01a2 SH3 little endian
IMAGE_FILE_MACHINE_SH3E 0x0la4 SHAE little endian
IMAGE_FILE_MACHINE_SH4 0x01la6 SH4 little endian
IMAGE_FILE_MACHINE_ARM 0x01cO ARM little endian
IMAGE_FILE_MACHINE_THUMB 0x01c2 ARM processor with Thumb
decompressor
IMAGE_FILE_MACHINE_IAG4 0x0200 Intel IAG4
IMAGE_FILE_MACHINE_MIPS16° 0x0266 MIPS
IMAGE_FILE_MACHINE_MIPSFPU 0x0366 MIPS with FPU
IMAGE_FILE_MACHINE_MIPSFPU16 0x0466 MIPS16 with FPU
IMAGE_FILE_MACHINE_ALPHAG4 0x0284 ALPHA AXP64
IMAGE_FILE_MACHINE_AXPG64 0x0284 ALPHA AXP64

Tip As noted in Tables 3-1 and 3-2, the best strategy for a managed
PE file is to specify IMAGE_FILE_MACHINE_I386 in the Machine
field. Doing so ensures that the PE file will be able to execute on any
machine that has the common language runtime installed.

The Characteristics field of a COFF header contains flags that indicate
attributes of the PE/COFF file. These flags are defined in Winnt.h as shown in
Table 3-3. Notice that the table refers to pure-IL managed PE files; the term
pure-IL indicates that the image file contains no embedded native code.

Chapter 3 The Structure of a Managed Executable File 45

Table 3-3 The Characteristics Field Values

Flag Value

Description

IMAGE_FILE_RELOCS_STRIPPED 0x0001

IMAGE_FILE_EXECUTABLE_IMAGE 0x0002

IMAGE_FILE_LINE_NUMS_STRIPPED 0x0004

IMAGE_FILE_LOCAL_SYMS_STRIPPED 0x0008

IMAGE_FILE_AGGRESIVE_WS_TRIM 0x0010

Image file only. This flag
indicates that the file con-
tains no base relocations
and must be loaded at its
preferred base address.
In the case of base
address conflict, the
operating system loader
reports an error. This flag
should not be set for
managed PE files.

Flag indicates that the file
is an image file (EXE or
DLL). This flag should be
set for managed PE files. If
it is not set, this generally
indicates a linker error.

COFF line numbers have
been removed. This flag
should be set for managed
PE files because they do
not use the debug infor-
mation embedded in the
PE file itself. Instead, the
debug information is
saved in accompanying
program database (PDB)
files.

COFF symbol table
entries for local symbols
have been removed. This
flag should be set for
managed PE files, for the
reason given in the pre-
ceding entry.
Aggressively trim the
working set. This flag
should not be set for
pure-IL managed PE files.

(continued)

46 Part Il Underlying Structures

Table 3-3 The Characteristics Field Values (continued)

Flag

Value

Description

IMAGE_FILE_LARGE_ADDRESS_AWARE

IMAGE_FILE_BYTES_REVERSED_LO

IMAGE_FILE_32BIT__MACHINE

IMAGE_FILE_DEBUG_STRIPPED

IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP

IMAGE_FILE_NET_RUN_FROM_SWAP

IMAGE_FILE_SYSTEM

IMAGE_FILE_DLL

0x0020

0x0080

0x0100

0x0200

0x0400

0x0800

0x1000

0x2000

Application can handle
addresses beyond the
2-GB range. This flag
should not be set for
pure-IL managed PE files.

Little endian. This flag
should not be set for
pure-IL managed PE files.

Machine is based on 32-bit
architecture. This flag is
set by the current versions
of code generators pro-
ducing managed PE files.

Debug information has
been removed from the
image file.

If the image file is on
removable media, copy
and run it from the swap
file. This flag should not
be set for pure-IL man-
aged PE files. :

If the image file is on a
network, copy and run it
from the swap file. This
flag should not be set for
pure-IL managed PE files.

The image file is a system
file (for example, a
device driver). This flag
should not be set for
pure-IL managed PE files.

The image file is a DLL
rather than an EXE. It
cannot be directly run.

Chapter 3 The Structure of a Managed Executable File 47

Table 3-3 The Characteristics Field Values (continued)

Flag Value Description

IMAGE_FILE_UP_SYSTEM_ONLY 0x4000 The image file should be
run on a uniprocessor
machine only. This flag
should not be set for
pure-IL managed PE files.

IMAGE_FILE_BYTES_REVERSED_HI 0x8000 Big endian. This flag
should not be set for
pure-IL managed PE files.

The typical Characteristics value produced by existing code generators—
the one employed by the MC++ compiler and linker as well as the one used by
all the rest of the managed compilers, including ILAsm—for an EXE image file
is 0x010E UMAGE_FILE_EXECUTABLE_IMAGE | IMAGE_FILE_LINE_NUMS._
STRIPPED | IMAGE_FILE_LOCAL_SYMS_STRIPPED | IMAGE_FILE_32BIT_
MACHINE). For a DLL image file, this value is 0x210E (IMAGE_FILE_
EXECUTABLE_IMAGE | IMAGE_FILE_LINE_NUMS_STRIPPED | IMAGE_FILE_
LOCAL_SYMS_STRIPPED | IMAGE_FILE_32BIT_MACHINE | IMAGE_FILE_DLL).

PE Header

The PE header, which immediately follows the COFF header, provides the
information for the OS loader. Although this header is sometimes referred to as
the optional header, it is optional only in the sense that object files usually don’t
contain it. For PE files, this header is mandatory. .

The size of the PE header is not fixed. It depends on the number of data
directories defined in the header and is specified in the SizeOfOptionalHeader
field of the COFF header. The structure of the PE header is defined in Winnt.h
as follows:

typedef struct _IMAGE_OPTIONAL_HEADER {
// Standard fields
WORD Magic;
BYTE MajorLinkerVersion;
BYTE MinorLinkerVersion;
DWORD SizeOfCode;
DWORD SizeOfInitializedData;
DWORD SizeOfUninitializedData;
DWORD AddressOfEntryPoint;
DWORD BaseOfCode;
DWORD BaseOfData;
// NT additional fields
DWORD ImageBase;

(continued)

48 Part Il Underlying Structures

DWORD
DWORD
WORD
WORD
WORD
WORD
WORD
WORD
DWORD
DWORD
DWORD
DWORD
WORD
WORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

SectionAlignment;
FileAlignment;
MajorOperatingSystemVersion;
MinorOperatingSystemVersion;
MajorImageVersion;
MinorImageVersion;
MajorSubsystemVersion;
MinorSubsystemVersion;
Win32VersionValue;
SizeOfImage;

SizeOfHeaders;

CheckSum;

Subsystem;
D11Characteristics;
SizeOfStackReserve;
SizeOfStackCommit;
SizeOfHeapReserve;
SizeOfHeapCommit;
LoaderFlags;
NumberOfRvaAndSizes;

IMAGE_DATA_DIRECTORY

DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

Table 3-4 describes the fields of the PE header.

Table 3-4 PE Header Fields

Offset Size

Description

32/64 32/64 Tield

0 2 Magic

2 1 MajorLinkerVersion
3 1 MinorLinkerVersion
4 4 SizeOfCode

“Magic number” identifying the state of the
image file. Acceptable values are 0x010B for
a 32-bit PE file, 0x020B for a 64-bit PE file,
and 0x107 for a ROM image file. Managed PE
files must have this field set to 0x010B.

Linker major version number. The MC++
compiler and linker set this field to 7; the
pure-IL code generator employed by other
compilers sets it to 6.

Linker minor version number.

Size of the code section (.text), or the sum
of all code sections if multiple code sec-
tions exist. The ILAsm compiler always
emits the single code section.

Chapter 3 The Structure of a Managed Executable File 49

Table 3-4 PE Header Fields (continued)

Offset Size

32/64 32/64 Field Description

8 4 SizeOfInitializedData Size of the initialized data section (held in
the field SizeOfRawData of the respective
section header), or the sum of all such sec-
tions. The initialized data is defined as spe-
cific values, stored in the disk image file.

12 4 SizeOfUninitializedData Size of the uninitialized data section (.bss),
or the sum of all such sections. This data is
not part of the disk file and does not have
specific values, but the OS loader commits
space for the data.

16 4 AddressOfEntryPoint RVA of the entry point function. For unman-
aged DLLs, this can be 0. For managed PE
files, this value always points to the com-
mon language runtime invocation stub.

20 4 BaseOfCode RVA of the beginning of the file’s code
section(s).

24/- 4/- BaseOfData RVA of the beginning of the file’s data
section(s).

28/24 4/8 ImageBase Image’s preferred starting virtual address. In

ILAsm, this field can be specified explicitly by
the directive .imagebase <integer value>
and/or the command-line option
/BASE=<integer value>. The command-line
option takes precedence over the directive.

32 4 SectionAlignment Alignment of sections when loaded in
memory. This setting must be greater than
or equal to the value of the FileAlignment
field. The default is the memory page size.

36 4 FileAlignment Alignment of sections in the disk image file.
The value should be a power of 2, from 512
to 64 K. If SectionAlignment is set to less
than the memory page size, FileAlignment
must match SectionAlignment. In ILAsm, this
field can be specified explicitly by the direc-
tive .file alignment <integer value> and/or
the command-line option /ALIGNMENT=
<integer value>. The command-line option
takes precedence over the directive.

40 2 MajorOperatingSystemVersion ~ Major version number of the required OS.
42 2 MinorOperatingSystemVersion — Minor version number of the required OS.
44 2 MajorImageVersion - Major version number of the application.

(continued)

50 Part Il Underlying Structures

Table 3-4 PE Header Fields (continuea)

Offset Size

32/64 32/64 Field Description

46 2 MinorImageVersion Minor version number of the application.
48 2 MajorSubsystemVersion Major version number of the subsystem.
50 2 MinorSubsystemVersion Minor version number of the subsystem.
52 4 Win32VersionValue Reserved.

56 4 SizeOfImage Size of the image file (in bytes), including

all headers. This field must be set to a mul-
tiple of the SectionAlignment value.

60 4 SizeOfHeaders Sum of the sizes of the MS-DOS stub, the
COFF header, the PE header, and the sec-
tion headers, rounded up to a multiple of
the FileAlignment value.

64 4 CheckSum Checksum of the disk image file.

68 2 Subsystem Subsystem required to run this image file.
The values are defined in Winnt.h and are
as follows:

M NATIVE(1) No subsystem required
(for example, a device driver)

| WINDOWS_GUI (2) Runs in the
Windows GUI subsystem

| WINDOWS_CUI (3) Runs in Win-
dows console mode

[| OS2_CUI(5) Runsin OS/2 1.x con-
sole mode

[| POSIX_CUI (7) Runs in POSIX
console mode

B NATIVE_WINDOWS (8) The image
file is a native Win9x driver

[| WINDOWS_CE_GUI (9) Runs in
the Windows CE GUI subsystem.

In ILAsm, this field can be specified explicitly
by the directive .subsystem <integer value>
and/or the command-line option /SUB-
SYSTEM=<integer value>. The command-
line option takes precedence over the
directive.

70 2 DliCharacteristics Obsolete, set to 0.

Chapter 3 The Structure of a Managed Executable File 51

Table 3-4 PE Header Fields (continued)

Offset Size . .
32/64 32/64 Field Description

72 4/8 SizeOfStackReserve Size of virtual memory to reserve for the
initial thread’s stack. Only the SizeOfStack-
Commit field is committed; the rest is avail-
able in one-page increments. The default is
1 MB.

76/80 4/8 SizeOfStackCommit Size of virtual memory initially committed
for the initial thread’s stack. The default is
one page.

80/88 4/8 SizeOfHeapReserve Size of virtual memory to reserve for the
initial process heap. Only the SizeOfHeap-
Commit field is committed; the rest is avail-
able in one-page increments. The default is
1 MB.

84/96 4/8 SizeOfHeapCommit Size of virtual memory initially committed
for the process heap. The default is one

page.
88/104 4 LoaderFlags Obsolete, set to 0.

92/108 4 NumberOfRvaAndSizes Number of entries in the DataDirectory
array; at least 16. Although it is theoretically
possible to emit more than 16 data directo-
ries, all existing managed compilers emit
exactly 16 data directories, with the six-
teenth (last) data directory never used
(reserved).

Data Directory Table

The data directory table starts at offset 96 in a 32-bit PE header and at offset 112
in a 64-bit PE header. Each entry in the data directory table contains the relative
virtual address and size of a table or a string used by the operating system. The
data directory table entry is an 8-byte structure defined in Winnt.h as follows:

typedef struct _IMAGE_DATA_DIRECTORY ({
DWORD VirtualAddress;
DWORD Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

The first field, named VirtualAddress, is, however, not a virtual address
but rather an RVA; it is the address of the table when the image file is loaded
into memory, relative to the base address of the image. The RVAs given in this
table do not necessarily point to the beginning of a section, and the sections
containing specific tables do not necessarily have specific names. The second
field is the size in bytes.

52 Part Il Underlying Structures

Sixteen standard data directories are defined in the data directory table:

B Export Directory table address and size The Export Directory
table contains information about four other tables, which hold data
on unmanaged exports of the PE file. Among managed compilers,
only the MC++ compiler and linker and ILAsm are capable of expos-
ing the managed methods exported by a managed PE file as unman-
aged exports, to be consumed by an unmanaged caller. See Chapter
15, “Managed and Unmanaged Code Interoperation,” for details.

B Import table address and size This table contains data on
unmanaged imports consumed by the PE file. Among managed com-
pilers, only the MC++ compiler and linker make any nontrivial use of
this table, importing the unmanaged external functions used in the
embedded unmanaged native code. Because other compilers,
including the ILAsm compiler, do not embed the unmanaged native
code in the managed PE files, Import Address tables (IATs) of the
files produced by these compilers contain a single entry, that of the
runtime entry function.

B Resource table address and size Contains unmanaged resources
embedded in the PE file; managed resources aren’t part of this data.

H Exception table address and size This table contains information
on unmanaged exceptions only.

B Certificate table address and size The address entry points to a
table of attribute certificates, which are not loaded into memory as
part of the image file. As such, the first field of this entry is a file
pointer rather than an RVA.

[| Base Relocation table address and size

Debug data address and size A managed PE file does not carry
embedded debug data, so both entries of this data directory are set to 0.

B Architecture data address and size

Global pointer RVA of the value to be stored in the global pointer
register. The size must be set to 0.

N TLS table address and size Among managed compilers, only the
MC++ compiler and linker and the ILAsm compiler are able to pro-
duce the code that would use the thread local storage data.

"B Load Configuration table address and size

Chapter 3 The Structure of a Managed Executable File 53

Bound Import table address and size
Import Address table address and size
Delay Import Descriptor address and size

Common Language Runtime header address and size

Reserved

Section Headers

The table of section headers must immediately follow the PE header. Because
the file header has no direct pointer to the section table, the location of this
table is calculated as the total size of the file headers plus 1.

The NumberOfSections field of the COFF header defines the number of
entries in the section header table. The section header enumeration in the table
is one-based, with the order of the sections defined by the linker. The sections
follow one another contiguously in the order set in the section header table,
with starting RVAs aligned by the value of the SectionAlignment field of the PE
header.

A section header is a 40-byte structure defined in Winnt.h as follows:

typedef struct _IMAGE_SECTION_HEADER {
BYTE Name[8];
union {
DWORD PhysicalAddress;
DWORD VirtualSize;
} Misc;
DWORD VirtualAddress;
DWORD SizeOfRawData;
DWORD PointerToRawData;
DWORD PointerToRelocations;
DWORD PointerToLinenumbers;
WORD NumberOfRelocations;
WORD NumberOfLinenumbers;
DWORD Characteristics;
} IMAGE_SECTION_HEADER, #*PIMAGE_SECTION_HEADER;

The fields contained in the IMAGE _SECTION_HEADER structure can be
described as follows:

B Name (8-byte ANSI string) Represents the name of the section.
Section names start with a dot (for instance, .reloc). If the section name
contains exactly eight characters, the null terminator is omitted. If the
section name has fewer than eight characters, the array Name is padded
with null characters. Image files cannot have section names with

54

Part Il

Underlying Structures

more than eight characters. In object files, however, section names
can be longer. (Imagine a long-winded code generator emitting a
section named .myownsectionnobodyelsecouldevergrok.) In this case,
the name is placed in the string table, and the field contains the /
(slash) character in the first byte, followed by an ANSI string containing
a decimal representation of the respective offset in the string table.

Physicaldddress/VirtualSize (4-byte unsigned integer) In
image files, this field holds the actual (unaligned) size in bytes of the
code or data in this section.

VirtualAddress (4-byte unsigned integer) Despite its name, this
field holds the RVA of the beginning of the section.

SizeOfRawData (4-byte unsigned integer) In an image file, this
field holds the size in bytes of the initialized data on disk, rounded
up to a multiple of the FileAlignment value specified in the PE header.
If SizeOfRawData is less than VirtualSize, the rest of the section is
padded with null bytes.

PointerToRawData (4-byte unsigned integer) This field holds
a file pointer to the section’s first page. In image files, this value
should be a multiple of the FileAlignment value specified in the PE
header.

PointerToRelocations (4-byte unsigned integer) This is a file
pointer to the beginning of relocation entries for the section. In
image files, this field is not used and should be set to 0.

PointerToLinenumbers (4-byte unsigned integer) This field
holds a file pointer to the beginning of line-number entries for the
section. In managed PE files, the COFF line numbers are stripped
and this field must be set to 0.

NumberofRelocations (2-byte unsigned integer) In managed
image files, this field should be set to 0.

NumberOfLinenumbers (2-byte unsigned integer) In managed
image files, this field should be set to 0.

Characteristics (4-byte unsigned integer) This field specifies
the characteristics of an image file and holds a combination of binary
flags, described in Table 3-5.

Chapter 3 The Structure of a Managed Executable File 55

The section Characteristics flags are defined in Winnt.h. Some of these
flags are reserved, and some are relevant to object files only. Table 3-5 lists the

flags that are valid for PE files.

Table 3-5 The Section Characteristics Flags in PE Files

Flag Value Description
IMAGE_SCN_SCALE_INDEX 0x00000001 TLS index is scaled (.tls sec-
tion only).
IMAGE_SCN_CNT_CODE 0x00000020 Section contains the exe-
cutable code. In ILAsm
compiler—generated PE
files, only the .text section
carries this flag.
IMAGE_SCN_CNT_INITIALIZED DATA 0x00000040 Section contains initialized
data.
IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080 Section contains uninitial-
ized data.
IMAGE_SCN_NO_DEFER_SPEC_EXC 0x00004000 Reset speculative exception
handling bits in the type
library (TLB) entries for this
section.
IMAGE_SCN_LNK_NRELOC_OVFL 0x01000000 Section contains extended
relocations.
IMAGE_SCN_MEM_DISCARDABLE 0x02000000 Section can be discarded as
needed.
IMAGE_SCN_MEM_NOT_CACHED 0x04000000 Section cannot be cached.
IMAGE_SCN_MEM_NOT_PAGED 0x08000000 Section cannot be paged.
IMAGE_SCN_MEM_SHARED 0x10000000 Section can be shared in
memory.
IMAGE_SCN_MEM_EXECUTE 0x20000000 Section can be executed as
code. In ILAsm compiler—
generated PE files, only the
.text section carries this
flag.
IMAGE_SCN_MEM_READ 0x40000000 Section can be read.
IMAGE_SCN_MEM_WRITE 0x80000000 Section can be written to.

In ILAsm compiler—gener-
ated PE files, only the
Sdata and .tls sections
carry this flag.

56 Part Il

Underlying Structures

The ILAsm compiler generates the following sections in a PE file:

.text A read-only section containing the common language runtime
header, the metadata, the IL code, managed structured exceptlon han-
dling information, and managed resources.

.sdata A read/write section containing data.
.reloc A read-only section containing relocations.
.rsrc A read-only section containing unmanaged resources.

itls A read/write section containing thread local storage data.

Common Language Runtime Header

The fifteenth directory entry of the PE header contains the RVA and size of the
runtime header in the image file. The runtime header, which contains all of the
runtime-specific data entries and other information, should reside in a read-
only, sharable section of the image file. The ILAsm compiler puts the common

language runtime header in the .fext section.

Header Structure

The common language runtime header is defined in CorHdr.h—a header file

distributed as part of the Microsoft .NET Framework SDK—as follows:

typedef struct IMAGE_COR20_HEADER

{

ULONG ch;
USHORT MajorRuntimeVersion;
USHORT MinorRuntimeVersion;

// Symbol table and startup information
IMAGE_DATA_DIRECTORY MetaData;

ULONG Flags;

ULONG EntryPointToken;

// Binding information

IMAGE_DATA_DIRECTORY Resources;
IMAGE_DATA_DIRECTORY StrongNameSignature;
// Regular fixup and binding information
IMAGE_DATA_DIRECTORY CodeManagerTable;
IMAGE_DATA_DIRECTORY VTableFixups;
IMAGE_DATA_DIRECTORY ExportAddressTabledumps;

IMAGE_DATA_DIRECTORY ManagedNativeHeader;

} IMAGE_COR20_HEADER;

Chapter 3 The Structure of a Managed Executable File

Table 3-6 takes a closer look at the fields of the header.

Table 3-6 Common Language Runtime Header Fields

57

Offset

Size

Field

Description

0
4

16

20

24
32

40

48

56

64

4
2

Cb

MajorRuntimeVersion
MinorRuntimeVersion

MetaData
Flags

EntryPointToken

Resources

StrongNameSignature

CodeManagerTable

VTableFixups

ExportAd-
dressTablefumps

ManagedNativeHeader

Size of the header in bytes.

Major portion of the minimum version of the runtime
required to run the program.

Minor portion of the version of the runtime required
to run the program.

RVA and size of the metadata.

Binary flags, discussed in the following section. In
ILAsm, this value can be specified explicitly by the
directive .corflags <integer value> and/or the com-
mand-line option /FLAGS=<integer value>. The
command-line option takes precedence over the
directive.

Metadata identifier (token) of the entry point for the
image file; can be 0 for DLL images. This field iden-
tifies a method belonging to this module or a mod-
ule containing the entry point method.

RVA and size of managed resources.

RVA and size of the hash data for this PE file, used
by the loader for binding and versioning.

RVA and size of the Code Manager table. In the first
release of the runtime, this field is reserved and
must be set to 0.

RVA and size in bytes of an array of virtual table (v-
table) fixups. Among current managed compilers,
only the MC++ compiler and linker and the ILAsm
compiler can produce this array.

RVA and size of an array of addresses of jump
thunks. Among current managed compilers, only
the MC++ compiler and linker can produce this
table, which allows the export of unmanaged native
methods embedded in the managed PE file.

Reserved; set to 0.

58 Partll Underlying Structures

Flags Field

The Flags field of the common language runtime header can include one or
more of the following flags:

B COMIMAGE_FLAGS_ILONLY (0x00000001) The image file con-
tains IL code only, with no embedded native unmanaged code
except the startup stub. Because common language runtime—aware
operating systems (such as Windows XP) ignore the startup stub, for
all practical purposes the file can be considered pure-IL. However,
using this flag can cause certain ILAsm compiler—specific problems
when running under Windows XP. If this flag is set, Windows XP
ignores not only the startup stub but also the .reloc section. The
.reloc section can contain relocations for the beginning and end of
the .#s section as well as relocations for what is referred to as data-
on-data (that is, data constants that are pointers to other data con-
stants). Among existing managed compilers, only the MC++ compiler
and linker and the ILAsm compiler can produce these items. The
MC++ compiler and linker never set this flag because the image file
they generate is never pure-IL. Currently, the ILAsm compiler is the
only one capable of producing pure-IL image files that might require
a .reloc section. To resolve this problem, the ILAsm compiler, if TLS-
based data or data-on-data is emitted, clears this flag and sets the
COMIMAGE_FLAGS_32BITREQUIRED flag instead.

| COMIMAGE_FLAGS_32BITREQUIRED (0x00000002) The image
file can be loaded only into a 32-bit process. This flag is set when
native unmanaged code is embedded in the PE file or when the
.reloc section is not empty.

B COMIMAGE_FLAGS_IL_LIBRARY (0x00000004) This flag is
obsolete and should not be set. Setting it—as the ILAsm compiler
allows, using the .corflags directive—will render your module
unloadable.

B COMIMAGE_FLAGS_STRONGNAMESIGNED (0x00000008) The
image file is protected with a strong name signature. The strong
name signature includes the public key and the signature hash and
is a part of an assembly’s identity, along with the assembly name,
version number, and the culture information. This flag is set when
the strong name signing procedure is applied to the image file. No
compiler, including ILAsm, can set this flag explicitly.

Chapter 3 The Structure of a Managed Executable File 59

- | COMIMAGE_FLAGS_TRACKDEBUGDATA (0x00010000) The loader
and the JIT (just-in-time) compiler are required to track debug infor-
mation about the methods.

EntryPointToken Field

The EntryPointToken field of the common language runtime header contains a
token (metadata identifier) of either a method definition (MethodDef) or a file
reference (File). A MethbodDef token identifies a method defined in the module
(a managed PE file) as an entry point method. A File token is used in one case
only: in the runtime header of the prime module of a multimodule assembly,
when the entry point method is defined in another module (identified by the
file reference) of this assembly. In this case, the module identified by the file
reference must contain the respective MethodDef token in the EntryPointToken
field of its runtime header.

EntryPointToken must be specified in runnable executables (EXE files).
The ILAsm compiler, for example, does not even try to generate an EXE file if
the source code does not define the entry point. The loader imposes limitations
on the signature of the entry point method: the method must return an
unsigned integer or void, and it must have at most one parameter of type string
or string(] (vector of strings).

With nonrunnable executables (DLL files), it's a different story. Pure-IL
DLLs don’t need the entry point method defined, and the EntryPointToken field
in their runtime headers should be set to 0.

Mixed-code DLLs—DLLs containing IL and embedded native code—
generated by the MC++ compiler and linker must run the unmanaged native
function DliMain immediately at the DLL invocation in order to perform the
initialization necessary for the unmanaged native components of the DLL. The
signature of this unmanaged function must be as follows:

int D11Main(HINSTANCE, DWORD, void *);

To be visible from the managed code and the runtime, the function DIl-
Main must be declared as a platform invocation of an embedded native method
(local P/Invoke, also known in enlightened circles as I[JW—It Just Works). See
Chapter 15 for details about the interoperation of managed and unmanaged
code.

60

Part Il Underlying Structures

Note The method referred to by the EntryPointToken field of the
common language runtime header has nothing to do with the function
to which the AddressOfEntryPoint field of the PE header points.
AddressOfEntryPoint always points to the runtime invocation stub,
which is invisible to the runtime, is not reflected in metadata, and
hence cannot have a token.

VTableFixups Field

The VTableFixups field of the runtime header is a data directory containing the
RVA and the size of the image file’s v-table fixup table. When a managed
method must be called from unmanaged code, the common language runtime
creates a marshaling thunk for it, and the address of this thunk is placed in the
respective address table. If the managed method is called from the unmanaged
native code embedded in the managed PE file, the thunk address goes to a
special internal v-table. If the managed method is exported as unmanaged and
is consumed somewhere outside the managed PE file, the address of the
respective v-table entry must also go to the Export Address table. At loading
time (and in the disk image file), the entries of this v-table contain the respec-
tive method tokens.

These v-table fixups represent the initializing information necessary for
the runtime to create the thunks and lay out the respective tables. v-table fixup
is defined in CorHdr.h as follows:

typedef struct _IMAGE_COR_VTABLEFIXUP {

ULONG RVA;
USHORT Count;
USHORT Type;

} IMAGE_COR_VTABLEFIXUP;

In this definition, RVA points to the location of the v-table slot containing the
respective method token(s). Count specifies the number of entries in the slot if
multiple implementations of the same method exist, overriding one another.
Type is a combination of the following flags, providing the runtime with infor-
mation about the slot and what to do with it:

[| COR_VTABLE_32BIT (0x01) Each entry is 32 bits wide.
M COR_VTABLE_G4BIT (0x02) Each entry is 64 bits wide.

Chapter 3 The Structure of a Managed Executable File 61

B COR_VTABLE_FROM_UNMANAGED (0x04) The thunk created
by the common language runtime must provide data marshaling
between managed and unmanaged code.

] COR_VTABLE _CALL_MOST_DERIVED (0x10) This flag is not
currently used.

Obviously, the first two flags are mutually exclusive. The slots of the v-table
must follow each other immediately—that is, the v-table must be contiguous.
Because the v-table should be fixed up after the image has been loaded
into memory, this table is located in a read/write section. (In contrast, the v-table
in an unmanaged image is located in a read-only section.)
Among existing managed compilers, only the MC++ compiler and linker
and the ILAsm compiler can define the v-table and its fixups.

StrongNameSignature Field

The StrongNameSignature field of the common language runtime header con-
tains the RVA and size of the strong name hash, which is used by the runtime
to establish the authenticity of the image file. After the image file has been cre-
ated, it is hashed using the public and private encryption keys provided by the
producer of the image file, and the resulting hash blob is written into the space
allocated inside the image file.

If even a single byte in the image file is subsequently modified, the
authenticity check fails and the image file cannot be loaded. The strong name
signature does not survive a round-tripping procedure; if you disassemble a
strong-named module using the IL Disassembler and then reassemble it, the
module must be strong name signed again.

The ILAsm compiler puts the strong name signature in the .fext section of
the image file.

Relocation Section

The .reloc section of the image file contains the Fixup table, which holds entries
for all fixups in the image file. The RVA and size of the .reloc section are defined
by the Base Relocation table directory of the PE header. The Fixup table con-
sists of blocks of fixups, each block representing the fixups for a 4-KB page.
Blocks are 4-byte-aligned.

Each fixup describes the location of a specific address within the image
file as well as how the OS loader should modify the address at this location
when loading the image file into memory.

62

Part Il

Underlying Structures

Each fixup block starts with two 4-byte unsigned integers: the RVA of the
page containing the address to be fixed up and the size of the block. The fixup
entries for this page immediately follow. Each entry is a 2-byte unsigned inte-
ger, of which 4 senior bits contain the type of relocation required. The remain-

ing 12 bits contain the relocated address’s offset within the page.

To relocate an address, the OS loader calculates the difference (delta)
between the preferred base address (the ImageBase field of the PE header) and
the actual base address where the image file is loaded. This delta is then
applied to the address according to the type of relocation. If the image file is

loaded at its preferred address, no fixups need be applied.

The following relocation types are defined in Winnt.h:

IMAGE_REL_BASED_ABSOLUTE (0) This type has no meaning
in an image file, and the fixup is skipped.

IMAGE_REL_BASED_HIGH (1) The high 16 bits of the delta are
added to the 16-bit field at the offset. The 16-bit field in this case is
the high half of the 32-bit address being relocated.

IMAGE_REIL_BASED LOW (2) The low 16 bits of the delta are
added to the 16-bit field at the offset. The 16-bit field in this case is
the low half of the 32-bit address being relocated.

IMAGE_REL_BASED _HIGHLOW (3) The delta is added to the
32-bit address at the offset.

IMAGE_REL_BASED_HIGHADJ (4) The high 16 bits of the delta
are added to the 16-bit field at the offset. The 16-bit field in this case
is the high part of the 32-bit address being relocated. The low 16 bits
of the address are stored in the 16-bit word that follows this reloca-
tion. A fixup of this type occupies two slots.

IMAGE_REL _BASED_MIPS JMPADDR (5) The fixup applies to
a MIPS jump instruction.

IMAGE_REL_BASED_SECTION (6) Reserved.
IMAGE_REL_BASED_REL32 (7) Reserved.

IMAGE_REL_BASED_MIPS_JMPADDRIG6 (9) The fixup applies
to a MIPS16 jump function.

IMAGE_REL_BASED_IAG4_IMMG64 (9) This is the same type as
IMAGE_REL_BASED_MIPS_JMPADDRI6.

IMAGE_REL_BASED DIRG64 (10) The delta is added to the 64-bit
field at the offset.

Chapter 3 The Structure of a Managed Executable File 63

n IMAGE_REL_BASED_HIGH3ADJ (11) The fixup adds the high
16 bits of the delta to the 16-bit field at the offset. The 16-bit field is
the high one-third of a 48-bit address. The low 32 bits of the address
are stored in the 32-bit double word that follows this relocation. A
fixup of this type occupies three slots.

The only fixup type emitted by the existing managed compilers is
IMAGE_REL_BASED_HIGHLOW.

A pure-IL PE file, as a rule, contains only one fixup in the .reloc section.
This is for the benefit of the common language runtime startup stub, the only
segment of native code in a pure-IL image file. This fixup is for the image file’s
IAT, containing a single entry: the runtime DLL.

Windows XP, as a common language runtime—aware operating system,
needs neither the runtime startup stub nor the IAT to engage the runtime. Thus,
if the common language runtime header flags indicate that the image file is
IL-only (COMIMAGE_FLAGS_ILONLY), the operating system ignores the .reloc
section altogether.

This optimization plays a bad joke with some image files generated by the
ILAsm compiler. This compiler produces pure-IL image files but needs reloca-
tions executed if any data is located in thread local storage or if data-on-data is
defined. To have these relocations executed when the image file is loaded
under Windows XP, the ILAsm compiler is forced to cheat and set the common
language runtime header flags as if the image file contained embedded native
code (COMIMAGE_FLAGS_32BITREQUIRED).

Other compilers don’t have these problems. Compilers generating pure-IL
image files (such as Microsoft Visual C# NET and Microsoft Visual Basic .NET)
don’t define TLS-based data or data-on-data.

Because the MC++ compiler and linker produce mixed-code image files,
the .reloc sections of these image files can contain any number of relocations.
But because mixed-code image files never carry IL-only common language
runtime header flags, their relocations are always executed.

Text Section

The .text section of a PE file is a read-only section. In a managed PE file, it con-
tains metadata tables, IL code, an Import Address table, a common language
runtime header, and an unmanaged runtime startup stub. The image files gen-
erated by the ILAsm compiler additionally contain managed resources, the
strong name signature hash, and unmanaged export stubs.

The ILAsm compiler emits data to the .fext section in a particular order.
When the PE file generator is initialized during the ILAsm compiler startup,

64

Partll Underlying Structures

space is allocated in the .text section for the Import Address table—which
carries one lonely entry, for the startup routine of the runtime DLL—and for the
runtime header.

The IL code and the managed structured exception handling tables for
each method defined in the module are emitted to the .text section during the
parsing of the source code, as soon as parsing and compilation of the next
method are completed.

After all the source files representing the module have been parsed and all
IL code and structured exception handling tables have been emitted, the ILAsm
compiler, if so directed, allocates sufficient space in the .text section for the
strong name signature. The signature itself is emitted later, as the last step of the
file generation.

Then the ILAsm compiler analyzes and rearranges the metadata defined
during the parsing of the source files and emits the metadata tables to the .text
section. By this time, all the managed resources to be embedded in the image
file are analyzed and accounted for, and their respective offsets within the
managed resource directory are recorded as part of the metadata describing
these resources. At this time, all the necessary fixups are made in the already
emitted IL code. These fixups primarily deal with the metadata tokens, which
were unknown before the metadata analysis and rearrangement or were
changed during that process. Other fixups deal with references to global data
constants placed in the .sdata section that will be discussed later in this chapter.

After all metadata has been emitted, any managed resources to be embed-
ded in the image file are read from the respective files and emitted to the .text
section. (For a discussion of embedding managed and unmanaged resources,
see “Resources” later in this chapter.)

The next set of data to be emitted to the .text section consists of the export
stubs for each managed method that will be exposed as an unmanaged export,
to be consumed by the external unmanaged executables. (For detailed informa-
tion on managed and unmanaged code interoperation, see Chapter 15.)

The last item emitted to the .text section is the unmanaged runtime startup
stub, whose RVA is assigned to the AddressOfEntryPoint field of the PE header.

Figure 3-3 summarizes the general structure of the .text section of an
image file generated by the ILAsm compiler.

Chapter 3 The Structure of a Managed Executable File 65

Import Address table

Common language runtime header

IL code and managed structured
exception handling tables (optional)

Strong name signature hash (optional) Jtext
: section |

Metadata

Managed resources (optional)

Unmanaged export stubs (optional)

Runtime startup stub

Figure 3-3 Structure of a .text section emitted by the ILAsm compiler.

Data Sections

The data section (.sdata) of an image file generated by the ILAsm compiler is a
read/write section. It contains data constants, the v-table, the unmanaged
export table, and the thread local storage directory structure. The data declared
as thread-specific is located in a different section, the .tls section.

Data Constants

The term data constants might be a little misleading. Located in a read/write
section, data constants can certainly be overwritten, so technically they can
hardly be called “constants.” The term, however, refers to the usage of the data
rather than to the nature of the data. Data constants represent the mappings of
the static fields and usually contain data initializing the mapped fields. (Chapter
1 described the peculiarities of this field mapping; see “Mapped Fields.”)

Field mapping is a convenient way to initialize the static fields with ANSI
strings, blobs, or structures. An alternative way to initialize the static fields—and
a more orthodox way in terms of the common language runtime—is to do it
explicitly in class constructors, as discussed in the section “Constructors vs.
Data Constants” in Chapter 8, “Fields and Data Constants.” But this alternative is
much more tedious, so no one can really blame the managed compilers for
resorting to field mapping for initialization. The MC++ compiler maps all the
global fields, whether they will be initialized or not.

66 Part Il Underlying Structures

V-Table

Mapping static fields to data has its caveats. Fields mapped to the data sec-
tion are, on the one hand, out of reach of runtime controlling mechanisms such
as type control and garbage collection and, on the other hand, wide open to
unrestricted access and modification. This causes the loader to prevent certain
field types from being mapped; types of mapped fields might contain no
references to objects, vectors, or arrays, nor to any nonpublic substructures. No
such problems arise if a class constructor is used for static field initialization.
Philosophically speaking, this is only natural: throughout the history of humanity,
deviations from orthodoxy, however tempting, have always brought some
unpleasant complications.

The v-table consists of entries, and each entry consists of one or more slots. The
v-table fixups we have already discussed earlier in the section “VIableFixups
Field” specify the number and width (4 or 8 bytes) of slots in each entry. Each
slot contains a metadata token of the respective method, which at execution
time is replaced with the address of the method itself or the address of a mar-
shaling thunk representing the method. Because these fixups are performed at
execution time, the v-table of a managed PE file must be located in a read/write
section. The ILAsm compiler puts the v-table in the .sdata section, together with
other data.

V-tables of unmanaged image files are completely defined at link time and
need base relocation fixups only, performed by the OS loader. Because no
changes are made to v-tables at execution time, unmanaged image files carry
their v-tables in read-only sections.

Unmanaged Export Table

The unmanaged export table in an unmanaged image file occupies a separate
section named .edata. In image files generated by the ILAsm compiler, the
unmanaged export table resides in the .sdata section, together with the v-table
it references.

The unmanaged export table contains information about symbols that
other (unmanaged) image files can access through dynamic linking. The
unmanaged export table is not a single table but rather a contiguous set of five
tables: the Export Directory table, the Export Address table, the Name Pointer
table, the Ordinal table, and the Export Name table.

The unmanaged export information starts with the Export Directory table,
which describes the rest of the export information. It is a table with only one
element, containing the locations and sizes of other export tables. The structure
of the sole row of the Export Directory table is defined in Winnt.h as follows:

Chapter 3 The Structure of a Managed Executable File

typedef struct _IMAGE_EXPORT_DIRECTORY {

DWORD Characteristics;
DWORD TimeDateStamp;
WORD MajorVersion;

WORD MinorVersion;
DWORD Name;
DWORD Base;

DWORD NumberOfFunctions;
DWORD NumberOfNames;

DWORD AddressOfFunctions;
DWORD AddressOfNames;

DWORD AddressOfNameOrdinals;

} IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;

exported entry points (methods) themselves but rather of unmanaged export

Briefly, the fields of IMAGE_EXPORT_DIRECTORY are the following:

Characteristics Reserved. This field should be set to 0.
TimeDateStamp The time and date the export data was generated.

MajorVersion The major version number. This field and the
MinorVersion field are for information only; the ILAsm compiler
does not set them.

MinorVersion The minor version number.

Name The RVA of the ANSI string containing the name of the
exporting module.

Base The ordinal base (usually 1). This is the starting ordinal num-
ber for exports in the image file.

NumberOfFunctions The number of entries in the Export Address
table.

NumberOfNames Number of entries in the Export Name table.
Addi’esstFunctions The RVA of the Export Address table.
AddressOfNames The RVA of the Export Name table.
AddressOfNameOrdinals The RVA of the Name Pointer table.

67

The Export Address table contains the RVAs of exported entry points. The
export ordinal of an entry point is defined as its zero-based index within the
Export Address table plus the ordinal base (the value of the Base field of
IMAGE_EXPORT_DIRECTORY structure).
In a managed file, the Export Address table contains the RVAs not of the

stubs representing these entry points. (See “Text Section” earlier in this chapter.)
Export stubs, in turn, contain references to respective v-table slots.

68 Part 1l Underlying Structures

An RVA in an Export Address table can be a so-called forwarder RVA, iden-
tifying a re-exported entry point—that is, an entry point this module imports
from another module and exports as its own. In such a case, the RVA points to
an ANSI string containing the import name. The import name might be a DLL
name and the name of the imported entry (SomeDLL.someFunc) or a DLL name
and the imported entry’s ordinal in this DLL (SomeDLL.#12).

Because the ILAsm compiler does not allow re-export, the entries in an
Export Address table of an image file generated by this compiler always repre-
sent the RVAs of unmanaged export stubs.

The Name Pointer table contains RVAs of the export names from the
Export Name table. These RVAs are lexically ordered to facilitate binary
searches of the entry points by name.

The Ordinal table contains 2-byte indexes to the Export Address table. The
Name Pointer table and the Ordinal table form two parallel arrays and operate
as one intermediate lookup table, rearranging the entries so that they are lexi-
cally ordered by name.

The Export Name table contains zero-terminated ANSI strings representing
the export names of the methods exported by the module. The export names
might differ from the names under which the methods were declared in the
module. An exported method might have no exported name at all if it is being
exported by ordinal only. In this case, its ordinal is not included in the Ordinal
table. The ILAsm compiler does not allow unnamed exports.

Chapter 15 examines unmanaged export information and the details of
exposing managed methods as unmanaged exports.

Thread Local Storage

ILAsm and MC++ allow you to define data constants belonging to thread local
storage and to map static fields to these data constants. TLS is a special storage
class in which a data object is not a stack variable but is nevertheless local to
each separate thread. Consequently, each thread can maintain a different value
for such a variable.

The TLS data is described in the TLS directory, which the ILAsm compiler
puts in the .sdata section. The structure of the TLS directory for 32-bit image
files is defined in Winnt.h as follows:

typedef struct _IMAGE_TLS_DIRECTORY32 {
DWORD StartAddressOfRawData;
DWORD EndAddressOfRawData;
PDWORD AddressOfIndex;
PIMAGE_TLS_CALLBACK *AddressOfCallBacks;
DWORD SizeOfZeroFill;
DWORD Characteristics;

} IMAGE_TLS_DIRECTORY32;

Chapter 3 The Structure of a Managed Executable File

The fields of this structure can be described as follows:

StartAddressOfRawData The starting virtual address (not an RVA)
of the TLS data constants. The TLS data constants plus uninitialized
TLS data together form the TLS template. The operating system
makes a copy of the TLS template every time a thread is created, thus
providing each thread with its “personal” data constants and field
mapping.

EndAddressOfRawData The ending VA of the TLS data con-
stants. The rest of the TLS data (if any) is filled with zeros. Because
the ILAsm compiler allows no uninitialized TLS data, presuming that

TLS data constants represent the whole TLS template, nothing is left
for the zero fill.

AddressOfIndex The VA of the 4-byte TLS index, located in the
ordinary data section. The ILAsm compiler puts the TLS index in
the .sdata section, immediately after the TLS directory structure
and the callback function pointer array terminator.

AddressOfCallBacks The VA of an array of TLS callback function
pointers. Because the array is null-terminated, this field points to 4
bytes set to 0 if no callback functions are supported. The ILAsm com-
piler does not support TLS callback functions, so the entire array of
TLS callback function pointers consists of zero terminator. This zero
terminator immediately follows the TLS directory structure in the
.Sdata section.

SizeOfZeroFill The size of the uninitialized part of the TLS tem-
plate, filled with zeros when a copy of the TLS template is being
made. The ILAsm compiler sets this field to 0.

Characteristics Reserved. This field should be set to 0.

69

Because the StartAddressOfRawData, EndAddressOfRawData,

AddressOfindex, and AddressOfCaliBacks fields hold VAs rather than RVAs,
base relocations must be defined for them in the .reloc section.

The RVA and size of the TLS directory structure are stored in the tenth data

directory (TLS) of the PE header. TLS data constants, which form the TLS tem-
plate, are stored in the .#is section of the image file.

70

Part Il Underlying Structures

Resources

Two distinct kinds of resources can be embedded in a managed PE file:
unmanaged platform-specific resources and managed common language runtime—
specific resources. These two kinds of resources, which have nothing in com-
mon, reside in different sections of a managed image file and are accessed by
different sets of APIs.

Unmanaged Resources

Unmanaged resources reside in the .7s7c section of the image file. The starting
RVA and size of embedded unmanaged resources are represented in the
Resource data directory of the PE header.

Unmanaged resources are indexed by type, name, and language and are
binary-sorted by these three characteristics in that order. A set of Resource
directory tables represents this indexing as follows: each directory table is fol-
lowed by an array of directory entries, which contain the ID or name of the
respective level (the type, name, or language level) and the address of the next-
level directory table or of a data description (a leaf node of the tree). Because
three indexing characteristics are used, any data description can be reached by
analyzing at most three directory tables.

By the time the data description is reached, its type, name, and language
are known from the path the search algorithm traversed to arrive at the data
description.

The .rsrc section has the following structure:

Resource directory tables and entries

Resource directory strings Unicode strings representing the
string data addressed by the directory entries. These strings are 2-
byte-aligned. Each string is preceded by a 2-byte unsigned integer
representing the string’s length.

B Resource data description A set of records addressed by direc-
tory entries, containing the size and location of actual resource data.

B Resource data Raw undelimited resource data, consisting of indi-
vidual resource data whose address and size are defined by data
description records.

Chapter 3 The Structure of a Managed Executable File 71

A Resource directory table structure is defined in Winnt.h as follows:

typedef struct _IMAGE_RESOURCE_DIRECTORY {
DWORD Characteristics;
DWORD TimeDateStamp;
WORD MajorVersion;
WORD MinorVersion;
WORD NumberOfNamedEntries;
WORD NumberOfIdEntries;
} IMAGE_RESOURCE_DIRECTORY, #*PIMAGE_RESOURCE_DIRECTORY;

The roles of these fields should be evident, in light of the preceding dis-
cussion about structuring unmanaged resources and the Resource directory
tables. One exception might be the Characteristics tield, which is reserved and
should be set to 0.

Name entries, which use strings to identify type, name, or language,
immediately follow the Resource directory table. After them, ID entries are
stored.

A Resource directory entry (either a name entry or an ID entry) is an 8-byte
structure consisting of two 4-byte unsigned integers, defined in Winnt.h as
follows:

typedef struct _IMAGE_RESOURCE_DIRECTORY_ENTRY {
union {
struct {
DWORD NameOffset:31;
DWORD NameIsString:1;

1
DWORD Name;
WORD Id;
1
union { .
DWORD OffsetToData;
struct {
DWORD OffsetToDirectory:31;
DWORD DatalsDirectory:1;
};
}.

} IMAGE_RESOURCE_DIRECTORY_ENTRY, #*PIMAGE_RESOURCE_DIRECTORY_ENTRY;

If the senior bit of the first 4-byte component is set, the entry is a name
entry and the remaining 31 bits represent the name string offset; otherwise, the
entry is an ID entry and the remaining bits hold the ID value.

If the senior bit of the second component is set, the item, whose offset is
represented by the remaining 31 bits, is a next-level Resource directory table;
otherwise, it is a Resource data description.

72 Part Il Underlying Structures

A Resource data description is a 16-byte structure defined in Winnt.h as
follows:

typedef struct _IMAGE_RESOURCE_DATA_ENTRY {
DWORD OffsetToData;
DWORD Size;
DWORD CodePage;
DWORD Reserved;
} IMAGE_RESOURCE_DATA_ENTRY, *PIMAGE_RESOURCE_DATA_ENTRY;

The fields OffsetToData and Size characterize the respective chunks of
resource data that constitute an individual resource. CodePage is the ID of the
code page used to decode the code point values in the resource data. Usually
this is the Unicode code page. Finally—no surprise here—the Reserved field is
reserved and must be set to 0.

The ILAsm compiler creates the .rsrc section and embeds the unmanaged
resources from the respective .RES file if this file is specified in command-line
options. The compiler can embed only one unmanaged resource file per module.

~ When the IL Disassembler analyzes a managed PE file and finds the .rsrc
section, it reads the data and its structure from the section and emits a .RES file
containing all the unmanaged resources embedded in the PE file.

Managed Resources

The Resources field of the common language runtime header contains the RVA
and size of the managed resources embedded in the PE file. It has nothing to do
with the Resource directory of the PE header, which specifies the RVA and size
of unmanaged platform-specific resources.

In PE files created by the ILAsm compiler, unmanaged resources reside in
the .rsrc section of the image file, whereas managed resources are located in
the .fext section, along with the metadata, the IL code, and so on. Managed
resources are stored in the .fext section contiguously. Metadata carries Mani-
JestResource records, one for each managed resource, containing the name of
the managed resource and the offset of the beginning of the resource from the
starting RVA specified in the Resources field. At this offset, a 4-byte unsigned
integer indicates the length in bytes of the resource. The resource itself imme-
diately follows.

When the IL Disassembler processes a managed image file and finds
embedded managed resources, it writes each resource to a separate file, named
according to the resource name.

When the ILAsm compiler creates a PE file, it reads all managed resources
defined in the source code as embedded from the file according to the resource
names and writes them to the .fext section, each preceded by its specified
length.

Chapter 3 The Structure of a Managed Executable File 73

Summary

Let’s summarize the ways the ILAsm compiler creates a managed PE file. The PE
file creation is performed in four phases.

Phase One: Initialization

[] Internal buffers are initialized.

B The empty template of a PE file is open in memory, including an
MS-DOS stub, a PE signature, a COFF header, and a PE header.

B The Import Address table and the runtime header are allocated in the

.text section.

Phase Two: Source Code Parsing
B The IL code is emitted to the .text section.
[] Data constants are emitted to the .sdata and .ils sections.

B Metadata is collected in internal buffers.

Phase Three: Image Generation

Space for the strong name signature is allocated in the .text section.
Metadata is analyzed, rearranged, and emitted to the .fext section.
Managed resources are emitted to the .text section.

Unmanaged export stubs are emitted to the .fext section.
Unmanaged export tables are emitted to the .sdata section.

The TLS directory table is emitted to the .sdata section.

The runtime startup stub is emitted to the .fext section.

Unmanaged resources are read from a .RES file and emitted to the
.¥SrC section.

B Necessary base relocations are emitted to the .reloc section.

Phase Four: Completion

B The image file is written as a disk file.

B The strong name signing procedure is applied to the file.

74 Part Il Underlying Structures

The ILAsm compiler allows you to explicitly set certain values in the
image file headers, by means of both source code directives and the compiler’s
command-line options, as shown in Table 3-7. In all the cases discussed in this
chapter, the command-line options take precedence over the respective source
code directives.

Table 3-7 Directives and Command-Line Options for Setting Header Fields

Header Field Directive Command-Line Option

PE ImageBase .imagebase <integer value> /BASE=<integer value>

PE FileAlignment file alignment <integer value> /ALIGNMENT=<integer value>
PE Subsystem .subsystem <integer value> /SUBSYSTEM=<integer value>

CLR Flags .corflags <integer value> /FLAGS=<integer value>

Metadata Tahles
Organization

What Is Metadata? 75
Heaps and Tables 78
RIDs and Tokens 87
Metadata Validation 93
Summary 94

This chapter provides a general overview of metadata and how it is structured.
It also describes metadata validation and the PEVerify tool, used to perform
validation and verification. Later chapters will analyze individual metadata
items based on the foundation presented here. I understand your possible
impatience—“When will this guy quit stalling and get to the real stuff?”—but
nevertheless I urge you not to skip this chapter. Far from stalling, I'm simply
approaching the subject systematically. It might look the same, but the motiva-
tion is quite different.

What Is Metadata?

Metadata is, by definition, data that describes data. Like any general definition,
however, this one is hardly informative. In the context of the common language
runtime, metadata means a system of descriptors of all items that are declared
or referenced in a module. Because the common language runtime program-
ming model is inherently object-oriented, the items represented in metadata are

75

76

Part 1l Underlying Structures

classes and their members, with their accompanying attributes, properties, and
relationships.

From a pragmatic point of view, the role played by metadata is similar to
that played by type libraries in the COM world. At this general level, however,
the similarities end and the differences begin. Metadata, which describes the
structural aspect of a module or an assembly in minute detail, is vastly richer
than the data provided by type libraries, which carry only information regarding
the COM interfaces exposed by the module. The important difference, of
course, is that metadata is embedded in a managed module, which allows each
managed module to carry a complete formal description of its logical structure.

Structurally, metadata is a normalized relational database. This means that
metadata is organized as a set of cross-referencing rectangular tables—as
opposed to, for example, a hierarchical database that has a tree structure. Each
column of each row of a metadata table contains either data or a reference to a
row of another table. Metadata does not contain any duplicate data fields; each
category of data resides in only one table of the metadata database. If another
table needs to employ the same data, it references the table that holds the data.

For example, as Chapter 1, “Simple Sample,” explained, a class definition
carries certain binary attributes (flags). Because the behavior and features of
member methods of this class are affected by the class’s flags, it would be
tempting to duplicate some of the class attributes, including flags, in a metadata
record describing one of the methods. But data duplication leads not only to
increased database size but also to the problem of keeping all the duplications
synchronized.

Instead, a method descriptor contains a reference to the descriptor of the
method’s parent class. Such referencing does require resolving additional levels
of indirection, which results in burning more processor cycles. But for mas-
sively distributed systems (and Microsoft .NET-based applications obviously
target such systems), processor speed is not the problem—communication
bandwidth and data integrity are.

But what do you do if, for instance, you need to find all the methods a cer-
tain class implements? Browse the entire method descriptor table to find the
methods referring to this class’s descriptor? No, that would be no fun at all.
Instead, the class descriptor (record) carries a reference to the record of the
method table that represents the first method of this class. The end of the
method records belonging to this class is defined by the beginning of the next
class’s method records or (for the last class) by the end of the method table.

Obviously, this technique requires that the records in the method table
must be ordered by their parent class. The same applies to other table-to-table
relationships (class-to-field, method-to-parameter, and so on). If this requirement
is met, the metadata is referred to as optimized, or compressed. Figure 4-1
shows an example of such metadata. The ILAsm compiler always emits opti-
mized metadata.

Chapter 4 Metadata Tables Organization 77

~+ #1: Method 1 of Class 1

#2: Method 2 of Class 1

#3: Method 3 of Class 1

#1: Class 1 methods start at #1 J—J 3 #4: Method 4 of Class 1

#2: Class 2 methods start at #5 | > #5: Method 1 of Class 2

#3: Class 3 methods start at #8

#6: Method 2 of Class 2

#7: Method 3 of Class 2

#8: Method 1 of Class 3

#9: Method 2 of Class 3

Figure 4-1 An example of optimized metadata.

It is possible, however—perhaps as a result of sloppy metadata emis-
sion—to have the child tables interleaved with regard to their parent classes.
For example, class record A might be emitted first, followed by class record B,
the method records of class B, and then the method records of class A; or the
sequence might be class record A, then some of the method records of class A,
followed by class record B, the method records of class B, and then the rest of
the method records of class A.

In such a case, additional intermediate metadata tables are engaged, pro-
viding noninterleaved and ordered lookup tables. Instead of referencing the
method records, class records reference the records of an intermediate table (a
pointer table), which in turn reference the method records, as diagrammed in
Figure 4-2. Metadata that uses such intermediate lookup tables is referred to as
unoptimized, or uncompressed.

Note Uncompressed metadata structure is characteristic of an “edit-
,w and-continue” scenario, in which metadata and the IL code of a module
are modified while the module is loaded in memory.

78 Partll Underlying Structures

#2: MethodPtr 2 of Class 1 #2: Method 2 of Class 1

#1:Class 1. A
methods . #3: MethodPtr 3 of Class 1 “#3: Method 1 of Class 2 |

startat #1.
; | #4:MethodPtr 4 of Class 1 #4: Method 2 of Class 2
#2: Class 2
methods | #5: MethodPtr 1.of Class 2

start at #5
#6: MethodPtr 2 of Class 2 #6: Method 2 of Class 3

#3: Class 3 S — - . ' —
methods #7: MethodPtr 3 of Class 2 #7: Method 3 of Class 2
start at #8 i3

#8: MethodPtr 1 of Class 3 #8: Method 3 of Class 1

#9: MethodPtr 2 of Class 3 | #9: Method 4 of Class 1

Figure 4-2 An example of unoptimized metadata.

Heaps and Tables

Heaps

Logically, metadata is represented as a set of named streams, each stream rep-
resenting a category of metadata. These streams are divided into two types:
metadata heaps and metadata tables.

A metadata heap is a storage of trivial structure, holding a contiguous sequence
of items. Heaps are used in metadata to store strings and binary objects. There
are three kinds of metadata heaps:

B String heap This type of heap contains zero-terminated character
strings, encoded in UTF-8. The strings follow each other immediately.
Because the first byte of the heap is always 0, the first string in the
heap is an empty string. The last byte of the heap must be 0 as well.

B GUID heap This type of heap contains 16-byte binary objects,
immediately following each other. Because the size of the binary
objects is fixed, length parameters or terminators are not needed.

B Blob heap This type of heap contains binary objects of arbitrary
size. Each binary object is preceded by its length (in compressed
form). Binary objects are aligned on 4-byte boundaries.

Chapter 4 Metadata Tables Organization

The length compression formula is fairly simple. If the length
(which is an unsigned integer) is 0x7F or less, it is represented as 1
byte; if the length is greater than 0x7F but no larger than 0x3FFF, it is
represented as a 2-byte unsigned integer with the senior bit set. Oth-
erwise, it is represented as a 4-byte unsigned integer with two senior
bits set. Table 4-1 summarizes this formula.

Table 4-1 The Length Compression Formula for the Blob

79

Value Range Compressed Size Compressed Value (Big-Endian)
0-0x7F 1 byte <value>

0x80—0x3FFF 2 bytes 0x8000 | <value>
0x4000-0x1FFFFFFF 4 bytes 0xC0000000 | <value>

& This compression formula is widely used in metadata. Of
course, the compression works only for numbers not exceeding
Ox1FFFFFFF (536,870,911), but this limitation isn’t a problem
because the compression is usually applied to such values as lengths

and counts.

General Metadata Header

A general metadata header consists of a storage signature and a storage header.
The storage signature has the following structure:

Type Field Description

DWORD ISignature “Magic” signature for physical metadata,
currently 0x424A5342

WORD iMajorVersion Major version (1 for the first release of the
common language runtime)

WORD iMinorVersion Minor version (1 for the first release of the
common language runtime)

DWORD iExtraData Reserved; set to 0

DWORD iLength Length of the version string

BYTE/] iVersionString Version string

80 Partll Underlying Structures

The storage header follows the storage signature, aligned on a 4-byte
boundary. Its structure is simple:

Type Field Description
BYTE JFlags ' Reserved; set to 0
BYTE [padding]

WORD iStreams Number of streams

The storage header is followed by an array of stream headers. The struc-
ture of a stream header looks like this:

Type Field Description

DWORD iOffset Offset in the file for this stream

DWORD iSize Size of the stream in bytes

charl16] rcName Name of the stream; a zero-terminated ANSI

string no longer than seven characters

Six named streams can be present in the metadata:

B #Strings A string heap containing the names of metadata items
(class names, method names, field names, and so on). The stream
does not contain literal constants defined or referenced in the meth-
ods of the module.

m #Blob A blob heap containing internal metadata binary objects,
such as default values. This stream does not contain binary objects
defined in the methods of the module.

B #GUID A GUID heap containing all sorts of globally unique
identifiers.

B #US A blob heap containing user-defined strings. This stream con-
tains string constants defined in the user code. The strings are kept in
Unicode encoding. This stream’s most interesting characteristic is
that the user strings can be explicitly addressed by the IL code (with
the ldstr instruction). In addition, because it is actually a blob heap,
the #US heap can store not only Unicode strings but any binary
object, which opens some intriguing possibilities.

WM #- A compressed (optimized) metadata stream. This stream con-
tains an optimized system of metadata tables.

Chapter 4 Metadata Tables Organization 81

WM # An uncompressed (unoptimized) metadata stream. This stream
contains an unoptimized system of metadata tables, including the
intermediate lookup tables (pointer tables).

& The streams #~ and #- are mutually exclusive—that is,
the metadata structure of the module is either optimized or
unoptimized; it cannot be both at the same time.

If no items are stored in a stream, the stream is absent (null), and the
iStreams field of the storage header is correspondingly reduced. At least three
streams are guaranteed to be present: a metadata stream (#~ or #-), a string
stream (#Strings), and a GUID stream (#GUID). Metadata items must be present
in at least minimal configuration in even the most trivial module, and these
metadata items must have names and GUIDs.

Figure 4-3 illustrates the general structure of metadata. In Figure 4-4, you
can see the way streams are referenced by other streams as well as by external
“consumers” such as metadata APIs and the IL code.

Storage signature

Storage header

Stream headers

String Blob GUID User string Metadata header
stream stream stream stream
Table record counts
#Strings #Blob #GUID #US
Metadata tables
(string heap) (blob heap) (GUID heap) (blob heap)

Metadata stream
#~ or #-

Figure 4-3 The general structure of metadata.

82 Part Il Underlying Structures

IL code

Tools, compilers; :

Figure 4-4 Stream referencing.

Metadata Table Streams

The metadata streams #~ and #- begin with the following header:

Size Field Description

4 bytes Reserved Reserved; set to 0.

1 byte Magjor Major version of the table schema (1 for the first release of
the common language runtime).

1 byte Minor Minor version of the table schema (0 for the first release of
the common language runtime).

1 byte Heaps Binary flags indicate the offset sizes to be used within the

heaps.

A 4-byte unsigned integer offset is indicated by 0x01 for a
string heap, 0x02 for a GUID heap, and 0x04 for a blob
heap.

If a flag is not set, the respective heap offset is presumed to
be a 2-byte unsigned integer.

Chapter 4 Metadata Tables Organization 83

Size Field Description

A # stream can also have special flags set: flag 0x20, indicat-
ing that the stream contains only changes made during an
edit-and-continue session, and flag 0x80, indicating that the
metadata might contain items marked as deleted.

1 byte Rid Bit count of the maximal record index to all tables of the
metadata; calculated at run time (during the metadata
stream initialization).

8 bytes MaskValid Bit vector of present tables, each bit representing one table
(1 if present).

8 bytes Sorted Bit vector of sorted tables, each bit representing a respective
table (1 if sorted).

This header is followed by a sequence of 4-byte unsigned integers indicat-
ing the number of records in each table marked 1 in the MaskValid bit vector.

Like any database, metadata has a schema. The schema is a system of
descriptors of metadata tables and columns—in this sense, it is “meta-meta-
data.” A schema is not a part of metadata, nor is it an attribute of a managed PE
file. Rather, a metadata schema is an attribute of the common language runtime
and is hard-coded. It should not change in the future unless there’s a major
overhaul of the runtime.

Each metadata table has the following descriptors:

Type Field Description

pointer pColDefs Pointer to an array of column descriptors
BYTE cCols Number of columns in the table

BYTE iKey Index of the key column

WORD cbRec Size of a record in the table

Column descriptors, to which the pColDefs fields of table descriptors
point, have the following structure:

Type Field Description

BYTE Type Code of the column’s type
BYTE oColumn Offset of the column
BYIE cbColumn Size of the column in bytes

Type, the first field of a column descriptor, is especially interesting. The
metadata schema of the first release of the common language runtime identifies
the following codes for column types:

84 Part Il Underlying Structures

0-63 Column holds the record index (RID) to another table; the spe-
cific value indicates which table. The width of the column is
defined by the Rid field of the metadata stream header.

64-95 Column holds a coded token referencing another table; the spe-
cific value indicates the type of coded token. Tokens are refer-
ences carrying the indexes of both the table and the record
being referenced. The table being addressed and the index of
the record are defined by the coded token value.

96 Column holds a 2-byte signed integer.

97 Column holds a 2-byte unsigned integer.

98 Column holds a 4-byte signed integer.

99 Column holds a 4-byte unsigned integer.

100 Column holds a 1-byte unsigned integer.

101 Column holds an offset in the string heap (the #Strings stream).
102 Column holds an offset in the GUID heap (the #GUID stream).
103 Column holds an offset in the blob heap (the #Blob stream).

The metadata schema defines 44 tables. Given the range of RID type
codes, the common language runtime definitely has room for growth. At the
moment, the following tables are defined:

B Module The current module descriptor.

B TypeRef Class reference descriptors.

B TypeDef Class or interface definition descriptors.
|

FieldPtr A class-to-fields lookup table, which does not exist in
optimized metadata (#~ stream).

Field Field definition descriptors.

MethodPtr A class-to-methods lookup table, which does not exist
in optimized metadata (#~ stream).

Method Method definition descriptors.

ParamPtr A method-to-parameters lookup table, which does not
exist in optimized metadata (#~ stream).

Param Parameter definition descriptors.

InterfaceImpl Interface implementation descriptors.

Chapter 4 Metadata Tables Organization

MemberRef Member (field or method) reference descriptors.

Constant Constant value descriptors that map the default values
stored in the #Blob stream to respective fields, parameters, and
properties.

CustomAttribute Custom attribute descriptors.

FieldMarshal Field or parameter marshaling descriptors for man-
aged/unmanaged interoperations.

DeclSecurity Security descriptors.

ClassLayout Class layout descriptors that hold information about
how the loader should lay out respective classes.

FieldLayout Field layout descriptors that specify the offset or
sequencing of individual fields.

StandAloneSig Stand-alone signature descriptors. Signatures per
se are used in two capacities: as composite signatures of local vari-
ables of methods, and as parameters of the call indirect (calli) IL
instruction.

EventMap A class-to-events mapping table. This is not an interme-
diate lookup table, and it does exist in optimized metadata.

EventPtr An event-map-to-events lookup table, which does not
exist in optimized metadata (#~ stream).

Event Event descriptors.

PropertyMap A class-to-properties mapping table. This is not an
intermediate lookup table, and it does exist in optimized metadata.

PropertyPtr A property-map-to-properties lookup table, which
does not exist in optimized metadata (#~ stream).

Property Property descriptors.

MethodSemantics Method semantics descriptors that hold infor-
mation about which method is associated with a specific property or
event and in what capacity.

MethodImpl Method implementation descriptors.

85

86

Part ll

Underlying Structures

ModuleRef Module reference descriptors.
TypeSpec Type specification descriptors.

ImpIMap Implementation map descriptors used for the platform
invocation (PAnvoke) type of managed/unmanaged code interoperation.

FieldRVA Field-to-data mapping descriptors.

ENCLog Edit-and-continue log descriptors that hold information
about what changes have been made to specific metadata items during
in-memory editing. This table does not exist in optimized metadata
(#~ stream).

ENCMap Edit-and-continue mapping descriptors. This table does
not exist in optimized metadata (#~ stream).

Assembly The current assembly descriptor, which should appear
only in prime module metadata.

AssemblyProcessor This table is unused in the first release of the
runtime.

AssemblyOS This table is unused in the first release of the runtime.
AssemblyRef Assembly reference descriptors.

AssemblyRefProcessor This table is unused in the first release of
the runtime.

AssemblyRefOS This table is unused in the first release of the
runtime.

File File descriptors that contain information about other files in
the current assembly.

ExportedType Exported type descriptors that contain information
about public classes exported by the current assembly, which are
declared in other modules of the assembly. Only the prime module
of the assembly should carry this table.

ManifestResource Managed resource descriptors.

NestedClass Nested class descriptors that provide mapping of
nested classes to their respective enclosing classes.

TypeTyPar Reserved for future use.
MethodTyPar Reserved for future use.

Chapter 4 Metadata Tables Organization 87

The structural aspects of the various tables and their validity rules are
discussed in later chapters, along with the corresponding ILAsm constructs.

RIDs and Tokens

RIDs

Tokens

Record indexes and tokens are the unsigned integer values used for indexing
the records in metadata tables. RIDs are simple indexes, applicable only to an
explicitly specified table, and tokens carry the information identifying metadata
tables they reference.

A RID is a record identifier, which is simply a one-based row number in the
table containing the record. The range of valid RIDs stretches from 1 to the
record count of the addressed table, inclusive. RIDs are used in metadata inter-
nally only; metadata emission and retrieval APIs do not use RIDs as parameters.

The RID column type codes (0-63) serve as zero-based table indexes.
Thus the type of the column identifies the referenced table, while the value of
the table cell identifies the referenced record. This works fine as long as we
know that a particular column always references one particular table and no
other. Now if we only could combine RID with table identification.

Actually, we can. The combined identification entity, referred to as a token, is
used in all metadata APIs and in all IL instructions. A token is a 4-byte unsigned
integer whose senior byte carries a zero-based table index (the same as the
internal metadata RID type). The remaining 3 bytes are left for the RID.

There is a significant difference between token types and internal meta-
data RID types, however: whereas internal RID types cover all metadata tables,
the token types are defined for only a limited subset of the tables, as noted in
Table 4-2.

Table 42 Token Types and Their Referenced Tables

Token Type Value (RID Type << 24) Referenced Table
mdtModule 0x00000000 Module
mdtTypeRef 0x01000000 TypeRef
mdtTypeDef 0x02000000 TypeDef
mdtFieldDef 0x04000000 Field

(continued)

88

Part Il Underlying Structures

Table 42 Token Types and Their Referenced Tables (continued)

Token Type Value (RID Type << 24) Referenced Table
mdtMethodDef 0x06000000 Method
mdtParamDef 0x08000000 Param
mdltInterfacelmpl 0x09000000 Interfacelmpl
mdtMemberRef 0x0A000000 MemberRef
mdtCustomAttribute 0x0C000000 CustomAttribute
mdtPermission 0x0E000000 DeclSecurity
mdtSignature 0x11000000 StandAloneSig
mdtEvent 0x14000000 Event
mdtProperty 0x17000000 Property
mdtModuleRef 0x1A000000 ModuleRef
mdtTypeSpec 0x1B000000 TypeSpec
mdtAssembly 0x20000000 Assembly
mdtAssemblyRef 0x23000000 AssemblyRef
mdltFile 0x26000000 File
mdtExportedType 0x27000000 ExportedType
mdtManifestResource 0x28000000 ManifestResource

The 24 tables that do not have associated token types are not intended to
be accessed from “outside,” through metadata APIs or from IL code. These
tables (excluding the TypeTyPar and MethodTyPar tables, which are reserved
for future use) are of an auxiliary or intermediate nature and should be
accessed indirectly only, through the references contained in the “exposed”
tables, which have associated token types.

The validity of these tokens can be defined simply: a valid token has a
type from Table 4-2, and it has a valid RID—that is, a RID in the range 1 to the
record count of the table of a specified type.

An additional token type, quite different from the types listed in Table 4-2,
is mdtString (0x70000000). Tokens of this type are used to refer to the user-
defined Unicode strings stored in the #US stream.

Both the type component and the RID component of user-defined string
tokens differ from those of metadata table tokens. The type component of a
user-defined string token (0x70) has nothing to do with column types (the max-
imal column type is 103 = 0x67), which is not surprising, considering that no
column type corresponds to an offset in the #US stream. Because metadata
tables never reference the user-defined strings, it’s not necessary to define a col-
umn type for the strings. In addition, the RID component of a user-defined

Chapter 4 Metadata Tables Organization 89’

string token does not represent a RID because no table is being referenced.
Instead, the 3 lower bytes of a user-defined string token hold an offset in the
#US stream.

The definition of the validity of a user-defined string token is more com-
plex. The RID component is valid if it is greater than 0 and if the string it defines
starts at a 4-byte boundary and is fully contained within the #US stream. The last
condition is checked in the following way: The bytes at the offset specified by
the RID component of the token are interpreted as the compressed length of
the string. (Don’t forget that the #US stream is a blob heap.) If the sum of the
offset and the size of compressed length brings us to a 4-byte boundary, and if
this sum plus the calculated length are within the #US stream size, everything is
fine and the token is valid.

Coded Tokens

The discussion thus far has focused on the “external” form of tokens. You have
every right to suspect that the “internal” form of tokens, used inside the meta-
data, is different—and it is. ‘

Why can’t the external form also be used as internal? Because the external
tokens are huge. Imagine, 4 bytes for each token, when we fight for each mea-
sly byte, trying to squeeze the metadata into as small a footprint as possible.
(Bandwidth! Don't forget about the bandwidth!) Compression? Alas, because of
the type component occupying the senior byte, external tokens represent very
large unsigned integers and thus cannot be efficiently compressed, even though
their middle bytes are full of zeros. We need a fresh approach.

The internal encoding of tokens is based on a simple idea: A column must
be given a token type only if it might reference several tables. (Columns refer-
encing only one table have a respective RID type.) But any such column cer-
tainly does not need to reference all the tables.

So our first task is to identify which group of tables each such column
might reference and form a set of such groups. Let’s assign each group a num-
ber, which will be a coded token type of the column. Because coded token
types occupy a range from 64 to 95, we can define up to 32 groups.

Now, every group contains two or more table types. Let’s enumerate them
within the group and see how many bits we will need for this enumeration.
This bit count will be a characteristic of the group and hence of the respective
coded token type. The number assigned to a table within the group is called
a tag.

This tag plays a role roughly equivalent to that of the type component of
an external token. But, unwilling to once again create large tokens full of zeros,
we will this time put the tag not in the most significant bits of the token but
rather in the least significant bits. Then let’s left-shift the RID 7 bits and add the

90

Part Il Underlying Structures

left-shifted RID to the tag, where 7 is the bit width of the tag. Now we’ve got a
coded token.

What about the coded token size? We know which metadata tables form
each group, and we know the record count of each table, so we know the max-
imal possible RID within the group. Say, for example, that we would need m
bits to encode the maximal RID. If we can fit the maximal RID (m bits) and the
tag (n bits) into a 2-byte unsigned integer (16 bits), we win, and the coded
token size for this group will be 2 bytes. If we can’t, we are out of luck and will
have to use 4-byte coded tokens for this group. No, we won’t even consider 3
bytes—it’s unbecoming.

To summarize, a coded token type has the following attributes:

B Number of referenced tables (part of the schema)
B Array of referenced table IDs (part of the schema)

M Tag bit width (part of the schema, derived from the number of refer-
enced tables)

B Coded token size, either 2 or 4 bytes (computed at the metadata
opening time from the tag width and the maximal record count
among the referenced tables)

Table 4-3 lists the twelve coded token types defined in the metadata
schema of the first release of the common language runtime.

Table 4-3 Coded Token Types

Coded Token Type Tag

TypeDefOrRef (64): 3 referenced tables, tag size 2
TypeDef 0
TypeRef

TypeSpec ‘ 2
HasConstant (65): 3 referenced tables, tag size 2

Field 0
Param

Property

HasCustomAttribute (66): 19 referenced tables, tag size 5
Method ‘

Field

TypeRef

[SR

W N = O

TypeDef

Chapter 4 Metadata Tables Organization 91

Table 4-3 Coded Token Types (continued)

Coded Token Type Tag
Param 4
InterfaceImpl 5
MemberRef 6
Module 7
DeclSecurity 8
Property 9
Event 10
StandAloneSig 11
ModuleRef 12
TypeSpec 13
Assembly 14
AssemblyRef 15
File 16
ExportedType 17
ManifestResource 18
HasFieldMarshal (67): 2 referenced tables, tag size 1

Field 0
Param 1
HasDeclSecurity (68): 3 referenced tables, tag size 2

TypeDef 0
Method

Assembly 2
MemberRefParent (69): 5 referenced tables, tag size 3

TypeDef 0
TypeRef 1
ModuleRef 2
Method 3
TypeSpec 4
HasSemantics (70): 2 referenced tables, tag size 1

Event 0
Property 1
MethodDefOrRef (71): 2 referenced tables, tag size 1

Method 0

(continued)

92 Part Il Underlying Structures

Table 4-3 Coded Token Types (conminued)

Coded Token Type ’ Tag

MemberRef 1
MemberForwarded (72): 2 referenced tables, tag size 1

Field 0
Method

Implementation (73): 3 referenced tables, tag size 2

File . 0
AssemblyRef
ExportedType

\S]

CustomAttributeType (74): 5 referenced tables, tag size 3
TypeRef

TypeDef

Method

MemberRef

String

B W o= O

ResolutionScope (75): 4 referenced tables, tag size 2
Module

ModuleRef

AssemblyRef

TypeRef

W N =R O

Hole The coded token type range (64-95) provides room to add
another twenty types in the future, should it ever become necessary.

Coded tokens are part of metadata’s internal affairs. The ILAsm compiler,
like all other compilers, never deals with coded tokens. Compilers and other
tools read and emit metadata through the metadata import and emission APIs,
either directly or through managed wrappers provided in the .NET Framework
class library—System.Reflection for metadata import and System.Reflection.Emit
for metadata emission. The metadata APIs automatically convert standard 4-
byte tokens to and from coded tokens. IL code also uses only standard 4-byte
tokens.

Chapter 4 Metadata Tables Organization 93

Nonetheless, the preceding definitions are useful to us for two reasons.
First, we will need them when we discuss individual metadata tables in later
chapters. Second, these definitions provide a good hint about the nature of rela-
tionships between the metadata tables.

Metadata Validation

This “good hint,” however, is merely a hint. The definitions in the preceding
section provide information about which tables we can reference from a col-
umn of a certain type. It does not mean that we should reference all the tables
we can. Some of the groups of token types listed in Table 4-3 are wider than is
actually acceptable in the first release of the common language runtime. For
example, the MemberRefParent group, which describes the tables that can con-
tain the parents of a MemberRef record, includes the TypeDef table. But the
metadata emission APIs will not accept a TypeDef token as the parent token of
a MemberRef, and even if such metadata was somehow emitted, the loader
would reject it.

Even APIs provide very few safeguards (most of them fairly trivial) as far
as metadata validity is concerned. Metadata is an extremely complex system,
and literally hundreds of validity rules need to be enforced.

High-level language compilers, such as Microsoft Visual Basic .NET or
Microsoft Visual C# .NET compilers, provide a significant level of protection
against invalid metadata emission because they shield the actual metadata spec-
ification and emission from programmers. Because high-level languages are
concept-driven and concept-based, and it is the compiler’s duty to relate the
language concepts to the metadata structures and IL code constructs, a compiler
can be built to emit valid structures and constructs. (Well, more or less.) On the
other hand, ILAsm, like other assemblers, is a platform-oriented language and
allows a programmer to generate an enormously wide range of metadata struc-
tures and IL constructs, only a fraction of which represent a valid subset.

In view of this bleak situation, we need to rely on external validation and
verification tools. (Speaking of “validation and verification” is not an exercise in
tautology—the term validation is usually applied to metadata, and verification
to IL code.) One such tool is the common language runtime itself. The loader
tests metadata against many of the validity rules, especially those whose viola-
tion could break the system. The runtime subsystem responsible for JIT compi-
lation performs IL code verification. These processes are referred to as run-time
validation and verification.

94

Part [l Underlying Structures

PEVerify, a stand-alone tool included in the .NET Framework SDK, offers
more exhaustive validation and verification. PEVerify employs two independent
subsystems, MDValidator and ILVerifier. MDValidator can also be invoked
through the IL Disassembler.

You can find information about PEVerify and the IL Disassembler in the
appendixes. Later chapters discuss various validity rules along with the related
metadata structures and IL constructs.

Summary

Now that we know how the metadata is organized in principle, we are ready to
examine the particular metadata items and the tables representing them. All
further considerations shall concentrate on four metadata streams—#Strings,
#Blob, #US, and #~—because the #GUID stream is referenced in one metadata
table only (the Module table) and the #- stream (unoptimized metadata) is
never emitted by the ILAsm compiler.

Here’s some advice for those of you who wonder if it would be a good
idea to spoof the metadata header to get access to the data beyond the metadata
under the pretense of manipulating the metadata: forget it. The runtime loader
has safeguards analyzing the consistency of the metadata headers and the
metadata itself. If an inconsistency is detected, the loader refuses to open the
metadata streams. Tinkering with the metadata headers does not lead to erroneous
or unpredictable behavior of the module; instead, it renders the module
unloadable, period.

And on this cheerful note, let’s proceed to discussion of the “real”
metadata items.

Part lll

i
b

ShER SR ; s

Modules and Assemblies

What Is an Assembly? 97

Manifest 101

Order of Manifest Declarations in ILAsm 117
Single-Module and Multimodule Assemblies 118
Metadata Validity Rules 119

This chapter discusses the organization, deployment, and execution of assemblies
and modules. It also provides a detailed examination of the metadata segment
responsible for assembly and module identity and interaction: the manifest. As
you might recall from Chapter 1, “Simple Sample,” an assembly can include several
modules. Any module of a multimodule assembly can—and does, as a rule—
carry its own manifest, but only one module per assembly carries the manifest
that contains the assembly’s identity. This module is referred to as the prime
module. Thus each assembly, whether multimodule or single-module, contains
only one prime module.

What Is an Assembly?

An assembly is basically a deployment unit, a building block of a managed
application. Assemblies are reusable, allowing different applications to use the
same assembly. Assemblies carry a full self-description in their metadata,
including version information that allows the common language runtime to use
a specific version of an assembly for a particular application.

97

98

Part [l Fundamental Components

This arrangement eliminates what’s known as “DLL Hell,” the situation
created when upgrading one application renders another application inopera-
tive because both happen to use the same DLL(s). A typical example of DLL
Hell occurred with the release of the game Microsoft Age of Empires II, a sequel
to Age of Empires. Because the sequel used a more advanced version of the
Microsoft DirectX DLL, which was incompatible with Age of Empires, the orig-
inal game ceased to work when the sequel was installed. To deal with the situ-
ation, Microsoft had to issue a new version of the DirectX DLL that was
consumable by both games.

Private and Shared Assemblies

Assemblies are classified as either private or shared. Structurally and functionally,
these two kinds of assemblies are the same, but they differ in how they are
named and deployed and in the level of version checks performed by the loader.

A private assembly is considered part of a particular application, not
intended for use by other applications. A private assembly is deployed in the
same directory as the application or in a subdirectory of this directory. This kind
of deployment shields the private assembly from other applications, which
should not have access to it.)

Being part of a particular application, a private assembly is usually created
by the same author (person, group, or organization) as other components spe-
cific to this application and is thus considered to be primarily the author’s
responsibility. Consequently, naming and versioning requirements are relaxed
for private assemblies, and the common language runtime does not enforce
these requirements. The name of a private assembly must be unique within the
application.

A shared assembly is not part of a particular application and is designed to
be used widely by various applications. Shared assemblies are usually authored
by groups or organizations other than those responsible for the applications
that use these assemblies. A prominent example of shared assemblies is the set
of assemblies constituting the Microsoft .NET Framework class library.

As a result of such positioning, the naming and versioning requirements
for shared assemblies are much stricter than those for private assemblies.
Names of shared assemblies must be globally unique. Additional assembly
identification is provided by strong names, which use cryptographic public/
private key pairs to ensure the name’s uniqueness and to prevent name spoofing.
A strong name also provides the consumer of the shared assembly with infor-
mation about the identity of the assembly publisher. If the common language
runtime cryptographic checks pass, the consumer can be sure that the assembly

Chapter 5 Modules and Assemblies 99

comes from the expected publisher, assuming that the publisher’s private
encryption key was not compromised.

Shared assemblies are deployed into the global assembly cache (GAC).
The GAC stores multiple versions of shared assemblies side by side. The loader
typically looks for the shared assemblies in the GAC.

Note Under some circumstances, an application might need to
deploy a shared assembly in'its directory to ensure that the appropri-
ate version is loaded. In such a case, the shared assembly is being
used as a private assembly, so it is not in fact shared, whether it is
strong-named or not.

Application Domains as Logical Units of Execution

Operating systems and run times typically provide some form of isolation
between applications running on the system. This isolation is necessary to
ensure that code running in one application cannot adversely affect other, unre-
lated applications. In modern operating systems, this isolation is achieved by
using process boundaries, where a process, occupying a unique virtual address
space, runs exactly one application and scopes the resources that are available
for that process to use.

Managed code execution has similar needs for isolation. Such isolation
can be provided at lower cost in a managed application, however, consider-
ing that managed applications run under the control of the common language
runtime and are verified to be type-safe.

The runtime allows multiple applications to be run in a single operating
system process, using a construct called an application domain to isolate the
applications from one another. In many respects, application domains are the
common language runtime equivalent of an operating system process.

Specifically, isolation in managed applications means the following:

B Different security levels can be assigned to each application domain,
giving the host a chance to run the applications with varying security
requirements in one process.

B Applications can be independently stopped and debugged.

B Code running in one application cannot directly access code or
resources from another application. (Doing so could introduce a
security hole.)

100

Part Il Fundamental Components

B Faults in one application cannot affect other applications by bringing
down the entire process.

M Each application has control over where the code loaded on its
behalf comes from and what version the code being loaded is. In
addition, configuration information is scoped by the application.

The following examples describe scenarios in which it is useful to run
multiple applications in the same process:

B ASP.NET runs multiple Web applications in the same process. In
ASP/IIS (Internet Information Services), application isolation was
achieved by process boundaries, which proved too expensive to
scale appropriately.

B Microsoft Internet Explorer runs code from multiple sites in the same
process as the browser code itself. Obviously, code from one site
should not be able to affect code from another site.

W Database engines need to run code from multiple user applications
in the same process.

W Application server products might need to run code from multiple
applications in a single process.

Hosting environments such as ASP.NET or Internet Explorer need to run
managed code on behalf of the user and take advantage of the application
isolation features provided by application domains. In fact, it is the host that
determines where the application domain boundaries lie and in what domain
user code is run, as these examples show:

B ASP.NET creates application domains to run user code. Domains are
created per application as defined by the Web server.

B Internet Explorer by default creates one application domain per site
(although developers can customize this behavior).

B In Shell EXE, each application launched from the command line runs
in a separate application domain occupying one process.

B Microsoft Visual Basic for Applications (VBA) uses the default appli-
cation domain of the process to run the script code contained in a
Microsoft Office document.

B Windows Foundation Classes (WFC) Forms Designer creates a sepa-
rate application domain for each form being built. When a form is
edited and rebuilt, the old application domain is shut down, the code
is recompiled, and a new application domain is created.

Chapter 5 Modules and Assemblies

Because isolation demands that the code or resources of one application
must not be directly accessible from code running in another application, no
direct calls are allowed between objects in different application domains.
Cross-domain communications are limited to passing the objects, which are
either copied or accessed via proxy and which fall into one of the following

three categories:

Unbound objects are marshaled by value across domains. This
means that the receiving domain gets a copy of the object to play
with instead of the original object.

AppDomain-bound objects are marshaled by reference across
domains, which means that cross-domain access is always accom-
plished through proxies.

Context-bound objects are also marshaled by reference across
domains as well as between contexts within the same domain.

The common language runtime relies on the verifiable type safety of the
code to provide fault isolation between domains at a much lower cost than that
incurred by the process isolation used in operating systems. Because isolation is
based on static type verification, hardware ring transitions or process switches

are not necessary.

Manifest

The metadata that describes an assembly and its modules is referred to as a

manifest. The manifest carries the following information:

Identity, including a simple textual name, an assembly version num-
ber, an optional culture if the assembly contains localized managed
resources, and an optional public key if the assembly is strong-
named. This information is defined in two metadata tables: Module
and Assembly (in the prime module only).

Contents, including types and managed resources exposed by this
assembly for external use and the location of these types and
resources. The metadata tables that contain this information are
ExportedType (in the prime module only) and ManifestResource.

Dependencies, including other (external) assemblies this assembly
references and, in the case of a multimodule assembly, other modules
of the same assembly. You can find the dependency information in
these metadata tables: AssemblyRef, ModuleRef, and File.

102

Part 1l

Fundamental Components

Requested permissions, specific to the assembly as a whole. More
specific requested permissions might also be defined for certain
types (classes) and methods. This information is defined in the
DeclSecurity metadata table. (Chapter 14, “Security Attributes,”
describes requested permissions and their declaration.)

Custom attributes, specific to the manifest components. Custom
attributes provide additional information used by compilers and
other tools. The common language runtime recognizes a limited
number of custom attributes. Custom attributes are defined in the
CustomAttribute metadata table. (Refer to Chapter 13, “Custom
Attributes,” for more information on this topic.)

The diagram in Figure 5-1 shows the mutual references that take place

between the metadata tables constituting the manifest.

Assembly
(assembly identity;
* prime module only)

Module
(identity of this module)

ModuleRef
(other modules of
the same assembly)

T—

11

Figure 5-1

AssemblyRef
(other assemblies
referenced in this one)

File
(other files of the same
assembly)

—

ManifestResource
(managed resources
defined in this assembly
or defined or used
in‘'this module)

DeclSecurity
(prime module only)

'

ExportedType
(types exposed by this
assembly and defined in
other modules;
prime module only)

<«

* CustomAttribute

Mutual references between the manifest's metadata tables.

Chapter 5 Modules and Assemblies

Assembly Metadata Table and Declaration

The Assembly metadata table contains at most one record, which appears in the
prime module’s metadata. The table has the following column structure:

HasbAlgld (4-byte unsigned integer) The ID of the hash algo-
rithm used in this assembly to hash the files. The value must be one
of the CALG_* values defined in the header file Wincrypt.h. The
default hash algorithm is CALG_SHA (a.k.a. CALG_SHA1) (0x8004).
ECMA specifications consider this algorithm to be standard, offering
the best widely available technology for file hashing.

MajorVersion (2-byte unsigned integer) The major version of
the assembly.

MinorVersion (2-byte unsigned integer) The minor version of
the assembly.

BuildNumber (2-byte unsigned integer) The build number of
the assembly.

RevisionNumber (2-byte unsigned integer) The revision num-
ber of the assembly.

Flags (4-byte unsigned integer) Assembly flags indicating limita-
tions on running different versions of this assembly side by side.

PublicKey (offset in the #Blob stream) A binary object repre-
senting a public encryption key for a strong-named assembly.

Name (offset in the #Strings stream) The assembly name,
which must be nonempty and must not contain a path or a filename
extension.

Locale (offset in the #Strings stream) The culture (formerly
known as locale) name, such as en-US (American English) or fi-CA
(Canadian French). The culture name must match one of hundreds
of culture names “known” to the runtime through the .NET Frame-
work class library, but this validity rule is rather meaningless: to use
a culture, the specific language support must be installed on the tar-
get machine. If the language support is not installed, it doesn’t matter
whether the culture is “known” to the runtime.

In ILAsm, the Assembly is declared in the following way:

.assembly <flags> <name> { <assemblyDecl>* }

103

104 Part Il Fundamental Components

where <flags> ::=

<none> // No Timitations on side-by-side running of the assembly
| noappdomain // No side-by-side running within one AppDomain

| noprocess // No side-by-side running within one process

| nomachine // No side-by-side running on the same machine

and <assemblyDecl> ::=

.hash algorithm <int32> // Set hash algorithm ID

| .ver <int32>:<int32>:<int32>:<int32> // Set version numbers
| .publickey = (<bytes>) // Set public encryption key

| .locale <quotedString> // Set assembly culture

| <securityDecl> // Set requested permissions

| <customAttrDecl> // Define custom attribute(s)

In this declaration, <in132> denotes an integer number, at most 4 bytes in
size. The notation <bytes> represents a sequence of two-digit hexadecimal
numbers, each representing 1 byte; this form, bytearray, is often used in ILAsm
to represent binary objects of arbitrary size. Finally, <quotedString> denotes, in
general, a composite quoted string—that is, a construct such as
"ABC"+"DEF"+"GHI". The concatenation with the plus sign is useful for defining
very long strings, although in this case we don’t need concatenation for strings
such as en-US or nl-BE.

2 0 A A TR R 0 S S T SR S A NG A, B I A

Note In addition to the three flags related to side-by-side execution,
three more, which are not relevant to the discussion at hand, are avail-
able. One indicates whether the assembly holds a full public key. This
flag is never set explicitly; rather, it is set when a PublicKey entry is
defined. The other two flags, EnableJITcompilerTracking and Disable-
JITcompileroptimizer, are related to the debug mode of the JIT (just-
in-time) compiler and are set at the module load time.

AssemblyRef Metadata Tahle and Declaration

The AssemblyRef (assembly reference) metadata table defines the external
dependencies of an assembly or a module. Both prime and nonprime modules
can—and do, as a rule—contain this table. The only assembly that does not
depend on any other assembly, and hence has an empty AssemblyRef table, is
Mscorlib.dll, the root assembly of the .NET Framework class library.

Chapter 5 Modules and Assemblies

The column structure of the AssemblyRef table is as follows:

MajorVersion (2-byte unsigned integer) The major version of
the assembly.

MinorVersion (2-byte unsigned integer) The minor version of
the assembly.

BuildNumber (2-byte unsigned integer) The build number of
the assembly.

RevisionNumber (2-byte unsigned integer) The revision num-
ber of the assembly.

Flags (4-byte unsigned integer) Assembly reference flags, which
indicate whether the assembly reference holds a full unhashed
public key or a “surrogate” (public key token).

PublicKeyOrToken (offset in the #Blob stream) A binary object
representing a public encryption key for a strong-named assembly or
a token of this key. A key token is an 8-byte representation of a
hashed public key.

Name (offset in the #Strings stream) A referenced assembly
name, which must be nonempty and must not contain a path or a
filename extension.

Locale (offset in the #Strings stream) The culture name.

HasbValue (offset in the #Blob stream) A binary object repre-
senting a hash of the metadata of the referenced assembly’s prime
module. Because this value is ignored by the loader in the first
release of the common language runtime, it can safely be omitted.

In ILAsm, an AssemblyRef is declared in the following way:

.assembly extern <name> { <assemblyRefDecl>* }

where <assemblyRefDecl> ::=

|
I
|
|
I
!

.ver <int32>:<int32>:<int32>:<int32> // Set version numbers
.publickey = (<bytes>) // Set public encryption key

105

.publickeytoken = (<bytes>) // Set public encryption key token

.locale <quotedString> // Set assembly locale
.hash = (<bytes>) // Set hash value
<customAttrDecl> // Define custom attribute(s)

106

Part Il Fundamental Components

As you might have noticed, ILAsm does not provide a way to set the flags
in the AssemblyRef declaration. The explanation is simple: the only flag relevant
to an AssemblyRef is the flag indicating whether the AssemblyRef carries a full
unhashed public encryption key, and this flag is set only when the publickey
directive is used.

When referencing a strong-named assembly, you are required to specify
publickeytoken (or publickey, which is rarely used in AssemblyRefs) and .ver.
The only exception to this rule among the strong-named assemblies is
Mscorlib.dll.

If .Jocale is not specified, the referenced assembly is presumed to be
“culture-neutral.”

An interesting situation arises when we need to use two or more versions
of the same assembly side by side. An assembly is identified by its name, version,
public key (or its token), and culture. It would be extremely cumbersome to list
all these identifications every time we reference an assembly: “I want to call
method Bar of class Foo from assembly SomeOtherAssembly, and I want the
version number such-and-such, the culture n/-BE, and ...” Of course, if we
didn’t need to use different versions side by side, we could simply refer to an
assembly by name.

ILAsm provides an AssemblyRef aliasing mechanism to deal with such
situations. The AssemblyRef declaration can be extended as shown here:

.assembly extern <name> as <alias> { <assemblyRefDecl>x }

And whenever we need to reference this assembly, we can use its <alias>, as
seen in this example:

.assembly extern SomeOtherAssembly as 01dSomeOther
{ .ver 1:1:1:1 }
.assembly extern SomeOtherAssembly as NewSomeOther
{ .ver 1:3:2:1}

call int32 [01dSomeOther]Foo::Bar(string)
call int32 [NewSomeOther]Foo::Bar(string)
The alias is not a part of metadata. Rather, it is simply a language tool, needed
to identify a particular AssemblyRef among several same-name AssemblyRefs. IL

Disassembler generates aliases for AssemblyRefs whenever it finds same-name
AssemblyRefs in the module metadata.

Chapter 5 Modules and Assemblies

The Loader in Search of Assemblies

When we define an AssemblyRef in the metadata, we expect the loader to find
exactly this assembly and load it into the application domain. Let’s have a look
at the process of finding an external assembly and binding it to the referencing
application.
Given an AssemblyRef, the process of binding to that assembly is influ-
enced by these factors:

1.

The application base (AppBase), which is a URL to the referencing
application location (that is, to the directory in which your applica-
tion is located). For executables, this is the directory containing the
EXE file. For Web applications, the AppBase is the root directory of
the application as defined by the Web server.

Version policies specified by the application, by the publisher of the
shared assembly being referenced, or by the administrator.

Any additional search path information given in the application con-
figuration file.

Any code base (CodeBase) locations provided in the configuration
files by the application, the publisher, or the administrator. The Code-
Base is a URL to the location of the referenced external assembly.

Whether the reference is to a shared assembly with a strong name or
to a private assembly.

107

As illustrated in Figure 5-2, the loader performs the following steps to
locate a referenced assembly:

Initiate the binding. Basically, this means taking the relevant Assem-
blyRef record from the metadata and seeing what it holds—its exter-
nal assembly name, whether it is strong-named, whether culture is
specified, and so on.

Apply the version policies, which are statements made by the appli-
cation, by the publisher of the shared assembly being referenced, or
by the administrator. These statements are contained in XML con-
figuration files and simply redirect references to a particular version
(or set of versions) of an assembly to a different version.

108

Part 11

Fundamental Components

The .NET Framework retrieves its configuration from a set of
configuration files. Each file represents settings that have different
scopes. For example, the configuration file supplied with the instal-
lation of the common language runtime has settings that can affect
all applications that use that version of the runtime. The configura-
tion file supplied with an application has settings that affect only that
one application.

Check the CodeBase. Now that the common language runtime
knows which version of the assembly it is looking for, it begins the
process of locating it. If the CodeBase has been supplied (in the same
XML configuration file), it points the runtime directly at the execut-
able to load; otherwise, the runtime needs to look in the AppBase
and the GAC, as described in step 4. If the executable specified by
the CodeBase matches the assembly reference, the process of finding
the assembly is complete, and the external assembly can be loaded.
In fact, even if the executable: specified by the CodeBase does not
match the reference, the common language runtime stops searching.
In this case, of course, the search is considered a failure, and no
assembly load follows.

Check the GAC or the AppBase or both. If the CodeBase hasn’t been
supplied, the remainder of the process depends on whether the ref-
erenced assembly is private or strong-named.

If the reference is to a private assembly, the process probes the
AppBase. The probing involves consecutive searching in the directories
defined by the AppBase, the private binary path (binpath) from the
same XML configuration file, the culture of the referenced assembly,
and its name. The AppBase plus directories specified in the binpath
form a set of root directories {<rooty>, k=1...N}. If the AssemblyRef
specifies the culture, the search is performed in directories <root>/
<culture> and then in <roo# >/<culture>/<name>; otherwise, the
directories <rootf)> and then <rootf>/<name> are searched. When
searching for a private assembly, the process ignores the version
numbers. If the assembly is not found by probing, the binding fails.

If the assembly is strong-named, the process first looks in the
global assembly cache. If the strong-named assembly is not found in
the GAC, the process probes the AppBase as just described, and in
this case it also checks the version numbers.

Chapter 5 Modules and Assemblies 109

Step 1: Initiate the binding

v

Step 2: Apply version policies
(application, publisher, administrator)

l

Step 3: Is the
CodeBase
specified? .-

Yes

v

Probe in the CodeBase

Step 4: Is
the assembly
strong-named? " '

Search in the global assembly cache |

l

v

Probe in the AppBase

11

Figure 5-2 Searching for a referenced assembly.

Module Metadata Table and Declaration

The Module metadata table contains a single record that provides the identifi-
cation of the current module. The column structure of the table is as follows:

Generation (2-byte unsigned integer) Used only at run time, in
edit-and-continue mode.
Name (offset in the #Strings stream) The module name, which

is the same as the name of the executable file with its extension but
without a path. The length should not exceed 512 characters, counting

the zero terminator.

110

Part Il Fundamental Components

B Muvid (offset in the #GUID stream) A globally unique identifier,
assigned to the module as it is generated.

B Encld (offset in the #GUID stream) Used only at run time, in
edit-and-continue mode.

B EncBaseld (offset in the #GUID stream) Used only at run time,

in edit-and-continue mode.

Because only one entry of the Module record can be set explicitly (the
Name entry), the module declaration in ILAsm is quite simple:

.module <name>

ModuleRef Metadata Tahle and Declaration

The ModuleRef metadata table contains descriptors of other modules refer-
enced in the current module. The set of “other modules” includes subsets of
both managed and unmanaged modules.

The relevant managed modules are the other modules of the current
assembly. In ILAsm, they should be declared explicitly, and their declarations
should be paired with File declarations (discussed in the following section).

The unmanaged modules described in the ModuleRef table are simply
unmanaged DLLs containing methods called from the current module using
the platform invocation mechanism—P/Invoke, discussed in Chapter 15,
“Managed and Unmanaged Code Interoperation.” These ModuleRef records
should not be paired with File records. They need not be explicitly declared in
ILAsm because in ILAsm the DLL name is part of the P/Invoke specification.

A ModuleRef record contains only one entry, the Name entry, which is an
offset in the #Strings stream. The ModuleRef declaration in ILAsm is not much
more sophisticated than the declaration of Module:

.module extern <name>

As in the case of Module, <name> in ModuleRef is the name of the executable
file with its extension but without a path, not exceeding 512 characters.

File Metadata Table and Declaration

The File metadata table describes other files of the same assembly that are
referenced in the current module. In single-module assemblies, this table is
empty. The table has the following column structure:

Chapter 5 Modules and Assemblies 111

B Flags (4-byte unsigned integer) Binary flags characterizing the
file. In this version, this entry is mostly reserved for future use; the
only flag currently defined is File contains no metadata
(0x00000001). This flag indicates that the file in question is not a
managed PE file but rather a pure resource file.

B Name (offset in the #Strings stream) The filename, subject to
the same rules as the names in Module and ModuleRef. This is the
only occurrence of data duplication in the metadata model: the File
name matches the name used in the ModuleRef with which this File
record is paired. However, because the names in both records are
not physical strings but rather offsets in the string heap, the data
might not actually be duplicated; instead, both records might refer-
ence the same string in the heap.

B HasbValue (offset in the #Blob stream) The blob representing
the hash of the file, used to authenticate the files in a multifile assembly.
Even in a strong-named assembly, the strong name signature resides
only in the prime module and covers only the prime module. Non-
prime modules in an assembly are authenticated by their hash values.

The File declaration in ILAsm looks like the following:
.file <flag> <name> .hash = (<bytes>)
where <flag> ::=

<none> // The file is a managed PE file
| nometadata // The file is a pure resource file

If the hash value is not explicitly specified, the ILAsm compiler finds the
named file and computes the hash value using the hash algorithm specified in
the Assembly declaration.

The File declaration can also have a .entrypoint clause, as shown in this
example:

.file MainClass.d11
.hash = (01 02 03 04 05 06 ..)
.entrypoint

This sort of File declaration can occur only in the prime module and only when
the entry point method is defined in a nonprime module of the assembly. This
clause of the File declaration does not affect the metadata, but it puts the appro-
priate file token in the EntryPointToken entry of the common language runtime
header. See Chapter 3, “The Structure of a Managed Executable File,” for details
about EntryPointToken and the runtime header.

112

Part Il Fundamental Components

The prime module of an assembly, especially a runnable application
(EXE), must have a valid token in the EntryPointToken field of the common lan-
guage runtime header; and this token must be either a Method token, if the
entry point method is defined in the prime module, or a File token. In the latter
case, the loader loads the relevant module and inspects its common language
runtime header, which must contain a valid Method token in the EntryPoint-
Token field.

Managed Resource Metadata and Declaration

A resource is any nonexecutable data that is logically deployed as a part of an
application. The data can take any number of forms such as strings, images,
persisted objects, and so on. As Chapter 3 described, resources can be either
managed or unmanaged (platform-specific). These two kinds of resources have
different formats and are accessed using managed and unmanaged APIs,
respectively.

An application often must be customized for different cultures. A culiure
is a set of preferences based on a user’s language, sublanguage, and cultural
conventions. In the .NET Framework, the culture is described by the Culture-
Info class from the .NET Framework class library. A culture is used to customize
operations such as formatting dates and numbers, sorting strings, and so on.

You might also need to customize an application for different countries or
regions. A region defines a set of standards for a particular country or region of
the world. In the .NET Framework, the class library describes a region using the
Regioninfo class. A region is used to customize operations such as formatting
currency symbols.

Localization of an application is the process of sharing the application’s
executable code with the application’s resources that have been customized for
specific cultures. Although a culture and a region together constitute a locale,
localization is not concerned with customizing an application to a specific
region. The .NET Framework and the common language runtime do not sup-
port localization of component metadata, instead relying solely on the managed
resources for this task.

The .NET Framework uses a hub-and-spoke model for packaging and
deploying resources. The hub is the main assembly, which contains the nonlo-
calizable executable code and the resources for a single culture (referred to as
the neutral culture). The neutral culture is the fallback culture for the applica-
tion. Each spoke connects to a satellite assembly that contains the resources for
a single culture. Satellite assemblies do not contain code.

The advantages of this model are obvious. First, resources for new cul-
tures can be added incrementally after an application is deployed. Second, an
application needs to load only those satellite assemblies that contain the
resources needed for a particular run.

Chapter 5 Modules and Assemblies 113

The resources used in or exposed by an assembly can reside in one of the
following locations:

[| In separate resource file(s) in the same assembly. Each resource file
can contain one or more resources. The metadata descriptors of such
files carry the nometadata flag.

B Embedded in managed modules of the same assembly.

B In another (external) assembly.

Because the resource data is not directly used or validated by the deploy-
ment subsystem or the loader, it can be of any kind.

All resource data embedded in a managed PE file resides in a contiguous
block inside the .text section. The Resources data directory in the common lan-
guage runtime header provides the relative virtual address (RVA) and size of
embedded managed resources. Each individual resource is preceded by a 4-
byte unsigned integer holding the resource’s length in bytes. Figure 5-3 shows
the layout of embedded managed resources.

Managed PE file

Common language runtime header

Resources data directory

Metadata

Resource #1: Name = ResA Offset = 0x0000

Resource #2: Name = ResB.bmp Offset = 0x0020

Resource #3: Name = ResC.wav Offset = 0x0200

- Length Resource #1
Length Resource #2
Resource #2 Length |

Resource #3

Resource #3

Resource #3

Figure 5-3 The layout of embedded managéd resources.

114 Part Il Fundamental Components

The ManifestResource metadata table, describing the managed resources,
has the following column structure:

B Offset (4-byte unsigned integer) Location of the resource within
the managed resource segment to which the Resources data directory
of the common language runtime header points. This is 7ot an RVA;
rather, it is an offset within the managed resource segment.

B Flags (4-byte unsigned integer) Binary flags indicating whether
the managed resource is public (accessible from outside the assem-
bly) or private (accessible from within the current assembly only).

B Name (offset in the #Strings stream) Nonempty name of the
resource, unique within the assembly.

B Implementation (coded token of type Implementation) Token
of the respective AssemblyRef record if the resource resides in
another assembly or of the respective File record if the resource
resides in another file of the current assembly. If the resource is
embedded in the current module, this entry is set to 0. If the resource
is imported from another assembly, the offset need not be specified;
the loader will ignore it.

ILAsm syntax for the declaration of a managed resource is as follows:
.mresource <flag> <name> { <mResourceDec]>* }

where <flag> ::= public | private and <mResourceDecl> ::=

.assembly extern <alias> // Resource is imported from another
// assembly
| .file <name> at <int32> // Resource resides in another

// file of this assembly;
// <int32> is the offset
| <customAttrDecl> // Define custom attribute for this resource

The default flag value is private.

The directives .assembly extern and .file in the context of a managed
resource declaration refer to the resource’s Implementation entry and are mutu-
ally exclusive. If Implementation references the AssemblyRef or File before it
has been declared, the ILAsm compiler will diagnose an error.

If the Implementation entry is empty, the resource is presumed embedded
in the current module. In this case, the ILAsm compiler creates the PE file, loads
the resource from the file according to the resource’s name, and writes it into
the .fext section of the PE file, automatically setting the OffSet entry of the Man-
ifestResource record. When the IL Disassembler disassembles a PE file into a
text file, the embedded managed resources are saved into binary files named

Chapter 5 Modules and Assemblies 115

after these resources, which allows the ILAsm compiler to easily pick them up
if the PE file needs to be reassembled.

ILAsm does not offer any language constructs to address the managed
resources because IL lacks the means to do so. Managed APIs provided by the
NET Framework class library—specifically, the System.Resources.ResourceMan-
ager class—are used to load and manipulate managed resources.

ExportedType Metadata Table and Declaration

The ExportedType metadata table contains information about the public classes
(visible outside the assembly) that are declared in nonprime modules of the
assembly. Only the prime module’s manifest can carry this table.

This table is needed because the loader expects the prime module of an
assembly to hold information about all classes exported by the assembly. The
union of the classes defined in the prime module and those in the Exported-
Type table gives the loader the full picture.

On the other hand, the intersection of the classes defined in the prime
module and those in the ExportedType table must be nil. As a result, the
ExportedType table can be nonempty only in the prime module of a multimo-
dule assembly.

The ExportedType table has the following column structure:

B Flags (4-byte unsigned integer) Binary flags indicating accessi-
bility of the exported type. The flags we are interested in are public
and nested public; other accessibility flags—identical to the class
accessibility flags discussed in Chapter 6, “Namespaces and
Classes,”—are syntactically admissible but are not used to define true
exported types. Other flags can be present in pseudo-ExportedTypes
only, which the loader can use to resolve unscoped type references
in multimodule assemblies.

Some explanation is in order. Any time a type (class) is refer-
enced in a module, the resolution scope should be provided to indi-
cate where the referenced class is defined (in the current module, in
another module of this assembly, or in another assembly). If the reso-
lution scope is not provided, the referenced type should be declared
in the current module. However, if this type cannot be found in the
module referencing it, and if the manifest of the prime module carries
a same-name pseudo-ExportedType record indicating where the type
is actually defined, the loader is nevertheless able to resolve the type
reference. None of the current Microsoft managed compilers, includ-
ing the ILAsm compiler, uses this rather bizarre technique.

116

Part 11

Fundamental Components

TypeDefld (4-byte unsigned integer) An uncoded token refer-
ring to a record of the TypeDef table of the module where the
exported class is defined. This is the only occasion in the entire
metadata model in which a module’s metadata contains an explicit
value of a metadata token from another module. This token is used
as something of a hint for the loader and can be omitted without any
ill effects. If the token is supplied, the loader retrieves the specific
TypeDef record from the respective module’s metadata and checks
the full name of ExportedType against the full name of TypeDef. If the
names match, the loader has found the class it was looking for; if the
names do not match, or if the token was not supplied in the first
place, the loader finds the needed TypeDef by its full name. My
advice: never specify a TypeDefId token explicitly when program-
ming in ILAsm. This shortcut works only for automatic tools such as
the Assembly Linker (AL) and only under certain circumstances.

TypeName (offset in the #Strings stream) Exported type’s
name; must be nonempty.

TypeNamespace (offset in the #Strings stream) Exported
type’s namespace; can be empty. Class names and namespaces are
discussed in Chapter 6.

Implementation (coded token of type Implementation) Token
of the File record indicating the file of the assembly where the
exported class is defined or the token of another ExportedType, if the
current one is nested in another one.

The exported types are declared in ILAsm as follows:

.class extern <flag> <namespace>.<name> { <expTypeDecl>x }

where <flag> ::= public | nested public and <expTypeDecl> ::=

.file <name> // File where exported class is defined
| .class extern <nmamespace>.<name> // Enclosing exported type
| .class <int32> // Set TypeDefld explicitly

| <customAttrDecl> // Define custom attribute for this ExportedType

The directives .file and .class extern define the Implementation entry and
are mutually exclusive. As in the case of the .mresource declaration, the File or
ExportedType must be declared before being referenced by the Implementation

entry.

It is fairly obvious that if Implementation is specified as .class extern, we
are dealing with a nested exported type, and Flags must be set to nested public.
Inversely, if Implementation is specified as .file, we are dealing with a top-level

unnested class, and Flags must be set to public.

Chapter 5 Modules and Assemblies

Order of Manifest Declarations in ILAsm

The general rule in ILAsm (and not only in ILAsm) is “declare, then reference.”
In other words, it's always safer, and in some cases outright required, to declare
a metadata item before referencing it. There are times when you can reference
a yet-undeclared item—for example, calling a method that is defined later in the
source code. But you cannot do this in the manifest declarations.
If we reexamine the diagram shown in Figure 5-1, which illustrates the
mutual references between the manifest metadata tables, we can discern the
following list of dependencies:

1.

Exported types reference files and enclosing exported types.
Manifest resources reference files and external assemblies.

Every manifest item can have associated custom attributes, and cus-
tom attributes reference external assemblies and (rarely) external
modules. (See Chapter 13 for details.)

117

To comply with the “declare, then reference” rule, the following sequence
of declarations is recommended for ILAsm programs, with the manifest decla-
rations preceding all other declarations in the source code:

AssemblyRef declarations (.assembly extern), because of the custom
attributes. The reference to the assembly Mscorlib should lead the
pack because most custom attributes reference this assembly.

ModuleRef declarations (.module extern), again because of the cus-
tom attributes.

Assembly declaration (.assembly). Because the ILAsm compiler takes
different paths in compiling Mscorlib.dll and compiling other assem-
blies, it is better to let it know which path to take as soon as possible.
However, this is less important if you are not compiling Mscorlib.dll;
by default the compiler assumes that it is compiling a “conventional”
module.

File declarations (.file) because ExportedType and ManifestResource
declarations might reference them.

ExportedType declarations (.class extern), with enclosing Exported-
Type declarations preceding the nested ExportedType declarations.

ManifestResource declarations (.mresource).

118 Part Il Fundamental Components

R R R A R SRR S R T A N SRR e LR o7 R R e ST O T

Hote Remember that only the manifests of prime modules carry :
Assembly and ExportedType declarations.

kkkkkk L SR SO AR, e S S AN S A L0 e Y A S R S S o R s e A BB S R

Single-Module and Multimodule Assemblies

A single-module assembly consists of a sole prime module. Manifests of single-
module assemblies carry neither File nor ExportedType tables: there are no
other files to declare, and all types are defined in the prime module.

The advantages of single-module assemblies include lower overhead, easier
deployment, and slightly greater security. Overhead is lower because only one
set of headers and metadata tables must be read, transmitted, and analyzed.
Assembly deployment is simpler because only one PE file must be deployed.
And the level of security can be slightly higher because the prime module of the
assembly can be protected with a strong name signature, which is extremely
difficult to counterfeit and virtually guarantees the authenticity of the prime
module. Nonprime modules are authenticated only by their hash values (refer-
enced in File records of the prime module) and are theoretically easier to spoof.

Y Nk o 0 A

Nole As a rule, shared assemblies are single-module, probably
because of their instrumental nature.

Manifests of the modules of a multimodule assembly carry File tables, and
the manifest of the prime module of such an assembly might or might not carry
ExportedType tables, depending on whether any public types are defined in
nonprime modules.

The advantages of multimodule assemblies include easier development
and ... lower overhead. (No, I am not pulling your leg.) Both advantages stem
from the obvious modularity of the multimodule assemblies.

Multimodule assemblies are easier to develop because if you distribute the
functionality among the modules well, the modules can be developed indepen-
dently and then incrementally added to the assembly. (I didn’t say that a multi-
module assembly was easier to design.)

Lower overhead at run time results from the way the loader operates: it
loads the modules only when they are referenced. So if only a part of your

Chapter 5 Modules and Assemblies 119

assembly’s functionality is engaged in a certain execution session, only part of
the modules constituting your assembly might be loaded. Of course, you can-
not count on any such effect if the functionality is spread all over the modules
and if classes defined in different modules cross-reference each other.

A well-known technique for building a multimodule assembly from a set
of modules is based on a “spokesperson” approach: the functional modules
are analyzed, and an additional prime module is created, carrying nothing but
the manifest and (maybe) a strong name signature. Such a prime module car-
ries no functionality or positive definitions of its own whatsoever—it is only
a front for functional modules, a “spokesperson” dealing with the loader on
behalf of the functional modules. The Assembly Linker tool, distributed with
the .NET Framework, uses this technique to build multimodule assemblies.

Metadata Validity Rules

In this section, I'll summarize the validity rules for metadata contained in a man-
ifest. Because some of these rules have a direct bearing on how the loader func-
tions, the respective checks are performed at run time. Other rules describe
“well-formed” metadata; violating one of these rules might result in rather pecu-
liar effects during the program execution, but it does not represent a crash or
security breach hazard, so the loader does not perform these checks. You can
find the complete set of metadata validity rules in Partition II of the ECMA Stan-
dard Proposal; the sections that follow here review the most important of them.

ILAsm does allow you to generate invalid metadata. Thus,
|t S extremely important to carefully check your modules after compilation.

To find out whether any of the metadata in a module is invalid, you can
run the PEVerify utility, included in the .NET Framework SDK, using the option
/MD (metadata validation). Alternatively, you can invoke the IL Disassembler by
using the option /ADV (advanced). Choose View, Metalnfo, Validate, and then
press Ctrl+M. Both utilities use the Metadata Validator (MDValidator), which is
built into the common language runtime.

120 Part 1l

Fundamental Components

Assembly Table Validity Rules

The record count of the table must be no more than 1. This is not
checked at run time because the loader ignores all Assembly records
except the first one.

The Flags entry must have bits set only as defined in the CorAssem-
blyFlags enumeration in CorHdr.h. For the first release of the com-
mon language runtime, the valid mask is 0xC031.

The Locale entry must be set to 0 or must refer to a nonempty string
in the string heap that matches a known culture name. You can
obtain a list of known culture names by using a call to the Culture-
Info.GetCultures method, from the .NET Framework class library.

[run time] If Locale is not set to 0, the referenced string must be no
longer than 1023 characters plus the zero terminator.

[run time] The Name entry must refer to a nonempty string in the
string heap. The name must be the module filename excluding the
extension, the path, and the drive letter.

[run time] The PublicKey entry must be set to 0 or must contain a
valid offset in the #Blob stream.

AssemblyRef Table Validity Rules

The Flags entry can have only the least significant bit set (corre-
sponding to the afPublicKey value; see the CorAssemblyFlags enu-
meration in CorHdr.h).

[run time] The PublicKeyOrToken entry must be set to 0 or must con-
tain a valid offset in the #Blob stream.

The Locale entry must comply with the same rules as the Locale entry
of the Assembly table (discussed in the preceding section).

The table must not have duplicate records with simultaneously
matching Name, Locale, PublicKeyOrToken, and all Version entries.

[run time] The Name entry must refer to a nonempty string in the
string heap. The name must be the prime module filename excluding
the extension, the path, and the drive letter.

Chapter 5 Modules and Assemblies

Module Table Validity Rules

[run time] The record count of the table must be at least 1.

The record count of the table must be exactly 1. This is not checked
at run time because the loader uses the first Module record and
ignores the others.

[run time] The Name entry must refer to a nonempty string in the
string heap, no longer than 511 characters plus the zero terminator.
The name must be the module filename including the extension and
excluding the path and the drive letter.

The Mvid entry must refer to a nonzero GUID in the GUID heap. The
value of the Mvid entry is generated automatically and cannot be
specified explicitly in ILAsm.

ModuleRef Table Validity Rules

[run time] The Name entry must refer to a nonempty string in the
string heap, no longer than 511 characters plus the zero terminator.
The name must be a filename including the extension and excluding
the path and the drive letter.

File Table Validity Rules

The Flags entry can have only the least significant bit set (corre-
sponding to the ffContainsNoMetaData value; see the CorFileFlags
enumeration in CorHdr.h).

[run time] The Name entry must refer to a nonempty string in the
string heap, no longer than 511 characters plus the zero terminator.
The name must be a filename including the extension and excluding
the path and the drive letter.

[run time] The string referenced by the Name entry must not match
SINJ[[C]¥, where

0 Su=con | aux | Ipt | prn | nul | com
0 N:=:=0..9
o Ccx=9%:

[run time] The HashValue entry must hold a valid offset in the #Blob
stream.

121

122 Part 1l

Fundamental Components

The table must not contain duplicate records whose Name entries
refer to matching strings.

The table must not contain duplicate records whose Name entries
refer to strings matching this module’s name.

ManifestResource Table Validity Rules

[run time] The Implementation entry must be set to 0 or must hold a
valid AssemblyRef or File token.

[run time] If the Implementation entry does not hold an AssemblyRef
token, the Offset entry must hold a valid offset within limits specified
by the Resources data directory of the common language runtime
header of the target file.

[run time] The Flags entry must hold either 1 or 2—mrPublic or
myPrivate, respectively.

[run time] The Name entry must refer to a nonempty string in the
string heap.

The table must not contain duplicate records whose Name entries
refer to matching strings.

ExportedType Table Validity Rules

The record count of the table must be 0 if the Assembly table is
empty.

The record count of the table must be 0 if the File table is empty.
There must be no rows with TypeName and TypeNamespace match-

ing Name and Namespace, respectively, of any row of the TypeDef
table.

The Flags entry must hold one of the visibility flags of the enumera-
tion CorTypeAttr (see CorHdr.h). Valid flags are 0 through 7.

[run time] The Implementation entry must hold a valid ExportedType
or File token.

[run time] The Implementation entry must not hold an ExportedType
token pointing to this record.

If the Implementation entry holds an ExportedType token, the Flags
entry must hold a nested visibility value in the range 2-7.

Chapter 5 Modules and Assemblies

If the Implementation entry holds a File token, the Flags entry must -

hold the tdNonPublic or tdPublic visibility value (0 or 1).

[run time] The TypeName entry must refer to a nonempty string in the
string heap.

[run time] The TypeNamespace entry must be set to 0 or must refer to
a nonempty string in the string heap.

[run time] The combined length of the strings referenced by Type-
Name and TypeNamespace must not exceed 1023 characters.

The table must not contain duplicate records whose Implementation
entry holds a File token, and whose TypeName and TypeNamespace
entries refer to matching strings.

The table must not contain duplicate records whose Implementation
entries hold the same ExportedType token and whose TypeName
entries refer to matching strings.

123

Namespaces and Classes

Class Metadata 127

Namespace and Full Class Name 130
Class Attributes 135

Interfaces 140

Value Types 141

Enumerators 143

Delegates 144

Nested Types 147

Class Augmentation 149

Metadata Validity Rules 151

As earlier chapters have discussed, the common language runtime computa-
tional model is inherently object-oriented. The concept of class—or, to use
more precise runtime terminology, the concept of a f)pe—is the central princi-
ple around which the entire computational model is organized. The type of an
item—a variable, a constant, a parameter, and so on—defines both data repre-
sentation and the behavioral features of the item. Hence one type can be sub-
stituted for another only if both these aspects are equivalent for both types—for
instance, a derived type can be interpreted as the type from which it is derived.

The ECMA standard specification of the common language infrastructure
divides types into value types and reference types, depending on whether an
item type represents a data item itself or a reference (an address or a location
indicator) to a data item.

125

126

Part Il Fundamental Components

Reference types include object types, interface types, and pointer types.
Object types—classes—are types of self-describing values, either complete or
partial. Types with partial self-describing values are called abstract classes.
Interface types are always types of partial self-describing values. Interfaces usu-
ally represent subsets of behavioral features exposed by classes; a class is said
to implement the respective interface. Pointer types are simply references to
items, indicating item locations. -

The common language runtime object model supports only single type
inheritance, and multiple inheritance is simulated through implementation of
multiple interfaces. Because of that, the runtime object model is absolutely hier-
archical, with the System.Object class at the root of the tree. (See Figure 6-1.)
Interface types, however, are not part of the type hierarchy because they are
inherently incomplete and have no implementation of their own.

System.Object

System.Delegate System.ValueType

| O

System.MulticastDelegate System.Enum

Value types

Classes

Delegates Enumerators

~ Figure 6-1 The common language runtime type hierarchy.

All types (except interfaces) are derived eventually from System.Object.
This chapter examines types and their declarations, dividing the types into five
categories: classes, interfaces, value types, enumerators, and delegates. These
categories are not mutually exclusive—for example, delegates are classes and
enumerators are value types—but the types of each category have distinct fea-
tures.

Chapter 6 Namespaces and Classes 127

Class Metadata

From a structural point of view, all five categories of types have identical meta-
data representations. Thus we can talk about class metadata, or type metadata,
in a general sense.

Class metadata is grouped around two distinct concepts: type definition
(TypeDef) and type reference (TypeRef). TypeDefs and related metadata describe
the types declared in the current module, whereas TypeRefs describe references
to types that are declared somewhere else. Because it obviously takes more
information to adequately define a type than to refer to one already defined,
TypeDefs and related metadata are far more complex than TypeRefs.

When defining a type, you should supply the following information:

The name of the type being defined
Flags indicating special features the type should have
The type from which this type is derived
The interfaces this type implements
. How the loader should lay out this class

Whether this type is nested in another type—and if so, in which one

Where fields and methods of this type (if any) can be found

When referencing a type, only its name and resolution scope need be
specified. The resolution scope indicates where the definition of the referenced
type can be found: in this module, in another module of this assembly, or in
another assembly. In the case of referencing the nested types, the resolution
scope is another TypeRef.

Figure 6-2 shows the metadata tables that engage in type definition and
referencing but not the tables related to identification of type members—fields
and methods, for example, and their attributes. The arrows denote cross-table
referencing by means of metadata tokens. In the following sections, we’ll have
a look at all the metadata tables involved.

128 Part Il Fundamental Components

i ModuleRef .E

Figure 6-2 Metadata tables that engage in type definition and referencing.

TypeDef Metadata Table

The TypeDef table is the main table containing type definition information.
Each record in this table has six entries:

B Flags (4-byte unsigned integer) Binary flags indicating special
features of the type. Because the 7)peDef flags are numerous and
important, this chapter discusses them separately; see “Class
Attributes.” ‘

B Name (offset in the #Strings stream) The name of the type.
This entry must not be empty.

B Namespace (offset in the #Strings stream) The namespace of
the type. This entry can be empty. The namespace plus the name
constitute the full name of the type.

B Extends (coded token of type TypeDefOrRef) A token of the
type’s parent—that is, of the type from which this type is derived.
This entry must be set to 0 for all interfaces and for one class, the
type hierarchy root class System.Object. For all other types, this entry
should carry a valid reference to the TypeDef or TypeRef table.

B FieldList (record index [RID] to the Field table) An index to the
Field table, marking the start of the field records belonging to this

type.

B MethodList (RID to the Method table) An index to the Method
table, marking the start of the method records belonging to this type.

Chapter 6 Namespaces and Classes 129

TypeRef Metadata Table

The TypeRef metadata table has a much simpler structure than the TypeDef
table. Each record in this table has three entries:

B ResolutionScope (coded token of type ResolutionScope) An
indicator of the location of the type definition. This entry is set to 0
if the referenced type is defined in the current assembly—which IL
assembly language (ILAsm) does not allow—or to 1 (the Module
token) if the referenced type is defined in the same module. Resolu-
tionScope can be a token referencing the ModuleRef table if the type
is defined in another module of the same assembly, a token referenc-
ing the AssemblyRef table if the type is defined in another assembly,
or a token referencing the TypeRef table if the type is nested in
another type. Having TypeRefs for the types defined in the same
module does not constitute a metadata error, but it is redundant and
should be avoided if possible.

B Name (offset in the #Strings stream) The name of the refer-
enced type. This entry must not be empty.

B Namespace (offset in the #Strings stream) The namespace of
the referenced type. This entry can be empty. The namespace plus
the name constitute the full name of the type.

Interfacelmpl Metadata Table

If the defined type implements one or several interfaces, the corresponding

TypeDef record is referenced in one or several records of the Interfacelmpl

metadata table. This table serves as a lookup table, providing information about

“what is implementing what,” and it is ordered by implementing type. The
- Interfacelmpl table has only two entries in each record:

B Class (RID to the TypeDef table) An index to the TypeDef table,
indicating the implementing type.

B Interface (coded token of type TypeDefOrRef) An indicator of
the implemented type, which can reside in either the TypeDef table
or the TypeRef table. The implemented type must be marked as an
interface.

130 Part Il Fundamental Components

N‘estedCIass Metadata Table

If the defined type is nested in another type, its TypeDef record is referenced in
another lookup table: the NestedClass metadata table. (For more information
about nesting, see “Nested Types” later in this chapter.) Like the Interfacelmpl
table, the NestedClass table has only two entries per record:

"B NestedClass (RID to the TypeDef table) An indicator of the
nested type (the nestee).

B EnclosingClass (RID to the TypeDef table) An indicator of the
type in which the current type is nested (the encloser, or nester).

Because types of both entries are RIDs in the TypeDef table, the nestee
and the encloser cannot be defined in different modules or assemblies.

ClassLayout Metadata Table

Usually, the loader has its own ideas about how to lay out the type being
loaded. Certain types, however, must be laid out in a specific manner, and they
carry metadata information regarding these specifics.

The ClassLayout metadata table provides additional information about the
packing order and total size of the type. In the section “Value Type as Place-
holder” in Chapter 1, for example, when we declared a “placeholder” type with-
out any internal structure, we used such additional information—the total size
of the type.

A record in the ClassLayout metadata table has three entries:

B PackingSize (2-byte unsigned integer) The alignment factor in
bytes. This entry must be set to 0 or to a power of 2, from 1 to 128.

B ClassSize (4-byte unsigned integer) The total requested layout
size of the type. If the type has instance fields and the summary size
of these fields, aligned by PackingSize, is different from ClassSize,
the loader allocates the larger of the two sizes for the type.

B Parent (RID to the TypeDef table) An index of the type defini-
tion record to which this layout belongs. The ClassLayout table
should not contain any duplicate records with the same Parent entry
value.

Namespace and Full Class Name

It is time to talk seriously about names in the common language runtime and
ILAsm. So far, in Chapter 5, “Modules and Assemblies,” you've encountered

Chapter 6 Namespaces and Classes 131

only names that were in fact filenames and hence had to conform to well-
known filename conventions. From now on, however, you'll need to deal with
names in general, so it will be important to know the rules.

ILAsm Naming Conventions

Names in ILAsm are either simple or composite. Composite names are com-
posed of simple names and special connection symbols such as a dot. For
example, System and Object are simple names, and System.Object is a compos-
ite name. The length of either kind of name in ILAsm is not limited syntactically,
but metadata rules impose certain limitations on the name length.

The simplest form of a simple name is an identifier, which in ILAsm must
begin with an alphabetic character or one of the following characters:

#$, @ _
and continue with alphanumeric characters or one of the following:
2,8, @, _

These are examples of valid ILAsm identifiers:

W Object
u _Never_Say_Never_Again_

[| men@uork

Important One obvious limitation on ILAsm identifiers: an
ILAsm identifier must not match any of the (rather numerous)
ILAsm keywords.

The common language runtime accepts a wide variety of names with very
few limitations. Certain names—for example, .ctor (an instance constructor),
.cctor (a class constructor), and _Deleted* (a metadata item marked for deletion
during an edit-and-continue session)—are reserved for internal use by the runt-
ime. Generally, however, the runtime is liberal about names. As long as a name
serves its purpose—identifying a metadata item unambiguously—and cannot
be misinterpreted, it is perfectly fine.

132 Part Il Fundamental Components

To cover this variety, ILAsm offers an alternative way to present a simple
name: as a single-quoted literal. For example, these are valid ILAsm simple
names:

m 123
B ‘Space Between'

m &%/

One of the most frequently encountered kinds of composite names is the
dotted name, a name composed of simple names separated by a dot:

<dotted_name> ::= <simple_name>[.<simple_name>*]

Examples of dotted names include the following:

W System.Object
W 123456789
W Foo.Bar.'&%!

Namespaces

Simply put, namespaces are the common prefixes of the full names of classes.
The full name of a class is a dotted name; the last simple name it contains is the
class name, and the rest is the namespace of the class.

It takes longer, perhaps, to explain what namespaces are not. Namespaces
are not metadata items—they do not have an associated metadata table, and
they cannot be referenced by tokens. Namespaces also have no direct bearing
on assemblies. The name of an assembly might or might not match in full or in
part the namespace(s) used in the assembly. One assembly might use several
namespaces, and the same namespace can be used in different assemblies.

So why does the metadata model even bother with namespaces and class
names instead of simply using the full class names? The answer is simple: econ-
omy of space. Let’'s suppose that we define two classes with the full names
Foo.Bar and Foo.Baz. Since the names are different, in the full-name model we
would have to store two full names in the string heap: Foo.Bar\OFoo.Baz\0.
But if we split the full names into namespaces and names, we need to store
only Foo\OBar\OBaz\0. This is quite a difference when you consider the num-
ber of possible classes.

Namespaces in ILAsm are declared in the following way:

.namespace MyNamespace
{
i // Classes declared here

Chapter 6 Namespaces and Classes

// Have full name "MyNamespace.<simple_name>"

Namespaces can be nested, as shown here:

.namespace MyNamespace

{
: // Classes declared here
// Have full name "MyNamespace.<simple_name>"
.namespace X
{
i // Classes declared here
// Have full name "MyNamespace.X.<simple_name>"
}
}

133

Or they can be unnested. This is how the IL Disassembler represents

namespaces in the disassembly text:

.namespace MyNamespace

{

i // Classes declared here

// Have full name "MyNamespace.<simple_name>"
}
.namespace MyNamespace.X
{

// Classes declared here

// Have full name "MyNamespace.X.<simple_name>"

}

Full Class Names

“As the preceding section explained, a full class name is a dotted name, com-
posed of the class’s namespace and the name of the class. The loader resolves
class references by their full names and resolution scopes, so the general rule is
that no classes with identical full names should be defined in the same module.
For multimodule assemblies, an additional (less strict) rule prohibits defining
public classes—classes visible outside the assembly—with identical full names

in the same assembly.

In ILAsm, a class is always referenced by its full name, even if it is refer-
enced from within the same namespace. This makes class referencing context-

independent.

The name of a class should be simple. Theoretically, a class name could
contain a dot without violating metadata rules, but I recommend avoiding dot-

ted class names, because they bring at best mild confusion.

134

Part Il Fundamental Components

ILAsm does not allow dotted names as class names, but you can bypass
this restriction by quoting the dotted name, thus turning it into a simple name
and avoiding a syntax error:

.namespace X

{
.class public 'Y.Z'
{
}

}

And because a class is always referenced by its full name, a class with a
dotted name will not pose any resolution problems (it will be referenced as
X.Y.Z anyway), and the module will compile and work. But if you disassemble
the module, you’ll find that the left part of the dotted name of the class has
migrated to the namespace, courtesy of the metadata emission API:

.namespace X.Y

{
.class public Z
{
}

}

Although this is not what you intended, it has no dire consequences—just
a case of mild confusion. If you know and expect this effect, and don’t get con-
fused that easily, you can even forgo the namespace declarations altogether and
declare classes by their full names, to match the way they are referenced:

.class public 'X.Y.Z'
{

}

The first release of the common language runtime imposes a limitation on
the full class name length, specifying that it should not exceed 1023 bytes in
UTF-8 encoding. The ILAsm compiler, however, does 7ot enforce this limita-
tion. Single quotes, should they be used for simple names in [LAsm, are a
purely lexical tool and don’t make it to the metadata; thus they don’t contribute
to the total length of the full class name.

Chapter 8 Namespaces and Classes 135

Class Attributes

Flags

An earlier section (“Class Metadata”) listed the various pieces of information
included in a type definition. In the simplest case, when only the TypeDef
metadata table is involved, the ILAsm syntax for a type definition is as follows:

.namespace <dotted_name> {
.class <flags> <simple_name> extends <class_ref> {

}

The <dotted_name> value specified in the .namespace directive defines
the TypeDef’s Namespace entry, <simple_name> specified in the .class directive
defines the TypeDef’s Name entry, <class_ref> specified in the extends clause
defines the Extends entry, and <flags> defines the Flags entry.

The numerous TypeDef flags can be divided into several groups, as described
here.

B Visibility flags (binary mask 0x00000007):

0 private (0x00000000) The type is not visible outside the
assembly. This is the default.

L public (0x00000001) The type is visible outside the assembly.

O mested public (0x00000002) The nested type has public
visibility. '

O mested private (0x00000003) The nested type has private
visibility.

0 nested family (0x00000004) The nested type has family vis-

ibility—that is, it is visible to descendants of the enclosing class
only.

0 nested assembly (0x00000005) The nested type is visible
within the assembly only.

O nested famandassem (0x00000006) The nested type is vis-
ible to the descendants of the enclosing class residing in the
same assembly.

136

Part lll

Fundamental Components

nested famorassem (0x00000007) The nested type is visi-
ble to the descendants of the enclosing class either within or
outside the assembly and to every type within the assembly
with no regard to “lineage.”

Layout flags (binary mask 0x00000018):

o

0

a

auto (0x00000000) The type fields are laid out automati-
cally, at the loader’s discretion. This is the default.

sequential (0x00000008) The loader should preserve the
order of the fields.

explicit (0x00000010) The type layout is specified explic-
itly, and the loader should follow it. (See Chapter 8, “Fields and
Data Constants,” for information on field declaration.)

Type semantics flags (binary mask 0x000005A0):

0

interface (0x00000020) The type is an interface. If this flag
is not specified, the type is presumed to be a class or a value
type; if this flag is specified, the default parent is set to nil.

abstract (0x00000080) The class is abstract—that is, it has
abstract member methods. As such, this class cannot be instan-
tiated and can be used only as a parent of another type or
types. This flag is invalid for value types.

sealed (0x00000100) No types can be derived from this
type. All value types and enumerators must carry this flag.

specialname (0x00000400) The type has a special name.
How special depends on the name itself. This flag indicates to
the metadata API and the loader that the name has a meaning
in which they might be interested—for instance, _Deleted*.

Type implementation flags (binary mask 0x00103000):

0

a

import (0x00001000) The type (a class or an interface) is
imported from a COM type library.

serializable (0x00002000) The type can be serialized into
sequential code by the serializer provided in the Microsoft .NET
Framework class library.

beforefieldinit (0x00100000) The type can be initialized
any time before the first access to a static field. If this flag is not
set, the type is initialized before the first access to one of its
static fields or methods.

Chapter 8 Namespaces and Classes

String formatting flags (binary mask 0x00030000):

0

]

ansi (0x00000000) When interoperating with native meth-
ods, the managed strings are by default marshaled to and from
ANSI strings. Managed strings are instances of the System.String
class defined in the .NET Framework class library. Marshaling
is a general term for data conversion on the managed and
unmanaged code boundaries. (See Chapter 15, “Managed and
Unmanaged Code Interoperation,” for detailed information.)
String formatting flags specify only default marshaling and are
irrelevant when marshaling is explicitly specified. This flag,
ansi, is the default flag for a class and hence represents a
“default default” string marshaling.

unicode (0x00010000) By default, managed strings are mar-
shaled to and from Unicode.

autochar (0x00020000) The default string marshaling is
defined by the underlying platform.

Reserved flags (binary mask 0x0004080):

0

rtspecialname (0x00000800) The name is reserved by the
common language runtime and has a special meaning. This flag
is legal only in combination with the speciainame flag. The
keyword rispecialname has no effect in ILAsm and is provided
for informational purposes only. The IL Disassembler uses this
keyword to show the presence of this reserved flag. Reserved
flags cannot be set at will—this flag, for example, is set auto-
matically by the metadata emission API when it emits an item
with the specialname flag set and the name recognized as spe-
cific to the common language runtime.

<no keyword> (0x00040000) The type has declarative
security metadata associated with it. This flag is set by the meta-
data emission API when respective declarative security meta-
data is emitted.

Semantics pseudoflags (no binary mask) These are not true
binary flags that define the Flags entry of a TypeDef record but rather
are lexical pseudoflags modifying the default parent of the class:

0

a

value The type is a value type. The default parent is Sys-
tem.ValueType.

enum The type is an enumerator. The default parent is Sys-
tem.Enum.

137

138 Part L Fundamental Components

Class References

The nonterminal symbol <class_ref> in the extends clause represents a refer-
ence to a type and translates into a TypeDef or a TypeRef. The general syntax of
a class reference is as follows:

<class_ref> ::= [<resolution_scope>1<full_type_name>
where
<resolution_scope> ::= [<assembly_ref_alias>]

| [.module <module_ref_name>]

Note that the square brackets in the definition of <resolution_scope> are syntac-
tic elements; they do not indicate that any portion of the definition is optional.
Here are a few examples of class references:

[mscorlib]System.ValueType // Type is defined in another assembly
[.module Second.d11]Foo.Bar // Type is defined in another module
Foo.Baz // Type is defined in this module

If the resolution scope of a class reference points to an external assembly
or module, the class reference is translated into a 7ypeRef metadata record, with
the full type name providing values for the Name and Namespace entries and
the resolution scope providing an AssemblyRef or a ModuleRef token for the
ResolutionScope entry.

If the resolution scope is not defined—that is, if the referenced type is
defined somewhere in the current module—the class reference is translated
into the respective TypeDef record.

Parent of the Type

Having resolved the class reference to a TypeRef or TypeDef token, we thus pro-
vided the value for the Extends entry of the TypeDef record under construction.
This token references the type’s parent—that is, the type from which the cur-
rent type is derived.

The type referenced in the extends clause must not be sealed and must
not be an interface; otherwise, the loader will fail to load the type. When a type
is sealed, no types can be derived from it.

If the extends clause is omitted, the ILAsm compiler assigns a default par-
ent depending on the flags specified for the type:

B Interface No parent. The interfaces are not derived from other types.

B value The parent is [mscorlib/System.ValueType.

Chapter 6 Namespaces and Classes 139

WM enum The parent is /mscorlib/System.Enum.

B None of the above The parent is /mscorlib/System.Object.

If the extends clause is present, the value and enum flags are ignored, and the
interface flag causes a compilation error. \

If the type layout is specified as sequential or explicit, the type’s parent
must also have the corresponding layout, unless the parent is /mscorlib/Sys-
tem.Object, [mscorlib/System.ValueType, or [mscorliblSystem.Enum. The ratio-
nale is that the type might inherit fields from its parent, and the type cannot
have a mixed layout—that is, it cannot have some fields laid out automatically
and some laid out explicitly or sequentially. However, an auto-layout type can
be derived from a type having any layout; in this case, information about the
parent’s field layout plays no role in laying out the derived type.

Interface Implementations

If the type being defined implements one or more interfaces, the type declara-
tion has an additional clause, the implements clause, as shown here:

.namespace <dotted_name> {

.class <flags> <simple_name>
extends <class_ref>
implements <class_refs> {

}

The nonterminal symbol <class_refs> simply means a comma-separated
list of class references:

<class_refs> ::= <class_ref>[,<class_ref>*]
For example:

.namespace MyNamespace {

.class public MyClass
extends MyNamespace.MyClassBase
implements MyNamespace.IOne,
MyNamespace.ITwo,
MyNamespace.IThree {

140 Part Il Fundamental Components

The types referenced in the implements clause must be interfaces. A type
implementing an interface must provide implementation for all of the interface’s
instance methods. The only exception to this rule is an abstract class.

The implements clause of a type declaration creates as many records in the
InterfaceImpl metadata table as there are class references listed in this clause. In
our preceding example, three Interfacelmpl records would be created.

Class Layout Information

To provide additional information regarding type layout (field alignment, total
type size, or both), you need to use the .pack and .size directives, as shown in
this example:

.namespace MyNamespace {

.class public value explicit MyStruct {
.pack 4
.size 1024

The .pack and .size directives appear within the scope of the type decla-
ration, in any order. If .pack is not specified, the field alignment defaults to 1. If
pack or .size is specified, a ClassLayout record is created for this TypeDef.

Integer values specified in a .pack directive must be 0 or a power of 2, in
the range 2° to 27 (1 to 128). Breaking this rule results in a compilation error.
When the value is 0, the field alignment defaults to the value defined by the
underlying platform.

Class layout information should not be specified for the auto-layout types.
Formally, defining the class layout information for an auto-layout type repre-
sents invalid metadata. In reality, however, it is simply a waste of metadata
space; when the loader encounters an auto-layout type, it never checks to see
whether this type has a corresponding ClassLayout record.

Interfaces

An interface is a special kind of type, defined in Partition I of the ECMA Stan-
dard Proposal as “a named group of methods, locations and other contracts that
shall be implemented by any object type that supports the interface contract of
the same name.” In other words, an interface is not a “real” type but merely a
named descriptor of methods and properties exposed by other types. Concep-

Chapter 6 Namespaces and Classes 141

tually, an interface in the common language runtime is similar to a COM inter-
face—or at least the general idea is the same.

Not being a real type, an interface is not derived from any other type, nor
can other types be derived from an interface. But an interface can “implement”
other interfaces. This is not a true implementation, of course. When we say that
“interface IA implements interfaces IB and IC,” we mean only that the contracts
defined by IB and IC are subcontracts of the contract defined by IA.

As a descriptor of items (methods, properties, events) exposed by other
types, an interface cannot offer its own implementation of these items and thus
is, by definition, an abstract type. When you define an interface in ILAsm, you
can omit the keyword abstract because the compiler adds this flag automati-
cally when it encounters the keyword interface.

For the same reason, an interface cannot have instance fields, because a
declaration of a field is the field’s implementation. However, an interface can
and must offer implementation of its static members—the items shared by all
instances of a type—if it has any. Bear in mind, of course, that the definition of
static as “shared by all instances” is general for all types and does not imply that
interfaces can be instantiated. They cannot be. Interfaces are inherently abstract
and cannot even have instance constructors.

Static members (fields, methods) of an interface are not part of the con-
tract defined by the interface and have no bearing on the types that implement
the interface. A type implementing an interface must implement all instance
members of the interface, but it has nothing to do with the static members of
the interface.

The nature of an interface as a descriptor of items exposed by other types
requires that the interface itself and all its members must be public, which
makes perfect sense— we are, after all, talking about exposed items.

Interfaces have several limitations. One is obvious: because an interface is
not a real type, it does not have layout. It simply doesn’t make sense to talk
about the packing size or total size of a contract descriptor.

Another limitation is not so obvious: interfaces should not be sealed. This
might sound contradictory because, as just noted, no types can be derived from
interfaces—which is precisely the definition of sealed. But a more general rule,
applicable to all types, dictates that an abstract type cannot be sealed. Formally,
an interface is a type, and it is inherently abstract; ergo, it cannot be marked as
sealed, notwithstanding the fact that no type can be derived from it.

Value Types

Value types are the closest thing in the common language runtime model to
C++ structures. These types are values with either trivial structure (for example,

142

Part [l Fundamental Components

a 4-byte integer) or complex structure. When you declare a variable of a class
type, you don’t automatically create a class instance. You create only a refer-
ence to the class, initially pointing at nothing. But when you declare a variable
of value type, the instance of this value type is created immediately, by the vari-
able declaration itself, because a value type is primarily a data structure. As
such, a value type must have instance fields or size defined. A zero-size value
type (with no instance fields and no total size specified) represents invalid
metadata; however, as in many other cases, the loader is more forgiving than
the official metadata validity rules: when it encounters a zero-size value type,
the loader assigns it a 1-byte size by default.

Although an instance of a value type is created at the moment a variable
having this value type is declared, the instance constructor method (should it be
defined for the value type in question) is not called at this moment. (See Chap-
ter 9, “Methods,” for information about the instance constructor method.)
Declaring a variable creates a “blank” instance of the value type, and if this
value type has an instance constructor, it should be called explicitly.

Boxed and Unboxed Values

As a data structure, a value type must sometimes be represented as an object, to
satisfy the requirements of certain generic APIs, which expect object references
as input parameters. The common language runtime provides the means to pro-
duce a class representation of a value type and to restore a value type (data
structure) from its class representation. These operations, called boxing and
unboxing, respectively, are defined for every value type.

Recall from the beginning of this chapter that types can be classified as
either value types or reference types. Simply put, boxing transforms a value
type into a reference type (an object reference), and unboxing does just the
opposite. We can box any value type and get an object reference, but this does
not mean, however, that we can unbox any object and get a value type.

When we declare a value type variable, we create a data structure. When
we box this variable, an object (a class instance) is created whose data part is
an exact bit copy of the data structure. Then we can deal with this instance the
same way we would deal with an ordinary object—for example, we could use
it in a call to a method, which takes a generic object reference as a parameter.
It is important to understand that the “original” variable does not go anywhere
when it is being boxed.

Instance Members of Value Types

Value types, like other types, can have static and instance members, including
methods and fields. To access an instance member of a class, we need to pro-

Chapter 6 Namespaces and Classes 143

vide the instance pointer (known in C++ as this). In the case of a value type, we
simply use a managed reference as an instance pointer.

Let’s suppose, for example, that we have a variable of type 4-byte integer.
(What can be more trivial than that, except maybe type fewer-byte integer?) This
value type is defined as [mscorlib/System.Int32 in the .NET Framework class
library. Instead of boxing this variable and getting a reference to an instance of
System.Int32 as the class, we can simply take the reference to this variable and
call the instance methods of this value type, say, ToString(), which returns a
string representation of the integer in question:

.locals init (int32 J) // Declare variable J as value type

1dc.i4 12345
stloc J // Jd = 12345

Tdloca J // Get managed reference to J as instance pointer
// Call method of this instance
call instance string [mscorlib]System.Int32::ToString()

Derivation of Value Types

All value types are derived from the /mscorlib/System.ValueType class. More
than that, anything derived from [mscorlibiSystem.ValueType is a value type by
definition, with one important exception: the [mscorlib/System.Enum class,
which is a parent of all enumerators (discussed in the next section).

Unlike C++, in which derivation of a structure from another structure is
commonplace, the common language runtime object model does not allow any
derivations from value types. All value types must be sealed. (And you probably
thought I was too lazy to draw further derivation branches from value types in
Figure 6-11)

Enumerators

Enumerators (a.k.a. enumeration types, a.k.a. enums) make up a special subset
of value types. All enumerators are derived from the [mscorlib/System.Enum
class, which is the only class derived from [mscorlibiSystem . ValueType. Enumer-
ators are possibly the most primitive of all types, and the rules regarding them
are the most restrictive.

Unlike other value types in their boxed form, enumerators don’t show any
of the characteristics of a “true class.” Enumerators can have only fields as mem-
bers—no methods, properties, or events. Enumerators cannot implement inter-

144 Part [l Fundamental Components

faces; because enumerators cannot have methods, the question of implementing
interfaces is moot.

Even with the fields the enumerators have no leeway: an enumerator must
have exactly one instance field and at least one static field. The instance field of
an enumerator represents the value of the current instance of the enumerator
and must be of integer, Boolean, or string type. The type of the instance field is
the underlying type of the enumerator. The enumerator itself as a value type is
completely interchangeable with its underlying type in all operations except
boxing. If an operation, other than boxing, expects a Boolean variable as its
argument, a variable of a Boolean-based enumeration type can be used instead,
and vice versa. A boxing operation, however, always results in a boxed enu-
merator and not in a boxed underlying type.

The static fields represent the values of the enumeration itself and have
the type of the enumerator. As values of the enumeration, these fields must be
not only static (shared by all instances of the enumerator) but also literal—they
represent constants defined in the metadata. The literal fields are not true fields
because they do not occupy memory allocated by the loader when the enumer-
ator is loaded. (Chapter 8 discusses this and other aspects of fields.)

Generally speaking, you can think of an enumerator as a restriction of its
underlying type to a predefined, finite set of values. As such, an enumerator
obviously cannot have any specific layout requirements and must have the auto
layout flag set.

Delegates

Delegates are a special kind of reference type, designed with the specific pur-
pose of representing function pointers. All delegates are derived from the
[mscorlib]System.MulticastDelegate class, which in turn is derived from the
[mscorlibjSystem.Delegate class. Because delegates themselves are sealed, no
types can be derived from them.

Limitations imposed on the structure of a delegate are as strict as those
imposed on the enumerator structure. Delegates have no fields, events, or
properties. They can have only member methods, either two or four of them,
and the names and signatures of these methods are predefined.

Two mandatory methods of a delegate are the instance constructor (.ctor)
and Invoke. The instance constructor returns void (as all instance constructors
do) and takes two parameters: the object reference to the type defining the
method being delegated and the integer value of the function pointer to the
managed method being delegated. (See Chapter 9 for details about instance
constructors.)

Chapter 6 Namespaces and Classes 145

This leads to a question: If we can get a function pointer per se, why do
we need delegates at all? Why not use the function pointers directly? We could,
but then we would need to introduce fields or variables of function pointer
types to hold these pointers—and function pointer types are considered a secu-
rity risk and deemed unverifiable. If a module is unverifiable, it can be executed
only from a local drive in full trust mode, when all security checks are disabled.
Another drawback is that managed function pointers cannot be marshaled to
unmanaged function pointers when calling unmanaged methods, whereas del-
egates can be. (See Chapter 15 for information on managed and unmanaged
code interoperation.)

Delegates are secure, verifiable, and type-safe representations of function
pointers and as such are preferable over function pointer types. Besides, dele-
gates can offer additional useful features, as I'll describe in a moment.

The second mandatory method (Invoke) must have the same signature as
the delegated method. Two mandatory methods (.ctor and Invoke) are suffi-
cient to allow the delegate to be used for synchronous calls, which are the
usual method calls when the calling thread is blocked until the called method
returns. The first method (.ctor) creates the delegate instance and binds it to the
delegated method. The Invoke method is used to make a synchronous call.

Delegates also can be used for asynchronous calls, when the called
method is executed on a separate thread created by the common language
runtime for this purpose and does not block the calling thread. So that it can be
called asynchronously, a delegate must define two additional methods, Begizn-
Invoke and EndInvoke.

Beginlnvoke is a thread starter. It takes all the parameters of the delegated
method plus two more: a delegate of type [mscorlib/System.AsyncCallback rep-
resenting a callback method that is invoked when the call completes, and an
object we choose to indicate the final status of the call thread. Beginlnvoke
returns an instance of the interface /mscorlib/System.IAsyncResult, carrying the
object we passed as the last parameter. Remember that because interfaces, del-
egates, and objects are reference types, when we say “takes a delegate” or
“returns an interface,” we actually mean a reference.

If we want to be notified immediately when the call is completed, we
must specify the AsyncCallback delegate. The respective callback method is
called upon completion of the asynchronous call. This event-driven technique
is the most widely used way to monitor the asynchronous calls.

We might choose another way to monitor the status of the asynchronous
call thread: polling from the main thread. The returned interface has the method
bool get_IsCompleted(), which returns true when the asynchronous call is com-
pleted. We can call this method from time to time from the main thread to find
out whether the call is finished.

146

Part Il Fundamental Components

We can also call another method of the returned interface,
get_AsyncWaitHandle, which returns a wait handle, an instance of the /mscor-
libjSystem.Threading. WaitHandle class. After we get the wait handle, we can
monitor it any way we please (similar to the use of the Win32 APIs WaitForS-
ingleObject and WaitForMulitipleObjects). If you are curious, disassemble Mscor-
lib.dll and take a look at this class.

Of course, if we have chosen to employ a polling technique, we can forgo
the callback function and specify null instead of the System.AsyncCallback del-
egate instance.

The EndInvoke method takes the /mscorlib/System.IAsyncResult interface,
returned by Beginlnvoke, as its single argument and returns void. Because this
method waits for the asynchronous call to complete, blocking the calling
thread, calling it immediately after Beginlnvoke is equivalent to a synchronous
call using Invoke. EndInvoke must be called eventually in order to clear the cor-
responding runtime threading table entry, but it should be done when we
know that the asynchronous call has been completed.

All four methods of a delegate are virtual and runtime-implemented.
When defining a delegate, we can simply declare the methods without provid-
ing implementation for them, as shown here:

.class public sealed MyDelegate

~extends [mscorlib]System.MulticastDelegate
{
.method public hidebysig instance

void .ctor(object MethodsClass,
native unsigned int MethodPtr)
runtime managed { }

.method public hidebysig virtual instance
int32 Invoke(void* Argl, void* Arg2)
runtime managed { }

.method public hidebysig newslot virtual instance
class [mscorlib]System.IAsyncResult
BeginInvoke(void* Argl, void* Arg2,
class [mscorlib]System.AsyncCallback callBkPtr,
object) runtime managed { }

.method public hidebysig newslot virtual instance
void EndInvoke(class [mscorlib]System.IAsyncResult res)
runtime managed { } »

Chapter 6 Namespaces and Classes 147

Nested Types

Nested types are types (classes, interfaces, value types) that are defined within
other types. However, being defined within another type does not make the
nested type anything like the member classes or inner classes. The instance
pointers (this) of a nested type and its enclosing type are in no way related. A
nested class does not automatically get access to the this pointer of its enclosing
class when the instance of the enclosing class is created.

In addition, instantiation of the enclosing class does not involve instantia-
tion of the class(es) nested in it. The nested classes must be instantiated sepa-
rately. Instantiation of a nested class does not require the enclosing class to be
instantiated.

Type nesting is not about membership and joint instantiation; rather, it’s
all about visibility. As explained earlier in “Class Attributes,” nested types at any
level of nesting have their own specific visibility flags. When one type is nested
in another type, the visibility of the nested type is “filtered” by the visibility of
the enclosing type. If, for example, a class whose visibility is set to nested public
is nested in a private class, this nested class will not be visible outside the
assembly despite its own specified visibility.

This visibility filtering works throughout all levels of nesting. The final vis-
ibility of a nested class is defined by its own declared visibility and then is lim-
ited in sequence by the visibilities of all classes enclosing it, directly or
indirectly.

Nested classes are defined in ILAsm the same way they are defined in
other languages—that is, the nested classes are declared within the lexical
scope of their encloser declaration:

.namespace MyNS {
.class public Encl {

.class nested public Nestdl {

.class nested family Nestd2 {

}

According to this declaration, the Nestd2 class is nested in the Nestd1 class,
which in turn is nested in MyNS.Encl, which is not a nested class.

Because nested classes belong to their enclosers rather than to
namespaces, a nested class name is always the full name. Having said that, let’s

148

Part Il Fundamental Components

return for a moment to the experiment with dotted class names described ear-
lier in this chapter, in the section “Full Class Names.” In that case, we defined a
class with a dotted name, only to find that the left part of the dotted name was
moved to the namespace by the metadata emission API. The same thing will
happen if we try to define a nested class with a dotted name. Although this
“name redistribution” has no ill effect on the top-level classes, which are always
referenced by their full names, it does have quite an effect on nested classes,
which are not supposed to have namespaces and are addressed by name only.
Don’t use dotted names for nested classes.

While on the subject of referencing the classes, let's see how the nested
classes are referenced in ILAsm:

<nested_class_ref> ::= <encloser_ref> / <simple_name>
where
<encloser_ref> ::= <nested_class_ref> | <class_ref>

and <class_ref> has already been defined earlier as follows:
<class_ref> ::= [<resolution_scope>]<full_type_name>

According to these definitions, classes Nestd1 and Nestd2 will be referenced
respectively as MyNS.Encl/Nestd1 and MyNS.Encl/Nestd1/Nestd2. Names of
nested classes must be unique within their nester, as opposed to the full names
of top-level classes, which must be unique within the module or (for public
classes) within the assembly. :

Unlike Microsoft Visual C# .NET, which uses a dot delimiter for all hier-
archical relationships without discrimination—so that One.Two.Three might
mean “class Three of namespace One.Two” or “class Three nested in class Two
of namespace One” or even “field Three of class Two nested in class One”—
ILAsm uses different delimiters for different hierarchies. A dot is used for the
full class name hierarchy; a forward slash (/) indicates the nesting hierarchy; -
and a double colon (:3), as in C++, denotes the class-member relationship.

Thus far, the discussion has focused mainly on what nested classes are
not. One more important negative to note: nested classes have no effect on the
layout of their enclosers. If you want to declare a substructure of a structure,
you must declare a nested value type (substructure) within the enclosing value
type (structure) and then define a field of the substructure type:

.class public value Struct {
.class nested public value Substruct {

}
.field public valuetype Struct/Substruct Substr

Chapter 6 Namespaces and Classes 149

Now I need to say something positive about nested classes. Members of a
nested class have access to all members of the enclosing class without excep-
tion, including access to private members. In this regard, the nesting relation-
ship is even stronger than inheritance and stronger than the member class
relationship in C++, where member classes don’t have access to private mem-
bers of their owner. Of course, to get access to the encloser’s instance members,
the nested type members should first obtain the instance pointer to the
encloser. This “full disclosure” policy works one-way only; the encloser has no
access to private members of the nested class.

Nested types can be used as base classes for other types that don’t need to
be nested:

.class public X {
.class nested public Y {

}
}
.class public Z extends X/Y {

}

Of course, class Z, derived from a nested class (Y), does not have any
access rights to private members of the encloser (X). The “full disclosure” priv-
ilege is not inheritable.

A nested class can be derived from its encloser. In this case, it retains
access to the encloser’s private members, and it also acquires an ability to over-
ride the encloser’s virtual methods. The enclosing class cannot be derived from
any of its nested classes.

A S T QKT o ST MK K K w7 RIS w8 85 o S g o G0 S RT S LGESSI s M EP

Note A metadata validity rule states that a nested class must be
: defined in the same module as its encloser. In ILAsm, however, the
only way to define a nested class is to declare it within the encloser’s
lexical scope, which means that you could not violate this validity rule
in ILAsm even if you tried.

R S IR 5 S S K o S 0508 W 53 M 0N Rl 15 0 0 5 R R R S b

Class Augmentation

In ILAsm, as in Microsoft Visual Basic NET and Visual C# NET, all members,
attributes, and nested classes of a class are declared within the lexical scope of that

150

Part Il Fundamental Components

class. However, ILAsm, unlike Visual Basic .NET and Visual C# .NET, allows you to
reopen a once-closed class scope and define additional items:

.class public X extends Y implements IX,IY {
}

// Later in the source, possibly in another source file...
.class X {

i // More items defined
}

This reopening of the class scope is known as class augmentation. A class
can be augmented any number of times throughout the source code, and the
augmenting segments can reside in different source files. The following simple
safety rules govern class augmentation:

B The class must be fully defined within the module—in other words,
you cannot augment a class that is defined somewhere else.

B Class flags, the extends clause, and the implements clause must be
fully defined at the lexically first opening of class scope, because
these attributes are ignored in augmenting segments.

B None of the augmenting segments can contain duplicate item decla-
rations. If you declare field X in one segment and then declare it in
another segment, the ILAsm compiler will not appreciate the fact that
you probably have the same field in mind and will read it as an
attempt to define two identical fields in the same class, which is not
allowed.

B The augmenting segments are not explicitly numbered, and the class
is augmented according to the sequence of augmenting segments in
the source code. This means that the sequence of class item declara-
tions will change if you swap augmenting segments, which in turn
might affect the class layout.

A good strategy for writing an ILAsm program is to use forward class dec-
laration, explained in the Chapter 1 section “Forward Declaration of Classes.”
This strategy allows you to declare all classes of the current module, including
nested ones, without any members and attributes and to define the members
and attributes in augmenting segments. This way, the ILAsm compiler gets the
full picture of the module’s type declaration structure before any type is refer-
enced. By the time locally declared types are referenced, they all are already
defined and have corresponding TypeDef metadata records.

Chapter 6 Namespaces and Classes 151

Manifest declarations, described in Chapter 5, followed by forward class
declarations look a lot like a program header, so [would not blame you if you
put them in a separate source file. Just don’t forget that this file must be first on
the list of source files when you assemble your module. '

Metadata Validity Rules

Recall that the type-related metadata tables include the TypeDef, TypeRef,
Interfacelmpl, NestedClass, and ClassLayout tables. The records of these tables
contain the following entries:

B The TypeDef table contains the Flags, Name, Namespace, Extends,
FieldList, and MethodList entries.

B The TypeRef table contains the ResolutionScope, Name, and
Namespace entries.

B The InterfaceImpl table contains the Class and Interface entries.

B The NestedClass table contains the NestedClass and EnclosingClass
entries.

W The ClassLayout table contains the PackingSize, ClassSize, and Par-
ent entries.

TypeDef Table Validity Rules

B The Flags entry can have only those bits set that are defined in the
enumeration CorTypeAttr in CorHdr.h (validity mask: 0x00173DBF).

B [run time] The Flags entry cannot have the sequential and explicit
bits set simultaneously.

W [run time] The Flags entry cannot have the unicode and autochar bits
set simultaneously.

B If the rtspecialname flag is set in the Flags entry, the Name field must
be set to _Deleted*, and vice versa.

B [run time] If the bit 0x00040000 is set in the Flags entry, either a
DeclSecurity record or a custom attribute named SuppressUnman-
agedCodeSecurityAttribute must be associated with the TypeDef, and
vice versa.

B [run time] If the interface flag is set in the Flags entry, abstract must
be also set.

152 Part Il Fundamental Components

B [run time] If the interface flag is set in the Flags entry, sealed must
not be set.

B [run time] If the interface flag is set in the Flags entry, the TypeDef
must have no instance fields.

B [run time] If the interface flag is set in the Flags entry, all the
TypeDef’s instance methods must be abstract.

B [run time] The visibility flag of a nonnested TypeDef must be set to
Dprivate or public.

B [run time] If the visibility flag of a TypeDef is set to nested public,
nested private, nested family, nested assembly, nested famorassem, or
nested famandassem, the TypeDef must be referenced in the Nested-
Class entry of one of the records in the NestedClass metadata table,
and vice versa.

B The Name field must reference a nonempty string in the #Strings
stream.

B The combined length of the strings referenced by the Name and
Namespace entries must not exceed 1023 bytes.

B The TypeDef table must contain no duplicate records with the same
full name (the namespace plus the name) unless the TypeDef is
nested or deleted.

B [run time] The Extends entry must be nil for TypeDefs with the inter-
face flag set and for the TypeDef System.Object of the Mscorlib
assembly.

B [run time] The Extends entry of all other TypeDefs must hold a valid
reference to the TypeDef or TypeRef table, and this reference must
point at a nonsealed class (not an interface or a value type).

B [run time] The Extends entry must not point to the type itself or to
any of the type descendants (inheritance loop).

B [run time] The FieldList entry can be nil or hold a valid reference to
the Field table.

B [run time] The MethodList entry can be nil or hold a valid reference to
the Method table.

Enumerator-Specific Validity Rules

If the TypeDef'is an enumerator—that is, if the Extends entry holds the reference
to the class /mscorlibiSystem.Enum—the following additional rules apply:

Chapter 6 Namespaces and Classes 153

B [run time] The interface, abstract, sequential, and explicit flags must
not be set in the Flags entry.

B The sealed flag must be set in the Flags entry.
B The TypeDef must have no methods, events, or properties.

B The TypeDef must implement no interfaces—that is, it must not be
referenced in the Class entry of any record in the Interfacelmpl table.

B [run time] The TypeDef must have at least one instance field of inte-
ger type, or of type bool or string.

B [run time] All static fields of the TypeDef must be literal.

B The type of the static fields of the TypeDef must be the current Type-
Def itself.

TypeRef Table Validity Rules

B [run time] The ResolutionScope entry must hold either 0 or a valid ref-
erence to the AssemblyRef, ModuleRef, Module, or TypeRef table. In
the last case, TypeRef refers to a type nested in another type (a
nested TypeRef).

B If the ResolutionScope entry is nil, the ExportedType table of the
prime module of the assembly must contain a record whose Type-
Name and TypeNamespace entries match the Name and Namespace
entries of the TypeRef record, respectively.

B [run time] The Name entry must reference a nonempty string in the
#Strings stream.

B [run time] The combined length of the strings referenced by the
Name and Namespace entries must not exceed 1023 bytes.

B The table must contain no duplicate records with the same full name
(the namespace plus the name) and ResolutionScope value.

Interfaceimpl Table Validity Rules
A Class entry set to nil means a deleted Interfacelmpl record. If the Class entry

is non-nil, however, the following rules apply:

B [run time] The Class entry must hold a valid reference to the TypeDef
table.

B [run time] The Interface entry must hold a valid reference to the
TypeDef or TypeRef table.

154 Part Il Fundamental Components

B If the Interface field references the TypeDef table, the corresponding
TypeDef record must have the interface flag set in the Flags entry.

B The table must contain no duplicate records with the same Class and
Interface entries.

NestedClass Tahle Validity Rules

B The NestedClass entry must hold a valid reference to the TypeDef
table.

B [run time] The EnclosingClass entry must hold a valid reference to
the TypeDef table, one that differs from the reference held by the
NestedClass entry.

B The table must contain no duplicate records with the same Nested-
Class entries.

M The table must contain no records with the same EnclosingClass
entries and NestedClass entries referencing TypeDef records with
matching names—in other words, a nested class must have a unique
name within its encloser.

B The table must contain no sets of records forming a circular nesting
pattern—for example, A nested in B, B nested in C, C nested in A.

ClassLayout Table Validity Rules

A Parent entry set to nil means a deleted ClassLayout record. However, if the
Parent entry is non-nil, the following rules apply:

B The Parent entry must hold a valid reference to the TypeDef table,
and the referenced TypeDef record must have the Flags bit explicit or
sequential set and must have the interface bit not set.

B [run time] The PackingSize entry must be set to 0 or to a power of 2
in the range 1 to 128.

B The table must contain no duplicate records with the same Parent
entries.

Primitive Types and
Signatures

Primitive Types in the Common Language Runtime 155
Representing Classes in Signatures 170

Signatures 171

Signature Validity Rules 176

Having looked at how types are defined in the common language runtime and
IL assembly language (ILAsm), let’s proceed to the question of how these types
and their derivatives are assigned to program items—fields, variables, methods,
and so on. The constructs defining the types of program items are known as the
signatures of these items. Signatures are built from encoded references to vari-
ous classes and value types; I'll discuss signatures in detail in this chapter.

But before we start analyzing the signatures of program items, let’s con-
sider the building blocks of these signatures.

Primitive Types in the Common Language Runtime

All types have to be defined somewhere. The Microsoft .NET Framework class
library defines hundreds of types, and other assemblies build their own types
based on the types defined in the class library. Some of the types defined in the
class library are recognized by the common language runtime as primitive types
and are given special encoding in the signatures. This is done only for the sake

155

156 Part Il

Fundamental Components

of performance—theoretically, the signatures could have been built from type
tokens only, given that every type is defined somewhere and hence has a
token. But resolving all these tokens simply to find that they reference trivial
items such as a 4-byte integer or a Boolean value can hardly be considered a
sensible way to work in the runtime.

Primitive Data Types

The term primitive data types refers to the types defined in the .NET Framework
class library that are given specific individual type codes to be used in signa-
tures. Because all these types are defined in the assembly Mscorlib and all
belong to the namespace System, I have omitted the prefix /mscorlib/System
when supplying the class library type name for a type.

The individual type codes are defined in the enumeration CorElementType
in the header file CorHdr.h. The names of all these codes begin with
ELEMENT _TYPE_, which I have either omitted in this chapter or abbreviated as
ET.

Table 7-1 describes primitive data types and their respective ILAsm notation.

Table 7-1 Primitive Data Types Defined in the Runtime
Code Constant .NET Framework ILAsm Co ents
Name Type Name Notation

0x01 VOID Void void

0x02 BOOLEAN Boolean bool Single-byte value,
true = 1, false = 0

0x03 CHAR Char char 2-byte unsigned inte-
ger, representing a
Unicode character

0x04 11 SByte int8 Signed 1-byte inte-
ger, the same as char
in C/C++

0x05 U1 Byte unsigned int8 Unsigned 1-byte
integer

0x06 r Int16 int16 Signed 2-byte integer

0x07 02 Ulnt16 unsigned Unsigned 2-byte

int16 integer
0x08 14 nt32 int32 Signed 4-byte integer

Chapter 7 Primitive Types and Signatures 157

Table 7-1 Primitive Data Types Defined in the Runtime (cominued)
Constant .NET Framework ILAsm
Code Name Type Name Notation Co ents
0x09 U4 Unt32 unsigned Unsigned 4-byte
int32 integer
0x0A 18 IntG4 intG4 Signed 8-byte integer
0x0B U8 UInt64 unsigned Unsigned 8-byte
int64 integer

0x0C R4 Single float32 4-byte floating-point

0x0D R8 Double float64 8-byte floating-point

0x16 TYPEDBY- TypedReference typedref Typed reference,

REF carrying both refer-

ence to a type and
information identify-
ing the referenced
type

0x18 I IntPtr native int Pointer-size integer;
size dependent on
the underlying plat-
form, hence use of
the keyword native

0x19 U UntPir native Pointer-size

unsigned int unsigned integer

Data Pointer Types

Two data pointer types are defined in the common language runtime: the man-
aged pointer, which is a reference, and the unmanaged pointer, which is a
pointer in the conventional sense. The difference is that a managed pointer is
managed by the runtime’s garbage collection subsystem and stays valid even if
the referenced item is moved in memory during the process of garbage collec-
tion, whereas an unmanaged pointer can be safely used only in association
with “unmovable” items.

Both pointer types have no meaning per se and must be followed by the
base types, which are the types to which the pointer types point. As derivatives
from base types, the pointer types have no corresponding types defined in the
NET Framework class library and cannot be boxed. Table 7-2 describes the two
pointer types and their ILAsm notations. Neither of them has a respective .NET
Framework type associated.

158 Part lll Fundamental Components

Table 7-2 Pointer Types Defined in the Runtime

Code Constant Name ILAsm Notation Comments
0xOF PTR <type>* Unmanaged pointer to <type>
0x10 BYREF <type>& Managed pointer to <type>

Note Note that although ILAsm notation places the pointer sign after
the pointed type, in signatures E_T_PTR and E_T_BYREF always
precede the pointed type.

i e e A SR = = o RS S N R S N S

Pointers of both types are subject to standard pointer arithmetic: an inte-
ger can be added to or subtracted from a pointer, resulting in a pointer; and one
pointer can be subtracted from another, resulting in an integer value. The dif-
ference between pointer arithmetic in, say, C/C++ and in IL (intermediate lan-
guage) is that in IL—and hence in ILAsm—the increments and decrements of
pointers are always specified in bytes, regardless of the size of the item the
pointer represents.

C/C++:

lTong L, =plL=&L;
pL += 4; // pL is incremented by 4xsizeof(long) = 16 bytes

ILAsm:

.locals init(int32 L, int32& pL)
Tdloca L // Load pointer to L on stack
stloc pL // pL = &L

1dloc pL // Load pL on stack
1dc.i4 4 // Load 4 on stack

add
stloc pL // pL += 4, pL is incremented by 4 bytes

By the same token—now, this is just a common expression. I'm not
referring to metadata tokens. (I think I'd better be extra careful with phrases
like “by the same token” or “token of appreciation” in this book.) In the same

Chapter 7 Primitive Types and Signatures 159

way, the delta of two pointers in IL is always expressed in bytes, not in the
items pointed at.

Using unmanaged pointers in IL is not considered nice. Because of the
unlimited access that C-style pointer arithmetic gives to anybody for anything,
IL code, which has unmanaged pointers dereferenced, is deemed unverifiable
and can be run only from a local drive with run-time code verification disabled.

Managed pointers are tamed, domesticated pointers, fully owned by the
common language runtime type control and the garbage collection subsystem.
These pointers dwell in a safe but not too spacious corral, fenced along the fol-
lowing lines:

M Managed pointers are always references to an item in existence—a
field, an array element, a local variable, a method argument.

B Managed pointer types can be used only for method attributes—
local variables, parameters, or a return type.

B Array elements and fields cannot have managed pointer types. Local
variables and method parameters can, and it is not a simple coinci-
dence that all these items are stack-allocated.

B Managed pointers that point to “managed memory” (the garbage col-
lector heap, which contains object instances and arrays) cannot be
converted to unmanaged pointers.

B Managed pointers that don’t point to the garbage collector heap can
be converted to unmanaged pointers, but such conversion renders
the IL code unverifiable.

B The underlying type of a managed pointer cannot be another
pointer, but it can be an object reference.

Managed pointers are different from object references. In Chapter 6,
“Namespaces and Classes,” which described boxing and unboxing of the value
types, we saw that it takes boxing to create an object reference to a value type.
Using a simple reference—that is, a managed pointer—is not enough.

The difference is that an object reference points to the method table of an
object, whereas a managed pointer points to the value (data) part of the item.
When you take a managed pointer to an instance of a value type, you address
the data part. You can have only this much because instances of value types,
not being objects, have no method tables.

When you box a value type instance, you create an object, a class instance
with its own method table and data part copied from the value type instance.
This object is represented by an object reference.

160 Part Il Fundamental Components

Function Pointer Types

Chapter 6 briefly described the use of managed function pointers and com-
pared them with delegate types. Managed function pointers are represented by
type E_T_FNPTR, which is indicated by the value 0x1B and doesn’t have a .NET
Framework type associated.

Just like a data pointer type, a function pointer type does not exist by itself
and must be followed by the full signature of the function to which it points.
(Method signatures are discussed later in this chapter; see “Signatures.”)

The ILAsm notation for a function pointer is as follows:

<call_conv> <return_type> % (<type>[,<type>*])

where <call_conv> is a calling convention, <return_type> is the return type,
and the <type> sequence in the parentheses is the argument list. You’ll find
more details in the “Signatures” section.

Vectors and Arrays

The common language runtime recognizes two types of arrays: vectors and
multidimensional arrays, as described in Table 7-3. Vectors are single-dimen-
sional arrays with a zero lower bound. Multidimensional arrays, which I'll refer
to as arrays, can have more than one dimension and nonzero lower bounds.
Neither of these two types of arrays has a respective .NET Framework type
associated.

Table 7-3 Arrays Supported in the Runtime

Code Constant Name ILAsm Notation Comments

0x1D SZARRAY <type>[] Vector of <type>

0x14 ARRAY <type>[<bounds> Array of <type>
[,<bounds>*]

All vectors and arrays are objects (class instances) derived from the
abstract class [mscorlibJSystem.Array. This is a very peculiar class; in fact, it is a
construct known as a generic.

Vector encoding is very simple: E_T'_SZARRAY followed by the encoding
of the underlying type, which can be anything except void. The size of the vec-
tor is not part of the encoding. Because arrays and vectors are object references,
it is not enough to simply declare an array—you must create an instance of i,
using the instruction newarr for a vector or calling an array constructor. It is at
that point that the size of the vector or array instance is specified.

Chapter 7 Primitive Types and Signatures 161

Array encoding is more sophisticated:

E_T_ARRAY<underlying_type><rank><num_sizes><sizel>..<{sizey>
<num_Tlower_bounds><lower_bound>..<lower_boundy>

where the following is true:

<underlying_type> cannot be void

<rank> is the number of array dimensions (K>0)

<num_sizes> is the number of specified sizes for dimensions (N = K)
<{size,> is an unsigned integer specifying the size (n = 1,..,N)
<num_Tower_bounds> is the number of specified Tower bounds (M = K)
<Tower_boundy,> is a signed integer specifying the lower bound (m =

1,.,M)

All the above unsigned integer values are compressed according to the length
compression formula discussed in Chapter 4, “Metadata Tables Organization.” To
save you a trip three chapters back, I will repeat this formula in Table 7-4.

Table 7-4 The Length Compression Formula for Unsigned Integers

Value Range Compressed Size Compressed Value (Big-Endian)
0-0x7F 1 byte <value>

0x80-0x3FFF 2 bytes 0x8000 | <value>
0x4000-0x1FFFFFFF 4 bytes 0xC0000000 | <value>

Signed integer values (Jower bound values) are compressed according to
a different compression procedure. First the signed integer is encoded as an
unsigned integer by taking the absolute value of the original integer, shifting it
left by 1 bit, and setting the least significant bit according to the most significant
(sign) bit of the original value. Then compression is applied according to the
formula shown in Table 7-4. ,

If size and/or the lower bound for a dimension are not specified, they are
not presumed to be 0; rather, they are marked as not specified. The specifica-
tion of size and lower bound cannot have “holes”—that is, if you have an array
of rank 5 and want to specify size (or lower bound) for its third dimension, you
must specify size (or lower bound) for the first and second dimensions as well.

An array specification in ILAsm looks like this:

<type> [<bounds>[, <bounds>*]]
where

<bounds> ::= [<Tower_bound>] .. [<upper_bound>]

162 Part Il Fundamental Components

The following is an example:

int32[.., ..] // Two-dimensional array with undefined Tower bounds
// And sizes
int32[2..5] // One-dimensional array with lower bound 2 and size 4
int32[0.., 0..] // Two-dimensional array with zero lower bounds
// And undefined sizes

If neither lower bound nor upper bound is specified for a dimension in a
multidimensional array declaration, the ellipsis can be omitted. Thus
int32/...,...] and int32/,] mean the same: a two-dimensional array with no lower
bounds or sizes specified.

This omission does not work in the case of single-dimensional arrays,
however. The notation inz32/] indicates a vector (KE_T_SZARRAY><E_T I4>),
and int32/...] indicates an array of rank 1 whose lower bound and size are
undefined (KE_T _ARRAY><E_T I4><1><0><0>).

The common language runtime treats multidimensional arrays and vectors
of vectors (of vectors, and so on) completely differently. The specifications
int32(] and int32/ J[] result in different type encoding, are created differently,
and are laid out differently when created:

B int32[,] This specification has the encoding <E_T_ARRAY><E_T._
I4><]1><0><0>, is created by a single call to an array constructor,
and is laid out as a contiguous two-dimensional array of i#£32.

W im32[][] This specification has the encoding <E_T _SZARRAY><E_T _
SZARRAY><E_T 14>, is created by a series of newarr instructions, and is
laid out as a vector of vector references, each pointing to a contiguous
vector of 32, with no guarantee regarding the location of each vector.
Vectors of vectors are useful for describing jagged arrays, when the size
of the second dimension varies depending on the first dimension index.

Modifiers

Four built-in common language runtime types, described in Table 7-5, do not
denote any specific data or pointer type but rather are used as modifiers of data
and pointer types. None of these modifiers have a respective .NET Framework
type associated.

Chapter 7 Primitive Types and Signatures 163

Table 7-5 Custom Modifiers Defined in the Runtime
Code Constant Name ILAsm Notation Comments
0x1F CMOD_REQD modreq(Required C modifier
<class_ref>)
0x20 CMOD_OPT modopt(Optional C modifier
<class_ref>))
0x41 SENTINEL Start of optional argu-
ments in a vararg
method call
0x45 PINNED pinned Marks a local variable

as unmovable by the
garbage collector

The modifiers modreq and modopt indicate that the item to which they are
attached—an argument, a return type, or a field, for example—must be treated
in some special way. These modifiers are followed by TypeDef or TypeRef
tokens, and the classes corresponding to these tokens indicate the special way
the item is to be handled.

The tokens following modreq and modopt are compressed according to
the following algorithm. As you might remember, an uncoded (external) meta-
data token is a 4-byte unsigned integer, which has the token type in its senior
byte and a record index (RID) in its 3 lower bytes. It so happens that the tokens
appearing in the signatures and hence requiring compression are of three types
only: TypeDef, TypeRef, or TypeSpec. (See “Signatures” later in this chapter for
information about TypeSpecs.) Because of that, only 2 bits, rather than a whole
byte, are required for the token type: 00 denotes TypeDef, 01 is used for Typ-
eRef, and 10 for TypeSpec. The token compression procedure resembles the
procedure used to compress the signed integers: the RID part of the token is
shifted left by 2 bits, and the 2-bit type encoding is placed in the least significant
bits. The result is compressed just as any unsigned integer would be, according
to the formula shown earlier in Table 7-4.

The modifiers modreq and modopt are used primarily by tools other than
the common language runtime, such as compilers or program analyzers. The
modreq modifier indicates that the modifier must be taken into account,
whereas modopt indicates that the modifier is optional and can be ignored. The
ILAsm compiler does not use these modifiers for its internal purposes.

The only use of the modreq and modopt modifiers recognized by the com-
mon language runtime is when these modifiers are applied to return types or
parameters of methods subject to managed/unmanaged marshaling. For exam-
ple, to specify that a2 managed method must have the cdec! calling convention

164

Part Il Fundamental Components

when it is marshaled as unmanaged, we can use the following modifier
attached to the method’s return type:

modopt([mscorlib]System.Runtime.InteropServices.CallConvCdecl)

When used in the context of managed/unmanaged marshaling, the
modreq and modopt modifiers are equivalent.

Although the modreq and modopt modifiers have no effect on the man-
aged types of the items to which they are attached, signatures with and without
these modifiers are considered different. The same is true for signatures differ-
ing only in classes referenced by these modifiers.

The sentinel modifier (...) was introduced in Chapter 1, “Simple Sample,”
when we analyzed the declaration and calling of methods with a variable-
length argument list (vararg methods). (See “Method Declaration.”) A sentinel
signifies the beginning of optional arguments supplied for a vararg method
call. This modifier can appear in only one context: at the call site, because the
optional parameters of a vararg method are not specified when such a method
is declared. The runtime treats a sentinel appearing in any other context as an
error. The method arguments at the call site can contain only one sentinel, and
the sentinel is used only if optional arguments are supplied:

// Declaration of vararg method - mandatory parameters only:
.method public static vararg int32 Print(string Format)
{

}

// Calling vararg method with two optional arguments:
call vararg int32 Print(string, .., int32, int32)

// Calling vararg method without optional arguments:
call vararg int32 Print(string)

The pinned modifier is applicable to the method’s local variables only. Its
use means that the local variable cannot be relocated by the garbage collector
and must stay put throughout the method execution. If a local variable is
“pinned,” it is safe to convert a managed pointer to this variable to an unman-
aged pointer and then to dereference this unmanaged pointer, because the
unmanaged pointer is guaranteed to still be valid when it is dereferenced:

.locals init(int32 A, int32 pinned B, int32% pA, int32#% pB)
1dloca A

stloc pA " // pA = &A
1dloca B
stloc pB // pB = &B

Chapter 7 Primitive Types and Signatures 165

1dloc pA

ldc.i4 123

stind.i4 // *pA=123 - unsafe, A could have been moved
Tdloc pB

ldc.i4 123

stind.i4 // *pB=123 - safe, B is pinned and cannot move

Native Types

When managed code calls unmanaged methods or exposes managed fields to
unmanaged code, it is sometimes necessary to provide specific information
about how the managed types should be marshaled to and from the unman-
aged types. The unmanaged types recognizable by the common language runt-
ime are referred to as native, and they are listed in CorHdr.h in the enumeration
CorNativeType. All constants in this enumeration have names that begin with
NATIVE_TYPE_*; for purposes of this discussion, I have omitted this part of the
names or abbreviated it as N_7_. The same constants are also listed in the .NET
Framework class library in the enumerator System.Runtime.InteropSer-
vices.UnmanagedType.

Some of the native types are obsolete and are ignored by the runtime
interoperability subsystem. But since these native types are not retired alto-
gether, ILAsm must have ways to denote them—and since ILAsm denotes these
types, I cannot help but list obsolete types along with others, all of which you’ll
find in Table 7-6.

Table 7-6 Native Types Defined in the Runtime

.NET
Code Constant Framework ILAsn.l Comments
Name Notation
Type Name
0x01 VOID void Obsolete and thus
should not be used,;
recognized by ILAsm
but ignored by thre
runtime interoperabil-
ity subsystem
0x02 BOOLEAN Bool bool 4-byte Boolean value;
true = nonzero, false =
0
0x03 11 11 int8 Signed 1-byte integer
0x04 U1 U1 unsigned int8 Unsigned 1-byte inte-
ger
0x05 7 2 int16 Signed 2-byte integer

(continued)

166

Table 7-6 Native Types Defined in the Runtime (consinuea)

Part lil

Fundamental Components

Constant NET ILAsm
Code Framework . Comments
Name Notation
Type Name
0x06 U2 U2 unsigned int16 Unsigned 2-byte inte-
ger
0x07 14 4 int32 Signed 4-byte integer
0x08 U4 U4 unsigned int32 Unsigned 4-byte inte-
ger
0x09 18 18 int64 Signed 8-byte integer
0x0A U8 Us unsigned int64 Unsigned 8-byte inte-
ger
0x0B R4 R4 float32 4-byte floating-point
0x0C RS RS Sfloat64 8-byte floating-point
0x0D SYSCHAR syschar Obsolete
0x0E VARIANT variant Obsolete
0xOF CURRENCY Currency currency Currency value
0x10 PTR * Obsolete; use native
int
0x11 DECIMAL decimal Obsolete
0x12 DATE date Obsolete
0x13 BSTR BStr bstr Unicode Visual Basic—
style string
0x14 LPSTR LPStr pstr Pointer to a zero-ter-
minated ANSI string
0x15 LPWSTR LPWStr Ipwstr Pointer to a zero-ter-
minated Unicode
string
0x16 LPTSTR LPTStr Iptstr Pointer to a zero-ter-
minated ANSI or Uni-
code string,
depending on plat-
form
0x17 FIXED- ByValTStr fixed sysstring Fixed-system string of
SYSSTRING [<size>] size <size> bytes;
applicable to field
marshaling only
0x18 OBJECTREF objectref Obsolete
0x19 IUNKNOWN IUnknown iunknown IUnknown interface
pointer
Ox1A IDISPATCH IDispatch idispatch IDispatch interface

pointer

Table 7-6 Native Types Defined in the Runtime

(continued)

Chapter 7 Primitive Types and Signatures

Constant NET [LAsm
Code Framework . Comments
Name Notation
Type Name
0x1B STRUCT Struct struct C-style structure, for
marshaling the format-
ted managed types
0x1C INTF Interface interface Interface pointer
0x1D SAFEARRAY SafeArray safearray Safe array of type
<variani_type> <variant_type>
Ox1E FIXEDARRAY ByValArray fixed array Fixed-size array, of
[<size>] size <size> bytes
Ox1F INT IntPtr int Signed pointer-size
integer
0x20 UINT UIntPtr unsigned int Unsigned pointer-size
integer
0x21 NESTED- nested struct Obsolete; use struct
STRUCT
0x22 BYVALSTR VBByRefStr byvalstr Visual Basic—style
string in a fixed-length
buffer
0x23 ANSIBSTR AnsiBStr ansi bstr ANSI Visual Basic—
style string
0x24 TBSTR TBStr tbstr bstr or ansi bstr,
depending on the
platform
0x25 VARIANTBOOL VariantBool variant bool 2-byte Boolean;
true = -1, false = 0
0x26 FUNC FunctionPtr method Function pointer
0x28 ASANY AsAny as any Object; type defined
at run time
0x2A ARRAY LPArray <n_type> Fixed-size array of a
[<sizes>] native type <n_type>
0x2B LPSTRUCT LPStruct Ipstruct Pointer to a C-style
structure
0x2C CUSTOMMAR- CustomMar- custom Custom marshaler
SHALER shaler (<class_str>,
<cookie_str>)
0x2D ERROR Error errvor Maps int32 to

VI_HRESULT

168

Part Il Fundamental Components

The <sizes> parameter in the ILAsm notation for ARRAY, shown in Table 7-
6, can be empty or can be formatted as <size> + <size_param_number>:

<size>
+ <size_param_number>

<sizes> ::= <>
I
I
| <size> + <size_param_number>

If <sizes> is empty, the size of the native array is derived from the size of the
managed array being marshaled.

The <size> parameter specifies the native array size in array items. The
zero-based method parameter number <size_param_number> indicates which
of the method parameters specifies the size of the native array. The total size of
the native array is <size> plus the additional size specified by the method
parameter that is indicated by <size_param_number>.

A custom marshaler declaration (shown in Table 7-6) has two parameters,
both of which are quoted strings. The <class_str> parameter is the name of the
class representing the custom marshaler, using the string conventions of Reflec-
tion.Emit. The <cookie_str> parameter is an argument string (cookie) passed to
the custom marshaler at run time. This string identifies the form of the marshal-
ing required, and its notation is specific to the custom marshaler.

Variant Types

Variant types are defined in the enumeration VARENUM in the Wtypes.h file,
which is distributed with Microsoft Visual Studio. Not all variant types are appli-
cable as safe array types, according to Wtypes.h, but ILAsm provides notation
for all of them nevertheless, as shown in Table 7-7. It might look strange, con-
sidering that variant types appear in ILAsm only in the context of safe array
specification, but we should not forget that one of ILAsm’s principal applica-

tions is the generation of test programs, which contain known, preprogrammed
errors.

Table 7-7 Variant Types Defined in the Runtime

Code Constant Name ::fg lj:frt;l;?to ILAsm Notation
0x00 VT_EMPTY No <empty>

0x01 VT_NULL No null

0x02 VT 12 Yes int16

0x03 VT _I4 Yes int32

0x04 VT _R4 ' Yes float32

Chapter 7 Primitive Types and Signatures

Table 7-7 Variant Types Defined in the Runtime (continued)

169

Code Constant Name z;;)fglli:ril;;e?to ILAsm Notation
0x05 VT_RS8 Yes float64

0x06 VI _CY Yes currency

0x07 VI _DATE Yes date

0x08 VT _BSTR Yes bstr

0x09 VI_DISPATCH Yes idispatch

0x0A VI_ERROR Yes error

0x0B VT_BOOL Yes bool

0x0C VT_VARIANT Yes variant

0x0D VI_UNKNOWN Yes iunknown
0x0E VI_DECIMAL Yes decimal

0x10 VI _I1 Yes int8

0x11 VT _Ull Yes unsigned int8
0x12 VI U2 Yes unsigned int16
0x13 VI_UI4 Yes unsigned ini32
0x14 \a No int64

0x15 VI_UIS No unsigned int64
0x16 VI_INT Yes int

0x17 VI_UINT Yes unsigned int
0x18 VI_VOID No void

0x19 VI _HRESULT No bresult

0x1A VT_PTR No *

0x1B VI_SAFEARRAY No safearray

0x1C VI_CARRAY No carray

0x1D VI_USERDEFINED No userdefined
0x1E VI_LPSTR No Ipstr

Ox1F VI_LPWSTR No ipwstr

0x24 VT _RECORD Yes record

0x40 VI_FILETIME No filetime

0x41 VI_BLOB No blob

0x42 VI _STREAM No stream

0x43 VI_STORAGE No storage

0x44 VI _STREAMED_OBJECT No streamed_object
0x45 VI _STORED_OBJECT No stored_object

(continued)

170

Part Il Fundamental Components

Table 7-7 Variant Types Defined in the Runtime (continued

Code Constant Name gffz lli::;l;l;?to ILAsm Notation
0x46 VI_BLOB_OBJECT No blob_object

0x47 VI_CF No cf

0x48 VI_CLSID No clsid

0x1000 VI_VECTOR Yes <v_type> vector
0x2000 VI_ARRAY Yes <v_type>[]
0x4000 VT_BYREF Yes <v_type> &

Representing Classes in Signatures

The classes and value types in general are represented in signatures by their
TypeDef or TypeRef tokens, preceded by E_T_CLASS or E_T_VALUETYPE,
respectively, as shown in Table 7-8.

Table 7-8 Representation of CLASS and VALUETYPE

Constant NET
Code Framework ILAsm Notation Comments
Name
Type Name
0x11 VALUETYPE valuetype Value type
<class_ref>
0x12 CLASS class <class_ref> Class or interface,
except [mscorlib]Sys-
tem.Object and [mscor-
libJSystem.String
0x0E STRING String string [mscorliblSystem.String
class
0x1C OBJECT Object object [mscorlibJSystem.Object
class

As you can see in Table 7-8, two classes, String and Object, are assigned
their own codes and hence should have been listed along with primitive data
types in Table 7-1, if it were not for their class nature. This is important: if a type
(class or value type) is given its own code, it cannot be referenced in signatures
other than by this code. In other words, the class /mscorlib/System.Object must
appear in signatures as E_7_OBJECT and never as E_T_CLASS<token_of _Object>,

Chapter 7 Primitive Types and Signatures 17

and the value type [mscorlibjSystem.Int32 must appear in signatures as E_T _I4
and never as E_T_VALUETYPE<token_of _Int32>.

The JIT (just-in-time) compiler does not accept “long forms” of type
encoding for types that have dedicated type codes assigned to them, and run-
time signature validation procedures reject such signatures.

Important If a type (class or value type) is given its own code, it can-
not be referenced in signatures other than by this code.

Signatures

Now that you know more about type encoding, let’s look at how the item types
are set in the common language runtime. Program items such as fields, meth-
ods, and local variables are not characterized by encoded types; rather, they are
characterized by signatures. A signature is a binary object containing one or
more encoded types and residing in the #Blob stream of metadata.

The following metadata tables refer to the signatures:

Field table Field declaration signature

Method table Method declaration signature

Property table Property declaration signature

MemberRef table Field or method referencing signature

StandAloneSig table Local variables or indirect call signature

TypeSpec table Type specification signature

Calling Conventions

The first byte of a signature defines the calling convention of the signature,
which in turn identifies the type of the signature. The CorHdr.h file defines the
following calling convention constants in the enumeration CorCallingConven-
tion:

B IMAGE_CEE_CS_CALLCONV_DEFAULT(0x0) Default(“nomal”)
method with a fixed-length argument list. ILAsm has no keyword for
this calling convention.

B IMAGE_CEE_CS_CALLCONV_VARARG (0x5) Method with a
variable-length argument list. The ILAsm keyword is vararg.

172 Part Il Fundamental Components

B IMAGE_CEE_CS_CALLCONV_FIELD (0x6) Field. ILAsm has no
keyword for this calling convention.

B IMAGE _CEE _CS_CALLCONV_LOCAL_SIG (0x7) Local variables.
ILAsm has no keyword for this calling convention.

B IMAGE_CEE_CS_CALLCONV_PROPERTY (0x8) Property. ILAsm
has no keyword for this calling convention.

W IMAGE_CEE_CS_CALLCONV_UNMGD (0x9) Unmanaged calling
convention, not currently used by the common language runtime and
not recognized by ILAsm.

B IMAGE_CEE_CS_CALLCONV_HASTHIS (0x20) Instance method
that has an instance pointer (#bis) as an implicit first argument. The
ILAsm keyword is instance.

B IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS (0x40) Method call
signature. The first explicitly specified parameter is the instance
pointer. The ILAsm keyword is explicit.

The calling conventions instance and explicit are the modifiers of the
default and vararg method calling conventions. The calling convention explicit
can be used only in conjunction with instance and only at the call site, never in
the method declaration.

Calling conventions for field, property, and local variables signatures don’t
need special ILAsm keywords because they are inferred from the context.

Field Signatures

A field signature is the simplest kind of signature. It consists of a single encoded
type (SET), which of course follows the calling convention byte:

<field_sig> ::= <callconv_field> <SET>

Although this type encoding (SET) can be quite long, especially in the case of
a multidimensional array or a function pointer, it is nevertheless a single type
encoding. In a field signature, SET cannot have & or pinned or sentinel modifi-
ers, and it cannot be void.

The field calling convention is always equal to IMAGE_CEE_CS_CALL-
CONV_FIELD, regardless of whether the field is static or instance. The mforma—
tion is inferred from the context in which the field is referenced.

Chapter 7 Primitive Types and Signatures 173

Method and Property Signatures

The structures of method and property signatures (and I am talking about
method and property declarations here) are similar:

<method_sig> ::= <callconv_method> <num_of_args> <return_type>
[<arg_type>[,<arg_type>#] 1]

<prop_sig> ::= <callconv_prop> <num_of_args> <return_type>
[<arg_type>[,<arg_type>#]]

The difference is in the calling convention. The calling convention for a
method signature is the following:

< callconv_method > ::= <default> // Static method, default
// calling convention
| vararg // Static vararg method
| instance // Instance method, default

// calling convention
| instance vararg // Instance vararg method

The calling convention for a property signature is always equal to
IMAGE_CEE_CS_CALLCONV_PROPERTY.

Having noted this difference, we might as well forget about property sig-
natures and concentrate on method signatures. The truth is that a property sig-
nature—excluding the calling convention—is a composite of signatures of the
property’s access methods, so it is no great wonder that method and property
signatures have similar structures.

Remember that in the method calling convention, the combined calling
conventions, such as instance vararg, are the products of bitwise OR opera-
tions performed on the respective calling convention constants.

The value <num_of_args>, a compressed unsigned integer, is the number
of parameters, not counting the return type. The values <return_type> and
<arg_type> are SETs. The difference between them and the field’s SET is that
the modifier & is allowed in both <return_type> and <arg_type>. The difference
between <return_type> and <arg_type> is that <return_type> can be void and
<arg_type> cannot.

Instance methods have the implicit first argument this, which is not
reflected in the signature. This implicit argument is a reference to the instance
of the method’s parent type. It has a class reference type for classes and inter-
faces and a managed pointer for value types.

174 Part Il Fundamental Components

MemberRef Signatures

Member references, which are kept in the MemberRef metadata table, are the
references to fields and methods, usually those defined outside the current
module. There are no specific MethodRefs and FieldRefs, so you must look at
the calling convention of a MemberRef signature to tell a field reference from a
method reference.

MemberRef signatures for field references are the same as the field decla-
ration signatures discussed earlier; see “Field Signatures.” MemberRef signatures
for method references are structurally similar to method declaration signatures,
although you should note two differences concerning the values of signature
components:

B The calling convention can contain the modifier explicit, which indi-
cates that the instance pointer of the parent object (zhis) is explicitly
specified in the method signature as the first parameter.

B In the argument list of a vararg method reference, a sentinel can pre-
cede the optional arguments. The sentinel itself does not count as an
additional argument, so if you call a vararg method with one man-
datory argument and two optional arguments, the MemberRef signa-
ture will have an argument count of three and an argument list
structure that looks like this:

<mandatory_arg> <sentinel><opt_argl><opt_arg2>

Indirect Call Signatures

To call methods indirectly, IL has the special instruction calli. This instruc-
tion takes argument values plus a function pointer from the stack and uses
the StandAloneSig token as a parameter. The signature indexed by the token
is the signature by which the call is made. Effectively, calli takes a function
pointer and a signature and presumes that the signature is the correct one to
use in calling this function:

1dc.i4.0 // Load first argument

Tdc.i4.1 // Load second argument

1dftn void Foo::Bar(int32, int32) // Load function pointer
calli void(int32, int32) // Call Foo::Bar indirectly

Indirect call signatures are similar to the method signatures of Member-
Refs, but their calling convention might be one of the unmanaged calling con-
ventions, if the method called indirectly is in fact unmanaged.

Unmanaged calling conventions are defined in CorHdr.h in the CorUn-
managedCallingConvention enumeration as follows:

Chapter 7 Primitive Types and Signatures 175

| IMAGE_CEE_UNMANAGED_CALLCONV_C (0x1) C/C++-style
calling convention. The call stack is cleaned up by the caller. The
ILAsm notation is unmanaged cdecl.

n IMAGE_CEE_UNMANAGED_CALLCONV_STDCALL (0x2) Win32
API calling convention. The call stack is cleaned up by the callee. The
ILAsm notation is unmanaged stdcall.

B IMAGE_CEE_UNMANAGED_CALLCONV_THISCALL (0x3) C++
member method (non-vararg) calling convention. The callee cleans
the stack, and the this pointer is pushed on the stack last. The ILAsm
notation is unmanaged thiscall.

B IMAGE_CEE_UNMANAGED_CALLCONV_FASTCALL (0x4) Argu-
ments are passed in registers when possible. The ILAsm notation is
unmanaged fastcall. This calling convention is not supported in the
first release of the runtime.

Local Variables Signatures

Local variables signatures are the second type of signatures referenced by the
StandAloneSig metadata table. Each such signature contains type encodings for
all local variables used in a method. The method header can contain the Stand-
AloneSig token, which identifies the local variables signature. This signature is
retrieved by the loader when it prepares the method for JIT compilation.

Local variables signatures are to some extent similar to method declaration
signatures, with two differences:

B The calling convention is IMAGE_CEE_CS_CALLCONV_LOCAL_SIG.

B Local variables signatures have no return type. The local variable
count is immediately followed by the sequence of encoded local
variable types:

<locals_sig> ::= <callconv_locals> <num_of_vars>
<var_type>[,<var_type>*]]

B <var_type>is the same SET as <arg_type> in method declaration sig-
natures—it can be anything except void.

Type Specifications

Type specifications are special metadata items residing in the TypeSpec table
and representing type constructs—as opposed to TypeDefs and TypeRefs, which
represent types (classes, interfaces, and value types).

A common example of a type construct is a vector or an array of classes
or value types. Consider the following code snippet:

176

Part Il Fundamental Components

.locals init(int32[0..,0..] iArr) // Declare 2-dim array reference
T1dc.i4 5 // Load size of first dimension

Tdc.i4 10 // Load size of second dimension

// Create array by calling array constructor:

newobj instance void int32[0..,0..]::.ctor(int32,int32)

stloc iArr // Store reference to new array in iArr

In the newobyj instruction, we specified a MemberRef of the constructor method,
parented not by a type but by a type construct, i7£32/0...,0...]. The question is,
“Whose .ctor is it, anyway?”

You might recall that arrays and vectors are generics and can be actualized
only in conjunction with some nongeneric type, producing a new class—in our
case, a two-dimensional array of 4-byte integers with zero lower bounds. So the
constructor we called was the constructor of this class.

And, of course, a natural way to represent such a type construct is by a
signature. That's why TypeSpec records have only one entry, containing an off-
set in the #Blob stream, pointing at the signature. Personally, I think it's a pity
the TypeSpec record contains only one entry; a Name entry could be of some
use. We could go pretty far with named TypeSpecs.

The TypeSpec signature has no calling convention and consists of one SET,
which, however, can be fairly long. Consider, for example, a multidimensional
array of function pointers that have function pointers among their arguments.

TypeSpec tokens can be used with all IL instructions that accept TypeDef or
TypeRef tokens. In addition, as you’'ve seen, MemberRefs can be scoped to
TypeSpecs as well as TypeRefs. The only places where TypeSpecs cannot replace
TypeDefs or TypeRefs are the extends and implements clauses of the class dec-
laration.

Two additional kinds of T)peSpecs, other than vectors and arrays, are
unmanaged pointers and function pointers which are not true generics, in that
no abstract class exists from which all pointers inherit. Of course, both types of
pointers can be cast to the value type int (/mscorlib/System.IntPtr), but this can
hardly help—the int value type is oblivious to the type being pointed at, so
such casting results only in loss of information. Pointer kinds of TypeSpecs are
rarely used, compared to array kinds, and have limited application.

Signature Validity Rules

Let’s wrap up the basic facts discussed in this chapter:

B [run time] Signature entries of records in the Method, Field, Property,
MemberRef, StandaloneSig, and TypeSpec metadata tables must hold
valid offsets in the #Blob stream. Nil values of these entries are not
acceptable.

Chapter 7 Primitive Types and Signatures

Signatures are built from SETs. Each SET describes the type of a field,
a parameter, or other such item.

[run time] Each SET is a sequence of primitive type codes and
optional integer parameters, such as metadata tokens or array dimen-
sion sizes. A SET cannot end with the following primitive types: a
sentinel, * &, [/, or pinned. These primitive types are modifiers for
the types that follow them in the SET.

[run time] A field signature, which is referenced from the Field or
MemberRef table, consists of the calling convention IMAGE_CEE_CS
_CALLCONV_FIELD and one valid SET, which cannot be void or
<type>& and cannot contain a sentinel or a pinned modifier.

A method reference signature, which is referenced from the Mem-
berRef table, consists of a calling convention, an argument count, a
return SET, and a sequence of argument SETSs, corresponding in
number to the argument count.

[run time] The calling convention of a method reference signature is
one of the following: the default, vararg, instance, instance vararg,
instance explicit, or instance explicit vararg.

[run time] The return SET of a method reference signature cannot
contain a sentinel or a pinned modifier.

[run time] No more than one argument SET of a method reference
signature can contain a sentinel, and it can do so only if the calling
convention includes vararg.

[run time] The argument SETs of a method reference signature can-
not be void and cannot contain a pinned modifier.

A method declaration signature, which is referenced from the
Method table, has the same structure as a method reference signature
and must comply with the same requirements, plus the following
restrictions: the explicit calling convention cannot be used, and no
argument SET can contain a sentinel.

A property declaration signature, which is referenced from the Prop-
erty table, has the same structure as a method declaration signature
and must comply with the same requirements except that the calling
convention of a property declaration signature must be
IMAGE_CEE_CS_CALLCONV_PROPERTY.

177

178

Part Il

Fundamental Components

An indirect call signature, which is referenced from the StandAlone-
Sig table, has the same structure as a method reference signature and
must comply with the same requirements except that the calling con-
vention of an indirect call to an unmanaged method can be unman-
aged cdecl, unmanaged stdcall, unmanaged thiscall, or unmanaged -
Jastcall.

A local variables signature, which is referenced from the StandAlone-
Sig table, consists of the calling convention IMAGE_CEE_CS_CALL-

CONV_LOCAL_SIG, a local variable count, and a sequence of vari-
able SETs, corresponding in number to the variable count. '

[run time] No variable SET can be void or can contain a sentinel.

A type specification signature, which is referenced from the TypeSpec
table, consists of one SET not preceded by the calling convention. The
SET must represent an array, a vector, an unmanaged pointer, or a
function pointer, and it cannot contain a pinned modifier.

Fields and Data Gonstants

Field Metadata 180

Instance and Static Fields 184

Default Values 184

Mapped Fields 187

Data Constants Declaration 189

Explicit Layouts and Union Declaration 191
Global Fields 194

Constructors vs. Data Constants 195
Metadata Validity Rules 198

Fields are one of two kinds of typed and named data locations, the second kind
being method local variables, which are discussed in Chapter 9, “Methods.”
Fields correspond to the member variables and global variables of the C++
world. Apart from their own characteristics, fields can have additional informa-
tion associated with them defining the way the fields are laid out by the loader,
how they are allocated, how they are marshaled to unmanaged code, and
whether they have default values. This chapter examines all aspects of member
and global fields and the metadata used to describe these aspects.

179

180

Part Il Fundamental Components

Field Metadata

To define a field, you must first provide basic information: the field’s name and
signature and flags indicating the field’s characteristics, stored in the Field meta-
data table. Then comes optional information, specific to certain kinds of fields:
field marshaling information, found in the FieldMarshal table; field layout infor-
mation in the FieldLayout table; field mapping information in the FieldRVA
table; and a default value in the Constant table.

To reference a field, you must know its owner—T)peRef, TypeDef, or Mod-
uleRef—as well as the field’s name and signature. The references to the fields
are kept in the MemberRef table. The general structure of the field metadata
group is shown in Figure 8-1.

TypeRef | ModuleRef
table table
TypeDef
~ table
FieldLayout Cdnstant
table table
FieldRVA FieldMarshal

table table

Figure 8-1 Field metadata group.

The central metadata table of the group, the Field table, has the associated
token type mdtFieldDef (0x04000000). A record in this table has three entries:

B Flags (2-byte unsigned integer) Binary flags indicating the
field’s characteristics.

B Name (offset in the #Strings stream) The field’s name.

B Signature (offset in the #Blob stream) The field’s signature.

As you can see, a Field record does not contain one vital piece of infor-
mation: which class or value type owns the field. The information about field
ownership is furnished by the class descriptor itself: records in the TypeDef
table have FieldList entries, which hold the RID (record index) of the Field table
where the type’s fields can be found.

Chapter 8 Fields and Data Constants 181

In the simplest case, when only the Field metadata table is involved, the IL
assembly language (ILAsm) syntax for a field declaration is as follows:

.field <flags> <type> <name>

The owner of a field is the class or value type in the lexical scope of which the
field is defined.

A field’s binary flags are defined in the CorHdr.h file in the enumeration
CorFieldAttr and can be divided into four groups, as described in the following
list. I'm using ILAsm keywords instead of the constant names from CorFieldAttr,
as I don't think the constant names are relevant.

B Accessibility flags (mask 0x0007):

Q privatescope (0x0000) This is the default accessibility. A
private scope field is exempt from the requirement of having a
unique triad of owner, name, and signature and hence must
always be referenced by a FieldDef token and never by a Mem-
berRef token (0x0A000000). Otherwise, this accessibility is the
same as that specified by the private flag.

Q private (0x0001) The field is accessible from its owner and
from classes nested in the field’s owner.

O famandassem (0x0002) The field is accessible from types
belonging to the owner’s family—that is, the owner itself and
all its descendants—defined in the current assembly.

0 assembly (0x0003) The field is accessible from types
defined in the current assembly.

0 family (0x0004) The field is accessible from the owner’s family.

Q famorassem (0x0005) The field is accessible from the owner’s
family and from all types defined in the current assembly.

0 public (0x0006) The field is accessible from any type.
B Contract flags (mask 0x02F0):

O static (0x0010) The field is static, shared by all instances of
the type.

0 éndtonly (0x0020) The field can only be initialized and can-
not be written to later. Initialization takes place in an instance
constructor (.ctor) for instance fields and in a class constructor
(.cctor) for static fields.

| literal (0x0040) The field is a compile-time constant. The

182

Part 111

Fundamental Components

U

loader does not lay out this field and does not create an internal
handle for it. The field cannot be directly addressed from IL and
can be used only as a Reflection reference to retrieve an asso-
ciated metadata-held constant. If you try to access a literal field
directly—for example, through the /dsfld instruction—the JIT
(just-in-time) compiler throws a MissingField exception and
aborts the task.

notserialized (0x0080) The field does not have to be serial-
ized when the owner is remoted. This flag has meaning only for
instance fields of the serializable types.

specialname (0x0200) The field is special in some way, as
defined by the name.

Interoperability flag:

i

pinvokeimpl (0x2000) The field is unmanaged and is
accessed from the managed code via the platform invocation
mechanism (P/Anvoke). In the first release of the Microsoft .NET
common language runtime, the P/Invoke mechanism works for
methods only, so this flag should never be set. ILAsm does not
allow the flag to be set. '

Reserved flags (cannot be set explicitly; mask 0x9500):

.

rispecialname (0x0400) The field has a special name that is
reserved for the internal use of the common language runtime.
Two field names are reserved: value_, for instance fields in
enumerators; and _Deleted”, for fields marked for deletion but
not actually removed from metadata. The keyword rtspecial-
name is ignored by the ILAsm compiler and is displayed by the
IL Disassembler for informational purposes only. This flag must
be accompanied by a specialname flag.

marshal(<native_type>) (0x1000) The field has an associ-
ated FieldMarshal record specifying how the field must be mar-
shaled when consumed by unmanaged code. The ILAsm
construct marshal(<native_type>) defines the marshaling infor-
mation emitted to the FieldMarshal table but does not set the
flag directly. Rather, the flag is set behind the scenes by the
metadata emission API when the marshaling information is
emitted. Native types are discussed in Chapter 7, “Primitive
Types and Signatures.”

[no ILAsm keyword] (0x8000) The field has an associated

Chapter 8 Fields and Data Constants 183

Constant record. The flag is set by the metadata emission API
when the respective Constant record is emitted. See the section
“Default Values,” later in this chapter.

O [no ILAsm keyword] (0x0100) The field is mapped to data
and has an associated FieldRVA record. The flag is set by the
metadata emission API when the respective FieldRVA record is
emitted. See the section “Mapped Fields,” later in this chapter.

In the field declaration, the type of the field (<type>) is the ILAsm notation
of the appropriate single encoded type, which together with the calling conven-
tion forms the field’s signature. If you forgot what a field signature looks like,
see the section “Field Signatures,” in Chapter 7.

The name of the field (<name>), also included in the declaration, should
be a simple name. ILAsm does not allow composite field names, although one
can always cheat and put a composite name in single quotation marks, turning
it into a simple name.

Examples of field declarations include the following:

.field public static marshal(int) int32 I
.field family string S .
.field private int32& pJ // ERROR! ByRef in field signature!

Field references in ILAsm have the following notation:
<field_ref> ::= <field_type>[<class_ref>::]1<field_name>

where <class_ref>—as we know from Chapter 6, “Namespaces and Classes”—
is defined as

<class_ref> ::= [<resolution_scope>]<full_type_name>
where

<assembly_ref_alias>]

<resolution_scope> ::= [
| [.module <module_ref_name>]

For instance, this example uses the IL instruction /dfld, which loads the
field value on the stack:

1dfld 1int32 [.module Another.dl11]Foo.Bar::idx

When it is difficult to infer from the context whether the referenced mem-
ber is a field or a method, <field_ref> is sometimes preceded by the keyword
field. Note that the keyword does not contain a leading dot. This example uses
the IL instruction Idfoken, which loads an item’s runtime handle on the stack:

Tdtoken field int32 [.module Another.d11]Foo0.Bar::idx

184

Part Il Fundamental Components

The field references reside in the MemberRef metadata table, which has
associated token type 0x0A000000. A record of this table has only three entries:

B Class (coded token of type MemberRefParent) This entry refer-
ences the TypeRef or the ModuleRef table. Method references, resid-
ing in the same table, can have their Class entries referencing the
Method and the TypeSpec tables as well.

B Name (offset in the #Strings stream)
B Signature (offset in the #Blob stream)

Instance and Static Fields

Instance fields are created every time a type instance is created, and they belong to
the type instance. Static fields, which are shared by all instances of the type, are cre-
ated when the type is loaded. Some of the static fields (literal and mapped fields)
are never allocated. The loader simply notes where the mapped fields reside and
addresses these locations whenever the fields are to be addressed. And the literal
fields are replaced with the constants at compile time.

A field signature contains no indication of whether the field is static or
instance. But because the loader keeps separate books for instance fields and
for two out of three kinds of static fields—not for literal fields—the kind of ref-
erenced field is easily discerned from the field’s token. When a field token is
found in the IL stream, the JIT compiler does not have to dive into the meta-
data, retrieve the record, and check the field’s flags; by that time, all the fields
have been accounted for and duly classified by the loader.

IL has two sets of instructions for field loading and storing. The instruc-
tions for instance fields are ldfld, ldflda, and stfld; those for static fields are Ids-
fld, ldsflda, and stsfld. An attempt to use a static field instruction with an
instance field would result in a JIT compilation failure. The inverse combination
would work, but it requires loading the instance pointer on the stack, which is,
of course, completely redundant for a static field.

Default Values

Default values reside in the Constant metadata table. Three kinds of metadata
items can have a default value assigned and therefore can reference the Con-
stant table: fields, method parameters, and properties. A record of the Constant
table has three entries:

B Type (unsigned 1-byte integer) The type of the constant, one of
the ELEMENT_TYPE_* codes. (See Chapter 7.)

Chapter 8 Fields and Data Constants 185

B Parent (coded token of type HasConstant) A reference to the
owner of the constant, a record in the Field, Property, or Param
table.

| Value (offset in the #Blob stream) A constant value blob.
The current implementation of the common language runtime-and ILAsm

allows the constant types described in Table 8-1. (As usual, I've dropped the
ELEMENT_TYPE_ part of the name.)

Table 8-1 Constant Types
Constant Type ILAsm Notation Comments
11 Int8 Signed 1-byte integer.
12 int16 Signed 2-byte integer.
4 int32 Signed 4-byte integer.
18 int64 Signed 8-byte integer.
R4 float32 4-byte floating-point.
RS Sloat64 8-byte floating-point.
CHAR char 2-byte Unicode character.
BOOLEAN bool 1-byte Boolean, true = 1, false = 0.
STRING <quoted_string>, Unicode string.
bytearray
CLASS nullref Null object reference. The value of the con-

stant of this type must be a 4-byte integer
containing 0.

The ILAsm syntax for defining the default value of a field is as follows:

<field_def_const> ::= .field <flags> <type>
<name> = <const_type> [(<value>)]

The value in parentheses is mandatory for all constant types except #ull-
ref. For example:

.field public int32 i = int32(123)

.field public static literal bool b = bool(true)
.field private float32 f = float32(1.2345)
.field public static intlé ii = intl6(OxFFEQ)
.field public object o = nullref

Defining integer and Boolean constants—not to mention nullref—is
pretty straightforward, but floating-point constants and strings can present
some difficulties.

186

Part Il Fundamental Components

Floating-point numbers have special cases, such as positive infinity and
negative infinity, that cannot be presented textually in simple floating-point for-
mat. In these special cases, the floating-point constants can alternatively be rep-
resented as integer values with a matching byte count. The integer values are
not converted to floating-point values; instead, they represent an exact bit
image of the floating-point values. For example:

.field public float32 fPosInf = float32(0x7F800000)
.field public float32 fNegInf = float32(0xFF800000)
.field public float32 fNAN = float32(0xFFC00000)

Like all other constants, string constants are stored in the #Blob stream. In
this regard, they differ from user-defined strings, which are stored in the #US
stream. What both kinds of strings have in common is that they are supposed to
be Unicode. I say “supposed to be” because the only Unicode-specific restrictions
imposed on these strings are that their sizes are reported in Unicode characters
and that their byte counts must be even. Otherwise, these strings are simply
binary objects and might or might not contain invalid Unicode characters.

Notice that the type of the constant does not need to match the type of the
item to which this constant is assigned—in this case, the type of the field.

In ILAsm, a string constant can be defined either as a composite quoted
string or as a byte array:

"Isn't" + " it " + "marvellous!"
bytearray(00 01 FF FE 1A 00 00)

.field public static string strl
.field public static string str2

When a string constant is defined as a composite quoted string, this string
is converted to Unicode before being stored in the #Blob stream. In the case of
a bytearray definition, the specified byte sequence is stored “as is,” and padded
with 1 zero byte if necessary to make the byte count even. In the example
shown here, the default value for the s#2 field will be padded to bring the byte
count to 8 (four Unicode characters). And if the bytes specified in the bytearray
are invalid Unicode characters, it will surely be discovered when we try to print
the string, but not before. ‘

Assigning default values to fields (and parameters) seems to be such a
compelling technique that you might wonder why we did not employ it in the
simple sample discussed in Chapter 1, “Simple Sample.” Really, defining the
default values is a great way to initialize fields—right? Wrong. Here’s a tricky
question. Suppose that we define a member field as follows:

.field public static int32 ii = int32(12345)

What will the value of the field be when the class is loaded? Correct answer: 0.
Why? Because default values specified in the Constant table are not used by the
loader to initialize the items to which they are assigned. If we want to initialize

Chapter 8 Fields and Data Constants 187

a field to its default value, we must explicitly call the respective Reflection
method to retrieve the value from metadata and then store this value in the
field. This doesn’t sound too nice, but, on the other hand, we should not forget
that these are default values rather than initial values, so formally the loader
might be right.

Let me remind you once again that literal fields are not true fields. They are
not laid out by the loader, and they cannot be directly accessed from IL. From the
point of view of metadata, however, literal fields are nevertheless valid fields hav-
ing valid tokens, which allow the constant values corresponding to these fields to
be retrieved by Reflection methods. The common language runtime does not
provide an implicit means of accessing the Constant table, which is a pity. It
would certainly be much nicer if the JIT compiler would compile the Idsfld
instruction into the retrieval of the respective constant value instead of failing,
when the ldsfld instruction is applied to a literal field. But such are the facts of life,
and I am afraid we cannot do anything about it at the moment.

Given this situation, literal fields without associated Constant records are
legal from the loader’s point of view, but they are utterly meaningless. They
serve no purpose except to inflate the Field metadata table.

But how do the compilers handle literal fields? If every time a constant
from an enumerator—represented, as we know, by a literal field—was used the
compiler emitted a call to the Reflection API to get this constant value, one
could imagine where it would leave the performance. Most compilers are
smarter than that and resolve the literal fields at compile time, replacing refer-
ences to literal fields with explicit constant values of these fields, so that the lit-
eral fields never come into play at run time. So much for having the literal fields
in the metadata and devising a special kind of TypeDef for enumerators.

ILAsm, following common language runtime functionality to the letter,
allows the definition of the Constant metadata but does nothing about the sym-
bol-to-value resolution at compile time. From the point of view of ILAsm and
the runtime, the enumerators are real, as distinctive types, but the symbolic
constants listed in the enumerations are not.

Mapped Fields

It is possible to provide unconditional initialization for static fields by mapping
the fields to data defined in the PE file and setting this data to the initializing
values. The syntax for mapping a field to data in ILAsm is the following:

<mapped_field_decl> ::= .field <flags> <type> <name> at <data_label>
Here’s an example:

.field public static int64 ii at data_ii

188

Part Il Fundamental Components

The nonterminal symbol <data_label> is a simple name labeling the data
segment to which the field is mapped. The ILAsm compiler allows a field to be
mapped either to the “normal” data section (.sdata) or to the thread local stor-
age (.tls), depending on the data declaration to which the field mapping refers.
A field can be mapped only to data residing in the same module as the field
declaration. (For information about data declaration, see the following section,
“Data Constants Declaration.”)

Mapping a field results in emitting a record of the FieldRVA table, which
contains two entries:

B RVA (4-byte unsigned integer) The relative virtual address of the
data to which the field is mapped.

N Field (RID to the Field table) The index of the Field record being
mapped.

Two or more fields can be mapped to the same location, but each field
can be mapped to one location only. Duplicate FieldRVA records with the same
Field values and different RVA values are therefore considered invalid metadata.
The loader is not particular about duplicate FieldRVA records, however; it sim-
ply uses the first one available for the field and ignores the rest.

The field mapping technique has some catches. The first catch (well, not
much of a catch, actually) is that, obviously, only static fields can be mapped.
Even if we could map instance fields, each instance would be mapped to the
same physical memory, making the fields de facto static—shared by all
instances—anyway. Mapping instance fields is considered invalid metadata, bug
it has no serious consequences for the loader—if a field is not static, the loader
does not even check to see whether the field is mapped. The only real effect of
mapping instance fields is a bloated FieldRVA table. The ILAsm compiler treats
mapping of an instance field as an error and produces an error message.

The second catch is that a field cannot be mapped if its type contains
object references (objects or arrays). Because the data sections are out of the
garbage collector’s reach, the validity of object references placed in the data
sections cannot be guaranteed. If the loader finds object references in a
mapped field type, it throws a TypeLoad exception and aborts the loading, even
if the code is run in full trust mode from a local drive and all security-related
checks are disabled. The loader checks for the presence of object references on
all levels of the field type—in other words, it checks the types of all the fields
that make up the type, and checks the types of fields that make up those types,
and so on.

The third catch is that a field cannot be mapped if its type contains non-
public instance fields. The reasoning behind this limitation is that if we map a
field with a type containing nonpublic members, we can map another field of

Chapter 8 Fields and Data Constants 189

some all-public type to the same location and, through this second mapping,
get unlimited access to nonpublic member fields of the first type. The loader
checks for the presence of nonpublic members on all levels of the mapped field
type and throws a Typeload exception if it finds such members. This check,
unlike the check for object references, is performed only when code verifica-
tion is required; it is disabled when the code is run from the local drive in full
trust mode.

Note, however, that a mapped field itself can be declared nonpublic with-
out ill consequences. This is based on the simple assumption that if developers
decide to overlap their own nonpublic field and thus defy the accessibility con-
trol mechanism of the common language runtime object model, they probably
know what they are doing.

The last catch worth mentioning is that the initialization data is provided
“as is,” exactly as it is defined in the PE file. And if you run the code on a plat-
form other than the one on which the PE file was created, you can face some
unpleasant consequences. As a trivial example, suppose that you map an int32
field to data containing bytes 0xAA, 0xBB, 0xCC, and 0xDD. On a little endian
platform (for instance, an Intel platform), the field is initialized to
0xDDCCBBAA, while on a big endian platform...well, you get the picture.

All these catches do not preclude the compilers from using field mapping
for initialization.

Data Constants Declaration

A data constant declaration in ILAsm has the following syntax:
<data_decl> ::= .data [t1s 1 [<data_label> = 1 <data_items>

where <data_label> is a simple name, unique within the module, and

{data_items> ::= { <data_item> [, <data_item>*] } | <data_item>
where
<data_item> ::= <data_type> [(<value>) 1 [[<count> 1]

Data constants are emitted to the .sdata section or the .#ls section, depend-
ing on the presence of the tls keyword, in the same sequence in which they
were declared in the source code. The unlabeled data declarations can be used
for padding between the labeled data declarations and probably for nothing
else, since without a label it’s impossible to map a field to this data. Unla-
beled—or, more precisely, unreferenced—data might not survive round-trip-
ping (disassembly-reassembly) because the IL Disassembler outputs only
referenced data.

The nonterminal symbol <data_type> specifies the data type. (See Table
8-2.) The data type is used by the ILAsm compiler exclusively for identifying the

190 Part 1l

size and byte layout of <value> and is not emitted as any part of metadata or
the data itself. Having no way to know what the type was intended to be when
the data was emitted, the IL Disassembler always uses the most generic form, a

Fundamental Components

byte array, for data representation.

If <value> is not specified, the data is initialized to a default value (usually
a value with all bits set to zeros). Thus it is still “initialized data” in terms of the

PE file structure—meaning that this data is part of the PE file disk image.

The optional <count> in square brackets indicates the repetition count of

the data item. Here are some examples:

.data t1s T_01

int32(1234)

// 4 bytes in .tls section, value 0x000004D2

.data t1s int32

// 4 bytes padding in .tls section, value doesn't matter

.data D_01 =

int32(1234)[32] // 32 4-byte integers in .sdata section,

// Each equal to 0x000004D2

Table 8-2 Types Defined for Data Constants

5

Data Type Size Value Comments
float32 4 bytes Floating-point, single pre- If an integer value is used, it
cision is converted to floating-point.
If the value overflows float32,
the ILAsm compiler issues a
warning.
Soatc4 8 bytes Floating-point, double If an integer value is used, it
precision is converted to floating-point.
int64 8 bytes 8-byte signed integer
int32 4 bytes 4-byte signed integer If the value overflows 7132,
the ILAsm compiler issues a
warning.
int16 2 bytes 2-byte signed integer If the value overflows int16,
the ILAsm compiler issues a
warning.
int8 1 byte 1-byte signed integer If the value overflows 718,
the ILAsm compiler issues a
warning.
bytearray var Sequence of two-digit The value cannot be omitted

hexadecimal numbers,
without the Ox prefix

since it defines the size. The
repetition parameter
([<count>)) cannot be used.

(continued)

Chapter 8 Fields and Data Constants 191

Table 8-2 Types Defined for Data Constants (continued)

Data Type Size Value

Comments

char* var Composite quoted string

& 4 bytes Another data label

The value cannot be omitted
since it defines the size. The
repetition parameter
([<count>]) cannot be used.
The string is converted to Uni-
code before being emitted to
data.

Data-on-data; the data con-
taining the value of the
unmanaged pointer—the vir-
tual address—of another
named data segment. The
value cannot be omitted, and
the repetition parameter
([<count>]) cannot be used.
The referenced data segment
must be declared before
being referenced in a data-on-
data declaration.

Explicit Layouts and Union Declaration

Although instance fields cannot be mapped to data, it is possible to manipulate
the positioning of these fields directly. As you might remember from Chapter 6,
a class or a value type can have an explicit flag, a special flag indicating that the
metadata contains exact instructions for the loader regarding the layout of this
class. This information is kept in the FieldLayout metadata table, whose records

contain these two entries:

B OffSet (4-byte unsigned integer) The relative offset of the field

in the class layout (n0f an RVA).

B Field (RID to the Field table) The index of the field for which the

offset is specified.

In ILAsm, the field offset is specified by putting the offset value in square
brackets immediately after the .field keyword, as shown here:

.class public value sealed explicit MyStruct

{
.field [0] public int32 ii
.field [4] public float64 dd
.field [12] public bool bb

192

Part lll Fundamental Components

Only instance fields can have offsets specified. Because static fields are
not part of the class instance layout, specifying explicit offsets for them is mean-
ingless and is considered a metadata error. If an offset is specified for a static
field, the loader behaves the same way it does with mapped instance fields: if
the field is static, the loader does not check to see whether the field has an off-
set specified. Consequently, FieldLayout records referencing the static fields are
nothing more than a waste of memory. '

In a class that has an explicit layout, all the instance fields must have spec-
ified offsets. If one of the instance fields does not have an associated FieldLay-
out record, the loader throws a Typeload exception and aborts the loading.
Obviously, a field can have only one offset, so duplicate FieldLayout records
that have the same Field entry are illegal. This is not checked at run time
because this metadata invalidity is not critical: the loader takes the first available
FieldLayout record for the current field and ignores any duplicates.

The placement of object references (classes, arrays) is subject to a general
limitation: the fields of object reference types must be aligned on pointer size—
either 4 or 8 bytes, depending on the platform:

.class public value sealed explicit MyStruct

{
.field [@] public intl6 ii
.field [2] public string str //I11egal on 32-bit and 64-bit
.field [6] public intlé jj
.field [8] public int32 kk
.field [12] public object oo //I1legal on 64-bit platform
.field [16] public int32[] iArr //Legal on both platforms

}

Explicit layout is a standard way to implement unions in IL. By explicitly
specifying field offsets, we can make fields overlap however we want. Let’s
suppose, for example, that we want to treat a 4-byte unsigned integer as such,
or as a pair of 2-byte words, or as 4 bytes. In C/C++ notation, the respective
constructs look like this:

union MultiDword {

DWORD dw;
union {
struct {
WORD wl;
WORD w2;
};
struct {
BYTE bl;
BYTE b2;
BYTE b3;

BYTE b4;

Chapter 8 Fields and Data Constants 193

}s
};

In ILAsm, the same union will be written like so:

.class public value sealed explicit MultiDword
{
.field [0] public unsigned int32 dw

.field [0] public unsigned intl6 wl
.field [2] public unsigned intl6 w2

.field [0] public unsigned int8 bl
.field [1] public unsigned int8 b2
.field [2] public unsigned int8 b3
.field [3] public unsigned int8 b4

The only limitation imposed on the explicit-layout unions is that if the
overlapping fields contain object references, these object references must not
overlap with any other field:

.class public value sealed explicit StrAndIndex
{
.field [0] public string Str // Reference, size 4 bytes
// on 32-bit platform
.field [4] public unsigned int32 Index

}
.class public value sealed explicit MyUnion
{
.field [9] public valuetype StrAndIndex str_and_index
.field [@] public unsigned int64 whole_thing // I1legal!
.field [@] public string str // Il1legal!
.field [2] public unsigned int32 half_and_half // I1legal!
.field [4] public unsigned int32 index // Legal, object reference
// not overlapped
}

Such “unionizing” of the object references would provide the means for directly
modifying these references, which could thoroughly disrupt the functioning of
the garbage collector. The loader checks explicit layouts for object reference
overlap; if any is found, it throws a TypeLoad exception and aborts the loading.

A field can also have an associated FieldLayout record if the owner of
the field has a sequential layout. In this case, the OffSet entry of the FieldLay-
out record holds a field ordinal rather than an offset. The fields belonging to
a sequential-layout class needn’t have associated FieldLayout records, but if
one of the class’s fields has such an associated record, all the rest must have
one too.

194 Part Il Fundamental Components

Global Fields

Fields declared outside the scope of any class are known as global fields. They
don’t belong to a class but instead belong to the module in which they are
declared. Because a module is represented by a special TypeDef record under
the name <Module>, all the formalities that govern how field records are iden-
tified by reference from their parent TypeDef records are observed.

Global fields must be static. Since only one instance of the module exists
when the assembly is loaded, and because it is impossible to create alternative
instances of the module, this limitation seems obvious.

Global fields can have public, private, or privatescope accessibility flags—
at least that’s what the metadata validity rules say. As we saw in Chapter 1, how-
ever, a global item (a field or a method) can have any accessibility flag, and the
loader interprets this flag only as assembly, private, or privatescope. The public,
assembly, and famorassem flags are all interpreted as assembly, while the fam-
ily, famandassem, and private flags are all interpreted as private. The global
fields cannot be accessed from outside the assembly, so they don’t have true
public accessibility. And because no type can be derived from <Module>, the
question about family-related accessibility is moot.

Global fields can be accessed from anywhere within the module, regard-
less of their declared accessibility. In this regard, the classes that are declared
within a module and use the global fields have the same access rights as if they
were nested in the module. The metadata contains no indications of such nest-
ing, of course.

A reference to a global field declared in the same module has no
<class_ref>:: part:

<global_field_ref> ::= [field] <field_type> <f7'e7d_name>

The keyword field is used in particular cases when the nature of the reference
cannot be inferred from the context.

A reference to a global field declared in a different module of the assem-
bly also lacks the class name but has resolution scope:

<globa I_field_ref> ::= [field] [.module <mod_name>]::<field_name>
The following are two examples of such declarations:

Tdsfld int32 globallnt
1dtoken field int32 [.module supporting.dl1]::globallnt

Since the global fields are static, we cannot explicitly specify their layout
except by mapping them to data. Thus our 4-2-1-byte union MultiDword would
look like this if we implemented it with global fields:

Chapter 8 Fields and Data Constants 195

.field public static unsigned int32 dw at D_00
.field public static unsigned intl6 wl at D_00
.field public static unsigned intl6 w2 at D_02
.field public static unsigned int8 bl at D_00
.field public static unsigned int8 b2 at D_01
.field public static unsigned int8 b3 at D_02
.field public static unsigned int8 b4 at D_03

.data D_00 = int8(0)
.data D_01 = int8(9)
.data D_02 = int8(0)
.data D_03 = int8(9)
1dc.i1.1

stsfld unsigned int8 b3 // Set value of third byte

Fortunately, we don’t have to do that every time we need a global union.
Instead, we can declare the value type MultiDword exactly as before and then
declare a global field of this type:

.field public static valuetype MultiDword multi_dword

Tdc.i1.1

ldsflda valuetype MultiDword multi_dword

// Load reference to the field

// As instance of MultiDword

stfld unsigned int8 MultiDword::b3 // Set value of third byte

Constructors vs. Data Constants

We've already taken a look at field mapping as a technique of field initializa-
tion, and I've listed the drawbacks and limitations of this technique. Field map-
ping has this distinct “unmanaged” scent about it, but the compilers routinely
use it for field initialization nevertheless. Is there a way to get the fields initial-
ized without mapping them? Yes, there is.

The common language runtime object model provides two special meth-
ods, the instance constructor (.ctor) and the class constructor (.cctor), a.k.a. the
type initializer. We're getting ahead of ourselves a bit here; methods in general
and constructors in particular are discussed in Chapter 9, so we won’t concen-
trate on details here. For now, all we need to know about .ctor and .cctor is that
.ctor is executed when a new instance of a type is created, and .cctor is exe-
cuted after the type is loaded and before any one of the type members is
accessed. Because class constructors are static and can deal with static members
of the type only, we have a perfect setup for field initialization: .cctors take care
of static fields, and .ctors take care of instance fields.

196

Part Il Fundamental Components

But how about global fields? The good news is that we can define a global
.cctor. (Don’t try this in the second beta version of the common language runt-
ime, if you can still find a copy; global class constructors were not allowed in
this beta version.) Field initialization by constructors is vastly superior to field
mapping, with none of its limitations, as described earlier in the section
“Mapped Fields.” The catch? Unfortunately, initialization by constructors must
be executed at run time, burning processor cycles, whereas mapped fields sim-
ply “are there” after the module has been loaded. The mapped fields don’t
require additional operations for the initialization. Whether this price is worth
the increased freedom and safety regarding field initialization depends on the
concrete situation, but in general I think it is.

Let me illustrate the point by building an alternative enumerator.
Because all the values of an enumerator are stored in literal fields, which are
inaccessible from IL directly, the compilers replace references to these fields
with the respective values at compile time. We can use a very simple enumer-
ator as a model:

.class public enum sealed MagicNumber
{
.field private specialname int32 value__
.field public static 1iteral valuetype
MagicNumber MagicOne = int32(123)
.field public static T1iteral valuetype
MagicNumber MagicTwo = int32(456)
.field public static literal valuetype
MagicNumber MagicThree = int32(789)

Let’s suppose that our code uses the symbolic constants of an enumerator
declared in a third-party assembly. We compile the code, and the symbolic con-
stants are replaced with their values. Forget for a moment that we must have
that third-party assembly available at compile time. But we will need to recom-
pile the code every time the enumerator changes, and we have no control over
the enumerator because it is defined outside our jurisdiction. In another sce-
nario, when we declare an enumerator in one of our own modules, we must
recompile all the modules that reference this enumerator once it is changed.

Let’s suppose also—for the sake of an argument—that we don’t like this
situation, so we decide to devise our own enumerator:

.class public value sealed MagicNumber
{
.field public int32 _value_ // Specialname value__ is
// reserved for enums
.field public static valuetype MagicNumber MagicOne at D_00
.field public static valuetype MagicNumber MagicTwo at D_04

Chapter 8 Fields and Data Constants 197

.field public static valuetype MagicNumber MagicThree at D_08

}

.data D_00 = int32(123)
.data D_04 = int32(456)
.data D_08 = int32(789)

This solution looks good, except in the platform-independence depart-
ment. We conquered the recompilation problem and can at last address the
symbolic constants by their symbols (names), through field access instructions.
This approach presents two problems, though. First, the fields representing the
symbolic constants can be written to. Second, it works fine with integers, but
what if we need a string enumeration?

Let’s try again with a class constructor; refer to the sample MyEnums.il on
the companion CD.

.class public value sealed MagicNumber

{
.field private int32 _value_ // Specialname value__ is

// reserved for enums

.field public static initonly valuetype MagicNumber MagicOne
.field public static initonly valuetype MagicNumber MagicTwo
.field public static initonly valuetype MagicNumber MagicThree
.method public static specialname void .cctor()

{
Tdsflda valuetype MagicNumber MagicNumber::MagicOne
Tdc.i4 123
stfld int32 MagicNumber::_value_
Tdsflda valuetype MagicNumber MagicNumber::MagicTwo
1dc.i4 456
stfld int32 MagicNumber::_value_
Tdsflda valuetype MagicNumber MagicNumber::MagicThree
Tdc.i4 789
stfld int32 MagicNumber::_value_
ret
}
.method public int32 ToBase()
{
ldarg.@ // Instance pointer
1df1d int32 MagicNumber::_value_
ret
}

All the remaining problems seem to be solved. The initonly flag on the
static fields protects them from being overwritten outside the class constructor.

198 Part Il Fundamental Components

Embedding the numeric values of symbolic constants in the IL stream takes care
of platform dependence. Because we are not mapping the fields, we are free to
use any type as the underlying type of our enumerator. And, of course, declar-
ing the _value_ field private protects it from having arbitrary values assigned to
it.

Alas, there is a hidden problem with this solution: the initonly flag does
not provide full protection against arbitrary field overwriting. In the first release
of the runtime, the operations /dflda (Idsflda) and stfld (stsfld) on initonly fields
are unverifiable outside the constructors. Unverifiable but not impossible,
which means that if the verification procedures are disabled, the initonly fields
can be overwritten in any method.

Metadata Validity Rules

The field-related metadata tables include the Field, FieldLayout, FieldRVA, Field-
Marshal, Constant, and MemberRef tables. The records of these tables have the
following entries:

B The Field table contains the Flags, Name, and Signature entries.
B The FieldLayout table contains the OffSet and Field entries.

B The FieldRVA table contains the RVA and Field entries.
|

The FieldMarshal table contains the Parent and NativeType (native
signature) entries.

The Constant table contains the Type, Parent, and Value entries.

B The MemberRef table contains the Class, Name, and Signature
entries.

Field Table Validity Rules

B The Flags entry can have only those bits set that are defined in the
enumeration CorFieldAttrEnum in CorHdr.h (validity mask: 0xB7F7).

B [run time] The accessibility flag (mask 0x0007) must be one of the
following: privatescope, private, famandassem, assembly, family,
Jfamorassem, or public.

The literal and initonly flags are mutually exclusive.
If the literal flag is set, the static flag must also be set.
If the 7tspecialname flag is set, the specialname flag must also be set.

[run time] If the flag 0x1000 (fdHasFieldMarshal) is set, the FieldMarshal
table must contain a record referencing this Field record, and vice versa.

Chapter 8 Fields and Data Constants

[run time] If the flag 0x8000 (fdHasDefault) is set, the Constant table
must contain a record referencing this Field record, and vice versa.

[run time] If the flag 0x0100 (fdHasFieldRVA) is set, the FieldRVA table
must contain a record referencing this Field record, and vice versa.

[run time] Global fields, owned by the TypeDef <Module>, must have
the static flag set.

[run time] The Name entry must hold a valid reference to the #Strings
stream, indexing a nonempty string no more than 1023 bytes long in
UTF-8 encoding.

[run time] The Signature entry must hold a valid reference to the
#Blob stream, indexing a valid field signature. Validity rules for field
signatures are discussed in Chapter 7.

No duplicate records—attributed to the same TypeDef and having the
same Name and Signature values—can exist unless the accessibility
flag is privatescope.

Fields attributed to enumerators must comply with additional rules,
described in Chapter 6.

FieldLayout Table Validity Rules

The Field entry must hold a valid reference to the Field table.
The field referenced in the Field entry must not have the static flag set.

[run time] If the referenced field is an object reference type and
belongs to TypeDefs that have an explicit layout, the OffSet entry
must hold a value that is a multiple of sizeof(void?).

[run time] If the referenced field is an object reference type and
belongs to TypeDefs that have an explicit layout, this field must not
overlap with any other field.

FieldRVA Table Validity Rules

[run time] The RVA entry must hold a valid nonzero relative virtual
address.

The Field entry must hold a valid index to the Field table.

No duplicate records referencing the same field can exist.

FieldMarshal Table Validity Rules

The Parent entry must hold a valid reference to the Field or Param table.

199

200 Part Il

Fundamental Components

No duplicate records that contain the same Parent value can exist.

The NativeType entry must hold a valid reference to the #Blob
stream, indexing a valid marshaling signature. Native types that make
up the marshaling signatures are described in Chapter 7.

Constant Table Validity Rules

The Type entry must hold a valid ELEMENT _TYPE_* code, one of the
following: bool, char, a signed or unsigned integer of 1 to 8 bytes,
string, or object.

The Value entry must hold a valid offset in the #Blob stream.

The Parent entry must hold a valid reference to the Field, Property,
or Param table.

No duplicate records that contain the same Parent value can exist.

MemberRef Table Validity Rules

[run time] The Class entry must hold a valid reference to one of the
following tables: TypeRef, TypeSpec, ModuleRef, MemberRef, or
Method.

[run time] The Class entry of a MemberRef record referencing a field
must hold a valid reference to the TypeRef or ModuleRef table.

[run time] The Name entry must hold a valid offset in the #Strings
stream, indexing a nonempty string no longer than 1023 bytes in
UTF-8 encoding.

[run time] The name defined by the Name entry must not match the
common language runtime reserved names _Deleted* or _VitblGap*,

[run time] The Signature entry must hold a valid offset in the #Blob
stream, indexing a valid MemberRef signature. Validity rules for
MemberRef signatures are discussed in Chapter 7.

No duplicate records with all three entries matching can exist.

An item (field or method) that a MemberRef record references must
not have the accessibility flag privatescope. '

Methods

Method Metadata 202

Static, Instance, Virtual Methods 212
Explicit Method Overriding 216
Method Header Attributes 220
Local Variables 221

Class Constructors 224
Instance Constructors 224
Instance Finalizers 226
Variable Argument Lists 227
Global Methods 229
Metadata Validity Rules 230

Methods are the third and the last leg of the tripod supporting the entire concept
of managed programming, the first two being types and fields. When it comes
down to execution, types, fields, and methods are the central players, with the
rest of the metadata simply providing additional information about this triad.

Method items can appear in three contexts: a method definition, a method
reference (for example, when a method is called), and a method implementa-
tion (when a method provides implementation of another method).

201

202

Part Il Fundamental Components

Method Metadata

Similar to field-related metadata, method-related metadata involves definition-
specific and reference-specific metadata. In addition, method-related metadata
includes method implementation, discussed later in this chapter, as well as
method semantics, method interoperability, and security metadata. (Chapter 12,
“Events and Properties,” describes method semantics; Chapter 15, “Managed
and Unmanaged Code Interoperation,” examines method interoperability; and
Chapter 14, “Security Attributes,” includes method security.) The diagram in Fig-
ure 9-1 shows the metadata tables involved in method definition and referenc-
ing implementation and their mutual dependencies. To avoid cluttering the
illustration, I have not included metadata tables involved in the other three
method-related aspects: method semantics, method interoperability, and secu-
rity metadata.

5 Goﬁétaht"-
- table -

FieldMarshal
- table

Figure 9-1 Metadata tables related to method definition and referencing.

Method Table Record Entries

The central table for method definition is the Method table, which has the asso-
ciated token type mdtMethodDef (0x06000000). A record in the Method table
has six entries:

H RVA (4-byte unsigned integer) The relative virtual address (RVA)
of the method body in the module. The method body consists of
header, IL code, and structured exception handling descriptors. The
RVA must point to a read-only section of the PE file.

Chapter 9 Methods 203

B ImplFlags (2-byte unsigned integer) Implementation binary
flags indicating the specifics of the method implementation.

B Flags (2-byte unsigned integer) Binary flags indicating the
method’s accessibility and other characteristics.

B Name (offset in the #Strings stream) The name of the method.
This entry must index a string of positive length no longer than 1023
bytes in UTF-8 encoding.

B Signature (offset in the #Blob stream) The method signature.
This entry must index a blob of positive size and must comply with
the method definition signature rules described in Chapter 7, “Prim-
itive Types and Signatures.”

B ParamlList (RID to the Param table) The record index of the
start of the parameter list belonging to this method. The end of the
parameter list is defined by the start of the next method’s parameter
list or by the end of the Param table.

As in the case of field definition, Method records carry no information
regarding the parent class of the method. Instead, the Method table is refer-
enced in the MethodList entries of TypeDef records, indexing the start of Method
records belonging to each particular TypeDef.

The RVA entry must be 0 or must hold a valid relative virtual address
pointing to a read-only section of the image file. If the RVA value points to a
read/write section, the loader will reject the method unless the application is
run from a local drive with all security checks disabled. If the RVA entry holds
0, it means that this method is implemented somewhere else (imported from a
COM library, platform-invoked from an unmanaged DLL, or simply imple-
mented by descendants of the class owning this method). All these cases are
described by special combinations of method flags and implementation flags.

The IL assembly language (ILAsm) syntax for method definition is the
following:

<method_def> ::=
.method <flags> <call_conv> <ret_type> <name>(<arg_list>) <impl> {
<method_body> }

where <call_conv>, <ret_type>, and <arg_list> are the method calling conven-
tion, the return type, and the argument list defining the method signature.

204 Part Il Fundamental Components

Method Flags

The nonterminal symbol <flags> identifies the method binary flags, which are
defined in the enumeration CorMethodAttr in CorHdr.h and are described in the
following list.

B Accessibility flags (mask 0x0007), which are similar to the accessibil-
ity flags of fields:

Q privatescope (0x0000) This is the default accessibility. A
private scope method is exempt from the requirement of hav-
ing a unique triad of owner, name, and signature and hence
must always be referenced by a MethodDef token and never by
a MemberRef token. Otherwise, this accessibility is the same as
that specified by the private flag.

4 private (0x0001) The method is accessible from its owner
and from classes nested in the method’s owner.

0 famandassem (0x0002) The method is accessible from
types belonging to the owner’s family—that is, the owner itself
and all its descendants—defined in the current assembly.

a assembly (0x0003) The method is accessible from types
defined in the current assembly.

Q family (0x0004) The method is accessible from the
owner’s family.

a famorassem (0x0005) The method is accessible from the
owner’s family and from all types defined in the current
assembly.

O public (0x0006) The method is accessible from any type.
B Contract flags (mask 0x00F0):

] static (0x0010) The method is static, shared by all instances
of the type.

0 final (0x0020) The method cannot be overridden. This flag
must be paired with the virtual flag.

o virtual (0x0040) The method is virtual. This flag cannot be
paired with the static flag.

O bidebysig (0x0080) The method hides all methods of the
parent classes that have a matching signature and name (as
opposed to having a matching name only). This flag is ignored

Chapter 9 Methods

by the common language runtime and is provided for the use
of compilers only. The ILAsm compiler recognizes this flag but
does not use it for its own purposes.

B Virtual method table (v-table) control flag (mask 0x0100):

a newslot (0x0100) A new slot is created in the class’s v-table
for this virtual method so that it does not override the virtual
method of the same name and signature this class inherited
from its base class. This flag can be used only in conjunction
with the virtual flag.

B Implementation flags (mask 0x2C08):

4 abstract (0x0400) The method is abstract; no implementa-
tion is provided. This method must be overridden by the non-
abstract descendants of the class owning the abstract method.
Any class owning an abstract method must have its own
abstract flag set. The RVA entry of an abstract method record
must be 0.

0 specialname (0x0800) The method is special in some way,
as described by the name.

Q pinvokeimpl(<pinvoke_spec>) (0x2000) The method
has unmanaged implementation and is called through the plat-
form invocation mechanism P/Invoke, discussed in Chapter 15.
<pinvoke_spec> in parentheses defines the implementation
map, which is a record in the ImplMap metadata table specify-
ing the unmanaged DLL exporting the method and the
method’s unmanaged calling convention. If <pinvoke_spec> is
provided, the method’s RVA must be 0, since the method is
implemented externally. If <pinvoke_spec> is not provided—
that is, the parentheses are empty—the defined method is a
local P/Invoke, implemented in unmanaged native code
embedded in the current PE file; in this case, its RVA must not
be 0.

Q unmanagedexp (0x0008) The managed method is exposed
as an unmanaged export. This flag is not currently used by the
common language runtime.

B Reserved flags (cannot be set explicitly; mask 0xD000):
Q rtspecialname (0x1000) The method has a special name

reserved for the internal use of the runtime. Four method
names are reserved: .ctor for instance constructors, .cctor for

205

206 Part Il Fundamental Components

class constructors, _VibiGap* for v-table placeholders, and
_Deleted* for methods marked for deletion but not actually
removed from metadata. The keyword rtspecialname is ignored
by the ILAsm compiler and is displayed by the IL Disassembler
for informational purposes only. This flag must be accompa-
nied by a speciainame flag.

0 [no ILAsm keyword] (0x4000) The method either has an
associated DeclSecurity metadata record that holds security
details concerning access to the method or has the associated
custom attribute System.Security.SuppressUnmanagedCodeSe-
curityAttribute.

4 regsecobj(0x8000) Because this method calls another method
containing security code, it requires an additional stack slot for a
security object. This flag is formally under the Reserved mask, so it
cannot be set explicitly. Setting this flag requires emitting the
pseudocustom attribute System.Security.DynamicSecurityMethod-
Attribute. When the ILAsm compiler encounters the keyword
regsecoby, it does exactly that: emits the pseudo-custom attribute
and thus sets this “reserved” flag.

Hote Ive used the word implementation here and there
rather extensively; perhaps some clarification is in order, to
avoid confusion. First, note that method implementation in the
sense of one method providing implementation for another is
discussed later in this chapter. Implementation-specific flags of
a method are not related to that topic; rather, they indicate the
features of implementation of the current method. Second, a
Method record contains two binary flag entries: Flags and
ImplFlags (implementation flags). It so happens that part of
Flags (mask 0x2C08) is also implementation-related. Thus far,
| have been talking about this part of Flags. For information
about ImplFiags, see “Method Implementation Flags” later in
this chapter.

Method Name

A method name in ILAsm is either a simple name or one of the two keywords
.ctor or .cctor. As you already know, .ctor is the reserved name for instance
constructors, while .cctor is reserved for class constructors, or type initializers.

Chapter 9 Methods 207

In ILAsm, .ctor and .cctor are keywords, so they should not be single-quoted as
any other irregular simple name.

The general requirements for a method name are straightforward: the
name must contain 1 to 1023 bytes in UTF-8 encoding, and it should not match
one of the four reserved method names—unless you really mean it. If you give
a method one of these reserved names, the common language runtime treats
the method according to this name.

Method Implementation Flags

The nonterminal symbol <imp/> in the method definition form denotes the
implementation flags of the method (the ImpiFlags entry of a Method record).
The implementation flags are defined in the enumeration CorMethodImpl in
CorHdr.h and are described in the following list.

B Code type (mask 0x0003):

4d cil (0x0000) The default. The method is implemented in
common intermediate language (CIL, a.k.a. IL, MSIL).

a native (0x0001) The method is implemented in native plat-
form-specific code.

2 optil (0x0002) The method is implemented in optimized IL.
Because the optimized IL is not supported in the first release of
the common language runtime, this flag should not be set.

2 runtime (0x0003) The method implementation is provided
by the runtime itself. If this flag is set, the RVA of the method
must be 0. ’

B Code management (mask 0x0004):

Q managed (0x0000) The default. The code is managed. In
the first release of the runtime, this flag cannot be paired with
the native flag.

QO unmanaged (0x0004) The code is unmanaged. This flag
must be paired with the native flag.

B Implementation and interoperability (mask 0x10D8):

4 forwardref(0x0010) The method is defined, but the IL code
of the method is not supplied. This flag is used primarily in edit-
and-continue scenarios and in managed object files, produced by
the Microsoft Managed C++ (MC++) compiler. This flag should
not be set for any of the methods in a managed PE file.

208 Part Il Fundamental Components

Q preservesig (0x0080) The method signature must not be
mangled during the interoperation with classic COM code,
which is discussed in Chapter 15.

a internalcall (0x1000) Reserved for internal use. This flag
indicates that the method is internal to the runtime and must be
called in a special way. If this flag is set, the RVA of the method
must be 0.

] synchronized (0x0020) The method must be executed in
single-threaded mode only. Methods belonging to value types
cannot have this flag set.

a noinlining (0x0008) The runtime is not allowed to inline the
method—that is, to replace the method call with explicit inser-
tion of the method’s IL code.

Take a look at the examples shown here:

.method public static int32 Diff(int32,int32) cil managed
{

} .
.method public void .ctor() runtime internalcall {}

Method Parameters

Method parameters reside in the Param metadata table, whose records have
three entries:

B Flags (2-byte unsigned integer) Binary flags characterizing the
parameter.

B Sequence (2-byte unsigned integer) The sequence number of
the parameter, with 0 corresponding to the method return.

B Name (offset in the #Strings stream) The name of the parame-
ter, which can be zero-length. For the method return, it must be
zero-length.

Parameter flags are defined in the enumeration CorParamAttr in CorHdr.h
and are described in the following list.

B Input/output flags (mask 0x0013):
a in(0x0001) Input parameter.
QO out (0x0002) Output parameter.
O opt(0x0010) Optional parameter.

Chapter 9 Methods 209

B Reserved flags (cannot be set explicitly; mask 0xF000):

4 [no ILAsm keyword] (0x1000) The parameter has an asso-
ciated Constant record. The flag is set by the metadata emission
API when the respective Constant record is emitted.

Q marshal(<native_type>) (0x2000) The parameter has an
associated FieldMarshal record specifying how the parameter
must be marshaled when consumed by unmanaged code. This
is similar to the marshal(...) construct of a field.

To describe the ILAsm syntax of parameter definition, let me remind you
of the method definition form:

<method_def> ::=
.method <flags> <call_conv> <ret_type> <name>(<arg_list>) <impl> {
<method_body> }

where

<ret_type> ::= <type> [marshal(<native_type>)],

<arg_list> ::= [<arg> [,<arg>+] 1,

<arg> ::= [[<in_out_flag>]* 1 <type> [marshal(<native_type>)]
[<p_name>]

<in_out_flag> ::= in | out | opt

Obviously, <p_name> is the name of the parameter, which, if provided, must
be a simple name.

Notice the difference in positioning of the marshaling specification in a
parameter and in a field definition: in a parameter definition, the marshaling
specification follows the <#ype>; in a field definition, the marshaling specifica-
tion precedes the <type>. Here is an example of parameter definitions:

.method public static int32 marshal(int) Diff(
[in] int32 marshal(int) First,

[in] int32 marshal(int) Second)

{

}

The syntax just shown takes care of all the entries of a Param record
(Flags, Sequence, Name) and, if needed, those of the associated FieldMarshal
record (Parent, NativeType). To set the default values for the parameters, which
are records in the Constant table, we need to add parameter specifications
within the method scope:

<param_const_def> ::= .param [<sequence>] = <const_type> [(<value>)]

210

Part Il Fundamental Components

<sequence> is the parameter’s sequence number. This number should not be 0,
because a 0 sequence number corresponds to the return type, and a “default
return value” does not make sense. <comst_type> and <value> are the same as
for field default value definitions, described in Chapter 8, “Fields and Data Con-
stants.” For example:

.method public static int32 marshal(int) Diff(
[in] int32 marshal(int) First,
[opt] int32 marshal(int) Second)
{
.param [2] = int32(0)

According to the common language runtime metadata model, it is not nec-
essary to emit a Param record for each return or argument of a method. Rather,
it must be done only if we want to specify the name, flags, marshaling, or
default value. The ILAsm compiler emits Param records for all arguments
unconditionally and for a method return only if marshaling is specified. Name,
flags, and default value are not applicable to a method return.

Referencing the Methods

Method references, like field references, translate into either MethodDef tokens
or MemeberRef tokens. As a rule, a reference to a locally defined method trans-
lates into a MethodDef token. However, even a locally defined method can be
represented by a MemberRef token; and in certain cases, such as references to
vararg methods, it must be represented by a MemberRef token.

The ILAsm syntax for method referencing is as follows:

<method_ref> ::=
[method] <call_conv> <ret_type> <class_ref>::<name>(<arg_list>)

The method keyword, with no leading dot, is used in the following two
cases in which the kind of metadata item being referenced is not clear from the
context:

B When a method is referenced as an argument of the /dtoken instruc-
tion.

B When a method is referenced in an explicit specification of a custom
attribute’s owner. (See Chapter 13, “Custom Attributes,” for more
information.)

The same rules apply to the use of the field keyword in field references.
The method keyword is used in one additional context: when specifying a func-

Chapter9 Methods 211

tion pointer as a type of field, variable, or parameter. That case, however,
involves not a method reference but a signature definition.

Flags, implementation flags, and parameter-related information (names,
marshaling, and so on) are not specified in a method reference. As you know,
a MemberRef record holds only the member’s parent token, name, and signa-
ture—the three elements needed to identify a method or a field unambiguously.
Here are a few examples of method references:

call instance void Foo::Bar(int32,int32)
Tdtoken method instance void Foo::Bar(int32,int32)

In the case of method references, the nonterminal symbol <class_ref> can
be a TypeDef, TypeRef, TypeSpec, or ModuleRef:

call instance void Foo::Bar(int32,int32)

call instance void [OtherAssembly]Foo::Bar(int32,int32)
call instance void Foo[]::Bar(int32,int32)

call void [.module Other.d11]::Bar(int32,int32)

Method Implementation Metadata

Method implementations represent specific metadata describing method over-
riding, in which one method’s implementation is substituted for another
method’s implementation. The method implementation metadata is held in the
MethodImpl table, which has the following structure:

B Class (RID to the TypeDef table) The record index of the Type-
Def implementing a method—in other words, replacing the method’s
implementation with that of another method.

B MethodBody (coded token of type MethodDefOrRef) A token
indexing a record in the Method table that corresponds to the imple-
menting method—that is, to the method whose implementation sub-
stitutes for another method’s implementation. A coded token of this
type can point to the MemberRef table as well, but this is illegal in
the first release of the common language runtime. The method
indexed by MethodBody must be virtual. In the first release of the
runtime, the method indexed by MethodBody must belong to the
class indexed by the Class entry.

B MethodDecl (coded token of type MethodDefOrRef) A token
indexing a record in the Method table or the MemberRef table that
corresponds to the implemented method—that is, to the method
whose implementation is being replaced by another method’s imple-
mentation. The method indexed by MethodDecl must be virtual.

212

Partill Fundamental Components

Static, Instance, Virtual Methods

We can classify methods in many ways: global methods vs. member methods,
variable argument lists vs. constant argument lists, and so on. Global and
vararg methods are discussed in later sections. In this section, we’ll focus on
static vs. instance methods. Take a look at the diagram shown in Figure 9-2.

Static methods are shared by all instances of a type. They don’t require an
instance pointer (this) and cannot access instance members unless the instance
pointer is provided explicitly. When a type is loaded, static methods are placed
in a separate typewide table.

Figure 9-2 Method classification.

The signature of a static method is exactly as it is specified, with the first
specified argument being number 0:

.method public static void Bar(int32 i, float32 r)
{
Tdarg.® // Load int32 i on stack

Instance methods are instance-specific and have the #his instance pointer
as an unlisted first (number 0) argument of the signature:

.method public instance void Bar(int32 i, float32 r)
{
ldarg.® // Load instance pointer -on stack
ldarg.1l // Load int32 i on stack

Chapter 9 Methods 213

Note Be careful about the use of the keyword instance in specifying
the method calling convention. When a method is defined, its flags—
including the static flag—are explicitly specified. Because of this, at
definition time it's not necessary to specify an instance calling conven-
tion—it can be inferred from the presence or absence of the static flag.
When a method is referenced, however, its flags are not specified, so
in this case the instance keyword must be specified explicitly for
instance methods; otherwise, the referenced method is presumed
static. This creates a seeming contradiction: a method when declared
is instance by default (no static flag specified), and the same method
when referenced is static by default (no instance specified). But static
is a flag and instance is a calling convention, so in fact we're dealing
with two different default options here.

Instance methods are divided into virtual and nonvirtual methods, identi-
fied by the presence or absence of the virtual flag. The virtual methods of a
class are called through the virtual method table (v-table) of this class, which
adds another level of indirection to implement so-called late binding. Virtual
methods can be overridden in derived classes by their own virtual methods of
the same signature and name—and even of a different name, although such
overriding requires an explicit declaration, as described later in this chapter. Vir-
tual methods can be abstract or might offer some implementation.

If you have a nonvirtual method declared in a class, it does not mean that
you can’t declare another nonvirtual method with the same name and signature
in a class derived from the first one. You can, but it will be a different method,
having nothing to do with the method declared in the base class. Such a
method in the derived class hides the respective method in the base class, but
the hidden method can still be called if you explicitly specify the owning class.

If you do the same with virtual methods, however, the method declared in
the derived class actually replaces, or overrides, the method declared in the
base class. This is true unless, of course, you specify the newslot flag on the
overriding method, in which case the overriding method will occupy a new
entry of the v-table and hence will not really be overriding anything.

To illustrate this point, take a look at the following code from the sample
file Virt_not.il on the companion CD:

.class public A

{
.method public specialname void .ctor() { ret }
.method public void Foo()
{

(continued)

214 Part Il Fundamental Components

Tdstr "A::Foo"
call void [mscorlib]System.Console::WriteLine(string)
ret
}
.method public virtual void Bar()
{
Tdstr "A::Bar"
call void [mscorlib]System.Console::WriteLine(string)
ret
}
.method public virtual void Baz()
{
ldstr "A::Baz"
call void [mscorlib]System.Console::WriteLine(string)
ret
}
}
.class public B extends A
{
.method public specialname void .ctor() { ret }
.method public void Foo()
{
Tdstr "B::Foo"
call void [mscorlib]System.Console::WriteLine(string)
ret
}
.method public virtual void Bar()
{
Tdstr "B::Bar" .
call void [mscorlib]System.Console::WriteLine(string)
ret
}
.method public virtual newslot void Baz()
{
Tdstr "B::Baz"
call void [mscorlib]System.Console::WriteLine(string)
ret
}
}
.method public static void Exec()
{
.entrypoint
newobj instance void B::.ctor() // Create instance of derived class
castclass class A // Cast it to base class

dup // We need 3 instance pointers

Chapter 9 Methods 215

dup // On stack for 3 calls

call instance void A::Foo()
callvirt instance void A::Bar()
callvirt instance void A::Baz()
ret

If we compile and run the sample, we’ll receive this output:

A:Foo
B:Bar
A:Baz

Because the method A::Foo is nonvirtual, declaring B::Foo does not affect
A::Foo in any way. So when we cast B to A and call A::Foo, B::Foo does not
enter the picture—it’s a different method.

Because the A::Bar method is virtual, as is B::Bar, when we create an
instance of B, B::Bar replaces A::Bar in the v-table. Casting B to A after that
does not change anything: B::Bar is sitting in the v-table of the class instance,
and A::Bar is gone. So when we call A::Bar, the “usurper” B::Bar is called
instead.

Both the A::Baz and B::Baz methods are virtual, but B::Baz is marked
newslot. Thus, instead of replacing 4::Baz in the v-table, B::Baz takes a new
entry and peacefully coexists with A::Baz. Since A::Baz is still present in the v-
table of the instance, the situation is practically (oops, almost wrote “virtually”;
should watch it; can’t have puns in such a serious book) identical to the situa-
tion with A::Foo and B::Foo, except that the calls are done through the v-table.
The Microsoft Visual Basic .NET compiler likes this concept and uses it rather
extensively.

If we don’t want a virtual method to be overridden in the class descen-
dants, we can mark it with the final flag. If you try to override a final method,
the loader fails and throws a TypeLoad exception.

Unboxed value types don’t have v-tables. It is perfectly legal to declare the
virtual methods as members of a value type, but these methods can be called
only from a boxed instance of the value type:

.class public value XXX

{
.method public void YYY()
{

}
.method public virtual void 7ZZ()
{

}

(continued)

216 Part [l Fundamental Components

}
.method public static void Exec()
{
.Tocals init(valuetype XXX xxx) // Variable xxx is an
// Instance of XXX
Tdloca xxx // Load managed ptr to xxx
call instance void XXX::YYY() // Legal: access to value
// Type member
// By managed ptr
Tdloca xxx
callvirt instance void XXX::ZZZ() // Illegal: access to virtual
// Methods possible only
// By object reference.
Tdloc xxx // Load instance of XXX.
box valuetype XXX // Convert it to object reference.
callvirt instance void XXX::ZZZ() // Legal
}

Explicit Method Overriding

Thus far, I've discussed implicit virtual method overriding—that is, a virtual
method defined in a class overriding another virtual method of the same name
and signature, defined in the class’s ancestor or an interface the class imple-
ments. But implicit overriding covers only the simplest case.

Consider the following problem: class A implements interfaces ZX and 7Y,
and each of these interfaces defines its own virtual method int32 Foo(int32). It
is known that these methods are different and must be implemented separately.
Implicit overriding can’t help in this situation. It’s time to use the MethodImpl
metadata table.

The MethodImpl metadata table contains descriptors of explicit method
overrides. An explicit override states which method overrides which other
method. To define an explicit override in ILAsm, the following directive is used
within the scope of the overriding method:

.override <class_ref>::<method_name>

The signature of the method need not be specified because the signature
of the overriding method must match the signature of the overridden method,
and the signature of the overriding method is known: it’s the signature of the
current method. For example:

.class public interface IX {

.method public abstract virtual int32 Foo(int32) { }
}
.class public interface IY {

.method public abstract virtual int32 Foo(int32) { }
}

Chapter 9 Methods 217

.class public A implements IX,IY {
.method public virtual int32 XFoo(int32) {
.override IX::Foo

}
.method public virtual int32 YFoo(int32) {
.override IY::Foo

Not surprisingly, we can’t override the same method with two different
methods within the same class: there is only one slot in the v-table to be over-
ridden. However, we can use the same method to override several virtual meth-
ods. Let’s have a look at the following code from the sample file Override.il on
the companion CD:

.class public A

{

.method public specialname void .ctor() { ret }

.method public void Foo()

{
Tdstr "A::Foo"
call void [mscorlib]System.Console::WriteLine(string)
ret

}

.method public virtual void Bar()

{
1dstr "A::Bar"
call void [mscorlib]System.Console::WritelLine(string)
ret

}

.method public virtual void Baz()

{
l1dstr "A::Baz"
call void [mscorlib]System.Console::WriteLine(string)
ret

}

}

.class public B extends A

{
.method public specialname void .ctor() { ret }
.method public void Foo()

{
Tdstr "B::Foo"
call void [mscorlib]System.Console::WriteLine(string)
ret

}

(continued)

218

Part Il Fundamental Components

.method public virtual void BarBaz()

{
.override A::Bar
.override A::Baz
Tdstr "B::BarBaz"
call void [mscorlib]System.Console::WritelLine(string)
ret
}
}
.method public static void Exec()
{
.entrypoint
newobj instance void B::.ctor() // Create instance of derived class
castclass class A // Cast it to base class
dup // We need 3 instance pointers
dup // On stack for 3 calls

call instance void A::Foo()
callvirt instance void A::Bar()
callvirt instance void A::Baz()

ret

The output of this code demonstrates that the method B::BarBaz over-
rides both A::Bar and A::Baz:

A::Foo
B::BarBaz
B::BarBaz

Virtual method overriding, both implicit and explicit, is propagated to the
descendants of the overriding class, unless the descendants themselves override
those methods. The second half of the sample file Override.il demonstrates this:

.class public C extends B

{
.method public specialname void .ctor() { ret }
// No overrides; let's inherit everything from B
}
.method public static void Exec()
{

.entrypoint

newobj instance void C::.ctor() // Create instance of derived class

Chapter 9 Methods 219

castclass class A // Cast it to "grandparent"
dup // We need 3 instance pointers
dup // On stack for 3 calls

call instance void A::Foo()
callvirt instance void A::Bar()
callvirt instance void A::Baz()
ret

The output is the same, which proves that class C has inherited the over-
ridden methods from class B:

A::Foo
B::BarBaz
B::BarBaz

ILAsm supports an extended form of the explicit override directive, placed
within the class scope:

.override <class_ref>::<method_name> with <method_ref>

For exafnple, the overriding effect would be the same in the preceding
code if we defined class B like so:

.class public B extends A

{
.method public specialname void .ctor() { ret }
.method public void Foo()
{
1dstr "B::Foo"
call void [mscorlib]System.Console::WriteLine(string)
ret
}
.method public virtual void BarBaz()
{
1dstr "B::BarBaz"
call void [mscorlib]System.Console::WriteLine(string)
ret
}
.override A::Bar with instance void B::BarBaz()
.override A::Baz with instance void B::BarBaz()
}

In the extended form of the .override directive, the overriding method
must be fully specified because the extended form is used within the overriding
class scope, not within the overriding method scope.

To tell the truth, the extended form of the .override directive is not very
useful in the first version of the common language runtime because the over-
riding methods are restricted to those of the overriding class. Under these cir-

220 Part Il Fundamental Components

cumstances, the short form of the directive is sufficient, and I doubt that anyone
would want to use the more cumbersome extended form. But I've noticed that
in this industry the circumstances tend to change.

Method Header Attributes

The RVA value of a Method record—if it is nonzero and if the method is not
implemented as embedded native code—points to the method body. The
method body consists of a method header, IL code, and an optional structured
exception handling (SEH) table, as shown in Figure 9-3.

. Tiny header |

" IL code
. (< 64 bytes)

Figure 9-3 Managed method body structure.

Two types of method headers—fat and tiny—are defined in CorHdr.h. The
first two bits of the header indicate its type: bits 10 stand for the tiny format, and
bits 11 stand for the fat format. Why do we need two bits for a simple dichot-
omy? Because, speaking hypothetically, the day might come when more
method header types are introduced.

A tiny method header is only 1 byte, with the first two (least significant)
bits holding the type—10—and the 6 remaining bits holding the method IL
code size in bytes. A method is given a tiny header if it has neither local vari-
ables nor structured exception handling, if it works fine with the default evalu-
ation stack depth of 8 slots, and if its size is less than 64 bytes. A fat header is
12 bytes in size and has the structure described in Table 9-1. The fat headers
must begin at 4-byte boundaries. The structures of both tiny and fat method
headers are shown in Figure 9-4.

Table 9-1

Chapter 9 Methods 221

The Fat Header Structure

Entry Size

Description

WORD

WORD

DWORD
DWORD

The lower 2 bits hold the fat header type code (0x3); the next 10 bits hold
Flags. The upper 4 bits hold the size of the header in double words and
must be set to 3. Currently used flags are Ox2, which indicates that more
sections follow the IL code—that is, an SEH table is present—and Ox4,
which indicates that local variables must be initialized.

MaxStack is the maximal evaluation stack depth in slots. Stack size in IL is
measured not in bytes but in slots, with each slot able to accept one item
regardless of the item’s size. The default value is 8 slots, and it can be set
explicitly in ILAsm by the directive .maxstack <integer> used inside the
method scope. Be careful about trying to economize the method size by
specifying .maxstack lower than the default: if the specified stack depth
differs from the default depth, the method automatically gets a fat header
even if it has no local variables, no SEH table, and a code size less than 64
bytes.

CodeSize is the size of the IL code in bytes.

LocalVarSigTok is the token of the local variables signature (token type
0x11000000). The structure of the local variables signature is discussed in
Chapter 7. If the method has no local variables, this entry is set to 0.

Local Variables

Local variables are the typed data items that are declared within the method
scope and exist from the moment the method is called until it returns. ILAsm
allows us to assign names to local variables and reference them by name, but IL
instructions address the local variables by their zero-based ordinals.

When the source code is compiled in debug mode, the local variable
names are stored in the program database (PDB) file accompanying the mod-
ule, and in this case the local variable names might survive round-tripping. In
general, however, these names are not preserved because they, unlike the
names of fields and method parameters, are not part of the metadata.

All the local variables, no matter when they are declared within the
method scope, form a single signature, kept in the StandAloneSig metadata
table (token type 0x11000000).The token referencing the respective signature is
part of the method header. '

Local variables are declared in ILAsm as follows:

.method public void Foo(int32 ii, int32 jj)
{
.locals init (float32 ff, float64 dd, object oo, string ss)

222 Part Il Fundamental Components

Tiny header
B oM
O O I
IL code size 1|0|‘
o ~ Type

Fat header

Figure 9-4 The structures of tiny and fat method headers.

The init keyword sets the flag Ox4 in the method header, indicating that
the JIT compiler must initialize all local variables before commencing the
method execution. Initialization means that for all variables of value types the
corresponding default constructors are called, and all variables of object refer-
ence types are set to null. Code that contains methods without a local variable
initialization flag set is deemed unverifiable and can be run from a local drive
only with verification disabled.

ILAsm- does not require that all local variables be declared in one place;
the following is perfectly legal:

Chapter 9 Methods 223

.method public void Foo(int32 ii, int32 jj)

{
.locals init (float32 ff, float64 dd, object oo, string ss)
{
.locals (int32 kk, bool bb)
}
{
.locals (int32 mm, float32 f)
}
}

In this case, the summary local variables signature will contain the types
float32, float64, object, string, int32, bool, int32, and float32. Repeating init in
subsequent local variable declarations of the same method is not necessary
because any one of the .Jocals init directives sets the local variable initialization
flag.

It's obvious enough that we have a redundant local variable slot in the
composite signature: by the time we need mm, we don’t need kk any more, so
we could reuse the slot and reduce the composite signature. In ILAsm, we can
do that by explicitly specifying the 0-based slot numbers for local variables:

.method public void Foo(int32 ii, int32 jj)

{
.locals init ([0]1float32 ff, [1]float64 dd,
[2]object oo, [3]string ss)
{
.lTocals ([4]int32 kk, [5]bool bb)
}
{
.locals ([4]int32 mm, [6]float32 f)
}
}

Could we also reuse slot 5 for variable f? No, because the type of slot 5 is
bool, and we need a slot of type float32 for f. Only the slots holding local vari-
ables of the same type and used within nonoverlapping scopes can be reused.

224 Part Il Fundamental Components

Important The number of local variables declared in a method is
completely unrelated to the .maxstack value, which depends only on
how many items you might have to load simultaneously for computa-
tional purposes. For example, if you declare 20 local variables, you
don’t need to declare .maxstack 20; but if your method is calling
another method that takes 20 arguments, you need to ensure that the
stack has sufficient depth.

Class Constructors

Class constructors, or type initializers, are the methods specific to a type as a
whole that run after the type is loaded and before any of the type’s members
are accessed. You've already encountered class constructors in the preceding
chapter, which discussed approaches to static field initialization. That is exactly
what class constructors are used for: static field initialization.

Class constructors are static, have specialname and ritspecialname flags,
have neither parameters nor return value—that is, the return type is void—and
have the name .cctor, which in ILAsm is a keyword rather than a name. Only
one class constructor per type is permitted, and it cannot use the vararg calling
convention.

Normally, class constructors are never called from the IL code. If a type
has a class constructor, this constructor is executed automatically after the type
is loaded. However, a class constructor, like any other static method, can be
called explicitly. As a result of such a call, the global fields of the type are reset
to their initial values. Calling .cctor explicitly does not lead to type reloading.

Instance Gonstructors

Instance constructors, unlike class constructors, are specific to an instance of a
type and are used to initialize both static and instance fields of the type. Func-
tionally, instance constructors in IL are a direct analog of C++ constructors.
Instance constructors can have parameters but must return void, must be
instance, must have specialname and rispecialname flags, and have the name
.ctor, which is also an ILAsm keyword. Like class constructors, instance con-
structors cannot use the vararg calling convention. In the first release of the
common language runtime, instance constructors are not allowed to be virtual.
A type can have multiple instance constructors, but they must have different
parameter lists because the name (.ctor) and the return type (void) are fixed.

Usually, instance constructors are called during the execution of the
newobyj instruction, when a new type instance is created:

Chapter 9 Methods 225

.class public Foo
{
.field private int32 tally
.method public void .ctor(int32 tally_init)
{
1darg.@ // Load the instance reference
ldarg.1l // Load the initializing value
stfld int32 Foo::tally // This->tally = tally_init;
ret

}
.method public static void Exec()

{
.locals init (class Foo foo0)
// Foo is a reference but not an instance
1dc.i4 128 // Put 128 on stack as Foo's constructor argument
newobj instance void Foo::.ctor(int32)
// Instance of Foo is created
stloc.@ // foo = new Foo(128);

But, as is the case for class constructors, an instance constructor can be
called explicitly. Calling the instance constructor resets the fields of the type
instance and does not create a new instance. The only problem with calling
class or instance constructors explicitly is that sometimes the constructors
include type instantiations, if some of the fields to be initialized are of object
reference type. In this case, additional care should be taken to avoid multiple
type instantiations.

Warning Calling the class and instance constructors explicitly, how-
ever possible in principle, renders the code unverifiable. This limitation
is imposed on the constructors of the reference types (classes) only
and does not concern those of the value types. The only place where
an instance constructor of a class can be called explicitly is within an
instance constructor of the class’s direct descendant.

Constructors of the classes cannot be the arguments of the Idftn
instruction. In other words, you can’t obtain a function pointer to a .ctor
or .cctor of a class.

| repeat: all these limitations can be bypassed only if your code is
run from the local drive with verification disabled. Constructors of the
value types are not subject to these limitations.

226

Part Il Fundamental Components

Class and instance constructors are the only methods allowed to set the
values of the fields marked initonly. If an initonly field is initialized by the
.cctor of the current type, it can subsequently be modified by a .ctor of this type
but not by any other method. Methods belonging to some other class, including
.ctor and .cctor, cannot modify the initonly field, even if the field accessibility
permits. Subsequent explicit calls to .ctor and .cctor can modify the initonly
fields as well as the first, implicit initializing calls.

Because value types are not instantiated using the newobj instruction,
instance constructors make less sense for them. If an instance constructor is
specified for a value type, it should be called explicitly by using the call instruc-
tion, even though declaring a variable of a value type creates an instance of this
value type. Interfaces cannot have instance constructors at all; there is no such
thing as an interface instance.

Instance Finalizers

Another special method characteristic of a class instance is a finalizer, which is
in many aspects similar to a C++ destructor. The finalizer must have the follow-
ing signature:

.method family virtual instance void Finalize()
{

}

Unlike instance constructors, which cannot be virtual, instance destruc-
tors—sorry, I mean finalizers—must be virtual. This requirement and the strict
limitations imposed on the finalizer signature and name result from the fact that
any particular finalizer is an override of the virtual method Finalize of the inher-
itance root of the class system, the /mscorlib]System.Object class, the ultimate
ancestor of all classes in the Microsoft .NET universe. To tell the truth, the
Object’s finalizer does exactly nothing. But Object, full of fatherly care, declares
this virtual method anyway, so Object’s descendants could override it, should
they desire to do something meaningful at the inevitable moment of their
instances’ demise.

The finalizer is executed by the garbage collection (GC) subsystem of the
runtime when that subsystem decides that a class instance should be disposed
of. No one knows exactly when this happens; the only solid fact is that it occurs
after the instance is no longer used and has become inaccessible. But how soon
after is anybody’s guess.

If you prefer to execute the instance’s last will and testament—that is, call
the finalizer—when you think you don’t need the instance any more, you can

Chapter 9 Methods 227

do exactly that by calling the finalizer explicitly. But then you should notify the
GC subsystem that it does not need to call the finalizer again when in due time
it decides to dispose of the abandoned class instance. You can do this by calling
the .NET Framework class library method /mscorlib/System.GC::SuppressFinal-
ize, which takes the object (a reference to the instance) as its sole argument—
the instance is still there; you simply called its finalizer but did not destroy it—
and returns void.

If for some reason you change your mind afterward, you can notify the
GC subsystem that the finalizer must be run after all by calling the /mscorlib/Sys-
tem.GC::ReRegisterForFinalize method with the same signature, void(object).
You needn’t fear that the GC subsystem might destroy your long-suffering
instance without finalization before you call ReRegisterForFinalize—as long as
you can still reference this instance, the GC will not touch it. Both methods for
controlling finalization are public and static, so they can be called from any-
where.

Variable Argument Lists

Encounters with variable argument list (vararg) methods in earlier chapters
revealed the following information:

B The calling convention of these methods is vararg.

B Only mandatory parameters, if any, are specified in the wvararg
method declaration:

.method public static vararg void Print(string Format)
{ ...}

B If and only if optional parameters are specified in a vararg method
reference at the call site, they are preceded by a sentinel—an ellipsis
in ILAsm notation—and a comma:

call vararg void Print(string, ..., int32, float32, string)

I'm not sure that requiring the sentinel to appear as an independent
comma-separated argument was a good idea. After all, a sentinel is not a true
element type but is a modifier of the element type immediately following. Nev-
ertheless, such is ILAsm notation in the first release of the common language
runtime, and we’ll have to live with it at least for a while.

The vararg method signature at the call site obviously differs from the sig-
nature specified when the method is defined, because it carries information
about optional parameters. That's why the vararg methods are always refer-

228

Part Il Fundamental Components

enced by MemberRef tokens and never by MethodDef tokens, even if the
method is defined in the current module. (In that case, the MemberRef record
corresponding to the vararg call site will have the respective MethodDef as its
parent, which is slightly disturbing, but only at first sight.)

Now let’s see how the vararg methods are implemented. IL offers no spe-
cific instructions for argument list parsing beyond the arglist instruction, which
merely creates the argument list structure. To work with this structure and iter-
ate through the argument list, you need to work with the .NET Framework class
library value type /mscorlibjSystem.Arglterator. This value type should be initial-
ized with the argument list structure, which is an instance of the value type
[mscorlib]System.RuntimeArgumentHandle, returned by the arglist instruction.
Arglterator offers such useful methods as GetRemainingCount and GetNextArg.

To make a long story short, let’s review the following code snippet from
the sample file Vararg.il on the companion CD:

// Compute sum of undefined number of arguments
.method public static vararg unsigned inté64
Sum(/* all arguments optional =/)

{
.locals init(value class [mscorlib]System.Arglterator Args,
unsigned int64 Sum,
int32 NumArgs)
1dc.i8 0@
stloc Sum

Tdloca Args

arglist // Create argument list structure

// Initialize Arglterator with this structure:

call instance void [mscorlib]System.Arglterator::.ctor(
value class [mscorlib]System.RuntimeArgumentHandle)

// Get the optional argument count:

Tdloca Args

call instance int32 System.Arglterator::GetRemainingCount()
stloc NumArgs

// Main cycle:
LOOP:
T1d1oc NumArgs
brfalse RETURN // if(NumArgs == @) goto RETURN;

// Get next argument:
Tdloca Args
call instance typedref [mscorlib]System.Arglterator::GetNextArg()

// Interpret it as unsigned int64:
refanyval [mscorlib]System.UInt64

Chapter 9 Methods 229

1dind.u8

// Add it to Sum:

1dT1oc Sum

add

stloc Sum // Sum += *((int64x*)&next_arg)

// Decrease NumArgs and go for next argument:
1dToc NumArgs

1dc.i4.ml

add

stloc NumArgs

br LOOP

RETURN:
Tdloc Sum
ret

In this code, we did not specify any mandatory arguments and thus took
the return value of GetRemainingCount for the argument count. Actually,
GetRemainingCount returns only the number of optional arguments, which
means that if we had specified N mandatory arguments, the total argument
count would have been greater by N.

The GetNextArg method returns a typed reference, typedref, which is cast
to a managed pointer to an 8-byte unsigned integer by the instruction refanyval
[mscorlib]System.UInt64. If the type of the argument cannot be converted to the
required type, the JIT compiler throws an InvalidCast exception.

Global Methods

Global methods, similar to global fields, are defined outside any class scope.
Most of the features of global fields and global methods are also similar: global
methods are all static, and the accessibility flags for both mean the same.

Of course, one global method worth a special mention is the global class
constructor, .cctor. As the preceding chapter discussed, a global .cctor is the
best way to initialize global fields. The following code snippet from the sample
file Gecetor.il on the companion CD provides an example:

.field private static string Hello
.method private static void .cctor()
{

1dstr "Hi there! What's up?"

stsfld string Hello
(continued)

230 Part 11

}

Fundamental Components

ret

.method public static void Exec()

{

.entrypoint
1dsf1ld string Hello // Global fields are accessible

// within the module

call void [mscorlib]System.Console::WriteLine(string)
ret

Metadata Validity Rules

Method-related metadata tables discussed in this chapter include the Method,
Param, FieldMarshal, Constant, MemberRef, and MethodImpl tables. The
records in these tables have the following entries:

The Method table: RVA, ImplFlags, Flags, Name, Signature, and
Paramlist.

The Param table: Flags, Sequence, and Names.

The FieldMarshal table: Parent and NativeType (native signature).
The Constant table: Type, Parent, and Value.

The MemberRef table: Class, Name, and Signature.

The MethodImpl table: Class, MethodBody, and MethodDecl.

Chapter 8 summarized the validity rules for the FieldMarshal, Constant,

and MemberRef tables. The only point to mention here regarding the Member-
Ref table is that, unlike field-referencing MemberRef records, method-referenc-
ing records can have the TypeSpec or Method table referenced in the Parent
entry. The Method table can be referenced exclusively by the MemberRef
records representing vararg call sites.

Method Table Validity Rules

The Flags entry can have only those bits set that are defined in the
enumeration CorMethodAttr in CorHdr.h (validity mask OXFDF7).

[run time] The accessibility flag (mask 0x0007) must be one of the
following: privatescope, private, famandassem, assembly, family,
Jamorassem, or public.

The static flag must not be combined with any of the following flags:
final, virtual, newslot, or abstract.

The pinvokeimpl flag must be paired with the static flag (but not vice

Chapter 9 Methods

versa).

Methods having privatescope accessibility must not have the virtual,
final, newslot, specialname, or rispecialname flag set.

The abstract, newslot, and final flags must be paired with the virtual
flag.

The abstract flag and the implementation flag forwardref are mutu-
ally exclusive.

[run time] If the flag 0x4000 is set, the method must either have an
associated DeclSecurity metadata record that holds security informa-
tion concerning access to the method or have the associated custom
attribute System.Security.SuppressUnmanagedCodeSecurityAttribute.
The inverse is true as well.

[run time] Methods belonging to interfaces must have either the static
flag or the virtual flag set.

[run time] Global methods must have the static flag set.
If the rtspecialname flag is set, the specialname flag must also be set.

The ImplFlags entry must have only those bits set that are defined in
the enumeration CorMethodImplAttr in CorHdr.h (validity mask
0x10BF).

The implementation flag forwardref is used only during in-memory
edit-and-continue scenarios and in object files (generated by the
MC++ compiler) and must not be set for any method in a managed
PE file.

[run time] The implementation flags cil and unmanaged are mutually
exclusive.

[run time] The implementation flags native and managed are mutu-
ally exclusive.

The implementation flag native must be paired with the unmanaged
flag.

[run time] The implementation flag synchronized must not be set for
methods belonging to value types.

[run time] The implementation flags runtime and internalcall are for
internal use only and must not be set for methods defined outside
NET Framework system assemblies.

[run time] The Name entry must hold a valid reference to the #Strings

231

232 Part Il Fundamental Components

stream, indexing a nonempty string no more than 1023 bytes long in
UTF-8 encoding.

B [run time] If the method name is .ctor, .cctor, _VtblGap*, or _Deleted?,
the rtspecialname flag must be set, and vice versa.

B [run time] A method named .cfor—an instance constructor—must not
have the static flag or the virtual flag set.

B [run time] A method named .cctor—a class constructor—must have
the static flag set.

B [run time] The Signature entry must hold a valid reference to the
#Blob stream, indexing a valid method signature. Validity rules for
method signatures are discussed in Chapter 7.

B [run time] A method named .ctor—an instance constructor—must
return void and must have the default calling convention.

B [run time] A method named .cctor—a class constructor—must return
void, can take no parameters, and must have the default calling con-
vention.

B No duplicate records—attributed to the same TypeDef and having the
same name and signature—should exist unless the accessibility flag
is privatescope.

B [run time] The RVA entry must hold 0 or a valid relative virtual
address pointing to a read-only section of the PE file.

B [run time] The RVA entry holds 0 if and only if

O The abstract flag is set, or

Q The implementation flag runtime is set, or

0 The implementation flag internalcall is set, or

Q The class owning the method has the import flag set, or
]

The pinvokeimpl flag is set, the implementation flags native and
unmanaged are not set, and the ImplMap table contains a
record referencing the current Method record. '

Param Table Validity Rules

B The Flags entry can have only those bits set that are defined in the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>