

Microsoft®

PROGRAMMING MICROSOFT®

WINDOws·cE
SECOND EDITION

Douglas Boling

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright© 2001 by Douglas McConnaughey Boling

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Boling, Douglas McConnaughey, 1960-

Programming Microsoft Windows CE I Douglas Boling.--2nd ed.
p. cm.

Includes index.
ISBN 0-7356-1443-1
1. Microsoft Windows (Computer file) 2. Operating systems (Computers) I. Title.

QA76.76.063 B623 2001
005.4'469--dc21

Printed and bound in the United States of America.

3 4 5 6 7 8 9 QWT 6 5 4 3 2

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

2001030761

Microsoft Press books are available through booksellers and distributors worldwide. For further informa
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com. Send
comments to mspinput@microsoft.com.

ActiveSync, ActiveX, Developer Studio, DirectX, Microsoft, MS-DOS, Visual C++, Win32, Windows,
and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Other product and company names mentioned herein may be the trademarks
of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Acquisitions Editor: Danielle Bird
Project Editor: Kathleen Atkins
Technical Editor: Brian Johnson
Manuscript Editors: Kathleen Atkins, Rebecca McKay

Body Part No. XOS-16604

To Nancy Jane

I

Part I
1 Hello Windows CE 3
2 Drawing on the Screen 35
3 Input: Keyboard, Touch Screen, and Menus 85
4 Windows, Controls, and Dialog Boxes 147

Part II

5 Common Controls and Windows CE 263
6 Memory Management 347
7 Files, Databases, and the Registry 377
8 Processes and Threads 487

Part Ill

9 Serial Communications 539
10 Windows Networking and lrSock 575
11 Connecting to the Desktop 635

Part IV
12 Notifications 711
13 The Explorer Shell 735
14 Programming the Pocket PC 763
15 Extending the Pocket PC 849
16 System Programming 901
17 Device Drivers 925

v

I
Acknowledgments xvii

Introduction xix

Part I
1 Hello Windows CE 3

What Is Different About Windows CE 3
Fewer Resources in Windows CE Devices 4
Unicode 4
New Controls 5

It's Still Windows Programming 6
The Window Class 6
Your First Program 8

Hungarian Notation 15
My Programming Style 16
Building HelloCE 16

2 Drawing on the Screen 35
Painting Basics 36

Valid and Invalid Regions 36
Device Contexts 37

Writing Text 39
Device Context Attributes 39
The TextDemo Example Program 40
Fonts 47
The Fontlist Example Program 52

Bitmaps 62
Device Dependent Bitmaps 63
Device Independent Bitmaps 64
DIB Sections 64
Drawing Bitmaps 67

vii

Table of Contents

Lines and Shapes 70

Lines 70
Shapes 72
The Shapes Example Program 75

3 Input: Keyboard, Touch Screen, and Menus 85
The Keyboard 85

Input Focus 86
Keyboard Messages 86
Keyboard Functions 91
The KeyTrac Example Program 94

The Touch Screen and the Stylus 103

Stylus Messages 103
The TicTac1 Example Program 112

Menus 122
Handling Menu Commands 124

Resources 125

Resource Scripts 125
Icons 127
Accelerators 128

Bitmaps 129
Strings 129
The TicTac2 Example Program 130

4 Windows, Controls, and Dialog Boxes 147
Child Windows 148

Window Management Functions 149
Scroll Bars and the Fontlist2 Example Program 151

Windows Controls 167

Button Controls 168
The Edit Control 171

The List Box Control 171
The Combo Box Control 172

Static Controls 173
The Scroll Bar Control 174
The CtlView Example Program 174

viii

Table of Contents

Dialog Boxes 206
Dialog Box Resource Templates 206
Creating a Dialog Box 209
Dialog Box Procedures 211
Modeless Dialog Boxes 214
Property Sheets 216
Common Dialogs 222
The DlgDemo Example Program 224

Part II
5 Common Controls and Windows CE 263

Programming Common Controls 264
The Common Controls 266

The Command Bar 266
The CmdBar Example Program 278
Command Bands 293
The CmdBand Example Program 303
The Month Calendar Control 317
The Date and Time Picker Control 320
The List View Control 322
The LView Example Program 325

Other Common Controls 344
Unsupported Common Controls 345

6 Memory Management 347
Memory Basics 347

About RAM 348
About ROM 348
About Virtual Memory 349
The Windows CE Address Space 350
An Application's Address Space 354

The Different Kinds of Memory Allocation 357
Virtual Memory 357
Heaps 363
The Local Heap 364

ix

Table of Contents

Separate Heaps 365
The Stack 368
Static Data 369
String Resources 371
Selecting the Proper Memory Type 371
Managing Low-Memory Conditions 372

7 Files, Databases, and the Registry 377
The Windows CE File System 378

The Object Store vs. Other Storage Media 379
Standard File 1/0 380
Creating and Opening Files 380
Reading and Writing 382
The FileView Sample Program 387
Memory-Mapped Files and Objects 405
Navigating the File System 409

Databases 415
Basic Definitions 416
The Database API 417
The AlbumDB Example Program 433

The Registry 463
Registry Organization 464
The Registry API 465
The RegView Example Program 469

8 Processes and Threads 487
Processes 487

Creating a Process 488
Terminating a Process 491
Other Processes 492

Threads 493
The System Scheduler 493
Never Do This! 495
Creating a Thread 496
Thread Local Storage 501

x

Table of Contents

Synchronization 503
Events 504
Waiting ... 505
Semaphores 509
Mutexes 511
Critical Sections 512
Interlocked Variable Access 514

Windows CE Security 515
Interprocess Communication 516

Finding Other Processes 517
The XTalk Example Program 519

Exception Handling 533
The _try, _except Block 533
The _try, _finally Block 536

Part Ill
9 Serial Communications 539

Basic Serial Communication 539
Opening and Closing a Serial Port 540
Reading and Writing to a Serial Port 541
Asynchronous Serial 1/0 542
Configuring the Serial Port 543
Setting the Port Timeout Values 546
Querying the Capabilities of the Serial Driver 547
Controlling the Serial Port 549
Clearing Errors and Querying Status 550
Stayin' Alive 551

The Infrared Port 552
Raw IR 552
lrComm 555

The CeChat Example Program 556

xi

Table of Contents

10 Windows Networking and lrSock 575
Windows Networking Support 575

WNet Functions 576
The ListNet Example Program 587

Basic Sockets 596
Initializing the WinSock DLL 597
Stream Sockets 598
lrSock 603
The MySquirt Example Program 609

TCP/IP Pinging 628

11 Connecting to the Desktop 635
The Windows CE Remote API 636

RAPI Overview 636
Predefined RAPI Functions 640
The RapiDir Example Program 646
Custom RAPI Functions 650
The RapiFind Example Program 656

The CeUtil Functions 665
Connection Notification 670

Registry Method 670
COM Method 672
The CnctNote Example Program 675
Connection Detection on the Windows CE Side 684

File Filters 684
Registering a File Filter 684
The File Filter Interfaces 690
The /CeFileFilterOptions Interface 694
The DivFile Filter Example 695

Part IV
12 Notifications 711

User Notifications 711
Setting a User Notification 712

Timer Event Notifications 717

xii

Table of Contents

System Event Notifications 718
The NoteDemo Example Program 719
Querying Scheduled Notifications 732

13 The Explorer Shell 735
Working with the Shell 736

The Shell Namespace 736
Special Folders 737
Shortcuts 739
Configuring the Start Menu 740
Recent Documents List 741
Launching Applications 741

The Taskbar 743
The TBlcons Example Program 744

The Out Of Memory Error Dialog Box 751
Console Applications 752

The CEFind Example Program 753
Hardware Keys 757

Virtual Codes for Hardware Keys 757
Using the Application Launch Keys 759
Dynamically Overriding Application Launch Keys 761

14 Programming the Pocket PC 763
The Pocket PC Screen 764
Hello Pocket PC 764

Differences in a Pocket PC Application 774
Building HelloPPC 779

The Menu Bar 779
Creating a Menu Bar 780
Menu Bar Resources 782
Working with a Menu Bar 786
The NewMenuX Example 788
The MenuBar Example 797

Dialog Boxes 813
Full-Screen Dialog Boxes 813
Input Dialogs 815

xiii

Table of Contents

Property Sheets 816
Auto Run 818
SHSiplnfo 821

The Game API 823
GAPI Initialization 825
Drawing to the Screen 827
Indirect Access to the Frame Buffer 828
GAPI Maintenance 829
Cleaning Up 829
The GAPIShow Example 830

15 Extending the Pocket PC 849
Writing a Custom Today Screen Item 849

Creatin'g a Today Screen Item DLL 850
The PowerBar Custom Today Screen Item 855

Writing an Input Method 867
The Components of a SIP 868
Threading Issues with Input Methods 869
The llnputMethod and llnputMethod2 Interfaces 869
The llMGallback and llMGallback2 Interfaces 874
The NumPanel Example Input Method 877

16 System Programming 901
The Boot Process 901

Reset 902
Powering Up Doesn't Boot the System 909

System Configuration 910
Writing Cross-Platform Windows CE Applications 911

Platforms and Operating System Versions 911
Compile-Time Versioning 912
Explicit Linking 913
Run-Time Version Checking 916
Power Management 918

xiv

17 Device Drivers
Basic Drivers

Driver Names
Enumerating the Active Drivers
Reading and Writing Device Drivers

Writing a Windows CE Stream Device Driver
The Stream API

Building a Device Driver
Debug Zones
The Generic Driver Example

Asynchronous Driver 1/0

Index

Table of Contents

925
925
926
926
930
931
933
942
942
944
952

957

xv

Acknowledgments

Books are produced by diverse teams of talented people. My name appears on
the cover, but countless others were involved in this book's creation. The teams
of people who worked on this second edition all pushed themselves to the max
to complete this revision.

First, there's the talented team at Microsoft Press. Kathleen Atkins, the project
leader and editor of both editions of this book, took my gnarled syntax and
confused text and made it readable. Technical editor for this edition was Brian
Johnson. Thanks, Brian, for both the editing and the support getting the CDs
organized and produced. Julie Xiao also performed technical editing duties for
part of the book. Rebecca McKay assisted Kathleen with the manuscript editing.
Shawn Peck was the technical copy editor, and Dan Latimer performed the desk
top publishing duties. Rob Nance provided the new and modified illustrations.

Thanks also to the Microsoft Windows CE development team. Over the years,
they have tolerated my endless questions. Thanks also to Dominique Fortivr, who

provided great assistance on the Pocket PC content in this edition.
A special thanks goes to my agent, Claudette Moore, and the team at Moore

Literary Agency. Claudette handled all the business details, freeing me to deal
with the fun stuff.

This edition of Programming Windows CE is an enhancement of the origi
nal edition, and so what you read is based on work from the original team. In
addition to Kathleen, who is mentioned above, the first edition team included
technical editor Jim Fuchs; Cheryl Penner, the copy editor and proofreader; Eliza
beth Hansford, the principal compositor; and illustrator Michael Victor.

My personal support team is headed by my wife, Nancy. Thanks, Nancy,
for the support, help, and love. The personal support team also includes our boys,
Andy, Sam, and Jake. They make sure I always remember what is important in
life. I also must acknowledge my parents, Ronald and Jane Boling. They are my
role models.

xvii

Introduction

I've been working with Windows CE for almost as long as it's been in existence.
A Windows programmer for many years, I'm amazed by the number of differ
ent, typically quite small, systems to which I can apply my Windows program
ming experience. These Windows CE systems run the gamut from PC-like mini-laptops
to embedded devices buried deep in some large piece of industrial equipment.
The use of the Win32 API in Windows CE enables tens of thousands of Windows
programmers to write applications for an entirely new class of systems. The subtle
differences, however, make writing Windows CE code somewhat different from
writing for the desktop versions of Windows. It's those differences that I'll ad
dress in this book.

Just What Is Windows CE?
Windows CE is the smallest and arguably the most interesting of the Microsoft
Windows operating systems. Windows CE was designed from the ground up to

be a small ROM-based operating system with a Win32 subset APL Windows CE
extends the Windows API into the markets and machines that can't support the
larger footprints of either the Windows Me kernel or the Windows NT kernel.

The Windows 95/98/Me line is a great operating system for users who need
backward compatibility with MS-DOS and Windows 2.x and 3.x programs. While
it has shortcomings, Windows Me succeeds amazingly well at this difficult task.
The Windows NT/2000/XP line, on the other hand, is written for the enterprise.
It sacrifices compatibility and size to achieve its high level of reliability and robust
ness. The next release, Windows XP, has a version built for the home user that does
strive for compatibility, but this is secondary to its primary goal of stability.

Windows CE isn't backward compatible with MS-DOS or Windows. Nor is
it an all-powerful operating system designed for enterprise computing. Instead,
Windows CE is a lightweight, multithreaded operating system with an optional
graphical user interface. Its strength lies in its small size, its Win32 subset API,
and its multiplatform support.

xix

Introduction

A Little Windows CE History
To understand the history of Windows CE, you need to understand the differ
ences between the operating system and the products that use it. The operating
system is developed by a core group of programmers inside Microsoft. Their prod
uct is the operating system itself. Other groups, who develop devices such as
the Pocket PC, use the newest version of the operating system that's available
at the time their product is to be released. This dichotomy has created some con
fusion about how Windows CE has evolved. Let's examine the history of each,
the devices and the operating system itself.

The Devices

xx

The first products designed for Windows CE were handheld "organizer" type
devices with 480-by-240 or 640-by-240 screens and chiclet keyboards. These
devices, dubbed Handheld PCs, were first introduced at Fall Comdex 96. Fall
Comdex 97 saw the release of a dramatically upgraded version of the operating
system, Windows CE 2.0, with newer hardware in a familiar form-this time the
box came with a 640-by-240 landscape screen, sometimes in color, and a some
what larger keyboard.

In January 1998 at the Consumer Electronics Show, Microsoft announced
two new platforms, the Palm-size PC and the Auto PC. The Palm-size PC was
aimed directly at the pen-based organizer market dominated by Palm OS-based
systems. The Palm-size PC featured a portrait mode and a 240-by-320 screen, and
it used stylus-based input. Unfortunately for Windows CE fans, the public recep
tion of the original Palm-size PC was less than enthusiastic.

Later that year, a new class of mini-laptop-style Windows CE machines with
touch-typeable keyboards and VGA or Super VGA screens made their appear
ance. These machines, called H/PC Professionals, provided 10 hours of battery
life combined with improved versions of Microsoft's Pocket Office applications.
Many of these machines had built-in modems, and some even diverged from the
then-standard touch screen, sporting track pads or IBM's TrackPoint devices. These
systems have found a home in the industrial market, where their relative low cost,
large screens, and great battery life satisfy a unique niche market.

In April 2000, Microsoft introduced the Pocket PC, a greatly enhanced ver
sion of the old Palm-size PC. The Pocket PC uses the more full-featured Windows
CE 3.0 operating system under the covers. The user interface of the Pocket PC
is also different, with a cleaner, 2D, look and a revised home page, the Today
screen. The most important feature of the Pocket PC, however, is the greatly im
proved performance of Windows CE. Much work had been done to tune Windows
CE for better performance. That improvement, coupled with faster CPUs, has

Introduction

allowed the system to nm with the zip expected from a pocket organizer. With
the Pocket PC, the inevitability of Moore's Law has enabled Windows CE devices
to cross over the line: the hardware is now capable of providing the computing
power that Windows CE requires.

Devices have recently been announced that meld the functions of the Pocket
PC with cellular phone capability. The merging of the new digital communica
tion infrastructure with the portable processing power of the Pocket PC produces
a device that can work locally while being continually connected globally. The
power of the Windows CE operating system enables applications that are beyond
the capability of systems with simpler operating systems to run on these devices.

The Operating System
While these consumer-oriented products made the news, more important devel
opment work was going on in the operating system itself. The Windows CE
operating system has evolved from the days of 1.0, when it was a simple orga
nizer operating system with high hopes. Starting with Windows CE 2.0 and con
tinuing to this day, Microsoft has released embedded versions of Windows CE
that developers can use on their custom hardware. It's important to note that while
consumer platforms such as the Pocket PC get most of the publicity, the im
provements to the base operating system are what enable devices such as the
Pocket PC.

Windows CE 2.0 was released with the introduction of the Handheld PC
2.0 at Fall Comdex 1997. Windows CE 2.0 added networking support, including
Windows standard network functions, an NDIS miniport driver model, and a
generic NE2000 network card driver. Added COM support allowed scripting,
although the support was limited to in-proc servers. A display driver model was
also introduced that allowed for pixel depths other than the original 2-bits-per
pixel displays of Windows CE 1.0. Windows CE 2.0 was also the first version of
the operating system to be released separately from a product such as the H/PC.
Developers could purchase the Windows CE Embedded Toolkit (ETK), which
allowed them to customize Windows CE to unique hardware platforms. Devel
opers who used the ETK, however, soon found that the goal of the product
exceeded its functionality.

With the release of the original Palm-size PC in early 1998, Windows CE
was improved yet again. Although Windows CE 2.01 wasn't released in an ETK
form, it was notable for its effort to reduce the size of the operating system and
applications. In Windows CE 2.01, the C runtime library, which includes functions
such as strcpy to copy strings, was moved from a statically linked library attached
to each EXE and DLL into the operating system itself. This change dramatically
reduced the size of both the operating system and the applications themselves.

xxi

Introduction

xxii

In August 1998, Microsoft introduced the H/PC Professional with a new
version of the operating system, 2.11. Windows CE 2.11 was a service pack update
to Windows CE 2.1, which was never formally released. Later in the year, Windows
CE 2.11 was released to the embedded community as Microsoft Windows CE
Platform Builder version 2.11. This release included support for an improved
object store that allowed files in the object store to be larger than 4 MB. This
release also added support for a console and a Windows CE version of CMD.exe,
the classic DOS-style command shell. Windows CE 2.11 also included Fast IR to
support IrDA's 4-mb infrared standard, as well as some specialized functions for
IP multicast. An initial hint of security was introduced in Windows CE 2.11: a
device could now examine and reject the loading of unrecognized modules.

Windows CE 2.12 was also a service pack release to the 2.1, or Birch, re
lease of Windows CE. The big news in this release was a greatly enhanced set
of Platform Builder tools that included a graphical front end. The operating sys
tem was tweaked with a new notification interface that combined the disparate
notification functions. The notification user interface was exposed in the Plat
form Builder to allow embedded developers to customize the notification dia
log boxes. A version of Microsoft's PC-based Internet Explorer 4.0 was also ported
to Windows CE as the Genie, or Generic IE control. This HTML browser control
complements the simpler but smaller Pocket Internet Explorer. Microsoft Mes
sage Queue support was added as well. The "go/no go" security of Windows
CE 2.11 was enhanced to include a "go, but don't trust" option. Untrusted mod
ules can run-but not call-a set of critical functions, nor can they modify parts
of the registry.

The long-awaited Windows CE 3.0 was finally released in mid-2000. This
release followed the April release of the Pocket PC that used a slightly earlier
internal build of Windows CE 3.0. The big news for Windows CE 3.0 was its kernel,
which was optimized for better real-time support. The enhanced kernel support
includes 256 thread priorities (up from 8 in earlier versions of Windows CE), an
adjustable thread quantum, nested interrupt service routines, and reduced laten
cies within the kernel.

The improvements in Windows CE 3.0 didn't stop at the kernel. A new COM
component was added to complement the in-proc COM support available since
Windows CE 2.0. This new component included full COM out-of-proc and DCOM
support. The object store was also improved to support up to 256 MB of RAM.
File size limits within the object store were increased to 32 MB per file.

The Windows CE 3.0 Add-On Pack for the Platform Builder added even more
features, including improved multimedia support though a media player control;
improved networking support (and XML support) with PPTP, ICS, and remote
desktop display support; and a formal introduction of the DirectX APL

Introduction

Because Windows CE is a work in progress, the next version of Windows
CE is being developed. I'll be updating my Web site, www.delvalle.com, with
information about this release as it becomes available.

Why You Should Read This Book
Programming Microsoft Windows CE is written for anyone who will be writing
applications for Windows CE. Both the embedded systems programmer using
Windows CE for a specific application and the Windows programmer interested
in porting an existing Windows application or writing an entirely new one can
use the information in this book to make their tasks easier.

The embedded systems programmer, who might not be as familiar with the
Win32 API as the Windows programmer, can read the first section of the book
to become familiar with Windows programming. While this section isn't the
comprehensive tutorial that can be found in books such as Programming Windows,
by Charles Petzold, it does provide a base that will carry the reader through the
other chapters in the book. It also can help the embedded systems programmer
develop fairly complex and quite useful Windows CE programs.

The experienced Windows programmer can use the book to learn about
the differences among the Win32 APis used by Windows CE and Windows XP.
Programmers who are familiar with Win32 programming recognize subtle differ
ences between the Windows Me and Windows XP APis. The differences between
Windows CE and its two cousins are even greater. The small footprint of Windows
CE means that many of the overlapping APis in the Win32 model aren't supported.
Some sections of the Win32 API aren't supported at all. On the other hand,
because of its unique setting, Windows CE extends the Win32 API in a number
of areas that are covered in this text.

The method used by Programming Windows CE is to teach by example. I
wrote numerous Windows CE example programs specifically for this book. The
source for each of these examples is printed in the text. Both the source and the
final compiled programs for a number of the processors supported by Windows
CE are also provided on CD 1 of the accompanying CDs.

The examples in this book are all written directly to the API, the so-called
"Petzold" method of programming. Since the goal of this book is to teach you
how to write programs for Windows CE, the examples avoid using a class library
such as MFC, which obfuscates the unique nature of writing applications for
Windows CE. Some people would say that the availability of MFC on Windows
CE eliminates the need for direct knowledge of the Windows CE APL I believe
the opposite is true. Knowledge of the Windows CE API enables more efficient
use of MFC (about which I'll say more in a minute). I also believe that truly know
ing the operating system also dramatically simplifies the debugging of applications.

xxiii

Introduction

What About MFC?
I used to have a stock answer for people who asked me whether they should
use MFC to build Windows CE applications: Don't do it! The old Windows CE
systems with their slow CPUs were hard-pressed to run complex, fulMeatured
MFC applications. These days, I'm a little less dogmatic. The newest Windows
CE platforms, specifically the Pocket PC systems, are now fast enough to allow
MFC-based applications to run with reasonable performance. The MFC runtime
library is included in ROM on these devices, so the footprint of the application
is simply the code, not the code plus the MFC runtime.

In this book, however, I talk about Windows CE from the API perspective.
I chose this approach because it best exposes the differences between Windows
CE and the desktop versions of Windows. MFC is popular because it hides many
of these differences. The problem is that while most of the time MFC works the
same way on Windows CE, there are plenty of times when the differences in
Windows CE appear in how an MFC application runs. This is especially appar
ent when a programmer starts with a wizard-based application and then makes
changes to customize the application. As the programmer makes these changes,
elements of the application not covered by the wizards might also need to change.
The programmer must understand how the application runs on the differences
in the base operating system, which is the focus of this book. Although I under
stand why many readers might prefer an MFC-based text, this book, even with
its C-based examples, will illuminate everyone's understanding of Windows CE.

Windows CE Development Tools

xx iv

This book is written with the assumption that the reader knows C and is at least
familiar with Microsoft Windows. All code development was done with Microsoft
eMbedded Visual C++ under Windows 2000.

To compile the example programs in this book, you need Microsoft eMbedded
Visual C++, which is conveniently supplied on companion CD 1. You also need
the appropriate platform SDKs for the Windows CE device you're targeting. The
companion CDs contain the SDKs for the H/PC 2000, H/PC Professional, Palm
size PC, and Pocket PC.

Each example already has a predefined project set up, but you can also
choose to create the projects from scratch. For almost all the examples, simply
create a generic WCE Application project. For the examples that require access
to functions unique to the Pocket PC, special code links to those functions even
though the project settings don't specifically define a Pocket PC application.

CEF

Introduction

One of the more interesting tools available to the Windows CE programmer is,
unfortunately, also one of the most overlooked. The Common Executable For
mat (CEF), pronounced Kef, is truly a remarkable tool. CEF solves one of the more
daunting problems of writing Windows CE application software: the necessity
of compiling separate binaries for each of the different CPUs running on a par
ticular platform. For example, developers writing applications for the Pocket PC
must create builds for the MIPS, SH3, and Strong ARM processors so that they
can support the Casio, which uses a MIPS processor; the HP Jornada series, which
uses the SH3; and the Compaq iPAQ, which uses the Strong ARM. As an alter
native, developers can compile to the CEF CPU target. Applications compiled this
way produce a single .EXE file that will run on all three processors. The appli
cation is translated to the native CPU instructions at install time or at run time,
depending on how the application is installed on the device. Install-time trans
lation is great for standard applications since the translation can be performed
a single time. Run-time translation is handy for applications or ActiveX controls
downloaded from the Internet.

Before you use CEF, you need to understand its limitations. At the present
time, only the Pocket PC supports CEF, although the ability exists for c111hcddnl
platforms to support it as well. You'll need to install the CEF SDK into the
eMbedded tools. That SOK is available on the Microsoft Web site. CEF applica
tions tend to be anywhere from 3 to 20 percent larger than applications com
piled to native CPU instructions. In addition, you'll experience a slight delay for
CEF executables translated at run time because the translator does its magic before
the application runs.

As it stands today, CEF has been somewhat overtaken by events. Microsoft
is trumpeting its .NET initiative, which provides, among other things, a common
run-time environment across all platforms from servers to PDAs. The .NET scheme
includes applications compiled to an intermediate language, or IL, which is then
run through a just-in-time (TIT) compiler during or just before execution. Pro
gramming for .NET involves an entirely different set of tools, functions, and,
optionally, even a new language called C# (pronounced C sharp).

CEF isn't related to .NET. CEF applications use today's tools such as MFC
or ATL, or they simply call directly to the Windows CE APL CEF is a perfect format
for CPU-neutral ActiveX controls written using the tools you know today. CEF
is a great tool to use on the Pocket PC. You should check it out.

xxv

Introduction

Target Systems
You don't need to have a Windows CE target device to experience the sample
programs provided by this book. The various platform SDKs come with a Windows
CE emulator that lets you perform basic testing of a Windows CE program un
der Windows NT, Windows 2000, or Windows XP. This emulator comes in handy
when you want to perform initial debugging to ensure that the program starts,
creates the proper windows, reacts to menu selections, and so on. However, the
emulator has some limitations, and there simply is no replacement for having a
target Windows CE system to perform final debugging and testing for applications.

You should consider a number of factors when deciding what Windows CE
hardware to use for testing. First, if the application is to be a commercial prod
uct, you should buy at least one system for each type of target CPU. You need
to test against all of the target CPUs because, while the source code will prob
ably be identical, the resulting executable will be different in size, and so will
the memory allocation footprint for each target CPU.

What's New in the Second Edition

xxvi

In Programming Windows CE, you'll find that 95 percent of the text of the first
edition is still relevant to today's Windows CE developers. The only necessary
change was to include the developments in the latest version of Windows CE
and to concentrate on the platforms that have been released since the first edi
tion. To accomplish this goal, I've revised the book from start to finish, updat
ing the chapters where necessary to cover the new functions added since
Windows CE 2.11.

In addition to updating the original chapters, I've added two rather long
chapters specifically covering the Pocket PC. Although I explicitly discuss the
Pocket PC in only two chapters, the information presented in the rest of the book
also applies to the Pocket PC. All the examples are written to run on the Pocket
PC. So while Pocket PC developers might want to skip directly to Chapters 14
and 15, the remainder of the book is also relevant because it covers Windows
CE 3.0, which is the operating system that the Pocket PC uses.

Chapter 14 contains extensive coverage of the Pocket PC. Along with the
basics of how to write a standard Pocket PC application, this chapter also includes
complete documentation on using the menu bar control and storing menu bar
resources. The chapter demonstrates how to extend the New menu to have it
launch your own applications as well as how to modify the New menu while
your application is running. This chapter also covers how to configure dialog
boxes and property sheets to conform to the Pocket PC application guidelines.

Introduction

Chapter 14 also covers the Game API, or GAPI. GAPI is a lightweight set
of functions that allows games or other applications to directly access the system's
video frame buffer. Although I include the discussion of GAPI in the Pocket PC
chapter, other systems also support GAPI, so this material has relevance beyond
the Pocket PC.

Chapter 15 describes how to extend a Pocket PC. Two examples are pro
vided: a Today screen extension and a custom input method. The Today screen
extension is a simple power meter for the Pocket PC, but it demonstrates all the
techniques necessary to create an extension that looks and acts like the other
Today screens, down to the proper look of the Options dialog. The input method
is an example from the first edition of the book that I've updated to provide as
a template for any type of input method.

The last chapter, Chapter 17, is also new. This chapter explains how to write
a Windows CE stream device driver. Windows CE device drivers aren't the com
plex beasts needed on Windows XP; they're standard Windows DLLs with a
predefined set of exports. It might seem strange to include a chapter on device
drivers in a book on application programming. However, in some situations the
single-instance nature of a device driver can come in handy for applications. Jn
addition, there are plenty of situations in which a driver might be useful for talking
to a specific piece of hardware attached (for example) to the serial port. An
interesting section in Chapter 17 explains asynchronous I/0 and how a driver
can use knowledge of the Windows CE memory-management architecture to
implement asynchronous I/0.

What's on the CDs
The companion CDs contain the source code for all the examples in the book.
I've also provided project files for Microsoft eMbedded Visual C++ so that you
can open preconfigured projects. All the examples have been designed to com
pile for systems based on Windows CE 2.11, 2.12, and 3.0. Where a program uses
Windows CE 3.0-specific functions, the newer functions are "ifdefed" so that they
will compile for 2.11, even if this results in slightly less functionality.

In addition to the examples, the CDs also include a free copy of Microsoft
eMbedded Visual Tools, which includes both eMbedded Visual C++ and eMbedded
Visual Basic. This is the same full-featured eMbedded Visual Tools product that
you can download from Microsoft's Web site or pay to have sent to you on CD.
Consider these tools the prize in the Cracker Jack box. Also included are the
platform SDKs for the Pocket PC and the Handheld PC 2000. You'll also find
the files necessary for GAPI, the run-time files, and the include files.

xxvii

Introduction

Companion CD 1 contains a StartCD program that provides you with a
graphical interface from which you can access the contents of the CD. This pro
gram will auto-run when the CD is inserted into your CD-ROM drive if you have
that feature enabled in Windows. If you don't have auto-run enabled, just navi
gate to the root directory of CD 1 and run StartCD.exe from Windows Explorer.
The file Readme.txt, available from the StartCD program or in the root directory
of CD 1, will give you additional information about the contents of the CDs, system
requirements for the included tools and SDKs, and information about support
options for the included products.

The following are the system requirements for installing and running Microsoft
eMbedded Visual Tools. Please note that to run the emulation tools included with
the various SDK's, you'll need to be using Windows NT 4.0, Windows 2000, or
Windows XP.

• PC with Pentium processor; Pentium 150MHz or higher processor
recommended

• Microsoft Windows 98 Second Edition, Microsoft Windows NT Work
station operating system version 4.0 with Service Pack 5 or later (Ser
vice Pack 5 included), or Microsoft Windows 2000 operating system

• 24 MB of RAM for Windows 98 Second Edition (48 MB recommended)

• 32 MB for Windows NT Workstation 4.0 or Windows 2000 (48 MB
recommended)

• Hard-disk space required: minimum installation: 360 MB; complete
installation: 720 MB

• CD-ROM drive compatible with multimedia PC specification

• VGA or higher-resolution monitor required; Super VGA recommended

• Microsoft Mouse or compatible pointing device

Other Sources

xxviii

While I have attempted to make Programming Microsoft Windows CE a one-stop
shop for Windows CE programming, no one book can cover everything. A nice
complement to this book is Inside Windows CE (Microsoft Press, 1998) by John
Murray. It documents the "oral history" of Windows CE. Knowing this kind of
information is crucial to understanding just why Windows CE is designed the way
it is. Once you know the why, it's easy to extrapolate the what, when trying to
solve problems. Murray's book is great, not just because of the information you'll
learn about Windows CE but also because it's an entertaining read.

Introduction

For learning more about Windows programming in general, I suggest the
classic text Programming Windows (Microsoft Press, 1998) by Charles Petzold.
This is, by far, the best book for learning Windows programming. Charles pre
sents examples that show how to tackle difficult but common Windows prob
lems. For learning more about the Win32 kernel API, I suggest Jeff Richter's
Programming Applications for Microsoft Windows (Microsoft Press, 1999). Jeff
covers the techniques of process, thread, and memory management down to the
most minute detail. For learning more about MFC programming, there's no bet
ter text than Jeff Prosise's Programming Windows with MFC (Microsoft Press,
1999). This book is the "Petzold" of MFC programming and simply a required
read for MFC programmers.

Updates and Feedback
No book about Windows CE can be completely current for any length of time.
I maintain a Web page, http://www.DelValle.com/cebook.htm, where I'll keep a
list of errata, along with updates describing any features found in subsequent
versions of Windows CE. Check out this page to see information on new VlT

sions of Windows CE as they're released.
While I have striven to make the information in this book as accurate as

possible, you'll undoubtedly find errors. If you find a problem with the text or
just have ideas about how to make the next version of the book better, please
drop me a note at CEBook@DelValle.com. I can't promise you that I'll answer all
your notes, but I will read every one.

Doug Boling
Tahoe City, California

April 2001

xx ix

Part I

Hello Windows CE
Since the classic Tbe C Programming Language, programming books tradition
ally start with a "hello, world" program. It's a logical place to begin. Every pro
gram has a basic underlying structure that, when not obscured by some complex
task it was designed to perform, can be analyzed to reveal the foundation shared
by all programs running on its operating system.

In this programming book, the "hello, world" chapter covers the details of
setting up and using the programming environment. The environment for de
veloping Microsoft Windows CE applications is somewhat different from that for
developing standard Microsoft Windows applications because Windows CE pro
grams are written on PCs running Microsoft Windows 2000 and debugged mainly
on separate Windows CE-based target devices.

While experienced Windows programmers might be tempted to skip this
chapter and move on to meatier subjects, I suggest that they-you-at least skim
the chapter to note the differences between a standard Windows program and
a Windows CE program. A number of subtle and significant differences in both
the development process and the basic program skeleton for Windows CE ap
plications are covered in this first chapter.

What Is Different About Windows CE
Windows CE has a number of unique characteristics that make it different from
other Windows platforms. First of all, the systems running Windows CE are most
likely not using an Intel x86-compatible microprocessor. Instead, a short list
of supported CPUs run Windows CE. Fortunately, the development environ
ment isolates the programmer from almost all of the differences among the
various CPUs.

3

Part I Windows Programming Basics

Nor can a Windows CE program be assured of a screen or a keyboard.
Pocket PC devices have a 240-by-320-pixel portrait-style screen, while other sys
tems might have screens with more traditional landscape orientations in 480-by-240,
640-by-240, or 640-by-480-pixel resolution. An embedded device might not have
a display at all. The target devices might not support color. And, instead of a
mouse, most Windows CE devices have a touch screen. On a touch-screen device,
left mouse button clicks are achieved by means of a tap on the screen, but no
obvious method exists for delivering right mouse button clicks. To give you some
method of delivering a right click, the Windows CE convention is to hold down
the Alt key while tapping. It's up to the Windows CE application to interpret this
sequence as a right mouse click.

Fewer Resources in Windows CE Devices

Unicode

4

The resources of the target devices vary radically across systems that run Windows
CE. When writing a standard Windows program, the programmer can make a
number of assumptions about the target device, almost always an IBM-compatible
PC. The target device will have a hard disk for mass storage and a virtual memory
system that uses the hard disk as a swap device to emulate an almost unlimited
amount of (virtual) RAM. The programmer knows that the user has a keyboard,
a two-button mouse, and a monitor that these days almost assuredly supports
256 colors and a screen resolution of at least 800 by 600 pixels.

Windows CE programs run on devices that almost never have hard disks
for mass storage. The absence of a hard disk means more than just not having
a place to store large files. Without a hard disk, virtual RAM can't be created by
swapping data to the disk. So Windows CE programs are almost always run in
a low-memory environment. Memory allocations can, and often do, fail because
of the lack of resources. Windows CE might terminate a program automatically
when free memory reaches a critically low level. This RAM limitation has a sur
prisingly large impact on Windows CE programs and is one of the main chal
lenges involved in porting existing Windows applications to Windows CE.

One characteristic that a programmer can count on when writing Windows CE
applications is Unicode. Unicode is a standard for representing a character as a
16-bit value as opposed to the ASCII standard of encoding a character into a single
8-bit value. Unicode allows for fairly simple porting of programs to different
international markets because all the world's known characters can be represented
in one of the 65,536 available Unicode values. Dealing with Unicode is relatively
painless as long as you avoid the dual assumptions made by most programmers
that strings are represented in ASCII and that characters are stored in single bytes.

Hello Windows CE Chapter 1

A consequence of a program using Unicode is that with each character taking
up two bytes instead of one, strings are now twice as long. A programmer must
be careful making assumptions about buffer length and string length. No longer
should you assume that a 260-byte buffer can hold 259 characters and a termi
nating zero. Instead of the standard char data type, you should use the TCHAR
data type. TCHAR is defined to be char for Microsoft Windows 95 and Microsoft
Windows 98 development and unsigned short for Unicode-enabled applications
for Microsoft Windows 2000 or the newer Windows XP and Windows CE develop
ment. These types of definitions allow source-level compatibility across ASCII
and Unicode-based operating systems.

New Controls
Windows CE includes a number of new Windows controls designed for specific
environments. New controls include the command bar that provides menu- and
toolbar-like functions all on one space-saving line, critical on the smaller screens
of Windows CE devices. The date and time picker control and calendar control
assist calendar and organizer applications suitable for handheld devices, such as
the Handheld PC (H/PC) and the Pocket PC. Other standard Windows controls
have reduced function, reflecting the compact nature of Windows CE hardware
specific OS configurations.

Another aspect of Windows CE programming to be aware of is that Windows
CE can be broken up and reconfigured by Microsoft or by OEMs so that it can be
better adapted to a target market or device. Windows programmers usually just
check the version of Windows to see whether it is from the Microsoft Windows 95,
98, or Me line or Windows 2000, XP line; by knowing the version they can de
termine what API functions are available to them. Windows CE, however, can
be configured in countless ways. Two of the more popular configurations are
the Handheld PC Pro and the Pocket PC. New platforms are continually being
released, with much in common but also with many differences among them.
Programmers need to understand the target platform and to have their programs
check what functions are available on that particular platform before trying to
use a set of functions that might not be supported on that device.

Finally, because Windows CE is so much smaller than Windows Me or
Windows XP, it simply can't support all the function calls that its larger cousins
do. While you'd expect an operating system that didn't support printing, such
as Windows CE on the original models, not to have any calls to printing func
tions, Windows CE also removes some redundant functions supported by its larger
cousins. If Windows CE doesn't support your favorite function, a different function
or set of functions will probably work just as well. Sometimes Windows CE program
ming seems to consist mainly of figuring out ways to implement a feature using the
sparse API of Windows CE. If over 2000 functions can be called sparse.

5

Part I Windows Programming Basics

It's Still Windows Programming
While differences between Windows CE and the other versions of Windows do
exist, they shouldn't be overstated. Programming a Windows CE application is
programming a Windows application. It has the same message loop, the same
windows, and for the most part, the same resources and the same controls. The
differences don't hide the similarities. For those who aren't familiar with Windows
programming, here's a short introduction.

Windows programming is far different from MS-DOS-based or Unix-based
programming. An MS-DOS or Unix program uses getc- and putc-style functions
to read characters from the keyboard and write them to the screen whenever the
program needs to do so. This is the classic "pull" style used by MS-DOS and Unix
programs, which are procedural. A Windows program, on the other hand, uses
a "push" model, in which the program must be written to react to notifications
from the operating system that a key has been pressed or a command has been
received to repaint the screen.

Windows applications don't ask for input from the operating system; the
operating system notifies the application that input has occurred. The operating
system achieves these notifications by sending messages to an application win
dow. All windows are specific instances of a window class. Before we go any
further, let's be sure we understand these terms.

The Window Class

6

A window is a region on the screen, rectangular in all but the most contrived of
cases, that has a few basic parameters, such as position-x, y, and z (a window
is over or under other windows on the screen)-visibility, and hierarchy-the
window fits into a parent/child window relationship on the system desktop, which
also happens to be a window.

Every window created is a specific instance of a window class. A window
class is a template that defines a number of attributes common to all the win
dows of that class. In other words, windows of the same class have the same
attributes. The most important of the shared attributes is the window procedure.

The Window Procedure
The behavior of all windows belonging to a class is defined by the code in its
window procedure for that class. The window procedure handles all notifications
and requests sent to the window. These notifications are sent either by the op
erating system, indicating that an event has occurred to which the window must
respond, or by other windows querying the window for information.

Hello Windows CE Chapter 1

These notifications are sent in the form of messages. A message is nothing
more than a call being made to a window procedure, with a parameter indicat
ing the nature of the notification or request. Messages are sent for events such
as a window being moved or resized or to indicate a key press. The values used
to indicate messages are defined by Windows. Applications use predefined con
stants, such as WM_CREATE and WM_MOVE, when referring to messages. Since
hundreds of messages can be sent, Windows conveniently provides a default
processing function to which a message can be passed when no special processing
is necessary by the window class for that message.

The Life of a Message
Stepping back for a moment, let's look at how Windows coordinates all of the
messages going to all of the windows in a system. Windows monitors all the
sources of input to the system, such as the keyboard, mouse, touch screen, and
any other hardware that could produce an event that might interest a window.
As an event occurs, a message is composed and directed to a specific window.
Instead of Windows directly calling the window procedure, the system imposes
an intermediate step. The message is placed in a message queue for the appli
cation that owns the window. When the application is prepared to receive the
message, it pulls it out of the queue and tells Windows to dispatch that message
to the proper window in the application.

If it seems to you that a number of indirections are involved in that pro
cess, you're right. Let's break it down.

1. An event occurs, so a message is composed by Windows and placed
in a message queue for the application that owns the destination
window. In Windows CE, as in Windows Me and Windows XP, each
application has its own unique message queue. 1 (This is a break from
Windows 3 .1 and earlier versions of Windows, where there was only
one, systemwide, message queue.) Events can occur, and therefore
messages can be composed, faster than an application can process
them. The queue allows an application to process messages at its own
rate, although the application had better be responsive or the user will
see a jerkiness in the application. The message queue also allows
Windows to set a notification in motion and continue with other tasks
without having to be limited by the responsiveness of the application
to which the message is being sent.

1. Technically, each thread in a Windows CE application can have a message queue. I'll talk about threads later in
the book.

7

Part I Windows Programming Basics

2. The application removes the message from its message queue and calls
Windows back to dispatch the message. While it may seem strange
that the application gets a message from the queue and then simply
calls Windows back to process the message, there's a method to this
madness. Having the application pull the message from the queue
allows it to preprocess the message before it asks Windows to dispatch
the message to the appropriate window. In a number of cases, the
application might call different functions in Windows to process spe
cific kinds of messages.

3. Windows dispatches the message; that is, it calls the appropriate win
dow procedure. Instead of having the application directly call the
window procedure, another level of indirection occurs, allowing
Windows to coordinate the call to the window procedure with other
events in the system. The message doesn't stand in another queue at
this point, but Windows might need to make some preparations be
fore calling the window procedure. In any case, the scheme relieves
the application of the obligation to determine the proper destination
window-Windows does this instead.

4. The window procedure processes the message. All window procedures
have the same calling parameters: the handle of the specific window
instance being called, the message, and two generic parameters that
contain data specific to each message type. The window handle dif
ferentiates each instance of a window for the window procedure. The
message parameter, of course, indicates the event that the window must
react to. The two generic parameters contain data specific to the mes
sage being sent. For example, in a WM_MOVE message indicating that
the window is about to be moved, one of the generic parameters points
to a structure containing the new coordinates of the window.

Your First Program

8

Enough small talk. It's time to jump into the first example, Hello Windows CE.
While the entire program files for this and all examples in the book are avail
able on the companion CD-ROM, I suggest that, at least in this one case, you
avoid simply loading the project file from the CD and instead type in the entire
example by hand. By performing this somewhat tedious task, you'll see the dif
ferences in the development process as well as the subtle program differences
between standard Win32 programs and Windows CE programs. Figure 1-1 con
tains the complete source for HelloCE, my version of a "hello, world" program.

Hello Windows CE Chapter 1

HelloCE.h
!!==
II Header file
JI
II Written for the book Programming Windows CE
II Copyright CCl 2001 Douglas Boling
II
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]ll

/l--c-----~------"--•---,

II Generic defines and
II
struct. dec.odeUTNT

UINTCode;

Figure 1-1 The HelloCE program (continued)

9

Part I Windows Programming Basics

Figure 1-1 (continued)

10

Hello Windows CE Chapter 1

11. Instance. cleanup
return Terminstance (hinstance, msg.wParam):

}

11---
11 InitApp - Application initialization
II
int InitApp CHINSTANCE hlnstance) {

WNDCLASS we:

#if defined(WIN32_PLATFORM_PSPC)
U I(Pq<::k~~. ~e. allow onlY one, tr1stance.of'
HWND hWnd .. : FtndWi ndow Cs:zAppNi):m~.
if CliWhd) J ·... ·•

.SetFof~groµndWindow
rel&rri -1.:•:

}

(continued)

11

Part I Windows Programming Basics

Figure 1·1 (continued)

12

Hello Windows CE Chapter 1

II Create a command bar.·
hwndCB = CommandBar_Create Chinst, hWnd. IDC_CMDBAR):
II Add exit button to command bar.

CommandBar_AddAdornments ChwndCB, 0, 0):
return 0:

(continued)

13

Part I Windows Programming Basics

14

Figure 1-1 (continued)

If you look over the source code for HelloCE, you'll see the standard boiler
plate for all programs in this book. I'll talk at greater length about a few of the
characteristics, such as Hungarian notation and the somewhat different method
I use to construct my window procedures later, in their own sections, but at this
point I'll make just a few observations about them.

Just after the comments, you see the include of windows.h. You can find
this file in all Windows programs; it lists the definitions for the special variable
types and function defines needed for a typical program. Windows.h and the
include files it contains make an interesting read because the basics for all win
dows programs come from the functions, typedefs, and structures defined there.
The include of commctrl.h provides, among other things, the definitions for the
command bar functions that are part of almost all Windows CE programs. Finally,
the include of HelloCE.h gives you the boilerplate definitions and function pro-
totypes for this specific program. ·

A few variables defined globally follow the defines and includes. I know
plenty of good arguments why no global variables should appear in a program,
but I use them as a convenience that shortens and clarifies the example programs
in the book. Each program defines an szAppName Unicode string to be used in
various places in that program. I also use the hlnst variable a number of places,
and I'll mention it when I cover the InitApp procedure. The final global struc
ture is a list of messages along with associated procedures to process the mes
sages. This structure is used by the window procedure to associate messages with
the procedure that handles them. I've also added some lines to prevent more than
one instance of the application from running at a time on a Pocket PC. The Pocket
PC shell requires this adjustment because the user switches between applications

Hello Windows CE Chapter 1

using the Start menu. Since selecting the application on the Start menu actually
launches a second copy of the application, this code simply switches to the copy
of the application originally running and then quietly terminates. (The Pocket
PC will be discussed in detail in Chapter 14.) Because these lines are couched
in #if def I #endif lines, they'll be included in the program only when it's com
piled for a Pocket PC or an old Palm-size PC. Now on to a few other character
istics common to all the programs in this book.

Hungarian Notation
A tradition, and a good one, of almost all Windows programs since Charles Petzold
wrote Programming Windows is Hungarian notation. This programming style,
developed years ago by Charles Simonyi at Microsoft, prefixes all variables in
the program usually with one or two letters indicating the variable type. For
example, a string array called Name would instead be called szName, with the
sz prefix indicating that the variable type is a zero-terminated string. The value
of Hungarian notation is the dramatic improvement in readability of the source
code. Another programmer, or you after not looking at a piece of code for a while,
won't have to look repeatedly at a variable's declaration to determine its type.
The following are typical Hungarian prefixes for variables:

Variable Type

Integer

Word (16-bit)

Double word (32-bit unsigned)

Long (32-bit signed)

Char

String

Pointer

Long pointer

Handle

Window handle

Struct size

Hungarian Prefix

i or n

w ors

Dw
L

c
Sz
p

Ip

h

hwnd

cb

You can see a few vestiges of the early days of Windows. The Ip, or long
pointer, designation refers to the days when, in the Intel 16-bit programming
model, pointers were either short (a 16-bit offset) or long (a segment plus an
offset). Other prefixes are formed from the abbreviation of the type. For example,

15

Part I Windows Programming Basics

a handle to a brush is typically specified as hbr. Prefixes can be combined, as
in lpsz, which designates a long pointer to a zero-terminated string. Most of the
structures defined in the Windows API use Hungarian notation in their field names.
I use this notation as well throughout the book, and I encourage you to use this
notation in your programs.

My Programming Style
One criticism of the typical SDK style of Windows programming has always been
the huge switch statement in the window procedure. The switch statement parses
the message to the window procedure so that each message can be handled
independently. This standard structure has the one great advantage of enforc
ing a similar structure across almost all Windows applications, making it much
easier for one programmer to understand the workings of another programmer's
code. The disadvantage is that all the variables for the entire window procedure
typically appear jumbled at the top of the procedure.

Over the years, I've developed a different style for my Windows programs.
The idea is to break up the WinMain and WinProc procedures into manageable
units that can be easily understood and easily transferred to other Windows
programs. WinMain is broken up into procedures that perform application initiali
zation, instance initialization, and instance termination. Also in WinMain is the
ubiquitous message loop that's the core of all Windows programs.

I break the window procedure into individual procedures, with each han
dling a specific message. What remains of the window procedure itself is a frag
ment of code that simply looks up the message that's being passed to see whether
a procedure has been written to handle that message. If so, that procedure is
called. If not, the message is passed to the default window procedure.

This structure divides the handling of messages into individual blocks that
can be more easily understood. Also, with greater isolation of one message
handling code fragment from another, you can more easily transfer the code that
handles a specific message from one program to the next. I first saw this struc
ture described a number of years ago by Ray Duncan in one of his old "Power
Programming" columns in PC Magazine. Ray is one of the legends in the field
of MS-DOS and OS/2 programming. I've since modified the design a bit to fit my
needs, but Ray should get the credit for this program structure.

Building HelloCE

16

To create HelloCE from scratch on your system, start Microsoft eMbedded Visual
C++ and create a new Win32 application. The first change from standard Win32
programming becomes evident when you create the new project. You'll have the

Hello Windows CE Chapter 1

opportunity to select from a number of platforms, as shown in Figure 1-2. For
non-MFC or ATL projects, the chief decision is to choose between WCE Pocket
PC Application (to build code for a Pocket PC) and WCE Application for all other
Windows CE systems. You'll also pick the allowable target CPUs. For example,
selecting Win32 (WCE MIPS) enables compiling to a Windows CE platform with
a MIPS CPU. No matter what target device you have, be sure to check the WCE
x86em target. This allows you to run the sample program in the emulator under
Windows XP.

Figure 1-2 The Platforms list box allows eMbedded Visual C++ to target different
Windows CE platforms.

eMbedded Visual C++ will next ask you if you want to create an empty
project, a simple program or a Hello World application. For all the examples in
the book, pick Empty Project. This choice prevents the code wizards from add
ing any extra code to the examples. Create new files for HelloCE.h and HelloCE.c
from the File menu by clicking New.

After you have created the proper source files for HelloCE or copied them
from the CD, select the target Win32 (WCE x86em) Debug and then build the
program. This step compiles the source and, assuming you have no compile
errors, automatically launches the emulator and inserts the EXE into the emula
tor file system; you can then launch HelloCE. If you're running Windows 98 or
Windows Me, the system displays an error message because the emulator runs
only under Windows 4.0, 2000, or XP.

If you have a Windows CE system available, such as a Pocket PC, attach
the PPC to the PC the same way you would to sync the contents of the PPC with

17

Part I Windows Programming Basics

18

the PC. Open Microsoft ActiveSync, and establish a connection between the PPC
and the PC. While it's not strictly necessary to have the ActiveSync connection
to your Windows CE device running because the eMbedded Visual C++ is sup
posed to make this connection automatically, I've found that having it running
makes for a more stable connection between the development environment and
the Windows CE system.

Once the link between the PC and the Windows CE device is up and run
ning, switch back to eMbedded Visual C++, select the compile target appropri
ate for the target device (for example, Win32 [WCE ARM] Debug for an HP 720
HPC), and rebuild. As in the case of building for the emulator, if there are no
errors eMbedded Visual C++ automatically downloads the compiled program to
the remote device. The program is placed in the root directory of the object store.

Running the Program
To run HelloCE on an H/PC, simply click on the My Handheld PC icon to bring
up the files in the root directory. At that point, a double-tap on the application's
icon launches the program.

Running the program on a Pocket PC is a different process. When you create
a Pocket PC project, eMbedded Visual C++ sets the download location to be the
\windows\start menu directory. This way, a downloaded application is automati
cally visible on the Start menu. If you start another Pocket PC application, your
HelloCE application will still be running in the background. To switch back to
it, run HelloCE again from the Start menu. This action causes a second instance
of the application to start, and using that Pocket PC-specific code, it finds the
first instance, sets it to the foreground, and quietly terminates the second instance
of the program. You can then close HelloCE with the non-Pocket PC-compliant
close box in the upper right corner of the window. All of the examples in the
book have this "single instance" code in them when compiled for the Pocket PC.

One "gotcha" to look out for here. If you're debugging and recompiling the
program, it can't be downloaded again if an earlier version of the program is still
running on the target system. That is, make sure HelloCE isn't running on the
remote system when you start a new build in eMbedded Visual C++, or the auto
download part of the compile process will fail. If this happens, close the appli
cation and choose the Update Remote File menu command in eMbedded Visual
C++ to download the newly compiled file.

Pocket PC users will notice that unlike almost all Pocket PC programs,
HelloCE has a command bar with a Close button in the upper right corner of the
window. The new Pocket PC interface guidelines specify the use of a new con
trol, the menu bar. For most of the examples in this book, I'll use a command
bar control because it works on both the Pocket PC and the other products that

Hello Windows CE Chapter 1

use Windows CE. In a few examples, such as KeyTrac in Chapter 3, the example
uses a menu bar so that the user has access to a keyboard, albeit a "soft" one.
For this example, and a few others, the menu bar creation code will be couched
in conditional compilation blocks so that it will be included only when compil
ing for the Pocket PC. I'll cover the menu bar and provide an extensive explana
tion of how to use it in Chapter 14. If you don't have access to an H/PC or if
you want to check out Windows CE programming without the hassle of connect
ing to a remote device, the emulation environment is a great place to start. It's
the perfect place for stepping though the code just as you would were you de
bugging a standard PC-based Windows program. You can set breakpoints and
step though code running on a remote system, but the slow nature of the link
to the Windows CE device and the difficulty in single-stepping a program on the
remote system make debugging on the emulator much less painful. On the other
hand, debugging on the remote system is the only way to truly test your pro
gram. While the emulator is a good first step in the debug process, nothing re
places testing on the target system.

The Code
Now that you have the program up and running either in the emulator or on a
Windows CE device, it's time to look at the code itself. The program entry point,
WinMain, is the same place any Windows program begins. Under Windows CE,
however, some of the parameters for WinMain have limits to the allowable values.
WinMain is defined as the following:

int WINAPI WinMain (HINSTANCE hlnstance, HINSTANCE hPrevinstance,
LPWSTR lpCmdline, int nCmdShow);

The first of the four parameters passed, hlnstance, identifies the specific
instance of the program to other applications and to Windows API functions
that need to identify the EXE. The hPrevlnstance parameter is left over from
the old Win16 API (Windows 3.1 and earlier). In those versions of Windows, the
hPrevlnstance parameter was nonzero if there were any other instances of the
program currently running. In all Win32 operating systems, including Windows
CE, the hPrevlnstance is always 0 and can be ignored.

The lpCmdLine parameter points to a Unicode string that contains the text
of the command line. Applications launched from Microsoft Windows Explorer
usually have no command line parameters. But in some instances, such as when
the system automatically launches a program, the system includes a command
line parameter to indicate why the program was started. The lpCmdLine parameter
provides us with one of the first instances in which Windows CE differs from
Windows 2000, XP, or Windows Me. Under Windows CE, the command line string
is a Unicode string. In all other versions of Windows, the string is always ASCII.

19

Part I Windows Programming Basics

20

The final parameter, nCmdShow, specifies the initial state of the program's
main window. In a standard Win32 program, this parameter might specify that
the window be initially displayed as an icon (SW _SHOWMINIMIZE), maximized
(SW _SHOWMAXIMIZED) to cover the entire desktop, or normal (SW _RESTORE),
indicating that the window is placed on the screen in the standard resizable state.
Other values specify that the initial state of the window should be invisible to
the user or that the window be visible but incapable of becoming the active
window. Under Windows CE, the values for this parameter are limited to only
three allowable states: normal (SW _SHOW), hidden (SW _HIDE), or show with
out activate (SW _SHOWNOACTIVATE). Unless an application needs to force its
window to a predefined state, this parameter is simply passed without modifi
cation to the Show Window function after the program's main window has been
created.

On entry into WinMain, a call is made to InitApp, where the window class
for the main window is registered. After that, a call to Initlnstance is made; the
main window is created in this function. I'll talk about how these two routines
operate shortly, but for now I'll continue with WinMain, proceeding on the
assumption that at the return from Initlnstance the program's main window has
been created.

The Message Loop
After the main window has been created, WinMain enters the message loop,
which is the heart of every Windows application. HelloCE's message loop is shown
here:

while CGetMessage C&msg, NULL, 0, 0)) {
TranslateMessage C&msg);
DispatchMessage C&msg);

}

The loop is simple: GetMessage is called to get the next message in the
application's message queue. If no message is available, the call waits, block
ing that application's thread until one is available. When a message is available,
the call returns with the message data contained in a MSG structure. The MSG
structure itself contains fields that identify the message, provide any message
specific parameters, and identify the last point on the screen touched by the pen
before the message was sent. This location information is different from the stan
dard Win32 message point data in that in Windows 9x or Windows 2000 the point
returned is the current mouse position instead of the last point clicked (or tapped,
as in Windows CE).

The TranslateMessage function translates appropriate keyboard messages
into a character message. (I'll talk about others of these filter type messages, such

Hello Windows CE Chapter 1

as IsDialogMsg, later.) The DispatchMessage function then tells Windows to for
ward the message to the appropriate window in the application.

This GetMessage, TranslateMessage, DispatchMessage loop continues until
GetMessage receives a WM_QUIT message, which, unlike all other messages,
causes GetMessage to return 0. As can be seen from the while clause, a return
value of 0 by GetMessage causes the loop to terminate.

After the message loop terminates, the program can do little else but clean
up and exit. In the case of HelloCE, the program calls Termlnstance to perform
any necessary cleanup. HelloCE is a simple program, and no cleanup is required.
In more complex programs, Termlnstance would free any system resources that
aren't automatically freed when the program terminates.

The value returned by WinMain becomes the return code of the program.
Traditionally, the return value is the value in the wParam parameter of the last
message (WM_QUIT). The wParam value of WM_QUIT is set when that mes
sage is sent in response to a PostQuitMessage call made by the application.

lnitApp The goal of InitApp is to perform global initialization for all instances
of the application that might run. In practice, InitApp is a holdover from Win16
days, when window classes were registered on an applicationwide basis instead
of for every instance, as is done under Win32. Still, having a place for global
initialization can have its uses in some applications. For a program as simple as
HelloCE, the entire task of InitApp can be reduced to checking for another in
stance, if compiled for a Pocket PC, and registering the application's main win
dow class. The entire procedure is listed below:

int InitApp CHINSTANCE hlnstance) {
WNDCLASS we;

#if definedCWIN32_PLATFORM_PSPC)
II If Pocket PC, allow only one instance of the application.
HWND hWnd = FindWindow (szAppName, NULL);
if (hWnd) {

SetForegroundWindow ((HWND)(((DWORD)hWnd) I 0x01));
return -1;

#endif
II Register App Main Window class.
we.style = 0;
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hlnstance = hlnstance;
wc.hlcon = NULL;

II
II
II
II
II
II

Class style flags
Callback function
Extra class data
Extra window data
Owner handle
Application icon

(continued)

21

Part I Windows Programming Basics

22

wc.hCursor = LoadCursor (NULL, IDC_ARROW); //Default cursor
wc.hbrBackground = (HBRUSH)GetStockObject (WHITE_BRUSH);
wc.lpszMenuName = NULL; //Must be NULL
wc.lpszClassName = szAppName; //Class name

if (RegisterClass <&we) == 0) return l;

return 0;

When running on a Pocket PC, the application uses FindWindow to see
whether another copy of itself is currently running. This function searches the
top-level windows in the system looking for ones that match the class name or
the window title or both. If a match is found, the window is brought to the fore
ground with SetForegroundWindow. The routine then exits with a nonzero re
turn code, which causes WinMain to exit, terminating the application. I'll spend
more time talking about the Pocket PC-specific code in Chapter 14.

These Pocket PC-specific lines are enclosed in #if and #endif lines. These
lines tell the compiler to include them only if the condition of the #if statement
is true-in this case, if the constant WIN32_PLATFORM_PSPC is defined. This
constant is defined in the Project Settings for the project. A quick look at the
CIC++ tab of the Project Settings dialog box shows an entry field for Prepro
cessor Definitions. In this field, one of the definitions is $(CePlatform), which
is a placeholder for a registry value. Deep in the registry, under the key
[HKEY _LOCAL_MACHINE]\Software \Microsoft\ Windows CE Tools \Platform
Manager, you can find series of registry keys, one for each target platform in
stalled in eMbedded Visual C++. The CePlatform value is defined differently
depending on the target project. For Pocket PC and old Palm-size PC projects,
CePlatform is defined as WIN32_PLATFORM_FSPC.

Registering a window class is simply a matter of filling out a rather exten
sive structure describing the class and calling the RegisterClass function. The
parameters assigned to the fields of the WNDCLASS structure define how all
instances of the main window for HelloCE will behave. The initial field, style,
sets the class style for the window. In Windows CE the class styles are limited
to the following:

• CS_GLOBALCLASS indicates that the class is global. This flag is pro
vided only for compatibility because all window classes in Windows
CE are process global.

• CS_HREDRAW tells the system to force a repaint of the window if
the window is sized horizontally.

Hello Windows CE Chapter 1

• CS_ VREDRAW tells the system to force a repaint of the window if
the window is sized vertically.

• CS_NOCLOSE disables the Close button if one is present on the title
bar.

• CS_PARENTDC causes a window to use its parent's device context.

• CS_DBLCLKS enables notification of double-dicks (double-taps un
der Windows CE) to be passed to the parent window.

The lpfn WndProc field should be loaded with the address of the window's
window procedure. Because this field is typed as a pointer to a window pro
cedure, the declaration to the procedure must be defined in the source code
before the field is set. Otherwise, the compiler's type-checker will flag this line
with a warning.

The cbClsExtra field allows the programmer to add extra space in the class
structure to store class-specific data known only to the application. The cb WndExtra
field is much handier. This field adds space to the Windows internal structure
responsible for maintaining the state of each instance of a window. Instead of
storing large amounts of data in the window structure itself, an application should
store a pointer to an application-specific structure that contains the data unique
to each instance of the window. Under Windows CE, both the cbClsExtra and
cbWndExtra fields must be multiples of 4 bytes.

The hlnstance field must be filled with the program's instance handle, which
specifies the owning process of the window. The hlcon field is set to the handle
of the window's default icon. The hlcon field isn't supported under Windows CE
and should be set to NULL. (In Windows CE, the icon for the class is set after
the first window of this class is created. For HelloCE, however, no icon is sup
plied, and unlike other versions of Windows, Windows CE doesn't have any
predefined icons that can be loaded.)

Unless the application being developed is designed for a Windows CE sys
tem with a mouse, the next field, hCursor, must be set to NULL. Fortunately, when
you're compiling for any version of Windows CE past 2.0, the function call
LoadCursor (IDC_ARROW) returns NULL if the system doesn't support cursors.
For those systems that do have cursor support, Windows CE doesn't support ani
mated cursors or colored cursors.

The hbrBackground field specifies how Windows CE draws the background
of the window. Windows uses the brush, a small predefined array of pixels,
specified in this field to draw the background of the window. Windows CE pro
vides a number of predefined brushes that you can load using the GetStockObject

23

Part I Windows Programming Basics

24

function. If the hbrBackground field is NULL, the window must handle the
WM_ERASEBKGND message sent to the window telling it to redraw the back
ground of the window.

The lpszMenuName field must be set to NULL because Windows CE doesn't
support windows directly having a menu. In Windows CE, menus are provided
by command bar, command band, or menu bar controls that can be created by
the main window.

Finally the lpszClassName parameter is set to a programmer-defined string
that identifies the class name to Windows. HelloCE uses the szAppName string,
which is defined globally.

After the entire WNDCLASS structure has been filled out, the RegisterClass
function is called with a pointer to the WNDCLASS structure as its only parame
ter. If the function is successful, a value identifying the window class is returned.
If the function fails, the function returns 0.

lnitlnstance The main task of Initlnstance is to create the application's main
window and display it in the form specified in the nCmdShow parameter passed
to WinMain. The code for Initlnstance is shown below:

HWND Initlnstance (HINSTANCE hlnstance, LPWSTR lpCmdLine, int nCmdShow) {
HWND hWnd;
HICON hlcon:

II Save program instance handle in global variable.
hlnst = hlnstance:

II Create main window.
hWnd = CreateWindow (szAppName,

TEXT("Hello"),
WS_VISIBLE,
0, 0,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hlnstance,
NULL);

II Return fail code if window not created.
if (!IsWindow (hWnd)) return 0:

II Standard show and update calls
ShowWindow (hWnd, nCmdShow);
UpdateWindow (hWnd);

return hWnd;

II Window class
II Window title
II Style flags
II x, y position
II Initial width
II Initial height
II Parent
II Menu, must be
II App instance
II Ptr to create

null

pa rams

Hello Windows CE Chapter 1

The first task performed by Initlnstance is to save the program's instance
handle hlnstance in a global variable named hlnst. The instance handle for a
program is useful at a number of points in a Windows application. I save the value
here because the instance handle is known, and this is a convenient place in the
program to store it.

All Windows programmers learn early in their Windows programming lives
the Create Window function call. Although the number of parameters looks daunt
ing, the parameters are fairly logical once you learn them. The first parameter is
the name of the window class of which our window will be an instance. In the
case of HelloCE, the class name is a string constant, szAppName, which was also
used in the WNDCLASS structure.

The next field is referred to as the window text. In other versions of Windows,
this is the text that would appear on the title bar of a standard window. On H/PC's,
main windows rarely have title bars; this text is used only on the taskbar button
for the window. On the Pocket PC, however, this text is shown on the naviga
tion bar at the top of the display. The text is couched in a TEXT macro, which
ensures that the string will be converted to Unicode under Windows CE.

The style flags specify the initial styles for the window. The style flags are
used both for general styles that are relevant to all windows in the system and
for class-specific styles, such as those that specify the style of a button or a list
box. In this case, all we need to specify is that the window be created initially
visible with the WS_ VISIBLE flag. Experienced Win32 programmers should re
fer to the documentation for Create Window because there are a number of win
dow style flags that aren't supported under Windows CE.

The next four fields specify the initial position and size of the window. Since
most applications under Windows CE are maximized (that is, they take up the
entire screen above the taskbar), the size and position fields are set to default
values, which are indicated by the CW _USEDEFAULT flag in each of the fields.
The default value settings create a window that's maximized under the current
versions of Windows CE but also compatible with future versions of the operat
ing system, which might not maximize every window. Be careful not to assume
any particular screen size for a Windows CE device because different implemen
tations have different screen sizes.

The next field is set to the handle of the parent window. Because this is
the top-level window, the parent window field is set to NULL. The menu field
is also set to NULL because Windows CE supports menus through the command
bar, command bands, and Menu bar controls.

The hlnstance parameter is the same instance handle that was passed to
the program. Creating windows is one place where that instance handle, saved
at the start of the routine, comes in handy. The final parameter is a pointer that
can be used to pass data from the Create Window call to the window procedure

25

Part I Windows Programming Basics

26

during the WM_CREATE message. In this example, no additional data needs to
be passed, so the parameter is set to NULL.

If successful, the Create Window call returns the handle to the window just
created, or it returns 0 if an error occurred during the function. That window
handle is then used in the two statements (ShowWindow and UpdateWindow)
just after the error-checking if statement. The Show Window function modifies the
state of the window to conform with the state given in the nCmdShow parame
ter passed to WinMain. The Update Window function forces Windows to send a
WM_PAINT message to the window that has just been created.

That completes the InitApp function. At this point, the application's main
window has been created and updated. So even before we have entered the
message loop, messages have been sent to the main window's window proce
dure. It's about time to look at this part of the program.

MainWndProc You spend most of your programming time with the window
procedure when you're writing a Windows program. WinMain contains mainly
initialization and cleanup code that, for the most part, is boilerplate. The win
dow procedure, on the other hand, is the core of the program, the place where
the actions of the program's windows create the personality of the program.

LRESULT CALLBACK MainWndProc(HWND hWnd, UINT wMsg, WPARAM wParam,

}

INT i;

II

LPARAM lParam) {

II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[i].Code)
return (*MainMessages[i).Fxn)(hWnd, wMsg, wParam, lParam);

}

return DefWindowProc(hWnd, wMsg, wParam, lParam);

All window procedures, regardless of their window class, are declared with
the same parameters. The LRESULT return type is actually just a long (a long is
a 32-bit value under Windows) but is typed this way to provide a level of indi
rection between the source code and the machine. While you can easily look
into the include files to determine the real type of variables that are used in
Windows programming, this can cause problems when you're attempting to move
your code across platforms. Though it can be useful to know the size of a vari
able type for memory-use calculations, there is no good reason, and there are
plenty of bad ones, not to use the type definitions provided by windows.h.

The CALLBACK type definition specifies that this function is an external entry
point into the EXE, necessary because Windows calls this procedure directly, and

Hello Windows CE Chapter 1

that the parameters will be put in a Pascal-like right-to-left push onto the pro
gram stack, which is the reverse of the standard C-language method. The rea
son for using the Pascal language stack frame for external entry points goes back
to the very earliest days of Windows development. The use of a fixed-size Pas
cal stack frame meant that the called procedure cleaned up the stack instead of
leaving it for the caller to do. This reduced the code size of Windows and its
bundled accessory programs sufficiently so that the early Microsoft developers
thought it was a good move.

The first of the parameters passed to the window procedure is the window
handle, which is useful when you need to define the specific instance of the
window. The wMsg parameter indicates the message being sent to the window.
This isn't the MSG structure used in the message loop in WinMain, but a simple,
unsigned integer containing the message value. The remaining two parameters,
wParam and lParam, are used to pass message-specific data to the window
procedure. The names wParam and lParam come to us from the Win16 days,
when wParam was a 16-bit value and lParam was a 32-bit value. In Windows
CE, as in other Win32 operating systems, both the wParam and lParam parame
ters are 32 bits wide.

It's in the window procedure that my programming style differs significantly
from most Windows programs written without the help of a class library such
as MFC. For almost all of my programs, the window procedure is identical to the
one previously shown. Before continuing, I repeat: this program structure isn't
specific to Windows CE. I use this style for all my Windows applications, whether
they are for Windows 3.1, Windows Me, Windows XP, or Windows CE.

This style reduces the window procedure to a simple table lookup func
tion. The idea is to scan the MainMessages table defined early in the C file for
the message value in one of the entries. If the message is found, the associated
procedure is then called, passing the original parameters to the procedure pro
cessing the message. If no match is found for the message, the DefWindowProc
function is called. DefWindowProc is a Windows function that provides a default
action for all messages in the system, which frees a Windows program from having
to process every message being passed to a window.

The message table associates message values with a procedure to process
it. The table is listed below:

II Message dispatch table for MainWindowProc
canst struct decodeUINT MainMessages[J = {

WM_CREATE, DoCreateMain,

} ;

WM_PAINT, DoPaintMain,
WM_HIBERNATE, DoHibernateMain,
WM_DESTROY, DoDestroyMain,

27

Part I Windows Programming Basics

28

The table is defined as a constant, not just as good programming practice
but also because it's helpful for memory conservation. Since Windows CE pro
grams can be executed in place in ROM, data that doesn't change should be marked
constant. This allows the Windows CE program loader to leave such constant data
in ROM instead of loading a copy into RAM, thus saving precious RAM.

The table itself is an array of a simple two-element structure. The first en
try is the message value, followed by a pointer to the function that processes the
message. While the functions could be named anything, I'm using a consistent
structure throughout the book to help you keep track of them. The names are
composed of a Do prefix (as a bow to object-oriented practice), followed by the
message name and a suffix indicating the window class associated with the table.
So DoCreateMain is the name of the function that processes WM_CREATE mes
sages for the main window of the program.

DoCreateMain The WM_CREATE message is the first message sent to a win
dow. WM_CREATE is unique among messages in that Windows sends it while
processing the Create Window function, and therefore the window has yet to be
completely created. This is a good place in the code to perform any data initiali
zation for the window. But since the window is still being created, some Windows
functions, such as GetWindowRect, used to query the size and position of the
window, return inaccurate values. For our purposes, the procedure shown in the
following code performs only one function: it creates a command bar for the
window.

LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM lParam) {

}

HWND hwndCB;

II Create a command bar.
hwndCB = CommandBar_Create (hinst, hWnd, IDC_CMDBAR);

II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 0);
return 0;

Because Windows CE windows don't support standard menus attached to
windows, a command bar is necessary for menus. While HelloCE doesn't have
a menu, it does require a Close button, also provided by the command bar, so
the program can be terminated by the user. For this reason, the simplest form
of command bar, one with only a Close buttoa, is created. You create the com
mand bar by calling CommandBar_Create and passing the program's instance
handle, the handle to the window, and a constant that will be used to identify this
specific command bar. (This constant can be any integer value as long as it is unique

Hello Windows CE Chapter 1

among the other child windows in the window.) Once you've created the com
mand bar, you add a Close button by calling CommandBar_AddAdornments.
Since all we want to do is perform the default action for this function, the pa
rameters passed are basic: the command bar handle and two zeros. That com
pletes the processing of the WM_CREATE message. I'll examine the command
bar in depth in Chapter 5.

DoPaintMain Painting the window, and therefore processing the WM_PAINT
message, is one of the critical functions of any Windows program. As a program
processes the WM_PAINT message, the look of the window is achieved. Aside
from painting the default background with the brush you specified when you
registered the window class, Windows provides no help for processing this mes
sage. In HelloCE, the task of the DoPaintMain procedure is to display one line
of text in the center of the window.

LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM lParam) {

PAINTSTRUCT ps;
RECT rect;
HOC hdc;

II Adjust the size of the client rect to take into account
II the command bar height.
GetClientRect (hWnd, &rect);
rect.top += CommandBar_Height (GetDlgltem (hWnd, IDC_CMDBAR));

hdc = BeginPaint (hWnd, &ps);
DrawText (hdc, TEXT ("Hello Windows CE!"), -1, &rect,

DT_CENTER I DT_VCENTER I DT_SINGLELINE);

EndPaint (hWnd, &ps);
return 0;

Before the drawing can be performed, the routine must determine the size
of the window. In a Windows program, a standard window is divided into two
areas, the nonclient area and the client area. A window's title bar and its sizing
border commonly comprise the nonclient area of a window, and Windows is
responsible for drawing it. The client area is the interior part of the window, and
the application is responsible for drawing that. An application determines the size
and location of the client area by calling the GetClientRect function. The func
tion returns a RECT structure that contains left, top, right, and bottom elements
that delineate the boundaries of the client rectangle. The advantage of the cli
ent vs. nonclient area concept is that an application doesn't have to account for
drawing such standard elements of a window as the title bar.

29

Part I Windows Programming Basics

30

When you're computing the size of the client area, you must remember that
the command bar resides in the client area of the window. So even though the
GetClientRect function works the same way in Windows CE as in other versions
of Windows, the application needs to compensate for the height of the command
bar, which is always placed across the top of the window. Windows CE gives you
a convenient function, CommandBar _Height, which returns the height of the com
mand bar and can be used in conjunction with the GetClientRect call to get the
true client area of the window that needs to be drawn by the application.

Other versions of Windows supply a series of WM_NCxxx messages that
enable your applications to take over the drawing of the nonclient area. In Windows
CE, windows seldom have title bars, and at the present time, none of them have
a sizing border. Because there's so little nonclient area, the Windows CE team
decided not to expose the nonclient messages.

All drawing performed in a WM_PAINT message must be enclosed by two
functions, BeginPaint and EndPaint. The BeginPaint function returns an HDC,
or handle to a device context. A device context is a logical representation of a
physical display device such as a video screen or a printer. Windows programs
never modify the display hardware directly. Instead, Windows isolates the program
from the specifics of the hardware with, among other tools, device contexts.

BeginPaint also fills in a PAINTSTRUCT structure that contains a number
of useful parameters.

typedef struct tagPAINTSTRUCT
HOC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL flncUpdate;
BYTE rgbReserved[32];

PAINTSTRUCT;

The hdc field is the same handle that's returned by the BeginPaint func
tion. The }Erase field indicates whether the background of the window needs
to be redrawn by the window procedure. The rcPaint field is a RECT structure
that defines the client area that needs repainting. HelloCE ignores this field and
assumes that the entire client window needs repainting for every WM_PAINT
message, but this field is quite handy when performance is an issue because only
a part of the window might need repainting. Windows actually prevents repainting
outside the rcPaint rectangle, even when a program attempts to do so. The other
fields in the structure, }Restore, ftncUpdate, and rgbReserved, are used internally
by Windows and can be ignored by the application.

The only painting that takes place in HelloCE occurs in one line of text in
the window. To do the painting, HelloCE calls the DrawText function. I cover

Hello Windows CE Chapter 1

the details of DrawText in the next chapter, but if you look at the function it's
probably obvious to you that this call draws the string "Hello Windows CE" on
the window. After DrawText returns, EndPaint is called to inform Windows that
the program has completed its update of the window.

Calling EndPaint also validates any area of the window you didn't paint.
Windows keeps a list of areas of a window that are invalid (areas that need to
be redrawn) and valid (areas that are up to date). By calling the BeginPaint and
EndPaint pair, you tell Windows that you've taken care of any invalid areas in
your window, whether or not you've actually drawn anything in the window.
In fact, you must call BeginPaint and EndPaint, or validate the invalid areas of
the window by other means, or Windows will simply continue to send WM_PAINT
messages to the window until those invalid areas are validated.

DoHibernateMain You need DoHibernateMain because the WM_HIBERNATE
message, unique to Windows CE, should be handled by every Windows CE
program. A WM_HIBERNATE message is sent to a window to instruct it to re
duce its memory use to the absolute minimum.

LRESULT DoHibernateMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM lParam) {

II If not the active window, destroy the cmd bar to save memory.
if (GetAct i veWi ndow () ! = hWnd)

CommandBar_Destroy (GetDlgitem (hWnd, IDC_CMDBAR));

return 0;

In the case of HelloCE, the only real way to reduce memory use is to de
stroy the command bar control by calling CommandBar _Destroy. The only case
in which one should not destroy the command bar occurs when the window is
the active window, the window through which the user is interacting with the
program at the current time.

More complex Windows CE applications have a much more elaborate pro
cedure for handling the WM_HIBERNATE messages. Applications should free up
as much memory and system resources as possible without losing currently
unsaved data. In a choice between performance and lower memory use, an
application is better reactivating slowly after a WM_HIBERNATE message than
it is consuming more memory.

DoActivateMain While the WM_ACTIVATE message is common to all Windows
platforms, it takes on new significance for Windows CE applications because
among its duties is to indicate that the window should restore any data struc
tures or window controls that were freed by a WM_HIBERNATE message.

31

Part I Windows Programming Basics

32

LRESULT DoActivateMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM lParam) {

HWND hwndCB;

II If activating and no command bar, create it.
if ((LOWORD (wParam) != WA_INACTIVE) &&

(GetDlgltem (hWnd, IDC_CMDBAR) == 0)) {

II Create a command bar.
hwndCB = CommandBar_Create (hlnst, hWnd, IDC_CMDBAR);

II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 0);

return 0;

The lower word of the wParam parameter is a flag that tells why the
WM_ACTIVATE message was sent to the window. The flag can be one of three
values: WA_INACTIVE, indicating that the window is being deactivated after being
the active window; WA_ACTIVE, indicating that the window is about to become
the active window; and WA_CLICKACTIVE, indicating that the window is about
to become the active window after having been clicked on by the user.

HelloCE processes this message by checking to see whether the window
remains active and whether the command bar no longer exists. If both condi
tions are true, the command bar is re-created using the same calls used for the
WM_CREATE message. The GetDlgltem function is convenient because it returns
the handle of a child window of another window using its window ID. Remem
ber that when the command bar, a child of HelloCE's main window, was cre
ated, I used an ID of IDC_CMDBAR (defined in HelloCE.h). That ID value is
passed to GetDlgltem to get the command bar window handle. However, if the
command bar window doesn't exist, the value returned is 0, indicating that
HelloCE needs to re-create the command bar.

DoDestroyMain The final message that HelloCE must process is the
WM_DESTROY message sent when a window is about to be destroyed. Because
this window is the main window of the application, the application should ter
minate when the window is destroyed. To make this happen, the DoDestroyMain
function calls PostQuitMessage. This function places a WM_QUIT message in
the message queue. The one parameter of this function is the return code value
that will be passed back to the application in the wParam parameter of the
WM_QUIT message.

LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM lParam) {

PostQuitMessage (0);
return 0;

Hello Windows CE Chapter 1

Notice that the DoDestroyMain function doesn't destroy the command bar
control created in DoCreateMain. Since the command bar is a child window of the
main window, it's automatically destroyed when its parent window is destroyed.

As I've mentioned, when the message loop sees a WM_QUIT message, it exits
the loop. The WinMain function then calls Termlnstance, which, in the case of
HelloCE, does nothing but return. WinMain then returns, terminating the program.

Running HelloCE After you've entered the program into eMbedded Visual C++
and built it, you can execute it remotely from inside VC++ by selecting Execute
HelloCE.exe from the Build menu or by pressing Ctrl-F5. The program displays
the Hello Windows CE text in the middle of an empty window, as shown in Figure
1-3. Figure 1-4 shows HelloCE running on a Pocket PC. The command bar is
placed by Windows CE across the top of the window. Tapping on the Close button
on the command bar causes Windows CE to send a WM_CLOSE message to the
window. Although HelloCE doesn't explicitly process the WM_CLOSE message,
the DejWindowProc procedure enables default processing by destroying the main
window. As the window is being destroyed, a WM_DESTROY message is sent,
which causes PostQuitMessage to be called.

Hello Winc:lows CE!

·······~ Figure 1-3 The HelloCE window on an embedded Windows CE 3.0 system

Hello Windows CE!

Figure 1-4 The HelloCE window on a Pocket PC

33

Part I Windows Programming Basics

34

As I said, HelloCE is a very basic Windows CE program, but it gives you a
skeleton application on which you can build. If you look at the file HelloCE.exe
using Explorer, you'll see that the program is represented by a generic icon. When
HelloCE is running, the button on the task bar in Figure 1-3 representing HelloCE
has no icon displayed next to the text. Adding a custom icon to a program and
how the DrawText function works are a couple of the topics I'll address in the
next few chapters.

Figure 1-4 shows a problem that HelloCE has running on a Pocket PC. The
HelloCE window extends to the bottom of the screen. Depending on how you
switch between applications, the button to display the SIP may appear over the
top of the HelloCE window. Applications designed specifically for the Pocket PC
will create a menu bar at the bottom of the screen that among other things con
tains the button necessary to display the soft keyboard. It must also resize its window
manually to avoid covering, or being covered, by the menu bar. We'll see later in
the book how to design an application specifically for the Pocket PC user inter
face. Rest assured that the lessons covering Windows CE in the early parts of the
book apply as much to Pocket PC devices as to other Windows CE systems.

Drawing on the Screen
In Chapter 1, the example program HelloCE had one task: to display a line of
text on the screen. Displaying that line took only one call to DrawText, with
Windows CE taking care of such details as the font and its color, the positioning
of the line of text inside the window, and so forth. Given the power of a graphical
user interface (GUI), however, an application can do much more than simply print
a line of text on the screen. It can craft the look of the display down to the most
minute of details.

Over the life of the Microsoft Windows operating system, the number of
functions available for crafting these displays has expanded dramatically. With
each successive version of Windows, functions have been added that extend the
tools available to the programmer. As functions were added, the old ones re
mained so that even if a function had been superseded by a new function, old
programs would continue to run on the newer versions of Windows. The ap
proach in which function after function is piled on while the old functions are
retained for backward compatibility was discontinued with the initial version
of Windows CE. Because of the requirement to produce a smaller version of
Windows, the CE team took a hard look at the Win32 API and replicated only
the functions absolutely required by applications written for the Windows CE
target market.

One of the areas of the Win32 API hardest hit by this reduction was graphical
functions. It's not that you now lack the functions to do the job-it's just that the
high degree of redundancy in the Win32 API led to some major pruning of the
graphical functions. An added challenge for the programmer is that different
Windows CE platforms have subtly different sets of supported APis. One of the
ways in which Windows CE graphics support differs from that of its desktop
cousins is that Windows CE doesn't support the different mapping modes avail
able under other implementations of Windows. Instead, the Windows CE device

35

Part I Windows Programming Basics

contexts are always set to the MM_TEXT mapping mode. Coordinate transfor
mations are also not supported under Windows CE. While these features can be
quite useful for some types of applications, such as desktop publishing, their
necessity in the Windows CE environment of small portable devices isn't as clear.
So when you're reading about the functions and techniques used in this chap
ter, remember that some might not be supported on all platforms. So that a pro
gram can determine what functions are supported, Windows has always had the
GetDeviceCaps function, which returns the capabilities of the current graphic
device. Throughout this chapter, I'll refer to GetDeviceCaps when determining
what functions are supported on a given device.

This chapter, like the other chapters in Part I of this book, reviews the
drawing features supported by Windows CE. One of the most important facts to
remember is that while Windows CE doesn't support the full Win32 graphics API,
its rapid evolution has resulted in it supporting some of the newest functions in
Win32-some so new that you might not be familiar with them. This chapter
shows you the functions you can use and how to work around the areas where
certain functions aren't supported under Windows CE.

Painting Basics
Historically, Windows has been subdivided into three main components: the
kernel, which handles the process and memory management; User, which handles
the windowing interface and controls; and the Graphics Device Interface, or GDI,
which performs the low-level drawing. In Windows CE, User and GDI are com
bined into the Graphics Windowing and Event handler, or GWE. At times, you
might hear a Windows CE programmer talk about the GWE. The GWE is noth
ing really new-just a different packaging of standard Windows parts. In this book,
I usually refer to the graphics portion of the GWE under its old name, GDI, to
be consistent with standard Windows programming terminology.

But whether you're programming for Windows CE, Windows Me, Windows
2000, or Windows XP, there's more to drawing than simply handling the WMYAINT
message. It's helpful to understand just when and why a WM_PAINT message
is sent to a window.

Valid and Invalid Regions

36

When for some reason an area of a window is exposed to the user, that area, or
region, as it's referred to in Windows, is marked invalid. When no other mes
sages are waiting in an application's message queue and the application's win
dow contains an invalid region, Windows sends a WM_PAINT message to the
window. As mentioned in Chapter 1, any drawing performed in response to a

Drawing on the Screen Chapter 2

WM_PAINT message is couched in calls to BeginPaint and EndPaint. BeginPaint

actually performs a number of actions. It marks the invalid region as valid, and
it computes the clipping region. The clipping region is the area to which the
painting action will be limited. BeginPaint then sends a WM_ERASEBACKGROUND
message, if needed, to redraw the background, and it hides the caret-the text
entry cursor-if it's displayed. Finally BeginPaint retrieves the handle to the
display device context so that it can be used by the application. The EndPaint
function releases the device context and redisplays the caret if necessary. If no
other action is performed by a WM_PAINT procedure, you must at least call
BeginPaint and EndPaint if only to mark the invalid region as valid.

Alternatively, you can call to ValidateRect to blindly validate the region. But
no drawing can take place in that case because an application must have a handle
to the device context before it can draw anything in the window.

Often an application needs to force a repaint of its window. An applica
tion should never post or send a WM_PAINT message to itself or to another
window. Instead, you use the following function:

BOOL InvalidateRect (HWND hWnd, const RECT *lpRect, BOOL bErase);

Notice that InvalidateRect doesn't require a handle to the window's device
context, only to the window handle itself. The lpRect parameter is the area of
the window to be invalidated. This value can be NULL if the entire window is
to be invalidated. The bErase parameter indicates whether the background of the
window should be redrawn during the BeginPaint call as mentioned above. Note
that unlike other versions of Windows, Windows CE requires that the h Wnd
parameter be a valid window handle.

Device Contexts
A device context, often referred to simply as a DC, is a tool that Windows uses
to manage access to the display and printer, although for the purposes of this
chapter I'll be talking only about the display. Also, unless otherwise mentioned,
the explanation that follows applies to Windows in general and isn't specific to
Windows CE.

Windows applications never write directly to the screen. Instead, they re
quest a handle to a display device context for the appropriate window and then,
using the handle, draw to the device context. Windows then arbitrates and man
ages getting the pixels from the DC to the screen.

BeginPaint, which should be called only in a WM_PAINT message, returns
a handle to the display DC for the window. An application usually performs its
drawing to the screen during the WM_PAINT messages. Windows treats paint
ing as a low-priority task, which is appropriate since having painting at a higher
priority would result in a flood of paint messages for every little change to the

37

Part I Windows Programming Basics

38

display. Allowing an application to complete all its pending business by processing
all waiting messages results in all the invalid regions being painted efficiently at
once. Users don't notice the minor delays caused by the low priority of the
WM_PAINT messages.

Of course, there are times when painting must be immediate. An example
of such a time might be when a word processor needs to display a character
immediately after its key is pressed. To draw outside a WM_PAINT message, the
handle to the DC can be obtained using this:

HOC GetOC CHWNO hWnd);

GetDC returns a handle to the DC for the client portion of the window. Draw
ing can then be performed anywhere within the client area of the window be
cause this process isn't like processing inside a WM_PAINT message; there's no
clipping to restrict you from drawing in an invalid region.

Windows CE supports another function that can be used to receive the DC.
It is

HOC GetOCEx (HWNO hWnd, HRGN hrgnClip, OWORO flags);

GetDCEx allows you to have more control over the device context returned. The
new parameter, hrgnClip, lets you define the clipping region, which limits drawing
to that region of the DC. The flags parameter lets you specify how the DC acts
as you draw on it. Note that Windows CE doesn't support the following flags:
DCX_PARENTCLIP, DCX_NORESETATTRS, DCX_LOCKWINDOWUPDATE, and
DCX_ VALIDATE.

After the drawing has been completed, a call must be made to release the
device context:

int ReleaseOC CHWNO hWnd, HOC hOC);

Device contexts are a shared resource, and therefore an application must not hold
the DC for any longer than necessary.

While GetDC is used to draw inside the client area, sometimes an applica
tion needs access to the nonclient areas of a window, such as the title bar. To
retrieve a DC for the entire window, make the following call:

HOC GetWindowDC CHWNO hWnd);

As before, the matching call after the drawing has been completed for
GetWindowDC is ReleaseDC.

The DC functions under Windows CE are identical to the device context
functions under Windows Me and Windows 2000. This should be expected be
cause DCs are the core of the Windows drawing philosophy. Changes to this area
of the API would result in major incompatibilities between Windows CE appli
cations and their desktop counterparts.

Drawing on the Screen Chapter 2

Writing Text
In Chapter 1, the HelloCE example displayed a line of text using a call to DrawText.
That line from the example is shown here:

DrawText Ihde, TEXT ("Hello Windows CE!"), -1, &rect,
DT_CENTER I DT_VCENTER I DT_SINGLELINE);

DrawText is a fairly high-level function that allows a program to display text
while having Windows deal with most of the details. The first few parameters
of DrawText are almost self-explanatory. The handle of the device context be
ing used is passed, along with the text to display couched in a TEXT macro, which
declares the string as a Unicode string necessary for Windows CE. The third
parameter is the number of characters to print, or as is the case here, a -1 indi
cating that the string being passed is null terminated and Windows should com
pute the length.

The fourth parameter is a pointer to a rect structure that specifies the for
matting rectangle for the text. DrawText uses this rectangle as a basis for formatting
the text to be printed. How the text is formatted depends on the function's last
parameter, the formatting flags. These flags specify how the text is to be placed
within the formatting rectangle, or in the case of the DT_CALCRECT flag, the flags
have DrawText compute the dimensions of the text that is to be printed. DrawText
even formats multiple lines with line breaks automatically computed. In the case
of HelloCE, the flags specify that the text should be centered horizontally
(DT_CENTER), and centered vertically (DT_VCENTER). The DT_VCENTER flag
works only on single lines of text, so the final parameter, DT_SINGLELINE, speci
fies that the text shouldn't be flowed across multiple lines if the rectangle isn't
wide enough to display the entire string.

Device Context Attributes
What I haven't mentioned yet about HelloCE's use of DrawText is the large
number of assumptions the program makes about the DC configuration when
displaying the text. Drawing in a Windows device context takes a large number
of parameters, such as foreground and background color and how the text should
be drawn over the background as well as the font of the text. Instead of speci
fying all these parameters for each drawing call, the device context keeps track
of the current settings, referred to as attributes, and uses them as appropriate
for each call to draw to the device context.

Foreground and Background Colors
The most obvious of the text attributes are the foreground and background color.
Two functions, SetTextColor and GetTextColor, allow a program to set and retrieve

39

Part I Windows Programming Basics

the current color. These functions work well with both gray-scale screens and
the color screens supported by Windows CE devices.

To determine how many colors a device supports, use GetDeviceCaps as
mentioned previously. The prototype for this function is the following:

int GetDeviceCaps (HOC hdc, int nlndex);

You need the handle to the DC being queried because different DCs have
different capabilities. For example, a printer DC differs from a display DC. The
second parameter indicates the capability being queried. In the case of return
ing the colors available on the device, the NUMCOLORS value returns the num
ber of colors as long as the device supports 256 colors or fewer. Beyond that,
the returned value for NUMCOLORS is -1 and the colors can be returned using
the BITSPIXEL value, which returns the number of bits used to represent each
pixel. This value can be converted to the number of colors by raising 2 to the
power of the BITSPIXEL returned value, as in the following code sample:

nNumColors = GetDeviceCaps (hdc, NUMCOLORS);
if (nNumColors == -1)

nNumColors = 1 << GetDeviceCaps (hdc, BITSPIXEL);

Drawing Mode
Another attribute that affects text output is the background mode. When letters
are drawn on the device context, the system draws the letters themselves in the
foreground color. The space between the letters is another matter. If the back
ground mode is set to opaque, the space is drawn with the current background
color. But if the background mode is set to transparent, the space between the
letters is left in whatever state it was in before the text was drawn. While this
might not seem like a big difference, imagine a window background filled with
a drawing or graph. If text is written over the top of the graph and the background
mode is set to opaque, the area around the text will be filled, and the background
color will overwrite the graph. If the background mode is transparent, the text
will appear as if it had been placed on the graph, and the graph will show through
between the letters of the text.

The TextDemo Example Program

40

The TextDemo program, shown in Figure 2-1, demonstrates the relationships
among the text color, the background color, and the background mode.

Drawing on the Screen Chapter 2

TextDemo.h
II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 2001 Douglas Boling
II
//==
JI Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11--
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAMl;
} ;

struct decodeCMD {
UINT Code;
LRESULT (*Fxn}(HWND, WORD, HWND, WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

ll--'-------------·-----------~---"----~--·-----------·-----------------
11 Generic defines used by application
if/define IDCCMDBAR 1 11 Command bar ID

11--
11 Function prototypes
II
int InitApp (HINSTANCE);
int Initlnstance (HINSTANCE. LPWSTR. int):
int Terminstance CHINSTANCE, int);

II Window procedures
LRESULT CALLBACK MainWndProc CHWND, UINT, WPARAM, LPARAM);

II Message handlers
LRESUL T DoCreateMa in (HWND, UI NT, WPARAM, LPARAMl;
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAMl;
LRESULT DoDestroyMain (HWND. UINT. WPARAM, LPARAM);

Figure 2-1 The TextDemo program (continued)

41

Part I Windows Programming Basics

Figure 2-1 (continued)

42

Drawing on the Screen Chapter 2

II Instance cleanup
return Terminstance (h!nstance, msg.wParam);

11--
11 InitApp - Application initialization
II
int InitApp (HINSTANCE hlnstance) {

WNDCLASS we:

f}i f defined (WIN32_P LATFORM'-PSPC)
II If Pocket PC, all.ow only one instance of the application,
HWND hWnd " Fi ndWi.ndow (szAppName, NULL);
if (hWnd) {

}

(continued)

43

Part I Windows Programming Basics

Figure 2-1 (continued)

44

}

Drawing on the Screen Chapter 2

II Create a command bar.
hwndCB = CommandBar_Create (hlnst, hWnd, IDC_CMDBAR);
II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 0);
return 0;

ll bra~ 1Hac~ rectangi e on right flaif M ~t~dow:
hbrOl d"' ·?elect Object. (hdc, GetStockObJect (BLACl<__BRUSH)):
Rectijngle Ch'P~.~ r<:ctC1 :t; left.·+ Crect«1;1J:iii~Jii. ; r.aX;tCJi .;l~f.t >

• [... ~ecj;f)t: top, rectc1i:rtgh~:.ft~~tttJf.J>°'t;t:dm): · ·
!h~1~iit~bJ~ct:: ch.dci;'rhti~JYld b. · · <:,., · · ·
·rectc1/ti~tto~;. re~t~\Ltop.+ cy: ; ;.· ...
SetBkMode(~dc,fMNSPARENTI;
for· (t =:0·;.1:<:4{J+.fr { · .

setTextC~le>r (.h<fc, <lwColorTableLi]); ... ··•
set~t:<:oi-0·; CM.c;i.;<lwcoi:9rT1Jble(3~u}'E~ ·

,._, .. " ": -:,: ... ,>.::;~<<:·;

Dra\YJ exf .(hdc::·{f[iff C."He n 0 wt'htttA-is :C~;;·r:
. . . ··:·1Jl\1¢E~TER,., .DLSI!iGL~L%~E)~<···';

(continued)

45

Part I Windows Programming Basics

46

Figure 2-1 (continued)

The meat of TextDemo is in the OnPaintMain function. The first call to
DrawText doesn't draw anything in the device context. Instead, the DT_CALCRECT
flag instructs Windows to store the dimensions of the rectangle for the text string
in rect. This information is used to compute the height of the string, which is
stored in cy. Next, a black rectangle is drawn on the right side of the window.
I'll talk about how a rectangle is drawn later in the chapter; it's used in this pro
gram to produce two different backgrounds before the text is written. The function
then prints out the same string using different foreground and background col
ors and both the transparent and opaque drawing modes. The result of this
combination is shown in Figure 2-2.

The first four lines are drawn using the transparent mode. The second four
are drawn using the opaque mode. The text color is set from black to white so
that each line drawn uses a different color, while at the same time the background
color is set from white to black. In transparent mode, the background color
is irrelevant because it isn't used; but in opaque mode, the background color is
readily apparent on each line.

Fonts

Drawing on the Screen Chapter 2

Figure 2-2 TextDemo shows how the text color, background color, and background
mode relate.

If the ability to set the foreground and background colors were all the flexibil
ity that Windows provided, we might as well be back in the days of MS-DOS and
character attributes. Arguably, the most dramatic change from MS-DOS is Windows'
ability to change the font used to display text. All Windows operating systems
are built around the concept of WYSIWYG-what you see is what you get-and
changeable fonts are a major tool used to achieve that goal.

Two types of fonts appear in all Windows operating systems-raster and
TrueType. Raster fonts are stored as bitmaps, small pixel-by-pixel images, one
for each character in the font. Raster fonts are easy to store and use but have
one major problem: they don't scale well. Just as a small picture looks grainy when
blown up to a much larger size, raster fonts begin to look blocky as they are scaled
to larger and larger font sizes.

TrueType fonts solve the scaling problem. Instead of being stored as im
ages, each TrueType character is stored as a description of how to draw the
character. The font engine, which is the part of Windows that draws characters
on the screen, then takes the description and draws it on the screen in any size
needed. A Windows CE system can support either TrueType or raster fonts, but
not both. Fortunately, the programming interface is the same for both raster and
TrueType fonts, relieving Windows developers from worrying about the font
technology in all but the most exacting of applications.

The font functions under Windows CE closely track the same functions under
other versions of Windows. Let's look at the functions used in the life of a font,

47

Part I Windows Programming Basics

48

from creation through selection in a DC and finally to deletion of the font. How
to query the current font as well as enumerate the available fonts is also cov
ered in the following sections.

Creating a Font
Before an application is able to use a font other than the default font, the font
must be created and then selected into the device context. Any text drawn in a
DC after the new font has been selected into the DC will then use the new font.

Creating a font in Windows CE can be accomplished this way:

HFONT CreateFontlndirect (const LOGFONT *lplf);

This function is passed a pointer to a LOGFONT structure that must be filled with
the description of the font you want.

typedef struct tagLOGFONT
LONG 1 fHei ght;
LONG 1 fWidth;
LONG 1 fEscapement;
LONG 1 fOri entati on;
LONG lfWeight;
BYTE lfltalic;
BYTE 1 fUnderl i ne;
BYTE 1 fStri keOut;
BYTE 1 fCha rSet;
BYTE 1 fOutPreci si on;
BYTE lfClipPrecision;
BYTE lfQuality;
BYTE lfPitchAndFamily;
TCHAR lfFaceName[LF_FACESIZE];

LOGFONT;

The ifHeight field specifies the height of the font in device units. If this field
is 0, the font manager returns the default font size for the font family requested.
For most applications, however, you want to create a font of a particular point size.
The following equation can be used to convert point size to the ifHeight field:

lfHeight = -1 * (PointSize * GetDeviceCaps (hdc, LOGPIXELSY) I 72);

Here GetDeviceCaps is passed a LOGPIXELSY field instructing it to return
the number of logical pixels per inch in the vertical direction. The 72 is the number
of points (a typesetting unit of measure) per inch.

The (/Width field specifies the average character width. Since the height of
a font is more important than its width, most programs set this value to 0. This
tells the font manager to compute the proper width based on the height of the
font. The ljEscapement and lfOrientation fields specify the angle in tenths of

Drawing on the Screen Chapter 2

degrees of the base line of the text and the x-axis. The ljWeight field specifies
the boldness of the font from 0 through 1000, with 400 being a normal font and
700 being bold. The next three fields specify whether the font is to be italic,
underline, or strikeout.

The lpCharSet field specifies the character set you have chosen. This field
is more important in international releases of software, where it can be used to
request a specific language's character set. The lfOutPrecision field can be used
to specify how closely Windows matches your requested font. Among a num
ber of flags available, an OUT_TT_ONLY_PRECIS flag specifies that the font cre
ated must be a TrueType font. The lfClipPrecision field specifies how Windows
should clip characters that are partially outside the region being displayed. The
lfQuality field is set to either DEFAULT_QUALITY or DRAFT_QUALITY, which
gives Windows permission to synthesize a font that, while more closely match
ing the other requested fields, might look less polished.

The ljPitchAndFamily field specifies the family of the font you want. This
field is handy when you're requesting a family such as Swiss, which features pro
portional fonts without serifs, or a family such as Roman, which features pro
portional fonts with serifs, but you don't have a specific font in mind. You can
also use this field to specify simply a proportional or a monospaced font and allow
Windows to determine which font matches the other specified characteristics
passed into the LOGFONT structure. Finally, the ifFaceName field can be used
to specify the typeface name of a specific font.

When CreateFontlndirect is called with a filled LOGFONT structure,
Windows creates a logical font that best matches the characteristics provided. To
use the font, however, the final step of selecting the font into a device context
must be made.

Selecting a Font into a Device Context
You select a font into a DC by using the following function:

HGDIOBJ SelectObject (HDC hdc, HGDIOBJ hgdiobj);

This function is used for more than just setting the default font; you use this
function to select other GDI objects, as we shall soon see. The function returns
the previously selected object (in our case, the previously selected font), which
should be saved so that it can be selected back into the DC when we're finished
with the new font. The line of code looks like the following:

hOldFont = SelectObject (hdc, hFont);

When the logical font is selected, the system determines the closest match
to the logical font from the fonts available in the system. For devices without
TrueType fonts, this match could be a fair amount off from the specified parame
ters. Because of this, never assume that just because you've requested a particular

49

Part I Windows Programming Basics

50

font, the font returned exactly matches the one you requested. For example, the
height of the font you asked for might not be the height of the font that's selected
into the device context.

Querying a Font's Characteristics
To determine the characteristics of the font that is selected into a device context,
a call to

BOOL GetTextMetrics (HOC hdc, LPTEXTMETRIC lptm);

returns the characteristics of that font. A TEXTMETRIC structure is returned with
the information and is defined as

typedef struct tagTEXTMETRIC {

LONG tmHeight;
LONG tmAscent;
LONG tmDescent;
LONG tminternalleading;
LONG tmExternalleading;
LONG tmAveCharWidth;
LONG tmMaxCharWidth;
LONG tmWeight;
LONG tmOverhang;
LONG tmDigitizedAspectX;
LONG tmDigitizedAspectY;
char tmFirstChar;
char tmLastChar;
char tmDefaultChar;
char tmBreakChar;
BYTE tmitalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmPitchAndFamily;
BYTE tmCharSet;

} TEXTMETRI C;

The TEXTMETRIC structure contains a number of the fields we saw in the
LOGFONT structure, but this time the values listed in TEXTMETRIC are the val
ues of the font that's selected into the device context. Figure 2-3 shows the re
lationship of some of the fields to actual characters.

Aside from determining whether you really got the font you wanted, the
GetTextmetrics call has another valuable purpose-determining the height of the
font. Recall that in TextDemo, the height of the line was computed using a call
to DrawText. While that method is convenient, it tends to be slow. You can use
the TEXTMETRIC data to compute this height in a much more straightforward
manner. By adding the tmHeight field, which is the height of the characters, to

Drawing on the Screen Chapter 2

the tmExternalLeading field, which is the distance between the bottom pixel of
one row and the top pixel of the next row of characters, you can determine the
vertical distance between the baselines of two lines of text.

tmDescent

Figure 2-3 Fields from the TEXTMETRIC structure and how they relate to a font

Destroying a Font
Like other GDI resources, fonts must be destroyed after the program has finished
using them. Failure to delete fonts before terminating a program causes what's
known as a resource leak-an orphaned graphic resource that's taking up valu
able memory but that's no longer owned by an application.

To destroy a font, first deselect it from any device contexts it has been
selected into. You do this by calling SelectObject; the font passed is the font that
was returned by the original SelectObject call made to select the font. After the
font has been deselected, a call to

BOOL DeleteObject CHGDIOBJ hObject);

(with hObject containing the font handle) deletes the font from the system.
As you can see from this process, font management is no small matter in

Windows. The many parameters of the LOGFONT structure might look daunt
ing, but they give an application tremendous power to specify a font exactly.

One problem when dealing with fonts is determining just what types of fonts
are available on a specific device. Windows CE devices come with a set of stan
dard fonts, but a specific system might have been loaded with additional fonts

51

Part I Windows Programming Basics

by either the manufacturer or the user. Fortunately, Windows provides a method
for enumerating all the available fonts in a system.

Enumerating Fonts
To determine what fonts are available on a system, Windows provides this function:

int EnumFontFamilies (HOC hdc, LPCTSTR lpszFamily,
FONTENUMPROC lpEnumFontFamProc, LPARAM lParam);

This function lets you list all the font families as well as each font within a fam
ily. The first parameter is the obligatory handle to the device context. The sec
ond parameter is a string to the name of the family to enumerate. If this parameter
is null, the function enumerates each of the available families.

The third parameter is something different-a pointer to a function provided
by the application. The function is a callback function that Windows calls once
for each font being enumerated. The final parameter, !Param, is a generic
parameter that can be used by the application. This value is passed unmodified
to the application's callback procedure.

While the name of the callback function can be anything, the prototype of
the callback must match the declaration:

int CALLBACK EnumFontFamProc (LOGFONT *lpelf, TEXTMETRIC *lpntm,
DWORD FontType, LPARAM lParam);

The first parameter passed back to the callback function is a pointer to a
LOGFONT structure describing the font being enumerated. The second parameter,
a pointer to a textmetric structure, further describes the font. The font type pa
rameter indicates whether the font is a raster or TrueType font.

The Fontlist Example Program

52

The FontList program, shown in Figure 2-4, uses the EnumFontFamilies func
tion in two ways to enumerate all fonts in the system.

Figure 2-4 The Fontlist program enumerates all fonts in the system.

Drawing on the Screen Chapter 2

11--
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*fXn)(HWND, UINT, WPARAM, LPARAM);
} :
struct decodeCMD {

UINT Code:
LRESULT (*fXn)(HWND, WORD, HWND, WORD);

} ;

II Structure associates
II messages
II with a function.

11 Structure a.ssoci ates
II menu IDs with a
II function.

11---------------·----~-~-----------------------------·~~~:-------------
II Generic defines used ~Y application
lfdefi ne IDG_CMDBAR 1

I I - - - ·• - - - - - - .~. • ···- • - - - • - •· • ~ - - -·- - ~ - - - - - - - - - - - - - - - • - " - • • •
/I .Program.~spE!C1f;:ip>str:L1~:t~TJ!S

.~~ef.i ne FAMltYMAt j4 .
typedef · struct {

tnt nNumFonts; ..
TCHAR 5.4Fo11tF~inilyrtf.;;.FAC&SlZE]:

.. } FONTFAMSTRUCT; . . ·

.. ty~edef. FONTF AMSTRUCt ..• *.PFPNT~AMSTRUCT:

. typedef struct { .

INT ,¥Current:

:~DC. hsfc;
PAINTFONTINFO: ·.. ·

typedef PAINTFONTINFO "'PPAlNTFONHNFO;

~~~-----~--.--------·-------~~~--------~--·-----

fl Function prototyj:res. 
fr·· 
if1}I11ttApp• C~i~H~ij~E.!;- -.. · 

. Hwl'to• .. ·1n1t1nstanc.¢.(R.INsrA~i;E, i)ws'r~·.·· 
. int· re:rmlnstilnce .·.CHI~STAMCE ;• 

II Message ha~dlers. . ··· .. ·... . •..... · 
LRESULT !foCreate~arn {ffWNI), UINT; WP'ARAM.·L·PARAMl; 

LREsuu DoPatntMain (MWND~. OlNJ.• WPAR.AM• LPARAMJ: 
LRESULT .dqOestroy.M4in·· IHKND;.UitiT>. WPARAM, ·LJ)AAAM); 

(continued) 

53 



Part I Windows Programming Basics 

Figure 2-4 (continued) 

54 



Drawing on the Screen Chapter 2 

II Application message loop 
while (GetMessage (&msg, NULL, 0, 0)) { 

TranslateMessage C&msg); 
DispatchMessage (&msg); 

II Instance cleanup 
return Terminstance (hinstance, msg.wParaml; 

11----------------------------------------------------------------------
11 InitApp - Application initialization 
II 
int InitApp CHlNSTANCE hinstance) { 

WNDCLA.SS we; 

#if defined(WIN32_PLATFORM_PSPC) 
II If Pocket PC, allow only one instance of the application. 
HWND .hWnd ~ FindWindow (szAppName, NULL); 
if (hWndl { 

SetForegroundWi ndow ( (HWND)({( DWORDJhWnd) I 0x0l}); 
return·. -1: 

} 

#en di 
// Register appli cat.ion main window 
we.style =.0; 
we. lpfnWndProc ·"' Mai nWndProc; 
wc.cbClsExtril =. 0; 
wc.cbWndExtra = 0; 
wc. hinstance = hlnstance; 
WC;hlcon. =NULL. 

ll Window style 
// C.alTb.a.ck functi.on 
II Extra class data 
// Extra window data 
l/ Owner handle 
II Appli~ation icon 

wc.hCursor "'LoadCursor <NULL, IDCARROW);// Default. cursor 
wc .. hbrBackground b ( HBRUSH) GetStockObj.ect(WHITE_BRUSH); 
we ,J pszMenuName = NULL; ll Menu name 
we .lpszClassName = szAppName; // Window Class name 

II Save progrqm instance handle in 
hinst = hinstance; 

(continued) 

55 



Part I Windows Programming Basics 

Figure 2-4 (continued) 

56 



Drawing on the Screen Chapter 2 

11---------------------------------------------------------------------· 
II EnumSingleFontFamily - Callback function that enumerates fonts 
II 
int CALLBACK EnumSingleFontFamily (CONST LOGFONT •lplf. 

CONST TEXTMETRIC •lpntm, 
DWORD nFontType, LPARAM lParamJ 

PFONTFAMSTRUCT pffs; 

pffs = (PFONTFAMSTRUCT) lParam: 
pffs->nNumFonts++; II Increment 
return l; 

II PaintSingleFontF.amlly - Callback function 
II 

II Select the .font .. into 
hOldFont = SeJectObSect 

(continued) 

57 



Part I Windows Programming Basics 

Figure 2-4 (continued) 

58 



Drawing on the Screen Chapter 2 

re EnumFontFamilies ((HDClhdc, ffs[i].szFontFamily, 

ReleaseDC (hWnd, hdc); 
return 0; 

EnumSingleFontFamily, 
CLPARAM)(PFONTFAMSTRUCTl&ffs[i]l; 

11---------------------------------------------------------------
11 OoPaintMain - Process WM_PAINT message for window. 
II 
LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParaml { 
PAINTSTRUCT ps; 
RECT. rect: 
HOC hdc; 
TEXTMETRIC tm: 
INT nFontHeight, i; 
TCHAR. sz0ut(256J; 
PAINTFONTI NFO 

//.Adjust the the C:.li ent 
/I.the command bar height. 
GetCli<;ntRect .. ·ChWnd ,· &rect); 
rect,top += cornrnandBar .... Height 

. hctc·. =<Beg.inPafnt (hWnd, &p.sl: 

ll<Get the .height of the default foht. 
GetlextMetrics (hdc. &tm); 
nfontHeight ?i tm.tmHeight + tm •. tmExternal leading; 

// lnitialiZ.e struct that is passed to enumerate function. 
pH .yCurrent rect .top; 
pfLhdc "' hdc; 

Ci :; 0; i < sFami lyCnt: i++l 

.. ·· ... · < Format output .string. and paint 
· wsprintf< tszQut •... TEXJC,.Family: ...• %s 

ffs[ i). s zFon tFami Jy) .; 
(hdc, 5, pfi.y.Curr.ent .• 0, NULL, 
szOut. lstrlen {szOutl, NULL); 

n FontHeJght; 

each family to draw a <sample of that 
({HDC)hdc. ffs[i] .szFontFamfly. 
Pai ntSingl e Font F ami 1 y. 
(LPARAMl&pff); 

(continued) 

59 



Part I Windows Programming Basics 

60 

Figure 2-4 (continued) 

Enumerating the different fonts begins when the application is processing 
the WM_CREATE message in OnCreateMain. Here EnumFontFamilies is called 
with the FontFamily field set to NULL so that each family will be enumerated. 
The callback function is FontFamilyCallback, where the name of the font fam
ily is copied into an array of strings. 

The remainder of the work is performed during the processing of the 
WM_PAINT message. The OnPaintMain function begins with the standard litany 
of getting the size of the area below the command bar and calling BeginPaint, 
which returns the handle to the device context of the window. GetTextMetrics 
is then called to compute the row height of the default font. A loop is then en
tered in which EnumerateFontFamilies is called for each family name that had 
been stored during the enumeration process in OnCreateMain. The callback 
process for this callback sequence is somewhat more complex than the code 
we've seen so far. 

The PaintSingleFontFamily callback procedure, used in the enumeration 
of the individual fonts, employs the lParam parameter to retrieve a pointer to a 
PAINTFONTINFO structure defined in FontList.h. This structure contains the 
current vertical drawing position as well as the handle to the device context. By 
using the lParam pointer, FontList avoids having to declare global variables to 
communicate with the callback procedure. 

The callback procedure next creates the font using the pointer to LOGFONT 
that was passed to the callback procedure. The new font is then selected into 
the device context, while the handle to the previously selected font is retained 
in hOldFont. The point size of the enumerated font is computed using the in
verse of the equation mentioned earlier in the chapter on page 48. The callback 
procedure then produces a line of text showing the name of the font family along 
with the point size of this particular font. Instead of using DrawText, the call
back uses a different text output funciion: 



Drawing on the Screen Chapter 2 

BOOL ExtTextOut (HOC hdc, int X, int Y, UINT fuOptions, 
const RECT *lprc, LPCTSTR lpString, 
UINT cbCount, const int *lpOx); 

The ExtTextOut function has a few advantages over DrawText in this situ
ation. First, ExtTextOut tends to be faster for drawing single lines of text. Sec
ond, instead of formatting the text inside a rectangle, x and y starting coordinates 
are passed, specifying the upper left corner of the rectangle where the text will 
be drawn. The rect parameter that's passed is used as a clipping rectangle or, if 
the background mode is opaque, the area where the background color is drawn. 
This rectangle parameter can be NULL if you don't want any clipping or opaquing. 
The next two parameters are the text and the character count. The last parame
ter, ExtTextOut, allows an application to specify the horizontal distance between 
adjacent character cells. In our case, this parameter is set to NULL also, which 
results in the default separation between characters. 

Windows CE differs from other versions of Windows in having only these 
two text drawing functions for displaying text. Most of what you can do with 
the other text functions typically used in other versions of Windows, such as 
TextOut and TabbedTextOut, can be emulated by using either DrawText or 
ExtTextOut. This is one of the areas in which Windows CE has broken with 
earlier versions of Windows, sacrificing backward compatibility to achieve a 
smaller operating system. 

After displaying the text, the function computes the height of the line of 
text just drawn using the combination of tmHeight and tmExterna!Leading that 
was provided in the passed TEXTMETRIC structure. The new font is then dese
lected using a second call to SelectObject, this time passing the handle to the font 
that was the original selected font. The new font is then deleted using DeleteObject. 
Finally, the callback function returns a nonzero value to indicate to Windows that 
it is okay to make another call to the enumerate callback. 

Figure 2-5 shows the FontListing window. Notice that the font names are 
displayed in that font and that each font has a specific set of available sizes. 

Fanily: Times New Roman 

Times New Roman Point:26 
Family: Symbol 

L:wµPoA. IIotv't':29 
Family: Arial 

Arial Point:26 
Family: courier New 

.Co ri.ex l\TPw J2.o..i.J::i...t. • .2.:1. 

Figure 2-5 The Font Listing window shows some of the available fonts for a Handheld PC. 

61 



Part I Windows Programming Basics 

Unfinished Business 
If you look closely at Figure 2-5, you'll notice a problem with the display. The 
list of fonts just runs off the bottom edge of the FontList window. At this point 
in a book covering the desktop versions of Windows, the author might add a 
window style flag for a vertical scroll bar and a small amount of code, and magi
cally, the program would have a scrollable window. But if you do that to a 
Windows CE main window, you end up with the look shown in Figure 2-6. 

Family: Times New Roman 

Times New Roman Point:26 
Family,' Symbol 

I:'VµPo/.v I1otv't:29 
Family: Arial 

Arial Point:26 
Family: Courier New 

Figure 2-6 The Font Listing window with a scroll bar attached to the main window 

Notice how the scroll bar extends past the right side of the command bar 
up to the top of the window. The scroll bar should stop below the command 
bar, and the command bar should extend to the right edge of the window. The 
problem is that the command bar lies in the client area of the window, and the 
default scroll bar style provided by all Windows operating systems places the scroll 
bar outside the client area, in the nonclient space along the edge of the window. 
The solution to this problem involves creating a child window inside our main 
window and letting it do the scrolling. But since I'll provide a complete expla
nation of child windows in Chapter 4, I'll hold off describing how to properly 
implement a scroll bar until then. 

Bitmaps 

62 

Bitmaps are graphical objects that can be used to create, draw, manipulate, and 
retrieve images in a device context. Bitmaps are everywhere within Windows, 
from the little Windows logo on the Start button to the Close button on the 
command bar. Think of a bitmap as a picture composed of an array of pixels that 
can be painted onto the screen. Like any picture, a bitmap has height and width. 
It also has a method for determining what color or colors it uses. Finally, a bit
map has an array of bits that describe each pixel in the bitmap. 

Historically, bitmaps under Windows have been divided into two types; 
device dependent bitmaps (DDBs) and device independent bitmaps (DIBs). DDBs 
are bitmaps that are tied to the characteristics of a specific DC and can't easily 



Drawing on the Screen Chapter 2 

be rendered on DCs with different characteristics. DIBs, on the other hand, are 
independent of any device and therefore must carry around enough information 
so that they can be rendered accurately on any device. 

Windows CE contains many of the bitmap functions available in other ver
sions of Windows. The differences include a new four-color bitmap format not 
supported anywhere but on Windows CE and a different method for manipu
lating DIBs. 

Device Dependent Bitmaps 
A device dependent bitmap can be created with this function: 

HBITMAP CreateBitmap (int nWidth, int nHeight, UINT cPlanes, 
UINT cBitsPerPel, CONST VOID *lpvBits); 

The n Width and nHeight parameters indicate the dimensions of the bitmap. 
The cPlanes parameter is a historical artifact from the days when display hard
ware implemented each color within a pixel in a different hardware plane. For 
Windows CE, this parameter must be set to 1. The cBitspPerPel parameter indi
cates the number of bits used to describe each pixel. The number of colors is 2 
to the power of the cBitspPerPel parameter. Under Windows CE, the allowable 
values are 1, 2, 4, 8, 16, and 24. As I said, the four-color bitmap is unique to 
Windows CE and isn't supported under other Windows platforms, including the 
Windows CE emulator that runs on top of Windows 2000 and Windows XP. 

The final parameter is a pointer to the bits of the bitmap. Under Windows 
CE, the bits are always arranged in a packed pixel format; that is, each pixel is 
stored as a series of bits within a byte, with the next pixel starting immediately 
after the first. The first pixel in the array of bits is the pixel located in the upper 
left corner of the bitmap. The bits continue across the top row of the bitmap, 
then across the second row, and so on. Each row of the bitmap must be double
word ( 4-byte) aligned. If any pad bytes are required at the end of a row to align 
the start of the next row, they should be set to 0. Figure 2-7 illustrates this scheme, 
showing a 126-by-64-pixel bitmap with 8 bits per pixel. 

The function 

HBITMAP CreateCompatibleBitmap (HOC hdc, int nWidth, int nHeight); 

creates a bitmap whose format is compatible with the device context passed to 
the function. So if the device context is a four-color DC, the resulting bitmap is 
a four-color bitmap as well. This function comes in handy when you're manipu
lating images on the screen because it makes it easy to produce a blank bitmap 
that's directly color compatible with the screen. 

63 



Part I Windows Programming Basics 

Byte 
Offset Row 0 125 

0 0 
128 1 
256 2 

7936 63 

Figure 2-7 Layout of bytes within a bitmap 

Device Independent Bitmaps 
The fundamental difference between DIBs and their device dependent cousins 
is that the image stored in a DIB comes with its own color information. Almost 
every bitmap file since Windows 3.0, which used the files with the BMP exten
sion, contains information that can be directly matched with the information 
needed to create a DIB in Windows. 

In the early days of Windows, it was a rite of passage for a programmer to 
write a routine that manually read a DIB file and converted the data to a bitmap. 
These days, the same arduous task can be accomplished with the following 
function, unique to Windows CE: 

HBITMAP SHLoadDIBitmap (LPCTSTR szFileName); 

It loads a bitmap directly from a bitmap file and provides a handle to the bit
map. In Windows XP, Windows 2000, and Windows Me, the same process can 
be accomplished with Loadlmage using the LR_LOADFROMFILE flag, but this 
flag isn't supported under the Windows CE implementation of Loadlmage. 

DIB Sections 

64 

While Windows CE makes it easy to load a bitmap file, sometimes you must read 
what is on the screen, manipulate it, and redraw the image back to the screen. 
This is another case in which D1Rs are better than DDBs. While the bits of a device 
dependent bitmap are obtainable, the format of the buffer is directly dependent 



Drawing on the Screen Chapter 2 

on the screen format. By using a DIB, or more precisely, something called a DIB 
section, your program can read the bitmap into a buffer that has a predefined 
format without worrying about the format of the display device. 

While Windows has a number of DIB creation functions that have been added 
over the years since Windows 3.0, Windows CE carries over only one DIB section 
function from Windows XP, Windows 2000, and Windows Me. Here it is: 

HBITMAP CreateDIBSection (HOC hdc, canst BITMAPINFO *pbmi, 
UINT iUsage, void •ppvBits, 
HANDLE hSection, DWORD dwOffset); 

Because they're a rather late addition to the Win32 API, DIB sections might 
be new to Windows programmers. DIB sections were invented to improve the 
performance of applications on Windows NT that directly manipulated bitmaps. 
In short, a DIB section allows a programmer to select a DIB in a device context 
while still maintaining direct access to the bits that compose the bitmap. To 
achieve this, a DIB section associates a memory DC with a buffer that also con
tains the bits of that DC. Because the image is mapped to a DC, other graphics 
calls can be made to modify the image. At the same time, the raw bits of the DC, 
in DIB format, are available for direct manipulation. While the improved perfor
mance is all well and good on Windows NT, the relevance to the Windows CE 
programmer is the ease with which an application can work with bitmaps and 
manipulate their contents. 

This call's parameters lead with the pointer to a BITMAPINFO structure. The 
structure describes the layout and color composition of a device-independent 
bitmap and is a combination of a BITMAPINFOHEADER structure and an array 
of RGBQUAD values that represent the palette of colors used by the bitmap. 

The BITMAPINFOHEADER structure is defined as the following: 

typedef struct tagBITMAPINFOHEADER{ 
DWORD biSize; 
LONG biWidth; 
LONG biHeight; 
WORD biPlanes; 
WORD biBitCount; 
DWORD biCompression; 
DWORD biSizelmage; 
LONG biXPelsPerMeter; 
LONG biYPelsPerMeter; 
DWORD biClrUsed; 
DWORD biClrlmportant; 

BITMAPINFOHEADER; 

65 



Part I Windows Programming Basics 

66 

As you can see, this structure contains much more information than just the 
parameters passed to CreateBitmap. The first field is the size of the structure and 
must be filled in by the calling program to differentiate this structure from the 
similar BITMAPCOREINFOHEADER structure that's a holdover from the OS/2 
presentation manager. The biWidth, biHeight, biPlanes, and biBitCount fields are 
similar to their like-named parameters to the CreateBitmap call-with one ex
ception. The sign of the biHeight field specifies the organization of the bit array. 
If biHeight is negative, the bit array is organized in a top-down format, as is 
CreateBitmap. If biHeight is positive, the array is organized in a bottom-up for
mat, in which the bottom row of the bitmap is defined by the first bits in the array. 
As with the CreateBitmap call, the biPlanes field must be set to 1. 

The biCompression field specifies the compression method used in the bit 
array. Under Windows CE, the allowable flags for this field are BI_RGB, indicating 
that the buffer isn't compressed, and BI_BITFIELDS, indicating that the pixel for
mat is specified in the first three entries in the color table. The biSizelmage pa
rameter is used to indicate the size of the bit array; when used with BI_RGB, 
however, the biSizelmage field can be set to 0, which means that the array size is 
computed using the dimensions and bits per pixel information provided in the 
BITMAPINFOHEADER structure. 

The biXPelsPerMeter and biYPelsPerMeter fields provide information to 
accurately scale the image. For CreateDIBSection, however, these parameters can 
be set to 0. The biClrUsed parameter specifies the number of colors in the pal
ette that are actually used. In a 256-color image, the palette will have 256 en
tries, but the bitmap itself might need only 100 or so distinct colors. This field 
helps the palette manager, the part of Windows that manages color matching, 
to match the colors in the system palette with the colors required by the bitmap. 
The biClr!mportant field further defines the colors that are really required as 
opposed to those that are used. For most color bitmaps, these two fields are set 
to 0, indicating that all colors are used and that all colors are important. 

As I mentioned above, an array of RGBQUAD structures immediately fol
lows the BITMAPINFOHEADER structure. The RGBQUAD structure is defined 
as follows: 

typedef struct tagRGBQUAD { /* rgbq *I 

BYTE rgbBlue; 
BYTE rgbGreen; 
BYTE rgbRed; 
BYTE rgbReserved; 

RGBQUAD; 

This structure allovvs for 256 shades of red, green, and blue_ WhHe almost 
any shade of color can be created using this structure, the color that's actually 
rendered on the device will, of course, be limited by what the device can display. 



Drawing on the Screen Chapter 2 

The array of RGBQUAD structures, taken as a whole, describe the palette 
of the DIB. The palette is the list of colors in the bitmap. If a bitmap has a pal
ette, each entry in the bitmap array contains not colors, but an index into the 
palette that contains the color for that pixel. While redundant on a monochrome 
bitmap, the palette is quite important when rendering color bitmaps on color 
devices. For example, a 256-color bitmap has one byte for each pixel, but that 
byte points to a 24-bit value that represents equal parts red, green, and blue colors. 
So while a 256-color bitmap can contain only 256 distinct colors, each of those 
colors can be one of 16 million colors rendered using the 24-bit palette entry. 
For convenience in a 32-bit world, each palette entry, while containing only 24 
bits of color information, is padded out to a 32-bit-wide entry-hence the name 
of the data type: RGBQUAD. 

Of the remaining four CreateDIBSection parameters, only two are used 
under Windows CE. The iUsage parameter indicates how the colors in the palette 
are represented. If the parameter is DIB_RGB_COLORS, the bits in the bitmap 
contain the full RGB color information for each pixel. If the parameter is 
DIB_PAL_COLORS, the bitmap pixels contain indexes into the palette currently 
selected in the DC. The ppvBits parameter is a pointer to a variable that receives 
the pointer to the bitmap bits that compose the bitmap image. The final two 
parameters, hSection and dwO.ffset, aren't supported under Windows CE and must 
be set to 0. In other versions of Windows, they allow the bitmap bits to be speci
fied by a memory mapped file. While Windows CE does support memory mapped 
files, they aren't supported by CreateDIBSection. 

Drawing Bitmaps 
Creating and loading bitmaps is all well and good, but there's not much point 
to it unless the bitmaps you create can be rendered on the screen. Drawing a 
bitmap isn't as straightforward as you might think. Before a bitmap can be drawn 
in a screen DC, it must be selected into a DC and then copied over to the screen 
device context. While this process sounds convoluted, there is rhyme to this 
reason. 

The process of selecting a bitmap into a device context is similar to select
ing a logical font into a device context; it converts the ideal to the actual. Just as 
Windows finds the best possible match to a requested font, the bitmap selection 
process must match the available colors of the device to the colors requested by 
a bitmap. Only after this is done can the bitmap be rendered on the screen. To 
help with this intermediate step, Windows provides a shadow type of DC, a 
memory device context. 

To create a memory device context, use this function: 

HOC CreateCompatibleOC (HOC hdc); 

67 



Part I Windows Programming Basics 

68 

This function creates a memory DC that's compatible with the current screen 
DC. Once created, the source bitmap is selected into this memory DC using the 
same SelectObject function you used to select a logical font. Finally, the bitmap 
is copied from the memory DC to the screen DC using one of the blit functions, 
BitBlt or StretchBlt. 

The workhorse of bitmap functions is the following: 

BOOL BitBlt (HOC hdcDest, int nXDest, int nYDest, int nWidth, 
int nHeight, HOC hdcSrc, int nXSrc, int nYSrc, 
DWORD dwRop); 

Fundamentally, the BitBlt function, pronounced bit blit, is just a fancy 
memcopy function, but since it operates on device contexts, not memory, it's 
something far more special. The first parameter is a handle to the destination 
device context-the DC to which the bitmap is to be copied. The next four 
parameters specify the location and size of the destination rectangle where the 
bitmap is to end up. The next three parameters specify the handle to the source 
device context and the location within that DC of the upper left corner of the 
source image. 

The final parameter, dwRop, specifies how the image is to be copied from 
the source to the destination device contexts. The ROP code defines how the 
source bitmap and the current destination are combined to produce the final 
image. The ROP code for a simple copy of the source image is SRCCOPY. The 
ROP code for combining the source image with the current destination is SRCPAINT. 
Copying a logically inverted image, essentially a negative of the source image, 
is accomplished using SRCINVERT. Some ROP codes also combine the currently 
selected brush into the equation to compute the resulting image. A large num
ber of ROP codes are available, too many for me to cover here. For a complete 
list, check out the Windows CE programming documentation. 

The following code fragment sums up how to paint a bitmap: 

JI Create a DC that matches the device. 
hdcMem = CreateCompatibleDC (hdc); 

II Select the bitmap into the compatible device context. 
hOldSel = SelectObject (hdcMem, hBitmap); 

II Get the bitmap dimensions from the bitmap. 
GetObject (hBitmap, sizeof (BITMAP), &bmp); 
JI Copy the bitmap image from the memory DC to the screen DC. 
BitBlt (hdc, rect.left, rect.top, bmp.bmWidth, bmp.bmHeight. 

hdcMem, 0, 0, SRCCOPY); 
II Restore original bitmap selection and de5Lroy the memory 

SelectObject (hdcMem, hOldSel ); 
DeleteDC (hdcMem); 



Drawing on the Screen Chapter 2 

The memory device context is created, and the bitmap to be painted is 
selected into that DC. Since you might not have stored the dimensions of the 
bitmap to be painted, the routine makes a call to GetObject. GetObject returns 
information about a graphics object, in this case, a bitmap. Information about 
fonts and other graphic objects can be queried using this useful function. Next, 
BitBlt is used to copy the bitmap into the screen DC. To clean up, the bitmap 
is deselected from the memory device context and the memory DC is deleted 
using DeleteDC. Don't confuse DeleteDC with ReleaseDC, which is used to free 
a display DC. DeleteDC should be paired only with CreateCompatibleDC, and 
ReleaseDC should be paired only with GetDC or GetWindowDC. 

Instead of merely copying the bitmap, stretch or shrink it using this function: 

BOOL StretchBlt (HOC hdcDest, int nXOriginDest, int nYOriginDest, 
int nWidthDest, int nHeightDest, HOC hdcSrc, 
int nXOriginSrc, int nYOriginSrc, int nWidthSrc, 
int nHeightSrc, DWORD dwRop); 

The parameters in StretchBlt are the same as those used in BitBlt, with the 
exception that now the width and height of the source image can be specified. 
Here again, the ROP codes specify how the source and destination are combined 
to produce the final image. 

Windows CE also has another bitmap function. It is 

BOOL Transparentimage (HOC hdcDest, LONG DstX, LONG DstY, LONG DstCx, 
LONG DstCy, HANDLE hSrc, LONG SrcX, LONG SrcY, 
LONG SrcCx, LONG SrcCy, COLORREF TransparentColor); 

This function is similar to StretchBlt, with two very important exceptions. First, 
you can specify a color in the bitmap to be the transparent color. When the bitmap 
is copied to the destination, the pixels in the bitmap that are the transparent color 
are not copied. The second difference is that the hSrc parameter can be either 
a device context or a handle to a bitmap, which allows you to bypass the require
ment to select the source image into a device context before rendering it on the 
screen. Transparentlmage is essentially the same function as Windows 2000's 
TransparentBlt function with the exception that TransparentBlt can't directly use 
a bitmap as the source. 

As in other versions of Windows, Windows CE supports two other blit func
tions: PatBlt and MaskBlt. The PatBlt function combines the currently selected 
brush with the current image in the destination DC to produce the resulting image. 
I cover brushes later in this chapter. The MaskBlt function is similar to BitBlt but 
encompasses a masking image that provides the ability to draw only a portion 
of the source image onto the destination DC. 

69 



Part I Windows Programming Basics 

Lines and Shapes 

Lines 

70 

One of the areas in which Windows CE provides substantially less functionality 
than other versions of Windows is in the primitive line-drawing and shape-drawing 
functions. Gone are the Chord, Arc, and Pie functions that created complex cir
cular shapes. Gone too is the concept of current point. Other versions of Windows 
track a current point, which is then used as the starting point for the next draw
ing command. So drawing a series of connected lines and curves by calling MoveTo 
to move the current point followed by calls to LineTo, ArcTo, PolyBezierTo, and 
so forth is no longer possible. But even with the loss of a number of graphic 
functions, Windows CE still provides the essential functions necessary to draw 
lines and shapes. 

Drawing one or more lines is as simple as a call to 

BOOL Polyline (HOC hdc, canst POINT *lppt, int cPoints); 

The second parameter is a pointer to an array of POINT structures that are 
defined as the following: 

typedef struct tagPOINT { 
LONG x; 
LONG y; 

POINT; 

Each x and y combination describes a pixel from the upper left corner of 
the screen. The third parameter is the number of point structures in the array. 
So to draw a line from (0, O) to (50, 100), the code would look like this: 

POINTS pts[2]; 

pts[0].x = 0; 
pts[0].y = 0; 
pts[l].x = 50; 
pts[l].y = 100; 
Polyline (hdc, &pts. 2); 

Just as in the early text examples, this code fragment makes a number of 
assumptions about the default state of the device context. For example, just what 
does the line drawn between (0, 0) and (50, 100) look like? What is its width and 
its color, and is it a solid line? All versions of Windows, including Windows CE, 
allow these parameters to be specified. 

The tool for specifying the appearance of lines and the outHne of shapes 
is called, appropriately enough, a pen. A pen is another GDI object and, like the 



Drawing on the Screen Chapter 2 

others described in this chapter, is created, selected into a device context, used, 
deselected, and then destroyed. Among other stock GDI objects, stock pens can 
be retrieved using the following code: 

HGDIDBJ GetStockObject (int fnObject); 

All versions of Windows provide three stock pens, each 1 pixel wide. The 
stock pens come in 3 colors: white, black, and null. When you use GetStockObject, 
the call to retrieve one of those pens employs the parameters WHITE_PEN, 
BLACK_PEN, and NULL_PEN respectively. Unlike standard graphic objects cre
ated by applications, stock objects should never be deleted by the application. 
Instead, the application should simply deselect the pen from the device context 
when it's no longer needed. 

To create a custom pen under Windows, two functions are available. The 
first is this: 

HPEN CreatePen ( int fnPenStyle, int nWidth, COLORREF crColor); 

The fnPenStyle parameter specifies the appearance of the line to be drawn. For 
example, the PS_DASH flag can be used to create a dashed line. Windows CE 
supports only PS_SOLID, PS_DASH, and PS_NULL style flags. The nWidth pa
rameter specifies the width of the pen. Finally, the crColor parameter specifies 
the color of the pen. The crColor parameter is typed as COLORREF, which un
der Windows CE 2.0 is an RGB value. The RGB macro is as follows: 

COLORREF RGB (BYTE bRed, BYTE bGreen, BYTE bBlue); 

So to create a solid red pen, the code would look like this: 

hPen = CreatePen (PS_SOLID, 1, RGB (0xff, 0, 0)); 

The other pen creation function is the following: 

HPEN CreatePenindirect (const LOGPEN *lplgpn); 

where the logical pen structure LOGPEN is defined as 

typedef struct tagLOGPEN 
UINT lopnStyle; 
POINT lopnWidth; 
COLORREF lopnColor; 

LOGPEN; 

CreatePenlndirect provides the same parameters to Windows, in a different form. 
To create the same 1-pixel-wide red pen with CreatePenlndirect, the code would 
look like this: 

LOGPEN lp; 
HPEN hPen; 

(continued) 

71 



Part I Windows Programming Basics 

Shapes 

72 

lp.lopnStyle = PS_SOLID; 
lp.lopnWidth.x = l; 
lp.lopnWidth.y = l; 
lp.lopnColor = RGB (0xff, 0, 0); 

hPen = CreatePenindirect (&lp); 

Windows CE devices don't support complex pens such as wide (more than 
one pixel wide) dashed lines. To determine what's supported, our old friend 
GetDeviceCaps comes into play, taking LINECAPS as the second parameter. Refer 
to the Windows CE documentation for the different flags returned by this call. 

Lines are useful but Windows also provides functions to draw shapes, both filled 
and unfilled. Here Windows CE does a good job supporting most of the func
tions familiar to Windows programmers. The Rectangle, RoundRect, Ellipse, and 
Polygon functions are all supported. 

Brushes 
Before I can talk about shapes such as rectangles and ellipses, I need to describe 
another GDI object that I've mentioned only briefly before now, called a brush. 
A brush is a bitmap, typically 8 by 8 pixels, used to fill shapes. It's also used by 
Windows to fill the background of a client window. Windows CE provides a 
number of stock brushes and also the ability to create a brush from an applica
tion-defined pattern. A number of stock brushes, each a solid color, can be re
trieved using GetStockObject. Among the brushes available is one for each of the 
grays of a four-color grayscale display: white, light gray, dark gray, and black. 

To create solid color brushes, the function to call is the following: 

HBRUSH CreateSolidBrush (COLORREF crColor); 

The crColor parameter specifies the color of the brush. The color is speci
fied using the RGB macro. 

To create custom pattern brushes, Windows CE supports the Win32 function: 

HBRUSH CreateDIBPatternBrushPt (canst void *lpPackedDIB, 
UINT iUsage); 

The first parameter to this function is a pointer to a DIB in packed format. 
This means that the pointer points to a buff er that contains a BITMAPINFO struc
ture immediately followed by the bits in the bitmap. Remember that a 
BITMAPINFO structure is actually a BITMAPINFOHEADER structure followed by 
a palette in RGBQUAD format, so the buffer contains everything necessary to 
create a DIB-that is, bitmap information, a palette, and the bits to the bitmap. 
If the second parameter is set to DIB_RGB_COLORS, the palette specified con-



Drawing on the Screen Chapter 2 

tains RGBQUAD values in each entry. For 8-bits-per-pixel bitmaps, the comple
mentary flag DIB_PAL_COLORS can be specified, but Windows CE ignores the 
bitmap's color table. 

The CreateDIBPatternBrushPt function is more important under Windows 
CE because the hatched brushes, supplied under other versions of Windows by 
the CreateHatchBrush function, aren't supported under Windows CE. Hatched 
brushes are brushes composed of any combination of horizontal, vertical, or 
diagonal lines. Ironically, they're particularly useful with grayscale displays be
cause you can use them to accentuate different areas of a chart with differ
ent hatch patterns. You can reproduce these brushes, however, by using 
CreateDIBPatternBrushPt and the proper bitmap patterns. The Shapes code 
example, later in the chapter, demonstrates a method for creating hatched brushes 
under Windows CE. 

By default, the brush origin will be in the upper left corner of the window. 
This isn't always what you want. Take, for example, a bar graph where the bar 
filled with a hatched brush fills a rectangle from (100, 100) to (125, 220). Since 
this rectangle isn't divisible by 8 (brushes typically being 8 by 8 pixels square), 
the upper left corner of the bar will be filled with a partial brush that might not 
look pleasing to the eye. 

To avoid this situation, you can move the origin of the brush so that each 
shape can be drawn with the brush aligned correctly in the corner of the shape 
to be filled. The function available for this remedy is the following: 

BOOL SetBrushOrgEx (HDC hdc, int nXOrg, int nYOrg, LPPOINT lppt); 

The nXOrg and nYOrg parameters allow the origin to be set between 0 and 7 
so that you can position the origin anywhere in the 8-by-8 space of the brush. 
The lppt parameter is filled with the previous origin of the brush so that you can 
restore the previous origin if necessary. 

Rectangles 
The rectangle function draws either a filled or a hollow rectangle; the function 
is defined as the following: 

BOOL Rectangle (HDC hdc, int nleftRect, int nTopRect, 
int nRightRect, int nBottomRect); 

The function uses the currently selected pen to draw the outline of the rectangle 
and the current brush to fill the interior. To draw a hollow rectangle, select the 
null brush into the device context before calling Rectangle. 

The actual pixels drawn for the border are important to understand. Say 
we're drawing a 5-by-7 rectangle at 0, 0. The function call would look like this: 

Rectangle (0, 0, 5, 7); 

73 



Part I Windows Programming Basics 

74 

Assuming that the selected pen was 1 pixel wide, the resulting rectangle 
would look like the one shown in Figure 2-8. 

0 1 2 3 4 5 6 
0 

2 
3 

4 

5 
6 
7 

8 

Figure 2-8 Magnified view of a rectangle drawn with the Rectangle function 

Notice how the right edge of the rectangle is actually drawn in column 4 
and that the bottom edge is drawn in row 6. This is standard Windows practice. 
The rectangle is drawn inside the right and bottom boundary specified for the 
Rectangle function. If the selected pen is wider than one pixel, the right and 
bottom edges are drawn with the pen centered on the bounding rectangle. (Other 
versions of Windows support the PS_INSIDEFRAME pen style that forces the 
rectangle to be drawn inside the frame regardless of the pen width.) 

Circles and Ellipses 
Circles and ellipses can be drawn with this function: 

BOOL Ellipse (HOC hdc, int nleftRect, int nTopRect, 
int nRightRect, int nBottomRect); 

The ellipse is drawn using the rectangle passed as a bounding rectangle, as shown 
in Figure 2-9. As with the Rectangle function, while the interior of the ellipse is 
filled with the current brush, the outline is drawn with the current pen. 

(nLeltRect, nTopRect) (nRightRect-1, nTopRect) 

(nLeltRect, nBottomRect-1) (nRightRect-i, nBottomReci-ij 

Figure 2-9 The ellipse is drawn within the bounding rectangle passed to the Ellipse 
function. 



Drawing on the Screen Chapter 2 

Round Rectangles 
The RoundRect function 

BOOL RoundRect (HOC hdc, int nleftRect, int nTopRect, 
int nRightRect, int nBottomRect, 
int nWidth, int nHeight); 

draws a rectangle with rounded corners. The roundedness of the corners is 
defined by the last two parameters that specify the width and height of the el
lipse used to round the corners, as shown in Figure 2-10. Specifying the ellipse 
height and width enables your program to draw identically symmetrical rounded 
corners. Shortening the ellipse height flattens out the sides of the rectangle, while 
shortening the width of the ellipse flattens the top and bottom of the rectangle. 

(nleftRect, nTopRect) 

nWidth 

(nRightRect, nBottomRect) 

Figure 2-10 The height and width of the ellipse define the round corners of the 
rectangle drawn by RoundRect. 

Polygons 
Finally, the Polygon function 

BOOL Polygon (HOC hdc, const POINT *lpPoints, int nCount); 

draws a many-sided shape. The second parameter is a pointer to an array of point 
structures defining the points that delineate the polygon. The resulting shape has 
one more side than the number of points because the function automatically 
completes the last line of the polygon by connecting the last point with the first. 

The Shapes Example Program 
The Shapes program, shown in Figure 2-11, demonstrates a number of these 
functions. In Shapes, four figures are drawn, each filled with a different brush. 

75 



Part I Windows Programming Basics 

Figure 2-11 The Shapes program 

76 



Drawing on the Screen Chapter 2 

int InitApp (HINSTANCE); 
HWND Initlnstance CHINSTANCE, LPWSTR, int); 
int Termlnstance CHINSTANCE, int); 

II Window procedures 
LRESUL T CALLBACK Mai nWndProc C HWND, UINT, WPARAM, LPARAM~; 

II Message handlers 
LRESULT DoCreateMain.(HWNO, UINT. WPARAM, LPARAM); 
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoDestroy~airr CHWND. UINT; WPARAM~ :LPMA!~D 

Shapes.c 
//=====,.== .. ==.,.;--=~=:=,~ .. ~~==:--===;;;=,;,~,,,~~:-~-:~==:"';:~==~==="'="''""'""""'"'"':-:-
1 t Shapes- Brush 'and shapes demo. for Winu/)W~':CE- .·. 
II 

(continued) 

77 



Part I Windows Programming Basics 

Figure 2-11 (continued) 

78 



Drawing on the Screen Chapter 2 

return 0; 
} 

11----------------------------------------------------------------------
11 Initinstance - Instance initialization 
II 
HWND Initinstance CHINSTANCE h!nstance, LPWSTR lpCmdline, int nCmdShow){ 

HWND hWnd; 

II Save program instance handle in global variable. 
hinst = hinstance; 

II Create main window. 
hWnd = createWi ndow ( szAppNanie; .·· · 

TEXT ( ''Sbape.s•·). 
ws_VISIBLE/ 
cw_usEOEFAGtr; 
CW_USEDEFAULT ,. 

· cw usfoi~..\ii[r···•··. 
.,.... ...... : ..... ;' 

·. cw::.us·EDE'.F~1fL t,. 
... :·~~Ji~~< ;; •.. · ..... . 

'NUL:l.·F~'. _,··-:·· . .,, ;;,'~;--· 

tirns·f~iie~;.··· 
,_, ~·tAi;tj~·:,'.":;_ ·:~ 

II Window class 
II Window title 
11 Style flags 
11 x position 
II y position 
II Initial width 
11 lnitlaT:h.eight · 

.·· 1/ Pat'ent · 
I I •Me~u; 'must be n~ll 

·· /1 Applicatidn insta't\ce . 
I I Pofoter to create 
II parameters 

••·• }/,~tUrn f~'il.··code.·Jf. l(j:n4~V1<116~·created .• 
.. ,. tf•tJ.tiW1ndow(hWnd)) r€tu~n.a;·> . . , 

"' ~':,. '~ . ' ,~" . 

,;:: 1F·~t..ind~rd··i~hc>w. and.·u~dafe.call~·.·· 
.sh;l)\qi./tridow (hWnd; nCmcJShoW) :: . 

·. 1JJ><laleW1nd<>w ChWndl; ·· · · 
·. ·•· r.etufn ·• t\Wnd ; ·· · 

·.·l' .. ,·:•.• 
. //·~~"'~"i-~:.;,.~•-~~--c···--"~-
. {i;Teriliin~tance · c Program cl eallup , .. 
.]/• 

nDefRC) { 

••· zg··-~~stijetta~·iii{ng .J,.rocectur~s•. for ~a:t'(fWinctow 
Fl 

window 

(continued) 

79 



Part I Windows Programming Basics 

Figure 2-11 (continued) 

80 



Drawing on the Screen Chapter 2 

brbmp.bmi .bi Height = B: 
brbmp.bmi.biPlanes = 1: 
brbmp.bmi .biBitCount = 1; 
brbmp.bmi .biClrUsed = 2: 
brbmp.bmi.biClrimportant = 2; 

II Initialize the palette of the bitmap. 
brbmp.dwPal[0] PALETTERGB(0xff,0xff,0xff); 
brbmp.dwPal[l] = PALETTERGBCCBYTE)((clrref >> 16) & 0xff), 

(BYTE)((clrref >> 8) & 0xff), 
CBYTE)(clrref & 0xffl~; 

II Write the hatch data to the bitmap. 
pBytes = <BYTE +)&dwBits[fnStyle]; 
for (i = 0; i < 8; i++) 

brbmp.bBtts[i*4] = *PBytes++; 

II Return th'e handle of the brush created. 
return CreatemBP:atte.rnBrushPt C&brbmp, ors..:RGB..:cotoRS>: 

' :,·, .. ·: _. .. · .. ;., .. :.:.,.;. ,·,-.' . . ....... · ..... ' 

·1. . ..... ··.···. . .. . .. ·· .. 
/'/-. ·.::. "-. - cc - - ~:·-·····--·~>•:.:~.~ 

If •ooPatnt~ain····- Process WM.:.PAINT message._1'or•:winqo~. 
ti 
lRESULT ooPaintMain (!iWND;llWnd, UINT wMsg, 

· .... · .. ·· ·LPAR~('l lparam) { 

RECT·rect; 
tiP(Lhdc: 
POltff ptArray{j)J; > 

HBRJJSH hBr;. h0ld8r;. 
TCHAH szText[128J; 

If Adj 1.rst tbe size. of the client rect to take into account 
ti the command.bar height. 
GeWJ ientRect chwn:d. &rect}: 

: r_eri-b!tap .:r==•·_comma~dlr~l'~H.ef;Sht 
' ' ~, ~· , 

s .. ··•· ._hq~·•4aeginPM.tit. <hwlld; ··&ii•s): 

H tiraw ellipse. .··... ··•·.·· 
hBr "' GetStoc~OIJJ~ct (.DKGRAY:..BRUSH); 

· h()TdBr ~ S~lifotOb.fect (tide; hBr): 
· El1Jpse '(t_ldC,· 1~. • 50.·<90•, 130); 
Se1 e·c:i:O.bjel>f (:h~¢: ~(}1.dsr): 

' .. o,. ,._. ..... 

· 11. tfra-w tounq r~~t!11g1~~ 
hlir ,,; ii~tstCickObje<;:t (LTGRAY_BRUSH); 

(continued) 

81 



Part I Windows Programming Basics 

Figure 2-11 (continued) 

82 



Drawing on the Screen Chapter 2 

In Shapes, OnPaintMain draws the four figures using the different func
tions discussed earlier. For each of the shapes, a different brush is created, se
lected into the device context, and, after the shape has been drawn, deselected 
from the DC. The first three shapes are filled with solid grayscale shades. These 
solid brushes are loaded with the GetStockObject function. The final shape is 
filled with a brush created with the CreateDIBPatternBrushPt. The creation of 
this brush is segregated into a function called MyCreateHatchBrush that mim
ics the CreateHatchBrush function not available under Windows CE. To cre
ate the hatched brushes, a black-and-white bitmap is built by filling in a bitmap 
structure and setting the bits to form the hatch patterns. The bitmap itself is the 
8-by-8 bitmap specified by CreateDIBPatternBrushPt. Since the bitmap is mono
chrome, its total size, including the palette and header, is only around 100 bytes. 
Notice, however, that since each scan line of a bitmap must be double-word 
aligned, the last three bytes of each one-byte scan line are left unused. 

Finally the program completes the painting by writing two lines of text into 
the lower rectangle. The text further demonstrates the difference between the 
opaque and transparent drawing modes of the system. In this case, the opaque 
mode of drawing the text might be a better match for the situation because the 
hatched lines tend to obscure letters drawn in transparent mode. A view of the 
Shapes window is shown in Figure 2-12. 

IQ] Shapes 3: 36p 
~ . . ~ ~ 

3 •• 8 

0 
.... ·.·;.·.·.·.·:-:.···,.·.· .·,· .... ·">x.,:-:·>;<·:·:. :·:. > 

:.:·: <·: < ·:::::::: :·:-~1~~>~<< .· ... ··.·. ·.··.·.· ..... ·.·.·.·.·.·.·.·. 
·:·.·.·:·.·.·.·.·.·:·.·.·.·.".·.·:·.·:·:·:·:·:·:·:·:· ........................... 

Figure 2-12 The Shapes example demonstrates drawing different filled shapes. 

To keep things simple, the Shapes example assumes that it's running on at 
least a 240-pixel-wide display. This allows Shapes to work equally well on a 
Handheld PC and a Pocket PC. I have barely scratched the surface of the abili
ties of the Windows CE GDI portion of GWE. The goal of this chapter wasn't to 
provide total presentation of all aspects of GDI programming. Instead, I wanted 
to demonstrate the methods available for basic drawing and text support under 

83 



Part I Windows Programming Basics 

84 

Windows CE .. In other chapters in the book, I extend some of the techniques 
touched on in this chapter. I talk about these new techniques and newly intro
duced functions at the point, generally, where I demonstrate how to use them 
in code. To further your knowledge, I recommend Programming Windows, 5th 
edition, by Charles Petzold (Microsoft Press, 1998), as the best source for learn
ing about the Windows GDI. 

Now that we've looked at output, it's time to turn our attention to the input 
side of the system-the keyboard and the touch panel. 



Input: Keyboard, 
Touch Screen, and Menus 

Traditionally, Microsoft Windows platforms have allowed users two methods 
of input: the keyboard and the mouse. Windows CE continues this tradition but 
on most systems replaces the mouse with a stylus and touch screen. Program
matically, the change is minor because the messages from the stylus are mapped 
to the mouse messages used in other versions of Windows. A more subtle but 
also more important change from versions of Windows that run on PCs is that 
a system running Windows CE might have either a tiny keyboard or no key
board at all. This makes the stylus input that much more important for Windows 
CE systems. 

The Keyboard 
While keyboards play a lesser role in Windows CE, they're still the best means 
of entering large volumes of information. Even on systems without a physical 
keyboard such as the Pocket PC, soft keyboards--controls that simulate keyboards 
on a touch screen-will most likely be available to the user. Given this, proper 
handling of keyboard input is critical to all but the most specialized of Windows 
CE applications. While I'll talk at length about soft keyboards later in the book, 
one point should be made here. To the application, input from a soft keyboard 
is no different from input from a traditional "hard" keyboard. 

85 



Part I Windows Programming Basics 

Input Focus 
Under Windows operating systems, only one window at a time has the input 
focus. The focus window receives all keyboard input until it loses focus to an
other window. The system assigns the keyboard focus using a number of rules, 
but most often the focus window is the current active window. The active win
dow, you'll recall, is the top-level window, the one with which the user is cur
rently interacting. With rare exceptions, the active window also sits at the top 
of the Z-order; that is, it's drawn on top of all other windows in the system. On 
an H/PC, the user can change the active window by pressing Alt-Esc to switch 
between programs or by tapping on another top-level window's button on the task 
bar. The focus window is either the active window or one of its child windows. 

Under Windows, a program can determine which window has the input 
focus by calling 

HWND GetFocus (void); 

The focus can be changed to another window by calling 

HWND SetFocus CHWND hWnd); 

Under Windows CE, the target window of SetFocus is limited. The window 
being given the focus by SetFocus must have been created by the thread calling 
SetFocus. An exception to this rule occurs if the window losing focus is related 
to the window gaining focus by a parent/ child or sibling relationship; in this case, 
the focus can be changed even if the windows were created by different threads. 

When a window loses focus, Windows sends a WM_KILLFOCUS message 
to that window informing it of its new state. The wParam parameter contains 
the handle of the window that will be gaining the focus. The window gaining 
focus receives a WM_SETFOCUS message. The wParam parameter of the 
WM_SETFOCUS message contains the handle of the window losing focus. 

Now for a bit of motherhood. Programs shouldn't change the focus win
dow without some input from the user. Otherwise, the user can easily become 
confused. A proper use of SetFocus is to set the input focus to a child window 
(more than likely a control) contained in the active window. In this case, a win
dow would respond to the WM_SETFOCUS message by calling SetFocus with the 
handle of a child window contained in the window to which the program wants 
to direct keyboard messages. 

Keyboard Messages 

86 

Windows CE practices the same keyboard message processing as its larger desktop 
relations with a few small exceptions, which I cover shortly. When a key is 
pressed, Windows sends a series of messages to the focus window, typically 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

beginning with a WM_KEYDOWN message. If the key pressed represents a char
acter such as a letter or number, Windows follows the WM_KEYDOWN with a 
WM_CHAR message. (Some keys, such as function keys and cursor keys, don't 
represent characters, so WM_CHAR messages aren't sent in response to those 
keys. For those keys, a program must interpret the WM_KEYDOWN message to 
know when the keys are pressed.) When the key is released, Windows sends a 
WM_KEYUP message. If a key is held down long enough for the auto-repeat 
feature to kick in, multiple WM_KEYDOWN and WM_ CHAR messages are sent for 
each auto-repeat until the key is released when the final WM_KEYUP message is 
sent. I used the word typically to qualify this process because if the Alt key is being 
held when another key is pressed, the messages I've just described are replaced 
by WM_SYSKEYDOWN, WM_SYSCHAR, and WM_SYSKEYUP messages. 

For all of these messages, the generic parameters wParam and !Param are 
used in mostly the same manner. For WM_KEYxx and WM_SYSKEYxx messages, 
the wParam value contains the virtual key value, indicating the key being pressed. 
All versions of Windows provide a level of indirection between the keyboard 
hardware and applications by translating the scan codes returned by the keyboard 
into virtual key values. You see a list of the VK_xx values and their associated 
keys in Figure 3-1. While the table of virtual keys is extensive, not all keys listed 
in the table are present on Windows CE devices. For example, function keys, a 
mainstay on PC keyboards and listed in the virtual key table, aren't present on 
most Windows CE keyboards. In fact, a number of keys on a PC keyboard are 
left off the space-constrained Windows CE keyboards. A short list of the keys not 
typically used on Windows CE devices is presented in Figure 3-2. This list is meant 
to inform you that these keys might not exist, not to indicate that the keys never 
exist on Windows CE keyboards. 

Figure 3-1 Virtual key values in relation to the keys on the keyboard. Not all keys will be 
on all keyboards. 

Constant Value Keyboard Equivalent 

VK_LBUTTON 01 Stylus tap 

VK_RBUTTON 02 Mouse right button§ 

VK_CANCEL 03 Control-break processing 

VK_RBUTTON 04 Mouse middle button§ 

05-07 Undefined 

VK_BACK 08 Backspace key 

VK_TAB 09 Tab key 

OA-OB Undefined 
(continued) 

87 



Part I Windows Programming Basics 

Figure 3-1 (continued) 

Constant Value Keyboard Equivalent 

VK_CLEAR QC Clear key 

Constant Value Keyboard Equivalent 

VK_RETURN OD Enter key 

OE-OF Undefined 

VK_SHIFT 10 Shift key 

VK_CONTROL 11 Ctrl key 

VK_MENU 12 Alt key 

VK_CAPITAL 14 Caps Lock key 

lS-19 Reserved for Kanji systems 

lA Undefined 

VK_ESCAPE 1B Escape key 

lC-lF Reserved for Kanji systems 

VK_SPACE 20 Space bar 

VK_PRIOR 21 Page Up key 

VK_NEXT 22 Page Down key 

VK_END 23 End key 

VK_HOME 24 Home key 

VK_LEFT 2S Left Arrow key 

VK_UP 26 Up Arrow key 

VK_RIGHT 27 Right Arrow key 

VK_DOWN 28 Down Arrow key 

VK_SELECT 29 Select key 

2A Original equipment manufacturer (OEM)-specific 

VK_EXECUTE 2B Execute key 

VK_SNAPSHOT 2C Print Screen key for Windows 3.0 and later 

VK_INSERT 2D Insert* 

VK_DELETE 2E Deletet 

VK_HELP 2F Help key 

VK_O-VK_9 30-39 0-9 keys 

3A-40 Undefined 

VK_A-VK_Z 41-SA A through Z keys 

VK_LWIN SB Windows key 

VK_RWIN SC Windows key* 

88 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

Constant Value Keyboard Equivalent 

VK_APPS SD 

5E-5F Undefined 

VK_NUMPAD0-9 60-69 Numeric keypad 0-9 keys 

VK_MUL TIP LY 6A Numeric keypad Asterisk (*) key 

VK_ADD 6B Numeric keypad Plus sign ( +) key 

VK_SEPARATOR 6c Separator key 

VK_SUBTRACT 6D Numeric keypad Minus sign(-) key 

VK_DECIMAL 6E Numeric keypad Period (.) key 

VK_DIVIDE 6F Numeric keypad Slash mark (/) key 

VK_Fl-VK_F24 70-87 Fl-F24* 

88-8F Unassigned 

VK_NUMLOCK 90 Num Lock* 

VK_SCROLL 91 Scroll Lock* 

92-9F Unassigned 

VK_LSHIFT AO Left Shiftt 

VK_RSHIFT Al Right Shiftt 

VK_LCONTROL A2 Left Controlt 

VK_RCONTROL A3 Right Controlt 

VK_LMENU A4 Left Altt 

VK_RMENU A5 Right Altt 

A6-B9 Unassigned 

VK_SEMICOLON BA ; key 

VK_EQUAL BB =key 

VK_COMMA BC , key 

VK_HYPHEN BD - key 

VK_PERIOD BE . key 

VK_SLASH BF I key 

VK_BACKQUOTE co ' key 

Cl-DA Unassigned***** 

VK_LBRACKET DB [key 

VK_BACKSLASH DC \key 

VK_RBRACKET DD ] key 

VK_APOSTROPHE DE 'key 
(continued) 

89 



Part I 

90 

Windows Programming Basics 

Figure 3-1 (continued) 

Constant Value 

VK_OFF DF 

E5 

E6 

E7-E8 

E9-F5 

VK_ATTN F6 

VK_CRSEL F7 

VK_EXSEL F8 

VK_EREOF F9 

VK_PLAY FA 

VK_ZOOM FB 

VK_NONAME FC 

VK_PAl FD 

VK_OEM_CLEAR FE 

Keyboard Equivalent 

Power button 

Unassigned 

OEM-specific 

Unassigned 

OEM-specific 

* Many Windows CE Systems don't have this key. 

t On some Windows CE systems, Delete is simulated with Shift-Backspace 

f These constants can be used only with GetKeyState and GetAsyncKeyState. 

§ Mouse right and middle buttons are defined but are relevant only on a Windows CE system equipped 
with a mouse. 

***** These codes are used by the application launch keys on systems that have them. 

For the WM_CHAR and WM_SYSCHAR messages, the wParam value con
tains the Unicode character represented by the key. Most often an application 
can simply look for WM_ CHAR messages and ignore WM_KEYDOWN and WM_ 
KEYUP. The WM_ CHAR message allows for a second level of abstraction so that 
the application doesn't have to worry about the up or down state of the keys and 
can concentrate on the characters being entered by means of the keyboard. 

The lParam value of any of these keyboard messages contains further in
formation about the pressed key. The format of the lParam parameter is shown 
in Figure 3-3. 

InsertDelete (Many Windows CE keyboards use Shift-Backspace for this function.) 
Num LockPause 
Print Screen 
Scroll Lock 
Function Keys 
Windows Context Menu key 

Figure 3-2 Keys on a PC keyboard that are rarely on a Windows CE keyboard 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

The low word, bits 0 through 15, contains the repeat count of the key. Often 
keys on a Windows CE device can be pressed faster than Windows CE can send 
messages to the focus application. In these cases, the repeat count contains the 
number of times the key has been pressed. Bit 29 contains the context flag. If 
the Alt key was being held down when the key was pressed, this bit will be set. 
Bit 30 contains the previous key state. If the key was previously down, this bit 
is set; otherwise, it's 0. Bit 30 can be used to determine whether the key mes
sage is the result of an auto-repeat sequence. Bit 31 indicates the transition state. 
If the key is in transition from down to up, Bit 31 is set. The Reserved field, bits 
16 through 28, is used in the desktop versions of Windows to indicate the key 
scan code. In almost all cases, Windows CE doesn't support this field. However, 
on some of the newer Windows CE platforms where scan codes are necessary, 
this field does contain the scan code. You shouldn't plan on the scan code field 
being available unless you know it's supported on your specific platform. 

flag, set to 1 if Alt key down 

Previous key state, set to 1 if key previously down 

Tr~r1.,iti1•n state, set to 1 if key is being released 

Figure 3-3 The layout of the /Param value for key messages 

One additional keyboard message, WM_DEADCHAR, can sometimes come 
into play. You send it when the pressed key represents a dead character, such 
as an umlaut, that you want to combine with a character to create a different 
character. In this case, the WM_DEADCHAR message can be used to prevent the 
text entry point (the caret) from advancing to the next space until the second 
key is pressed so that you can complete the combined character. 

The WM_DEADCHAR message has always been present under Windows, 
but under Windows CE it takes on a somewhat larger role. With the internation
alization of small consumer devices that run Windows CE, programmers should 
plan for, and if necessary use, the WM_DEADCHAR message that is so often 
necessary in foreign language systems. 

Keyboard Functions 
You'll find useful a few other keyboard state-determining functions for Windows 
applications. Among the keyboard functions, two are closely related but often 
confused: GetKeyState and GetAsyncKeyState. 

91 



Part I Windows Programming Basics 

92 

GetKeyState, prototyped as 

SHORT GetKeyState (int nVirtKey); 

returns the up/down state of the shift keys, Ctrl, Alt, and Shift, and indicates 
whether any of these keys is in a toggled state. If the keyboard has two keys with 
the same function-for example, two Shift keys, one on each side of the key
board-this function can also be used to differentiate which of them is being 
pressed. (Most keyboards have left and right Shift keys, and some include left 
and right Ctrl and Alt keys.) 

You pass to the function the virtual key code for the key being queried. If 
the high bit of the return value is set, the key is down. If the least significant bit 
of the return value is set, the key is in a toggled state; that is, it has been pressed 
an odd number of times since the system was started. The state returned is the 
state at the time the most recent message was read from the message queue, which 
isn't necessarily the real-time state of the key. An interesting aside: notice that 
the virtual key label for the Alt key is VK_MENU, which relates to the windows 
convention that the Alt-Shift key combination works in concert with other keys 
to access various menus from the keyboard. 

Note that the GetKeyState function is limited under Windows CE to query
ing the state of the shift keys. Under other versions of Windows, GetKeyState can 
determine the state of every key on the keyboard. 

To determine the real-time state of a key, use 

SHORT GetAsyncKeyState (int vKey); 

As with GetKeyState, you pass to this function the virtual key code for the 
key being queried. The GetAsyncKeyState function returns a value subtly differ
ent from the one returned by GetKeyState. As with the GetKeyState function, the 
high bit of the return value is set while the key is being pressed. However, the 
least significant bit is then set if the key was pressed after a previous call to 
GetAsyncKeyState. Like GetKeyState, the GetAsyncKeyState function can distin
guish the left and right Shift, Ctrl, and Alt keys. In addition, by passing the 
VK_LBUTTON virtual key value, GetAsyncKeyState determines whether the sty
lus is currently touching the screen. 

An application can simulate a keystroke using the keybd_event function: 

VOID keybd_event (BYTE bVk, BYTE bScan, DWORD dwFlags, 
DWORD dwExtralnfo); 

The first parameter is the virtual key code of the key to simulate. The bScan 
code should be set to NULL under Windows CE. The dwFlags parameter can have 
two possible flags: KEYEVENTF _KEYUP indicates LhaL Lhe call is to emulate a 
key up event, while KEYEVENTF _SILENT indicates that the simulated key press 
won't cause the standard keyboard click that you normally hear when you press 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

a key. So to fully simulate a key press, keybd_event should be called twice, once 
without KEYEVENTF _KEYUP to simulate a key down, and then once again, this 
time with KEYEVENTF _KEYUP to simulate the key release. When simulating a 
shift key, specify the specific left or right VK code, as in VK_LSHIFT or 
VF _RCONTROL. 

A function unique to Windows CE is 

BOOL PostKeybdMessage (HWND hwnd, UINT VKey, 
KEY_STATE_FLAGS KeyStateFlags, 
UINT cCharacters, UINT *pShiftStateBuffer, 
UINT *PCharacterBuffer ); 

This function sends a series of keys to the specified window. The hwnd parameter 
is the target window. This window must be owned by the calling thread. The 
VKey parameter should be zero. KeyStateFlags specifies the key state for all the 
keys being sent. The cCharacters parameter specifies the number of keys being 
sent. The pShiftStateBuffer parameter points to an array that contains a shift state 
for each key sent, while pCharacterBuffer points to the VK codes of the keys 
being sent. Unlike keybd_event, this function doesn't change the global state of 
the keyboard. 

One final keyboard function, Map VirtualKey, translates virtual key codes 
to characters. Map VirtualKey in Windows CE doesn't translate keyboard scan 
codes to and from virtual key codes, although it does so in other versions of 
Windows. The prototype of the function is the following: 

UINT MapVirtualKey (UINT uCode, UINT uMapType); 

Under Windows CE, the first parameter is the virtual key code to be trans
lated, while the second parameter, uMapType, indicates how the key code is trans
lated. Map VirtualKey is dependant on the keyboard device driver implementing 
a supporting function. Many OEMs don't implement this supporting function, so 
on their systems, Map VirtualKey fails. 

Testing for the Keyboard 
To determine whether a keyboard is even present in the system, you can call 

DWORD GetKeyboardStatus (VOID); 

This function returns the KBDI_KEYBOARD_PRESENT flag if a hardware keyboard 
is present in the system. This function also returns a KBDI_KEYBOARD_ENABLED 
flag if the keyboard is enabled. To disable the keyboard, a call can be made to 

BOOL EnableHardwareKeyboard (BOOL bEnable); 

with the bEnable flag set to FALSE. You might want to disable the keyboard in 
a system for which the keyboard folds around behind the screen; in such a sys
tem, a user could accidentally hit keys while using the stylus. 

93 



Part I Windows Programming Basics 

The KeyTrac Example Program 

94 

The following example program, KeyTrac, displays the sequence of keyboard 
messages. Programmatically, KeyTrac isn't much of a departure from the earlier 
programs in the book. The difference is that the keyboard messages I've been 
describing are all trapped and recorded in an array that's then displayed during 
the WM_PAINT message. For each keyboard message, the message name is re
corded along with the wParam and lParam values and a set of flags indicating 
the state of the shift keys. The key messages are recorded in an array because 
these messages can occur faster than the redraw can occur. Figure 3-4 shows the 
KeyTrac window after a few keys have been pressed. 

IS S 
IS S 
IS S 

Figure 3-4 The KeyTrac window after a Shift-A key combination followed by a lowercase 
a key press 

The best way to learn about the sequence of the keyboard messages is to 
run KeyTrac, press a few keys, and watch the messages scroll down the screen. 
Pressing a character key such as the a results in three messages: WM_KEYDOWN, 
WM_ CHAR, and WM_KEYUP. Holding down the Shift key while pressing the a 
and then releasing the Shift key produces a key-down message for the Shift key 
followed by the three messages for the a key followed by a key-up message for 
the Shift key. Because the Shift key itself isn't a character key, no WM_CHAR 
message is sent in response to it. However, the WM_CHAR message for the a 
key now contains a Ox41 in the wParam value, indicating that an uppercase A 
was entered instead of a lowercase a. 

Figure 3-5 shows the source code for the KeyTrac program . 

. KeyTra.c.h 

I/ Heade.r file 
II 

· l/ Written for·· the.·book. Pro(J1;ammihg Wihoows CE 
I I Copyright CC) 201H Douglas Boling 
II .', 

Figure 3-5 The KeyTrac program 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

II====================================================================== 
II Returns number of elements 
#define dim(x) (sizeof(x) I sizeof(x[0])) 

11----------------------------------------------------------------------
11 Generic defines and data types 
II 
struct decodeUINT 

UINT Code; 

LRESULT (*FXn)(HWND, UINT, WPARAM, LPARAM); 
} ; 

struct decodeCMD { 
UJNT Code; 
LRESULT (*fXn)(HWND, WORD. HWND, WORD); 

} ; 

II Structure associates 
II messages 
II with a function. 

II Structure associates 
II menu IDs with a 
II function. 

11-----------------------------------------··---------------------------
// Generic defines used by application 
/fdefi ne IDCCMDB.AR 1 .11 Command bar l D 

IJ--------~-~---~--·--~C------~------------------------:----------------
11 Progra~·specific defines and structures 
II 
typedef s.truct { 

UINT wKeyMS(I; 
INT wParam; 
INT lParam; 
LPCTSTR pszMsgTxt; 
TCHA.R szSh ift[20]; 

} KEYARRAY, *PKEYARRAY; 

I I Structure to. associate messages w1 th text name of message 
typedef struct { 

UINT wMs9; 
LPCTS·TR pName; 

} kEYNAMESTRUCT; 

I I - - - - - - - - - :c ~ - - ··• - - - - - - - - - : - - -. - - - - - -·- - - - - - .- • - - - - - - - - - - - - - - - - - - - - - - - - - - - : 

II Functlon prototypes 
II 
int .. InitApp {HINsTANCE); 
HWND lnft Instance .(HINSTANCE, LPWSTR, int); 
int Term Instance (H!.NSTANCE, int); 

I I Window procedures 
LRESUL T CALLBACK MainWndProc ( HWND, UI NT, WP A RAM, LP A RAM); 

(continued) 

95 



part \ Windows Programming easies 

figure 3·5 (continued) 

J ( Messa\l~ 1:1ayi1ners · .l•is•DT o.,C"'"""" ( ·····, UJ•T· )ll>:•l>.AM • l.:6RN'); Lo<•••:<ll<>'~'"~"'' ~ l WIJ!b, urnt, •·~~ . L'l!OI~>+ 
tRJSUl) ""'""'' 1 p <••1111 ,· . U!RT., if PAj(/O\' cl'fW'}.' .· 
'"""'T: ®"'~"''"~'' rn•Rb• u1~T. ''·""'"' ''"'""'' 

!! i'•J·T <a< /d1¢P ,,,., i<,,Y~?J''d ·"'°"''' i 
!1 ~"'"" ,,~ ,;a:,;,,k '"'''~'"' •fo•~'' ct 

·· /./ ·Cop:yri\Jht, cc) 2001 oougias Bo'\ :i ng 
for all tnat \>lind?WS st,uff 

command oaf: tnc1ude$ 
P·rogra111· spet::'if'\c $tuff 

II 

.•'lfi/ri:c~ude .<.\.Hndo)lis.h> 
1Mllc1ude <commctrl.11> 
Jfir\i!:;1lid.~ ·~1.:exfrac. n" 
· 11 "'' '"''""' ,,,,.,,., "'" "'' tM ,pool«' Pt :Or.• oon<l*"''''' 
I I onoT''""'''' ''"' "" ·~'"""' , ... "'":.~~· ,,,.. ""j'~' "'';' 
!I;, °""'''''·' '"'" t~'' et.••>1 o':..iat "'" • •'"' ,oic '" tn• ''''" 

r1:pC '''""':a ,,. "'."'''''' · . 
. {fjf .. def i nel.ll'vlll(3LilL/i.ifJlRlLPSPC) 

*''""' ···•'· 4~1ncJLld~ <.aygshefLn> · 

96 

· 4fenaH ··. 

cons{ TcH/\R st,l.,pµl'{aillet1 
f\.l~?T/\l(C~ nl!\St; 

/ l ~fogr~«1· spectfi c 
l(t.¥M~R/\Y •. l<a(1,6);··· 

tnt w1Ze.:1Cnt "' 0 .. ; 
int nfontlcleig\rn 

.. //MraYa.ssoC'ia.t,es 1<e:1. m .. essa9.eS w1tl'\ .: "'"'"''}'"'' $,,,,.,.,, . • '""!'\"~··. ''''Y-';'•?·~•11, 
·· ·· ·.··· ·. ·· .. ~'vlbLW."''. '"~"'"r·n;; . ,~..,_,,~,, . c'•!LS"W° l) ; 

'~"'"''!"'~· ''~""""~''+. t111•N ''''"' ' ~¥,~~::.:_\~~~~~t~~:\1 • 
;~,;:::11i~t;,;'.'' 1~# ,;,•cWJ>Cl<AR'. n; 
. '""csvs~c•uCM>~ . TF' cr•ll,?' '""'"'"·'''' i,;J: · 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

II Message dispatch table for MainWindowProc 
canst struct decodeUINT MainMessages[J = { 

WM_CREATE, DoCreateMain. 

} : 

WM_PAINT, DoPaintMain, 
WM_KEYUP, DoKeysMain, 
WM_KEYDOWN, DoKeysMain, 
WM_CHAR, DoKeysMain, 
WM_DEADCHAR, DoKeysMain, 
WM_SYSCHAR, DoKeysMain, 
WM_SYSDEADCHAR, DoKeysMain, 
WM_SYSKEYDOWN, DoKeysMain, 
WM_SYSKEYUP, DoKeysMain, 
WM_DESTROY, DoDestroyMain, 

II=============;?====================================================== 
11 Prag.ram entry point 
II 

.} 

int WINAPI WinMain (HINSTANCE hinstance. HINSTANCE 
·.··· ........ ·.•.• ···. LPWSTR lpCmdLine. int nCmdShQw) 

MSG ms9f' 
.int.rc, 2 .0; 
liwtm hwndMfiin; 

1/·rhtt+~1 iz~· ~pplicatton . 
. re ;,:, IeyitA:pp .. {hinstarlce>; 
.ff (re.> · 

return re: 
: . .<.· F;_,:.· ... , '..-.· , , 

II !nJtiqltze this· instance. 
hwht!Mal~ ~ lnttinstance (hlnstance, ipCmt!Une, nCmdshow): 
if Chwn<iMatn. == 0) 

return 0xi0; .. 

· l( Applt.cat11>nmessage loop 
. whi.1~''.cG.~~~ssage JMsfl• NULV, .·· 
··•.. <· fr~rtsl<lt~~es,s.a~e· c&ms9J:. · 

·· · · >Pts~~:t~frl~:es$~9e < &{Rsg) : .· ·• 
: .... } ... :: .... ·.: ········~·.· .. ' ... 

. ·······ll ·tntta~t.e d~n~p 
·.·•.return r~tJi]111~taribl'! : {hlnstance 

.: j),:-·~ ~. ~:-~',.:_· ~.·;;~~:~~(~ .~:,;_·.~:,;.~~~~:~:·::·,i~i?;=}~,-;~ ~\.'.~ _ ......... ~ w:.-. ~ .. ~:~ 

11. t1JitAp.p}: ip:~i't.~~\·fdh lrtft1 al i za.ti on. 
ll ,., . .•,:.,·· 

int InttApp·fa11Hsi;Afl:~ft1.1nstance} { 
WNDCLASs we·,~· .... · ... ···.·•·· . ' , ·-,'.\'"", ···;·:,~, ·, ·, 

(continued) 

97 



Part I Windows Programming Basics 

98 

Figure 3-5 (continued) 

ihf defi Md( WI N32~PtA TFORM~PSPC). 
{/·.If Pocket PC,· all.ow <mly .. one·.fnst~nc:e of.the 
HWND hWnd ,,,. H~dWindow (szAppName, NpLU; . 
if (f1Wnd) { 

SetForegroundWi ndo.w 
return -1: 

J 
4iend.i. f 

} 

// .Register. appl ipation majn Wind.OW Cl8$S, .· .. · .. \ .• 

wc.stsl.e = 0; ·.·. .. . • . II Window.style. 
wc,lpfnWndProc = MainWndProc; If 
wc.cbClsExt.ra = 0; ii 
we, cbWndExt ra = 0: II 
wc.h!nstance" hinstance; U 
we. hicon .. ,,, NUL.L. • ·.· . . ii 
we. hCursor = LoadCursor (NULL, IDC'-ARRGW) ;// Default cufscir 
WC. hprBackground. ·= .< HBRUSH) .. GetStockGbject. <WHITE;;.:Bll:USH); 
we .. lpszMenuName "" N.ULL: II 

if (Regi$terclass (&we) 
return ·h 

retu~n 0; 

fl Irtitinstance. - Instance .. iriitializati·on. 
u 
HWNO Iniilnstance (HINSJANCE h!nstance .. LPW$TR1pCilidtine,. 

.} 

HW.ND hWnd; 

hinstance; 

Up,~,a tt?,~i n:~~w: , (h,Wtd}; 

retr;rn. hWnd; 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

11----------------------------------------------------------------------
11 Terminstance - Program cleanup 
II 
int Termlnstance CHINSTANCE hinstance, int nDefRC) { 

return nDefRC; 
} 

II====================================================================== 
II Message handling procedures for MainWindow 
II 
11-·--·--C ............... C•--•-·····••·---········-····------·--···-···• 
11 MainWndProc - Callbac.k: functi.on for application window 
II 
LRESULT CALLBACK MainWndProc CHWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM l Param) { 
INT i; 

II 
II Search message list to.see if we need to handle thi 
II message. If in itst. cacli procedure • 

. ~;~lii~~~~.~~~~~l~:ef i . 
... .•• ret(lr,n··<*MafnHe$'~li9~~ttJ{ffl!:~).(til'tod~.wMsg 

,,·:,:·":·· ,'.o -: .. x>, :.~:·,;, 

.}< ''.. :; 
: iP\-~H-;: .. /. -.~- ·~·~.~~~.·-Z'{-~L\~';·.~:-7:-';;~:;···;{~fo-c "·.· ' .•. · 

of {.Jlr;iCF:eilcteMatn -: ·Process ·W~CAEA1E :•niess<HHf for .wi nd9W. 
<1f. < ' ••'' ' ' '' ' •,\:;;•;:,~:< : .••• ' < ''' ', 

t:R~s\l~r·.·.r1i,icfeateMa1'n ··,z;:~A~~~~i'~~~;T-l~\~9;• wPA~AM·· .w~a·ram•, 
'awf/o.hvmdCB· 

Hoc ·hdc· ·· · 
. iextMET:~rc tin: 

'#ii'.~eftn~'(UN32_PLATFORl{_P~cY:a~·Ll(l~i~wcE >., 300) 
.. :;sH.~~NJtl3~eft~fO. mbi: c, '• • ,·\.·,;,,\·} <>•· . ·fl For Pocket 

, ,.; ,f!~.m~~~.~lll~.i;; ·~~···· s)~~~f{~:1!J.tff~~~~~;~f0:J;)~ II menu.,. . . 
11\Qf;cl>,si·~ii :.· sizeof{SJi~7tf~BARfftt70;h:::::, 11 have .il sip 

' mli,f~il~P~rent .= 1:1wr:id.i/.: :. • ,, .,, /, . "> · 
mb'l.d\flftitgs = SJicMaF:;:tMPTY.~M; , , . . .. / J No menu 

.•·#~riQ;~JP,e11teM~riu~art~llt~ix~,:" .• ;. "''.:.· ... •, : C 
,.;'' ,·,.,.+ _;',.;··'; ':: ~."oe ~>.;;:::·':~~'.,;/:.:~·_: "; ;;'.;:~'> ,;,.; ,,: 

··'iftr'~~t~ a' ~~~ •• '··r-~··;~ri~·~a<if~xitht.ttton . 
. ' · .. nwll~CB ~ ~9Jnn1"d~~.· ii:at~·('tU;hSt> •hWnd •• IDCCMDBAR); 

C9n\~a.n!J~~r;~~.~~~M~~~fs,knwnilcai·· e ...• ·.e)i ·. · 

(continued) 

99 



Part l Windows Programming easies 

figure 3-5 (continued) 

~00 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

II Scroll the window one line. 
ScrollDC (~de, 0, nFontHeight, &rect, &rect, NULL, NULL); 

II See if wide or narrow screen. 
if CGetSystemMetrics CSM_CXSCREEN) < 480) { 

II If Pocket PC, display info on 2 lines 
ExtTextOut (hdc, 10, rect.top, ETO_OPAQUE, &rectOut, 

szOut, lstrlen (szOutl, NULL); 

&rect, &rect, NULL, NULU; 
ETO_OPAQUE, &rectOut, 

NU LL); 

(continued) 

101 



Part I Windows Programming Basics 

102 

Figure 3-5 (continued) 

Here are a few more characteristics of KeyTrac to notice. After each key
board message is recorded, an InvalidateRect function is called to force a redraw 
of the window and therefore also a WM_PAINT message. As I mentioned in 
Chapter 2, a program should never attempt to send or post a WM_PAINT mes
sage to a window because Windows needs to perform some setup before it calls 
a window with a WM_PAINT message. 

Another device context function used in KeyTrac is 

BOOL ScrollDC (HOC hDC, int dx, int dy, const RECT *lprcScroll, 
const RECT *lprcClip, HRGN hrgnUpdate, 
LPRECT lprcUpdate); 

which scrolls an area of the device context either horizontally or vertically, but 
under Windows CE, not both directions at the same time. The three rectangle 
parameters define the area to be scrolled, the area within the scrolling area to 
be clipped, and the area to be painted after the scrolling ends. Alternatively, a 
handle to a region can be passed to ScrollDC. That region is defined by Scrol!DC 
to encompass the region that needs painting after the scroll. 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

Finally, if the KeyTrac window is covered up for any reason and then 
reexposed, the message information on the display is lost. This is because a device 
context doesn't store the bit information of the display. The application is respon
sible for saving any information necessary to completely restore the client area 
of the screen. Since Keytrac doesn't save this information, it's lost when the 
window is covered up. 

The Touch Screen and the Stylus 
The touch screen and stylus combination is new to Windows platforms, but 
fortunately, its integration into Windows CE applications is relatively painless. 
The best way to deal with the stylus is to treat it as a single-button mouse. The 
stylus creates the same mouse messages that are provided by the mouse in other 
versions of Windows and by Windows CE systems that use a mouse. The differ
ences that do appear between a mouse and a stylus are due to the different 
physical realities of the two input devices. 

Unlike a mouse, a stylus doesn't have a cursor to indicate its current posi
tion. Therefore, a stylus can't hover over a point on the screen in the way that 
the mouse cursor does. A cursor hovers when a user moves it over a window 
without pressing a mouse button. This concept can't be applied to programming 
for a stylus because the touch screen can't detect the position of the stylus when 
it isn't in contact with the screen. 

Another consequence of the difference between a stylus and a mouse is that 
without a mouse cursor, an application can't provide feedback to the user by 
means of changes in appearance of a hovering cursor. Windows CE does sup
port setting the cursor for one classic Windows method of user feedback. The 
busy hourglass cursor, indicating that the user must wait for the system to com
plete processing, is supported under Windows CE so that applications can dis
play the busy hourglass in the same manner as applications running under other 
versions of Windows, using the SetCursor function. 

Stylus Messages 
When the user presses the stylus on the screen, the topmost window under that 
point receives the input focus if it didn't have it before and then receives a 
WM_LBUTTONDOWN message. When the user lifts the stylus, the window re
ceives a WM_LBUTTONUP message. Moving the stylus within the same window 
while it's down causes WM_MOUSEMOVE messages to be sent to the window. 
For all of these messages, the wParam and lParam parameters are loaded with 
the same values. The wParam parameter contains a set of bit flags indicating 
whether the Ctrl or Shift keys on the keyboard are currently held down. As in other 

103 



Part I Windows Programming Basics 

104 

versions of Windows, the Alt key state isn't provided in these messages. To get 
the state of the Alt key when the message was sent, use the GetKeyState function. 

The !Param parameter contains two 16-bit values that indicate the position 
on the screen of the tap. The low-order 16 bits contain the x (horizontal) loca
tion relative to the upper left corner of the client area of the window, while the 
high-order 16 bits contain they (vertical) position. 

If the user double-taps, that is, taps twice on the screen at the same loca
tion and within a predefined time, Windows sends a WM_LBUTTONDBLCLK 
message to the double-tapped window, but only if that window's class was reg
istered with the CS_DBLCLKS style. The class style is set when the window class 
is registered with RegisterClass. 

You can differentiate between a tap and a double-tap by comparing the 
messages sent to the window. When a double-tap occurs, a window first receives 
the WM_LBUTTONDOWN and WM_LBUTTONUP messages from the original tap. 
Then a WM_LBUTTONDBLCLK is sent followed by another WM_LBUTTONUP. 
The trick is to refrain from acting on a WM_LBUTTONDOWN message in any 
way that precludes action on a subsequent WM_LBUTTONDBLCLK. This is usually 
not a problem because taps usually select an object, while double-tapping launches 
the default action for the object. 

Inking 
A typical application for a handheld device is capturing the user's writing on the 
screen and storing the result as ink. This isn't handwriting recognition-simply 
ink storage. At first pass, the best way to accomplish this would be to store the 
stylus points passed in each WM_MOUSEMOVE message. The problem is that 
sometimes small CE-type devices can't send these messages fast enough to achieve 
a satisfactory resolution. Under Windows CE, a function call has been added to 
assist programmers in tracking the stylus. 

BOOL GetMouseMovePoints (PPOINT pptBuf, UINT nBufPoints, 
UINT *pnPointsRetrieved); 

GetMouseMovePoints returns a number of stylus points that didn't result in 
WM_MOUSEMOVE messages. The function is passed an array of points, the size 
of the array (in points), and a pointer to an integer that will receive the number 
of points passed back to the application. Once received, these additional points 
can be used to fill in the blanks between the last WM_MOUSEMOVE message 
and the current one. 

GetMouseMovePoints does throw one curve at you. It returns points in the 
resolution of the touch panel, not the screen. This is generally set at four times 
the screen resoiution, so you need to divide rhe coordinates relurueJ by 
GetMouseMovePoints by 4 to convert them to screen coordinates. The extra reso
lution helps programs such as handwriting recognizers. 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

A short example program, PenTrac, illustrates the difference that Get
MouseMovePoints can make. Figure 3-6 shows the PenTrac window. Notice the 
two lines of dots across the window. The top line was drawn using points from 
WM_MOUSEMOVE only. The second line included points that were queried with 
GetMouseMovePoints. The black dots were queried from WM_MOUSEMOVE, while 
the red (lighter) dots were locations queried with GetMouseMovePoints. 

Figure 3-6 The PenTrac window showing two lines drawn 

The source code for PenTrac is shown in Figure 3-7. The program places 
a dot on the screen for each WM_MOUSEMOVE or WM_LBUTTONDOWN mes
sage it receives. If the Shift key is held down during the mouse move messages, 
PenTrac also calls GetMouseMovePoints and marks those points in the window 
in red to distinguish them from the points returned by the mouse messages alone. 

PenTrac cheats a little to enhance the effect of GetMouseMovePoints. The 
DoMouseMain routine, which handles WM_MOUSEMOVE and WM_LBUTTONDOWN 
messages, calls the function sleep to kill a few milliseconds. This simulates a slow
responding application that might not have time to process every mouse move 
message in a timely manner. 

PenTl'ac.h 
fl===';,=;,========================;=============================="'=====,.=== 
ll Header file 
fl 
11·. Written for.the.book Programming Windows 
ll Copyright (Cl 2001 Do1.1g}a.s· Baling 
ll 

' .·.·_ .. -.' .. -: •,',' 

II Genericdefines~hd data types 
/j 

Figure 3-7 The PenTrac program (continued) 

105 



Part I Windows Programming Basics 

Figure 3-7 (continued) 

106 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

const TCHAR szAppName[J =TEXT ("PenTrac"l; 
HINSTANCE hinst; II Program instance handle 

II Message dispatch table for MainWindowProc 
const struct decodeUINT MainMessages[J = { 

WM_CREATE, OoCreateMain, 

} ; 

WM_LBUTTONDOWN, OoMouseMain, 
WM_MOUSEMOVE, OoMouseMain, 
WM_OESTROY, DoDestroyMain, 

. . ·~ .. 

I I ========================================= ... =======".'"'"'i;=O;=============== 
I I Program entry point 
II 
int WINAPl wfnMain CHINSTANCE hinstance, .HlNSTANCE fJPr~v~nstance, 

LPWSTR lpCmdL1ne, int nCmdShow) {. 
MSG l)lsg; 
int. re:•·."::. 0: 
HWNO·. hwn.~MaiIJ: 

II In~tiaii:ze app]ication. 
re "' rnttApp .. (hinstance); ·· 

! ··.: '·-·:'···<::,:·· . 
/l · 1lJi~taJize :~ht~ ins.tance• .•... \ ·. 
hwndMarn "'·· .H1itrnstance (hlnstance, 
fr c bwn<iMa :rn == 01 · · 

II Appllcatio~ message loop 
whfle (GetMessal;le (1.msg, 

TranslateMessage C&msgl; 
oapat<:tiMessage. < &msg >: 

11 Instance cleai:n.1p 

} 

ll"~~-.,, •. ,~-
11 InitApp 
II .· .· .. 
int Ini'tApp ~HlNStANCE 

WNDCLASS :we: 

1~if.· defined~WiN3~_}LATFORM_PSPC) 
Ii Lf P?ckei PC; all c>w onlyone inst.~oce 
HWND . .hWll.d ;:,: FincfW!nd~w . (szAppName' 
if (hWtid} (. 

(continued) 

107 



Part I Windows Programming Basics 

Figure 3-7 (continued) 

108 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

II====================================================================== 
II Message handling procedures for MainWindow 
II 

11----------------------------------------------------------------------
11 MainWndProc - Callback function for application window 
II 
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
INT i; 
II 
11 Search message 1 i st to see if we need to hanq:le'. this 
II message .. If tn list, call procedure. 
II 
for < i = 0; i < dimCM!!JnMessages l; i++ > { 

if <~Msg .;,= M~inMbs:sagesciJ.Codel 
re.turn. (~.MaJnMessages [i J. FxnH hWnd. 

·' .. ';, ~. . . . ... . . . ,. ,. . ' 

} 

. reti.irn DlilfWindbWPt!>,r (h~n.d'i·•.WMs!h .wPar.am, 
y.:.. , ... , .::\: ... ··.T>>'· .. 

· 1 t~>~'-'- ;, '-' '-'~ -~>;_.~;,:.,(.~.;;{;:,,: • ~ 1::;.·~); .~ )~ ·~ 2 ~ 

··;zt!10CreateMai.1r···"• ~t'Me~s.w~--C~f;~J'g.tjH?·ssag~ 
.lL . . ..... · · ... ·.. . < , /. , , . , .: . 
, ~R~SUL F DoCreateMiff r{(FJ\ilfL[) 'ITWn<lp lf;!NT, wMsg. 

, , , . . , . ~f;.\RAAt:~lPar~!ll} { 
, fH'lNO hwndCB; ·• ... ·. 

· .. >•·i:11 Create·.·a d&~~;artd'.;~~J' .. ~' 
< .hwn<icB = Comman<iB,arL:Criate Inlri~t, 

, . . .... , 

j{Ad<l exit buttonto bommair4.bai'. 

, , !lfr.j ~t~:::- ~ ~ -------
J/iotiM9i.i~eM~Jn " 
~.~;;tor,'~)-~d'ow~' ·. 

, L~ESULT OoMouSeM,ain 

POINT. pt(6'4li 
POINT,p~M~ 

> ' • >·'v• ~.·. ",:.')•• 

,(.ftwndCB, 0. 

.• tit,M ;:x~~ uowo~p; (JP~~~mf;• 
,ptM; f ;'i''.~~~RR~•;(~fa_f ~inb•• •.. 

(continued) 

109 



Part I Windows Programming Basics 

110 

Figure 3-7 (continued) 

Input Focus and Mouse Messages 
Here are some subtleties to note about circumstances that rule how and when 
mouse messages initiated by stylus input are sent to different windows. As I 
mentioned previously, the input focus of the system changes when the stylus is 
pressed against a window. However, dragging the stylus from one window to the 
next won't cause the new window to receive the input focus. The down tap sets 
the focus, not the process of dragging the stylus across a window. When the stylus 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

is dragged outside the window, that window stops receiving WM_MOUSEMOVE 
messages but retains input focus. Because the tip of the stylus is still down, no 
other window will receive the WM_MOUSEMOVE messages. This is akin to using 
a mouse and dragging the mouse outside a window with a button held down. 

To continue to receive mouse messages even if the stylus moves off its 
window, an application can call 

HWND SetCapture CHWND hWnd); 

passing the handle of the window to receive the mouse messages. The function 
returns the handle of the window that previously had captured the mouse or NULL 
if the mouse wasn't previously captured. To stop receiving the mouse messages 
initiated by stylus input, the window calls 

BOOL ReleaseCapture (void); 

Only one window can capture the stylus input at any one time. To deter
mine whether the stylus has been captured, an application can call 

HWND GetCapture (void); 

which returns the handle of the window that has captured the stylus input or 0 
if no window has captured the stylus input-although please note one caveat. 
Tbe window that has captured the stylus must be in the same thread context as 
the window calling the function. This means that if the stylus has been captured 
by a window in another application, GetCapture still returns 0. 

If a window has captured the stylus input and another window calls 
GetCapture, the window that had originally captured the stylus receives a 
WM_CAPTURECHANGED message. The lParam parameter of the message con
tains the handle of the window that has gained the capture. You shouldn't at
tempt to take back the capture by calling GetCapture in response to this message. 
In general, since the stylus is a shared resource, applications should be wary of 
capturing the stylus for any length of time and should be able to handle grace
fully any loss of capture. 

Another interesting tidbit: Just because a window has captured the mouse, 
that doesn't prevent a tap on another window from gaining the input focus for 
that window. You can use other methods for preventing the change of input focus, 
but in almost all cases, it's better to let the user, not the applications, decide which 
top-level window should have the input focus. 

Right-Button Clicks 
When you click the right mouse button on an object in Windows systems, the 
action typically calls up a context menu, which is a stand-alone menu display
ing a set of choices for what you can do with that particular object. On a system 

111 



Part I Windows Programming Basics 

with a mouse, Windows sends WM_RBUTTONDOWN and WM_RBUTTONUP 
messages indicating a right-button click. When you use a stylus, you don't have 
a right button. The Windows CE guidelines, however, allow you to simulate a 
right button click using a stylus. The guidelines specify that if a user holds down 
the Alt key while tapping the screen with the stylus, a program should act as if 
a right mouse button were being clicked and display any appropriate context 
menu. There's no MK_ALT flag in the wParam value ofWM_LBUTTONDOWN, 
so the best way to determine whether the Alt key is pressed is to use GetKeyState 
with VK_MENU as the parameter and test for the most significant bit of the re
turn value to be set. GetKeyState is more appropriate in this case because the 
value returned will be the state of the key at the time the mouse message was 
pulled from the message queue. 

The Ticlac1 Example Program 

112 

To demonstrate stylus programming, I have written a trivial tic-tac-toe game. The 
TicTacl window is shown in Figure 3-8. The source code for the program is shown 
in Figure 3-9. This program doesn't allow you to play the game against the computer, 
nor does it determine the end of the game-it simply draws the board and keeps 
track of the X's and O's. Nevertheless, it demonstrates basic stylus interaction. 

O'st.m 

Figure 3-8 The TicTac1 window 

Figure 3-9 The TicTac1 program 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

11----------------------------------------------------------------------
11 Generic defines and data types 
II 
struct decodeUINT 

UINT Code; 

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM): 
} ; 

struct decodeCMD { 
UINT Code: 
LRESULT ( *FxnHHWNp; 4'/0RD, HWND, WORD.): 

} : 

II Structure associates 
II messages 
II with a function. 

II Structure associates 
I I menµ . IDs with a 
II. f.011.~tion. 

","",',,,·:.-

I I - - • - - - - • • '- - • ;~ c •. ->"-~ ~. ~ ·• ~ ~··_ ----------~ -· -------.. 
I I Generic ctefines us~d by ap:pli ca ti on 
#define IDG_CMOBAR { 

(continued) 

113 



Part I Windows Programming Basi.cs 

Figure 3-9 (continued) 

114 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

} 

II Application message loop 
while (GetMessage C&msg, NULL, 0, 0)) { 

TranslateMessage C&msg); 
DispatchMessage (&msg); 

} 

II Instance cleanup 
return Termlnstance (hinstance, msg.wParam); 

11----------------------------------------------------------------------
11 InitApp - Application initialization 
II 
int InitApp (H1NSTANCE hinstance) { 

WNDCLASS we; 

/fai f defi necHWI N3LPt.ATFORM_PSPC) 
II If Pocket PC, allbw only one.instarice bf the application. 
HWND hWnd '." fi ndWi ndow ( szAppName, NULL); 
if ChWnd) { 

Se:tForegroundWindow c CHWNQ)(((DWI)RD),hWndl .J 0x01Jl: 

J 
#end if 

II ReQistef' application main window class. 
wc;style:i 0 ;< // Window style 
wc .l pfnWndProc ""' Mai nWnd Proc; I I Callback function 
wc.cb(ffsixtra..,0; .. ·. //Ext~a c1ass data 
wc.cbWndExfra ·"' 0; • 11 Extra window data 

· w:C;;hfristance = hlnst.ance: I/ owner handle 
wc.htcon = NULL, .• If Application icon 

·· wc:J1Cursor = Lo.adCurnrr <NULL, IDCJ.RROW);// Default cursor 
we. hbrBackgr,ounct"' ( HBRUSH) GetstockQbject ( WH I TE_BRUSH) : 
wc.lpszMenuN11nte .. ':'.' NULL.: JI Menu. name 
wc.lpszClassName"' szAppName; II Window class name 

ti Ini:tJnstallce - ·rnstance initialization 
II 
l:IWND Initiostance CtHNSTA:NCE hlnstance, LPWSTR lpCmdLine, 

HWNDhWrid;.· 

If Sayeprogf'ariilnstance handle in global variable. 
hinst := h1nst13nce; · · 

(continued) 

115 



Part I Windows Programming Basics 

116 

Figure 3-9 (continued) 

LRESULT. CALLBACK Mai rtWndProc 

! I mess(lge .. 

Tj st to see H. we n~t;!.d to 
lJst. call proced4re. 

tl 
for Ci "'. 0: i < dim(MainMessagt;!sl; :i++') 

(wMsg "'"' MaihMessages[i].Code) 
return (*Mai riMessages [ 1 },hn) (hWrid. 

} 
JI· . - -· ~ : " .. -" -- -- "~ -• " .• - . -•• - " - " • - ... -:" " • - - - • " . - -
fl ooCreateMain • .process .WtLCREATE messag.e for w.indow. 

fl 
LRESULT OoCreateMain (HWNO hWn~. UINT wMsg, 

LPARAM 1 Pa ram) .{ 

HWNO t:iwndCB; 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

} 

II Create a command bar. 
hwndCB = CommandBar_Create (hlnst, hWnd, IDC_CMDBARl: 

II Add exit button to command bar. 
CommandBar_AddAdornments ChwndCB, 0, 0); 
return 0: 

11----------------------------------------------------------------------
11 DoSizeMain - Process WM_SIZE message for window. 
II 
LRESULT DoSizeMain CHWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM 1 Pa ram) { 

} 

RECT rect: 
INT 1: 
II Adjust the s1ze of the client rect to take into account 
II the command bar height. 
GetClientRect. (hWnd, &rect); 
rect.top += ComntandBar_Height (GetDlgltem (hWnd, rnc_cMDBAR)): 

-;·· .. ·' 

11 rnit(a1i;;::e the boa.rd rectangl!:l if not y-etinitialiied. 
if (reCt'Btia~d.~ight··,,,,;, .0) { 

l/ ~ni.tia1ize the board. 
for Ji ,; 0; i < l:lim(bBoardl; 1++} 

bBoardii J = 0: 
} 

II Define th~ pfay'irig board rect. 
rectBoard .. = re:c.t: 
rectfiroinpt = :reC:'t: .. 
II Layout de'pends on portrait or landscape screen. 
if Crect'.right - rect.left > rect.bottom ~ rect.top) 

rectBoard.left·+= 20; 
rectBoard,top += 10; 
rectBoard.bo.ttom -"' 10: 
rectBoard.right • rectBoard.bottom - rectBoard.top + 10: 

rect•Prollipt.left = reC.tBoard. ri.ght + 10; 

}else{.• 

} 

rectB:oard.1eft +=. 20: 
rectaoa.rd.rtght ~=; 20: 
rectB0card;top ¥- 10: 
rectB()iitrd.bl)ttorn =. rec:tBoard. right - rectBoar~. left + 

.l"ectBoard.bottom + 10; 

(continued) 

117 



Part I Windows Programming Basics 

Figure 3-9 (continued) 

118 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

II See if pen on board. If so. determine which cell. 
if (PtinRect (&rectBoard, pt)){ 

} 

II Normalize point to upper left corner of board. 
pt.x rectBoard.left: 
pt.y -= rectBoard.top; 

II Compute size of each cell. 
ex (rectBoard.right - rectBoard.left)/3; 
cy = (rectBoard.bottom - rectBoard.top)/3: 

II Find column. 
nCell = (pt.x I ex); 
II Find row. 
nCell += (pt.y Icy) • 3; 

II If cell empty, fill it with mark. 
if (bBoard[nCellJ == 0) { 

} 

if (bTurn) { 

} 

bBoa rd[nCell J 
bTurn 0.; 

else { 
bBoa rd[nCel1 J 
bTurn = l; 

InvalidateRect (hWnd. NULL, FALSE); 

else { 
// Inform the user of the filled cell. 
MessageBeep (0); 

return 0; 

0: 

(continued) 

119 



Part I Windows Programming Basics 

Figure 3-9 (continued) 

120 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

lp. lopnColor = RGB (0, 0, 0): 
hPen = CreatePenlndirect C&lp); 

hOldPen = SelectObject Chdc. hPen): 

ex = (preet->right - preet->left)l3; 
ey Cpreet->bottom - prect->top)l3: 

II Draw lines down. 
pt[0J.x = ex+ prect->left; 
pt[l].x = ex+ prect:>left; 
pt[0J.y = prect->top: 
pt[l].y =<preetc>bottom: 
Polyline Chdc. pt.2): 
pt[0J.x +=ex: 
pt[lJ.x += ex: 
Polyline Chdc, 

The action in TicTacl is centered around three routines: DrawBoard, DrawXO, 
and DoLButtonUpMain. The first two perform the tasks of drawing the playing 
board. The routine that determines the location of a tap on the board (and there
fore is more relevant to our current train of thought) is DoLButtonUpMain. As 
the name suggests, this routine is called in response to a WM_LBUTTONUP 
message. The first action to take is to call 

BOOL PtlnReet (eonst RECT *lpre, POINT pt); 

121 



Part I Windows Programming Basics 

Menus 

122 

which determines whether the tap is even on the game board. The program knows 
the location of the tap because it's passed in the !Param value of the message. 
The board rectangle is computed when the program starts in DoSizeMain. Once 
the tap is localized to the board, the program determines the location of the 
relevant cell within the playing board by dividing the coordinates of the tap point 
within the board by the number of cells across and down. 

I mentioned that the board rectangle was computed during the DoSizeMain 
routine, which is called in response to a WM_SIZE message. While it might seem 
strange that Windows CE supports the WM_SIZE message common to other 
versions of Windows, it needs to support this message because a window is sized 
frequently: first right after it's created and then each time it's minimized and re
stored. You might think that another possibility for determining the size of the 
window would be during the WM_CREATE message. The !Param parameter 
points to a CREATESTRUCT structure that contains, among other things, the ini
tial size and position of the window. The problem with using those numbers is 
that the size obtained is the total size of the window, not the size of the client 
area, which is what we need. Under Windows CE, most windows have no title 
bar and no border, but some have both and many have scroll bars, so using these 
values can cause trouble. So now, with the TicTacl example, we have a simple 
program that uses the stylus effectively but isn't complete. To restart the game, 
we must exit and restart TicTacl. We can't take back a move or have 0 start first. 
We need a method for sending these commands to the program. Sure, using keys 
would work. Another solution would be to create hot spots on the screen that 
when tapped, provided the input necessary. However, the standard method of 
exercising these types of commands in a program is through menus. 

Menus are a mainstay of Windows input. While each application might have a 
different keyboard and stylus interface, almost all have sets of menus that are 
organized in a structure familiar to the Windows user. 

Windows CE programs use menus a little differently from other Windows 
programs, the most obvious difference being that in Windows CE, menus aren't 
part of the standard window. Instead, menus are attached to a command bar or 
menu bar control that has been created for the window. Other than this change, 
the functions of the menu and the way menu selections are processed by the 
application match the other versions of Windows, for the most part. Because of 
this general similarity, I give you only a basic introduction to Windows menu 
management in this section. 

Creating a menu is as simple as calling 

HMENU CreateMenu (void); 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

The function returns a handle to an empty menu. To add an item to a menu, two 
calls can be used. The first 

BOOL AppendMenu (HMENU hMenu, UINT fuFlags, UINT idNewitem, 
LPCTSTR lpszNewitem); 

appends a single item to the end of a menu. The fuFlags parameter is set with 
a series of flags indicating the initial condition of the item. For example, the item 
might be initially disabled (thanks to the MF_GRAYED flag) or have a check mark 
next to it (courtesy of the MF _CHECKED flag). Almost all calls specify the 
MF _STRING flag, indicating that the lpszNewltem parameter contains a string that 
will be the text for the item. The idNewltem parameter contains an ID value that 
will be used to identify the item when it's selected by the user or to indicate that 
the state of the menu item needs to be changed. 

Another call that can be used to add a menu item is this one: 

BOOL InsertMenu (HMENU hMenu, UINT uPosition, UINT uFlags, 
UINT uIDNewitem, LPCTSTR lpNewitem); 

This call is similar to AppendMenu, with the added flexibility that the item can be 
inserted anywhere within a menu structure. For this call, the uFlags parameter can 
be passed one of two additional flags: MF_BYCOMMAND or MF_BYPOSITION, 
which specify how to locate where the menu item is to be inserted into the menu. 

Menus can be nested to provide a cascading effect. To add a cascading 
menu, or submenu, create the menu you want to attach using 

HMENU CreatePopupMenu (void); 

Then use InsertMenu, or AppendMenu to construct the menu. Then insert or 
append the submenu to the main menu using either InsenMenu or AppendMenu 
with the MF _POPUP flag in the flags parameter. In this case, the uIDNewltem 
parameter contains the handle to the submenu, while lpNewltem contains the 
string that will be on the menu item. 

You can query and manipulate a menu item to add or remove check marks 
or to enable or disable it by means of a number of functions. This function, 

BOOL EnableMenultem CHMENU hMenu, UINT uIDEnableitem, UINT uEnable); 

can be used to enable or disable an item. The flags used in the uEnable pa
rameter are similar to the flags used with other menu functions. Under Windows 
CE, the flag you use to disable a menu item is MF _GRAYED, not MF _DISABLED. 
The function 

DWORD CheckMenuitem (HMENU hmenu, UINT uIDCheckitem, UINT uCheck); 

can be used to check and uncheck a menu item. Many other functions are avail
able to query and manipulate menu items. Check the SDK documentation for 
more details. 

123 



Part I Windows Programming Basics 

The following code fragment creates a simple menu structure: 

hMainMenu = CreateMenu (); 

hMenu = CreatePopupMenu (); 
AppendMenu (hMenu, MF_STRING MF _ENABLED, 100, TEXT ("&New")): 
AppendMenu (hMenu, MF_STRING MF _ENABLED, 101, TEXT ("&Open")); 
AppendMenu (hMenu, MF_STRING MF _ENABLED, 101. TEXT ("&Save")): 
AppendMenu (hMenu, MF_STRING MF_ENABLED, 101. TEXT ("E&xit")): 

AppendMenu (hMainMenu, MF_STRING I MF_ENABLED I MF_POPUP, (UINT)hMenu, 
TEXT ("&File")); 

hMenu = CreatePopupMenu (); 
AppendMenu (hMenu, MF_STRING 
AppendMenu (hMenu, MF_STRING 
AppendMenu (hMenu, MF_STRING 

MF _ENABLED, 100, TEXT ( "C&ut")); 
MF _ENABLED, 101. TEXT ("&Copy")); 
MF _ENABLED, 101, TEXT ("&Paste")); 

AppendMenu (hMainMenu, MF_STRING I MF_ENABLED I MF_POPUP, hMenu, 
TEXT ("&Edit")); 

hMenu = CreatePopupMenu (); 
AppendMenu (hMenu, MF_STRING I MF_ENABLED, 100, TEXT ("&About")); 

AppendMenu (hMainMenu, MF_STRING I MF_ENABLED I MF_POPUP, hMenu, 
TEXT ("&Help")); 

Once a menu has been created, it can be attached to a command bar us
ing this function: 

BOOL CommandBar_lnsertMenubarEx (HWND hwndCB, HINSTANCE hlnst, 
LPTSTR pszMenu, int iButton); 

The menu handle is passed in the third parameter, while the second parameter, 
hlnst, must be 0. The final parameter, iButton, indicates the button that will be 
to the immediate right of the menu. The Windows CE user interface guidelines 
recommend that the menu be on the far left of the command bar, so this value 
is almost always 0. 

Handling Menu Commands 

124 

When a user selects a menu item, Windows sends a WM_COMMAND message 
to the window that owns the menu. The low word of the wParam parameter 
contains the ID of the menu item that was selected. The high word of wParam 
contains the notification code. For a menu selection, this value is always 0. The 
!Param parameter is 0 for WM_COMMAND messages sent due to a menu selec
tion. Those familiar with Windows 3.x programming might notice that the layout 
of wParam and /Param match the standard Win32 assignments and are different 
from Win16 programs. So to act on a menu selection, a window needs to field 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

the WM_COMMAND message, decode the ID passed, and act according to the 
menu item that was selected. 

Now that I've covered the basics of menu creation, you might wonder where 
all this menu creation code sits in a Windows program. The answer is, it doesn't. 
Instead of dynamically creating menus on the fly, most Windows programs simply 
load a menu template from a resource. To learn more about this, let's take a detour 
from the description of input methods and look at resources. 

Resources 
Resources are read-only data segments of an application or a DLL that are linked 
to the file after it has been compiled. The point of a resource is to give a devel
oper a compiler-independent place for storing content data such as dialog boxes, 
strings, bitmaps, icons, and yes, menus. Since resources aren't compiled in a pro
gram, they can be changed without your having to recompile the application. 

You create a resource by building an ASCII file-called a resource script
describing the resources. Your ASCII file has the extension RC. You compile this 
file with a resource compiler, which is provided by every maker of Windows 
development tools, and then you link it into the compiled executable again us
ing the linker. These days, these steps are masked by a heavy layer of visual tools, 
but the fundamentals remain the same. For example, Embedded Visual C++ 
creates and maintains an ASCII resource (RC) file even though few programmers 
directly look at the resource file text any more. 

It's always a struggle for the author of a programming book to decide how 
to approach tools. Some lay out a very high level of instruction, talking about 
menu selections and describing dialog boxes for specific programming tools. 
Others show the reader how to build all the components of a program from the 
ground up, using ASCII files and command line compilers. Resources can be 
approached the same way: I could describe how to use the visual tools or how 
to create the ASCII files that are the basis for the resources. In this book, I stay 
primarily at the ASCII resource script level since the goal is to teach Windows 
CE programming, not how to use a particular set of tools. I'll show how to cre
ate and use the ASCII RC file for adding menus and the like, but later in the book 
in places where the resource file isn't relevant, I won't always include the RC 
file in the listings. The files are, of course, on the CD included with this book. 

Resource Scripts 
Creating a resource script is as easy as using Notepad to create a text file. The 
language used is simple, with C-like tendencies. Comment lines are prefixed by 
a double slash(//), and files can be included using a #include statement. 

125 



Part I Windows Programming Basics 

126 

An example menu template would be the following: 

II 
II A menu template 
II 
ID_MENU MENU DISCARDABLE 
BEGIN 

END 

PO PUP "&File" 
BEGIN 

END 

MENUITEM "&Open ... ", 
MENUITEM "&Save ... ", 
MENUITEM SEPARATOR 
MENUITEM "E&xit", 

POPUP "&Help" 
BEGIN 

MENUITEM "&About", 
END 

100 
101 

120 

200 

The initial ID_MENU is the ID value for the resource. Alternatively, this ID 
value can be replaced by a string identifying the resource. The ID value method 
provides more compact code, while using a string may provide more readable 
code when the application loads the resource in the source file. The next word, 
MENU, identifies the type of resource. The menu starts with POPVP, indicating 
that the menu item File is actually a pop-up (cascade) menu attached to the main 
menu. Because it's a menu within a menu, it too has BEGIN and END keywords 
surrounding the description of the File menu. The ampersand (&) character tells 
Windows that the next character should be the key assignment for that menu item. 
The character following the ampersand is automatically underlined by Windows 
when the menu item is displayed, and if the user presses the Alt key along with 
the character, that menu item is selected. Each item in a menu is then specified 
by the MENUITEM keyword followed by the string used on the menu. The el
lipsis following the Open and Save strings is a Windows UI custom indicating to 
the user that selecting that item displays a dialog box. The numbers following 
the Open, Save, F.xit, and About menu items are the menu identifiers. These values 
identify the menu items in the WM_ COMMAND message. It's good programming 
practice to replace these values with equates that are defined in a common in
clude file so that they match the WM_COMMAND handler code. 

Figure 3-10 lists other resource types that you might find in a resource file. 
The DISCARDABLE keyword is optional and tells Windows that the resource can 
be discarded from memory if it's not in use. The remainder of the menu is couched 
in BEGIN and END keywords, although the bracket characters { and } are recog 
nized as well. 



Icons 

Input: Keyboard, Touch Screen, and Menus Chapter 3 

Figure 3-10 The resource types allowed by the resource compiler 

Resource Type 

MENU 

ACCELERATORS 

DIALOG 

BITMAP 

ICON 

FONT 

RCDATA 

STRING TABLE 

VERSIONINFO 

Explanation 

Defines a menu 

Defines a keyboard accelerator table 

Defines a dialog box template 

Includes a bitmap file as a resource 

Includes an icon file as a resource 

Includes a font file as a resource 

Defines application-defined binary data block 

Defines a list of strings 

Includes file version information 

Now that we're working with resource files, it's a trivial matter to modify the icon 
that the Windows CE shell uses to display a program. Simply create an icon with 
your favorite icon editor, and add to the resource file an icon statement such as 

ID_ICON ICON "tictac2.ico" 

When Windows displays a program in Windows Explorer, it looks inside the EXE 
file for the first icon in the resource list and uses it to represent the program. 

Having that icon represent an application's window is somewhat more of 
a chore. Windows CE uses a small 16-by-16-pixel icon on the taskbar to repre
sent windows on the desktop. Under the desktop versions of Windows, the 
RegisterClassEx function can be used to associate a small icon with a window, 
but Windows CE doesn't support this function. Instead, the icon must be explicitly 
loaded and assigned to the window. The following code fragment assigns a small 
icon to a window. 

hlcon = (HICON) SendMessage (hWnd, WM_GETICON, FALSE, 0); 
if (hlcon == 0) { 

hlcon = Loadimage (hlnst, MAKEINTRESOURCE (ID_ICONl), IMAGE_ICON, 
16, 16, 0); 

SendMessage (hWnd, WM_SETICON, FALSE, (LPARAM)hlcon); 

The first SendMessage call gets the currently assigned icon for the window. 
The FALSE value in wParam indicates that we're querying the small icon for the 
window. If this returns 0, indicating that no icon has been assigned, a call to 
Load!mage is made to load the icon from the application resources. The Loadlmage 
function can take either a text string or an ID value to identify the resource being 
loaded. In this case, the MAKEINTRESOURCE macro is used to label an ID value 
to the function. The icon being loaded must be a 16-by-16 icon because under 

127 



Part I Windows Programming Basics 

Windows CE, Loadlmage won't resize the icon to fit the requested size. Also under 
Windows CE, Loadlmage is limited to loading icons and bitmaps from resources. 
Windows CE provides the function SHLoadDIBitmap to load a bitmap from a file. 

Unlike other versions of Windows, Windows CE stores window icons on a 
per-class basis. So if two windows in an application have the same class, they 
share the same window icon. A subtle caveat here-window classes are specific 
to a particular instance of an application. If you have two different instances of 
the application FOOBAR, they each have different window classes, so they may 
have different window icons, even though they were registered with the same 
class information. If the second instance of FOOBAR had two windows of the 
same class open, those two windows would share the same icon, independent 
of the window icon in the first instance of FOOBAR. 

Accelerators 

128 

Another resource that can be loaded is a keyboard accelerator table. This table 
is used by Windows to enable developers to designate shortcut keys for specific 
menus or controls in your application. Specifically, accelerators provide a direct 
method for a key combination to result in a WM_ COMMAND message being sent 
to a window. These accelerators are different from the Alt-F key combination that, 
for example, can be used to access a File menu. File menu key combinations are 
handled automatically as long as the File menu item string was defined with the 
& character, as in &File. The keyboard accelerators are independent of menus 
or any other controls, although their assignments typically mimic menu opera
tions, as in using Ctrl-0 to open a file. 

Below is a short resource script that defines a couple of accelerator keys. 

ID_ACCEL ACCELERATORS DISCARDABLE 

BEGIN 
"N", IDM_NEWGAME, VIRTKEY, CONTROL 
"Z", IDM_UNDO, VIRTKEY, CONTROL 

END 

As with the menu resource, the structure starts with an ID value. The ID 
value is followed by the type of resource and, again optionally, the discardable 
keyword. The entries in the table consist of the letter identifying the key, followed 
by the ID value of the command, VIRTKEY, which indicates that the letter is 
actually a virtual key value, followed finally by the CONTROL keyword, indicat
ing that Control must be pressed with the key. 

Simply having the accelerator table in the resource doesn't accomplish much. 
The application must load the accelerator table and, for each message it pulls 
from the message queue, see whether an accelerator has been entered. Fortu
nately, this is accomplished with a few simple modifications to the main mes-



Bitmaps 

Strings 

Input: Keyboard, Touch Screen, and Menus Chapter 3 

sage loop of a program. Here's a modified main message loop that handles 
keyboard accelerators: 

II Load accelerator table. 
hAccel = LoadAccelerators (hlnst, MAKEINTRESOURCE (ID_ACCEL)); 

II Application message loop 
while (GetMessage <&msg, NULL, 0, 0)) { 

II Translate accelerators 
if (!TranslateAccelerator (hwndMain, hAccel, &msg)) ( 

TranslateMessage (&msg); 
DispatchMessage (&msg); 

The first difference in this main message loop is the loading of the accel
erator table using the LoadAccelerators function. Then, after each message is 
pulled from the message queue, a call is made to TranslateAccelerator. If this 
function translates the message, it returns TRUE, which skips the standard 
TranslateMessage and DispatchMessage loop body. If no translation was per
formed, the loop body executes normally. 

Bitmaps can also be stored as resources. Windows CE works with bitmap re
sources somewhat differently from other versions of Windows. With Windows 
CE, the call 

HBITMAP LoadBitmap(HINSTANCE hlnstance, LPCTSTR lpBitmapName); 

loads a read-only version of the bitmap. This means that after the bitmap is 
selected into a device context, the image can't be modified by other drawing 
actions in that DC. To load a read/write version of a bitmap resource, use the 
Loadlmage function. 

String resources are a good method for reducing the memory footprint of an 
application while keeping language-specific information out of the code to be 
compiled. An application can call 

int LoadString(HINSTANCE hlnstance, UINT uID, LPTSTR lpBuffer, 
int nBufferMax); 

to load a string from a resource. The ID of the string resource is u!D, the lpBuffer 
parameter points to a buffer to receive the string, and nBufferMax is the size of 
the buffer. To conserve memory, LoadString has a new feature under Windows 

129 



Part I Windows Programming Basics 

CE. If lpBuffer is NULL, LoadString returns a read-only pointer to the string as 
the return value. Simply cast the return value as a pointer and use the string as 
needed. The length of the string will be located in the word immediately pre
ceding the start of the string. Note that by default the resource compiler removes 
terminating zeros from string resources. If you want to read string resources 
directly and have them be zero terminated, invoke the resource compiler with 
the -r command line switch. While I'll be covering memory management and 
strategies for memory conservation in Chapter 6, one quick note here. It's not a 
good idea to load a number of strings from a resource into memory. This just 
uses memory both in the resource and in RAM. If you need a number of strings 
at the same time, it might be a better strategy to use the new feature of LoadString 
to return a pointer directly to the resource itself. As an alternative, you can have 
the strings in a read-only segment compiled with the program. You lose the 
advantage of a separate string table, but you reduce your memory footprint. 

The TicTac2 Example Program 

130 

The final program in this chapter encompasses all of the information presented 
up to this point as well as a few new items. The TicTac2 program is an exten
sion of TicTacl; the additions are a menu, a window icon, and keyboard accel
erators. The TicTac2 window, complete with menu, is shown in Figure 3-11, while 
the source is shown in Figure 3-12. 

X's turn 

Figure 3-11 The TicTac2 window with the menu displayed 

Figure 3-12 The Tictac2 program 



#include "tictac2.h" 

11------
11 
II Icon 
II 
ID_ICON ICON "tictac2.ico" 

Input: Keyboard, Touch Screen, and Menus Chapter 3 

11-----------------------------------------------------c----------------
ll 
I/. Menu 
II 
lD_MENU MENU DISCARDABLE 
BEGIN 

(continued) 

131 



part \ WindoVIS programming easies 

\32 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

LRESULT DoCreateMain (HWND. UINT, WPARAM, LPARAM); 
LRESULT DoSizeMain (HWND, UINT, WPARAM, LPARAM>: 
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoinitMenuPopMain (HWND, UINT, WPARAM, LPARAM); 
LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAM): 
LRESULT DoLButtonUpMain (HWND, UINT, WPARAM, LPARAM>: 
LRESULT DoDestroyMain <HWND, UINT, WPARAM. LPARAM): 
II Command functions 
LPARAM DoMainComma.ndNewGame (HWND, WORD, HWND, WORD); 
LPARAM DoMainCommandUndo (HWND, WORD, HWND. WORD); 
LPARAM DoMainC9mmandExit (HWND. WORD, HWNO, WO~Dli;. 

I I Game funct i. on pr-0totypes 
void ResetGame;(VOidt: 
void DrawXO (HOC M.c. HPEN hPen, RECT *prei::t. 
void DrawBoard CHDC hdc, RECT *prect): ·· 

i/n nc.}utf~ <wi.ndows; h5 .· ..• ·.··. 
· #inciud~<co.mmctr1.h)·.·.··· .· 
j/rirtc1udg ."tfctacf;h" · 

C(lnst T,CJ:iAR s.i:A~p~ame[j . .,..,. TEXT 
.!H.lN.STANCILh.Inst: . •.. ix .. 

. . . 
.. . //state diita' f()n·:~a.m~ 
~Ec.t··•recteo~~d = (0.· 0·,• 
.RECT .. rectf>rompt.; · 
BYTE bBoa·rci[9J ;: 
BYTE bTurn; . 

ii for. ~n- tliat-'W:%d·<'>ws. stuff. 
11 co.mmand ba.f' iotlµdes 
11 .Pro~ram-speCi.t.ic stuff 

JI Message d;spi!'tch taJ)le for MainWin<fowProc 
con st st rue( deco,d:e~1:t-1r ·f)lai;tiMessages [] 

· · WM_CREllTE, noci'eateMhn.; · 

(continued) 

133 



Part \ Windows Programming easies 

figure 3-12 (continued) 

134 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

II Instance cleanup 
return Terminstance (hlnstance, msg.wParam); 

} 

11----------------- -------------------------------------- -------------
11 InitApp - Application initialization 
II 
int InitApp (H!NSTANCE hlnstance) { 

WNDCLASS wc; 

#if defined(WIN32_PLATFORM_PSPC) 
II If Pocket PC, allow only one instance of the application. 
HWND hWnd = FindWindow (szAppName, NULL); 
if ( hWnd) { 

SetForegroundWindow ((HWNDl(((DWORDlhWnd) I 0x01)); 
return -1: 

} 

ifendif 

} 

II Register application main window class. 
we.style = 0; II Window style 
wc.lpfnWndProc MainWndProc: II Callback function 
wc.cbClsExtra = 0; II Extra class data 
wc.cbWndExtra = 0; II Extra window data 
wc.hlnstance = hinstance: II Owner handle 
wc.hlcon = NULL, II Application icon 
wc.hCursor = LoadCursor (NULL, IDC_ARROW) ;I I Default cursor 
wc.hbrBackground = CHBRUSHl GetStockObject (WHITE_BRUSH): 
wc.lpszMenuName = NULL; II Menu name 
wc.lpszClassName = szAppName; II Window class name 

if (RegisterClass(&wc) == 0) return 1: 
return 0; 

11------------------------------------------------------ ---------------
11 Initlnstance - Instance initialization 
II 
HWND I nit Instance CH INSTANCE hlnstance, LPWSTR 1 pCmdline, int nCmdShow) { 

HWND hWnd; 

II Save program instance handle in global variable. 
hinst = hinstance; 

II Create main window. 
hWnd = CreateWindow (szAppName, TEXT ("TicTac2"), WS_V!SIBLE, 

cw_USEDEFAULT, CW_USEDEFAULT. 
CW_USEDEFAULT. CW_USEDEFAULT. 
NULL, NULL, hinstance, NULL); 

(continued) 

135 



Part I Windows Programming Basics 

136 

Figure 3-12 (continued) 

rnes5a.ge .11 s.t:.to ~ee 
·.rt ·in• .. list·,.cal1 

', ,, ,'" "',,'',"ii ', 

clim{nalnMess~ges)·~·····i+~•>·••{ 
.~ain:M~ssag~s.£ i•J. Co.de) • 
<~MafnMes°Sa~~s[ iJ,Fxn)( ~~nd. 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

II Add the menu. 
CommandBar_InsertMenubar (hwndCB, hinst, ID_MENU, 0); 
II Add exit button to command bar. 
CommandBar_AddAdornments (hwndCB, 0, 0); 

hlcon =CHICON) SendMessage (hWnd, WM_GETICON, 0, 0); 
if (hlcon == 0) { 

} 

hlcon = Load Image (hlnst, MAKEINTRESOURCE (ID_ICON), 
IMAGE_ICON, 16, 16, 0);. 

SendMessage (hWnd, WM_SETICON, FALSE, (LPARAMlh·icon); 

11 Initialize game., 
(}; 

(continued) 

137 



Part I Windows Programming Basics 

Figure 3-12 (continued) 

138 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

} 

if (blastMove == -1) 
EnableMenuitem (hMenu, IDM_UNDO. MF_BYCOMMAND I MF_GRAYED); 

else 
EnableMenuitem (hMenu, IDM_UNDO, MF_BYCOMMAND I MF_ENABLED); 

return 0; 

11----------------------------------------------------------------------
11 DoCommandMain - Process WM_COMMAND message for window. 
II 
II 
LR ES ULT DoCommandMai n (HWND hWnd, UlNT wMsg, WP A RAM wParam, 

LPARAM 1Param) { 
WORD idltem. wNotifyCode; 
HWND hwndctl: 
INT i · 

II Parse the parameters, 
idltem =<(WORD) LOWORD CwParam); 
wNotify.Code .= · .. (WORoJ HiwORD{wPa ram}; 
hwridCtl "" (HWNDJ lParam: 

II DoLButfonUpMain - Process WM--LBUTTONUP message for window. 
fl 
LRESU LT DoLButtonUpMa i. n 

nCell " 

fl See if pen on. board. 
C PtlnRect (&rectBoard, 
fl Nor.malize<pointto 
pt .x rectBoard .left; 
pt ;y rettBoarct. top: 

WPARAM wParam, 

(continued) 

139 



Part I Windows Programming Basics 

Figure 3-12 (continued) 

140 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

11 Count the. number of used spaces. 

for ( i = 0: i < 9: i ++) 

if (bBoard[i]) 

j++; 

II If not new game or complete game, ask user before clearing. 

if ( j && ( j ! = 9)) { 

re = MessageBox (hWnd, 

TEXT ("Are you sure you want to clear the board?"), 

TEXT ("New Game"), MB_YESNO I MB_ICONQUESTION); 

} 

if (re "'" I ONO) 
return 0; 

ResetGame (); 

Inv al idateRect (hWnd,. NULL, TRUE); 

return 0; 

ll-----~-,-•--,~--~--,,·,~---,,--

11 DoMainCommandUndo c Process 
l/ 
LPARAM DoMainConimilndUndo CHWND 

} 

} 

Cb LastMove != ·· -1) 
bBo.ard.[bLastMove] 

if <bTurn) .. { 
. " 0: 

//•.DoMa inCommiln dfxit. cproces s 

// 
LPARAM DoMainCommandE:xi t 

// 

(continued) 

141 



Part I Windows Programming Basics 

Figure 3-12 (continued) 

142 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

return; 

/!---------------------------·------------------------------------------
// DrawBoard - Draw the tic-tac-toe board. 
II 
void DrawBoard CHDC hdc, RECT •prectl { 

HPEN hPen, hOldPen; 
POINT pt[2]; 
LOGPEN lp; 
I NT i , ex, cy; 

!I Create a nice thick pen. 
lp. lopnStyle = PS~SOLID; 

lp.lopnWtdth.x = 5; 
lp.lopnWidth.y =5; 
lp.lopnColor = RGB {0, 
hPen = CreatePenlndi rect C&l pl; 

(continued) 

143 



Part I Windows Programming Basics 

144 

Figure 3-12 (continued) 

The biggest change in TicTac2 is the addition of a WM_COMMAND han
dler in the form of the routine DoCommandMain. Because a program might end 
up handling a large number of different menu items and other controls, I extend 
the table-lookup design of the window procedure to another table lookup for 
command IDs from menus and accelerators. For TicTac2, I use three command 
handlers, one for each of the menu items. This results in another table of IDs 
and procedure pointers that associates menu IDs with handler procedures. Again, 
this way of using a table lookup instead of the standard switch statement isn't 
necessary or specific to Windows CE. It's simply my programming style. 

The first menu handler, DoMainCommandNewGame, simply calls the re
set game routine to clear the game structures. The routine itself returns 0, which 
is the default value for a WM_COMMAND handler. 

The DoMainCommandUndo command handler is interesting in that it isn't 
always enabled. TicTac2 handles an additional message WM_INITMENUPOPUP, 
which is sent to a window immediately before the window menu is displayed. 
This gives the window a chance to initialize any of the menu items. In this case, 
the routine DolnitMenuPopMain looks to see whether the bLastMove field con
tains a valid cell value (O through 8). If not, the routine disables the Undo menu 
item using EnableMenultem. This action also disables the keyboard accelerator 
for that menu item as well. 

The final command handler, DoMainCommandExit, sends a WM_ CLOSE 
message to the main window. Closing the window eventually results in Windows 
sending a WM_DESTROY message, which results in a PostQuitMessage call that 
terminates the program. Sending a WM_ CLOSE message is, by the way, the same 
action that results from clicking on the Close button on the command bar. 

Other changes from the first TicTac example include modification of the 
message loop to provide for keyboard accelerators and the addition of code in 
the DoCreateMain routine to load and assign a window icon. Also, the string 
prompts for whose turn it is are loaded from the resource file. 

While using a menu on a command bar is standard procedure for most 
Windows CE systems, you'll want to use the menu bar control covered in Chapter 
14 if you're writing a program for the Pocket PC. TicTac2 will run on the Pocket 
PC, but the menu will appear on the command bar instead of its appropriate place 
on a menu bar. Most menu functions work with the menu bar, but it does throw 
a few curves at programmers interested in manipulating the menu. Read Chap
ter 14 for the grisly details. 



Input: Keyboard, Touch Screen, and Menus Chapter 3 

Looking at the DoMainCommandNewGame handler introduces one last new 
function. If the game isn't complete, the program asks the players whether they 
really want to clear the game board. This query is accomplished by calling 

int MessageBox CHWND hWnd, LPCTSTR lpText, LPCTSTR lpCaption, 
U INT uType); 

This function displays a message box, a simple dialog box, with definable 
text and buttons. A message box can display a message along with a limited series 
of buttons. Message boxes are often used to query users for a simple response 
or to notify them of some event. The uType parameter allows the programmer 
to select different button configurations, such as Yes/No, OK/Cancel, Yes/No/ 
Cancel, and simply OK. You can also select an icon to appear in the message 
box that signals the level of importance of the answer. 

A message box is essentially a poor man's dialog box. It offers a simple 
method of querying the user but little flexibility in how the dialog box is con
figured. Now that we've introduced the subject of dialog boxes, it's time to take 
a closer look at them and other types of secondary and child windows. 

145 





Windows, Controls, and 
Dialog Boxes 

Understanding how windows work and relate to each other is the key to under
standing the user interface of the Microsoft Windows operating system, whether 
it be Microsoft Windows Me, Microsoft Windows XP, or Microsoft Windows CE. 
Everything you see on a Windows display is a window. The desktop is a win
dow, the taskbar is a window, even the Start button on the taskbar is a window. 
Windows are related to one another according to one relationship model or 
another; they may be in parent/child, sibling, or owner/owned relationships. 
Windows supports a number of predefined window classes, called controls. These 
controls simplify the work of programmers by providing a range of predefined 
user interface elements as simple as a button or as complex as a multiline text 
editor. Windows CE supports the same standard set of built-in controls as the other 
versions of Windows. These built-in controls shouldn't be confused with the 
complex controls provided by the common control library. I'll talk about those 
controls in Chapter 5. 

Controls are usually contained in dialog boxes (sometimes simply referred 
to as dialogs). These dialog boxes constitute a method for a program to query 
users for information the program needs. A specialized form of dialog, named a 
property sheet, allows a program to display multiple but related dialog boxes in 
an overlapping style; each box or property sheet is equipped with an identify
ing tab. Property sheets are particularly valuable given the tiny screens associ
ated with Windows CE devices. 

Finally, Windows CE supports a subset of the common dialog library avail
able under Windows XP and Windows Me. Specifically, Windows CE supports 
versions of the common dialog boxes File Open, File Save, Color, and Print. These 

147 



Part I Windows Programming Basics 

dialogs are somewhat different on Windows CE. They're reformatted for the smaller 
screens and aren't as extensible as their desktop counterparts. 

Child Windows 

148 

Each window is connected via a parent/child relationship scheme. Applications 
create a main window with no parent, called a top-level window. That window 
might (or might not) contain windows, called child windows. A child window is 
clipped to its parent. That is, no part of a child window is visible beyond the 
edge of its parent. Child windows are automatically destroyed when their par
ent windows are destroyed. Also, when a parent window moves, its child win
dows move with it. 

Child windows are programmatically identical to top-level windows. You 
use the Create Window or CreateWindowEx function to create them, each has a 
window procedure that handles the same messages as its top-level window, and 
each can, in turn, contain its own child windows. To create a child window, use 
the WS_CHILD window style in the dwStyle parameter of CreateWindow or 
CreateWindowEx. In addition, the hMenu parameter, unused in top-level Windows 
CE windows, passes an ID value that you can use to reference the window. 

Under Windows CE, there's one other major difference between top-level 
windows and child windows. The Windows CE shell sends WM_HIBERNATE 
messages only to top-level windows that have the WS_OVERLAPPED and 
WS_ VISIBLE styles. (Window visibility in this case has nothing to do with what 
a user sees. A window can be "visible" to the system and still not be seen by the 
user if other windows are above it in the Z-order.) This means that child win
dows and most dialog boxes aren't sent WM_HIBERNATE messages. Top-level 
windows must either manually send a WM_HIBERNATE message to their child 
windows as necessary or perform all the necessary tasks themselves to reduce 
the application's memory footprint. On Windows CE systems, such as the H/PC, 
that support application buttons on the taskbar, the rules for determining the target 
of WM_HIBERNATE messages are also used to determine what windows get 
buttons on the taskbar. 

In addition to the parent/child relationship, windows also have an owner/ 
owned relationship. Owned windows aren't clipped to their owners. However, 
they always appear "above" (in Z-order) the window that owns them. If the owner 
window is minimized, all windows it owns are hidden. Likewise, if a window is 
destroyed, all windows it owns are destroyed. 



Windows, Controls, and Dialog Boxes Chapter 4 

Window Management Functions 
Given the windows-centric nature of Windows, it's not surprising that you can 
choose from a number of functions that enable a window to interrogate its en
vironment so that it might determine its location in the window family tree. To 
find its parent, a window can call 

HWND GetParent (HWND hWnd); 

This function is passed a window handle and returns the handle of the calling 
window's parent window. If the window has no parent, the function returns NULL. 

Enumerating Windows 
GetWindow, prototyped as 

HWND GetWindow (HWND hWnd, UINT uCmd); 

is an omnibus function that allows a window to query its children, owner, and 
siblings. The first parameter is the window's handle, while the second is a con
stant that indicates the requested relationship. The GW _CHILD constant returns 
a handle to the first child window of a window. GetWindow returns windows 
in Z-order, so the first window in this case is the child window highest in the 
Z-order. If the window has no child windows, this function returns NULL. The 
two constants, GW _HWNDFIRST and GW _HWNDLAST, return the first and last 
windows in the Z-order. If the window handle passed is a top-level window, these 
constants return the first and last topmost windows in the Z-order. If the win
dow passed is a child window, the Get Window function returns the first and last 
sibling window. The GW _HWNDNEXT and GW _HWNDPREV constants return 
the next lower and next higher windows in the Z-order. These constants allow 
a window to iterate through all the sibling windows by getting the next window, 
then using that window handle with another call to Get Window to get the next, 
and so on. Finally, the GW _OWNER constant returns the handle of the owner 
of a window. 

Another way to iterate through a series of windows is 

BOOL EnumWindows (WNDENUMPROC lpEnumFunc, LPARAM lParam); 

This function calls the callback function pointed to by lpEnumFunc once for each 
top-level window on the desktop, passing the handle of each window in turn. 
The lParam value is an application-defined value, which is also passed to the 
enumeration function. This function is better than iterating through a Get Window 
loop to find the top-level windows because it always returns valid window handles; 

149 



Part I Windows Programming Basics 

150 

it's possible that a GetWindow iteration loop will get a window handle whose 
window is destroyed before the next call to Get Window can occur. However, since 
Enum Windows works only with top-level windows, Get Window still has a place 
when iterating through a series of child windows. 

Finding a Window 
To get the handle of a specific window, use the function 

HWND FindWindow (LPCTSTR lpClassName, LPCTSTR lpWindowName); 

This function can find a window either by means of its window class name or 
by means of a window's title text. This function is handy when an application 
is just starting up; it can determine whether another copy of the application is 
already running. All an application has to do is call FindWindow with the name 
of the window class for the main window of the application. Because an appli
cation almost always has a main window while it's running, a NULL returned by 
FindWindow indicates that the function can't locate another window with the 
specified window class-therefore, it's almost certain that another copy of the 
application isn't running. 

You can find the handle to the desktop window by using the function 

HWND GetDesktopWindow (void); 

This function was added in version 2.12 of Windows CE. To find the desktop 
window handle, earlier versions use FindWindow to search for a window with 
the class name DesktopExplorerWindow, as in 

HWND FindWindow (TEXT ("DesktopExplorerWindow"), NULL); 

Editing the Window Structure Values 
The pair of functions 

LONG GetWindowLong (HWND hWnd, int nindex); 

and 

LONG SetWindowLong (HWND hWnd, int nindex, LONG dwNewLong); 

allow an application to edit data in the window structure for a window. Remember 
that the WNDCLASS structure passed to the RegisterClass function has a field, 
cb WndExtra, that controls the number of extra bytes that are to be allocated after 
the structure. If you allocated extra space in the window structure when the 
window class was registered, you can access those bytes using the GetWindowLong 
and SetWindowLong functions. Under Windows CE, the data must be allocated 
and referenced in 4-byte (integer sized and aligned) blocks. So if a window class 
was registered with 12 in the cbWndExtra field, an application can access those 



Windows, Controls, and Dialog Boxes Chapter 4 

bytes by calling GetWindowLong or SetWindowLong with the window handle and 
by setting the values 0, 4, and 8 in the nlndex parameter. 

GetWindowLong and SetWindowLong support a set of predefined index 
values that allow an application access to some of the basic parameters of a 
window. Here is a list of the supported values for Windows CE. 

• GWL_STYLE The style flags for the window 

• GWL_EXSTYLE The extended style flags for the window 

• GWL_ WNDPROC The pointer to the window procedure for the 
window 

• GWL_ID The ID value for the window 

• GWL_USERDATA An application-usable 32-bit value 

Dialog box windows support the following additional values: 

• DWL_DLGPROC The pointer to the dialog procedure for the win
dow 

• DWL_MSGRESULT The value returned when the dialog box func
tion returns 

• DWL_USER An application-usable 32-bit value 

Windows CE doesn't support the GWL_HINSTANCE and GWL_HWNDPARENT 
values supported by Windows 2000 and Windows XP. 

Scroll Bars and the Fontlist2 Example Program 
To demonstrate a handy use for a child window, we return to the FontList pro
gram from Chapter 2. As you might remember, the problem was that if a scroll 
bar were attached to the main window of the application, the scroll bar would 
extend upward, past the right side of the command bar. The reason for this is 
that a scroll bar attached to a window is actually placed in the nonclient area of 
that window. Because the command bar lies in the client space, we have no easy 
way to properly position the two controls in the same window. 

An easy way to solve this problem is to use a child window. We place the 
child window so that it fills all of the client area of the top-level window not 
covered by the command bar. The scroll bar can then be attached to the child 
window so that it appears on the right side of the window but stops just beneath 
the command bar. Figure 4-1 shows the Font List 2 window. Notice that the scroll 
bar now fits properly underneath the command bar. Also notice that the child 
window is completely undetectable by the user. 

151 



Part I Windows Programming Basics 

152 

Z\.lfµpoA, I1owr::29 
Family: Arial Number of fonts:1 

Arial Point:26 
Family: Courier New Number of fonts:1 

Courier New Point:27 
Family: Tahoma Number of fonts:l 

Tahoma Point:28 

Figure 4-1 The Font List 2 window with the scroll bar properly positioned just beneath 
the command bar 

The code for this fix, which isn't that much more complex than the origi
nal FontList example, is shown in Figure 4-2. Instead of one window procedure, 
there are now two, one for the top-level window, which I have labeled the Frame 
window, and one for the child window. I separated the code for these two win
dows into two different source files, FontList2.c and ClientWnd.c. ClientWnd.c 
also contains a function, InitClient, that registers the client window class. 

Fontlist2.h 

II Header file 
II 
I[. Written for the book Programming Windows CE 
JI Copyright (Cl .2001 Douglas .Bolirtg 

// Returns number of .elements 
Jfdefine dim(x) (sizeof(x) l sizeofCx[0]l) 

. fl • - - - - - - - - - - - - .• - c - - - - - ' ;:. - - - - - - - - -. - - c - - - -

//.Generic defin.es ary.d data types 
{/. 

struct decode~lNT 
UINT Code; 

.. LRESULT (*FxrtHHWNQ, 

1; 
struct decodeCMO t 

LII .. NT Code; 
LRESU.LT (*txn)(HW.NIJ, 

JI Generic de·f·i nes used by application 
#fdefi ne ,I DC_CMD~BAR l 
1fdefine Im:_CLI ENT 2 

Figure 4-2 The Fontlist2 program 

II 



Windows, Controls, and Dialog Boxes Chapter 4 

11----------------------------------------------------------------------
11 Window prototypes and defines 

II 
#define FAMILYMAX 24 

typedef struct { 

int nNumFonts; 

TCHAR szFontFamily[LF_FACESIZE]; 

FONTFAMSTRUCT; 

typedef FONTFAMSTRUCT •PFONTFAMSTRUCT; 

typedef struct { 

INT yCurrent: 

HOC hdc: 

PAINTFONTINFO; 

typedef PAINTFONTINFO 

prototypes 

II 
int .InitApp CHlNSTANCE); 

HWND Initlnstpnce (HINSTANCE, 

int TerillinstancE! (HlNSTANCE, 

fl Window· procedures 

LRESULT CALLBACK FrameWndprot 

LRESULT CALLBACK Cl .i entWndPr.oc 

JI Message bandlers 

LRESULTOoC reateF.rame 

LRESULT boStzeFrarne CHWNO,. UINT. WPARAM, LPARAM}; .··.·.· ... · 
LRESULT DoDe.stroyFrame (HWNO, lJINT,. WPARAM, LPARAMl; 

. . 

LRESULT DoCreateClient (HWf'lD, UINT, WPARAM 

LRESULT OoPaintCl i ent CHWND,. UINT, WPARAM. 

(continued) 

153 



Part I Windows Programming Basics 

Figure 4-2 (continued) 

154 



Windows, Controls, and Dialog Boxes Chapter 4 

int InitApp CHINSTANCE hinstance) { 
WNDCLASS we: 

#if defined(WIN32_PLATFORM_PSPC) 
II If Pocket PC. allow only one instance of the application. 
HWND hWnd = FindWindow (szAppName, NULL); 
if (hWnd) { 

} 

SetForegroundWindow ((HWND)(((DWORD)hWnd) I 0x01)); 
return -1: 

#end if 
II Regfstar appl~cation frame window class. 
we.style;;..~:· Ii Window style 
wc. lpfrtWr\dP.foc = FrameWndProc: // Cal)back function 
wc.cbClsEhra = 0: II Extra class data 
we. cbWn<:IExtr~ .,;; 0; I I Extra window data 
wc'.hrr.~t~nc~ :o hinstance: IJ owner hand.le 
wc.hlcon ,. NULL. // App~tcatio~ ;con 
wc .. heur~ur~•J.'.oactCµrsor•. {NULL,.· toc_Afl:ROW.)~t1 .• oefaG1t J:ur:s6r ·. 

····wc~·~b.r~~2,~efroin1·~ ;;! '<H'.BRUSHl .GetSto'¢J<,Obdect (WHl.TLBiiUSH>; 
wc.Jl!l~iM¢nu.~ame· ~ .~ULL: . . · il Me~u name 
wc~lP$'Z:C1Js:swam~ ·,;;·siAppName: If Win~ow cl ass name 

if •cR~91sterClass <&we>··== 0l 
, . ··· .... ·.,. ... -: ,. ·. ' 

·_: : ~ :·, '.; 

hrrift1~1tzernqlient window .cla.5$. 
if flnjtClient·(hinstance) != 0l return 
. ret(lrn•0•1: ••.••.... 

} 

II Initfnstance ~. Inst~nce .initialization 
II , ···; 

HWND Inittl1siance fHit.STANCE hinstartce, LPW:STR lpCmdLine. i.nt nCmdShow) { 
: . " ~ . , ' 

HWND hWti.d~ 

I/ cr~~t~J~¥~i':wirldow. . . . . .. . . . . . . .... 
h\'111d = Pr:ea:t~W)irid9w ($ZAppName. TEXT {"Font List 2'!}. WLVISIBLE, 

-··._· ·<~. /··~;'.<,_:. '.",". ¢.~~U.SE.DEFAU'L!, ·Cw~uS'f.oE'FAULT, cw·~u-s·~:6EFA:UL ~r.' 

CW_;_YSEDEFAULT, NULL/ NlJU.,, hiris:tartce, NULL): 
I I R~t~r.o.fllfl ,c<)de;jf".Willdow. not crea.ted;. 
if'< !lsWJ'.fid9wJhW!rd)[ return 0; 

fl St~!}~~Ed sji~wi a~CI update . cal Ts 
·· stiowwf.r!~~w;fowrid/iHJmdShowJ: · 

(continued) 

155 



Part I Windows Programming Basics 

Figure 4-2 (continued) 

156 



Windows, Controls, and Dialog Boxes Chapter 4 

II 
II Create client window. Size it so that it fits under 
II the command bar and fills the remaining client area. 
II 
hwndClient = CreateWindow (CLIENTWINDOW, TEXT (""), 

WS_VISIBLE I WS_CHILD I WS_VSCROLL, 
lpcs->x. lpcs->y + sHeight, 
lpcs->cx, lpcs->cy - sHeight, 

}. 

hWnd, (HMENUJIDC_CLIENT, 
lpcs->hinstance, NULL); 

II Destroy frame tf~Ttent window not created, 
if (!IsWindow (hwndCJJent)l 

DestroyWindow (hW.ndJ; 
return 0: 

I I- - - - - - - - - - - - - - - - - - - - • - - - - - - .. - - - - - - - - - - - - - - • - - - -- - " - -.- - - - - - -.- - ·• - - • 
J l DoS,i zeFrame - Process WM:.:;SJZE .message for wi n<:tow •. 
fl 

. i.;~EsULTlJoSi:ZeFrame (HW~Rh~~d. Ul~T WMsg, WPAR~M:wParam; 
· ;" !Rfcr r:ect.: ' 

., lNJi; 

· ··.·• Get Cl tentRect Chw!l~, .. .&r~c.t): ', :,: 

' i = Commal'ldBar_H~ight ((;ietliigitem (·hWnd. rocO-cMOBAR)J; 
top it 

", .. ' 

. f.GetD19Heiri (hWnd. IDCCLIENT>. NULL; reef.left,. 
rect.right; - rect. 1 eft, rect.bot1:om '~ rect: 'toQ'P. 
SWP~NOZORDERJ ; 

: jfS ""·" c.. c - - - - - - - • - • - - - - .- - - - • - - - - ·- - - - - - - - - - - - - - - - - - - - • - -- - • - - - : - - - - - - - - • -

/loo!lestroyFrame - Process WMc..DESTROY message for wi ndilw. 
lI 

.LRg@tJoopestro_yFT'ilJ(le CHWNQ h~nd •. UINT wMsg, 
•· <. . .\ 'LPARAM JParaml { 

i-/~:#~~~·~~.;:::;:;~==~~..:.:=;':;:;~~~=;=.:;;:~'.'-~~=~-=~~::====================~=··:•-:-====::i::=::i::======= 
ii cH.entWnd - ClJerit wi~Mw code for FontL i st2 
;fl , . :. ' ' .. ·'· ... ·:<., ... ·.,' ·· ... ; 

fl Written for;t'de bo<ik Programming Windows CE 
· lf Copyright ·(c}pl01 Douglas Boling 

(continued) 

157 



Part I Windows Programming Basics 

158 

Figure 4-2 (continued) 

4firtcl ude.<wi ndows. h> 
.1Fi nc l ude . ., font l is t.2. h" 

e.xterrt HINSTANCE .hinst.: 
l:WOL fF1 rst "' TRUE; 

lJ ~ - - .• - - - - - . - - - - - - - - - - - " - - - - - c .- - - - - - .- - - - - - - - - - - ' - - - - - •• 

II GllJ.bal da.ta 
l! 

.FONHAMSTRucf ffs[FAMILYMAXl: 
I NT sf.alfli 1.yCrtt = 0.; 
INT sVPos = 0; 
INT sVMax •.~ 0; 

If .Message dispqtchtatile. flJr'CTientWindowP~lJe 
const struet .decode!JINT C.l ientMeSS<!9e.sLJ "" { 

WM.;;CR[AH, .DoCreateClient, 
WM_PAINT; D6Pa.intCliMt. 
WM_VSCROU' OoVScrlJll Cl 1 ent, 

} ; 

/I· - - - - - - - - - - - - - ' - - - - - - - - '-·-' " - - - "-. - - - - -.- - - - - - ., - - - - - c - - - ' - - - - - - - -. c - - - - - ' 
I I InitCHent c. Client.window t.ni. ti ali z:ati on 
II 
int. In.i tel i ent (HINSTANC.E hinstanee; { 

WNDCLASS we; 

II Register application client .w:indcrw class: 
we.style = 0;. II Window style 
we .1 pfnWndProe =.Cl tentWnd Proc; /I Ca llbac.k .. funtti.on 
wc.cbC1sEx.tra = 0; · II Extra class data 
wc.cbWndExtra = 0; I I E.xtr.a windlJw dat.a 
wc.hlns.tance = hlnstanc:e; II Owner handle 
wc .• hleon. :" NULL., /!Application lcon 
wc.hCursor = Loadcursor (NULL, IDC~ARROW):// DefauTt cursor 
we.. hbrBac.l<grbund = .. { HBRUSH). GetStockObject. CWHITLBRU$H) ~ 
wc .• lpszMenuName "' NIJLL; I I Menu 11ame 
wc.lpszClasslllame = CLIE~TWINOOW: // Window. c:l.&ss name 

(&we.) ="" 0 l ret.urn 



Windows, Controls, and Dialog Boxes Chapter 4 

int TermClient <HINSTANCE hinstance, int nDefRC) { 
return nDefRC; 

II====================================================================== 
II Font callback functions 
11----------------------------------------------------------------------
11 FontFamilyCallback - Callback function that enumerates the font 
I I families. 
II 
int CALLBACK FontFamilyCallback (CONST LOGFONT *lplf, 

CONST TEXTMETRIC *lpntm, 

} 

DWORD nFontType, LPARAM lParam) 
int re = l; 

II Stop enumeration if array filled. 
if (sFamilyCnt >= FAMILYMAX) 

return 0; 
II Copy face name of font. 
l strcpy ( ffs [s Fa mil yCnt++J, szFontF9mily, l p 1 f-> l fFaceName l; 

return re; 

ll···----------~---------·----~----~-----------------------------------
11 EnumSingleFontFamily - Callback functi.on that enumerates the font 
I l fami 1 i.es 
II 
int CALLBACK EnumSi ngTeFontFamil y (CONST LOG FONT * l pl f, 

CONST TEXTMETRIC *lpntm, 

} 

DWORD nFontType, LPARAM lParaml 
PFONTFAMSTRUCT pffs; 

pffs = (PFONTFAMSTRUCTJ lParam: 
pffs->nNumFonts++; 
return 1; 

II Increment count of fonts in family. 

l/:-~---~---------------------------"~-------------------·--------------

11 PaintSihglefoYltFamily - Callback fuY1ction that enumerates the font 
II families. 
II 
int CALLBACK PaintSingleFontFamily (CONST LOGFONT *lplf. 

CONST TEXTMETRIC *lpntm, 
DWORD nFontType, LPARAM lParaml { 

PPAINTFQNTINFO ppfi: 
TCHARszOut[2!:)6J; 
INT nFontH.ei9ht; nPointSize: 
TEXTMETR!C tln; 
HPONT hF~~t. ~OldFont: 

(continued) 

159 



Part I Windows Programming Basics 

160 

Figure 4-2 (continued) 

} . 

ppfi. = (PPAINTfONTINFOl lParam; 
If stru~t\lre .. pqinter, 

I I Create the font from. the· LOGFON.T 
hFont. = CreateFontl~d.ir~ct .( lpl f); 

II Select. the .. font\info 
.hdldfont = Sele~tObject 

. . 
11 Get th.e height .of .the de'favlt font .. 

GetTextMe.trics fppfi -}hdc,. &.t~J.: ... · 
nFontHeight:. tm. tmHeight t tm;.tm.ExternaTLeading; 

11 Compute font .size.: 

nPointSize. = (lplfc>HHeight * 721/ · ....... >.· 
Getl)evi Ce.Caps ( ppf ·v>hdc ..• to.GP IXELSY); 

II Format string and paint on di$p1ay. 
wspri ntf < szOut,. TEXT. ( ~·%s Po1;nt:%d''.L 

nPoi nts) ze}; 
ExtTextOut Cppfi ">h.dc, 25, 

szOut •. lstrlen 

II Update. new draw poi~t. 
ppfi->ycurrent += nFontHei ght; 
II Deselect font and delete, . 
Sel ectObj ect (ppfi -.>Mc, hOl dFont); 
DeleteObject (hFont); 
return.1: 

. 11 =======,,,=========="'====?"===="'"'============:.====,,==="'"'"'======:."'=.======= 
11 Message handling procedures for. Clfef)tWi:nddw. 
//.- - - - - - - - - - - , - __ - c, _: ______ -·, __ :., ____ , _ c ____ , ~ _________ ~ _ " _ _., __ . ____ _ 

II ClientWndProc - C<!llback .fuj']ction for applicati6n Window 
I I . .. 

LRESULT CALLBACK ClientWhdProc CHWNO hWnd, UltlT wMsg; WPARAM wParam, 

I NT i; 
II 

LPAl<AM lPciramr r 

I I Search message 1 Ht t6 see if we need 
11 messag:e .0 If in 
II 
for .(i = 0; < dim(ClientMessagesl; i.++} 

if CwMsg == ClientMessagE)s[i.0] •• Code) 
return (>t;ClientMessages[tJ,Fxn)(hWnd, 



Windows, Controls, and Dialog Boxes Chapter 4 

return DefWindowProc (hWnd, wMsg, wParam, lParam); 

11----------------------------------------------------------------------
// DoCreateClient - Process WM_CREATE message for window. 
II 
LRESULT DoCreateClient CHWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

HOC hdc: 
I NT i. re; 

//Enumerate the available fonts. 
hdc = GetDC ChWndl: 
re= EnumFontFamilies ((HDC)hdc, (LPTSTR)NULL, FontFamilyCallback, 0); 

for (i = 0: i < sFamilyCnt: i++) { 
ffs[i];~NumFonts = 0; 
re = EnumFontFamilies CIHDClhdc, ffs[iJ.szFoniFamily; 

} 

Rel ease DC ChWnd, hdc) ; 
return 0: 

EnumSi ngl eFontFami ly,, , •.• 
( LPARAMJC P FONTFAMSTRUCTJ&ffs [i]); · 

!/-"~~--~ ~----"---~·------------------~---"---------~----------------
/I Dopai ntCli ent - Process WM_PAlNT message for window. 
II . - . 

LR~SULT DoPajntClient IHWND hWnd, UINT WM$!'.J, 

PAINTSTRUCT ps; 

RECT rect; 
HOC hdc; , 
TEXTMETRIC tm: 
INT nFontHeigl'tt, i; 
TCHAR sz0ut[256l; 
PA1NTFdNTINf0 pH; 
SCROLLINFO si; 

LPARAM lParam) { 

hdc "'BegtnPaint (hWnd, &psl: 

Get Cl i entRect (hWnd;., &rect); 

II Get the height .of the default font. 

G~trextMet.rics Ihde: &tml: 
nFohtHeight •.·. tm. tmHeight + tm. tmExterna 1 Leading; 
II Inifi~lize stFuct that is passed to enumeFate function. 
pfi .yCurrent= rect.top - sVPos; 
pfi . hdc hdc; 

(continued) 

161 



Part I Windows Programming Basics 

figure 4-2 (continued) 

162 



Windows, Controls, and Dialog Boxes Chapter 4 

case SB_LINEDOWN: 
sVPos += 10; 
break: 

case SB_PAGEUP: 
sVPos -= rect.bottom - rect.top; 
break; 

case SB_PAGEDOWN: 
sVPos += rect.bottom - rect.top; 
break; 

ca.se SB_TliUMBPOSlTJON: 

} 

sVPos = 

break; 

II Check range. 
if (sVPos < 0} 

= sizeof 
sf. n Pos sVPos; 
sL fMask.,•· S.lF~POS; 
SetSc roll Info ( hWnd, 

InvalidateRect (hWnd,. NULL, TRUE); 

The window procedure for the frame window is quite simple. Just as in the 
original FontList program in Chapter 2, the command bar is created in the 
WM_CREATE message handler, DoCreateFrame. Now, however, this procedure 
also calls Create Window to create the child window in the area underneath the 
command bar. The child window is created with three style flags: WS_ VISIBLE, 
so that the window is initially visible; WS_CHILD, required because it will be a 
child window of the frame window; and WS_ VSCROLL, to add the vertical scroll 
bar to the child window. 

The majority of the work for the program is handled in the client window 
procedure. Here the same font enumeration calls are made to query the fonts 
in the system. The WM_PAINT handler, DoPaintClient, has a new characteristic: 

163 



Part I Windows Programming Basics 

164 

it now bases what it paints on the new global variable sVPos, which provides 
vertical positioning. That variable is initialized to 0 in DoCreateClient and is 
changed in the handler for a new message, WM_ VSCROLL. 

Scroll Bar Messages 
A WM_ VSCROLL message is sent to the owner of a vertical scroll bar any time 
the user taps on the scroll bar to change its position. A complementary message, 
WM_HSCROLL, is identical to WM_ VSCROLL but is sent when the user taps on 
a horizontal scroll bar. For both these messages, the wParam and !Param assign
ments are the same. The low word of the wParam parameter contains a code 
indicating why the message was sent. Figure 4-3 shows a diagram of horizontal 
and vertical scroll bars and how tapping on different parts of the scroll bars results 
in different messages. The high word of wParam is the position of the thumb, 
but this value is valid only while you're processing the SB_THUMBPOSITION 
and SB_THUMBTRACK codes, which I'll explain shortly. If the scroll bar send
ing the message is a stand-alone control and not attached to a window, the lParam 
parameter contains the window handle of the scroll bar. 

SB_LINELEFT SB_THUMBPOSITION 

SB_PAGELEFT SB_THUMBTRACK SB_PAGERIGHT 

Figure 4-3 Scroll bars and their hot spots 

SB_LINEUP 
SB_PAGEUP 
SB_THUMBPOSITION 
SB_THUMBTRACK 

SB_PAGEDOWN 

SB_LINEDOWN 

The scroll bar message codes sent by the scroll bar allow the program to 
react to all the different user actions allowable by a scroll bar. The response 
required by each code is listed in the following table, Figure 4-4. 

The SB_LINExxx and SB_PAGExx:x codes are pretty straightforward. You 
move the scroll position either a line or a page at a time. The SB_THUMBPOSITION 
and SB_THUMBTRACK codes can be processed in one of two ways. When the 
user drags the scroll bar thumb, the scroll bar sends SB_THUMBTRACK code so 
that a program can interactively track the dragging of the thumb. If your appli
cation is fast enough, you can simply process the SB_THUMBTRACK code and 
interactively update the display. If you field the SB_THUMBTRACK code, how
ever, your application must be quick enough to redraw the display so that the 



Windows, Controls, and Dialog Boxes Chapter 4 

thumb can be dragged without hesitation or jumping of the scroll bar. This is 
especially a problem on the slower devices that run Windows CE. 

Codes 

For WM_ VSCROll 

SB_LINEUP 

SB_LINEDOWN 

SB_PAGEUP 

SB_PAGEDOWN 

For WM_HSCROll 

SB_LINELEFT 

SB_LINERIGHT 

SB_PAGELEFT 

SB_PAGERIGHT 

Response 

Program should scroll the screen up one line. 

Program should scroll the screen down one line. 

Program should scroll the screen up one screen's worth 
of data. 

Program should scroll the screen down one screen's 
worth of data. 

Program should scroll the screen left one character. 

Program should scroll the screen right one character. 

Program should scroll the screen left one screen's worth 
of data. 

Program should scroll the screen right one scrt•t•n's worth 
of data. 

For both WM_ VSCROll and WM_HSCROll 

SB_THUMBTRACK Programs with enough speed to keep up should update 
the display with the new scroll position. 

SB_THUMBPOSITION 

SB_ENDSCROLL 

SB_ TOP 

SB_BOTTOM 

Figure 4-4 Scroll codes 

Programs that can't update the display fast enough to 
keep up with the SB_THUMBTRACK message should 
update the display with the new scroll position. 

This code indicates that the scroll bar has completed the 
scroll event. No action is required by the program. 

Program should set the display to the top or left end of 
the data. 

Program should set the display to the bottom or right end 
of the data. 

If your application (or the system it's running on) is too slow to quickly 
update the display for every SB_THUMBTRACK code, you can ignore the 
SB_THUMBTRACK and wait for the SB_THUMBPOSITION code that's sent when 
the user drops the scroll bar thumb. Then you have to update the display only 
once, after the user has finished moving the scroll bar thumb. 

165 



Part I Windows Programming Basics 

166 

Configuring a Scroll Bar 
To use a scroll bar, an application should first set the minimum and maximum 
values-the range of the scroll bar, along with the initial position. Windows CE 
scroll bars, like their Win32 cousins, support proportional thumb sizes, which 
provide feedback to the user about the size of the current visible page compared 
with the entire scroll range. To set all these parameters, Windows CE applica
tions should use the SetScrolllnfo function, prototyped as 

int SetScrollinfo CHWND hwnd, int fnBar, LPSCROLLINFO lpsi, BOOL fRedraw): 

The first parameter is either the handle of the window that contains the scroll 
bar or the window handle of the scroll bar itself. The second parameter, fnBar, 
is a flag that determines the use of the window handle. The scroll bar flag can 
be one of three values: SB_HORZ for a window's standard horizontal scroll bar, 
SB_ VERT for a window's standard vertical scroll bar, or SB_CTL if the scroll bar 
being set is a stand-alone control. Unless the scroll bar is a control, the window 
handle is the handle of the window containing the scroll bar. With SB_CTL, 
however, the handle is the window handle of the scroll bar control itself. The 
last parameter is }Redraw, a Boolean value that indicates whether the scroll bar 
should be redrawn after the call has been completed. 

The third parameter is a pointer to a SCROLLINFO structure, which is 
defined as 

typedef struct tagSCROLLINFO { 
UINT cbSize: 
UINT fMask: 
int nMi n: 
int nMax: 
UINT nPage; 
int nPos; 
int nTrackPos: 

SCROLLINFO: 

This structure. allows you to completely specify the scroll bar parameters. 
The cbSize field must be set to the size of the SCROLLINFO structure. The jMask 
field contains flags indicating what other fields in the structure contain valid data. 
The nMin and nMax fields can contain the minimum and maximum scroll val
ues the scroll bar can report. Windows looks at the values in these fields if the 
fMask parameter contains the SIF _RANGE flag. Likewise, the nPos field sets the 
position of the scroll bar within its predefined range if the jMask field contains 
the SIF _POS flag. 

The nPage field allows a program to define the size of the currently view
able area of the screen in relation to the entire ~crollable area. This allows a user 
to have a feel for how much of the entire scrolling range is currently visible. This 



Windows, Controls, and Dialog Boxes Chapter 4 

field is used only if the }Mask field contains the SIF _PAGE flag. The last mem
ber of the SCROLLINFO structure, nTrackPos, isn't used by the SetScrolllnfo call 
and is ignored. 

The.fMask field can contain one last flag. Passing an SIF _DISABLENOSCROLL 
flag causes the scroll bar to be disabled but still visible. This is handy when the 
entire scrolling range is visible within the viewable area and no scrolling is nec
essary. Disabling the scroll bar in this case is often preferable to simply remov
ing the scroll bar completely. 

Those with a sharp eye for detail will notice a problem with the width of 
the fields in the SCROLLINFO structure. The nMin, nMax, and nPos fields are 
integers and therefore, in the world of Windows CE, are 32 bits wide. On the 
other hand, the WM_HSCROLL and WM_ VSCROLL messages can return only a 
16-bit position in the high word of the wParam parameter. If you're using scroll 
ranges greater than 65,535, use this function: 

BOOL GetScrol l Info CHWND hwnd, int fnBar, LPSCROLLINFO lpsi); 

As with SetScrolllnfo, the flags in thefnBarfield indicate the window handle 
that should be passed to the function. The SCROLLINFO structure is identical to 
the one used in SetScrolllnfo; however, before it can be passed lo (,'e/Scmll!11/i1, 
it must be initialized with the size of the structure in cbSize. An application 1nust 
also indicate what data it wants the function to return by setting the appropri
ate flags in thejMask field. The flags used injMask are the same as the ones used 
in SetScrolllnfo, with a couple of additions. Now an SIF _TRACKPOS flag can be 
passed to have the scroll bar return its current thumb position. When called during 
a WM_xSCROLL message, the nTrackPos field contains the real time position, while 
the nPos field contains the scroll bar position at the start of the drag of the thumb. 

The scroll bar is an unusual control in that it can be added easily to win
dows simply by specifying a window style flag. It's also unusual in that the control 
is placed outside the client area of the window. The reason for this assistance is 
that scroll bars are commonly needed by applications, so the Windows devel
opers made it easy to attach scroll bars to windows. Now let's look at the other 
basic Windows controls. 

Windows Controls 
While scroll bars hold a special place because of their easy association with stan
dard windows, there are a large number of other controls that Windows appli
cations often use, including buttons, edit boxes, and list boxes. In short, controls 
are simply predefined window classes. Each has a custom window procedure 

167 



Part I Windows Programming Basics 

supplied by Windows that gives each of these controls a tightly defined user and 
programming interface. 

Since a control is just another window, it can be created with a call to 
CreateWindow or CreateWindowEx or, as I will explain later in this chapter, 
automatically by the dialog manager during the creation of a dialog box. Like 
menus, controls notify the parent window of events via WM_COMMAND mes
sages encoding events and the ID and window handle of the control encoded 
in the parameters of the message. Controls can also be configured and manipu
lated using predefined messages sent to the control. Among other things, appli
cations can set the state of buttons, add items to or delete items from list boxes, 
and set the selection of text in edit boxes, all by sending messages to the controls. 

There are six predefined window control classes. They are 

• Button A wide variety of buttons. 

• Edit A window that can be used to enter or display text. 

• List A window that contains a list of strings. 

• Combo A combination edit box and list box. 

• Static A window that displays text or graphics that a user can't change. 

• Scroll bar A scroll bar not attached to a specific window. 

Each of these controls has a wide range of function, far too much for me to cover 
completely in this chapter. But I'll quickly review these controls, mentioning at 
least the highlights. Afterward, I'll show you an example program, CtlView, to 
demonstrate these controls and their interactions with their parent windows. 

Button Controls 

168 

Button controls enable several forms of input to the program. Buttons come in 
many styles, including push buttons, check boxes, and radio buttons. Each style 
is designed for a specific use-for example, push buttons are designed for re
ceiving momentary input, check boxes are designed for on/off input, and radio 
buttons allow a user to select one of a number of choices. 

Push Buttons 
In general, push buttons are used to invoke some action. When a user presses 
a push button using a stylus, the button sends a WM_COMMAND message with 
a BN_CLICKED (for button notification clicked) notify code in the high word of 
the wParam parameter. 



Windows, Controls, and Dialog Boxes Chapter 4 

Check Boxes 
Check boxes display a square box and a label that asks the user to specify a 
choice. A check box retains its state, either checked or unchecked, until the user 
clicks it again or the program forces the button to change state. In addition to 
the standard BS_CHECKBOX style, check boxes can come in a three-state style, 
BS_3STATE, that allows the button to be disabled and shown grayed out. Two 
additional styles, BS_AUTOCHECKBOX and BS_AUT03STATE, automatically 
update the state and look of the control to reflect the checked, the unchecked, 
and, in the case of the three-state check box, the disabled state. 

As with push buttons, check boxes send a BN_CLICKED notification when 
the button is clicked. Unless the check box has one of the automatic styles, it's 
the responsibility of the application to manually change the state of the button. 
This can be done by sending a BM_SETCHECK message to the button with the 
wParam set to 0 to uncheck the button or 1 to check the button. The three-state 
check boxes have a third, disabled, state that can be set by means of the 
BM_SETCHECK message with the wParam value set to 2. An application can 
determine the current state using the BM_GETCHECK message. 

Radio Buttons 
Radio buttons allow a user to select from a number of choices. Radio buttons 

are grouped in a set, with only one of the set ever being checked at a time. If 
it's using the standard BS_RADIOBUTTON style, the application is responsible 
for checking and unchecking the radio buttons so that only one is checked at 
a time. However, like check boxes, radio buttons have an alternative style, 
BS_AUTORADIOBUTTON, that automatically maintains the group of buttons so 
that only one is checked. 

Group Boxes 
Strangely, the group box is also a type of button. A group box appears to the 
user as a hollow box with an integrated text label surrounding a set of controls 
that are naturally grouped together. Group boxes are merely an organizational 
device and have no programming interface other than the text of the box, which 
is specified in the window title text upon creation of the group box. Group boxes 
should be created after the controls within the box are created. This ensures that 
the group box will be "beneath" the controls it contains in the window Z-order. 

You should also be careful when using group boxes on Windows CE de
vices. The problem isn't with the group box itself, but with the small size of the 
Windows CE screen. Group boxes take up valuable screen real estate that can 
be better used by functional controls. This is especially the case on the Pocket 

169 



Part I Windows Programming Basics 

170 

PC with its very small screen. In many cases, a line drawn between sets of con
trols can visually group the controls as well as a group box can. 

Customizing the Appearance of a Button 
You can further customize the appearance of the buttons described so far by using 
a number of additional styles. The styles, BS_RIGHT, BS_LEFT, BS_BOTTOM, and 
BS_ TOP, allow you to position the button text in a place other than the default 
center of the button. The BS_MULTILINE style allows you to specify more than 
one line of text in the button. The text is flowed to fit within the button. The 
newline character (\n) in the button text can be used to specifically define where 
line breaks occur. Windows CE doesn't support the BS_ICON and BS_BITMAP 
button styles supported by other versions of Windows. 

Owner-Draw Buttons 
You can totally control the look of a button by specifying the BS_OWNERDRAW 
style. When a button is specified as owner-draw, its owner window is entirely 
responsible for drawing the button for all the states in which it might occur. When 
a window contains an owner-draw button, it's sent a WM_DRAWITEM message 
to inform it that a button needs to be drawn. For this message, the wParam 
parameter contains the ID value for the button and the !Param parameter points 
to a DRAWITEMSTRUCT structure defined as 

typedef struct tagDRAWITEMSTRUCT 
UINT CtlType; 
UINT Ctl ID; 
UINT item ID; 
UINT itemAction; 
UINT itemState; 
HWND hwnditem; 
HDC hDC; 
RECT rcitem; 
DWORD itemData; 

DRAWITEMSTRUCT; 

The Ct/Type field is set to ODT_BUTTON, while the CtlID field, like the 
wParam parameter, contains the button's ID value. The itemAction field contains 
flags that indicate what needs to be drawn and why. The most significant of these 
fields is itemState, which contains the state (selected, disabled, and so forth) of 
the button. The hDC field contains the device context handle for the button 
window, while the rcltem RECT contains the dimensions of the button. The 
itemData field is NULL for owner-draw buttons. 

As you inight expect, the WM_DRA'X'ITEM handler contains a numher of 
GDI calls to draw lines, rectangles, and whatever else is needed to render the 
button. An important aspect of drawing a button is matching the standard colors 



Windows, Controls, and Dialog Boxes Chapter 4 

of the other windows in the system. Since these colors can change, they shouldn't 
be hard coded. You can query to find out which are the proper colors by using 
the function 

DWORD GetSysColor (int nlndex); 

This function returns an RGB color value for the colors defined for different 
aspects of windows and controls in the system. Among a number of predefined 
index values passed in the index parameter, an index of COLOR_BTNFACE returns 
the proper color for the face of a button, while COLOR_BTNSHADOW returns the 
dark color for creating the three-dimensional look of a button. 

The Edit Control 
The edit control is a window that allows the user to enter and edit text. As you 
might imagine, the edit control is one of the handiest controls in the Windows 
control pantheon. The edit control is equipped with full editing capability, in
cluding cut, copy, and paste interaction with the system clipboard, all without 
assistance from the application. Edit controls display a single line or, when the 
ES_MULTILINE style is specified, multiple lines of text. The Notepad ;tccl'ssory, 
provided with the desktop versions of Windows, is simply a top-level vvindm' 
that contains a multiline edit control. 

The edit control has a few other features that should be mentioned. An edit 
control with the ES_PASSWORD style displays an asterisk (*) character by default 
in the control for each character typed; the control saves the real character. The 
ES_READONLY style protects the text contained in the control so that it can be 
read, or copied into the clipboard, but not modified. The ES_LOWERCASE and 
ES_UPPERCASE styles force characters entered into the control to be changed 
to the specified case. 

You can add text to an edit control by using the WM_SETTEXT message 
and retrieve text by using the WM_GETTEXT message. Selection can be controlled 
using the EM_SETSEL message. This message specifies the starting and ending 
characters in the selected area. Other messages allow the position of the caret 
(the marker that indicates the current entry point in an edit field) to be queried 
and set. Multiline edit controls contain a number of additional messages to con
trol scrolling as well as to access characters by line and column position. 

The List Box Control 
The list box control displays a list of text items so that the user might select one 
or more of the items within the list. The list box stores the text, optionally sorts 
the items, and manages the display of the items, including scrolling. List boxes 

171 



Part I Windows Programming Basics 

can be configured to allow selection of a single item or multiple items or to prevent 
any selection at all. 

You can add an item to a list box by sending an LB_ADDSTRING or 
LB_INSERTSTRING message to the control, passing a pointer to the string to add 
the lParam parameter. The LB_ADDSTRING message places the newly added 
string at the end of the list of items, while LB_INSERTSTRING can place the string 
anywhere within the list of items in the list box. The list box can be searched 
for a particular item using the LB_FIND message. 

Selection status can be queried using LB_GETCURSEL for single selection list 
boxes. For multiple selection list boxes, LB_GETSELCOUNT and LB_GETSELITEMS 
can be used to retrieve the items currently selected. Items in the list box can be 
selected programmatically using the LB_SETCURSEL and LB_SETSEL messages. 

Windows CE supports most of the list box functionality available in other 
versions of Windows with the exception of owner-draw list boxes, as well as the 
LB_DIR family of messages. A new style, LBS_EX_CONSTSTRINGDATA, is sup
ported under Windows CE. A list box with this style doesn't store strings passed 
to it. Instead, the pointer to the string is stored, and the application is respon
sible for maintaining the string. For large arrays of strings that might be loaded 
from a resource, this procedure can save RAM because the list box won't main
tain a separate copy of the list of strings. 

The Combo Box Control 

172 

The combo box is (as the name implies) a combination of controls-in this case, 
a single-line edit control and a list box. The combo box is a space-efficient con
trol for selecting one item from a list of many or for providing an edit field with 
a list of predefined suggested entries. Under Windows CE, the combo box comes 
in two styles: drop-down and drop-down list. (Simple combo boxes aren't sup
ported.) The drop-down style combo box contains an edit field with a button at 
the right end. Clicking on the button displays a list box that might contain more 
selections. Clicking on one of the selections fills the edit field of the combo box 
with the selection. The drop-down list style replaces the edit box with a static 
text control. This allows the user to select from an item in the list but prevents 
the user from entering an item that's not in the list. 

Because the combo box combines the edit and list controls, a list of the 
messages used to control the combo box strongly resembles a merged list of the 
messages for the two base controls. CB_ADDSTRING, CB_INSERTSTRING, and 
CB_FINDSTRING act like their list box cousins. Likewise, the CB_SETEDITSELECT 
and CB_GETEDITSELECT messages set and query the selected characters in 



Windows, Controls, and Dialog Boxes Chapter 4 

the edit box of a drop-down or a drop-clown list combo box. To control the 
drop-clown state of a drop-down or drop-clown list combo box, the messages 
CB_SHOWDROPDOWN and CB_GETDROPPEDSTATE can be used. 

As in the case of the list box, Windows CE doesn't support owner-draw combo 
boxes. However, the combo box supports the CBS_EX_CONSTSTRINGDATA 
extended style, which instructs the combo box to store a pointer to the string for 
an item instead of the string itself. As with the list box LBS_EX_CONSTSTRINGDATA 
style, this procedure can save RAM if an application has a large array of strings 
stored in ROM because the combo box won't maintain a separate copy of the 
list of strings. 

Static Controls 
Static controls are windows that display text, icons, or bitmaps not intended for 
user interaction. You can use static text controls to label other controls in a win
dow. What a static control displays is defined by the text and the style for the 
control. Under Windows CE, static controls support the following styles: 

• SS_LEFT Displays a line of left-aligned text. The text is wrapped, if 
necessary, to fit inside the control. 

• SS_ CENTER Displays a line of text centered in the control. The text 
is wrapped, if necessary, to fit inside the control. 

• SS_RIGHT Displays a line of text aligned with the right side of the 
control. The text is wrapped, if necessary, to fit inside the control. 

• SS_LEFTNOWORDWRAP Displays a line of left-aligned text. The 
text isn't wrapped to multiple lines. Any text extending beyond the 
right side of the control is clipped. 

• SS_BITMAP Displays a bitmap. Window text for the control speci
fies the name of the resource containing the bitmap. 

• SS_ICON Displays an icon. Window text for the control specifies the 
name of the resource containing the icon. 

Static controls with the SS_NOTIFY style send a WM_COMMAND message 
when the control is clicked, enabled, or disabled, although the Windows CE 
version of the static control doesn't send a notification when it's double-clicked. 
The SS_CENTERIMAGE style, used in combination with the SS_BITMAP or SS_ICON 
style, centers the image within the control. The SS_NOPREFIX style can be used 
in combination with the text styles. It prevents the ampersand (&) character from 
being interpreted as indicating that the next character is an accelerator character. 

173 



Part I Windows Programming Basics 

Windows CE doesn't support static controls that display filled or hollow 
rectangles such as those drawn with the SS_ WHITEFRAME or SS_BLACKRECT 
style. Also, Windows CE doesn't support owner-draw static controls. 

The Scroll Bar Control 
The scroll bar control operates identically to the window scroll bars described 
previously with the exception that the fnBar field used in SetScrolllnfo and 
GetScrolllnfo must be set to SB_CTL. The hwnd field then must be set to the 
handle of the scroll bar control, not to the window that owns the scroll bar. As 
with window scroll bars, the owner of the scroll bar is responsible for fielding 
the scroll messages WM_ VSCROLL and WM_HSCROLL and setting the new po
sition of the scroll bar in response to these messages. 

The CtlView Example Program 

174 

The CtlView example program, shown in Figure 4-5, demonstrates all the con
trols I've just described. The example makes use of several application-defined 
child windows that contain various controls. You switch between the different 
child windows by clicking on one of five radio buttons displayed across the top 
of the main window. As each of the controls reports a notification through a 
WM_ COMMAND message, that notification is displayed in a list box on the right 
side of the window. CtlView is handy for observing just what messages a con
trol sends to its parent window and when they're sent. CtlView is designed to 
use different control layouts depending on the width of the screen. This means 
that even on the Pocket PC's narrow screen, all the controls are visible. 

Figure 4-5 The CtlView program 



Windows, Controls, and Dialog Boxes Chapter 4 

CtlView.h 
II====================================================================== 
II Header file 
II 
II Written for the book Programming Windows CE 
II Copyright !Cl 2001 Douglas Boling 
II====================================================================== 
II Returns number of elements 
ifdefine dim(xl (si zeof(xl I sizeof(x[0] l l 
11--------'-------,-------C------Cc"c-----------------------------------

// Generic defines and 
II 
struct d~codeUlNT 

UINT Code: 

LRESULT (*Fxnl(HWND, UINT, WPARAM, LPARAMl: 

ttctenne 
4fadef.i ne 
ttdefine 

ll Structure associates 
II messages 

11 StrucforeassocJates 
//:.me.nu . .IDs with a 

II Starting client 
II window IDs 

(continued) 

175 



Part I Windows Programming Basics 

Figure 4-5 (continued) 

~ 
! 

176 



Windows, Controls, and Dialog Boxes Chapter 4 

11---------------------------------------- -----------------------------
11 Function prototypes 
II 
int InitApp (HINSTANCE); 
HWND Initinstance CHINSTANCE. LPWSTR, int); 
int Terminstance CHINSTANCE. int); 

II Window procedures 
LRESULT CALLBACK FrameWndProc (HWND, UINT, WPARAM, LPARAMJ; 
LRESULT CALLBACK Cl ientWndProc (HWND, UINT. WPARAM. LPARAMl; 

11 Message handlers 
LRESULT DoCre.ateFrame (HWND, UINT, WPARAM •. LPARAM.); 
LRESULT oocommandframe (HWND, UINT, WPARAM, LPA~AM); 

LRESULT DoAddlineFrame (HWND. UINT, WPARAM. LPARAM); 
LRESULT DoDestroyFrame CHWND, UINT, WPARAM, LPARAMJ; 

11-••---,•--,--·-~-""-

II Window prototypes and. defines for 
ll 
#defi.ne .. BTNWND 

int InitBtnWrld 

If· Willdow procedtires 
LRESULT CALLBACK BtnWndProc 

LRESULT DoCreateBtnWhd ( HWND' UINT. WPARAM. LPARAMl; . '' ' " '' ,' . 
LRES()LTDoCtlColor.BtnWnd (HWND, UINT, WPARAM, L·PARAM.}; 
LRESULT DoConunandBtnWnd. CHWND, UINT, WPARAM, . LPARAM); 
LRESULT DoDrawitemBtnWnd ( HWND, UlNT, WPARAM, LPARAM); 
LRESULT DoMeasureitemBtnWnd CHWND, UINT, WPARAM. LPARAMl; 

l I• - - c - c • - • - - - - • - " - - c - •. - - • - - • - - - -. - - - - -. - c - - • - - - • - " - - - - • 

I l Window. prototypes and defines for 

// 
Jfcjefl he EDTTWND 
int lni tEditWnd 

// Window prb.cedures 
LRESULT CALLBACK .EditWndProc 

LRESULT .DoCreateEditWnd .(HWND. UINT' WPARAM, LPARAM); 
LRESULT DocommandEditWnd CHWND. UINT, WPARAM,. LPARAM); 
LRESULTOoDraWitemEditWlld <HWND, UINT •. · WPARAM. l-PARAMJ; 
LRESUL T OoMeasureJtemEditWnd HlWND. UlNT. WPARAM' LPARAMT: 

(continued) 

177 



Part I Windows Programming Basics 

"178 

Figure 4-5 (continued) 

11~ "~ ~ 0 .:i·~ . .:"·°'" '~ ... 0 ~'..·:-
.... 1f wind~w· ~po#c!~~p~s ·a;n~ · 11 . . ... ..· ... · 

0 #1Jefi~l: LIStWNO 
• int•:tf11.t'.L.iS:l;Wn~ 

·····f!·.Win96Wi ~l'PG~d;~~es· · .... 
LR!;SULT ·. CALLBACK·.Ll?t;:Wnd.f>roc 



Windows, Controls, and Dialog Boxes Chapter 4 

II Copyright (C) 2001 Douglas Boling 
II====================================================================== 
#include <windows.h> 
#include <commctrl .h> 
#include "CtlView.h" 

II For all that Windows stuff 
II Command bar includes 
II Program-specific stuff 

11----------------------------------------------------------------------
11 Global data 
II 
const TCHAR szAppName[J 
HINSTANCE hlnst; 

TEXT ("CtlView"); 
II Program instance handle 

II Message dispatch table for FrameWindowProc 
const struct decodeUINT FrameMessages[] = { 

} ; 

WM....:CREATE, DoCreateFrame, 
WM_COMMAND, DoCommandFrame, 
MYMSG_ADDUNE, DoAddL ineFrame, 
WM_DESTROY, DoDestroyFrame, 

INT 
TCHAR *.SZCtlWnds; 
HWND hWndClient; 

} RBTNDATA; 

U Text for main window radio buttons 
TCHAR*szBtnTitle[] ={TEXT ("Buttons"), 

TEXT ("Static"), TEXT ("Scroll")}; 
//Class names for child.windows containing controls 
TCHAR •szCtlwnds(] ~ {BTNWND, EDITWNDi LISTWND, STATWND, SCROLLWND}; 

INT nWndSel = 0; 

I I Initial fze. app1 icatJon. 
re = lnitApp · Chinstance): 
if Crc) return re; 

(continued) 

179 



Part I Windows Programming Basics 

Figure 4-5 (continued) 

180 



Windows, Controls, and Dialog Boxes Chapter 4 

if (lnitScrollWnd (hlnstance) != 0) return 2; 
return 0; 

IJ-----------C----------------------------------------------------------
1/ Initlnstance - Instance initialization 
II 
HWND Initlnstance (HINSTANCE hlnstance, LPWSTR lpCmdLine, int nCmdShow) { 

HWND hWnd; 

JI Save program instance handle in global variable. 
hlnst = hlnstance: 

II Create frame window. 
hWnd = Cr.eateWindow (szAppName, TEXT ("Control View"), WS_VISIBLE, 

CW_USEDE FAULT. CW_USEDEFAUL T, cw_usEDEFAUl T, 
CW....cUSEDEFAULT, NULL, NULL, hlnstance, NULU; 

II Return fail code if window not created. 
if ( !IsWindow (hW.nd}) return 0; 

Standard .·.show and >uPdate ···ca lTs 
ShowWi ndow <hWnd, nGmdShoW): 

(hWnd): 

int TermTnstallce (H!NSTANCE hinstance, int nDefRC) { 

!!===========.==============================='========'==================<== 

ll 
II 

Message handling procedures for Fr.ameWi ndow 

LRE'.S.ULT CALLBACKFrameWncifir'oc (HWND hWnd, UINT wMsg, 

INT 
ti 
II Search llless.agelisttosee if we need to handle th.is 
II messalJe• ·If in Hst, call procedure. 
ll 
for (i=.0:.i<dfm(FrameMessa es);i++) { 

if (wMsg =".' Fram.eMessages{ }.Code l 

(continued) 

181 



Part I Windows Programming Basics 

Figure 4-5 (continued) 

182 



Windows, Controls, and Dialog Boxes Chapter 4 

II Create report window. Size it so that it fits either on the right 
II or below the control windows, depending on the size of the screen. 
x = bWide lpcs->cxl2 : lpcs->x; 
y = bWide sHeight + 20 : Clpcs->cy-sHeight)l2+sHeight + 40; 
ex = bWide 
cy = bWide 

lpcs->cxl2 : lpcs->cx; 
lpcs->cy - sHeight : lpcs->cy - y; 

hwndChild = CreateWindowEx CWS_EX_CLIENTEDGE, TEXT ("listbox"), 
TEXT (""), WS_VISIBLE I WS_CHILD I WS_VSCROLL 
LBS_USETABSTOPS I LBS_NOINTEGRALHE!GHT, x. y, 
ex, cy,hWnd, CHMENU)!OC_RPTLIST, hlnst, NULL); 

II Destroy frame if window not created. 
if C!IsWindow ChwndChild)J 

OestroyWindow ChWndl: 
return 0; 

} 

II Initialize tab stops far display list box. 
i = 24; 
SendMessage .rnwndChil d. LB_SETTABSTOPS. l. ( LPARAM l&i); 

//Create the child windO.ws. Size them so that they fit under 
If the command bar and fill the left side 0.f the child area. 

lpcsc>x; 
bWi de sHei ght. + 20 : sHei ght + 40; 
bWide? lpcs->cx/2: lpcs->cx; 
bW.ide ? lpcs">cy - sHeight : (lpcsc>cy-sHeight)/2.+sHeight+40; 

for Ci = 0; i < 
hwndChild 

dimtszCtlWndsJ; i++) { 
CreateWi ndowEx CWS_EX_CLI ENT EDGE, szCtlWnds[ i J, 

TEXT(""), ws_CHILD. X, y, ex, cy, hWnd, 
(HMENUJ(!Dc_WNDSEL+i), hinst. NULU; 

II Destroy frame if client window not created. 
(!lsWindow (hwndChild)l { 

(hWnd); 

(continued) 

183 



Part I Windows Programming Basics 

Figure 4-5 (continued) 

184 



Windows, Controls, and Dialog Boxes Chapter 4 

11----------------------------------------------------------------------
11 DoDestroyFrame - Process WM_DESTROY message for window. 

II 
LRESULT DoDestroyFrame (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

PostQuitMessage (0): 

return 0: 
} 

BtnWnd.c 

II BtnWnd -

II 
window code 

II 
II 
I 
#include <windows.h> 
#include 'Ctlview.h" 

LRESU LTD rnwBut ton · ( HWND 
//,,----,"-,-, 
// 
l/ 

fl 
con.st str.uct decodeUINT BtnWndMessageS[] 

l: 

WM_CR.EATE, DoCfeateBtnWnd, 
WM_CHCOLORSTATIC, DoCtlColorBtnWnd. 

WM.c_COMMAND, DoCommandBtnWnd, 
WM_DRAWI TEM~ . DpDrawltemBtnWnd, 

// Stru.cture. defihing the c.ontrols in 
CTLWNDSTRUCT Btns f] ,;, { 

{TEXT C:BUTTON"l. IDC_PUSHBTN •. Tf:XT .U'Button''), 

10 •..• 10. 120 '• 23, BS_PUSHBUTTON.J· .. BS--NOTlFY}, 
{TEXT ("BUTTON"),·. IDLCHKBOX, TEXT \"Check 

10, 35, 120,< .23; BS_CHECKBOX}, 
{TEXT ('.'BUTTON"), lDC_ACHKBOX, TEXT ("Auto 

HJ, .•...•••. 60 ,·.110. ·.23, BS_AUTOCHECK.BOX}; .·. 

{TEXT• (".BUTTON"). roc_A3STBOX, TEXT ( "M!lltiline auto .3".state box'.'Y, 
l40, 60 •.. · .. 90,· .. 52,BS,,AUT03STATEJBS~MULTUTNEJ, 

{TEXT ( "BUTTON''.J, • TDCRADlOl, TEXT ("Au.to 
10. •120; . 2.3, BS.;:.AUTORADIOBUTTONL 

(continued) 

185 



Part I Windows Programming Basics 

Figure 4-5 (continued) 

186 



Windows, Controls, and Dialog Boxes Chapter 4 

LRESULT CALLBACK BtnWndProc CHWND hWnd, UINT wMsg, WPARAM wParam, 
LPARAM lParam) { 

} 

INT i: 

II 
II Search message list to see if we need to handle this 
II message. If in list, call procedure. 
II 
for (i = 0; 1 < dimCBtnWndMessages): i++) { 

if <wMsg == BtnWndMessages[i].Code) 
return (*BtnWndMessages[i].Fxn)(hWnd, wMsg, wParam, lParam); 

} 

return DefWtnd6•Pfoc ChWnd, wMsg, wParam, lParam): 

I I - - - - - - - - - c - ~ •. - - .• • -: :.. :.. - • • - - • - - - - - - - - - - - - - - - - - - - - - - - - - • • ~ c. ~ • c • - - - - - - - - - - -

I I DoCreateBtnWnd - Process WM_CREATE message for w:i ndow. 
II 
LRESU LT DoCreat.eBtnWnd {HWND hWnd, UINT wMsg, 

} 

'. LPARAM 1 Pa ram) { 

) 0NT. :::<·,·'/::,:', .: 
-:;,., 

,::". :, .... ' ~ 

f<>r x1 . .; ~~,.1· ~ ~i~"ia~ils > : i ++> { 

cr~~t~winuow NtnsfiJ •. szcl ass • 
.Btns[fJ; 1style j ws_\llSIBLE' f ws.:...:c~rto/ 

·. Btns[i],x, Btn!l[i].y 1 Btns[i].cx. Btns[iJ.cy; 
. bWnd. (HMUlUJ Btns[i]:nro, hinst; NULUi 

":' ·:: .: . ... : 

Az.C:On ~ L6a<iiciin ttiins.t. , TEXT c"TEXTJ cow·> > : ·. 
~ -~>~ ., ·., .:<. ·,:~·/·,:·<··'.'.;._.:·., . ._.:·_:: : ·<·. ~ 

If, We need to set tf}e initial state of the radio buttons, 
CheckRadiOBu:tton (hWnd, IDG_RAOl 01, IDLRADI02, lDG_RAD IOl l; 

----~~--~~-~---~-~~----~-----·---~-----·-----------~-

s~,o~etl~ol?:/~13.~nWrid:- ~prqc;ess WM.:...:CTLCOLO~xx messages for wi.ndow'. 

.•·. L.RE$un,; .. o~£{tp~l~t6~nwn~d··:(~~~~A~W.~:~.~ r~!iTt W~S9• •. · W·PARAM· wP~ram. 

return'. (LRE;S:L!tT)~e:t:St(l¢kObJect (WH ITE_;.BRUSH); ·. 
} 

//----~:-~/~,~-2~-'"-~-,_c--•l~~.;., - .. c .. _ --- .;..- c--C- ;.;. ____ -- _ ., _ ;.;.' 

1 / ooc~mm~n4~tnwni:L~ Pl!'ocess ·WM_COMMANO mess,<1ge for window. '// . / : '<. . .. ··.. .. . ·... . . . . .. ·. . 
. "-,:~·.:~~'. -~-:;~:, ·' x· ,. 

LRESIJH DoCp1riJ!i.a:n'.{f~tl.l\.fnC!"vMWNli: hWnd.; UINT. wMS:g, WPARAM wPah1m, 
_, ~ "',·.,.· ... ~,·:.·::(.~;.\ "?:::.LPARAM 1Par.?rtn> { 

TCHAR ,S.~~ttt!J:~ijl}'•·· 
INT f;. .. ·•c,· 

".(·.;);:,·\;>'.-"; ,.·': 

(continued) 

187 



Part I Windows Programming Basics 

Figure 4-5 (continued) 

188 



Windows, Controls, and Dialog Boxes Chapter 4 

II Reflect the messages to the report window. 
wsprintf (szOut, TEXT ("WM_DRAWITEM Act:%x State:%x"), 

pdi->itemAction, pdi->itemStatel; 
SendMessage (GetParent ChWnd), MYMSG_ADDLINE, pdi->CtlID, 

( LPARAMlszOut); 

II Create pens for drawing. 
lpen.lopnStyle = PS_SOLID; 
lpen.lopnWidth.x = 3; 
lpen.lopnWidth.y = 3; 
lpen.lopnColor = GetSysColor CCOLOR_3DSHADOWJ; 
hPenShadow = CreatePenindirect (&lpen); 

lpen.lopnWidth.x =I; 
lpen.lopnWidth.y = l; 
lpen. lopnColor = GetSysColor (COLOR_3DLIGHTJ; 
hPenlight = CreatePenindirect C&lpenl; 

lpen. lopnColor ;: GetSysColor CCOLOR_3DDKSHADOW); 
hPen.DkShadow = Crea.teP.en!ndi rect (&lpenl; 

II Create a brush for the face of the button. 
hBr = CreateSolidBrush (GetSysColor (COLOR~3DFACE)); 

II Draw. a rectangle w.ith a thick outside b.order to start the 
l! frame drawing. 
hOld Pen "' Se l ectObject ( pdi ->hDC. hPenShadow); 
hOldBr = SelectObj~ct (pdi->hDC, hBr); 
Rectangle (pdi·>hDC~ pdi->rcltem.left. pdi->rcitem.top, 

pdi->rcltem.right, pdi->rcitem.bottom): 

II Draw the uppef left Inside line. 
ptin[B].x = pdi·>rcrtem,left + l; 
ptln[B].y = pdi->rcitem.bottom - 2; 
ptin(lJ.x = pdi~>rcltem.left + 1: 
pctlnUJ.y = pdi ·>rcitem.top + 1; 
ptin[2J.x"' pdi?rcitem,right - 2; 
ptln.[2J;y = pdi->rcitem.top .+ 1; 

} 

Select a pen to draw shadow or light side of butt.on. 
{pdi->it.emState & .. ODs_SfLECTEOl { 
SelectObject (pdj.->hOC, hPenDkShadow); 

e.l se { 
SelectObject (pdlc>hDC, hPenlightl: 

Polyline. {pdi-;>.nDC, ptin, .3): 

(continued) 

189 



Part I Windows Programming Basics 

190 

Figure 4-5 (continued) 

II .Lf .seiected, al.so dra.w a bright lin.e inside the lower 
I/.. right corner . 

. if (pdi->itemState & ODS_SHECTED) 
SelectObject (pdi->hDC. hPe.nLight); 
ptln(l].x • pd~->rcitem.ri~ht - 2; 

l 

· ptln[l].y =· pdi~>rcitem.bottom - 2; 
Polyline Cpdf->hDC, ptln, 3}; 

/}Now ~raw the.blackuutside line 
11 r.i ght corner .• 
pt°utC0J.x= pdi->rcltemileH; 
pt0ut[0J .y ..,. pdi ->r.citem .• bottom -
ptout[2J,x = pdi ->rcltem. right -
ptOut.(2].y ·';' pdi ->rcitem .. top; 

> <o 

SelectClbj .ect ·•(pd 1-> h DC, hP enIJ ~shactow): 
Cpdi->1temState & ODS.'.:sH~CTED). { 
ptOut[lJ.x= pdi c>rcltem .. left; · 
ptouttlJ.y = pdi ->rdtem;to~: 

Ei1 se .. · · ·.· • ... <• 
ptDut[l) :x = .pd;~ >rel.tern. right - I: 
pt.Ollt u}~.y. C! .pdi c) rcltem •. bott<}hl -

,, ' ,,, ,',, ,', '" ' </,\"',,'' <,'' '', 



Windows, Controls, and Dialog Boxes Chapter 4 

II Clean up. First select the original brush and pen into the DC. 
SelectObject (pdi->hDC, hOldBr); 
SelectObject (pdi->hDC, hOldPen); 

II Now delete the brushes and pens created. 
DeleteObject (hBr); 
DeleteObject (hPenShadow); 
DeleteObject (hPenDkShadow): 
DeleteObject (hPenLightl: 
return 0: 

EditWnd.c 
11=====,.=========c==;===============""'===================:==="'======z==== 
11 EditWnct - Edit control Window code 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2001 Douglas Boling 

1fi nclude . <windows, h> 
f,!i ncl.ude ·~ctlvi ew. h" 

. extern Hrt>15"rANCE hinst: 
/I-:- - , - - - - ' - c.- "c· -.- ' - • ". -

11 Gl obci.l data 
JI 
11· Mess.age dispatch tabl:e ... for £ditWndWi~dowProc 
ponst struct decodeUINT Edi tWndMessages[] ;= { 

}; 

YjM-.C REA.TE:, Doc re.ate Ect i tWnd, 
Wl(.cOMMAND, DoCommamiEd.i tWhd .• 

II Structure .defining the controls .i.n the.Window 
CTLWNDSTRU.CT ·Edits[] = { 

. fT£XT ("edit"), IDCSINGLE'.UNE~ TEXT U'Single 
10, 10, l.~0. 23,ES;.:AtJTdtiSCROLLl, 

('1~<li.t")' I DC,._Mutf ItlNE,i'fEXl-: ( "Mu.1ti1 i ne edif;contrOl "). 
3.5' 180, .· 70, .Es-,t;tuttIL:I NE f ES;.:J\U'FOVSCROLL}, . 

Hlc~PASSBOX, TEXT C':'l, 
··· EkPASSWORD}, 

}; . · .. · ...... ·· ... ·· < ·.·· 
// StructureJabelhig the edit control Wt~LCOMMAND notifications 
NOT{LABHS <nJEdfttl "= .{{TE.XT (".EN_SETFOCUS "), 0x0100}. 

{nx:r ("EN_KI LL.FOCUS'')' 0x0200}. 
{:TEXT ( "EN_cHANGE ")' 0x0300}. 

(continued) 

191 



part \ WindoWS prograrnroinQ sasiCS 

figure 4·5 (continued) 



Windows, Controls, and Dialog Boxes Chapter 4 

//----------------------------------------------------------------------
// DoCreateEditWnd - Process WM_CREATE message for window. 
II 
LRESULT DoCreateEditWnd (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

I NT i ; 

for (i = 0; i < dim(Editsl; i++) { 

CreateWindow (Edits[iJ.szClass, Edits[i].szTitle, 

return 0; 

Edits[i]. !Style I WS_VISIBLE I WS_CHILD I WS_BORDER, 
Edits[i].x, Edits{i].y, Edits[i].cx, Edits[i].cy, 
hWnd, (HMENU) Edits[i] .nID, hinst, NULL); 

jj-------------------------------------------------------~--------C-~C--
// DoCommandEditWnd - Process WM..;.;COMMAND message for window. 
// 
LRESULT .DoCommandEditWnd <HWND .hWnd. UINT wMsg. WPARAM wParam, 

LPARAM lParam} { 
TCHAR sz0ut(128]; 
INT i; 

for Ci = 0; i. < dim(nTEditl; i++) { 
if (HIWORD (wParam) == nl Edit[i J .wNoti ficati on) { 

lstrcpy (szOut. nlEdit[i],pszLabell; 
break; 

if (i == dim(nl Edit)) 
wsprintf (szOut, TEXT ("notification: %x"), HIWORD (wParam)); 

SendMessage (GetParent (hWnd), MYMSG_ADDLINE, wParam, 
{LPARAMlszOut) .; 

return 0; 

ListWnd.C· 

II ListWnd • List box control window .code 
II 
// Written for the book Programming W.indows CE 
I I Copyright ( C) 2001 Douglas Boling 

(continued) 

193 



Part I Windows Programming Basics 

Figure 4-5 (continued) 

194 



Windows, Controls, and Dialog Boxes Chapter 4 

11----------------------------------------------------------------------
11 InitListWnd - ListWnd window initialization 
II 
int InitlistWnd (HINSTANCE hinstance) { 

WNDCLASS we; 

II Register application ListWnd window class. 
we.style= 0: II Window style 
wc.1pfnWndProc = ListWndProc: II Callback 

I.DG_ARROWJ; 

(continued) 

195 



Part I Windows Programming Basics 

Figure 4-5 (continued) 

196 



Windows, Controls, and Dialog Boxes Chapter 4 

if (i == dim(nllist)) 
wsprintf (szOut, TEXT ("notification: %x"l, HIWORO lwParamll; 

SendMessage (GetParent ChWnd), MYMSG_ADDLINE, wParam, 
(LPARAM)szOut); 

return 0; 

StatWnd.c 

11 StatWnd - Static control window code 
II 
II Written for the book Programmi.ng Windows CE 
I I Copyright < C) 2001 Douglas Boling 

11 ='========,,,==========·===',.====="=====.=========,.=='="'==='=='==='=======''""="'~°"'= 
lfi nc 1 ude <windows. h> 
#include °Ctlvi.ew.h" 

ex~ern. • .. ·.HtNSTAN%hipst; 
l/.c , - - ' - ' - ' -·- • ·' • , " - , - , - • " ••- , -'-· - • " 
/l Global·.· data 
// 
l! 

II 

(continued) 

197 



Part I Windows Programming Basics 

198 

Figure 4-5 (continued) 

t./. Sl;ruct~relalle'ltntrthe • $.ta:IJt. confrol .. Wf<LCOMMAND 
N{)TELABELS rilStatii;[j ·;;; .f{T~F.G:'$1NLCL}.CKEDnJ; 0J, 

.· · .{TEXT .< ···s~N.J3NASLE ".) ~ 
.. {TEx.l ("STN.;_ofSAS.LE'.'L 

. int 1nftStatWrld(HIN$1ANCE. '11lf1St°'nce) 
·WN.DCLASS we: 

wc.cbWndE~t!'a z.0; 

w.c.:hlrlst~nce •. =hlnstar>cl'l·.: 
we. hlcon . ·"'•· NULL.·. 

wc:hbr$ackgrourfd ~ 
wc. lpszMenuName ··.,,,, 

111c. J p~zCl (ls s~anie ;= 



Windows, Controls, and Dialog Boxes Chapter 4 

11----------------------------------------------------------------------
11 DoCreateStatWnd ·- Process WM_CREATE message for window. 
II 
LRESULT DoCreateStatWnd CHWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
INT i; 

for (i = 0; i < dim(Stats); i++) { 

CreateWindow (Stats[i].szClass. Stats[i].szTitle. 
Stats[i].lStyle / WS_VISIBLE / WS,..;CHILD, 
StatS[i].x, Stats[i].y, Stats[i].cx, Stats[i].cy, 
hWn<f, CHMENU) Stats[i] .nID, hinst. NULL); 

return 0; 

11---------------------------------------------------·---------"---
ll DoCommandStatWrid - •Proeess WM_COMMAND message for window~ 
.II . ··r 

. 1"RE$ULT PoComm11ndStatWhct,lHWt1orhWnd, UINT wMsg.wPARAM W!Parllm.>··•··· 
.. •· . .. LPAAAM 1 Paraml { . . . 
. TCHAR sz0utE128lf •. 
lNT i: 

.. for (i = 0; i < di;(~·lStatic}; i++) { . • E 
if CHIWORD.C>flPal"alllf ,:;.:,: nlStatitfiJ;wNotific~t1dn} { 

{stciuh nlStat1c(iJ.pszLa!lel l( 

if u ="' dimCnlStatici·1J . 
wsprintf CszOut~ _TEXT ("notification: %x"L: HIWORQ CwParam)J; 

( GetPafe.rit JhWnd}. MYMSG_ADDLINE. 
< LPARAMJ..szOut.); 

•• f(Str,o}l YJl)d.•·• 0~; S,Cpo]l; bat-~~-ftt~of w1 OdoW .code. 
::/f:. N >,~>";· 

I/ Wr;itten for tffe .~6# Pcrbgramlliing Windows ·CE. 
/I C6p.Yri llht. JC)~ ~~0i Douglas Boling 

.. /./~~·=~~=:;:~~~~·~~~:~¥;~·~~#~.~.~~=?::;=•==~===;:;::=;::~.~w==:;::=;~==~~~=:;===::;~;::;=:::::,~-~~~ 

(continued) 

199 



Part I Windows Programming Basics 

Figure 4·5 (continued) 

200 



Windows, Controls, and Dialog Boxes Chapter 4 

11----------------------------------------------------------------------
11 InitScrollWnd - ScrollWnd window initialization 
II 
int InitScrollWnd (HINSTANCE hinstance) { 

WNDCLASS we; 

II Register application ScrollWnd window class. 
we.style= 0: II Window style 
wc. lpfnWndProc = ScrollWndProc: I I Callback function 
wc.cbClsExtra = 0: 
wc.cbWndExtra = 0: 
we. hihstance = hinstan.ce': · 
w.c .. hicon = NULL. 

II 

(continued) 

201 



Part I Windows Programming Basics 

Figure 4-5 (continued) 

202 



Windows, Controls, and Dialog Boxes Chapter 4 

II Act on the scroll code. 
switch CLOWoRD CwParam)) { 
case SB_LINEUP: II Also SB_LINELEFT 

sPos -= 2: 
break; 

case SB_LINEDOWN: 
sPos += 2; 
break: 

case SB_PAGEUP: 

II Also SB_LINERIGHT 

When the CtlView program starts, the WM_CREATE handler of the main 
window, DoCreateFrame, creates a row of radio buttons across the top of the 
window, a list box for message reporting, and five different child windows. (The 
five child windows are all created without the WS_ VISIBLE style, so they're ini
tially hidden.) Each of the child windows in turn creates a number of controls. 
Before returning from DoCreateFrame, CtlView checks one of the auto radio 
buttons and makes the BtnWnd child window (the window that contains the 
example button controls) visible using ShowWindow. 

As each of the controls on the child windows is tapped, clicked, or se
lected, the control sends WM_ COMMAND messages to its parent window. That 

203 



Part I Windows Programming Basics 

204 

window in turn sends the information from the WM_COMMAND message to its 
parent, the frame window, using the application-defined message MYMSG_ 
ADDLINE. There the notification data is formatted and displayed in the list box 
on the right side of the frame window. 

The other function of the frame window is to switch between the differ
ent child windows. The application accomplishes this by displaying only the 
child window that matches the selection of the radio buttons across the top of 
the frame window. The processing for this is done in the WM_ COMMAND han
dler, DoCommandFrame in CtlView.c. 

The best way to discover how and when these controls send notifications 
is to run the example program and use each of the controls. Figure 4-6 shows 
the Control View window with the button controls displayed. As each of the but
tons is clicked, a BN_CLICKED notification is sent to the parent window of the 
control. The parent window simply labels the notification and forwards it to the 
display list box. Because the Check Box button isn't an auto check box, CtlView 
must manually change the state of the check box when a user clicks it. The 
other check boxes and radio buttons, however, do automatically change state 
because they were created with the BS_AUTOCHECKBOX, BS_AUT03STATE, 
and BS_AUTORADIOBUTTON styles. The square button with the exclamation 
mark inside a triangular icon is an owner-draw button. 

~ :~: ::' ~:n [0~~~:'.~l 
0 Auto radio rutton 

id:lOO _ 
id:lOO EN_CHA~E 
id:106 WM_DRAWITBVI Actlon:l StatB:O 
Id: 103 BN_CLICKEO 
ld:106 WM_OO.AWITEM Action:4 StatB:lO 
ld:106 WM_DRAWilEM Action:2 St.ate:11 
id: 106 W'M_DRAWilEM Actlon:2 State: 10 
Id: 106 BN_CLIO<ED 
ld:106 WM_DRAWITEtJI Action:! StatB:O 
ld:103 EN_QlCKED 
ld:103 EN_QlCKED 
id:103 EN QJCKED 

Figure 4-6 The Control View window with the button child window displayed in the 
left pane 

The source code for each child window is contained in a separate file. The 
source for the window containing the button controls is contained in BtnWnd.c. 
The file contains an initialization routine (lnitBtn Wnd) that registers the window 
and a window procedure (BtnWndProc) for the window itself. The button con
trols themselves are created during the WM_ CREATE message using Create Window. 
The position, style, and other aspects of each control are contained in an array 
of structures named Btns. The DoCreateBtnWnd function cycles through each 
of the entries in the array, calling Create Window for each one. Each child win
dow in CtiView uses a similar process to create its controls. 



Windows, Controls, and Dialog Boxes Chapter 4 

To support the owner-draw button, BtnWndProc must handle the 
WM_DRAWITEM message. The WM_DRAWITEM message is sent when the but
ton needs to be drawn because it has changed state, gained or lost the focus, 
or been uncovered. Although the DrawButton function (called each time a 
WM_DRAWITEM message is received) expends a great deal of effort to make the 
button look like a standard button, there's no reason a button can't have any look 
you want. 

The other window procedures provide only basic support for their controls. 
The WM_COMMAND handlers simply reflect the notifications back to the main 
window. The ScrollWnd child window procedure, Scrol!WndProc, handles 
WM_ VSCROLL and WM_HSCROLL messages because that's how scroll bar con
trols communicate with their parent windows. 

Controls and Colors 
Finally, a word about colors. In CtlView, the frame window class is registered 
in a subtly different way from the way I've registered it in previous programs. 
In the CtlView example, I set the background brush for the frame window us
ing the line 

wc.hbrBackground = (HBRUSH)GetSysColorBrush (COLOR_STATIC); 

This sets the background color of the frame window to the same background 
color I used to draw the radio buttons. The function GetSysColorBrush returns a 
brush that matches the color used by the system to draw various objects in the 
system. In this case, the constant COLOR_STATIC is passed to GetSysColorBrush, 
which then returns the background color Windows uses when drawing static text 
and the text for check box and radio buttons. This makes the frame window 
background match the static text background. 

In the window that contains the button controls, the check box and radio 
button background is changed to match the white background of the button 
window, by fielding the WM_CTLCOLORSTATIC message. This message is sent 
to the parent of a static control or a button control when the button is a check 
box or radio button to ask the parent which colors to use when drawing the 
control. In CtlView, the button window returns the handle to a white brush so 
that the control background matches the white background of the window. You 
modify the color of a push button by fielding the WM_CTLCOLORBUTTON mes
sage. Other controls send different WM_CTLCOLORxx.x messages so that the col
ors used to draw them can be modified by the parent window. Another example 
of the use of the WM_CTLCOLORSTATIC message can be seen in the PowerBar 
example in Chapter 15. 

205 



Part I Windows Programming Basics 

Dialog Boxes 
The CtlView example program demonstrates a complex use of controls. While 
CtlView creates these controls for demonstration purposes, controls are gener
ally used to query user input. As CtlView demonstrates, a fair amount of code is 
necessary for creating and placing the controls in the windows. Fortunately, you 
don't need this code because Windows provides a service for exactly this pur
pose: dialog boxes. Dialog boxes query data from the user or present data to the 
user, hence the term dialog box. 

Dialog boxes are windows created by Windows using a template provided 
by an application. The template describes the type and placement of the con
trols in the window. The Dialog Manager-the part of Windows that creates and 
manages dialog boxes-also provides default functionality for switching focus 
between the controls using the Tab key as well as default actions for the Enter 
and Escape keys. In addition, Windows provides a default dialog box window 
class, freeing applications from the necessity of registering a window class for 
each of the dialog boxes it might create. 

Dialog boxes come in two types: modal and modeless. A modal dialog 
prevents the user from using the application until the dialog box has been dis
missed. For example, the File Open and Print dialog boxes are modal. A modeless 
dialog box can be used interactively with the remainder of the application. The 
Find dialog box in Microsoft Pocket Word is modeless; the user doesn't need to 
dismiss it before typing in the main window. 

Like other windows, dialog boxes have a window procedure, although 
the dialog box window procedure is constructed somewhat differently from stan
dard windows procedures. Rather than passing unprocessed messages to the 
DefWindowProc procedure for default processing, a dialog box procedure re
turns TRUE if it processed the message and FALSE if it didn't process the mes
sage. Windows supplies a default procedure, DejDialogProc, for use in specific 
cases-that is, for specialized modeless dialog boxes that have their own win
dow classes. 

Dialog Box Resource Templates 

206 

Most of the time, the description for the size and placement of the dialog box 
and for the controls is provided via a resource called a dialog template. You can 
create a dialog template in memory, but unless a program has an overriding need 
to format the size and shape of the dialog box on the fly, loading a dialog tem
plate directly from a resource is a much better choice. As is the case for other 
resources such as menus, dialog templates are contained in the resource (RC) 
file. The template is referenced by the application using either its name or its 
resource ID. Here is a dialog template for a simple dialog box: 



Windows, Controls, and Dialog Boxes Chapter 4 

GetVal DIALOG discardable 10, 10, 75, 60 
STYLE WS_POPUP I WS_VISIBLE WS_CAPTION WS_SYSMENU I DS_CENTER 
EXSTYLE WS_EX_CAPTIONOKBTN 
CAPTION "Enter line number" 
BEGIN 

LTEXT "Enter &value:" IDD_VALLABEL, 5. 10. 40, 12 
EDITTEXT IDD_VALUE, 50, 10. 20, 12. WS_TABSTOP 
AUTO RAD I OBUTTON "&Decimal", IDD_DEC, 5. 25, 60, 12. 

WS_TABSTOP I WS_GROUP 
AUTO RAD I OBUTTON "&Hex", IDD_HEX, 5. 40, 60, 12 

END 

The syntax for a dialog template follows a simple pattern similar to that for 
a menu resource. First is the name or ID of the resource followed by the key
word DIALOG identifying that what follows is a dialog template. The optional 
discardable keyword is followed by the position and size of the dialog box. The 
position specified is, by default, relative to the owner window of the dialog box. 

The units of measurement in a dialog box aren't pixels but dialog units. A 
dialog unit is defined as one-quarter of the average width of the characters in 
the system font for horizontal units and one-eighth of the height of one charac
ter from the same font for vertical units. The goal is to create a unit of measure
ment independent of the display technology; in practice, dialog boxes still need 
to be tested in all display resolutions in which the box might be displayed. You 
can compute a pixel vs. dialog unit conversion using the GetDialogBaseUnits 
function, but you'll rarely find it necessary. The visual tools that come with most 
compilers these days isolate a programmer from terms such as dialog units, but 
it's still a good idea to know just how dialog boxes are described in an RC file. 

The STYLE line of code specifies the style flags for the dialog box. The styles 
include the standard window (WS_xx) style flags used for windows as well as a 
series of dialog (DS_xx) style flags specific to dialog boxes. Windows CE sup
ports the following dialog box styles: 

• DS_ABSALIGN Places the dialog box relative to the upper left cor
ner of the screen instead of basing the position on the owner window. 

• DS_CENTER Centers the dialog box vertically and horizontally on 
the screen. 

• DS_MODALFRAME Creates a dialog box with a modal dialog box 
frame that can be combined with a title bar and System menu by speci
fying the WS_CAPTION and WS_SYSMENU styles. 

• DS_SETFONT Tells Windows to use a nondefault font that is speci
fied in the dialog template. 

207 



Part I Windows Programming Basics 

208 

• DS_SETFOREGROUND Brings the dialog box to the foreground 
after it's created. If an application not in the foreground displays a 
dialog box, this style forces the dialog box to the top of the Z-order 
so that the user will see it. 

Most dialog boxes are created with at least some combination of the 
WS_POPUP, WS_CAPTION, and WS_SYSMENU style flags. The WS_POPUP flag 
indicates that the dialog box is a top-level window. The WS_CAPTION style gives 
the dialog box a title bar. A title bar allows the user to drag the dialog box around 
as well as serving as a site for title text for the dialog box. The WS_SYSMENU 
style causes the dialog box to have a Close button on the right end of the title 
bar, thus eliminating the need for a command bar control to provide the Close 
button. Note that Windows CE uses this flag differently from other versions of 
Windows, in which the flag indicates that a system menu is to be placed on the 
end of the title bar. 

The EX.STYLE line of code specifies the extended style flags for the dialog 
box. For Windows CE, these flags are particularly important. The WS_EX_ 
CAPTIONOKBTN flag tells the dialog manager to place an OK button on the title 
bar to the immediate left of the Close button. Having both OK and Close (or Can
cel) buttons on the title bar saves precious space in dialog boxes that are displayed 
on the small screens typical of Windows CE devices. The WS_EX_CONTEXTHELP 
extended style places a Help button on the title bar to the immediate left of the 
OK button. Clicking on this button results in a WM_HELP message being sent 
to the dialog box procedure. 

The CAPTION line of code specifies the title bar text of the dialog, pro
vided that the WS_CAPTION style was specified so that the dialog box would 
have a title bar. 

The lines describing the type and placement of the controls in the dialog 
box are enclosed in BEGIN and END keywords. Each control is specified either 
by a particular keyword, in the case of commonly used controls, or by the key
word CONIROL, which is a generic placeholder that can specify any window class 
to be placed in the dialog box. The LTEXT line of code on the previous page 
specifies a static left-justified text control. The keyword is followed by the de
fault text for the control in quotes. The next parameter is the ID of the control, 
which must be unique for the dialog box. In this template, the ID is a constant 
defined in an include file that is included by both the resource script and the C 
or C++ file containing the dialog box procedure. 

The next four values are the location and size of the control, in dialog units, 
relative to the upper left comer of the dialog box. Following that, any explicit style 
flags can be specified for the control. In the case of the LTEXTiine, no style flags 
are necessary, but as you can see, the EDfITEXT and first AUTORADIOBUTTON 



Windows, Controls, and Dialog Boxes Chapter 4 

entries each have style flags specified. Each of the control keywords have sub
tly different syntax. For example, the EDITIEXT!ine doesn't have a field for default 
text. The style flags for the individual controls deserve notice. The edit control 
and the first of the two radio buttons have a WS_TABSTOP style. The dialog 
manager looks for controls with the WS_TABSTOP style to determine which 
control gets focus when the user presses the Tab key. In this example, pressing 
the Tab key results in focus being switched between the edit control and the first 
radio button. 

The WS_GROUP style on the first radio button starts a new group of con
trols. All the controls following the radio button are grouped together, up to the 
next control that has the WS_GROUP style. Grouping auto radio buttons allows 
only one radio button at a time to be selected. 

Another benefit of grouping is that focus can be changed among the con
trols within a group by exploiting the cursor keys as well as the Tab key. The 
first member of a group should have a WS_TABSTOP style; this allows the user 
to tab to the group of controls and then use the cursor keys to switch the focus 
among the controls in the group. 

The CONTROL statement isn't used in this example, but it's important and 
merits some explanation. It's a generic statement that allows inclusion of any 
window class in a dialog box. It has the following syntax: 

CONTROL "text", id, class, style, x, y, width, height 
[, extended-style] 

For this entry, the default text and control ID are similar to the other state
ments, but the next field, class, is new. It specifies the window class of the con
trol you want to place in the dialog box. The class field is followed by the style 
flags and then by the location and size of your control. Finally, the CONTROL state
ment has a field for extended style flags. If you use eMbedded Visual C++ to cre
ate a dialog box and look at the resulting RC file using a text editor, you'll see that 
it uses CONTROL statements instead of the more readable LTEXT, EDITTEXT, and 
EWTON statements. There's no functional difference between an edit control 
created with a CONTROL statement and one created with an EDIT/EXT statement. 
The CONTROL statement is a generic version of the more specific keywords. The 
CONTROL statement also allows inclusion of controls that don't have a special 
keyword associated with them. 

Creating a Dialog Box 
Creating and displaying a dialog box is simple; just use one of the many dialog 
box creation functions. The first two are these: 

209 



Part I Windows Programming Basics 

210 

int DialogBox (HANDLE hlnstance, LPCTSTR lpTemplate, HWND hWndOwner, 
DLGPROC lpDialogFunc); 

int DialogBoxParam (HINSTANCE hlnstance, LPCTSTR lpTemplate, 
HWND hWndOwner, DLGPROC lpDialogFunc, 
LPARAM dwlnitParam); 

These two functions differ only in DialogBoxParam's additional LPARAM 
parameter, so I'll talk about them at the same time. The first parameter to these 
functions is the instance handle of the program. The second parameter speci
fies the name or ID of the resource containing the dialog template. As with other 
resources, to specify a resource ID instead of a name requires the use of the 
MAKEINTRESOURCE macro. 

The third parameter is the handle of the window that will own the dialog 
box. The owning window isn't the parent of the dialog box because, were that 
true, the dialog box would be clipped to fit inside the parent. Ownership means 
instead that the dialog box will be hidden when the owner window is minimized 
and will always appear above the owner window in the Z-order. 

The fourth parameter is a pointer to the dialog box procedure for the dia
log box. I'll describe the dialog box procedure shortly. The DialogBoxParam 
function has a fifth parameter, which is a user-defined value that's passed to the 
dialog box procedure when the dialog box is to be initialized. This helpful value 
can be used to pass a pointer to a structure of data that can be referenced when 
your application is initializing the dialog box controls. 

Two other dialog box creation functions create modal dialogs. They are the 
following: 

int DialogBoxlndirect (HANDLE hlnstance, LPDLGTEMPLATE lpTemplate, 
HWND hWndParent, DLGPROC lpDialogFunc); 

int DialogBoxlndirectParam (HINSTANCE hinstance, 
LPCDLGTEMPLATE DialogTemplate, HWND hWndParent, 
DLGPROC lpDialogFunc, LPARAM dwlnitParam); 

The difference between these two functions and the two previously de
scribed is that these two use a dialog box template in memory to define the dialog 
box rather than using a resource. This allows a program to dynamically create a 
dialog box template on the fly. The second parameter to these functions points 
to a DLGTEMPLATE structure, which describes the overall dialog box window, 
followed by an array of DLGITEMTEMPLATE structures defining the individual 
controls. 

When any of these four functions are called, the dialog manager creates a 
modal dialog box using Ihe tempiale passed. The window that owns the dialog 
is disabled, and the dialog manager then enters its own internal GetMessage/ 



Windows, Controls, and Dialog Boxes Chapter 4 

DispatchMessage message processing loop; this loop doesn't exit until the dia
log box is destroyed. Because of this, these functions don't return to the caller 
until the dialog box has been destroyed. The WM_ENTERIDLE message that's 
sent to owner windows in other versions of Windows while the dialog box is 
displayed isn't supported under Windows CE. 

If an application wanted to create a modal dialog box with the template 
shown above and pass a value to the dialog box procedure, it might call this: 

DialogBoxParam (hlnstance, TEXT ("GetVal"I. hWnd, GetValDlgProc, 
0xl2341; 

The hlnstance and h Wnd parameters would be the instance handle of the 
application and the handle of the owner window. The Get Val string is the name 
of the dialog box template, while GetValDlgProc is the name of the dialog box 
procedure. Finally, Ox1234 is an application-defined value. In this case, it might 
be used to provide a default value in the dialog box. 

Dialog Box Procedures 
The final component necessary for a dialog box is the dialog box procedure. As 
in the case of a window procedure, the purpose of the dialog box procedure is 
to field messages sent to the window-in this case, a dialog box window-and 
perform the appropriate processing. In fact, a dialog box procedure is simply a 
special case of a window procedure, although we should pay attention to a few 
differences between the two. 

The first difference, as mentioned in the previous section, is that a dialog 
box procedure doesn't pass unprocessed messages to DefWindowProc. Instead, 
the procedure returns TRUE for messages it processes and FALSE for messages 
that it doesn't process. The dialog manager uses this return value to determine 
whether the message needs to be passed to the default dialog box procedure. 

The second difference from standard window procedures is the addition 
of a new message, WM_INITDIALOG. Dialog box procedures perform any initiali
zation of the controls during the processing of this message. Also, if the dialog 
box was created with DialogBoxParam or DialogBoxlndirectParam, the lParam 
value is the generic parameter passed during the call that created the dialog box. 
While it might seem that the controls could be initialized during the WM_ CREATE 
message, that doesn't work. The problem is that during the WM_CREATE mes
sage, the controls on the dialog box haven't yet been created, so they can't be 
initialized. The WM_INITDIALOG message is sent after the controls have been 
created and before the dialog box is made visible, which is the perfect time to 
initialize the controls. 

211 



Part I Windows Programming Basics 

212 

Here are a few other minor differences between a window procedure and 
a dialog box procedure. Most dialog box procedures don't need to process the 
WM_PAINT message because any necessary painting is done by the controls or, 
in the case of owner-draw controls, in response to control requests. Most of the 
code in a dialog box procedure is responding to WM_ COMMAND messages from 
the controls. As with menus, the WM_COMMAND messages are parsed by the 
control ID values. Two special predefined ID values that a dialog box has to deal 
with are IDOK and IDCANCEL. IDOK is assigned to the OK button on the title 
bar of the dialog box, while IDCANCEL is assigned to the Close button. In re
sponse to a click of either button, a dialog box procedure should call 

BOOL EndDialog (HWND hDlg, int nResult); 

EndDialog closes the dialog box and returns control to the caller of what
ever function created the dialog box. The hDlg parameter is the handle of the 
dialog box, while the nResult parameter is the value that's passed back as the 
return value of the function that created the dialog box. 

The difference, of course, between handling the IDOK and IDCANCEL 
buttons is that if the OK button is clicked, the dialog box procedure should collect 
any relevant data from the dialog box controls to return to the calling procedure 
before it calls EndDialog. 

A dialog box procedure to handle the GetVal template previously described 
is shown here: 

II====================================================================== 
II GetVal Dialog procedure 
II 
BOOL CALLBACK GetValDlgProc (HWND hWnd, UINT wMsg, WPARAM wPa~am, 

LPARAM lParam) { 
TCHAR szText[64]; 
INT nVal. nBase; 

switch (wMsg) { 
case WM_INITDIALOG: 

SetDlgltemlnt (hWnd, IDD_VALUE, 0, TRUE); 
SendDlgltemMessage (hWnd, IDD_VALUE, EM_LIMITTEXT, 

sizeof (szText)-1, 0); 
CheckRadioButton (hWnd, IDD_DEC, IDD_HEX, IDD_DEC); 
return TRUE; 

case WM_COMMAND: 
switch (LOWORD (wParam)) { 

case Tnn LJCV~ 
lUU_llL/\. 



Windows, Controls, and Dialog Boxes Chapter 4 

II See if Hex already checked. 
if (SendDlgitemMessage (hWnd, IDD_HEX, 

BM_GETSTATE, 0, 0) == BST_CHECKED) 
return TRUE; 

II Get text from edit control. 
GetDlgltemText (hWnd, IDD_VALUE, szText, 

sizeof (szText)); 
11 Convert value from decimal. and then set as hex. 
if (ConvertValue (szText, 10, &nVal)) { 

} 

II If conversion successful, set new value. 
wsprintf (szText, TEXT ("%X"), nVal); 
SetDlgitemText (hWnd, IDD_VALUE, szText); 
II Set radio button. 
CheckRadioButton (hWnd, IDD_DEC, IDD_HEX, 

IDD_HEX); 
else { 

MessageBox (hWnd, 
TEXT ("Value not valid"), 
TEXT ("Error"), MB_OK); 

return TRUE; 

case IDD_DEC: 
II See if Decimal already checked. 
if (SendDlgitemMessage (hWnd, IDD_DEC, 

BM_GETSTATE, 0, 0) == BST_CHECKED) 
return TRUE; 

II Get text from edit control. 
GetDlgitemText (hWnd, IDD_VALUE, szText, 

sizeof (szText)); 
II Convert value from hex. then set as decimal. 
if (ConvertValue (szText, 16, &nVal)) { 

II If conversion successful, set new value. 
wsprintf (szText, TEXT ("%d"), nVal ); 
SetDlgitemText (hWnd, IDD_VALUE, szText); 
II Set radio button. 
CheckRadioButton (hWnd, IDD_DEC, IDD_HEX, 

IDD_DEC); 
else { 

II If bad conversion, tell user. 
MessageBox (hWnd, 

return TRUE; 

TEXT ("Value not valid"), 
TEXT ("Error"), MB_OK); 

(continued) 

213 



Part I Windows Programming Basics 

} 

break; 
} 

case !DOK: 
II Get the current text. 
GetDlgltemText (hWnd, IDD_VALUE, szText, 

sizeof (szText)); 
II See which radio button checked. 
if (SendDlgltemMessage (hWnd, IDD_DEC, 

BM_GETSTATE, 0, 0) == BST_CHECKED) 
nBase = 10: 

else 
nBase = 16; 

II Convert the string to a number. 
if (ConvertValue (szText, nBase, &nVal)) 

EndDialog (hWnd, nVal); 
else 

MessageBox (hWnd, 

break; 

case IDCANCEL: 

TEXT ("Value not valid"), 
TEXT ("Error"), MB_OK); 

EndDialog (hWnd, 0); 
return TRUE; 

return FALSE: 

This is a typical example of a dialog box procedure for a simple dialog 
box. The only messages that are processed are the WM_INITDIALOG and 
WM_ COMMAND messages. The WM_INITDIALOG message is used to initialize 
the edit control using a number passed, via DialogBoxParam, through to the 
/Param value. The radio button controls aren't auto radio buttons because the dialog 
box procedure needs to prevent the buttons from changing if the value in the 
entry field is invalid. The WM_ COMMAND message is parsed by the control ID, 
where the appropriate processing takes place. The IDOK and IDCANCEL but
tons aren't in the dialog box template; as mentioned earlier, those buttons are 
placed by the dialog manager in the title bar of the dialog box. 

Modeless Dialog Boxes 

214 

I've talked so far about modal dialog boxes that prevent the user from using other 
parts of the application before the dialog box is dismissed. Modeless dialog boxes, 
on t..11.e ot..11.er hand, allow t11e user to work with 0th.er parts of the application while 
the dialog box is still open. Creating and using modeless dialog boxes requires 



Windows, Controls, and Dialog Boxes Chapter 4 

a bit more work. For example, you create modeless dialog boxes using differ
ent functions than those for modal dialog boxes: 

HWND CreateDialog CHINSTANCE hlnstance, LPCTSTR lpTemplate, 
HWND hWndOwner, DLGPROC lpDialogFunc); 

HWND CreateDialoglndirect (HINSTANCE hlnstance, LPCDLGTEMPLATE lpTemplate, 
HWND hWndOwner, DLGPROC lpDialogFunc); 

HWND CreateDialoglndirect CHINSTANCE hlnstance, 

or 

LPCDLGTEMPLATE lpTemplate, HWND hWndOwner, 
DLGPROC lpDialogFunc); 

HWND CreateDialoglndirectParam (HINSTANCE hlnstance, 
LPCDLGTEMPLATE lpTemplate, HWND hWndOwner, 
DLGPROC lpDialogFunc, LPARAM lParaminit); 

The parameters in these functions mirror the creation functions for the modal 
dialog boxes with similar parameters. The difference is that these functions re
turn immediately after creating the dialog boxes. Each function returns 0 if the 
create failed or returns the handle to the dialog box window if the create suc
ceeded. 

The handle returned after a successful creation is important because appli
cations that use modeless dialog boxes must modify their message loop code to 
accommodate the dialog box. The new message loop should look similar to the 
following: 

while (GetMessage (&msg, NULL, 0, 0)) { 

} 

if ((hMlDlg == 0) I I (!IsDialogMessage (hMlDlg, &msg))) { 
TranslateMessage (&msg); 
DispatchMessage (&msg); 

} 

The difference from a modal dialog box message loop is that if the modeless 
dialog box is being displayed, messages should be checked to see whether they're 
dialog messages. If they're not dialog messages, your application forwards them 
to TranslateMessage and DispatchMessage. The code shown above simply checks 
to see whether the dialog box exists by checking a global variable containing 
the handle to the modeless dialog box and, if it's not 0, calls JsDialogMessage. If 
IsDialogMessage doesn't translate and dispatch the message itself, the message 
is sent to the standard TranslateMessage/ Dispatch Message body of the message 
loop. Of course, this code assumes that the handle returned by CreateDialog (or 
whatever function creates the dialog box) is saved in hMlDlg and that hM!Dlg is 
set to 0 when the dialog box is closed. 

215 



Part I Windows Programming Basics 

Another difference between modal and modeless dialog boxes is in the 
dialog box procedure. Instead of using EndDialog to close the dialog box, you 
must call Destroy Window instead. This is because EndDialog is designed to work 
only with the internal message loop processing that's performed with a modal 
dialog box. Finally, an application usually won't want more than one instance 
of a modeless dialog box displayed at a time. An easy way to prevent this is to 
check the global copy of the window handle to see whether it's nonzero before 
calling CreateDialog. To do this, the dialog box procedure must set the global 
handle to 0 after it calls DestroyWindow. 

Property Sheets 

216 

To the user, a property sheet is a dialog box with one or more tabs across the 
top that allow the user to switch among different "pages" of the dialog box. To 
the programmer, a property sheet is a series of stacked dialog boxes. Only the 
top dialog box is visible; the dialog manager is responsible for displaying the 
dialog box associated with the tab on which the user clicks. However you ap
proach property sheets, they're invaluable given the limited screen size of 
Windows CE devices. 

Each page of the property sheet, named appropriately enough a property 
page, is a dialog box template, either loaded from a resource or created dynami
cally in memory. Each property page has its own dialog box procedure. The frame 
around the property sheets is maintained by the dialog manager, so the advan
tages of property sheets come with little overhead to the programmer. Unlike 
the property sheets supported in other versions of Windows, the property sheets 
in Windows CE don't support the Apply button. Also, the OK and Cancel but
tons for the property sheet are contained in the title bar, not positioned below 
the pages. 

Creating a Property Sheet 
Instead of the dialog box creation functions, use this new function to create a 
property sheet: 

int PropertySheet CLPCPROPSHEETHEADER lppsph); 

The PropertySheet function creates the property sheet according to the informa
tion contained in the PROPSHEETHEADER structure, which is defined as the 
following: 

typedef struct _PROPSHEETHEADER 
DWORD dwSize; 
DWORD dwFlags; 
HWND hwndOwner; 
HINSTANCE hinstance; 



Windows, Controls, and Dialog Boxes Chapter 4 

union 

} ; 

HICON hicon; 
LPCWSTR pszicon; 

LPCWSTR pszCaption; 
UINT nPages; 
union { 

UINT nStartPage; 
LPCWSTR pStartPage; 

} ; 

union { 

} ; 

LPCPROPSHEETPAGE ppsp; 
HPROPSHEETPAGE FAR *phpage; 

PFNPROPSHEETCALLBACK pfnCallback; 
PROPSHEETHEADER; 

Filling in this convoluted structure isn't as imposing a task as it might look. 
The dwSize field is the standard size field that must be initialized with the size 
of the structure. The dwFlags field contains the creation flags that define how 
the property sheet is created, which fields of the structure are valid, and how 
the property sheet behaves. Some of the flags indicate which fields in the struc
ture are used. Cl'll talk about those flags when I describe the other fields.) Two 
other flags set the behavior of the property sheet. The PSH_PROPTITLE flag 
appends the string "Properties" to the end of the caption specified in the pszCaption 
field. The PSH_MODELESS flag causes the PropertySheet function to create a 
modeless property sheet and immediately return. A modeless property sheet is 
like a modeless dialog box; it allows the user to switch back to the original window 
while the property sheet is still being displayed. 

The next two fields are the handle of the owner window and the instance 
handle of the application. Neither the hlcon nor the pszlcon field is used in Windows 
CE, so both fields should be set to 0. The pszCaption field should point to the title 
bar text for the property sheet. The nStartPage/pStartPage union should be set 
to indicate the page that should be initially displayed. This can be selected either 
by number or by title if the PSH_USEPSTARTPAGE flag is set in the dwFlags field. 

The ppsp/phpage union points to either an array of PROPSHEETPAGE struc
tures describing each of the property pages or handles to previously created 
property pages. For either of these, the nPages field must be set to the number 
of entries of the array of structures or page handles. To indicate that the pointer 
points to an array of PROPSHEETPAGE structures, set the PSH_PROPSHEETPAGE 
flag in the dwFlags field. I'll describe both the structure and how to create indi
vidual pages shortly. 

The pfnCallBack field is an optional pointer to a procedure that's called 
twice-when the property sheet is about to be created and again when it's about 

217 



Part I Windows Programming Basics 

218 

to be initialized. The callback function allows applications to fine-tune the ap
pearance of the property sheet for the rare times when it's necessary. This field 
is ignored unless the PSP _USECALLBACK flag is set in the dwFlags field. One 
place the callback is used is in Pocket PC applications, to place the tabs on the 
bottom of the property sheet. 

Creating a Property Page 
As I mentioned earlier, individual property pages can be specified by an array 
of PROPSHEETPAGE structures or an array of handles to existing property pages. 
Creating a property page is accomplished with a call to the following: 

HPROPSHEETPAGE CreatePropertySheetPage (LPCPROPSHEETPAGE lppsp); 

This function is passed a pointer to the same PROPSHEETPAGE structure 
and returns a handle to a property page. PROPSHEETPAGE is defined as this: 

typedef struct _PROPSHEETPAGE 
DWORD dwSize; 
DWORD dwFlags; 
HINSTANCE hlnstance; 
union { 

LPCSTR pszTemplate; 
LPCDLGTEMPLATE pResource; 

} ; 

union { 

} ; 

HICON hicon; 
LPCSTR pszlcon; 

LPCSTR pszTitle; 
DLGPROC pfnDlgProc; 
LPARAM lParam; 
LPFNPSPCALLBACK pfnCallback; 
UINT FAR * pcRefParent; 

PROPSHEETPAGE; 

The structure looks similar to the PROPSHEETHEADER structure, leading 
with a dwSize and a dwFlags field followed by an hlnstance field. In this struc
ture, h!nstance is the handle of the module from which the resources will be 
loaded. The dwFlags field again specifies which fields of the structure are used 
and how they're used, as well as a few flags specifying the characteristics of the 
page itself. 

The pszTemplate/pResource union specifies the dialog box template used 
to define the page. If the PSP _DLGINDIRECT flag is set in the dwFlags field, the 
union points to a dialog box template in memory. Otherwise, the field specifies 
the name of a dialog box resource. The h!con/pszlcon union isn't used in Windows 



Windows, Controls, and Dialog Boxes Chapter 4 

CE and should be set to 0. If the dwFlags field contains a PSP _USETITLE flag, 
the pszTitle field points to the text used on the tab for the page. Otherwise, the 
tab text is taken from the caption field in the dialog box template. The pfnDlgProc 
field points to the dialog box procedure for this specific page, and the lParam 
field is an application-defined parameter that can be used to pass data to the dialog 
box procedure. The pfnCallback field can point to a callback procedure that's 
called twice-when the page is about to be created and when it's about to be 
destroyed. Again, like the callback for the property sheet, the property page 
callback allows applications to fine-tune the page characteristics. This field is 
ignored unless the dwFlags field contains the PSP _USECALLBACK flag. Finally, 
the pcRefCount field can contain a pointer to an integer that will store a refer
ence count for the page. This field is ignored unless the flags field contains the 
PSP _USEREFPARENT flag. 

Windows CE supports the PSP _PREMATURE flag, which causes a property 
page to be created when the property sheet that owns it is created. Normally, a 
property page isn't created until the first time it's shown. This has an impact on 
property pages that communicate and cooperate with each other. Without the 
PSP _PREMATURE flag, the only property page that's automatically created wlirn 
the property sheet is created is the page that is displayed first. So at tli;1t 111<> 
ment, that first page has no sibling pages to communicate with. l lsi11g tlw 

PSP _PREMATURE flag, you can ensure that a page is created when the pmpl·rty 
sheet is created, even though it isn't the first page in the sheet. While it's l':1.~y 

to get overwhelmed by all these structures, simply using the default values and 
not using the optional fields results in a powerful and easily maintainable prop
erty sheet that's also as easy to construct as a set of individual dialog boxes. 

Once a property sheet has been created, the application can add and de
lete pages. The application adds a page by sending a PSM_ADDPAGE message 
to the property sheet window. The message must contain the handle of a pre
viously created property page in lParam; wParam isn't used. Likewise, the appli
cation can remove a page by sending a PSM_REMOVEPAGE message to the 
property sheet window. The application specifies a page for deletion either by 
setting wParam to the zero-based index of the page selected for removal or by 
passing the handle to that page in lParam. 

The code below creates a simple property sheet with three pages. Each of 
the pages references a dialog box template resource. As you can see, most of 
the initialization of the structures can be performed in a fairly mechanical fashion. 

PROPSHEETHEADER psh; 
PROPSHEETPAGE psp[3]; 
INT i; 

(continued) 

219 



Part I Windows Programming Basics 

220 

II Initialize page structures with generic information. 
memset (&psp, 0, sizeof (psp)); //Zero out all unused values. 
for (i = 0; i < dim(psp); i++) { 

psp[i].dwSize = sizeof (PROPSHEETPAGE); 
psp[iJ.dwFlags = PSP_DEFAULT; // No special processing needed 
psp[iJ.hinstance = hinst; // Instance handle where the 

JI dialog templates are located 
II Now do the page-specific stuff. 
psp[0].pszTemplate =TEXT ("Pagel"); // Name of dialog resource for page 
psp[0].pfnDlgProc = PagelDlgProc; // Pointer to dialog proc for page 1 

psp[lJ.pszTemplate =TEXT ("Page2"); //Name of dialog resource for page 2 
psp[l].pfnDlgProc = Page2DlgProc; // Pointer to dialog proc for page 2 

psp[2].pszTemplate =TEXT ("Page3"); // Name of dialog resource for page 3 
psp[2].pfnDlgProc = Page3DlgProc; II Pointer to dialog proc for page 3 

II !nit property sheet header structure. 
psh.dwSize = sizeof (PROPSHEETHEADER); 
psh.dwFlags = PSH_PROPSHEETPAGE; // We are using templates, not handles. 
psh.hwndParent = hWnd; 
psh.hlnstance = hinst; 

JI Handle of the owner window 
JI Instance handle of the application 

psh.pszCaption =TEXT ("Property sheet title"); 
psh.nPages = dim(psp); //Number of pages 
psh.nStartPage = 0; // Index of page to be shown first 
psh.ppsp = psp; // Pointer to page structures 
psh.pfnCallback = 0; // We don't need a callback procedure. 

II Create property sheet. This returns when the user dismisses the sheet 
II by tapping OK or the Close button. 
i = PropertySheet (&psh); 

While this fragment has a fair amount of structure filling, it's boilerplate code. 
Everything not defined, such as the page dialog box resource templates and the 
page dialog box procedures, is required for dialog boxes as well as property 
sheets. So aside from the boilerplate stuff, property sheets require little, if any, 
work beyond simple dialog boxes. 

Property Page Procedures 
The procedures that back up each of the property pages differ in only a few ways 
from standard dialog box procedures. First, as I mentioned previously, unless the 
PSP _PREMATURE flag is used, pages aren't created immediately when the prop
erty sheet is created. Instead, each page is created and WM_INITDIALOG messages 
are sent only when the page is initially shown. Also, the lParam parameter doesn't 
point to a user-defined parameter; inslea<l, it points to the PROPSHEETPAGE strnc
ture that defined the page. Of course, that structure contains a user-definable value 
that can be used to pass data to the dialog box procedure. 



Windows, Controls, and Dialog Boxes Chapter 4 

Also, a property sheet procedure doesn't field the IDOK and IDCANCEL 
control IDs for the OK and Close buttons on a standard dialog box. These but
tons instead are handled by the system-provided property sheet procedure that 
coordinates the display and management of each page. When the OK or Close 
button is tapped, the property sheet sends a WM_NOTIFY message to each sheet 
notifying them that one of the two buttons has been tapped and that they should 
acknowledge that it's okay to close the property sheet. 

WM_NOTIFY 
While this is the first time I've mentioned the WM_NOTIFY message, it has be
come a mainstay of the new common controls added to Windows over the last 
few years. The WM_NOTIFY message is essentially a redefined WM_ COMMAND 
message, which instead of encoding the reason for the message in one of the 
parameters passes a pointer to an extensible structure instead. This has allowed 
the WM_NOTIFY message to be extended and adapted for each of the controls 
that use it. In the case of property sheets, the WM_NOTIFY message is sent under 
a number of conditions: when the user taps the OK button, when the user taps 
the Close button, when the page gains or loses focus from or to another page, 
or when the user requests help. 

At a minimum, the WM_NOTIFY message is sent with lParam pointing to 
an NMHDR structure defined as the following: 

typedef struct tagNMHDR { 
HWND hwndFrom; 
UINT idFrom; 
UINT code; 

} NMHDR; 

The hwndFrom field contains the handle of the window that sent the no
tify message. For property sheets, this is the property sheet window. The idFrom 
field contains the ID of the control if a control is sending the notification. Finally, 
the code field contains the notification code. While this basic structure doesn't 
contain any more information than the WM_COMMAND message, often this 
structure is extended with additional fields appended to the structure. The no
tification code then indicates what, if any, additional fields are appended to the 
notification structure. 

Switching Pages 
When a user switches from one page to the next, the Dialog Manager sends a 
WM_NOTIFY message with the code PSN_KILLACTIVE to the page currently 
being displayed. The dialog box procedure should then validate the data on the 
page. If it's permissible for the user to change the page, the dialog box proce
dure should then set the return value of the window structure of the page to 

221 



Part I Windows Programming Basics 

PSNRET_NOERROR and return TRUE. You set the PSNRET_NOERROR return 
field by calling SetWindowLong with DWL_MSGRESULT, as in the following line 
of code: 

SetWindowlong (hwndPage, DWL_MSGRESULT, PSNRET_NOERROR); 

where hwndPage is the handle of the property sheet page. A page can keep focus 
by returning PSNRET_INVALID_NOCHANGEPAGE in the return field. Assuming 
a page has indicated that it's okay to lose focus, the page being switched to 
receives a PSN_SETACTIVE notification via a WM_NOTIFY message. The page 
can then accept the focus or specify another page that should receive the focus. 

Closing a Property Sheet 
When the user taps on the OK button, the property sheet procedure sends a 
WM_NOTIFY with the notification code PSN_KILLACTIVE to the page currently 
being displayed, followed by a WM_NOTIFY with the notification code PSN_APPLY 
to each of the pages that have been created. Each page procedure should save 
any data from the page controls when it receives the PSN_APPLY notification code. 

When the user clicks the Close button, a PSN_QUERYCANCEL notification 
is sent to the page procedure of the page currently being displayed. All this 
notification requires is that the page procedure return TRUE to prevent the close 
or FALSE to allow the close. A further notification, PSN_RESET, is then sent to 
all the pages that have been created, indicating that the property sheet is about 
to be destroyed. 

Common Dialogs 

222 

In the early days of Windows, it was a rite of passage for a Windows developer 
to write his or her own File Open dialog box. A File Open dialog box is com
plex-it must display a list of the possible files from a specific directory, allow 
file navigation, and return a fully justified filename back to the application. While 
it was great for programmers to swap stories about how they struggled with their 
unique implementation of a File Open dialog, it was hard on the users. Users 
had to learn a different file open interface for every Windows application. 

Windows now provides a set of common dialog boxes that perform typi
cal functions, such as selecting a filename to open or save or picking a color. 
These standard dialog boxes (called common dialogs) serve two purposes. First, 
common dialogs lift from developers the burden of having to create these dia
log boxes from scratch. Second, and just as important, common dialogs provide 
a common interface to the user across different applications. (These days, Windows 
programmers swap horror stories aboul learning CONL) 



Windows, Controls, and Dialog Boxes Chapter 4 

Windows CE provides four common dialogs: File Open, Save As, Print, and 
Choose Color. Common dialogs, such as Find, Choose Font, and Page Setup, that 
are available under other versions of Windows aren't supported under Windows 
CE. The other advantage of the common dialogs is that they have a customized 
look for each platform while retaining the same programming interface. This 
makes it easy to use, say, the File Open dialog on both the H/PC and the Pocket 
PC because the dialog box has the same interface on both systems, even though 
the look of the dialog box is vastly different on the two platforms. Figure 4-7 shows 
the File Open dialog on the H/PC; Figure 4-8 shows the File Open dialog box 
on the Pocket PC. 

Figure 4-7 The File Open dialog on a Handheld PC 

II• . • I. ' 

Open 

~Blank Note 
~Bookl 
I\[) Meeting No... Templa .. . 

~Meeting No ... Templa .. . 
l\i[)Memo Templa .. . 
~Memo Templa .. . 
l\i[)Phone Memo 

Figure 4-8 The File Open dialog on a Pocket PC 

Instead of showing you how to use the common dialogs here, I'll let the 
next example program, DlgDemo, show you. That program demonstrates all four 
supported common dialog boxes. 

223 



Part I Windows Programming Basics 

The DlgDemo Example Program 

224 

The DlgDemo program demonstrates basic dialog boxes, modeless dialog boxes, 
property sheets, and common dialogs. When you start DlgDemo, it displays a 
window that shows the WM_ COMMAND and WM_NOTIFY messages sent by the 
various controls in the dialogs, similar to the right side of the CtlView window. 
The different dialogs can be opened using the various menu items. Figure 4-9 
shows the Dialog Demo window with the property sheet dialog displayed. 

Button id:c8 
Button 1d:ce 
Button id:cB 
Button 1d:ce 
Button 1d:ce 
Button 1d:ce 
Button id:ce 
Button 1d:ce 
Button id:cb 
Button 1d:cb 
Button id:cc 
Button id:c8 
Button 1d:c8 
Button id:c9 
Button id:c9 
Button id:cb 
Button id:cb 
Button 
Edit 
Edit 1d:d2 
Edit id:d2 
Edit 1d:d2 
Edit 1d:d2 
Edit id:d3 
Edit 1d:d3 
Edit 1d:d4 
Edit id:d4 
Edit 
Button 
Button 1d:ce 

Dialog Demo 

WM COMMAND: BN SETFOCUS 
WM::::DRAWITEM Adion:l State:O 
WM COMMAND: BN KILLFOCUS 
WM-DRAWITEM Adion:4 State:lO 
WM::::DRAWITEM Action:2 State:ll 
WM_DRAWITEM Action:2 State:lO 
WM_C 
WM_D 
WM_C 
WM_ COM 
WM_ COM 
WM_ COM 
WM_ COM 
WM_ COM 
WM_ COM 
WM_COM 
WM_ COM 
PSNJ<ILL 
PSN_SET 
WM_ COM 
WM_ COM 
WM_CO 
WM_CO _ 
WM_COMMAND: EN_SETFOCUS 
WM_COMMAND: EN_KILLFOCUS 
WM_COMMAND: EN_SETFOCUS 
WM_COMMAND: EN_KILLFOCUS 
PSN_KILLACTIVE 
PSN_SET ACTIVE 
WM_DRAWITEM Actrn:l State:O 

Figure 4-9 The Dialog Demo window 

The basic dialog box is a simple "about box" launched by selecting the Help 
About menu. The property sheet is launched by selecting the File Property Sheet 
menu. The property sheet dialog contains five pages corresponding to the dif
ferent windows in the CtlView example. The common dialog boxes are launched 
from the File Open, File Save, File Color, and File Print menu items. The DlgDemo 
source code is shown in Figure 4-10 . 

.//. i nc,1 'u,~e 
#fn<,:1uclil ''c.ornm<.:trl .h"· 

Figure 4-10 The DlgDemo program 



Windows, Controls, and Dialog Boxes Chapter 4 

11----------------------------------------------------------------------
II Icons and bitmaps 
II 
ID_ICON ICON "DlgDemo.ico" II Program icon 
IDLBTNICON ICON "btnicon.ico" II Bitmap used in owner-draw button 
statbmp BITMAP "statbmp.bmp" II Bitmap used in static window 

11----------------------------------------------------------------------
11 Menu, the RC data resource is needed by the menu bar 
II 
IDJ4ENU RCDATA MOVEABLE PURE 
BEGIN 

ID_MENU, 2, 
-2, 100, TBSTATE_ENABLED, TBSTYLE_DROPDOWNITBSTVLE_AUTOSIZE,5,0,0, 
-2, 101. TBSTATE_ENABLED, TBSTYLLDROPDOWN I TBSTYLLAUTOSIZE ,3. 0, l 

END 
IDJ4ENU MENU DISCARDABLE 
BEGIN 

PQPUP ''&File" 
BEG.IN 

MEl'.IUTTEM "Op,en,.,. ,. " .•. 
MENUITEM "Save •.•. /\ 
MENUITEM SEPARATOR 
.MENU ITEM "Color.; • '\ 
MENU ITEM ~·Pr; nt. ~ .", 
MENUITEM SEPARATOR 
MENU ITEM "Property Sheet", 
MENUITEM "Modeless Dialog". 
MENU ITEM SEPARATOR 
M.ENUITEM "(&xit". 

POPUP "&Help" 
f.lf:'GTN 

MENUITEM "&About •.• ~. 

-:·.:-;,.:·,: .,,' 

;';,.>:<~·.:. 

/1 Property page tempi ates Jr .. . .. 

I Ol>LCot.6R · 
IDM_/iRl~T 

IDM-EXIT 

IDM_ABOUT 

0. 125, 90 

IDC_PUSHBTN. . 5. 5. 80 •. 12, 
W$_TABSTOP I B$_NOTIFY 

IDC_CHKBOX, 5, 20, 80, 12, 
WS_TABSTOP I BS_NOHFY 

(continued) 

225 



Part l Windows Programming Basics 

Figure 4-10 (continued) 

£1{0 . 

226 



Windows, Controls, and Dialog Boxes Chapter 4 

ID_SCROLLPAGE DIALOG discardable 0. 0, 60. 80 
CAPTION "Scroll" 
BEGIN 

SCROLLBAR IDC_LRSCROLL. 5. 5. 70. 12. 
WS_TABSTOP 

SCROLLBAR IDG_UDSCROLL. 80, 5. 12. 70. 
WS_TABSTOP I SBS_VERT 

ENO 
/!----------------------------------------------------------------------
// Clear list; modeless dialog box template. 
II 
Clearbox DIALOG discardabJe 60, 10, 70. 30 
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_MODALFRAME 
CAPTION "Clear" 
BEGIN 

DEFPUSHBUTTON "Clear Listbox" 
IDD_CLEAR, 5; 5, 60, 20 

END 

/1---------~-------•-------•c-•--------------------------~~·:·---
I/ About box:dia)og .box template 
II 
aboutbox D.IALOG discardable 10 .• 10, 132, 40 
STYLE WS_POPUP I ltl$_VISIBLE I WS_CAPT.ION I W$_SYSMENU I OS.c.CENTER I 

D.LMODALFRAME 
CAPTION "About" 
BEGIN 

ICON LD_ICON -1, 5. 5, 0. 0 

LTEXT ~DlgDemo - Written for the book Programming Windows 
CE Copyright 2001 Doug1as Boling" 

-1. 28, 
END 

DlgDetno.h 

I/ Header .f.il~ 
II 
JI Writ.ten for the book Programming. Windows CE 
II C6pyright ·(C) 2001 Douglas Boling 

II Returns riumbef of elements 
#de~ine dim(x) (Jizeof(~) I size6f(x[0Jll 

5, 100, 30 

\ 

ll----•----0--~--------~-----------------------------·------·-----------
11 Gene.ri c defi n.es .arid data types 
II 

(continued) 

227 



Part I Windows Programming Basics 

228 

Figure 4-10 (continued) 

#define 
ifdefi ne 
f,!de-ffo~ 

J/define 
f,ldefin~ 
#define• 
~defin~ 
#define 
/{define 
//,define 
J,!defi ne 
1/detine·. 

lt Identi~i efs for th~ property 
1/defi ne ID--BTNPAGE 50 
f,!define 1D.:.EofT.PAGt 
#define I.O~LIST.PAriE • 

· #define IoC::STA TPAGE 
ifoe.f i ne 

. . " . 
/tdefin.e IDCPUS.HBTN 

.·./{define .. IDG CHKBOX 
/ftl.efi n.e>. rncSAci1i<eilx 
1tde.fine IDC~3STBOX 
#Mfiiie. lrJc,:RAOfOl 
fide.fine IDCRAf!.I02 
.ffdeffrie 

fftJ.e . .fj ~e . lOC_SlNG~EL:INE 
#:define lDC .. MULJlLINE 
#aei'Jne . • roc:i'Asssbx ..... 

/fdefjne . rhc_¢~Mso!lhx· 
.• 4fdefi ne I DC...SNGLELI.ST 

/frde1'i ne ·. lDC,:MUl:TtlJST 



Windows, Controls, and Dialog Boxes Chapter 4 

#define IDG_LEFTTEXT 230 
f/defi ne IDG_RIGHTTEXT 231 
ffdefi ne I DG_CENTERTEXT 232 
/fdefi ne IDC_ICONCTL 233 
!!define IDG_BITMAPCTL 234 

fldefi ne IDG_LRSCROLL 240 
fldefi ne I DG_UDSCROLL 241 

II Control IDs for modeless dialog box 
fldefi ne IDD.:....CLEAR 500 

II User~defi.ned message 
fldefine MYMSG.c.ADDLINE 

II Static defines 

I I Scro 11 bar defines 

th.e window 

(continued) 

229 



Part I Windows Programming Basics 

Figure 4-10 (continued) 

230 



Windows, Controls, and Dialog Boxes Chapter 4 

} : 
II 

IDM_SHOWPROPSHEET. DoMainCommandShowProp, 
IDM_SHOWMODELESS, DoMainCommaridModeless, 
IDM_COLOR. DoMainCommandColor, 
IDM_PRINT, DoMainCommandPrint. 
IDM_EXIT. DoMainC.ommandExit, 
IDM_ABOUT, DoMainCommandAbout, 

II Labels for WM_NOTIFY notifications 
II 

{{TEXT ( "PSN_SETACTIVE " 
{TEXT ("PSN_KlLLACTIVE 
{TEXT ("PSN_APPLY 

·•·.{TEXT ("PSN_RESET 
{TEXT ("PSN_HASHELP 
{TEXT ("PSfL.HELP ·· 
{TEXT 

(continued) 

231 



Part ' Windows prograrnrninQ sasicS 

figure 4-10 (continued) 

232 



Windows, Controls, and Dialog Boxes Chapter 4 

#if defined(WIN32_PLATFORM_PSPC) 

lie 1 se 

liendi f 
} 

lpfnPrintDlg = GetProcAddress (hlib, TEXT <"PrintDlg"ll: 

lpfnPrintDlg = GetProcAddress (hlib, TEXT ("PageSetupDlgW"ll: 

return 0; 
} 

/f---------------------c--~c------------------------~-~~~·--------------
/1 Initlnstance - Instance initialization 
II 
HWND Initinstance CHINStANCE hinstance, 

1 nt; .nCmdShow l { 
HWNb hWnd: 

II Save progranrtnstance handle in global 
hinst = hinstance~ . 

. . . mafry<wjriq?w/.•. · .. •· .. · ... 
.. /Cr e at¢Wi nq~W, {$ z:AP.F>tlllin\;! '.··. TEXT 

. . . CW~IJMDEFAULT. 
•. ~ tw::.:uSEl)EFAULT. NULL, 

. dt Retur11 faU ¢We if ~tndow .not 
' ff ( !lsWindow Ch\ilf\MY•f<~t~tn 0: 

.. · ·· • Fr standard .. $fnl~·and'.;'.·up~~e. ca 11 s . 
. • :sh~~Wtndilw ... (hWnd;· .. ncm~Sho~): 

:",< · Uj:fdatew1 ndow .· (.hWndJ: 
.· ·<f.e.turn·· hWnd; · 

J . •.. . . · .. · .. ·· 
tf• -.·"·~·c-~ ---·- - -- - --• -··- •-

(continued) 

233 



Part \ Windows programming easies 

figure 4-10 (continued) 

234 



Windows, Controls, and Dialog Boxes Chapter 4 

if (!lpfnPrintDlg) 
EnableMenuitem (hMenu, IDM_PRINT, MF_BYCOMMAND I MF_GRAYED); 

II 
II Create report window. Size it so that it fits under 
II the command bar and fills the remaining client area. 
II 
hwndChild = CreateWindoWEx (0, TEXT ("list box"), 

TEXT (""), WS_VISIBLE I WS_CHILO I WS_VSCROLL 
LBS_USETABSTOPS I LBS_NOINTEGRALHEIBHT. 0. 
nHeight, lpcs->cx. lpcs->cy - nHeight, 
hWnd, < <HMENU l !DCRPTLIST, 1 pcs->h Instance, NULL); 

// Destroy frame if wi nda.w 
if (!IsWindow (hwndChild)) 

DestrayWindow ChWnd); 

U Parse the. parameters. 
iditem = (WORD) LOWORD {wParam); 
wNot;ifyCode = CWOROl HIWORD (wParcim); 
hwndCtl ·:=.fHWNOJ lParam; 

Call rotitlne to handle tdntrolmessage. 
·ct "' 0: i<.<· dimtMainCommandltems.); .. i++) 
if Cidltem "'"' MainCo~~andlt~in$[i J.Code) 

C*MaJnCommanditems[iJ.Fxn){hWnd, 
wNotifyCodel; 

(continued) 

235 



Part I Windows Programming Basics 

Figure 4-10 (continued) 

236 



Windows, Controls, and Dialog Boxes Chapter 4 

TCHAR sz0ut[l28]; 
INT re; 

szFileName[0J '\0'; II Initialize filename. 
memset C&of. 0, sizeof (of)); II Initialize File Open structure. 

of.lStructSize = sizeof (of); 
of.hwndOwner = hWnd; 
of.lpstrFile = szFileName; 
of. nMaxFil e = di mCszFileNarne); 
of.lpstrFtlter 
of.flags '=<0: 

re = GetOpenFi.leNi\rne 
wsprintf CszOut. 

TEXT C "GetOpen Fi. leN:arne 
re •.. $ZflJeNarne}; 

SendMessage (hWnd; 
return JI; 

o,, ''" ', 0 

II DoMatnco!llmaridSalie 
11 
LPARAM.··· O()MainCQ!l'lrnandSave (HWND 

OPENFIUNAM[ Of; 
ICHAR szFil eName 
cans:t .LPTSTR BszopenFirter 
TCHAR sz0utf128J; 

szfileName[0] = '\0'; 
rnemset c&of, 0, sizeof 
of,lStructSLze = sizeof (of); 
of.hwndOwner = hWnd; 
of.lpstrFi le.·••=*··· szFileNamej 
of.nMaxFi]e·"'· dilTl(szFileNa!l'le); 
of ,·1pstrFilter ··•·,;, pszOpen F.i·lter.; 
of, Flags= 0; 
re,;, GetSaveFileName C&ofl: 

wspri ntf (szout, 

re, szFileName l; 
SendMessage (hWnd, MYMSG .... .ADDLlNE. -

(continued) 

237 



Part I Windows Programming Basics 

Figure 4-10 (continued) 

238 



Windows, Controls, and Dialog Boxes Chapter 4 

II Initialize print structure. 
memset C&pd, 0, sizeof (pd)); 

pd.cbStruct = sizeof (pd); 
pd.hwndOwner = hWnd: 
pd.dwFlags = PD_SELECTALLPAGES; 

re= (lpfnPrintDlg) {&pdl; 
4/endif II ifndef WIN3Z..,.PLATFORM_PSPC 

wsprintf (sZOut, TEXT C"PrintDlg returned: %x, : %x~'), 

re G:et·LastErrorOJ; .· : > .. ·. ·. •.·· .. ·. 
': :: . ---~ :'.'.": : ' : :' . . " . --·- ·.' ." "'.;; : ,' , ·: .; .·' 

SendMess.a:tj:e i(hWnd;:.MYMSG...ADDLINE. -1. ( LP,ARAM)~z:Out); 

I I - - - - - - ·" - ~ .:.~ ,.:: ~·-:'."' ~ :'~~ ~.~ ~ - - - - - - - - - ~ - :- - -f·~•" "C" ;.~•: 
PropSheetPr:Oc - ·Eµrtct1on called when Pro}i~frti 

(continued) 

239 



Part I Windows Programming Basics 

Figure 4-10 (continued) 

240 



Windows, Controls, and Dialog Boxes Chapter 4 

LPARAM DoMainCommandModelessCHWND hWnd, WORD iditem, HWND hwndCtl, 
WORD wNotifyCode) { 

} 

II Create dialog box only if not already created. 
if (g_hwndMlDlg == 0) 

II Use CreateDialo~ to create modeless dialog box. 
g_hwndMlDlg • CreateDialog Chlnst, TEXT c•c1earbox"), hWnd, 

ModelessDlgProc); 
return 0: 

I I- - - · - - - · - - c - •, •,- - - - ~:~ - -,- - - • - - - - - - - - - - - - - - - - - - - - - - - -

11 DoMai nCommandE:Xi'f; :.' Proc~ss Program Exit command. 
II 
LPARAM DoMainCoinmari~E:Xit (HWND hWnd, WORD idltem, 

" , WORP wNoti fyCode > { 
(hWri<f:WM:::.cl.osE;0, 0): 

(continued) 

241 



Part I Windows Programming Basics 

Figure 4-10 (continued) 

242 



Windows, Controls, and Dialog Boxes Chapter 4 

} ; 

{TEXT ("BN_DISABLE "), 4}, 

{TEXT ("BN_DOUBLECLICKED"J, 5}, 

{TEXT ("BN_SETFOCUS "), 6}, 

{TEXT ("BN_KILLFOCUS"J, 7} 

extern NOTELABELS nlPropPage[]; 

extern int nPropPageSize: 

II Handle for icon used in owner-draw icon 

HICON hicon = 0; 
II======================================================~-============== 
If ~tnblgProc - Button ~age dialog box procedure 

// 
BOOL CALLBACK BtnDl gProc (HWND hWnd. UI NT wMsg. WPARAM wP.aram. 

LPARAM lParam) { 
TtHAR sz0ut[128j; 

.•II The (Je~er.tc parameter contains the 

11 top~ level :window haridl e. 
hwri.dMatn =.·. (~vlfl:DlULPPRQPSHEETPAGE) 

··. ·11 s~vet~egi~d~w t1an,~ie in the window 
.... SetW.indowLon$ {hWnd, .. DWLi_USER, CLONG)hwndMain:): 

tcon tofowner•draw window. . 
l.ieadlcon (hJnst, MAKEINTRESOURCE (IDLBTNICON)).; 

tr W.e needto .. set the initial state of the. radio buttons. 
Checl<RadioB.u:tton (hWnd. IDC,_RADIOI. IDC_RADI02, IDG_RAOIOl); 

return TRUE: 

•. ?t ~efte.ct wf{_cOMMAND messages to ma in wi nctow. · 

# <• . 
. casl; WM-.COMMAND• ·. .•• . .. 
· · i I Since the check bpx ts not an auto 

Ii has··. to ~e ~et manually; 
. 1f fttOWORD ("!Par am> =.;; lDCCHKBOX l && 

(HIWORD {wParam) == BN_CLICKED)) { 

il(.)ef the"current state. complement, and set/ 

t . .i. s:andDlgftemMessage (hWnd, IOG_CtlKBOX, BM.:...GETCHECK, 
0, 0); 

(continued) 

243 



Part I Windows Programming Basics 

Figure 4-10 (continued) 

244 



Windows, Controls, and Dialog Boxes Chapter 4 

SendMessage ChwndMain, MYMSG_ADDLINE. 
MAKEWPARAM (-1,ID_BTNPAGE), (LPARAM)szOut); 

return FALSE; II Return false to force default processing. 

} 

case WM_DRAWITEM: 

DrawButton ( hWnd. ( LPDRAWITEMSTRUCT) 1 Pa ram); 
return TRUE; 

return FALSE; 

//-·--·~-----~~---------------·--
II DrawButton - Draws an owner-draw button. 

II 
LRESULT DrawButton CHWND hWnd, LPDRAWITEMSTRUCT 

HPEN hPenShadow, hPenLight, hPenDkShadow, hOldPen; 

POINT .pt0ut[3J •. ptin[3l; 
HtiRUSH hBr,>hQldBr: 
TCHAR szOut[l28]; 

of the main window from the user word. 
GetWindowlong (hWnd, DWL_USER); 

Reflect the messages .to the repOrt window. 

(szOut, TEXT C"WM_DRAWHEMAct:%x State:%x''J, 
pdi C)itelllActi on' pdi.">itemState); 

SendMessage (hwndMain, MYMSG_ADDLlNE, 

MAKEWPARAM (pdi.->Ct 1 ID. ID_BTN PAGE), 

( LPARAM)szOut): 

I/ cre(lte pens for drawing'. 
. lpen:lopnSty1 e .• ,,, .... PS_:SOLID; 

lpe11 •. lophWidth•.x· = 3; 

lpen:lopriWidth.y "' 3: 
lpen.lopnColor= ·GetSysColor (COLOR_,.30SHAD0Wl; 

hPeriShadow =CreateP·enlndfrect 

lpen~lopnWidth i; 
lpen. lopnC:olor. = Ge~S.¥sColor (COLOR...c3DLIGHT); 

hPenLight =CreatePenindirect C&lpenl; 

(continued) 

245 



Part I Windows Programming Basics 

Figure 4-10 (continued) 

246 

' .. 



Windows, Controls, and Dialog Boxes Chapter 4 

SelectObject (pdi->hDC. hPenDkShadow); 
if (pdi->itemState & ODS_SELECTED) { 

ptOut[lJ.x = pdi->rcltem. left; 
ptOut[l].y = pdi->rcltem.top; 

} 

else { 
ptOut[l].x = pdi->rcltem.right - 1; 
ptOut[l].y ~ pdi·>rcltem.bottom - l; 

Polyline {pdi->hDC, ptOut, 3); 

II Draw the icon. 
if ( h I con) { 

ptin[0J.x" (pdf->rcitem.right - pdi->rcltem.leftJ/2 
GetSystemMetrics (SM.XXICON)/2 ' 2; . 

(pdi->rcltem.bottolll ' pdi->rcltem.,top}/2 
GetSystemMetrics (SM...;CYICON)/2 

(continued) 

247 



Part I Windows Programming Basics 

Figure 4-10 (continued) 

248 



Windows, Controls, and Dialog Boxes Chapter 4 

case WM_COMMAND: 
II Get the handle of the main window from the user word. 
hwndMain • CHWND) GetWindowLong (hWnd, DWL_USER); 

II Look up button notification. 
lstrcpy (szOut, TEXT ("WM_CQMMAND: ")); 
for (i = 0; i < dim(nl Edit); i++) { 

if (HIWORD (wParam) == nl Edit[i] .wNotification) 
lstrcat <szOut, nlEdit[iJ. 
break; 

if (1 "'=.dinJ(nlEdit)) 
wsprintf (szOut. TEXT 

/I. .Look<up notify•. message. 
for CJ = 0; < nPropPageSize; 

cc {NMHDR .. *) l Pa ram) ->code 

(continued) 

249 



Part I Windows Programming Basics 

Figure 4-10 (continued) 

250 



Windows, Controls, and Dialog Boxes Chapter 4 

switch <wMsg) { 

case WM_INITDIALOG: 

II The generic parameter contains the 

II top-level window handle. 

hwndMain = (HWND)((LPPROPSHEETPAGEllParaml->lParam: 

II Save the window handle in the window structure. 

SetWindowLong (hWnd. DWL_USER. CLONGlhwndMainl: 

II Fill the list and combo boxes. 

for (i = 0: i < 20: i++l { 

wsprintf CszOut, TEXT ("Item %d"l, i); 

SendDlg ItemMessage ( hWnd, IDC_SNGLELIST, LB_ADDSTRING, 

0, CLPARAMJszOut); 

SendDlgltemMessage (hWnd, IDC_MULTILIST, LB_ADDSTRING, 

0, ( LPARAM l szOut); 

ChWnd. IDCCOMBOBOX, CB__ADOSTRI NG, 

e~ CLPARAM)szOut); 

selection for the combo box. 

SendDlgTtemMessage ( hWnd. IDCCOMBOBOX. CB_S ET CURS EL. 

TRUE; 

wM:...COMMAND messages to main window. 

II Get the handle of the main window from the user word. 

hwndMairi = (l{WNO) GetWindowLong ChWnd, DWLUSER): 

11 Report. the WM_COMMAND messages. 

lstrcpy (szout, TEXT ("WM_COMMAND: ")); 

( LOWORD (wParam) == ID(_COMBOBOX) { 

(i = .0; i < di.m(nlCombol; i++) { 

if (HIWORD (wParaml =.= nl Combo[i] .wNotifi cation) { 

(szOut,. nlCombo[i]. pszLa.belJ; 

CszOut, 

TEXT ("WM~COMMAND notification: %x"), 

HIWORD (wParam)); 

< dim(nl List); i++) 

ff CHIWORD (wParam) == nl List[i] .wNotificationJ 

(continued) 

251 



Part I Windows Programming Basics 

Figure 4-10 (continued) 

252 



Windows, Controls, and Dialog Boxes Chapter 4 

II Written for the book Programming Windows CE 
II Copyright CC) 2001 Douglas Boling 
II====================================================================== 
#include <windows.h> 
#include <prsht.h> 
#include "DlgDemo.h" 

extern HINSTANCE hlnst; 

11 For all that Windows stuff 
II Property sheet includes 
II Program-specific stuff 

11----------------------------------------------------------------C-----
ll Global data 
II 
fl Identification strings for various WM_COMMAND notifications 
NOTELABELS nlStatic[] ={{TEXT ("$TN_CLICKE0"), 0}. 

{TEXT ("STN_ENABLE "), 2}, 
{TEXT ("STN:....DISABLE"), 3}, 

} ; 

(continued) 

253 



Part I Windows Programming Basics 

Figure 4-10 (continued) 

254 



Windows, Controls, and Dialog Boxes Chapter 4 

II====================================================================== 
#include <windows.h> 
#include <prsht.h> 
#include "DlgDemo.h" 

extern HINSTANCE hlnst; 

II For all that Windows stuff 
II Property sheet includes 
II Program-specific stuff 

11----------------------------------------------------------------------
1 I Global data 
II 
// Identification stri.ngs for various WM_xSCROLL notifications 
NOTELABELS hlVScroll[] =({TEXT C"SB_LJNEUP "), 0}. 

}; 

{TEXT ("SB..:.LTNEDOWN "); lL 
{TEXT ("SB~PAG'EUP ".), 2}~. 

{TEXT C"S.B.....:P:AG.E.DQWN ".} J 3}', 
{TEXT ("SB .. .5HUMBPOSITION"). 
{TEXT ("SB:.._THUMBTRACK 
{TEXT ( "SB:...TOP 
{TEXT ("$B:__BOTTOM 
{TEXT 

{{TEXT· ("SBiLIN.E{EFT 
{TEXT ("$CLlNERIGHT 
{TEXT 
{TEXT 
{TEXT 
{TEXT 
{TEXT ( "SB_LHT 
{TEXT ("S8'--RlGHT 
{TEXT 

extern NOTELABELS nlPropPage[]; 
extern int nPropPageSize; 
ll====-=~===eo==="'===="'===============;::======o=============;====="'========== 
//ScrollDlgf'roc>Scroll bar page dialog box procedure 

CHWND. hWnd •• UINT wMsg, 
LPARAM.lParamJ{ 

(continued) 

255 



Part I Windows Programming Basics 

Figure 4·10 (continued) 

256 



Windows, Controls, and Dialog Boxes Chapter 4 

II 

case SB_LINEUP: 
sPos -= 2; 
break; 

case SB_LINEDOWN: 
sPos += 2; 
break; 

case SB....cPAGEUP: 
sPos c= 10; 
break; 

case SB--PAGEDOWN: 
sPos += 10; 
break; 

II Also SB_LINELEFT 

II Also SB_LINERIGHT 

II Also SB_PAGELEFT 

II Also SB_PAGERIGHT 

case SB3HUMBPOSITION: 
sPos = HIWORD CwParam); 
brea.k; 

Check range 
CsPos < 0) 
spos 

<sPos 
sPos 

Update scroll bar. ))osi tion, 
si .cbSJze =·· sizeof (si); 

.nPos"' sPos; 
sf.fMask.= SILPOS; 

((HWND)lParam, SB_CTL, &si, TRUE); 

ll Reflect notify message. 

handle of th.e .main window from the user word. 
hwndMain =·(HWNDl GetWindowlong ChWnd, OWLUSER); 

//Look uP notify message. 
(i "' .. 0; <. nPropPageSiz.e; 1++) 

(((NMHDR •)lParaml->code == 

l st rcpy ( szout, nlPropPage[i J. pszLabel l; 
break; 

(continued) 

257 



Part I Windows Programming Basics 

258 

Figure 4-10 (continued) 

The dialog box procedures for each of the property pages report all 
WM_COMMAND and WM_NOTIFY messages back to the main window, where 
they're displayed in a list box contained in the main window. The property page 
dialog box procedures mirror the child window procedures of the CtlView ex
ample, the differences being that the page procedures don't have to create their 
controls and that they field the WM_INITDIALOG message to initialize the con
trols. The page procedures also use the technique of storing information in their 
window structures-in this case, the window handle of the main window of the 
example. This is necessary because the parent window of the pages is the property 
sheet, not the main window. The window handle is conveniently accessible during 
the WM_INITDIALOG message because it's loaded into the user-definable pa
rameter in the PROPSHEETPAGE structure by the main window when the property 
sheet is created. Each page procedure copies the parameter from the 
PROPSHEETPAGE structure into the DWL_USER field of the window structure 
available to all dialog box procedures. When other messages are handled, the 
handle is then queried using GetWindowLong. The page procedures also field 
the WM_NOTIFY message so that they, too, can be reflected back to the main 
window. 

As with CtlView, the best way to learn from DlgDemo is to run the program 
and watch the different WM_COMMAND and WM_NOTIFY messages that are 
sent by the controls and the property sheet. Opening the property sheet and 
switching between the pages results in a flood of WM_NOTIFY messages inform
ing the individual pages of what's happening. It's also interesting to note that 
when the OK button is pressed on the property sheet, the PSN_APPLY messages 
are sent only to property pages that have been displayed. 

The menu handlers that display the Print and Color common dialogs work 
with a bit of a twist. Because some Windows CE systems don't support these 
dialogs, DlgDemo can't call the functions directly. That would result in these two 
functions being implicitly linked at run time. On systems that did not support 
these functions, Windows CE wouldn't be able to resolve the implicit links to all 



Windows, Controls, and Dialog Boxes Chapter 4 

the functions in the program, and therefore the program wouldn't be able to load. 
So instead of calling the functions directly, you explicitly link these functions in 
InitApp by loading the common dialog DLL using LoadLibrary and getting pointers 
to the functions using GetProcAddress. If DlgDemo is running on a system that 
doesn't support one of the functions, the GetProcAddress function fails and re
turns 0 for the function pointer. In OnCreateMain, a check is made to see 
whether these function pointers are 0, and if so, the Print and Color menu items 
are disabled. In the menu handler functions DoMainCommandColor and 
DoMainCommandPrint, the function pointers returned by GetProcAddress are 
used to call the functions. This extra effort isn't necessary if you know your 
program will run only on a system that supports a specific set of functions, but 
every once in a while, this technique comes in handy. 

The Pocket PC handles the common print dialog differently. Although the 
Pocket PC exports the function PageSetupDialog, the function prototype isn't 
included in the SDK, and the function returns immediately when called. 

One other detail is how this program adapts to the Pocket PC shell. DlgDemo 
creates a menu bar instead of a command bar when compiled for the Pocket PC. 
This provides a place for the menu as well as exposing the Soft Keyboard button. 

In addition, the property sheet expands to fill the full screen, and its tabs 
are located on the bottom of the sheet instead of the top. I made these adapta
tions to demonstrate how to comply with the Pocket PC user interface guide
lines. Although a complete explanation of these details will have to wait until 
Chapter 14, this example does show some of the modifications necessary to sup
port the Pocket PC. 

This chapter has covered a huge amount of ground, from basic child win
dows to controls and on to dialog boxes and property sheets. My goal wasn't to 
teach everything there is to know about these topics. Instead, I've tried to intro
duce these program elements, provide a few examples, and point out the subtle 
differences between the way they're handled by Windows CE and the desktop 
versions of Windows. 

This chapter also marks the end of the introductory section, "Windows 
Programming Basics." In these first four chapters, I've talked about fundamen
tal Windows programming while also using a basic Windows CE application to 
introduce the concepts of the system message queue, windows, and messages. 
I've given you an overview of how to paint text and graphics in a window and 
how to query the user for input. Finally, I talked about the windows hierarchy, 
controls, and dialog boxes. For the remainder of the book, I move from description 
of the elements common to both Windows CE and the desktop versions of 
Windows to the unique nature of Windows CE programming. I begin this pro
cess in Chapter 5 by talking about another set of controls, the common controls, 
this time with an emphasis on controls unique to Windows CE. 

259 





Part II 





Common Controls 
and Windows CE 

As Microsoft Windows matured as an operating system, it became apparent that 
the basic controls provided by Windows were insufficient for the sophisticated 
user interfaces that users demanded. Microsoft developed a series of additional 
controls, called common controls, for their internal applications and later made 
the dynamic-link library (DLL) containing the controls available to application 
developers. Starting with Microsoft Windows 95 and Microsoft Windows NT 3.5, 
the common control library was bundled with the operating system. (Although 
this hasn't stopped Microsoft from making interim releases of the DLL as the 
common control library was enhanced.) With each release of the common con
trol DLL, new controls and new features are added to old controls. As a group, 
the common controls are less mature than the standard Windows controls and 
therefore show greater differences between implementations across the various 
versions of Windows. These differences aren't just between Microsoft Windows 
CE and other versions of Windows, but also between Windows Me, Windows 
2000, and Windows XP. The functionality of the common controls in Windows 
CE tracks most closely with the common controls delivered with Windows 98, 
although not all of the Windows 98 features are supported. 

It isn't the goal of this chapter to cover in depth all the common controls. 
That would take an entire book. Instead, I'll cover the controls and features of 
controls the Windows CE programmer will most often need when writing Windows 
CE applications. I'll start with the command bar and then look at the month 
calendar and time and date picker controls. Finally, I'll finish up with the list view 
control. By the end of the chapter, you might not know every common control 
inside and out, but you will be able to see how the common controls work in 

263 



Part II Windows CE Basics 

general. And you'll have the background to look at the documentation and 
understand the common controls not covered. 

Programming Common Controls 

264 

Because the common controls are separate from the core operating system, the 
DLL that contains them must be initialized before any of the common controls 
can be used. Under all versions of Windows, including Windows CE, you can 
call the function 

void InitCommonControls (void); 

to load the library and register all the common control classes. 
A more efficient initialization function supported by Windows CE is this one: 

BOOL InitCommonControlsEx (LPINITCOMMONCONTROLSEX lpinitCtrls); 

This function allows an application to load and initialize only selected common 
controls. This function is handy under Windows CE because loading only the 
necessary controls can reduce the memory impact. The only parameter to this 
function is a two-field structure that contains a size field and a field that contains 
a set of flags indicating which common controls should be registered. Figure 5-1 
shows the available flags and their associated controls. 

Flag 

ICC_BAR_CLASSES 
Status bar 
Trackbar 
Command bar 

ICC_ COOL_ CLASSES 

ICC_DATE_CLASSES 
Month calendar control 

ICC_LISTVIEW _CLASSES 
Header control 

ICC_PROGRESS_CLASS 

ICC_ TAB_ CLASSES 

ICC_TREEVIEW_CLASSES 

rcc_UPDOWN_CLASS 

Control Classes Initialized 

Tool bar 

Rebar 

Date and time picker 

List view 

Progress bar control 

Tab control 

Tree view control 

Up-Down control 

Figure 5-1 Flags for selected common controls 



Common Controls and Windows CE Chapter 5 

Once the common control DLL has been initialized, these controls can be 
treated like any other control. But since the common controls aren't formally part 
of the Windows core functionality, an additional include file, commctrl.h, must 
be included. 

The programming interface for the common controls is similar to standard 
Windows controls. Each of the controls has a set of custom style flags that con
figure the look and behavior of the control. Messages specific to each control 
are sent to configure and manipulate the control and cause it to perform actions. 
One major difference between the standard Windows controls and common con
trols is that notifications of events or requests for service are sent via WM_NOTIFY 
messages instead of WM_ COMMAND messages as in the standard controls. This 
technique allows the notifications to contain much more information than would 
be allowed using WM_COMMAND message notifications. 

One additional difference in programming common controls is that most 
of the control-specific messages that can be sent to the common controls have 
predefined macros that make sending the message look as if your application 
is calling a function. So instead of using an LVM_INSERTITEM message to a list 
view control to insert an item, as in 

nindex =(int) SendMessage ChwndLV, LVM_INSERTITEM, 0, (LPARAM)&lvi); 

an application could just as easily have used the line: 

nindex = ListView_Insertitem (hwndLV, &lvi); 

There's no functional difference between the two lines; the advantage of 
these macros is clarity. The macros themselves are defined in commctrl.h along 
with the other definitions required for programming the common controls. One 
problem with the macros is that the compiler doesn't perform the type check
ing on the parameters that would normally occur if the macro were an actual 
function. This is also true of the SendMessage technique, in which the parame
ters must be typed as WPARAM and LPARAM types, but at least with messages 
the lack of type checking is obvious. All in all, though, the macro route provides 
better readability. One exception to this system of macros is the calls made to 
the command bar control and the command bands control. Those controls actu
ally have a number of true functions in addition to a large set of macro-wrapped 
messages. As a rule, I'll talk about messages as messages, not as their macro equiva
lents. That should help differentiate a message or a macro from a true function. 

265 



Part II Windows CE Basics 

The Common Controls 
Windows CE's special niche-small personal productivity devices-has driven 
the requirements for the common controls in Windows CE. The frequent need 
for time and date references for schedule and task management applications has 
led to inclusion of the date and time picker control and the month calendar 
control. The small screens of personal productivity devices inspired the space
saving command bar. Mating the command bar with the rebar control that was 
created for Internet Explorer 3.0 has produced the command bands control. The 
command bands control provides even more room for menus, buttons, and other 
controls across the top of a Windows CE application. You've seen glimpses of 
the command bar control in Chapter 1 and again in Chapters 3 and 4. It's time 
you were formally introduced. 

The Command Bar 

266 

Briefly, a command bar control combines a menu and a toolbar. This combina
tion is valuable because, as I've pointed out before, the combination of a menu 
and toolbar on one line saves screen real estate on space-constrained Windows 
CE displays. To the programmer, the command bar looks like a toolbar with a 
number of helper functions that make programming the command bar a breeze. 
In addition to the command bar functions, you can also use most toolbar mes
sages when you're working with command bars. 

The command bands control was added to Windows CE in version 2.0. A 
command bands control is a rebar control that, by default, contains a command 
bar in each band of the control. The rebar control is a container of controls that 
the user can drag around the application window. Given that command bands 
are nothing more than command bars in a rebar control, knowing how to pro
gram a command bar is most of the battle when learning how to program the 
command bands control. 

Finally, Pocket PC developers are familiar with the menu bar. This control 
isn't part of the common controls set and is specific to the Pocket PC. I'll be 
covering that control in Chapter 13. 

Creating a Command Bar 
You build a command bar in a number of steps, each defined by a particular 
function. The command bar is created, the menu is added, buttons are added, 
other controls are added, tooltips are added, and finally, the Close and Help 
buttons are appended to the right side of the command bar. 

You begin the process of creating a command bar with a call to 

HWND CommandBar_Create IHINSTANCE hlnst, HWND hwndParent, 
int idCmdBar); 



Common Controls and Windows CE Chapter 5 

The function requires the program's instance handle, the handle of the parent 
window, and an ID value for the control. If successful, the function returns the 
handle to the newly created command bar control. But a bare command bar isn't 
much use to the application. It takes a menu and a few buttons to jazz it up. 

Command Bar Menus 
You can add a menu to a command bar by calling one of two functions. The first 
function is this: 

BOOL CommandBar_InsertMenubar (HWNO hwndCB, HINSTANCE hlnst, 
WORD idMenu, int iButton); 

The first two parameters of this function are the handle of the command 
bar and the instance handle of the application. The idMenu parameter is the 
resource ID of the menu to be loaded into the command bar. The last parame
ter is the index of the button to the immediate left of the menu. Because the 
Windows CE guidelines specify that the menu should be at the left end of the 
command bar, this parameter should be set to 0, which indicates that all the 
buttons are to the right of the menu. 

A shortcoming of the CommandBar _InsertMenubar function is that it requires 
the menu to be loaded from a resource. You can't configure the menu on the fly. 
Of course, it would be possible to load a dummy menu and manipulate the con
tents of the menu with the various menu functions, but here's an easier method. 

The function 

BOOL CommandBar_InsertMenubarEx (HWND hwndCB, HINSTANCE hlnst, 
LPTSTR pszMenu, int iButton); 

has a set of parameters similar to CommandBar _InsertMenubar with the excep
tion of the third parameter, pszMenu. This parameter can be either the name of 
a menu resource or the handle to a menu previously created by the program. If 
the pszMenu parameter is a menu handle, the hlnst parameter must be NULL. 

Once a menu has been loaded into a command bar, the handle to the menu 
can be retrieved at any time using 

HMENU CommandBar_GetMenu (HWND hwndCB, int iButton); 

The second parameter, iButton, is the index of the button to the immedi
ate left of the menu. This mechanism provides the ability to identify more than 
one menu on the command bar. However, given the Windows CE design guide
lines, you should see only one menu on the bar. With the menu handle, you can 
manipulate the structure of the menu using the many menu functions available. 

If an application modifies the menu on the command bar, the application 
must call 

BOOL CommandBar_DrawMenuBar (HWND hwndCB, int iButton); 

267 



Part II Windows CE Basics 

268 

which forces the menu on the command bar to be redrawn. Here again, the 
parameters are the handle to the command bar and the index of the button to the 
left of the menu. Under Windows CE, you must use CommandBar_DrawMenuBar 
instead of DrawMenuBar, which is the standard function used to redraw the menu 
under other versions of Windows. 

Command Bar Buttons 
Adding buttons to a command bar is a two-step process and is similar to adding 
buttons to a toolbar. First the bitmap images for the buttons must be added to 
the command bar. Second the buttons are added, with each of the buttons ref
erencing one of the images in the bitmap list that was previously added. 

The command bar maintains its own list of bitmaps for the buttons in an 
internal image list. Bitmaps can be added to this image list one at a time or as 
a group of images contained in a long and narrow bitmap. For example, for a 
bitmap to contain four 16-by-15-pixel images, the dimensions of the bitmap 
added to the command bar would be 64 by 15 pixels. Figure 5-2 shows this 
bitmap image layout. 

0 

14 

Figure 5-2 Layout of a bitmap that contains four 16-by-15-pixel images 

Loading an image bitmap is accomplished using 

int CommandBar_AddBitmap (HWND hwndCB, HINSTANCE hinst, int idBitmap, 
int iNumimages, int iimageWidth, int ilmageHeight); 

The first two parameters are, as is usual with a command bar function, the 
handle to the command bar and the instance handle of the executable. The third 
parameter, idBitmap, is the resource ID of the bitmap image. The fourth parame
ter, iNumlmages, should contain the number of images in the bitmap being 
loaded. Multiple bitmap images can be loaded into the same command bar by 
calling CommandBar _AddBitmap as many times as is needed. The last two 
parameters are the dimensions of the images within the bitmap; set both these 
parameters to 16. 

Two predefined bitmaps provide a number of images that are commonly used 
in command bars and toolbars. You load these images by setting the hlnstparameter 



Common Controls and Windows CE Chapter 5 

in CommandBar_AddBitmap to HINST_COMMCTRL and setting the idBitmap 
parameter to either IDB_STD_SMALL_COLOR or IDB_ VIEW _SMALL_ COLOR. The 
images contained in these bitmaps are shown in Figure 5-3. The buttons on the 
top line contain the bitmaps from the standard bitmap, while the second-line 
buttons contain the bitmaps from the standard view bitmap. 

Figure 5-3 Images in the two standard bitmaps provided by the common control DLL 

The index values to these images are defined in commctrl.h, so you don't 
need to know the exact order in the bitmaps. The constants are 

Constants to access the standard bitmap 
STD_CUT Edit/Cut button image 
STD_COPY Edit/Copy button image 

Edit/Paste button image 
Edit/Undo button image 
Edit/Redo button image 
Edit/Delete button image 
File/New button image 
File/Open button image 
File/Save button image 
Print preview button image 
Properties button image 

STD_PASTE 
STD_UNDO 
STD_REDOW 
STD_DELETE 
STD_FILENEW 
STD_FILEOPEN 
STD_FILESAVE 
STD_PRINTPRE 
STD_PROPERTI ES 
STD_HELP Help button (Use Commandbar_Addadornments 

function to add a help button to the 
command bar.) 

STD_FIND 
STD_REPLACE 
STD_PRINT 

Find button image 
Replace button image 
Print button image 

Constants to access the standard view bitmap 
VIEW_LARGEICONS View/Large Icons button image 
VIEW_SMALLICONS View/Small Icons button image 

View/List button image 
View/Details button image 
Sort by name button image 
Sort by size button image 
Sort by date button image 
Sort by type button image 
Go to Parent folder button image 

VIEW_LIST 
VIEW_DETAILS 
VIEW_SORTNAME 
VIEW_SORTSIZE 
VIEW_SORTDATE 
VIEW_SORTTYPE 
VIEW_PARENTFOLDER 
VIEW_NETCONNECT 
VIEW_NETDISCONNECT 
VIEW_NEWFOLDER 

Connect network drive button image 
Disconnect network drive button image 
Create new folder button image 

269 



Part II Windows CE Basics 

270 

Referencing Images 
The images loaded into the command bar are referenced by their index into the 
list of images. For example, if the bitmap loaded contained five images, and 
the image to be referenced was the fourth image into the bitmap, the zero-based 
index value would be 3. 

If more than one set of bitmap images was added to the command bar using 
multiple calls to CommandBar_AddBitmap, the images' subsequent lists are 
referenced according to the previous count of images plus the index into that 
list. For example, if two calls were made to CommandBar _AddBitmap to add 
two sets of images, with the first call adding five images and the second adding 
four images, the third image of the second set would be referenced with the total 
number of images added in the first bitmap (5) plus the index into the second 
bitmap (2), resulting in an index value of 5 + 2 = 7. 

Once the bitmaps have been loaded, the buttons can be added using one 
of two functions. The first function is this one: 

BOOL CommandBar_AddButtons (HWND hwndCB, UINT uNumButtons, 
LPTBBUTTON lpButtons); 

CommandBar _AddButtons adds a series of buttons to the command bar 
at one time. The function is passed a count of buttons and a pointer to an array 
of TBBUTTON structures. Each element of the array describes one button. The 
TBBUTTON structure is defined as the following: 

typedef struct { 
int iBitmap; 
int idCommand; 
BYTE fsState; 
BYTE fsStyl e; 
DWORD dwData; 
int iString; 

} TBBUTTON; 

The iBitmap field specifies the bitmap image to be used by the button. This 
is, as I just explained, the zero-based index into the list of images. The sec
ond parameter is the command ID of the button. This ID value is sent via a 
WM_COMMAND message to the parent when a user clicks the button. 

The fsState field specifies the initial state of the button. The allowable val
ues in this field are the following: 

• TBSTATE_ENABLED The button is enabled. If this flag isn't speci
fied, the button is disabled and is grayed. 

• TBSTATE_HIDDEN The button isn't visible on the command bar. 

• TBSTATE_PRESSED This button is displayed in a depressed state. 



Common Controls and Windows CE Chapter 5 

• TBSTATE_CHECKED The button is initially checked. This state can 
be used only if the button has the TBSTYLE_CHECKED style. 

• TBSTATE_INDETERMINATE The button is grayed. 

One last flag is specified in the documentation, TESTATE_ WRAP, but it 
doesn't have a valid use in a command bar. This flag is used by toolbars when 
a toolbar wraps across more than one line. 

The fsStyle field specifies the initial style of the button, which defines how 
the button acts. The button can be defined as a standard push button, a check 
button, a drop-down button, or a check button that resembles a radio button but 
allows only one button in a group to be checked. The possible flags for the fsStyle 
field are the following: 

• TBSTYLE_BU1TON The button looks like a standard push button. 

• TBSTYLE_CHECK The button is a check button that toggles between 
checked and unchecked states each time the user clicks the button. 

• TBSTYLE_GROUP Defines the start of a group of buttons. 

• TBSTYLE_CHECKGROUP The button is a member of a group of 
check buttons that act like radio buttons in that only one button in the 
group is checked at any one time. 

• TBSTYLE_DROPDOWN The button is a drop-down list button. 

• TBSTYLE_AVTOSIZE The button's size is defined by the button text. 

• TBSTYLE_SEP Defines a separator (instead of a button) that inserts 
a small space between buttons. 

The dwData field of the TBBUTTON structure is an application-defined 
value. This value can be set and queried by the application using the 
TB_SETBUTTONINFO and TB_ GETBUTTONINFO messages. The iString field 
defines the index into the command bar string array that contains the text for 
the button. The iString field can also be filled with a pointer to a string that 
contains the text for the button. 

The other function that adds buttons to a command bar is this one: 

BOOL CommandBar_InsertButton (HWND hwndCB, int iButton, 
LPTBBUTTON lpButton); 

This function inserts one button into the command bar to the left of the 
button referenced by the iButton parameter. The parameters in this function mimic 
the parameters in CommandBar ~AddButtons with the exception that the lpButton 
parameter points to a single TBBUTTON structure. The iButton parameter speci
fies the position on the command bar of the new button. 

271 



Part II Windows CE Basics 

272 

Working with Command Bar Buttons 
When a user presses a command bar button other than a drop-down button, 
the command bar sends a WM_ COMMAND message to the parent window of the 
command bar. So handling button clicks on the command bar is just like han
dling menu commands. In fact, since many of the buttons on the command bar 
have menu command equivalents, it's customary to use the same command IDs 
for the buttons and the like functioning menus, thus removing the need for any 
special processing for the command bar buttons. 

The command bar maintains the checked and unchecked state of check and 
checkgroup buttons. After the buttons have been added to the command bar, 
their states can be queried or set using two messages, TB_ISBUTTONCHECKED 
and TB_CHECKBUTTON. (The TB_ prefix in these messages indicates the 
close relationship between the command bar and the toolbar controls.) The 
TB_ISBUTTONCHECKED message is sent with the ID of the button to be que
ried passed in the wParam parameter this way: 

fChecked = SendMessage (hwndCB, TB_ISBUTTONCHECKED, wID, 0); 

where hwndCB is the handle to the command bar containing the button. If the 
return value from the TB_ISBUTTONCHECKED message is nonzero, the button 
is checked. To place a button in the checked state, send a TB_CHECKBUTTON 
message to the command bar, as in 

SendMessage (hwndCB, TB_CHECKBUTTON, wID, TRUE); 

To uncheck a checked button, replace the TRUE value in !Param with FALSE. 

A New Look for Disabled Buttons 
Windows CE allows you to easily modify the way a command bar or toolbar 
button looks when the button is disabled. Command bars and toolbars maintain 
two image lists: the standard image list that I described previously and a disabled 
image list used to store bitmaps that you can employ for disabled buttons. 

To use this feature, you need to create and load a second image list for 
disabled buttons. The easiest way to do this is to create the image list for the 
normal states of the buttons using the techniques I described when I talked about 
CommandBar_AddBitmap. (Image lists in toolbars are loaded with the message 
TB_LOADIMAGES.) Once that image list is complete, simply copy the original 
image list and modify the bitmaps of the images to create disabled counterparts 
to the original images. Then load the new image list back into the command bar 
or toolbar. A short code fragment that accomplishes this chore is shown below. 

HBITMAP hBmp, hMask; 
HIMAGELIST hilDisabled, hilEnabled; 



\ 
I 

Common Controls and Windows CE Chapter 5 

II Load the bitmap and mask to be used in the disabled image list. 
hBmp = LoadBitmap (hlnst, TEXT ("DisCross")); 
hMask = LoadBitmap (hlnst, TEXT C"DisMask")); 

II Get the standard image list and copy it. 
hilEnabled = CHIMAGELIST)SendMessage (hwndCB, TB_GETIMAGELIST, 0, 0); 
hilDisabled = Imagelist_Duplicate (hilEnabled); 

II Replace one bitmap in the disabled list. 
Imagelist_Replace (hilDisabled, VIEW_LIST, hBmp, hMaskl; 

II Set the disabled image list. 
SendMessage (hwndCB, TB_SETDISABLEDIMAGELIST, 0, CLPARAM) hilDisabled); 

The code fragment first loads a bitmap and a mask bitmap that will replace 
one of the images in the disabled image list. You retrieve the current image list 
by sending a TB_GETIMAGELIST message to the command bar, and then you 
duplicate it using ImageList_Duplicate. One image in the image list is then re
placed by the bitmap that was loaded earlier. 

This example replaces only one image, but in a real-world example many 
images might be replaced. If all the images were replaced, it might be easier to 
build the disabled image list from scratch instead of copying the standard im
age list and replacing a few bitmaps in it. Once the new image list is created, 
you load it into the command bar by sending a TB_SETDISABLEDIMAGELIST 
message. The code that I just showed you works just as well for toolbars under 
Windows CE as it does for command bars. 

Drop-Down Buttons 
The drop-down list button is a more complex animal than the standard button 
on a command bar. The button looks to the user like a button that, when pressed, 
displays a list of items for the user to select from. To the programmer, a drop
down button is actually a combination of a button and a menu that is displayed 
when the user clicks on the button. Unfortunately, the command bar does little to 
support a drop-down button except to modify the button appearance to indicate 
that the button is a drop-down button and to send a special notification when the 
button is clicked by the user. It's up to the application to display the menu. 

The notification of the user clicking a drop-down button is sent to the parent 
window of the command bar by a WM_NOTIFY message with the notification value 
TBN_DROPDOWN. When the parent window receives the TBN_DROPDOWN 
notification, it must create a pop-up menu immediately below the drop-down 
button identified in the notification. The menu is filled by the parent window 
with whatever selections are appropriate for the button. When one of the menu 
items is selected, the menu will send a WM_COMMAND message indicating the 

273 



Part II Windows CE Basics 

274 

menu item picked, and the menu will be dismissed. The easiest way to under
stand how to handle a drop-down button notification is to look at the following 
procedure that handles a TBN_DROPDOWN notification. 

LRESULT DoNotifyMain (HWND hWnd, UINT wMsg, WPARAM wParam, 
LPARAM lParam) { 

LPNMHDR pNotifyHeader; 
LPNMTOOLBAR pNotifyToolBar; 
RECT rect; 
TPMPARAMS tpm; 
HMENU hMenu; 

II Get pointer to notify message header. 
pNotifyHeader = (LPNMHDR)lParam; 

if (pNotifyHeader->code == TBN_DROPDOWN) 

} 

II Get pointer to toolbar notify structure. 
pNotifyToolBar = CLPNMTOOLBAR)lParam; 

II Get the rectangle of the drop-down button. 
SendMessage (pNotifyHeader->hwndFrom, TB_GETRECT, 

pNotifyToolBar->iitem, (LPARAM)&rect); 

II Convert rect to screen coordinates. The rect is 
II considered here to be an array of 2 POINT structures. 
MapWindowPoints (pNotifyHeader->hwndFrom, HWND_DESKTOP, 

(LPPOINT)&rect, 2); 

II Prevent the menu from covering the button. 
tpm.cbSize = sizeof (tpm); 
CopyRect (&tpm.rcExclude, &rect); 

II Load the menu resource to display under the button. 
hMenu = GetSubMenu (LoadMenu Chinst, TEXT ("popmenu")),0); 

II Display the menu. This function returns after the 
II user makes a selection or dismisses the menu. 
TrackPopupMenuEx (hMenu, TPM_LEFTALIGN I TPM_VERTICAL, 

rect.left, rect.bottom, hWnd, &tpm); 

return 0; 

After the code determines that the message is a TBN_DROPDOWN notifi
cation, the first task of the notification handler code is to get the rectangle of the 
drop-down button. The rectangle is queried so that the drop-down menu can 
be positioned immediately below the button. To do this, the routine sends a 



Common Controls and Windows CE Chapter 5 

TB_GETRECT message to the command bar with the ID of the drop-down but
ton passed in wParam and a pointer to a rectangle structure in !Param. 

Because the rectangle returned is in the coordinate base of the parent win
dow, and pop-up menus are positioned in screen coordinates, the coordinates 
must be converted from one basis to the other. You accomplish this using the 
function 

MapWindowPoints (HWND hwndFrom, HWND hwndTo, 
LPPOINT lppoints, UINT cPoints); 

The first parameter is the handle of the window in which the coordinates 
are originally based. The second parameter is the handle of the window to which 
you want to map the coordinates. The third parameter is a pointer to an array 
of points to be translated; the last parameter is the number of points in the array. 
In the routine I just showed you, the window handles are the command bar handle 
and the desktop window handle, respectively. 

Once the rectangle has been translated into desktop coordinates, the pop
up, or context, menu can be created. You do this by first loading the menu from 
the resource and then displaying the menu with a call to TrackPopupMenuEx. 
That function is prototyped as 

BOOL TrackPopupMenuEx (HMENU hmenu, UINT fuFlags, int x, int y, 
HWND hwnd, LPTPMPARAMS lptpm); 

The hMenu parameter is the handle of the menu to be displayed. The hwnd 
parameter identifies the window to receive the WM_COMMAND message if a 
menu item is selected. The TPMPARAMS structure contains a rectangle that won't 
be covered up by the menu when it is displayed. For our purposes, this rect
angle is set to the dimensions of the drop-down button so that the button won't 
be covered by the pop-up menu. The fuFlags field can contain a number of 
values that define the placement of the menu. For drop-down buttons, the only 
flag needed is TPM_ VERTICAL. If TMP _VERTICAL is set, the menu leaves un
covered as much of the horizontal area of the exclude rectangle as possible. 
The TrackPopupMenuEx function doesn't return until an item on the menu has 
been selected or the menu has been dismissed by the user tapping on another 
part of the screen. 

Combo Boxes on the Command Bar 
Combo boxes on a command bar are much easier to implement than drop-down 
buttons. You add a combo box by calling 

HWND CommandBar_InsertComboBox (HWND hwndCB, HINSTANCE hinst, 
int iWidth, UINT dwStyle, 
WORD idComboBox, 
int iButton); 

275 



Part II Windows CE Basics 

276 

This function inserts a combo box on the command bar to the left of the 
button indicated by the iButton parameter. The width of the combo box is speci
fied, in pixels, by the iWidth parameter. The dwStyle parameter specifies the style 
of the combo box. The allowable style flags are any valid Windows CE combo 
box style and window styles. The function automatically adds the WS_CHILD and 
WS_ VISIBLE flags when creating the combo box. The idComboBox parameter 
is the ID for the combo box that will be used when WM_COMMAND messages 
are sent notifying the parent window of a combo box event. Experienced Windows 
programmers will be happy to know that CommandBar _InsertComboBox takes 
care of all the "parenting" problems that occur when a control is added to a 
standard Windows toolbar. That one function call is all that is needed to create 
a properly functioning combo box on the command bar. 

Once a combo box is created, you program it on the command bar the same 
way you would a stand-alone combo box. Since the combo box is a child of the 
command bar, you must query the window handle of the combo box by pass
ing the handle of the command bar to GetDlgltem with the ID value of the combo 
box, as in the following code: 

hwndCombobox = GetDlgltem (GetDlgltem (hWnd, IDC_CMDBAR), 
IDG_CDMBO)); 

However, the WM_COMMAND messages from the combo box are sent 
directly to the parent of the command bar, so handling combo box events is 
identical to handling them from a combo box created as a child of the application's 
top-level window. 

Command Bar Tooltips 
Tooltips are small windows that display descriptive text that labels a command 
bar button when the stylus is held down over the control. The command bar 
implements tooltips in its own unique way. 

You add tooltips to a command bar by using this function: 

BOOL CommandBar_AddToolTips (HWND hwndCB, UINT uNumToolTips, 
LPTSTR lpToolTips); 

The lpToolTips parameter must point to an array of pointers to strings. The 
uNumToolTips parameter should be set to the number of elements in the string 
pointer array. The CommandBar _AddToolTips function doesn't copy the strings 
into its own storage. Instead, the location of the string array is saved. This means 
that the block of memory containing the string array must not be released until 
the command bar is destroyed. 

Each string in the array becomes the tooltip text for a control or separator 
on the command bar, excluding the menu. The first string in the array becomes 



Common Controls and Windows CE Chapter 5 

the tooltip for the first control or separator, the second string is assigned to the 
second control or separator, and so on. So even though combo boxes and sepa
rators don't display tooltips, they must have entries in the string array so that all 
the text lines up with the proper buttons. 

Other Command Bar Functions 
A number of other functions assist in command bar management. The CommandBar_ 
Height function returns the height of the command bar and is used in all the example 
programs that use the command bar. Likewise, the CommandBar_ 
AddAdornments function is also used whenever a command bar is used. This 
function, prototyped as 

BOOL CommandBar_AddAdornments (HWND hwndCB, DWORD dwFlags, 
DWORD dwReserved); 

places a Close button and, if you want, a Help button and an OK button on the 
extreme right of the command bar. You pass a CMDBAR_HELP flag to the dwFlags 
parameter to add a Help button, and you pass a CMDBAR_OK flag to add an 
OK button. 

The Help button is treated differently from other buttons on the command 
bar. When the Help button is pressed, the command bar sends a WM_HELP mes
sage to the owner of the command bar instead of the standard WM_ COMMAND 
message. The OK button's action is more traditional. When you tap it, you send 
a WM_COMMAND message with the control ID IDOK. The CommandBar_ 
AddAdornments function must be called after all other controls of the command 
bar have been added. 

If your top-level window is resizeable, you must notifiy the command bar 
of resize during the WM_SIZE message by sending a TB_AUTOSIZE message to 
the command bar and then calling 

BOOL CommandBar_AlignAdornments (HWND hwndCB); 

The only parameter is the handle to the command bar. A command bar can 
be hidden by calling 

BOOL CommandBar_Show (HWND hwndCB, BOOL fShow); 

The }Show parameter is set to TRUE to show a command bar and FALSE to 
hide a command bar. The visibility of a command bar can be queried with this: 

BOOL CommandBar_IsVisible (HWND hwndCB); 

Finally, a command bar can be destroyed using this: 

void CommandBar_Destroy (HWND hwndCBJ: 

277 



Part II Windows CE Basics 

Although a command bar is automatically destroyed when its parent win
dow is destroyed, sometimes it's more convenient to destroy a command bar 
manually. This is often done if a new command bar is needed for a different mode 
of the application. Of course, you can create multiple command bars, hiding all 
but one and switching between them by showing only one at a time, but this 
isn't good programming practice under Windows CE because all those hidden 
command bars take up valuable RAM that could be used elsewhere. The proper 
method is to destroy and create command bars on the fly. You can create a 
command bar fast enough so that a user shouldn't notice any delay in the appli
cation when a new command bar is created. 

Design Guidelines for Command Bars 
Because command bars are a major element of Windows CE applications, it's not 
surprising that Microsoft has a rather strong set of rules for their use. Many of these 
rules are similar to the design guidelines for other versions of Windows, such as 
the recommendations for the ordering of main menu items and the use of tooltips. 
Most of these guidelines are already second nature to Windows programmers. 

The menu should be the leftmost item on the command bar. The order of 
the main menu items should be from left to right: File, Edit, View, Insert, For
mat, Tools, and Window. Of course, most applications have all of those menu 
items, but the order of the items used should follow the suggested order. For 
buttons, the order is from left to right: New, Open, Save, and Print for file ac
tions; and Bold, Italic, and Underline for font style. 

The CmdBar Example Program 

278 

The CmdBar example demonstrates the basics of command bar operation. On 
startup, the example creates a bar with only a menu and a close button. Select
ing the different items from the view menu creates various command bars showing 
the capabilities of the command bar control. The source code for CmdBar is shown 
in Figure 5-4. 

Figure 5-4 The CmdBar program 



Common Controls and Windows CE Chapter 5 

11----------------------------------------------------------------------
11 Icons and bitmaps 
II 
ID_ICON 
DisCross 
DisMask 
SortDropBtn 

ICON 
BITMAP 
BITMAP 
BITMAP 

"cmdbar.ico" 
"cross.bmp" 
"mask.bmp" 
"sortdrop.bmp" 

II Program icon 
II Disabled button image 
II Disabled button image mask 
II Sort drop-down button image 

11-----------------------------------------·----------·~----------------
ll Menu 
II 
lD_MtNU MENU DISCARDABLE 
BEGIN 

POP UP "&File" 
BEGIN 

MENU ITEM "E&xi t", 

popmenu MRtfU OISCAROABLE· · 
BEGIN 

·. POPu{·'.&Sl)rt" 
BEGIN 

.· .//• M~oUJ: .. • 6nii.dial (ig:. ~e'iitp1 ate • 
n ·.-• :.•.: ·-.<<:\•<·- -
aboutbox DIAiQG'.-ct'!'se~r~a'f}ie 10. 10 •... -Hi0,4S- .·, 
STYLE ·w?:~t)rve:·'.J~S~~-TSI.SLE'•I WS~CAPTION 

os_._tEf(r~')t-f)SJiooALfRAME . 

(continued) 

279 



Part II Windows CE Basics 

Figure 5-4 (continued) 

280 



II Command Dar button IDs 
#define IDC_NEW 201 
#define IDC_OPEN 202 
#define IDC_SAVE 203 
#define IDC_CUT 204 
#define IDC_COPY 205 
//define rnc_PASTE 206 
#define IDC_PROP 

1/define rnc_ucoN 

1/defi ne roc_srcoN 

1/defi ne IDC_LIST 

1/defi ne IDC_RPT 

#define rnc_sNAME 

1/define rnc_sTYPE 

1/defi ne rnc_ssrzE 

1/define roc_soAn 

4/defi ne IDC_DPSORT · 

#define STD,,_BMPS 

#define VI:EW--aMPS 

If Fi.mcti on prototype$ · II . . 
int <;rrj 1 tApp. (HI NST AtlC.E.) 

tlWNJlini tinstance 

'Jntltermlnstance 

/ff Window procedures 

207 

Common Controls and Windows CE Chapter 5 

LRESU LT CALLBACK Mai nWndProc (HWN.Q(UlNJ, WP A RAM, LPARAM~ : ' 

(continued) 

281 



Part II Windows CE Basics 

282 

Figure 5-4 (continued) 

lf Di a log procedures 

BOOL CALLBACK Ab<:iutO.lgPr.oc. 

Crnd6ar.c 

/l.CmdBar - Command bar 

JI 
ll w.ritten for. the book pro9ra1t1ming Win(jows 

·I! Copyright (C) 2001 Dou.g]as Boling. 

4foi ncl ude <wi n(jows. h> 

4foincl ude (c-OmmctrLh> 

fiticlude "CmdBar.h" 

11~------:-----"-----·-----~-
I! Global data 

II 
canst TCHAR szAppName[] = TEXT 

HINSTANCE h!nst; 

II Message dispatch table for MainWindowProc 

canst struct decodeUINT MainMe~iages[J ; { 

}; 

WM_CREATE, DoCreateMai.n, 

WM_SIZE, DoSizeMain, 

WM_COMMAN.O' OoCommandM.a i.n' 
WM_NOTI FY. Do Not ifyMai n, 

WM_DESTROY. DoDestroyMaln, 

1.1 Command Message dispatch for MainWindowProt 

.canst struct decodeCMIJ MainCommanditems[J 

} ; 

IDM_EXIT. [)oMainCommandExit. 
IDM_STDBAR, DoMafnCommandVStd, 

IDM_VIEWBAR, lloMainCommandVView, 

IDM_COMBOBAR. DoMainCommandVGoinbo, 

IDM_ABOUT, DoMainCommandAbout, 

II standard file bar button sti'ucturE! 

const TB.BUTTON tbCBStdBtns[J = ( 
// Bi tmaplndex Command· 

{0, IL 
{STD_FILENEW, lOG:::NEW, 

{STD:..F I LEOP.EN, 



Common Controls and Windows CE Chapter 5 

} : 

{STO_FILESAVE. IDC_SAVE, TBSTATE_ENABLED. 

{0, 

{STO_CUT, 

{STD_COPY, 

{STD_PASTE, 

{0, 

0' 
rDc_cur, 

IDC_COPY, 

IDCPASTE, 

0. 
{STO_PROPERTI ES, IDC_?ROP. 

TBSTYLE_BUTTON, 0, 

TBSTYLE_BUTTON, 

0. TBSTYLE_SEP. 
TBSTATE_ENABLED, 

TBSTYLE_BUTTON, 

TBSTATE_ENABLED, 
TBSTYLE_BUTTON, 

TBSTATLENABLED, 
TBSTYLE_BUTTON, 

0, TBSTYLE_SEP, 
TBSTATE_ENABLED, 

0} 

0. 0}. 
0. 0}. 

0. 

0 i 0}' 

0, 0}. 

0, 0}, 

!I Standard view bar button structure 
const TBBUHON tbCBVi ewBtns.[] = { 
I I Bitmaplndex Command 

{0, 0. 

IDLLl.CON. 

ID(_SSIZE, 

lVIEW_;SORTDATE, roc_sDATE. 

State Style UserData Str.i ng 
0, TB.STYLE_SEP, 0, 0}. 

TBSTAff_ENABLED I TBSTATLCHECKEO, 
TBSTYLE.:..CHECKGROU P, 0, 0}, 

TBSTATE:_ENAHLED, 
TBSTVLE_CHECKGROU P, 0. 0}, 

0, TBSTYLE_CHECKGROUP, 0, 0}. 

TBSTATE_ENABLEO. 
... . . TBSTYLE--CHECKGROlJP, 0, 0}, 

TBSTATCENABLED, 
TBSTY LE-,.SEP, 0, 0}, 

TBSTATE_ENABLED I TBS.TATLCHECKEO, 
TBSTYLLCHECKGROUP, 0, 0}, 

TBSTATEc....ENABLED, 
TBSTYLE_CHECKGROUP, 0, 0}. 

TBSTATE_ENABLED. 
TBSTYLE_CHECKGROUP, 0, 0}; 

TBSTATE-.cENABLED, 
TBSTYLE_CHECKGROUP, 0, l!l}, 

TBSTYLE_SEP, 0. 0}, 

strJng list for 
canst TCHAR *PViewTips[J = C"'), TEXT ( ... Large"), TEXT ("Small''), 

TEXT ("List"), TEXT ("Details"), TEXT('"'), 
TEXT ("Sort by Name'' l, TEXT ("Sort by Type"), 
TEXT ("Sort by Size"), TEXT ("Sort by Date~). 

// Combination standard and .. view bar button structure 
.const. TB BUTTON .. tbCBCmboBtns{ l = { 

II ~itmaplndex 

{01 0, 

Use.rData String 
0. 0}, 

(continued) 

283 



Part II Windows CE Basics 

Figure 5-4 (continued) 

284 



Common Controls and Windows CE Chapter 5 

} 

JI Initialize this instance. 
hwndMain = Initinstance (hlnstance, lpCmdLine, nCmdShow): 
if (hwndMain == 0) return 0xl0: 

fl Application message loop 
whHe_ (GetMessage (&msg, NULL, 0. 0)) { 

TranslateMessage (&msg); 
DispatchMessage C&msg); 

} 

JI Instance cleanup 
return Terminstance (hinstance, msg.wParam): 

I/- 7 - - c , - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

II InitApp - Application initialization 
II 
.int lnitApp <HINSTANCE hinstancel { 

WNDCLASS we: 
INITCOMMONCONTROLSEX i cex;. 

lfi f_ def'! ned (WI N32-PLATFORM~PSPC) 
II If Pocket PC, allow only one instance of the application. 
HWND hWnd = FindWindow (szAppName, NULL); 
if (hWnd) { 

.. } 

SetForegroundWindow ((HWND)(((DWORD)hWnd) I 0x01)): 
return -1: 

4fendif 

} 

//Register application.main window class. 
we.style= 0; // Window style 
wc.lpfnWndProc = MainWndProc; // Callback function 
wc.cbClsExtra = 0; // Extra class data 
wc.cbWndExtra = 0: // Extra window data 
wc.hinstance = hins.tance; I I Owner handle 
wc.11Ico_n =NULL. //Application icon 
we. hCursor = LoadCur.sor ( N"ULL, IDC_ARROW); I I Def a ult cursor 
wc.hbrBackground = (KBRUSH) GetStockObject (WHITE_BRUSH): 
we. lpszMenuName = NULL: I I Menu name 
_wc.l)szClassName = szAppName: // Window class name 

if CRegisterClass C&wc) == 0) return 1; 

fl Load the command bar common control class. 
icex.dwSize ~ sizeof (INITCOMMONCONTROLSEXJ; 
icex •. dw!CC."' ICC_BAR_CLASSES; 
IniiCommonCdntrolsEx C&icex): 
.return 0; 

(continued) 

285 



Part II Windows CE Basics 

286 

Figure 5-4 (continued) 

. //:: ··.-:··.
) f. lnidnsJarrce ·;Instance 
II .. .. ·.·· .. :·.· .. •. ·•· .... · .•. ·· ......••.... 

..• HWNO {idtlnstanee .. (HINst/\NCE 

· .. H.w~m hWnd: .. ·.· .· < .· 
DWORO dWStyle "' ws"'"V!SilllE: ·. . . ·. . . 

. i°nt ~ =. CW,;.,,8$EQ.EFAUlT, y .c; CW.;.USEl1EFAULT; 
int ex "' 6LusEDEFAULT; cy·•,,,· CW.;.USEDEl'AULl": 

1Hf CW.I N3LWCE 300) 
#i fndef·. Witj3.2_J> LATfORM-:cP.SPC 

dwSt.Yl.e. j= W!LCAPTION I ws..-'.SJZE.BOX 
)<,., y .=: 10: 
.ex.•= GetSystemMe~ries 
cyc=·.· (ietSys:temMetrics 

· lfendff 
/}endif 

s~ ve JJ.rog.ratn i:n$f~nce hahdl e .in 
.hing ;;:!'fI.nst;ance; · 

..•. . Cre.ate J1llli n windo\'l •... ·· 
hWnd."' .CreateW1ndow Cs;?:Ap1JN4me; 

.... <: .• •·••.·••.·.··. \i.i:•:·•··:... ..x .• ·.:y, c~, 
Retur.n:fa;J.(;ode. iLwindow Mt 

(hWnd}) 

WS,;.,,MAXIMIZEBQX 

30; 
50 



Common Controls and Windows CE Chapter 5 

II 
II Search message list to see if we need to handle this 
JI message. If in list. call procedure. 
II 
for (i = 0: i < dim(MainMessages); i++) 

if (wMsg == MainMessages[i].Code) 
return (•MainMessages[iJ.Fxn)(hWnd, wMsg, wParam. lParam); 

} 

return DefWindowProc (hWnd, wMsg, wParam, lParam): 

//-~---,~----.---------------------------------------'"--,--------------" 

II DoCreateMain " Process WM_CREAlE message for window, 
II 
LRESULT DoCreateMai n ( HWND hWnd, UINT wMsg, WP A RAM wPa ram, 

LPARAM 1 Par am) { 
HWND hwndCB: 

command bar >that has only a menu a.nd an 

LRESULT DoS.izeMain CHWND hWnd, UINT WMsg, WPARAM wParam, 
LPARAM lParam) { 

(continued) 

287 



Part II Windows CE Basics 

Figure 5-4 (continued) 

288 



Common Controls and Windows CE Chapter 5 

} 

} 

} 

MapWindowPoints (pNotifyHeader->hwndFrom, HWND_DESKTOP, 
(LPPOINT)&rect, 2); 

II Prevent the menu from covering the button. 
tpm.cbSize = sizeof (tpm): 
CopyRect C&tpm.rcExclude, &rect); 

hMenu = GetSubMenu (LoadMenu (hlnst, TEXT ("popmenu")),0); 
TrackPopupMenuEx (hMenu, TPM_LEFTALIGN I TPM_VERTICAL, 

rect.left, rect.bottom. hWnd, &tpm); 

return 0: 

11-----------••C---•~C-----c~-----------·------•C-C~~-•••--~-----••-----

ll DoDestroyMain c Process ti/Mc.DESTROY message for wtndow. 
II 
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPMAM lParam) { 
PostQu i tMessa ge < 0.)'; 
return 0; 

} 

11 Command hamller rotitlrie.s 
/j------c•-~--c"~----·~-~-------·-------.-·---•--~----------------------
1! DoMainCommandE){1f >rrocess Program Exit command. 
II 
LPARAM DoMl!irtCommandExtt (HWNIJ hWnd. WORD i ditem, HWND hwndCtl. 

WORD wNotifyCode) { 

WM..:.:CLOSE. 0. 0): 
return 0; 

} 

//••••~••••••·-·C--~----C-•••••••-•···-·••••----------------------------

11 DoMainCommandVlewStd.~ Dis.plays a standard edit-centric command bar 
II 
LPARAM DoMa1nC9l!!rnandVStd (HllND hWnd. WORD id Item, HWN.D hwndCtl. 

· ·· ·.<· ;woRD. wNotifyCode} { 
HWNO hwrldCB;>' • <.: . 

ll If a coiritll<inf~a?extsts. kill it. 
if Chwnc1ca =~tUl!tttell).<hwnd, roc_cMDMRl) 

cqniffiakcia~r~n~·~~rQ..Y ttiwndcal: · 

I I C rea:t~J/L.Edninra~d :b~r.; 
hwndC~. 7:¢ori\maory~Bar..:.Creilte 

(continued) 

289 



Part II Windows CE Basics 

Figure 5-4 (continued) 

290 



Common Controls and Windows CE Chapter 5 

II Replace a button image with the disabled image. 
Imagelist_Replace (hilDisabled, VIEW_LIST, hBmp, hMask): 

II Set disabled image list. 
SendMessage (hwndCB, TB_SETDISABLEDIMAGELIST, 0, 

(LPARAM)hflDisabled); 

II Add buttons to the command bar. 
CommandBar_AddButtons (hwndCB, dimCtbCBViewBtns), tbCBViewBtnsl: 

II Add tool tips to t)le command bar. 
CommandBar _AddToolHps (hwndCB, di m(pVi ewTi ps), pV1,ewTi ps): 

I I Add a combo box bet~;een the view icons and the sort icons. 
CommandBar_InsertC'omboS-Ox (hwndCB, hinst. 75, 

CBS_DROPDOWNLIST I WS;.:.VSCROLL, 
IDC_COMBO, 6) ; 

l l Fi 11 in combo nox~ 
for Ci = 0; i < i0;,.i#) { 
. wsprintff~.;;Tmpl Jgl<'f.t~rtem %ct")., 1 l; 

SelldrilglteiliMfss~~ (hwJi4CB. lDCCOMBO; CB.:..l:~SqRTSTIUNG' -l • 
. . CLPARAM l szTmp); 

(l:\W!)~CB,, !PC-COMBO, CB...;SEJCURS~~. 0, 0): 

ll Add ex:H but1:'9n.:ztJ():coiiimand bar. 
~ommandsar-Act9Ml()tnmeri~$ OrwndCB .• 0, 0).; 

ffiturn e: 

-------~-------~-~----.----~----r-~---~-----~~-

ll OoMainCommandVComb'o • Oispli!ys a combination of fi1e and edit buttons 
ll 
LPARAM DoMa.i nCommandVComlio (lfWND .hWnd, WORD id Item. HWND hwndCt 1 , 

WORD wNotifyCode) { 

!,(~J:f·a, ~0111ma~d.:()i['E\XiS:t5; .RiJJ it, . 
fhwndCB .":'' qetDfglt~m .. (hWlld; •'' I[)C~CMDBAR)) 
commi)ndBar ,.;.;.P~stNy :(hWndCB): 

ere.ate a com111~iidibarr:, 
bwnd.CB = Co,mmaiii:IB.ari'.~reate 
'; .. ·>.".·: ,_·.. :~. ·>.: ·~:· · .. .,· 

··it Insert a .~~:ri~'.·' .· .. · .. 

(continued) 

291 



Part II Windows CE Basics 

Figure 5-4 (continued) 

292 



Common Controls and Windows CE Chapter 5 

Each of the three command bars created in CmdBar demonstrates differ
ent capabilities of the command bar control. The first command bar, created in 
the routine DoMainCommandVStd, creates a vanilla command bar with a menu 
and a set of buttons. The button structure for this command bar is defined in the 
array tbCBStdBtns, which is defined near the top of CmdBar.C. 

The second command bar, created in the routine DoMainCommandVView, 
contains two groups of checkgroup buttons separated by a combo box. This 
command bar also demonstrates the use of a separate image for a disabled button. 
The list view button, the third button on the bar, is disabled. The image for that 
button in the image list for disabled buttons is replaced with a bitmap that looks 
like an X. 

The DoMainCommandVCombo routine creates the third command bar. It 
uses both the standard and view bitmap images as well as a custom bitmap for 
a drop-down button. This command bar demonstrates the technique of referenc
ing the images in an image list that contains multiple bitmaps. The drop-down 
button is serviced by the DoNotifiyMain routine, where a pop-up menu is loaded 
and displayed when a TBN_DROPDOWN notification is received. 

Finally, when CmdBar is compiled for an H/PC 2000, it looks a bit differ
ent because of the style flags in Create Window. The main window has a cap
tion bar and doesn't fill the entire screen. You can size the window by dragging 
the edge of the window and move the window by dragging the caption bar. This 
program shows off the ability of a command bar to resize itself with a little help 
from some code in the WM_SIZE message handler. 

Command Bands 
Command bands are a valuable feature, especially in their capacity to contain 
separate bands that can be dragged around by a user. Each individual band can 
have a "gripper" that can be used to drag the band to a new position. A band 
can be in a minimized state, showing only its gripper and, if you want, an icon; 
in a maximized state, covering up the other bands on the line; or restored, shar
ing space with the other bands on the same line. You can even move bands to 
a new row, creating a multiple-row command band. 

The standard use of a command bands control is to break up the elements 
of a command bar-menu, buttons, and other controls-into separate bands. This 
allows users to rearrange these elements as they see fit. Users can also expose 
or overlap separate bands as needed in order to provide a larger total area for 
menus, buttons, and other controls. 

293 



Part II Windows CE Basics 

294 

Creating a Command Bands Control · 
Creating a command bands control is straightforward, if a bit more complicated 
than creating a command bar control. You create the control by calling 

HWND CommandBands_Create (HINSTANCE hinst, HWND hwndParent, UINT wID, 
DWORD dwStyles, HIMAGELIST himl ); 

The dwStyles parameter accepts a number of flags that define the look and 
operation of the command bands control. These styles match the rebar styles; 
the command bands control is, after all, closely related to the rebar control. 

• RBS_AU10SIZE Bands are automatically reformatted if the size or po
sition of the control is changed. 

• RBS_BANDBORDERS Each band is drawn with lines to separate ad
jacent bands. 

Image Lists for Command Bands Controls 
I touch~d on image lists earlier. Command bars and toolbars use image lists 
internally to manage the images used on buttons. Image lists can be man
aged in a stand-alone image list control. This control is basically a helper 
control that assists applications in managing a series of like-size images. The 
image list control in Windows CE is identical to the image list control un
der Windows 2000 and Windows Me, with the exception that the Windows 
CE version can't contain cursors for systems built without mouse/ cursor 
support. For the purposes of the command bands control, the image list just 
needs to be created and a set of bitmaps added that will represent the in
dividual bands when they're minimized. An example of the minimal code 
required for this is shown here: 

himl = ImageList_Create (16, 16, ILC_COLOR, 2, 0); 
hBmp = LoadBitmap (hlnst, TEXT ("CmdBarBmps")); 
ImageList_Add (himl, hBmp, NULL); 
DeleteObject (hBmp); 

The ImageList_Create function takes the dimensions of the images to 
be loaded, the format of the images (ILC_COLOR is the default), the num
ber of images initially in the list, and the number to be added. The two im
ages are then added by loading a double-wide bitmap that contains two 
images and calling ImageList_Add. After the bitmap has been loaded into 
the image list, it should be deleted. 



Common Controls and Windows CE Chapter 5 

• RBS_FIXEDORDER Bands can be moved but always remain in the 
same order. 

• RBS_SMARTLABELS When minimized, a band is displayed with its 
icon. When the band is restored or maximized, its label text is displayed. 

• RBS_ VARHEIGHT Each row in the control is vertically sized to the 
minimum required by the bands on that row. Without this flag, the 
height of every row is defined by the height of the tallest band in the 
control. 

• CCS_ VERT Creates a vertical command bands control. 

• RBS_ VERTICALGRIPPER Displays a gripper appropriate for aver
tical command bar. This flag is ignored unless CCS_ VERT is set. 

Of these styles, RBS_SMARTLABELS and RBS_ VARHEIGHT are the two most 
frequently used flags. The RBS_SMARTLABELS flag lets you choose an attractive 
appearance for the command bands control without requiring any effort from 
the application. The RBS_ VARHEIGHT flag is important if you use controls in a 
band other than the default command bar. The CCS_ VERT style creates a verti
cal command bands control, but because Windows CE doesn't support vertical 
menus, any band with a menu won't be displayed correctly in a vertical band. 
As you'll see, however, you can hide a particular band when the control is ori
ented vertically. 

Adding Bands 
You can add bands to your application by passing an array of REBARBANDINFO 
structures that describe each band to the control. The function is 

BOOL CommandBands_AddBands CHWND hwndCmdBands, HINSTANCE hinst, 
UINT cBands, LPREBARBANDINFO prbbi); 

Before you call this function, you must fill out a REBARBANDINFO structure 
for each of the bands to be added to the control. The structure is defined as 

typedef struct tagREBARBANDINFO{ 
UINT cbSize; 
UINT fMask; 
UINT fStyle; 
COLORREF clrFore; 
COLORREF clrBack; 
LPTSTR lpText; 
UINT cch; 
int iimage; 
HWND hwndChil d; 
UINT cxMinChild; 
UINT cyMinChild; 

(continued) 

295 



Part II Windows CE Basics 

296 

UINT cyMinChild; 
UINT ex; 
HBITMAP hbmBack; 
UINT wID; 
UINT cyChild; 
UINT cyMaxChild; 
UINT cylntegral; 
UINT cxldeal; 
LPARAM lParam; 

REBARBANDI NFO; 

Fortunately, although this structure looks imposing, many of the fields can 
be ignored because there are default actions for uninitialized fields. As usual with 
a Windows structure, the cbSize field must be filled with the size of the struc
ture as a fail-safe measure when the structure is passed to Windows. The j.Mask 
field is filled with a number of flags that indicate which of the remaining fields 
in the structure are filled with valid information. I'll describe the flags as I cover 
each of the fields. 

The JStyle field must be filled with the style flags for the band if the 
RBBIM_STYLE flag is set in the fMask field. The allowable flags are the following: 

• RBBS_BREAK The band will start on a new line. 

• RBBS_FIXEDSIZE The band can't be sized. When this flag is speci
fied, the gripper for the band isn't displayed. 

• RBBS_HIDDEN The band won't be visible when the command band 
is created. 

• RBBS_GRIPPERALWAYS The band will have a sizing grip, even if 
it's the only band in the command band. 

• RBBS_NOGRIPPER The band won't have a sizing grip. The band 
therefore can't be moved by the user. 

• RBBS_NOVERT The band won't be displayed if the command bands 
control is displayed vertically due to the CCS_ VERT style. 

• RBBS_CHILDEDGE The band will be drawn with an edge at the 
top and bottom of the band. 

• RBBS_FIXEDBMP The background bitmap of the band doesn't 
move when the band is resized. 

For the most part, these flags are self-explanatory. Although command bands 
are usually displayed across the top of a window, they can be created as verti
cal bands and displayed down the left side of a window. In that case, the 
RBBS_NOVERT style allows the programmer to specify which bands won't be 
displayed when the command band is in a vertical orientation. Bands containing 



Common Controls and Windows CE Chapter 5 

menus or wide controls are candidates for this flag because they won't be dis
played correctly on vertical bands. 

You can fill the clrFore and clrBack fields with a color that the command 
band will use for the foreground and background colors when your application 
draws the band. These fields are used only if the RBBIM_COLORS flag is set in 
the mask field. These fields, along with the hbmBack field, which specifies a 
background bitmap for the band, are useful only if the band contains a trans
parent command bar. Otherwise, the command bar covers most of the area of 
the band, obscuring any background bitmap or special colors. I'll explain how 
to make a command bar transparent in the section "Configuring Individual Bands." 

The lpText field specifies the optional text that labels the individual band. 
This text is displayed at the left end of the bar immediately to the right of the 
gripper. The ilmage field is used to specify a bitmap that will also be displayed 
on the left end of the bar. The ilmage field is filled with an index to the list of 
images contained in the image list control. The text and bitmap fields take added 
significance when paired with the RBS_SMARTLABELS style of the command band 
control. When that style is specified, the text is displayed when the band is re
stored or maximized and the bitmap is displayed when the band is minimized. 
This technique is used by the H/PC Explorer on its command band control. 

The wID field should be set to an ID value that you use to identify the band. 
The band ID is important if you plan on configuring the bands after they have 
been created or if you think you'll be querying their state. Even if you don't plan 
to use band IDs in your program, it's important that each band ID be unique 
because the control itself uses the IDs to manage the bands. This field is checked 
only if the RBBIM_ID flag is set in the JMask field. 

The hwndChild field is used if the default command bar control in a band 
is replaced by another control. To replace the command bar control, the new 
control must first be created and the window handle of the control then placed 
in the hwndChild field. The hwndChild field is checked only if the RBBIM_ CHILD 
flag is set in the jMask field. 

The cxMinChild and cyMinChild fields define the minimum dimensions to 
which a band can shrink. When you're using a control other than the default 
command bar, these fields are useful for defining the height and minimum width 
(the width when minimized) of the band. These two fields are checked only if 
the RBBIM_CHILDSIZE flag is set. 

The cxldeal field is used when a band is maximized by the user. If this field 
isn't initialized, a maximized command band stretches across the entire width of 
the control. By setting cxldeal, the application can limit the maximized width of 
a band, which is handy if the controls on the band take up only part of the total 
width of the control. This field is checked only if the RBBIM_IDEALSIZE flag is 
set in the .fMask field. 

297 



Part II Windows CE Basics 

298 

The lParam field gives you a space to store an application-defined value 
with the band information. This field is checked only if the RBBIM_LPARAM flag 
is set in thejMask field. The other fields in REBARBANDINFO apply to the more 
flexible rebar control, not the command band control. The code below creates 
a command bands control, initializes an array of three REBARBANDINFO struc
tures, and adds the bands to the control. 

II Create a command bands control. 
hwndCB = CommandBands_Create (hinst, hWnd, IDC_CMDBAND, RBS_SMARTLABELS I 

RBS_VARHEIGHT, himl); 

II Initialize common REBARBANDINFO structure fields. 
for (i = 0; i < dim(rbi); i++) { 

rbi[i].cbSize = sizeof CREBARBANDINFO); 
rbi[i].fMask = RBBIM_ID I RBBIM_IMAGE I RBBIM_SIZE I RBBIM_STYLE; 
rbi[i].fStyle = RBBS_FIXEDBMP; 
rbi[i].wID = IDB_CMDBAND+i; 

} 

II Initialize REBARBANDINFO structure for each band. 
II 1. Menu band. 
rbi[0].fStyle I= RBBS_NOGRIPPER; 
rbi[0J.cx = 130; 
rbi[0].iimage = 0; 

II 2. Standard button band. 
rbi[lJ.fMask I= RBBIM_TEXT; 
rbi[l].cx = 200; 
rbi[lJ.iimage = l; 
rbi[l].lpText =TEXT ("Std Btns"); 

II 3. Edit control band. 
hwndChild = CreateWindow (TEXT ("edit"), TEXT ("edit ctl"), 

WS_VISIBLE I WS_CHILD I WS_BORDER, 
0, 0, 10, 5, hWnd, IHMENU)IDC_EDITCTL, 
hinst, NULL); 

rbi[2J.fMask I= RBBIM_TEXT I RBBIM_STYLE I RBBIM_CHILDSIZE I RBBIM_CHILD; 
rbi[2].fStyle I= RBBS_CHILDEDGE; 
rbi[2].hwndChild = hwndChild; 
rbi[2J.cxMinChild = 0; 
rbi[2J.cyMinChild = 25; 
rbi[2].cyChild = 55; 
rbi[2].cx = 130; 
rbi[2].iimage = 2; 
rbi[2].lpText =TEXT ("Edit field"); 

II Add bands. 
CommandBands_AddBands ChwndCB, hlnst, 3, rbi); 



Common Controls and Windows CE Chapter 5 

The command bands control created in the preceding code has three bands, 
one containing a menu, one containing a set of buttons, and one containing an 
edit control instead of a command bar. The control is created with the 
RBS_SMARTLABELS and RBS_ VARHEIGHT styles. The smart labels display an 
icon when the bar is minimized and a text label when the band isn't minimized. 
The RBS_ VARHEIGHT style allows each line on the control to have a different 
height. 

The common fields of the REBARBANDINFO structures are then initialized 
in a loop. Then the remaining fields of the structures are customized for each 
band on the control. The third band, containing the edit control, is the most 
complex to initialize. This band needs more initialization since the edit control 
needs to be properly sized to match the standard height of the command bar 
controls in the other bands. 

The ilmage field for each band is initialized using an index into an image 
list that was created and passed to the CommandBands_Create function. The text 
fields for the second and third bands are filled with labels for those bands. The 
first band, which contains a menu, doesn't contain a text label because there's 
no need to label the menu. You also use the RBBS_NOGRIPPER style for the first 
band so that it can't be moved around the control. This fixes the menu band at 
its proper place in the control. 

Now that we've created the bands, it's time to see how to initialize them. 

Configuring Individual Bands 
At this point in the process, the command bands control has been created and 
the individual bands have been added to the control. We have one more task, 
which is to configure the individual command bar controls in each band. (Actu
ally, there's little more to configuring the command bar controls than what I've 
already described for command bars.) 

The handle to a command bar contained in a band is retrieved using 

HWND CommandBands_GetCommandBar (HWND hwndCmdBands, UINT uBand); 

The uBand parameter is the zero-based band index for the band contain
ing the command bar. If you call this function when the command bands con
trol is being initialized, the index value correlates directly with the order in which 
the bands were added to the control. However, once the user has a chance to drag 
the bands into a new order, your application must obtain this index indirectly by 
sending an RB_IDTOINDEX message to the command bands control, as in 

nindex = SendMessage (hwndCmdBands, RB_IDTOINDEX, ID_BAND, 0); 

This message is critical for managing the bands because many of the func
tions and messages for the control require the band index as the method to identify 
the band. The problem is that the index values are fluid. As the user moves the 

299 



Part II Windows CE Basics 

300 

bands around, these index values change. You can't even count on the index 
values being consecutive. So as a rule, never blindly use the index value with
out first querying the proper value by translating an ID value to an index value 
with RB_IDTOINDEX. 

Once you have the window handle to the command bar, simply add the 
menu or buttons to the bar using the standard command bar control functions 
and messages. Most of the time, you'll specify only a menu in the first bar, only 
buttons in the second bar, and other controls in the third and subsequent bars. 

The following code completes the creation process shown in the earlier code 
fragments. This code initializes the command bar controls in the first two bands. 
Since the third band has an edit control, you don't need to initialize that band. The 
final act necessary to complete the command band control initialization is to add 
the close box to the control using a call to CommandBands_AddAdornments. 

II Add menu to first band. 
hwndBand = CommandBands_GetCommandBar (hwndCB, 0); 
CommandBar_InsertMenubar (hwndBand, hinst, ID_MENU, 0); 

II Add standard buttons to second band. 
hwndBand = CommandBands_GetCommandBar (hwndCB, l); 
CommandBar_AddBitmap (hwndBand, HINST_COMMCTRL, IDB_STD_SMALL_COLOR, 

15, 0, 0); 

CommandBar_AddButtons (hwndBand, dim(tbCBStdBtns), tbCBStdBtns); 

II Add exit button to command band. 
CommandBands_AddAdornments (hwndCB, hlnst, 0, NULL); 

Saving the Band Layout 
The configurability of the command bands control presents a problem to the 
programmer. Users who rearrange the bands expect their customized layout to 
be restored the next time the application is started. This task is supposed to be 
made easy using the following function. 

BOOL CommandBands_GetRestoreinformation (HWND hwndCmdBands, 
U!NT uBand, LPCOMMANDBANDSRESTOREINFO pcbr); 

This function saves the positioning information from an individual band into 
a COMMANDBANDSRESTOREINFO structure. The function takes the handle of 
the command bands control and an index value for the band to be queried. The 
following code fragment shows how to query the information from each of the 
bands in a command band control. 

II Get the handle of the command bands control. 
hwndCB = GetDlgitem (hWnd, IDC_CMDBAND); 



Common Controls and Windows CE Chapter 5 

II Get information for each band. 
for (i = 0; i < NUMBANDS; i++) { 

II Get band index from ID value. 
nBand = SendMessage (hwndCB, RB_IDTOINDEX, IDB_CMDBAND+i, 0); 

II Initialize the size field, and get the restore information. 
cbr[i].cbSize = sizeof (COMMANDBANDSRESTOREINFO); 
CommandBands_GetRestoreinformation (hwndCB, nBand, &cbr[i]); 

The preceding code uses the RB_IDTOINDEX message to convert known 
band IDs to the unknown band indexes required by CommandBands_ 
GetRestore!nformation. The data from the structure would normally be stored 
in the system registry. I'll talk about how to read and write registry data in Chapter 
7, "Files, Databases, and the Registry." 

The restore information should be read from the registry when the appli
cation is restarted, and used when creating the command bands control. 

II Restore configuration to a command band. 
COMMANDBANDSRESTOREINFO cbr[NUMBANDSJ; 
REBARBANDINFO rbi; 

II Initialize size field. 
rbi .cbSize = sizeof (REBARBANDINFO); 

II Set only style and size fields. 
rbi .fMask = RBBIM_STYLE I RBBIM_SIZE; 

II Set the size and style for all bands. 
for (i = 0; i < NUMBANDS; i++) { 

rbi .ex= cbr[iJ.cxRestored; 
rbi .fStyle = cbr[i].fStyle; 

nBand = SendMessage (hwndCB, RB_IDTOINDEX, cbr[i].wID, 0); 
SendMessage (hwndCB, RB_SETBANDINFO, nBand, (LPARAMl&rbi); 

II Only after the size is set for all bands can the bands 
II needing maximizing be maximized. 
for (i = 0; i < NUMBANDS; i++) { 

if (cbr[iJ.fMaximized) { 
nBand = SendMessage (hwndCB, RB_IDTOINDEX, cbr[i].wID, 0); 
SendMessage (hwndCB, RB_MAXIMIZEBAND, nBand, TRUE); 

This code assumes that the command bands control has already been cre
ated in its default configuration. In a real-world application, the restore information 

301 



Part II Windows CE Basics 

302 

for the size and style could be used when first creating the control. In that case, 
all that would remain would be to maximize the bands depending on the state of 
the JMaximized field in the COMMANDBANDSRESTOREINFO structure. This last 
step must take place only after all bands have been created and properly resized. 

One limitation of this system of saving and restoring the band layout is that 
you have no method for determining the order of the bands in the control. The 
band index isn't likely to provide reliable clues because after the user has rear
ranged the bands a few times, the indexes are neither consecutive nor in any 
defined order. The only way around this problem is to constrain the arrangement 
of the bands so that the user can't reorder the bands. You do this by setting the 
RBS_FIXEDORDER style. This solves your problem but doesn't help users if they 
want a different order. In the example program at the end of this section, I use 
the band index value to guess at the order. But this method isn't guaranteed to work. 

Handling Command Band Messages 
The command bands control needs a bit more maintenance than a command bar. 
The difference is that the control can change height, and thus the window con
taining the command bands control must monitor the control and redraw and 
perhaps reformat its client area when the control is resized. 

The command bands control sends a number of different WM_NOTIFY 
messages when the user rearranges the control. To monitor the height of the 
control, your application needs to check for an RBN_HEIGHTCHANGE notifi
cation and react accordingly. The code below does just that: 

II This code is inside a WM_NOTIFY message handler. 
LPNMHDR pnmh: 

pnmh = (LPNMHDR)lParam: 
if (pnmh->code == RBN_HEIGHTCHANGE) 

InvalidateRect (hWnd, NULL, TRUE); 
} 

If an RBN_HEIGHTCHANGE notification is detected, the routine simply in
validates the client area of the window forcing a WM_PAINT message. The code 
in the paint message then calls 

UINT CommandBands_Height (HWND hwndCmdBands); 

to query the height of the command bands control and subtracts this height from 
the client area rectangle. 

As with the command bar, the command bands control can be hidden and 
shown with a helper function: 

BOOL CommandBands_Show (HWND hwndCmdBands, BOOL fShow); 



Common Controls and Windows CE Chapter 5 

The visibility state of the control can be queried using 

BOOL CommandBands_IsVisible (HWND hwndCmdBandsl; 

The CmdBand Example Program 
The CmdBand program demonstrates a fairly complete command bands control. 
The example creates three bands: a fixed menu band, a band containing a number 
of buttons, and a band containing an edit control. Transparent command bars 
and a background bitmap in each band are used to create a command bands 
control with a background image. 

You can use the View menu to replace the command bands control with a 
simple command bar by choosing Command Bar from the View menu. You can 
then re-create and restore the command bands control to its last configuration 
by choosing Command Bands from the View menu. The code for the CmdBand 
program is shown in Figure 5-5. 

Written for. the• b.()ol< Programming .Windows 
Ii Copyr.ight(C).200lDouglas Boling 
//============,,;"============================="'==========="'======="'======= 
1fi n.clude "wirtdriws: h'' 

llc---·----c---c 
II Icons and bitmaps 
// 
ID_ICON ICON "cmdband.ico" 

BlTMAP "cbarbmps.bmp" 
BlTMAP ''cbarbmp2.brnp" 
BITMAP ''backg2.bmp" 

Figure 5-5 The CmdBand program 

II Program•specHic stuff 

(continued) 

303 



Part II Windows CE Basics 

Figure 5-5 (continued) 

304 



Common Controls and Windows CE Chapter 5 

11----------------------------------------------------------------------
II Defines used by application 
II 
#define IDG_CMDBAND 1 II Command band ID 
#define IDG_CMDBAR 2 II Command bar ID 

#define ID_ICON 10 II Icon ID 
#define ID_MENU 11 II Main menu resource 
#define IDG_EDITCTL 12 

#define IDB_CMDBAND 50 II Base ID for bands 
#define I DB_CMDBANDMENU 50 II Menu .band ID 
ffdefi ne ID8-CMDBANDBTN 51 II Button band ID 
#define IDB_CMDBANDEDIT 52 ti Edit control band 

ll Menu item IDs 
4/defi ne IDM_EXIT 100 

#define IOM-'-VIEWCMDBAR 110 
/!define 

/!define IDl'CABOUT 
/fdefine NUM8ANDS 
//ccc---

/./ Fu.11¢tion <·prototypes 
// 
int 
int DestroyCommandBand (HWND 

int InitApp. (HINSTANCO; 
HWND )nitlnstance (HINSTANCE, int); 
int Termlnstance CHINSTANCE, int): 

ll Window procedures 
LRESUH CALLBACK MainWndProc CHWND, UINT, WPARAM, LPARAM); 

lI Message handlers 
LRESULT DoC.reateMain (.HWND. UINT, WPARAM; .. LPARAM); 
LRESULTDoPaintMain (HWND •.. ·urNT,WPAfMM •• LPARAM); 
LRESULT DoNotifyMain CHWND, UINT. WPAR°AM,. LPARAMJ.; 

LRESULT DoCornmandMain CHWND, UTNT, WPARAM. 
LRESULT DoDe.stroyMairl (HWND, UINT, WPARAM, 

ll Command .functio.ns 
LPARAl{DoMainCommandVfewCmdBa.r (HWND, WORD, HWND, WORD): 
LPARAM DoMainCommandVCmdBand CHWND. WORD •. HWND'. WORD}; 
LPARAM DoMa1nCommandExit (HWNO ,<WORD. HWND' WORD); 
LPARAM ••·00MaJntom1t1~ndMou1;. (HWND, WORD, HWND .< WOR01> 

ID 

ID 

(continued) 

305 



Part II Windows CE Basics 

306 



Common Controls and Windows CE Chapter 5 

{0, 0. 
{STD_PROPERTIES, 216, 

} ; 

TBSTATE_ENABLED, TBSTYLE_SEP, 0, 
TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 

II Command bar initialization structure 
const TBBUTTON tbCBViewBtns[] = { 

0}. 

0}. 

II Bitmapindex Command State Style UserData String 
{0. 0. 0. 

TBSTYLLSEP, 0, 0}, 
{VIEW_LARGEICONS, 210, TBSTATE_ENABLED TBSTATE_CHECKED, 

TBSTYLE:....CHECKGROUP, 0, 0}, 
{VIEW_SMALLICONS, 21I; TBSTATE_ENABLED, 

{VI EW_LI ST, 212, TBSTATE_ENABLED, 

{VIEW_DETAI LS, 213, TBSTATE_ENABLED. 

{0, 0. 0, 
{VIEW_SORTNAMf, ·.· ~14, TBSTATLENABLEO 

JBSTATLENABLED., 

{VI EW_SORTOATE., 

ll Array that $tores the !>and configuration 
COMMANDBANDSRESTOREINFO cbr[NUMBANDSJ; 
INT nBandOrder[NUMBANDSJ; 

TBS.TYLLCHECKGROUP. 0. 0}, 

TBS'-J:YLLCHECKGRDUP, 0, 0}. 

TBSTYLE~C~ECKGROUP, 0, 0}. 

TBSTYLLSEP, 0, 0}. 

TBSJAJE;,..CHfCKEO. . .· 
.0, ~t . .. TBSTY:U::SC fl ECK GROUP~ 

.TBSTYlLCHECKGR0ufi> 

Ts.Styu~::..CttECKGRClUP. 

jB$TYLLCHECKGROUP, 0. 0} 

II================================================================~===== 
II Program entry p~tnt 
II 
int WINAPI WinMatn (HINSTANCE hinstance, HINSTANCE hf'revinstance, 

MSG msg: 
int re; 

LPWSTR lpCmdLine, int nCmdShQw).{ 

II Initialtz~: applfoatlon. 
re = InitApir (i'II11Stl!nc£!); 

·.·if C re> r~tllrn re: · ·• ·. 
;; . ,, : : .. , ·:. -:"::, . ~, .. -: . . ' 

fl InitiaTi~e tflfs instance. 
· hwndMaln>= Jrirt111stance Ch Instance, 

i.f Chwnct:Main =-~.~} .·· · 

. retor.\i 0x~0;•·. · 

307 



Part l\ Windows CE Basics 
(continued) 

figure S-5 (continued) 

308 



Common Controls and Windows CE Chapter 5 

HWND Initinstance (HINSTANCE hinstance, LPWSTR lpCmdline, int nCmdShow){ 
HWND hWnd: 

} 

int 

II Save program instance handle in global variable. 
hinst = hlnstance: 

II Create main window. 
hWnd = CreateWindow (szAppName, TEXT ("CmdBand Demo"), WS_VISIBLE, 

cw_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, 
CW_USEDEFAULT, NULL, NULL, hlnstance, NULL); 

II Return fail code if window not created. 
if (!IsWindow (hWnd)} return 0; 

II Standard show. and update calls 
ShowWi ndow (hWnd. nCmdShow); 
UpdateWindow ChWndl~ 

(HJNSTANC.E hinstance, int nDefRCl { 

MainWindow 

MainWndProc - Callback. functlon for application window 

ll 
LRESULT (HWNDhWnd, UINT wMsg, WPARAM wParam, 

INT i; 
II 

LPARAM 1Paraml { 

II Searc.h messageJist to see if we need to handle this 
II message. If in< list, .call procedure. 
l/ 
for Ci = 0; <d1m(Mail1Messages); i++l { 

} 

if CwMsg == MainMessages [ i J. Code J 
return (*Mai nMessages[i). Fxn l ( hWnd, 

return DefWi.ndowProc (hWnd. wMsg, wPa ram. 1 Para ml: 

II-------

(continued) 

309 



Part II Windows CE Basics 

Figure 5-5 (continued) 

310 



Common Controls and Windows CE Chapter 5 

II Parse the parameters. 
iditem = (WORD) LOWORD (wParam); 
wNotifyCode =(WORD) HIWORD (wParam); 
hwndCtl = (HWND) lParam; 

II Call routine to handle control message. 
for (i = 0; i < dim(MainCommandltems); i++) 

if (iditem == MainCommanditems[i].Code) 
return (•MainCommandltems[i].Fxn)(hWnd. fdltem, hwndCtl, 

wNotifyCode); 

return 0; 

II DoNotifyMain - Process WM.-O-NOTIFY message for.window. 
II 
LRESUL T Do Not ifyMa in (HWND hWnd. UI NT wMsg, WP A RAM wParam, 

L.PARAM lParam) { 
LPNMHDR pnmh; 

// Parsethe pararrfoters•. 
pn.mh ·."' <(tpNMHDR)lpar.am: 

(continued) 

311 



Part II Windows CE Basics 

Figure 5-5 (continued) 

312 



Common Controls and Windows CE Chapter 5 

II Use DialogBox to create modal dialog box. 

Dial~gBox (hlnst, TEXT ("aboutbox"), hWnd, AboutDlgProc); 

return 0; 

II About Dialog procedure 

II 
BOOL CALLBACK AboutDl gPro.c ( HWND hWnd, U I NT wMsg, WPARAM wParam, 

II 

LPARAM lParam) { 

switch lwMsg) { 

case WM_COMMAND: 

switch (LOWORD (wParam)) 

case IDOK: 

case IDCANCH: 

EndDialog lhWnd, 

return TRUE; 

11 th.e curre.!tt .co.rifi guration. 

II 
int DestroyCi:Htimand.Band (HWND 

HWND hwr1dC8i 

I NT i, nBand ..• nMaxBand "' 0; 

hwndCB = GetDl gTtem (hWnd, IDCCMDBAND); 

for Ii = 0; i < NUMBANDS; i ++) { 

II Get band ihdex from ID value. 

nBancf := SendMessage < hwndCB .• 

(continued) 

313 



Part II Windows CE Basics 

Figure 5-5 (continued) 

314 



Common Controls and Windows CE Chapter 5 

} 

else 
II If not first time, set order of bands depending on 
II the last order. 
if (nBandOrder[lJ < nBandOrder[2J) 

nBtnindex = l; 
nEditindex = 2; 

} else { 
nBtnindex = 2; 
nEditindex = 1: 

II Initializ.e REBARBANDINFO structure for each band. 
11 1. Menu !>and. 
rbi [0]. fStyl e = RBBS..,f!XEDBMP I RBBS_NOGRIPPER; ·· 
rbi[0].cx = cbr(0}.cxRestored; 
rbi[0J.iimage= 0; 

11 2. Standard button band 
rbi [nBtn Index]. fMa.sk .J=: RBBIM_TEXT; 
rbi,[nBtnindeJ!.1.jtmli!l~ =· .• 1:• 
rbi [n~thiri<,lex}.}J:i:Teitt "" TEXT ("Std Btns"); 
11 The next tw1>, i>araineter:s are initialized from.:;;avecfdata~ 
rhi [nBtn Indexl,i;;x ... ¢br[lJ. cxRestored; · 
rb.i [nBtnlndexJ.istY:lil ., cbr[lJ. fStyl e: 

II· 3. Edtt ehntr~l· ha~d 
hwndChild =~fea:feW:lindQ.w (TEXT ("edit"), TEXT {"edit ctl"), 

·• wsivtsr~Lt: 1 ws_cHrLo 1 ES ... MULIILINE 1 ws_soRDER. 
\0~ 0.: 10 •. s. hWnd, <HMENUJIDC.:...EPncn. hinst, NULL); 

rbi [nEditindexJ~fMask J= RBBIM_TEXT I RBBIM_STYLE I 
RBBIM_CHILDSIZE I RBBIM...CHILD; 

rbi[nEditindexJ~hwndChild = hwndChild; 
rbi[nEditindex] .cxMinChild = 0; 
rbi[nEditindexl~cyMinChi1d • 23: 
rbi [nEditlnq~xl·cY~hiJd = 55; 
rbi[nEditind~xJ;Jfmlige .;;.2: .. · 
rbi [nEcMtindexl.lr.ffe:xt == TEXT (''Edit fi eld"l: 
II The next twdparlimeters are ihitial.ized .from saved data. 
rbi [nEdi tindexJ'.cx "" i;;br[2L cxRestored: 

.rbi [nEdi tinde,><l·fsty,J:e = cbr[2J. fStyl e; 

11 Add band$'; ·.. . . 
· CommandBandsJCicfB.liri:as fnwnd.CB. hinst. 3, rbU; 

J.1· Add ·menu~~;f.r~t~·~~H. 
·hwndBand = Cn~mAr\dBanctsiGetCommandBar 
C0:mmand~at\.Jl1~~frt~.enubar ( hwndBand, hinst, IO:..,MENIJ, 

(continued) 

315 



Part II Windows CE Basics 

316 

Figure 5-5 (continued) 

CmdBand creates the command band in the CreateCommandBand routine. 
This routine is initially called in DoCreateMain and later in the DoMain
CommandVCmdBand menu handler. The program creates the command bands 
control using the RBS_SMARTIABELS style along with an image list and text labels 
to identify each band when it's minimized and when it's restored or maximized. 
An image list is created and initialized with the bitmaps that are used when the 
bands are minimized. 

The array of REBARBANDINFO structures is initialized to define each of 
the three bands. If the control has previously been destroyed, data from the 
COMMANDBANDSRESTOREINFO structure is used to initialize the style and ex 
fields. The CreateCommandBand routine also makes a guess at the order of the 
button and edit bands by looking at the band indexes saved when the control 



Common Controls and Windows CE Chapter 5 

was last destroyed. While this method isn't completely reliable for determining 
the previous order of the bands, it gives you a good estimate. 

When the command bands control is created, the command bars in each 
band are also modified to set the TBS_TRANSPARENT style. This process, along 
with a background bitmap defined for each band, demonstrates how you can 
use a background bitmap to make the command bands control have just the right 
look. 

When CmdBand replaces the command bands control with a command bar, 
the application first calls the DestroyCommandBand function to save the current 
configuration and then destroy the command bands control. This function uses 
the CommandBands_GetRestorelnformation to query the size and style of each 
of the bands. The function also saves the band index for each band to supply 
the data for the guess on the current order of the button and edit bands. The first 
band, the menu band, is fixed with the RBBS_NOGRIPPER style, so there's no 
issue as to its position. 

This completes the discussion of the command bar and command bands 
controls. I talk about these two controls at length because you'll need one or the 
other for almost every Windows CE application. 

For the remainder of the chapter, I'll cover the highlights of some of the 
other controls. These other controls aren't very different from their counterparts 
under Windows 2000 and Windows XP. I'll spend more time on the controls I 
think you'll need when writing a Windows CE application. I'll start with the month 
calendar and the time and date picker controls. These controls are rather new 
to the common control set and have a direct application to the PIM-like appli
cations that are appropriate for many Windows CE systems. I'll also spend some 
time covering the list view control, concentrating on features of use to Windows 
CE developers. The remainder of the common controls, I'll cover just briefly. 

The Month Calendar Control 
The month calendar control gives you a handy month-view calendar that can be 
manipulated by users to look up any month, week, or day as far back as the 
adoption of the Gregorian calendar in September 1752. The control can display 
as many months as will fit into the size of the control. The days of the month 
can be highlighted to indicate appointments. The weeks can indicate the cur
rent week into the year. Users can spin through the months by tapping on the 
name of the month or change years by tapping on the year displayed. 

Before using the month calendar control, you must initialize the common control 
library either by calling lnitCommonControls or by calling lnitCommonControlsEx 

317 



Part II Windows CE Basics 

318 

with the ICC_DATE_CLASSES flag. You create the control by calling Create Window 
with the MONTHCAL_CLASS flag. The style flags for the control are shown here: 

• MCS_MULTISELECT The control allows multiple selection of days. 

• MCS_NOTODAY The control won't display today's date under the 
calendar. 

• MCS_NOTODAYCIRCLE The control won't circle today's date. 

• MCS_ WEEKNUMBERS The control displays the week number (1 

through 52) to the left of each week in the calendar. 

• MCS_DAYSTATE The control sends notification messages to the par
ent requesting the days of the month that should be displayed in bold. 
You use this style to indicate which days have appointments or events 
scheduled. 

Initializing the Control 
In addition to the styles I just described, you can use a number of messages or 
their corresponding wrapper macros to configure the month calendar control. 
You can use an MCM_SETFIRSTDAYOFWEEK message to display a different 
starting day of the week. You can also use the MCM_SETRANGE message to 
display dates within a given range in the control. You can configure date selec
tion to allow the user to choose only single dates or to set a limit to the range 
of dates that a user can select at any one time. The single/multiple date selec
tion ability is defined by the MCS_MULTISELECT style. If you set this style, you 
use the MCM_SETMAXSELCOUNT message to set the maximum number of days 
that can be selected at any one time. 

You can set the background and text colors of the control by using the 
MCM_SETCOLOR message. This message can individually set colors for the dif
ferent regions within the controls, including the calendar text and background, 
the header text and background, and the color of the days that precede and follow 
the days of the month being displayed. This message takes a flag indicating the 
part of the control to set and a COLORREF value to specify the color. 

The month calendar control is designed to display months on an integral 
basis. That is, if the control is big enough for one and a half months, it displays 
only one month, centered in the control. You can use the MCM_GETMINREQRECT 
message to compute the minimum size necessary to display one month. Because 
the control must first be created before the MCM_GETMINREQRECT can be sent, 
properly sizing the control is a roundabout process. You must create the con
trol, send the MCM_GETMINREQRECT message, and then resize the control using 
the data returned from the message. 



Common Controls and Windows CE Chapter 5 

Month Calendar Notifications 
The month calendar control has only three notification messages to send to its 
parent. Of these, the MCN_GETDAYSTATE notification is the most important. This 
notification is sent when the control needs to know what days of a month to 
display in bold. This is done by querying the parent for a series of bit field val
ues encoded in a MONTHDAYSTATE variable. This value is nothing more than 
a 32-bit value with bits 1 through 31 representing the days 1 through 31 of the 
month. 

When the control needs to display a month, it sends an MCN_GETDAYSTATE 
notification with a pointer to an NMDAYSTATE structure defined as the following: 

typedef struct { 
NMHDR nmhdr; 
SYSTEMTIME stStart; 
int cDayState; 
LPMONTHDAYSTATE prgDayState; 

NMDAYSTATE; 

The nmbhdr field is simply the NMHDR structure that's passed with every 
WM_NOTIFY message. The stStart field contains the starting date for which the 
control is requesting information. This date is encoded in a standard SYSTEMTIME 
structure used by all versions of Windows. It's detailed here: 

typedef struct { 
WORD wYear; 
WORD wMonth; 
WORD wDayOfWeek; 
WORD wDay; 
WORD wHour; 
WORD wMinute; 
WORD wSecond; 
WORD wMilliseconds; 

SYSTEMTIME; 

For this notification, only the wMonth, wDay, and wYear fields are significant. 
The cDayState field contains the number of entries in an array of 

MONTHDAYSTATE values. Even if a month calendar control is displaying only one 
month, it could request information about the previous and following months if 
days of those months are needed to fill in the top or bottom lines of the calendar. 

The month calendar control sends an MCN_SELCHANGE notification when 
the user changes the days that are selected in the control. The structure passed 
with this notification, NMSELCHANGE, contains the newly highlighted starting 
and ending days. The MCN_SELECT notification is sent when the user double
taps on a day. The same NMSELCHANGE structure is passed with this notifica
tion to indicate the days that have been selected. 

319 



Part II Windows CE Basics 

The Date and Time Picker Control 

320 

The date and time picker control looks deceptively simple but is a great tool for 
any application that needs to ask the user to specify a date. Any programmer 
who has had to parse, validate, and translate a string into a valid system date or 
time will appreciate this control. 

When used to select a date, the control resembles a combo box, which is 
an edit field with a down arrow button on the right side. Clicking on the arrow, 
however, displays a month calendar control showing the current month. Select
ing a day in the month dismisses the month calendar control and fills the date 
and time picker control with that date. When you configure it to query for a time, 
the date and time picker control resembles an edit field with a spin button on 
the right end of the control. 

The date and time picker control has three default formats: two for displaying 
the date and one for displaying the time. The control also allows you to provide 
a formatting string so that users can completely customize the fields in the con
trol. The control even lets you insert application-defined fields in the control. 

Creating a Date and Time Picker Control 
Before you can create the date and time picker control, the common control library 
must be initialized. If InitCommonControlsEx is used, it must be passed an 
ICC_DATE_CLASSES flag. The control is created by using Create Window with the 
class DATETIMEPICK_CLASS. The control defines the following styles: 

• DTS_LONGDATEFORMAT The control displays a date in long for
mat, as in Saturday, September 19, 2001. The actual long date format 
is defined in the system registry. 

• DTS_SHORTDATEFORMAT The control displays a date in short for
mat, as in 9/19/98. The actual short date format is defined in the sys
tem registry. 

• DTS_TIMEFORMAT The control displays the time in a format such 
as 5:50:28 PM. The actual time format is defined in the system registry. 

• DTS_SHOWNONE The control has a check box to indicate that the 
date is valid. 

• DTS_UPDOWN An up-down control replaces the drop-down but
ton that displays a month calendar control in date view. 

• DTS_;1PPCANPARSE Allows the user to directly enter text into the 
control. The control sends a DTN_USERSTRING notification when the 
user is finished. 



Common Controls and Windows CE Chapter 5 

The first three styles simply specify a default format string. These formats 
are based on the regional settings in the registry. Since these formats can change 
if the user picks different regional settings in the Control Panel, the date and time 
picker control needs to know when these formats change. The system informs 
top-level windows of these types of changes by sending a WM_SETTINGCHANGE 
message. An application that uses the date and time picker control and uses one 
of these default fonts should forward the WM_SETTINGCHANGE message to the 
control if one is sent. This causes the control to reconfigure the default formats 
for the new regional settings. 

The DTS_APPCANPARSE style enables the user to directly edit the text in 
the control. If this isn't set, the allowable keys are limited to the cursor keys and 
the numbers. When a field, such as a month, is highlighted in the edit field and 
the user presses the 6 key, the month changes to June. With the DTS_APPCANPARSE 
style, the user can directly type any character in the edit field of the control. When 
the user has finished, the control sends a DTN_USERSTRING notification to the 
parent window so that the text can be verified. 

Customizing the Format 
To customize the display format, all you need to do is create a format string and 
send it to the control using a DTM_SETFORMAT message. The format string can 
be made up of any of the following codes: 

String 
fragment 

"d" 
"dd" 
"ddd" 
"dddd" 

"h" 
"hh" 
"H" 

"HH" 

"m" 
"mm" 

"M" 

"MM" 

"MMM" 
"MMMM" 

Description 

One- or two-digit day. 
Two-digit day. Single digits have a leading zero. 
The three-character weekday abbreviation. As in Sun, Mon ... 
The full weekday name. 

One- or two-digit hour (12-hour format). 
Two-digit hour (12-hour format). Single digits have a leading zero. 
One- or two-digit hour (24-hour format). 
Two-digit hour (24-hour format). Single digits have a leading zero. 

One- or two-digit minute. 
Two-digit minute. Single digits have a leading zero. 

One- or two-digit month. 
Two-digit month. Single digits have a leading zero. 

Three-character month abbreviation. 
Full month name. 

(continued) 

321 



Part II Windows CE Basics 

"t" The one-letter AM/PM abbreviation. As in A or P. 
"tt" The two-letter AM/PM abbreviation. As in AM or PM. 

"X" Specifies a callback field that must be parsed by the application. 

"y" One-digit year. As in 1 for 2001. 
"yy" Two-digit year. As in 01 for 2001. 
"yyy" Full four-digit year. As in 2001. 

Literal strings can be included in the format string by enclosing them in single 
quotes. For example, to display the string Today is: Saturday, December 5, 2001 
the format string would be 

'Today is: 'dddd' , 'MMMM' 'd', 'yyy 

The single quotes enclose the strings that aren't parsed. That includes the 
Today is: as well as all the separator characters, such as spaces and commas. 

The callback field, designated by a series of X characters, provides for the 
application the greatest degree of flexibility for configuring the display of the date. 
When the control detects an X field in the format string, it sends a series of noti
fication messages to its owner asking what to display in that field. A format string 
can have any number of X fields. For example, the following string has two X fields. 

'Today 'XX' is: ' dddd', 'MMMM' 'd', 'yyy' and is 'XXX' birthday' 

The number of X characters is used by the application only to differenti
ate the application-defined fields; it doesn't indicate the number of characters 
that should be displayed in the fields. When the control sends a notification asking 
for information about an X field, it includes a pointer to the X string so that the 
application can determine which field is being referenced. 

When the date and time picker control needs to display an application-defined 
X field, it sends two notifications: DTN_FORMATQUERY and DTN_FORMAT. The 
DTN_FORMATQUERY notification is sent to get the maximum size of the text 
to be displayed. The DTN_FORMAT notification is then sent to get the actual text 
for the field. A third notification, DTN_ WMKEYDOWN, is sent when the user 
highlights an application-defined field and presses a key. The application is 
responsible for determining which keys are valid and modifying the date if an 
appropriate key is pressed. 

The List View Control 

322 

The list view control is arguably the most complex of the common controls. It 
displays a list of items in one of four modes: large icon, small icon, list, and report. 
The Windows CE version of the list view control supports many, but not all, of 
the common control library functions released with Internet Explorer 4.0. Some 



Common Controls and Windows CE Chapter 5 

of these functions are a great help in the memory-constrained environment of 
Windows CE. These features include the ability to manage virtual lists of almost 
any size, headers that can have images and be rearranged using drag and drop, 
the ability to indent an entry, and new styles for report mode. The list view control 
also supports the new custom draw interface, which allows a fairly easy way of 
changing the appearance of the control. 

You register the list view control either by calling InitCommonControls or 
by calling an InitCommonControls using an ICC_LISTVIEW _CLASSES flag. You 
create the control by calling Create Window using the class filled with WC_LISTVIEW. 
Under Windows CE, the list view control supports all the styles supported by other 
versions of Windows, including the LVS_OWNERDATA style that designates the 
control as a virtual list view control. 

Styles in Report Mode 
In addition to the standard list view styles that you can use when creating the 
list view, the list view control supports a number of extended styles. This rather 
unfortunate term doesn't refer to the extended styles field in the Create WindowsEx 
function. Instead, two messages, LVM_GETEXTENDEDLISTVIEWSTYLE and 
LVM_SETEXTENDEDLISTVIEWSTYLE, are used to get and set these extended list 
view styles. The extended styles supported by Windows CE are listed below. 

• LVS_EX_CHECKBOXES The control places check boxes next to 
each item in the control. 

• LVS_EX_HEADERDRAGDROP Allows headers to be rearranged by 
the user using drag and drop. 

• LVS_EX_GRIDLINES The control draws grid lines around the items 
in report mode. 

• LVS_EX_SUBITEMIMAGES The control displays images in the sub
item columns in report mode. 

• LVS_EX_FULLROWSELECT The control highlights the item's entire 
row in report mode when that item is selected. 

Aside from the LVS_EX_CHECKBOXES extended style, which works in all 
display modes, these new styles all affect the actions of the list view when in 
report mode. The effort here has clearly been to make the list view control an 
excellent control for displaying large lists of data. 

Note that the list view control under Windows CE doesn't support other 
extended list view styles, such as LVS_EX_INFOTIP, LVS_EX_ONECLICKACTIVATE, 
LVS_EX_TWOCLICKACTIVATE, LVS_EX_TRACKSELECT, LVS_EX_REGIONAL, or 
LVS_EX_FLATSB, supported in some versions of the common control library. 

323 



Part II Windows CE Basics 

324 

Virtual List View 
The virtual list view mode of the list view control is a huge help for Windows 
CE devices. In this mode, the list view control tracks only the selection and fo
cus state of the items. The application maintains all the other data for the items 
in the control. This mode is handy for two reasons. First, virtual list view con
trols are fast. The initialization of the control is almost instantaneous because all 
that's required is that you set the number of items in the control. The list view 
control also gives you hints about what items it will be looking for in the near 
term. This allows applications to cache necessary data in RAM and leave the 
remainder of the data in a database or file. Without a virtual list view, an appli
cation would have to load an entire database or list of items in the list view when 
it's initialized. With the virtual list view, the application loads only what the control 
requires to display at any one time. 

The second advantage of the virtual list view is RAM savings. Because the 
virtual list view control maintains little information on each item, the control 
doesn't keep a huge data array in RAM to support the data. The application 
manages what data is in RAM with some help from the virtual list view's cache 
hint mechanism. 

The virtual list view has some limitations. The LVS_OWNERDATA style that 
designates a virtual list view can't be set or cleared after the control has been 
created. Also, virtual list views don't support drag and drop in large icon or small 
icon mode. A virtual list view defaults to LVS_AUTOARRANGE style, and the 
LVM_SETITEMPOSITION message isn't supported. In addition, the sort styles 
LVS_SORTASCENDING and LVS_SORTDESCENDING aren't supported. Even so, 
the ability to store large lists of items is handy. 

To implement a virtual list view, an application needs to create a list view 
control with an LVS_OWNERDATA style and handle these three notifications
LVN_GETDISPINFO, LVN_ODCACHEHINT, and LVN_ODFINDITEM. The 
LVN_GETDISPINFO notification should be familiar to those of you who have 
programmed list view controls before. It has always been sent when the list view 
control needed information to display an item. In the virtual list view, it's used 
in a similar manner, but the notification is sent to gather all the information about 
every item in the control. 

The virtual list view lets you know what data items it needs using the 
LVN_ODCACHEHINT notification. This notification passes the starting and ending 
index of items that the control expects to make use of in the near term. An 
application can take its cue from this set of numbers to load a cache of those 
items so that they can be quickly accessed. The hints tend to be requests for the 
items about to be displayed in the control. Because the number of items can 
change from view to view in the control, it's helpful that the control tracks this 



Common Controls and Windows CE Chapter 5 

instead of having the application guess which items are going to be needed. 
Because the control often also needs information about the first and last pages 
of items, it also helps to cache them so that the frequent requests for those items 
don't clear the main cache of items that will be needed again soon. 

The final notification necessary to manage a virtual list view is the LYN_ 
ODFINDITEM notification. This is sent by the control when it needs to locate 
an item in response to a key press or in response to an LVM_FINDITEM message. 

The LView Example Program 
The LView program demonstrates a virtual list view control. The program cre
ates a list view control that displays the contents of a fictional database. A pic
ture of the LView window is shown in Figure 5-6, while the LView code is shown 
in Figure 5-7. 

FileO 
~F1lel Jvpe999 
F:!'J File2 Type998 1002 
F'J File3 Type997 1003 
fl!') Fil\?4 Type99.6 1004 
FJ'1File5 Tvpe995 1005 
ffi1 Flle6 , Type994 1006 
Bi File7 Tvpe993 01007 
C'l.FileB ;.TYP.e994 1008 
Jill File9 Type991 1009 
m'J FilelO Type990 1010 
l?J File.11 Type989 1011 
FrJ File12 Tyoe988 1012 
J0l F11e13 0 Type987 1013 
m_ Fi)e14 Typei;l86 1oi4 
fZl F11e15 Type985 1015 
fi1 File16 Type984 1016 
tffi F11e17 Type983 1017 
f:'l FilelB Type982 1018 
f3l File19 Tvoe981 1019 
rfil F11e20 Tvoe980 1020 
fl1 ~ile21 , Typ13Q79 1021 
[lJ F1ie22 Type978 1022 
F?l File23 Type977 1023 

LView 

Figure 5-6 The LView window 

LView.rc 
II==========================~========================================== 
II Resource ftle 
II 
I I Written for the book Programming Wi nd.ows CE 
II Copyrigh~(C) 2BBl Dougl~s Boling 

//=======;=========;=;======================-...;===========;================== 
411 ncl.ude "wi i1dows. tr" 
4fi ncl ude ''lVi.ew; h'' fl Program-specific stuff 

Figure 5-7 The LView program (continued) 

325 



part\\ Windows CE sas\cs 

f\gure s-7 (continued) 

326 



Common Controls and Windows CE Chapter 5 

II====================================================================== 
II Returns number of elements 
#define dim(x) (sizeof(x) I sizeof(x[0])) 

11----------------------------------------------------------------------
11 Generic defines 'and data types 
II 
struct decodeUINT 

UINT Code: 

LRESULT (*FX~)(HWND, UINT, WPARAM> LPARAM): 
} ; 

struct decocteCMb 
UINT todei ,· ... 
LRESUlT. ( -:Fxn >rnwHP; WORD, 

} : 

II Def'tn 
'\;Yll~dd•• 

·· <'fell 
. . .TCfl 
>J'>',/tr<Jt 

II Structure associates 
II mess~ges 
II wfth a function. 

I I Strq.cture associates 
l! Trieitii lDs with a 

(continued) 

327 



Part II Windows CE Basics 

Figure 5-7 (continued) 

328 



Common Controls and Windows CE Chapter 5 

II====================================================================== 
#include <windows.h> II For all that Windows stuff 
#include <commctrl.h> II Command bar includes 
#include "LView.h" II Program-specific stuff 
11----------------------------------------------------------------------
11 Global data 
II 
const TCHAR szAppName[] = TEXT ("LView"l: 
HINSTANCE hinst: JI .Program instance handle 
HWND hMain: 

II 
II Data for simulated database 
II 
#defi nei tVCNT 20.00 
LVDATAITEM lvetatabase[LVCNTJ; 

(continued) 

329 



Part II Windows CE Basics 

Figure 5-7 (continued) 

330 



Common Controls and Windows CE Chapter 5 

SetForegroundWindow <CHWNDl<<<DWORDlhWndl / 0x01)1; 
return -1; 

#endif 
II Register application main window class. 
we.style = 0: II Window style 
wc.lpfnWndProc = Mai.nWndProc: // Callback function 
wc.cbClsExtra = 0; 
wc.cbWndExtra = 0: 

II Extr• class data 
II Extr6 window data 

wc.hlnstance = hlnstance: II Owner handle 
wc.hicon = NULL. II Application icon 
wc. hCursor = Loa.dCursor <NULL. IDC_ARROW l :// Default cursor 
wc.hbrBackground"' (HBRUSHl GetStockObject <WHITE ... B.RUSHI: 

NULL; I/ 

return· l; 

HWND Initinstance 
HWND hWnd; 

} 

I I Save program i nstilnce handle in global variable: 
hinst = hinstCJnce; 

l I Create main window. 
hWnd .6 CreateWindow· (s . .ZAppName, TEXT ("LView,;), WSc..VlSlBLE, 

Clit..USED.EFAULT, CW;,_USEDEFAUH, CW_USEDEFAtJLT, 
CWiUSEDEF'AULT, NULL. NULL, 

I I Return fail cqde. i( wi tld()w·. not 
if C!IsWindow (hWnd).Jreturn 0; 

Standard·.•shOw·. and update calls 
ShowW.i ndow. ChWnd .• nCmdShowJ: 
UpdateWind()w fh.Wnd):• 
return hwn.d: 

(continued) 

331 



Part II Windows CE Basics 

Figure 5-7 (continued) 

332 



Common Controls and Windows CE Chapter 5 

II Add bitmap list followed by buttons. 
CommandBar_AddBitmap (hwndCB, HINST_COMMCTRL. IDB_VIEW_SMALL_COLOR, 

VIEW_BMPS, 0, 0); 
CommandBar_AddButtons (hwndCB, dim(tbCBCmboBtns), tbCBCmboBtns); 
II Add exit button to command bar. 
CommandBar_AddAdornments (hwndCB, 0, 0); 
nHeight = CommandBar_Height ChwndCB); 
II 
II Create the list view control. 
II 
hl'!ndLV :: Cre.ateWindowEx (0, WG_LISTVIEW, TEXT ('"'), 

LVS.:..REPORT I LVS_SINGLESEL 
LVLOWNERDATA I WS_VISIBLE WS_CHILD 
WS_VSCROlL, 0, nHeight, lpcs->cx, 
lpcsc>cy " nHeight, hWnd, 
( HMEt«J·) I OLLI STV I EW, 
Jpcs->hlnstance, NULL); 

Ii be~troy frame if window not created. 
if {!isw1rrdow Chwiu;tLV> J f . 

·· · >oest~bywimi.oW cfiw~ci>: H 

If Aird criluinM. 
r>: . 
. .. . ·~\f~6LuN~ i~~: 

'; 0 ••• v 

< 1y~~titask ,.,.tVC:CTEXT I LVCfc-WIDTH f LVCF~FMT } LVCF_SUBITEM: 
. , l.v·e.f.mt; (= L\ICFM'r_LEFT: 

.rJc:dc= rsa: 
· t\lc.f:is:i'rext = TEXT ("Name"): 

J vc·. faub Item = 0: 
Sert~f>fe:ssage (hwndLV, LVM.:...INSER:TCOLUMN, 0, (LPARAM)&lvc); 
' . , . , 

ly(!~~!lskJ= LVCF_SUBHEM: 
nv:c;p.$tf$~t ::TEXT 

. •••·· ·.f ~&~~f u~I~::;~••:·i·: 
·· s~n~etf'!li.5$1rne•· (hw:ndLV,.· 

-· ··',,,:·~.::,,~;::,..;;"·;; '">~-~'~:, /''" :;·'; ' 

lvc'.~~&;k ji=/L.~cF:.,.suBHEM ;. 
···:lv<i :µ5~~t~xt'~H'fiXT 

.. · .. ·.·. lWt:;.c~:"f•.1@0,; 
.>j .v;e.'lsµ~:Ite1n;~ ~f~· 

·· .. ·· .. <£~n#fa~·~slis~~~hw~4Lv. 

(continued) 

333 



Part II Windows CE Basics 

Figure 5-7 (continued) 

334 



Common Controls and Windows CE Chapter 5 

11----------------------------------------------------------------------
11 DoNotifyMain - Process WM_NOTIFY message for window. 

II 
LRESULT DoNotifyMain (HWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 
int idltem; 
LPNMHDR pnmh; 
LPNMLISTVIEW pnmlv; 

NMLVDISPINFO *PLVdi ; 
PLVDATAITEM pdi; II Pointer to data 
LPNMLVCACHEHINT pLVch; 
HWND hwndLV; 

II Parse the parameters. 
iditem = (int) wPar.am; 
pnmh = (LPNMHDRllParam~ 
hwndLV = pnmh->hwndfrom: 

if Odltem ==·IDCLISTVIEW) {. 
· pnmlv ~ flP~MLtS:r.Vl.E\i)J Pa ram;. 

~~itch. (p~h~:>t:cle·tJ 
case LVN_GETOFS.p"fNfO: 
. pLVdi "' CNMLVDlS~'iNFO 

' .; ., .... ,, '''; 

ll. Get a .Pbinter.to the data either froin the cache 
II or from>the:actual database • 

.. pdi = Getltemoai~ C.CpLVfli ->item~.Hteml: 

(pLVdi·~;~tein.mask .&· LVIF .. .IMAGE) 

pLVd.i~.>:itern;itmage = .pdi->nlmage; 

(pLVdi ->i tern.mask & LVlF _PARAM) 

pLVdi~>item.lParam = 0; 

{pLVdi->Hem;mask & LVIF.c_STATE) 

pLVdi->item)·s:tate 7. pdk>nstate: 
' '. .. . '· ~ ' 

CpLVdi ff;Jem~ma~k·& ·LVI F_TEXT) 
switch (p.Llf!'.11~>1tem.iSubitem) { 

(pLV.di->item.pszText, 

c~s~~l::.·., •.. , ...•.. . . • ·· .... 
1 $tr;cpyCpLVdi c.>1 tein.pszText, 

, ... · .. '.th:~ak; • •'• 
ca~'e ?.: ....... . 

··~prii'ttt' (pk.Vdi")ttem.pszText, 
· pci1->ris1ze): 

(continued) 

335 



Part II Windows CE Basics 

Figure 5-7 (continued) 

336 



;I 

Common Controls and Windows CE Chapter 5 

II====================================================================== 
II Command handler routines 

11----------------------------------------------------------------------
11 DoMainCommandExit - Process Program Exit command. 
II 
LPARAM DoMainCommandExit (HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 

} 

SendMessage (hWnd, WM_CLOSE, 0, 0): 
return 0; 

11------------~-~·---•---•-------------------------"~~-----------------· 
II DoMainCommandChView. - Process View xxx command. 
II 
LPARAM DoMainCommal:ldChVi .ew fHWND hWnd. WORD i dltem. HWND hwndCtl • 

WORD wNot i fyCode) { 

} 

HWND hwndLV; 
LONG 1Style; 

hwndlv:,,, Gl'!'t-01~iikin (hWl:ld, 
'' ,· .... , ::.: ···. . , .... , 

lSt.Yle ;.. G~tWlniiowLbng ( l'lwnd~Y. 
lStyl e &:=: ;'.;;(VslTYP:EMASK:· 

",:;-' 

s~i tc~ (JgU;e!R} { 

case r.ocd:lcON: ·•• < 
··. \st;yle.J"' ui~rtilN;· 

or~al< :· • :.> ' . · · 

case lOCc..Sl.CON: 
l Style J:; LVS_SMALLICON; 
break: 

case IDC;:_:LIST: 
· 1 Style< I,,; LVSc..L iST: 
break; 

case lDCRPJ: .. .. . .. 
1Style· 1~'~vs.:.RE.P:QRT.\ · 
fl.r~af<)< .. ·· · · ··· · ·· · · 

} ..... 

SetWfnddwlqf!g< (hvnid:li:V; GWL.:snLE. 
return 0; 

(( ........ ....... ~ .:::~:·:7-.<:.~.:~: ~ :i;,-.~.·~.-~·:·~,~:~r:~·::~,:~· -~ .. --... -.. ---~ ~: ~ ~.·~.~:.~·~: ~ .. >.~ ·~ .. ~.~ .~::~ -·~::- .. ~ : ....... .. 
// DoMainComllla~{l~tit.'~ Process the Help l About mti!11u command. II. ..·.. .. .. . . . ... . . . .· . . .. ... . 

LPARAM Do~~jl:l~()llllT\ClnliA~ql.lt;JHWN 0 hWnd. WORD id Item; HWNq hwndCtl; 
. ·w.QRD wNotifyCOQEl) .{ 

(continued) 

337 



Part II Windows CE Basics 

Figure 5-7 (continued) 

338 



i I 

Common Controls and Windows CE Chapter 5 

} 

wsprintf CszTmp, TEXT ("%d"l, nSizel: 
lvi .mask = LVIF_TEXT; 
lvi .iitem = nitem: 
1 vi . i Sub I tern = 2: 
lvi.pszText = szTmp: 
SendMessage ( hwndCtl , LVM: .. :.SETITEM, 0, ( LPARAMl& l\ii): 

return 0: 

I I - - - • - - - - - - - - • - - - • - - - • • - - - - .. - - • - - .. ,, .. , .. - - - - - - - - - - - - - - • .. - - - - - - - - - - - - - - - - - -
II G!!tltemData - This routine returns a pointer to the data. It 
I/ f1r$t checks the caches befofe '¢a1ling directly to the database. 
II 
PLVDATA1TEM GetltemData 

(continued) 

339 



Part II Windows CE Basics 

Figure 5-7 (continued) 

340 



INT 

Common Controls and Windows CE Chapter 5 

} 

II If completely in top cache. keep old data. 
if (nEnd < TOPCACHESIZE) 

return 0; 

II Adjust the starting value to just beyond top cache end. 
nOverlap = TOPCACHESIZE - nStart; 
nStart = TOPCACHESIZE; 
if (nOverlap + nEnd > (LVCNT - BOTCACHESIZE)) 

nEnd = LVCNT - BOTCACHESIZE; 
else 

nEnd += nOverlap; 

II If hint already completely contained in the cacne. exit. 
if <<nStart >= nCachettemStart) && 

{nEnd < nCacheitemStart + nCacheSizel) 
return 0; 

II Flush old data in cache. We should really be smart here to 
I l see wh.et.hefiJla rt of the .data is a 1 ready in the. cache. 
Fl ushMalnGache:f.)'i · 

11 Load. the T)e~ iia:ta '. .. ·· 
nCacheSi ze =i rirmt ·.~ hStart: 
nCa¢helternStaH··:.,;nStart: 
L-0.adACache (1 v<lf:~a¢he; nS:tart, nCacheSi ze): 
return 0; 

LoadACache (1 vdlTopCache, 0, TOPCACHESIZE); 
return 0: 

. : . . . . . 

- BOTCACHESIZE. ·BOJCACHESIZE>: • 

(continued) 

341 



Part II Windows CE Basics 

Figure 5-7 (continued) 

342 



Common Controls and Windows CE Chapter 5 

SetCursor (hOldCurl; 
return; 

ll-·--------------------------------------------------------------------
11 GetDatabaseltem - Return a pointer to data in the database. 
II 
PLVDATAITEM GetDatabaseltem C1NT nlteml { 

} 

II Normally, this would be more work. But since 
II we have only a simulated data store, the 
JI code is trivial. 
return &lvdatabase[nitem]; 

//-~c----------·----~--·-c--•--~----------------------·:··-·-·------·---

11 SetDatabaseltem · Copy data from list view control back into database .. 
II 
lNT~SetDatabaseitem (INT nltem, PLVDATAITEM pin) { 

lsJrcpy ClvdatabasefnltemJ;szNarne, p In->szNameJ; 
lstrcpy ( lvdatabase[nitemJ; s.zType, pin->szType): 
lvdatabase{nite~],nStze = pln->nSize; 
1 vdatabase[nitemJ.nimage pin->nlmage; 

Notice that the size for the database is set to 2000 items by default. Even 
with this large number, the performance of the list view control is quite accept
able. Most of the brief application startup time is taken up not by initializing the 
list view control, but just by filling in the dummy database. Support for the vir
tual list view is centered on the DoNotifyMain routine. 

Data for each item is supplied to the list view control through responses to 
the LVN_GETDISPINFO notification. The flags in the mask field of LVDISPINFO 
determine exactly what element of the item is being requested. The code that 
handles the notification simply requests the item data from the cache and fills 
in the requested fields. 

The cache implemented by LView uses three separate buffers. Two of the 
buffers are initialized with the first and last 100 items from the database. The third 
100-item cache, referred to as the main cache, is loaded using the hints passed 
by the list view control. 

The routine that reads the data from the cache is located in the GetltemData 
routine. That routine uses the index value of the requested item to see whether 
the data is in the top or bottom cache and, if not, whether it's in the main cache. 
If the data isn't in one of the caches, a call to GetDatabaseltem is made to read 
the data directly from the dummy database. 

343 



Part II Windows CE Basics 

The routine that handles the cache hints from the list view control is 
LoadMainCache. The application calls this routine when the program receives 
a LVN_ODCACHEHINT notification. The routine takes two parameters, the starting 
and ending values of the hint passed by the notification. The routine first checks 
to see if the range of items in the hint lies in the two end caches that store data 
from the top and bottom of the database. If the range does lie in one of the end 
caches, the hint is ignored and the main cache is left unchanged. If the hint range 
isn't in either end cache and isn't already in the current main cache, the main 
cache is flushed to send any updated information back into the database. The 
cache is then loaded with data from the database from the range of items indi
cated by the hint. 

The cache hint notifications sent by the list view control aren't necessarily 
intelligent. The control sends a request for a range of one item if that item is 
double-clicked by the user. The cache management code should always check 
to see whether the requested data is already in the cache before flushing and 
reloading the cache based on a single hint. The cache strategy you use, and the 
effort you must make to optimize it, of course depends on the access speed of 
the real data. 

Other Common Controls 

344 

Windows CE supports a number of other common controls available under 
Windows 2000 and Windows XP. Most of these controls are supported completely 
within the limits of the capability of Windows CE. For example, while the tab 
control supports vertical tabs, Windows CE supports vertical text only on sys
tems that support TrueType fonts. For systems supporting raster fonts, the text 
in the tabs must be manually generated by the Windows CE application by ro
tating bitmap images of each letter. Frankly, it's probably much easier to devise 
a dialog box that doesn't need vertical tabs. Short descriptions of the other sup
ported common controls follow. 

The Status Bar Control 
The status bar is carried over unchanged from the desktop versions of Windows. 
The only difference is that under Windows CE, the SBARS_SIZEGRIP style that 
created a gripper area on the right end of the status bar has no meaning because 
users can't size Windows CE windows. 

The Tab Control 
The tab control is fully supported, the above-mentioned vertical text limitation 
notwithstanding. But because the stylus can't hover over a tab, the 



Common Controls and Windows CE Chapter 5 

TCS_HOTIRACK style that highlighted tabs under the cursor isn't supported. The 
TCS_EX_REGISTERDROP extended style is also not supported. 

The Trackbar Control 
The trackbar control gains the capacity for two "buddy" controls that are auto
matically updated with the trackbar value. The trackbar also supports the cus
tom draw service, providing separate item drawing indications for the channel, 
the thumb, and the tick marks. 

The Progress Bar Control 
The progress bar includes the latest support for vertical progress bars and 32-bit 
ranges. This control also supports the new smooth progression instead of mov
ing the progress indicator in discrete chunks. 

The Up-Down Control 
The up-down control under Windows CE supports only edit controls for its buddy 
control. 

The Toolbar Control 
The Windows CE toolbar supports tooltips differently from the way tooltips are 
supported by the desktop versions of this control. You add toolbar support for 
tooltips in Windows CE the same way you do for the command bar, by passing 
a pointer to a permanently allocated array of strings. The toolbar also supports 
the transparent and flat styles that are supported by the command bar. 

The Tree View Control 
The tree view control supports two new styles recently added to the tree view com
mon control: TVS_CHECKBOXES and TVS_SINGLESEL. The TVS_CHECKBOXES 
style places a check box adjacent to each item in the control. The TVS_SINGLESEL 
style causes a previously expanded item to close up when a new item is selected. 
The tree view control also supports the custom draw service. The tree view con
trol doesn't support the TVS_TRACKSELECT style, which allows you to highlight 
an item when the cursor hovers over it. 

Unsupported Common Controls 
Windows CE doesn't support four common controls seen under other versions 
of Windows. The animation control, the drag list control, the hot key control, and, 
sadly, the rich edit control are all unsupported. Animation would be hard to 
support given the slower processors often seen running Windows CE. The hot 

345 



Part II Windows CE Basics 

346 

key control is problematic in that keyboard layouts and key labels, standardized 
on the PC, vary dramatically on the different hardware that runs Windows CE. 
And the drag list control isn't that big a loss, given the improved power of the 
report style of the list view control. 

The rich edit control is another story. While not formally supported, 
Riched20.dll is on many of the Windows CE platforms. The only supported alter
native is the rich ink control supported on the H/PC and Pocket PC. This con
trol provides text and ink input. It also converts Rich Text Format (RTF) and Pocket 
Word Ink (PWI) files to ASCII text. 

Windows CE supports fairly completely the common control library seen 
under other versions of Windows. The date and time picker, month calendar, and 
command bar are a great help given the target audience of Windows CE devices. 

I've spent a fair amount of time in the past few chapters looking at the 
building blocks of applications. Now it's time to turn to the operating system itself. 
Over the next three chapters, I'll cover memory management, files and databases, 
and processes and threads. These chapters are aimed at the core of the Windows 
CE operating system. 



Memory Management 
If you have an overriding concern when you're writing a Microsoft Windows CE 
program, it should be dealing with memory. A Windows CE machine might have 
only 1 or 2 MB of RAM. This is a tiny amount compared with that of a standard 
personal computer, which typically needs 128 MB or more. In fact, memory on 
a Windows CE machine is so scarce that it's often necessary to write programs 
that conserve memory even to the point of sacrificing the overall performance 
of the application. 

Fortunately, although the amount of memory is small in a Windows CE 
system, the functions available for managing that memory are fairly complete. 
Windows CE implements almost the full Win32 memory management API avail
able under Microsoft Windows XP and Microsoft Windows Me. Windows CE 
supports virtual memory allocations, local and separate heaps, and even memory
mapped files. 

Like Windows XP, Windows CE supports a 32-bit flat address space with 
memory protection between applications. But because Windows CE was designed 
for different environments, its underlying memory architecture is different from that 
for Windows XP. These differences can affect how you design a Windows CE 
application. In this chapter, I'll describe the basic memory architecture of 
Windows CE. I'll also cover the different types of memory allocation available 
to Windows CE programs and how to use each memory type to minimize your 
application's memory footprint. 

Memory Basics 
As with all computers, systems running Windows CE have both ROM (read only 
memory) and RAM (random access memory). Under Windows CE, however, both 

347 



Part II Windows CE Basics 

ROM and RAM are used somewhat differently than they are in a standard per
sonal computer. 

About RAM 
The RAM in a Windows CE system is divided into two areas: program memory, 
also known as the system heap, and object store. The object store can be con
sidered something like a permanent virtual RAM disk. Unlike the old virtual RAM 
disks on a PC, the object store retains the files stored in it even if the system is 
turned off. 1 This is the reason Windows CE systems such as the Handheld PC 
and the Pocket PC typically have a main battery and a backup battery. When the 
user replaces the main batteries, the backup battery's job is to provide power 
to the RAM to retain the files in the object store. Even when the user hits the reset 
button, the Windows CE kernel starts up looking for a previously created ob
ject store in RAM and uses that store if it finds one. 

The other area of the RAM is devoted to the program memory. Program 
memory is used like the RAM in personal computers. It stores the heaps and stacks 
for the applications that are running. The boundary between the object store and 
the program RAM is movable. The user can move the dividing line between object 
store and program RAM using the System Control Panel applet. Under low-memory 
conditions, the system will ask the user for permission to take some object store 
RAM to use as program RAM to satisfy an application's demand for more RAM. 

About ROM 

348 

In a personal computer, the ROM is used to store the BIOS (basic input/output 
system) and is typically 64-128 KB. In a Windows CE system, the ROM can range 
from 4 to 32 MB and stores the entire operating system, as well as the applica
tions that are bundled with the system. In this sense, the ROM in a Windows CE 
system is like a small read-only hard disk. 

In a Windows CE system, ROM-based programs can be designated as Exe
cute in Place (XIP). That is, they're executed directly from the ROM instead of 
being loaded into program RAM and then executed. This is a huge advantage 
for small systems in two ways. The fact that the code is executed directly from 
ROM means that the program code doesn't take up valuable program RAM. Also, 
since the program doesn't have to be copied into RAM before it's launched, it 
takes less time to start an application. Programs that aren't in ROM but are con
tained in the object store or on a Flash memory storage card aren't executed in 
place; they're copied into the RAM and executed. 

1. On mobile systems like the H/PC and the Pocket PC, the system is never really off. When the user 
presses the Off button, the system enters a very low power suspended state. 



Memory Management Chapter 6 

About Virtual Memory 
Windows CE implements a virtual memory management system. In a virtual 
memory system, applications deal with virtual memory, which is a separate, 
imaginary address space that might not relate to the physical memory address 
space that's implemented by the hardware. The operating system uses the memory 
management unit of the microprocessor to translate virtual addresses to physi
cal addresses in real time. 

The key advantage of a virtual memory system can be seen in the complexity 
of the MS-DOS address space. Once demand for RAM exceeded the 640-KB limit 
of the original PC design, programmers had to deal with schemes such as expanded 
and extended memory to increase the available RAM. OS/2 l .x and Windows 
3.0 replaced these schemes with a segment-based virtual memory system. Ap
plications using virtual memory have no idea (nor should they care) where the 
actual physical memory resides, only that the memory is available. In these sys
tems, the virtual memory was implemented in segments, resizable blocks of 
memory that ranged from 16 bytes to 64 KB in size. The 64-KB limit wasn't due 
to the segments themselves, but to the 16-bit nature of the Intel 80286 that was 
the basis for the segmented virtual memory system in Windows 3.x and OS/2 l .x. 

Paged Memory 
The Intel 80386 supported segments larger than 64 KB, but when Microsoft and 
IBM began the design for OS/2 2.0, they chose to use a different virtual memory 
system, also supported by the 386, known as a paged virtual memory system. In 
a paged memory system, the smallest unit of memory the microprocessor man
ages is the page. For Windows NT and OS/2 2.0, the pages were set to 386's default 
page size of 4096 bytes. When an application accesses a page, the microprocessor 
translates the virtual address of the page to a physical page in ROM or RAM. A 
page can also be tagged so that accessing the page causes an exception. The 
operating system then determines whether the virtual page is valid and, if so, 
maps a physical page of memory to the virtual page. 

Windows CE implements a paged virtual memory management system simi
lar to the other Win32 operating systems. Under Windows CE, a page is either 
1024 or 4096 bytes, depending on the microprocessor. This is a change from 
Windows XP, where the page size is 4096 bytes for Intel microprocessors. For 
the CPUs currently supported by Windows CE, the Hitachi SH3 uses a 1024-byte 
pages and the 486, the Intel StrongARM, and Power PC 821 use 4096-byte pages. 
The NEC 4100 uses a 4-KB page size in Windows CE 3.0 but a 1-KB page size 
in earlier versions of the operating system. 

349 



Part II Windows CE Basics 

Virtual pages can be in one of three states: free, reseroed, or committed. A 
free page is, as it sounds, free and available to be allocated. A reserved page is 
a page that has been reserved so that its virtual address can't be allocated by the 
operating system or another thread in the process. A reserved page can't be used 
elsewhere, but it also can't be used by the application because it isn't mapped 
to physical memory. To be mapped, a page must be committed. A committed 
page has been reserved by an application and has been directly mapped to a 
physical address. 

All that I've just explained is old hat to experienced Win32 programmers. 
The important thing for the Windows CE programmer is to learn how Windows CE 
changes the equation. While Windows CE implements most of the same memory 
API set of its bigger Win32 cousins, the underlying architecture of Windows CE 
does impact programs. To better understand how the API is affected, it helps to 
look at how Windows CE uses memory under the covers. 

The Windows CE Address Space 

350 

In OS circles, much is made of the extent to which the operating system goes 
to protect one application's memory from other applications. Microsoft Windows 
Me uses a single address space that provides minimal protection between ap
plications and the Windows operating system code. Windows 2000, on the other 
hand, implements completely separate address spaces for each Win32 applica
tion, although old 16-bit applications under Windows 2000 do share a single 
address space. 

Windows CE implements a single 2-GB virtual address space for all appli
cations, but the memory space of an application is protected so that it can't be 
accessed by another application. A diagram of the Windows CE virtual address 
space is shown in Figure 6-1. A little over half of the virtual address space is 
divided into thirty-three 32-MB slots. Each slot is assigned to a currently run
ning process, with the lowest slot, slot 0, assigned to the active process. As 
Windows CE switches between processes, it remaps the address space to move 
the old process out of slot 0 and the new process into slot 0. This task is quickly 
accomplished by the OS by manipulating the page translation tables of the mi
croprocessor. 

The region of the address space above the 33 slots is reserved for the 
operating system and for mapping memory-mapped files. Like Windows XP, 
Windows CE also reserves the lowest 64-KB block of the address space from 
access by any process. 



Memory Management Chapter 6 

Address Comments Slot 

FFFF FFFF End of virtual address space 

System reserved (kernel mode space) 

8000 0000 

Shared space (memory mapped files) 

4200 0000 
4000 0000 Slot 32 

3EOOOOOO 1--~~~~~~~~~~~~~~~~~~~~--+~-S_lo_t~3_1~~ 

1000 0000 

0800 0000 

0600 0000 

. 0400 0000 

Process 4 

Process 3 

Process 2 

Process 1: Each slot from 1 to 32 contains one process. 

Slot 4 

Slot 3 

Slot 2 

Slot 1 
When a process is active, it's also mapped into slot 0. 

02000000··~~~~~-'-~~~~+-~~~~-'-'-~~~~~~+-~~~~~ 

Slot for the currently active process. Slot 0 
First 64 KB reserved by the OS. 

00000000 "-~~~~~~~~~~~~~~~~~~~~__.~~~~~-

Figure 6-1 A diagram of the Windows CE memory map 

Querying the System Memory 
If an application knows the current memory state of the system, it can better 
manage the available resources. Windows CE implements both the Win32 

351 



Part II Windows CE Basics 

352 

GetSystemlnfo and Globa!MemoryStatus functions. The GetSystemlnfo function 
is prototyped below: 

VOID GetSystemlnfo (LPSYSTEM_INFO lpSystemlnfo); 

It's passed a pointer to a SYSTEM_INFO structure defined as 

typedef struct { 
WORD wProcessorArchitecture; 
WORD wReserved; 
DWORD dwPageSize; 
LPVOID lpMinimumApplicationAddress; 
LPVOID lpMaximumApplicationAddress; 
DWORD dwActiveProcessorMask; 
DWORD dwNumberOfProcessors; 
DWORD dwProcessorType; 
DWORD dwAllocationGranularity; 
WORD wProcessorlevel; 
WORD wProcessorRevision; 

SYSTEM_INFO; 

The wProcessorArchitecture field identifies the type of microprocessor in 
the system. The value should be compared with the known constants defined 
in Winnt.h, such as PROCESSOR_ARCHITECTURE_INTEL. Windows CE has 
extended these constants to include PROCESSOR_ARCHITECTURE_ARM, 
PROCESSOR_ARCHITECTURE_SHx, and others. Additional processor constants 
are added as net CPUs are supported by any of the Win32 operating systems. 
Skipping a few fields, the dwProcessorType fielci forli1er uarruw:-i the miuopru
cessor from a family to a specific microprocessor. Constants for the Hitachi SHx 
architecture include PROCESSOR_HITACHI_SH3 and PROCESSOR_HITACHI_SH4. 
The last two fields, wProcessorLevel and wProcessorRevision, further refine the 
CPU type. The wProcessorLevel field is similar to the dwProcessorType field in that 
it defines the specific microprocessor within a family. The dwProcessorRevision 
field tells you the model and the stepping level of the chip. 

The dwPageSize field specifies the page size, in bytes, of the microprocessor. 
Knowing this value comes in handy when you're dealing directly with the vir
tual memory API, which I talk about shortly. The lpMinimumApplicationAddress 
and lpMaximumApplicationAddress fields specify the minimum and maximum 
virtual address available to the application. The dwActiveProcessorMask and 
dwNumberO.fProcessors fields are used in Windows 2000 and Windows XP for 
systems that support more than one microprocessor. Since Windows CE supports 



Memory Management Chapter 6 

only one microprocessor, you can ignore these fields. The dwAllocationGranularity 
field specifies the boundaries to which virtual memory regions are rounded. Like 
Windows XP, Windows CE rounds virtual regions to 64-KB boundaries. 

A second handy function for determining the system memory state is this: 

void GlobalMemoryStatus(LPMEMORYSTATUS lpmst); 

which returns a MEMORYSTATUS structure defined as 

typedef struct { 
DWORD dwlength; 
DWORD dwMemoryload; 
DWORD dwTotalPhys; 
OW ORD dwAvailPhys; 
DWORD dwTotalPageFile; 
DWORD dwAvailPageFile; 
DWORD dwTotalVirtual; 
DWORD dwAvailVirtual; 

MEMORYSTATUS; 

The dwlength field must be initialized by the application before the call is 
made to Globa!MemoryStatus. The dwMemoryLoad field is of dubious value; it 
makes available a general loading parameter that's supposed to indicate the 
current memory use in the system. The dwTotalPhys and dwAvailPhys fields 
indicate how many pages of RAM are assigned to the program RAM and how 
many are available. These values don't include RAM assigned to the object store. 

The dwTotalPageFile and dwAvailPageFile fields are used under Windows 
XP and Windows Me to indicate the current status of the paging file. Because 
paging files aren't supported under Windows CE, these fields are always 0. The 
dwTotalVirtual and dwAvailVirtual fields indicate the total and available num
ber of virtual memory pages accessible to the application. 

The information returned by GlobalMemoryStatus provides confirmation of 
the memo1y architecture of Windows CE. Making this call on an Compaq iPaq 
Pocket PC with 32 MB of RAM returned the following values: 

dwMemoryload 0xl8 (24) 
dwTotalPhys 0x011ac000 (18,530,304) 
dwAvailPhys 0x00B66000 (11, 952' 128) 
dwTotalPageFile 0 
dwAvailPageFile 0 
dwTotalVirtual 0x02000000 (33,554,432) 
dwAvailVirtual 0x0lel0000 (31,522,816) 

353 



Part II Windows CE Basics 

The dwTotalPhys field indicates that of the 32 MB of RAM in the system, I 
have dedicated 18.5 MB to the program RAM, of which 12 MB is still free. Note 
that there's no way for an application, using this call, to know that another 14 
MB of RAM has been dedicated to the object store. To determine the amount of 
RAM dedicated to the object store, use the function GetStorelnjormation. 

The dwTotalPageFile and dwAvailPageFile fields are 0, indicating no sup
port for a paging file under Windows CE. The dwTotalVirtual field is interest
ing because it shows the 32-MB limit on virtual memory that Windows CE enforces 
on an application. Meanwhile, the dwAvailVirtual field indicates that in this 
application little of that 32 MB of virtual memory is being used. 

An Application's Address Space 

354 

Although it's always interesting to look at the global memory map for an oper
ating system, the fact is that an application should be interested only in its own 
inemory space, not the global address space. Nevertheless, the design of the 
Windows CE address space does have an impact on applications. Under Windows 
CE, an application is limited to the virtual memory space available in its 32-MB 
slot. While 32 MB might seem like a fair amount of space available to an appli
cation that might run on a system with only 4 MB of RAM, Win32 application 
programmers, used to a 2-GB virtual address space, need to keep in mind the 
limited virtual address space available to a Windows CE application. 

Figure 6-2 shows the layout of an application's 32-MB virtual address space. 
Each line of the figure represents a block of virtual memory made up of one or 
more pages. The addresses of the blocks are offsets into the application's slot 
in the system address space. The Page status is free, reserved, private, or image. 
While I've just explained the terms free and reserved, private and image merit 
an explanation. Image indicates pages that have been committed and mapped 
to the image of an executable file in ROM or RAM. Private simply means the pages 
have been committed for use by the application. The size field indicates the size 
of the block, which is always a multiple of the page size. The access rights field 
displays the access rights for the block. 

This memory map was captured on a Casio H/PC that has an SH3 proces
sor with a 1024-byte page size. The application used in this example was stored 
in the object store and then launched. This allowed Windows CE to demand 
page only parts of the EXE image into RAM, as they're needed. If the applica
tion had been launched from an external storage device that didn't support 
demand paging, Windows CE would have loaded the entire application into 
memory when it was launched. 



Memory Management Chapter 6 

Address Page Status Size Access Rights Comments 
0000 0000 Reserved 
0001 0000 Reserved 
0001 1000 Image 
0001 1800 
0001 1C00 
0001 2000 
0001 2800 
0001 4800 
0001 5000 
0001 5400 
0001 8000 
0001 8C00. 
0001 9000 
0001 9.400 
0001 9800 
0001 8400 
0001. [)000 

', 0001 [)800 
. 0001. E.0ll0 

Reserved 
Image 
Reserved 
Image 
Reserved 
Image 
Reserved 
Image 
Reserve<! 
Image 
Reserv.ed 
Image 
Reserved 
Ima.ge 

, .,·:··::'..:.>..:: . .-:.-.:c>;·:"f "" ; , 

65,536 
4,096 
2,048 
1,024 
1,024 
2,048 
8,192 
2,048 
1.024 
11,264 
3,072 
1.024 
L024 
1,024 
7,168 

. 0002 0000 ResefvedJ<: ~.4.27.2 
. ~002 :D400 Private.•····· ·· .·.··. };1:68 
.0002~000 • Free '.4:;~96 

.' . , ·::::.:·:' 

;9~0i•0d~1t .,.· .• i.024 
0'003 0400• '92,192 
' ·;_, ~ .. 

-~ <: ,:-'.:.;: ;. 
· 0~09•00~@•; ·· .. F.ree .• 

EXE image 

Execute, Read only 

Execute, Read only 

Execute, Read only 

Execute, Read only 

Read only 

Read/Write 
Read/Write 
Read/Write 

Read only 

Read/Wrl. te 

' 0itiij 000~· 
.01n9 0400 
.arnc M00 
. 0iJnq Ac00 

40,408,704 

'ij24 
237,568 

.2;048 
Execute. Read only 
Read/Write 

:::., ..... · .... ' 

' 7,Hi8 

7,168 
r~;~n2. 

Read. only. 

> .. 00·· .• ·.·.z .. Ff ... · .. •.2.·.·.·.• ....• 00 .. e4•·.· ..... 00·.···.·00 : Reserved r .. 024 "' "' ffua.4e • ., . iMh808 •· . r:xecute, Read 
· 01Ft'• oa00 111\<l~e < . •• i·' i,e:i4 Read/Write 
0IFE oce:0 'R$S~r,'~eJL: ;.,~11~92·· 
0iii·FC00 '' I mag~,\ '.!• ;,' ' ,)1..024 
JfaFF 0a:e.0. Re$~~ved ',<(·" ?.120 
01FF 140'0 .·•• Ft~~.;; '. i;' '6'0,416 

~ v -'. •• : 

Read only 

Figure 6-2 Memory map of a Windows CE application 

Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 

R/O static data 

R/W static data 
R/W static data, 
R/W static data 

Free 

COMMCTRL image 

COREDLL: .Image. 

355 



Part II Windows CE Basics 

356 

Notice that the application is mapped as a 64-KB region starting at OxlOOOO. 
Remember, the lowest 64 KB of the address space for any application is reserved 
by Windows. The image of the file contains the code along with the static data 
segments and the resource segments. Although it appears that the program code 
is broken into a number of disjointed pages from OxlOOOO to Ox15400, this is 
actually the result of demand paging. What's happening is that only the pages 
containing executed code are mapped into the address space. The reserved 
pages within the code segment will be mapped into the space only when they're 
executed. 

The read-only static data segment is mapped at Ox18000 and takes three 
pages. The read/write static data is mapped from Ox19000 to Ox1B3FF. Like the 
code, the read/write data segment is committed to RAM only as it's written to 
by the application. Any static data that was initialized by the loader is already 
committed, as are the static variables written before this capture of the address 
space was made. The resources for the application are mapped starting at OxlDOOO. 
The resources are read only and are paged into the RAM only as they're accessed 
by the application. 

Starting at Ox20000, the application's stack is mapped. The stack segment 
is easily recognized because the committed pages are at the end of the reserved 
section, indicative of a stack that grows from higher addresses down. If this 
application had more than one thread, more than one stack segment would be 
reserved in the application's address space. 

Following the stack is the local heap. The heap has only a few blocks 
currently allocated, requiring only one page of RAM. The loader reserves another 
392,192 bytes, or 383 pages, for the heap to grow. The more than 30 MB of ad
dress space from the end of the reserved pages for the local heap to the start of 
the DLLs mapped into the address space is free to be reserved and, if RAM per
mits, committed by the application. 

This application accesses two dynamic-link libraries. Coredll.dll is the DLL 
that contains the entry points to the Windows CE operating system. In Windows 
CE, the function entry points are combined into one DLL, unlike in Windows XP 
or Windows Me, where the core functions are multiple distributed DLLs. The other 
DLL is the common control DLL, commctrl.dll. As with the executable image, these 
DLLs are mapped into the address space as linear images. However, unlike the 
EXE, these DLLs are in ROM and are directly mapped into the virtual address space 
of the application; therefore, they don't take up any RAM. 



Memory Management Chapter 6 

The Different Kinds of Memory Allocation 
A Windows CE application has a number of different methods for allocating 
memory. At the bottom of the memory-management food chain are the Virtualxxx 
functions that directly reserve, commit, and free virtual memory pages. Next comes 
the heap APL Heaps are regions of reserved memory space managed by the 
system for the application. Heaps come in two flavors: the default local heap 
automatically allocated when an application is started, and separate heaps that 
can be manually created by the application. After the heap API is static data
data blocks defined by the compiler and that are allocated automatically by the 
loader. Finally, we come to the stack, where an application stores variables local 
to a function. 

The one area of the Win32 memory API that Windows CE doesn't support 
is the global heap. The global heap API, which includes calls such as GlobalAlloc, 
GlobalFree, and GlobalRealloc, is therefore not present in Windows CE. The global 
heap is really just a holdover from the Win16 days of Windows 3.x. In Win32, 
the global and local heaps are quite similar. One unique use of global memory, 
allocating memory for data in the clipboard, is handled by using the local heap 
under Windows CE. 

The key to minimizing memory use in Windows CE is choosing the proper 
memory-allocation strategy that matches the memory-use patterns for a given 
block of memory. I'll review each of these memory types and then describe strat
egies for minimizing memory use in Windows CE applications. 

Virtual Memory 
Virtual memory is the most basic of the memory types. The system uses calls to 
the virtual memory API to allocate memory for the other types of memory, in
cluding heaps and stacks. The virtual memory API, including the VirtualAlloc, 
VirtualFree, and VirtualReSize functions, directly manipulates virtual memory 
pages in the application's virtual memory space. Pages can be reserved, com
mitted to physical memory, and freed using these functions. 

Allocating Virtual Memory 
Allocating and reserving virtual memory is accomplished using this function: 

LPVOID VirtualAlloc (LPVOID lpAddress, DWORD dwSize, 
DWORD flAllocationType, 
DWORD flProtect); 

357 



Part II Windows CE Basics 

358 

The first parameter to VirtualAlloc is the virtual address of the region of memory 
to allocate. The lpAddress parameter is used to identify the previously reserved 
memory block when you use VirtualAlloc to commit a block of memory previ
ously reserved. If this parameter is NULL, the system determines where to allo
cate the memory region, rounded to a 64-KB boundary. The second parameter 
is dwSize, the size of the region to allocate or reserve. While this parameter is 
specified in bytes, not pages, the system rounds the requested size up to the next 
page boundary. 

The flAllocationType parameter specifies the type of allocation. You can 
specify a combination of the following flags: MEM_COMMIT, MEM_AUTO_ 
COMMIT, MEM_RESERVE, and MEM_TOP _DOWN. The MEM_COMMIT flag al
locates the memory to be used by the program. MEM_RESERVE reserves the virtual 
address space to be later committed. Reserved pages can't be accessed until an
other call is made to VirtualAlloc specifying the region and using the MEM_COMMIT 
flag. The third flag, MEM_TOP _DOWN, tells the system to map the memory at 
the highest permissible virtual address for the application. 

The MEM_AUTO_COMMIT flag is unique to Windows CE and is quite handy. 
When this flag is specified, the block of memory is reserved immediately, but 
each page in the block will automatically be committed by the system when it's 
accessed for the first time. This allows you to allocate large blocks of virtual 
memory without burdening the system with the actual RAM allocation until the 
instant each page is first used. The drawback to auto-commit memory is that the 
physical RAM needed to back up a page might not be available when the page 
is first accessed. In this case, the system will generate an exception. 

VirtualAlloc can be used to reserve a large region of memory with subse
quent calls committing parts of the region or the entire region. Multiple calls to 
commit the same region won't fail. This allows an application to reserve memory 
and then blindly commit a page before it's written to. While this method isn't 
particularly efficient, it does free the application from having to check the state 
of a reserved page to see whether it's already committed before making the call 
to commit the page. 

The flProtect parameter specifies the access protection for the region being 
allocated. The different flags available for this parameter are summarized in the 
following list. 

• PAGE_READONLY The region can be read. If an application at
tempts to write to the pages in the region, an access violation will occur. 

• PAGE_READWRITE The region can be read from or written to by 
the application. 

• PAGE_EXECUTE The region contains code that can be executed by 
the system. Attempts to read from or write to the region will result in 
an access violation. 



Memory Management Chapter 6 

• PAGE_EXECUTE_READ The region can contain executable code, 
and applications can also read from the region. 

• PAGE_EXECUTE_READWRITE The region can contain executable 
code, and applications can read from and write to the region. 

• PAGE_GUARD The first access to this region results in a STATUS_ 
GUARD_PAGE exception. This flag should be combined with the other 
protection flags to indicate the access rights of the region after the first 
access. 

• PAGE_NOACCESS Any access to the region results in an access viola
tion. 

• PAGE_NOCACHE The RAM pages mapped to this region won't be 
cached by the microprocessor. 

The PAGE_ GUARD and PAGE_NOCHACHE flags can be combined with the 
other flags to further define the characteristics of a page. The PAGE_ GUARD flag 
specifies a guard page, a page that generates a one-shot exception when it's first 
accessed and then takes on the access rights that were specified when the page 
was committed. The PAGE_NOCACHE flag prevents the memory that's mapped 
to the virtual page from being cached by the microprocessor. This flag is handy 
for device drivers that share memory blocks with devices using direct memory 
access CDMA). 

Regions vs. Pages 
Before I go on to talk about the virtual memory API, I need to make a some
what subtle distinction. Virtual memory is reserved in regions that must align on 
64-KB boundaries. Pages within a region can then be committed page by page. 
You can directly commit a page or a series of pages without first reserving a region 
of pages, but the page, or series of pages, directly committed will be aligned on 
a 64-KB boundary. For this reason, it's best to reserve blocks of virtual memory 
in 64-KB chunks and then commit that page within the region as needed. 

With the limit of a 32-MB virtual memory space per process, this leaves a 
maximum of 32 MB I 64 KB - 1 = 511 virtual memory regions that can be reserved 
before the system reports that it's out of memory. Take, for example, the following 
code fragment: 

#define PAGESIZE 1024 // Assume we're on a 1-KB page machine 
for (i = 0; < 512; i++) 

pMem[i] = VirtualAlloc (NULL, PAGESIZE, MEM_RESERVE I MEM_COMMIT, 
PAGE_READWRITE); 

This code attempts to allocate 512 one-page blocks of virtual memory. Even if 
you have half a megabyte of RAM available in the system, Virtua!Alloc will fail 

359 



Part II Windows CE Basics 

360 

before the loop completes because it will run out of virtual address space for 
the application. This happens because each 1-KB block is allocated on a 64-KB 
boundary. Since the code, stack, and local heap for an application must also be 
mapped into the same 32-MB virtual address space, available virtual allocation 
regions usually top out at about 475. 

A better way to make 512 distinct virtual allocations is to do something 
like this: 

#define PAGESIZE 1024 //Assume we're on a 1-KB page machine. 

II Reserve a region first. 
pMemBase = VirtualAlloc (NULL, PAGESIZE * 512, MEM_RESERVE, 

PAGE_NOACCESS); 

for (i = 0; i < 512; i++) 

pMem[i] = VirtualAlloc (pMemBase + (i*PAGESIZE), PAGESIZE, 
MEM_COMMIT, PAGE_READWRITE); 

This code first reserves a region; the pages are committed later. Because the region 
was first reserved, the committed pages aren't rounded to 64-KB boundaries, and 
so, if you have 512 KB of available memory in the system, the allocations will 
succeed. 

Although the code I just showed you is a contrived example (there are better 
ways to allocate 1-KB blocks than directly allocating virtual memory), it does 
demonstrate a major difference (from other Windows systems) in the way memory 
allocation works in Windows CE. In the desktop versions of Windows, applica
tions have a full 2-GB virtual address space with which to work. In Windows CE, 
however, a programmer should remain aware of the relatively small 32-MB virtual 
address per application. 

Freeing Virtual Memory 
You can decommit, or free, virtual memory by calling VirtualFree. Decommitting 
a page unmaps the page from a physical page of RAM but keeps the page or 
pages reserved. The function is prototyped as 

BOOL Virtual Free (LPVOID lpAddress, DWORD dwSize, 
DWORD dwFreeType); 

The lpAddress parameter should contain a pointer to the virtual memory region 
that's to be freed or decommitted. The dwSize parameter contains the size, in 
bytes, of the region if the region is to be decommitted. If the region is to be freed, 
this value must be 0. The dwFreeType parameter contains the flags that specify 
the type of operation. The MEM_DECOMMIT flag specifies that the region will 
be decommited but will remain reserved. The MEM_RELEASE flag both decommits 
the region if the pages are committed and also frees the region. 



Memory Management Chapter 6 

All the pages in a region being freed by means of VirtualFree must be in 
the same state. That is, all the pages in the region to be freed must either be 
committed or reserved. VirtualFree fails if some of the pages in the region are 
reserved while some are committed. To free a region with pages that are both 
reserved and committed, the committed pages should be decommitted first, and 
then the entire region can be freed. 

Changing and Querying Access Rights 
You can modify the access rights of a region of virtual memory, initially speci
fied in VirtualAlloc, by calling VirtualProtect. This function can change the ac
cess rights only on committed pages. The function is prototyped as 

BOOL Virtual Protect (LPVOID lpAddress. DWORD dwSize, 
DWORD flNewProtect, PDWORD lpflOldProtect); 

The first two parameters, lpAddress and dwSize, specify the block and the size 
of the region that the function acts on. The flNewProtect parameter contains the 
new protection flags for the region. These flags are the same ones I mentioned 
when I explained the VirtualAlloc function. The lpflOldProtect parameter should 
point to a DWORD that will receive the old protection flags of the first page in 
the region. 

The current protection rights of a region can be queried with a call to 

DWORD VirtualQuery (LPCVOID lpAddress, 
PMEMORY_BASIC_INFORMATION lpBuffer, 
DWORD dwlength); 

The lpAddress parameter contains the starting address of the region being que
ried. The lpBuffer pointer points to a PMEMORY _BASIC_INFORMATION struc
ture that I'll talk about soon. The third parameter, dwLength, must contain the 
size of the PMEMORY _BASIC_INFORMATION structure. 

The PMEMORY _BASIC_INFORMATION structure is defined as 

typedef struct _MEMORY_BASIC_INFORMATION 
PVOID BaseAddress; 
PVOID AllocationBase; 
DWORD AllocationProtect; 
DWORD RegionSize; 
DWORD State; 
DWORD Protect; 
DWORD Type; 

MEMORY_BASIC_INFORMATION; 

The first field of MEMORY _BASIC_INFORMATION, BaseAddress, is the address 
passed to the VirtualQuery function. The AllocationBase field contains the base 
address of the region when it was allocated using the VirtualAlloc function. The 

361 



Part II Windows CE Basics 

362 

AllocationProtect field contains the protection attributes for the region when it 
was originally allocated. The RegionSize field contains the number of bytes from 
the pointer passed to VirtualQuery to the end of series of pages that have the 
same attributes. The State field contains the state-free, reserved, or committed
of the pages in the region. The Protect field contains the current protection flags 
for the region. Finally, the Type field contains the type of memory in the region. 
This field can contain the flags MEM_PRIVATE, indicating that the region con
tains private data for the application; MEM_MAPPED, indicating that the region 
is mapped to a memory-mapped file; or MEM_IMAGE, indicating that the region 
is mapped to an EXE or a DLL module. 

The best way to understand the values returned by VirtualQuery is to look 
at an example. Say an application uses VirtualAlloc to reserve 16,384 bytes 
(16 pages on a 1-KB page-size machine). The system reserves this 16-KB block 
at address OxAOOOO. Later the application commits 9216 bytes (9 pages) starting 
2048 bytes (2 pages) into the initial region. Figure 6-3 shows a diagram of this 
scenario. 

A2COO ___,, ____ 

1 
Pages later 
committed 

Pages arginally 
reserved by 
Virtua/A/loc 

/pAddress value passed--+::::: _: ____ ! 
ta Virtua/Query 

AOOOO ---------

Figure 6-3 A region of reserved virtual memory that has nine pages committed 

If a call is made to VirtualQuery with the lpAddress pointer pointing 4 pages 
into the initial region (address OxAlOOO), the returned values would be the 
following: 

BaseAddress 
AllocationBase 
AllocationProtect 

0xA1000 
0xA0000 
PAGE_NOACCESS 



Heaps 

RegionSize 
State 
Protect 
Type 

Memory Management Chapter 6 

0x1C00 (7,168 bytes or 7 pages) 
MEM_COMMIT 
PAGE_READWRITE 
MEM_PRIVATE 

The BaseAddress field contains the address passed to VirtualQuery, OxAlOOO, 4096 
bytes into the initial region. The AllocationBase field contains the base address 
of the original region, while AllocationProtect contains PAGE_NOACCESS, indicat
ing that the region was originally reserved, not directly committed. The RegionSize 
field contains the number of bytes from the pointer passed to VirtualQuery, OxAlOOO 
to the end of the committed pages at OxA2COO. The State and Protect fields con
tain the flags indicating the current state of the pages. The Type field indicates that 
the region was allocated by the application for its own use. 

Clearly, allocating memory on a page basis is inefficient for most applications. 
To optimize memory use, an application needs to be able to allocate and free 
memory on a per byte, or at least a per 4-byte, basis. The system enables allo
cations of this size through heaps. Using heaps also protects an application from 
having to deal with the differing page sizes of the microprocessors that support 
Windows CE. An application can simply allocate a block in a heap, and the sys
tem deals with the number of pages necessary for the allocation. 

As I mentioned before, heaps are regions of reserved virtual memory space 
managed by the system for the application. The system gives you a number of 
functions that allow you to allocate and free blocks within the heap with a granu
larity much smaller than a page. As memory is allocated by the application within 
a heap, the system automatically grows the size of the heap to fill the request. 
As blocks in the heap are freed, the system looks to see if an entire page is freed. 
If so, that page is decommitted. 

Unlike Windows XP or Windows Me, Windows CE supports the allocation 
of only fixed blocks in the heap. This simplifies the handling of blocks in the 
heap, but it can lead to the heaps becoming fragmented over time as blocks are 
allocated and freed. The result can be a heap being fairly empty but still requir
ing a large number of virtual pages because the system can't reclaim a page from 
the heap unless it's completely free. 

Each application has a default, or local, heap created by the system when 
the application is launched. Blocks of memory in the local heap can be allocated, 
freed, and resized using the LocalAlloc, LocalFree, and LocalRealloc functions. 
An application can also create any number of separate heaps. These heaps have 
the same properties as the local heap but are managed through a separate set 
of Heapxxxx functions. 

363 



Part II Windows CE Basics 

The Local Heap 

364 

By default, Windows CE initially reserves 384 pages, or 393,216 bytes, for the 
local heap but commits the pages only as they are allocated. If the application 
allocates more than the 384 KB in the local heap, the system allocates more space 
for the local heap. Growing the heap might require a separate, disjointed address 
space reserved for the additional space on the heap. Applications shouldn't as
sume that the local heap is contained in one block of virtual address space. 
Because Windows CE heaps support only fixed blocks, Windows CE implements 
only the subset of the Win32 local heap functions necessary to allocate, resize, 
and free fixed blocks on the local heap. 

Allocating Memory on the Local Heap 
You allocate a block of memory on the local heap by calling 

HLOCAL LocalAlloc (UINT uFlags, UINT uBytes); 

The call returns a value cast as an HLOCAL, which is a handle to a local memory 
block, but since the block allocated is always fixed, the return value can simply 
be recast as a pointer to the block. 

The uFlags parameter describes the characteristics of the block. The flags 
supported under Windows CE are limited to those that apply to fixed allocations. 
They are the following: 

• LMEM_FIXED Allocates a fixed block in the local heap. Since all 
local heap allocations are fixed, this flag is redundant. 

• LMEM_ZEROINIT Initializes memory contents to 0. 

• LPIR Combines the LMEM_FIXED and LMEM_ZEROINIT flags. 

The uBytes parameter specifies the size of the block to allocate in bytes. 
The size of the block is rounded up, but only to the next DWORD (4-byte) 
boundary. 

Freeing Memory on the Local Heap 
You can free a block by calling 

HLOCAL LocalFree CHLOCAL hMem); 

The function takes the handle to the local memory block and returns NULL if 
successful. If the function fails, it returns the original handle to the block. 

Resizing and Querying the Size of Local Heap Memory 
You can resize blocks on the local heap by calling 

HLOCAL LocalReAlloc CHLOCAL hMem, UINT uBytes, UINT uFlag); 



Memory Management Chapter 6 

The hMem parameter is the pointer (handle) returned by LocalAlloc. The uBytes 
parameter is the new size of the block. The uFlag parameter contains the flags 
for the new block. Under Windows CE, two flags are relevant, LMEM_ZEROINIT 
and LMEM_MOVEABLE. LMEM_ZEROINIT causes the contents of the new area 
of the block to be set to 0 if the block is grown as a result of this call. The 
LMEM_MOVEABLE flag tells Windows that it can move the block if the block is 
being grown and there's not enough room immediately above the current block. 
Without this flag, if you don't have enough space immediately above the block 
to satisfy the request, LocalRealloc will fail with an out-of-memory error. If you 
specify the LMEM_MOVEABLE flag, the handle (really the pointer to the block 
of memory) might change as a result of the call. 

The size of the block can be queried by calling 

UINT LocalSize (HLOCAL hMem); 

The size returned will be at least as great as the requested size for the block. As 
I mentioned earlier, Windows CE rounds the size of a local heap allocation up 
to the next 4-byte boundary. 

Separate Heaps 
To avoid fragmenting the local heap, it's better to create a separate heap if you 
need a series of blocks of memory that will be used for a set amount of time. 
An example of this would be a text editor that might manage a file by creating 
a separate heap for each file it's editing. As files are opened and closed, the heaps 
would be created and destroyed. 

Heaps under Windows CE have the same API as those under Windows XP 
or Windows Me. The only noticeable difference is the lack of support for the 
HEAP _GENERATE_EXCEPTIONS flag. Under Windows XP, this flag causes the 
system to generate an exception if an allocation request can't be accommodated. 

A subtle but more important difference to the programmer is how Windows 
CE manages heaps. While the heap API looks like the standard Win32 heap API, 
Windows CE doesn't implement the functions as you might expect. For example, 
the HeapCreate function has parameters that allow a program to specify how 
much memory to allocate and reserve for a heap. Windows CE ignores these 
values. In fact, simply creating a heap doesn't reserve or commit any memory. 
Memory is committed only when the first block of the heap is allocated. 

Under most conditions, going through the details about when heap memory 
is reserved and committed would seem like nitpicking. But if you've used up the 
32-MB virtual address space for other uses, a heap might not have the virtual 
address space available for the allocation, even if you thought you had reserved 
enough using the HeapCreate call. On the other hand, Windows CE doesn't use 

365 



Part II Windows CE Basics 

366 

the reserved parameter in the HeapCreate call as a hard-coded limit on the size 
of the heap. Windows CE accommodates almost any heap allocation request if 
the memory is available. Well, enough editorializing: on to the heap APL 

Creating a Separate Heap 
You create heaps by calling 

HANDLE HeapCreate (DWORD flOptions, DWORD dwinitialSize, 
DWORD dwMaximumSize); 

Under Windows CE, the first parameter, flOptions, can be NULL, or it can con
tain the HEAP _NO_SERIALIZE flag. By default, Windows heap management 
routines prevent two threads in a process from accessing the heap at the same 
time. This serialization prevents the heap pointers that the system uses to track 
the allocated blocks in the heap from being corrupted. In other versions of Windows, 
the HEAP _NO_SERIALIZE flag can be used if you don't want this type of pro
tection. Under Windows CE, however, this flag is provided only for compatibil
ity, and all heap accesses are serialized. 

The other two parameters, dwlnitia!Size and dwMaximumSize, specify the 
initial size and expected maximum size of the heap. Windows XP and Windows 
Me use the dwMaximumSize value to determine how many pages in the vir
tual address space to reserve for the heap. You can set this parameter to 0 if 
you want to defer to Windows' determination of how many pages to reserve. 
The dwlnitia!Size parameter is then used to determine how many of those ini
tially reserved pages will be immediately committed. As I mentioned, while these 
two size parameters are documented exactly the same way as their counterparts 
under Windows XP and Windows Me, the current version of Windows CE doesn't 
actually use them. You should, however, use valid numbers to retain compati
bility with future versions of Windows CE that might use these parameters. 

Allocating Memory in a Separate Heap 
You allocate memory on the heap using 

LPVOID HeapAlloc (HANDLE hHeap, DWORD dwFlags, DWORD dwBytes); 

Notice that the return value is a pointer, not a handle as in the Loca!Alloc func
tion. Separate heaps always allocate fixed blocks, even under Windows XP and 
Windows Me. The first parameter is the handle to the heap returned by the 
HeapCreate call. The dwFlags parameter can be one of two self-explanatory 
values, HEAP _NO_SERIALIZE and HEAP _ZERO_MEMORY. The final parameter, 
dwBytes, specifies the number of bytes in the block to allocate. The size is rounded 
up to the next DWORD. 



Memory Management Chapter 6 

Freeing Memory in a Separate Heap 
You can free a block in a heap by calling 

BOOL HeapFree (HANDLE hHeap, DWORD dwFlags, LPVOID lpMem); 

The only flag allowable in the dwFlags parameter is HEAP _NO_SERIALIZE. The 
lpMem parameter points to the block to free, while hHeap contains the handle 
to the heap. 

Resizing and Querying the Size of Memory in a Separate Heap 
You can resize heap allocations by calling 

LPVOID HeapReAlloc (HANDLE hHeap, DWORD dwFlags, LPVOID lpMem, 
DWORD dwBytes); 

The dwFlags parameter can be any combination of three flags: HEAP _NO_ 
SERIALIZE, HEAP _REALLOC_IN_PLACE_ONLY, and HEAP _ZERO_MEMORY. The 
only new flag here is HEAP _REALLOC_IN_PLACE_ONLY, which tells the heap 
manager to fail the reallocation if the space can't be found for the block with
out relocating it. This flag is handy if you already have a number of pointers 
pointing to data in the block and you aren't interested in updating them. The 
lpMem parameter is the pointer to the block being resized, and the dwBytes 
parameter is the requested new size of the block. Notice that the function of the 
HEAP _REALLOC_IN_PLACE_ONLY flag in HeapReAlloc provides the opposite 
function from the one that the LMEM_MOVEABLE flag provides for LocalReAlloc. 
HEAP _REALLOC_IN_PLACE_ONLY prevents a block from moving that would be 
moved by default in a separate heap, while LMEM_MOVEABLE enables a block 
to be moved that by default would not be moved in the local heap. HeapReAlloc 
returns a pointer to the block if the reallocation was successful and returns NULL 
otherwise. Unless you specified that the block not be relocated, the returned 
pointer might be different from the pointer passed in if the block had to be re
located to find enough space in the heap. 

To determine the actual size of a block, you can call 

DWORD HeapSize (HANDLE hHeap, DWORD dwFlags, LPCVOID lpMem); 

The parameters are as you expect: the handle of the heap; the single, optional 
flag, HEAP _NO _SERIALIZE; and the pointer to the block of memory being checked. 

Destroying a Separate Heap 
You can completely free a heap by calling 

BOOL HeapDestroy (HANDLE hHeap); 

367 



Part II Windows CE Basics 

Individual blocks within the heap don't have to be freed before you destroy the 
heap. 

One final heap function is valuable when writing DLLs. The function 

HANDLE GetProcessHeap (VOID); 

returns the handle to the local heap of the process calling the DLL. This allows 
a DLL to allocate memory within the calling process's local heap. All the other 
heap calls, with the exception of HeapDestroy, can be used with the handle 
returned by GetProcessHeap. 

The Stack 

368 

The stack is the easiest to use (the most self-managing) of the different types of 
memory under Windows CE. The stack under Windows CE, as in any operating 
system, is the storage place for temporary variables that are referenced within a 
function. The operating system also uses the stack to store return addresses for 
functions and the state of the microprocessor registers during exception handling. 

Windows CE manages a separate stack for every thread in the system. By 
default, each stack in the system is limited to a maximum size of around 58 KB. 
Each separate thread within one process can grow its stack up to the 58-KB limit. 
This limit has to do with how Windows CE manages the stack. When a thread 
is created, Windows CE reserves a 60-KB region for the thread's stack. It then 
commits virtual pages from the top down as the stack grows. As the stack shrinks, 
the system will, under low-memory conditions, reclaim the unused but still com
mitted pages below the stack. The limit of 58 KB comes from the size of the 64-KB 
region dedicated to the stack minus the number of pages necessary to guard the 
stack against overflow and underflow. 

The maximum size of the stack can be specified by a linker switch when 
an application is linked. The same guard pages are applied, but the stack size 
can be specified up to 1 MB. Note that the size defined for the default stack is 
also the size used for all the separate thread stacks. That is, if you specify the 
main stack to be 128 KB, all other threads in the application have a stack size 
limit of 128 KB. 

One other consideration must be made when you're planning how to use 
the stack in an application. When an application calls a function that needs stack 
space, Windows CE attempts to commit the pages immediately below the cur
rent stack pointer to satisfy the request. If no physical RAM is available, the thread 
needing the stack space is briefly suspended. If the request can't be granted within 
a short period of time, an exception is raised. Windows CE goes to great lengths 
to free the required pages, but if this can't happen the system raises an excep
tion. I'll cover low-memory situations shortly, but for now just remember that 
you shouldn't try to use large amounts of stack space in low-memory situations. 



Memory Management Chapter 6 

Static Data 
C and C++ applications have predefined blocks of memory that are automati
cally allocated when the application is loaded. These blocks hold statically allo
cated strings, buffers, and global variables as well as buffers necessary for the 
library functions that were statically linked with the application. None of this is 
new to the C programmer, but under Windows CE, these spaces are handy for 
squeezing the last useful bytes out of RAM. 

Windows CE allocates two blocks of RAM for the static data of an applica
tion, one for the read/write data and one for the read-only data. Because these 
areas are allocated on a per-page basis, you can typically find some space left 
over from the static data up to the next page boundary. The finely tuned Windows 
CE application should be written to ensure that it has little or no extra space left 
over. If you have space in the static data area, sometimes it's better to move a buffer 
or two into the static data area instead of allocating those buffers dynamically. 

Another consideration is that if you're writing a ROM-based application, you 
should move as much data as possible to the read-only static data area. Windows 
CE doesn't allocate RAM to the read-only area for ROM-based applications. In
stead, the ROM pages are mapped directly into the virtual address space. This 
essentially gives you unlimited read-only space with no impact on the RAM re
quirements of the application. 

The best place to determine the size of the static data areas is to look in 
the map file that's optionally generated by the linker. The map file is chiefly used 
to determine the locations of functions and data for debugging purposes, but it 
also shows the size of the static data if you know where to look. Figure 6-4 shows 
a portion of an example map file generated by Visual C++. 

mellltest 

. Ttmestamp is 34ce4088 CTue Jiln 2712:16:08 1998) 

Pf'ef~t~:ed• l()ad address ts .000~0000 
... .,., ... ., ... '' 

'.S:i~nt> /• ... Length C <NaJtiei: 
>0.001:0~000000 000861008 , t~xt · 
•• 00~5~~000.0~ 00 ~ ~~~~~i.~~ , ~data . 

· ~00.2:000003~0 000000l.4Jt;X(lata···· 
.0002:0e~003z4 00~00?att .t:ciata~z 
0002:0000034.c :0001l"00.i:(if . .itdita$3 

;.•~0t1z::000003f!~:0 
0002: 00000454 •.. 

~:1'.4~ .. td~ia$.4 
.3~eH'. ~· i data$6 

Class 
CODE 
DATA 
DATA 
DATA 
PATA 
DATA 
DATA 

Figure 6-4 The top portion of a map file showing the size of the data segments in an 
application 

369 



Part II Windows CE Basics 

370 

Figure 6-4 (continued) 

The map file in Figure 6-4 indicates that the EXE has five sections. Section 
0001 is the text segment containing the executable code of the program. Sec
tion 0002 contains the read-only static data. Section 0003 contains the read/write 
static data. Section 0004 contains the fix-up table to support calls to other DLLs. 
Finally, section 0005 is the resource section containing the application's resources, 
such as menu and dialog box templates. 

Let's examine the .data, .bss, and .rdata lines. The .data section contains 
the initialized read/write data. If you initialized a global variable as in 

static HINST g_hLoadlib = NULL; 

the g_loadlib variable would end up in the .data segment. The .bss segment 
contains the uninitialized read/write data. A buffer defined as 

static BYTE g_ucitems[256J; 

would end up in the .bss segment. The final segment, .rdata, contains the read
only data. Static data that you've defined using the canst keyword ends up in 



Memory Management Chapter 6 

the . rdata segment. An example of this would be the structures I use for my 
message lookup tables, as in the following: 

II Message dispatch table for MainWindowProc 
canst struct decodeUINT MainMessages[] = { 

} ; 

WM_CREATE, DoCreateMain, 
WM_SIZE, DoSizeMain, 
WM_CDMMAND, DoCommandMain, 
WM_DESTROY, DoDestroyMain, 

The .data and .bss blocks are folded into the 0003 section, which, if you 
add the size of all blocks in the third section, has a total size of Ox2274, or 8820, 
bytes. Rounded up to the next page size, the read/write section ends up taking 
nine pages, with 396 bytes not used. So in this example, placing a buffer or two 
in the static data section of the application would be essentially free. The read
only segment, section 0002, including .rdata, ends up being Ox0842, or 2114, 
bytes, which takes up three pages, with 958 bytes, almost an entire page, wasted. 
In this case, moving 75 bytes of constant data from the read-only segment to the 
read/write segment saves a page of RAM when the application is loaded. 

String Resources 
One often forgotten area for read-only data is the resource segment of your 
application. While I mentioned a new Windows CE-specific feature of the 
LoadString function in Chapter 3, it's worth repeating here. If you call LoadString 
with 0 in place of the pointer to the buffer, the function returns a pointer to the 
string in the resource segment. An example would be 

LPCTSTR pString; 

pString = (LPCTSTR)LoadString Chlnst, ID_STRING, NULL. 0) 

The string returned is read only, but it does allow you to reference the string 
without having to allocate a buffer to hold the string. Also be warned that the 
string won't be zero terminated unless you have added the -n switch to the 
command line of the resource compiler. However, the word immediately pre
ceding the string contains the length of the string resource. 

Selecting the Proper Memory Type 
Now that we've looked at the different types of memory, it's time to consider 
the best use of each. For large blocks of memory, directly allocating virtual memory 
is best. An application can reserve as much address space (up to the 32-MB limit 
of the application) but can commit only the pages necessary at any one time. 

371 



Part II Windows CE Basics 

While directly allocated virtual memory is the most flexible memory allocation 
type, it shifts to us the burden of worrying about page granularity as well as 
keeping track of the reserved versus committed pages. 

The local heap is always handy. It doesn't need to be created and will grow 
as necessary to satisfy a request. Fragmentation is the issue here. Consider that 
applications on a Pocket PC might run for weeks or even months at a time. There's 
no Off button on an H/PC or a Pocket PC-just a Suspend command. So when 
you're thinking about memory fragmentation, don't assume that a user will open 
the application, change one item, and then close it. A user is likely to start an 
application and keep it running so that the application is just a quick click away. 

The advantage of separate heaps is that you can destroy them when their 
time is up, nipping the fragmentation problem in the bud. A minor disadvantage 
of separate heaps is the need to manually create and destroy them. Another thing 
to remember about separate heaps is that Windows CE doesn't reserve virtual 
address space when a heap is created, which can become an issue if your appli
cation uses much of the virtual address space available to the application. 

The static data area is a great place to slip in a buffer or two essentially for 
free because the page is going to be allocated anyway. The key to managing the 
static data is to make the size of the static data segments close to, but over the page 
size of, your target processor. Sometimes it's better to move constant data from 
the read-only segment to the read/write segment if it saves a page in the read
only segment. The only time you wouldn't do this is if the application is to be 
burned into ROM. Then the more constant the data is, the better, because it doesn't 
take up RAM. The read-only segment is handy even for applications loaded from 
the object store because read-only pages can be discarded and reloaded as needed 
by the operating system. 

The stack is, well, the stack-simple to use and always around. The only 
considerations are the maximum size of the stack and the problems of enlarg
ing the stack in a low-memory condition. Make sure your application doesn't 
require large amounts of stack space to shut down. If the system suspends a thread 
in your application while it's being shut down, the user will more than likely lose 
data. That won't help customer satisfaction. 

Managing Low-Memory Conditions 

372 

Even for applications that have been fine-tuned to minimize their memory use, 
there are going to be times when the system runs very low on RAM. Windows 
CE applications operate in an almost perpetual low-memory environment. The 
Pocket PC is designed intentionally to run in a low-memory situation. Applica
tions on the Pocket PC don't have a Close button-the shell automatically closes 
them when the system needs additional memory. Because of this, Windows CE 



Memory Management Chapter 6 

offers a number of methods to distribute the scarce memory in the system among 
the running applications. 

The WM_HIBERNATE Message 
The first and most obvious addition to Windows CE is the WM_HIBERNATE 
message. Windows CE sends this message to all top-level windows that have the 
WS_OVERLAPPED style (that is, have neither the WS_POPUP nor the WS_CHILD 
style) and have the WS_ VISIBLE style. These qualifications should allow most 
applications to have at least one window that receives a WM_HIBERNATE mes
sage. An exception to this would be an application that doesn't really terminate 
but simply hides all its windows. This arrangement allows an application a quick 
start because it only has to show its window, but this situation also means that the 
application is taking up RAM even when the user thinks it's closed. While this is 
exactly the kind of application design that should not be used under Windows CE, 
those that are designed this way must act as if they're always in hibernate mode 
when hidden because they'll never receive a WM_HIBERNATE message. 

Windows CE sends WM_HIBERNATE messages to the top-level windows 
in reverse Z-order until enough memory is freed to push the available memory 
above a preset threshold. When an application receives a WM_HIBERNATE mes
sage, it should reduce its memory footprint as much as possible. This can involve 
releasing cached data; freeing any GDI objects such as fonts, bitmaps, and brushes; 
and destroying any window controls. In essence, the application should reduce 
its memory use to the smallest possible footprint that's necessary to retain its 
internal state. 

If sending WM_HIBERNATE messages to the applications in the background 
doesn't free enough memory to move the system out of a limited-memory state, 
a WM_HIBERNATE message is sent to the application in the foreground. If part 
of your hibernation routine is to destroy controls on your window, you should 
be sure that you aren't the foreground application. Disappearing controls don't 
give the user a warm and fuzzy feeling. 

Memory Thresholds 
Windows CE monitors the free RAM in the system and responds differently as 
less and less RAM is available. As less memory is available, Windows CE first sends 
WM_HIBERNATE messages and then begins limiting the size of allocations pos
sible. The two figures on the next page show the free-memory levels used by 
the Handheld PC and the Pocket PC to trigger low-memory events in the sys
tem. Windows CE defines four memory states: normal, limited, low, and critical. 
The memory state of the system depends on how much free memory is avail
able to the system as a whole. These limits are higher for 4-KB page systems 
because those systems have less granularity in allocations. 

373 



Part II Windows CE Basics 

374 

Event 

Limited-memory state 

Low-memory state 

Critical-memory state 

Free Memory 
1024-Page Size 

128 KB 

64 KB 

16 KB 

Free Memory 
4096-Page Size 

160 KB 

96 KB 

48 KB 

Figure 6-5 Memory thresholds for the Handheld PC 

Event 

Hibernate threshold 

Limited-memory state 

Low-memory state 

Critical-memory state 

Free Memory 
1024-Page Size 

200 KB 

128 KB 

64 KB 

16 KB 

Free Memory 
4096-Page Size 

224 KB 

160 KB 

96 KB 

48 KB 

Figure 6-6 Memory thresholds for the Pocket PC 

Comments 

Send MWM_ 
HIBERNATE 
messages to 
applications in 
reverse Z-order. 
Free stack space 
reclaimed as 
needed. 

Limit virtual allocs 
to 16 KB. 
Low-memory 
dialog displayed 

Limit virtual allocs 
to 8 KB. 

Comments 

Send WM_ 
HIBERNATE 
messages to 
applications in 
reverse Z-order. 

Begin to close 
applications in 
reverse Z-order. 
Free stack space 
reclaimed as 
needed. 

Limit virtual allocs 
to 16 KB. 

Limit virtual allocs 
to 8 KB. 

The effect of these memory states is to share the remaining wealth. First, 
WM_HIBERNATE messages are sent to the applications to ask them to reduce 



Memory Management Chapter 6 

their memory footprint. After an application is sent a WM_HIBERNATE message, 
the system memory levels are checked to see whether the available memory is 
now above the threshold that caused the WM_HIBERNATE messages to be sent. 
If not, a WM_HIBERNATE message is sent to the next application. This contin
ues until all applications have been sent a WM_HIBERNATE message. 

The low-memory strategies of the Handheld PC and the Pocket PC diverge 
at this point. On the H/PC, the system displays the OOM, the out-of-memory 
dialog, and requests that the user either select an application to close or reallo
cate some RAM dedicated to the object store to the program memory. If, after 
the selected application has been shut down or memory has been moved into 
program RAM, you still don't have enough memory, the out-of-memory dialog 
is displayed again. This process is repeated until there's enough memory to lift 
the H/PC above the threshold. 

For the Pocket PC, the actions are somewhat different. The Pocket PC shell 
automatically starts shutting down applications in least recently used order without 
asking the user. If there still isn't enough memory after all applications except 
the foreground application and the shell are closed, the system uses its other 
techniques of scavenging free pages from stacks and limiting any allocations of 
virtual memory. 

If, on either system, an application is requested to shut down and it doesn't, 
the system will purge the application after waiting approximately 8 seconds. This 
is the reason an application shouldn't allocate large amounts of stack space. If 
the application is shutting down due to low-memory conditions, it's possible that 
the stack space can't be allocated and the application will be suspended. If this 
happens after the system has requested that the application close, it could be 
purged from memory without properly saving its state. 

In the low- and critical-memory states, applications are limited in the amount 
of memory they can allocate. In these states, a request for virtual memory larger 
than what's allowed is refused even if there's memory available to satisfy the 
request. Remember that it isn't just virtual memory allocations that are limited; 
allocations on the heap and stack are rejected if, to satisfy the request, those 
allocations require virtual memory allocations above the allowable limits. 

I should point out that sending WM_HIBERNATE messages and automati
cally closing down applications is performed by the shell. On embedded systems 
for which the OEM can write its own shell, it is the OEM's responsibility to imple
ment the WM_HIBERNATE message and any other memory management tech
niques. Fortunately, the Microsoft Windows CE Platform Builder provides sample 
code for a simple shell that implements the WM_HIBERNATE message. 

It should go without saying that applications should check the return codes 
of any memory allocation call, but since some still don't, I'll say it. Check the return 

375 



Part II Windows CE Basics 

376 

codes from calls that allocate memory. There's a much better chance of a memory 
allocation failing under Windows CE than under the desktop versions of Windows. 
Applications must be written to react gracefully to rejected memory allocations. 

The Win32 memory management API isn't fully supported by Windows 
CE, but there's clearly enough support for you to use the limited memory of a 
Windows CE device to the fullest. A great source for learning about the intrica
cies of the Win32 memory management API is Jeff Richter's Programming Ap
plications for Microsoft Windows (Microsoft Press, 1999). Jeff spends six chapters 
on memory management, while I have summarized the same topic in one. 

We've looked at the program RAM, the part of RAM that is available to 
applications. Now it's time, in the next chapter, to look at the other part of the 
RAM, the object store. The object store supports more than a file system. It also 
supports the registry API as well as a database API unique to Windows CE. 



Files, Databases, and the 
Registry 

One of the areas where Windows CE diverges furthest from its larger cousins, 
Windows XP and Windows Me, is in the area of file storage. Instead of relying 
on ferromagnetic storage media such as floppy disks or hard disk drives, Windows 
CE implements a unique RAM-based file system known as the object store. In 
implementation, the object store more closely resembles a database than it does 
a file allocation system for a disk. In the object store resides the files as well as 
the registry for the system and any Windows CE databases. Fortunately for the 
programmer, most of the unique implementation of the object store is hidden 
behind standard Win32 functions. 

The Windows CE file API is taken directly from Win32, and for the most 
part, the API is fairly complete. Windows CE implements the standard registry 
API, albeit without the vast levels of security found in Windows XP. The data
base API, however, is unique to Windows CE. The database functions provide a 
simple tool for managing and organizing data. They aren't to be confused with 
the powerful multilevel SQL databases found on other computers. Even with its 
modest functionality, the database API is convenient for storing and organizing 
simple groups of data, such as address lists and mail folders. 

Some differences in the object store do expose themselves to the program
mer. Execute-in-place files, stored in ROM, appear as files in the object store, but 
these functions can't be opened and read as standard files. The object store 
format is undocumented, so there is no way to dig underneath the file system 
API to look at sectors, clusters, or cylinders of data as you could on a FAT
formatted disk. 

377 



Part II Windows CE Basics 

The concept of the current directory, so important in other versions of 
Windows, isn't present in Windows CE. Files are specified by their complete path. 
The new command line shell in Windows CE 3.0 does maintain its own current 
directory, but this directory is independent of the file system. 

As a general rule, Windows CE doesn't support the deep application-level 
security available under Windows XP. However, because the generic Win32 API 
was originally based on Windows NT, a number of the functions for file and 
registry operations have one or more parameters that deal with security rights. 
Under Windows CE, these values should be set to their default, not security state. 
This means you should almost always pass NULL in the security parameters for 
functions that request security information. 1 

In this rather long chapter, I'll first explain the file system and the file API. 
Then I'll give you an overview of the database APL Finally, we'll do a tour of 
the registry API. The database API is one of the areas that has experienced a fair 
amount of change as Windows CE has evolved. Essentially, functionality has been 
added to later versions of Windows CE. Where appropriate, I'll cover the differ
ences between the different versions and present workarounds, where possible, 
for maintaining a common code base. 

The Windows CE File System 
The default file system, supported on all Windows CE platforms, is the object 
store. The object store is equivalent to the hard disk on a Windows CE device. 
It's a subtly complex file storage system incorporating compressed RAM storage 
for read/write files and seamless integration with ROM-based files. A user sees 
no difference between a file in RAM in the object store and those files based in 
ROM. Files in RAM and ROM can reside in the same directory, and document 
files in ROM can be opened (although not modified) by the user. In short, the 
object store integrates the default files provided in ROM with the user-generated 
files stored in RAM. 

In addition to the object store, Windows CE supports multiple installable 
file systems that can support up to 256 different storage devices or partitions on 
storage devices. (The limit is 10 storage devices for Windows CE 2.0 and earlier.) 
The interface to these devices is the installable file system (IFS) API. Most Windows 
CE platforms include an IFS driver for the FAT file system for files stored on ATA 
flash cards or hard disks. In addition, under Windows CE 2.1 and later, third-party 
manufacturers can write an IFS driver to support other file systems. 

Windows CE doesn't use drive letters as is the practice on PCs. Instead, every 
storage device is simply a directory off the root directory. Traditionally, the name 

1. Windows CE does support its own version of module-level security. I'll be discussing this in the next chapter. 

378 



Files, Databases, and the Registry Chapter 7 

of each directory is Storage Card. If more than one storage device is inserted, 
the additional devices are numbered, as in Storage Card 1, Storage Card 2, and 
so on, all the way up to Storage Card 99 for the lOOth card. I say "traditionally" 
because Windows CE doesn't assume a name. Instead, it asks the driver what it 
wants to call the directory, and traditionally, the block mode driver returns the 
name Storage Card. Because the name of the storage device directory can change, 
you should never assume that these directories will be called Storage Card. I'll 
demonstrate a method for determining which directories in the root are direc
tories and which are actually storage devices. 

As should be expected for a Win32-compatible operating system, the file
name format for Windows CE is the same as that of its larger counterparts. 
Windows CE supports long filenames. Filenames and their complete paths can 
be up to MAX_PATH in length, which is currently defined at 260 bytes. Filenames 
have the same name.ext format as they do in other Windows operating systems. 
The extension is the three characters following the last period in the filename 
and defines the type of file. The file type is used by the shell when determining 
the difference between executable files and different documents. Allowable char
acters in filenames are the same as for Windows XP and Windows ME. 

Windows CE files support most of the same attribute flags as Windows Me, 
with a few additions. Attribute flags include the standard read-only, system, hid
den, compressed, and archive flags. A few additional flags have been included 
to support the special RAM/ROM mix of files in the object store. 

The Object Store vs. Other Storage Media 
To the programmer, the difference between files in the RAM part of the object 
store and the files based in ROM are subtle. The files in ROM can be detected 
by a special in-ROM file attribute flag. However, files in the RAM part of the object 
store that are always compressed don't have the compressed file attribute as might 
be expected. The reason is that the compressed attribute is used to indicate when 
a file or directory is in a compressed state relative to the other files on the drive. 
In the object store, all files are compressed, which makes the compressed attri
bute redundant. 

The object store in Windows CE has some basic limitations. First, the size 
of the object store is currently limited to 256 MB of RAM. 2 Given the compres
sion features of the object store, this means that the amount of data that the object 
store can contain is somewhere around 512 MB. Individual files in the object store 
are limited to 32 MB. These file size limits don't apply to files in secondary stor
age such as hard disks, PC Cards, and CompactFlash Cards. 

2. In Windows CE 2.1 and 2.12, the object store was limited to 16 MB of RAM. 

379 



Part II Windows CE Basics 

Standard File 1/0 
Windows CE supports most of the same file I/0 functions found in Windows XP 
and Windows Me. The same Win32 API calls, such as CreateFile, ReadFile, 
WriteFile, and CloseFile, are all supported. A Windows CE programmer must be 
aware of a few differences, however. First of all, the standard C file I/0 func
tions, such as /open, /read, and fprinif, aren't supported under Windows CE. 
Likewise, the old Win16 standards, _tread, _!write, and _llseek, aren't supported. 
This isn't really a huge problem because all of these functions can easily be 
implemented by wrapping the Windows CE file functions with a small amount 
of code. Windows CE does support basic console library functions such as printf 
for console applications if the console is supported on that configuration. 

Windows CE doesn't support the overlapped I/0 that's supported under 
Windows XP. Files or devices can't be opened with the FILE_FLAG_OVERLAPPED 
flag, nor can reads or writes use the overlapped mode of asynchronous calls and 
returns. 

File operations in Windows CE follow the traditional handle-based meth
odology used since the days of MS-DOS. Files are opened by means of a func
tion that returns a handle. Read and write functions are passed the handle to 
indicate the file to act on. Data is read from or written to the offset in the file 
indicated by a system-maintained file pointer. Finally, when the reading and 
writing have been completed, the application indicates this by closing the file 
handle. Now on to the specifics. 

Creating and Opening Files 

380 

Creating a file or opening an existing file or device is accomplished by means 
of the standard Win32 function: 

HANDLE CreateFile (LPCTSTR lpFileName, DWORD dwDesiredAccess, 
DWORD dwShareMode, 
LPSECURITY_ATTRIBUTES lpSecurityAttributes, 
DWORD dwCreationDistribution, 
DWORD dwFlagsAndAttributes, HANDLE hTemplateFile); 

The first parameter is the name of the file to be opened or created. The 
filename should have a fully specified path. Filenames with no path information 
are assumed to be in the root directory of the object store. 

The dwDesiredAccess parameter indicates the requested access rights. 
The allowable flags are GENERIC_READ to request read access to the file and 
GENERIC_ WRITE for write access. Both flags must be passed to get read/write 
access. You can open a file with neither read nor write permissions. This is handy 



Files, Databases, and the Registry Chapter 7 

if you just want to get the attributes of a device. The dwShareMode parameter 
specifies the access rights that can be granted to other processes. This parame
ter can be FILE_SHARE_READ and/or FILE_SHARE_ WRITE. The lpSecurityAttributes 
parameter is ignored by Windows CE and should be set to NULL. 

The dwCreationDistribution parameter tells CreateFile how to open or 
create the file. The following flags are allowed: 

• CREATE_NEW Creates a new file. If the file already exists, the func-
tion fails. 

• CREATE_ALWAYS Creates a new file or truncates an existing file. 

• OPEN_EXISTING Opens a file only if it already exists. 

• OPEN_ALWAYS Opens a file or creates a file if it doesn't exist. This 
differs from CREATE_ALWAYS because it doesn't truncate the file to 
0 bytes if the file exists. 

• TRUNCATE_EXISTING Opens a file and truncates it to 0 bytes. The 
function fails if the file doesn't already exist. 

The dwFlagsAndAttributes parameter defines the attribute flags for the file 
if it's being created in addition to flags in order to tailor the operations on the 
file. The following flags are allowed under Windows CE: 

• FILE_ATTRIBUTE_NORMAL This is the default attribute. It's over
ridden by any of the other file attribute flags. 

• FILE_ATTRIBUTE_READONLY Sets the read-only attribute bit for the 
file. Subsequent attempts to open the file with write access will fail. 

• FILE_ATTRIBUTE_ARCHIVE Sets the archive bit for the file. 

• FILE_ATTRIBUTE_SYSTEM Sets the system bit for the file indicat
ing that the file is critical to the operation of the system. 

• FILE_ATTRIBUTE_HIDDEN Sets the hidden bit. The file will be 
visible only to users who have the View All Files option set in the 
Explorer. 

• FILE_FLAG_ WRITE_THROUGH Write operations to the file won't 
be lazily cached in memory. 

• FILE_FLAG_RANDOM_ACCESS Indicates to the system that the file 
will be randomly accessed instead of sequentially accessed. This flag 
can help the system determine the proper caching strategy for the file. 

381 



Part II Windows CE Basics 

Windows CE doesn't support a number of file attributes and file flags that 
are supported under Windows Me and Windows XP. The unsupported flags 
include but aren't limited to the following: FILE_ATTRIBUTE_OFFLINE, FILE_ 
FLAG_OVERLAPPED, FILE_FLAG_NO_BUFFERING, FILE_FLAG_SEQUENTIAL_ 
SCAN, FILE_FLAG_DELETE_ON_CLOSE, FILE_FLAG_BACKUP _SEMANTICS, and 
FILE_FLAG_POSIX_SEMANTICS. Under Windows XP and Windows Me, the flag 
FILE_ATTRIBUTE_ TEMPORARY is used to indicate a temporary file, but as we'll 
see below, it's used by Windows CE to indicate a directory that is in reality a 
separate drive or network share. 

The final parameter in CreateFile, hTemplate, is ignored by Windows CE 
and should be set to 0. CreateFile returns a handle to the opened file if the function 
was successful. If the function fails, it returns INVALID_HANDLE_ VALUE. To de
termine why the function failed, call GetLastError. If the dwCreationDistribution 
flags included CREATE_ALWAYS or OPEN_ALWAYS, you can determine whether 
the file previously existed by calling GetLastError to see if it returns ERROR_ 
ALREADY _EXISTS. CreateFile will set this error code even though the function 
succeeded. 

Reading and Writing 

382 

Windows CE supports the standard Win32 functions ReadFile and WriteFile. 
Reading a file is as simple as calling the following: 

BOOL ReadFile (HANDLE hFile, LPVOID lpBuffer, 
DWORD nNumberOfBytesToRead, 
LPDWORD lpNumberOfBytesRead, LPOVERLAPPED lpOverlapped); 

The parameters are fairly self-explanatory. The first parameter is the handle of 
the opened file to read followed by a pointer to the buffer that will receive the 
data and the number of bytes to read. The fourth parameter is a pointer to a 
DWORD that will receive the number of bytes that were actually read. Finally, 
the lpOverlapped parameter must be set to NULL because Windows CE doesn't 
support overlapped file operations. As an aside, Windows CE does support mul
tiple reads and writes pending on a device; it just doesn't support the ability to 
return from the function before the operation completes. 

Data is read from the file starting at the file offset indicated by the file pointer. 
After the read has completed, the file pointer is adjusted by the number of bytes 
read. 

ReadFile won't read beyond the end of a file. If a call to ReadFile asks for 
more bytes than remain in the file, the read will succeed, but only the number 
of bytes remaining in the file will be returned. This is why you must check the 
variable pointed to by lpNumberOjBytesRead after a read completes to learn how 



Files, Databases, and the Registry Chapter 7 

many bytes were actually read. A call to ReadFile with the file pointer pointing 
to the end of the file results in the read being successful, but the number of read 
bytes is set to 0. 

Writing to a file is accomplished with this: 

BOOL WriteFile (HANDLE hFile, LPCVOID lpBuffer, 
DWORD nNumberOfBytesToWrite, 
LPDWORD lpNumberOfBytesWritten, 
LPOVERLAPPED lpOverlapped); 

The parameters are similar to ReadFile, with the obvious exception that lpBuffer 
now points to the data that will be written to the file. As in ReadFile, the 
lpOverlapped parameter must be NULL. The data is written to the file offset in
dicated by the file pointer, which is updated after the write so that it points to 
the byte immediately beyond the data written. 

Moving the File Pointer 
The file pointer can be adjusted manually with a call to the following: 

DWORD SetFilePointer (HANDLE hFile, LONG lDistanceToMove, 
PLONG lpDistanceToMoveHigh, DWORD dwMoveMethod); 

The parameters for SetFilePointer are the handle of the file; a signed offset dis
tance to move the file pointer; a second, upper 32-bit, offset parameter; and 
dwMoveMethod, a parameter indicating how to interpret the offset. Although 
!DistanceToMove is a signed 32-bit value, lpDistanceToMoveHigh is a pointer 
to a signed 32-bit value. For file pointer moves of greater than 4 GB, the 
lpDistanceToMoveHigh parameter should point to a LONG that contains the upper 
32-bit offset of the move. This variable will receive the high 32 bits of the re
sulting file pointer. For moves of less than 4 GB, simply set lpDistanceToMoveHigh 
to NULL. Clearly, under Windows CE, the lpDistanceToMoveHigh parameter is 
a bit excessive, but having the function the same format as its Windows XP coun
terpart aids in portability across platforms. 

The offset value is interpreted as being from the start of the file if dwMoveMethod 
contains the flag FILE_BEGIN. To base the offset on the current position of the 
file pointer, use FILE_ CURRENT. To base the offset from the end of the file, use 
FILE_END in dwMoveMethod. 

SetFilePointer returns the file pointer at its new position after the move has 
been accomplished. To query the current file position without changing the file 
pointer, simply call SetFilePointer with a zero offset and relative to the current 
position in the file, as shown here: 

nCurrFilePtr = SetFilePointer (hFile, 0, NULL, FILE_CURRENT); 

383 



Part II Windows CE Basics 

384 

Closing a File 
Closing a file handle is a simple as calling 

BOOL CloseHandle (HANDLE hObject); 

This generic call, used to close a number of handles, is also used to close file 
handles. The function returns TRUE if it succeeds. If the function fails, a call to 
GetLastError will return the reason for the failure. 

Truncating a File 
When you have finished writing the data to a file, you can close it with a call to 
CloseHandle and you're done. Sometimes, however, you must truncate a file to 
make it smaller than it currently is. In the days of MS-DOS, the way to set the 
end of a file was to make a call to write zero bytes to a file. The file was then 
truncated at the current file pointer. This won't work in Windows CE. To set the 
end of a file, move the file pointer to the location in the file where you want the 
file to end and call: 

BOOL SetEndOfFile (HANDLE hFile); 

Of course, for this call to succeed, you need write access to the file. The 
function returns TRUE if it succeeds. · 

To insure that all the data has been written to a storage device and isn't just 
sitting around in a cache, you can call this function: 

WINBASEAPI BOOL WINAPI FlushFileBuffers (HANDLE hFile); 

The only parameter is the handle to the file you want to flush to the disk or, more 
likely in Windows CE, a PC Card. 

Getting File Information 
A number of calls allow you to query information about a file or directory. To 
quickly get the attributes knowing only the file or directory name, you can use 
this function: 

DWORD GetFileAttributes (LPCTSTR lpFileName); 

In general, the attributes returned by this function are the same ones that I cov
ered for CreateFile, with the addition of the attributes listed here: 

• FILE_A1TRIBUTE_COMPRESSED The file is compressed. 

• FILE_A1TRIBUTE_INROM The file is in ROM. 

• FILE_A1TRIBUTE_ROMMODULE The file is an executable mod
ule in ROM formatted for execute-in-place loading. These files can't 
be opened with CreateFile. 



Files, Databases, and the Registry Chapter 7 

• FILE_A1TRIBUTE_DIRECTORY The name specifies a directory, not 
a file. 

• FILE_A1TRIBUTE_TEMPORARY When this flag is set in combina
tion with FILE_ATTRIBUTE_DIRECTORY, the directory is the root of 
a secondary storage device, such as a PC Card, a hard disk, or the 
network share folder. 

The attribute FILE_ATTRIBUTE_ COMPRESSED is somewhat misleading on 
a Windows CE device. Files in the RAM-based object store are always compressed, 
but this flag isn't set for those files. On the other hand, the flag does accurately 
reflect whether a file in ROM is compressed. Compressed ROM files have the 
advantage of taking up less space but the disadvantage of not being execute
in-place files. 

An application can change the basic file attributes, such as read only, hid
den, system, and attribute by calling this function: 

BOOL SetFileAttributes (LPCTSTR lpFileName, DWORD dwFileAttributes); 

This function simply takes the name of the file and the new attributes. Note 
that you can't compress a file by attempting to set its compressed attribute. Under 
other Windows systems that do support selective compression of files, the way 
to compress a file is to make a call directly to the file system driver. 

A number of other informational functions are supported by Windows CE. 
All of these functions, however, require a file handle instead of a filename, so 
the file must have been previously opened by means of a call to CreateFile. 

File Times 
The standard Win32 API supports three file times: the time the file was created, 
the time the file was last accessed (that is, the time it was last read, written, or 
executed), and the last time the file was written to. That being said, the Windows 
CE object store keeps track of only one time, the time the file was last written 
to. One of the ways to query the file times for a file is to call this function: 

BOOL GetFileTime (HANDLE hFile, LPFILETIME lpCreationTime, 
LPFILETIME lplastAccessTime, 
LPFILETIME lplastWriteTime); 

The function takes a handle to the file being queried and pointers to three 
FILETIME values that will receive the file times. If you're interested in only one 
of the three values, the other pointers can be set to NULL. 

When the file times are queried for a file in the object store, Windows CE 
copies the last write time into all FILETIME structures. This goes against Win32 
documentation, which states that any unsupported time fields should be set to 

385 



Part II Windows CE Basics 

386 

0. For the FAT file system used on storage cards, two times are maintained: the 
file creation time and the last write time. When GetFileTime is called on a file 
on a storage card, the file creation and last write times are returned and the last 
access time is set to 0. 

The FILETIME structures returned by GetFileTime and other functions can 
be converted to something readable by calling 

BOOL FileTimeToSystemTime (const FILETIME *lpFileTime, 
LPSYSTEMTIME lpSystemTime); 

This function translates the FILETIME structure into a SYSTEMTIME struc
ture that has documented day, date, and time fields that can be used. One large 
caveat is that file times are stored in coordinated universal time format (UTC), 
also known as Greenwich Mean Time. This doesn't make much difference as long 
as you're using unreadable FILETIME structures, but when you're translating a 
file time into something readable, a call to 

BOOL FileTimeToLocalFileTime (const FILETIME *lpFileTime, 
LPFILETIME lpLocalFileTime); 

before translating the file time into system time provides the proper time zone 
translation to the user. 

You can manually set the file times of a file by calling 

BOOL SetFileTime (HANDLE hFile, const FILETIME *lpCreationTime, 
const FILETIME *lpLastAccessTime, 
const FILETIME *lpLastWriteTime); 

The function takes a handle to a file and three times each in FILETIME format. 
If you want to set only one or two of the times, the remaining parameters can 
be set to NULL. Remember that file times must be in UTC time, not local time. 

For files in the Windows CE object store, setting any one of the time fields 
results in all three being updated to that time. If you set multiple fields to differ
ent times and attempt to set the times for an object store file, lpLastWriteTime 
takes precedence. Files on storage cards maintain separate creation and last-write 
times. You must open the file with write access for SetFileTime to work. 

File Size and Other Information 
You can query a file's size by calling 

DWORD GetFileSize (HANDLE hfile, LPDWORD lpFileSizeHigh); 

The function takes the handle to the file and an optional pointer to a DWORD 
that's set to the high 32 bits of the file size. This second parameter can be set to 
NULL if you don't expect to be dealing with files over 4 GB. GetFileSize returns 
the low 32 bits of the file size. 



Files, Databases, and the Registry Chapter 7 

I've been talking about these last few functions separately, but an additional 
function, GetFilelnformationByHandle, returns all this information and more. The 
function prototyped as 

BOOL GetFilelnformationByHandle (HANDLE hFile, 
LPBY_HANDLE_FILE_INFORMATION lpFilelnformation); 

takes the handle of an opened file and a pointer to a BY _HANDLE_FILE_ 
INFORMATION structure. The function returns TRUE if it was successful. 

The BY _HANDLE_FILE_INFORMATION structure is defined this way: 

typedef struct _BY_HANDLE_FILE_INFORMATION 
DWORD dwFileAttributes; 
FILETIME ftCreationTime; 
FILETIME ftlastAccessTime; 
FILETIME ftlastWriteTime; 
DWORD dwVolumeSerialNumber; 
DWORD nFileSizeHigh; 
DWORD nFileSizelow; 
DWORD nNumberOflinks; 
DWORD nFilelndexHigh; 
DWORD nFilelndexlow; 
DWORD dwOID; 

BY_HANDLE_FILE_INFORMATION; 

As you can see, the structure returns data in a number of fields that separate 
functions return. I'll talk about only the new fields here. 

The dwVolumeSeria!Number field is filled with the serial number of the 
volume in which the file resides. The volume is what's considered a disk or 
partition under Windows Me or Windows XP. Under Windows CE, the volume 
refers to the object store, a storage card, or a disk on a local area network. For 
files in the object store, the volume serial number is 0. 

The nNumberOflinks field is used by Windows XP's NTFS file system and 
can be ignored under Windows CE. The nFile!ndexHigh and nFilelndexLow fields 
contain a systemwide unique identifier number for the file. This number can be 
checked to see whether two different file handles point to the same file. The File 
Index value is used under Windows XP and Windows Me, but Windows CE has 
a more useful value, the object ID of the file, which is returned in the dwOID 
field. I'll explain the object ID later in the chapter; for now, I'll just mention that 
it's a universal identifier that can be used to reference directories, files, databases, 
and individual database records. Handy stuff. 

The FileView Sample Program 
File View is an example program that displays the contents of a file in a window. 
It displays the data in hexadecimal format instead of text, which makes it differ-

387 



Part II Windows CE Basics 

388 

ent from simply opening the file in Microsoft Pocket Word or another editor. 
File View is simply a file viewer, it doesn't allow you to modify the file. The code 
for FileView is shown in Figure 7-1. 

Figure 7-1 The FileView program 



Files, Databases, and the Registry Chapter 7 

FileView.h 
II==========================="""========================================= 
II Header file 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2001 Douglas Boling 
ll===============:;o====================================================== 
11 Returns number of elements. 
/fdefine dim(x) (sizeof(x) I sizeof(x[0])) 

/1-----------C--'----~·-"-------'•--

jj Generic defines and data types 
II 
struct decodeUlNf 

UINT Code; 

} ; 

} ; 

//define 
/fodefi ne 
lfdefi ne 

II Menu 
#define 
tide.fine 
//define 

UINT. WPARAM, LPARAM); 

i nt.lni tApp(HlNS1ANC.Q; 
HWND Initinst(lnci; (HlNSTANCE, 
int Termlnstance (HINSTANCE, 

II Window procedures 
LRESU LT CALLBACK MafnWndProc 

II Structure associates 
II messages 
JI with a function. 

II Structure associates 
ll mellll IDs With a. 

Application icon 
.Resource lD 
Command band ID 

Main menu resource ID 
View. contra l ID 

Fi le menu 

(continued) 

389 



Part II Windows CE Basics 

Figure 7-1 (continued) 

390 



Files, Databases, and the Registry Chapter 7 

//====================================================================== 
II Program entry point 
II 
int WINAPI WinMain (H!NSTANCE hlnstance, HINSTANCE hPrevlnstance, 

LPWSTR lpCmdLine, int nCmdShow) { 

} 

HWND hwndMain; 
MSG msg; 
int re = 0: 

II Initialize application. 
re= InitApp (hlnstance); 
if (rel return re; 

II Initialize this instance. 
hwndMatn = Initlnstance (hlnstance. lpCmdLine, nCmdShow): 
if fhwndMa in == 0) return 0x10; 

If Application message loop 
while (GetMessage C&msg, NU.LL. 0, 0)) { 

Transl ateMessa.g.e t&msg); 
<&msg): 

return Terminstance (hlnstance, msg.wParam); 

llJnitApp ·~·Application initialization 
If 

· int IhitApp (HINSTANCE hlnstance) { 
WNDCLASSwc: 
IN!lCOMMONCONTROLSEX icex: 

ifif definedCWIN3LPLATFORM~PSPC) 
I l If Pocket PC, a.11 ow only one instance of the application .. 
HWN!J hWnd "' FindWindow {szAppName. NULL): 
if (hWndY { 

((HWND){C(DWORDlhWnd) 

Register ap]'.llfcation·main w.indow class. 
we. sty 1 e ·=' 0; I I 

we .cbC1stxtr.a =/0; 
we. cbWndExtra ::: .. 0 :> 
wc.hinSti!nce=hinstance; 
we. hLcon = NULL; 

II 
II 

II 
I I Owner. handle 
II 

(continued) 

391 



Part II Windows CE Basics 

Figure 7-1 (continued) 

392 



Files, Databases, and the Registry Chapter 7 

LRESULT CALLBACK MainWndProc (HWNP hWnd, UINT wMsg, WPARAM wParam. 
LPARAM lParam) { 

INT i: 

II 
II Search message list to see if we need to handle this 
II message. If in list, call function. 
II 
for (i = 0: i < dim(MainMessages): i++l 

if <wMsg == MainMessages(i].Codel 
return (•MainMessages[iJ.Fxnl{hWnd, wMsg, wParam, lParaml: 

return DefW.indowProc (hWnd. wMsg, wParam, lParam); 

I!- - - - - - - - - - ' - - - - .-.: c ' - - - - ' - - - - - - - - - - - - - ' - - - ' - - - - • - ' - - • - - - - - - - - - - - - - - - - -

II DoCreateMain :.Process. WM_CREATE message for winddw. 
II 
LRESULT DoCreateMain (HWND. hWnd, .UINT wMsg, 

LPARAM 1 Pa ram) { 
HWND.hwndCEI. 
INT r1Hefght; 
RECT rect; 
LPCREATESTRUCT lpcs: 

fl Convert lPar~mJnto .... pointert(} 
lpcs =;; (LPCREATESIRUCT) l Pa.f'am; 

//Create a ~tpimaJ command··bar 
11.·.exit button. 
hw!1dCB = CoillmandBar__;createChinst•.•hWnd. IDC-CMbBARl: 
fl Insert the menu:· 
CommanciBar:._InsertMenubar (hwndCB, hlnst. ID~MENU,. 0); 

Ii Add eidt butto.n to command bar. 
Comma.ndBar_AddAdotnmenfs . ChwndCB. 0, .· 0l 
nHeight--{omrriandBar_Height (hwndCB): 

Set'*ect (&rect,0. rifielght.·.···lpcs:>cx, .lpcs->cy .• - nHeight}; 
hWndChilcl ... • • .,·. Createviewel'• ChWnd, &rect;•lP_VIEWER): 

~,, ....... _,_ .. _:·. :.,·: .. ::·: ... ::_ .. ·,_ .:. -'. ... _ .. :·: .. ·_:: .. <:,:<: .: 

ll Oestrbyframetf wif1dow 
if (llsWil'fdow (hwndChildll 

oestroywtridbw .·rnwncth 
retl.ltn0; 

Li stView..::SetJtemC01.uft 

}.·· .i•········. i•··><·········:> >·····.·······i 
I l- - - - ,. - - -~ ~-.-~}-~ ~··~ c.:-.- -- ---c- -

(continued) 

393 



Part II Windows CE Basics 

Figure 7-1 (continued) 

394 



Files, Databases, and the Registry Chapter 7 

II====================================================================== 
II Command handler routines 
11----------------------------------------------------------------------
11 DoMainCommandOpen - Process File Open command. 
II 
LPARAM DoMainCommandOpen CHWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) 
TCHAR szFileName[MAX_PATH], szText[64]; 
HWND hwndViewer: 
INT re: 

hwndViewer = GetDlgitem. (hWnd; ID_VIEWER); 

dim< szFil eName)) 

file. 

0) 

0, (LPARAM)szF1leName); 

failed .. rc!c%d·") 
hlit!J;(j.;;<~iZTEi*~{:i;$ZAppJ~.anil!•. 'Ml:l.:..oi<)/ . . .· . 

(continued) 

395 



Part II Windows CE Basics 

Figure 7-1 (continued) 

396 



Files, Databases, and the Registry Chapter 7 

Viewer.h 
II====================================================================== 
II Header file 
II 
II Written for the book Programming Windows CE 
II Copyright (C) 2001 Douglas Boling 
II====================================================================== 

//define VM_OPEN (WM_USER+l00) 

11------------------.-----------------------·--------~------------------
ll Function prototypes 
II 
int Regi sterCt1 (fl INSTANCE hinstance); . 
HWND Createvtewer (~\'1ND tlParent, RECT •prect; int n ID); 
int TermViewer (HlNSTMCE hinstance, int nDefRC>; 

Viewer.c 

11 Vi ewe~.-: A :fti~ vtew c~n.tr9i 
II .. ··•·... . •·· < .: :·. ·. ··.·.·. •.·:. .. . . •· .. · .... 
// Written for the•bd-Ok Programming w; ndows CE 
11 copyrtglif ·rnJ 200io.oiJ'gJ,as.. Boling 
I/=~=;;:=;;;;~:;:;~-~~~;=~~~~?~·~~~~~~~,~=====;:=~=~·~~~~~;;:~~~~=~.~~=::=~-=*====~;:~;;;;~·~~= 
ffinclude <wirici~ws:f8 fl ibr·a1JthatWindo~s stuff ... ··.:,, · .. ::::::·:··.:-·: :. ;<::.~:<::_:, ::::'.·.:,. ···. ,·.:·::· > . ."' , .. :., , 

#include .,'f'~1e~i~w;h,._i. Ii P·r~tj~am•specifis: stuff 
tlinclude ·~v'reW.e'r ;ti·.• . . . u cOntfot-spacifi c stuff 
I I• - • - •" • • ~ • - " • • .;.; • c • ; ~ L • . C _ • ~ ••• ~ ~ a • _ L .. ·. • • c • • • • • ;. • • __ • _ •• _ • 

I/ lnternaT'.func~iottprbt6trpes 
LRESU LT CALL!lACK ViewerWndProc <HWND' u INT. WPARAM, LPARAM); 

I I Mess age .ila.~dl el'~ ·; 
LRESULT DoCtE!]1'eVteY!~r • OiWND, JJINT. WPARAfoL LPARAMl: 

. LRESUL T· DoP~tn~lMewer .(HW~D':;UINT, WPA1'AM~. tPARAM) :· 
LRESULJ".DoV.S~r;oil¥i:ew~l':c~Nir •• LJ,UH; ·wpARAM.•;fJPA«AM>.:·•·· 

·.· LRESULT DoDe$:t'r~yV:i~eWe'I'! '(;H~NJJ, UINT. WP.ARAM:;. tPARAM>; . 
• LRESU LT 060.~~nv.:f~e; (H~tl•:..JJiNT, · WPARAM. LP#AM}; ·· 

H FONT Gei:F1~eti~ii;ut\i :(liW:Nli' hWnd. 

~~''. ~'. }":1:~}~\~~,0.: . . ... 
ll Global dii~~·;\,:.F, .. 
extern Hl NS)"~~C;t;· IJ,In§.t; ·• 
HANDLE g_;hFtl;e,~'il~\: .. 

(continued) 

397 



Part II Windows CE Basics 

Figure 7-1 (continued) 

398 



Files, Databases, and the Registry Chapter 7 

II Create viewer control. 
hwndCtl = CreateWindowEx (0, szViewerCls, TEXT(""), 

WS_VISIBLE I WS_CHILD I WS_VSCROLL I 
WS_BORDER, prect->left, prect->top, 
prect->right - prect->left, 
prect->bottom - prect->top, 
hParent. (HMENU)nlD, hlnst, NULL); 

return hwndCtl ; 

11----------------------------------------------------------------------
11 Terminstance - Progra.m clea~up. 
II 
int TermViewer CHINSTANCE hinstance, int nDefRCl { 

if (g_hFilel 
CloseHandle 

ff (g_pBuffl 

.. · .. <Locall'.ree 
·· · Tf: (g;.;,hFont) . 

·.D~leteObj.ect 

II Closethe opened file. 

. ~~ '.,. " ... " " : . " : : . ' .. ' . . ' .. ,. . . ~ ·:,." : . . .. . ·: ' . .. : . . . . . .. '. ' ' , , . . . 
·,--.. '/;l~. ~ ~.~·+.~ ~ . .;:.;·:., ~- .. ~.:. .. -' ... :'.' -.. ~::'~>:.;·:.· .. ~ ';':"·~:·: :~·~·;·~. ·::-·~·.~/.+:·~:·:-·- -:·'.'"·-.-... - - .. - ... o~ - ·- - ~·~. ~· .... -.r ·- - "' ..... - ~ - - - ... -

//:.'..Viev{eP~~dPt'oc '.'.· CaTl.Qil(?;k.ru9cti:or1fOr ,>1.iewer wi n.dow ···•·· 
//•: .·· ··•······ .... 
~Rl;SULTCA~LLBACK ViewerWndPro~(ttwNPJl~rid. UINT WMS9i WPARAM wParam, 

.. INT.· 
:.;/:/: 
·· · ti.Search message .11.st ta 'scee:, tf we rteed 

//::·message. If in list; cal1 procedure. 

{ 

to handle this 

:ft. 
for (i = ~;. i < dim{ViewerMissages); i++) { 

· .. •: . ./::·· .. · .. ••··•••·• itiwM$ef. "'" V:i ewert'1e$$.a6~iihf:c9cte) 
. · ... r~ttirn (*ViewerJ,4essa~¢'.s(t:l;Fxri)ChWnd, 

~-;: __ :,' 
· return oeiW-fn~~~PT'b¢· (bWnd.:wH~g. w~aram. 1 Paraml; 

·: :,~ . :·:· . :;· . . ... :; : ·' ... : .,. :· ;;: . . . ,.. :. " ' . .. , . '"' ' . . , ·. . ,. , ' ; .. '."' ' ·, . . . . : 
}···· ..•. 

··• J{-7 7"-- "~, . "\~ -:~.~:";~':;c.:., c" -- - -·:..-" :.-·····•·:-c.- - - - - - - -··-- -
'//D.oCreateVtewef'.,.Jirot'es1> WM..CRE:ATE fue.$sa9e .//' . . . . . .. .... .. . .. . . . .. . ... 

iRESULT DoCreate>f{~'t~r•'·(HWtH> hWnd; UlNf wMsg, WPARAM wParam;. 
' > ''.:LPARAM 1 Pa ram> { . . . 

LPCR~AfE~ftt~cf lp~s i 
(continued) 

399 



Part II Windows CE Basics 

400 

Figure 7-1 (continued) 

. 11 con.vert · 1 Par am io pointer to 
· lpcs ;=·. (LPCREA}f:l)TRUCT). 

·.Message.Box: 

J 
J( Create a f}xed·pitc;h 
g.;_hFonf "" GetFixedEqui v 

· t.nt comp~seUne··.cINl .. nOffset, 
. . I N.T i, nt.en, .nlfoffOffs.et; 

TGflAR s:iTmp[l6] i 
LPBY1E pPt.r; . 
DWOR·D. c8ytes;<·· 



Files, Databases, and the Registry Chapter 7 

for (i = 0; i < nLen; i++) { 
wsprintf (szTmp, TEXT ("%02X"), *pPtr++); 
lstrcat CszOut, szTmp); 
if ( i == 7) 

lstrcat (szOut, TEXT("-")); 
else 

lstrcat (szOut, TEXT("")); 

return nLen: 

!!--------------------------------------------~-------------------
// Do Pai ntVi ewer - Process WM--PAINT message for window. 
// 
LRESULT DoPaintViewer CHWND hWnd, UINT wMsg, WPARAM wPaNm, 

Li>ARAM TParaml { 

} 

TCHAR szOut[lZ!U: 
INT nFontHe.ight; 
INT 1. yturr~nt; 
TEXJMEl]UC trn••···· 
P ,UN1S.Tfl;Utl' 'µ:s ; : • ·• ·· 
HFONT no1at"cint;<•· 
REC'( rei:tj 
HOC hdC; . . . .... ·.·.. .. 

; ; . ' . ' . . ' ... '.~. ;' ' ' ' ,. ' 

hdc .'!'.. B~gi n~aint <hW•n~.C~i!sl.; . 
GetclientRtl.t:tthl'fnd., &reri'>; 

. . . ' . ' , ... ' •·· .·" . ··_. ~.' ,:.':'.. ;._ ' ...... ' 

' .. " .. ._ .... 

· hOldF~rlt ,... Sel~i:tObJ~~ffhdc, 
:, . : ' .. ·, : .. ·; " . . . ., 

,. . . .. ·'· .. , ' 

11 Get the h~•;g~f·of th~ default fonL · 
· GetT exiMetd't; <liat:; )t.tii) : 
nFontHeight = tm;tmtteight + tm.tmExternalLeadfog: 

· ··. · ·· · • i~: :$zOui.iJ~trYkn .· 

11 V~datd~e~··ut~~i:p~int: 
ycitr-rent' +=' 'n'FontHe~ght: 

~. :. . . .. ':. ; '.,;' · ... ''· f '., .-:'· ·' '. .• \ 

· · Se lectOb~~pt .(9tieHij~1.d,ftmt l : 
EndPaint\~.t;t:WilO:i &)}:$); · 
Q.;..nPage1~rt(=';(;;y·· •.. ,. 
return 0;·, ., · 

(continued) 

401 



Part II Windows CE Basics 

Figure 7-1 (continued) 

402 



Files, Databases, and the Registry Chapter 7 

InvalidateRect (hWnd, NULL. TRUE); 
} 

return 0; 

/!----------------------------------------------------------------------
// DoDestroyViewer - Process WM_DESTROY message for window. 
II 
LRESULT DoDestroyViewer CHWND hWnd, UINT wMsg, WPARAM wParam, 

LPARAM lParam) { 

} 

if (g_hFile) 
Cl oseHandl e ( g_hFile); 

g_hfile = 0; 
.. return 0; 

ti- - - - - - - - - - - - - - - - - - - - - - - ~ - "c - "'. -.-.~ - - - - - - - - - - - - - - - - - - - - - c - - - - - - - - - - - - - - - -. - . 
II DoOpenViewer - Process V~OPEN message for window. 
II 
LRESULT OoOpenViewer CHWND hWrid, UINT wMsg, WPARAM wParam; 

(g:.'..hHlel· 
... • CToseHan.dlf! 

l/ .O'pen the/ile• • •.•• .. .. . .. .. . . . 
. · .. ·. 'g;;~FfJe .;; Cr~ateFil~ i·ct~TSTRflPa·ram. GENERICREA!>', 
. " . ;~~t~§FIARE;-.READ, NULL. OPEN.:.£XISTit1G; 

. i T :··: ('·.·.·······.. ~l:~~A'.FFJUBUTE.._NORtilAL, NUU)·t····· 

;iif{;J:nFi INVAUG~A~iNDL~~VAl.UEJ { 
· · Q:_hfile = ~; 

(continued) 

403 



Part II Windows CE Basics 

404 

Figure 7-1 (continued) 

The C source code is divided into two files, FileView.c and Viewer.c. FileView.c 
contains the standard Windows functions and the menu command handlers. In 
Viewer.c, you find the source code for a child window that opens the file and 
displays its contents. The routines of interest are DoOpen Viewer, where the file 
is opened, and ComposeLine, where the file data is read. Both of these routines 
are in Viewer.c. DoOpenViewer uses CreateFile to open the file with read-only 
access. If the function succeeds, it calls GetFileSize to query the size of the file 
being viewed. This is used to initialize the range of the view window scrollbar. 
The window is then invalidated to force a WM_PAINT message to be sent. 

In the WM_PAINT handler, OnPaintViewer, a fixed pitch font is selected into 
the device context, and data from the file, starting at the current scroll location, 
is displayed in the window after the application calls the ComposeLine function. 



Files, Databases, and the Registry Chapter 7 

This routine is responsible for reading the file data into a 4096-byte buffer. The 
data is then read out of the buffer 16 bytes at a time as each line is displayed. If 
the data for the line isn't in the file buffer, ComposeLine refills the buffer with 
the proper data from the file by calling SetFilePointer and then ReadFile. 

Memory-Mapped Files and Objects 
Memory-mapped files give you a completely different method for reading and 
writing files. With the standard file 1/0 functions, files are read as streams of data. 
To access bytes in different parts of a file, the file pointer must be moved to the 
first byte, the data read, the file pointer moved to the other byte, and then the 
file read again. 

With memory-mapped files, the file is mapped to a region of memory. Then, 
instead of using FileRead and File Write, you simply read and write the region 
of memory that's mapped to the file. Updates of the memory are automatically 
reflected back to the file itself. Setting up a memory-mapped file is a somewhat 
more complex process than making a simple call to CreateFile, but once a file 
is mapped, reading and writing the file is trivial. 

Memory-Mapped Files 
Windows CE uses a slightly different procedure from Windows XP or Windows 
Me to access a memory-mapped file. To open a file for memory-mapped access, 
a new function, unique to Windows CE, is used; it's named CreateFileForMapping. 
The prototype for this function is the following: 

HANDLE CreateFileForMapping (LPCTSTR lpFileName, DWORD dwDesiredAccess, 
DWORD dwShareMode, 
LPSECURITY_ATTRIBUTES lpSecurityAttributes, 
DWORD dwCreationDisposition, 
DWORD dwFlagsAndAttributes, 
HANDLE hTemplateFile); 

The parameters for this function are similar to those for CreateFile. The filename 
is the name of the file to read. The dwDesiredAccess parameter, specifying the access 
rights to the file, must be a combination of GENERIC_READ and GENERIC_ WRITE, 
or it must be 0. The security attributes must be NULL, while the hTemplateFile 
parameter is ignored by Windows CE. 

The handle returned by CreateFileForMapping can then be passed to 

HANDLE CreateFileMapping (HANDLE hFile, 
LPSECURITY_ATTRIBUTES lpFileMappingAttributes, 
DWORD flProtect, DWORD dwMaximumSizeHigh, 
DWORD dwMaximumSizelow, LPCTSTR lpName); 

405 



Part II Windows CE Basics 

406 

This function creates a file-mapping object and ties the opened file to it. The first 
parameter for this function is the handle to the opened file. The security attributes 
parameter must be set to NULL under Windows CE. The jlProtect parameter 
should be loaded with the protection flags for the virtual pages that will contain 
the file data. The maximum size parameters should be set to the expected maxi
mum size of the object, or they can be set to 0 if the object should be the same 
size as the file being mapped. The lpName parameter allows you to specify a 
name for the object. This is handy when you're using a memory-mapped file to 
share information across different processes. Calling CreateFileMapping with the 
name of an already-opened file-mapping object returns a handle to the object 
already opened instead of creating a new one. 

Once a mapping object has been created, a view into the object is created 
by calling 

LPVOID MapViewOfFile (HANDLE hFileMappingObject, DWORD dwDesiredAccess, 
DWORD dwFileOffsetHigh, DWORD dwFileOffsetlow, 
DWORD dwNumberOfBytesToMap); 

Map ViewOJFile returns a pointer to memory that's mapped to the file. The func
tion takes as its parameters the handle of the mapping object just opened as 
well as the access rights, which can be FILE_MAP _READ, FILE_MAP _WRITE, 
or FILE_MAP _ALL_ACCESS. The offset parameters let you specify the starting point 
within the file that the view starts, while the dwNumberOjBytesToMap parame
ter specifies the size of the view window. 

These last three parameters are useful when you're mapping large objects. 
Instead of attempting to map the file as one large object, you can specify a smaller 
view that starts at the point of interest in the file. This reduces the memory re
quired because only the view of the object, not the object itself, is backed up 
by physical RAM. 

As you write to the memory-mapped file, the changes are reflected in the 
data you read back from the same buffer. When you close the memory-mapped 
file, the system writes the modified data back to the original file. If you want to 
have the data written to the file before you close the file, you can use the fol
lowing function: 

BOOL FlushViewOfFile(LPCVOID lpBaseAddress, DWORD dwNumberOfBytesToFlush); 

The parameters are the base address and size of a range of virtual pages within 
the mapped view that will be written to the file. The function writes only the pages 
that have been modified to the file. 

When you're finished with the memory-mapped file, a little cleanup is re
quired. First a call to 

BOOL UnmapViewOfFile (LPCVOID lpBaseAddress); 



Files, Databases, and the Registry Chapter 7 

unmaps the view to the object. The only parameter is the pointer to the base 
address of the view. 

Next a call should be made to close the mapping object and the file itself. 
Both these actions are accomplished by means of calls to CloseHandle. The first 
call should be to close the memory-mapped object, and then CloseHandle should 
be called to close the file. 

The code fragment that follows shows the entire process of opening a file 
for memory mapping, creating the file-mapping object, mapping the view, and 
then cleaning up. 

HANDLE hFile, hFileMap; 
PBYTE pFileMem; 
TCHAR szFileName[MAX_PATH]; 
II Get the filename. 

hFile = CreateFileForMapping (szFileName, GENERIC_WRITE. 
FILE_SHARE_READ, NULL, 
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL 
FILE_FLAG_RANDOM_ACCESS,0); 

if (hFile != INVALID_HANDLE_VALUE) { 

} 

hFileMap = CreateFileMapping (hFile, NULL, PAGE_READWRITE, 0, 0, 0); 
if (hFileMap) { 

} 

pFileMem = MapViewOfFile (hFileMap, FILE_MAP_WRITE, 0, 0, 0); 
if (pFileMem) { 

} 

II 
II Use the data in the file. 
II 

II Start cleanup by unmapping view. 
UnmapViewOfFile (pFileMem); 

CloseHandle (hFileMap); 

CloseHandle (hFile); 

Memory-Mapped Objects 
One of the more popular uses for memory-mapped objects is for interprocess 
communication. For this purpose, you don't need to have an actual file; it's the 
shared memory that's important. Windows CE supports entities referred to as 
memory-mapped objects. These are objects that are backed up by the paging file 
under Windows XP and Windows Me. Under Windows CE, these are simply 
areas of virtual memory with only physical RAM to back them up. Without the 

407 



Part II Windows CE Basics 

408 

paging file, these objects can't be as big as they would be under Windows XP, 
but Windows CE does have a way of minimizing the RAM required to back up 
the memory-mapped object. 

You create such a memory-mapped object by eliminating the call to 
CreateFileForMapping and passing -1 in the handle field of CreateFileMapping. 
Since no file is specified, you must specify the size of the memory-mapped re
gion in the maximum size fields of CreateFileMapping. The following routine 
creates a 16-MB region using a memory-mapped file: 

II Create a 16-MB memory-mapped object. 
hNFileMap = CreateFileMapping ((HANDLE)-1, NULL, PAGE_READWRITE, 

0, 0x1000000, NULL); 
if (hNFileMap) 

II Map in the object. 
pNFileMem = MapViewDfFile (hNFileMap, 

FILE_MAP_WRITE, 0, 0, 0); 

The memory object created by the code above doesn't actually commit 16 MB 
of RAM. Instead, only the address space is reserved. Pages are autocommitted 
as they're accessed. This process allows an application to create a huge, sparse 
array of pages that takes up only as much physical RAM as is needed to hold 
the data. At some point, however, if you start reading or writing to a greater 
number of pages, you'll run out of memory. When this happens, the system 
generates an exception. I'll talk about how to deal with exceptions in the next 
chapter. The important thing to remember is that if you really need RAM to be 
committed to a memory-mapped object, you need to read each of the pages so 
that the system will commit physical RAM to that object. Of course, don't be too 
greedy with RAM; commit only the pages you absolutely require. 

Naming a memory-mapped object A memory-mapped object can be named 
by passing a string to CreateFileMapping. This isn't the name of a file being 
mapped. Instead, the name identifies the mapping object being created. In the 
previous example, the region was unnamed. The following code creates a named 
memory-mapped object named Bob. This name is global so that if another pro
cess opens a mapping object with the same name, the two processes will share 
the same memory-mapped object. 

II Create a 16-MB memory-mapped object. 
hNFileMap = CreateFileMapping ((HANDLE)-1, NULL, PAGE_READWRITE, 

0, 0xl000000, TEXT ("Bob")); 
if (hNFileMap) 

II Map in the object. 
pNFileMem = MapViewDfFile (hNFileMap, 

FILE_MAP_WRITE, 0, 0, 0); 



Files, Databases, and the Registry Chapter 7 

The difference between named and unnamed file mapping objects is that a named 
object is allocated only once in the system. Subsequent calls to CreateFileMapping 
that attempt to create a region with the same name will succeed, but the function 
will return a handle to the original mapping object instead of creating a new one. 
For unnamed objects, the system creates a new object each time CreateFileMapping 
is called. 

When you're using a memory-mapped object for interprocess communica
tion, processes should create a named object and pass the name of the region 
to the second process, not a pointer. While the first process can simply pass a 
pointer to the mapping region to the other process, this isn't advisable. If the first 
process frees the memory-mapped file region while the second process is still 
accessing the file, an exception will occur. Instead, the second process should 
create a memory-mapped object with the same name as the initial process. 
Windows knows to pass a pointer to the same region that was opened by the 
first process. The system also increments a use count to track the number of opens. 
A named memory-mapped object won't be destroyed until all processes have 
closed the object. This assures a process that the object will remain at least until 
it closes the object itself. The XTalk example in Chapter 8 provides an example 
of how to use a named memory-mapped object for interprocess communication. 

Navigating the File System 
Now that we've seen how files are read and written, let's take a look at how the 
files themselves are managed in the file system. Windows CE supports most of 
the convenient file and directory management APis, such as CopyFile, MoveFile, 
and CreateDirectory. 

File and Directory Management 
Windows CE supports a number of functions useful in file and directory man
agement. You can move files using MoveFile, copy them using CopyFile, and delete 
them using DeleteFile. You can create directories using CreateDirectory and delete 
them using RemoveDirectory. While most of these functions are straightforward, 
I should cover a few intricacies here. 

To copy a file, call 

BOOL CopyFile (LPCTSTR lpExistingFileName, LPCTSTR lpNewFileName, 
BOOL bFaillfExists); 

The parameters are the name of the file to copy and the name of the destina
tion directory. The third parameter indicates whether the function should over
write the destination file if one already exists before the copy is made. 

409 



Part II Windows CE Basics 

410 

Files and directories can be moved and renamed using 

BOOL MoveFile (LPCTSTR lpExistingFiieName, LPCTSTR lpNewFileName); 

To move a file, simply indicate the source and destination names for the file. The 
destination file must not already exist. File moves can be made within the ob
ject store, from the object store to an external drive, or from an external drive 
to the object store. MoveFile can also be used to rename a file. In this case, the 
source and target directories remain the same; only the name of the file changes. 

MoveFile can also be used in the same manner to move or rename directo
ries. The only exception is that MoveFile can't move a directory from one vol
ume to another. Under Windows CE, MoveFile moves a directory and all its 
subdirectories and files to a different location within the object store or differ
ent locations within another volume. 

Deleting a file is as simple as calling 

BOOL DeleteFile CLPCTSTR lpFileName); 

You pass the name of the file to delete. For the delete to be successful, the file 
must not be currently open. 

You can create and destroy directories using the following two functions: 

BOOL CreateDirectory (LPCTSTR lpPathName, 
LPSECURITY_ATTRIBUTES lpSecurityAttributes); 

and 

BOOL RemoveDirectory (LPCTSTR lpPathName); 

CreateDirectory takes the name of the directory to create and a security parameter 
that should be NULL under Windows CE. RemoveDirectory deletes a directory. 
The directory must be empty for the function to be successful. 

Creating a Temporary File 
At times you will need to create a temporary file. How do you pick a unique 
filename? You can ask Windows for the name of a temporary file by using the 
following function: 

UINT GetTempFileName (LPCTSTR lpPathName, LPCTSTR lpPrefixString, 
UINT uUnique, LPTSTR lpTempFileName); 

The first parameter is the path of the temporary file. You can specify a single"." 
to indicate the current directory, or you can specify an existing directory. The 
second parameter, lpPrefixString, is the name prefix. The first three characters 
of the prefix become the first three characters of the temporary filename. The 
uUnique parameter can be any number you want or 0. If you pass 0, Windows 



Files, Databases, and the Registry Chapter 7 

will generate a number based on the system time and use it as the last four 
characters of the filename. If uUnique is zero, Windows guarantees that the file
name produced by GetTempFileName will be unique. If you specify a value other 
than 0 in uUnique, Windows returns a filename based on that value but doesn't 
check to see whether the filename is unique. The last parameter is the address 
of the output buffer to which GetTempFileName returns the filename. This buffer 
should be at least MAX_PATH characters (not bytes) in length. 

Finding Files 
Windows CE supports the basic FindFirstFile, FindNextFile, FindClose procedure 
for enumerating files that is supported under Windows XP. Searching is accom
plished on a per-directory basis using template filenames with wild card char
acters in the template. 

Searching a directory involves first passing a filename template to FindFirstFile, 
which is prototyped in this way: 

HANDLE FindFirstFile (LPCTSTR lpFileName, 
LPWIN32_FIND_DATA lpFindFileData); 

The first parameter is the template filename used in the search. This filename 
can contain a fully specified path if you want to search a directory other than 
the root. Windows CE has no concept of Current Directory built into it; if no path 
is specified in the search string, the root directory of the object store is searched. 

As you would expect, the wildcards for the filename template are ? and *. 
The question mark (?) indicates that any single character can replace the ques
tion mark. The asterisk (*) indicates that any number of characters can replace the 
asterisk. For example, the search string \Windows\Alarm?.wav would return the 
files\ Windows\Alarml.wav, \ Windows\Alarm2.wav, and\ Windows\Alarm3.wav. 
On the other hand, the search string \Windows\*.wav would return all files in 
the windows directory that have the wav extension. 

The second parameter of FindFirstFile is a pointer to a WIN32_FIND_DATA 
structure, as defined here: 

typedef struct _WIN32_FIND_DATA 
DWORD dwFileAttributes; 
FILETIME ftCreationTime; 
FILETIME ftlastAccessTime; 
FILETIME ftlastWriteTime; 
DWORD nFileSizeHigh; 
DWORD nFileSizelow; 
DWORD dwOID; 
WCHAR cFileName[ MAX_PATH ]; 

WIN32_FIND_DATA; 

411 



Part II Windows CE Basics 

412 

This structure is filled with the file data for the first file found in the search. The 
fields shown are similar to what we've seen. 

If FindFirstFile finds no files or directories that match the template filename, 
it returns INVALID_HANDLE_ VALUE. If at least one file is found, FindFirstFile 
fills in the WIN32_FIND_DATA structure with the specific data for the found file 
and returns a handle value that you use to track the current search. 

To find the next file in the search, call this function: 

BOOL FindNextFile (HANDLE hFindFile, 
LPWIN32_FIND_DATA lpFindFileData); 

The two parameters are the handle returned by FindFirstFile and a pointer to 
a find data structure. FindNextFile returns TRUE if a file matching the template 
passed to FindFirstFile is found and fills in the appropriate file data in the 
WIN32_FIND_DATA structure. If no file is found, FindNextFile returns FALSE. 

When you've finished searching either because FindNextFile returned 
FALSE or because you simply don't want to continue searching, you must call 
this function: 

BOOL FindClose (HANDLE hFindFile); 

This function accepts the handle returned by FindFirstFile. If FindFirstFile re
turned INVALID_HANDLE_ VALUE, you shouldn't call FindClose. 

The following short code fragment encompasses the entire file search pro
cess. This code computes the total size of all files in the Windows directory. 

WIN32_FIND_DATA fd; 
HANDLE hFind; 
INT nTotalSize = 0; 

II Start search for all files in the windows directory. 
hFind = FindFirstFile (TEXT ("\\windows\\•.•"), &fd); 

II If a file was found, hFind will be valid. 
if (hFind != INVALID_HANDLE_VALUE) { 

II Loop through found files. Be sure to process file 
II found with FindFirstFile before calling FindNextFile. 
do 

II If found file is not a directory, add its size to 
II the total. (Assume that the total size of all files 
II is less than 2 GB.) 
if (!(fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)) 

nTotalSize += fd.nFileSizeLow; 

II See if another file exists. 
} while (FindNextFile (hFind, &fd)); 



Files, Databases, and the Registry Chapter 7 

II Clean up by closing file search handle. 
FindClose ChFind); 

In this example, the windows directory is searched for all files. If the found "file" 
isn't a directory, that is, if it's a true file, its size is added to the total. Notice that 
the return handle from FindFirstFile must be checked, not only so that you know 
whether a file was found but also to prevent FindClose from being called if the 
handle is invalid. 

Windows CE 3.0 supports the more advanced Win32 find function 
FindFirstFileEx. The advantage of this function is the added ability to enumer
ate only directories and even to enumerate the device drivers currently running. 
The function is prototyped as 

HANDLE FindFirstFileExCLPCTSTR lpFileName, FINDEX_INFO_LEVELS flnfolevelld, 
LPVOID lpFindFileData, FINDEX_SEARCH_OPS fSearchOp, 
LPVOID lpSearchFilter, DWORD dwAdditionalFlags); 

As in FindFirstFile, the first parameter, lpFileName, specifies the search string. 
The parameter ftnfoLevelld must be set to the constant FindExlnfoStandard. Given 
that the second parameter must be FindExlnfoStandard, the third parameter 
always points to a WIN32_FIND_DATA structure. The final two parameters, 
lpSearchFilter and dwAdditionalFlags, must be set to 0 on Windows CE. 

The fourth parameter, fSearchOp, is what differentiates FindFirstFileEx 
from FindFirstFile on Windows CE. This parameter can be one of three values: 
FindExSearchNameMatch, FindExSearchLimitToDirectories, or FindExSearch
LimitToDevices. The value FindExSearchNameMatch tells FindFirstFileEx to act 
just like FindFirstFile, searching for a matching filename. The value 
FindExSearchLimitToDirectories indicates that the function should search only 
for directories matching the search specification. This search should be slightly 
faster than repeatedly calling FindFirstFile and checking for the directory 
attribute because this check is done inside the file system, thereby reducing the 
number of FindNextFile calls. The final value, FindExSearchLimitToDevices, is 
the most interesting. It causes the function to search the names of the loaded 
device drivers to find a matching name. You shouldn't provide a path, with the 
exception of an optional leading "\". 

FindFirstFileEx returns a handle if the search is successful and returns 
INVALID_HANDLE_ VALUE if the search fails. When performing a search, use 
FindFirstFileEx in place of FindFirstFile. To search for the second and all other 
files, call FindNextFile. When you have completed the search, call FindClose to 
close the handle. 

While FindFirstFileEx is a handy addition to the Windows CE API, some 
systems don't seem to correctly implement this function when enumerating device 

413 



Part II Windows CE Basics 

414 

names. You should be careful when calling this function; couch it in a _try _ex
cept block to guard against exceptions. If an exception occurs during the func
tion call, you can assume that that particular aspect of FindFirstFileEx isn't supported 
on that device. 

Distinguishing Drives from Directories 
As I mentioned at the beginning of this chapter, Windows CE doesn't support 
the concept of drive letters so familiar to MS-DOS and Windows users. Instead, 
file storage devices such as PC Cards or even hard disks are shown as directo
ries in the root directory. That leads to the question, "How can you tell a direc
tory from a drive?" To do this, you need to look at the file attributes for the 
directory. Directories that are actually secondary storage devices-that is, they 
store files in a place other than the object store-have the file attribute flag 
FILE_ATTRIBUTE_TEMPORARY set. So finding storage devices on any version 
of Windows CE is fairly easy, as is shown in the following code fragment: 

WIN32_FIND_DATA fd; 
HANDLE hFind; 
TCHAR szPath[MAX_PATH]; 
ULARGE_INTEGER lnTotal, lnFree; 

lstrcpy (szPath, TEXT ("\\•.•")); 
hFind = FindFirstFile CszPath, &fd); 

if (hFind != INVALID_HANDLE_VALUE) 
do { 

if ((fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) && 
(fd.dwFileAttributes & FILE_ATTRIBUTE_TEMPORARY) && 
lstrcmpi (fd.cFileName, TEXT ("NETWORK"))) { 

II Get the disk space statistics for drive. 
GetDiskFreeSpaceEx (fd.cFileName, NULL, &lnTotal, 

&lnFree); 

while (FindNextFile (hFind, &fd)); 
FindClose (hFind); 

This code uses the find first/find next functions to search the root directory for 
all directories with the FILE_ATTRIBUTE_TEMPORARY attribute set. It also checks 
that the directory name isn't Network, which is the name of the predefined folder 
containing the local network share names. 



Files, Databases, and the Registry Chapter 7 

Notice the call to the following function in the code I just showed you: 

BOOL GetOiskFreeSpaceEx (LPCWSTR lpDirectoryName, 
PULARGE_INTEGER lpFreeBytesAvailableToCaller, 
PULARGE_INTEGER lpTotalNumberOfBytes, 
PULARGE_INTEGER lpTotalNumberOfFreeBytes); 

This function provides information about the total size of the drive and the 
amount of free space it contains. The first parameter is the name of any direc
tory on the drive in question. This doesn't have to be the root directory of the 
drive. GetDiskFreeSpaceEx returns three values: the free bytes available to the 
caller, the total size of the drive, and the total free space on the drive. These values 
are returned in three ULARGE_INTEGER structures. These structures contain two 
DWORD fields named LowPart and HighPart. This allows GetDiskFreeSpaceEx 
to return 64-bit values. Those 64-bit values can come in handy on Windows XP, 
where the drives can be large. If you aren't interested in one or more of the fields, 
you can pass a NULL in place of the pointer for that parameter. You can also use 
GetDiskFreeSpaceEx to determine the size of the object store. 

Another function that can be used to determine the size of the object store is 

BOOL GetStoreinformation (LPSTORE_INFORMATION lpsi); 

GetStorelriformation takes one parameter, a pointer to a STORE_INFORMATION 
structure defined as 

typedef struct STORE_INFORMATION 
DWORD dwStoreSize; 
OWORD dwFreeSize; 

STORE_INFORMATION, *LPSTORE_INFORMATION; 

As you can see, this structure simply returns the total size and amount of free 
space in the object store. 

That covers the Windows CE file APL As you can see, very little Windows 
CE-unique code is necessary when you're working with the object store. Now 
let's look at an entirely new set of functions, the database APL 

Databases 
Windows CE gives you an entirely unique set of database APis not available under 
the other versions of Windows. The database implemented by Windows CE is 
simple, with only one level and a maximum of four sort indexes, but it serves 
as an effective tool for organizing uncomplicated data, such as address lists and 
to-do lists. 

415 



Part II Windows CE Basics 

Basic Definitions 

416 

A Windows CE database is composed of a series of records. Records can con
tain any number of properties. These properties can be one of the data types 
shown in Figure 7-2. 

Data Type Description 

IVal 2-byte signed integer 

UiVal 2-byte unsigned integer 

LVal 4-byte signed integer 

UlVal 4-byte unsigned integer 

FILETIME A time and date structure 

LPWSTR 0-terminated Unicode string 

CEBLOB A collection of bytes 

BOOL Boolean 

Double 8-byte signed value 

Figure 7-2 Database data types supported by Windows CE 

Records can't contain other records. Also, records can reside on only one 
database. Windows CE databases can't be locked. However, Windows CE does 
provide a method of notifying a process that another thread has modified a 
database. 

A Windows CE database can have up to four sort indexes. These indexes 
are defined when the database is created but can be redefined later, although 
the restructuring of a database takes a large amount of time. Each sort index by 
itself results in a fair amount of overhead, so you should limit the number of sort 
indexes to what you really need. 

In short, Windows CE gives you a basic database functionality that helps 
applications organize simple data structures. The pocket series of Windows CE 
applications provided by Microsoft with the H/PC Pro and the Pocket PC use the 
database API to manage the address book, the task list, and e-mail messages. So 
if you have a collection of data, this database API might just be the best method 
of managing that data. 

Designing a Database 
Before you can jump in with a call to CeCreateDatabaseEx, you need to think 
carefully about how the database will be used. While the basic limitations of the 
Windows CE database structure rule out complex databases, the structure is quite 
handy for managing collections of related data on a small personal device, which, 
after all, is one of the target markets for Windows CE. 



Files, Databases, and the Registry Chapter 7 

Each record in a database can have as many properties as you need as long 
as they don't exceed the basic limits of the database strncture. The limits are fairly 
loose. An individual property can't exceed the constant CEDB_MAXPROPDATASIZE, 
which is set to 65,471. A single record can't exceed CEDB_MAXRECORDSIZE, 
currently defined as 131,072. 

Database Volumes 
Database files can be stored in volumes on external media as well as directly in 
the object store. A database volume is nothing more than a specially formatted 
file where Windows CE databases can be located. Because database volumes can 
be stored on file systems other than the object store, database information can 
be stored on PC Cards or similar external storage devices. The most immediate 
disadvantage of working with database volumes is that they must be first mounted 
and then unmounted after you close the databases within the volume. Essen
tially, mounting the database creates or opens the file that contains one or more 
databases along with the transaction data for those databases. 

There are disadvantages to database volumes aside from the overhead of 
mounting and unmounting the volumes. Database volumes are actual files and 
therefore can be deleted by means of standard file operations. The volumes are, 
by default, marked as hidden, but that wouldn't deter the intrepid user from 
finding and deleting a volume in a desperate search for more space on the device. 
Databases created directly within the object store aren't files and therefore are 
much more difficult for the user to accidentally delete. 

The Database API 
Once you have planned your database and given the restrictions and consider
ations necessary to it, the programming can begin. 

Mounting a Database Volume 
If your database is on external media such as a CompactFlash card, you'll need 
to mount the database volume that contains it. To mount a database volume, call 

BOOL CeMountDBVol ( PCEGUID pgui d, LPWSTR 1 pszVol, DWORD dwFl ags); 

This function performs a dual purpose: it can create a new volume or open an 
existing volume. The first parameter is a pointer to a guid. CeMountDBVol re
turns a guid that's used by most of the database functions to identify the loca
tion of the database file. You shouldn't confuse the CEGUID-type guid parameter 
in the database functions with the GUID type that is used by OLE and parts of 
the Windows shell. A CEGUID is simply a handle that tracks the opened data
base volume. 

417 



Part II Windows CE Basics 

418 

The second parameter in CeMountDBVol is the name of the volume to 
mount. This isn't a database name, but the name of a file that will contain one 
or more databases. Since the parameter is a filename, you should define it in 
\path\name.ext format. The standard extension should be cdb. 

The last parameter, dwFlags, should be loaded with flags that define how 
this function acts. The possible flags are the following: 

• CREATE_NEW Creates a new database volume. If the volume al
ready exists, the function fails. 

• CREATE_ALWAYS Creates a new database volume. If the volume 
already exists, it overwrites the old volume. 

• OPEN_EXISTING Opens a database volume. If the volume doesn't 
exist, the function fails. 

• OPEN_A.LWAYS Opens a database volume. If the volume doesn't 
exist, a new database volume is created. 

• TRUNCATE_EXISTING Opens a database volume and truncates it 
to 0 bytes. If the volume already exists, the function fails. 

If the flags resemble the action flags for CreateFile, they should. The ac
tions of CeMountDBVol essentially mirror CreateFile except that instead of cre
ating or opening a generic file, CeMountDBVol creates or opens a file especially 
designed to hold databases. 

If the function succeeds, it returns TRUE and the guid is set to a value that 
is then passed to the other database functions. If the function fails, a call to 
GetLastError returns an error code indicating the reason for the failure. 

Database volumes can be opened by more than one process at a time. The 
system maintains a reference count for the volume. As the last process unmounts 
a database volume, the system unmounts the volume. 

Enumerated Mounted Database Volumes 
You can determine which database volumes are currently mounted by repeat
edly calling this function: 

BOOL CeEnumDBVolumes (PCEGUID pguid, LPWSTR lpBuf, DWORD dwSize); 

The first time you call CeEnumDBVolumes, set the guid pointed to by pguid to 
be invalid. You use the CREATE_INVALIDGUID macro to accomplish this. 
CeEnumDBVolumes returns TRUE if a mounted volume is found and returns the 
guid and name of that volume in the variables pointed to by pguid and lpBu.ff. 
The dwSize parameter should be loaded with the size of the buff er pointed to 
by lpBu.ff. To enumerate the next volume, pass the guid returned by the previ-



Files, Databases, and the Registry Chapter 7 

ous call to the function. Repeat this process until CeEnumDBVolumes returns 
FALSE. The code below demonstrates this process: 

CEGUID guid; 
TCHAR szVolume[MAX_PATHJ; 
INT nCnt = 0; 

CREATE_INVALIDGUID C&guid); 
while (CeEnumDBVolumes C&guid, szVolume, sizeof (szVolume))) 

II guid contains the guid of the mounted volume; 
II szVolume contains the name of the volume. 
nCnt++; II Count the number of mounted volumes. 

Unmounting a Database Volume 
When you have completed using the volume, you should unmount it by calling 
this function: 

BOOL CeUnmountDBVol (PCEGUID pguid); 

The function's only parameter is the guid of a mounted database volume. Call
ing this function is necessary when you no longer need a database volume and 
you want to free system resources. Database volumes are unmounted only when 
all applications that have mounted the volume have called CeUnmountDBVol. 

Using the Object Store as a Database Volume 
Even though you can store databases in volumes on external media, more of
ten than not you'll want to store the database in the object store. Because many 
of the database functions require a CEGUID that identifies a database volume, 
you need a CEGUID that references the system object store. Fortunately, one can 
be created using this macro: 

CREATE_SYSTEMGUID (PCEGUID pguid); 

The parameter is, of course, a pointer to a CEGUID. The value set in the CEGUID 
by this macro can then be passed to any of the database functions that require 
a separate volume CEGUID. 

Creating a Database 
You can create a database by calling the function CeCreateDatabaseEx, which 
is prototyped as 

CEOID CeCreateDatabaseEx (PCEGUID pguid, CEDBASEINFO *pinfo); 

The first parameter is a pguid parameter that identifies the mounted database 
volume where the database is located. The second parameter is a pointer to a 
CEDBASEINFO structure defined as 

419 



Part II Windows CE Basics 

420 

typedef struct _CEDBASEINFO { 
DWORD dwFlags; 
WCHAR szDbaseName[CEDB_MAXDBASENAMELEN]; 
DWORD dwDbaseType; 
WORD wNumRecords; 
WORD wNumSortOrder; 
DWORD dwSize; 
FILETIME ftlastModified; 
SORTORDERSPEC rgSortSpecs[CEDB_MAXSORTORDERJ; 

} CEDBASEINFO; 

The first field, dwFlags, has two uses. First, it contains flags indicating which 
fields in the structure are valid. The possible values for the dwFlags field are 
CEDB_ VALIDNAME, CEDB_ VALIDTYPE, CEDB_ VALIDSORTSPEC, and CEDB_ 
VALIDDBFLAGS. When you're creating a database, it's easier to set the dwFlags 
field to CEDB_ VALIDCREATE, which is a combination of the flags I just listed. 
An additional flag, CEDB_ VALIDMODTIME, is used when CeOidGetlnfo uses this 
structure. 

The other use for the dwFlags parameter is to specify the properties of the 
database. The only flag currently defined is CEDB_NOCOMPRESS. This flag can 
be specified if you don't want the database you're creating to be compressed. 
By default, all databases are compressed, which saves storage space at the ex
pense of speed. By specifying the CEDB_NOCOMPRESS flag, the database will 
be larger but you will be able to read and write to the database faster. 

The szDbaseName field specifies the name of the new database. Unlike 
filenames, the database name is limited to 32 characters, including the terminating 
zero. The dwDbaseType field is a user-defined parameter that can be employed 
to differentiate families of databases. For example, you might want to use a 
common type value for all databases that your application creates. This allows 
them to be easily enumerated. At this point, there are no rules for what type values 
to use. Some example type values used by the Microsoft Pocket suite are listed 
in Figure 7-3. 

Database Value 

Contacts 24 (18 hex) 

Appointments 25 (19 hex) 

Tasks 26 (lA hex) 

Categories 27 (lB hex) 

Figure 7-3 Predefined database types 



Files, Databases, and the Registry Chapter 7 

The values listed in Figure 7-3 aren't guaranteed to remain constant; I sim
ply wanted to show some typical values. If you use a 4-byte value, it shouldn't 
be too hard to find a unique database type for your application, although there's 
no reason another application couldn't use the same type. 

The fields wNumRecords, dwSize, and ftLastModified are ignored during the 
call to CeCreateDatabaseEx. They are used by other database functions that utilize 
this same structure. 

The final two fields, the WORD wNumSortOrder and the array rgSortSpecs, 
specify the sort specification for the database: wNumSortOrder specifies the 
number of sort specifications, up to a maximum of 4, while rgSortSpecs contains 
an array of SORTORDERSPEC structures defined as 

typedef struct _SORTORDERSPEC 
PEGPROPID propid; 
DWORD dwFlags; 

SORTORDERSPEC; 
' 

The first field in the SORTORDERSPEC structure is a property ID, or 
PEGPROPID. A property ID is nothing more than a unique identifier for a prop
erty in the database. Remember that a property is one field within a database 
record. The property ID is a DWORD value with the low 16 bits containing the 
data type and the upper 16 bits containing an application-defined value. These 
values are defined as constants and are used by various database functions to 
identify a property. For example, a property that contained the name of a con
tact might be defined as 

#define PID_NAME MAKELONG (CEVT_LPWSTR, 1) 

The MAKELONG macro simply combines two 16-bit values into a DWORD 
or LONG. The first parameter is the low word or the result, while the second 
parameter becomes the high word. In this case, the CEVT_LPWSTR constant 
indicates that the property contains a string, while the second parameter is sim
ply a value that uniquely identifies the Name property, distinguishing it from other 
string properties in the record. 

The second field in SORTORDERSPEC, dwFlags, contains flags that define 
how the sort is to be accomplished. The following flags are defined for this field: 

• CEDB_SORT_DESCENDJNG The sort is to be in descending order. 
By default, properties are sorted in ascending order. 

• CEDB_SORT_CASEINSENSITIVE The sort should ignore the case 
of the letters in the string. 

421 



Part II Windows CE Basics 

422 

• CEDB_SORT_UNKNOWNFIRST Records without this property are 
to be placed at the start of the sort order. By default, these records are 
placed last. 

A typical database might have three or four sort orders defined. After a data
base is created, these sort orders can be changed by calling CeSetDatabaselnfoE:x. 
However, this function is quite resource intensive and can take from seconds up 
to minutes to execute on large databases. 

The value returned by CeCreateDatabaseE:x is a CEOID. We have seen this 
kind of value a couple of times so far in this chapter. It's an ID value that iden
tifies the newly created database. If the value is 0, an error occurred while you 
were trying to create the database. You can call GetLastError to diagnose the 
reason the database creation failed. 

Opening a Database 
In contrast to what happens when you create a file, creating a database doesn't 
also open the database. To do that, you must make an additional call to 

HANDLE CeOpenDatabaseEx (PCEGUID pguid, PCEOID poid, LPWSTR lpszName, 
CEPROPID propid, DWORD dwFlags, 
CENOTIFYREQUEST *pRequest); 

The first parameter is the address of the CEGUID that indicates the database 
volume that contains the database. A database can be opened either by refer
encing its CEOID value or by referencing its name. To open the database by using 
its name, set the value pointed to by the poid parameter to 0 and specify the name 
of the database using the lpszName parameter. If you already know the CEOID 
of the database, simply put that value in the parameter pointed to by poid. If the 
CEOID value isn't 0, the function ignores the lpszName parameter. 

The propid parameter specifies which of the sort order specifications should 
be used to sort the database while it's opened. A Windows CE database can have 
only one active sort order. To use a different sort order, you can open a data
base again, specifying a different sort order. 

The dwFlags parameter can contain either 0 or CEDB_AUTOINCREMENT. 
If CEDB_AUTOINCREMENT is specified, each read of a record in the database 
results in the database pointer being moved to the next record in the sort order. 
Opening a database without this flag means that the record pointer must be 
manually moved to the next record to be read. This flag is helpful if you plan to 
read the database records in sequential order. 

The final parameter points to a structure that specifies how your applica
tion will be notified when another process or thread modifies the database. The 
scheme is a message-based notification that allows you to monitor changes to 



Files, Databases, and the Registry Chapter 7 

the database while you have it opened. To specify the window that receives the 
notification messages, you pass a pointer to a CENOTIFYREQUEST structure that 
you have previously filled in. This structure is defined as 

typedef struct _CENOTIFYREQUEST 
DWORD dwSize; 
HWND hWnd; 
DWORD dwFlags; 
HANDLE hHeap; 
DWORD dwParam; 

CENOTIFYREQUEST; 

The first field must be initialized to the size of the structure. The h Wnd field 
should be set to the window that will receive the change notifications. The dwFlags 
field specifies how you want to be notified. If you put 0 in this field, you'll re
ceive notifications in the old Windows CE 2.0 scheme. This method used three 
messages based on the WM_USER constant that is supposed to be reserved for 
applications. While this method is simpler than the method I'm about to describe, 
I recommend against using it. Instead, put CEDB_EXNOTIFICATION in the dwFlags 
field; your window will receive an entirely new and more detailed notification 
method. This new notification method requires that Windows CE allocate a struc
ture. If you specify a handle to a heap in the hHeap field, the structure will be 
allocated there. If you set hHeap to 0, the structure will be allocated in your local 
heap. The dwParam field is a user-defined value that will be passed back to your 
application in the notification structure. 

Your window receives a WM_ DBNOTIFICATION message in the new 
notification scheme. When your window receives this message, the !Param pa
rameter points to a CENOTIFICATION structure defined as 

typedef struct _CENOTIFICATION 
DWORD dwSize 
DWORD dwParam; 
UINT uType; 
CEGUID guid; 
CEO ID oi d; 
CEOID oidParent; 

CENOTIFICATION; 

As expected, the dwSize field fills with the size of the structure. The dwParam 
field contains the value passed in the dwParam field in the CENOTIFYREQUEST 
structure. This is an application-defined value that can be used for any purpose. 

The uType field indicates why the WM_DBNOTIFICATION message was 
sent. It will be set to one of the following values: 

423 



Part II Windows CE Basics 

424 

• DB_CEOID_CREATED A new file system object was created. 

• DB_CEOID_DATABASE_DELETED The database was deleted from 
a volume. 

• DB_CEOID_RECORD_DELETED A record was deleted in a database. 

• DB_CEOID_CHANGED An object was modified. 

The guid field contains the guid for the database volume that the message 
relates to, while the oid field contains the relevant database record oid. Finally, 
the oidParent field contains the oid of the parent of the oid that the message 
references. 

When you receive a WM_DBNOTIFICATION message, the CENOTIFICATION 
structure is placed in a memory block that you must free. If you specified a handle 
to a heap in the hHeap field of CENOTIFYREQUEST, the notification structure 
will be placed in that heap; otherwise, the system places this structure in your 
local heap. Regardless of its location, you are responsible for freeing the memory 
that contains the CENOTIFICATION structure. You do this with a call to 

BOOL CeFreeNotification(PCENOTIFYREQUEST pRequest, 
PCENOTIFICATION pNotify); 

The function's two parameters are a pointer to the original CENOTIFYREQUEST 
structure and a pointer to the CENOTIFICATION structure to free. You must free 
the CENOTIFICATION structure each time you receive a WM_DBNOTIFICATION 
message. 

Seeking (or Searching for) a Record 
Now that the database is opened, you can read and write the records. But be
fore you can read a record, you must seek to that record. That is, you must move 
the database pointer to the record you want to read. You accomplish this using 

CEOID CeSeekDatabase (HANDLE hDatabase, DWORD dwSeekType, DWORD dwValue, 
LPDWORD lpdwlndex); 

The first parameter for this function is the handle to the opened database. The 
dwSeekType parameter describes how the seek is to be accomplished. The pa
rameter can have one of the following values: 

• CEDB_SEEK_CEOID Seek a specific record identified by its object 
ID. The object ID is specified in the dwValue parameter. This type of 
seek is particularly efficient in Windows CE databases. 

• CEDB_SEEK_BEGINNING Seek the nth record in the database. The 
index is contained in the dw Value parameter. 



Files, Databases, and the Registry Chapter 7 

• CEDB_SEEK_ CURRENT Seek from the current position n records 
forward or backward in the database. The offset is contained in the 
dwValue parameter. Even though dwValue is typed as an unsigned 
value, for this seek it's interpreted as a signed value. 

• CEDB_SEEK_END Seek backward from the end of the database n 
records. The number of records to seek backward from the end is 
specified in the dwValue parameter. 

• CEDB_SEEK_ VALUESMALLER Seek from the current location until 
a record is found that contains a property that is the closest to but not 
equal to or over the value specified. The value is specified by a 
CEPROPVAL structure pointed to by dwValue. 

• CEDB_SEEK_ VALUEFIRSTEQUAL Starting with the current loca
tion, seek until a record is found that contains the property that's 
equal to the value specified. The value is specified by a CEPROPVAL 
structure pointed to by dwValue. The location returned can be the 
current record. 

• CEDB_SEEK_ VALUENEXTEQUAL Starting with the next location, 
seek until a record is found that contains a property that's equal to the 
value specified. The value is specified by a CEPROPVAL structure 
pointed to by dwValue. 

• CEDB_SEEK_ VALUEGREATER Seek from the current location until 
a record is found that contains a property that is equal to, or the closest 
to, the value specified. The value is specified by a CEPROPVAL struc
ture pointed to by dwValue. 

As you can see from the available flags, seeking in the database is more 
than just moving a pointer; it also allows you to search the database for a par
ticular record. 

As I just mentioned in the descriptions of the seek flags, the dwValue pa
rameter can either be loaded with an offset value for the seeks or point to a 
property value for the searches. The property value is described in a CEPROPVAL 
structure defined as 

typedef struct _CEPROPVAL 
CEPROPID propid; 
WORD wlenData; 
WORD wFl ags; 
CEVALUNION val; 

CEPROPVAL; 

425 



Part II Windows CE Basics 

426 

The propid field should contain one of the property ID values you defined for the 
properties in your database. Remember that the property ID is a combination of 
a data type identifier along with an application-specific ID value that uniquely 
identifies a property in the database. This field identifies the property to examine 
when seeking. The wLenData field is ignored. None of the defined flags for the 
wFlags field is used by CeSeekDatabase, so this field should be set to 0. The val 
field is actually a union of the different data types supported in the database. 

Following is a short code fragment that demonstrates seeking to the third 
record in the database. 

DWORD dwindex; 
CEOID oid; 

II Seek to the third record. 
oid = CeSeekDatabase (g_hDB, CEDB_SEEK_BEGINNING, 3, &dwindex); 
if (oid == 0) { 

II There is no third item in the database. 

Now say we want to find the first record in the database that has a height 
property of greater than 100. For this example, assume the size property type is 
a signed long value. 

II Define pid for height property as a signed long with ID of 1. 
#define PID_HEIGHT MAKELONG (CEVT_I4, 1) 

CEOID oid; 
DWORD dwI ndex; 
CEPROPVAL Property; 

II First seek to the start of the database. 
oid = CeSeekDatabase (g_hDB, CEDB_SEEK_BEGINNING, 0, &dwindex); 

> 100. II Seek the record with height 
Property.propid = PID_HEIGHT; 
Property.wlenData = 0; 
Property.wFlags = 0; 
Property.val .lVal = 100; 

II Set property to search. 
II Not used but clear 
II No flags to set 
II Data for property 

oid = CeSeekDatabase (g_hDB, CEDB_SEEK_VALUEGREATER, &Property, 
&dwindex); 

if (oid == 0) { 

anyway. 

II No matching property found; db pointer now points to end of db. 
else { 

II oid contains the object ID for the record, 
II dwindex contains the offset from the start of the database 
II of the matching record. 



Files, Databases, and the Registry Chapter 7 

Because the search for the property starts at the current location of the database 
pointer, you first need to seek to the start of the database if you want to find the 
first record in the database that has the matching property. 

Changing the Sort Order 
I talked earlier about how CeDatabaseSeek depends on the sort order of the 
opened database. If you want to choose one of the predefined sort orders in
stead, you must close the database and then reopen it specifying the predefined 
sort order. But what if you need a sort order that isn't one of the four sort or
ders that were defined when the database was created? You can redefine the sort 
orders using this function: 

BOOL CeSetDatabaselnfoEx (PCEGUID pguid, 
CEOID oidDbase, CEDBASEINFO *pNewlnfo); 

The function takes the CEGUID of the database volume and the object ID of the 
database you want to redefine and a pointer to a CEDBASEINFO structure. This 
structure is the same one used by CeCreateDatabaseEx. You can use these func
tions to rename the database, change its type, or redefine the four sort orders. 
You shouldn't redefine the sort orders casually. When the database sort orders 
are redefined, the system has to iterate through every record in the database to 
rebuild the sort indexes. This can take minutes for large databases. If you must 
redefine the sort order of a database, you should inform the user of the massive 
amount of time it might take to perform the operation. 

Reading a Record 
Once you have the database pointer at the record you're interested in, you can 
read or write that record. You can read a record in a database by calling the 
following function: 

CEOID CeReadRecordPropsEx (HANDLE hDbase, DWORD dwFlags, 
LPWORD lpcPropID, 
CEPROPID *rgPropID, LPBYTE *lplpBuffer, 
LPDWORD lpcbBuffer, 
HANDLE hHeap); 

The first parameter in this function is the handle to the opened database. 
The -lpcPropID parameter points to a variable that contains the number of 
CEPROPID structures pointed to by the next parameter, rgPropID. These two 
parameters combine to tell the function which properties of the record you want 
to read. There are two ways to utilize the lpcProp!D and rgPropID parameters. 
If you want only to read a selected few of the properties of a record, you can 
initialize the array of CEPROPID structures with the ID values of the properties 
you want and set the variable pointed to by lpcPropID with the number of these 

427 



Part II Windows CE Basics 

428 

structures. When you call the function, the returned data will be inserted into 
the CEPROPID structures for data types such as integers. For strings and blobs, 
where the length of the data is variable, the data is returned in the buffer indi
rectly pointed to by lplpBuffer. 

Since CeReadRecordPropsEx has a significant overhead to read a record, it 
is always best to read all the properties necessary for a record in one call. To 
do this, simply set rgPropID to NULL. When the function returns, the variable 
pointed to by lpcPropID will contain the count of properties returned and the 
function will return all the properties for that record in the buffer. The buffer will 
contain an array of CEPROPID structures created by the function, immediately 
followed by the data for those properties, such as blobs and strings, where the 
data isn't stored directly in the CEPROPID array. 

One very handy feature of CeReadRecordPropsEx is that if you set 
CEDB_ALLOWREALLOC in the dwFlags parameter, the function will enlarge, if 
necessary, the results buffer to fit the data being returned. Of course, for this to 
work, the buffer being passed to the function must not be on the stack or in the 
static data area. Instead, it must be an allocated buffer, in the local heap or a 
separate heap. In fact, if you use the CEDB_ALLOWREALLOC flag, you don't even 
need to pass a buffer to the function; instead, you can set the buffer pointer to 
0. In this case, the function will allocate the buffer for you. 

Notice that the buffer parameter isn't a pointer to a buffer but the address 
of a pointer to a buffer. There actually is a method to this pointer madness. Since 
the resulting buffer can be reallocated by the function, it might be moved if the 
buffer needs to be reallocated. So the pointer to the buffer must be modified by 
the function. You must always use the pointer to the buffer returned by the func
tion because it might have changed. Also, you're responsible for freeing the buffer 
after you have used it. Even if the function failed for some reason, the buffer might 
have moved or even have been freed by the function. You must clean up after 
the read by freeing the buffer if the pointer returned isn't 0. 

As you might have guessed from the preceding paragraphs, the hHeap 
parameter allows CeReadRecordPropsEx to use a heap different from the local 
heap when reallocating the buffer. When you use CeReadRecordPropsEx and you 
want to use the local heap, simply pass a 0 in the hHeap parameter. 

The following routine reads all the properties for a record and then copies 
the data into a structure. 

int ReadDBRecord (HANDLE hDB, DATASTRUCT *pData) { 
WORD wProps; 
CEOID oid; 
PCEPROPVAL pRecord; 
PBYTE pBuff; 
DWORD dwRecSize; 
int i; 



} 

Files, Databases, and the Registry Chapter 7 

II Read all properties for the record. 
pBuff = 0; II Let the function allocate the buffer. 
oid = CeReadRecordPropsEx (hDB, CEDB_ALLOWREALLOC, &wProps, NULL, 

&(LPBYTE)pBuff, &dwRecSize, 0); 
II Failure on read. 
if (oid == 0) 

return 0; 

II Copy the data from the record to the structure. The order 
II of the array is not defined. 
memset (pData, 0 , sizeof (DATASTRUCT)): II Zero return struct 
pRecord = (PCEPROPVAL)pBuff: II Point to CEPROPVAL 

for (i = 0; i < wProps; i++) 
switch (pRecord->propid) 
case PID_NAME: 

II array. 

lstrcpy (pData->szName, pRecord->val .lpwstr); 
break: 

} 

case PID_TYPE: 
lstrcpy (pData->szType, pRecord->val .lpwstr); 
break: 

case PID_SIZE: 
pData->nSize = pRecord->val .iVal: 
break: 

} 

pRecord++: 

LocalFree (pBuff}: 
return i: 

Because this function reads all the properties for the record, CeRead
RecordPropsEx creates the array of CEPROPVAL structures. The order of these 
structures isn't defined, so the function cycles through each one to look for the 
data to fill in the structure. After all the data has been read, a call to Loca!Free is 
made to free the buffer that was returned by CeReadRecordPropsEx. 

Nothing requires every record to contain all the same properties. You might 
encounter a situation where you request a specific property from a record by 
defining the CEPROPID array and that property doesn't exist in the record. When 
this happens, CeReadRecordPropsEx will set the CEDB_PROPNOTFOUND flag 
in the wFlags field of the CEPROPID structure for that property. You should always 
check for this flag if you call CeReadRecordPropsEx and you specify the prop
erties to be read. In the example above, all properties were requested, so if a 
property didn't exist, no CEPROPID structure for that property would have been 
returned. 

429 



Part II Windows CE Basics 

430 

Writing a Record 
You can write a record to the database using this function: 

CEOID CeWriteRecordProps (HANDLE hDbase, CEOID oidRecord, WORD cPropID, 
CEPROPVAL * rgPropVal); 

The first parameter is the obligatory handle to the opened database. The oidRecord 
parameter is the object ID of the record to be written. To create a new record 
instead of modifying a record in the database, set oidRecord to 0. The cProp!D 
parameter should contain the number of items in the array of property ID struc
tures pointed to by rgProp Val. The rgProp Val array specifies which of the prop
erties in the record to modify and the data to write. 

Deleting Properties, Records, and Entire Databases 
You can delete individual properties in a record using CeWriteRecordProps. To 
do this, create a CEPROPVAL structure that identifies the property to delete and 
set CEDB_PROPDELETE in the wFlags field. 

To delete an entire record in a database, call 

BOOL CeDeleteRecord (HANDLE hDatabase, CEOID oidRecord); 

The parameters are the handle to the database and the object ID of the record 
to delete. 

You can delete an entire database using this function: 

BOOL CeDeleteDatabaseEx (PCEGUID pguid, CEOID oid); 

The two parameters are the CEGUID of the database volume and the object ID 
of the database. The database being deleted can't currently be opened. 

Enumerating Databases 
Sometimes you must search the system to determine what databases are on the 
system. Windows CE provides a set of functions to enumerate the databases in 
a volume. These functions are 

HANDLE CeFindFirstDatabaseEx (PCEGUID pguid, DWORD dwDbaseType); 

and 

CEOID CeFindNextDatabaseEx (HANDLE hEnum, PCEGUID pguid); 

These functions act like FindFirstFile and FindNextFile with the exception that 
CeFindFirstDatabaseEx only opens the search; it doesn't return the first database 
found. The PCEGUID parameter for both functions is the address of the CEGUID 
of the database volume you want to search. You can limit the search by speci
fying the ID of a specific database type in the dwDbaseType parameter. If this 
parameter is set to 0, all databases are enumerated. CeFindFirstDatabaseEx re
turns a handle that is then passed to CeFindNextDatabaseEx to actually enumerate 
the databases. 



Files, Databases, and the Registry Chapter 7 

Here's how to enumerate the databases in the object store: 

HANDLE hDBList; 
CEOID oidDB: 
CEGUID guidVol; 

II Enumerate the databases in the object store. 
CREATE_SYSTEMGUID(&guidVol ); 

hDBList = CeFindFirstDatabaseEx C&guidVol, 0); 
if (hDBList != INVALID_HANDLE_VALUE) { 

oidDB = CeFindNextDatabaseEx (hDBList, &guidVol ); 
while (oidDBl { 

II Enumerated database identified by object ID. 
MyDisplayDatabaselnfo (hCeDBl: 

hCeDB = CeFindNextDatabaseEx (hDBList, &guidVoll: 

CloseHandle (hDBList); 

The code first creates the CEGUID of the object store using the macro CREATE_ 
SYSTEMGUID. That parameter, along with the database type specifier 0, is passed 
to CeFindFirstDatabaseEx to enumerate all the databases in the object store. If 
the function is successful, the databases are enumerated by repeatedly calling 
CeFindNextDatabaseEx. 

Querying Object Information 
To query information about a database, use this function: 

BOOL CeOidGetlnfoEx (PCEGUID pguid, CEOID oid, CEOIDINFO *Oidlnfo); 

These functions return information about not just databases, but any object in 
the object store. This includes files and directories as well as databases and 
database records. The function is passed the database volume and object ID of 
the item of interest and a pointer to a CEOIDINFO structure. 

Here's the definition of the CEOIDINFO structure: 

typedef struct _CEOIDINFO { 
WORD wObjType; 
WORD wPad; 
union { 

CEFILEINFO infFile; 
CEDIRINFO infDirectory; 
CEDBASEINFO infDatabase; 
CERECORDINFO infRecord; 

} ; 

CEOIDINFO; 

431 



Part II Windows CE Basics 

432 

This structure contains a word indicating the type of the item and a union of four 
different structures each detailing information about that type of object. The 
currently supported flags are OBJTYPE_FILE, indicating that the object is a file; 
OBJTYPE_DIRECTORY, for directory objects; OBJTYPE_DATABASE, for database 
objects; and OBJTYPE_RECORD, indicating that the object is a record inside a 
database. The structures in the union are specific to each object type. 

The CEFILEINFO structure is defined as 

typedef struct _CEFILEINFO 
DWORD dwAttributes; 
CEOID oidParent; 
WCHAR szFileName[MAX_PATHJ; 
FILETIME ftlastChanged; 
DWORD dwlength; 

CEFILEINFO; 

the CEDIRINFO structure is defined as 

typedef struct _CEDIRINFO 
DWORD dwAttributes; 
CEOID oidParent; 
WCHAR szDirName[MAX_PATHJ; 

CEDIRINFO; 

and the CERECORDINFO structure is defined as 

typedef struct _CERECORDINFO { 
CEOID oidParent; 

} CERECORDINFO; 

You've already seen the CEDBASEINFO structure used in CeCreateDatabaseEx 
and CeSetDatabaselnfoEx. As you can see from the preceding structures, CeGet
OidlnfoEx returns a wealth of information about each object. One of the more 
powerful bits of information is the object's parent oid, which will allow you to 
trace the chain of files and directories back to the root. These functions also allow 
you to convert an object ID to a name of a database, directory, or file. 

The object ID method of tracking a file object should not be confused with 
the PID scheme used by the shell. Object IDs are maintained by the file system 
and are independent of whatever shell is being used. This would be a minor point 
under other versions of Windows, but with the ability of Windows CE to be built 
as components and customized for different targets, it's important to know what 
parts of the operating system support which functions. 



Files, Databases, and the Registry Chapter 7 

The AlbumDB Example Program 
It's great to talk about the database functions; it's another experience to use them 
in an application. The example program that follows, AlbumDB, is a simple 
database that tracks record albums, the artist that recorded them, and the indi
vidual tracks on the albums. It has a simple interface because the goal of the 
program is to demonstrate the database functions, not the user interface. Figure 
7-4 shows the AlbumDB window with a few albums entered in the database. 

Figure 7-5 contains the code for the AlbumDB program. When the program 
is first launched, it attempts to open a database named AlbumDB in the object 
store. If the program doesn't find one, it creates a new one. This is accomplished 
in the OpenCreateDB function. 

Ammonia Avenue 
Pyramid 
I Robot 
On Air 
Eve 
Turn of a Friendly Card 
Cosmic Thing 
No Need txl Argue 
Everybody Else is doing it Why can't We? 
To the Falttrf\.11 Departed 
Communique 
Makelng Movies 
Love over Go Id 
Di"eStraits 
Brothers ii') Arms 
01e Every Street 
01 the Boarder 
Hotel California 
Desperado 
Eagles 
Dulcnea 
In Lioht Syrup 
Coil 

Al.3!'1 Parsons Project 
Alan Parsons Project 
Ala'l Parsons Project 
Alctl Parsons Project 
Alan Parsons Project 
Al.Tl Parsons Project 
ALTI Parsons Project 
Ala'l Parsons Project 
Ala-I Parsons Project 
B52's 
Cranberries 
Crcnberries 
Cranberries 
Di"eStraits 
Dire Straits 
Dire Straits: 
Dire Straits 
Die Straits 
Dire Straits 
Eagles 
Eagles 
Eagles 
Eagles 
Toad the Wet Sprocket 
Toad the Wet Sprocket 
Toad the Wet Sprocket 

Figure 7-4 The AlbumDB window 

Album DB.re 

Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 
Rock 

. ·. ~ ·: . . : : ... : . ' . ·:. ·: ·: .. :. . . ·. ;· .: : : ... · ·. : ·. ·.. : . ' 

;.:.".(:/.~~~,.#-~-;~~~~~'.~~~~~~~~.~~~~~~l!====?~======~~~-~-::=~;=~,==::·~~=:;:=;=:~=~~;c~·~~:,-
/'(, Resqur£eTfli$,, · 

·':;~:.J/:_ '· .. "' " '·> . ·~:::,·.:;; - ":. 

l! ~l\i'itten fo{ the ·bno:lf P~o~ramming. Windows d ·· · 
)Itopyright (c;f 20~1 i:i9!iilas Boling 
:11-~~~==~~=~~~~+~:F~~~~-~~~·==~~==m======~~~~~~~-;;.~-+~~~~·~:~+~:~~~~~~-::t:,:~ 

#include 
:fffnf:Tude 

, . ._. , ...... " .. 

"wi.~rl~~;~ ... :·.·• 
"albuni:tfliiti.;,.; 

• • • •• ~".j; ;:o~" ,._' " ··- "> ' ~ "
0 
;' • ;;, 

II 

Figure 7-5 The AlbumDB program (continued) 

433 



Part II Windows CE Basics 

Figure 7-5 (continued) 

434 



Files, Databases, and the Registry Chapter 7 

/!----------------------------------------------------------------------
// New/Edit Album data dialog template 
II 
EditAlbumDlg DIALOG discardable 5, 5, 135, 100 
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER I 

DS_MODALFRAME 
EXSTYLE WS_EX_CAPTIONOKBTN 
CAPTION "Edit Album" 
BEGIN 

LTEXT "Album Name" 
EDITTEXT 

LTEXT "Artist" 
ED ITT EXT 

LTEXT "Category" 
COMBOBOX 

·PUSHBUTTON "&New Track ..• " i 

-1. 5. 
IOD_NAME, 60, 

WS_TABSTOP 

5, 50, 12 
5, 72, 12, 
ES_AUTOHSCROLL 

-1. 5, 20,. 50, 12 
IOD_ARTIST, 60, 20, 72, 12. 

WS_TABSTOP I ES_AUTOHSCROLL 

-1. 5, 35, 50, 12 
IOD~CATEGORY, 60, 35, 72, 60, 

WLTABSTOP \ CBS_OROPDOWN 
100:.:.i'RACKS. 60. 50, 72, 45, 

LBS...;.USET ABSTOPS 

> lOO.;;:JtEWTRACK, 3, 50, 52; 12. 
WLTABSTOP 

"&Edit Track ... ,;, 

//About box dialog template 
II 

JOD..cEDiURACK, 3, 65; 52, 12, 
. WS.;;.;TABSTOP 

IDD...,.DHTRACK, 3, 80, 52, 12, 
WLTABSTOP 

abOUtboxDlALO<Lctis~ardable 10, 10•; 135, 40 
ScTYLE ws;,JigPuRJ)/$..,.VISIBLE I ws_cAPHON \ WS._:SYSMENU \. t>s_C:ENTER I 

• . · ··• .Ds.,.Mb ML!iAAM E 
CAPTJON . "About".··.·· 
BEGIN· 

H:ON }Q __ JCONJ •1, 3, 5, 10, 10 
LTE'.H"Alh:u.moB -Written for the bPOk,Programming Windows 

~E CoJ>Yrlgtre' 2001 Dougl its Solfrig" · 
-1. 30. 

END 

(continued) 

435 



Part II Windows CE Basics 

Figure 7-5 (continued) 

436 



Files, Databases, and the Registry Chapter 7 

4/defi ne IDD_NUMTRACKS 102 
4/defi ne IDD_CATEGORY 103 
4/defi ne !DD_ TRACKS 104 
4/defi ne IDD_NEWTRACK 105 
#define I DD_EDITTRACK 106 
4/defi ne IDD_DELTRACK 107 

4/define IDD_TRACK 200 //Edit track dialog. 
4/defi ne IDD_TIME 201 
//----------------------------------------------------------------------
// Program-specific structures 
II 
II Structure used by New/Edit Album dlg proc 
#define MAX_NAMELEN 64 
4/defi ne MAx__ARTISTLEN 64 
4/defi ne MAx__TRACKNAMELEN · 512 
typedef struct { 

TCHAR szName(MAx__NAMELEN]; 
TCHAR szArti st[MAX_ARTISTLENJ; 

· lNT nD~teRe,l; . . . . .. 

. SHORT sCategory; 
. S.H0R:f .. sNumTracR$i . 

tNt nTrack.Datal:en: ··.· •·· 
TCHAR •szTrackstMAX"'-TRAC.KNAMELENJ·; 

} .AL~UMINFO, *L~ALBUM{NFO; . . 
'/:, :: .. '-.:>. . ' . . . ': <<·~· ·: ,.-.:-:,· ·.: .. ~ . :.:.: .. ·:. ·: ·. '. ' ' 
fl Structure used by AddlEdit ai bum track 
t.Ypkdef struct f .: .•... ·· · · 

TCtti\R szTrack[64 l: 
..... TcHi\R szTi !lle[lU: 

··· y tRACKlNFO, *LPTRACKlNfO;;. • 

l( St rue tu re. u.s ed gy -Get! temData 
tYJ>f!def struct . { 

trt nltem; .·. . . 
.. •···ALBUMINFO Album; '···. ·•. ·••· 

/J l,:V.C;4.tHEP~TA;~· .i.fivfACH£DA'.fA;. 

ll Qatab~se :prbp•e;G i~ei~1.i1e~s .· . 
. ffdefJ.ne ·. PtD~NAME. . . /1AK~l.-ONG (CEVLLPWSTR. 1) 

4/dHi!ie PIILART1ST . <MAKE.tONG (CEVT,.,LPWSTR, 2) 

#de.ffn~ PIG~RELDAT:f • . MAKELONG CCEVLI2, 3) 
'fPdefi ire P ID.lCA l'EAPRY . ·MKKELON G>(CEVLI 2. 4 > 
Hdefinf;l Pro;;;.tl~t.t1'1~/wKs ~M,\KELONG ccEVLI2. 5> 
#define PID-IAACK.$ •( MAKELONG CCEVLBLOB. 6) 
/fd~fi ne NlfMJo\);__p'ffops; f . 

(continued) 

437 



Part II Windows CE Basics 

Figure 7-5 (continued) 

438 



Files, Databases, and the Registry Chapter 7 

II====================================================================== 
fli ncl ude <windows.h> II For all that Windows stuff 
ffinclude <windowsx.h> II For Windows controls macros 
ffinclude <commctrl .h> II Command bar includes 

#include "AlbumDB.h" II Program-specific stuff 

II The include and lib files for the Pocket PC are conditionally 
II included so that this example can share the same project file. This 
II is necessary since this example must have a menu bar on the Pocket 
II PC to have a SIP button. 
#if defined(WIN32_PLATFORM_PSPC) 
#include <aygshell .h> II Add Pocket PC includes. 
f/pragma comment( lib, "aygshell" II Link Pocket PC lib for menu bar. 
#endif 
ll-------·"--------------------~-------·--------------------------------
11 Global data 
II 
con$t TCHAR szAppName[] = TEXT 
HitiSTANCE: hlt:r~t: 

('~Al bum DB" ) : 

HAND LE. i:ChDB = 0: 
CEOl~ g--oidOB "" 0: 
CEGUID g'""gui<lDB; 
Hff g.:..ntastso rt "' PIIJ_NAME: 
CENoT!fYR.EdlJEST·••cenr: 

If Program instance handle 
II Handle to al bu• d•tabase 
I I Object ID of the album <latabase 
II Guid for database volume 
II Last sort order.used 
11 Notify request structure. 

I/ These twp variables represent a one-item cache for 
·· if the.Ji st >view control. · 

int 9.:..nLastitem = "1; 
··LPBYTE·g_plastRecord =. 0; 

II t:tess.age dispatch table for Mai nWi ndowProc 
const struct decode.UINT Mai nMessages[] = { 

Wf.l;;.CREATE, JfoCreateMain, 
: ~~sq~ 1 iloSi.zeMain. 
• .!lM:JrnMMAND. Dt>CommandMa i n.' 

. · ... ltM~NQTJJY~. DQ~-Otif;yMHn; 
· .• WM;.Jls~Tgp[; O,oDestfoyMa in, .·. . . . 

. Wt(JlBNfi1'.fFleAnw-1 •. JJilDbNott fyMain. 

//.Co~~~d:me.ssag~·t!1~~a£~h for MainW1ndowProc 
· ¢orisi; ·$ttfi.ct d~dci.ci~~J>Jri .~ainton1mar1d rtemsn = { · 

IQM;.JJEG~a'.; :6~M!fjn~tl~ndDe1 DB. . .. 
. l DM-"Exr;::': \DQM~J~?~~m~ndExt t. 

(continued) 

439 



Part II Windows CE Basics 

Figure 7-5 (continued) 

440 



Files, Databases, and the Registry Chapter 7 

if ChWnd) { 
SetForegroundWindow CCHWND)(((DWORD)hWndl I 0x0lll: 
return -1: 

} 

flendi f 
II Create a guid for the database Ex functions that points 
II to the object store. 
CREATE_SYSTEMGUIDC&g_guidDBJ: 
memset C&cenr, 0, sizeof <cenrJJ: II Initialize the notify request. 

II Register application main window class. 
we.style= 0; II 
wc.lpfnWndProc = MainWndProc; II 
wc.cbClsExtra. = 0; II 
we. cbWndExtra = 0;. 
wc.hinstance = hln~tance: 
wc.hlcon = NULL, 
wc.hCursor "' 
we. 

· .. we; 

(continued) 

441 



Part II Windows CE Basics 

442 

Figure 7-5 (continued) 

11 standard •stiow .and ;update· call$ 
.. S.h.ow\iJi ncrow ( h\iJnd .• ·nCmdShOW}; 

JI 
II 

IJµd~te\.j:indow ChWnd).; 
re:t~r:h hWnd: 

int; Terrnin.stance 
ti close the 
i·f (.g_h06 l 

Cl o~~Handle .{g..'.hPBl; . 

II Free the last 
Cl earCaclle 0; 

return noe.fRC; 

II Ma.i.nWndProc • Call b.ack funtti on for 

ll 
LRESULT CALLBACK. Mai.nWndProc 

INT i: 

I I Search message list to 
JI message. If in 
// 

} 

JI 



Files, Databases, and the Registry Chapter 7 

#if defined(WIN32_PLATFORM_PSPCl && C_WIN32_WCE >= 300) 

SHMENUBARINFO mbi: II For Pocket PC. create 
memset(&mbi, 0, sizeof(SHMENUBARINFO)); II menu bar so that we 

mbi .cbSize = sizeof(SHMENUBARINFO); II have a sip button. 

mbi .hwndParent = hWnd; 
mbi.dwFlags = SHCMBF_EMPTYBAR; II No menu 
SHCreateMenuBar(&mbil; 

SetWindowPos (hWnd, 0, 0, 0, lpcs->cx,lpcs->cy - 26, 

SWP_NOMQVE I SWP_NOZORDER); 

1fendi f 

fl Convert lParam to pointer to create structure. 
lpcs = CLPCREATESTRUCT) lPargm; 

//Create a minimal command bar that has only a menu and an 

//exi.t .button. 
hwndCIL = CommandBar_Create (hinst, hWnd, IDG_CMDBARl: 

// Insert the menu. 

CommandBar~lnsertMenubar (hwndCB{ hlnst, ID_MENU, 0); 

ll Add e~it button to . command 0 bar. 
C6mmandBar-'AddAdornments ( hwndc.B, 0 •· 0); 
nHelght *.CoinmandBar--Hei ght {hwndCBl; 

//•op.en the album .database .• lfone do.esn't 

g_hDB= ... openCreateDB(hWnd,. &nCntl: 
(g:.-.hDB.· ==INVALID_HANDLLVALUE J 
MessageB.ox<( hWnd .• TEXT ("Could not open database. "l. szAppName, 

MB-OKJ: 
l)estroyWinciow <hWnd): 
return 0: 

Cre.at~thel i st view control in right pane. 

SetRect(&tect, 0, nHeight, lpcs->cx, lpcs->cy - nHeightl: 

tiwndChild = CreateLV ChWnd, &rectl; 

· /j •DE!stroy frarne if window not created. 

if C!lsW.indow. (hwndChildll 
( hWnd); 

.] 

Li stvfewlsetttemcount < hwndChild, ncnt): 

return.0; 
} 

I/--.•.~ - - - c .. ~ • --"• • - ··- - c - - c .c •, - - - - - - -

{1 DoSizeMaJn- Pr()t;E!ssi WM.c-SIZE .message 
// 
LRESUlTbo$tze~ain (fl\llNfFhWnd, UINT wMsg, WPARAM wParam, LPARAM 1 ParamH 

HWND hwndoLV; .. 
RECT. rec(; 

(continued) 

443 



Part II Windows CE Basics 

Figure 7-5 (continued) 

444 



Files, Databases, and the Registry Chapter 7 

} 

case DB_CEDID_CREATED: 
ReopenDatabase ChWnd, -1); 
break; 

case DB_CEOID_RECORD_DELETED: 
ReopenDatabase (hWnd, -1); 

break; 

CeFreeNotification C&cenr, peen); 
return 0; 

11-----------------------------•---------- -----------------------------

11 DoNotifyMain ' Process WM_NOTIFY message for window. 
II 
LRESULT DoNotifyMaih <HWND hWnd, UINT wMsg, WPARAM wPar'am, 

LPARAM lParam) { 
int iditem, i; 
LPNMHDR pnmh; 
LPNMLI STV I EW pnml v; 
NMLVDlSPINFO .*:pLVdi; 

LvGACHEDATA•··data.; 
HWNO 

parameters, 
(intJ .. wParam; 

CLPNMHDRllParam; 

*)lParam; 

b.r from .• t.he.·aCtual. database. 
GetltemOata fpLVdi•>item.i Item, &data); 

(pLVdi'>i:tem .• mask & LVIF_IMAGEl 
pLVdi ->item, iJmage = 0; 

CpLVdi ->item. mask & LVI F _pARAM) 
pLVdi~>item.lPatam = 0; 

(pLVdt->item.fllask & LVlF_STATEl 
pLVdi->ttem.state = 0: 

(continued) 

445 



Part II Windows CE Basics 

Figure 7·5 (continued) 

446 



Files, Databases, and the Registry Chapter 7 

II====================================================================== 
II Command handler routines 
11--------- ---------------------------------------------

11 DoMainCommandDelDB - Process Program Delete command. 
II 
LPARAM DoMainCommandDelDB CHWND hWnd. WORD idltem, HWND hwndCtl. 

WORD wNotifyCode) { 
inti, re; 

MessageBox ChWnd, TEXT ("Delete the entire database?"), 
TEXT ("Delete"), MB_YESNO); 

H (i != !DYES) 
return 0: 

if (g_oidDBl { 
Cg~hDB); 

(continued) 

447 



Part II Windows CE Basics 

Figure 7·5 (continued) 

JI DiS1JlaY the new/edit qi a.log. 

448 

pcepv"' If; . . . .· .. · ... · ·· .. 

re ·"' OJ11logiBoxParaJ11• 

TCHARs:t:Text[64l; 
= (?.~tLastErrol' 

wsprintf \szText ~ ... rExr 



Files, Databases, and the Registry Chapter 7 

} 

wsprintf (szTxt, TEXT ("Db item not found. re= %d (%x)"), 
re. re); 

MessageBox (NULL, szTxt, TEXT ("err"), MB_OKI; 

return 0; 

II Read all properties for the record. Have the system 
II allocate the buffer containing the data. 

oid = CeReadRecordProps (g_hDB, CEDB_ALLOWREALLOC, &wProps, NULL, 
&CLPBYTE)pcepv, &dwRecSize); 

if ( oi d == 0) { 

TCHAR szTxt[64]; 
INT re= GetlastError(); 

wsprintf (szTxt, TEXT ("Db item not read. re= %d C%x)"), 

re, rel; 
MessageBox (NULL, szTxt, TEXT ("err"), MB_QK); 

return 0; 
} 

II Display the edit dialog. 
re= DialogBoxParam (hlnst, TEXT ("EditAlbumDlg"), hWnd, 

E(jitAlbumDlgproc, (LPARAM)&pc.epv); 

if Crc 0) 
return 0; 

Write the record. 

oid = CeWriteRecordProps(g~hDB, oid, NUM~DB_pROPS, pcepv); 
if CloidL{ 

TCHAR szText[64J; 

re = GetLastError (}; 
wsprintf (szlext, TEXT ("Write Rec fail. Error %d (%x)"), 

re, r.c); 

MessageBox ChWYld, szText, TEXT ("Error" J, MB_OKJ: 
} 

Loe al Free ( ( LPBYU )pcepv) ; 

Cl earCache ( ); 

InvalidateRect (h~ndLV, NULL. TRUE); 

return 0: 

II Clear the lv cache. 

II Force 1 i st view 

If redra.w. 

/l--c--~-c~~-c-•c--C•-"·"-"-"c-c----------------cc•---,---~c------------

/I .DoMainCommandDelete - Process Program Delete command .. 

ll 
LPAJ<AM DoMai nCommandDelete CHWND hWnd, WORD i dltem, HWND hwndCtl , 

HWND hwndLVi 

TCHAR szText[64l: 

DWORD dwindex; 
int i.; 

WORD wNotifyCodeJ { 

(continued) 

449 



Part II Windows CE Basics 

Figure 7-5 (continued) 

cEO:ID (ltd; 

450 

int .nsel; 

:hwndLV = Get01\lltem (h\'ln<:l. IO_Ll$TV}; 
nSel "'•UstlJiew_GetSe1ectionMark Chwnd\..\I); 

if (nSel i"' ~1) ( 
wsprtntf cszText, TEXT ('10elete tnh i tern?.'')): 
i = MessageBox (hWnd. szrext. TEXT (''Delete"}, 

H ( i !=: 10YES) 
retutn 0; 

JI seek. to the necess~tY record. 
0' ·' • "'" '"'" ?'" ( !!J'°'. crna_st£LJEG IN'' NG. "'' 1 • ""' """ ' 

CeOeleteRecord (g_WB. ofd); 

II Re.duce the ust view coul1t by one and force redraw. 

i "' Li stVi ew_._Getltemcount { hwndl:.11) • 1; 

UstlJiew_Setl temtount (hwndL\I •. i):. 

Cl earCache < ).; 
tnvalidateRect \hwnd.L\I, tWLL, TRUO; 

rett.1rn: 0; 

Clear the.lv cache; 

} 

JI DoMainCommandSot't .procel!s the sort commandi;. 

LPARAM OoMatnCommanosort(HWNOhWnd, \'IQRO idJ tem, HWNO. hwndCtl, If 

int nS.ort; 

switch (idltem) { 
case. lDM...::SORTNAME ~ 

WORD wNotif.yCode) . l 

bre\11<.i 
cal!e ll)M_SOKfARTIS'i'~ •. 

nsort ;.. pIO, .... ARTlST; 

break; 
1014-S:MTCATEGORY .: 

nsort = pt lLCATEGORY; 

brel!K; 

{nSort g., .. .r\Las~S.ort? 
ret.l.lrn 0; 



Files, Databases, and the Registry Chapter 7 

11----------------------------------------------------------------------
11 DoMainCommandAbout - Process the Help I About menu command. 
II 
LPARAM DoMainCommandAbout(HWND hWnd, WORD iditem, HWND hwndCtl, 

WORD wNotifyCode) { 
II Use DialogBox to create modal dialog. 
DialogBox lhlnst, TEXT ("aboutbox"l, hWnd, AboutDlgProc); 
return 0; 

11---------------------------------,------------------------------------
11 CreateLV - Creates the list view control 
II 
HWND CreateLV ( HWND hWnd. RECT *pr.ectl.. { 

HWND hwndLV; 
LVCOLUMN lvc; 

//Create album list. window. 
hwndLV = Cre.ateWindowExC0., wc--LISTVIEW, TEXT (""), 

w:;.,.vrsrBLEJ ws_cHrLn.1 ..• ws_vscRoLL I 
LVS .. J)WNE~DATA l ws_BORDER I LVS.,..REPORT. 
pie¢t-:>Teft,/.prectc >top. 
prect~:>.right<- •prect->left; 
prect-:>bottom c. prect->top, 
hWnd, .. (HMENU)JD,....LISTV, 
hln$t •. NULL); 

(continued) 

451 



Part ll Windows CE Basics 

Figure 7-5 (continued) 

) 
11- +" ,-~.- 7 

fl OpenPB. ~ Open database. 

II HJ•,NPLE ·openDK>t1-1VJNfJ .·. .·. p>:rstll 1p'~;tNaJlle) 
t t · Rei.nit1anze · th.e nO't.i fy ·•request 

452 

· e;enr,dWSize ~ sizeef (cenr); 

ceiir.hwnd"'· h\ilndi · 
cenr .d'fff1ags "'••CEO'B::..El<NDJIFICAHDl'H 

,- ,'"' ,''' ',""""",,,"' '',,,, :"',:' ,: 0 

(1pszNalllef 
g:_Qi ct0!3 "' 0; "''''".~·av•""'""'"" "~'"' "'· ,,_, ""·· ''"""' . !!-"'""''" 



Files, Databases, and the Registry Chapter 7 

g_oidDB = CeCreateDatabaseEx (&g_guidDB. &di); 
if (g_oidDB == 0) { 

TCHAR szErr[l28J; 
wsprintf (szErr, TEXT ("Database create failed. \ 

re %d"), GetlastError()); 
MessageBox lhWnd, szErr, szAppName, MB_OK); 
return 0: 

g_hDB = OpenDB lhWnd, NULL); 

CeOi dGetinfo (g~oidDB, &oi di nfo); 
*.pnRecords = oidinfo ... infDatabase.wNumRecords.; 
return g_hDB; 

//------------------~------------------------------"·--"----------------

if I nNewSort 
g.,.;nLastSort = nNew~ort; 

(continued) 

453 



Part II Windows CE Basics 

figure 7-5 (continued) 

454 



Files, Databases, and the Registry Chapter 7 

} 

II Copy the data from the record to the album structure. 
for (i = 0; i < wProps; i++) { 

switch (pRecord->propid) { 
case PID_NAME: 

lstrcpy (pcd->Album.szName, pRecord->val .lpwstr); 
break; 

case P!D_ARTIST: 
lstrcpy (pcd->Album.szArtist, pRecord->val .lpwstr); 
break; 

case P ID_CATEGORY: 
pcd->Album.sCategory pRecord->val .iVal; 
break; 

case PID_NUMTRACKS: 
pcd->Album.sNumTracks pRecord->val. iVal; 
break; 

pRecord++; 

l NT Tnser.tLV <tHWND hWnd, INT n Item, LP TS TR 
INT nSize) { 

LVTTEM 1 v.i: 
HWN[) liwndlV = t:letDlgitem (hWnd; LO_cUSTV); 

lvi .mask = LVlF.:.cTEXT I lVIF'""lMAGE J LVIF_PARAM: 
.l\ti .titem"" nltem: 
lvi .lSubitem = 0; 
lvi.pszText >= pszName: 
lv.J .1 Image =· 0; 
lv.i.lParam = nltem; 
SendMessage (hwndLV. 

lvi .tltem=•·· rHtem; 
lvi. isubitem ·· = · 1: 
lvi.pszText·,,,, pszType; 
SendMessage (hwndlV. LVM_SETITEM•. 

(continued) 

455 



Part I\ Windows CE Basics 

figure 7-5 (continued) 

456 



Files, Databases, and the Registry Chapter 7 

Edit_GetText (GetDlgltem (hWnd, IDD_TRACK), 
lpti->szTrack, sizeof (lpti->szTrack)); 

Edit_GetText (GetDlgltem (hWnd, IOD_TIME), 
lpti->szTime, sizeof (lpti->szTime)); 

if (ValidateTime (lpti->szTime)) 

else 
EndDialog (hWnd, ll; 

MessageBox (hWnd, TEXT ("Track time must \ 
be entered in mm:ss format"), 
TEXT ("Error"), MB_OK); 

return .TRUE; 
case .IDCANCEL: 

break; 

EndDiilog (hWhd, 0); 
return TRUE; 

static int nTr~cks; 
PCEPROPVAL pRecord,pRecPfr; 
TCHAR *PPtr., s.z1)npf12~J; 

HWN[l hwndTL fst. 
TRACKlNFO· ti··: 
BOOL fEnable:··. 

switch (wMsg) { 
. case.· WMc..'.INfl'DIALOG:· 

ppRecord•=··· (ptfPRQPVAL 
pR¢9ord•••.:•···*ppRe¢ord; 

Ge.tD.lgitem 
Getblgltem 

0 ,.·-. '0 

Ectit_L1mitJext· 
Edttj:.Jinftte,xt 

//Sehtab••sitips on 
;. ~ 110•:• ·· 
list•~ox,.--SetrahStops 

(continued) 

457 



Part ll Windows CE Basics 

Figure 7-5 (continued) 

458 



Files, Databases, and the Registry Chapter 7 

case WM_COMMAND: 
hwndTList = GetDlgltem (hWnd, IOO_TRACKS); 
hwndCombo = GetOlgitem (hWnd, IOD_CATEGORYl: 
pRecord = •ppRecord: 
switch ( LOWORD (wParam)) { 

case IDD_TRACKS: 
switch CHIWORD (wParaml) { 
case LBN_OBLCLK: 

PostMessage (hWnd, WM_COMMANO, 
MAKELONG(IDD_EDITTRACK, 0), 0); 

break; 
case LBN.:.SElC.HANG E: 

i = ListBox_:GetCurSel (hwndTListl: 
if (i. == ... LB--ERR) 

else 
fEnab1 e <=··FALSE; 

fEnable.=. TRUE; 
<GetOlgitem (hWnd, 

IOD_DH TRACK).; ... fEnabl e) 
(GetDlg Item ( hWr\d, 
IP D--EDITTRACK}, . fEnabl eJ; 

DialC>gB()xParam Chfost. 
TEXt(''EditTrackDlg")' hWnd. 
EditTrackDJgProc, (LPARAMl&ti}; 

<rcJ .. { 

(continued) 

459 



Part II Windows CE Basics 

Figure 7-5 (continued) 

460 



Files, Databases, and the Registry Chapter 7 

II See if prev record. alloc if not. 
if (pRecord) { 

II Resize record if necessary. 
if (nLen > (int)LocalSize (pRecord)) 

pRecPtr = 

else 

else 

(PCEPROPVAL)LocalReAlloc (pRecord, 
nLen, LMEM_MOVEABLE): 

pRecPtr = pRecord; 

pRecPtr = LocalAlloc (LMEM"'"FIXEO, nLen); 
if ( !pRecPtr) 

return 0; 
.. }(Copy the data from the controls to a 
It ma.rshaled data block with the structure 
II at the front and the data 111 the· back. 
pRecord = pRecPtr: 

· nTracks = Li stBox_GetCount ChwndTLis.t l; 
pPtr "' (TCHAR * )( ( LPBYTE)pRecPtr + . 

··.I '.•.> ·· (siZeof .. • ( c EPRQPVALl{¥Nil~--OB.:.PRQPS)) :··· 
It'i~r~ ~tructure to: start over:·.•\: ... ·•· = .. 

1nem~et.·t~RecPt.r ,.0, .Loca:i Sfze((pRecPtr )); 

·pRe~Pi:~- >prop id = n D_NAME; ... 
··~R¢¢i>tf;>val. lpl'iktr = pPt:n···.. . .. . · 
. 'GetlH~ItemText < hWnd, . lOD.i.NAMt" p?fri; 

· .....•. · •. .. . . . MALNAMELU4) : . 
··.··<P:P±r:'t=i•· .. Tstrlen.(pPtrJ ... · 

•···. ·;: pR~t'i>4 r'++:. 

'• pRe~Ptf'.·>propid ".' PJOc_l\RHST: 
pRecPir·>va1. lpwstr = pPtr: 

· GetDfoiternText <hWnd, mb~RTrsr. pPtr, 
. MAX-A RH ST LEN); 

(continued) 

461 



Part II Windows CE Basics 

Figure 7-5 (continued) 

462 



Files, Databases, and the Registry Chapter 7 

The program uses a virtual list view control to display the records in the 
database. As I explained in Chapter 5, virtual list views don't store any data inter
nally. Instead, the control makes calls back to the owning window using notifica
tion messages to query the information for each item in the list view control. The 
WM_NOTIFY handler OnNotifyMain calls GetltemData to query the database in 
response to the list view control sending LVN_GETDISPINFO notifications. The 
Getltemlnfo function first seeks the record to read and then reads all the prop
erties of a database record with one call to CeReadRecordProps. Since the list view 
control typically uses the LVN_GETDISPINFO notification multiple times for one 
item, Getltemlnfo saves the data from the last record read. If the next read is of 
the same record, the program uses the cached data instead of rereading the 
database. 

As I've explained before, you can change the way you sort by simply clos
ing the database and reopening it in one of the other sort modes. The list view 
control is then invalidated, causing it to again request the data for each record 
being displayed. With a new sort order defined, the seek that happens with each 
database record read automatically sorts the data by the sort order defined when 
the database was opened. 

AlbumDB doesn't provide the option of storing the database on external 
media. To modify the example to use separate database volumes, only minor 
changes would be necessary. You would need to replace the CREATE_SYSTEMGUID 
macro that fills in the g_guidDB value with a call to CeMountDBVol to mount 
the appropriate volume. You would also need to unmount the volume before 
the application closed. 

The Registry 
The registry is a system database used to store configuration information in 
applications and in Windows itself. The registry as defined by Windows CE is 
similar but not identical in function and format to the registries under other 
versions of Windows. In other words, for an application, most of the same reg
istry access functions exist, but the layout of the Windows CE registry doesn't 
exactly follow either Windows Me or Windows XP. 

As in all versions of Windows, the registry is made up of keys and values. 
Keys can contain keys or values or both. Values contain data in one of a num
ber of predefined formats. Since keys can contain keys, the registry is distinctly 
hierarchical. The highest-level keys, the root keys, are specified by their predefined 
numeric constants. Keys below the root keys and values are identified by their 
text name. Multiple levels of keys can be specified in one text string by separat
ing the keys with a backslash (\). 

463 



Part II Windows CE Basics 

To query or modify a value, the key containing the value must first be 
opened, the value queried or written, and then the key closed. Keys and values 
can also be enumerated so that an application can determine what a specific key 
contains. Data in the registry can be stored in a number of different predefined 
data types. Among the available data types are strings, 32-bit numbers, and free
form binary data. 

Registry Organization 

464 

The Windows CE registry supports three of the high-level, root, keys seen on 
other Windows platforms: HKEY_LOCAL_MACHINE, HKEY_CURRENT_USER, 
and HKEY_CLASSES_ROOT. As with other Windows platforms, Windows CE 
uses the HKEY_LOCAL_MACHINE key to store hardware and driver configu
ration data, HKEY_CURRENT_USER to store user-specific configuration data, 
and the HKEY_CLASSES_ROOT key to store file type matching and OLE configu
ration data. 

As a practical matter, the registry is used by applications and drivers to store 
state information that needs to be saved across invocations. Applications typi
cally store their current state when they are requested to close and then restore 
this state when they are launched again. The traditional location for storing data 
in the registry by an application is obtained by means of the following structure: 

{ROOT_KEY}\Software\{Company Name}\{Company Product} 

In this template, ROOT_KEY is either HKEY_LOCAL_MACHINE for machine
specific data, such as what optional components of an application can be installed 
on the machine, or HKEY_CURRENT_USER for user-specific information, such 
as the list of the user's last-opened files. Under the Software key, the name of 
the company that wrote the application is used followed by the name of the 
specific application. For example, Microsoft saves the configuration information 
for Pocket Word under the key 

HKEY_LOCAL_MACHINE\Software\Microsoft\Pocket Word 

While this hierarchy is great for segregating registry values from different appli
cations from one another, it's best not to create too deep a set of keys. Because 
of the way the registry is designed, it takes less memory to store a value than it 
does a key. Because of this, you should design your registry storage so that it 
uses fewer keys and more values. To optimize even further, it's more efficient 
to store more information in one value than to have the same information stored 
across a number of values. 

The window in Figure 7-6 shows the hierarchy of keys used to store data for 
Pocket Word. The. left pane shows the hierarchy of keys down to the Settings key 



Files, Databases, and the Registry Chapter 7 

under the Pocket Word key. In the Settings key, three values are stored: Wrap To 
Window, Vertical Scrollbar Visibility, and Horizontal Scrollbar Visibility. In this case, 
these values are DWORDs, but they could have been strings or other data types. 

H<EY _CLASSES_ROOT 
lf.i HKEY _CURRENT _USER 

r~J ~ ~E;i~~~C~~~~~;s 
ttl··Qa TAPI 

; EiJ 111 n• 
, G;J init 

tf.J··f.dDrivers 
E!-J Ga ExtModems 
l·fr{:;.l'Jcomm 
F!:l@] Printers 
i:;:I ~ ~ottware 

B·~Microsoft 
. tfH~ Windows CE Services 

J:1.UiTasks 
r:;:J··ria Pocket Word 
· ·::.·. ~ pwdDefaul1Font 

' ~ pwdCustDlct 
j .... §m pwdMRU 
~pwdRebar 
~Settings 

· H:l ··~ Convert2rs 
: $ fill calendar 
. ! ··ri!tCkJCk 

Wrap To Window 
Verttal Scrollbar Visibilty 
Horizontal Scrollbar Visibilty 

Figure 7-6 The hierarchy of registry values stored by Pocket Word 

The Registry API 
Now let's turn toward the Windows CE registry APL In general, the registry API 
provides all the functions necessary to read and write data in the registry as well 
as enumerate the keys and data store within. Windows CE doesn't support the 
security features of the registry that are supported under Windows XP. However, 
Windows CE does prohibit untrusted applications from modifying certain criti
cal registry keys. 

Opening and Creating Keys 
You open a registry key with a call to this function: 

LONG RegOpenKeyEx CHKEY hKey, LPCWSTR lpszSubKey, DWDRD ulOptions, 
REGSAM samDesired, PHKEY phkResult); 

The first parameter is the key that contains the second parameter, the subkey. This 
first key must be either one of the root key constants or a previously opened key. 
The subkey to open is specified as a text string that contains the key to open. 
This subkey string can contain multiple levels of subkeys as long as each subkey 
is separated by a backslash. For example, to open the subkey HKEY _LOCAL_ 
MACHINE\Software\Microsoft\Pocket Word, an application could either call 
RegOpenKeyEx with HKEY_LOCAL_MACHINE as the key and Software\ 
Microsoft\Pocket Word as the subkey or open the Software\Microsoft key and 

465 



Part II Windows CE Basics 

466 

then make a call with that opened handle to RegOpenKeyF:x, specifying the subkey 
Pocket Word. Key and value names aren't case specific. 

Windows CE ignores the ulOptions and samDesired parameters. To remain 
compatible with future versions of the operating system that might use security 
features, these parameters should be set to 0 for ulOptions and NULL for 
samDesired. The phkResult parameter should point to a variable that will receive 
the handle to the opened key. The function, if successful, returns a value of 
ERROR_SUCCESS and an error code if it fails. 

Another method for opening a key is 

LONG RegCreateKeyEx (HKEY hKey, LPCWSTR lpszSubKey, DWORD Reserved, 
LPWSTR lpszClass, DWORD dwOptions, 
REGSAM samDesired, 
LPSECURITY_ATTRIBUTES lpSecurityAttributes, 
PHKEY phkResult, LPDWORD lpdwDisposition); 

The difference between RegCreateKeyF:x and RegOpenKeyF:x, aside from the 
extra parameters, is that RegCreateKeyF:x creates the key if it didn't exist before 
the call. The first two parameters, the key handle and the subkey name, are the 
same as in RegOpenKeyF:x. The Reserved parameter should be set to 0. The lpClass 
parameter points to a string that contains the class name of the key if it's to be 
created. This parameter can be set to NULL if no class name needs to be speci
fied. The dwOptions and samDesired and lpSecurityAttributes parameters should 
be set to 0, NULL, and NULL respectively. The phkResult parameter points to the 
variable that receives the handle to the opened or newly created key. The 
lpdwDisposition parameter points to a variable that's set to indicate whether the 
key was opened or created by the call. 

Reading Registry Values 
You can query registry values by first opening the key containing the values of 
interest and calling this function: 

LONG RegQueryValueEx (HKEY hKey, LPCWSTR lpszValueName, 
LPDWORD lpReserved, LPDWORD lpType, 
LPBYTE lpData, LPDWORD lpcbData); 

The hKey parameter is the handle of the key opened by RegCreateKeyF:x or 
RegOpenKeyF:x. The lpszValueName parameter is the name of the value that's be
ing queried. The lpType parameter is a pointer to a variable that receives the vari
able type. The lpData parameter points to the buffer to receive the data, while 
the lpcbData parameter points to a variable that receives the size of the data. If 
RegQueryValueF:x is called with the lpData parameter equal to NULL, Windows 
returns the size of the data but doesn't return the data itself. This allows appli
cations to first query the size and type of the data before actually receiving it. 



Files, Databases, and the Registry Chapter 7 

Writing Registry Values 
You set a registry value by calling 

LONG RegSetValueEx (HKEY hKey, LPCWSTR lpszValueName, DWORD Reserved, 
DWORD dwType, const BYTE *lpData, DWORD cbData); 

The parameters here are fairly obvious: the handle to the open key followed by 
the name of the value to set. The function also requires that you pass the type 
of data, the data itself, and the size of the data. The data type parameter is sim
ply a labeling aid for the application that eventually reads the data. Data in the 
registry is stored in a binary format and returned in that same format. Specify
ing a different type has no effect on how the data is stored in the registry or how 
it's returned to the application. However, given the availability of third-party 
registry editors, you should make every effort to specify the appropriate data type 
in the registry. 

The data types can be one of the following: 

• REG_SZ A zero-terminated Unicode string 

• REG_EXPAND_SZ A zero-terminated Unicode string with embed
ded environment variables 

• REG_MULTI_SZ A series of zero-terminated Unicode strings termi-
nated by two zero characters 

• REG_DWORD A 4-byte binary value 

• REG_BINARY Free-form binary data 

• REG_DWORD_BIG_ENDIAN A DWORD value stored in big-endian 
format 

• REG_DWORD_LIITLE_ENDIAN Equivalent to REG_DWORD 

• REG_LINK 

• REG_NONE 

• REG_RESOURCE_LIST 

Deleting Keys and Values 
You delete a registry key by calling 

LONG RegDeleteKey (HKEY hKey, LPCWSTR lpszSubKey); 

The parameters are the handle to the open key and the name of the subkey you 
plan to delete. For the deletion to be successful, the key must not be currently 
open. You can delete a value by calling 

LONG RegDeleteValue (HKEY hKey, LPCWSTR lpszValueName); 

467 



Part II Windows CE Basics 

468 

You can glean a wealth of information about a key by calling this function: 

LONG RegQueryinfoKey (HKEY hKey, LPWSTR lpszClass, LPDWORD lpcchClass, 
LPDWORD lpReserved, LPDWORD lpcSubKeys, 
LPDWORD lpcchMaxSubKeyLen, 
LPDWORD lpcchMaxClassLen, 
LPDWORD lpcValues, LPDWORD lpcchMaxValueNameLen, 
LPDWORD lpcbMaxValueData, 
LPDWORD lpcbSecurityDescriptor, 
PFILETIME lpftLastWriteTime); 

The only input parameter to this function is the handle to a key. The function 
returns the class of the key, if any, as well as the maximum lengths of the subkeys 
and values under the key. The last two parameters, the security attributes and the 
last write time, are unsupported under Windows CE and should be set to NULL. 

Closing Keys 
You close a registry key by calling 

LONG RegCloseKey (HKEY hKey); 

When a registry key is closed, Windows CE flushes any unwritten key data to 
the registry before returning from the call. 

Enumerating Registry Keys 
In some instances, you'll find it helpful to be able to query a key to see what 
subkeys and values it contains. You accomplish this with two different functions: 
one to query the subkeys, another to query the values. The first function 

LONG RegEnumKeyEx (HKEY hKey, DWORD dwindex, LPWSTR lpszName, 
LPDWORD lpcchName, LPDWORD lpReserved, 
LPWSTR lpszClass, 
LPDWORD lpcchClass, PFILETIME lpftLastWriteTime); 

enumerates the subkeys of a registry key through repeated calls. The parame
ters to pass the function are the handle of the opened key and an index value. 
To enumerate the first subkey, the dw!ndex parameter should be 0. For each 
subsequent call to RegEnumKeyEx, dw!ndex should be incremented to get the 
next subkey. When there are no more subkeys to be enumerated, RegEnumKeyEx 
returns ERROR_NO _MORE_ITEMS. 

For each call to RegEnumKeyEx, the function returns the name of the 
subkey and its classname. The last write time parameter isn't supported under 
Windows CE. 

Values within a key can be enumerated with a call to this function: 

LONG RegEnumValue (HKEY hKey, DWORD dwlndex, LPWSTR lpszValueName, 
LPDWORD lpcchValueName, LPDWORD lpReserved, 
LPDWORD lpType, LPBYTE lpData, LPDWORD lpcbData); 



Files, Databases, and the Registry Chapter 7 

Like RegEnumKey, this function is called repeatedly, passing index values to 
enumerate the different values stored under the key. When the function returns 
ERROR_NO_MORE_ITEMS, no more values are under the key. RegEnumValue 
returns the name of the values and the data stored in each value, as well as its 
data type and the size of the data. 

The RegView Example Program 
The following program is a registry viewer application. It allows a user to navi
gate the trees in the registry and examine the contents of the data stored. Un
like RegEdit, which is provided by Windows XP and Windows Me, RegView 
doesn't let you edit the registry. However, such an extension wouldn't be diffi
cult to make. Figure 7-7 contains the code for the RegView program. 

RegView.rc 
11=========='==;=== .. ========================================o:===o:'===<===;;,= 
II 
// ,.,' ._. ' 

I I Copyright (C) :?:eGt Douglas Boling 

1/inc:lude "wfodo1Ns.h" 
#/i.nclude ''reg¥tew+IT'' . 

I D_ICON IC Ok : ;'reg~i ~w>;ft;Q'' 
ID_BMPS BITMAP ·:rVBmps.bmp" 

ll Progr.am-specific stuff 

I J Program. i c.011 

11- - - - - - - - - -:-· -,- - - - ~ - - - " c -. • - : • - - - - - • - - - - ~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

/I Menu 
II 
IO_MENU MENU D·ISCARDABU 

BEGIN .· ······......... . < 
POPUP ~'.&Ftve;• . 

. BEGIN 

END 
END 

Figure 7-7 The RegView program (continued) 

469 



Part II Windows CE Basics 

Figure 7-7 (continued) 

470 



Files, Databases, and the Registry Chapter 7 

//define IDCCMDBAR 10 II Command band ID 
/fdefi ne ID_MENU 11 II Main menu resource ID 
#define ID_TREEV 12 II Tree view control ID 
#define ID_LISTV 13 II List view control ID 

II Menu item IDs 
/ldefi ne IDM_EXIT 101 II File menu 
/fdefi ne IDM_ABOUT 150 II Help menu 

11----------------------------------------------------------------------
11 Function prototypes 
II 
int InitApp (HINSTANCE); 
HWND 1nitinstance (HINSTANCE, LPWSTR, int); 
int Terminstance CH INSTANCE. int): 

INT EnumChildren (HWND, HTREEITEM, HKEY, LPTSTRI; 
DWORO CountChi l dren ( HKEY, LPTSTR, LPTSTR); 
INT. EnumValues < HWND ~·· HK:EY, Ll'TSTR): 

.. I NT -OtsllJayValue < HWND. lNT •. y~rsn ... PRY TE. DWO.RD, DWORO:J: 
·1Nttietrree tHWND. HTREEititr.i; HKEY *· rc·HAR..; tNn: · · 
HTREEifEMJn~ertTV CHWND.;. ~tRfiiTEMi TCHAR *, LPARAM, ··DWORDJ; 
INT lnser:tLV .. <HWND, INT; LPTSTR, 
HWNQ ~reilteLV JHWND. RECL*.)i: ·. 
HWND :Crea-teTV tHWNO. RECT *·); . ::>:, ·: ... ~ .. :"<::;·, >: ,:~' .. ; .. _,,,· .:·· .: . ':· ·.,. :'.: ". ·. :>, . ·.:::.:'. ,: :o 

·Nwtnciow. proc·~dures •... ·.. • . :' ...•..•.• 
· IiR:E~mttr· CALLBMK Mai riwncii>roc ~MO .:fl.I.:.NJ; ,: "·,._, . . . . . ; ' .. ' ' . ,. . " ., ; . . . . . .,. . . .,. " . " t ~ 

::1) Messag~:~~nd 1 er s 
LREs:uh tfoCreateMain (HWNCT, UINT, wf>ARAM. LPARAMl: 
Lj{EfSHLT DoSizeMain <HWNO, UINT/ WPA,RAM, LMRAMl; 

:LRESULf DoNo:t;)fyMai n ( HWNG~ UilH, WPARAM •. • LPARAM); 
t~ES\Jt/r DqC0.rrmiandMain CHW.ND; UlNT •. WPARAM. LPARAM); 
t.R.~SU~TP9.tJ1!!.#i'.'o.YMain <HWNO, Ul:Nt; WP'ARAM. UARAM>: 

.. 'N'" -:·,>; ·,.' :, :~~-·;, . ,: "; ·: ~:::,:.i C'. ; .·'~\::, •• 

~~~1f :~~tj~~~~~6~~;~~r~ttJ~~~~ci .. ·iwo~o •• :~:~~~··· .. ·· wo RD. i. : 
. '.'.L.PARAjf;:O:oJ1:iijnQ6inmanl:IAtiouj; :lHW:N:O-.;]llORD; ·HWND '·.WORD);

i:\~~i:~~~~1~1.ifil11~~~~:~J1.:d~;~·:·.< r.. .. . \ .
;:LfAMf1•iDO.M!iJ1Ni:l:tff'fLf~t'Y~:ttiWftu~ VJNT. HWND,
.: L~~k~;:tI~'a)~~.o:*;t~it.~~:t .i~wrfo' utNt ltWND ' .

. •·iJ/.g~·~l:~~·-;.~~~~~~·~~hf.·.··· .
1300:t CA1LB:Aci<': ·cc CHWND,

•• •• ·~·· • "'•'• M •

(continued)

471

Part II Windows CE Basics

Figure 7-7 (continued)

472

Files, Databases, and the Registry Chapter 7

HWND hwndMain:
MSG msg:
int re = 0:

II Initialize application.
re= InitApp Chinstance):
if (re) return re:

II Initialize this instance.
hwndMain = Initinstance Chlnstance, lpCmdLine, nCmdShow);
if ChwndMain == 0)

return 0xl0;

II Application message loop
while. <GetMessa.ge <&msg, NULL, 0, 0)) {

TranslliteMessage ' (&msg >:
Di.spatchMessage ,(&msg):

}

II Inst<inc~ ·nea,nup·
· . i'eturnT.e~lll:rr§:tan¢~ 1nlnstance.

}··. ''·' .·
I.I'·~-~ cc~-" c ~ ••. • ~~ ~~L- ~.•~.·~
ll InitApp ~ A'pplJcat•ioni.llit(aiization
/./.

int InitApp Jt!HtSTA~cE &in~t~nce}
wNotLAss:.w&~ .•.... : .}·•.: < .. · ... ···. ··
INITC(}MMO~cON17~L~EX i¢,t~rc:: ..

Jli •f ·, ,d.efi·n.ecl(.• w1~·3·2_~~~Wci~~PSPC,)
II If Pocket PC~)rllo:W only one
HwNt> hWiid. = finclwind~w.· tszAppNanie.
i f ChWnd) •. { . .

··wc.style· .. ;~, .. r.•.· .. ··•.J< .·.··
. we. T pfnWJ1di'l'pb~''F•'~il{w;ri<IJ:>r¢c:
WC .cbCHExtt;l ¥'.lk.'
wc,cbWndtrt:t~;,,. 0;:.·'•.·
we .hinst1rl11:e.=: hI'ii~·tii,l).()~:
we. hlcon ·. "." NUl:L;": ·.. ;
wc;hCurs,1)t ~·Lo~d~1,1fsof' (NULL, H"'-~M·"""''"
we .hbrB;lt~t:iuHct ~k:fieRUsHJ
we. lps~M~~!J~ama•i~>~ULL:

(continued)

473

Part II Windows CE Basics

Figure 7-7 (continued)

474

Files, Databases, and the Registry Chapter 7

}

II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0; i < dim(MainMessages); i++l {

if (wMsg == MainMessages[i].Code)
return (•MainMessages[i].Fxn)(hWnd, wMsg, wParam, lParaml;

}

return DefWindowProc (hWnd, wMsg, wParam, lParaml;

11----------------------~----------------------------C------------------

!/ DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
HWND hwndCB, hwndChild;
RECT re ct;

II Create a minimal· command bar that .has only a menu and an
It ei<tt button.
hwndCir = CommandBar.&reate (hinst, hWnd,
fl lnsertthe·menu.
CommandBar...-InsertMenubar ChwndCB, hI nst, ID_MENU, 0 l:
//Actd••exit button .fo ·command <bar.
commandBar--MdAdornments .(hwndCB, 0, 0};

•.//The posi.tton .of the child windows will be. set in WM_SIZE
setRe.ct t&rect, 0, 0, 10,• 10l:

. ·. //Create the tree view control
tiwndChild •"' Cre.ateTV (hWnd. &re ct);

(llsWfodow (hwndChild)) {
DestroyWindow (hWndl;
return 0;

11 er.eat~ the list view control
hwnctchfld =•·.·createLV <hWnd·, .. &rect).:
JI Destr~y t:l'ame •. ifwtridow not created.

· }f UlsWtndow <hwndChi ldl) · {
(liWnd);

··return 0:.
}

II rnsertthe base keY?·
<hWnd\ NULt;··nxr < "HKEY..:.CLASSES_ROOT''l,
<LeARAM)H~EY_CLASSES_ROOT, 1 J;

fhWnq; NULL, TEXT .<"HKEY_CURRENLUSER"),
• (l:PARAM)HKEY.._CURRENTccUSER, .. ll;

(continued)

475

Part II Windows CE Basics

Figure 7-7 (continued)

476

Files, Databases, and the Registry Chapter 7

}

WORD iditem, wNotifyCode;

HWND hwndCtl;

I NT i ;

II Parse the parameters.

id!tem =(WORD) LOWORD (wParam);

wNotifyCode =(WORD) HIWORD (wParamJ;

hwndCtl = CHWNDl lParam;

II Call routine to handle control message.

for (i = 0; i < dim(MainCommanditemsl: i++)

if (iditem == MainCommanditems[i].Code)

return (•MainCommanditems[iJ.Fxn)(hWnd. idltem, hwndCtl.

wNot ifyCode) ;

return 0;

l/c-----------••c-c-------·--------------•------------•-------------c---
/1 DoNot i fyMain - Process. WM~NOTI FY· mess11ge for .. window.

//
LRESULT DoNotHYMain CHWND hWnd, UINT wMsg, WPARAM <wParam,

LPARAM l Pa ram) {

lJlNJ j dr tern;

HWND h.Ctl;

LPNMHDR pHdr;

INT

. . .. ·· .. parameters,
iditem = wPararJ1;

pHdr (LPNMHDRI lParam;

hCtl = pHdrc>hwndFrom;

II Call routine to handle control message.
= 0; i < dim(MainNotifyitems); i++) {

(id Item. == M.a i nNoti fyI terns [i] .. Code)

(•Mai nNoti fyltemsI i].Fxnl (hWrid.

fl DoD.estrOyMain • _Process WM...:DESTROY message for window.

II
LRESULT DoDest.royMain (HWND hWnd, UINT wMsg, WPARAM wParam,

"LPARAM lPararll) {

return 0;
}

(continued)

477

Part II Windows CE Basics

Figure 7-7 (continued)

478

Files, Databases, and the Registry Chapter 7

II Delete the children so that on next open, they will
II be reenumerated.
hChild = TreeView_GetChild ChwndCtl,

pNotifyTV->itemNew.hiteml;
while ChChildl {

break;

hNext = TreeView_GetNextitem (hwndCtl, hChild,
TVGN_NEXT);

TreeView_Oeleteitem (hwndCtl, hChildl;
hChild = hNext;

case TVN_SELCHANGE:O:
GetTree ChWnd, pNotifyTV->itemNew.hitem, &hRoot,

szKey,dim(szKey));
EnumValues (hWnd, hRoot, szKey);
break;

case· TVN_ITEMEXPANDING:
if CpNotifyTV•(actlon °"" TVLEXPAND) {

GetTree {hWnd,. pNotifyTV->itemNew.
s.zKey, ·di 111.(szKey));

EnumChildren Chwnct. •pNoti fyTV ~
hRoot. szl(ey);

(continued)

479

Part II Windows CE Basics

Figure 7-7 (continued)

// Add columns.
if (hwndLV) {

1vc.mas1< "' LVCFJEX'.t \
.LVCf ..:_{)R0E.R;

480

}

lvc.fmt = l.VCff't'f._.LEFT;

ivc.cx = 120;
·lvc:pszText. ;= TlXT ("Nafoe").:

lvc.iOrder '." ~;
lvc. iSubltem = 0:
sendMessage thwndU/, LVM_INSERTCdLUMN.

1vc.mask \"' LVCLSllBlTEM;
lvc.pszText =TEXT C"Data");

1vc.cx "' 250:
lvc. iOrder = t:
lvc.iSubltem"" l; SendMessage (hwndLV., LV!LlNSERTCOLIJMN.1.. (LPARAM)&lvcl:.

return nwndL\/;

} /(-·---------·~--~-~---·•-'""";.,~.-~-·~~~-;,.~~~c~
If. lnitTreeView - Jnitialize .tree. vti;w

II HWl-10 CreateTI/ CHWNO nWnd, RECT *Prect) {

HBITMAP nBmp:
HI MAGE LI ST 11im.1;
HWNO hwndT.I/;

If I I Create tre.e. Vii;W. 5;.:z:e;J.t so that. it f1.ts Uf:lder
If the command Mr and fills the \eft par\ of the client a\"ea.

II .hwn<;ITV = CreateWindowE)((0. wCIREEl/JE.W, TEXT C"')~ ws..:_HSIBLEJ ws,.-cHILO\ ws--vscRo!-L \
ws_BDROER \ TVS,_HASLHIES J. WS,.,W;sBllTTON.S \ ..
T\JS..,.Ll N.E'SATROOT. pr'ect::> \e:ft. pr<ect->top,

· prect-)right, prect·)pottom:
nWn.i;l. NrMENll) m:..T~E~V. nlnst .•

Oestro:t •. f~ame• if .w.indow .. n()tc\"eate<f·
(l 1sWi1)dOW (hW·rtdW)} .

r.eturn .. 0;.

II create i·mage ·. ist cdrtro1 <for free vi~~ icol'Js,
him1 "" r111agelist:...CreateU6. 1.6, lLC.;oCOL{l.R.
!I Lpa<l :fi r.~t tw9 1fullges from one bitm,,;p.

Files, Databases, and the Registry Chapter 7

hBmp = LoadBitmap (hinst, MAKEINTRESOURCE (ID_BMPS));
ImagelisLAdd (himl, hBmp, NULL);
DeleteObject (hBmp);

Tree Vi ew_Set Image Li st (hwndTV, hi ml , TVSI L_NORMAL);

return hwndTV;

!!--
// InsertLV - Add an item to the list view control.

II
INT InsertLV (HWNO hWnd, INT nitem, LPTSTR pszName, LPTSTR pszData) {

}

HWND hwndLV = GetDlgitem (hWnd, ID_LISTVl;
LVITEM l vi;
INT re;

lvi.mask = LVIF_HXT I LVIF_IMAGE / LVIF_PARAM;
1 vi. iitem = nitem.;
lvi .iSubitem= 0;
l vi .pszText = .. pszName:
lvi.ilmage.= 0;
lvi .JParam =nitem:
re = SendMessage (hWhdLV. LVM_INSERTITEM, .0, (LPARAM)&lv.iJ;

.1 vi . mask = LV lF TEXT;
lvJ.Utem = .. nltem;

lvf . .iSubltem •"' 1;
lvi .psZText= ·pszD~ta;

re··"'. SendMessage (hwndLV, LVM_SETITEM, 0. (LPARAMJ&lvi);
return 0;

(/'-----~---~,~~~--,·-- -·------·--------~----------------------------
// InsertTV - Insert item into tree view cohtrol.

II
HTREEIT~MlnsertTV.··. CHWND< hWnd, HTREEITEM hPa rent, TC HAR . *pszName,

LPARAM lParam, DWORD nChildren) {
TV_INSERTSTRUCT tvls.;

HWND hwndTV '= GetDl g Item (hWnd, ID--TREEV) ;

11 Initialize the insertstruct.
memset (&tvis, .0, ·size.of .(tvis));
tv is. hParent .·=· .· hParent:

tvi s. hTnse.rtAfter ·= TVI_LAST;

tvis,ftem .. mask =TvH_TEXT I TVIF_PARAM I TVIF_CHILDREN I
TVTF _IMAGE;

tvis.ftem.pszText = pszName;

(continued)

481

Part \I Windows CE Basics

Figure 7·7 (continued)

482

Files, Databases, and the Registry Chapter 7

}

}

*pRoot = (HKEYltvi .lParam;
else {

INT re = GetLastError():
}

return 0;

11--
11 DisplayValue - Display the data, depending on the type.
II
INT DisplayValue CHWNDhWnd, INT nCnt, LPTSTR pszName, PBYTE pbData.

DWORD dwOSize, DWORO dwTypel {
TCHAR szData[512l: . . .
INT i. 1 en;

("%02X "); pblJata[i l);

(continued)

483

Part II Windows CE Basics

Figure 7-7 (continued)

484

Files, Databases, and the Registry Chapter 7

NULL, NULL. NULL, NULL);

RegCloseKey (hKey);

*pEnd =TEXT ('\0');

return dwCnt;

ll------------------------'-c---
11 EnumChildren - Enumerate the child keys of a key.

II
INT EnumChildren (HWND hWnd, HTREEITEM hParent, HKEY hRoot.

LPTSTR pszKey) {

INT<i=0,rc;

DWORD .dwNSize;

DWORD dwCSJze;

TCHAR·szName[MAX.,;.PATHJ;

TCHAR szClass[256];

FILETIME ft;

dwCSize =

l"c "<.f<egEnymKeyEx < hKey;

, " c

szClass, &dwCStze,

ERROR._SUCCESS) {

..
n.Child = countChildren· (hRdot.,

//·Add key to tree view.
Insertr\l(hWnd, hParen£.

dwNSize = giJll(szName);

· RegEnumKeyEX

II lf lhi•s wasn't the root key. close it.
if < hKey!= Moq~)

RegClo,SeKey fhKeYl:

(continued)

485

Part II Windows CE Basics

486

Figure 7-7 (continued)

The workhorses of this program are the enumeration functions that query
what keys and values are under each key. As a key is opened in the tree view
control, the control sends a WM_NOTIFY message. In response, RegView enu
merates the items below that key and fills the tree view with the child keys and
the list view control with the values.

We've covered a huge amount of ground in this chapter. The Windows CE
file system, while radically different from its predecessors under the covers, pre
sents a standard Win32 interface to the programmer and a familiar directory struc
ture to the user. The database API is unique to Windows CE and provides a
valuable function for the information-centric devices that Windows CE supports.
The registry structure and interface are quite familiar to Windows programmers
and should present no surprises.

The last two chapters covered memory and the file system. Now it's time
to look at the third part of the kernel triumvirate-processes and threads. As with
the other parts of Windows CE, the API will be familiar if perhaps a bit smaller.
However, the underlying architecture of Windows CE does make itself known.

Processes and Threads
Like Windows XP, Windows CE is a fully multitasking and multithreaded oper
ating system. What does that mean? In this chapter, I'll present a few definitions
and then some explanations to answer that question.

A process is a single instance of an application. If two copies of Microsoft
Pocket Word are running, two unique processes are running. Every process has
its own, protected, 32-MB address space as described in Chapter 6. Windows CE
enforces a limit of 32 separate processes that can run at any time.

Each process has at least one thread. A thread executes code within a pro
cess. A process can have multiple threads running "at the same time." I put the
phrase at the same time in quotes because, in fact, only one thread executes at
any instant in time. The operating system simulates the concurrent execution of
threads by rapidly switching between the threads, alternatively stopping one
thread and switching to another.

Processes
Windows CE treats processes differently than does Windows Me or Windows XP.
First and foremost, Windows CE has the aforementioned system limit of 32 pro
cesses being run at any one time. When the system starts, at least four processes
are created: NK.EXE, which provides the kernel services; FILESYS.EXE, which
provides file system services; GWES.EXE, which provides the GUI support; and
DEVICE.EXE, which loads and maintains the device drivers for the system. On
most systems, other processes are also started, such as the shell, EXPLORER.EXE,
and, if the system is connected to a PC, REPLLOG.EXE and RAPISRV.EXE, which
service the link between the PC and the Windows CE system. This leaves room
for about 24 processes that the user or other applications that are running can
start. While this sounds like a harsh limit, most systems don't need that many

487

Part II Windows CE Basics

processes. A typical H/PC that's being used heavily might have 15 processes
running at any one time.

Windows CE diverges from its desktop counterparts in other ways. Com
pared with processes under Windows Me or Windows XP, Windows CE processes
contain much less state information. Since Windows CE supports neither drives
nor the concept of a current directory, the individual processes don't need to store
that information. Windows CE doesn't maintain a set of environment variables,
so processes don't need to keep an environment block. Windows CE doesn't
support handle inheritance, so there's no need to tell a process to enable handle
inheritance. Because of all this, the parameter-heavy CreateProcess function is
passed mainly NULLs and zeros, with just a few parameters actually used by
Windows CE.

Many of the process and thread-related functions are simply not supported
by Windows CE because the system doesn't support certain features supported
by Windows Me or Windows XP. Since Windows CE doesn't support an envi
ronment, all the Win32 functions dealing with the environment don't exist in
Windows CE. While Windows CE supports threads, it doesn't support fibers, a
lightweight version of a thread supported by Windows XP. So the fiber API doesn't
exist under Windows CE. Some functions aren't supported because there's an easy
way to work around the lack of the function. For example, ExitProcess doesn't
exist under Windows CE. But as you might expect, there's a workaround that
allows a process to close.

Enough of what Windows CE doesn't do; let's look at what you can do with
Windows CE.

Creating a Process

488

The function for creating another process is

BOOL CreateProcess (LPCTSTR lpApplicationName,
LPCTSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL binheritHandles, DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCTSTR lpCurrentDirectory,
LPSTARTUPINFO lpStartupinfo,
LPPROCESS_INFORMATION lpProcessinformation);

While the list of parameters looks daunting, most of the parameters must
be set to NULL or 0 because Windows CE doesn't support security or current
directories, nor does it handle inheritance. This results in a function prototype
that looks more like this:

Processes and Threads Chapter 8

BOOL CreateProcess (LPCTSTR lpApplicationName,
LPTSTR lpCommandLine, NULL, NULL, FALSE,
DWORD dwCreationFlags, NULL, NULL, NULL,
LPPROCESS_INFORMATION lpProcessinformation);

The parameters that remain start with a pointer to the name of the appli
cation to launch. Windows CE looks for the application in the following direc
tories, in this order:

1. The path, if any, specified in lpApplicationName.

2. The path specified in the SystemPath value in [HKEY _LOCAL_
MACHINE]\Loader.

3. The Windows directory, (\Windows).

4. The root directory in the object store, (\).

This action is different from Windows XP, where CreateProcess searches for
the executable only if lpApplicationName is set to NULL and the executable
name is passed through the lpCommandLine parameter. In the case of Windows
CE, the application name must be passed in the lpApplicationName parame
ter because Windows CE doesn't support the technique of passing a NULL in
lpApplicationName with the application name as the first token in the
lpCommandLine parameter.

The lpCommandLine parameter specifies the command line that will be
passed to the new process. The only difference between Windows CE and Windows
XP in this parameter is that under Windows CE the command line is always passed
as a Unicode string. And as I mentioned previously, you can't pass the name of
the executable as the first token in lpCommandLine.

The dwCreationFlags parameter specifies the initial state of the process after
it has been loaded. Windows CE limits the allowable flags to the following:

• 0 Creates a standard process.

• CREATE_SUSPENDED Creates the process and then suspends the
primary thread.

• DEBUG_PROCESS The process being created is treated as a pro
cess being debugged by the caller. The calling process receives de
bug information from the process being launched.

• DEBUG_ONLY_THIS_PROCESS When combined with DEBUG_
PROCESS, debugs a process but doesn't debug any child processes
that are launched by the process being debugged.

• CREATE_NEW_CONSOLE Forces a new console to be created.

489

Part II Windows CE Basics

490

The only other parameter of the CreateProcess function that Windows CE
uses is lpProcesslnformation. This parameter can be set to NULL, or it can point
to a PROCESS_INFORMATION structure that's filled by CreateProcess with infor
mation about the new process. The PROCESS_INFORMATION structure is de
fined this way:

typedef struct _PROCESS_!NFORMATION
HANDLE hProcess;
HANDLE hThread;
DWORD dwProcessld;
DWORD dwThreadld;

PROCESS_INFORMATION;

The first two fields in this structure are filled with the handles of the new pro
cess and the handle of the primary thread of the new process. These handles
are useful for monitoring the newly created process, but with them comes some
responsibility. When the system copies the handles for use in the PROCESS_
INFORMATION structure, it increments the use count for the handles. This means
that if you don't have any use for the handles, the calling process must close them.
Ideally, they should be closed immediately following a successful call to CreateProcess.
rii descnbe some good uses for these handles later in rhis chapLer, in the sec
tion "Synchronization."

The other two fields in the PROCESS_INFORMATION structure are filled with
the process ID and primary thread ID of the new process. These ID values aren't
handles but simply unique identifiers that can be passed to Windows functions
to identify the target of the function. Be careful when using these IDs. If the new
process terminates and another new one is created, the system can reuse the old
ID values. You must take measures to assure that ID values for other processes
are still identifying the process you're interested in before using them. For ex
ample, you can, by using synchronization objects, be notified when a process
terminates. When the process terminated, you would then know not to use the
ID values for that process.

Using the create process is simple, as you can see in the following code
fragment:

TCHAR szFileName[MAX_PATHJ;
TCHAR szCmdLine[64];
DWORD dwCreationFlags;
PROCESS_INFORMATION pi;
INT re;

lstrcpy (szFileName, TEXT ("calc"));
lstrcpy (szCmdLine, TEXT(""));
dwCreationFlags = 0;

Processes and Threads Chapter 8

re = CreateProeess (szFileName, szCmdLine, NULL, NULL. FALSE,
dwCreationFlags, NULL. NULL, NULL, &pi);

if (re) {
Cl oseHandle (pi .hThread);
Cl oseHandl e (pi. hProeess);

This code launches the standard Calculator applet found on Handheld PCs
and Pocket PCs. Since the filename doesn't specify a path, CreateProcess will,
using the standard Windows CE search path, find CALC.EXE in the \Windows
directory. Because I didn't pass a command line to Cale, I could have simply passed
a NULL value in the lpCmdLine parameter. But I passed a null string in szCmdLine
to differentiate the lpCmdLine parameter from the many other parameters in
CreateProcess that aren't used. I used the same technique for dwCreationFlags.
If the call to CreateProcess is successful, it returns a nonzero value. The code
above checks for this and, if the call was successful, closes the process and thread
handles returned in the PROCESS_INFORMATION structure. Remember that this
must be done by all Win32 applications to prevent memory leaks.

Terminating a Process
A process can terminate itself by simply returning from the WinMain procedure.
For console applications, a simple return from main suffices. Windows CE doesn't
support the ExitProcess function found in Windows Me and Windows XP. Instead,
you can have the primary thread of the process call ExitTbread. Under Windows
CE, if the primary thread terminates, the process is terminated as well, regard
less of what other threads are currently active in the process. The exit code of
the process will be the exit code provided by ExitTbread. You can determine
the exit code of a process by calling

BOOL GetExitCodeProeess (HANDLE hProeess. LPDWORD lpExitCode);

The parameters are the handle to the process and a pointer to a DWORD
that receives the exit code that was returned by the terminating process. If the
process is still running, the return code is the constant STILL_ACTIVE.

You can terminate another process. But while it's possible to do that, you
shouldn't be in the business of closing other processes. The user might not be
expecting that process to be closed without his or her consent. If you need to
terminate a process (or close a process, which is the same thing but a much nicer
word), the following methods can be used.

If the process to be closed is one that you created, you can use some sort
of interprocess communication to tell the process to terminate itself. This is the
most advisable method because you've designed the target process to be closed

491

Part II Windows CE Basics

by another party. Another method of closing a process is to send the main win
dow of the process a WM_CLOSE message. This is especially effective on the
Pocket PC, where applications are designed to respond to WM_ CLOSE messages
by quietly saving their state and closing. Finally, if all else fails and you abso
lutely must close another process, you can use TerminateProcess.

TerminateProcess is prototyped as

BOOL TerminateProcess (HANDLE hProcess, DWORD uExitCode);

The two parameters are the handle of the process to terminate and the exit code
the terminating process will return.

Other Processes

492

Of course, to terminate another process, you've got to know the handle to that
process. You might want to know the handle to a process for other reasons as
well. For example, you might want to know when the process terminates. Windows
CE supports two additional functions that come in handy here (both of which
are seldom discussed). The first function is OpenProcess, which returns the handle
of an already running process. OpenProcess is prototyped as

HANDLE OpenProcess (DWORD dwDesiredAccess. BOOL blnheritHandle,
DWORD dwProcessld);

Under Windows CE, the first parameter isn't used and should be set to 0. The
b!nheritHandle parameter must be set to FALSE because Windows CE doesn't
support handle inheritance. The final parameter is the process ID value of the
process you want to open.

The other function useful in this circumstance is

DWORD GetWindowThreadProcessld (HWND hWnd, LPDWORD lpdwProcessld);

This function takes a handle to a window and returns the process ID for the
process that created the window. So using these two functions, you can trace a
window back to the process that created it.

Two other functions allow you to directly read from and write to the memory
space of another process. These functions are

BOOL ReadProcessMemory (HANDLE hProcess, LPCVOID lpBaseAddress,
LPVOID lpBuffer, DWORD nSize,
LPDWORD lpNumberOfBytesRead);

and

BOOL WriteProcessMemory (HANDLE hProcess, LPVOID lpBaseAddress,
LPVOID lpBuffer, DWORD nSize,
LPDWORD lpNumberOfBytesWritten);

Processes and Threads Chapter 8

The parameters for these functions are fairly self-explanatory. The first parame
ter is the handle of the remote process. The second parameter is the base ad
dress in the other process's address space of the area to be read or written. The
third and fourth parameters specify the name and the size of the local buffer in
which the data is to be read from or written to. Finally, the last parameter specifies
the bytes actually read or written. Both functions require that the entire area being
read to or written from must be accessible. Typically, you use these functions
for debugging, but there's no requirement that this be their only use.

Threads
A thread is, fundamentally, a unit of execution. That is, it has a stack and a pro
cessor context, which is a set of values in the CPU internal registers. When a thread
is suspended, the registers are pushed onto the thread's stack, the active stack
is changed to the next thread to be run, that thread's CPU state is pulled off its
stack, and the new thread starts executing instructions.

Threads under Windows CE are similar to threads under Windows XP or
Windows Me. Each process has a primary thread. Using the functions that I
describe below, a process can create any number of additional threads within
the process. The only limit to the number of threads in a Windows CE process
is the memory and process address space available for the thread's stack.

Threads within a process share the address space of the process. Memory
allocated by one thread is accessible to all threads in the process. Threads share
the same access rights for handles whether they be file handles, memory object
handles, or handles to synchronization objects. Thread access rights to other
processes are, however, thread specific. Most of the time, you won't need to worry
about this, but there are times when you're working with interprocess issues that
this issue can arise. Refer to the information in the "Asynchronous Driver I/0"
section of Chapter 17 for details.

The stack size of all threads created within a process is set by the linker.
(The linker switch for setting the stack size in Microsoft eMbedded C++ is /stack.)
Secondary threads are created with the same stack size as the primary thread.

The System Scheduler
Windows CE schedules threads in a preemptive manner. Threads run for a quan
tum, or time slice. After that time, if the thread hasn't already relinquished its time
slice and if the thread isn't a run-to-completion thread, it's suspended and an
other thread is scheduled to run. Windows CE chooses which thread to run based
on a priority scheme. Threads of a higher priority are scheduled before threads
of lower priority.

493

Part II Windows CE Basics

494

The rules for how Windows CE allocates time among the threads are quite
different from Windows XP and from Windows Me. Windows CE processes don't
have a priority class. Under Windows XP, threads derive their priority based on
the priority class of their parent processes. A Windows XP process with a higher
priority class has threads that run at a higher priority than threads in a process
with a lower-priority class. Threads within a process can refine their priority within
a process by setting their relative thread priority.

Because Windows CE has no priority classes, all processes are treated as
peers. Individual threads can have different priorities, but the process that the
thread runs within doesn't influence those priorities. Also, unlike some of the
desktop versions of Windows, the foreground thread in Windows CE doesn't get
a boost in priority.

When Windows CE was first developed, the scheduler supported eight
priority levels. Starting with Windows CE 3.0, that number was increased to 256
priority levels. However, most applications still use the original (now lowest) eight
priority levels. The upper 248 levels are typically used by device drivers or other
system-level threads. This doesn't mean that an application can't use the higher
levels, but accessing them requires different API calls, and the application must
be a "trusted" application. I'll talk more about security and the concept of trusted
vs. untrusted applications later in the chapter.

The lowest eight priority levels are listed below:

• THREAD_PRIORITY_TIME_CRITICAL Indicates 3 points above
normal priority

• THREAD_PRIORITY_HIGHEST Indicates 2 points above normal
priority

• THREAD_PRIORITY_ABOVE_NORMAL Indicates 1 point above
normal priority

• THREAD_PRIORITY_NORMAL Indicates normal priority. All threads
are created with this priority

• THREAD_PRIORITY_BELOW_NORMAL Indicates 1 point below
normal priority

• THREAD_PRIORITY_LOWEST Indicates 2 points below normal
priority

• THREAD_PRIORITY_ABOVE_IDLE Indicates 3 points below nor
mal priority

• THREAD_PRIORITY_IDLE Indicates 4 points below normal priority

Processes and Threads Chapter 8

All higher-priority threads run before lower-priority threads. This means that
before a thread set to run at a particular priority can be scheduled, all threads
that have a higher priority must be blocked. A blocked thread is one that's wait
ing on some system resource or synchronization object before it can continue.
Threads of equal priority are scheduled in a round-robin fashion. Once a thread
has voluntarily given up its time slice, is blocked, or has completed its time slice,
all other threads of the same priority are allowed to run before the original thread
is allowed to continue. If a thread of higher priority is unblocked and a thread
of lower priority is currently running, the lower-priority thread is immediately
suspended and the higher-priority thread is scheduled. Lower-priority threads can
never preempt a higher-priority thread.

An exception to the scheduling rules happens if a low-priority thread owns
a resource that a higher-priority thread is waiting on. In this case, the low-priority
thread is temporarily given the higher-priority thread's priority to avoid a prob
lem known as priority inversion, so that it can quickly accomplish its task and
free the needed resource.

While it might seem that lower-priority threads never get a chance to run
in this scheme, it works out that threads are almost always blocked, waiting on
something to free up before they can be scheduled. Threads are always created
at THREAD_PRIORITY_NORMAL, so, unless they proactively change their pri
ority level, a thread is usually at an equal priority to most of the other threads
in the system. Even at the normal priority level, threads are almost always blocked.
For example, an application's primary thread is typically blocked waiting on
messages. Other threads should be designed to block on one of the many synchro
nization objects available to a Windows CE application.

Never Do This!
What's not 'supported by the arrangement I just described, or by any other thread
based scheme, is code like the following:

while (bFlag == FALSE) {
II Do nothing, and spin.

}

II Now do something.

This kind of code isn't just bad manners; because it wastes CPU power, it's
a death sentence to a battery-powered Windows CE device. To understand why
this is important, I need to digress into a quick lesson on Windows CE power
management.

Windows CE is designed so that when all threads are blocked, which hap
pens over 90 percent of the time, it calls down to the OEM Abstraction Layer (the

495

Part II Windows CE Basics

equivalent of the BIOS on an MS-DOS machine) to enter a low-power waiting
state. Typically, this low-power state means that the CPU is halted; that is, it simply
stops executing instructions. Because the CPU isn't executing any instructions,
no power-consuming reads and writes of memory are performed by the CPU.
At this point, the only power necessary for the system is to maintain the con
tents of the RAM and light the display. This low-power mode can reduce power
consumption by up to 99 percent of what is required when a thread is running
in a well-designed system.

Doing a quick back-of-the-envelope calculation, say a Pocket PC is designed
to run for 10 hours on a fully charged battery. Given that the system turns itself
off after a few minutes of nonuse, this 10 hours translates into weeks of battery
life in the device for the user. (I'm basing this calculation on the assumption that
the system indeed spends 90 percent or more of its time in its low-power idle
state.) Say a poorly written application thread spins on a variable instead of
blocking. While this application is running, the system will never enter its low
power state. So, instead of 600 minutes of battery time (10 hours x 60 minutes/
hour), the system spends 100 percent of its time at full power, resulting in a battery
life of slightly over an hour, which means that the battery would be lucky to last
a day's normal use. So as you can see, it's good to have the system in its low
power state.

Fortunately, since Windows applications usually spend their time blocked
in a call to GetMessage, the system power management works by default. How
ever, if you plan on using multiple threads in your application, you must use
synchronization objects to block threads while they're waiting. First let's look at
how to create a thread, and then I'll dive into the synchronization tools avail
able to Windows CE programs.

Creating a Thread

496

You create a thread under Windows CE by calling the function CreateThread,
which is a departure from the desktop versions of Windows in which you're never
supposed to call this API directly. The reason for this change is that on the desktop,
calling CreateThread doesn't give the C runtime library the chance to create
thread-unique data structures. So on the desktop, programmers are instructed
to use either of the run-time thread creation functions _beginthread or
_beginthreadex. These functions provide some thread-specific initialization and
then call CreateThread internally.

In Windows CE, however, the runtime is written to be thread safe and doesn't
require explicit thread initialization, so calling CreateThread directly is the norm.
The function is prototyped as

Processes and Threads Chapter 8

HANDLE CreateThread (LPSECURITY_ATTRIBUTES lpThreadAttributes,
DWDRD dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddress,
LPVOID lpParameter, DWORD dwCreationFlags,
LPDWORD lpThreadidl;

As with CreateProcess, Windows CE doesn't support a number of the parame
ters in CreateThread, and so they are set to NULL or 0 as appropriate. For
CreateThread, the lpThreadAttributes and dwStackSize parameters aren't sup
ported. The parameter lpThreadAttributes must be set to NULL, and dwStackSize
is ignored by the system and should be set to 0. In Windows CE 3.0 and earlier,
the maximum stack size of the new thread is the same as the primary thread in
the process. The third parameter, lpStartAddress, must point to the start of the
thread routine. The lpParameter parameter in CreateTbread is an application
defined value that's passed to the thread function as its only parameter. You can
set the dwCreationFlags parameter to either 0 or CREATE_SUSPENDED. If
CREATE_SUSPENDED is passed, the thread is created in a suspended state and
must be resumed with a call to ResumeTbread. The final parameter is a pointer to
a DWORD that receives the newly created thread's ID value.

The thread routine should be prototyped this way:

DWORD WINAPI ThreadFunc (LPVOID lpArg);

The only parameter is the lpParameter value, passed unaltered from the call to
CreateThread. The parameter can be an integer or a pointer. Make sure, how
ever, that you don't pass a pointer to a stack-based structure that will disappear
when the routine that called CreateThread returns.

If CreateTbread is successful, it creates the thread and returns the handle
to the newly created thread. As with CreateProcess, the handle returned should
be closed when you no longer need the handle. Following is a short code frag
ment that contains a call to start a thread and the thread routine.

11--
11
II
HANDLE hThreadl;
DWORD dwThreadlID = 0;
INT nParameter = 5;

hThreadl = CreateThread (NULL, 0, Thread2, (PVOID)nParameter, 0,
&dwThreadlID);

CloseHandle (hThreadl);

11--
(continued)

497

Part II Windows CE Basics

498

II Second thread routine
II
DWDRD WINAPI Thread2 (PVOID pArg) {

}

INT nParam = (INT) pArg;

II
II Do something here.
II
II
II
return 0xl5;

In this code, the second thread is started with a call to CreateThread. The
nParameter value is passed to the second thread as the single parameter to the
thread routine. The second thread executes until it terminates, in this case sim
ply by returning from the routine.

A thread can also terminate itself by calling this function:

VOID ExitThread (DWORD dwExitCode);

The only parameter is the exit code that's set for the thread. That thread exit code
can be queried by another thread using this function:

BOOL GetExitCodeThread (HANDLE hThread, LPDWORD lpExitCode);

The function takes the handle to the thread (not the thread ID) and returns the
exit code of the thread. If the thread is still running, the exit code is STILL_ACTIVE,
a constant defined as Ox0103. The exit code is set by a thread using ExitThread
or the value returned by the thread procedure. In the preceding code, the thread
sets its exit code to Ox15 when it returns.

All threads within a process are terminated when the process terminates.
As I said earlier, a process is terminated when its primary thread terminates.

Setting and Querying Thread Priority
Threads are always created at the priority level THREAD_PRIORITY_NORMAL.
The thread priority can be changed either by the thread itself or by another thread
using one of two functions. The first is:

BOOL SetThreadPriority (HANDLE hThread, int nPriority);

The two parameters are the thread handle and the new priority level. The level
passed can be one of the constants described previously, ranging from THREAD_
PRIORITY_IDLE up to THREAD_PRIORITY_TIME_CRITICAL. You must be ex
tremely careful when you're changing a thread's priority. Remember that threads

Processes and Threads Chapter 8

of a lower priority almost never preempt threads of higher priority. So a simple
bumping up of a thread one notch above normal can harm the responsiveness
of the rest of the system unless that thread is carefully written.

The other function that sets a thread's priority is

BDDL CeSetThreadPriority (HANDLE hThread, int nPriority);

The difference between this function and SetThreadPriority is that this function
sets the thread's priority to any of the 256 priorities. Instead of using predefined
constants, nPriority should be set to a value of 0 to 255, with 0 being highest
priority and 255 being the lowest.

A word of caution: SetThreadPriority and CeSetThreadPriority use com
pletely different numbering schemes for the nPriority value. For example, to set
a thread's priority to 1 above normal, you could call SetThreadPriority with
1BREAD_PRIORITY _ABOVE_NORMAL or call CeSetThreadPriority with nPriority
set to 250 but the constant THREAD_PRIORITY_ABOVE_NORMAL defined as
2, not 250. The rule is that you should use the constants for SetThreadPriority
and the numeric values for CeSetThreadPriorlty. Another difference posed by
CeSetThreadPriority is that it's a protected function. For systems that implement
Windows CE's module-based security, only trusted modules ctn call
CeSetThreadPriorlty. To query the priority level of a thread, call this function:

int GetThreadPriority (HANDLE hThreadl:

This function returns the priority level of the thread. You shouldn't use the hard
coded priority levels. Instead, use constants, such as THREAD_PRIORITY _
NORMAL, defined by the system. This ensures that you're using the same num
bering scheme that SetThreadPriority uses. For threads that have a priority greater
than THREAD_PRIORITY_TIMECRITICAL, this function returns the value
THREAD _PRIORITY_ TIMECRITICAL.

To query the priority of a thread that might have a higher priority than
THREAD_PRIORITY_TIMECRITICAL, call the function

int CeGetThreadPriority (HANDLE hThread):

The value returned by CeGetThreadPriority will be 0 to 255, with 0 being the
highest priority possible. Here again, Windows CE uses different numbering
schemes for the priority query functions than it does for the priority set func
tions. For example, for a thread running at normal priority, GetThreadPriority
would return THREAD_PRIORITY_NORMAL, which is defined as the value 3.
CeGetThreadPriority would return the value 251.

Setting a Thread's Time Quantum
Starting with Windows CE 3.0, threads can individually set their time quantum.
The time quantum is the maximum amount of time a thread runs before it's

499

Part II Windows CE Basics

preempted by the operating system. By default, the time quantum is set to 100
milliseconds, although for embedded systems, the OEM can change this. 1 For
example, some Pocket PC devices use a different default quantum. The Compaq
iPaq has the default quantum of 75 milliseconds, while the HP 548 defaults to
100 milliseconds.

To set the time quantum of a thread, call

int CeSetThreadQuantum (HANDLE hThread, DWORD dwTime);

The first parameter is the handle to the thread. The second parameter is the time,
in milliseconds, of the desired quantum. If you set the time quantum to 0, the
thread is turned into a "run-to-completion thread." These threads aren't preempted
by threads of their own priority. Obviously, threads of higher priorities preempt
these threads. CeSetThreadQuantum is a protected function and so can't be called
by "untrusted" modules.

You can query a thread's time quantum with the function

int CeGetThreadQuantum (HANDLE hThread);

The first parameter is the handle to the thread. The function returns the current
quantum of the thread.

Suspending and Resuming a Thread
You can suspend a thread at any time by calling this function:

DWORD SuspendThread (HANDLE hThread);

The only parameter is the handle to the thread to suspend. The value returned
is the suspend count for the thread. Windows maintains a suspend count for each
thread. Any thread with a suspend count greater than 0 is suspended. Since
SuspendThread increments the suspend count, multiple calls to SuspendThread
must be matched with an equal number of calls to ResumeThread before a thread
is actually scheduled· to run. ResumeCount is prototyped as

DWORD ResumeThread (HANDLE hThread);

Here again, the parameter is the handle to the thread and the return value is the
previous suspend count. So if ResumeThread returns 1, the thread is no longer
suspended.

At times, a thread simply wants to kill some time. Since I've already explained
why simply spinning in a while loop is a very bad thing to do, you need another
way to kill time. The best way to do this is to use this function:

void Sleep CDWORD dwMilliseconds);

1. In earlier versions of Windows CE, a thread's time quantum was fixed. Typically, the time quantum was set to
25 milliseconds, although this was changeable by the OEM.

500

Processes and Threads Chapter 8

Sleep suspends the thread for at least the number of milliseconds specified in the
dwMilliseconds parameter. Because the scheduler timer in systems based on
Windows CE 3.0 and later has a granularity of 1 millisecond, calls to Sleep with
very small values are accurate to 1 millisecond. On systems based on earlier
versions of Windows CE, the accuracy of Sleep depends on the period of the
scheduler timer, which was typically 25 milliseconds. This strategy is entirely valid,
and sometimes it's equally valid to pass a 0 to Sleep. When a thread passes a 0
to Sleep, it gives up its time slice but is rescheduled immediately according to
the scheduling rules I described previously.

Thread Local Storage
Thread local storage is a mechanism that allows a routine to maintain separate
instances of data for each thread calling the routine. This capability might not
seem like much, but it has some very handy uses. Take the following thread
routine:

INT g_nGlobal; II System global variable

int ThreadProc (pStartData) {
INT nValuel;
INT nValue2;

while (unblocked)
II

}

II Do some work.
II

II We're done now; terminate the thread by returning.
return 0;

For this example, imagine that multiple threads are created to execute the same
routine, ThreadProc. Each thread has its own copy of nValuel and nValue2
because these are stack-based variables and each thread has its own stack. All
threads, though, share the same static variable, g_nGlobal.

Now imagine that the ThreadProc routine calls another routine, WorkerBee.
As in

int g_nGlobal; II System global variable

int ThreadProc (pStartData)
int nValuel;
int nValue2;
while (unblocked)

WorkerBee(); II Let someone else do the work.

(continued)

501

Part II Windows CE Basics

502

II We're done now; terminate the thread by returning.
return 0;

int WorkerBee (void) {
int nlocall;
static int nlocal2;
II
II Do work here.
II
return nlocall;

Now WorkerBee doesn't have access to any persistent memory that's local to a
thread. nLocall is persistent only for the life of a single call to WorkerBee. nLocal2
is persistent across calls to WorkerBee but is static and therefore shared among
all threads calling WorkerBee. One solution would be to have TbreadProc pass
a pointer to a stack-based variable to WorkerBee. This strategy works, but only
if you have control over the routines calling WorkerBee. What if you're writing
a DLL and you need to have a routine in the DLL maintain a different state for
each thread calling the routine? You can't define static variables in the DLL be
cause they would be shared across the different threads. You can't define local
variables because they aren't persistent across calls to your routine. The answer
is to use thread local storage.

Thread local storage allows a process to have its own cache of values that
are guaranteed to be unique for each thread in a process. This cache of values
is small because an array must be created for every thread created in the pro
cess, but it's large enough if used intelligently. To be specific, the system con
stant, TLS_MINIMUM_AVAILABLE, is defined to be the number of slots in the TLS
array that's available for each process. For Windows CE, like Windows XP, this
value is defined as 64. So each process can have 64 4-byte values that are unique
for each thread in that process. For the best results, of course, you must man
age those 64 slots well.

To reserve one of the TLS slots, a process calls

DWORD TlsAlloc (void);

TlsAlloc looks through the array to find a free slot in the TLS array, marks it as
in use, and then returns an index value to the newly assigned slot. If no slots
are available, the function returns -1. It's important to understand that the indi
vidual threads don't call 11sAlloc. Instead, the process or DLL calls it before cre
ating the threads that will use the TLS slot.

Once a slot has been assigned, each thread can access its unique data in
the slot by calling this function:

BOOL TlsSetValue (DWORD dwTlsindex, LPVOID lpTlsValue);

Processes and Threads Chapter 8

and

LPVOID TlsGetValue (DWORD dwTlslndex);

For both of these functions, the TLS index value returned by TlsAlloc specifies
the slot that contains the data. Both TlsGetValue and 11sSetValue type the data
as a PVOID, but the value can be used for any purpose. The advantage of thinking
of the TLS value as a pointer is that a thread can allocate a block of memory on
the heap and then keep the pointer to that data in the TLS value. This allows
each thread to maintain a block of thread-unique data of almost any size.

One other matter is important to thread local storage. When 11sAlloc reserves
a slot, it zeroes the value in that slot for all currently running threads. All new
threads are created with their TLS array initialized to 0 as well. This means that
a thread can safely assume that the value in its slot will be initialized to 0. This
is helpful for determining whether a thread needs to allocate a memory block
the first time the routine is called.

When a process no longer needs the TLS slot, it should call this function:

BOOL TlsFree (DWORD dwTlslndex);

The function is passed the index value of the slot to be freed. The fun ct i< m rl' ·
turns TRUE if successful. This function frees only the TIS slot. If threads havl·
allocated storage in the heap and stored pointers to those blocks in their TLS slots,
that storage isn't freed by this function. Threads are responsible for freeing their
own memory blocks.

Synchronization
With multiple threads running around the system, you need to coordinate the
activities. Fortunately, Windows CE supports almost the entire extensive set of
standard Win32 synchronization objects. The concept of synchronization objects
is fairly simple. A thread waits on a synchronization object. When the object is
signaled, the waiting thread is unblocked and is scheduled (according to the rules
governing the thread's priority) to run.

Windows CE doesn't support some of the synchronization primitives sup
ported by Windows XP. These unsupported elements include file change notifi
cations and waitable timers. The lack of waitable timer support can easily be
worked around using other synchronization objects or, for longer-period timeouts,
the more flexible Notification API, unique to Windows CE.

One aspect of Windows CE unique to it is that the different synchroniza
tion objects don't share the same namespace. This means that if you have an event
named Bob, you can also have a mutex named Bob. (I'll talk about mutexes later
in this chapter.) This naming convention is different from Windows XP's rule,

503

Part II Windows CE Basics

Events

504

where all kernel objects (of which synchronization objects are a part) share the
same namespace. While having the same names in Windows CE is possible, it's
not advisable. Not only does the practice make your code incompatible with
Windows XP, there's no telling whether a redesign of the internals of Windows
CE might just enforce this restriction in the future.

The first synchronization primitive I'll describe is the event object. An event object
is a synchronization object that can be in a signaled or nonsignaled state. Events
are useful to a thread to let it be known that, well, an event has occurred. Event
objects can either be created to automatically reset from a signaled state to a
nonsignaled state or require a manual reset to return the object to its nonsignaled
state. Events can be named and therefore shared across different processes al
lowing interprocess synchronization.

An event is created by means of this function:

HANDLE CreateEvent (LPSECURITY_ATTRIBUTES lpEventAttributes,
BOOL bManualReset, BOOL blnitialState,
LPTSTR 1 pName);

As with all calls in Windows CE, the security attributes parameter, lpEventAttributes,
should be set to NULL. The second parameter indicates whether the event being
created requires a manual reset or will automatically reset to a nonsignaled state
immediately after being signaled. Setting bManualReset to TRUE creates an event
that must be manually reset. The blnitialState parameter specifies whether the event
object is initially created in the signaled or nonsignaled state. Finally, the lpName
parameter points to an optional string that names the event. Events that are named
can be shared across processes. If two processes create event objects of the same
name, the processes actually share the same object. This allows one process to
signal the other process using event objects. If you don't want a named event,
the lpname parameter can be set to NULL.

To share an event object across processes, each process must individually
create the event object. You shouldn't just create the event in one process and
send the handle of that event to another process. To determine whether a call
to CreateEvent created a new event object or opened an already created ob
ject, you can call GetLastError immediately following the call to CreateEvent. If
GetLastError returns ERROR_ALREADY _EXISTS, the call opened an existing event.

Once you have an event object, you'll need to be able to signal the event.
You accomplish this using either of the following two functions:

BOOL SetEvent (HANDLE hEvent);

or

Processes and Threads Chapter 8

BOOL PulseEvent (HANDLE hEvent);

The difference between these two functions is that SetEvent doesn't automati
cally reset the event object to a nonsignaled state. For autoreset events, SetEvent
is all you need because the event is automatically reset once a thread unblocks
on the event. For manual reset events, you must manually reset the event with
this function:

BOOL ResetEvent (HANDLE hEvent);

These event functions sound like they overlap, so let's review. An event
object can be created to reset itself or require a manual reset. If it can reset it
self, a call to SetEvent signals the event object. The event is then automatically
reset to the nonsignaled state when one thread is unblocked after waiting on
that event. An event that resets itself doesn't need PulseEvent or ResetEvent.
If, however, the event object was created requiring a manual reset, the need
for ResetEvent is obvious.

PulseEvent signals the event and then resets the event, which allows all threads
waiting on that event to be unblocked. So the difference between PulseEvent on
a manually resetting event and SetEvent on an automatic resetting event is that
using SetEvent on an automatic resetting event frees only one thread to run, even
if many threads are waiting on that event. PulseEvent frees all threads waiting
on that event.

You destroy event objects by calling CloseHandle. If the event object is
named, Windows maintains a use count on the object, so one call to CloseHandle
must be made for every call to CreateEvent.

Waiting ...
It's all well and good to have event objects; the question is how to use them. Threads
wait on events, as well as on the soon to be described semaphore and mutex, using
one of the following functions: WaitForSingleObject, WaitForMultipleObjects,
Msg WaitForMultipleObjects, or Msg WaitForMultipleObjectsF.x. Under Windows CE,
the WaitForMultiple functions are limited in that they can't wait for all objects of
a set of objects to be signaled. These functions support waiting for one object
in a set of objects being signaled. Whatever the limitations of waiting, I can't
emphasize enough that waiting is good. While a thread is blocked with one of
these functions, the thread enters an extremely efficient state that takes very little
CPU processing power and battery power.

Another point to remember is that the thread responsible for handling a
message loop in your application (usually the application's primary thread)
shouldn't be blocked by WaitForSingleObject or WaitForMultipleObjects because

505

Part II Windows CE Basics

506

the thread can't be retrieving and dispatching messages in the message loop if
it's blocked waiting on an object. The function MsgWaitForMultipleObjects gives
you a way around this problem, but in a multithreaded environment, it's usu
ally easier to let the primary thread handle the message loop and secondary
threads handle the shared resources that require blocking on events.

Waiting on a Single Object
A thread can wait on a synchronization object with the function

DWORD WaitForSingleObject (HANDLE hHandle, DWORD dwMilliseconds);

The function takes two parameters: the handle to the object being waited on and
a timeout value. If you don't want the wait to time out, you can pass the value
INFINITE in the dwMilliseconds parameter. The function returns a value that
indicates wl;iy the function returned. Calling WaitForSingleObject blocks the thread
until the event is signaled, the synchronization object is abandoned, or the timeout
value is reached.

WaitForSingleObject returns one of the following values:

• WAIT_OBJECT_O The specified object was signaled.

• WAIT_TIMEOVT The timeout interval elapsed, and the object's state
remains nonsignaled.

• WAIT_ABANDONED The thread that owned a mutex object being
waited on ended without freeing the object.

• WAIT_FAILED The handle of the synchronization object was invalid.

You must check the return code from WaitForSingleObject to determine
whether the event was signaled or simply that the timeout had expired. (The
WAIT_ABANDONED return value will be relevant when I talk about mutexes soon.)

Waiting on Processes and Threads
I've talked about waiting on events, but you can also wait on handles to pro
cesses and threads. These handles are signaled when their processes or threads
terminate. This allows a process to monitor another process (or thread) and
perform some action when the process terminates. One common use for this
feature is for one process to launch another and then, by blocking on the handle
to the newly created process, wait until that process terminates.

The rather irritating routine on the next page is a thread that demonstrates
this technique by launching an application, blocking until that application closes,
and then relaunching the application:

Processes and Threads Chapter 8

DWORD WINAPI KeepRunning (PVOID pArg) {
PROCESS_INFORMATION pi;
TCHAR szFileName[MAX_PATHJ;
INT re = 0;

II Copy the filename.
lstrcpy (szFileName, (LPTSTR)pArg);
while (1) {

JI Launch the application.
re= CreateProcess (szFileName, NULL, NULL, NULL, FALSE,

0, NULL, NULL, NULL, &pi);
II If the application didn't start, terminate thread.
if (! re)

return -1;

JI Close the new process's primary thread handle.
Cl oseHandl e (pi. hThread);

II Wait for user to close the application.
re= WaitForSingleObject Cpi .hProcess, INFINITE);

II Close the old process handle.
Cl oseHandl e (pi. hProcess);

JI Make sure we returned from the wait correctly.
if (re != WAIT_OBJECT_0)

return -2;

return 0; //This should never get executed.

This code simply launches the application using CreateProcess and waits on the
process handle returned in the PROCESS_INFORMATION structure. Notice that
the thread closes the child process's primary thread handle and, after the wait,
the handle to the child process itself.

Waiting on Multiple Objects
A thread can also wait on a number of events. The wait can end when any one
of the events is signaled. The function that enables a thread to wait on multiple
objects is this one:

DWORD WaitForMultipleObjects (DWORD nCount, CONST HANDLE *1pHandles,
BOOL bWaitAll, DWORD dwMilliseconds);

The first two parameters are a count of the number of events or mutexes to wait
on and a pointer to an array of handles to these events. The bWaitAll parameter

507

Part II Windows CE Basics

508

must be set to FALSE to indicate that the function should return if any of the events
are signaled. The final parameter is a timeout value, in milliseconds. As with
WaitForSingleObject, passing INFINITE in the timeout parameter disables the
timeout. Windows CE doesn't support the use of WaitForMultipleObjects to en
able waiting for all events in the array to be signaled before returning.

Like WaitForSingleObject, WaitForMultipleObjects returns a code that indi
cates why the function returned. If the function returned because of a synchro
nization object being signaled, the return value will be WAIT_OBJECT_O plus an
index into the handle array that was passed in the lpHandles parameter. For
example, if the first handle in the array unblocked the thread, the return code
would be WAIT_OBJECT_O; if the second handle was the cause, the return code
would be WAIT_OBJECT_O + 1. The other return codes used by WaitForSingleObject
WAIT_TIMEOUT, WAIT_ABANDONED, and WAIT_FAILED-are also returned by
WaitForMultipleObjects for the same reasons.

Waiting While Dealing with Messages
The Win32 API provides other functions that allow you to wait on a set of ob
jects as well as messages: .MSg WaitForMultipleObjects and.MSg WaitForMultipleOeyectsFx.
Under Windows CE, these functions act identically, so I'll describe only
Msg WaitForMultipleObjects. This function essentially combines the wait function,
MsgWaitForMultipleObjects, with an additional check into the message queue so
that the function returns if any of the selected categories of messages are received
during the wait. The prototype for this function is the following:

DWORD MsgWaitForMultipleObjectsEx CDWORD nCount, LPHANDLE pHandles,
BOOL fWaitAll, DWORD dwMilliseconds,
DWORD dwWakeMasks);

This function has a number of limitations under Windows CE. As with
WaitForMultipleObjects, MsgWaitForMultipleObjectsEx can't wait for all objects
to be signaled. Nor are all the dwWakeMask flags supported by Windows CE.
Windows CE supports the following flags in dwWakeMask. Each flag indicates
a category of messages that, when received in the message queue of the thread,
causes the function to return.

• QS_ALLINPUT Any message has been received.

• QS_INPUT An input message has been received.

• QS_KEY A key up, key down, or syskey up or down message has
been received.

• QS_MOUSE A mouse move or mouse click message has been
received.

Processes and Threads Chapter 8

• QS_MOUSEBU1TON A mouse click message has been received.

• QS_MOUSEMOVE A mouse move message has been received.

• QS_PAINT A WM_PAINT message has been received.

• QS_POSTMESSAGE A posted message, other than those in this list,
has been received.

• QS_SENDMESSAGE A sent message, other than those in this list, has
been received.

• QS_TIMER A WM_ TIMER message has been received.

The function is used inside the message loop so that an action or actions
can take place in response to the signaling of a synchronization object while your
program is still processing messages.

The return value is WAIT_OBJECT_O up to WAIT_OBJECT_O + nCount-1
for the objects in the handle array. If a message causes the function to return,
the return value is WAIT_OBJECT_O + nCount. An example of how this func
tion might be used follows. In this code, the handle array has only one entry,
hSyncHandle.

fContinue = TRUE;
while (fContinue)

Semaphores

re= MsgWaitForMultipleObjects (1, &hSyncHandle, FALSE,
INFINITE, QS_ALLINPUT);

if (re == WAIT_OBJECT_0) {
II
II Do work as a result of sync object.
II

else if (re == WAIT_OBJECT_0 + 1) {
II It's a message; process it.
PeekMessage (&msg, hWnd, 0, 0, PM_REMOVE);
if (msg.message == WM_QUIT)

fContinue = FALSE;
else {

TranslateMessage (&msg);
DispatchMessage (&msg);

Earlier I described the event object. That object resides in either a signaled or a
nonsignaled state. Events are synchronization objects that are not all or nothing,
signaled or nonsignaled. Semaphores, on the other hand, maintain a count. As

509

Part II Windows CE Basics

510

long as that count is above 0, the semaphore is signaled. When the count is 0,
the semaphore is nonsignaled.

Threads wait on semaphore objects as they do events, using WaitForSingleObject
or WaitForMultipleObjects. When a thread waits on a semaphore, the thread is
blocked until the count is greater than 0. When another thread releases the sema
phore, the count is incremented and the thread blocking on the semaphore re
turns from the wait function. The maximum count value is defined when the
semaphore is created so that a programmer can define how many threads can
access a resource protected by a semaphore.

Semaphores are typically used to protect a resource that can be accessed
only by a set number of threads at one time. For example, if you have a set of
five buffers for passing data, you can allow up to five threads to grab a buffer
at any one time. When a sixth thread attempts to access the buffer array protected
by the semaphore, it will be blocked until one of the other threads releases the
semaphore.

To create a semaphore, call the function

HANDLE CreateSemaphore (LPSECURITY_ATTRIBUTES lpSemaphoreAttributes,
LONG linitialCount, LONG lMaximumCount,
LPCTSTR lpName);

The first parameter, lpSemaphoreAttributes, should be set to NULL. The parameter
llnitia!Count is the count value when the semaphore is created and must be greater
than or equal to 0. If this value is greater than 0, the semaphore will be initially
signaled. The lMaximumCount parameter should be set to the maximum allow
able count value the semaphore will allow. This value must be greater than 0.

The final parameter, lpName, is the optional name of the object. This pa
rameter can point to a name or be NULL. As with events, if two threads call
CreateSemaphore and pass the same name, the second call to CreateSemaphore
returns the handle to the original semaphore instead of creating a new object.
In this case, the other parameters, llnitialCount and lMaximumCount, are ignored.
To determine whether the semaphore already exists, you can call GetLastError and
check the return code for ERROR_ALREADY_EXISTS.

When a thread returns from waiting on a semaphore, it can perform its work
with the knowledge that only lMaximumCount threads or fewer are running
within the protection of the semaphore. When a thread has completed work with
the protected resource, it should release the semaphore with a call to

BOOL ReleaseSemaphore (HANDLE hSemaphore, LONG lReleaseCount,
LPLONG lpPreviousCountl;

The first parameter is the handle to the semaphore. The lReleaseCount parame
ter contains the number by which you want to increase the semaphore's count
value. This value must be greater than 0. While you might expect this value to

Mutexes

Processes and Threads Chapter 8

always be 1, sometimes a thread might increase the count by more than 1. The
final parameter, lpPreviousCount, is set to the address of a variable that will re
ceive the previous resource count of the semaphore. You can set this pointer to
NULL if you don't need the previous count value.

To destroy a semaphore, call CloseHandle. If more than one thread has
created the same semaphore, all threads must call CloseHandle, or more precisely,
CloseHandle must be called as many times as CreateSemaphore was called be
fore the operating system destroys the semaphore.

Another function, OpenSemaphore, is supported on the desktop versions
of Windows but not supported by Windows CE. This function is redundant on
Windows CE because a thread that wants the handle to a named semaphore can
just as easily call CreateSemaphore and check the return code from GetLastError
to determine whether it already exists.

Another synchronization object is the mutex. A mutex is a synchronization ob
ject that's signaled when it's not owned by a thread and nonsignaled when it is
owned. Mutexes are extremely useful for coordinating exclusive access to a
resource such as a block of memory across multiple threads.

A thread gains ownership by waiting on that mutex with one of the wait
functions. When no other threads own the mutex, the thread waiting on the mutex
is unblocked and implicitly gains ownership of the mutex. After the thread has
completed the work that requires ownership of the mutex, the thread must ex
plicitly release the mutex with a call to ReleaseMutex.

To create a mutex, call this function:

HANDLE CreateMutex (LPSECURITY_ATTRIBUTES lpMutexAttributes,
BOOL binitialOwner, LPCTSTR lpName);

The lpMutexAttributes parameter should be set to NULL. The blnitialOwner pa
rameter lets you specify that the calling thread should immediately own the mutex
being created. Finally, the lpName parameter lets you specify a name for the object
so that it can be shared across other processes. When calling CreateMutex with
a name specified in the lpName parameter, Windows CE checks whether a mutex
with the same name has already been created. If so, a handle to the previously
created mutex is returned. To determine whether the mutex already exists, call
GetLastError. It returns ERROR_ALREADY _EXISTS if the mutex has been previ
ously created.

Gaining immediate ownership of a mutex using the blnitialOwner parameter
works only if the mutex is being created. Ownership isn't granted if you're opening
a previously created mutex. If you need ownership of a mutex, be sure to call

511

Part II Windows CE Basics

GetLastError to determine whether the mutex had been previously committed.
If so, call WaitForSingleObject to gain ownership of the mutex.

You release the mutex with this function:

BOOL ReleaseMutex (HANDLE hMutex);

The only parameter is the handle to the mutex.
If a thread owns a mutex and calls one of the wait functions to wait on that

same mutex, the wait call immediately returns because the thread already owns
the mutex. Since mutexes retain an ownership count for the number of times the
wait functions are called, a call to ReleaseMutex must be made for each nested
call to the wait function.

To close a mutex, call CloseHandle. As with events and semaphores, if
multiple threads have opened the same mutex, the operating system doesn't
destroy the mutext until it has been closed the same number of times that
CreateMutex was called.

Critical Sections

512

Using critical sections is another method of thread synchronization. Critical sec
tions are good for protecting sections of code from being executed by two dif
ferent threads at the same time. Critical sections work by having a thread call
EnterCritica!Section to indicate that it has entered a critical section of code. If
another thread calls EnterCriticalSection referencing the same critical section
object, it's blocked until the first thread makes a call to LeaveCriticalSection.
Critical sections can protect more than one linear section of code. All that's re
quired is that all sections of code that need to be protected use the same critical
section object. The one limitation of critical sections is that they can be used to
coordinate threads only within a process.

Critical sections are similar to mutexes, with a few important differences.
On the downside, critical sections are limited to a single process by means of
which mutexes can be shared across processes. But this limitation is also an ad
vantage. Because they're isolated to a single process, critical sections are imple
mented so that they're significantly faster than mutexes. If you don't need to share
a resource across a process boundary, always use a critical section instead of a
mutex.

To use a critical section, you first create a critical section handle with this
function:

void InitializeCriticalSection (LPCRITICAL_SECTION lpCriticalSection);

The only parameter is a pointer to a CRITICAL_SECTION structure that you define
somewhere in your application. Be sure not to allocate this structure on the stack

Processes and Threads Chapter 8

of a function that will be deallocated as soon the function returns. You should
also not move or copy the critical section structure. Since the other critical sec
tion functions require a pointer to this structure, you'll need to allocate it within
the scope of all functions using the critical section. While the CRITICAL_SECTION
structure is defined in WINBASE.H, an application doesn't need to manipulate
any of the fields in that structure. So for all practical purposes, think of a pointer
to a CRITICAL_SECTION structure as a handle instead of as a pointer to a struc
ture of a known format.

When a thread needs to enter a protected section of code, it should call this
function:

void EnterCriticalSection (LPCRITICAL_SECTION lpCriticalSection);

The function takes as its only parameter a pointer to the critical section struc
ture initialized with InitializeCriticalSection. If the critical section is already owned
by another thread, this function blocks the new thread and doesn't return until
the other thread releases the critical section. If the thread calling EnterCriticalSection
already owns the critical section, a use count is incremented and the function
returns immediately.

If you need to enter a critical section but can't afford to be blocked wait
ing for that critical section, you can use the function

BOOL TryEnterCriticalSection (LPCRITICAL_SECTION lpCriticalSection);

TryEnterCriticalSection differs from EnterCriticalSection because it always returns
immediately. If the critical section was unowned, the function returns TRUE and
the thread now owns the critical section. If the critical section is owned by an
other thread, the function returns FALSE. This function, added in Windows CE
3.0, allows a thread to attempt to perform work in a critical section without being
forced to wait until the critical section is free.

When a thread leaves a critical section, it should call this function:

void LeaveCriticalSection (LPCRITICAL_SECTION lpCriticalSection);

As with all the critical section functions, the only parameter is the pointer to the
critical section structure. Since critical sections track a use count, one call to
LeaveCriticalSection must be made for each call to EnterCriticalSection by the
thread that owns the section.

Finally, when you're finished with the critical section, you should call

void DeleteCriticalSection (LPCRITICAL_SECTION lpCriticalSection);

This action cleans up any system resources used to manage the critical section.

513

Part II Windows CE Basics

Interlocked Variable Access
Here's one more low-level method for synchronizing threads-using the func
tions for interlocked access to variables. While programmers with multithread
experience already know this, I need to warn you that Murphy's Law2 seems to
come into its own when you're using multiple threads in a program. One of the
sometimes overlooked issues in a preemptive multitasking system is that a thread
can be preempted in the middle of incrementing or checking a variable. For
example, a simple code fragment such as

if(!i++){

II Do something because i was 0.

can cause a great deal of trouble. To understand why, let's look into how that
statement might be compiled. The assembly code for that if statement might look
something like this:

load regl, [addr of i] ;Read variable
add reg2, regl, 1 ;reg2 = regl + 1
store reg2, [addr of i] :Save incremented var
bne regl, zero, skipblk ;Branch regl != zero

There's no reason that the thread executing this section of code couldn't
be preempted by another thread after the load instruction and before the store
instruction. If this happened, two threads could enter the block of code when
that isn't the way the code is supposed to work. Of course, I've already described
a number of methods (such as critical sections and the like) that you can use to
prevent such incidents from occurring. But for something like this, a critical section
is overkill. What you need is something lighter.

Windows CE supports three of the interlocked functions from the Win32
API; Interlockedlncrement, InterlockedDecrement, and InterlockedExchange. Each
of these allows a thread to increment, decrement, and exchange a variable without
your having to worry about the thread being preempted in the middle of the
operation. The functions are prototyped here:

LONG Interlockedlncrement(LPLONG lpAddend);

LONG InterlockedDecrement(LPLONG lpAddend);

LONG InterlockedExchange(LPLONG Target, LONG Value);

For the interlocked increment and decrement, the one parameter is a pointer
to the variable to increment or decrement. The returned value is the new value of

2. Murphy's Law: Anything that can go wrong will go wrong. Murphy's first corollary: When something goes
wrong, it happens at the worst possible moment.

514

Processes and Threads Chapter 8

the variable after it has been incremented or decremented. Tbe InterlockedExchange
function takes a pointer to the target variable and the new value for the variable.
It returns the previous value of the variable. Rewriting the previous code frag
ment so that it's thread safe produces this code:

if (!Interlockedincrement(&i)) {
II Do something because i was 0.

}

Windows CE Security
While Windows CE doesn't implement the thread- and process-level security of
the Windows NT /2000/XP line, it does have an optional level of module-based
security. This security scheme is based on the concept of trusted and untrusted
modules. The modules are the executables (.EXEs) and dynamic-link libraries
(DLLs). Trusted modules can access anything in the system, while untrusted
modules are refused access to a handful of protected functions and registry keys.

The Windows CE security scheme must be implemented by the OEM when
it ports Windows CE to its hardware. When an executable or DLL is loaded, the
operating system notifies the OAL, the OEM abstraction layer, underneath the
operating system. The OAL then decides, by whatever means it chooses, to mark
the executable or DLL as being trusted or untrusted. This check happens only
for modules loaded from the object store or external media. Modules loaded
directly from ROM are assumed to be trusted because the OEM made the deci
sion about what modules were present in the ROM. For systems that don't imple
ment this security scheme, all modules are considered trusted.

Because trusted modules have free reign, the only interesting case is what
happens if a module is untrusted. When an untrusted module calls a protected
function, such as the function VirtualCopy, the call fails. Calling GetLastError then
returns ERROR_ACCESS_DENIED. A handful of registry keys and their descen
dants are also protected. Untrusted modules can read a protected registry key,
but any attempt to modify a protected key or create values or keys underneath
a protected key results in an ERROR_ACCESS_DENIED failure. A list of the pro
tected functions3 and registry keys is shown in Figure 8-1.

There are a few interesting derivations of this security scheme. What hap
pens when a trusted executable unknowingly loads an untrusted DLL? What if
an untrusted executable loads a trusted DLL? Finally, how is a device driver
supposed to react to a call from an untrusted module? Actually, the rules are
fairly simple.

3. There are a number of undocumented functions that are also protected but not included in this list.

515

Part II Windows CE Basics

Figure 8-1 The list of restricted functions and registry keys

If a trusted module attempts to load an untrusted DLL, the load fails. If an
untrusted module loads a trusted DLL, the trust level of the DLL is reduced to
untrusted. A module can determine its trust state by calling the function

DWORD CeGetCurrentTrust (void);

The return value for this function is either OEM_CERTIFY_TRUST, which signi
fies that the module is running in a trusted state, or OEM_CERTIFY_RUN, which
indicates that the module is currently untrusted. If a module requires access to
trusted functions, it can call CeGetCurrentTrust at its initialization, and if it dis
covers that it's running in an untrusted state, it can fail its initialization.

Device drivers operate in a different process space from standard applica
tions, but sometimes a device driver might need to check the trust state of a calling
application. Here's the function that accomplishes this task:

DWORD CeGetCallerTrust (void);

The return values are the same as for CeGetCurrentTrust, OEM_CERTIFY_TRUST,
and OEM_CERTIFY_RUN.

Interprocess Communication

516

Quite often, two Windows CE processes need to communicate. The walls be
tween processes that protect processes from one another prevent casual exchang
ing of data. The memory space of one process isn't exposed to another process.
Handles to files or other objects can't be passed from one process to another.

Processes and Threads Chapter 8

Windows CE doesn't support the DuplicateHandle function available under
Windows XP, which allows one process to open a handle used by another pro
cess. Nor, as I mentioned before, does Windows CE support handle inheritance.
Some of the other more common methods of interprocess communication, such
as named pipes, are also not supported under Windows CE. However, you can
choose from plenty of ways to enable two or more processes to exchange data.

Finding Other Processes
Before you can communicate with another process, you have to determine
whether it's running on the system. Strategies for finding whether another process
is running depend mainly on whether you have control of the other process. If
the process to be found is a third-party application in which you have no control
over the design of the other process, the best method might be to use the
FindWindow function to locate the other process's main window. FindWindow
can search either by window class or by window title. You can enumerate the
top-level windows in the system using EnumWindows. You can also use the
ToolHelp debugging functions to enumerate the processes running, but this works
only when the ToolHelp DLL is loaded on the system, and unfortunately, it g~n

erally isn't included, by default, on most systems.
If you're writing both processes, however, it's much easier to enumerate

them. In this case, the best methods include using the tools you'll later use in
one process to communicate with the other process, such as named mutexes,
events, or memory-mapped objects. When you create one of these objects, you
can determine whether you're the first to create the object or you're simply
opening another object by calling GetLastError after another call created the
object. And the simplest method might be the best; call FindWindow.

The classic case of using FindWindow on a Pocket PC occurs when an
application must determine whether another copy of itself is already running.
According to the Pocket PC and the earlier Palm-size PC guidelines, an applica
tion must allow only one copy of itself to run at a time. Following is a code frag
ment that all the examples in this book use for accomplishing this task.

II If Pocket PC, allow only one instance of the application.
HWND hWnd = FindWindow (szAppName, NULL);
if (hWnd) {

SetForegroundWindow ((HWND)(((DWORD)hWnd) I 0x01));
return -1;

The first statement uses FindWindow to find a window class of the same name
as the class of the application's main window. Because this call is made before
the main window is created in the application, the only way the window could

517

Part II Windows CE Basics

518

have been found, assuming you're using a unique name for your window class,
is for it to have already been created by another copy of your application. An
advantage of this technique is that FindWindow returns the handle of the main
window of the other instance. In the case of the Pocket PC, we want to set that
instance in the foreground, which is what we do with the subsequent call to
SetForegroundWindow. The ORing of the 1 to the window handle is a hack of
Windows CE that causes the window being activated to be restored if it was in
a minimized state.

WM_COPYDATA
After you find your target process, the talking can begin. If you're staying at the
window level, you can simply send a WM_COPYDATA message. WM_COPYDATA
is unique in that it's designed to send blocks of data from one process to another.
You can't use a standard user-defined message to pass pointers to data from one
process to another because a pointer isn't valid across processes. WM_COPYDATA
gets around this problem by having the system translate the pointer to a block
of data from one process's address space to another's. The recipient process is
required to copy the data immediately into its own memory space, but this
message does provide a quick-and-dirty method of sending blocks of data from
one process to another.

Named Memory-Mapped Objects
The problem with WM_COPYDATA is that it can be used only to copy fixed blocks
of data at a specific time. Using a named memory-mapped object, two processes
can allocate a shared block of memory that's equally accessible to both processes
at the same time. You should use named memory-mapped objects so that the
system can maintain a proper use count on the object. This procedure prevents
one process from freeing the block when it terminates while the other process
is still using the block.

Of course, this level of interaction comes with a price. You need some
synchronization between the processes when they're reading and writing data
in the shared memory block. The use of named mutexes and named events al
lows processes to coordinate their actions. Using these synchronization objects
requires the use of secondary threads so that the message loop can be serviced,
but this isn't an exceptional burden.

I described how to create memory-mapped objects in Chapter 7. The ex
ample program that shortly follows uses memory-mapped objects and synchro
nization objects to coordinate access to the shared block of memory.

Processes and Threads Chapter 8

Communicating with Files and Databases
A more basic method of interprocess communication is the use of files or a custom
database. These methods provide a robust, if slower, communication path. Slow
is relative. Files and databases in the Windows CE object store are slow in the
sense that the system calls to access these objects must find the data in the ob
ject store, uncompress the data, and deliver it to the process. However, since the
object store is based in RAM, you see none of the extreme slowness of a me
chanical hard disk that you'd see under the desktop versions of Windows.

The XTalk Example Program
The following example program, XTalk, uses events, mutexes, and a shared
memory-mapped block of memory to communicate among different copies of
itself. The example demonstrates the rather common problem of one-to-many
communication. In this case, the XTalk window has an edit box with a Send button
next to it. When a user taps the Send button, the text in the edit box is commu
nicated to every copy of XTalk running on the system. Each copy of XTalk re
ceives the text from the sending copy and places it in a list box, also in the XTalk
window. Figure 8-2 shows two XTalk programs communicating.

Figure 8-2 The desktop showing two XTalk windows

To perform this feat of communication, XTalk uses a named memory-mapped
object as a transfer buffer, a mutex to coordinate access to the buffer, and two
event objects to indicate the start and end of communication. A third event is
used to tell the sender thread to read the text from the edit control and write the
contents to the shared memory block. Figure 8-3 shows the source code for XTalk.

519

Part II Windows CE Basics

Figure 8-3 The source code for XTalk

520

Processes and Threads Chapter 8

LRESULT (*Fxn)(HWND, UINT, WPARAM. LPARAM);
} ;

struct decodeCMD {
UINT Code:
LRESULT (*Fxn)(HWND. WORD, HWND, WORD);

} ;

II Structure associates
II menu IDs with a
II function.

ff···-----------·----------------···-··--···--··-··•••C·----·-----------
ff Generic defines used by application
#define ID_ICON . .1

1fdefine IDD ... JNTEXT
j/de.f.ine IDD_SENDTEXT
#d~fi ne IDD_OUTTEXT
' :
w;Jeffne ··

(continued)

521

Part II Windows CE Basics

Figure 8-3 (continued)

522

Processes and Threads Chapter 8

II
int WINAPI WinMain CHINSTANCE hlnstance, HINSTANCE hPrevlnstance,

LPWSTR lpCmdLine, int nCmdShow) {
MSG msg;
int re= 0;
HWND hwndMain;

II Initialize application.
re= InitApp (hinstance);
if (re) return re;

II Initialize this instance.
hwndMain = Initinstance (hinstance, lpCmdLine, nCmdShow);
if (hwndMain == 0)

return Termlnstance (hln~tance, 0x10);

II Application message loop
while CGetMessage (&msg, NULL, 0, 0)) {

CChwlldMain ==0) 1 l·· llsDfalogMes$age
TranslateMessage (&ms(:I):

II
int lnitApp.(HINSTANCE

WNDCLASS we;

// H Po.cket PC. bring the other copy to the
It the user can se:e it.
HWND l\Wnd "' FindWindow (szAppName, NULL);

ChWnd) SetforegroundWindOW· ((HWNDJ{((DWORDlhWnd)
4/:endi f

// Regfster app1 fcati on main window cl ass.
we.style"' 0; · II
we .lpfnWndP roe.·"' Main WndP roe;
wc'.cbClsExtra•:". 0;

ll
II
II we .cbWndExtra = DLGWINDOWEXTRA;

wc.hinstance .,,,·.· h1nstance;
wc.hlcilrt = NULL:

11 Owner. handle
II

wc .. hCursor· • NULL; II cursor

(continued)

523

Part II Windows CE Basics

Figure 8-3 (continued)

524

}.

Processes and Threads Chapter 8

II Increment app running count. Interlock not needed due to mutex.
g_pBuff->nAppCnt++;

II Release the mutex. We need to release the mutex twice
II if we owned it when we entered the wait above.
ReleaseMutex (g_hmWriteOkay);
if Cf Fi rstApp)

ReleaseMutex (g_hmWriteOkay);

II Now create events for read, and send notifi~ation.
g_hSendEvent = CreateEvent (NULL, FALSE, FALSE, NULL);
g_hReadEvent = CreateEvent <NULL .• TRUE. FALSE, TEXT ("XTALKREAD" l l;
g_hReadDoneEvent = CreateEvent CNUU, FALSE, FALSE;

. TEXT ("XTALKDONE~'}) ,:
, . ; .. '''

if < ! g_hReadEvent 11 !g~hSendEvent f I ! g_hReadDorieEvent)
r.eturn 0:

II Cr•ate·ma1n.window.
hWrld ;;. Cre~teoi alog Chlnst,
re··"'· !:lelLastErrorO r

·; f·.•.rrf· .. , .. • .•.. ,; ..• , .. , •. . : : · .. ;·
. ••, • :F1 r$t,..pp. , ; · • .· .. • .. ·.:

··;G~fWi n9owRect·(hW.ntlo &r~t}; · .. ·.
HoveWindl)w (liWnd; r·ec:t .. ieft+1@; 'rect'.ti>p+10;

r~ct. rf~h.t.• r:ect: left;··· rec,t, bottqrn-rec{,to'po.

11.• Cr~it~ .se~on•aary~ th~e~·.d.s;lo~··intetp•~ocess.·• .co~m~A~cation~·•···
flThreai: CreateTh.reaci (f{UU~ 0, S~ndercThitead, hWnd. 0. ,&re);

.·. ff C~lhrea~) .· ·•. ·
•···.• / ii+use11an-01e• cfirh'r~acti:•·.

·aJse• ... f .. ·.·•··•·•· .···········•.•·.·•.· o~ stroyW)•ndow
r~~.Urn l: · ·

hThrea.d.·i'=•···.CreaiieThread
if ~ hlhread)

.· .· · ~roseHandTe· Chfl!read l ;
el ... M'. { . ., , .. /·::_?·:

··"c· . •·.·· .. ·:· . •••··· : ... ·
· ... • . ·. o~stro~w1r)<i~w;cnwtia1 i •.

~~t.U.rji ·0 k .. ·•• : : ·
··}:

. n· R~tuj:>ri fa1l·:(;'Qde if:W'.indow note
; f. ur~win~~w. £~wn\i)l ~et urn 0; ..

11 Stari4ard;sfi~~·~·~/update calls
ShowWitt<low (hWnd\ nCmdShowl;
UpdateWiritlX1~···(l!~nd)} · .

:· < ,. ; ••••

return •ti~riil;: •

(continued)

525

Part II Windows CE Basics

Figure 8-3 (continued)

526

Processes and Threads Chapter 8

11--
11 DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParaml {
#if defined(WIN32_PLATFORM_PSPC) && (_WIN32_WCE >= 300)

SHMENUBARINFO mbi; II For Pocket PC, create
memset(&mbi, 0, sizeof(SHMENUBARINFO)); II menu bar so that we
mbi.cbSize • sizeof(SHMENUBARINFO); II have a sip button.
mbi.hwndParent • hWnd;
mbi. dwFl ags "' SHCMBF_EMPTYBAR;
SHCreateMenuBarc&mbil:

#endif
return 0;

}

II

I I - - - - - - - - - - - - - ~ • - - ~-- ; ~ - - - - - - -- - - - - - - - - - - - - - - -- • -.~ -

LRESUL T DoSetFoc.usM&i~ {HWNl1 hWnd;
. _ . _·---.-- >- _ -· .·· ,: ·,; .. : / ~~,A.RAM

SetFocius .(GetDlgLtem IhWnd,
' "~, ·,

}

If;. - :: "- "'•' ~:.§;.:_~:".~" ~i;·e
. I I OoCollUllandM~~in· ,.:: Prifc~s s ._ .WM:.::.COMMA~D
, II , ''• ,, ..

LREsu Lr Qotoniltia~~M~1 i{(H~_NoJ1Wnd'. _ u r NT.
--:-•.,,··-· ·>:tPARAM lPa.ram) {'

WORD :ictltem; \.itltftJfyCode;
HWNO hwlldCtl; : . -
lNT f ;;

·11 Par$e_th.epa~lJiete.rs.
iditem c= (w(}f{fjJ'LoWORb CwParam>:

, wNotifYco<I•- i;JWflRIH •• !HJIORD (wParam);
, hwndCtl .~/(liWND~· lPat'aiit: ,

:~·- :·::·.-' ,,, . . ' ~,, .::, ··;

·--Ir-" ---. ~ ·' -; "i~,.~jcL: .• ~~=\~4-: -- ~.-:"'-~ ·: _
.II DoOestroyf4i!i-!l/::J1f!OCess WM_DE;STROY

:, ~!< ·.i - ,

(continued)

527

Part II Windows CE Basics

Figure 8-3 (continued)

528

Processes and Threads Chapter 8

}

else

II Wait while reader threads get data.
while (g_pBuff->nReadCnt)

re= WaitForSingleObjeet (g_hReadOoneEvent,
INFINITE):

ReleaseMutex (g_hmWriteOkay);

return -1;

return 0:

I l===================·===:i;:============================#================
II ReaderThread - Perform~the.interproeess eommunieatiqn
II
int ReaderThread (PVOID pArg) {

HWND hWnd;
INT nGoCode, re, i;
TCHAR szText[TEXTSIZE].)

(g,.;.hReadEv.ent,
{

InterfockedOecr~llient. <&g.:.pBuff~>nReadCnt):
SetEverit (gJRe~dOi:lneEventl;

else {
re = GettastErrorh:
wsprintf CszTel<t, TEXT ("re:%d"l, rel;
MessageBox (hWndi s:zText, TEXT C"ReadThread

The interesting routines in the XTalk example are the Initlnstance proce
dure and the two thread procedures Sender1bread and Reader1bread. The rel
evant part of Initlnstance is shown below with the error checking code removed
for brevity.

II Create mutex used to share memory-mapped structure.
g_hmWriteOkay = CreateMutex (NULL, TRUE, TEXT ("XTALKWRT"ll;
re= GetLastError();
if (re == ERROR_ALREADY_EXISTS)

fFirstApp = FALSE;
(continued)

529

Part II Windows CE Basics

530

II Wait here for ownership to ensure that the initialization is done.
II This is necessary since CreateMutex doesn't wait.
re= WaitForSingleObject (g_hmWriteOkay, 2000);
if (re != WAIT_OBJECT_0)

return 0;

II Create a file-mapping object.
g_hMMObj = CreateFileMapping ((HANDLE)-1, NULL, PAGE_READWRITE, 0,

MMBUFFSIZE, TEXT ("XTALKBLK"));

II Map into memory the file-mapping object.
g_pBuff = CPSHAREBUFF)MapViewOfFile (g_hMMObj, FILE_MAP_WRITE,

0' 0' 0);

II Initialize structure if first application started.
if C fFi rstApp)

memset (g_pBuff, 0, sizeof CSHAREBUFF));

II Increment app running count. Interlock not needed due to mutex.
g_pBuff->nAppCnt++;

II Release the mutex. We need to release the mutex twice
II if we owned it when we entered the wait above.
ReleaseMutex (g_hmWriteOkay);
if (fFi rstApp)

ReleaseMutex (g_hmWriteOkay);

II Now create events for read and send notification.
g_hSendEvent = CreateEvent (NULL, FALSE, FALSE, NULL);
g_hReadEvent = CreateEvent (NULL, TRUE, FALSE, TEXT C"XTALKREAD"));
g_hReadDoneEvent = CreateEvent (NULL, FALSE, FALSE,

TEXT C"XTALKDONE"));

This code is responsible for creating the necessary synchronization objects
as well as creating and initializing the shared memory block. The mutex object
is created first with the parameters set to request initial ownership of the mutex
object. A call is then made to GetLastError to determine whether the mutex object
has already been created. If not, the application assumes that the first instance
of XTalk is running and later will initialize the shared memory block. Once the
mutex is created, an additional call is made to WaitForSingleObject to wait until
the mutex is released. This call is necessary to prevent a late-starting instance
of XTalk from disturbing communication in progress. Once the mutex is owned, calls
are made to CreateFileMapping and MapViewOJFile to create a named memory
mapped object. Since the object is named, each process that opens the object
opens the same object and is returned a pointer to the same block of memory.

Processes and Threads Chapter 8

Once the shared memory block is created, the first instance of XTalk zeroes
out the block. This procedure also forces the block of RAM to be committed
because memory-mapped objects by default are autocommit blocks. Then nAppCnt,
which keeps a count of the running instances of XTalk, is incremented. Finally
the mutex protecting the shared memory is released. If this is the first instance
of XTalk, ReleaseMutex must be called twice because it gains ownership of the
mutex twice-once when the mutex is created and again when the call to
WaitForSingleObject is made.

Finally, three event objects are created. SendEvent is an unnamed event,
local to each instance of XTalk. The primary thread uses this event to signal the
sender thread that the user has pressed the Send button and wants the text in
the edit box transmitted. ReadEvent is a named event that tells the other instances
of XTalk that there's data to be read in the transfer buffer. ReadDoneEvent is
a named event signaled by each of the receiving copies of XTalk to indicate that
they have read the data.

The two threads, ReaderThread and SenderThread, are created immedi
ately after the main window of XTalk is created. The code for SenderThread
is shown here:

int SenderThread (PVOID pArg) {
HWND hWnd;
INT nGoCode, re;
TCHAR szText[TEXTSIZE];

hWnd = (HWND)pArg;
while (1) {

nGoCode = WaitForSingleObjeet (g_hSendEvent, INFINITE);
if (nGoCode == WAIT_OBJECT_0) {

SendDlgitemMessage (hWnd, IDD_OUTTEXT, WM_GETTEXT,
sizeof (szText), (LPARAM)szText);

re WaitForSingleObject (g_hmWriteOkay, 2000);
if (re == WAIT_OBJECT_0) {

return 0;

lstrepy (g_pBuff->szText, szText);
g_pBuff->nReadCnt = g_pBuff->nAppCnt;
PulseEvent (g_hReadEvent);

II Wait while reader threads get data.
while (g_pBuff->nReadCnt)

re = WaitForSingleObjeet (g_hReadDoneEvent,
INFINITE);

ReleaseMutex (g_hmWriteOkay);

531

Part II Windows CE Basics

532

The routine waits on the primary thread of XTalk to signal SendEvent. The
primary thread of XTalk makes the signal in response to a WM_COMMAND
message from the Send button. The thread is then unblocked, reads the text from
the edit control, and waits to gain ownership of the WriteOkay mutex. This mutex
protects two copies of XTalk from writing to the shared block at the same time.
When the thread owns the mutex, it writes the string read from the edit control
into the shared buffer. It then copies the number of active copies of XTalk into
the nReadCnt variable in the same shared buffer and pulses ReadEvent to tell
the other copies ofXTalk to read the newly written data. A manual resetting event
is used so that all threads waiting on the event will be unblocked when the event
is signaled.

The thread then waits for the nReadCnt variable to return to 0. Each time
a reader thread reads the data, the nReadCnt variable is decremented and the
ReadDone event signaled. Note that the thread doesn't spin on this variable but
uses an event to tell it when to check the variable again. This would actually be
a great place to use WaitForMultipleObjects and have all reader threads signal
when they've read the data, but Windows CE doesn't support the WaitAll flag
in WaitForMultipleObjects.

Finally, when all the reader threads have read the data, the sender thread
releases the mutex protecting the shared segment and the thread returns to wait
for another send event.

The ReaderTbread routine is even simpler. Here it is:

int ReaderThread CPVOID pArg) {
HWND hWnd;
INT nGoCode, re, i;
TCHAR szText[TEXTSIZEJ;

hWnd = CHWND)pArg;
while (1) {

nGoCode = WaitForSingleObject (g_hReadEvent, INFINITE);
if (nGoCode == WAIT_OBJECT_0) {

i = SendDlgltemMessage (hWnd, IDD_INTEXT, LB_ADDSTRING, 0,
(LPARAM)g_pBuff->szText);

SendDlgitemMessage (hWnd, IDD_INTEXT, LB_SETTOPINDEX, i, 0);

InterlockedDecrement (&g_pBuff->nReadCnt);
SetEvent (g_hReadDoneEvent);

return 0;

The reader thread starts up and immediately blocks on ReadEvent. When
it's unblocked, it adds the text from the shared buffer into the list box in its

Processes and Threads Chapter 8

window. The list box is then scrolled to show the new line. After this is accom
plished, the nReadCnt variable is decremented using InterlockedDecrement to
be thread safe, and the ReadDone event is signaled to tell SenderThread to check
the read count. After that's accomplished, the routine loops around and waits
for another read event to occur.

Exception Handling
Windows CE, along with eMbedded C++, supports Microsoft's standard structured
exception handling extensions to the C language, the _try, _except and _try,
_finally blocks. Note that eMbedded Visual C++ doesn't support the full C++
exception handling framework with keywords such as catch and throw.

Windows exception handling is complex, and if I were to cover it com
pletely, I could easily write another entire chapter. The following review intro
duces the concepts to non-Win32 programmers and conveys enough information
about the subject for you to get your feet wet. If you want to wade all the way
in, the best source for a complete explanation of Win32 exception handling is
Jeffrey Richter's Programming Applications for Windows, 4th edition (Microsoft
Press, 1999).

The _try, _except Block
The first construct I'll talk about is the _try, _except block, which looks like this:

_try {

II Try some code here that might cause an exception.

_except (exception filter) {

II This code is depending on the filter on the except line.

Essentially, the try-except pair allows you the ability to anticipate excep
tions and handle them locally instead of having Windows terminate the thread
or the process because of an unhandled exception.

The exception filter is essentially a return code that tells Windows how to
handle the exception. You can hard code one of the three possible values or call
a function that dynamically decides how to respond to the exception.

If the filter returns EXCEPTION_EXECUTE_HANDLER, Windows aborts the
execution in the try block and jumps to the first statement in the except block. This
is helpful if you're expecting the exception and you know how to handle it. In
the code that follows, the access to memory is protected by a _try, _except block.

533

Part II Windows CE Basics

534

BYTE ReadByteFromMemory (LPBYTE pPtr, BOOL *bDataValid) {
BYTE ucData = 0;

*bDataValid =TRUE;
_try {

ucData = *PPtr;

_except (DecideHowToHandleException ()) {
II The pointer isn't valid; clean up.
ucData = 0;
*bDataValid = FALSE;

return ucData;

int DecideHowToHandleException (void)
return EXCEPTION_EXECUTE_HANDLER;

If the memory read line above wasn't protected by a _try, _except block
and an invalid pointer was passed to the routine, the exception generated would
have been passed up to the system, causing the thread and perhaps the process
to be terminated. If you use the _try, _except block, the exception is handled
locally and the process continues with the error handled locally.

Another possibility is to have the system retry the instruction that caused
the exception. You can do this by having the filter return EXCEPTION_ CONTINUE_
EXECUTION. On the surface, this sounds like a great option-simply fix the
problem and retry the operation your program was performing. The problem with
this approach is that what will be retried isn't the line that caused the exception,
but the machine instruction that caused the exception. The difference is illus
trated by the following code fragment that looks okay but probably won't work:

II An example that doesn't work ...
int Dividelt (int aVal, int bVal) {

intcVal;
_try {

cVal = aVal I bVal;

_except (EXCEPTION_CONTINUE_EXECUTION)
bVal = l;

return cVal;

The idea in this code is noble: protect the program from a divide-by-zero
error by ensuring that if the error occurs, the error is corrected by replacing b Val
with 1. The problem is that the line

cVal = aVal I bVal;

Processes and Threads Chapter 8

is probably compiled to something like the following on a MIPS-compatible CPU:

lw t6,aVal (spl ;Load aVal
lw t7 ,bVal (sp) ;Load bVal
div t6,t7 ; Perform the divide
SW t6,cVal (sp) ;Save result into cVal

In this case, the third instruction, the div, causes the exception. Restarting
the code after the exception results in the restart beginning with the div instruc
tion. The problem is that the execution needs to start at least one instruction earlier
to load the new value from b Val into the register. The moral of the story is that
attempting to restart code at the point of an exception requires knowledge of
the specific machine instruction that caused the exception.

The third option for the exception filter is to not even attempt to solve the
problem and to pass the exception up to the next, higher, _try, _except block
in code. The exception filter returns EXCEPTION_CONTINUE_SEARCH. Because
_try, _except blocks can be nested, it's good practice to handle specific prob
lems in a lower, nested, _try, _except block and more global errors at a higher level.

Determining the Problem
With these three options available, it would be nice if Windows let you in on
why the exception occurred. Fortunately, Windows provides the function

DWORD GetExceptionCode (void);

This function returns a code that indicates why the exception occurred in the
first place. The codes are defined in WINBASE.H and range from EXCEPTION_
ACCESS_ VIOLATION to CONTROL_C_EXIT, with a number of codes in between.
Another function allows even more information:

LPEXCEPTION_POINTERS GetExceptioninformation (void);

GetExceptionlnformation returns a pointer to a structure that contains pointers
to two structures: EXCEPTION_RECORD and CONTEXT. EXCEPTION_RECORD
is defined as

typedef struct _EXCEPTION_RECORD {
DWORD ExceptionCode;
DWORD ExceptionFlags;
struct _EXCEPTION_RECORD *ExceptionRecord;
PVOID ExceptionAddress;
DWORD NumberParameters;
DWORD Exceptioninformation[EXCEPTION_MAXIMUM_PARAMETERSJ;

EXCEPTION_RECORD;

535

Part II Windows CE Basics

The fields in this structure go into explicit detail about why an exception
occurred. To narrow the problem down even further, you can use the CONTEXT
structure. The CONTEXT structure is different for each CPU and essentially de
fines the exact state of the CPU when the exception occurred.

There are limitations on when these two exception information functions
can be called. GetExceptionCode can be called only from inside an except block
or from within the exception filter function. The GetExceptionlnformation function
can be called only from within the exception filter function.

The _try, _finally Block

536

Another tool of the structured exception handling features of the Win32 API is
the _try, _Jinally block. It looks like this:

_try {

II Do something here.

_finally

II This code is executed regardless of what happens in the try block.

The goal of the _try, _finally block is to provide a block of code, the finally
block, that always executes regardless of how the other code in the try block
attempts to leave the block. Unfortunately, the current Windows CE C compil
ers don't support leaving the _try block by a return or a goto statement. The
Windows CE compilers do support the _leave statement that immediately exits
the _try block and executes the _finally block, so there is some limited use
of a _try, _finally block if only to avoid using a goto statement simply to jump
to some common cleanup code.

In the past three chapters, I've covered the basics of the Windows CE ker
nel from memory to files to processes and threads. Now it's time to break from
this low-level stuff and start looking outward. The next section covers the dif
ferent communication aspects of Windows CE. I start at the low level, with ex
planations of basic serial and I/R communication and TAPI. Chapter 10 covers
networking from a Windows CE perspective. Finally, Chapter 11 covers Windows
CE to PC communications. That's a fair amount of ground to cover. Let's get
started.

Part Ill

Serial Communications
If there's one area of the Win32 API that Windows CE doesn't skimp, it's in
communication. It makes sense. Either systems running Windows CE are mobile,
requiring extensive communication functionality, or they're devices generally
employed to communicate with remote servers or as remote servers. In this
chapter, I introduce the low-level serial and infrared communication APis. You
use the infrared port at this level in almost the same manner as a serial port. The
only functional difference is that in its raw mode, infrared transmission is half
duplex, that is, transmission can occur in only one direction at a time.

Talking to a serial port involves opening and conversing with a serial device
driver. Talking to a device driver isn't a complicated process. In fact, in the tra
dition of most modern operating systems, applications in Windows CE access
device drivers through the file system API, using functions such as CreateFile,
ReadFile, WriteFile, and CloseHandle. In addition, there are times, and the se
rial driver occasions one of those times, when an application needs to talk to
the device, not just send data through the device. To do this, use the DeviceloControl
function. We'll use all these functions in this chapter.

Basic Serial Communication
The interface for a serial device is a combination of generic driver I/0 calls and
specific communication-related functions. The serial device is treated as a generic,
installable stream device for opening, closing, reading, and writing to the serial
port. For configuring the port, the Win32 API supports a set of Comm functions.
Windows CE supports most of the Comm functions supported by Windows XP.

A word of warning: programming a serial port under Windows CE isn't like
programming one under MS-DOS. You can't simply find the base address of the
serial port and program the registers directly. While there are ways for a program

539

Part Ill Communications

to gain access to the physical memory space, every Windows CE device has a
different physical memory map. Even if you solved the access problem by know
ing exactly where the serial hardware resided in the memory map, there's no
guarantee the serial hardware is going to be compatible with the 16550-compatible
serial interface we've all come to know and love in the PC world. In fact, the
implementation of the serial port on some Windows CE devices looks nothing
like a 16550.

But even if you know where to go in the memory map and the implemen
tation of the serial hardware, you still don't need to "hack down to the hardware."
The serial port drivers in Windows CE are interrupt-driven designs and are written
to support its specific serial hardware. If you have any special needs not pro
vided by the base serial driver, you can purchase the Microsoft Windows CE
Platform Builder and write a serial driver yourself. Aside from that extreme case,
there's just no reason not to use the published Win32 serial interface under
Windows CE.

Opening and Closing a Serial Port

540

As with all stream device drivers, a serial port device is opened using CreateFile.
The name used needs to follow a specific format: the three letters COM followed
by the number of the COM port to open and then a colon. The colon is required
under Windows CE and is a departure from the namillg convention used for device
driver names used in Windows XP and Windows Me. The following line opens
COM port 1 for reading and writing:

hSer = CreateFile (TEXT ("COMl:"), GENERIC_READ I GENERIG_WRITE,
0, NULL, OPEN_EXISTING, 0, NULL);

You must pass a 0 in the sharing parameter as well as in the security attributes
and the template file parameters of CreateFile. Windows CE doesn't support
overlapped I/0 for devices, so you can't pass the FILE_FLAG_OVERIAPPED flag
in the dwFlagsAndAttributes parameter. The handle returned is either the handle
to the opened serial port or INVALID_HANDLE_ VALUE. Remember that unlike
many of the Windows functions, CreateFile doesn't return a 0 for a failed open.

You close a serial port by calling CloseHandle, as in the following:

CloseHandle (hSer);

You don't do anything differently when using CloseHandle to close a serial device
than when you use it to close a file handle.

Serial Communications Chapter 9

Reading and Writing to a Serial Port
Just as you use the CreateFile function to open a serial port, you use the func
tions ReadFile and WriteFile to read and write to that serial port. Reading data
from a serial port is as simple as making this call to ReadFile:

INT re;
DWORD cBytes;
BYTE ch;

re= ReadFile(hSer, &ch, 1, &cBytes, NULL);

This call assumes the serial port has been successfully opened with a call to
CreateFile. If the call is successful, one byte is read into the variable ch, and cBytes
is set to the number of bytes read.

Writing to a serial port is just as simple. The call would look something like
the following:

INT re:
DWORD cBytes;
BYTE ch;

ch= TEXT ('a');
re= WriteFile(hSer, &ch, 1, &cBytes, NULL);

This code writes the character a to the serial port previously opened. As you may
remember from Chapter 7, both ReadFile and WriteFile return TRUE if successful.

Because overlapped 1/0 isn't supported under Windows CE, you should
be careful not to attempt to read or write a large amount of serial data from your
primary thread or from any thread that has created a window. Because those
threads are also responsible for handling the message queues for their windows,
they can't be blocked waiting on a relatively slow serial read or write. Instead,
you should use separate threads for reading and writing to the serial port.

You can also transmit a single character using this function:

BOOL TransmitCommChar (HANDLE hFile, char cChar);

The difference between the TransmitCommChar and WriteFile functions
is that TransmitCommChar puts the character to be transmitted at the front of
the transmit queue. When you call WriteFile, the characters are queued up after any
characters that haven't yet been transmitted by the serial driver. TransmitCommChar
allows you to insert control characters quickly in the stream without having to
wait for the queue to empty.

541

Part Ill Communications

Asynchronous Serial 1/0

542

While Windows CE doesn't support overlapped 1/0, there's no reason why you
can't use multiple threads to implement the same type of overlapped operation.
All that's required is that you launch separate threads to handle the synchronous
1/0 operations while your primary thread goes about its business. In addition
to using separate threads for reading and writing, Windows CE supports the Win32
WaitCommEvent function that blocks a thread until one of a group of preselected
serial events occurs. I'll demonstrate how to use separate threads for reading and
writing to a serial port in the CeChat example program later in this chapter.

You can make a thread wait on serial driver events by means of the following
three functions:

BOOL SetCommMask (HANDLE hFile, DWORD dwEvtMask);
BOOL GetCommMask (HANDLE hFile, LPDWORD lpEvtMask);

and

BOOL WaitCommEvent (HANDLE hFile, LPDWORD lpEvtMask,
LPOVERLAPPED lpOverlapped);

To wait on an event, you first set the event mask using SetCommMask. The
parameters for this function are the handle to the serial device and a combina
tion of the following event flags:

• EV_BREAK A break was detected.

• EV_CTS The Clear to Send (CTS) signal changed state.

• EV_DSR The Data Set Ready (DSR) signal changed state.

• EV_ERR An error was detected by the serial driver.

• EV_RLSD The Receive Line Signal Detect (RLSD) line changed state.

• EV_RXCHAR A character was received.

• EV_RXFLAG An event character was received.

• EV_TXEMP1Y The transmit buffer is empty.

You can set any or all of the flags in this list at the same time using
SetCommMask. You can query the current event mask using GetCommMask.

To wait on the events specified by SetCommMask, you call WaitCommEvent.
The parameters for this call are the handle to the device, a pointer to a DWORD
that will receive the reason the call returned, and lpOverlapped, which under
Windows CE must be set to NULL. The code fragment that follows waits on a
character being received or an error. The code assumes that the serial port has
already been opened and that the handle is contained in hComPort.

Serial Communications Chapter 9

DWORD dwMask;
II Set mask and wait.
SetCommMask (hComPort, EV_RXCHAR I EV_ERR);
if (WaitCommEvent (hComPort. &dwMask. 0) {

II Use the flags returned in dwMask to determine the reason
II for returning.
Switch (dwMask) {
case EV_RXCHAR:

//Read character.
break;

case EV_ERR:
II Process error.
break;

Configuring the Serial Port
Reading and writing to a serial port is fairly straightforward, but you also must
configure the port for the proper baud rate, character size, and so forth. The
masochist could configure the serial driver through device I/0 control (IOCTL)
calls, but the IoCtl codes necessary for this are exposed only in the Platform
Builder, not the Software Development Kit. Besides, here's a simpler method.

You can go a long way in configuring the serial port using two functions,
GetCommState and SetCommState, prototyped here:

BOOL SetCommState (HANDLE hFile, LPDCB lpDCB);
BOOL GetCommState (HANDLE hFile. LPDCB lpDCB);

Both these functions take two parameters, the handle to the opened serial port
and a pointer to a DCB structure. The extensive DCB structure is defined as
follows:

typedef struct _DCB {
DWORD DCBlength;
DWORD BaudRate;
DWORD fBinary: l;
DWORD fParity: 1;
DWORD fOutxCtsFlow:l;
DWORD fOutxDsrFlow:l;
DWORD fDtrControl :2;
DWORD fDsrSensitivity:l;
DWORD fTXContinueOnXoff:l;
DWORD fOutX: 1;
DWORD finX: l;
DWORD fErrorChar: 1;

(continued)

543

Part Ill Communications

544

DWORD fNull: 1;
DWORD fRtsControl :2;
DWORD fAbortOnError:l;
DWORD fDummy2:17;
WORD wReserved;
WORD Xonlim;
WORD Xofflim;
BYTE ByteSize;
BYTE Parity;
BYTE StopBits;
char XonChar;
char XoffCha r;
char ErrorChar;
char EofChar;
char EvtChar;
WORD wReservedl;

DCB;

As you can see from structure, SetCommState can set a fair number of
states. Instead of attempting to fill out the entire structure from scratch, you
should use the best method of modifying a serial port, which is to call GetCommState
to fill in a DCB structure, modify the fields necessary, and then call SetCommState
to configure the serial port.

The first field in the DCB structure, DCBlength, should be set to the size of
the structure. The BaudRate field should be set to one of the baud rate constants
defined in WINBASE.H. The baud rate constants range from CBR_llO for 110 bits
per second to CBR_256000 for 256 kilobits per second (Kbps). Just because
constants are defined for speeds up to 256 Kbps doesn't mean that all serial ports
support that speed. To determine what baud rates a serial port supports, you can
call GetCommProperties, which I'll describe shortly. Windows CE devices gen
erally support speeds up to 115 Kbps, although some support faster speeds. The
}Binary field must be set to TRUE because no Win32 operating system currently
supports a nonbinary serial transmit mode familiar to MS-DOS programmers. The
}Parity field can be set to TRUE to enable parity checking.

The jOutxCtsFlow field should be set to TRUE if the output of the serial port
should be controlled by the port CTS line. The JOutxDsrFlow field should be
set to TRUE if the output of the serial port should be controlled by the DSR
line of the serial port. The JDtrControl field can be set to one of three values:
DTR_CONTROL_DISABLE, which disables the DTR (Data Terminal Ready) line
and leaves it disabled; DTR_CONTROL_ENABLE, which enables the DTR line;
or DTR_CONTROL_HANDSHAKE, which tells the serial driver to toggle the DTR
line in response to how much data is in the receive buffer.

Serial Communications Chapter 9

The jDsrSensitivity field is set to TRUE, and the serial port ignores any in
coming bytes unless the port DSR line is enabled. Setting the.fIXContinueOnXoff
field to TRUE tells the driver to stop transmitting characters if its receive buffer
has reached its limit and the driver has transmitted an XOFF character. Setting
the fOutX field to TRUE specifies that the XON/XOFF control is used to control
the serial output. Setting the ftnX field to TRUE specifies that the XON/XOFF
control is used for the input serial stream.

The jErrorChar and ErrorChar fields are ignored by the default implemen
tation of the Windows CE serial driver, although some drivers might support these
fields. Likewise, the jAbortOnError field is also ignored. Setting the jNull field
to TRUE tells the serial driver to discard null bytes received.

The jRtsControl field specifies the operation of the RTS (Request to Send)
line. The field can be set to one of the following: RTS_CONTROL_DISABLE,
indicating that the RTS line is set to the disabled state while the port is open;
RTS_CONTROL_ENABLE, indicating that the RTS line is set to the enabled state
while the port is open; or RTS_CONTROL_HANDSHAKE, indicating that the RTS
line is controlled by the driver. In this mode, the RTS line is enabled if the serial
input buffer is less than half full; it's disabled otherwise. Finally, RTS_
CONTROL_TOGGLE indicates that the driver enables the RTS line if there are
bytes in the output buffer ready to be transmitted and disables the line otherwise.

The XonLim field specifies the minimum number of bytes in the input buffer
before an XON character is automatically sent. The Xof!Lim field specifies the
maximum number of bytes in the input buffer before the XOFF character is sent.
This limit value is computed by taking the size of the input buffer and subtract
ing the value in Xof!Lim. In the sample Windows CE implementation of the serial
driver provided in the Platform Builder, the XonLim field is ignored and XON
and XOFF characters are sent based on the value in Xof!Lim. However, this
behavior might differ in some systems.

The next three fields, ByteSize, Parity, and StopBits, define the format of
the serial data word transmitted. The ByteSize field specifies the number of bits
per byte, usually a value of 7 or 8, but in some older modes the number of bits per
byte can be as small as 5. The Parity field can be set to the self-explanatory
constant EVENPARITY, MARKPARITY, NOPARITY, ODDPARITY, or SPACEPARITY.
The StopBits field should be set to ONESTOPBIT, ONESSTOPBITS, or TWOSTOPBITS,
depending on whether you want one, one and a half, or two stop bits per byte.

The next two fields, XonChar and" Xof!Char, let you specify the XON and
XOFF characters. Likewise, the EvtChar field lets you specify the character used
to signal an event. If an event character is received, an EV _RXFLAG event is
signaled by the driver. This "event" is what triggers the WaitCommEvent func
tion to return if the EV _RXFLAG bit is set in the event mask.

545

Part Ill Communications

Setting the Port Timeout Values

546

As you can see, SetCommState can fine-tune, to almost the smallest detail, the
operation of the serial driver. However, one more step is necessary-setting
the timeout values for the port. The timeout is the length of time Windows CE
waits on a read or write operation before ReadFile or WriteFile automatically
returns. The functions that control the serial timeouts are the following:

BOOL GetCommTimeouts (HANDLE hFile, LPCOMMTIMEOUTS lpCommTimeouts);

and

BOOL SetCommTimeouts (HANDLE hFile, LPCOMMTIMEOUTS lpCommTimeouts);

Both functions take the handle to the open serial device and a pointer to a
COMMTIMEOUTS structure, defined as the following:

typedef struct _COMMTIMEOUTS {
DWORD ReadintervalTimeout:
DWORD ReadTotalTimeoutMultiplier:
DWORD ReadTotalTimeoutConstant:
DWORD WriteTotalTimeoutMultiplier:
DWORD WriteTotalTimeoutConstant:

COMMTIMEOUTS;

The COMMTIMEOUTS structure provides for a set of timeout parameters that
time both the interval between characters and the total time to read and write a
block of characters. Timeouts are computed in two ways. First ReadlnteroalTimeout
specifies the maximum interval between characters received. If this time is exceeded,
the ReadFile call returns immediately. The other timeout is based on the number
of characters you're waiting to receive. The value in ReadTotalTimeoutMultiplier
is multiplied by the number of characters requested in the call to ReadFile and
is added to ReadTotalTimeoutConstant to compute a total timeout for a call to
ReadFile.

The write timeout can be specified only for the total time spent during the
WriteFile call. This timeout is computed the same way as the total read timeout,
by specifying a multiplier value, the time in WriteTotalTimeoutMultiplier, and a
constant value in WriteTotalTimeoutConstant. All of the times in this structure
are specified in milliseconds.

In addition to the basic timeouts that I just described, you can set values
in the COMMTIMEOUTS structure to control whether and exactly how timeouts
are used in calls to ReadFile and WriteFile. You can configure the timeouts in
the following ways:

Serial Communications Chapter 9

• Timeouts for reading and writing as well as an interval timeout. Set
the fields in the COMMTIMEOUTS structure for the appropriate timeout
values.

• Timeouts for reading and writing with no interval timeout. Set
ReadlntervalTimeout to 0. Set the other fields for the appropriate
timeout values.

• The ReadFile function returns immediately regardless of whether there
is data to be read. Set ReadlnteroalTimeout to MAXDWORD. Set Read
TotalTimeoutMultiplier and ReadTotalTimeoutConstant to 0.

• ReadFile doesn't have a timeout. The function doesn't return until the
proper number of bytes is returned or an error occurs. Set the Read
lnteroalTimeout, ReadTotalTimeoutMultiplier, and ReadTotalTimeout
Constant fields to 0.

• WriteFile doesn't have a timeout. Set WriteTotalTimeoutMultiplier and
WriteTotalTimeoutConstant to 0.

The timeout values are important because the worst thing you can do is to
spin in a loop waiting on characters from the serial port. While the calls to ReadFile
and WriteFile are waiting on the serial port, the calling threads are efficiently
blocked on an event object internal to the driver. This saves precious CPU and
battery power during the serial transmit and receive operations. Of course, to
block on ReadFile and WriteFile, you'll have to create secondary threads because
you can't have your primary thread blocked waiting on the serial port.

Another call isn't quite as useful-SetupComm, prototyped this way:

BOOL SetupComm (HANDLE hFile, DWORD dwlnQueue, DWORD dwOutQueue);

This function lets you specify the size of the input and output buffers for the driver.
However, the sizes passed in SetupComm are only recommendations, not require
ments to the serial driver. For example, the example implementation of the se
rial driver in the Platform Builder ignores these recommended buffer sizes.

Querying the Capabilities of the Serial Driver
The configuration functions enable you to configure the serial driver, but with
varied implementations of serial ports you need to know just what features a serial
port supports before you configure it. The function GetCommProperties provides
just this service. The function is prototyped this way:

BOOL GetCommProperties (HANDLE hFile, LPCOMMPROP lpCommProp);

547

Part Ill Communications

548

GetCommProperties takes two parameters: the handle to the opened serial driver
and a pointer to a COMMPROP structure defined as

typedef struct _COMMPROP
WORD wPacketlength;
WORD wPacketVersion;
DWORD dwServiceMask;
DWORD dwReservedl;
DWORD dwMaxTxQueue;
DWORD dwMaxRxQueue;
DWORD dwMaxBaud;
DWORD dwProvSubType;
DWORD dwProvCapabilities;
DWORD dwSettableParams;
DWORD dwSettableBaud;
WORD wSettableData;
WORD wSettableStopParity;
DWORD dwCurrentTxQueue;
DWORD dwCurrentRxQueue;
DWORD dwProvSpecl;
DWORD dwProvSpec2;
WCHAR wcProvChar[lJ:

COMMPROP;

As you can see from the fields of the COMMPROP structure, GetCommProperties
returns generally enough information to determine the capabilities of the device.
Of immediate interest to speed demons is the dwMaxBaud field that indicates
the maximum baud rate of the serial port. The dwSettableBaud field contains bit
flags that indicate the allowable baud rates for the port. Both these fields use bit
flags that are defined in WINBASE.H. These constants are expressed as BAUD _xxxx,
as in BAUD_19200, which indicates that the port is capable of a speed of 19.2
kbps. Note that these constants are not the constants used to set the speed of
the serial port in the DCB structure. Those constants are numbers, not bit flags.
To set the speed of a COM port in the DCB structure to 19.2 kbps, you would
use the constant CBR_19200 in the BaudRate field of the DCB structure.

Starting back at the top of the structure are the wPacketLength and
wPacketVersion fields. These fields allow you to request more information from
the driver than is supported by the generic call. The dwServiceMask field indi
cates what services the port supports. The only service currently supported is
SP _SERIALCOMM, indicating that the port is a serial communication port.

The dwMaxTxQueue and dwMaxRxQueue fields indicate the maximum size
of the output and input buffers internal to the driver. The value 0 in these fields
indicates that you'll encounter no limit in the size of the internal queues. The
dwCurrentTxQueue and dwCurrentRxQueue fields indicate the current size for
the queues. These fields are 0 if the queue size can't be determined.

Serial Communications Chapter 9

The dwProvSuhType field contains flags that indicate the type of serial port
supported by the driver. Values here include PST_RS232, PST_RS422, and
PST_RS423, indicating the physical layer protocol of the port. PST_MODEM in
dicates a modem device, and PST_FAX tells you the port is a fax device. Other
PST_ flags are defined as well. This field reports what the driver thinks the port
is, not what device is attached to the port. For example, if an external modem
is attached to a standard, RS-232, serial port, the driver returns the PST_RS232
flag, not the PST_MODEM flag.

The dwProvCapahilities field contains flags indicating the handshaking the
port supports, such as XON/XOFF, RTS/CTS, and DTR/DSR. This field also
shows you whether the port supports setting the characters used for XON/XOFF,
parity checking, and so forth. The dwSettableParams, dwSettahleData, and
dwSettahleStopParity fields give you information about how the serial data stream
can be configured. Finally, the fields dwProvSpecl, dwProvSpec2, and wcProvChar
are used by the driver to return driver-specific data.

Controlling the Serial Port
You can stop and start a serial stream using the following functions:

BOOL SetCommBreak (HANDLE hFile);

and

BDOL ClearCommBreak (HANDLE hFile);

The only parameter for both these functions is the handle to the opened COM
port. When SetCommBreak is called, the COM port stops transmitting charac
ters and places the port in a break state. Communication is resumed with the
ClearCommBreak function.

You can clear out any characters in either the transmit or the receive queue
internal to the serial driver using this function:

BOOL PurgeComm (HANDLE hFile, DWORD dwFlags);

The dwFlags parameter can be a combination of the flags PURGE_ TX.CLEAR and
PURGE_RXCLEAR. These flags terminate any pending writes and reads and re
set the queues. In the case of PURGE_RXCLEAR, the driver also clears any receive
holds due to any flow control states, transmitting an XON character if necessary,
and setting RTS and DTR if those flow control methods are enabled. Because
Windows CE doesn't support overlapped I/0, the flags PURGE_TXABORT and
PURGE_RXABORT, used under Windows XP and Windows Me, are ignored.

The EscapeCommFunction provides a more general method of controlling
the serial driver. It allows you to set and clear the state of specific signals on the
port. On Windows CE devices, it's also used to control serial hardware that's

549

Part Ill Communications

shared between the serial port and the IrDA port. (I'll talk more about infrared
data transmission and the Infrared Data Association [IrDA] standard later in this
chapter.) The function is prototyped as

BOOL EscapeCommFunction (HANDLE hFile, DWORD dwFunc);

The function takes two parameters, the handle to the device and a set of
flags in dwFunc. The flags can be one of the following values:

• SETDTR Sets the DTR signal

• CLRDTR Clears the DTR signal

• SETRTS Sets the RTS signal

• CLRRTS Clears the RTS signal

• SETXOFF Tells the driver to act as if an XOFF character has been
received

• SETXON Tells the driver to act as if an XON character has been re
ceived

• SETBREAK Suspends serial transmission and sets the port in a break
state

• CLRBREAK Resumes serial transmission from a break state

• SETIR Tells the serial port to transmit and receive through the infra
red transceiver

• CLRIR Tells the serial port to transmit and receive through the stan
dard serial transceiver

The SETBREAK and CLRBREAK commands act identically to SetCommBreak
and ClearCommBreak and can be used interchangeably. For example, you can
use EscapeCommFunction to put the port in a break state and ClearCommBreak
to restore communication.

Clearing Errors and Querying Status

550

The function

BOOL ClearCommError (HANDLE hFile, LPDWORD lpErrors, LPCOMSTAT lpStat);

performs two functions. As you might expect from the name, it clears any error
states within the driver so that 1/0 can continue. The serial device driver is re
sponsible for reporting the errors. The default serial driver returns the follow
ing flags in the variable pointed to by lpErrors: CE_OVERRUN, CE_RXPARITY,
CE_FRAME, and CE_TXFULL. ClearCommError also returns the status of the port.

Serial Communications Chapter 9

The third parameter of ClearCommError is a pointer to a COMSTAT structure
defined as

typedef struct _COMSTAT
DWORD fCtsHold :

DWORD fDsrHold :

DWORD fRlsdHold
DWORD fXoffHol d
DWORD fXoffSent
DWORD fEof : 1 ·
DWORD fTxim : 1 ;

DWORD fReserved
DWORD cbinQue;
DWORD cbOutQue;

COMSTAT;

1 ;
1;

1;

1 ·
1.

25;

The first five fields indicate that serial transmission is waiting for one of the
following reasons. It's waiting for a CTS signal, waiting for a DSR signal, wait
ing for a Receive Line Signal Detect (also known as a Carrier Detect), waiting
because an XOFF character was received, or waiting because an XOFF charac
ter was sent by the driver. The JEor field indicates that an end-of-file character
has been received. The }Txim field is TRUE if a character placed in the queue
by the TransmitCommChar function instead of a call to WriteFile is queued for
transmission. The final two fields, cb!nQue and cbOutQue, return the number
of characters in the input and output queues of the serial driver.

The function

BOOL GetCommModemStatus (HANDLE hFile, LPDWORD lpModemStat);

returns the status of the modem control signals in the variable pointed to by
lpModemStat. The flags returned can be any of the following:

• MS_CTS_ON Clear to Send (CTS) is active.

• MS_DSR_ON Data Set Ready (DSR) is active.

• MS_RING_ON Ring Indicate (RI) is active.

• MS_RLSD_ON Receive Line Signal Detect (RLSD) is active.

Stayin' Alive
One of the issues with serial communication is preventing the system from pow
ering down while a serial link is active. A Windows CE system has three differ
ent timeout values that suspend the system, including a time since the user last
pressed a key or tapped the screen. Because a communication program can run
unattended, the program might need to prevent the auto-suspend feature of
Windows CE from suspending the system. I cover this topic in the "Keeping the
System On" section in Chapter 16.

551

Part Ill Communications

The Infrared Port

Raw IR

552

Windows CE devices almost always have an infrared IrDA-compatible serial port.
In fact, all H/PC and Pocket PC systems are guaranteed to have one. The IR ports
on Windows CE devices are IrDA (Infrared Data Association) compliant. The IrDA
standard specifies everything from the physical implementation, such as the fre
quency of light used, to the handshaking between devices and how remote
systems find each other and converse.

The IR port can be used in a variety of ways. At the most basic level, the
port can be accessed as a serial port with an IR transmitter and receiver attached.
This method is known as raw IR. When you're using raw IR, the port isn't IrDA
compliant because the IrDA standard requires the proper handshaking for the
link. However, raw IR gives you the most control over the IR link. A word of
warning: While all Windows CE devices I know currently support raw IR, some
might not in the future.

You can also use the IR port in IrComm mode. In this mode, the IR link
looks like a serial port. However, under the covers, Windows CE works to hide
the differences between a standard serial port and the IR link. This is perhaps
the easiest way to link two custom applications because the applications can use
the rather simple Comm API, while Windows CE uses the IrDA stack to handle
the IR link.

The most robust and complex method of using the IR port is to use IrSock.
In this mode, the IR link appears to be just another socket. IrSock is an exten
sion of WinSock, the Windows version of the socket interface used by applica
tions communicating with TCP/IP. I'll cover WinSock in Chapter 10, so I'll defer
any talk of IrSock until then.

As I mentioned previously, when you use raw IR you're mainly on your own.
You essentially have a serial port with an IR transceiver attached to it. Since both
the transmitter and the receiver use the same ether (the air), collisions occur if
you transmit at the same time that you're receiving a stream of data from another
device. This doesn't happen when a serial cable connects two serial ports be
cause the cable gives you separate transmit and receive wires that can be used
at the same time.

Finding the Raw IR Port
To use raw IR, you must first find the serial port attached to the IR transceiver.
On some Windows CE units, the serial port and the IR port use the same serial

Serial Communications Chapter 9

hardware. This means you can't use the serial port at the same time you use the
IR port. Other Windows CE devices have separate serial hardware for the IR port.
Regardless of how a device is configured, Windows CE gives you a separate
instance of a COM driver for the IR port that's used for raw IR mode.

There is no official method of determining the COM port used for raw IR.
However, the following technique works for current devices. To find the COM
port used for raw IR, look in the registry in the \Comm \IrDA key under
HKEY _LOCAL_MACHINE. There you should find the Port value that contains the
COM port number for the raw IR device.

If the Port value isn't there, check for a Parms subkey. If that is present,
look for the Port value under it. If not, check for a Linkage subkey. If the Link
age subkey is present, check for a Bind value. If present, it will contain the name
of another key under (HKEY _LOCAL_MACHINE]\ Comm that you can open and
repeat the process. Following are two routines, GetRawlrDeviceName and a
recursive helper routine, that return the device name of the raw IR port.

11--
11 GetRawirDeviceName - Returns the device name for the RawIR COM port
II
INT GetRawirDeviceName (LPTSTR lpszDevName)

*lpszDevName =TEXT ('\0');
return QueryirKey (TEXT ("IrDA"), lpszDevName);

II
II Helper routine that walks the linkage chain
II
INT QueryirKey (LPTSTR lpszSubkeyName, LPTSTR lpszDevName)

DWORD dwSize, dwType, dwData;
HKEY hKey, hSubkey;
TCHAR szBind[64];
int re;

II Open the IrDA key.
lstrcpy CszBind, TEXT ("\\Comm\\"));
lstrcat CszBind, lpszSubkeyName);
re= RegOpenKeyEx CHKEY_LOCAL_MACHINE, szBind, 0, 0, &hKey);
if (re == ERROR_SUCCESS) {

II Query the device number.
dwSize = sizeof (dwData);
re= RegQueryValueEx (hKey, TEXT ("Port"), 0, &dwType,

(PBYTE)&dwData, &dwSize);
if (re == ERROR_SUCCESS) {

(continued)

553

Part Ill Communications

554

II Check for valid port number. Assume buffer > 5 chars.
if (dwData < 10)

wsprintf (lpszDevName, TEXT ("COM%d:"), dwData);
else {

II The key doesn't have a port value. Check to see if
II there is a Parms subkey, and query it.
lstrcpy (szBind, lpszSubkeyName);
lstrcat (szBind, TEXT ("\\parms"));
re= QueryirKey (szBind, lpszDevName);
if (re)

return re;

II The key doesn't have a port value or Parms subkey.
II Check to see if there is a linkage to another reg key.
re= RegOpenKeyEx (hKey, TEXT ("linkage"), 0, 0, &hSubkey);
if (re == ERROR_SUCCESS) {

II Yes, get the name of the key to check.
dwSize = sizeof (szBind);
re= RegQueryValueEx (hSubkey, TEXT ("Bind"), 0, &dwType,

(PBYTEl&szBind, &dwSize);

II Recurse to examine the linked reg key.
QueryirKey (szBind, lpszDevName);
RegCloseKey (hSubkey);

RegCloseKey (hKey);

return lstrlen (lpszDevName);

Using Raw IR
Once you have the port name, you must perform one more task before you can
use the port. If the COM port hardware is being shared by the serial port and the
IR port, you must tell the driver to direct the serial stream through the IR trans
ceiver. You do this by first opening the device and calling EscapeCommFunction.
The command passed to the device is SETIR. When you've finished using the
IR port, you should call EscapeCommFunction again with the command CLRIR
to return the port back to its original serial function.

Once the port is set up, there's one main difference between raw IR and
standard serial communication. You have to be careful when using raw IR, not
to transmit while another device is also transmitting. The two transmissions will
collide, corrupting both data streams. With raw IR, you're also responsible for
detecting the other device and handling the dropped bytes that will occur as the
infrared beam between the two devices is occasionally broken.

lrComm

Serial Communications Chapter 9

Using IrComm is much easier than using raw IR. IrComm takes care of remote
device detection, collision detection, and data buffering while communication
with the other device is temporally interrupted. The disadvantage of IrComm is
that it's a point-to-point protocol-only two devices can be connected. In most
instances, however, this is sufficient.

Finding the lrComm Port
Here again, there's no official method for determining the IrComm port. But you
should be able to find the IrComm port by looking in the registry under the
Drivers\builtin\IrCOMM key under HKEY_LOCAL_MACHINE. The item to query
is the Index value, which is the COM device number for the IrComm port. Fol
lowing is a routine that returns the device name of the IrComm port.

11--
11 GetirCommDeviceName - Returns the device name for the IrComm port
II
INT GetirCommDeviceName (LPTSTR pDevName) {

DWORD dwSize, dwType, dwData;
HKEY hKey;

*pDevName =TEXT ('\0');
II Open the IrDA key.
if (RegOpenKeyEx (HKEY_LOCAL_MACHINE,

TEXT ("Drivers\\Builtin\\IrCOMM"), 0,
0, &hKey) == ERROR_SUCCESS) {

II Query the device number.
dwSize = sizeof (dwData);
if (RegQueryValueEx (hKey, TEXT ("Index"), 0, &dwType,

(PBYTE)&dwData, &dwSize) == ERROR_SUCCESS)

II Check for valid port number. Assume buffer> 5 chars.
if (dwData < 10)

wsprintf (pDevName, TEXT ("COM%d:"), dwData);

RegCloseKey (hKey);

return lstrlen (pDevName);

The IrComm port is different in a number of ways from the serial port and
the raw IR port. These differences arise from the fact that the IrComm port is a
simulated port, not a real device. The IrComm driver uses IrSock to manage the
IR link. The driver is then responsible only for reflecting the data stream and a

555

Part Ill Communications

few control characters to simulate the serial connection. If you try to query the
communication settings for the IrComm port using GetCommState, the DCB re
turned is all zeros. If you try to set a baud rate or some of the other parameters,
and later call GetCommState again, the DCB will still be 0. IrSock manages the
speed and the handshaking protocol, so IrComm simply ignores your configu
ration requests.

On the other hand, the IrComm driver happily queues up pending writes
waiting on another IrComm device to come within range. After the IrComm driver
automatically establishes a link, it transmits the pending bytes to the other device.
This assistance is a far cry from raw IR and is what makes using IrComm so easy.

The best way to learn about the characteristics of the two methods of IR
communication I've described is to use them. Which brings us to this chapter's
example program.

The CeChat Example Program

556

The CeChat program is a simple point-to-point chat program that connects two
Windows CE devices using one of the three methods of serial communication
covered in this chapter. The CeChat window is shown in Figure 9-1. Most of the
window is taken up by the receive text window. Text received from the other
device is displayed here. Along the bottom of the screen is the send text win
dow. If you type characters here and either hit the Enter key or tap the Send
button, the text is sent to the other device. The combo box on the command bar
selects the serial medium to use: standard serial, raw IR, or IrComm.

Figure 9·1 The CeChat window

Serial Communications Chapter 9

The source code for CeChat is shown in Figure 9-2. CeChat uses three
threads to accomplish its work. The primary thread manages the window and
the message loop. The two secondary threads handle reading from and writing
to the appropriate serial port.

CeChat.rc
II==
II Resource file
II
II Written for the book Programming Windows
II Copyright (C) 2001 Douglas Boling

#include "windows.h"
#include "Cethat:h" II Program•.speci fi c stuff
11-"-'--'--c'••"'·-~---------------------"--"--~-~--~--------•--•-------

BEGIN

BEGIN

END

Figure 9-2 The CeChat source code (continued)

557

Part Ill Communications

Figure 9-2 (continued)

558

Serial Communications Chapter 9

II Menu i tern IDs
#define IDM_EXIT 1

#define IDM_USECOM 110 II Use COM.
#define IDM_ABOUT 120 II Help menu

II Command bar IDs
#define roc_coMPORT 150 II COM port combo box
#define ID(_BAUDRATE 151 II Baud rate combo box

#define TEXTSIZE 256
11----------------------~-- -------------------------- -----------------

11 Function prototypes
II
int ReadThread < PVOID pAr9f;
int SendThread (PVOIO pAr9J.;
HANDLE InitCommunication (HWND. LPTSTR);
INT GetirCommDeviceName· (LPTSTR);
INT GetRawI rDeviceName.·(tPTSTR);
lnt Fi llComComboBox .cHWNDJ;

int lni tApp {HTNSTANCEJ:
HWNO-•tnitinstdrtce {ll}NSTANCE,
int Terml!lstance ·.\HINSTANcE.

II Window procedures . . .
LRESULT CALLBACK. MainWndPtoc·

// Me.ssage handlers
LRESHLT Doc reateMa in
Ll{ESULT .. DoSi zeMain fHWND. UlNT,. WPARAM ,·· LPARAM);
LRESULT _DoSetFocusM.ai n {HWND, U!NT, WPARAM, _LPARAM):
LRESUH •• DoPocketPCShe ll •. · <HWND, UlNT; WPARAM. LP A RAM.):
LRESULT DoCommandMa in. (HWND •. _UINJ. <WPARAM, LP A RAM);
LRESUU OoDestroyMai n <HWND,<UlNT-; MPARAM, LPARAM):
"// Command ..•• functions\> iii <> ·

•... LP·ARAM ·OoMai nCommandExi t•• <HW.NO ;>WORD;• HW ND,
LPARAM Do.MainConjmandC()!TIPnrE{HWNri, WORD, ·.HwNO.
LllARA/'1 Do Mai nCO-m~ahdSendlext <HW.ND, WORD, HWND,
Ll\ARAM DoMai11CommaiidAhou1: (HW.NO; WORD,. HWND.· WORD).;

I{ Dialog proce~C~~e} \

BOO L._. CALLBACK A[)~l)io 1 gProc
BOOLCALLBACK.E"di~.AlbumDl gPr'oc(HWND. U!NT, • W.PARAM •. ·LPARAM);

(continued)

559

Part Ill Communications

Figure 9-2 (continued)

560

Serial Communications Chapter 9

II Command Message dispatch for MainWindowProc
const struct decodeCMD MainCommanditems[J = {

IDC_COMPORT, DoMainCommandComPort,
ID_SENDBTN, DoMainCommandSendText,
IDM_EXIT, DoMainCommandExit,
IDM_ABOUT, DoMainCommandAbout,

} ;

II==
II Program entry point
II
int WINAPI WinMain (HINSTANCE hinstance. HINSTANCE hPrevinstance,

LPWSTR 1 pCmdL i ne, int nCmdShow} {
HWND hwndMain;
HACCEL hAccel;
MSGmsg;
int re = 0;

II Initialize application.
re = InitApp (hinstance);
if CrcJ return re;

instance.
hwndMain = lnitinstance (hinstance,

(hwndMa in "'"' 0)

r eturrf 0x10 ;

Load accelerator
hAccel oC ToadAccel erators. (hJnst,

//)l.pplication message loop
while (GetMessage (&msg, NULL,

(!Trans 1ateAcce1 era tor . (hwndMaJn.
Transl ateMessage (&msgJ;

irit IriHApp (HLNS:TANCE hlrlstance.)
WNDCLASS we;
INUCOMMONCONlRO L$EX i C:ex;

(continued)

561

Part Ill Communications

Figure 9-2 (continued)

562

·we. ntnst1rny.e '" hlnstance ~ wc~h1ydn ;,,/flUkL; ·· ··· · · .·.. ARP:r~.i;:at1o:n 1col1 ·

1·'" , •<•""" ':1'"\~~u<,,i''C!""~', 1opR•wo~ v.~~!~1'1! '¢~;,;,
.,, ' h~; 8i'.f!'P"'4 . >1 i ~Bl\)ijH > •. G'f~'P'~Qbl~stc 1~lfli!J<c>.RY~"l : .
,, . ,,,,~,,,., •• ~ ;~ijl \' j • . • • • • • • /1 "''" ~.... . .

wc;JpgzClassName "' szAppNall!~;

.if
11 i°'~ . ~~-~-;b,i ~- t?ntti\'.ii~;;c
i cex .• dwSite =-.··. si zeof .t1NHC0t1MONCQtfTROLSElO;

i ceX; (\WI cc "' lCC~BA&::C LASSES; . .

Serial Communications Chapter 9

}

II Return fail code if window not created.
if (!IsWindow (hWnd)) return 0;

II Create write thread. Read thread created when port opened.
hThread = CreateThread (NULL, 0, SendThread, hWnd, 0, &rel;
if ChThread)

CloseHandle (hThread);
else {

}

DestroyWindow ChWnd);
return 0;

II Standard show and update calls
ShowWi nd.ow (hWnd. nCindShow):
UpdateWfodow (hWnd);
return hWnd;

II---·-·-~-~-~~·~-"---~-~---~-------------------"-~
I I Terllilnstatl:c~ ·~ .~roQram cleanup
II
int· .rermthstanfe \HtNSJANCt hlnstance~
. . HANfid hP:~~t}: •hconf Po~t;

f ct>~~thu~··· . ., fALSt ;>··
,. ' ':··;·:, ,, '

',·;_::;',

. (tjj$~:n<fi~~~t· i; JN~~ALILHANDtE~vAluE) ·.
· PuTi{etvent. ~'91.risen.oEvent >; · · ·
s:1eE!.pc10~J;
CToseHandle. nusendEvent> :

hWnd; UINT wMsg,
LPARAM lParain) {

if we ne~d to handle this
procedure;

(continued)

563

Part Ill Communications

Figure 9-2 (continued)

564

Serial Communications Chapter 9

TEXT('"'), WS_VISIBLE I WS_CHILD I
WS_VSCROLL I ES_MUL TI LI NE I ES_AUTOHSCROLL
ES_READONLY, 0, 0, 10, 10, hWnd,
(HMENU)ID_RCVTEXT, hinst, NULL);

II Create send text window.
hC2 = CreateWindowEx (WS_ELCLIENTEDGE, TEXT ("edit").

TEXT ("">. ws_vrsrBLE 1 ws_cHrLo.
0, 0, 10, 10, hWnd, (HMENU)ID_SENDTEXT,

hinst, NULL);
II Create send text window.
hC3 = CreateWindowEx (WS_EX_CLIENTEDGE, TEXT ("button"),

TEXT ("&Send"). WS_VIS!BLE I W5_CHILD
BS_DEFPUSHBUTTON, 0; ·0. 10, 10,
hWnd, (HMENU)ID_SENDBTN: hinst, NULL);

11 Destroy frame if window not created.
if C!IsWindow (tiCl) II !IsWindow (hC2). I I !ISWf~dQw (hC3J)C

DestroyWindow ChWnd); ·

return. 0;

} . ., .·. · .. ; ·. '
II Open a COM J>drJ;., . . ·.
far.<i:,,;,·0L; <a;J++> f

SendD1:0JteitiMe~$~ge th.wndCB •.. rnc.:.CoMPORT. ca;J;En:STEXT. i •

. · .. ,·.·. .. . , .•••. ··.· . (LPARAM)szFi rstDevJ;
j .=: J.strlen fs~fir~tDev l: . • .. . /
II Really bact hacl< to determine which is
if { Inttvmmnu1t/catfon < hWnd. szFi rstDevY

INVAL~P~HA~[}L~VALUE) {
Sen'!f OlQlt'eJll!'.!~.S;sage ···(hwndCB ,·. HJC-COMPORT.

(LPARAM)szFir$tOevf;

/i oostZ:eMain ~ .Prdc~s~ w~Jzg•:fu~ssage .ro~ w1 nctaw.
ti > ;,;, .. ,·;;: ·' .

'···tR:Esuu·. dos ize~~1.~''ettwtidh~11~.
RECT red:, ..

. ·/! .. Adjust t,h~·slze\~t·the·, cl i.en.t

If the comiiia'n<f ti,a.i : hei ii.lit.
~et,c1 i1H1tREigt (flWn'<l.: ~r,ect >: .
rect.top :+,,;,;,;t~~mandB°it~.jiei ght CGetDl gltem C hWm:J. lDC_CMDBAR)):

) ·:. ""; <~ .. "(:,·~~:·:;; ·.~ ::·
SetWi ndq~~~s; tG-e~Mgltem C hWnd,. ID_RCVTEXTJ. NULL, re ct .left,

· .. r~~';top.: (rect: right - re ct. 1 eft);

• rtt.t:•Aottom - rect.top • 25, SWP.:..NQZORDERl; ·

(continued)

565

Part Ill Communications

Figure 9-2 (continued)

566

Serial Communications Chapter 9

return 0;
}

11--
11 DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PostQuitMessage (0);
return 0;

}

II==
II Command handler routines
l!--------------------------···---------------------------------
11 DoMainCommandExit - Process Program Exit command.
II
LPARAM DoMainCommandExit CHWND hWnd, WORD idltem, HWND hwndCtl,

}

WORD wNOtifyCode) {
SendMessage (hWnd, WM_CLOSE, 0, 0);
return 0;

ll DoMail'lCommandComPort - Process the COM.port combo box commands.

LPARAM.DoMainCommandcomPort

(continued)

567

Part Ill Communications

Figure 9-2 (continued)

568

Serial Communications Chapter 9

II Check for valid port number. Assume buffer > 5 chars.
if (dwData < 10)

wsprintf (lpszDevName. TEXT ("COM%d:"), dwData);
else {

II The key doesn't have a port value. Check to see if
II there is a Parms subkey, and query it.
1st rcpy (szBi nd, l pszSubkeyName) :
lstrcat (szBind. TEXT ("\\pjrms•J);
re = QueryirKey
if (re)

return re;

II

(continued)

569

Part Ill Communications

Figure 9-2 (continued)

570

Serial Communications Chapter 9

II InitCommunication - Open and initialize selected COM port.
II HANDLE InitCommunication (HWND hWnd, LPTSTR pszDevName) {

DCB deb;
INT i:
TCHAR szDbg[128];
COMMTIMEOUTS cto;
HANDLE hLocal:
DWORD dwTStat;
hLocal = hComPort:
hComPort = INVALID_HANDLE_VALUE:

if ChLocal !:= lNVALlb_HANDLE_VALUE)
CloseHandle (h.Local>: II This causes WaitCommE.vent to return.

II The.COM port:niupe i.Sthe last 5 characters
1 = tst~r~n {ps.ZDevN1~e):
hLoca.1 = CreateFHiil CMi.izDevName[i.c5J,

//.•) , . 0; NULL, OPEN...:EX!STING.

·1f:.··.~~·~·2~:~;1~~~~!.~~~~A~°,~·E_vALuf}•
·=··ti~ic~liuJiSfll~!i CbLo~a1:.&aoti) :.

,, ,:(illi~;fr:
:s: ; s~it:iflliiliS:tiit'e.·i11tcical: &ocb);

:;'':~.:;.': :.:,.~··;' , .·,.~ ;-,·; ,·:.':--_,<~:-::' ·;·7,,;. :1
';::;"."

(1 ~e~ tfre tiffie@its •• set·. infinite' read timeout.
tto;Rea(!lnt,e.r~t1JTi,lneout = 0: .•

: ·¢~o"R~~dJot,alTiflr~outMu lti p 1.i er = ~h
c~~.~a.~fota ·· i~outCon,stant .= 0:

:f:, ~2~~~~~$;~:;:;;jf'
·::.•···J ·•·•··· ~sti~r~~i;t;·,~~1n4~.;:;i.ixrc.~Port %$ ·o~e~~d\r\n") .·.psz.oevNameJ~·

se.r1~tJit,{l:~ie:~M~s~~~·JfiW1Jd, · ro"-J{CVTgXT, EM_REPLActsn; 0.
·.G)i{:'¥0:d:~·:\:,•;·•, {tPARAl.flsiDbg}; . ·. · . ·. \ •

. //}~. to -determine· wrr1 ch .is the .raw I:.R selectibn.
II w. . iR on the· raw IR port in .tasa ·PO rt ts
··;;/ tarict~r:d seiia:1. p~rt.
trt ·.. . . fxr c·R·n £ · ·

:J,~;;;~,,··~~y.!~·~~tnmFunction (hLo'cal; SETIR)) {

(continued)

571

Part Ill communications

figure 9·2 (continued)

572

}

Serial Communications Chapter 9

II Copy sent text to output window.
SendOlgitemMessage (hWnd, ID_RCVTEXT, EM_REPLACESEL, 0,

(LPARAM)TEXT (" >"J):
SetWindowText (hwndSText. TEXT ("")); II Clear text box

else
II Else. print error message.
wsprintf (szText. TEXT ("Send failed rc=%d\r\n"),

GetLastErrorCll:
II Put text in receive text box.
SendDlgltemMessage (hWnd, ID_RCVTEXT, EM_REf:lACESEL, 0,

(LPARAMlszText};
EnableWfnrlow (GetDlgitem <hWnd, ID_SENQBTN)~;:tRUEl;

return 0;

(continued)

573

Part Ill Communications

574

Figure 9-2 (continued)

When the CeChat window is created, it sniffs out the three port names using
the methods I described earlier in the chapter. The combo box is then filled, and
an attempt is made to open one of the COM ports. Once a port is opened, the
read thread is created to wait on characters. The read thread isn't as simple as it
should be because it must deal with 2-byte Unicode characters. Because it's quite
possible to drop a byte or two in a serial IR link, the receive thread must attempt
to resync the proper high bytes with their low byte pair to form a correct Unicode
character.

The send thread is actually quite simple. All it does is block on an event
that was created when CeChat was started. When the event is signaled, it reads
the text from the send text edit control and calls WriteFile. Once that has com
pleted, the send thread clears the text from the edit control and loops back to
where it blocks again. The call to WriteFile could fail if CeChat is using IrComm
and there's no other device in range. This is another reason to use IrComm over
raw IR. Still, IrComm can get confused playing around with what CeChat can do.
Also, when CeChat is using the IrComm COM port, no other application can use
IrComm. You can circumvent this shortcoming by using IrSock, as we shall see
in the next chapter.

Windows Networking
and lrSock

Networks are at the heart of modern computer systems. Over the years, Microsoft
Windows has supported a variety of networks and networking APis. Thl' evolv

ing nature of networking APis along with the need to keep systems backward
compatible has resulted in a huge array of overlapping functions and parallel AP ls.
As in many places in Windows CE, the networking API is a subset of the vast
array of networking functions supported under Windows XP and Windows Me.

Windows CE supports a variety of networking APis. This chapter covers two.
First is the Windows Networking API, WNet. This API supports basic network
connections so that a Windows CE device can access disks and printers on a
network.

Windows CE also supports a subset of the WinSock API. I'm not going to
cover the complete WinSock API because plenty of other books do that. I'll spend
some time covering what is directly relevant to Windows CE developers. Of
particular interest is the fact that WinSock is the high-level API to the IrDA in
frared communication stack. I'll also cover another extension to WinSock, the
Internet Control Message Protocol (ICMP) functions that allow Windows CE
applications to ping other machines on a TCP/IP network.

Windows Networking Support
The WNet API is a provider-independent interface that allows Windows appli
cations to access network resources without regard for the network implemen
tation. The Windows CE version of the WNet API has fewer functions but provides
the basics so that a Windows CE application can gain access to shared network

575

Part Ill Communications

resources, such as disks and printers. The WNet API is implemented by a
"redirector" DLL that translates the WNet functions into network commands for
a specific network protocol.

By default, the only network supported by the WNet API is Windows Net
working. Support for even this network is limited by the fact that redirector files
that implement Windows Networking aren't bundled with some Windows CE
devices. The two files that implement this support, REDIR.DLL and NETBIOS.DLL,
are available from Microsoft. As a convenience, I've also included them on the
book's companion disc. As an aside, the NetBIOS DLL doesn't export a NetBIOS
like interface to applications or drivers.

WNet Functions

576

As with other areas in Windows CE, the WNet implementation under Windows CE
is a subset of the same API on the desktop, but support is provided for the critical
functions, while the overlapping and obsolete functions are eliminated. For example,
the standard WNet API contains four different and overlapping WNetAddConnection
functions, while Windows CE supports only one, WNetAddConnection3.

For the WNet API to work, the redirector DLLs must be installed in the
\windows directory. In addition, the network control panel, also a supplemen
tary component on some systems, must be used to configure the network card
so that it can access the network. If the redirector DLLs aren't installed, or an error
occurs configuring or initializing the network adapter, the WNet functions return
the error code ERROR_NO_NETWORK.

Conventions of UNC
Network drives can be accessed in one of two ways. The first method is to ex
plicitly name the resource using the Universal Naming Convention (UNC) nam
ing syntax, which is a combination of the name of the server and the shared
resource. An example of this is \ \BIGSRVR\JJRVC, where the server name is
BIGSRVR and the resource on the server is named DRVC. The leading double
backslashes immediately indicate that the name is a UNC name. Directories and
filenames can be included in the UNC name, as in \ \bigsrvr\drvc\dir2Vile1 .ext.
Notice that I changed case in the two names. That doesn't matter because UNC
paths are case insensitive.

As long as the WNet redirector is installed, you can use UNC names wher
ever you use standard filenames in the Windows CE API. You'll have problems,
though, with some programs, including, in places, the Windows CE shell, where
the application doesn't understand UNC syntax. For example, the Explorer in a
Windows CE H/PC device understands UNC names, but the File Open dialog box
on the same system doesn't.

Windows Networking and lrSock Chapter 10

Mapping a Remote Drive
To get around applications that don't understand UNC names, you can map a
network drive to a local name. When a network drive is mapped on a Windows
CE system, the remote drive appears as a folder in the \network folder in the
object store. The \network folder isn't a standard folder; in fact, in early ver
sions of Windows CE, it didn't even show up in the Explorer. (For current
systems, the visibility of the \network folder depends on a registry setting that's
usually enabled.) Instead it's a placeholder name by which the local names of
the mapped network drives can be addressed. For example, the network drive
\ \BigSrvr\IJruC could be mapped to the local name JoeBob. Files and direc
tories on \ \BigSrvr\IJruC would appear under the folder \network\joebob.
Since Windows CE doesn't support drive letters, the local name can't be specified
in the form of a drive, as in G:.

I mentioned that the \network folder is a virtual folder; this needs further
explanation. If you use the FindFirstFile/ FindNextFile process to enumerate the
directories in the root directory, the \network directory might not be enumer
ated. However, FindFirstFile/FindNextFile enumerates the mapped resources
contained in the \network folder. So if the search string is *.*to enumerate the
root directory, the \network folder isn't enumerated, but if you use \net1mrk.*. *
as the search string, any mapped drives will be enumerated.

In Windows CE, the \network folder can be enumerated by FindFirstFile
and FindNextFile if the proper registry settings are made. However, even though
the folder can be enumerated, you still can't place files or create folders within
the \network folder. To make the \network folder visible, the DWORD value
RegisterFSRoot under the key [HKEY_LOCAL_MACHINE]\comm\redir must be
set to a nonzero value.

The most direct way to map a remote resource is to call this function:

DWORD WNetAddConnection3 (HWND hwndOwner, LPNETRESOURCE lpNetResource,
LPTSTR lpPassword, LPTSTR lpUserName,
DWORD dwFl ags);

The first parameter is a handle to a window that owns any network support dia
logs that might need to be displayed to complete the connection. The window
handle can be NULL if you don't want to specify an owner window. This effec
tively turns the WNetAddConnection3 function into the WNetAddConnection2
function supported under other versions of Windows.

The second parameter, lpNetResource, should point to a NETRESOURCE
structure that defines the remote resource being connected. The structure is
defined as

typedef struct _NETRESOURCE
DWORD dwScope;

(continued)

577

Part Ill Communications

578

DWORD dwType;
DWORD dwDisplayType;
DWORD dwUsage;
LPTSTR lplocalName;
LPTSTR lpRemoteName;
LPTSTR lpComment;
LPTSTR lpProvider;

} NETRESOURCE;

Most of these fields aren't used for the WNetAddConnection3 function and should
be set to 0. All you need to do is specify the UNC name of the remote resource
in a string pointed to by lpRemoteName and the local name in a string pointed
to by lpLocalName. The local name is limited to 99 characters in length. The other
fields in this structure are used by the WNet enumeration functions that I'll de
scribe shortly.

You use the next two parameters in WNetAddConnection3, lpPassword and
lpUserName, when requesting access from the server to the remote device. If you
don't specify a user name and Windows CE can't find user information for net
work access already defined in the registry, the system displays a dialog box
requesting the user name and password. Finally, the dwFlags parameter can be
either 0 or the flag CONNECT_UPDATE_PROFILE. When this flag is set, the
connection is dubbed persistent. Windows CE stores the connection data for
persistent connections in the registry. Unlike other versions of Windows, Windows
CE doesn't restore persistent connections when the user logs on. Instead, the local
name to remote name mapping is tracked only in the registry. If the local folder
is later accessed after the original connection was dropped, a reconnection is
automatically attempted when the local folder is accessed.

If the call to WNetAddConnection3 is successful, it returns NO_ERROR.
Unlike most Win32 functions, WNetAddConnection3 returns an error code in the
return value if an error occurs. This is a nod to compatibility that stretches back
to the Windows 3.1 days. You can also call GetLastErrorto return the error infor
mation. As an aside, the function WNetGetLastError is supported under Windows
CE in that it's redefined as GetLastError, so you can call that function if compati
bility with other platforms is important.

The other function you can use under Windows CE to connect a remote
resource is WNetConnectionDialog 1. This function presents a dialog box to the
user requesting the remote and local names for the connection. The function is
prototyped as

DWORD WNetConnectionDialogl CLPCONNECTDLGSTRUCT lpConnectDlgStruc);

The one parameter is a pointer to a CONNECTDLGSTRUCT structure defined as
the following:

Windows Networking and lrSock Chapter 10

typedef struct {
DWORD cbStructure;
HWND hwndOwner;
LPNETRESOURCE lpConnRes;
DWORD dwFlags;
DWORD dwDevNum;

CONNECTDLGSTRUCT;

The first field in the structure is the size field and must be set with the size of
the CONNECTDLGSTRUCT structure before you call WNetConnectionDialogl.
The hwndOwner field should be filled with the handle of the owner window for
the dialog box. The lpConnRes field should point to a NETRESOURCE structure.
This structure should be filled with zeros except for the lpRemoteName field, which
may be filled to specify the default remote name in the dialog. You can leave
the lpRemoteName field 0 if you don't want to specify a suggested remote path.

The dwFlags field can either be 0 or be set to the flag CONNDLG_RO_PATH.
When this flag is specified, the user can't change the remote name field in the dialog
box. Of course, this means that the lpRemoteName field in the NETRESOURCE
structure must contain a valid remote name. Windows CE ignores the dwD<>vNum
field in the CONNECTDLGSTRUCT structure.

When the function is called, it displays a dialog box that allows the user to
specify a local name and, if not invoked with the CONNDLG_RO_PATH flag, the
remote name as well. If the user taps on the OK button, Windows attempts to
make the connection specified. The connection, if successful, is recorded as a
persistent connection in the registry.

If the connection is successful, the function returns NO_ERROR. If the user
presses the Cancel button in the dialog box, the function returns -1. Other re
turn codes indicate errors processing the function.

Disconnecting a Remote Resource
You can choose from three ways to disconnect a connected resource. The first
method is to delete the connection with this function:

DWORD WNetCancelConnection2 (LPTSTR lpName, DWORD dwFlags,
BOOL fForce);

The lpName parameter points to either the local name or the remote network
name of the connection you want to·Temove. The dwFlags parameter should be
set to 0 or CONNECT_UPDATE_PROFILE. If CONNECT_UPDATE_PROFILE is set,
the entry in the registry that references the connection is removed; otherwise,
the call won't change that information. Finally, the }Force parameter indicates
whether the system should continue with the disconnect, even if there are open
files or print jobs on the remote device. If the function is successful, it returns
NO_ERROR.

579

Part Ill Communications

580

You can prompt the user to specify a network resource to delete using this
function:

DWORD WNetDisconnectDialog (HWND hwnd, DWORD dwType);

This function brings up a system-provided dialog box that lists all connec
tions currently defined. The user can select one from the list and tap on the
OK button to disconnect that resource. The two parameters for this function
are a handle to the window that owns the dialog box and dwType, which is
supposed to define the type of resources-printer (RESOURCETYPE_PRINT)
or disk (RESOURCETYPE_DISK)--enumerated in the dialog box. However, some
systems ignore this parameter and enumerate both disk and print devices. This
dialog, displayed by WNetDisconnectDialog, is actually implemented by the
network driver. So it's up to each OEM to get this dialog to work correctly.

A more specific method to disconnect a network resource is to call

DWORD WNetDisconnectDialogl (LPDISCDLGSTRUCT lpDiscDlgStruc);

This function is misleadingly named in that it won't display a dialog box if all
the parameters in DISCDLGSTRUCT are correct and point to a resource not cur
rently being used. The dialog part of this function appears when the resource is
being used.

DISCDLGSTRUCT is defined as

typedef struct {
DWORD cbStructure;
HWND hwndOwner;
LPTSTR lplocalName;
LPTSTR lpRemoteName;
DWORD dwFlags;

DISCDLGSTRUCT;

As usual, the cbStructure field should be set to the size of the structure. The
hwndOwner field should be set to the window that owns any dialog box dis
played. The lpLocalName and lpRemoteName fields should be set to the local and
remote names of the resource that's to be disconnected. Under current imple
mentations, lpLocalName is optional, while the lpRemoteName field must be set
for the function to work correctly. The dwFlags parameter can be either 0 or
DISC_NO_FORCE. If this flag is set and the network resource is currently being
used, the system simply fails the function. Otherwise, a dialog appears asking
the user if he or she wants to disconnect the resource even though the resource
is being used. Under the current implementations, the DISC_NO_FORCE flag
is ignored.

Windows Networking and lrSock Chapter 10

Enumerating Network Resources
It's all very well and good to connect to a network resource, but it helps if
you know what resources are available to connect to. Windows CE supports
three WNet functions used to enumerate network resources: WNetOpenEnum,
WNetEnumResource, and WNetCloseEnum. The process is similar to enumerat
ing files with FileFindFirst, FileFindNext, and FileFindClose.

To start the process of enumerating network resources, first call the function

DWORD WNetOpenEnum (OWORD dwScope, DWORD dwType, DWORD dwUsage,
LPNETRESOURCE lpNetResource,
LPHANDLE lphEnum);

The first parameter, dwScope, specifies the scope of the enumeration. It can be
one of the following flags:

• RESOURCE_CONNECTED Enumerate the connected resources.

• RESOURCE_REMEMBERED Enumerate the persistent network con
nections.

• RESOURCE_ GLOBALNET Enumerate all resources on the network.

The first two flags, RESOURCE_ CONNECTED and RESOURCE_REMEMBEl\ED,
simply enumerate the resources already connected on your machine. The dif
ference is that RESOURCE_CONNECTED returns the network resources that are
connected at the time of the call, while RESOURCE_REMEMBERED returns those
that are persistent regardless of whether they're currently connected. When either
of these flags is used, the dwUsage parameter is ignored and the lpNetResource
parameters must be NULL.

The third flag, RESOURCE_GLOBALNET, allows you to enumerate resources
such as servers, shared drives, or printers out on the network-that aren't con
nected. The dwType parameter specifies what you're attempting to enumerate--shared
disks (RESOURCETYPE_DISK), shared printers (RESOURCETYPE_PRINT), or both
(RESOURCETYPE_ANY).

You use the third and fourth parameters only if the dwScope parameter is
set to RESOURCE_GLOBALNET. The dwUsage parameter specifies the usage of
the resource and can be 0 to enumerate any resource, RESOURCEUSAGE_
CONNECTABLE to enumerate only connectable resources, or RESOURCEUSAGE_
CONTAINER to enumerate only containers such as servers.

If the dwScope parameter is set to RESOURCE_GLOBALNET, the fourth pa
rameter, lpNetResource, must point to a NETRESOURCE structure; otherwise, the
parameter must be NULL. The NETRESOURCE structure should be initialized to

581

Part Ill Communications

582

specify the starting point on the network for the enumeration. The starting point
is specified by a UNC name in the lpRemoteName field of NETRESOURCE. The
dwUsage field of the NETRESOURCE structure must be set to RESOURCETYPE_
CONTAINER. For example, to enumerate the shared resources on the server
BIGSERV, the lpRemoteName field would point to the string \ \BIGSERV. To enu
merate all servers in a domain, lpRemoteName should simply specify the domain
name. For the domain EntireNet, the lpRemoteName field should point to the string
EntireNet. Because Windows CE doesn't allow you to pass a NULL into lpRemoteName
when you use the RESOURCE_GLOBALNET flag, you can't enumerate all re
sources in the network namespace as you can under Windows XP or Windows
Me. This restriction exists because Windows CE doesn't support the concept of
a Windows CE device belonging to a specific network context.

The final parameter of WNetOpenEnum, lphEnum, is a pointer to an enu
meration handle that will be passed to the other functions in the enumeration
process. WNetOpenEnum returns a value of NO _ERROR if successful. If the func
tion isn't successful, you can call GetLastError to query the extended error in
formation.

Once you have successfully started the enumeration process, you actually
query data by calling this function:

DWORD WNetEnumResource (HANDLE hEnum, LPDWORD lpcCount,
LPVOID lpBuffer,
LPDWORD lpBufferSize);

The function takes the handle returned by WNetOpenEnum as its first parame
ter. The second parameter is a pointer to a variable that should be initialized with
the number of resources you want to enumerate in each call to WNetEnumResource.
You can specify a -1 in this variable if you want WNetEnumResource to return
the data for as many resources as will fit in the return buffer specified by the
lpB11:ffer parameter. The final parameter is a pointer to a DWORD that should
be initialized with the size of the buff er pointed to by lpBuffer. If the buffer is
too small to hold the data for even one resource, WNetEnumResource sets this
variable to the required size for the buffer.

The information about the shared resources returned by data is returned
in the form of an array of NETRESOURCE structures. While this is the same struc
ture I described when I talked about the WNetAddConnection3 function, I'll list
the elements of the structure here again for convenience:

typedef struct _NETRESOURCE
DWORD dwScope;
DWORD dwType;
DWORD dwDisplayType;
DWORD dwUsage;
LPTSTR lplocalName;

LPTSTR lpRemoteName;
LPTSTR lpComment;
LPTSTR lpProvider;

NETRESOURCE;

Windows Networking and lrSock Chapter 1 O

The interesting fields in the context of enumeration start with the dwType
field, which indicates the type of resource that was enumerated. The value can
be RESOURCETYPE_DISK or RESOURCETYPE_PRINT. The dwDisplayType field
provides even more information about the resource, demarcating domains
(RESOURCEDISPLAYTYPE_DOMAIN) from servers (RESOURCEDISPLAYTYPE_
SERVER) and from shared disks and printers (RESOURCEDISPLAYTYPE_SHARE).
A fourth flag, RESOURCEDISPLAYTYPE_GENERIC, is returned if the display type
doesn't matter.

The lpLocalName field points to a string containing the local name of the
resource if the resource is currently connected or is a persistent connection. The
lpRemoteName field points to the UNC name of the resource. The lpComment
field contains the comment line describing the resource that's provided by some
servers.

WNetEnumResource either returns NO_ERROR, indicating that the function
passed (but you need to call it again to enumerate more resources), or
ERROR_NO_MORE_ITEMS, indicating that you have enumerated all resources
matching the specification passed in WNetOpenEnum. With any other return code,
you should call GetLastError to further diagnose the problem.

You have few strategies when enumerating the network resources. You can
specify a huge buffer and pass -1 in the variable pointed to by lpcCount, tell
ing WNetEnumResource to return as much information as possible in one shot.
Or you can specify a smaller buffer and ask for only one or two resources for
each call to WNetEnumResource. The one caveat on the small buffer approach
is that the strings that contain the local and remote names are also placed in the
specified buffer. The name pointers inside the NETRESOURCE structure then point
to those strings. This means that you can't specify the size of the buffer to be
exactly the size of the NETRESOURCE structure and expect to get any data back.
A third possibility is to call WNetEnumResource twice, the first time with the lpBuffer
parameter 0, and have Windows CE tell you the size necessary for the buffer.
Then you allocate the buffer and call WNetEnumResource again to actually query
the data. However you use WNetEnumResource, you'll need to check the return
code to see whether it needs to be called again to enumerate more resources.

When you have enumerated all the resources, you must make one final call
to the function:

DWORD WNetCloseEnum (HANDLE hEnum);

583

Part Ill Communications

584

The only parameter to this function is the enumeration handle first returned by
WNetOpenEnum. This function cleans up the system resources used by the enu
meration process.

Following is a short routine that uses the enumeration functions to query
the network for available resources. You pass to a function a UNC name to use
as the root of the search. The function returns a buffer of zero-delimited strings
that designate the local name, if any, and the UNC name of each shared resource
found.

II Helper routine
int AddTolist (LPTSTR *pPtr, INT *PnlistSize, LPTSTR pszStr) {

INT nlen = lstrlen (pszStr) + l;

if (*pnlistSize < nlen) return -1;
lstrcpy (*pPtr, pszStr);
*PPtr += nlen;
*PnlistSize -= nlen;
return 0;

11--
11 EnumNetDisks - Produces a list of shared disks on a network
II
int EnumNetDisks (LPTSTR pszRoot, LPTSTR pszNetlist, int nNetSize){

INT i = 0, re, nBuffSize = 1024;
DWORD dwCnt, dwSize;
HANDLE hEnum;
NETRESOURCE nr;
LPNETRESOURCE pnr;
PBYTE pPtr, pNew;

II Allocate buffer for enumeration data.
pPtr = (PBYTE) LocalAlloc (LPTR, nBuffSize);
if (!pPtr)

return -1;

II Initialize specification for search root.
memset <&nr, 0, sizeof (nrl);
nr.lpRemoteName = pszRoot;
nr.dwUsage = RESOURCEUSAGE_CONTAINER;

II Start enumeration.
re = WNetOpenEnum (RESOURCE_GLOBALNET, RESOURCETYPE_DISK, 0, &nr,

&hEnum);
if (re != NO_ERROR)

return -1;

Windows Networking and lrSock Chapter 10

II Enumerate one item per loop.
do

dwCnt = l;
dwSize = nBuffSize;
re= WNetEnumResource (hEnum, &dwCnt, pPtr, &dwSize);

II Process returned data.
if (re == NO_ERROR) {

pnr = (NETRESOURCE *)pPtr;
if (pnr->lpRemoteName)

re = AddTolist (&pszNetlist, &nNetSize,
pnr->lpRemoteName);

II If our buffer was too small. try again.
} else if (re== ERROR_MORE_DATA) {

}

pNew = LocalReAlloc (pPtr, dwSize, LMEM_MOVEABLE);
if (pNew) {

pPtr = pNew;
nBuffSize = LocalSize (pPtr);
re = 0;

} while (re== 0);

II If the loop was successful. add extra zero to list.
if (re == ERROR__NO_MORE_ITEMS) {

}

re= AddTolist C&pszNetlist, &nNetSize, TEXT(""));
re = 0;

II Clean up.
WNetCloseEnum (hEnum);
Localfree (pPtr);
return re;

While the enumeration functions work well for querying what's available
on the net, you can use another strategy for determining the current connected
resources. At the simplest level, you can use FileFindFirst and FileFindNext to
enumerate the locally connected network disks by searching the folders in the
\network directory. Once you have the local name, a few functions are avail
able to you for querying just what that local name is connected to.

585

Part Ill Communications

586

Querying Connections and Resources
The folders in the \network directory represent the local names of network-shared
disks that are persistently connected to network resources. To determine which
of the folders are currently connected, you can use the function

DWORD WNetGetConnection (LPCTSTR lplocalName,
LPTSTR lpRemoteName,
LPDWORD lpnlength);

WNetGetConnection returns the UNC name of the network resource associated
with a local device or folder. The lpLocalName parameter is filled with the local
name of a shared folder or printer. The lpRemoteName parameter should point
to a buffer that can receive the UNC name for the device. The lpnLength parameter
points to a DWORD value that initially contains the length in characters of the
remote name buffer. If the buffer is too small to receive the name, the length value
is loaded with the number of characters required to hold the UNC name.

One feature (or problem, depending on how you look at it) of
WNetGetConnection is that it fails unless the local folder or device has a current
connection to the remote shared device. This allows us an easy way to deter
mine which local folders are currently connected and which are just placehold
ers for persistent connections that aren't currently connected.

Sometimes you need to transfer a filename from one system to another and
you need a common format for the filename that would be understood by both
systems. The WNetGetUniversalName function translates a filename that contains
a local network name into one using the UNC name of the connected resource.
The prototype for WNetGetUniversalName is the following:

DWORD WNetGetUniversalName (LPCTSTR lplocalPath, DWORD dwlnfolevel,
LPVOID lpBuffer, LPDWORD lpBufferSize);

Like WNetGetConnection, this function returns a UNC name for a local name. There
are two main differences between WNetGetConnection and WNetGetUniversalName.
First, WNetGetUniversalName works even if the remote resource isn't currently
connected. Second, you can pass a complete filename to WNetGetUniversalName
instead of simply the local name of the shared resource, which is all that is ac
cepted by WNetGetConnection.

WNetGetUniversalName returns the remote information in two different
formats. If the dwlnfoLevel parameter is set to UNIVERSAL_NAME_INFO _LEVEL,
the buffer pointed to by lpBuffer is loaded with the following structure:

typedef struct _UNIVERSAL_NAME_INFO {
LPTSTR lpUniversalName;

} UNIVERSAL_NAME_INFO;

Windows Networking and lrSock Chapter 1 O

The only field in the structure is a pointer to the UNC name for the shared resource.
The string is returned in the buffer immediately following the structure. So if a server
\ \BigServ\DriveCwas attached as LocC and you pass WNetGetUniversalName the
filename \Network\LocC\ Win32\Filename.ext, the function returns the UNC
name \ \BigServ\DriveC\win32Vilename.ext.

If the dwlnfoLevel parameter is set to REMOTE_NAME_INFO_LEVEL, the
buffer is filled with the following structure:

typedef struct _REMOTE_NAME_INFO
LPTSTR lpUniversalName;
LPTSTR lpConnectionName;
LPTSTR lpRemainingPath;

REMOTE_NAME_INFO;

This structure not only returns the UNC name but also parses the UNC name into
the share name and the remaining path. So, using the same filename as in the
previous example, \network\LocC\ win32\filename.ext, the REMOTE_NAME_INFO
fields would point to the following strings:

lpUniveralName: \ \BigServ\DriveC\ win32\filename.ext

lpConnectionName: \ \BigServ\DriveC

lpRemainingPath: \ win32 \filename. ext

One more thing: you don't have to prefix the local share name with \net
work. In the preceding example, the filename \LocC\ Win32\filename.ext would
have produced the same results.

One final WNet function supported by Windows CE is

DWORD WNetGetUser (LPCTSTR lpName, LPTSTR lpUserName,
LPDWORD lpnlength);

This function returns the name the system used to connect to the remote resource.
WNetGetUser is passed the local name of the shared resource and returns the user
name the system used when connecting to the remote resource in the buffer
pointed to by lpUserName. The lpnLengh parameter should point to a variable
that contains the size of the buffer. If the buffer isn't big enough to contain the
user name, the variable pointed to by lpnLength is filled with the required size
for the buffer.

The ListNet Example Program
ListNet is a short program that lists the persistent network connections on a Windows
CE machine. The program's window is a dialog box with three controls: a list box
that displays the network connections, a Connect button that lets you add a new

587

Part Ill Communications

588

persistent connection, and a Disconnect button that lets you delete one of the
connections. Double-clicking on a connection in the list box opens an Explorer
window to display the contents of that network resource. Figure 10-1 shows the
ListNet window, while Figure 10-2 shows the ListNet source code.

Figure 10-1 The ListNet window containing a few network folders

Figure 10-2 The ListNet source

Windows Networking and lrSock Chapter 10

ListNet.h
II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (Cl 2001 Douglas Boling

II==
II Returns number of elements
#define dim(x) (sizeof(Xl I sizeof(x[0]))

ll-------------'---''---"----'-------------------
11 Generic defines and data.types
II

/[define
/fdefi rie

· Jfdefine

//, -"''
IJ Functlon
ll
int.InitApp(HlNSTANCEJi.
HWND .· I~Hlnstance· JHI·NSTANcE,
int··• T~rminstance(HrNSTANC'.Eiintf;
INT .. Refre.shLocalNetDrlves i{HWNo•• hWnd);
int· CheckErro rcbde .•· (HWNll hWnd. .i tit re,

Dialog window procedure.
CALLBACK MatnwndProc (HWND, UINT.

II StrQcture associ .. ates
II messages

LPARAMl;

I I Di a log window Mess.a:~e hand.l· e rs
BOOL. DoCommandMAfn tHW~D;> UINT, WPARAM. LPARAM);

(continued)

589

Part Ill Communications

Figure 10-2 (continued)

590

Windows Networking and lrSock Chapter 10

}

II Create main window.
DialogBox (hinst, szAppName, NULL, MainWndProcl:
return 0:

II==
II Message handling procedures for main window
11--
11 MainWndProc - Callback functton for application window
II
BOOL CALLBACK MainWndProc CHWND hWhd, UINT wMsg, WPARAM wParam,

LPARAM. l Pa ram I {
INT i:
II With only two messagi:)s,/do H the old-fashioned way,
switch (wMsg) {

...... · ;~ase: WM_INITDIALOG; . . .)
:/#if defined (WI N32-PLATFORM...:P~t:>QT &&

{

(continued)

591

Part Ill Communications

Figure 10-2 (continued)

592

}

Windows Networking and lrSock Chapter 10

nLen = SendMessage (hwndCtl, LB_GETTEXT, i, (LPARAM)szFolder):
if <nLen == LB_ERR)

return 0:
II Trim off description of share.
for (i = 0; i < nLen: i++)

if (szFolder[iJ ==TEXT ('\t'))
break;

szFolder[iJ =TEXT ('\0');

hOld = SetCursor (LoadCursor (NULL, IDLWAIT));
lstrcpy (szCmdLine, TEXT ("\\network\\"));
lstrcat AszCmdLine, szFolder);

re = CreateProcess (TEXT ("Expl()"rer"), szCmdL i ne. NU:~~ •• NULL,
FALSE, 0 .• NULL; NULL, NULL, &piJ: .

if Cr(:) {

}

Cl-OseHandle (pi .hProcess);
Cl oseflandle Cpi . hThr,ead);

. set9ursof<~91;cir. : ·
'fettir'~•'f:R~E;/•·

-.. :·' '·. ::·· .. : .:._····:: :··: .. :;: '

:nwo~~: rt{.; • .. . ; E •• • .•..••••. · .

C(}NijE~Jpl.;~s~¢l¢4$:
NEJR:~SOURC'E/nr: ·

· TbHiR<~iJilllt[~56J(·•·
•... . " . ··>

... ··.'·. -·,: '.:-.. :·.::.:: ·'

menfs:et{8ifl'.r .• .• ~h .sizf!.of (nr) >:
n.r;ctwt¥ite ;;••.11rs{}URCETYPLGISK;
mem~et ~s~f9nt, ll •. s:f.zeof (szR!nt l);

. .':c<1.$;-0bst•Jifutur~ >;..; :Sti:eof ·
. . ~~s{'~~~~~r"~rbAJW:~~J·>< · ·. ·· · · .;
. cqs;J~!>f!t!R:~~,:":.;*'nr+ : < .·. .· ··.

CdS;d¥fl~g,S;~.;:¢0NtHli2!L.PERS rst:
11 .. D1 $ii l'ayd1.a1'~ .. ll~~·····

. ···. re. = ~ffetconr·~E.tf~n~ia'l ogl (&cds>t /
H <rt:· ==- NO'..iERROR•l •·· ·.

· .. ·• R$trlesfl:G9~·~i:Netor.ives
else- _.,:~:; :··.: ,"., _./., -

Che.c,:kiE•fj-~J'toa~:(hwnd, re, TEXT
return 0;··:'.:(• ,; ·· ··•

f·:'.":··'.'
~: ,:; <.~/:j·:·" . '

(continued)

593

Part Ill Communications

Figure 10-2 (continued)

594

Windows Networking and lrSock Chapter 1 O

II Enumerate one item per loop.
do

dwCnt = l;
dwSize = nBuffSize;
re= WNetEnumResource ChEnum, &dwCnt, pPtr, &dwSize);
pnr = CNETRESOURCE •lpPtr;
lstrcpy CszText, pnr->lplocalName);
II Process returned data.
if (re == NO_ERRORl {

switch (pnr->dwType) {
case RESOURCETYPE_ANY:

lstr.cat (szText, TEXT C''\t Share"));
break:

case RESOURCETYPE_PRINT:
lstrcat (szJext, TEXT
b.re.ak;

case RESOURCETYPE_DISK:
lstrcat (SZJext, TEXT ("\t Disk"));

CheckErrorCode .(KWND
TCHAR szTxt[128l:

(hwndCtl,LB~ADDSJRING, 0,

If gooo or -OiaJog canceled, just
i f ((re . ""= N9-"E RRQR I <re == • 1))

retur.ri

(continued)

595

Part Ill Communications

Figure i 0-2 (continued)

The heart of the networking code is at the end of ListNet, in the routine
RefreshLocalNetDrives. This routine uses the WNet enumerate functions to de
termine the persistent network resources mapped to the system. Network connec
tions and disconnections are accomplished with calls to WNetConnectionDialogl
and WNetDisconnectDialog respectively. You open an Explorer window contain
ing the shared network disk by launching EXPLORER.EXE with a command line
that's the path of the folder to open.

Basic Sockets

596

WinSock is the name for the Windows socket APL WinSock is the API for the
Windows CE TCP/IP networking stack as well as the IrDA infrared communica
tion stack. Windows CE implements a subset of WinSock version 1.1. What's
left out of the Windows CE implementation of WinSock is the ever-so-handy
WSAAsyncSelect function that enables (under other Windows systems) an appli
cation to be informed when a WinSock event occurred. Actually, most of the
WSAxxx calls that provide asynchronous actions are missing from Windows CE.
Instead, the Windows CE implementation is more like the original "Berkeley"
socket APL Windows CE's developers decided not to support these functions to
reduce the size of the WinSock implementation. These functions were handy but
not required because Windows CE is multithreaded.

The lack of asynchronous functions doesn't mean that you're left with calling
socket functions that block on every call. You can put a socket in nonblocking
mode so that any function that can't accomplish its task without waiting on an
event will return with a return code indicating that the task isn't yet completed.

Windows CE has extended WinSock in one area. As I mentioned in Chapter
9, WinSock is also the primary interface for IrDA communication. To do this,
Windows CE extends the socket addressing scheme, actually providing an en
tirely different addressing mode designed for the transitory nature of IrDA
communication.

Windows Networking and lrSock Chapter 1 O

In this section, I'm not going to dive into a complete explanation of socket
based communication. Instead, I'll present an introduction that will get you started
communicating with sockets. In addition, I'll spend time with the IrSock side
because this interface is so significant for Windows CE devices.

Initializing the WinSock DLL
Like other versions of WinSock, the Windows CE version should be initialized
before you use it. You accomplish this by calling WSAStartup, which initializes
the WinSock DLL. It's prototyped as

int WSAStartup (WORD wVersionRequested, LPWSADATA lpWSAData);

The first parameter is the version of WinSock you're requesting to open. For all
current versions of Windows CE, you must indicate version 1.1. An easy way to
do this is to use the MAKEWORD macro as in MAKEWORD (1,1). The second
parameter must point to a WSAData structure.

struct WSAData {

} ;

WORD wVersion;
WORD wHighVersion;
char szDescription[WSADESCRIPTION_LEN+l];
char szSystemStatus[WSASYSSTATUS_LEN+lJ;
unsigned short iMaxSockets;
unsigned short iMaxUdpDg;
char FAR* lpVendorinfo;

This structure is filled in by WSAStartup, providing information about
the specific implementation of this version of WinSock. Currently, the first two
fields return Ox0101, indicating support for version 1.1. The szDescription and
szSystemStatus fields can be used by WinSock to return information about itself.
In the current Windows CE version of WinSock, these fields aren't used. The
iMaxSockets parameter suggests a maximum number of sockets that an appli
cation should be able to open. This number isn't a hard maximum but rather a
suggested maximum.The iMaxUdpDg field indicates the maximum size of a
datagram packet. A 0 indicates no maximum size for this version of WinSock.
Finally, lp Vendorlnfo points to optional vendor-specific information.

WSAStartup returns 0 if successful; otherwise, the return value is the error
code for the function. Don't call WSAGetLastError in this situation because the
failure of this function indicates that WinSock, which provides WSAGetLastError,
wasn't initialized correctly.

597

Part Ill Communications

Windows CE also supports WSACleanup, which is traditionally called when
an application has finished using the WinSock DLL. For Windows CE, this func
tion performs no action but is provided for compatibility. Its prototype is

int WSACleanup ();

ASCII vs. Unicode
One issue that you'll have to be careful of is that almost all the string fields used
in the socket structures are char fields, not Unicode. Because of this, you'll find
yourself using the functions

int WideCharToMultiByte(UINT CodePage, DWORD dwFlags,
LPCWSTR lpWideCharStr, int cchWideChar,
LPSTR lpMultiByteStr, int cchMultiByte,
LPCSTR lpDefaultChar, LPBOOL lpUsedDefaultChar);

to convert Unicode strings to multibyte strings and

int MultiByteToWideChar (UINT CodePage, DWORD dwFlags,
LPCSTR lpMultiByteStr, int cchMultiByte,
LPWSTR lpWideCharStr, int cchWideChar);

to convert multibyte characters to Unicode. The functions refer to multibyte
characters instead of ASCII because on double-byte coded systems, they convert
double-byte characters to Unicode.

Stream Sockets

598

Like all socket implementations, WinSock under Windows CE supports both
stream and datagram connections. In a stream connection, a socket is basically
a data pipe. Once two points are connected, data is sent back and forth with
out the need for additional addressing. In a datagram connection, the socket is
more like a mailslot, with discrete packets of data being sent to specific addresses.
In describing the WinSock functions, I'm going to cover the process of creating
a stream connection (sometimes called a connection-oriented connection) be
tween a client and server application. I'll leave explanation of the datagram
connection to other, more network-specific, books.

The life of a stream socket is fairly straightforward: it's created, bound, or
connected to an address; read from or written to; and finally closed. A few ex
tra steps along the way, however, complicate the story slightly. Sockets work in
a client/ server model. A client initiates a conversation with a known server. The
server, on the other hand, waits around until a client requests data. When set
ting up a socket, you have to approach the process from either the client side
or the server side. This decision determines which functions you call to config-

Windows Networking and lrSock Chapter 10

ure a socket. Figure 10-3 illustrates the process from both the client and the server
side. For each step in the process, the corresponding WinSock function is shown.

Server Function Client Function

Create socket socket Create socket socket

Bind socket to an address hind Find desired server (many
functions)

Listen for client connections listen Connect to server connect

Accept client's connection accept

Receive data from client recv Send data to server send

Send data to client send Receive data
from server recv

Figure 10-3 The process for producing a connection-oriented socket connection

Both the client and the server must first create a socket. After that, the process
diverges. The server must attach, or to use the function name, bind, the socket
to an address so that another computer or even a local process, can connect to
the socket. Once an address has been bound, the server configures the socket
to listen for a connection from a client. The server then waits to accept a con
nection from a client. Finally, after all this, the server is ready to converse.

The client's job is simpler: the client creates the socket, connects the socket
to a remote address, and then sends and receives data. This procedure, of course,
ignores the sometimes not-so-simple process of determining the address to con
nect to. I'll leave that problem for a few moments while I talk about the func
tions behind this process.

Creating a Socket
You create a socket with the function

SOCKET socket (int af, int type, int protocol);

The first parameter, af, specifies the addressing family for the socket. Windows CE
supports two addressing formats; AF _INET and AF _IRDA. You use the AF _!RDA
constant when you're creating a socket for IrDA use, and you use AF _INET for
TCP /IP communication. The type parameter specifies the type of socket being
created. For a TCP /IP socket, this can be either SOCK_ STREAM for a stream socket
or SOCK_DGRAM for a datagram socket. For IrDA sockets, the type parameter
must be SOCK_STREAM. Windows CE doesn't currently expose a method to create
a raw socket, which is a socket that allows you to interact with the IP layer of
the TCP /IP protocol. Among other uses, raw sockets are used to send an echo

599

Part Ill Communications

600

request to other servers, in the process known as pinging. However, Windows
CE does provide a method of sending an ICMP echo request. I'll talk about that
shortly.

The protocol parameter specifies the protocol used by the address family
specified by the af parameter. The function returns a handle to the newly cre
ated socket. If an error occurs, the socket returns INVALID_SOCKET. You can
call WSAGetLastError to query the extended error code.

Server Side: Binding a Socket to an Address
For the server, the next step is to bind the socket to an address. You accomplish
this with the function

int bind (SOCKET s, const struct sockaddr FAR *addr, int namelen);

The first parameter is the handle to the newly created socket. The second pa
rameter is dependent on whether you're dealing with a TCP /IP socket or an IrDA
socket. For a standard TCP /IP socket, the structure pointed to by addr should
be SOCKADDR_IN, which is defined as

struct sockaddr_in {

} ;

short sin_family;
unsigned short sin_port;
IN_ADDR sin_addr;
char sin_zero[8];

The first field, sinJamily, must be set to AF _INET. The second field is the IP port,
while the third field specifies the IP address. The last field is simply padding to
fit the standard SOCKADDR structure. The last parameter of bind, namelen, should
be set to the size of the SOCKADDR_IN structure.

When you're using IrSock, the address structure pointed to by sockaddr is
SOCKADDR_IRDA, which is defined as

struct sockaddr_irda {

} ;

u_short irdaAddressFamily;
u_char irdaDeviceID[4];
char irdaServiceName[25];

The first field, irdaAddressFamily, should be set to AF _IRDA to identify the struc
ture. The second field, irdaDeviceID, is a 4-byte array that defines the address
for this IR socket. This can be set to 0 for an IrSock server. The last field should
be set to a string to identify the server.

You can also use a special predefined name in the irdaServiceName field
to bypass the IrDA address resolution features. If you specify the name LSAP-

Windows Networking and lrSock Chapter 1 O

SELxxx, where xxx is a value from 001 through 127, the socket will be bound
directly to the LSAP (Logical Service Access Point) selector defined by the value.
Applications should not, unless absolutely required, bind directly to a specific
LSAP selector. Instead, by specifying a generic string, the IrDA address resolu
tion code determines a free LSAP selector and uses it.

Listening for a Connection
Once a socket has been bound to an address, the server places the socket in listen
mode so that it will accept incoming communication attempts. You place the
socket in listen mode by using the aptly named function

int listen (SOCKET s, int backlog);

The two parameters are the handle to the socket and the size of the queue that
you're creating to hold the pending connection attempts. This value can be set
to SOMAXCONN to set the queue to the maximum supported by the socket
implementation. For Windows CE, the only supported queue sizes are 1 and 2.
Values outside this range are rounded to the closest valid value.

Accepting a Connection
When a server is ready to accept a connection to a socket in listen mode, it calls
this function:

SOCKET accept (SOCKET s, struct sockaddr FAR *addr,
int FAR *addrlen);

The first parameter is the socket that has already been placed in listen mode. The
next parameter should point to a buffer that receives the address of the client socket
that has initiated a connection. The format of this address is dependent on the
protocol used by the socket. For Windows CE, this is either a SOCKADDR_IN or
a SOCKADDR_IRDA structure. The final parameter is a pointer to a variable that
contains the size of the buffer. This variable is updated with the size of the struc
ture returned in the address buffer when the function returns.

The accept function returns the handle to a new socket that's used to com
municate with the client. The socket that was originally created by the call to socket
will remain in listen mode and can potentially accept other connections. If ac
cept detects an error, it returns INVALID_SOCKET. In this case, you can call
WSAGetLastError to get the error code.

The accept function is the first function I've talked about so far that blocks.
That is, it won't return until a remote client requests a connection. You can
set the socket in nonblocking mode so that, if no request for connection is
queued, accept will return INVALID_SOCKET with an extended error code
of WSAEWOULDBLOCK. I'll talk about blocking vs. nonblocking sockets shortly.

601

Part Ill Communications

602

Client Side: Connecting a Socket to a Server
On the client side, things are different. Instead of calling the bind and accept
functions, the client simply connects to a known server. I said simply, but as with
most things, we must note a few complications. The primary one is addressing
knowing the address of the server you want to connect to. I'll put that topic aside
for a moment and assume the client knows the address of the server.

To connect a newly created socket to a server, the client uses the function

int connect (SOCKET s, const struct sockaddr FAR *name,
int namelen);

The first parameter is the socket handle that the client created with a call to
socket. The other two parameters are the address and address length values
we've seen in the bind and accept functions. Here again, Windows CE supports
two addressing formats: SOCKADDR_IN for TCP /IP-based communication and
SOCKADDR_IRDA for IrDA communication.

If connect is successful, it returns 0. Otherwise, it returns SOCKET_ERROR,
and you should call WSAGetLastError to get the reason for the failure.

Sending and Receiving Data
At this point, both the server and the client have socket handles they can use to
communicate with one another. The client uses the socket originally created with
the call to socket, while the server uses the socket handle returned by the ac
cept function.

All that remains is data transfer. You write data to a socket this way:

int send (SOCKET s, const char FAR *buf, int len, int flags);

The first parameter is the socket handle to send the data. You specify the data
you want to send in the buffer pointed to by the bu/ parameter while the length
of that data is specified in !en. The flags parameter must be 0.

You receive data by using the function

int recv (SOCKET s, char FAR *bUf, int len, int flags);

The first parameter is the socket handle. The second parameter points to the buffer
that receives the data, while the third parameter should be set to the size of the
buffer. The flags parameter can be 0, or it can be MSG_PEEK if you want to have
the current data copied into the receive buffer but not removed from the input
queue or if this is a TCP/IP socket (MSG_OOB) for receiving any out-of-band
data that has been sent.

Two other functions can send and receive data; they are the following:

int sendto (SOCKET s, const char FAR *buf, int len, int flags,
const struct sockaddr FAR *tO, int token);

lrSock

Windows Networking and lrSock Chapter 1 O

and

int recvfrom (SOCKET s, char FAR *buf, int len, int flags,
struct sockaddr FAR *from, int FAR *fromlen);

These functions enable you to direct individual packets of data using the address
parameters provided in the functions. They're used for connectionless sockets,
but I mention them now for completeness. When used with connection-oriented
sockets such as those I've just described, the addresses in sendto and recz:from
are ignored and the functions act like their simpler counterparts, send and recv.

Closing a Socket
When you have finished using the sockets, call this function:

int shutdown (SOCKET s, int how);

The shutdown function takes the handle to the socket and a flag indicating what
part of the connection you wish to shut down. The how parameter can be
SD_RECEIVE to prevent any further recv calls from being processed, SD_SEND
to prevent any further send calls from being processed, or SD _BOTH to prevent
either send or recv calls from being processed. The shutdown function affects
the higher-level functions send and recv but doesn't prevent data previously
queued from being processed. Once you have shut down a socket, it can't be
used again. It should be closed and a new socket created to restart a session.

Once a connection has been shut down, you should close the socket with
a call to this function:

int closesocket (SOCKET s);

The action of closesocket depends on how the socket is configured. If you've
properly shut down the socket with a call to shutdown, no more events will be
pending and closesocket should return without blocking. If the socket has been
configured into "linger" mode and configured with a timeout value, closesocket
will block until any data in the send queue has been sent or the timeout expires.

I've alluded to IrSock a number of times as I've described functions. IrSock is
essentially a socketlike API built over the top of the IrDA stack used for infra
red communication. IrSock is the only high-level interface to the IrDA stack. Even
the IrComm virtual comm port described in Chapter 9 uses the IrSock API un
derneath the covers.

The major differences between IrSock and WinSock are that IrSock doesn't
support datagrams, it doesn't support security, and the method used for addressing

603

Part Ill Communications

604

it is completely different from that used for WinSock. What IrSock does provide
is a method to query the devices ready to talk across the infrared port, as well
as arbitration and collision detection and control.

From a programmer's perspective, the main difference in programming
IrSock and WinSock is that the client side needs a method of detecting what
infrared capable devices are within range and are ready to accept a socket con
nection. This is accomplished by calling getsockopt with the level parameter set
to SOL_IRLMP and the optname parameter set to IRLMP _ENUMDEVICES, as in
the following:

dwBuffSize = sizeof (buffer);
re = getsockopt (hirSock, SOL_IRLMP, IRLMP_ENUMDEVICES,

buffer, &dwBuffSize);

When called with IRLMP _ENUMDEVICES, getsockopt returns a DEVICELIST
structure in the buffer. DEVICELIST is defined as

typedef struct _DEVICELIST {
ULONG numDevice:
IRDA_DEVICE_INFO Device[l];

} DEVICELIST;

The DEVICELIST structure is simply a count followed by an array of
IRDA_DEVICE_INFO structures, one for each device found. The IRDA_DEVICE_
INFO structure is defined as

typedef struct _IRDA_DEVICE_INFO {
u_char irdaDeviceID[4];
char irdaDeviceName[22]:
u_char Reserved[2];

} IRDA_DEVICE_INFO;

The two fields in the IRDA_DEVICE_INFO structure are a device ID and a
string that can be used to identify the remote device.

Following is a routine that opens an IR socket and uses getsockopt to query
the remote devices that are in range. If any devices are found, their names and
IDs are printed to the debug port.

fl
II Poll for IR devices.
II
DWORD WINAPI IrPol l (HWND hWnd) {

INT re, nSize, i, j;

char cDevice[256];
TCHAR szName[32], sz0ut[256];
DEVICELIST *PDL;
SOCKET irsock;

Windows Networking and lrSock Chapter 1 O

II Open an infrared socket.
irsock =socket (AF_IRDA, SOCK_STREAM, 0);
if (irsock == INVALID_SOCKET)

return -1;

II Search for someone to talk to; try 10 times over 5 seconds.
for (i = 0; < 10; i++) {

II Call getsockopt to query devices.
memset (cDevice, 0, sizeof (cDevice));
nSize = sizeof (cDevice);
re= getsockopt (irsock, SOL_IRLMP, IRLMP_ENUMDEVICES,

cDevice, &nSize);
if (re)

break;

pDL = (DEVICELIST *) cDevice;
if (pDL->numDevice)

Add2List (hWnd, TEXT ("%d devices found."), pDL->numDevice);

for (j = 0; j < (int)pDL->numDevice; j++) {
II Convert device ID.
wsprintf (szOut,

TEXT ("DeviceID \t%02X.%02X.%02X.%02X"),
pDL->Device[j].irdaDevice!D[0],
pDL->Device[j].irdaDe 1viceID[lJ,
pDL->Device[jJ.irdaDevice!D[2],
pDL->Device[j].irdaDeviceID[3]);

OutputDebugString (szOut);

II Convert device name to Unicode.
mbstowcs (szName, pDL->Device[j].irdaDeviceName,

sizeof (pDL->Device[j].irdaDeviceName));

wsprintf (szOut, TEXT ("irdaDeviceName \t%s"),
szName);

OutputDebugString (szOut);

Sleep(500);

closesocket (irsock);
return 0;

Just having a device with an IR port in range isn't enough; the remote device
must have an application running that has opened an IR socket, bound it, and
placed it into listen mode. This requirement is appropriate because these are the

605

Part Ill Communications

606

steps any server using the socket API would perform to configure a socket to
accept communication.

Querying and setting IR Socket Options
IrSock supports the getsockopt and setsockopt functions for getting and setting
the socket options, but the options supported have little overlap with the socket
options supported for a standard TCP/IP socket. To query socket options, use
this function:

int getsockopt (SOCKET s, int level, int optname,
char FAR *Optval, int FAR *Optlen);

The first parameter is the handle to the socket, while the second parameter is the
level in the communications stack for the specific option. The level can be at
the socket level SOL_SOCKET or a level unique to IrSock, SOL_IRLMP. The op
tions supported for IrSock are shown in the lists below.

For the SOL_SOCKET level, your option is

• SO_LINGER It queries the linger mode.

For the SOL_IRLMP level, your options are

• IRLMP_ENUMDEVICES which enumerate remote IrDA devices.

• IRLMP_IAS_QUERY which queries IAS attributes.

• IRLMP_SEND_PDU_LEN which queries the maximum size of send
packet for IrLPT mode.

The corresponding function with which to set the options is

int setsockopt (SOCKET s, int level. int optname,
const char FAR *Optval. int optlen);

The parameters are similar to getsockopt. A list of the allowable options follows.
For the SOL_SOCKET level, your option is

• SO_LINGER which delays the close of a socket if unsent data re
mains in the outgoing queue.
For the SOL_IRLMP level, your options are

• IRLMP_IAS_SET which sets IAS attributes.

• IRLMP _IRLPT_MODE which sets the IrDA protocol to lrLPT.

• IRLMP _9WIRE__,MODE which sets the lrDA protocol to 9-wire serial
mode.

• IRLMP_SHARP_MODE which sets the IrDA protocol to Sharp mode.

Windows Networking and lrSock Chapter 10

Blocking vs. Nonblocking Sockets
One issue I briefly touched on as I was introducing sockets is blocking. Windows
programmers are used to the quite handy asynchronous socket calls that are an
extension of the standard Berkeley socket APL By default, a socket is in block
ing mode so that, for example, if you call recv to read data from a socket and
no data is available, the call blocks until some data can be read. This isn't the
type of call you want to be making with a thread that's servicing the message
loop for your application.

Although Windows CE doesn't support the WSAAsync calls available to
desktop versions of Windows, you can switch a socket from its default block
ing mode to nonblocking mode. In nonblocking mode, any socket call that might
need to wait to successfully perform its function instead returns immediately with
the error code WSAEWOULDBLOCK. You are then responsible for calling the
would-have-blocked function again at a later time to complete the task.

To set a socket into blocking mode, use this function:

int ioctlsocket (SOCKET s, long cmd, u_long *argp);

The parameters are the socket handle, a command, and a pointer to a variable
that either contains data or receives data depending on the value in cmd. The
allowable commands for Windows CE IrSock sockets are the following:

• FIONBIO Set or clear a socket's blocking mode. If the value pointed
to by argp is nonzero, the socket is placed in blocking mode. If the
value is 0, the socket is placed in nonblocking mode.

• FIONREAD Returns the number of bytes that can be read from the
socket with one call to the recv function.

So to set a socket in blocking mode, you should make a call like this one:

fBlocking = FALSE;
re= ioctlsocket (sock, FIONBIO, &fBlocking);

Of course, once you have a socket in nonblocking mode, the worst thing
you can do is continually poll the socket to see if the nonblocked event occurred.
On a battery-powered system, this can dramatically lower battery life. Instead
of polling, you can use the select function to inform you when a socket or set
of sockets is in a nonblocking state. The prototype for this function is

int select (int nfds, fd_set FAR *readfds, fd_set FAR *Writefds,
fd_set FAR *exceptfds,
const struct timeval FAR *timeout);

The parameters for the select function look somewhat complex, which, in fact,
they are. Just to throw a curve, the function ignores the first parameter. The reason
it exists at all is for compatibility with the Berkeley version of the select function.

607

Part Ill Communications

608

The next three parameters are pointers to sets of socket handles. The first set
should contain the sockets that you want to be notified when one or more of
the sockets is in a nonblocking read state. The second set contains socket handles
of sockets that you want informed when a write function can be called without
blocking. Finally, the third set, pointed to by exceptfds, contains the handles of
sockets that you want notified when an error condition exists in that socket.

The final parameter is a timeout value. In keeping with the rather interest
ing parameter formats for the select function, the timeout value isn't a simple
millisecond count. Rather, it's a pointer to a TIMEVAL structure defined as

struct timeval {
long tv_sec;
long tv_usec;

} ;

If the two fields in TIMEVAL are 0, the select call returns immediately, even if none
of the sockets has had an event occur. If the pointer, timeout, is NULL instead
of pointing to a TIMEVAL structure, the select call won't time out and returns only
when an event occurs in one of the sockets. Otherwise, the timeout value is
specified in seconds and microseconds in the two fields provided.

The function returns the total number of sockets for which the appropriate
events occur, 0 if the function times out, or SOCKET_ERROR if an error occurs. If
an error does occur, you can call WSAGetLastError to get the error code. The
function modifies the contents of the sets so that, on returning from the func
tion, the sets contain only the socket handles of sockets for which events occur.

The sets that contain the events should be considered opaque. The format
of the sets doesn't match their Berkeley socket counterparts. Each of the sets is
manipulated by four macros defined in WINSOCK.H. These are the four macros:

• FD_CLR Removes the specified socket handle from the set

• FD_ISSET Returns true if the socket handle is part of the set

• FD_SET Adds the specified socket handle to the set

• FD _ZERO Initializes the set to 0
To use a set, you have to declare a set of type f d_set. Then initialize the

set with a call to FD _ZERO and add the socket handles you want with FD _SET.
An example would be

fd_set fdReadSocks;

FD_ZERO (&fdReadSocks);
FD_SET (hSockl, &fdReadSocks);
FD_SET (hSock2, &fdReadSocks);

Windows Networking and lrSock Chapter 1 O

re= select (0, &fdReadSocks, NULL, NULL, NULL);
if (re != SOCKET_ERROR) {

if (FD_ISSET (hSockl, &fdReadSocks))
II A read event occurred in socket 1.

if (FD_ISSET (hSock2, &fdReadSocks))
II A read event occurred in socket 2.

In this example, the select call waits on read events from two sockets with the
handles hSockl and hSock2. The write and error sets are NULL, as is the pointer
to the timeout structure, so the call to select won't return until a read event oc
curs in one of the two sockets. When the function returns, the code checks to
see if the socket handles are in the returned set. If so, that socket has a nonblocking
read condition.

The last little subtlety concerning the select function is just what qualifies
as a read, write, and error condition. A socket in the read set is signaled when
one of the following events occurs:

• There is data in the input queue so that recv can be called without
blocking.

• The socket is in listen mode and a connection has been attempted so
that a call to accept won't block.

• The connection has been closed, reset, or terminated. If the connec
tion was gracefully closed, recv returns with 0 bytes read; otherwise,
the recv call returns SOCKET_ERROR. If the socket has been reset, the
recv function returns the error WSACONNRESET.

A socket in the write set is signaled under the following conditions:

• Data can be written to the socket. A call to send still might block if
you attempt to write more data than can be held in the outgoing queue.

• A socket is processing a connect and the connect has been accepted
by the server.

A socket in the exception set is signaled under the following condition:

• A socket is processing a connect and the connect failed.

The MySquirt Example Program
To demonstrate IrSock, the following program, MySquirt, shows how to trans
fer files from one Windows system to another. It's similar to the IrSquirt program
provided with the H/PC and Pocket PC. The difference is that this program is
designed to be compiled for and run on Windows CE, Windows XP, and Windows
Me systems. 1 So by running the program on these systems, you can send, that

1. To build MySquirt for Windows XP or Windows Me, use Microsoft Visual C++ 6.0.

609

Part Ill Communications

610

is, squirt, files from one system to another. MySquirt has a window that displays
a list of status messages as the handshaking takes place between the two Windows
systems. To use MySquirt, you'll need to have it running on two Windows sys
tems. To transfer a file, enter the name of the file you want to send and press
the Send button. The system transmits the name and size of the file to the re
ceiving system, and if it's accepted, the file data is subsequently sent. Figure 10-4
shows MySquirt on an H/PC after it sent a file to a Pocket PC, while Figure 10-
5 shows the results on the Pocket PC screen. The source code for the example
is shown in Figure 10-6.

Figure 10-4 The MySquirt window on an H/PC after a file has been sent

t rea entered
cept...

receive thread entered
name: \my documents\dlgdemo.exe
received file size of 246 71 bytes
Sending size ack.
recv'd 8192 bytes.
recv'd 8192 bytes.

v'd 8192 bytes.
ecv'd 95 bytes.
eceive finished
eceive thread exit

Figure 10-5 The MySquirt window on a Pocket PC after a file has been received

Windows Networking and lrSock Chapter 1 O

MySquirt.rc
II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright (C) 2001 Douglas Boling
II==

#include "windows.h"
#include "MySquirt.h" II Program-specific stuff

11--·-------····----------~--:_: ___________ "·---~-----~-i: _____________ _
II Icons and bitmaps
II
ID_ICON ICON "MySqui rt. i co'' 11 Program icon

/1---------C-----:•~--,~-C~------------------•--~·----·--:-·:•:~:~-~---:

II Main window dialog template
II
MySqurt DIAtoG d.i sca.rdi;ble 10, 10, 135, 110
STYLE WS_OVERLAPPEil. l ws_vrsrsn

DS_CENTER l DS~MOJ)ALfRAME
CAPTION '•MySqui n.t"
CLASS "MySqu.; rt"
BEGIN

LTEXT "&File:''
. EDHTEXT .

PUSHBUTTON ".&.seru:l .FU e"

-1, 2 •
!DD_OUTTEXT. 17,
WS_TABSTOP I ES_AUTOHSCRP[Li

IDD_SENDFlLE, 92, 10.. .38, 12, WS_TABSTOP

USTBOX lOD_INTEXT, 2. Z5, 128, 80,
WS_TABSTOP I WS_:VSCROLL

END

MySq1Jirt.f1· .·

I/ Hea.der file
17
11 Written for. the book<Programmi ng Windows CE
II Copyri 9ht CC) 200}. DougJ as Boling
/I ================~;;===,,;:0;:""=="'====
I l Returns n urnbe r of ~l ements
4,!define dim(x). {stzeof(x} r sizeof(x[0]))

11 Defines that .are diffetent between Windows CE and Desktop Wi ndqws
#ifdef _WIN32~WCE.

Figure 10-6 The MySquirt source (continued)

611

Part m communications

figure 10-6 (continued)

612

Windows Networking and lrSock Chapter 10

#define BAD_FILESIZE -6
#define BAD_MEMORY -7

#define BLKSIZE 8192 II Transfer block size

II- --

11 Function prototypes
II
int InitApp (HINSTANCEJ;
HWND Initinstance (HINSTANCE. LPCMDLINE, int);
int Terminstance (HINSTANCE, int);

II Window procedures
LRESULT CALLBACK Ma.inWndProc (HWND, UINT, WPARAM, LPARAMJ;

II Message handlers
LRESULT DoCreateMain CHWND. UINT, WPARAM, LPARAM);
LRESULT DoSizeMain tHWND, UINT, WPARAM, LPARAMJ;
LRESULT DoCommandMain. CHW.ND; UINT, WPARAM, LPARAMJ;
L~ESUL T t;loPocket.PCShell <ttwND'. UfNT ·• WPARAM. LPARAM)}
LRESU.LT OoDefitroyMairi .. .(HWNP. UINT i WPARAM, LPARAMJ;

(continued)

613

Part Ill Communications

Figure 10-6 (continued)

614

Windows Networking and lrSock Chapter 10

}

II Initialize this instance.
hMain = Initinstance (hinstance, lpCmdline, nCmdShow);
if (hMain == 0)

return Terminstance (hinstance, 0xl0);

II Application message loop
while (GetMessage (&msg, NULL, 0, 0)) {

}

if ((hMain == 0) [[!IsDialogMessage (hMain, &msg)) {
TranslateMessage C&rnsg);
DispatchMessage (&msg);

II Instance cleanup
return Terminstance Chinstance, msg.wParaml;

11--------------------------·~---"-----------------------------~--~-
ll InitApp - Application inttiaJlzation
II
int InitApp CHINSTANCE

WNDC.LASS we;

• . .. i . . /I.Appl
(~ULL, rnc_ARROW);//

RUSH) ti~tstockObject (
//
II

(continued)

615

Part Ill Communications

Figure 10-6 (continued)

616

Windows Networking and lrSock Chapter 10

}

INT i;
II
II Search message list to see if we need to handle this
II message. If in list. call procedure.
II
for (i = 0; i < dim(MainMessages); i++)

if (wMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxn)(hWnd, wMsg. wParam, lParam);

}

return DefWi ndowProc (hWnd, wMsg, wPa.ram. l Pa ram):

11- • - • -. • • - - - c • - - • - - • ~ - • "• • ·- • - - - • - - , • -·~ - ~·- • - - - - - - - - - - - - - - : ·~" - • - - - - • - - - - - - -

11 DoCreateMai ri ·~· Process WM..;.CRE:A'rE tl'lessage for wi ndowi
II
LRESULT. Do(:reateMaJn < HWNO hWn~. ·urnt ~Msg. WPARAM wPa ri1111;

LPARAM ·1 Param) {
' ··' ·" ',. ,,·: , ' ··· ..

#if defi ned(WI~32.:.~LATF08M_PSpC) &~ {"-WLN34..cWCE >= 30i}) . • . ". . •. :u'•
S~HiNiT~ril.Gt;N:F.!f'.$.hidi:f<·.' \:.' "'··:):;:··; ~.,"··>\:; . . , ·' '_,. ,.. . ,._. .. ,~'.-" . ""'"" ·, .. ,.' , ... ,.
s~M~~uiIA~lNFd .rllbr{ r ·'• ; ··: · · .· '·· · · ; ' · · '" · > ;;i.·.; ·•· ..
. ,. ·. · . 11x1······mF0eEuPboca'k:r···~s~ipCt· .. h•~.·.···~.···.•:t:1l·;·•.···,""".e .. ·.~.·.····t···.·.:• .. ·e .. ~.}. :.··.· .• :• '«:t:'• . mems.~t&m~i) 0, stz~of($Hli\g~ti,B,i-\~1~~·1I; . . . : •·· ". • ... · ... ·• .. " . ,. . • +
l!lbl,C'~Si.ze :=.·s.:tz.~of<sHf.1¢tip~ARJffFQ:i: ·· •: 11 have a ~~P· tlutto~. · · ·

... ntl:ff,.c!WF}.ags.'.= SJtQliJB:F:.;E~PHll)\R:t. <
'",'

~ ··.:;.\: \:·._: . ;,:;
11tii~ .'11w~<;fl'aFefr:=' h\fllji ~· · •'.•:•· .. ·.:,· ··
sHtie.,i~~iwa<trt~fl)bti; · ····· · ···· ··· · ··· · ·· · ··· ·· · .. ··

. s~n~M~~~a~et111b:i•:hvrn~a > sH~~a~~it:SJ~t-iEi4u.. 0 i 100.fi'. ·
'<'·;•··\,: · .. :0:-·/ ,~:;>,.·· ',_:-;:;:- ', ~,::,.::..: '" :'>·';··

··.•·.JtJh~F.it&e~etit> ~ake.i;aibg»b&~f~]f scree11 .. witt1 .. P!1:P,c •
. I f~pe9iffc ·ca'l~; .Since tiii's' '8a:i{js ()·~ly, on, PlPC; w~ .•
1/;,m4st·:.µse.to:ci~1 ibrary, Get?foc;i\<tilr"~.Ss to 11ai n ~cce.ss ··
M t;o:ttte iuncti on. ·. ·. · · · ·

s~fdi;~y~a~k<= SlflDI1'LfLAGS: .·.: .. ··
··shidif.:d~i)gs= SHIJYlFC,:DONEBUTTOff ']: slfI()}F _SIZEDLG I

·:~~1:r~~~~:~{~~~~h:f> ··>·•··. <j,.··:···

,.,:~~;~~~~~rm'." .,~~·; , "

(continued)

617

Part UI communications

figure 10-6 (continued)

6"18

Windows Networking and lrSock Chapter 1 O

11--
11 DoPocketPCShell - Process Pocket PC-required messages.
II

(continued)

619

Part Ill Communications

Figure i0-6 (continued)

620

Windows Networking and lrSock Chapter 10

}

II Fill in irda socket address structure.
iraddr.irdaAddressFamily = AF_IRDA;
for (i = 0; i <dim (iraddr.irdaDeviceID); i++)

iraddr.irdaDeviceID[iJ = 0;
memcpy (iraddr.irdaServiceName, chzAppName, sizeof (chzAppNamel + l);

II Bind address to socket.
re= bind (s_sock, (struct sockaddr •l&iraddr, sizeof (iraddrll;
if (rel {

Add2List (hWnd, TEXT(" bind failed"));

cl osesocket (Lsockl;

return 0:

II Set socket i~to listen mode.
re = 1 i sten .(s:_sock.,. SQMAXCONNl;

if (re == SOCKELERROR) {

}

Add2Ltst ChWnd •. TEXT(~ listen
closesocket (s: .. sock);

return 0;

nSi ze ···;;· .. sizeof (Liraddr);

Lsock :::;<acc;ept (S-s.ock. (struct

if (Lsock ==; INVALm..cSOCkED{
Add2Ust .{hWnd; ·.TEXT("

Add2Usf{hWnd~ TEXT("sock accept ...
MyCreateThread (NULL. 0. Recei veThread. CPVOID)Lsock, 0. NULL);

c Tosesotket (s_sock):

Add 2L is t thWn d, TEXH "Monitor

return 0;

JI ReceiveThread c Sends

ll
int ReceiveThread (PVOID pAl'g){

SOCKET Lsock = (SOCKET)pArg;

HWND hWnd.<= hMai n; J). I. 'm cheating her.e.
int nCnt, .nFiJesize, re;
TCHAR szFileNamefMALPATH]; ..
char szAnsiName[MALPATHJ;
PBYTE pBuff;
int i, nSile, nTotal;

DWORO dwBytes;
HANDLE hFfle;

(continued)

621

Part Ill Communications

Figure i0-6 (continued)

622

Windows Networking and lrSock Chapter 1 O

if (hFile == INVALID_HANDLE_VALUE) {
Add2List ChWnd, TEXTC"File Open failed. re %d"l,

GetLastError()J:
re = BAD_FILEWRITE:

II Send aek code,
Add2List ChWnd, TEXH"Sending size ack."));
send (t_sock, (LPSTR)&rc, sizeof (re), 0);
II
II Receive
II

(continued)

623

Part Ill Communications

Figure 10-6 (continued)

624

Windows Networking and lrSock Chapter 1 O

Sleep(500l:
}

II If no device found, exit.
if (pDL->numDevice ~= 0) {

}

II

closesocket (c_sock);
CloseHandle (hFile);
Add2List lhWnd, TEXT("Ho infrared devices found in range."));
return -2;

II Copy address of found devic~.
II
~emset C&iraddr, 0. sit~of (itaddrll:
i r~ddl' • irdaAdtlressFamHyc"' ·AF .:.IR.DA; . . ·.·. . .··
memcpY · c i raddrArdaDevi ceUl; pOL->Devi ce[0J. i rdaOevicelD,
II

··II How i niti ali~e ttre s~cff:{c s.dcket we• re

(continued)

625

Part Ill Communications

Figure 10-6 (continued)

626

Windows Networking and lrSock Chapter 1 O

Add2List (hWnd, TEXTC"sent %d bytes"), rel;
pPtr += re;
nFil•Size -= re:

fl Receive ack.
recv (c_sock, (LPSTRJ&re, s.fzeof (re), 0);

From a Windows standpoint, MySquirt is a simple program. It uses a dia
log box as its main window. When the program is first launched, it creates a thread
to monitor for other devices that creates an infrared socket, binds it to a service
name, puts the socket into listen mode, and blocks on a call to accept. When a
remote device connects, the monitor thread creates another thread to handle the
actual receiving of the file while it loops back and waits for another connection.

A transmission is initiated when another device running MySquirt sends a
file. This process begins when the user on the sending device presses the Send
button. If text exists in the edit box, the application reads it and calls the SendFile
routine. In this routine, a socket is created and any remote devices are enumer
ated using repeated calls to getsockopt. If a device is found, a connection is at
tempted with a call to connect. Connect succeeds only if the remote device has
bound an IR socket using the same service name, which happens to be defined
as the string contained in chzAppName, an ASCII representation of the program
name. This addressing scheme ensures that if a connection is made, the remote
device is running MySquirt. Once a connection is made, the sending device sends
over the filename, which it does in two steps: first it sends the byte length of the
filename and then the name itself. This process allows the server to know how
many characters to receive before continuing. The device then sends the file size.
If the file sent by the server device fits in the object store, the routine creates the

627

Part Ill Communications

file on the client side, notifying the user if the file already exists. If all has gone
well to this point, the data is received and written to the file. The application closes
the socket and frees the buffer created to read the data into.

On the receiving side, a transmission is initiated when the monitor thread's
call to accept returns. The monitor thread creates a receiving thread and loops
back looking for other sending devices. The receiving thread receives the name
and size of the file and determines whether the file is acceptable. If so, it sends
an acknowledgment back to the sending device. From then on, the receiving
thread reads the data from the socket and writes it to the newly created file. When
the transmission is complete, the receiving thread closes the file, closes the re
ceiving socket, and terminates.

The other interesting aspect of MySquirt is that I wrote the program to be
compiled on both Windows CE and the desktop versions of Windows using
Microsoft Visual C++ 6. I made a few adjustments to the program to handle the
different declarations for the lpCmdLine parameter of WinMain and a macro
to hide the differences between calling CreateThread in Windows CE and
beginthreadex on the desktop. The example on the companion CD has project
files for both Embedded C++ for Windows CE compilation and Visual C++ for
compiling for the desktop.

While I've spent most of the explanation of sockets focused on IrSock, one
area of the TCP/IP WinSock is unique to Windows CE-the ICMP functions. These
functions allow a "back door" that allows raw socketlike functions on a stack that
doesn't support raw sockets. Let's look now at why that's useful.

TCP/IP Pinging

628

On a TCP/IP network, there's no more basic diagnostic than to ping a site. Pinging
is the process of sending a request to a TCP /IP server to respond with an ac
knowledgment back to the sender. If you look at the source code for a ping utility,
you'll see that pinging is simply the process of sending a specific type of IP packet
to the requested server and waiting for a reply.

The format of these packets is defined by ICMP. As mentioned, ICMP stands
for Internet Control Message Protocol. This is a protocol used by routers and serv
ers on TCP /IP networks to report errors and status information. While most of
this work goes unseen by applications because it's handled at the IP layer of the
network stack, ping requests take place at this level.

Under most systems, an application would have to open a raw socket. While
Windows CE's version of WinSock doesn't expose a way of opening raw sock
ets, Windows CE gives you a few functions that encapsulate the process of pinging
another server.

Windows Networking and lrSock Chapter 1 O

Windows CE supports three functions that allow Windows CE applications
to ping Internet addresses. Essentially, a Windows CE application opens a handle,
sends the ICMP request as many times as you want, and closes the handle. While
the functions are documented in the Windows CE SDK, the include files that define
these prototypes aren't in all versions of the Windows CE SDK. The file ICMPAPI.H
contains the function prototypes, while IPEXPORT.H contains the definitions for
the packet structures and constants used at the IP layer. These two include files
are on the CD-ROM included with this book.

To start the process, you must open an ICMP handle using this function:

HANDLE IcmpCreateFile (VOID);

The function takes no arguments and returns a handle that will be used
in the other ICMP functions. If the function fails, the return value will be
INVALID_HANDLE_ VALUE.

To actually send a ping request, you use this function:

DWORD WINAPI IcmpSendEcho (HANDLE IcmpHandle, IPAddr DestinationAddress,
LPVOID RequestData, WORD RequestSize,
PIP_OPTION_INFORMATION RequestOptions,
LPVOID ReplyBuffer, DWORD ReplySize.
DWORD Ti me out);

The first parameter is the handle returned by the ICMPCreateFile function. The
second parameter is the destination address that will be sent to the IP packet.
The data type for this address, IPAddr, is essentially an unsigned long value with
the four bytes of the IP address packed inside. The RequestData parameter is a
pointer to a buffer containing the data to be sent, while the RequestSize parameter
should specify the size of the data. You can define any data you want in the
buffer pointed to by RequestData, although you generally don't want to exceed
the 8-KB packet size limit found on some TCP/IP systems. What you do not
get to do is directly define the ICMP packet that's sent. That packet is automati
cally formed by IcmpSendEcho and sent along with the data specified in the
RequestData buffer.

The RequestOptions parameter should point to an IP _OPTION_INFORMATION
structure that's defined as

Typedef struct ip_option_information
unsigned char Ttl;
unsigned char
unsigned char

Tos;
Flags;

unsigned char OptionsSize;
unsigned char FAR *OptionsData;

IP_OPTION_INFORMATION;

629

Part Ill Communications

630

The data in this structure will be used by the function to fill in some of the
IP packet header that you use when sending an ICMP packet. The structure is a
subset of the IP packet structure since Windows CE takes care of things such as
computing checksums and the like. The formal definitions of these fields are best
left to texts that explain the IP protocol in detail. What follows is a quick over
view.

The first field, Ttl, is the "Time to Live" for the packet. If the packet isn't
received in this amount of time, it will be dropped. The Tos field defines the type
of service for the IP packet. The Flags field contains the flags for the IP header.
Finally, the OptionsData and OptionsSize fields specify the IP packet options. The
options are defined as bytes in the buffer pointed to by OptionsData. The
OptionsSize field should contain the number of bytes in the OptionsData buffer.
The format of the options buffer is defined by the IP protocol.

The next two parameters in IcmpSendEcho are the pointer to the buffer that
receives the reply and the size of that buffer. The receiving buffer must be large
enough to hold an ICMP _ECHO_REPLY structure plus the size of the data you
specified in the RequestData buff er. At a minimum, you must specify the buffer
to be the size of ICMP _ECHO_REPLY plus 8 bytes. The 8-byte allowance is the
size of an ICMP error message.

The final parameter is Timeout, which is the time, in milliseconds, that
IcmpSendEcho waits for returning packets before giving up.

IcmpSendEcho returns the number of reply packets received in response
to the ping request. If the return value is 0, an error occurred. In this case, you
should call GetLastError to receive the error code.

The data received by IcmpSendEcho is in the form of an array ofICMP _ECHO_
REPLY structures, one from each router or server that replied to the original packet.
Following the array will be the data sent out by IcmpSendEcho that returns with
each of the packets. The ICMP _ECHO_REPLY structure is defined as

struct icmp_echo_reply {
IPAddr Address;
unsigned long Status;
unsigned long RoundTripTime;
unsigned short DataSize;

II Replying address
II Reply IP_STATUS
II RTT in milliseconds
II Reply data size in bytes

unsigned short Reserved; II Reserved for system use
void FAR Data; II Pointer to the reply data
struct IP_OPTION_INFORMATION Options; II Reply options

}; I* icmp_echo_reply *I

The Address field is the TCP /IP address of the responding router or server. The
address is in IPAddr format. The Status field contains the status returned by the
responding server. If the ping was successful, this field will contain IP _SUCCESS.
Other values indicate errors and are defined in IPEXPORT.H. The RoundTripTime

Windows Networking and lrSock Chapter 10

field contains the elapsed time, in milliseconds, from when the original packet
was sent until the packet from this server was received. The DataSize field con
tains the size of the data returned by the server. This value should match the size
of the data originally sent. The Data field contains a pointer to the data returned
by the server. This data should match the data originally sent. Finally, the Op
tions field is an IP _OPTION_INFORMATION structure that defines the details of
the responding packet.

Generally, you'll call IcmpSendEcho a number of times to ping a site and
then clean up with a call to JcmpCloseHandle. This function is prototyped as

BOOL WINAPI IcmpCloseHandle (HANDLE IcmpHandle);

The only parameter is the handle that was received with IcmpCreateFile.
The following routine implements a very basic ping. The routine calls

IcmpCreateFile and then fills in the IP packet data and calls JcmpSendEcho five
times. The address passed to PingAddress is a Unicode string in Internet dot
format, as in 123.45.56.78. The inet_addr function translates this into a DWORD
value used by IcmpSendEcho. Notice that the address string passed to PingAddress
is first translated into ASCII before the call is made to inet_addr.

//--

// PingAddress - Ping a TCP/IP address.
II
INT PingAddress (HWND hWnd, LPTSTR lpszPingAddr, LPTSTR lpszOut) {

HANDLE hPing;
BYTE b0ut[32];
BYTE bin[l024];
char c0ptions[12];
char szdbAddr[32];
IP OPTION INFORMATION ipoi;
PICMP_ECHO_REPLY pEr;
struct in_addr Address;
I NT i , j, re;
DWORD adr;

II Convert xx.xx.xx.xx string to a DWORD. First convert the string
I I to ASCII.
wcstombs CszdbAddr, lpszPingAddr, 31);
if ((adr = inet_addr(szdbAddr)) == -lL)

return -1;

II Open ICMP handle.
hPing = IcmpCreateFile ();
if (hPing == INVALID_HANDLE_VALUE)

return -2;
(continued)

631

Part Ill Communications

632

wsprintf (lpszOut, TEXT ("Pinging: %s\n\n"), lpszPingAddrl;
lpszOut += lstrlen (lpszOut) + l;

II Ping loop
for (j = 0; j < 5; j++l {

II Initialize the send data buffer.
memset C&bOut, 0, sizeof CbOut));

II Initialize the IP structure.
memset C&ipoi, 0, sizeof (ipoi));
ipoi.Ttl =32;
i poi . Tos = 0:
ipoi.Flags = IP_FLAG_DF;
memset (cOptions, 0, sizeof (cOptionsll:

II Ping!
re= IcmpSendEcho (hPing, adr, bOut, sizeof (bOut), &ipoi,

bin, sizeof (bin), 1000);
if (re) {

II Loop through replies.
pEr = (PICMP_ECHO_REPLY)bin;
for (i = 0; i < re: i ++) {

else

Address.S_un.S_addr = CIPAddr)pEr->Address;
II Format output string.
wsprintf (lpszOut,

TEXT ("Reply from %hs: bytes:%d time"),
inet_ntoa (Address), pEr->DataSize);

II Append round-trip time.
if (pEr->RoundTripTime < 10)

lstrcat ClpszOut, TEXT ("<10mS\n"));
else

wsprintf C&lpszOut[lstrlen(lpszOut)J.
TEXT ("%dmS\n"), pEr->RoundTripTimel:

lpszOut += lstrlen (lpszOutl + 1·
pEr++;

lstrcpy (lpszOut, TEXT ("Request timed out."));
lpszOut += lstrlen (lpszOut) + l;

IcmpCloseHandle (hPing);

*lpszOut =TEXT ('\0');
return 0;

II Add final terminating zero.

Windows Networking and lrSock Chapter 1 O

The response packet from IcmpSendEcho is interpreted by looping through
the array of ICMP _ECHO_REPLY structures. Within each of these structures is
enough data to provide the very basic ping information. The routine could be
extended in a number of ways. For example, the reply packets could be dissected
to determine the route of the packets.

This chapter has given you a basic introduction to some of the network
ing features of Windows CE. Next on our plate is networking from a different
angle. In Chapter 11, we look at the Windows CE device from the perspective
of its companion PC. The link between the Windows CE device and a PC is based
on some of the same networking infrastructure that we touched upon here. Let's
take a look.

633

Connecting to the Desktop
One of the major market segments that Windows CE is designed for is desktop
companions. In answer to the requirements of this market, two product catego
ries created using Windows CE are desktop companions: the Handheld PC and
the Pocket PC. Both these products require a strong and highly functional link
between the Windows CE device and the desktop PC running Windows Me or
Windows XP.

Given this absolute necessity for good desktop connectivity, it's not surpris
ing that Windows CE has a vast array of functions that enable applications on
the desktop and the remote Windows CE device to communicate with one an
other. In general, most of this desktop-to-device processing takes place on the
desktop. This is logical because the desktop PC has much greater processing
power and more storage space than the less powerful and much smaller Windows
CE system.

All of the helper DLLs, communications support, and viewer programs are
collected in the ActiveSync product. When a user buys any of the horizontal
platforms, such as the Pocket PC or the Handheld PC, a CD loaded with ActiveSync
comes with the device. The user becomes accustomed to seeing the Mobile
Devices folder that, once ActiveSync is installed, appears on his desktop. But
there's much more to ActiveSync than Mobile Devices. A number of DLLs are
included, for example, to help the Windows CE application developer write PC
based applications that can work with the remote Windows CE device.

In this chapter, I'll cover the various APis that provide the desktop-to
Windows CE link. These include the remote API, or RAPI, that allows applica
tions running on the desktop to directly invoke functions on the remote Windows
CE system. I'll tell you how to write a file filter that converts files as they're trans
ferred from the PC to the Windows CE device and back. I'll also look at meth
ods a PC application can use to notify itself when a connection exists between
a PC and a Windows CE device.

635

Part Ill Communications

In a departure from the other chapters in this book, almost all the examples
in this chapter are PC-based Windows programs. They're written to work for all
32-bit versions of Windows. I take the same approach with the PC-based examples
as I do for the CE-based examples, writing to the API instead of using a class
library such as MFC. The principles shown here could easily be used by MFC
based applications.

The Windows CE Remote API
The remote API (RAPI) allows applications on one machine to call functions on
another machine. Windows CE supports essentially a one-way RAPI; applications
on the PC can call functions on a connected Windows CE system. In the language
of RAPI, the Windows CE device is the RAPI server while the PC is the RAPI client.
The application runs on the client, the PC, which in turn calls functions that are
executed on the server, the Windows CE device.

RAPI Overview

636

RAPI under Windows CE is designed so that PC applications can manage the
Windows CE device remotely. The exported functions deal with the file system,
registry, and databases, as well as functions for querying the system configura
tion. While most RAPI functions are duplicates of functions in the Windows CE
API, a few functions extend the APL You use these functions mainly for initial
izing the RAPI subsystem and enhancing performance of the communication link
by compressing iterative operations into one RAPI call.

The RAPI functions are listed in the Windows CE API reference but are called
by PC applications-not by Windows CE applications. The RAPI functions are pre
fixed with a Ce in the function name to differentiate them from their Windows CE
side counterparts; for example, the function GetStorelnformation in Windows CE
is called CeGetStorelnformation in the RAPI version of the function. Unfortunately,
some APis in Windows CE, such as the database API, also have functions pre
fixed with Ce. In these cases, both the CE function (for example, CeCreateDatabase)
and the RAPI function (again, CeCreateDatabase) have the same name. The linker
isn't confused in this case because a Windows CE application won't be calling
the RAPI function and a PC-based program can't call the database function ex
cept through the RAPI interface.

These Windows CE RAPI functions work for Windows 95/98/Me as well as
Windows NT/2000/XP, but because they're Win32 functions, applications devel
oped for the Winl6 API can't use the Windows CE RAPI functions. The RAPI

Connecting to the Desktop Chapter 11

functions can be called from either a Windows-based application or a Win32-
console application. All you have to do to use the RAPI functions is include the
RAPI.H header file and link with the RAPI.LIB library.

Essentially, RAPI is a remote procedure call. It communicates a PC application's
request to invoke a function and returns the results of that function. Because the
RAPI layer is simple on the Windows CE side, all strings used in RAPI functions
must be in Unicode regardless of whether the PC-based application calling the
RAPI function uses the Unicode format.

Dealing with Different Versions of RAPI
The problem of versioning has always been an issue with redistributable DLLs
under Windows. RAPI.DLL, the DLL on the PC that handles the RAPI API, is
distributed with the ActiveSync software that comes with an H/PC, Pocket PC,
or other PC companion Windows CE devices. Trouble arises because the RAPI
API has been extended over time as the Windows CE functions have expanded;
you have to be aware that the RAPI DLL you load on a machine might not be
the most up-to-date RAPI DLL. Older RAPI DLLs don't have all the exported
functions that the newest RAPI DLL has.

This isn't as much of a problem as it used to be, however. The set of RAPI
functions hasn't changed from the old H/PC Pro days up to the current Pocket
PC products. However, you should always be aware that new versions of ActiveSync
might provide RAPI functions that aren't available on older installations.

On the other hand, just because you're using the latest RAPI DLL doesn't
mean that the Windows CE system on the other end of the RAPI connection
supports all the functions that the RAPI DLL supports. An old H/PC running
Windows CE 2.0 won't support the extended database API supported by the
current Windows CE systems, no matter what RAPI DLL you're using on the PC.

The best way to solve the problem of multiple versions of RAPI.DLL is to
program defensively. Instead of loading the RAPI DLL implicitly by specifying
an import library and directly calling the RAPI functions, you might want to load
the RAPI DLL explicitly with a call to LoadLibrary. You can then access the ex
ported functions by calling GetProcAddress for each function and then calling
the pointer to that function.

The problem of different versions of Windows CE has a much easier solu
tion. Just be sure to call CeGetVersionEx to query the version of Windows CE on
the remote device. This gives you a good idea of what the device capabilities of
that device are. If the remote device has a newer version of Windows CE than
RAPI.DLL, you might want to inform the user of the version issue and suggest
an upgrade of the synchronization software on the PC.

637

Part Ill Communications

638

Initializing RAPI
Before you can call any of the RAPI functions, you must first initialize the RAPI
library with a call to either CeRapi!nit or CeRapilnitEx. The difference between
the two functions is that CeRapilnit blocks, waiting on a successful connection
with a Windows CE device, while CeRapilnitEx doesn't block. Contrary to what
you might expect, neither of these functions creates a connection between a PC
and a device physically hooked up to one another but unconnected.

The first initialization function is prototyped as

HRESULT CeRapiinit (void);

This function has no parameters. When the function is called, Windows looks
for an established link to a Windows CE device. If one doesn't exist, the func
tion blocks until one is established or another thread in your application calls
CeRapiUninit, which is generally called to clean up after a RAPI session. The
return value is either 0, indicating that a RAPI session has been established, or
the constant E_FAIL, indicating an error. In this case, you can call GetLastError
to diagnose the problem.

Unfortunately CeRapilnit blocks, sometimes, for an extended period of time.
To avoid this, you can use the other initialization function,

HRESULT CeRapiinitEx (RAPIINIT* pRapilnit);

The only parameter is a pointer to a RAPIINIT structure defined as

typedef struct _RAPIINIT
DWORD cbSize;
HANDLE heRapilnit;
HANDLE hrRapilnit;

RAP II NIT;

The cbSize field must be filled in before the call is made to CeRapilnitEx. After
the size field has been initialized, you call CeRapilnitEx and the function returns
without blocking. It fills in the second of the three fields, heRapilnit, with the
handle to an event object that will be signaled when the RAPI connection is
initialized. You can use WaitForSingleObject to have a thread block on this event
to determine when the connection is finally established. When the event is sig
naled, the final field in the structure, hrRapilnit, is filled with the return code
from the initialization. This value can be 0 if the connection was successful or
E_FAIL if the connection wasn't made for some reason.

Connecting to the Desktop Chapter 11

Handling RAPI Errors
When you're dealing with the extra RAPI layer between the caller and the exe
cution of the function, a problem arises when an error occurs: did the error occur
because the function failed or because of an error in the RAPI connection? RAPI
functions return error codes indicating success or failure of the function. If a function
fails, you can use the following two functions to isolate the cause of the error:

HRESULT CeRapiGetError (void);

and

DWORD CeGetlastError (void);

The difference between these two functions is that CeRapiGetError returns
an error code for failures due to the network or other RAPI-layer reasons. On
the other hand, CeGetLastError is the RAPI counterpart to GetLastError; it returns
the extended error for a failed function on the Windows CE device. So, if a func
tion fails, call CeRapiGetErrorto determine whether an error occurred in the RAPI
layer. If CeRapiGetError returns 0, the error occurred in the original function on
the CE device. In this case, a call to CeGetLastError returns the extended error
for the failure on the device.

Here's one last general function, used to free buffers that are returned by
some of the RAPI functions. This function is

HRESULT CeRapiFreeBuffer (LPVOID Buffer);

The only parameter is the pointer to the buffer you want to free. The function returns
S_OK when successful and E_FAIL if not. Throughout the explanation of RAPI
functions, I'll mention those places where you need to use CeRapiFreeBu.ffer. In
general, though, you use this function anywhere a RAPI function returns a buffer
that it allocated for you.

Ending a RAPI Session
When you have finished making all the RAPI calls necessary, you should clean
up by calling

HRESULT CeRapiUninit (void);

This function gracefully closes down the RAPI communication with the remote
device. CeRapiUninit returns E_FAIL if a RAPI session hasn't been initialized.

639

Part Ill Communications

Predefined RAPI Functions

640

As I mentioned in the beginning of this chapter, the RAPI services include a
number of predefined RAPI functions that duplicate Windows CE functions on
the PC side of the connection. So, for example, just as GetStorelnformation re
turns the size and free space of the object store to a Windows CE program,
CeGetStorelnformation returns that same information about a connected Windows
CE device to a PC-based application. The functions are divided into a number
of groups that I'll talk about in the following pages. Since the actions of the
functions are identical to their Windows CE-based counterparts, I won't go into
the details of each function. Instead, although I'll list every RAPI function, I'll
explain at length only the functions that are unique to RAPI.

RAPI System Information Functions
The RAPI database functions are shown in the following list. I've previously
described most of the Windows CE counterparts to these functions, shown, with
the exception of CeCheckPassword and CeRapilnvoke. The CeCheckPassword
function, as well as its Windows CE counterpart CheckPassword, compares a string
to the current system password. If the strings match, the function returns TRUE.
The comparison is case specific. Another function you might not recognize is
CeGetDesktopDeviceCaps. This is the RAPI equivalent of GetDeviceCaps on the
Windows CE side.

System Information Functions

CeGetVersionEx

CeGlobalMemoryStatus

CeGetSystemPowerStatusEx

CeGetStorelnformation

CeGetSystemMetrics

CeGetDesktopDeviceCaps

CeGetSystemlnfo

CeCheckPassword

CeCreateProcess

CeRapilnvoke

RAPI File and Directory Management Functions
The following list shows the RAPI file management functions, illustrating that
almost any file function available to a Windows CE application is also available
to a PC-based program.

Connecting to the Desktop Chapter 11

File and Directory Management Functions

CeFindAl!Files CeSetFilePointer

CeFindFirstFile CeSetEndQfFile

CeFindNextFile CeCreateDirectory

CeFindClose CeRemoveDirectory

CeGetFileAttrihutes CeMoveFile

CeSetFileAttrihutes CeCopyFile

CeCreateFile CeDeleteFile

CeReadFile CeGetFileSize

Ce WriteFile CeGetFileTime

CeCloseHandle CeSetFileTime

Here's a new function, CeFindAllFiles, that's not even available to a Windows
CE application. This function is prototyped as

BOOL CeFindAllFiles (LPCWSTR szPath, DWORD dwFlags,
LPDWORD lpdwFoundCount,
LPLPCE_FIND_DATA ppFindDataArray);

CeFindAllFiles is designed to enhance performance by returning all the files of
a given directory with one call rather than having to make repeated RAPI calls
using CeFindFirstFile and CeFindNextFile. The first parameter is the search string.
This string must be specified in Unicode, so if you're not creating a Unicode
application, the TEXT macro won't work because the TEXT macro produces char
strings for non-Unicode applications. In Microsoft Visual C++, prefixing the string
with an L before the quoted string as in L"\ *. *11 produces a proper Unicode for
the function even in a non-Unicode application. For string conversion, you can
use the WideCharToMultiByte and MultiByteTo WideChar library functions to
convert Unicode and ANSI strings into one another.

The second parameter of the CeFindAllFiles function, dwFlags, defines the
scope of the search and what data is returned. The first set of flags can be one
or more of the following:

• FAF_ATTRIB_CHILDREN Return only directories that have child items.

• FAF_ATTRIB_NO_HIDDEN Don't report hidden files or directories.

• FAF_FOLDERS_ONLY Return only folders in the directory.

• FAF_NO_HIDDEN_SYS_ROMMODULES Don't report ROM-based
system files.

641

Part Ill Communications

642

The second set of flags defines what data is returned by the CeFindAl!Files
function. These flags can be one or more of the following:

• FAF_ATTRIBUTES Return file attributes.

• FAF_CREATION_TIME Return file creation time.

• FAF_IASTACCESS_TIME Return file last access time.

• FAF_IASTWRITE_TIME Return file last write time.

• FAF_SIZE_HIGH Return upper 32 bits of file size.

• FAF_SIZE_LOW Return lower 32 bits of file size.

• FAF_OID Return the object identifier (OID) for the file.

• FAF_NAME Return the filename.

Just because the flags are listed here doesn't mean you can find a good use for
them. For example, the FAF _SIZE_HIGH flag is overkill, considering that few files
on a Windows CE device are going to be larger than 4 GB. The file time flags are
also limited by the support of the underlying file system. For example, the Windows
CE object store tracks only the last access time and reports it in all file time fields.

There also appears to be a bug with the FAF _ATTRIB_CHILDREN flag. This
valuable flag allows you to know when a directory contains subdirectories without
your having to make an explicit call to that directory to find out. The flag seems
to work only if the filename specification-the string to the right of the last di
rectory separator backslash (\)-contains only one character. For example, the
file specification

\\windows*

works with FAF _ATTRIB_CHILDREN, while

\\windows*.*

returns the same file list but the flag FILE_ATTRIBUTE_HAS_CHILDREN isn't set
for directories that have subdirectories.

The third parameter of CeFindAllFiles should point to a DWORD value that
will receive the number of files and directories found by the call. The final pa
rameter, ppFindDataArray, should point to a variable of type LPCE_FIND _DATA,
which is a pointer to an array of CE_FIND_DATA structures. When CeFindAllFiles
returns, this variable will point to an array of CE_FIND_DATA structures that con
tain the requested data for each of the files found by the function. The CE_FIND _
DATA structure is defined as

typedef struct _CE_FIND_DATA
DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftlastAccessTime;

Connecting to the Desktop Chapter 11

FILETIME ftlastWriteTime;
DWORD nFileSizeHigh;
DWORD nFileSizelow;
DWORD dwO ID;
WCHAR cFileName[MAX_PATH];

CE_FIND_DATA;

The fields of CE_FIND_DATA look familiar to us by now. The only interesting
field is the dwOID field that allows a PC-based application to receive the OID
of a Windows CE file. This can be used with CeGetOidGetlnfo to query more in
formation about the file or directory. The flags in the dwFileAttributes field re
late to Windows CE file attributes even though your application is running on a
PC. This means, for example, that the FILE_ATTRIBUTE_TEMPORARY flag in
dicates an external storage device like a PC Card. Also, attribute flags are defined
for execute-in-place ROM files. The additional attribute flag, FILE_ATTRIBUTE_HAS_
CHILDREN, is defined to indicate that the directory contains child directories.

The buffer returned by CeFindAllFiles is originally allocated by the RAPI.DLL.
Once you have finished with the buffer, you must call CeRapiFreeBuffer to free
the buffer.

RAPI Database Management Functions
The RAPI database management functions arc shown in the following list. As you
can see, these functions mimic the extensive database API found in Windows
CE. Here's a case in which explicitly loading the RAPI DLL can come in handy.
The many RAPI functions that support the extended database API of Windows
CE 2.1 aren't exported by older RAPI DLLs. If your application attempts implic
itly to load one of these functions, it won't load if the PC has an older version
of RAPI.DLL.

Database Management Functions

CeCreateDatahase

CeCreateDatahaseEx

CeDeleteDatahase

CeDeleteDatahaseEx

CeDeleteRecord

CeFindFirstDatahase

CeFindFirstDatahaseEx

CeFindNextDatahase

CeFindNextDatahaseEx

CeOidGetlnfo

CeOidGetlnfoEx

CeOpenDatahase

CeOpenDatahaseEx

CeReadRecordProps

CeReadRecordPropsEx

CeSeekDatahase

CeSetDatahaselnfo

CeSetDatahase!nfoEx

Ce WriteRecordProps

CeMountDBVol

CeUnmountDBVol

CeEnumDBVolumes

CeFindAllDatahases

643

Part Ill Communications

644

All but one of the database functions has a Windows CE counterpart. The
only new function is CeFindAllDatabases. Like CeFindAllFiles, this function is
designed as a performance enhancement so that applications can query all the
databases on the system without having to iterate using the CeFindFirstDatabase
and CeFindNextDatabase functions. The function is prototyped as

BOOL CeFindAllDatabases (DWORD dwDbaseType, WORD wFlags,
LPWORD cFindData.
LPLPCEDB_FIND_DATA ppFindData);

The first parameter is the database type value, or 0, if you want to return all
databases. The wFlags parameter can contain one or more of the following flags,
which define what data is returned by the function.

• FAD_OID Returns the database OID

• FAD_FLAGS Returns the dwF!ags field of the Dblnfo structure

• FAD_NAME Returns the name of the database

• FAD_TYPE Returns the type of the database

• FAD_NUM_RECORDS Returns the number of records in the database

• FAD_NUM_SORT_ORDER Returns the number of sort orders

• FAD_SORT_SPECS Returns the sort order specs for the database

The cFindData parameter should point to a WORD variable that receives
the number of databases found. The last parameter should be the address of a
pointer to an array of CEDB_FIND_DATA structures. As with the CeFindA!!Files
function, CeFindA!!Databases returns the information about the databases found
in an array and sets the ppFindData parameter to point to this array. The
CEDB_FIND_DATA structure is defined as

struct CEDB_FIND_DATA {
CEOID OidDb;
CEDBASEINFO Dblnfo;

} ;

The structure contains the OID for a database followed by a CEDBASEINFO
structure. I described this structure in Chapter 7, but I'll repeat it here so that you
can see what information can be queried by CeFindAllDatabases.

typedef struct _CEDBASEINFO {
DWORD dwFlags;
WCHAR szDbaseName[CEDB_MAXDBASENAMELEN];

Connecting to the Desktop Chapter 11

DWORD dwDbaseType;
WORD wNumRecords;
WORD wNumSortOrder;
DWORD dwSize;
FILETIME ftlastModified;
SORTORDERSPEC rgSortSpecs[CEDB_MAXSORTORDERJ;

CEDBASEINFO;

As with CeFindAllFiles, you must free the buffer returned by CeFindAllDatabases
with a call to CeRapiFreeBu.ffer.

One other function in this section requires a call to CeRapiFreeBu.ffer. The
function CeReadRecordProps, which returns properties for a database record,
allocates the buffer where the data is returned. If you call the RAPT version func
tion, you need to call CeRapiFreeBu.ffer to free the returned buffer.

RAPI Registry Management Functions
The RAPI functions for managing the registry are shown in the following list. The
functions work identically to their Windows CE counterparts. But remember that
all strings, whether they are specifying keys and values or strings returned by
the functions, are in Unicode.

Registry Management Functions

CeRegOpenKeyEx

CeRegEnumKeyEx

CeRegCreateKeyEx

CeRegCloseKey

CeRegDeleteKey

CeRegEnum Value

CeRegDelete Value

CeRegQuerylnfoKey

CeRegQuery ValueEx

CeRegSet ValueEx

RAPI Shell Management Functions
The RAPI shell management functions are shown in the next list. While I'll
cover the Windows CE-equivalent functions in the next chapter, you can see
that the self-describing names of the functions pretty well document them
selves. The CeSHCreateShortcut and CeSHGetShortcutTarget functions allow
you to create and query shortcuts. The other two functions, CeGetTempPath
and CeGetSpecialFolderPath, let you query the locations of some of the spe
cial-purpose directories on the Windows CE system, such as the programs di
rectory and the recycle bin.

645

Part Ill Communications

Shell Management Functions

CeSHCreateShortcut

CeSHGetShortcutTarget

CeGetTempPath

CeGetSpecialFolderPath

RAPI Window Management Functions
The final set of predefined RAFI functions allow a desktop application to man
age the windows on the Windows CE desktop. These functions are shown in the
following list. The functions work similarly to their Windows CE functions. The
CeGetWindow function allows a PC-based program to query the windows and
child windows on the desktop while the other functions allow you to query the
values in the window structures.

Window Management Functions

CeGetWindow

CeGet WindowLong

CeGet Window Text

CeGetClassName

The RapiDir Example Program

646

The RapiDir example is a PC-console application that dispiays the contents of a
directory on an attached Windows CE device. The output of RapiDir, shown in
Figure 11-1, resembles the output of the standard DIR command from a PC
command line. RapiDir is passed one argument, the directory specification of the
directory on the Windows CE machine. The directory specification can take
wildcard arguments such as *.exe if you want, but the program isn't completely
robust in parsing the directory specification. Perfect parsing of a directory string
isn't the goal of RapiDir-demonstrating RAFI is.

Figure 11-1 The output of RapiDir

Connecting to the Desktop Chapter 11

The source code for RapiDir is shown in Figure 11-2. The program is a
command line application and therefore doesn't need the message loop or any
of the other structure seen in a Windows-based application. Instead the WinMain

function is replaced by our old C friend, main.

Remember that RapiDir is a standard Win32 desktop application. It won't
even compile for Windows CE. On the other hand, you have the freedom to use
the copious amounts of RAM and disk space provided by the comparatively huge
desktop PC. When you build RapiDir, you'll need to add RAFI.LIB to the librar
ies that the linker uses. Otherwise, you'll get unresolved external errors for all
the RAPI functions you call in your application. RAPI.H and RAFI.LIB come with
the Microsoft eMbedded Tools. The location of these files varies from platform
to platform. The easiest way to find the files is to use the Explorer's search function
to look for RAPI.H and RAFI.LIB and then add the appropriate directories to the
project using the Directories tab of the Tools\Options menu in Visual C++.

Figure 11-2 The RapiDir source code (continued)

647

Part Ill communications

Figure 11-2 (continued)

(re l"'. ~OERROR! £

648

. pf'intf {J~X.t ("Ra,!J1.

return .0 i

ret:tirn

If no argument.

(ar~c >JI
· .. 1 strcPY (szSrch;

el.se . .
J~trcPY

.l'o:tnt to

cha.r en::
.ch.·".'· ·*·Pf tr<:
*~PX:r "' ·\~' .;

. pbnt:f .JTE1<'f

·.···•~f>rtr <,<211:.
els.e ; f .. ti) ·
· phintf ffPT

Connecting to the Desktop Chapter 11

II No wildcards, append *·*
if (i == 0)

lstrcat (szSrch, "\\•.•");

II Convert ANSI string to Unicode.
mbstowcs (szwDir, szSrch. lstrlen (szSrch) + 1);

II RAP! call
re= CeFindAllFiles (szwDir, FAF_SIZE_LOW I FAF_NAME I

FAF _ATTRIBUTES I FAF _LASTACCESLTIME.

&citems. &pfdl;

II Display the r~sults.
if (cltems) {

for Ci .·., 0; i < citems; i++) {

II Convert file time.
FileTimeTolocalFileTime l&pfdc>ftlastAccessTime. &ft):
FileTi.meToSystemTime (&ft, &st);

fl Adjust for AM/ PM.

if<st.wHour"'"' 0>
st: wHo ur 12;

else if Cst,wHour > 11) {

ampm<<"° 'p' ;
H (.st ;wfiour > 12)

printf (TEXT (".%02d/%02d/%02d %02d:%02d%c\t"l,
st,wMonth. st.wDay, st.wYear,

st;wflour, st.wMinute, alllpm);

II D.1splay dtr marker or file size.
if (pfd-}dWFileAttributes & FlLE_ATTRIBUTLDIRECTORY)

printf (TEXT l"<DIR>\t\t "));

else {
printf (TEXT ("\t%8d "). pfd->nFileStzelowl;

dwTotal +c= pfdc>nFileSi.zeLow;

//Display rrnme •. use Cap %5 to.indicate Unicocje.
printf tTEXT~(~%S\r\n"), pfd->cFileName>~

printf (TEXT{"\t%l0d Fi.le(sJ\t%9d

cJtem,S, dwlotal);
} else

printf (TEXJ
(continued)

649

Part Ill Communications

Figure 11-2 (continued)

This single procedure application first calls CeRapilnitEx to initialize the RAPI
session. I used the Ex version of the initialization function so that RapiDir can
time out and terminate if a connection isn't made within 5 seconds of starting
the program. If I'd used CeRapilnit instead, the only way to terminate RapiDir
if a remote CE device weren't connected would be a user-unfriendly Ctrl-C key
combination.

Once the RAPI session is initialized, a minimal amount of work is done on
the single command line argument that's the search string for the directory. Once
that work is complete, the string is converted into Unicode and passed to
CeFindAllFiles. This RAPI function then returns with an array of CE_FIND_DATA
structures that contain the names and requested data of the fiies and directories
found. The data from that array is then displayed using prinif statements. The
buffer returned by CeFindA!!Files is freed by means of a call to CeRapiFreeBu.ffer.
Finally, the RAPI session is terminated with a call to CeRapiUninit.

If you compare the output of RapiDir with the output of the standard DIR
command, you notice that RapiDir doesn't display the total bytes free on the disk
after the listing of files. While I could have displayed the total free space for the
object store using CeGetStoragelnformation, this wouldn't work if the user dis
played a directory on a PCMCIA card or other external media. Windows CE
supports the GetDiskFreeSpaceEx function, but the Windows CE RAPI DLL doesn't
expose this function. To get this information, we'll use RAPI's ability to call user
defined functions on a Windows CE system.

Custom RAPI Functions

650

No matter how many functions the RAPI interface supports, you can always think
of functions that an application needs but the RAPI interface doesn't give you.
Because of this, RAPI provides a method for a PC application to call a user-defined
function on the Windows CE device.

You can invoke a user-defined RAPI function in one of two ways. The first
way is called block mode. In block mode, you make a call to the RAPI remote
invocation function, the function makes the call to a specified function in a

Connecting to the Desktop Chapter 11

specified DLL, the DLL function does its thing and returns, and the RAPI func
tion then returns to the calling PC program with the output. The second method
is called stream mode. In this mode, the RAPI call to the function returns immedi
ately, but a connection is maintained between the calling PC application and
the Windows CE DLL-based function. This method allows information to be fed
back to the PC on an ongoing basis.

Using RAPI to Call a Custom Function
The RAPI function that lets you call a generic function on the Windows CE device
is CeRapilnvoke, which is prototyped as

HRESULT CeRapilnvoke (LPCWSTR pDllPath, LPCWSTR pFunctionName,
DWORD cblnput, BYTE *plnput, DWORD *pcbOutput,
BYTE **ppOutput, IRAP!Stream **pp!RAP!Stream,
DWORD dwReserved);

The first parameter to CeRapilnvoke is the name of the DLL on the Windows CE
device that contains the function you want to call. The name must be in Unicode
but can include a path. If no path is specified, the DLL is assumed to be in the
\windows directory on the device. The second parameter is the name of the function
to be called. The function name must be in Unicode and is case specific.

The next two parameters, cblnput and plnput, should be set to the buffer
containing the data and the size of that data to be sent to the Windows CE-based
function. The input buffer should be allocated in the local heap of the applica
tion. When you call CeRapilnvoke, this buffer will be freed by the function. The
pcbOutput and ppOutput parameters are both pointers-the first a pointer to a
DWORD that receives the size of the data returned and the second a pointer to
a PBYTE variable that receives the pointer to the buffer containing the data re
turned by the Windows CE function. The buffer returned by CeRapilnvoke is
allocated by the function in your local heap. You're responsible for freeing this
buffer. I'll describe the next-to-last parameter, pp!RAPIStream, later.

To use CeRapilnvoke in block mode, all you do is specify the DLL contain
ing the function you want to call, the name of the function, and the data, and
then make the call. When CeRapilnvoke returns, the data from the CE-based func
tion will be sitting in the buffer pointed to by your output pointer variable.

Writing a RAPI Server Function
You can't call just any function in a Windows CE DLL. The structure of the Windows
CE function must conform to the following function prototype:

STDAPI INT FuncName (DWORD cblnput, BYTE *plnput, DWORD *pcbOutput,
BYTE **ppOutput, IRAPIStream *pIRAPIStream);

651

Part Ill Communications

652

As you can see, the parameters closely match those of CeRapilnvoke. As with
CeRapilnvoke, I'll talk about the parameter p!RAP!Stream later.

Figure 11-3 contains the source code for a very simple block-mode RAPI
server. This is a DLL and therefore has a different structure from the application
files previously used in the book. The primary difference is that the DLL con
tains a Dl!Main routine instead of WinMain. The DllMain routine is called by
Windows whenever a DLL is loaded or freed by a process or thread. In our case,
we don't need to take any action other than to return TRUE indicating all is well.

You should be careful to make the name of your RAPI server DLL eight
characters or less. Current implementations of the RAPI DLL will fail to find ser
ver DLLs with names not in the old 8.3 format.

Figure 11-3 RapiServ.c, a simple block-mode RAPI server DLL

Connecting to the Desktop Chapter 11

PDWORD pdwLocal ;
LPTSTR pPtr;
DWORD i;
int re = 0;
ULARGE_INTEGER lnFree, lnTotal;

*PCbOutput = 0; II Zero output bytes for now.
if (!plnput) return -1; II Make sure there is an input buffer.
II See if proper zero-terminated string.
pPtr = (LPTSTR)plnput;
for (i = 0; i < cblnput I 2; i++)

if (!*pPtr++)
break:

II H not zero terminated or if<zero 1 ength, return error;
if C(i >= cblnput I 2) 11 (i =-= 0)) {

localP:ree (plnput);
return c2;

· j·
< ~ ~-

, ··,'·;·:'·,

.• ·.f:}Aifot;ate~einory .for ·tne· return .. buffer ..

. . ;.Pdwlqpal ::; (PDWORD) LOCC! lAHoc {.lPTIL 2 *
if TpdwLqcC) n { .•·

I/ :coPY ·data from function to output buffer.
i:il1wibcah0J == l ni:atal. Law.Pa rt: · ·

..... pctwLacalpJ =- lnFree.LowPart;
· · ti Specify size and buffer.

*PCbOutput == 2 * sizeof CDWORD);
*PP0utput = (PBYTE)pdWLocal;

'. ·. rr~:\ ~.·?·~{L~stE.no r(l; ..•....•.... ·.•.·· •• .•.
· ··• :f1.y1xeLfu~cpipn fs .. respon&itile··mor Jree:lng

•Lq'6a~f'r~e~··~iitii~lltt; · .

The unusual prefix before the function prototype for RAPIGetDiskSize,

_declspec (dllexport) INT RAPIGetDiskSize ...

tells the linker to export the function listed so that external modules can call the
function directly. This declaration is a shortcut for the old way of defining exports

653

Part Ill Communications

654

in a separate function definition (DEF) file used in Win16 programming. While
this shortcut is convenient, sometimes you still need to fall back on a DEF file.
The _declspec line is couched in an extern C bracket. This technique ensures
that if the file is compiled with the C++ language extensions enabled, the func
tion name won't be mangled by the compiler. This is an impottant assurance
because we need to call this function by its real name, not by some fabricated
name created by a compiler.

The function of RapiServ is to make available that GetDiskFreeSpaceEx
function we needed in the RapiDir example application. The server function,
RAPJGetDiskSize, has the same prototype I described earlier. The input buffer
is used to pass a directory name to the DLL while the output buffer returns the
total disk space and the free disk space for the directory passed. The format of
the input and output buffers is totally up to you. However, the function must free
the input buffer with LocalFree and the output buffer should be allocated using
LocalAlloc so that the RAPI library can free it after it has been used. The value
returned by RAPIGetDiskSize is the value that's returned by the CeRapilnvoke
function to the PC-based application.

On the PC side, a call to a block-mode RAPI server function looks like the
following.

11---
11 MyCeGetDiskFreeSpaceEx - Homegrown implementation of a RAPI
II GetDiskFreeSpace function
II
BOOL MyCeGetDiskFreeSpaceEx (LPWSTR pszDir, PDWORD pdwTotal,

PDWORD pdwFree) {
HRESULT hr;
DWORD dwin, dwOut;
LPBYTE pinput;
LPWSTR pPtr;
PDWORD pOut;
BOOL bRC = FALSE;

II Get length of Unicode string.
for (dwin = 2, pPtr = pszDir; *pPtr++; dwin+=2);
II Allocate buffer for input.
pinput = LocalAlloc (LPTR, dwln);
if (!pinput)

return FALSE;
II Copy directory name into input buffer.
memcpy (pinput, pszDir, dwin);

II Call function on Windows CE device.
hr= CeRapiinvoke (L"RapiServ", L"RAPIGetDiskSize", dwin,

pinput, &dwOut, (PBYTE *)&pOut, NULL, 0);

Connecting to the Desktop Chapter 11

II If successful, return total and free values.
if (hr == 0) {

*pdwTotal = p0ut[0];
*pdwFree = pOut[lJ;
bRc = TRUE;

LocalFree (pOut);
return bRC;

This routine encapsulates the call to CeRapilnvoke so that the call looks just
like another CE RAPI call. The code in this routine simply computes the length
of the Unicode string that contains the directory specification, allocates a buffer
and copies the string into it, and passes it to the CeRapilnvoke function. When
the routine returns, the return code indicates success or failure of the call.
CeRapilnvoke frees the input buffer passed to it. The data is then copied from
the output buffer and that buffer is freed with a call to Loca!Free.

Throughout this section, I've put off any explanation of the parameters
referring to !RAP/Stream. In fact, in the example code above, the prototype for
the server call, RAPIGetDiskSize, simply typed the p!RAP!Stream pointer as a
PVOID and ignored it. In the client code, the CeRapilnvoke call passed a NULL
to the ppIRAPIStream pointer. This treatment of the !RAP/Stream interface is what
differentiates a block-mode call from a stream-mode call. Now let's look at the
!RAP/Stream interface.

Stream Mode
Stream-mode RAPI calls are different from block mode in that the initial RAPI
call creates a link between the PC application and the server routine on the
Windows CE device. When you call CeRapilnvoke in stream mode, the call re
turns immediately. You communicate with the server DLL using an !RAP/Stream
interface. You access this interface using a pointer returned by the CeRapilnvoke
call in the variable pointed to by pp!RAP!Stream.

The !RAP/Stream interface is derived from the standard COM !Stream in
terface. The only methods added to !Stream to create !RAP/Stream are SetRapiStat
and GetRapiStat, which let you set a timeout value for the RAPI communication.
Fortunately, we don't have to implement an !RAP/Stream interface either on the
client side or in the server DLL. This interface is provided for us by the RAPI
services as a way to communicate.

Following is a call to CeRapilnvoke that establishes a stream connection and
then writes and reads back 10 bytes from the remote server DLL.

DWORD dwin, dwOut, cbBytes;
IRAPIStream *pIRAPIStream;

(continued)

655

Part Ill Communications

BYTE bBuff[BUFF_SIZE];
PBYTE pOut;
HRESULT hr;

II RAPI call
hr= CeRapilnvoke (L"ServDLL", L"RAPIRmtFunc", dwln, bBuff,

&dwOut, &pOut, &pIRAPIStream, 0);
if (hr == S_OK) {

II Write 10 bytes.
pIRAPIStream->Write (bBuff, 10, &cbBytes);
II Read data from server.
pIRAPIStream->Read (bBuff, 10, &cbBytes);

pIRAPIStream->Release ();

When establishing a stream connection, you can still use the input buffer
to pass initial data down to the remote server. From then on, you should use the
Read and Write methods of !RAP/Stream to communicate with the server. When
you're finished with the !RAP/Stream interface, you must call Release to release
the interface.

The Rapifind Example Program

656

The RapiFind example program searches the entire directory tree of a Windows
CE device for files matching a search specification. The program is in two parts:
a RAPI server DLL, FindSrv.DLL, and a console-based, Win32 application,
RapiFind. The program works by passing a search string on the command line.
RapiFind returns any files on the attached Windows CE device that match the
search string. If the search specification includes a directory, only that directory
and any of its subdirectories are searched for matching files. Figure 11-4 shows
the output of RapiFind.

You'll notice that the following example is written in C++, and so are the
rest of the examples in this chapter. Actually, almost all the code in both files is
standard C, but the C++ extensions are used to reference the !RAP/Stream in
terface. I could have written a C-equivalent structure to access the interface, but
I could see little reason to avoid using C++ in this case. (As an aside, most COM
interfaces defined in Win32 have C-interface equivalents for those of us who still
like C.) First, let's look at the server DLL, FindSrv, shown in Figure 11-5.

Connecting to the Desktop Chapter 11

Figure 11-4 The output of RapiFind

Written for"'the bO"ok ·programming Windows
!I Copyright (C) 2001 D:Ouglas Boling

//===============:i:======================:i:============;;:.;=========:i:=.:..-=
#1 ncl ude <wi nd.ows .h> I I For a 11. th.at ~indows stuff

II Returns numt>er ofelernerits
#define dim(xJ (siz:eofCxJ I sizeof(x[0])J

,. __ ,·, '. ; < .. .
jf"': .. i..;· ... ;;,,,·.; ... ,: ·:.:''\~:..:· .. ·~:~··.:...:•·:"'.. ".'.:'" ;" -~~----------"'----------~-~-----~--~---~---~~-
) / Ad(! if> not defiji~cl •

. #TfndefRAPlSTll:EAMFLAG .•• •·· ..•. ·•.··•··•·.·•
typedef en um tagRARISTRt'AlifFLAG

· STREAM.,_ TIMEOll'fC:...BfAD
} RAPISTREAMftAG;

Figure 11-5 FindSrv.cpp, a stream-mode RAPI server DLL (continued)

657

Part Ill Communications

Figure 11-5 (continued)

658

Connecting to the Desktop Chapter 11

int nFl ag;
11---
11 SrchDirectory - Recursive routine that searches a directory and all
II child dirs for matching files
II
int SrchDirectory CLPTSTR pszDir, IRAPIStream •pIRAPIStream) {

WIN32_FIND_DATA fd:
TCHAR szNew[MAX_PATH];
INT i. re, nErr = 0;
HANDLE hFind;
TCHAR •pPtr, •pSrcSpec;

fl Separate subdirectory from search specification.
for (pSrcSpec = pszDir + l strl en (pszDi r): pSrcS.pec

pSrcSpec--c)
if (•pSrcSpec == TEXT (' \\' l)

break;

Copy the sea.rch specifi.cati on up
(pS.rcS.pec <=< pszDir)<
lstrcpy{sznew, TEXT f"\\"}l;

else.{

di rectory we're· searching.
WrlteToClient (2. 0, szNew, pIRAPIStream);

hfi~d ~ FindFirstFiJe (pszDi~. &fdl;
ff (hHnd .!= JNVALID~HANDLE-..VALUE) {

Cl, fd.nFileSizeLow,
pIRAPIStream);

{ hHnd, &fd}:

pszDi r;

(continued)

659

Part Ill communications

Figure 11-5 (continued)

660

Connecting to the Desktop Chapter 11

INT RAPIFindFile (DWORD cblnput, BYTE *plnput, DWORD *PCbOutput,
BYTE **ppOutput, IRAPIStream *PIRAPIStream) {

INT nBuff:
DWORD i, cbBytes:
TCHAR *PPtr:
HRESULT hr;

*PCbOutput = 0:
II See if proper zero-terminated string.
pPtr = (LPTSTRlpinput:
for (i = 0; i < cblnput I 2; i++)

if (I *pPtr++)
break;

II If not zero terminated OT if zero length, return error.
if <Ci >= cbinput l 2) ll Ci """' 0))

.return -2;
nFlag ;;;. 0;
II Searqh for files. . . .

· Sr:ctipireC:tory J(lPlStR.l · p!11wt:;: pI RAPrstream>:

/jl W;i'.teirid·cGde~ ... Clnd 0 ·->end.of search·.

r;i~t,if:I' ;,;; 0; < ... ·.··• ·. . . . · .. · · .• ·· •...
•~r·= p!RAP.IS1;r~arn·>Write <&nB\lff; s.ize~f CnBuffl,.&cbBytes);·

... 11. ReJ~ise :the inhrface.
piRAi'ISfrea:m">~elease <>{ ·
r:e.tu.rri If:

As with the earlier RAPI server DLL, FindSrv is short and to the point. The
differences between this server and the block server can be seen early in the file.
The IRAPIStream interface isn't defined in some of the older tools, so if neces
sary, this interface is derived at the top of the file from !Stream. Immediately
following the interface declaration is the exported function prototype. Notice that
the prototype is enclosed in an extern C bracket. This prevents the default man
gling of the function name that the C++ precompiler would normally perform. We
need the name of the function unmangled so that it's a known name to the client.

The exported RAPI function is RAPIFindFile, which you can see at the end
of the source code. This routine does little more than check to see that the search
string is valid before it calls SrchDirectory, a function internal to the DLL.
SrchDirectory is a recursive function that searches the directory defined in the
search specification and all subdirectories underneath. When a file is found that
matches the search specification, the name and size of the file are sent back to

661

Part Ill Communications

662

the client caller using the Write method of IRAP!Stream. The format of the data
transmitted between the client and server is up to the programmer. In this case,
I send a command word, followed by the file size, the length of the name, and
finally the filename itself. The command word gives you a minimal protocol for
communication with the client. The command value 1 indicates a found file, the
value 2 indicates the server is looking in a new directory, and the value 0 indi
cates that the search is complete. Following the last write, Release is called to
free the IRAP!Stream interface.

The source code for the client application, RapiFind, is shown in Figure 11-6.

Figure 11-6 RapiFind.cpp, a stream-mode RAPI client application

Connecting to the Desktop Chapter 11

if (re != NOERROR) {
printf (TEXT ("Rapi Initialization failed\r\n"));
return 0:

}

II Wait 5 seconds for connect.
re• WaitForStngleObject (ri.heRapiinit, 5000);
if Crc == WAIT_OBJECT_0) {

if (ri .hrRapiinit != NOERROR) {
printf (TEXT ("Rapi Initialization failed\r\n"));
return 0:

} else if (re== WAILTIMEOUT) {

}

printf (TEXT ("Rapi Initialization timed out.\.r\n"));
return 0:

I I P-0i nt to end of name.
pPtr = szSrch + lstrlen (szSrch) - 1;

' '

II Strip i}nY trailing backslash
if {*pP'l;r'•"?'=t'\\') __ •

*PPtt <:;i_':•\0:'.·;-- : '

/I t.o~k ~~rji\~;2a~ds 111 ·nic~name.' pPfr_- potnt$ tif s.tring
for -Ci "' 0; (pPtr '>"' szsrchJ && (llipPtr !=

.' ?,.,>;;·'. -: ;·~(:.::·:.:, .. ;:':~ .. ·:' : ·'.··' ''' '.. ·. ·~ ,: .. ,
if ({~p~tY' ;:;::;, * } IJ < *PPt r. "'"" ?. H. · ' i~; '' '' ., ' ,, . '

~f (P~.tr,·<="szs'r'chl -{
.. - lstr¢p}(:(~z~r'Ctl, H,XT ("\\")):

Jstrcirt;: (szSrC'tl. argv[lJ);
J

if
<TEXT (."\r\n Searching for %s\r\n\r\n"); pPtr+l);

l
Searching in %s\r\n\r\n~). szSrchl:

11 :No w'fldck:r:cts": a:p:p:end *. *
if'(i/.~.-~:0~,1.:./ .. :..:~ ,, .. - ;<:,+>>

i strcat_,.,cszst:c.h; ''.*. *"):

II Conv~~t~:Ns1'itr)11~ to Unicode'. At the same time. copy it
11 into: a d'fli<tll,r\;lllbte buffer for CeRa;>ilnvoke.
dwin"' i'strlelL{szsr~h} + 1: //Make mbst~wcs convert termfnatfng 0.

pinput ~· (PBhE)ttjh~l'.All oc < L,PTR, dwtn * •s1zeof

1 f (lp foput)':{ ~. -········.• .. _ -.. - . - _ .. _ pr1~tf h~XTJ'.'.\.r\nO~t of memory\r\n"fr:

}

(continued)

663

Part Ill Communications

Figure 11-6 (continued)

664

}

Connecting to the Desktop Chapter 11

printf (TEXT C"\r\nFound %d file(s). Total of %d bytes.\r\n\r\n"),
dwFiles, dwTotal);

II Clean up by uninitializing RAP!.
CeRapiUninit ();
return 0;

The call to CeRapilnvoke returns a pointer to an !RAP/Stream interface that's
then used to read data from the server. The client reads one integer value to
determine whether the following data is a found file, a report of the current search
directory, or a report that the search has ended. With each command, the appro
priate data is read using the Read method. The result of the search is then re
ported using printf statements. After all the results have been returned,
the application calls the Release method to free the JRapiStream interface.

While you could implement the same file-find function of RapiFind using
a block-mode connection, the stream format has a definite advantage in this case.
By reporting back results as files are found, the program lets the user know that
the program is executing correctly. If the program were designed to use a block
mode call, RapiFind would appear to go dead while the server DLL completed
its entire search, which could take 10 or 20 seconds.

As I mentioned in the explanation of CeRapilnit, a call to this function
doesn't initiate a connection to a device. You can, however, be notified when a
connection to a Windows CE device is established. There are ways, both on the
PC and on the Windows CE device, to know when a connection is made between
the two systems. After a brief look at CeUtil, which provides some handy helper
functions for PC applications dealing with Windows CE devices, I'll talk next about
connection notifiers.

The CeUtil Functions
ActiveSync uses the PC registry to store voluminous amounts of information about
the Windows CE devices that have partnered with the PC. ActiveSync also uses
the registry to store extensive configuration information. While most of these
registry keys are documented, if you access them by name you're assuming that
those key names will always remain the same. This might not be the case, es
pecially in international versions of Windows where registry keys are sometimes
in a different language.

The CeUtil DLL exports functions that provide an abstraction layer over the
registry keys used by ActiveSync. Using this DLL allows a PC application to query
the devices that are currently registered and to add or delete registry values

665

Part Ill Communications

666

underneath the keys that hold data for specific devices. The CeUtil DLL doesn't
communicate with a remote Windows CE device; it only looks in the PC regis
try for information that has already been put there by ActiveSync.

The keys in the registry related to ActiveSync are separated into either
HKEY _LOCAL_MACHINE, for generic configurations such as the initial configu
ration for a newly registered device, or HKEY_CURRENT_USER, where the con
figuration information for the already registered devices is located. When a new
device is registered, ActiveSync copies the template in HKEY _LOCAL_MACHINE
to a new subkey under HKEY_CURRENT_USER that identifies the specific device.

In general, you register a new filter in the keys under HKEY _LOCAL_
MACHINE to ensure that all devices that are registered in the future also use your
filter. You use the registry entries under HKEY_CURRENT_USER to register that
filter for a specific device that was already registered before you installed that
same filter.

Accessing ActiveSync Registry Entries
To open one of the many registry keys that hold connection information, you
can use this function:

HRESULT CeSvcOpen (UINT uSvc, LPTSTR pszPath, BOOL fCreate,
PHCESVC phSvc);

The first parameter of this function is a flag that indicates which predefined key
you want to open. Here are the available flags:

Keys under HKEY _LOCAL_MACHINE that apply to generic Windows CE Services
configuration information

• CESVC_ROOT_MACHINE ActiveSync root key under HKEY _LOCAL_
MACHINE

• CESVC_FILTERS Root key for filter registration

• CESVC_CUSTOM_MENUS Root key for custom menu registration

• CESVC_SERVICES_COMMON Root key for services

• CESVC_SYNC_COMMON Root key for synchronization services
registration

Keys under HKEY_CURRENT_USER that apply to specific Windows CE devices
that are partnered with the PC

• CESVC_ROOT_USER ActiveSync root key under HKEY _LOCAL_USER

• CESVC_DEVICES Root key for individual device registration

• CESVC_DEVICEX Root key for a specific device

Connecting to the Desktop Chapter 11

• CESVC_DEVICE_SELECTED Root key for the device currently se
lected in the ActiveSync window

• CESVC_SERVICES_USER Root services subkey for a specific device

• CESVC_SYNC Synchronization subkey for a specific device

Of the many registry keys that can be returned by CeSvcOpen, the ones I'll
be using throughout the chapter are CESVC_FILTERS, the key in which a filter is
registered for all future devices; CESVC_DEVICES, the key in which information
for all registered devices is located; and CESVC_DEVICEX, which is used to open
keys for specific registered devices. The other flags are useful for registering
synchronization objects as well as for registering general ActiveSync configura
tion information.

The second parameter to CeSvcOpen is pszPath. This parameter points either
to the name of a subkey to open underneath the key specified by the uSvc flag
or to a DWORD value that specifies the registered Windows CE device that you
want to open if the uSvc flag requires that a device be specified. The /Create
parameter should be set to TRUE if you want to create the key being opened
because it currently doesn't exist. If this parameter is set to FALSE, CeSvcOpen
fails if the key doesn't already exist in the registry. Finally, the phSvc parameter
points to a CESVC handle that receives the handle of the newly opened key. While
this isn't typed as a handle to a registry key (an HKEY), the key can be used in
both the CeUtil registry functions and the standard registry functions.

CeSvcOpen returns a standard Win32 error code if the function fails. Otherwise,
the key to the opened registry key is placed in the variable pointed to by phSvc.

You can open registry keys below those opened by CeSvcOpen by calling
CeSvcOpenEx. This function is prototyped as

HRESULT CeSvcOpenEx (HCESVC hSvcRoot, LPTSTR pszPath, BOOL fCreate,
PHCESVC phSvcl;

The parameters for this closely mirror those of RegOpenKey. The first parameter
is a handle to a previously opened key. Typically, this key would have been
opened by CeSvcOpen. The second parameter is the string that specifies the name
of the subkey to be opened. Notice that since we're running on the PC, this string
might not be a Unicode value. The }Create parameter should be set to TRUE if
you want the key to be created if it doesn't already exist. Finally, the phSvc
parameter points to a CESVC handle that receives the handle to the opened key.

When you have finished with a key, you should close it with a call to this
function:

HRESULT CeSvcClose (HCESVC hSvc);

The only parameter is the handle you want to close.

667

Part Ill Communications

668

Enumerating Registered Devices
Of course, the requirement to specify the device ID value in CeSvcOpen begs the
question of how you determine what devices have already been partnered with
the PC. To determine this, you can use the function

HRESULT CeSvcEnumProfiles (PHCESVC phSvc, DWORD lProfilelndex,
PDWORD plProfile);

The first parameter to CeSvcEnumProfiles is a pointer to a CESVC handle. The
handle this parameter points to is uninitiated the first time the function is called.
The function returns a handle that must be passed in subsequent calls to
CeSvcEnumProfiles. The second parameter is an index value. This value should
be set to 0 the first time the function is called and incremented for each subse
quent call. The final parameter is a pointer to a DWORD that receives the device
ID for the registered device. You can use this value when you're calling CeSvcOpen
to open a registry key for that device.

Each time the function is called, it returns NOERROR if a new device ID
is returned. When all devices have been enumerated, CeSvcEnumProfiles re
turns ERROR_NO_MORE_ITEMS. You should be careful to continue calling
CeSvcEnumProfiles until the function returns ERROR_NO_MORE_ITEMS so that
the enumeration process will close the handle parameter pointed to by phSvc.
If you want to stop enumerating after you've found a particular device ID, you'll
need to call CeSvcClose to close the hSvc handle manually.

The following routine enumerates the Windows CE devices that have been
registered on the PC. The program enumerates all the registered Windows CE
devices and prints out the name and device type of each of the devices. The
program uses the function CeSvcGetString, which I'll describe shortly.

int PrintCeDevices (void) {
HCESVC hSvc, hDevKey;
TCHAR szName[128], szType[64];
DWORD dwPro;
I NT i ;

II Enumerate each registered device.
i = 0;
while (CeSvcEnumProfiles (&hSvc, i++, &dwPro) == 0) {

II Open the registry key for the device enumerated.
CeSvcOpen (CESVC_DEVICEX, (LPTSTR)dwPro, FALSE, &hDevKey);

II Get the name and device type strings.
CeSvcGetString (hDevKey, TEXT ("DisplayName"),

szName, dim(szName));
CeSvcGetString (hDevKey, TEXT ("DeviceType"),

szType, dim(szType));

Connecting to the Desktop Chapter 11

II Print to the console.
printf (TEXT ("Name: %s\t\tType: %s"), szName, szTypel;

II Close the key opened by CeSvcOpen.
CeSvcClose ChDevKey);

return i-1; II Return the number of devices found.

Reading and Writing Values
The remainder of the CeUtil library functions concern reading and writing val
ues in the registry. In fact, you can skip these functions and use the registry
functions directly, but the CeSvcxxx functions are a bit simpler to use. These
functions allow you to read and write three of the data types used in the regis
try: DWORD, string, and binary data. These just happen to be the only data types
used in the values under the ActiveSync keys. The functions are all listed here:

HRESULT CeSvcGetDword (HCESVC hSvc, LPCTSTR pszValName,
LPDWORD pdwVal);

HRESULT CeSvcSetDword (HCESVC hSvc, LPCTSTR pszValName,
DWORD dwVal);

HRESULT CeSvcGetString CHCESVC hSvc, LPCTSTR pszValName,
LPTSTR pszVal, DWORD cbVal);

HRESULT CeSvcSetString (HCESVC hSvc, LPCTSTR pszValName,
LPCTSTR pszVal);

HRESULT CeSvcGetBinary (HCESVC hSvc, LPCTSTR pszValName,
LPBYTE pszVal, LPDWORD pcbVal);

HRESULT CeSvcSetBinary (HCESVC hSvc, LPCTSTR pszValName,
LPBYTE pszVal, DWORD cbVal);

The parameters for these functions are fairly self-explanatory. The first
parameter is the handle to an open key. The second parameter is the name of
the value being read or written. The third parameter specifies the data or a pointer
to where the data will be written. The fourth parameter on some of the func
tions specifies the size of the buffer for the data being read or, in the case of
CeSvcSetBinary, the length of the data being written.

One final function in the Ce Util library is

HRESULT CeSvcDeleteVal CHCESVC hSvc, LPCTSTR pszValName);

This function, as you might expect, lets you delete a value from the registry.
The parameters are the handle to an open key and the name of the value to
be deleted.

669

Part Ill Communications

The CeUtil library doesn't provide any function that you couldn't do your
self with a bit of work and the standard registry functions. However, using these
functions frees you from having to depend on hard-coded registry key names
that could change in the future. I strongly advise using these functions when
ever possible when you're accessing registry entries that deal with ActiveSync.

Connection Notification
ActiveSync gives you two ways of notifying PC-based applications when a con
nection is made with a Windows CE device. The first method is to simply launch
all the applications listed under a given registry key. When the connection is
broken, all applications listed under another key are launched. This method has
the advantage of simplicity at the cost of having the application not know why
it was launched.

The second method of notification is a COM-interface method. This notifi
cation method involves two interfaces: IDccMan, provided by RAPl.DLL, and
IDccManSink, which must be implemented by the application that wants to be
notified. This method has the advantage of providing much more information
to the application as to what is actually happening at the cost of having to imple
ment a COM-style interface.

Registry Method

670

To have your PC application launched when a connection is made to a Windows
CE device, simply add a value to the PC registry under the following key:

[HKEY_LOCAL_MACHINE]
\Software\Microsoft\Windows CE Services\AutoStartOnConnect

I'll show you shortly how to access this key using CeSvcOpen so that the
precise name of the key can be abstracted. The name of the value under
AutoStartOnConnect can be anything, but it must be something unique. The best
way to ensure this is to include your company name and product name plus its
version in the value name. The actual data for the value should be a string that
contains the fully specified path for the application you want to launch. The string
can only be the filename; appending a command line string causes an error when
the program is launched. For example, to launch a myapp program that's loaded
in the directory c:\windowsce\tools\syncstuff, the value and data might be

MyCorpThisApp c:\windowsce\tools\syncstuff\myapp.exe

Connecting to the Desktop Chapter 11

To have a command line passed to your application, you can have the entry
in the registry point to a shortcut that will launch your application. The entry in
the registry can't pass a command line, but shortcuts don't have that limitation.

You can have an application launched when the connection is broken be
tween the PC and the Windows CE device by placing a value under the fol
lowing key:

[HKEY_LOCAL_MACHINE]
\Software\Microsoft\Windows CE Services\AutoStartOnDisconnect

The format for the value name and the data is the same as the format used in
the AutoStartOnConnect key.

A routine to set these values is simple to write. The example routine be
low uses the CeSvcOpen and CeSvcSetString functions to write the name of the
module to the registry. Remember that since this routine runs on a PC, and there
fore perhaps under Windows NT/XP, you'll need administrator access for this
routine to have write access to the registry.

II
II RegStartOnConnect - Have module started when connect occurs.
II
LPARAM RegStartOnConnect (HINSTANCE hlnst)

TCHAR szName[MAX_PATH];

}

HCESVC hSvc;
HRESULT re;

II Get the name of the module.
GetModuleFileName (hlnst, szName, dim(szName));

II Open the AutoStartOnConnect key.
re= CeSvcOpen (CEsvc_ROOLMACHINE, "AutoStartOnConnect",

TRUE, &hSvc);
if (re == NOERROR) {

II Write the module name into the registry.
CeSvcSetString (hSvc, TEXT ("MyCompanyMyApp"), szName);
CeSvcClose (hSvc);

return re;

The preceding routine doesn't have to know the absolute location of the
ActiveSync keys in the registry, only that the Autostart key is under
CESVC_ROOT_MACHINE. You can modify this routine to have your application
started when a connection is broken by substituting AutoStartOnConnect with
AutoStartOnDisconnect in the call to CeSvcOpen.

671

Part Ill Communications

COM Method

672

As I mentioned before, the COM method of connection notification is imple
mented using two COM interfaces-IDccMan and IDccManSink. The system
implements IDccMan, while you are responsible for implementing IDccManSink.
The IDccMan interface gives you a set of methods that allow you to control the
link between the PC and the Windows CE device. Unfortunately, most of the
methods in IDccMan aren't implemented. The IDccManSink interface is a series
of methods that are called by the connection manager to notify you that a con
nection event has occurred. Implementing each of the methods in IDccManSink
is trivial because you don't need to take any action to acknowledge the notification.

The process of connection notification is simple. You request an IDccMan
interface. You call a method in IDccMan to pass a pointer to your IDccManSink
interface. ActiveSync calls the methods in IDccManSink to notify you of events
as they occur. In this section, I'll talk about the unique methods in IDccManSink
and IDccMan, but I'll skip over the !Unknown methods that are part of every
COM interface. For a very brief introduction to COM, read the sidebar "COM Isn't
a Four-Letter Word."

The /DccMan Interface
To gain access to the IDccMan interface, you need to call the COM library func
tion Colnitialize to initialize the COM library. Then you make a call to
CoCreatelnstance to retrieve a pointer to the IDccMan interface. Once you have
this interface pointer, you call the method IDccMan::Advise to notify the con
nection manager that you want to be notified about connection events. This
method is prototyped as

HRESULT IDccMan::Advise (IDccManSink *pDccSink,
DWORD *pdwContext);

The first parameter is a pointer to an IDccManSink interface that you must
have previously created. I'll talk about IDccManSink shortly. The second parame
ter is a pointer to a DWORD that receives a context value that you pass to an
other IDccMan method when you request that you no longer be advised of events.

You can display the communications configuration dialog of ActiveSync by
calling this method:

HRESULT IDccMan::ShowCommSettings (void):

This method has no parameters; it simply displays the communications
dialog box. The user is responsible for making any changes to the configuration
and for dismissing the dialog box.

Connecting to the Desktop Chapter 11

When you no longer need connection notifications, you call the Unadvise
method, prototyped as

HRESULT IDccMan::Unadvise CDWORD dwContext);

The only parameter is the context value that was returned by the Advise method.
After you have called Unadvise, you no longer need to maintain the IDccManSink
interface.

COM Isn't a Four-Letter Word

At this point, I've written 672 pages in a modern Windows programming
book, and I have yet to explicate COM. It's amazing in this day and age
that we've actually programmed almost an entire Windows system without
COM. That avoidance ends here because COM is used extensively on the
PC side of the Windows CE data synchronization interfaces.

COM is the acronym for Component Object Model. In brief, COM is
formally defined as a binary standard for defining objects. The classical
definition of an object is data surrounded by a collection of functions, usu
ally called methods, which act on the data. Sometimes people stretch this
classical object definition when they talk about COM. It works out that the
only internal data state that some COM objects have is a use count variable.
That kind of COM object simply provides an interface that's used for some
purpose or another. Plenty of COM objects do maintain some internal data
but this condition isn't a requirement of a COM object.

Many people have written and argued about COM. Various program
mers think of COM as the Second Coming, the ultimate programming con
cept, or even the key to World Peace. On the other hand, others think of
COM as the devil incarnate, a complex unworkable mess, or most evil of
all, a way to keep dozens of authors employed writing books trying to ex
plain it. In my mind, COM is simply a tool. Many books have been written
about COM, but only one, Mr. Bunny's Guide to ActiveX, captures the es
sence of COM. Check it out if you get the opportunity.

673

Part Ill Communications

674

The /DccManSink Interface
You are responsible for creating and maintaining the IDccManSink interface for
as long as you want notifications from the connection manager. The interface
methods are simple to implement-you simply provide a set of methods that are
called by the connection manager when a set of events occurs. Following are
the prototypes for the methods of IDccManSink:

HRESULT IDccManSink::Onloglisten (void);

HRESULT IDccManSink::OnlogAnswered (void);

HRESULT IDccManSink::OnlogipAddr CDWORD dwipAddr);

HRESULT IDccManSink::OnlogActive (void);

HRESULT IDccManSink::OnLogTerminated (void);

HRESULT IDccManSink::Onloginactive (void);

HRESULT IDccManSink::OnlogDisconnection (void);

HRESULT IDccManSink::OnlogError (void);

While the documentation describes a step-by-step notification by the connec
tion manager, calling each of the methods of IDccManSink as the events occur,
I've found that only a few of the methods are actually called with any consistency.

When you call CoCreatelnstance to get a pointer to the IDccManSink in
terface, the connection manager is loaded into memory. When you call Advise,
the connection manager responds with a call to OnLogListen, indicating that the
connection manager is listening for a connection. When a connection is estab
lished, the connection manager calls OnLog!pAddr to notify you of the IP address
of the connected device. OnLog!pAddr is the only method in IDccManSink that
has a parameter. This parameter is the IP address of the device being connected.
This address is handy if you want to establish a socket connection to the device,
bypassing the extensive support of the connection manager and RAPI. This IP
address can change between different devices and even when connecting the
same device if one connection is made using the serial link and a later con
nection is made across a LAN. The connection manager then calls OnLogActive
to indicate that the connection between the PC and the device is up and fully
operational.

When the connection between the PC and the Windows CE device is
dropped, the connection manager calls the OnLogDisconnection method. This
disconnection notification can take up to a few seconds before it's sent after the

Connecting to the Desktop Chapter 11

connection has actually been dropped. The connection manager then calls the
OnLogListen method to indicate that it is in the listen state, ready to initiate an
other connection.

Some of the other methods are called under Windows Me. Those methods
simply refine the state of the connection even further. Since your application has
to operate as well under Windows XP as it does under Windows Me, you'll need
to be able to operate properly using only the notifications I've just described.

The CnctNote Example Program
The CnctNote program is a simple dialog box-based application that uses the
COM-based method for monitoring the PC-to-Windows CE device connection
state. The example doesn't act on the notifications-it simply displays them in
a list box. The CnctNote window is shown in Figure 11-7.

Figure 11-7 The CnctNote window shows two consecutive connections from different
devices.

The source code for CnctNote is shown in Figure 11-8.

Figure 11-8 CnctNote source code (continued)

675

Part Ill Communications

Figure 11-8 (continued)

676

Connecting to the Desktop Chapter 11

#define ID_ICON
!fdefi ne IDCRPTLIST 10 11 Control IDs
11---
11 Function prototypes
II
int InitApp (HINSTANCE);
HWND Initlnstance <HINSTANCE, LPSTR, int);
int Termlnstance (HINSTANCE, intJ;
void Add2List (HWND hWnd, LPTSTR 1pszFormat •..•) ;

II Window procedures
LRESULT CALLBACK MainWndProc (.HWND, UINT, WPARAM. LPARAM):

I I*·**~*·**********·******'**'***:*-*.***·******·******.****·**·***·~·*:~**'***********
I I MyDc.tSi nk
II

(continued)

677

Part Ill Communications

Figure 11-8 (continued)

678

Connecting to the Desktop Chapter 11

II Instance cleanup
return Terminstance Chinstance, msg.wParam);

11 - • - - - - - - - - - - - - - ' • - - - - - - - - • - - - - - - - - - - - - - - - - - - --
11 InitApp - Application initialization
II
int InitApp CHINSTANCE hlnstance) {

WNDCLASS we:

II Register applic.ation main window class.
we.style = 0; II Window style
wc.lpfnWndPt6c ·~ ~afnWndProc;
wc.cbCJsExtra_= 8;

wc.cbWndExtra .=OLGWINOOWEXTRA:

Callback function
Ex tr~

(continued)

679

Part Ill Communications

Figure 11-8 (continued)

680

case WM_COMMAND:

switch CLOWORD (wParam)) {
case !DOK:
case IDCANCEL:

Connecting to the Desktop Chapter 11

SendMes.sage ChWnd, WM_CLOSE, 0, 0);
break.;

break;
case WM_DESTROY:

II Stop feceiving notifications.
pDccMan->UnadvJse (g_Context l;

l I Re lea$e the DccMan object.
pDccMan->Relea.s.e(J:

PostQui tMe.ss age

(continued)

681

Part Ill Communications

Figure 11 ·8 (continued)

682

Connecting to the Desktop Chapter 11

(dw!pAddr & 0x000000ff), (dw!pAddr & 0x0000ff00)>>B.
(d~IpAddr & 0x00ff0000>>>16~ dw!pAddr>>24):

return NO~ERROR:

//----------------------·--
//
STDMETHODIMP MyDccSi nk: :-OnlogTermi nated () {

Add2List ChWnd, TEXT C"<iniogTerminated ")):
return NO_ERROR:

}

683

Part Ill Communications

The meat of CnctNote is in the WM_SIZE handler of the window procedure.
Here, CoCreatelnstance is called to get a pointer to the IDccMan interface. If this
is successful, an object is created that implements an IDccManSink interface. The
Advise method is then called to register the IDccManSink object. The sole job
of the methods in IDccManSink is to report when they're called by posting a
message in the list box, which is the only control on the dialog box.

Connection Detection on the Windows CE Side
As you know, this chapter describes the PC-side applications that work with
remote Windows CE devices. However, while reading the previous section, you
probably wondered how a Windows CE application can know when a connec
tion is made .between the Windows CE device and a PC. Windows CE supports
a unique API known as the Notification APL I'll describe this API fully in the next
chapter, "Notifications."

File Filters
Windows CE file filters are COM objects that exist on the PC. They're loaded and
called by ActiveSync. When a file is copied to or from the Windows CE device
to or from the PC using ActiveSync, ActiveSync checks to see whether a file con
verter is registered for the file type being transferred. If so, the file filter is loaded
and requested to convert the file. All this takes place on the PC side of the link.
If a file is being moved from the Windows CE system to the PC-exported, in
Windows CE-speak-it's copied in its original form to the PC, then converted
by the file filter, and finally stored on the PC. Likewise, if a file is being imported
to the Windows CE device, it's first converted and then copied to the Windows
CE device.

Windows CE file filters are tied closely to the Mobile Devices folder. Only
files moved to and from a Windows CE device by users dragging and dropping
them in the Mobile Devices folder are converted. If a file is transferred to a
Windows CE system by any other method-accessing a file through the Windows
CE LAN redirector, for example-the file filter isn't loaded and the file won't be
converted. Likewise, if a file is downloaded from the Internet, the file won't be
converted.

Registering a File Filter

684

ActiveSync knows about file filters by looking in the registry. File filters need to
be registered in two places. First, file filters should be among the ActiveSync
entries for each registered device under HKEY_CURRENT_USER. Second, they

Connecting to the Desktop Chapter 11

should be registered under the ActiveSync entries under HKEY _LOCAL_MACHINE
so that each filter will be automatically registered for any new devices that link
to the PC. The CeUtil functions are helpful when you're registering a file filter
because they handle opening the proper subkeys in which you register the file filter.

In addition to registering the file filter itself, you must make a few other new
entries in the registry. The COM server that implements the file filter must be
registered under [HKEY_CLASSES_ROOT]\CLSID. This registration follows the
standard format for a COM object with a few extensions I'll describe in a mo
ment. In addition to registering the COM object, you must also register the file
extensions for both the PC file type and the file type for the Windows CE ver
sion of the file.

To sum up, a file filter needs to make a number of changes in the registry
to properly function. For example, the program that installed the Pocket Word
converter, which changes DOC format files used by Microsoft Word to the Pocket
Word format PWD used by Pocket Word, must first register the PWD file type under
[HKEY_CLASSES_R0011. You do this with two entries: one to associate the file
extension with a file type and another entry to associate the file type with its name
and the default shell actions. For the Pocket Word files, the entries look like this:

[HKEY_CLASSES_ROOT]\.pwd

and

[HKEY_CLASSES_ROOT]\pwdfile

pwdfile

Pocket Word File
Defaultlcon
Shell

c:\Program Files\Windows CE Services\minshell.dll,-204

Open c:\Program Files\Microsoft Office\Office\WinWord.exe

The Windows CE file type must be registered on the PC even though this file
type generally exists only on a Windows CE system.

The DOC file type, which is the PC-side file type of the Pocket Word file
filter, is already registered on Windows-based PCs, but if you introduce a new
file type for the PC side of your converter it, too, must be registered.

The COM object that implements the Pocket Word file filter is registered in
an entry under the [HKEY_CLASSES_ROOT]\CLSID key. The key name is the
CLSID for the COM server that provides the file filter. Underneath this key are
entries for the object's icon and the location of the DLL that provides this class
ID. For Pocket Word, the entry looks like this:

[HKEY_CLASSES_ROOT]\CLSID\{403E2CF2-9B22-11D0-82A3-00AA00C267Cl}
Defaultlcon
InProcServer32

Pegasus Filter

c:\Program Files\Windows CE Services\pwdcnv.dll ,0
c:\Program Files\Windows CE Services\pwdcnv.dll
ThreadingModel

Description
Import
NewExtension

Apartment

Pocket Word 2.0/3.0 Document

.pwd

685

Part Ill Communications

686

The long series of numbers in the key name is the GUID for the PWD file
filter. Each object will have a unique GUID that matches the GUID the object checks
for when the Dl!GetClassObject call is made. The Defaultlcon and lnProcServer32
keys are standard for all COM object servers. The PegasusFilter key is unique to
Windows CE file filters. This key contains the Description and NewExtension
values that give you the extension and description of the resulting file type of
the converter. The Import value indicates that this file filter will be converting
files copied from the PC to the Windows CE device. If this filter converted
Windows CE format files to PC format files it would have a value named Export
under the PegasusFilter key.

Now that the file types and the filter DLL itself have been registered, all that
remains is to register the filter with ActiveSync so that it will be called when a
file is copied to or from the Windows CE device. To register the filter so that it
will be used on guest devices and all future devices, you add a key with the name
of the destination file extension under the key [HKEY _LOCAL_MACHINE]\
Software\Microsoft\ Windows CE Services\Filters. Under this key, you add en
tries that associate the import and export actions with the CLSID of the COM server
that implements the filter.

The file extension that you register is the extension of the source file, whether
it's being imported to the Windows CE device or exported to the PC. So a Word
document file with the extension DOC wouldn't require any conversion when
copied up to a PC, but would need to be converted to the pocket word (PWD)
format when it's copied from the PC to the Windows CE. The entry that regis
ters a filter to convert DOC files to PWD format looks like this:

[HKEY_LOCAL._MACHINE]\Software\Microsoft\Windows CE Services\F1lters\.DOC
DefaultExport
Defaultlmport

Binary Copy
{403E2CF2-9B22-11D0-82A3-00AA00C267Cl}

InstalledFilters
{403E2CEC-9B22-11D0-82A3-00AA00C267Cl}
{4D3E2CED-9B22-1100-82A3-00AA00C267Cl}
{4D3E2CF2-9B22-1100-82A3-00AA00C267Cl}

{403E3068-9B22-11D0-82A3-00AA00C267Cl}

This entry registers filters for all files with the DOC file extension. When
the file is imported to the Windows CE device, the filter used is contained in the
COM server with the CLSID of 4D3E2CF2-9B22-11D0-82A3-00AAOOC267Cl. When
a DOC file is exported from the Windows CE device to the PC, no conversion is
needed, so the placeholder Binary Copy is used in place of a CLSID. When
ActiveSync sees this, it simply copies the file without modification. If this entry

Connecting to the Desktop Chapter 11

isn't in the registry, ActiveSync thinks no filter is registered for this file type and
displays a warning to the user when the file is copied. In this case, we don't want
to convert a DOC file when it's being exported from the Windows CE device,
so the registry has a Binary Copy flag entry for this entry.

Under the lnstalledFilters key, you place one or more CLSIDs for different
filters. Pocket Word, for example, has a number of filters to convert PWD files
into Word 97 documents, Word 95 documents, WordPerfect documents, and such.
All these selections are presented to the user in the File Conversion dialog box
that can be displayed from the Mobile Devices window on the PC.

One limitation of the current registry setup for file filters is that the same
CLSID can't be defined to perform both the import and export conversions on a
file. This is because the destination file extension is taken from the registry en
tries under the CLSID key. You can, however, have one COM server that sup
ports two CLSIDs that, in turn, create the appropriate filters for each CLSID.

In addition to registering the file filter generically, you need to register
the filter for any devices that already have a partnership with the PC. Other
wise, these devices won't use your filter. To do this, you need to repeat the
registration procedures just described in this section under the key
[HKEY _CURRENT_ USER]\Software \Microsoft\ Windows CE Services \Partners\
<<Device ID>>\filters.

You register the file filter for a specific device the same way you register
the filter generically: by specifying the filter under its file extension.

In the key on the preceding page, the <<Device ID>> placeholder should
be replaced with the device ID of each of the devices for which you want to
register the filter. This is where the CeUtil functions come in handy. Using
CeSvcEnumDevices, you can specify each device and then open the proper key
using CeSvcOpen. So for the remainder of this section, I'll use the CeSvc func
tions provided by the CeUtil library to abstract the keys instead of talking about
the proper registry keys in terms of their absolute key names.

To open the registry key where filters are located, you would use the
CeSvcOpen function and pass the constant CESVC_FILTERS. In the subkey name
parameter, you would pass the extension of the file filter, as in

hr= CeSvcOpen CCESVC_FILTERS, [[your file extension]],
TRUE, &hSvc):

To carry on our example, the key for the Pocket Word converter would be
opened this way:

hr= CeSvcOpen (CESVC_FILTERS, TEXT (".pwd"), TRUE, &hSvc);

Once the key is opened, you can use CeSvcSetString to write the specific
entries in the registry.

687

Part Ill Communications

688

In the routine below, a file filter is registered both generically and under
each currently registered device. The routines below use the CeSvcxxx functions,
although you could use standard registry functions if you feel the need.

11---
11 RegExtensionforDevice - Helper routine that registers the filter for
II one device
II
HRESULT RegExtensionforDevice (HCESVC hSvc, LPTSTR pszGUID,

LPTSTR pszExt, BOOL blmport) {

}

TCHAR szTag[32];
HCESVC hKey;
HRESULT hr:

if (blmport)
lstrcpy (szTag, TEXT ("Defaultlmport"));

else
lstrcpy (szTag, TEXT ("DefaultExport"));

CeSvcSetString (hSvc, szTag, pszGUID):
hr= CeSvcOpenEx (hSvc, TEXT ("InstalledFilters"), TRUE, &hKey);
if (hr) return hr:
CeSvcSetString (hKey, pszGUID, TEXT (""));

return hr:

11---
11 RegFileExtension - This routine registers a file extension for all
II currently partnered devices as well as for guest devices.
II
HRESULT RegFileExtension (LPTSTR pszGUID, LPTSTR pszExt, BOOL blmport) {

HRESULT hr;
HCESVC hSvc, hDev, hDevFilterKey;
DWORD dwPro, i = 0;
TCHAR szKeyName[64];

II Open generic filter key.
hr= CeSvcOpen (CESVC_FILTERS, pszExt, TRUE, &hSvc);
if (hr)

return hr:
II Call routine to fill in proper keys.
hr= RegExtensionforDevice (hSvc, pszGUID, pszExt, blmport):
CeSvcClose (hSvc):

II Now register for each current partner.
while (CeSvcEnumProfiles C&hSvc, i++, &dwPro) 0) {

Connecting to the Desktop Chapter 11

}

II Open key for that partner.
hr= CeSvcOpen (CESVC_DEVICEX, (LPTSTR)dwPro, FALSE, &hDev);
if (hr) {

}

CeSvcClose ChSvc);
return hr;

II Open filter key underneath.
lstrcpy (szKeyName, TEXT ("Filters\\"));
lstrcat (szKeyName, pszExt);
hr= CeSvcOpenEx (hDev, szKeyName, TRUE, &hDevFilterKey);

II Close this key since we don't need it anymore.
CeSvcClose (hDev);
if (hr) {

CeSvcClose (hSvc);
return hr;

II Call routine to fill in proper keys.
hr = RegExtensionforDevice (hDevFilterKey, pszGUID, pszExt,

bimport);
II Close filter\extension key.
CeSvcClose (hDevFilterKey);

return hr;

To register a file filter with the routines, you would call RegFileExtension.
This routine first calls RegExtensionforDevice to register the file filter for future
partners under HKEY _LOCAL_MACHINE. Then the routine enumerates each
currently registered partner and registers the filter for those devices. The GUID
and file extension for RegFileExtension are passed as strings. An example call
would be

RegFileExtension ("{2b06f7al-088e-lld2-93fl-204c4f4f5020}",
".tst", TRUE);

For the other parts of the registry initialization, registering file extensions
and registering the class library, a simple REG file will do. A REG file is a text
file that contains the keys and values to merge into the registry. Following is an
example REG file that registers a class library for converting TST files into PTS
files on the Windows CE device.

REGEDIT4

[HKEY_CLASSES_ROOT\CLSID\{2b06f7al-088e-lld2-93fl-204c4f4f5020}]
@="CEFileFilter Example"

(continued)

689

Part Ill Communications

[HKEY_CLASSES_ROOT\CLSID\{2b06f7al-088e-lld2-93fl-204c4f4f5020}\DefaulticonJ
@="TstFi 1t.dl1 , -100"
[HKEY_CLASSES_ROOT\CLSID\{2b06f7al-088e-lld2-93fl-204c4f4f5020}\InProcServer32]
@="e:\\CEBOOK\\11. Connecting to the Desktop\\TstFilt\\Debug\\TstFilt.dll"
"ThreadingModel"="Apartment"
[HKEY_CLASSES_ROOT\CLSID\{2b06f7al-088e-lld2-93fl-204c4f4f5020}\PegasusFilter]
"Import"=""
"Description"="TstFilt: Copy a .tst file with no conversion."
"NewExtension"="pts"

[HKEY_CLASSES_ROOT\.tst]
@="tstfile"
[HKEY_CLASSES_ROOT\tstfile]
@="TstFilt: Desktop TST File"
[HKEY_CLASSES_ROOT\tstfile\Defaulticon]
@="e:\\CEBOOK\\11. Connecting to the Desktop\\TstFilt\\Debug\\TstFilt.dll ,-100"
[HKEY_CLASSES_ROOT\ptsfile]
@="TstFilt: HPC TST File"
[HKEY_CLASSES_ROOT\ptsfile\Defaulticon]
@="e:\\CEBOOK\\11. Connecting to the Desktop\\TstFilt\\Debug\\TstFilt.dll ,-101"

Now that we've learned how to register a file filter, let's look into build
ing one.

The File Filter Interfaces

690

Windows CE file filters are COM in-proc servers that export an ICeFileFilter in
terface. The filter can also optionally export an ICeFileFilterOptions interface.
ActiveSync indirectly calls these two interfaces using the OLE object manager
when it needs to convert a file. When stripped of all the COM paraphernalia,
implementing a file filter is nothing more than implementing three functions, two
of which are quite trivial.

The ICeFileFilter interface has the following methods:

• ICeFileFilter::NextConvertFile Called to convert a file

• ICeFileFilter::FormatMessage Called to convert an error code into
a text message to be displayed to the user

• ICeFileFilter::FilterOptions Called to display a dialog box for fil
ter options during setup

/CeFileFilter: :NextConvertFile
The primary method of a file filter is NextConvertFile. This method is called by
ActiveSync when a file needs to be converted from its PC format to its Windows
CE format or the reverse. The method actually keeps being called until you tell

Connecting to the Desktop Chapter 11

it to stop. This allows a file filter to create multiple output files for every input
file it converts.

The prototype for this method is

HRESULT !CeFileFilter: :NextConvertFile (int nConversion,
CFF_CONVERTINFO •pci,
CFF_SOURCEFILE *psf,
CFF_DESTINATIONFILE •pdf,
volatile BOOL •pbCancel,
PR_ERROR •perr);

The first parameter, nConversion, is a count value that's incremented each time
the method is called for a single file. This means that the first time NextConvertFile
is called to convert the file FOO.BAR, nConversion is 0. After you return from
NextConvertFile, ActiveSync calls NextConvertFile again, specifying the same input
file, FOO.BAR, and the nConversion parameter is set to 1. Most file filters sim
ply return the error code ERROR_NO_MORE_ITEMS, which tells ActiveSync that
you've completed converting the file. On the other hand, you can continue to
process the conversion of FOO.BAR in the second, third, and subsequent calls.
ActiveSync continues to call NextConvertFile, specifying the same input file until
you return ERROR_NO_MORE_ITEMS.

The next parameter, pci, is a pointer to a CFF _CONVERTINFO structure,
which gives you general information about the conversion as well as providing
a pointer to the ICeFileFilterSite interface. The structure looks like this:

typedef struct {
BOOL blmport;
HWND hwndParent;
BOOL bYesToA 11;
!CeFileFilterSite •pffs;

CFF_CONVERTINFO;

The first field, blmport, is set to TRUE if the file is being copied from the PC to
the Windows CE device. The hwndParent parameter is the handle of a window
that you can use as the parent window for any dialog boxes that need to be
displayed. The bYesToAll field should be set to TRUE if you're copying more
than one file. This flag indicates whether the Yes To All button is displayed in
the overwrite files dialog box. Finally, the pf]s field contains a pointer to an
!CeFileFilterSite interface. This interface provides the functions used by the file
filter to open and close the source and destination files.

!CeFileFilterSite has the following methods:

• ICeFileFilterSite::OpenSourceFile Opens the source file

• ICeFileFilterSite::OpenDestinationFile Opens the destination file

691

Part Ill Communications

692

• ICeFileFilterSite::CloseSourceFile Closes the source file

• ICeFileFilterSite::CloseDestinationFile Closes the destination file

• ICeFileFilterSite::ReportProgress Updates the modeless dialog
box that indicates the progress of the conversion

• ICeFileFilterSite::ReportLoss Causes a dialog box to be displayed
that reports to the user that data was lost in the conversion

The OpenSourceFile and OpenDestinationFile methods of ICeFileFilterSite
return pointers to !Stream or !Storage interfaces that are used to read and write
these files. The !Stream interface is used if the file is opened as a standard flat
file, while the !Storage interface is returned if the file is opened as an OLE com
pound document.

The next parameter of NextConvertFile, pef, is a pointer to a CFF _SOURCEFILE
structure that gives you information about the source file used in the conversion.
The structure is defined as

typedef struct {
TCHAR szFullpath[_MAX_PATH];
TCHAR szPath[_MAX_PATH];
TCHAR szFilename[_MAX_FNAME];
TCHAR szExtension[_MAX_EXTJ;
DWORD cbSize;
FILETIME ftCreated;
FILETIME ftModified;

CFF_SOURCEFILE;

The szFullpath field contains the fully qualified filename of the source file. The
next three fields contain the parsed components of the same name. The cbSize
parameter contains the size of the source file, while theftCreated andftModified
fields contain the time the file was created and last modified.

The pdf parameter of NextConvertFile points to a CFF _DESTINATIONFILE
that defined the particulars of the recommended destination filename. The struc
ture is defined as

typedef struct {
TCHAR szFullpath[_MAX_PATH];
TCHAR szPath[_MAX_PATH];
TCHAR szFilename[_MAX_FNAME];
TCHAR szExtension[_MAX_EXT];

CFF_DESTINATIONFILE;

The structure has the same first four fields as the CFF _SOURCEFILE structure.
The difference is that the name in the CFF _DESTINATIONFILE structure is a
recommended name. You can override the name of the destination file in the

Connecting to the Desktop Chapter 11

OpenDestinationFile method of ICeFileFilterSite. To do this, use the suggested
path of the destination file contained in szPath and append the name and ex
tension with the suggested modifications. Pass this new name to the pszFullpath
parameter in OpenDestinationFile. The file filter example at the end of the chapter
uses this technique to rename the destination file.

The next parameter of NextConvertFile is pbCancel, a pointer to a BOOL.
The pbCancel parameter points to a Boolean that is changed to TRUE if the user
pressed the Cancel button on the modeless dialog box that's reporting the progress
of the conversion. The file filter must check this value periodically to see whether
the user has canceled the conversion.

The last parameter, perr, points to an error value that's returned by the
NextConvertFile method. If NextConvertFile returns the error code E_FAIL, the value
pointed to by perr is used as the error code for the routine. This code is then
passed back to the filter for interpretation when you call FormatMessage.

/CeFileFilter: :FormatMessage
The FormatMessage method closely follows the syntax of the FormatMessage
system call that formats messages using an error code and either the system
message table or a string table from a module. For many uses, you can simply
pass the call directly from ICeFileFilter::FormatMessage to the Win32 function
FormatMessage.

ICeFileFilter::FormatMessage has the prototype

HRESULT ICeFileFilter::FormatMessage (DWORD dwFlags,
DWORD dwMessageid,
DWORD dwlanguageid, LPTSTR lpBuffer,
DWORD nSize, va_list *Arguments,
DWORD *PCb);

While the parameter list looks daunting, the best way to handle this method
is to create a message resource in the filter and pass the call directly to Win32's
FormatMessage with the addition of the flag FORMAT_MESSAGE_FROM_HMODULE
to the dwFlags parameter. The only additional processing is to copy the num
ber of bytes returned by Win32's FormatMessage and set the byte count in a
variable pointed to by the parameter pcb. An example would be

11---
11 FormatMessage - Called to format error messages
II
STDMETHODIMP MyFileFilter::FormatMessage (DWORD dwFlags,

DWORD dwMessageid,
DWORD dwlanguageid,
LPTSTR lpBuffer, DWORD dwSize,
va_list *args, DWORD *pcbl {

(continued)

693

Part Ill Communications

DWORD cMsgLen;

II Pass the error code on to the Win32 FormatMessage. Force look
II into message table of filter by ORing dwFlags with
II FORMAT_MESSAGE_FROM_HMODULE.
cMsgLen = ::FormatMessage (dwFlags I FORMAT_MESSAGE_FROM_HMODULE,

hlnst, dwMessageid, dwlanguageid,
lpBuffer. dwSize. args);

if (cMsgLen)
*PCb = cMsgLen;

else
return E_FAI L;

return NOERROR;

If you're going to use custom filter error messages, you should define them
using a constant combined with the macro CF _DECLARE_ERROR. This macro
ensures that the error value you choose won't conflict with the standard Win32
error constants. In addition to defining the constants, you associate a string with
the constant by including a message table resource in your filter. This, combined
with the FORMAT_MESSAGE_FROM_HMODULE flag when you're calling Win32's
FormatMessage, causes your message text to be used for your error constants.
If the error value returned isn't one you defined, FormatMessage then looks in
the system message table for a matching error message.

/CeFileFilter: :FilterOptions
The final method of ICeFileFilter is FilterOptions. This method is prototyped as

HRESULT IPegasusFileFilter::FilterOptions (HWND hwndParent);

The only parameter is a handle to a window that should be used as the parent
window for the dialog box. ActiveSync calls this method when the user requests
that the Options dialog box be displayed.

The /CeFileFilterOptions Interface

694

Windows CE file filters can support one other interface, JCeFileFilterOptions. This
interface has, aside from the !Unknown methods, only one method: SetFilterOptions.
The SetFilterOptions method enables ActiveSync to tell the file filter whether it
can display a modal dialog box during the conversion process. This is necessary
because some conversions might take place in the background, where such
displays of dialog boxes wouldn't be appropriate.

Connecting to the Desktop Chapter 11

SetFilterOptions is prototyped as

HRESULT SetFilterOptions (CFF_CONVERTOPTIONS* pco);

The only parameter is a pointer to a CFF _CONVERTOPTIONS structure, which
is defined as

typedef struct {
ULONG cbSize;
BOOL bNoModalUI;

CFF_CONVERTOPTIONS;

While it may seem that using a structure to pass one Boolean is overkill, the use
of a structure with a Size field at the start lets Microsoft think about extending
this structure while remaining backward compatible with older file filters.

The DivFile Filter Example
This example is a Windows CE file filter that detects when the user is copying
files larger than 100 KB to a Windows CE device and splits the file into separate
files on that device. If the file is larger than 100 KB, the DivFile filter splits the
file into multiple parts so that it can be stored in the object store of the device.
Although the actual limit for files in the Windows CE 3.0 object store is 32 MB,
the 100-KB limit gives you an opportunity to see the splitting in action without
having to wait for a file larger than 32 MB to be copied across to a Windows CE
device.

The filter defines two file types, TST for a file on the PC and PTS for pocket
test, a sample file type on a Windows CE device. For this example, the splitting
function is performed only on TST files larger than 100 KB. The result is a se
ries of files on the Windows CE device, each with a number appended to the
original filename and a new file type of PTS. The PTS files can be copied back
to the PC unaltered and then rejoined using a binary copy operation, as in

copy /b file_l.pts+file_2.pts+file_3.pts+file_4.pts original .tst

The first file in this example isn't a source or include file; it's a registry file
that registers the file filter, DivFile.reg. Note that since I'm not using an install
program that can enumerate the various Windows CE devices already partnered,
this filter won't be used until a new device is partnered with the PC or a device
is attached as a guest of ActiveSync. Also, the Explorer doesn't recognize the new
file types until the system is rebooted-or more precisely, until the desktop is
restarted. DivFile.reg is shown in Figure 11-9.

695

Part Ill Communications

696

Figure 11-9 The DivFile.reg file filter

The registry file shown here uses the path to the copy of the DivFile.dll on
my machine; you'll need to modify the path for your machine. Also, the GUID
I generated should be replaced with one you create using GUIDGEN.EXE. The
lines in this registry file are grouped into four sections. The first section regis
ters the COM server DLL, DivFile.DLL. The second and third groups of lines
register the file types TST and PTS. Finally, the last group of lines registers the
file filter in the generic section of Windows CE Services' entries in the registry.
You could easily write an install program to automatically register the file filter

Connecting to the Desktop Chapter 11

with the currently partnered Windows CE devices, using the routines I presented
earlier in the chapter.

The next file in the example is DivFile.def. The DEF file describes the ex
ported functions from the DLL. I don't use the declspec macro used in the ear
lier examples here because of the predefined type definitions of the functions
Dl!GetClassObject and DllCanUnloadNow. Figure 11-10 shows DivFile.def.

;Standard COM library DEF file

LIBRARY DIVFIU.DLL

EXPORTS
Dl 1 CanUnl oadN:Ow, ·•· .. · (i!ll PRIVATE
Dl 1 GetCl assObJect y @2 PRIVATE

Figure 11-10 The DivFile.def program

Finally, we get to the source files for the example, DivFile.rc, DivFile.h, and
DivFile.cpp shown in Figure 11-11. The resource file declares two icon files that
are used for the TST and PTS file types. The header file contains the class defi
nitions for my derivations of the JCeFileFilter and JClassFactory objects. And last
but not least, DivFile.cpp is filled mainly with code to support the requirements
of a COM server.

Figure 11-11 DivFile source code files (continued)

697

Part Ill Communications

Figure 11-11 (continued)

698

Connecting to the Desktop Chapter 11

public:
My Fil efi l ter();
~MyfileFilter(l;

II !Unknown methods
STDMETHODIMP Querylnterface <THIS_ REFIID riid, LPVOID *ppvObj);
STDMETHODIMP_(ULONG) AddRef (THIS);
STDMETHODIMP_CULONG) Rel.ease (THIS);

II ICeFileFilter .met.hods.
STDM.ETHODIMP NextcorivertF11e <THIS_ int nConversH>n,

PFF _CONVERT! NFO *PCi, . PFF _SOURCEFI LE *PSf,
PFF _DESTINATIONFI LE >i<j)df,

· ·· .volatile BOOL *pbCancel,. PF _ERROR *perr);
(THIS_ HWND hwndParent);

DWORD dwFlags, DWORD dwMessageid,
dwLanguageid, LPTSTRlpBuffer,
dwSize, va_list *args, .OW.ORD *PCbl;

CE

Required for file filters
·u Required for RAPI functions

DLL instance handle
· H Globai DL.L reference

(continued)

699

Part Ill ,. Communications

Figure 11-11 (continued)

700

Connecting to the Desktop Chapter 11

m_lRef = 1;
g_DllCnt++;
return;

II Set ref count to 1 on create.

11---
11 Object destructor
MyCiassFactory::-MyClassFactory (I {

}

g_DllCnt---:
return;

J/--•-,r,---•-------•----~•------------------------·---------------------

1/ Querylnterface - Called to see what interfaces this object supports
STDMETHODIMP MyClassFactory::oueryTnterface <THIS_ REFIID riid,

LPVOID *PPv I {

H caller wants our I Unknown or !Cl ass Factory object.
a pointer.to the object.

(riid, JID_IUnkn-0wnl 11
IJJ,..lCla'ssFactory) I {

fl Return pointer to object,
ref to prevent delete.on returh.

(continued)

701

Part Ill Communications

Figure 11-11 (continued)

702

Connecting to the Desktop Chapter 11

/!---------------~--·
II Object destructor
MyFileFilter::-MyFileFilter () {

return:

11--~:-----------------------------
// Querylnterface - Called to see what .. interfaces this. object supports
STDMETHODIMP My Fil eFil ter:: Querylnterface {THIS_ REFIID ri id.

I I If calle:r wants our
I I return a i:mi nter to
; f tisEqualJ'l·D.(r,tid;

IsEguQTI,ID {ritq.;

lPVOID *PPV) {

(continued)

703

Part Ill Communications

Figure 11-11 (continued)

704

Connecting to the Desktop Chapter 11

if (!SUCCEEDED (hr)) {
LocalFree (pBuff):
*Perr= HRESULT_TO_PFERROR (hr, ERROR_ACCESS_DENIED):
return E_FAIL:

II Seek to part of file for this section.
if (m_fBreakFile) {

largMov.HighPart = 0;
largMov.LowPart = nConversion * FILEBREAKSIZE:
hr= pstreamSrc->Seek ClargMov, STREAM_SEEK_SET, NULL):

II Modify destination name to mark part. New naine becomes
JJ old name with a number appended for each part.
wsprintf (szNewName, TEXT ("%s.%s_%d.%s").

pdf->szPath, 'pdf->szFilename, nConversion,
pdf->szExtension);

hr = pffs->OpenDestinatibnFtle (PF_OPENFLAT/stNewName,

;; ·.tftl·SUCCE.EbED·chrD IF· ..
(PV1JID

•··•· Loc.lllFt-ee.<pB~ffJ(,
•>pffs•)'cl<isesnurceF1le ·. Cpstre<l'msrc);
· .*per:r·"' HRESUH_TO.;.,.;Pf:ERROR

. <·t.~t:Ui'!ti E_FAIL:

) ets.e, i· < . . . /< i •. · .. ·. ·· · ...••.. · .. ·•. · .
·. (>.It O:pe.rr~estfnation. file with default name .

.. • hr ~pffs~>openDestjnationfil!,! (PF~OP.ENFLAT;, NULL.

if(!~UCC£EDED .Chr)) .{ (PVOID *l&pstreainDestY:

. ·. LocalJree (pBuff);
.~ffs?C1oseSourceFi1 e (pstreal!lsrc):
'*Perr.= HRESULLTO_PFERROR (:hr.• ERROR....ACCESS_DENIED);

. Ir' C~py;' .da~> > > •.'· .. · .
. cCo:pySfz~ •· .. 11f1~: (psf-?cbSize _··IJLulTotalMoved. fl LEBREAKSIZE);
for{cB;>lesReiTJainin~'<cCopyS,ize: cBstes.Rernain'ing> 0:) {

iJ'J Read ttle tlatll; · · ·
i."' qr~··(SUFl"~i~(; cBytesRemai ni n9): .. ·· .• ·· •.· .····•····
hr:"° p~tre~111sr~">Read CpBuff. i. &cByt~sRea<.th•
if tctlyt'esRead F,;. 0 >

·ht·~aJ!:'., .•.•.
(continued)

705

Part \\\ communications

Figure 11-11 (continued)

706

}

Connecting to the Desktop Chapter 11

II Pass thi;! error code on to the Win32 .FormatMessage. Force look
II into message table of filter by ORing dwFlags with
II FORMAT_MESSAGE_FROM_HMODULE.
cMsglen = ::FormatMessage (dwFlags I FORMAT_MESSAGE_FROM_HMODULE,

hlnst, dwMessageld, dwLanguageid,

if (cMsglen l
*pcb = cMsgLen:

else
return E_FAlL: ·.

return NOERttOR':

1 pBuffer :. dwS.iie! args J:

The code that does the actual work of the file filter is contained in
NextConvertFile. The routine uses the value in nConversion to see whether this
is the first time it is being called to convert the file. If so, the routine checks the
file size to see whether it's bigger than the arbitrary file size limit. If so, the user
is asked if the file should be split into multiple files.

The routine creates individual destination files by specifying a new name
for the destination file when the routine calls OpenDestinationFile. For files that
are split, the routine generates each new filename by appending a number to
the end of the original filename. Note that the routine takes care to preserve the
suggested path for the destination file. This path specifies the temporary direc
tory on the PC that ActiveSync uses before copying the converted file down to
the Windows CE device. At this point, the source file is copied to the new desti
nation file up to the limit of the destination file size. The files are then closed,
and NextConvertFile returns.

ActiveSync calls NextConvertFile again, this time with nConversion
incremented. The routine opens a new destination file, and the old source file
then seeks to an offset in the source file that matches the last byte read in the
previous call. The new data is then copied, and the routine again returns.

This process of calling NextConvertFile is continued until the routine de
termines that all the source file has been copied into the various destination files.
At this point, the routine returns ERROR_NO_MORE_ITEMS, which ends the
conversion process for the file.

Now I come to the end of my explanation of the PC-side ActiveSync. For
the remainder of the book, I'll return to the Windows CE-side of things. I'll start
with a look at notifications from the Windows CE side of things. Then, it's on to
the different shells that Windows CE supports. The Handheld PC shell looks on
the surface like a standard Windows 95 shell, although the programming inter
face is much simpler. The Pocket PC shell, on the other hand, is completely unique.

707

Part IV

Notifications
One area in which Windows CE exceeds the Windows Me and Windows XP API
is the notification interface. Windows CE applications can register to be launched
at a predetermined time or when any of a set of system events occur. Applica
tions can also register a user notification. In a user notification, the system no
tifies the user at a specific time without the application itself being launched at
that time.

The notification interface is based on only a handful of functions, the most
important of which is CeSetUserNotificationEx. This omnibus function provides
all the functionality to schedule any of the three types of notifications: user, system,
and timer. CeSetUserNotificationEx was introduced in Windows CE 2.12 and
replaced three separate functions, CeSetUserNotification, CeRunAppAtEvent, and
CeRunAppAtTime. If you need your application to be backward compatible with
Windows CE 2.11 or earlier, you'll have to use those old functions. For the most
part, the old functions are as functional as the new CeSetUserNotificationEx. The
main shortcoming of the old functions is that you can't specify a custom com
mand line, nor can you schedule a user notification to be active for a defined
period of time.

User Notifications
A Windows CE application can schedule the user to be notified at a given time
using the CeSetUserNotificationEx function. When the time of the notification
occurs, the system alerts the user by displaying a dialog box, playing a wave
file, or flashing an external LED. If the system was off at the time of the noti
fication, Windows CE turns the system on. Because Windows CE systems have
an automatic power-off feature, the system will quickly turn itself back on if the

711

Part IV Advanced Topics

notification fires while the system is unattended. Figure 12-1 shows the alert dialog
on a Pocket PC, while Figure 12-2 shows the notification dialog on an embed
ded Windows CE 3.0 device.

Times Up!

lillll~l1i1e
Snooze Is minutes ~I

Figure 12-1 The alert dialog on a Pocket PC device

Figure 12-2 The notification dialog on an embedded Windows CE 3.0 device

Windows CE also displays the icon of the application that set the notifica
tion on the taskbar. The user has the option of acknowledging the notification
by clicking OK on the notification dialog box, pressing the Notify button on the
system case (if one is present), or on some systems, tapping the application's
taskbar annunciator icon, which launches the application that registered the no
tification. After a user notification has been set, you can modify it by making
another call to CeSetUserNotificationEx.

Setting a User Notification

712

CeSetUserNotificationEx is prototyped as

HANDLE CeSetUserNotificationEx (HANDLE hNotification,
CE_NOTIFICATION_TRIGGER *pent,
CE_USER_NOTIFICATION *pceun);

Notifications Chapter 12

The hNotification parameter is set to 0 to create a new notification. To modify
a notification already registered, you should set hNotification to the handle of
the notification that you want to modify.

The CE_NOTIFICATION_TRIGGER structure defines the type and detail of
the notification being set. This structure is defined as

typedef struct UserNotificationTrigger {
DWDRD dwSize;
DWORD dwType;
DWORD dwEvent;
WCHAR *lpszApplication;
WCHAR *lpszArguments;
SYSTEMTIME stStartTime;
SYSTEMTIME stEndTime;
} CE_NOTIFICATION_TRIGGER, *PCE_NOTIFICATION_TRIGGER;

The first field should be set to the size of the structure. The second field, dwType,
should be filled with a flag indicating the type of notification being set. For user
notifications, set this field to either CNT_PERIOD or CNT_TIME. The CNT_PERIOD
flag creates a notification that will dismiss itself after a set time, while a CNT_TIME
notification will not dismiss itself without user action. For user notifications, the
dwEvent field isn't used. I'll talk about that field when I discuss event notifications.

The next field, lpszApplication, specifies the application that will be launched
if the user requests more detail from the notification. If the application is launched,
its command line is specified by the next field, lpszArguments. The availability
of this field is an enhancement over the old method for setting notifications in
that when you used the old notification functions, the command line was defined
by the operating system. Now, you can customize the command line to suit the
purposes of your application.

The final two fields, stStartTime and stEndTime, specify the starting time
and ending time of the notice. The starting time, of course, is when the system
first notifies the user by means of a number of different methods I'll talk about
in a moment. You use the ending time only in a CNT_PERIOD-style user noti
fication; the CeSetUserNotiftcationEx function ignores the ending time for CNT_TIME
notifications. stEndTime designates the time the system is to remove the notice
if the user doesn't acknowledge the notification. This time must be later than the
starting time.

How the system notifies the user is specified by the third parameter of
CeSetUserNotiftcationEx, which points to a CE_USER_NOTIFICATION structure.
This structure is defined as

typedef struct UserNotificationType
DWORD ActionFlags;

(continued)

713

Part IV Advanced Topics

714

TCHAR *PWSZDialogTitle;
TCHAR *PWSZDialogText;
TCHAR *PWSzSound;
DWORD nMaxSound;
DWORD dwReserved;

CE_USER_NOTIFICATION;

The ActionFlags field of this structure contains a set of flags that define how the
user is notified. The flags can be any combination of the following:

• PUN_LED Flash the external LED.

• PUN_VIBRATE Vibrate the device.

• PUN_DIALOG Display a dialog box.

• PUN_SOUND Play a wave file.

• PUN_REPEAT Repeat the wave file for 10 to 15 seconds.

The fact that these flags are defined doesn't mean that all systems imple
ment all these actions. Most Windows CE devices can't vibrate and a few don't
even have an external LED. There isn't a defined method for determining the
notification capabilities of a device, but as I'll presently show you, the system
provides a dialog box that's customized by the OEM for the capabilities of each
device.

The remainder of the fields in the structure depend on the flags set in the
ActionFlags field. If the PUN_DIALOG flag is set, the pwszDialogTitle and
pwszDialogText fields specify the title and text of the dialog that's displayed. For
a Pocket PC device, the dialog text appears on the Alert dialog, but since the
Pocket PC Alert doesn't use a caption bar, the dialog title text isn't used. The
pwszSound field is loaded with the filename of a wave file to play if the
PUN_SOUND flag is set. The nMaxSound field defines the size of the pwszSound
field.

Configuring a User Notification
To give you a consistent user interface for choosing the method of notification,
Windows CE provides a dialog box to query the user how he wants to be noti
fied. To display the user configuration dialog box, you call this function:

BOOL CeGetUserNotificationPreferences (HWND hWndParent,
PCE_USER_NOTIFICATION lpNotification);

This function takes two parameters-the window handle of the parent window
for the dialog box and a pointer to a CE_USER_NOTIFICATION structure. You
can initialize the CE_USER_NOTIFICATION structure with default settings for
the dialog before CeGetUserNotificationPreferences is called. When the

Notifications Chapter 12

function returns, this structure is filled with the changes the user made.
CeGetUserNotificationPreferences returns TRUE if the user clicked the OK button
to accept the changes and FALSE if an error occurred or the user canceled the dialog
box. Figure 12-3 shows the notification preferences dialog box opened through
the CeGetUserNotificationPreferences function on a Compaq iPAQ Pocket PC.

[] NoteDemo 12: llp 'o~'

~Play sound IAlarml Tl
D Repeat sound

~ Display message

~Flash light

Figure 12-3 The dialog box opened by CeGetUserNotificationPreferences on an iPAQ

This function gives you a convenient method for configuring user notifi
cations. The dialog box lets you have check boxes for playing a sound, display
ing another dialog box, and flashing the LED. It also contains a combo box that
lists the available wave files that the user can choose from if he wants sound.
The dialog box doesn't have fields to allow the user to specify the text or title
of the dialog box if one is to be displayed. That text must be provided by the
application.

Acknowledging a User Notification
A user notification can be cleared by the application before it times out by calling

BOOL CeClearUserNotification (HANDLE hNotification);

Once a user notification has occurred, it must be acknowledged by the user unless
the user notification's end time has passed. The user can tap the Dismiss button
on the notification dialog box or press the notification button on the H/PC or
Pocket PC case. Or the user can tap the Postpone button, which automatically
reschedules the notification for a later time. On an H/PC or an embedded
Windows CE system, the user can tap the Open button to launch the applica
tion specified when the notification was scheduled. An Open button isn't pro
vided on the alert dialog on the current implementations of the Pocket PC.

715

Part IV Advanced Topics

716

If the user taps the Open button, the notification isn't automatically acknowl
edged. Instead, an application should programmatically acknowledge the noti
fication by calling this function:

BOOL CeHandleAppNotifications (TCHAR *pwszAppName);

The one parameter is the name of the application that was launched be
cause the user tapped the Open button. Calling this function removes the dia
log box, stops the sound, turns off the flashing LED, and on systems with the
Windows CE Explorer shell, removes the application's annunciator icon from the
taskbar. This function doesn't affect any notifications that are scheduled but
haven't fired.

When the system starts an application because of a notification, it passes a
command line argument to indicate why the application was started. For a user
notification, this argument is the command line string specified in the lpszArguments
field of the CE_NOTIFICATION_TRIGGER structure. If you scheduled the noti
fication using the CNT_CLASSICTIME flag, the command line is the predefined
string constant APP _RUN_TO_HANDLE_NOTIFICATION.

As a general rule, an application started by a notification should first check
to see whether another instance of the application is running. If so, the applica
tion should communicate to the first instance that the notification occurred and
terminate. This saves memory because only one instance of the application is
running. The following code fragment shows how this can be easily accomplished.

INT i;
HWND hWnd;
HANDLE hNotify;
TCHAR szText[128];
TCHAR szFileName[MAX_PATH];

if (*lpCmdline) {
pPtr = lpCmdline;
II Parse the first word of the command line.
for (i = 0; i < dim(szText) && *lpCmdline >TEXT(' '); i++)

szText[iJ = *PPtr++;
szText[i] =TEXT ('\0');

II Check to see if app started due to notification.
if (lstrcmp (szText, TEXT("My Notification cmdline")) == 0) {

II Acknowledge the notification.
GetModuleFileName (hinst, szFileName, sizeof (szFileName));
CeHandleAppNotifications CszFileName);

II Get handle off the command line.
hNotify = CHANDLE)_wtol (pPtr);

Notifications Chapter 12

II Look to see if another instance of the app is running.
hWnd = FindWindow (NULL, szAppName);
if (hWnd) {

SendMessage (hWnd, MYMSG_TELLNOTIFY, 0, (LPARAM)hNotify);
II This app should terminate here.
return 0;

This code first looks to see whether a command line parameter exists and
if so, whether the first word is the keyword indicating that the application was
launched by the system in response to a user notification. If so, the notification
is acknowledged and the application looks for an instance of the application
already running, using FindWindow. If found, the routine sends an application
defined message to the main window of the first instance and terminates. Other
wise, the application can take actions necessary to respond to the user's tap of
the Open button on the alert dialog.

Timer Event Notifications
To run an application at a given time without user intervention, use a timer event
notification. To schedule a timer event notification, use CeSetUserNotificationE:x:
just as you do for the user notification but pass a NULL value in the pceun pa
rameter, as you see here:

CE_NOTIFICATION_TRIGGER cnt;
TCHAR szArgs[J =TEXT ("This is a timer notification.");
TCHAR szExeName[MAX_PATH];

memset (&nt, 0, sizeof (CE_NOTIFICATION_TRIGGER));
nt.dwSize = sizeof (CE_NOTIFICATION_TRIGGER);
nt.dwType = CNT_TIME;
nt.lpszApplication = szExeName;
nt.lpszArguments = szArgs;
nt.stStartTime = st;
GetModuleFileName (hlnst, szExeName, sizeof (szExeName));
hNotify = CeSetUserNotificationEx (0, &nt, NULL);

When the timer notification is activated, the system powers on, if currently
off, and launches the application with a command line parameter specified in
the lpszArguments field of the notification trigger structure. As with the user
notification, the application should check to see whether another instance of
the application is running and pass the notification on if one is running. Also,
an application should be careful about creating a window and taking control

717

Part IV Advanced Topics

of the machine during a timer event. The user might object to having his game
of solitaire interrupted by another application popping up because of a timer
notification.

System Event Notifications
Sometimes, you might want an application to be automatically started. Windows
CE supports a third type of notification, known as a system event notification. This
notification starts an application when one of a set of system events occurs, such
as after the system has completed synchronizing with its companion PC. To set a
system event notification, you again use the omnibus CeSetUserNotificationEx
function. This time, you specify the type of event you want to monitor in the
dwEvent field of the notification trigger structure, as in

CE_NOTIFICATION_TRIGGER nt;
TCHAR szExeName[MAX_PATHJ;
TCHAR szArgs[l28J = TEXT("This is my event notification string.");

memset (&nt, 0, sizeof (CE_NOTIFICATION_TRIGGER));
nt.dwSize = sizeof (CE_NOTIFICATION_TRIGGER);
nt.dwType = CNT_EVENT;
nt.dwEvent = dwMyEventFlags;
nt.lpszApplication = szExeName;
nt.lpszArguments = szArgs;
GetModuleFileName (hlnst, szExeName, sizeof (szExeName));
CeSetUserNotificationEx (0, &nt, NULL);

The event flags are the following:

• NOTIFICATION_EVENT_SYNC_END Notify when sync complete.

• NOTIFICATION_EVENT_DEVICE_CHANGE Notify when a device
driver is loaded or unloaded.

• NOTIFICATION_EVENT_RS232_DETECIED Notify when an RS232
connection is detected.

• NOTIFICATION_EVENT_TIME_CHANGE Notify when the system
time is changed.

• NOTIFICATION_EVENT_TZ_CHANGE Notify when time zone is
changed. 1

• NOTIFICATION_EVENT_RESTORE_END Notify when a device
restore is complete.

• NOTIFICATION_EVENT_ WAKEUP Notify when a device wakes up.

1. The NOTIFICATION_EVENT_TZ_CHANGE notification flag isn't supported on some Pocket PCs.

718

Notifications Chapter 12

For each of these events, the application is launched with a specific com
mand line parameter indicating why the application was launched. In the case
of a device change notification, the specified command line string is followed
by either /ADD or !REMOVE and the name of the device being added or removed.
For example, if the user inserts a modem card, the command line for the notifi
cation would look like this:

My event command line string /ADD COM3:

A number of additional system events are defined in NOTIFY.H, but OEMs
must provide support for these additional notifications and at this point few, if
any, of the additional notification events are supported.

Once an application has registered for a system event notification,
Windows CE will start the application again if the event that caused the noti
fication is repeated.

Clearing out system event notifications is best done with what might be
thought of as an obsolete function, the old CeRunAppAtEvent function,
prototyped as

BOOL CeRunAppAtEvent (TCHAR *pwszAppName, LONG lWhichEvent);

The parameters are the application to run and the event flag for the event of
which you want to be notified. While the function has been superceded by
CeSetUserNotificationEx, it does still have one use-clearing out all the system
notifications for a specific application. If you pass your application name along
with the flag NOTIFICATION_EVENT_NONE in the lWhichEvent parameter,
Windows CE clears out all event notifications assigned to that application. While
you would think you could pass the same flag to CeSetUserNotificationEx to clear
out the events, it doesn't unless you pass the original handle returned by that
function when you originally scheduled the notification.

The NoteDemo Example Program
The following program, NoteDemo, demonstrates each of the notification func
tions that allow you to set user notifications, system notifications, and timer
notifications. The program presents a simple dialog box equipped with five
buttons. The first two buttons allow you to configure and set a user notification.
The second two buttons let you set system and timer notifications. The last button
clears out all the notifications you might have set using NoteDemo. The gap above
the buttons is filled with the command line, if any, that was passed when the
application started. That space also displays a message when another instance
of NoteDemo starts because of a user notification. Figure 12-4 shows two NoteDemo

719

Part IV Advanced Topics

720

windows. The one in the foreground was launched because of a user notification,
with the command-line parameter, "This is my user notification string."

Figure 12-4 The NoteDemo window

The source code for NoteDemo appears in Figure 12-5. The notification code
is confined to the button handler routines. The code is fairly simple: for each type
of notification, the appropriate Windows CE function is called. When asked to
configure a user notification, the application calls CeGetUserNotificationPreferences.
The program gives you one additional dialog box with which to configure the
system notifications.

Figure 12-5 The NoteDemo program

Notifications Chapter 12

PUSHBUTTON "Set &User Notification".
IDD_ADDUSERNOT, 2, 25, ll5. 12. W5-TABSTOP

PUSHBUTTON "&Configure Use.r Notification".
IDD_CFGUSERNOT, 2. 39. 115. 12. WS_TABSTOP

PUSHBUTTON "Set &System Notifi~ation",
IDD_ADDSYSNOT, 2, 5.3. 115' 12, WS_TABSTOP

PUSHBUTTON "Set &Timer Notification",
IDD_ADDTIMENOT, 2, 67, 115. 12. WS_TABSTOP

PUSHBUTTON "Clear
WS_TABSTOP

END
!!-------

(continued)

721

Part IV Advanced Topics

Figure 12-5 (continued)

722

Notifications Chapter 12

II Window procedures
BOOL CALLBACK MainDTgProc (HWND, UINT, WPARAM, LPARAM);
BOOL CALLBACK SetEventNotifyDlgProc CHWND, UINT, WPARAM, LPARAMl;

II Message handlers
BOOL DolnitDialogMain CHWND, UINT, WPARAM, LPARAM);
BOOL DoCommandMain. (HWND, UINT, WPARAM, LPARAMl;
BOOL DoTe11NotifyMain (HWND, UINT, WPARAM, LPARAM):

II Command functions
LPARAM DoMafoColUmandExit CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandAddUserNotification CHWND, WORD, HWNO,> WORD);
LPARAM DoMa.i nCorllmanct.Confi.gUserNotifi cation (HWND.. WORD, HWND' WORD);
LPARAM DoMainCommandAcidS,YsNotification CHWND. WORD, 4WND; WORD);
LP A RAM DoMainCommandAddTimerNoti ficati on C HWND, WORD; <HWND. WORD l;

DoMainCommamlClearNotifications CHWND, WORD; HWND, WORD);

(continued)

723

Part IV Advanced Topics

Figure 12-5 (continued)

724

Notifications Chapter 12

}

II Do a little initialization of CE_USER_NOTIFICATION.
memset (&g_ceun, 0, sizeof (g_ceun));
g_ceun.ActionFlags = PUN_OIALOG;
g_ceun.pwszDialogTitle = szDlgTitle;
g_ceun.pwszDialogText = szDlgText;
g_ceun.pwszSound szSound;
g_ceun.nMaxSound = sizeof (szSound);

II Display dialog box as main window.
DialogBoxPilram Chinstance, szAppName, NULL, MainDlgProc,

(LPARAM)lpCmdLine);
return 0;

II-'======-'=;======================= .. =====================================
II Message handling procedures for main
/ /• • • - .- • c - •• - • - , , __ •.• _. • c. _ • _, __ ,,

I I MairiDJg . .Proc 'callback function
ll
BOOLCALLBAcK MafnDlgProc (HWND. hWll:d,

II
II
BOOL

JI
JI

for (i = 0: <dim(MainMessagesl; i++)

CwMsg ==M.a.inMessages(i].Code)
(•MafnMessag~s[iJ.Fxn)ChWnd, wMsg, wParam, lParam);

LPARAM

i f (* (LPTSTR)lfia ram)
Adct2LJst (hWnd.

(continued)

725

Part IV Advanced Topics

(cuntinued)

726

Notifications Chapter 12

TCHAR szArgs[128] = TEXT<"This is my user notification string.");
CE_NOTIFICATION_TRIGGER nt;
HANDLE hNotify;

II Initialize time structure with local time.
GetLocalTime (&st);
II Do a trivial amount of error checking.
st.wMinute++;
if (st.wMinute > 59) {

}

st.wHour++;
st.wMinute -= 60;

II Set end time 10 minutes past start.
ste "' st;
II Do a trivial amount of error checking.
ste.wMinute += 10;
if cste;wt41nute > 59) t

(continued)

727

Part IV Advanced Topics

728

Figure 12·5 (continued)

U'ARAM. OoMainCommandConfigUserNotification (HWNO t\wnci. WORO>iaitem,
HWIHl hw~dCtl , WQR.D ~NRt;i.fyC~~et {

fl Oi splay the systein•provided confi QurHi~nJl~log.
ce:GetUserNot i fi cati onPrefe.renceS (hWnd, Sig.,..Jf:i:)un)j ·
reforn 0;

f)- -----------·----"----~---~--~---,~··--
/I Do.Mai nComm9ndAddSysNotHi cat.ion Proi::es.s
It
LPARAM OoMa.i nComincindAddSys.Not,i . .f ic.ati on

Dialog13ox (hJnst, TEXT ('~SysNotifyConfig.".),

· SetEventNotifyDl9Procl; ·

. }

· LPARAM ·DpMainCommandAddTimerNot.i f.icati .. JYJ

GeU:acaHime (&stl;
I/ Do :a tr·hi al amou.iit of ehor

(~t.wMinute '== 59)
st.wHour++;
st.wMinute = 0:

} e.lse ..
st.wMinute+t;

nt.dwType = C.t-IT_TIME;.
tJt •• lpszAppl~cation .. ,.,·:·s.iEXt:\Name:
nt.lpszAr.guments .· •. ":.·. szArg!> :··:·
nt.. stS ta rtT1 me· = :s.t.;
GetM6duleFi1e.N<ime. (hfost,

JI Set the ·n.otificat·ion•,
hN·otify "' CeSet;UsetNl>t;i ffoati onEx

Notifications Chapter 12

}

if ChNotify)

else

wsprintf (szText, TEXT <"Timer notification set for ld:%02d:%02ct•t,
st.wHour, st.wMinute, st.wSecond);

wsprintf CszText, TEXT ("Timer notification failed. re =Id"),
GetlastError(l);

MessageBox ChWnd, szText, szAppName. MB_OK);
return 0;

11---~~
II DoMainCommandClearNotifications - Clear all
II to this application .. Note: this is
II
LPARAM DoMainCommandClearNotifications

PBYTE pBuff = NULL~
PCE_NOTI FICATION'-INFO_HEADER pni h;
HANDL.E hN.otHandlel![l28J; If Assume
int i, re, nQnt = 0, nHandCnt = 0;

. /fCHi'\R. szExe~~~tjt~x-..ltl\l:~t~ : szJext[l28J;
.:·_DWORP.-.: dw_S\i:ie~(:<:·. ""_'.-; .. ~<~·~·., . - , ... ,,,

11 ·• .. Get· our i'11.~n~~~·i·· <t.
~etModul eF n~-na'ine Jhl~-$t,. ii z Ex~ Na111e.

' M O> o c. ·~~ , • :'"'.. :: .•N• .::. ,'.'°':· >

!)sun = LocilTA1·M&:~·i:;pjfi;~ai92)}
Jf (lpBUffl [..•. · .. ·. . . • ..·. •. .

· Messa.Ye~oX:.~~~rici;:T.EXT
'-.ret·o~n<··.~{;.;::.·:. r ·::,"" ::

= . CeGetuser~ottf~.ia~ronHandl es

(continued)

729

Part IV Advanced Topics

Figure 12-5 (continued)

730

Notifications Chapter 12

I I SetEventNotifyDlgProc - Call back function for Event di al og box
JI
BOOL CALLBACK SetEventNotifyDlgProc (HWND hWnd, UINT wMsg,

WPARAM wParam, LPARAM lParaml {
OWORD dwEvent:

switch (wMsg) {
cas(:! WM_COMMAND:

{

WORD iditem =

so

ll

1)

1)

(continued)

731

Part IV Advanced Topics

Figure 12-5 (continued)

When NoteDemo starts, it examines the command line to determine whether
it was started by a user notification. If so, the program attempts to find another
instance of the application already running. If the program finds one, a message
is sent to the first instance, informing it of the user notification. Because this is
an example program, the second instance doesn't terminate itself as it would were
it a commercial application.

The last button that clears all the notifications scheduled for the NoteDemo
application has an interesting task. How does it know what is scheduled? Does
it keep a record of every notification it has scheduled? Fortunately, that's not
necessary. NoteDemo simply queries the notifications scheduled for all applica
tions, finds the ones for itself, and clears them. Let's see how that's done.

Querying Scheduled Notifications

732

While scheduling the different notifications is often all that applications need,
additional functions allow applications to query the notifications currently sched
uled in the system. Here's the function that queries the notifications:

BOOL CeGetUserNotificationHandles (HANDLE *rghNotifications,
DWORD cHandles, LPDWORD pcHandlesNeeded);

This function returns an array filled with handles to all notifications currently
scheduled in the system. The first parameter is the pointer to a handle array. The
second parameter, cHandles, should be filled with the number of entries in the
array. The third parameter should contain the address of a DWORD that will be
filled with the number of entries in the array filled with valid notification handles.

If the array is large enough to hold all the handles, the function returns TRUE
and provides the number of handles returned in the variable pointed to by
pcHandlesNeeded. If the array is too small, the function fails. You can query the
number of handles the system will return by passing NULL in the rghNotifications
parameter and 0 in the cHandles parameter. The function will then return the
number of handles in the variable pointed to by pcHandlesNeeded.

After you have queried all the handles, you can determine the details of each
notification by passing each handle to the function:

Notifications Chapter 12

BOOL CeGetUserNotification (HANDLE hNotification, DWORD cBufferSize,
LPDWORD pcBytesNeeded, LPBYTE pBuffer);

The first parameter is the handle to the notification in which you're interested.
The second parameter is the size of the buffer you're providing the function to
return the data about the notification. The third parameter is the address of a
DWORD that will receive the size of the data returned. The final parameter is
the address of a buffer that will receive the details about the notification.

The size of the required buffer changes depending on the notification. The
buffer begins with a CE_NOTIFICATION_INFO_HEADER structure. The buffer
also contains a CE_NOTIFICATION_TRIGGER structure and, depending on the
type of notification, an optional CE_USER_NOTIFICATION structure. Because
these structures contain pointers to strings for application names and command
lines, these strings must also be stored in the buffer.

To determine how big the buffer needs to be, you can call
CeGetUserNotification with cBufferSize set to 0 and pBujfer set to NULL. The
function returns the number of bytes required by the buffer in the variable that
pcBytesNeeded points to. However, calling the function this way takes just as much
time as retrieving the data itself, so it would be better to assume a size for the
buffer and call the function. Only if the call fails because the buffer is too small
do you then reallocate the buffer so that it's large enough to hold the data.

Now on to the data returned. The CE_NOTIFICATION_INFO_HEADER struc
ture is defined this way:

typedef struct UserNotificationinfoHeader {
HANDLE hNotification;
DWORD dwStatus;
CE_NOTIFICATION_TRIGGER *pcent;
CE_USER_NOTIFICATION *pceun;

} CE_NOTIFICATION_INFO_HEADER;

The first field is the handle of the event you are querying. The second field con
tains the status of the notification. This field contains 0 if the notification hasn't
fired or CNS_SIGNALLED if it has. The next two fields are pointers to the same
structures discussed earlier in the chapter. The pointer to the CE_NOTIFICATION_
TRIGGER structure points to an address in the buffer in which that structure is
defined. Depending on the type of notification, the pointer to the CE_USER_
NOTIFICATION structure could be NULL.

The combination of the two structures, CE_NOTIFICATION_TRIGGER and
CE_USER_NOTIFICATION along with the status flag, completely describes the
notification. By examining the trigger structure, you can determine the applica
tion that's scheduled to run as a result of the notification, its command line, and
of course, the type of notification itself.

733

Part IV Advanced Topics

734

The notification API is a handy way to monitor events in a Windows CE
system. The ability to have the operating system launch your application instead
of having to lurk around in memory waiting for the event significantly reduces
the memory requirements for a well-designed system. User notifications give you
a convenient and uniform way to alert the user of events that need their attention.

Now that we've looked at the notification API, it's time to turn to the dif
ferent shells that Windows CE supports. Chapter 13 covers the first shell, which
is the Explorer shell commonly seen on the H/PC and some embedded Windows
CE systems.

The Explorer Shell
One of the unique aspects of Windows CE is that different Windows CE platforms
have different shells. The shell for the Handheld PC is significantly different from
the shell for the Pocket PC. Despite differences, the parts of the shells that are
the same (and there are plenty of common shell components) share the under
lying API.

The shells used by the H/PC Pro and H/PC Pro 2000 derive from the Windows
95 and 98 shells. To the user, the look is almost pure Windows 95. That is, of
course, by design. The folks at Microsoft figured that having the Windows CE
shell resemble the Windows 95 shell would flatten the user's learning curve and
enhance the acceptability of Windows CE devices.

On the surface, the shell used by the Pocket PC has nothing in common
with the Windows 95 shell. Gone are both the Explorer and the familiar desk
top icons. In place of the Explorer is the Today screen, which displays data from
applications directly on the desktop. But while the Explorer is gone, some of the
underlying plumbing remains. Both systems have a Start button. The Start but
ton on the Pocket PC is located in the upper left corner of the Pocket PC screen.
Both systems also use special directories and the shell namespace, which I'll talk
about shortly.

The H/PC's shell, which I'll refer to as the Explorer shell, is also available
on the embedded versions of Windows CE. Although this shell resembles the
Windows 95 shell, it's not as flexible. Most of the powerful interfaces available
under Windows 95, such as the ability to drag and drop objects between pro
grams, are either only partially implemented or not implemented at all. The goal
of the programmers of the Explorer shell seemed to be to implement as few of
the native COM interfaces as possible while still retaining the ability to contain
the Internet viewing capabilities of an embedded Internet Explorer in the shell.
That said, the Explorer shell does use some COM interfaces. It's just that those
interfaces aren't identical to the ones available on the desktop.

735

Part IV Advanced Topics

This chapter covers the concept of the shell namespace and the shell's use
of special directories. This chapter also explains how to work with the taskbar
as well as how to create shortcuts. And although the console isn't strictly part
of the Explorer shell, this chapter covers it as well. The Windows CE console isn't
on all Windows CE systems. For example, the Pocket PC doesn't include con
sole support. Although Windows CE doesn't support the full character mode API
found in Windows XP, you can still write fairly complete console applications.

Working with the Shell
Because the Explorer shell is derived from the Windows 95 shell, I must cover
some system definitions first introduced with Windows 95. In general, while
the concepts remain the same, the implementation is completely different under
the covers.

The Shell Namespace

736

From Windows 95 on, the Windows shell has used the concept of a shell
namespace. The Explorer shell and the Pocket PC shell also use the namespace
concept to track the objects in the shell. Simply put, the shell namespace is the
entire collection of the operating system's objects, files, directories, printers, control
panel applets, and so forth. The idea is that by addressing files the same way as
control panel applets, the shell makes it easy to deal with the diverse collection
of objects.

A folder is simply a collection of objects. A directory is a collection of files
on a disk. A folder generalizes and extends the directory concept, in that a folder
doesn't merely contain files, but can include other objects such as control panel
objects, printers, or remote connection links. Each object in a folder is called an
item. Items are identified by an item ID.

The item ID is a data structure that uniquely identifies the item in the folder.
Since folders also have identifiers, an individual item can be uniquely defined
by means of a list of item IDs that identify the item, its folder, and the parent
folders of the folder. Think of this list of item identifiers as a completely speci
fied pathname of a file. A system might have many files namedfoobar, but only
one in a specific directory. This list of item IDs is appropriately called an ID list.
A pointer to such a list is a pointer to an ID list, frequently abbreviated as pidl,
which is generally and rather unfortunately pronounced piddle. Shell functions
usually reference items in the shells by their pidls. There is, of course, a transla
tion function that converts a pidl to a filename.

The Explorer Shell Chapter 13

Special Folders
The Windows CE shell, like the shells for the desktop versions of Windows, has
a set of folders that are treated differently from normal directories in the file
system. An example of this is the recycle bin, which is simply a hidden direc
tory to which the shell moves files and directories when the user deletes them.
Another example is the Programs folder, which contains a set of shortcuts that
are then displayed on the Start menu.

The list of special folders changes with each shell. The Windows 95/98/Me
shells and the Windows NT/2000/XP shells have a different set of special fold
ers from those of the Windows CE shells. The shells implemented on the Pocket
PC and H/PC each implement their own subset of special folders. Fortunately,
the function to return the path of a specific special folder is the same on all these
systems. That function, SHGetSpecialFolderPath, is prototyped as

BOOL SHGetSpecialFolderPath CHWND hwndOwner, LPTSTR lpszPath,
int nFolder, BOOL fCreate);

The hwndOwner parameter is the handle to a window that will be the owner of
any dialog box that the function creates. The second parameter, lpszPath, points
to a buffer at least MAX_PATH characters, not bytes, in length, which will receive
the returned path. The nFolder parameter is set to the constant that indicates what
folder you need. The jCreate parameter is a Boolean that you can set to TRUE
if you want the system to create the directory if one currently doesn't exist.

The nFolder parameter can be one of many constants that are common
across the Windows operating systems. Not all the values are supported on all
Windows CE platforms, but the following short list includes some constants that
most platforms support.

• CSIDL_BITBUCKET The location of the recycle bin.

• CSIDL_DESKTOP The folder that stores the objects that appear on
the desktop. Note that the use of this constant is different than it was
under Windows 95.

• CSIDL_FONTS The folder that contains the system fonts.

• CSIDL_DRIVES The root of the file system.

• CSIDL_PROGRAMS The folder that contains the items shown in the
Programs submenu of the Start menu.

• CSIDL_PERSONAL The default folder in which to save documents.

• CSIDL_FAVORITES The folder that contains shortcuts to favorite
items.

737

Part IV Advanced Topics

738

• CSIDL_STARTUP The folder that contains programs or shortcuts to
programs that will be launched when the system is restarted.

• CSIDL_RECENT The folder that contains the list of recently used
documents.

The SHGetSpecia!FolderPath function was first supported in Windows CE
3.0. For earlier versions of Windows CE, you must use two other functions,
SHGetSpecia!FolderLocation and SHGetPathFromIDList. The function SHGetSpecial
FolderLocation takes the constants in the preceding list and returns a pidl. Then
you need to call SHGetPathFromIDList to translate the pidl to a path. The two
functions are prototyped as

HRESULT SHGetSpecialFolderlocation (HWND hwndOwner, int nFolder,
LPITEMIDLIST *PPi dl);

and

BOOL WINAPI SHGetPathFromIDList (LPCITEMIDLIST pidl, LPTSTR pszPath);

If you needed only to call SHGetSpecia!FolderLocation and follow that by
calling SHGetPathFromIDList to get the path, life would be simple. Unfortunately,
the process isn't that easy. The pidlthat's returned by SHGetSpecia!FolderLocation
points to a buffer that has been allocated by the shell. You need to call the shell
back to free this buffer after you're finished with the ID list. You free this buffer
using an !Malloc interface provided by the shell.

The !Malloc interface contains methods that allow an application to allo
cate, free, and otherwise manipulate memory in the local heap of the !Malloc
provider. In the case of the shell, a pointer to its !Malloc interface can be acquired
with a call to SHGetMalloc. The function is prototyped as

HRESULT SHGetMalloc (LPMALLOC *ppMalloc);

Once you have a pointer to the interface, you can call the Free method to free
any ID lists returned by ShGetSpecia!FolderLocation.

On some early Windows CE systems, SHGetSpecia!FolderLocation returns
a constant, typed as a pidl, which can then be passed to SHGetPathFromIDList
to get a directory name. Those systems don't implement !Malloc. To support those
early machines, you can use a routine like the following, which attempts to get
the !Malloc interface. However, if this call fails, the routine simply proceeds to call
SHGetSpecia!FolderLocation and SHGetPathFromlDList to query the directory.

INT MyGetSpecialDirectory (HWND hWnd, INT nFolderID,

int re;
LPITEMIDLIST pidl;

LPTSTR 1 pDi r) {

BOOL fUseIMalloc =TRUE;
LPMALLOC lpMalloc = NULL;

The Explorer Shell Chapter 13

II Attempt to get the Shell Malloc interface.
re= SHGetMalloc (&lpMalloc);
if (re== E_NOTIMPL)

fUseIMalloc = FALSE;
else if (re != NOERROR)

return re;

re= SHGetSpecialFolderLocation (hWnd, nFolderID, &pidl);
if (re == NOERROR) {

II Translate the idlist to a directory name.
if (SHGetPathFromIDList (pidl. lpDir))

re = E_FAIL;
II Free the idlist.
if (fUseIMalloc)

IMalloc_Free(lpMalloc,pidl);

II Free shell's IMalloc interface.
if (fUseIMalloc)

IMalloc_Release(lpMalloc);
return re;

Note that on the Pocket PC, the combination of two functions
SHGetSpecialFolderLocation and SHGetPathFromIDList-supports a greater num
ber of the CSIDL_ constants than does the single function SHGetSpecialFolderPath.
For this reason, and to remain backward-compatible with older systems, I tend
to use the combination of the older functions instead of the newer function.

Shortcuts
Shortcuts are small files that, when opened, launch an application or open a
document in another folder. The idea behind shortcuts is that you could have
an application located in one directory but you might want to be able to launch
it from other directories. Since the shell uses the contents of special directories
to define what is in the Start menu and on the desktop, placing a shortcut in one
of those special directories allows an application to appear in the Start menu or
on the desktop.

While the concept of shortcuts was taken from the desktop versions of
Windows, the method of creating them was not. Instead of using a COM inter
face, as is done on the desktop, you create a shortcut in Windows CE using the
following function:

BOOL SHCreateShortcut (LPTSTR szShortcut, LPTSTR szTarget);

739

Part IV Advanced Topics

The first parameter specifies the name and location of the shortcut. This name
should be a fully qualified filename with an extension of LNK. The second pa
rameter is the fully qualified filename of the application you want to start or the
file you want to open. The function returns TRUE if successful.

You can determine the contents of a shortcut by calling this function:

BOOL SHGetShorteutTarget (LPTSTR szShorteut, LPTSTR szTarget,
int ebMax);

The first parameter is the filename of the shortcut. The remaining two parame
ters are the buffer that receives the target filename of the shortcut and the size
of that buff er.

Configuring the Start Menu

740

Shortcuts come into their own when you're customizing the Start menu. When
the Start button is clicked, the taskbar looks in its special folder and creates a
menu item for each item in the folder. Subfolders contained in the special folder
become submenus on the Start menu.

The Start menu of the H/PC is limited in that you can't customize the Start
menu itself. You can, however, modify the Programs submenu and the submenus
it contains. To add an item to the Programs submenu of the H/PC Start menu,
you place a shortcut in the folder returned after you called SHGetSpecialFolderPath
with the folder constant CSIDL_PROGRAMS. For example, look at the following
short code fragment, which lists the Cale program in the Programs submenu of
the Start directory on an H/PC.

INT re;
TCHAR szDir[MAX_PATH];

re= SHGetSpeeialFolderPath (hWnd, szDir, CSIDL_PROGRAMS, FALSE);
if (re == NOERROR) {

lstreat (szDir, TEXT ("\\Cale.lnk"));
SHCreateShorteut (szDir, TEXT ("\\windows\\eale.exe"));

This fragment uses the routine SHGetSpecialFolderPath to return the folder used
by the Programs submenu. Once that's found, all that is required is to append
the necessary LNK extension to the name of the link and call SHCreateShortcut
specifying the location of CALC.EXE.

The Start menu of the Pocket PC is more flexible than the H/PC's because
you can add items directly to the Start menu itself. To accomplish this, add short
cuts to the folder returned with SHGetSpecialFolderlocation and the constant
CSIDL_STARTMENU.

The Explorer Shell Chapter 13

While it is possible to download executables directly to the Start menu
directories, a better idea is to create a directory under the \Programs folder to
store your application and place a shortcut pointing to your application in the
Start menu. This solution allows your application to keep any necessary DLLs
and additional files isolated in their own directory instead of dumping them in
the Start menu directory.

Recent Documents List
A feature of the Start menu since it was introduced in Windows 95 is the Docu
ments submenu. This menu lists the last 10 documents that were opened by
applications in the system. This list is a convenient place in which users can
reopen recently used files. The system doesn't keep track of the last-opened
documents. Instead, an application must tell Windows that it has opened a docu
ment. Windows then prunes the least recently opened document on the menu
and adds the new one.

Under Windows CE, the function that an application calls to add a docu
ment to the recently used list is

void SHAddToRecentDocs (UINT uFlags, LPCVOID pv);

The first parameter can be set to one of two flags, SHARD_PATH or SHARD_PIDL.
If uFlags is set to SHARD_PATH, the second parameter points to the fully quali
fied path of the document file. If SHARD_PIDL is specified in uFlags, the sec
ond parameter points to a pointer to an ID list. If the second parameter is 0, all
items in the recently used document menu are deleted.

Launching Applications
Windows CE supports one of the standard Windows shell functions, ShellExecuteEx.
Although Windows CE doesn't support much of the functionality of ShellExecuteEx,
the functionality that remains is still quite useful. ShellExecuteEx is somewhat
simpler to use than CreateProcess to create new processes. ShellExecuteEx also
has the advantage of being able to automatically associate data files with the
application that should open them. Furthermore, it opens the Explorer to a specific
directory. The function prototype for ShellExecuteEx is

BOOL WINAPI ShellExecuteEx (LPSHELLEXECUTEINFO lpExeclnfo);

The only parameter is a pointer to the rather complex SHELLEXECUTEINFO
structure, defined as

typedef struct _SHELLEXECUTEINFO
DWORD cbSize;

(continued)

741

Part IV Advanced Topics

742

ULONG fMask;
HWND hwnd;
LPCSTR lpVerb;
LPCSTR l pFi le;
LPCSTR lpParameters;
LPCSTR lpDirectory;
int nShow;
HINSTANCE hlnstApp;

II Optional members
LPVOID lpIDList;
LPCSTR lpClass;
HKEY hkeyClass;
DWORD dwHotKey;
HANDLE hlcon;
HANDLE hProcess;
} SHELLEXECUTEINFO;

The first field is the traditional size field that must be set to the size of the
structure. ThejMask field can contain two flags: SEE_MASK_FLAG_NO_UI, which
instructs the function not to display an error dialog box if the function fails, and
SEE_MASK_NOCLOSEPROCESS, which will return the handle to the child pro
cess in the hProcess field. If you set the latter flag, your application is respon
sible for closing the returned handle. The hwnd field is the handle to a window
that owns any error dialog displayed as a result of the function.

The Ip Verb field points to a string that tells ShellExecuteEx what to do. The
documented "verbs" are open, print, explore, edit, and properties, but for the
current Windows CE Explorer shell, the verb is basically ignored. The default is
open. The lpFile field should point to a string that contains the name of a file
a data file, a directory, or an executable. If lpFile points to an application name,
the lpParameters field can contain the address of a string containing the com
mand line parameters for the application. If lpFile points to a document file or
a directory, lpParameters should be NULL.

Of all the remaining fields, only hlnstApp and hProcess are used. All the
others are ignored. The hlnstApp field should be set to the instance handle of
the application calling the function. As I mentioned earlier, if you set the
SEE_MASK_NOCLOSEPROCESS flag injMask, the function returns the handle of
the child process. For example, the following code fragment opens a Pocket Word
document in the root directory of a Windows CE system:

SHELLEXECUTEINFO si;

memset (&si, 0, sizeof (si));
s i . cbS i ze = s i zeof (s i) ;
si .fMask = 0;

The Explorer Shell Chapter 13

si .hwnd = hWnd;
si.lpFile =TEXT ("\\docl.pwd");
si.lpVerb =TEXT ("Open");
re= ShellExecuteEx (&si);

The shell launches the proper application by looking in the registry to
associate a data file's extension with an associated application. This process is
essentially identical to the method used on the desktop. The shell searches the
registry for a subkey under [HKEY_CLASSES_ROOT] that matches the extension
of the data file. The default value of that subkey then identifies another subkey
that indicates the application to launch.

The Taskbar
The taskbar interface under Windows CE is almost identical to the taskbar in
terface under the desktop versions of Windows. I've already talked about how
you can configure the items in the Start menu. The taskbar also supports annun
ciators, those tiny icons on the far right of the taskbar. The taskbar icons are
programmed with methods similar to those used in Windows Me/XP. The only
limitation under the Explorer shell or the Pocket PC shell is that they don't sup
port tooltips on the taskbar icons.

Programs can add, change, and delete taskbar icons using this function:

BOOL Shell_Notifyicon (DWORD dwMessage, PNOTIFYICONDATA pnid);

The first parameter, dwMessage, indicates the task to accomplish by calling the
function. This parameter can be one of the following three values:

• NIM_ADD Adds an annunciator to the taskbar

• NIM_DELETE Deletes an annunciator from the taskbar

• NIM_MODIFY Modifies an existing annunciator on the taskbar

The other parameter points to a NOTIFYICONDATA structure, which is
defined as

typedef struct _NOTIFYICONDATA
DWORD cbSize;
HWND hWnd;
UINT uID;
UINT uFlags;
UINT uCallbackMessage;
HICON hicon;
WCHAR szTip[64];

NOTIFY ICONDATA;

743

Part IV Advanced Topics

The first field, cbSize, must be filled with the size of the structure before a
call is made to Shell_Notifylcon. The h Wnd field should be set to the window
handle that owns the icon. This window receives messages notifying the win
dow that the user has tapped, double-tapped, or moved her pen on the icon.
The u!D field identifies the icon being added, deleted, or modified. This prac
tice allows an application to have more than one icon on the taskbar. The uFlags
field should contain flags that identify which of the remaining fields in the structure
contain valid data.

When you're adding an icon, the uCallbackMessage field should be set to
a message identifier that can be used by the taskbar when notifying the window
of user actions on the icon. This value is usually based on WM_ USER so that the
message value won't conflict with other messages the window receives. The
taskbar looks at this field only if uFlags contains the NIF _MESSAGE flag.

The hlcon field should be loaded with the handle to the 16-by-16-pixel
icon to be displayed on the taskbar. You should use Loadlmage to load the icon
because Load/con doesn't return a small format icon. The taskbar looks at this
field only if the NIF _ICON flag is set in uFlags. Finally, the szTip field would
contain the tool-tip text for the icon on other Windows systems but is ignored
by the current Windows CE shells.

Managing a taskbar icon involves handling the notification messages the
taskbar sends and acting appropriately. The messages are sent with the message
identifier you defined in the call to Shell_Notifylcon. The wParam parameter of
the message contains the ID value of the taskbar icon that the message references.
The !Param parameter contains a code indicating the reason for the message.
These values are actually the message codes for various mouse events. For ex
ample, if the user taps your taskbar icon, the !Param value in the notification
message will be WM_LBUTTONDOWN, followed by another message contain
ing WM_LBUTTONUP.

The TBlcons Example Program

744

The TBlcons program demonstrates adding and deleting taskbar annunciator
icons. Figure 13-1 shows the TBicons window. The buttons at the bottom of the
window allow you to add and delete icons from the taskbar. The list box that
takes up most of the window displays the callback messages as the taskbar sends
them. In the taskbar, you can see two icons that TBlcons has added. The list
box contains a list of messages that have been sent by the taskbar back to the
TBlcons window.

The Explorer Shell Chapter 13

Figure 13-1 The Windows CE desktop with a TBlcons window

The source code for TBlcons is shown in Figure 13-2. The program uses a
dialog box as its main window. The routines that add and delete taskbar icons
are DoMainCommandAddlcon and DoMainCommandDe!Icon. Both these rou
tines simply fill in a NOTIFYICONDATA structure and call Shell_Notifylcon. The
routine that handles the notification messages is DoTaskBarNotifyMain. This
routine is called when the window receives the user-defined message
MYMSG_TASKBARNOTIFY, which is defined in TBICONS.H as WM_ USER+ 100.
Remember that dialog boxes use some of the WM_ USER message constants, so
it's a good practice not to use the first hundred values above WM_ USER to avoid
any conflicts.

Figure 13-2 TBlcons source code (continued)

745

Part IV Advanced Topics

Figure 13-2 (continued)

746

The Explorer Shell Chapter 13

11-------·-- -------------------
11 Function prot6types
II
void Add2List (HWND hWnd. LPTSTR lpszFormat, •..);

II .Window procedures
BDOL CALLBACK MainDlgProc CHWNO, UfNT, WPARAM, LPARAMl:

/J Message handlers
BOOL DoinitDlgMain (HWND, UINT, WPARAM, LPARAM);
BOOL DoCommandMain (HWND. UINT. WPARAM, LPARAM);
BOOL DoTaskBarNotifyMain (HWND. U!NT; WPARAM,

I I Command funct i.ons
LPARAM DoMainCommandExit CHWND. WORD,. HWND, WORD):
LPARAM DoMainCommandAddic.on (HWND. WORD.

····/J··.•·.MesS"age .. d f spatch .• table···· for
const<s~r.uct.·dec:odeUI.NT MaJnM~s.sages{J

. . WM_INITOIALOG •• ?olnttDlgM.ajni.

} ;

·· .. WM.,_fOMMAND.~ .•.•.. DoCom.mand~a.1.~t •• >ii > \.
MYMSG.;,;TASKBARNOTr.FY.·· .. ooTaskBarNotifyMa in.

·.· ··roCANC E~, boMa irrComm~rtdExft.
lDD~ADDI.CON~

•• IDD_DE LICON:.

(continued)

747

Part IV Advanced Topics

Figure 13-2 (continued)

748

The Explorer Shell Chapter 13

BOOL DoCommandMain IHWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam){
WORD iditem, wNotifyCode;
HWND hwndCtl .:
I NT i ;

II Parse the parameters.
idltem = (WDRDl LOWORD (wPara.m);
wNotifyCode =!WORD> HIWORD lwParam);
hwndCtl = (HWNDl lParam;

II Call routine t6 handle control message.
for (i = 0;. i < dim(MainCommanditems); i++)

}

if (iditem. == MainCommanditems[i] .Code)
<*Ma.inCommandltems[iJ.Fxnl(hWnd, idltem, hwfldCtl,

wNotifyCode l;

(continued)

749

Part IV Advanced Topics

Figure 13-2 (continued)

750

The Explorer Shell Chapter 13

LP A RAM DoMa i nCommandDelicon <HWND hWnd, WORD i ditem, HWNO hwndCtl •
WORD wNot ifyCode) {

}

NOTIFYICONDATA nid;

if (nlconID == 0)
return 0;

memset (&nid, 0, sizeof nid):
nid.cbSize = sizeof (NOTIFYICONDATA);
nid.hWnd = hWnd;
nid.uJD • niconID--:

She1l_Notify Icon (NIM""OELETE..
r~forn·0:

ll----~~-~,.~~-------~----------
11
II

TBicons can run on a Pocket PC, but the task bar annunciators are visible
only when the Today screen is showing. Aside from this difference, the program
runs under the Pocket PC as it does under other versions of Windows CE.

The Out Of Memory Error Dialog Box
Because Windows CE applications are almost always running in a limited memory
environment, it seems likely that they'll need an Out Of Memory Error dialog box.
The standard Windows CE shells give you just such a dialog box as a system
service. Figure 13-3 shows this dialog box on a Compaq iPaq Pocket PC.

751

Part IV Advanced Topics

Slot lEOOOOOO

Out Of Memory Error •;;kl

There is not enough
memory, Please exit some
running pro gr ams and try
again.

Figure 13-3 The Windows CE Out Of Memory Error dialog box

The advantage of using the system-provided Out Of Memory Error dialog
box is that you don't have to create one yourself in what, by definition, is already
a low-memory condition. The dialog box provided by the system is also correctly
configured for the proper screen size and local language. To display an Out Of
Memory Error dialog box, you call this function:

int SHShowOutOfMemory CHWND hwndOwner, UINT grfFlags);

The two parameters are the owner window and grjFlags, which must be set to 0.

Console Applications

752

Windows CE doesn't support the character mode API supported by Windows XP.
Instead, a Windows CE console application just uses the standard C library I/0
functions, such as prinif and getc, to read and write characters from the com
mand line. Another major difference between command line applications on
Windows CE and on other versions of Windows is that they use the standard
WinMain entry point instead of the standard C entry point of main.

Not all Windows CE systems support the console. For example, the Pocket
PC doesn't include console support. However, on those Windows CE systems that
do include support, the console is a handy tool. The following Windows CE
console application runs under Windows CE. Aside from the difference of the
entry point, a Windows CE console application looks like any other standard C
command line application.

II
II HelloCon - A simple console application
II
#include <windows.h> II For all that Windows stuff

The Explorer Shell Chapter 13

II Program entry point
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdline, int nCmdShow) {

II You don't use Unicode for the stdio functions ...
printf ("Hello World\n");

II .. . but you can with the 'w' versions.
wprintf (TEXT ("Hello World\n"));
return 0;

Windows CE console applications have access to the Win32 APL In fact, a
console application can create windows, enter a message loop, and operate as
if it were a standard Windows application. The difference is that the first time
you call one of the stdio C library functions, such as printf, a console window is
created and the result of that function will be seen in that window.

Consoles are implemented under Windows CE using a console driver with
the appropriate device name of CON. Up to 10 console windows can be opened
at any one time. The limit comes from the CONO through CON9 naming con
vention used by drivers under Windows CE. Console applications don't directly
open a CON driver to read and write to the window. At the current time, sup
port for console applications is limited to a subset of the standard C library char
acter mode functions, although this subset seems to grow with every release of
Windows CE.

Because the initialization of the console driver occurs only after the first call
to an 1/0 library function, it's possible for a console application to run to comple
tion and terminate without ever creating a console window for output. If you
want a console window to always be created, you'll need to include a prinif or
other console input or output call to force the console to be created. You can
always insert a line like

printf (" \b");

which prints a space and then backspaces over the space to force the console
to be created.

The CEFind Example Program
The following program is a short console application that searches the Windows
CE file system for matching file names. The program can be launched from a
console window using CMD.EXE, or it can be launched from the Explorer. Be
cause no concept of a current directory is built into Windows CE, the search
always starts from the root of the file system unless a path is specified with the
filename specification. Figure 13-4 shows the results of CEFind when looking for
all the TrueType fonts on a system.

753

Part IV Advanced Topics

754

Pockat CED v 3. o
> C:flfind ... _ttf

105660 \liTindows\tahOllla.ttf
J.?3494 \liTindovs\cour.ttf
J.39396 \lilindows\arial.ttf

60096 \11Tindovs\syabol.ttf
190940 \Windovs\tim.es.ttf

S Ul1!(s) found. 6EiS4?6 bytes.

Figure 13-4 The results of a CEFind search for TrueType font files

The CEFind source is contained in one file, CEFIND.C, shown in Figure 13-5.
The entry point is WinMain, which then calls SrchDirectory, which recursively
calls itself to search each of the directories underneath the original directory.

Figure 13-5 The CEFind program

The Explorer Shell Chapter 13

II We always start at the root.
memset Cplnput, 0, sizeof (p!nput));
if (*lpCmdLine !=TEXT('\\')) {

pinput[0] =TEXT('\\');
}

wcscat (pinput, lpCmdLine);

II Perform recursive search.
SrchDirectory (pinput);
wprintf (L"\n %9d file(s) found. %d bytes.\n'!; nFiles, nTotal);
rett.1rn 0;

} . ' . ·.·•
I I - - - - - - - - - - ~ ~ • - • -. - -:- ~ - .:--. ~ • - - - - - - - - - - - - - - - - - - • - - - - -- - •· ~ • · _:- - - - - - - - - - - - - - - -
I I SrchDfrectorY • Recursive routine that searches a ~Fr and a 11
II childdir:s·f1Yr'm~tehiti~(files
II
int Srchoi redory CliPTSTR pszDi r) {

· WIN32JIND_nkrA_:fd: .· .. ·

TC HAR ~~N~wtMAx_f AT141; .

. ~~~o~~-~[iw~r~ :.~J 0/}·_·:-'.::·
n;HAR ?li~ft~PS:riqspef'i ' . .

o··.' ".<:" ' • ': "
'"," ,.,·

•Ii Sellc~~~te·c~l1ll:cl{r~ctp{'§/troni search specJ'ficatfon·,•

tor ~~Jj!~~~j<~T1;~"''" ''''''rl.• ; · ..
o~;:: ·>··>

Copy :';~h~i-~e.a~~hfa·~e~ffi cation up t9 tt\e. l~s.t i!ir~cto~Y
$fjpa rati:oit:~h~raete·r.

i f. tp'src;spec ·•· <;;, ps~Di r>
1 s~.r'9pY]~z.~vi, JEXT C "\ \")) ;

·.·else { ·• ·. · · ·· ··.· · ·
· .. f9~·:cr:·=: 0L£·~ ~: df~<.st:~ew)-l-0> .&&._,,,.:··

.... . p : ·' _.· .. ;,J(~.zfJfrft> <=, i>Sre?peGJ:

· s;~~~i~~[:JiElfH~~·iru:
;·.~:;}; :.::?::~: !~~;.:;:· ~

//Find ni#~fi~~~: fti'es/
:hFrnd :<:~1,~~~.t;~*~~i:1~ (p$toir. &N> i

(continued)

755

Part IV Advanced Topics

Figure 13-5 (continued)

756

The Explorer Shell Chapter 13

The console can be quite useful in debugging. Because all Windows CE
applications can call console functions, such as print], you can use the console
as a quick-and-dirty debug console. This is especially helpful in debugging ap
plications on unusual embedded systems that don't have a method to connect
to the development tools on a PC.

In addition, DLLs can also use the console as easily as executables can. This
feature is handy for debugging DLLs that are loaded by processes other than the
process you have developed. One caveat, however: the system automatically
creates a console for a process only once. If for some reason the console is closed,
subsequent output to the console for that application is lost.

Hardware Keys
The keyboard isn't necessarily the only way for the user to enter keystrokes to an
application. All Pocket PCs and some Handheld PCs have additional buttons that
can be assigned to launch an application or to send unique virtual key codes to
applications. The Pocket PC has an additional set of buttons known as navigation
buttons that mimic common navigation keys such as Line Up and Line Down. These
navigation keys give the user shortcuts, which allow scrolling up and down as well
as access to the services of the often-used key Enter. Because the scrolling but
tons simply send Page Up, Page Down, Line Up, and Line Down key messages,
your application doesn't have to take any special action to support these keys.

The application launch buttons are another matter. When pressed, these keys
cause the shell to launch the application registered for that key. Although a sys
tem is usually configured with default associations, you can override these set
tings by modifying the registry so that pressing a hardware control button launches
your application. An application can also override the application launch abil
ity of a specific key by having the key mapped directly to a window. In addi
tion, you can use the hot key features of the Graphics Windowing and Event
Subsystem (GWE) to override the hardware key assignment and send a hot key
message to a window.

Virtual Codes for Hardware Keys
Since the hardware control buttons are treated as keyboard keys, pressing a
hardware control key results in WM_KEYDOWN and WM_KEYUP messages as
well as a WM_ CHAR message if the virtual key matches a Unicode character. The
system mapping of these keys employs two strategies. For the navigation keys,
the resulting virtual key codes are codes known and used by Windows applica
tions so that those applications can "use" the keys without even knowing that's
what they're doing. The application-launching keys, on the other hand, need

757

Part IV Advanced Topics

758

virtual key codes that are completely different from previously known keys so
that they won't conflict with standard key events.

Navigation Key Codes
As I mentioned earlier, the navigation keys are mapped to common navigation
keys. The actual virtual key code mapping for navigation keys is shown in the
following table.

Key

Action

Action

Rock Up

Action

Press

Release

Press

Release

Rock Down Press

Release

Rock Left Press

Release

Rock Right Press

Release

Key Message

WM_KEYDOWN

WM_KEYUP

WM_KEYDOWN

WM_ CHAR

WM_KEYUP

WM_KEYDOWN

WM_KEYUP

WM_KEYDOWN

WM_KEYUP

WM_KEYDOWN

WM_KEYUP

WM_KEYDOWN

WM_KEYUP

WM_KEYDOWN

WM_KEYUP

WM_KEYDOWN

WM_KEYUP

WM_KEYDOWN

WM_KEYUP

WM_KEYDOWN

WM_KEYUP

Key Code

OEM dependent*

OEM dependent*

VK_RETURN

VK_RETURN

VK_RETURN

OEM dependent*

OEM dependent•

VK_UP

VK_UP

OEM dependent*

OEM dependent•

VK_DOWN

VK_DOWN

OEM dependent*

OEM dependent*

VK_LEFT

VK_LEFT

OEM dependent*

OEM dependent•

VK_RIGHT

VK_RIGHT

• OEM-dependent key codes differ from system to system. Some OEMs might not send these mes
sages, while others may send the messages with a virtual key code of 0.

Unfortunately, there's no reliable way of determining whether a VK_RETURN
key event came from the SIP or from a hardware button. Each OEM has a dif
ferent method of assigning virtual key codes to the hardware navigation buttons.

The Explorer Shell Chapter 13

Application Launch Key Codes
The shell manages the application launch keys named Appl through a possible
Appl6. These keys produce a combination of virtual key codes that are inter
preted by the shell. The codes produced are a combination of the left Windows
key (VK_LWIN) and a virtual code starting with OxCl and continuing up, depend
ing on the application key pressed. For example, the Appl key produces the vir
tual key sequence VK_LWIN followed by OxCl, while the App2 key produces
the sequence VK_LWIN followed by OxC2.

Using the Application Launch Keys
Applications are bound to a specific application launch key through entries in
the registry. Specifically, each key has an entry under [HKEY _LOCAL_MACHINE]\
Software\Microsoft\Shell\Keys. The entry is the virtual key combination for that
key, so for the Appl key, the entry is

[HKEY_LOCAL_MACHINE]\Software\Microsoft\Shell\Keys\40Cl

The 40Cl comes from the code Ox40, which indicates the Windows key has been
pressed and concatenated with the virtual key code of the application key, OxCl.
The default value assigned to this key is the fully specified path name of the
application assigned to the key. A few other values are also stored under this
key. The ResetCmd value is the path name of the application that is assigned to
this key if the Restore Defaults button is pressed in the system's Button control
panel applet. The Name value contains the friendly name of the key, such as
Button 1 or Side Button.

The only way to change the application assigned to a key is to manually
change the registry entry to point to your application. Of course, you shouldn't
do this without consulting your users, since they may have already configured
the application keys to their liking. The routine that follows assigns an applica
tion to a specific button and returns the name of the application previously as
signed to that button. The vkAppKey parameter should be set to an application
key virtual key code, OxCl through OxCF. The pszNewApp parameter should point
to the fully specified path name of the application you want to assign to the key.

11--

11 SetAppLaunchKey - Assigns an application launch key to an
II application.
II
int SetApplaunchKey (LPTSTR pszNewApp, BYTE vkAppKey, LPTSTR pszOldApp,

INT nOldAppSize) {
TCHAR szKeyName[256];
DWORD dwType, dwDisp;
HKEY hKey;
INT re;

(continued)

759

Part IV Advanced Topics

760

II Construct the key name.
wsprintf (szKeyName,

TEXT ("Software\\Microsoft\\Shell\\Keys\\40%02x"J, vkAppKey);

II Open the key.
re= RegCreateKeyEx CHKELLOCAL_MACHINE. szKeyName. 0, TEXT("").

0, 0, NULL, &hKey, &dwDisp);
if (re != ERROR_SUCCESSJ

return -1;

II Read the old application name.
re= RegQueryValueEx (hKey, TEXT (""), 0, &dwType,

(PBYTE)pszOldApp. &nOldAppSize);
if (re != ERROR_SUCCESS) {

RegCloseKey (hKey);
return -2:

}

II Set the new application name.
re= RegSetValueEx (hKey, TEXT (""), 0, REG_SZ, CPBYTE)pszNewApp,

(lstrlen (pszNewApp)+ll * sizeof (TCHARJJ:
RegCloseKey (hKey);
if (re != ERROR_SUCCESS)

return -3;

return 0;

When an application button is pressed, the system doesn't check to see
whether another copy of the application is already running-it simply launches
a new copy. You should design your application, especially on the Pocket PC,
to check to see whether another copy of your application is already running and
if so, to activate the first copy of the application and quietly terminate the newly
launched copy.

You can determine whether an application is assigned to a key by calling
the Pocket PC-specific function SHGetAppKeyAssoc, which is prototyped as

Byte SHGetAppKeyAssoc (LPCTSTR ptszApp);

The only parameter is the fully qualified name of your application. If a key is
associated with your application, the function returns the virtual key code for
that key. If no key is associated with your application, the function returns 0.
This function is useful because most applications, when launched by an appli
cation key, override the default action of the key so that another copy of the
application won't launch if the key is pressed again.

The Explorer Shell Chapter 13

Dynamically Overriding Application Launch Keys
A running application can override a launch key in two ways. The first method
is to use the Pocket PC-specific function SHSetAppKeyWndAssoc, prototyped as

BOOL SHSetAppKeyWndAssoc (BYTE bVk, HWND hwnd);

The first parameter is the virtual key code of the hardware button. The second
parameter is the handle of the window that's to receive the notices of button
presses. For example, a program might redirect the Appl key to its main win
dow with the following line of code:

SHSetAppKeyWndAssoc (0xCl, hwndMain);

The window that has redirected an application might receive key messages
but the virtual key codes received and the type of key messages are OEM-specific.
The chief reason for using SHSetAppKey WndAssoc is to prevent the button from
launching an application. When you no longer want to redirect the application
launch key, you can call SHSetAppKeyWndAssoc specifying the virtual code of
the key and NULL for the window handle.

The second method of overriding an application launch key is to use the
RegisterHotKey function. The advantage of using the RegisterHotKey function is
that your window will receive known messages, albeit WM_HOTKEY instead of
WM_KEYxxx messages when the key is pressed, no matter what application
currently has the keyboard focus. A second, even more important reason to use
RegisterHotKey is that this function is supported on Handheld PCs as well as on
Pocket PCs. This function is prototyped as

BOOL RegisterHotKey CHWND hWnd, int id, UINT fsModifiers, UINT vk);

The first parameter is the handle of the window that receives the WM_HOTKEY
messages. The second parameter is an application-defined identifier that's in
cluded with the WM_HOTKEY message to indicate which key caused the mes
sage. The fsMod{fiers parameter should be set with flags, indicating the shift
keys that must also be pressed before the WM_HOTKEY message can be sent.
These self-explanatory flags are MOD_ALT, MOD_CONTROL, MOD_SHIFT, and
MOD_ WIN. An additional flag, MOD_KEYUP, indicates that the window will
receive WM_HOTKEY messages when the key is pressed and when the key is
released. When using RegisterHotKey on application keys, you should always
specify the MOD_ WIN flag because application keys always are combined with
the Windows shift-modifier key. The final parameter, vk, is the virtual key code
for the key you want as your hot key. This key doesn't have to be a hardware
key code; you can actually use almost any other virtual key code supported by
Windows, although assigning Shift-F to your custom fax application might make
Pocket Word users a bit irate when they tried to enter a capital F.

761

Part IV Advanced Topics

762

When the key registered with RegisterHotKey is pressed, the system sends
a WM_HOTKEY message to the window. The wParam parameter contains the
ID code you specified when you called RegisterHotKey. The low word of !Param
parameter contains the shift-key modifiers, MOD_xxx, that were set when the
key was pressed, while the high word of !Param contains the virtual key code
for the key.

The disadvantage of using RegisterHotKey is that if another application has
already registered the hot key, the function will fail. This can be problematic on
the Pocket PC, where applications stay running until the system purges them to
gain extra memory space. One strategy to employ when you want to use a hard
ware key temporarily-for example, in a game-would be to use SHGetAppKeyAssoc
to determine what application is currently assigned to that key. It's a good bet that
if RegisterHotKey failed due to some other program using it, the application assigned
the application key is also the one currently running and has redirected the hot
key to its window. You can then send a WM_ CLOSE message to that application's
main window to see whether it will close and free up the hardware key.

When you no longer need the hot key, you can unregister the hot key with
this function:

BOOL UnregisterHotKey (HWND hWnd, int id);

The two parameters are the window handle of the window that had registered
the hot key and the ID value for that hot key you assigned with RegisterHotKey.

The Game API, or GAPI, provides a method for applications to take con
trol of all hardware keys in the system. GAPI lets an application take control of
all the keys but not individual keys. Still, GAPI provides a convenient service for
game developers. (For more information about GAPI, refer to Chapter 14.)

The application launch buttons provide a handy way to make your appli
cations easily accessible by the user. The only additional task required of the
application is to assume control of the key when it's running so that users can't
inadvertently launch multiple copies of the application.

I began this chapter by saying the Explorer shell is interesting in that, like
many parts of Windows CE, it resembles its desktop counterparts but is imple
mented very differently. These differences show up the most in places, such as
the COM interfaces the Explorer uses, that are unique and private, and in con
sole applications, where the implementation is limited to supporting a subset of
standard C library calls and nothing else.

In the next chapter, I turn to the Pocket PC shell. This shell has dramatic
differences in look and feel that affect the way you write Pocket PC applications.
Throughout this book, the examples have contained small snippets of code that
I mentioned were required for the Pocket PC, but I didn't explain why. It's time
to explore the details of these extra pieces of code.

Programming the Pocket PC
The Pocket PC is one of the most successful Windows CE-based systems. The
combination of small, PDA-size dimensions and a powerful CPU has provided
a portable but fast platform for the Windows CE operating system. In addition,
an extensive reworking of the user interface for the Pocket PC devices makes
for an interesting platform for application developers.

While the look of the Pocket PC shell is completely different from other
Windows CE devices, the underlying plumbing is still Windows CE. Pocket PC
applications are Windows CE applications and therefore similar to Windows
applications written for the desktop. However, the enhancements to the Pocket
PC shell do require that applications perform some extra duty to support the
device's unique look and feel. Also, the small portrait-mode screen affects how
applications present data. Finally, the way users expect a PDA to act requires
that Pocket PC applications differ in action from their desktop cousins.

The Pocket PC shell provides a number of helper functions to assist appli
cations in providing a consistent look and feel. These include functions that deal
with the soft input panel (SIP), which displays an on-screen pop-up keyboard,
and functions that help dialog boxes automatically expand to fill up the screen,
thereby providing a simpler user interface. The Pocket PC shell provides its own
menu control called a menu bar, which hosts application menus, buttons, and
the button that displays the SIP. New functions help applications configure the
Today screen, which is the closest thing the Pocket PC has to a desktop. The Pocket
PC even supports a series of functions to help game developers port their games
to Windows CE.

763

Part IV Advanced Topics

The Pocket PC Screen
Before I jump into a discussion of a Pocket PC application, let's look at the el
ements of the Pocket PC screen. Figure 14-1 shows the Pocket PC's Today screen.

I!] Owner: Doug Boling

0 3 Active tasks

l!!l!I No upcomh'lg appointments

§""Naunreacimessii985 ____ _
No unsent messages

Nav Bar

Application
Workspace

Menu Bar

Figure 14-1 The Pocket PC display

Across the top of the Pocket PC screen is the navigation bar. This element
of the screen contains the title of the foreground window, the current time, and
(when a dialog is displayed) an OK button for dismissing a dialog. Tapping the
navigation bar displays the Start menu, allowing the user to launch applications
or to switch to running applications.

The Today screen contains information about the device. Today screen
panels can be configured through the control panel. (In the next chapter, I'll
discuss how developers can add custom Today screen panels.) The bottom of
the Pocket PC screen is reserved for the menu bar. The Today screen menu bar
is unique in that it displays taskbar annunciators created using the same API that
I described in Chapter 13.

When the user starts an application, the screen layout is similar to that seen
with the Today screen in view. The navigation bar is at the top, the application
window takes up the main screen area, and the menu bar holds its place at the
bottom of the screen. The best way to learn about programming this platform is
to go right to an example.

Hello Pocket PC

764

A Pocket PC application is still a Windows application, so it has a message loop,
a main window, and window procedures. However, some new requirements do

Programming the Pocket PC Chapter 14

change the design a bit. First, a Pocket PC application must make sure that only
one copy of itself is running at any one time. The operating system doesn't ensure
this-that is the application's job. Second, instead of using a command bar-as
do other Windows CE applications-Pocket PC applications use the menu bar.
In many ways, the menu bar acts like an updated command bar, but it does have
some peculiarities. A Pocket PC application should not have a Close button, an
Exit command, or a Close command in its menus. This is because PDA users don't
use applications; they use their PDAs. (The user interface gurus that work on this
stuff have decided that users would rather not know when a particular applica
tion is running or not.)

Enough about requirements. Let's move on to some code. Figure 14-2 shows
two screen shots of a simple Pocket PC application called HelloPPC. The left image
shows the window with the SIP hidden; the image on the right shows HelloPPC
with the SIP showing. Notice how the text centers itself in the visible portion of
the workspace. The HelloPPC window has a red outline to highlight its
size and position.

lGJ j Hello 2:48p lGJ j Hello 2 :49p

Hello Pocket PC 1

Hello Pocket PC 1

Figure 14-2 The HelloPPC application with the SIP both hidden and showing

Figure 14-3 shows the source code for HelloPPC. Fundamentally, what you'll
notice about HelloPPC is that it is predominantly a standard Windows CE appli
cation. The differences between this code and that shown in Chapter 1 have to
do with the difference between the Pocket PC and the Explorer shells. I'll talk
about these differences in the sections following the code.

765

Part IV Advanced Topics

Figure 14-3 The HelloPPC application

766

struct decodeCMD {
UINT Code;

Programming the Pocket PC Chapter 14

II Structure associates
II menu IDs with a

LRESULT (•Fxn)(HWND, WORD, HWND. WORD); II function.
} ;

ll-------~---------------·-------------·-----·----'----'----------------

11 Generic defines used by applicatioh
#deft ne ID_ACCEL 1

#define IDM_EXIT 100

11-------
/1 Functton prototypes
//
int InitApp Cf!INSTANCEJ;
HWNo· Initinstance(HlNSTANCE.

II Accelerator table ID

(continued)

767

Part IV Advanced Topics

Figure 14-3 (continued)

768

Programming the Pocket PC Chapter 14

}

II Translate accelerator keys.
if ClTranslateAcceleratorChwndMain, hAccel, &msg)) {

TranslateMessage C&msg);
DispatchMessage C&msg);

II Instance cleanup
return Terminstance (hinstance, msg.wParam);

11---
11 InitApp - Application initialization
II
int InitApp (HINSTANCE hinstancel {

WNDCLASS we;

II Allow only one instance of the application.
HWND hWnd = FindWindow (szAppName, NULL);
if (hWnd) {

}

SetForegroundWindow
return -1:

ll Register application main window cl ass.
we.style "'··· C$...;VRE0RAW l CS_,.HREDRAW; I I Window style
wc.1 pfnWndProc "' MainWndProc; I l Callback. function
wc.cbClsExtra =. 0; II Extra class data
wc.cbWndExtra = 0: // Extra window data
wc.hinstance = hinstance; II Owner handle
wc.hlcon ,,,. NULL, ll Application.icon
we. hCursor = LoadCursor (NULL, IDCARROW); I I De.fault cursor
we. hbrBackg round = (HBRUSHJ GetStockObject. (WH ITE'--BRUSHJ;
we. 1 pszMenuName = NULL; 11 Menu name
wc .• lpszCl ass Name = szAppName; // Window ... cl ass name

if (RegisterClass C&w.c) == 0) return l;

(HINSTANCE hlnstance, LPWSTR lpCmdline, int nCmdShow) {

handle in global variable.

I I Create .. ITlai n .window.
hWnd = CreateWlndow CszAppName,

TEXT("Hello" l,
II Window class
11 Wi nd6w title

(continued)

769

Part IV Advanced Topics

Figure 14-3 (continued)

770

Programming the Pocket PC Chapter 14

LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam.

}

SHMENUBARINFO mbi:
SIPINFO si:
int ex. cy:

LPARAM lParaml {

II Initialize the shell to activate infd structu~e.
memset (&sai, 0, sizeof (sail);
sai.cbSize = sizeof Csail:

II Create a menu bar.
memset(&mbi.. 0, sizeof(SHMENl.JBARINFOll: //Zero structure
mbi .cbSize .. = sizeof(SHMENUBARINFO): II S·ize f'ieid
mbi.hwridl'drent = hWnd: 11 Parent w.indow
mbi . .dwFlaQs'= SHCMBF_EMPTYBAR;
mbi.nToolj~~I~~ 0;
mbi .hinstRas: = 0:
mbi. nBmpid "' 0;
rnbi., cBmp!mages

II Flags<like h.ide SIP btn
ID of tool.bar resource
Inst. handle of app
ID of bitmap resource
Num. of images tn !:ii tm:l!P

mbi .• hwndM.B . .:. 0(. Han<iTk Qf:

//

11 tfoerJthe sip sfate •and s .. ize our winciow ~ppropri.~tely.
memset t&:si •. 0. siZeof (sill;
si ;('.bSfze = .s1zeof (sf).;
SHSi pirtfP<'SPL;.GHSiPINFO. 0, C PVOlDJ&sL FALSE·);
ex. - si;rcVisi.bleOe~ktop.right - si,rcyisibleffesk:J;:op.Teft;
cy =.·.si\r.cVisibl~!)asktop • .bottom ···~ .si. i rt'.Vis "(bl eOe.skt.op. top;

',',-,',<,

handle,

u rrthe s~p:tsR~t;s~o~~ •. or stio~{n~ ptit not.dock.kci. the
fl desktop re.Ct·dPe$b'f fncl Ude the. hetg:!lt of theifuenil .l:iar.
if UCsi.fdwffag$.&'~rP·u)N) II .. · ·· .. ·· ·

((Si ·*~vi.Flag:~:.& ~1 .. Pf-:-ON) && !CsLfdwtlags & S.JeF_DOCKE1l)) }.
cy -= 26:~ ll·.~Jle"\g:ht of menu bar control

setWindow!fos. {hJ!lnts:~NHLL. 0; 0. CY;,. cy,>sw~-NoMOVE
return .0 :.; .~··. ··•. ':.:>· ·

(continued)

771

part \V Advanced Topics

figure 14·3 (continued)

772

Programming the Pocket PC Chapter 14

11-------------------------C-------------•----------------•-----C·----·-
ll DoSettingChangeMain - Process WM_SETTINGCHANGE message for window.
II
LRESULT DoSettingChangeMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

II Notify shell of our WM_SETTINGCHANGE message.
SHHandleWMSettingChange(hWnd, wParam, lParain, &sail:
return 0:

11---·-··--·••-···-----~~--C-•·-·--------~~--~··

11 DoActi vateMair1 - Proc.ess WM:..ACTIVATE message
II
LRESULT <HWND hWnct. urNr wMsg.

LPAMM lParam) {

(continued)

773

Part IV Advanced Topics

Figure 14-3 (continued)

The HelloPPC application creates a main window and prints Hello Pocket
PC in the center of the window. It also draws a red rectangle around the border
of its window to clearly show the extent of the window. The program creates a
menu bar without a menu but with a button to display the SIP. If you tap the
SIP button, you will see the main window resize to avoid being covered by the
SIP. If you attempt to start a second copy of HelloPPC, the system will instead
switch to the copy currently running. Finally, if you open the SIP and tap Ctrl
Q, the application will quit. Each of these little features takes a little bit of code
to conform to the standards of a Pocket PC application. Now let's examine these
code fragments and learn how it's done.

Differences in a Pocket PC Application

774

The first difference between a Pocket PC application and a standard Windows
CE application is something I have mentioned a number of times in relation to
other examples in the book: the FindWindow code. This code ensures that only
one copy of the application is running at any given time. The following code
fragment shows how this is accomplished.

II Allow only one instance of the application.
HWND hWnd = FindWindow (szAppName, NULL);
if (hWnd) {

SetForegroundWindow CCHWND)(((DWORD)hWnd) I 0x01));
return -1;

The call to FindWindow looks for a top-level window with the same class
name as HelloPPC. If the window is found, the code calls SetForegroundWindow
to put that window into the foreground, and then the second copy of the appli
cation terminates. Notice the rather strange logical ORing of a 1 to the window
handle. This is an internal hack that tells Windows to restore the window being
set to the foreground in case it has been minimized. Without this bit, you could
accidentally set a minimized window to the foreground, and under the Pocket
PC shell, the user would never see this minimized window.

Programming the Pocket PC Chapter 14

Ctrl-Q Closes a Pocket PC Application
The next Pocket PC modification in HelloPPC comes in WinMain and is part of
a tradition of Pocket PC applications. Notice that in WinMain, HelloPPC loads
a keyboard accelerator table. The message loop is modified to enable that ac
celerator table. A quick look in the HelloPPC.RC shows that the only accelera
tor key is Ctrl-Q, which is associated with a WM_COMMAND id code ofIDM_EXIT.
As you might expect, tapping Ctrl-Q in the SIP while HelloPPC is active will close
the application. Traditionally, Pocket PC applications don't have a Close button
or an Exit menu item. They close with a Ctrl-Q key sequence. A little testing will
show that most Pocket PC applications bundled with the system respond simi
larly to this key sequence. The Ctrl-Q "Easter egg" has the added value of allowing
the programmer to start a Pocket PC application for testing, and then to tell it to
close before downloading a new copy. While you can always add an Exit menu
item and then remove it before shipping your application, you will inevitably need
to test something about your application after shipping.

Use a Menu Bar, Not a Command Bar
The next few changes to HelloPPC are all in the WM_ CREATE message handler.
Instead of creating a command bar or command band control, a Pocket PC appli
cation creates a menu bar control. The following code fragment creates a simple
menu bar.

SHMENUBARINFO mbi;

II Create a menu bar.
mbi .hwndParent = hWnd;
mbi .dwFlags = SHCMBF_EMPTYBAR;
mbi .nToolBarld = 0;
mbi .hlnstRes = 0;
mbi.nBmpid = 0;
mbi.cBmpimages = 0;
mbi.hwndMB = 0;

II Create menu bar and check for errors.
if ISHCreateMenuBar(&mbi))

hwndMenuBar = mbi .hwndMB:

II Parent window
II Flags like hide SIP btn
II ID of toolbar resource
II Inst handle of app
II ID of bitmap resource
II Num of images in bitmap
II Handle of bar returned

II Save the menu bar handle.

This code initializes a SHMENUBARINFO structure and passes it to
SHCreateMenuBar to create the main window's associated menu bar. The menu
bar control can contain a menu, toolbar buttons, and the button that displays the
SIP. For HelloPPC, the menu bar has no menu and thus the SHCMBF _EMPTYBAR
flag is set in the dwFlags field. The only other field that requires initialization for
this simple configuration is the hwndParent field that is set to the HelloPPC

775

Part IV Advanced Topics

776

window handle. After the menu bar is created, the handle of the returned con
trol is saved. I'll fully describe the workings of the menu bar later in the chap
ter. For now, remember that the menu bar is supported only in the Pocket PC,
so if you want to make an application that runs on both a Handheld PC and a
Pocket PC, you will have to dynamically load and call the ShCreateMenuBar
function.

Manually Sizing the Main Window
A Pocket PC application must also deal with the menu bar and the SIP. The key
is to size the application's top-level window so that the SIP doesn't obscure it.
Also, if you create the top-level window following the Windows CE tradition of
using CW _USEDEFAULT in the position and size parameters of CreateWindow,
the window will be created over the top of the area used by the menu bar. To
avoid covering up the menu bar with a window, or the window being covered
by the SIP, the WM_CREATE handler includes the following code:

II Query the SIP state and size our window appropriately.
memset (&si, 0, sizeof (si));
si.cbSize = sizeof (si);
SHSipinfo{SPI_GETSIPINFO, 0, (PVOID)&si, FALSE);

ex= si .rcVisibleDesk~op.right - si.rcVisibleDesktop.left;
cy = si .rcVisibleDesktop.bottom - si .rcVisibleDesktop.top;

II If the SIP is not shown, or is showing but not docked, the
II desktop rect doesn't include the height of the menu bar.
if C!Csi .fdwFlags & SIPF_QN) I I

((si .fdwFlags & SIPF_ON) && !(si .fdwFlags & SIPF_DOCKED)))
cy -= 26; II Height of menu bar control

SetWindowPos (hWnd, NULL, 0, 0, ex, cy, SWP_NOMOVE I SWP_NOZORDER);

The preceding code uses the function SHSiplnfo to query the current state
of the SIP. Included in the information returned by this call is the visible portion
of the desktop that is not obscured by a docked SIP. The code computes the size
of this rectangle and uses it if the SIP is displayed in a docked state and posi
tioned at the bottom of the screen. If, however, the SIP is not visible, or if it is
floating, the main window still must be sized, since the system default window
size does not leave room for the menu bar. The preceding code tests if the SIP
is hidden or floating and, if it is, shortens the window height by 26 pixels. This
value of 26 is the documented height of the menu bar. There should be a sys
tem-defined constant for this value, but depending on how you create your Pocket
PC project, this constant might not be defined.

Programming the Pocket PC Chapter 14

This code to specify the size of the window can be placed elsewhere in a
Pocket PC application. For example, you could place it in the call to Create Window
directly. Or you could resize the window after Create Window returns. Either way,
you must manually size the window, depending on the state of the SIP and
whether you want to use a menu bar control in your application. I choose to place
the size code in the WM_CREATE message handler as a matter of style.

Dealing with Changes in the SIP
Once HelloPPC is running, it must still deal with the user displaying and hiding
the SIP. The standard technique for handling the SIP is to resize your application's
main window whenever the SIP is displayed or hidden. This technique allows
your standard window code to deal with SIP changes as it would with any win
dow resize. Of course, you aren't required to resize your main window in reac
tion to the SIP, but you must provide some way of insuring that the SIP does not
obscure data that the user is interacting with when the SIP is shown. The Pocket
PC shell provides some simple hooks to monitor the SIP and automatically re
size a window. This method is the easiest to use and the one I'll describe here.

To automatically resize your window in response to the SIP, you must glo
bally declare an SHACTIVATEINFO structure in your program. While you can find
the structure declared in the include files required for the program, the internal
structure, aside from onefield, is irrelevant. This structure should be initialized
to 0 and the cbSize field should be set to the size of the structure, as in the fol
lowing code fragment:

SHACTIVATEINFO sai; II Declare globally.

II Initialize the shell activate info structure.
memset (&sai, 0, sizeof (sai));
sai .cbSize = sizeof (sail;

This initialization should happen either before your main window is cre
ated or in the WM_CREATE handler.

Your main window's window procedure must handle the WM_ACTIVATE
and WM_SETTINGCHANGE messages. The WM_SETTINGCHANGE message is
used in Windows to indicate that some basic system setting has changed. In the
Pocket PC, WM_SETTINGCHANGE is also used to notify an application that the
state of the SIP has changed. While the application could manually determine
the state of the SIP and handle it in its own WM_SETTINGCHANGE message
handler, the Pocket PC shell provides a simple function that can be called to do
the work for the application. The function prototype for this function is

BOOL SHHandleWMSettingChange (HWND hwnd, WPARAM wParam, LPARAM lParam,
SHACTIVATEINFO *psai);

777

Part IV Advanced Topics

778

The first three parameters of this function are the handle to the window
receiving the WM_SETTINGCHANGE message and the message's wParam and
lParam parameters. The final parameter is the address of the SHACTIVATEINFO
structure declared and initialized earlier in the code. The use of this function is
quite simple; just call this function whenever the top-level window receives a
WM_SETTINGCHANGE message. The function resizes the window if necessary.

The second function to call to help with the SIP is

BOOL SHHandleWMActivate (HWND hwnd, WPARAM wParam, LPARAM lParam,
SHACTIVATEINFO *psai, DWORD dwFlags);

As you might expect from the name of the function, SHHandle W'Jl:fActivate
should be called in response to a WM_ACTIVATE message sent to the top-level
window. The parameters are the same as for SHHandleWMSettingChange, with
the addition of the dwFlags parameter. The dwFlags parameter can be either 0
or SHA_INPUTDIALOG, if the top-level window is a dialog box with child con
trols. For dialog boxes, the SHA_INPUTDIALOG flag will prevent the SIP from
automatically popping up and down when the focus switches between the dif
ferent child controls.

In addition to SHHandleW'Jl:fActivate and SHHandleWMSettingChange, an
other difference between HelloPPC and many of the other examples in this book
is the use of the CS_HREDRAW and CS_ VREDRAW flags when registering the
window class. These flags automatically invalidate the main window whenever
the window is resized. The interaction of these functions along with the redraw
style flags will result in the top-level window being redrawn when the SIP is
shown or hidden. This interaction provides a simple way for a Pocket PC pro
gram to automatically adjust the presentation of its data simply by handling the
WM_PAINT message and drawing the appropriate data in the format necessary
for the situation.

Be aware of one issue with the current version of Microsoft eMbedded Visual
C++: The code wizard that produces the example Pocket PC application does
not initialize the SHACTIVATEINFO structure. Therefore, the example code does
not automatically resize the window when the SIP is displayed, even though it
calls the SHHandle WMSettingChange function. In addition, the wizard code does
not call SHHandleWMActivate, so if you plan to base your application on this
wizard, you should add the code described in this section. It just goes to show
that a programmer should never depend on code wizards. While wizards can be
handy tools for rapid code generation, if you don't understand the code they
produce, you're going to have problems.

Programming the Pocket PC Chapter 14

Building HelloPPC
The HelloPPC project files are based on the Pocket PC application project tem
plate. This is a different project template from the other examples in this book.
However, the differences between the Windows CE application project template
and the Pocket PC application project template are quite minor.

When you decide to base your project on the Pocket PC application template,
eMbedded Visual C++ links an additional library, aygshell.lib, to the program. This
library resolves the Pocket PC-specific functions such as SHCreateMenuBar,
SHHandle WA1Activate, and SHHandle WMSettingChange. There are other differ
ences between the way that Pocket PC and other Windows CE devices are handled
which aren't dependent on the project template that's used. For example, when
you select the Pocket PC as the target device, the compiled file is automatically
downloaded to the Windows CE device's \ Windows\Start Menu directory, in
stead of downloading to the root directory.

One issue I haven't yet mentioned is that for a number of examples you
need to create a menu bar-and in some cases a menu-if you want to correctly
run these applications on the Pocket PC. I did not want one project for the
Windows CE systems example and a separate project for the Pocket PC. To avoid
this, and to avoid adding extra code to explicitly load the Pocket PC functions,
code is conditionally compiled into the application that instructs the linker to link
the aygshell library when compiling for a Pocket PC target. The following code
is taken from the KeyTrac example in Chapter 3:

#if defined(WIN32_PLATFORM_PSPC)
#include <aygshel l .h>
#pragma comment(lib, "aygshell"
#endif

II Compile only for Pocket PC.
II Add Pocket PC includes.
II Link Pocket PC lib for menu bar.

The first line is a conditional compile preprocessor command that tells the
compiler to compile the enclosed lines only if the symbol WIN32_PLATFORM_PSPC
is defined. As you might expect, that symbol is defined if you compile to either
the Pocket PC or old Palm-size PC targets. The second line tells the compiler to
include the aygshell.h include file that provides the function prototypes and type
definitions necessary for using the Pocket PC-specific functions. Finally, the
#pragma line instructs the linker to link in the aygshell library so that the Pocket
PC functions can be resolved.

The Menu Bar
Clearly one of the major differences between a Pocket PC application and other
Windows CE applications is the menu bar control. This control, unique to the
Pocket PC, provides a command bar-like function, yet has a different program-

779

Part IV Advanced Topics

ming interface and is managed differently by the system. The menu bar control
is a subtly complex control that does not lend itself to manual programming. The
designers of the menu bar control seem to have intended that most programming
and resource generation for the menu bar control would be done through code
wizards and the resource editor. While this is the way most Windows program
mers code, it's still important to know how the menu bar control actually works,
especially for situations in which the tools aren't quite up to the job. For this
reason, I'm going to present the menu bar at the basic API level in this section.
I can therefore present exactly what the control is looking for, especially in the
way of resources. For later examples in the chapter, I'll use the code wizards to
generate the menu bar menus.

Before I jump into programming the menu bar, I'd like to say a few words
about how the control is designed. The menu bar control differs in a number of
ways from the command bar control used on other Windows CE systems. First,
the menu is not managed as a single unit on the menu bar. Instead, while the
menu is specified as a single resource, it is managed by the menu bar as a se
ries of separate submenus. Each submenu is displayed as a properly positioned
pop-up menu when a particular button on the menu bar is tapped. So in this
sense, the menu bar is more like a toolbar than its cousin the command bar.

A user sees little difference between a menu bar and a command bar be
cause the menu buttons are positioned as expected-next to each other on the
far left side of the bar. However, to the programmer, understanding this differ
ence is the key to understanding how to manage and manipulate the menu bar.

Another difference is that unlike the command bar, the menu bar is not a
true child of the window that creates it. The control itself is a pop-up window
created by the system and placed at the bottom of the screen. The window that
creates a menu bar can accidentally obscure the menu bar by covering it. Alter
natively, parts of a menu bar can be drawn on top of its owner. To avoid this,
the application must size its window to leave room for the menu bar on the
desktop. This dance with the menu bar is why Pocket PC applications manually
resize their main windows.

Creating a Menu Bar

780

Though I used a menu bar in the HelloPPC example, I didn't formally introduce
the function and structure used to create it. To create a menu bar, call

BOOL SHCreateMenuBar (SHMENUBARINFO *pmb);

The only parameter is the address of an SHMENUBARINFO structure, which is
defined as

Programming the Pocket PC Chapter 14

typedef struct tagSHMENUBARINFO{
DWORD cbSize;
HWND hwndParent;
DWORD dwFlags;
UINT nToolBarld;
HINSTANCE hlnstRes;
int nBmpld;
int cBmpimages;
HWND hwndMB;

SHMENUBARINFO;

The cbSize field must be filled with the size of the SHMENUBARINFO struc
ture. The second field, hwndParent, should be set to the window that is creat
ing the menu bar. The dwFlags field can be set to a combination of three flags:

• SHCMBF_EMPTYBAR Used to create a menu bar with no menu

• SHCMBF_HIDDEN Creates a menu bar that is initially hidden

• SHCMBl;_HIDESIPBUITON Creates the menu bar without a SIP
button on the right-hand side of the bar

Unless you specify the SHCMBF _EMPTYBAR flag, you must set the nToolBarld field
to the resource that describes the menu and button structure of the menu bar.
This resource is not a simple menu resource. It is a combination of a generic
resource data block and a menu resource that together describe the menus and
the positions of the buttons on the menu bar. I'll describe this resource later in
this section.

The next field, hlnstRes, should be set to the instance handle of the mod
ule that contains the menu bar resource. The next two fields, nBmpld and
cBmplmages, describe the bitmap images that can be used to define the look of
buttons on the menu bar. If the menu bar is to have graphical buttons, you can
set the field nBmpld to a bitmap resource ID. This bitmap should be 16 pixels
in height and each image in the bitmap should be 16 pixels wide. Thus if the
bitmap has three images, it should be 48 pixels wide by 16 pixels high. The
cBmplmages field should be set to the number of images in the bitmap. For you
graphic artists out there, the current Pocket PC guidelines indicate that graphics
should present a simple, flat appearance instead of the three-dimensional shaded
look used on the desktop applications and the H/PC.

The SHCreateMenuBar function returns TRUE if the menu bar was success
fully created. If so, the hwndMB field of SHMENUBARINFO will contain the handle
of the menu bar. You need to save this window handle since there is no other
way to determine the menu bar handle after it has been created.

781

Part IV Advanced Topics

Menu Bar Resources

782

As I mentioned earlier, the menu bar acts like a toolbar control in many ways.
Some differences between these objects are apparent when you look at the re
sources that the menu bar uses. A simple menu bar might resemble the one shown
in Figure 14-4.

PPCFancyMB 11:41a

Figure 14-4 A simple menu bar with the Edit menu open

When a menu bar is created, the nToolBarld field of SHMENUBARINFO is
appropriately named since the resource identified by nToolBarID is not a menu
resource but a custom resource used by the menu bar control. To create the menu
bar shown in Figure 14-4, the resource editor created the following text in the
.RC file:

lll
II Data
II
IDM_MENU SHMENUBAR MOVEABLE PURE
BEGIN

END

IDM_MENU, 4,
I_IMAGENONE, IDM_SHAREDNEW, TBSTATE_ENABLED, TBSTYLE_AUTOSIZE, IDS_SHNEW,
0, NOMENU,
l_IMAGENONE, ID_EDIT, TBSTATE_ENABLED,
TBSTYLE_DROPDOWN f TBSTYLE_AUTOSIZE, IDS_CAP_EDIT, 0, 0,
I_IMAGENONE, IDM_MAIN_COMMANDl, TBSTATE_ENABLED,
TBSTYLE_DROPDOWN f TBSTYLE_AUTOSIZE, IDS_HELP, 0, 1,
0, ID_BACKBTN, TBSTATE_ENABLED, TBSTYLE_AUTOSIZE, 0, ID_BACKBTN, 2,

Programming the Pocket PC Chapter 14

lll
II Menu bar
II
IDM_MENU MENU DISCARDABLE
BEGIN

END

PD PUP "Ed it"
BEGIN

END

MENU ITEM "Cut",
MENUITEM "Copy",
MENUITEM "Paste",

POPUP "Tools"
BEGIN

END

MENUITEM "About",
MENUITEM "Options",

ID_EDIT_CUT
!D_EDIT_COPY
!D_EDILPASTE

!DM_HELP_ABOUT
ID_TOOLS_OPTIONS

Most times, you won't need to know exactly what the resource editor is
placing in the resource. However, you should know the format, if only to ease
porting of older programs to the Pocket PC. The resource is essentially a descrip
tion of the buttons on a toolbar. The following code offers a more formatted view
of the preceding data:

IDM_MENU SHMENUBAR MOVEABLE PURE
BEGIN

IDM_MENU, 4,

I_IMAGENONE, IDM_SHAREDNEW,
TBSTYLE_AUTOSIZE,

I_IMAGENONE, ID_EDIT,

TBSTATE_ENABLED.
IDS_SHNEW, 0. NOMENU,

TBSTATE_ENABLED,
TBSTYLE_DROPDOWN I TBSTYLE_AUTOSIZE, IDS_CAP_EDIT, 0, 0,

END

I_IMAGENONE, IDM_MAIN_COMMANDl, TBSTATE_ENABLED,
TBSTYLE_DROPDOWN I TBSTYLE_AUTOSIZE, IDS_HELP,

0, I D_BACKBTN,
TBSTYLE_AUTOSIZE,

TBSTATE_ENABLED,
0.

0. 1,

ID_BACKBTN, 2,

The first line in the resource identifies the resource ID, IDM_MENU, its re
source type, SHMENUBAR, and the resource flags, MOVEABLE and PURE. The
IDM_MENU is the ID that is passed to SHCreateMenuBar in the SHMENUBARINFO
structure. The resource type SHMENUBAR is actually defined in the wizard as

783

Part IV Advanced Topics

784

RCDATA, which the resource compiler understands as a simple block of resource
data used by an application. This is important information, since SHMENUBAR
isn't defined by the Pocket PC include files; it is included only if you use the Pocket
PC AppWizard to create a menu bar resource. So, for non-wizard-generated re
source files that define menu bars, you might need to add the following line to
your .RC file:

#define SHMENUBAR RCDATA

The first line of the data inside the BEGIN I END block is shown here:

IDM_MENU, 4,

This line defines the menu resource that will be used to create the individual pop
up menus displayed from the menu bar. The number 4 indicates the number of
items in the remaining SHMENUBAR resource. Each item represents either a menu
pop-up or a button on the menu bar.

The formatted view of the preceding resource breaks each item's resource
description into two lines because of this book's format. Let's look at the last item
from the resource, which describes the Back button item.

0, ID_BACKBTN, TBSTATE_ENABLED, TBSTYLE_AUTOSIZE, 0, ID_BACKBTN, 2,

Broken vertically to insert comments, the resource looks like this:

0, II Bitmap index
ID_BACKBTN, II WM_COMMAND ID value
TBSTATE_ENABLED, II Initial state of "button"
TBSTYLE_AUTOSIZE, II Style of "button"
0, II String resource ID of text 1 abel
ID_BACKBTN, II String resource ID of tooltip
2' II Submenu index

The first field contains the index into the bitmap array for this item's image on
the menu bar. For items without bitmaps, set this field to I_IMAGENONE. In the
preceding example, the image used is the first image in the bitmap. The next field
contains the ID value for the item. For buttons, this is the ID value that will be
sent to the parent window in a WM_COMMAND message when the button is
tapped. For menus, you can use this ID to identify the submenu when querying
the submenu handle. Because the Pocket PC uses its own set of IDs in the menu
bar, Pocket PC applications shouldn't use values below 100. This rule applies to
values for menu and button IDs as well as string resource IDs.

The menu bar uses two predefined menu item IDs: IDM_SHAREDNEW and
IDM_SHAREDNEWDEFAULT. Both of these IDs will cause a New menu item to
be added th~n displays the menu items registered by other applications. The

Programming the Pocket PC Chapter 14

difference between these two IDs is that IDM_SHAREDNEWDEFAULT displays
the new menu with a simple tap of the menu item. Using IDM_SHAREDNEW turns
the New menu into a button with an adjoining down arrow. Tapping on the
New button sends a WM_ COMMAND message to the parent indicating that a new
document should be created. Tapping on the adjoining up arrow displays the
new menu itself.

The next two fields in the resource are the initial state of the button, or root
menu item, and its style. This state is described in toolbar state flags such as
TBSTATE_ENABLED and TBSTATE_CHECKED. For menus, this state is almost al
ways TBSTATE_ENABLED. The style field is also specified in toolbar flags with
styles such as TBSTYLE_BUTTON for a button, or TBSTYLE_DROPDOWN, which
is used for menu items. Items that have text instead of a bitmap-as well as items
that include a bitmap-will also typically have the TBSTYLE_AUTOSIZE flag set
to tell the menu bar to size the button to fit the text of the menu item.

The next field is set to the resource ID of a string resource used to label
the item. This text is used alongside any bitmap image specified in the first field
of the item. In our example, the item is a simple bitmap button, so no string
resource is specified. For menu items, this is the string resource-not the submenu
name specified in the menu resource-that will label the menu. You can use seven
predefined string IDs if needed. They are defined with self-explanatory constants
in the aygshell.h file:

#define IDS_SHNEW 1

#define IDS_SHEDIT 2
#define IDS_SHTOOLS 3
#define IDS_SHVIEW 4

#define IDS_SHFI LE 5
#define IDS_SHGO 6
#define IDS_SHFAVORITES 7

If you need a different text label, your application must define the text as
a string resource and pass that ID in this field. Following the label field is a tool
tip field. You must also fill this field with the ID of a string resource.

The final field specifies the submenu that can pop up if the user taps the item.
This submenu value is valid only if the style field contains TBSTYLE_DROPDOWN,
which indicates the item has a menu attached. This value represents the index
into the menu resource of the submenus. The example presented earlier in this
section has two submenus: Edit, with Cut, Copy, and Paste items; and Tools, with
About and Options items. The text that's displayed on the button is the string
from the bar resource, not the string in the menu resource. For example, the menu
resource could be modified as shown in the following code without changing
the text on the menu bar.

785

Part IV Advanced Topics

lll
II Menu bar
II
IDM_MENU MENU DISCARDABLE
BEGIN

END

POPUP "Cat"
BEGIN

END

MENUITEM "Cut",
MENUITEM "Copy",
MENUITEM "Paste",

POPUP "Dog"
BEGIN

END

MENUITEM "About",
MENUITEM "Options",

ID_EDIT_CUT
ID_EDIT_COPY
ID_EDIT_PASTE

IDM_HELP_ABOUT
ID_TOOLS_OPTIONS

Notice that the root menu names are now Cat and Dog, not Edit and Op
tions. Because the menu bar takes the names from the menu bar item and not
the menu resource, the change has no effect on the application.

This relatively long-winded explanation of the menu bar resource is meant
as foundation material. Only on the rarest of occasions should you really have
to manually tweak this resource. However, this knowledge can still be quite handy.

Working with a Menu Bar

786

Once you've created the menu bar, you still might need to configure it. While
the menu bar looks different from a command bar, it is built upon the same toolbar
foundation. So while you can't expect a menu bar to always act like a command
bar, you can use some of the command bar functions and toolbar messages. For
example, one handy feature of the common controls is that they contain a se
ries of bitmaps for commonly used toolbar buttons. Instead of creating these
images yourself-and thereby possibly creating a non-standard image-you can
use the system-provided images for actions such as cut, copy, and paste.

Using the Common Control Bitmaps in a Menu Bar
To use the system-provided bitmaps, simply add them to the menu bar as you
would add them to a command bar. These images are added to the menu bar
after the addition of any bitmap specified in the SHMENUBARINFO structure when
the menu bar was created. So, if you had a bitmap of three images, and you added
the standard set of images, the Cut bitmap image would be specified as STD_CUT+3.
(See Chapter 5 for details about how to add the predefined bitmap images to a

Programming the Pocket PC Chapter 14

command bar.) In the following code fragment, the menu bar is created and the
set of standard images is added to the bar.

if C!SHCreateMenuBar(&mbi))
return NULL;

CommandBar_AddBitmap (mbi .hwndMB, HINST_COMMCTRL,
IDB_STD_SMALL_COLOR,
STD_PRINT, 16, 16);

The simplest way to use these images is to specify the correct index in the
button item in the menu bar resource. Remember that the first field in the menu
bar item resource is the index to the bitmap image. Just set that bitmap index to
point to the proper bitmap for the button.

Working with Menu Bar Menus
Sometimes applications need to manipulate menus by setting or clearing check
marks or by enabling or disabling items. The standard set of menu functions
(CheckMenultem, for example) works as expected on menus maintained by a menu
bar. The trick is to get the handle of the menu so that you can modify its items.
The menu bar supports three messages you can use to get and set menu handles:
SHCMBM_GETMENU, SHCMBM_GETSUBMENU, and SHCMBM_SETSUBMENU.
The messages SHCMBM_GETMENU and SHCMBM_GETSUBMENU can be sent
to the menu bar to query the menu handle or a specific submenu. The follow
ing line shows how to query the root menu handle using SHCMBM_GETMENU.

hMenu = (HMENU)SendMessage (hwndMenuBar, SHCMBM_GETMENU, 0, 0);

You can then use this menu handle to modify any of the menu items that
the menu bar might display. To query a submenu attached to a specific menu
bar item, use SHCMBM_GETSUBMENU, as in

hSubMenu = (HMENU)SendMessage (hwndMenuBar, SHCMBM_GETSUBMENU, 0,
ID_VIEWMENU);

The !Param value is set to the ID of a specific button on the menu bar-in this
example, it's the menu handle attached to the button with the ID_ VIEWMENU
ID value.

To change the menu of a particular button on the menu bar, you can use
SHCMBM_SETSUBMENU with wParam set to the ID of the button and lParam
set to the new menu handle, as in

hOldMenu = (HMENU)SendMessage (hwndMenuBar, SHCMBM_SETSUBMENU,
ID_VIEWMENU, (LPARAMlhNewMenu);

787

Part IV Advanced Topics

Managing the New Menu
The New menu can be configured two ways. In simple (non-shared) mode, tap
ping the New menu displays a series of permanent menu items gleaned from the
registry. In shared mode, tapping the New menu sends a WM_COMMAND message
to the application with an ID value of IDM_SHAREDNEW. Tapping the up ar
row next to the shared New menu displays the permanent menu items.

These permanent items are specified in the registry under the key
HKEY _LOCAL_MACHINE]\Software \Microsoft\Shell\Extensions \NewMenu. This
key lists a series of GUIDs that define COM in-process servers that implement
an IID_INewMenultemSeroer interface. The IID_INewMenultemSeroer interface is
actually quite simple. Aside from the standard !Unknown methods, the only
method supported is

HRESULT INewMenuitemServer::CreateNewitem (HWND hwndParent);

The single parameter is the handle to the window that currently owns the menu
bar. When the user selects the permanent item on the menu bar that references
the COM object that implements the IID_INewMenultemSeroer interface, the
Pocket PC first sends a WM_NOTIFY message with the notification
NMN_INVOKECOMMAND to the window owning the menu bar. If the applica
tion returns 1, the Pocket PC assumes that the application has taken care of the
menu selection and no further action occurs. If the application returns 0, the
Pocket PC will load the COM object and call the CreateNewltem method. In
response, the COM object typically launches the appropriate application.

The NewMenuX Example

788

The following code is a simple New menu item extension that launches the
calculator. While the NewMenuX server will register itself if compiled and down
loaded with eMbedded Visual C++, you will have to add the following registry
key to tell the New menu of the existence of NewMenuX:

[HKEY_LDCAL_MACHINEJ\Software\Microsoft\Shell\Extensions\NewMenu\
{130F6E46-C3F9-4fa8-B8BC-75720BC73231} = Launch Cale
Enabled = 1

The default value of the key above is Launch Cale. The one value under the key
is a DWORD value named Enabled, which is set to 1. Figure 14-5 contains the
source for the NewMenuX example.

Programming the Pocket PC Chapter 14

NewMenuX.def

;Standard COM library DEF file

LIBRARY NEWMENUX.DLL

EXPORTS
DllCanUnloadNow @1 PRIVATE
DllGetClassObject @2 PRIVATE

DllRegisterServer @3 PRIVATE

DllUnregisterServer @4 PRIVATE

NewMenuX.h
II======="'="'"'============================;======"'======;=========:========
II Header file

II
I I Written for the book Programmi.ng Windows CE

Copyright CC) 2001 Douglas Boling

JI Declare thes.e. here so that the MenuBar
Jl {130F6E46cC3 F9c4fa8cB8BC- 75720BC73231}
static. con st GUID <CLSID"'NewMenuX =
{0xl3€\feie46 ,0xc3f9 ,0X4fa8 ,{0xb8, 0xbc, 0x75 ,0x72, 0xb. 0xc7; 0x32, 0x31}}:
co.nst.•ICHAR sZCLSIDNeWMenuX[J =
TEXT ("{130F6E46-C3F9c4fa8c B8BC•75720BC73231}");

fndef JUST_GET_THE_GUID

II This isn't defined by the current Pocket PC SDK.

DECLARE~INTERFACEd INewMenuitemServer, !Unknown)
{

. II *** I Unknown methods ***
STOMETHOD(Querylnterface) (THIS_ REFI ID ri id, LP VOID * ppvObj l PURE;

STDMETHOD .. J ULoNG.AddRe.f) .(THIS}· PURE;
STDMETHOD2(ULONG, Re lease). <THIS FPURE;
//*** .r NewMenuitemServer <methods ***
STDMETHOD(CreateNewitem) (THIS_HWND hwndParent) PURE;

declarations ****

Figure 14-5 The NewMenuX example

789

Part IV Advanced Topics

Figure 14-5 (continued)

790

Programming the Pocket PC Chapter 14

NewMenuX.cpp
//==
II NewMenuX - A Pocket PC New menu extension
JI
II Written for the book Programming Windows CE
II Copyright (C) 2001 Douglas Boling

!!==
#include <windows.h>
#include <commctrl .h>
#define INITGUID
#include <initguid.h>
#include <coguid.h>
#include <~jgshell .h>
#include <shlguid.h>
#i.nclude "NewMenuX. h"

long g~DllCnt = 0;
HINSTANCE hlnst;

II For all that Windows stuff
JI Command bar includes

Ii Pocket PC shell includes
II Shell GU!Ds inc .New menu ext
JI My IM common includes

II Global DLL reference count
li DLL instance hand.le

const TCHAR szFriendlyN8.lli1'!IJ =.TEXT C"Prog Wi.n CE New .Menu Extension"};

fl"'"'"'"'"'"======'===="'="'==='==='========"'"'"========="'===="'"'================="'
DLL ini ti. a Hzatfon .entry poi.nt

BOQt WINAPI D11Main <HANDLE hinstDLL, DWORD
LPVOIO lpVResefved) {

hinst. = (HINSTANCE)hfostDU;

//="'====.==
// OllGetClassObject c Exported functi.on called to. get pointer to
JI Class factory object
II
STDAPI DllGetClassObject CREFCLSID rel Sid; REF! ID rifd. LPVOID *PPV) {

wants
(.rc;l sfd, CLSID~NewMenuX))

!/Cre11te ICl assJactory object.
pcf = new. My.ClassFactory();
if (.pcf =:< fWLL)

return E._QIJTOFMEMORY;

(continued)

791

Part IV Advanced Topics

Figure 14-5 (continued)

792

Programming the Pocket PC Chapter 14

return S_OK;
}

II==
II DllUnregisterServer - Exported function called to remove the server
II information from the registry
II
STDAPI DllUnregisterServer()

INT re:

}

TCHAR szTmp[128J;

wsprintf (szTmp, TEXT ("CLSID\\%s"), szCLSIDNewMe.nul();
re= RegDeleteKey (HKEY_CLASSES_ROOT, szTmpl;
if (re == ERROR_.:SUCCESS)

return S_QK;
return LFAIL;

I I***************'**~'***'*·***********·****************·****** :M.*:*.* * *·***·* * * *·* .. *
I/. MyCl ass Factory ObjeC:t implementation
11---~~·.~---·---~~-·-----·--"~-"-------~--
II.Object· constructor
MyClassFactory: :MyClassFactory. (} {

m--lRef = l:

}

(continued)

793

Part IV Advanced Topics

Figure 14-5 (continued)

794

Programming the Pocket PC Chapter 14

}

}

. II See. if9J:1ject. exports the proper interface.
·hr= pMyN.Mt~>o'uerylnterface (riid, ppv):.
II This wi11 cause an object delete unless interface found.
pMyNMX~}Rel e~.se (); .
. return

return LNOlNTl:'.Rf'A'eE;

.I I***********·* o!o** ** *****,** * * ***** * ** *** * * * * **** * ****~·***** *** * * * * * ** * * **
I I MyNewMenurternse.rver
//·•····--·.-

. 1/ o~Jec{ ~<rn~tr:~.i;1::()'.r;

(continued)

795

Part IV Advanced Topics

796

Figure 14-5 (continued)

All the preceding code supports the last routine, CreateNewltem, in the
NewMenuX example. CreateNewltem simply launches the calculator application
by using ShellExecuteEx.

Handling the New Menu from Within an Application
When your application is running, you can extend the New menu by fielding
WM_NOTIFY messages with the notify code of NMN_GETAPPREGKEY. This

Programming the Pocket PC Chapter 14

notification is sent when the New menu is about to be displayed. The lParam
value points to a NMNEWMENU structure, which is defined as

typedef struct tagNMNEWMENU
{

NMHDR hdr;
TCHAR szReg[80];
HMENU hMenu;
CLSID clsid;

NMNEWMENU, *PNMNEWMENU;

The hMenu field of this structure contains the handle to the New menu that
is about to be displayed. The easiest way to extend the New menu is to use
AppendMenu to add menu items to the menu. The added menu items should have
ID values greater than IDM_NEWMENUMAX. The following code fragment fields
the notification and adds an extra item to the New menu.

II See if New menu is being displayed.
if (lpnhr->code == NMN_GETAPPREGKEY) {

lpNewMenu = (PNMNEWMENU) lParam;
AppendMenu (lpNewMenu->hMenu, MF_ENABLED, IDM_MYNEWMENUITEM,

TEXT("My own New menu item"));
AppendMenu (lpNewMenu->hMenu, MF_SEPARATOR, 0, 0);}

When the user selects the added item on the New menu, a WM_ COMMAND
message will be sent with the ID value of the menu item added to the New menu.

The MenuBar Example
The MenuBar example demonstrates a number of the menu bar techniques de
scribed in the previous section. The example switches between two menu bars,
one with a shared new menu and another with a simple new menu. Each menu
bar has its own set of buttons, each with a different set of styles. The new menu
is also extended with a custom menu item. When used with the NewMenuX ex
ample, MenuBar demonstrates how to intercept permanent New menu item
selections by fielding the NMN_INVOKECOMMAND notification and asking the
user if Cale should be launched. The example displays all WM_COMMAND and
WM_NOTIFY messages in a list box in its main window. This list box allows you
to see what the application sees in terms of notifications and command messages.
Figure 14-6 shows a Pocket PC running MenuBar. Notice that the three rightmost
buttons on the menu bar use the predefined Cut, Copy, and Paste bitmap images.

797

Part IV Advanced Topics

798

ill Hello 5:40p

WM COMMAND id:201 code:O
WM=NOTIFY id:O event: 1101

My own New menu item

Appointment

Contact

E-mail Message

Excel Workbook

Note

Task

Figure 14-6 The MenuBar example uses standard common control bitmap images.

Figure 14-7 contains the source code for MenuBar. As usual, it is divided
into MenuBar.rc, MenuBar.h, and MenuBar.c.

Figure 14-7 The MenuBar example

Programming the Pocket PC Chapter 14

11--
11 MenuBar resources
II
#define SHMENUBAR RCDATA

II MenuBar resource with simple new menu
ID_TOOLBARl SHMENUBAR MOVEABLE PURE
BEGIN

ID_MENU, 5,

LIMAGENONE. IDM.-.SHAREDNEWDEFAULT, TBSTATE ... UABLED,
TBSTYLEJVTOSIZE; IDS_SHNEW, IDS;...SNEWTL, ~OMENU,(···

LIMAGENONE. JD.,-YIEWMENU. TBSTATLENABdD! . ,
. TBSTY'LE;;.()(ttlf1DOWN ·1 · TBSTYLE__AUTOSlZE v rns .. ,NUWMENlJN:AM.E:. 0; 0.

·,,.·· , ., ·'·,.·.'. :,, .. , .''; "i:. : .. ,:·

(continued)

799

Part IV Advanced Topics

Figure 14-7 (continued)

800

Programming the Pocket PC Chapter 14

11----------------- --

11 About box dialog template

II
aboutbox DIALOG discardable 10, 10, 135, 40

STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER I
DS_MODALFRAME

CAPTION "About"

BEGIN

ICON IO_ICON, -1, 3. 5. 10. 10
LTEXT "MenuBar - Written for the book Programming Windows

CE Copyright 2001 Douglas Boling"

-1. 30, 5, 102, 37

END

MenuBar.h
II==
II Header file

II
I I Written for the .book Programming Windows CE

// Copyright .. (() 2001 Douglas 13ol ing

II
ll================="'=======================================o=======
II Ret~rns humber of elements

/fdeflne dim(x) (sizeof(x)I sizeof(x[0]))

// Generic oe.fJnes and data types

II
struct de.codeUINT {

UINT Code;

LRESULT .. (*Fxn)(HWND, UINT, WPARAM, LPARAM);

}.;

struct decodeCMD

}.;

UINT .. Code;
LRESULT·(iiiFxn•) . .(HWND;

/l Generic def in.es use.d. by app.l i cation

ffdefine ID..:.ACCE~ 1
1,!define ID_TOOLBMPS

i/defi ne ID_TCON
#define ro--TOOLBARl ·.

#define IO_TO()LBAR2 .

/fdefi ne IO_MENU

Jfdefi ne I DC_RPILisT

messages

II with a function.

Structure associates

menu .I Os with a

(continued)

801

Part IV Advanced Topics

Figure 14-7 (continued)

802

Programming the Pocket PC Chapter 14

II Message hand]er~.
LRESULT DoCr'eateMaf~ (HWND, UINT; WPARAM. CPAJiAM):
LRESULT DoSizeMain (HWND. UINL WPARAM, LPARAMr:
LRESULT DoNotifyMaf:n CHWND. UINT, WPARAM, LPARAMl;
LRESULT OoCommandMai1'1 CHWND, UI~T. WPARAM. LJ>AMM>;
LRESULT DdSettingCha~:QeMaifl (HWND. UINT' ·wr>ARAM; LPARAM);
LRESULT OoActivateMa::in'(HWND, LJINT, W'PARAM.''LPAMM):
LRESUL T DoDestroyMai Tl CHWND. u I NT •. WPARAM. JPARAM}: ..

corist .st.ru.c

" > ·:~~i:~~~;
(continued)

803

Part IV Advanced Topics

Figure 14-7 (continued)

804

Programming the Pocket PC Chapter 14

//-----------------------:-------------------~-------·--··-------
// InitApp - Application initialization
II
int InitApp CHINSTANCE hinstance) {

WNDCLASS we;

II Allow only one instance of the applfcati~n:
HWND hWnd - Findwindow {szAppName, NULL);. .
1 f (hWnd) {

Set For~g ro undWi ndow

ret'~rry;-l::•
oo•:·.H:'

(continued)

805

Part IV Advanced Topics

Figure 14-7 (continued)

806

Programming the Pocket PC Chapter 14

II Set menu check mark.
MyCheckMenu (IDM_DOSIMPLENEWl;

II Create report window. It will be sized in the WM_SIZE handler.
hwndChild = CreateW1ndowEx (0, TEXT ("listbox"), TEXT(""),

WS_VISIBLE I WS_CHILD I WS_VSCROLL I
LBS_USETABSTOPS I LBS~NOINTEGRALHEIGHT.
0, 0, 0, 0, hWnd, {.HMENU)IDC_RPTLIST,
hlnst. NULL);

II Destroy frame if window not created.
if (!IsWindow (hwndChild))

OestroyWindow (hWndl;
return 0;

}

I(

(continued)

807

Part IV Advanced Topics

Figure 14-7 (continued)

808

Programming the Pocket PC Chapter 14

szAppName, MB_YESNO);

}

return 0:
}

if (re == !DYES)
return 0;

else
return 1:

/!--------------------------------~-----------------
II DoSettingChangeMain - Process WtLSETTINGCHANGE mes?'a!le for window.
I I :'

LRESULT DoSettingChangeMain CHWND hWnd, UINT wMsg, WPARiJii~'wParam.
LPARAM 1 Pa ram) {

-;; : ~

Notify shell of our WM.:..5ETTINGCHANGE message.
ngChange(hWn.d .•.

}

(continued)

809

Part IV Advanced Topics

Figure 14-7 (continued)

810

Programming the Pocket PC Chapter 14

case \'11'.UNITDIALOG:
{

SHINITDLGINFO idi;
idi .dwMask = SHIDIM_FLAGS;
idi .dwFlags = SHIDIF~OONEBUTTON I SHIDIF_SlZEPLGFULLSCREEN I

SHIDIF_SIPDOWN;
idi .hDlg = hWnd;
SHinitDialog (&idi};

break;
case WM_COMMAND;

}

switch ~LOWORD (wParam}l {
case IDOK:
case IDCANCEL:

·EndDialog c hWnd. 0 >:
return ·TRUE:

break:
.··:;i-·" •;; ~· ~- ,,

:·:f'~:tu.rn :tit:sE~. :;: . ;, ···
;,"~~: '.

(continued)

811

Part IV Advanced Topics

812

Figure 14-7 (continued)

The MenuBar example creates its menu bar in a common routine called
MyCreateMenuBar. The two parameters provide the handle of the window that
will own the menu bar and the ID of the resource specifying the menu bar con
figuration. MenuBar.RC contains two SHMENUBAR templates, ID_TOOLBARl and
ID_TOOLBARZ. Both templates reference a common menu resource, ID_MENU.
Notice that the menu resource has the names Menul, Menu2, and Menu3 for
its top-level menu items. These names are not used because the menu bar in
stead uses the strings in the menu bar resource.

The two menu bars are switched simply by destroying one bar and creat
ing another. The creation of a menu bar happens so quickly that the user doesn't

Programming the Pocket PC Chapter 14

even notice it. This solution is better than creating two menu bars and alternately
showing one and hiding the other, since having two controls consumes extra
memory that is better used elsewhere.

When the menu bar with the shared new menu button is created, a call is
made to CommandBar_Addbitmap to add the common control bitmaps that
include the cut, copy, and paste images. This menu bar also includes a check
box-style button that is tapped once to set and tapped again to clear. The simple
menu bar has a button with a bitmap-the bitmap with the artistic C that when
tapped displays a menu. This button shows that it's just as easy to display a menu
from a button with a bitmap as it is with a text label.

Dialog Boxes
In my experience, creating a well-designed dialog box is one of the programmer's
more difficult tasks. The problem lies in presenting the user with an intuitive
interface that allows quick interaction with an application. The task is doubly
difficult on a Pocket PC, which has a small screen and a keyboard that keeps
popping up over the bottom third of the screen. In this section, I'll explain cre
ating dialog boxes and the assistance that the Pocket PC shell provides. How
ever, it is always good to remember the cardinal rule: keep it simple. The Pocket
PC provides a number of functions that help with dialog boxes, but the best
programs don't use all these functions at once.

Since the Pocket PC is based on Windows CE, dialog boxes act by default
as they do in any Windows system: They are created with the standard Win32
functions such as CreateDialog, they are created by the dialog manager based
on dialog box resource templates, and they have dialog box procedures. How
ever, the user interface guidelines for the Pocket PC specify that dialog boxes
should be full screen so as not to confuse the user. In addition, property sheets
on the Pocket PC have their tabs on the bottom of the window instead of the
top. Windows CE doesn't support these characteristics by default; conveniently
though, the Pocket PC provides extensions to assist the developer.

Full-Screen Dialog Boxes
To assist programmers in creating full-size dialog boxes, the Pocket PC shell
implements a function named SHinitDialog. As the name implies, the function
should be called during the handling of the WM_INITDIALOG message. The
function is prototyped as

BOOL SHinitDialog CPSHINITDLGINFO pshidi);

813

Part IV Advanced Topics

814

The function takes a single parameter, a pointer to an SHINITDLGINFO struc
ture defined as

typedef struct tagSHINITDIALOG{
DWORD dwMask;
HWND hDlg;
DWORD dwFlags;

SHINITDLGINFO;

The dwMask field must be set to the single flag currently supported,
SHIDIM_FLAGS. The hDlg field should be set to the window handle of the dia
log. The third parameter, dwFlags, specifies a number of different initialization
options. The SHIDIF _DONEBUTTON specifies that the navigation bar across the
top of the screen contain an OK button in the upper right corner. This flag is
typically set since the user interface guidelines specify that dialogs have an OK
button in the navigation bar, and the guidelines specify that there be no Cancel
button. While one could argue with this specification, the user interface provides
no automatic way to provide a Cancel button.

The SHIDIF _SIPDOWN flag closes the SIP when the dialog is displayed. This
flag should be set for informational dialogs that have no text input fields. Note
that the absence of this flag doesn't automatically display the SIP. It simply means
that the state of the SIP remains unchanged when the dialog box is displayed.

Three other flags can be set in the dwFlags field:

• SHIDIF_SIZEDLG

• SHIDIF_SIZEDLGFULLSCREEN

• SHIDIF_FULLSCREENNOMENUBAR

These flags deal with how the dialog box will be sized. The SHIDIF _SIZED LG
flag tells the system to size the dialog box depending on the state of the SIP. If
the SIP is displayed, the dialog box will be sized to fit above the SIP. If the SIP
is hidden, the dialog will be sized to fit just above the menu bar. If, however,
you have a floating SIP, the dialog box doesn't size correctly. This is a rare oc
currence, since neither of the bundled input methods that ship with the Pocket
PC can be undocked. However, the example input method in Chapter 15 does
have the ability to float.

The SHIDIF _SIZEDLGFULLSCREEN and SHIDIF _FULLSCREENNOMENUBAR
flags size the dialog to fit the entire screen regardless of the state of the SIP. The
difference between the two flags is that SHIDIF _FULLSCREENNOMENUBAR does
not leave room for the menu bar at the bottom of the screen.

Programming the Pocket PC Chapter 14

Input Dialogs
In general, it's helpful to divide dialogs into informational dialogs and input dia
logs. Information dialogs deliver information to the user and for the most part
don't need text input. Input dialogs are dialogs that require lines of text to be
entered, such as passwords or IP addresses. For input dialogs, you can group
the controls in the top two thirds of the dialog so that those fields aren't cov
ered up by the SIP, which will almost always be displayed.

Whether the dialog is an input dialog or an informational dialog, another
Pocket PC function that is typically called during WM_INITDIALOG is

BOOL SHSipPreference (HWND hwnd, SIPSTATE st);

This function sets the preferred state of the SIP. I say preferred state since
the action of this function depends on the state of the SIP prior to when it was
called. The two parameters are the handle to the window, which can be a dia
log box or a custom control, and a set of SIP state flags listed here:

• SIP_UP Displays the SIP.

• SIP _DOWN Requests to hide the SIP. The SIP is lowered only after
a predetermined period of milliseconds in case the user switches back
to a window that is displaying the SIP.

• SIP_FORCEDOWN Immediately forces the SIP to hide.

• SIP_UNCHANGED Leaves the SIP alone or cancels a previous call
to SHSipPreference.

SHSipPreference is quite useful for writing custom controls that require SIP
input. When the control receives the focus, it can call SHSipPr~ference to request
the SIP be displayed. When the control loses the focus, it can call SHSipPreference
to request the SIP be hidden. If the control receiving focus then calls
SHSipPreference to display the SIP, this call will override the request to hide the
SIP and the SIP will remain displayed without an annoying flash of the SIP.

If the dialog is an informational dialog, the call to SHSipPreference requests
that the SIP be lowered. The dialog box can then display information in the entire
area of the dialog. However, using SH!nitDialog and SHSipPreference doesn't
change the state of the SIP when the dialog is displayed. The dialog box should
handle the WM_ACTIVATE message and call SHHandleWMActivate, as in the
HelloPPC example earlier in the chapter. This call ensures that if the user switches
away from the dialog and displays the SIP in another application, switching back
to the informational dialog will hide the SIP.

815

Part IV Advanced Topics

For input dialogs, managing the SIP is somewhat more difficult. You must
display the SIP as needed when the focus window is a control that requires text
input. The Pocket PC provides a couple of ways to interactively manage the SIP
for your dialog. First, the dialog box can display the SIP when the dialog is cre
ated and keep it up for the life of the dialog. Another technique is to display the
SIP only when the user is working with a control that requires keyboard input.

To display the SIP and keep it displayed while the dialog has focus, sim
ply insert a call to the function SHinputDialog in your dialog procedure so that
it is called for every message sent to the dialog box. The function prototype for
SHinputDialog is

void SHinputDialog (HWND hwnd, UINT uMsg, WPARAM wParam);

The parameters are the window handle, message, and wParam for the current
message. This helper function appropriately commands the SIP to show or hide,
depending on whether the dialog box is gaining or losing focus.

To have the SIP interactively show and hide itself depending on the con
trol that has focus in the dialog box, you use a special control, WC_SIPPREF, which
can be inserted into a dialog box. Typically you'll do this by specifying a line in
the dialog box template. The resource editor doesn't insert this control by de
fault. You must insert it either by inserting a User Control in the dialog box editor
or by manually editing the dialog box resource. Editing the resource file manu
ally might be more reliable because the WM_SIPPREF control must be the last
control specified in the dialog box template. Adding the control is as simple as
inserting the following text as the last line in the dialog box template:

CONTROL "",-1,"SIPPREF",NOT WS_VISIBLE,-10,-10,6,6

Since this control is one of the Pocket PC special controls, your applica
tion must initialize it by calling

BOOL SHinitExtraControls (void);

SHinitExtraControls should be called once during your application's initializa
tion to initialize any of the Pocket PC special controls such as CAPEDIT and
SIPP REF.

Property Sheets

816

Another area where the Pocket PC's look and feel differs from the Handheld PC
is in the display of property sheets. Property sheets in Pocket PC applications
are full screen, with tabs at the bottom of the sheet instead of the top. To con
form to this look, an application must create property sheets with a special flag
specified and then intercept the creation notification of the sheet to modify the

Programming the Pocket PC Chapter 14

sheet style. Figure 14-8 shows the property sheet created by the DlgDemo ex
ample from Chapter 4 on a Pocket PC.

Dialog Demo 11:30p 1o_k1 ,.,... .•
D Check Box

D Auto check box

D Auto 3-state box

@ Auto radio button 1
Q Auto radio button 2

Figure 14-8 A property sheet on the Pocket PC has tabs across the bottom.

To create a property sheet that is full screen and that has tabs on the bot
tom, add the flags PSH_MAXIMIZE and PSH_USECALLBACK in the dwFlags field
of the PROPSHEETHEADER structure. PSH_MAXIMIZE tells the dialog manager
to make the property sheet a full-screen window. The PSH_USECALLBACK flag
is a standard Win32 property sheet flag that tells the dialog to call back to the
application when certain events occur in the property sheet. Specifically, the
message we are interested in is the Windows CE unique PSCB_INITIALIZED
notification, which indicates that the property sheet's Tab control has been cre
ated. To field the PSCB_INITIALIZED notification, the application must provide
a callback function with the following prototype:

UINT CALLBACK PropSheetPageProc (HWND hwnd, UINT uMsg,
LPPROPSHEETPAGE ppsp);

The parameters sent back to the application are a handle value documented
to be reserved, the notification code in the uMsg parameter, and, on some noti
fications, a pointer to a PROPSHEETPAGE structure. For our purposes, the call
back function can simply employ the following code:

int CALLBACK PropSheetProc(HWND hwndDlg, UINT uMsg, LPARAM lParam) {

if (uMsg == PSCB_INITIALIZED) {
II Get tab control
HWND hwndTabs = GetDlgltem (hwndDlg, 0x3020);

DWORD dwStyle = GetWindowLong (hwndTabs, GWL_STYLEl:
(continued)

817

Part IV Advanced Topics

Auto Run

818

}

SetWindowlong (hwndTabs, GWL_STYLE, dwStyle I TCS_BOTTOM);

} else if (uMsg == PSCB_GETVERSION)
return COMCTL32_VERSION;

return 1:

The source of this rather strange code comes from the MFC source code
provided with the Pocket PC SDK. During the PSCB_INITIALIZE notification,
the handle of the Tab control of the property sheet is queried using the pre
defined control ID Ox3020. The style bits of the Tab control are then modified
to have the control place the tabs on the bottom instead of the top by setting
the TCS_BOTTOM style flag.

Two additional callback notifications are available exclusively on the Pocket
PC. The PSCB_GETLINKTEXT notification is sent to query the title of the prop
erty sheet. This text is displayed on the sheet itself, not on the navigation bar at
the top of the screen.

The PSCB_GETLINKTEXT notification is sent to the callback procedure to
see if the application wants to display a hyperlink string below the tabs on the
property sheet. The string is copied to the buffer pointed to by lParam. The
hyperlink within the string should be in the following form:

TEXT ("Launch the calculator by tapping <file:calc.exe{here}>.")

The hyperlink is enclosed in angle brackets <>. The text displayed for the
link is enclosed in curly brackets {}. When the hyperlink is tapped, the Pocket
PC will launch calc.exe. The hyperlink can also be a data file such as bookl.pxl
or memo.pwd.

The Pocket PC has a feature that can automatically launch an application when
any new external storage is detected such as the insertion of a CompactFlash card
or PCMCIA card. This feature is typically used to provide an auto-install feature
for software. However, there is no reason the application launched has to be an
installation program.

When the system detects that a storage card has been inserted, it looks in
the root directory of that card for a directory with a specific name. If that direc
tory exists and contains an application named autorun.exe, the application is first
copied to the \windows directory, and then launched with a command line string
install. When the card is removed, the copy of autorun in the \windows direc
tory is again launched, this time with a command line of uninstall.

The directory that the Pocket PC searches for depends on the type of CPU
in the device because an application must be compiled specifically for a CPU.

Programming the Pocket PC Chapter 14

The autorun directory names match the CPU type value returned from the
GetSystemlnfo function. The following list shows the values for a few of the more
popular CPUs. All the CPU values are defined in winnt.h.

• MIPS (41xx series and 3910)

• SH3

• SH4

• Motorola 821

• StrongARM

4000

10003

10005

821

2577

If the Pocket PC doesn't find the appropriate directory, the device looks for
an additional directory named 0. If this directory exists, the autorun.exe appli
cation contained within it is assumed to be a CEF file and is copied to the Windows
directory and launched.

CEF (pronounced kef~ stands for Common Executable Format.
This is a CPU-neutral executable type that is converted to native code
when the application is launched. CEF is unrelated to the Common Language
Runtime supported by Microsoft .NET.

When autorun.exe is launched, it might need to know which directory it was
copied from on the storage card. The application can't use GetModuleFileName
since it was copied and launched from the \windows directory. To determine
the fully specified autorun path, an application can call

BOOL SHGetAutoRunPath (LPTSTR pAutoRunPath);

The single parameter is the address of a TCHAR buffer of at least MAX_PATH
characters. The function will fail if no storage card is found. If a card is inserted,
the appropriate CPU-specific directory exists, and autorun.exe is found within
that directory, that CPU-specific directory is returned. For example, for a Pocket
PC with an SH3 CPU and an autorun.exe file in the appropriate directory, the
directory returned is \storage card\ 10003\autorun.exe.

If the directory 10003 didn't exist or autorun.exe wasn't found within the
directory, SHGetAutoRunPath returns \storage card\0\autorun.exe, even if there's
no 0 directory on the storage card. If no storage card is inserted in the system,
SHGetAutoRunPath returns FALSE, indicating no autorun path exists.

819

Part IV Advanced Topics

820

Additional Pocket PC Shell Functions
The Pocket PC has a few functions provided to support applications. Most of these
functions are unique to the Pocket PC and arc available to solve specific issues
that Pocket PC applications need to deal with occasionally. The SHFullScreen
function allows an application to control the visibility of items such as the Start
icon on the navigation bar, the navigation bar itself, and the SIP button. The
function is prototyped as

BOOL SHFullScreen (HWND hwndRequester, DWORD dwState);

The first parameter is the handle of the window requesting the change. The
dwState parameter can be a combination of the following:

• SHFS_HIDETASKBAR Hide the navigation bar.

• SHFS_SHOWTASKBAR Show the navigation bar.

• SHFS_HIDESIPBUTTON Hide the SIP button on the menu bar.

• SHFS_SHOWSIPBUTTON Show the SIP button on the menu bar.

• SHFS_HIDESTARTICON Hide the Windows icon on the navigation
bar. This disables the Start menu.

• SHFS_SHOWSTARTICON Show the Windows icon on the naviga
tion bar. This enables the Start menu.

The flags that hide the navigation bar, the SIP button, and the Start icon can
be passed only if the handle passed in the first parameter of SHFullScreen is the
handle to the foreground window.

Another handy function allows an application to request that the system free
a specified amount of memory so that memory can be allocated. The function is

BOOL SHCloseApps (DWORD dwMemSought);

This parameter is the amount of memory that the application needs. When this
function is called, the Pocket PC checks the current memory state to determine
whether the amount of memory requested is available. If so, the function re
turns immediately. If not, the Pocket PC uses various methods, including closing
applications, to attempt to free that amount of memory. SHCloseApps will re
turn TRUE if the amount of memory is available and FALSE if it could not free
the amount requested. Because this function closes applications and therefore
must wait for each application to properly shut down, it can take a few sec
onds to complete.

Programming the Pocket PC Chapter 14

SHSiplnfo
SHSiplnfo is an omnibus function that lets you control the soft keyboard. On the
Pocket PC, SHSiplnfo has limited usefulness since most applications should use
SHSipPreference instead of SHSiplnfo. Still, SHSiplnfo is handy since it is the only
way to query the state and location of the SIP. It also allows an application to
change the default input method. The function is prototyped as

BOOL SHSiplnfo (UINT uiAction, UINT uiParam, PVOID pvParam,
UINT fWi nlni);

The first parameter to SHSiplnfo, uiAction, should be set with a flag that speci
fies the action you want to perform with the function. The allowable flags are

• SPI_SETSIPINFO Sets the SIP configuration including its location
and its visibility (Obsolete. Use SHSipPreference.)

• SPI_ GETSIPINFO Queries the SIP configuration

• SPI_SETCURRENTIM Sets the current default input method

• SPI_GETCURRENTIM Queries the current default input method

Because the behavior of SHSiplnfo is completely different for each of the
flags, I'll describe the function as if it were three different function calls. I won't
discuss SPI_SETSIPINFO because its function is superseded by SHSipPreference.
For each of the flags, the second and fourth parameters, uiParam andfWinlni,
must be set to 0.

Querying the State of the SIP
To query the current state of the SIP, call SHSiplnfo with the SPI_GETSIPINFO
flag in the uiAction parameter. In this case, the function looks like this:

BOOL SHSiplnfo (SPI_GETSIPINFO, 0, SIPINFO *psi, 0);

The third parameter must point to a SIPINFO structure, which is defined as

typedef struct {
DWORD cbSize;
DWORD fdwFlags;
RECT rcVisibleDesktop;
RECT rcSipRect;
DWORD dwlmDataSize:
VOID *PVlmData;

SIPINFO;

821

Part IV Advanced Topics

822

The structure's first field, ebSize, must be set to the size of the SIPINFO
structure before a call is made to SHSiplnfo. The second field in SIPINFO,
fdwFlags, can contain a combination of the following flags:

• SIPF_ON When set, the SIP is visible.

• SIPF_DOCKED When set, the SIP is docked to its default location
on the screen.

• SIPF_LOCKED When set, the visibility state of the SIP can't be
changed by the user.

The next two fields of SIPINFO provide information on the location of the
SIP. The field re VisibleDesktop is filled with the screen dimensions of the visible
area of the desktop. If the SIP is docked, this area is the rectangle above the SIP.
If the SIP is undocked, this rectangle contains the full desktop area minus the
taskbar, if the taskbar is showing. This field is ignored when you set the SIP
configuration. Some SIPs might have a docked state that doesn't run from edge
to edge of the screen. In this case, the rectangle describes the largest rectangu
lar area of the screen that isn't obscured by the SIP.

The reSipReet field contains the location and size of the SIP. If the SIP is
docked, the rectangle is usually the area of the screen not included by
reVisibleDesktop. But if the SIP is undocked, reSipReet contains the size and
position of the SIP while re VisibleDesktop contains the entire desktop not ob
scured by the taskbar, including the area under the SIP. Figure 14-9 shows the
relationship between re VisibleDesktop and reSipReet.

Docked SIP Undocked SIP

rcVisibleDesktop rcVisibleDesktop

rcVisibleDesktop rcVisibleDesktop

rcSipRect

rcSipRect

rcSipRect rcSipRect

Figure 14-9 The relationship between rcVisibleDesktop and rcSipRect in the SIPINFO
structure

Programming the Pocket PC Chapter 14

The final two fields of SIPINFO allow you to query information specific to
the current input method. The format of this information is defined by the in
put method. To query this information, set the pvlmData field to point to a buffer
to receive the information and set dwlmDataSize to the size of the buffer. It is
up to the application to know which input methods provide what specific data.
For most input methods, these two fields should be set to 0 to indicate that no
IM-specific data is being queried.

Changing the Default Input Method
You can use SHSiplnfo to query and to change the current SIP. To query the
current SIP, you call SHSiplnfo with the SPI_GETCURRENTIM flag in the uiAction
parameter, as in

BOOL SHSiplnfo CSPl_GETCURRENTIM, 0, CLSID *PClsid, 0);

In this case, the third parameter points to a CLSID variable that receives the CLSID
of the current input method.

To set the current input method, call SHSiplnfo with the uiAction parame
ter set to SPI_SETCURRENTIM, as in

BOOL SHSiplnfo (SPl_SETCURRENTIM, 0, CLSID *pclsid, 0);

Here again, the third parameter of SHSiplnfo is a pointer to a CLSID value. In
this case, the value must contain a CLSID of a valid input method.

The Game API
Windows CE devices sport microprocessors of surprising power. These small CPUs
provide the oomph to support a full 32-bit operating system with virtual memory,
an extensive window manager, and a RAM-based, transaction-based file system.
For game developers, this would be nirvana-if only the operating system weren't
there. Game developers love powerful CPUs but they dislike the layers of oper
ating systems that, though helpful to the typical developer, hinder the developer
who likes to write code directly to the hardware. To provide a path to the hard
ware, the Pocket PC is the first Windows CE system to support the Game API
(GAPI), a lightweight set of functions to provide the game developer access to
the screen and keyboard of a Windows CE device.

GAPI isn't DirectX, which provides a much more extensive set of functions
to the game developer. While Windows CE supports Direct X, Microsoft decided
not to provide the DirectX support on the Pocket PC. In an attempt to make up
for this slight, GAPI is supported instead.

GAPI contains a handful of functions that provide access to the display's
frame buffer, the area of memory that holds the pixel information displayed on
screen. In addition, GAPI enables an application to assume control of all the

823

Part IV Advanced Topics

824

buttons in a Pocket PC, even those that are normally captured by the shell. Fi
nally, and perhaps most important, GAPI provides information about the display
and the button layout in a consistent way across the divergent hardware provided
by different Pocket PC manufacturers.

GAPI is provided as a single DLL, GX.DLL. This DLL is not distributed with
Pocket PC devices. Instead, it is distributed by the application that uses it. When
an application is installed, it should place GX.DLL in its install directory, not in
the \windows directory. The current versions of GAPI don't support any type of
versioning. Instead, an application is required to keep its own version of the GAPI
DLL in its own application directory to avoid the problem lovingly called DLL
Hell. In DLL Hell, one application installs an older copy of a shared DLL in the
place of a newer version of the DLL, thereby causing problems for the previously
installed applications. While there are a number of ways to avoid DLL Hell
including some that require entire operating system revisions-the simplest solution is
to distribute version-sensitive DLLs with the application and keep them in the
application's directory. As it stands today, GX.DLL is smaller than 20K, so the
overhead of maintaining a few of these DLLs in a system is not huge.

To build a GAPI application, the program must include gx.h, which speci
fies the function prototypes and necessary structures. To provide the proper DLL
import information, the program must also link to gx.lib. These files are available
from Microsoft. This book's companion CD also contains the necessary GAPI files.

Figure 14-10 lists the GAPI functions.

Function Name

GXOpenDisplay

GXCloseDisplay

GXBeginDraw

GXEndDraw

GXGetDisplayProperties

GXOpenlnput

GXCloselnput

GXGetDefaultKeys

GXSuspend

GXResume

GXIsDisplayDRAMBu.ffer

GXSet Viewport

Description

Initializes GAPI. Can be called only once in an
application.

Closes GAPI. Cleans up GAPI resources.

Called to access the frame buffer for drawing.

Called when drawing is complete.

Provides information on the display device.

Captures the buttons for the game.

Frees the buttons for normal use.

Provides information on the suggested buttons.

Suspends GAPI subsystem to allow other applications to
gain focus.

Resumes GAPI operation when the game regains focus.

Suspends GAPI operations.

Allows GDI drawing and GAPI access to the same frame
buffer.

Figure 14-10 GAPI functions

Programming the Pocket PC Chapter 14

GAPI Initialization
An application using GAPI must initialize the GAPI subsystem by calling the
following function:

int GXOpenDisplay (HWND hWnd, DWORD dwFlags);

The two parameters are the handle to the application's window and a flag parameter
that can be either 0 or the constant GX_FULLSCREEN. Using GX_FULLSCREEN
indicates to GAPI that the application will assume control over the entire screen.
If the flag isn't set, GAPI assumes the application won't be overwriting the navi
gation bar. GXOpenDisplay should be called only once during the life of an
application. Subsequent calls will fail.

Getting Display Information
GAPI provides three functions to query the hardware support. The first func
tion, GXGetDisplayProperties, returns information about the display and is
prototyped as

GXDisplayProperties GXGetDisplayProperties();

The function returns a GXDisplayProperties structure, defined as

struct GXDisplayProperties
DWORD cxWidth;
DWORD cyHeight;
long cbxPitch;
long cbyPi tch;
long cBPP;
DWORD ffFormat;

} ;

The first two fields, ex Width and cyHeight, specify the width and height of
the display in pixels. The next two fields, cbxPitch and cbyPitch, specify the
distance, in bytes, between adjacent pixels in the frame buffer. For example, if
the application has a pointer to pixel x and needs to address the pixel to the
immediate right of the current pixel, the address would be at the current address
plus the value in cbxPitch. To access the pixel immediately below the current
pixel, the value in cbyPitch would be added to the address of the current pixel.
These values aren't necessarily obvious and can even be negative depending on
the layout of the frame buff er.

For frame buffers that have less than 8 bits per pixel (bpp), the addressing
is somewhat more complex. In these cases, the pixel offset must be divided by
the pixels per byte, which in a 4-bpp display is 8 I 4 = 2. So the formula to com
pute the address in the frame buffer of a pixel that has a 4-bpp display would be

pPxl = frame_base + ((x I 2) + (y * cbyPitch));

825

Part IV Advanced Topics

826

This line isn't complete. To get to the specific pixel, the application has to read
the byte, modify only the appropriate upper or lower half, and then write the
byte back. This example also assumes the frame buffer is in a portrait configu
ration, in which the adjacent bytes of the display are on the same row. In a land
scape configuration, adjacent bytes are in the same column.

The final field in the GXDisplayProperties structure is the j]Format field,
which describes the format of the frame buffer. The flags in this field are

• ~andscape The frame buffer is orientated on its side. Sub-Sbpp
displays have consecutive column pixels in the same byte.

• ~alette The frame buffer is palettized.

• '/ifDlrect The frame buffer colors are directly mapped.

• kfDirect555 The format is a 16 bpp with 5 bits per color.

• kfDirect565 The format is 16 bpp with 6 bits for green and 5 each
for red and blue.

• '/ifDlrect888 The format is 24 bpp with 8 bits per color.

• kfDirectlnverted The monochrome frame buffer has inverted color
format with 1 representing black and 0 representing white.

Querying Button Information
The next informational function, GXGetDefaultKeys, returns the suggested lay
out for the buttons. The prototype for this function is

GXKeyList GXGetDefaultKeys (int iOptions):

The one parameter is the system orientation: GX_NORMALKEYS for portrait
orientation and GX_LANDSCAPEKEYS for landscape orientation.

The structure returned is defined as

struct GXKeyList
short vkUp;
POINT ptUp:
short vkDown:
POINT ptDown:
short vkleft:
POINT ptleft:
short vkRight:
POINT ptRi ght:
short vkA:
POINT ptA:
short vkB:
POINT ptB:
short vkC:
POINT ptC:

Programming the Pocket PC Chapter 14

} ;

short vkStart;
POINT ptStart;

Each field starting with vk in the structure specifies the suggested virtual key code
to use for that action. The pt fields represent the physical coordinates of the
buttons in relation to the screen.

Accessing the Buttons
When a GAPI application is ready to start its game, it can take control of the
buttons on the Pocket PC by calling

int GXOpenlnput();

This function redirects all button input to the GAPI application. Clearly, once this
function is called it is the responsibility of the GAPI application to provide a way
to quit the game and restore the buttons to the system.

Drawing to the Screen
Of course, the meat of GAPI is the ability it provides an application to write to
the display buffer. To gain access to the buffer, a GAPI application calls

void* GXBeginDraw();

This function returns the address of the frame buffer, or 0 if the buffer cannot be
accessed for some reason. At this point, a GAPI application has free reign to modify
the frame buffer using the pixel computations described in the previous section.

The pointer returned isn't necessarily the lowest address of the frame buffer.
Some systems are configured with negative offsets in the cbxPitch or cbyPitch
values. This really isn't important as long as you rigorously use the pitch values
to compute pixel addresses in the frame buffer.

One word of caution: While having a pointer to the frame buffer
is powerful, it's also dangerous. The pointer directly accesses an area
of system memory that itself directly accesses the physical address
space of the hardware. Errant pointers can, and most likely will, be destructive
to data on your device. A classic symptom is the file system reporting
corrupt data in the object store. This can easily happen if incorrect pointer
arithmetic results in writing of the physical RAM that contains the object
store. Programmers should be exceedingly careful when checking that
they access only the frame buffer and not other parts of the system
address space.

827

Part IV Advanced Topics

When the drawing to the frame buffer is complete, call the following
function:

int GXEndDraw();

This call does little on systems with direct access to the frame buffer. However,
on systems that don't provide direct access to the frame buffer, calling GXEndDraw
signals the display driver to copy the data from the phantom frame buffer to the
actual frame buffer. Regardless of whether the application has direct access to
the frame buffer, all GAPI applications should call GXEndDraw, if only for for
ward compatibility.

Indirect Access to the Frame Buffer

828

On some systems, applications can't directly access the frame buffer using GAPI.
For these systems, the display driver provides a phantom frame buffer for the
application and then copies the data to the real frame buffer. While this scheme
hinders performance somewhat, it does provide compatibility for GAPI applica
tions. One side effect is that it is difficult for GAPI applications to merge their
directly written pixel data with the GDI's pixel data, which is natively written to
the frame buffer.

While many games just want to take over the entire display, some GAPI ap
plications require that the system display GAPI data on one part of the display
and paint standard Windows controls on the other part. To merge the two streams
of data, GAPI provides a function called GXSetViewport to indicate what part of
the screen the GAPI program controls. The display driver can then use the GAPI
data for that area of the screen and the GDI data for the remainder of the frame
buffer. The GXSet Viewport function looks like this:

int GXSetViewport (DWORD dwTop, DWORD dwHeight, DWORD dwReservedl,
DWORD dwReserved2);

The current implementation of GXSetViewport is somewhat limited in that
it can describe only a band across the screen where the GAPI data will be writ
ten. The parameter dwTop specifies the first line on the display reserved for GAPI.
Any lines above this value are written by the system. The dwHeight parameter
is the height of the band of data, in lines, that the GAPI program will write. Any
lines below dwTop+dwHeight will be written by GDI.

It's important to note that GXSetViewport doesn't clip data. It simply defines
the area that GDI won't write. An errant GAPI application certainly can overwrite
the screen area reserved for GDI.

To determine if the system is exposing a phantom frame buffer to GAPI
instead of the real frame buffer, an application can call

BOOL GXIsDisplayDRAMBuffer();

Programming the Pocket PC Chapter 14

This function returns TRUE if the application is using a phantom frame buffer and
FALSE if the application will be accessing the actual frame buffer. An application
can do little with this information except to ensure that it's calling GXSetViewport
if it's mixing GAPI and GDI data and to indicate somewhat reduced performance
for the dual buffer systems.

GAPI Maintenance
You can suspend the GAPI application in place to allow other applications ac
cess to the screen and keyboard. The two functions that suspend and resume
the GAPI functions are appropriately named

int GXSuspend();

and

int GXResume();

When the GAPI application calls GXSuspend, the GAPI library temporarily re
leases its control over the buttons in the system, allowing other applications to
operate normally. The desktop is also redrawn. When GXResume is called, the
buttons are redirected back to the GAPI application. The GAPI application is
responsible for restoring the screen to the state it was in before GXSuspend was
called. It's the responsibility of the GAPI application to stop accessing the frame
buffer when another application gains the focus.

The suggested place for these two functions is in the WM_SETFOCUS and
WM_KILLFOCUS message handlers of your main window. This way, if another
application rudely interrupts your game by setting itself into the foreground, your
application will handle it gracefully.

Cleaning Up
When the game has ended, a GAPI application should release the buttons by
calling

int GXCloseinput();

In addition, the display should release a call to

int GXCloseDisplay();

This function instructs the GAPI DLL to free any resources it was maintaining to
support the frame buffer access of the application.

829

Part IV Advanced Topics

The GAPIShow Example

830

The following example is a very simple demonstration of GAPI. The game (of
sorts) in this case is a star field drawn to appear to the viewer as though it's moving
through space. The effect is similar to the Starfield screen saver on desktop
versions of Windows with the exception that the objects are simply white dots.

When the game first starts, it displays the information returned by
GXGetDisplayProperties, such as the pitch of the pixels and the format of the frame
buffer. Selecting Play from the Game menu starts the star field animation. Tap
ping on the screen stops the animation and brings the user back to the infor
mation screen. Contrary to Pocket PC guidelines, GAPIShow has an Exit menu
item to ease shutting down the example. Figure 14-11 shows the GAPIShow
source code. Since the resources in this example were wizard-generated, the .re
file isn't listed here. Of course, the complete source code is on the companion CD.

Figure 14-11 The GAPIShow program

Programming the Pocket PC Chapter 14

/fdefi ne MAx_x
/fdefi ne MAx_v
#define MID_X
/fdefi ne MID_Y
typedef struct

int x;
int y;
int dist:

1024*2
(MAX_X/2)
(MAX_Y/2)

} STARINFO, *PSTARTINFO;

I I· - - - - - - - · - - - - - · - - · · - • - - - - - - · - • · - - - - • - ·. - - - · - • - - •, · ·. •
II Function protqtypes
//
int Ini tApp (HI~~TANCE): .
HWND Initlnsta11'ce tHlNSTANCE. LPWSTR, int);

int);

(continued)

831

Part IV Advanced Topics

Figure 14-11 (continued)

832

Programming the Pocket PC Chapter 14

} ;

WM_CREATE. DoCreateMain,

WM_PAINT, DoPaintMain.

WM_LBUTTONDOWN, DoLButtonDownMain,

WM_SETFOCUS, DoSetFocusMain,

WM_KILLFOCUS, DoKillFocusMain,

WM_COMMAND, DoCommandMain,

WM_SETTlNGCHANGE, DoSettingChangeMain,

WM_ACTIVATE, DoActivateMain,

WM_HIBERNATE, DoHibernateMain,

WM_DESTROY, DoDestroyMain,

II Command Message dispatch for MainWindowProc

canst struct decodeCMD MainCommandltems[] = {

} ;

ID_GAME_EXIT, DoMainCommandExit,

rn_GAME_PLAY, DoMainCommandPlay,

ID_ TOOLS_ABOUT, DoMai nCommandAbout,

I I===='======-===·===
l/ .Program entry point

//
int WINAPI WinMaTn <H!NSTANCE hinstance, HINSTANCE hPrevll1stance,

LPWSTR 1pCmdLine, int nCmdShow)

I/···· Initial fze• ... app ltcati on.

re = Ini tApp C hinstance);

if (re) return re;

II Initialize this instance.

hwrldMain.= In.i.tll1stance (hinstance, 1pCmdLine, nCmdShow);

if (hwndMain =,;, 0) return tlxlO;

hAccel•••= ·LOildAccel erators(hinstance,

MAKEINTRESOU.RCE (I DILACCElERAJORl));

I I Application message loop

whi 1 e (GetMessage. C&msg, NULL, 0, 0)) {

II Translate accelerator keys

i..f (!TranslateAccelerator(hwndMain, hAccel •.. ··&msg))

Transla.teMessage (&msg);

DispatchMessage (&msgl;

(continued)

833

Part IV Advanced Topics

Figure 14-11 (continuedj

834

Programming the Pocket PC Chapter 14

II Create main window.
hWnd = CreateWindow (szAppName,

TEXT("GAPI Show"),
WS_VISIBLE,
CW_USEDEFAUL T.

II Window class
II Window title
I I Style flags

(continued)

835

Part IV Advanced Topics

Figure 14-11 (continued)

836

Programming the Pocket PC Chapter 14

}

SetWindowPos ChWnd, NULL, 0, 0, ex, cy, SWP..,.NOMOVE I SWP_NOZOROER);
return .0;

11----------------------------~-~-----------------·-----------•---------
I/ DoTimerMain - Process WM--TIMER me.ssage for .window.
II
LRESULT DoTimerMain (HWND hWnd>, UlNT wMsg,

PBYTE l pBuff;

(continued)

837

Part IV Advanced Topics

Figure 14-11 (continued)

838

Programming the Pocket PC Chapter 14

WORD iditem, wNotifyCode;
HWND hwndCtl ;
I NT i ;

II Parse the parameters.
iditem = (WORD) LOWORD (wParam);
wNotifyCode = (WORD) HIWORD (wParam);
hwndCtl = CHWND) lParam;

II Call routine to handle control message.
for (i = 0; i < dim(MainCommanditems); i++)

if Ciditem == MainCommanditems[iJ.Codel

}

return (*.MainCommanditems[i].Fxnl(hWnd, id.lteril. hwndCtl.
wNot ifyCode J;

return 0;

ff--~~·C--~--~---~---•----.----•----:"~~--·--~-·----C-

/I DoPaintMain • Process WM_PAINT message for wi
II
LRESULT .DoPafr\tMaih (HWN.D.hWnd .• UINT.wMs~.

PAINTSTRUCT ps.;
RECTrect;
TCHAR szTxt[128];
HOC hdc;

LPARAM l Pa ram) {

inti .• Y7.5:
static hOldPlaying;

hdc "' BeginPai nt (hWnd,
GetClientRect . (hWnd, &rect) ;

not playing, di splay the GAPI information
c lf Playing l {
w.sprintf CszTxt. TEXT C"Gapi v.alues:"));
.Extlex.tOut .Chd.c.. 0, &reCt; .. szTxt, lstrlen
Y<+=··.•.·Cyfont;

(continued)

839

Part IV Advanced Topics

Figure 14-11 (continued)

840

Programming the Pocket PC Chapter 14

}

}

lstrcpy tszTxt, PARSEFLAG (gxdp.ffFormat. kfDirectinvertedl);
if (i = lstrlen CszTxt)l { //Assignment in if

ExtTextOut Chdc, 20, y, 0, &rect, szTxt, i, 01;
y += cyFont;

EndPaint ChWnd, &psl:
hOldPlaying = fPlaying;
return 0:

//-,,----,-----------,---,----"·--------------------~-------------------
// DoS.ettingChangeMain - Process .WM_SETTINGCHANGE message .. for window.
II
LRESULT OoSett i ngChange.Mafn WPARAM.11/Param,

(continued)

841

Part IV Advanced Topics

Figure 14-11 (continued)

842

Programming the Pocket PC Chapter 14

II Use DialogBox to create modal dialog.
DialogBox (hlnst, MAKElNTRESOURCE (IDD_ABOUT), hWnd, AboutDlgPro.cl.;

return 0;

II==

II About Dialog procedure

II
BODL CALLBACK AboutDl gProc CHWND hWnd, UI NT wMs.g, WPARAM wPa ram,

switch <wMsg l {
case WM_! N ITDlALOG:

{

LPARAM 1 Pl) ram) {

SHINITDLGINFO fdi;

idi .dwMask = SHIDIM ... HAGS;
idi.dwFlags = SHIDIF~DONEBUTTON I SHIDILSlZEDLGFULLSCREEN I

SH ID IF _SlPDOWN;

(continued)

843

Part IV Advanced Topics

Figure 14-11 (continued)

844

Programming the Pocket PC Chapter 14

}

InvalidateRect (hWnd, NULL, TRUE);
return 0;

11--
11 ClearScreen_l6 - 16 bpp version of clear screen
II
int ClearScreen_l6 (PVOID lpBuff, COLORREF rgb) {

WORD wPixel = 0;
DWORD x, y;
PBYTE pbLine, pbPixel:

II Ve~ify that we have a valid frame buffer.
if (!lpBuff) return I:

II Format pixel from~6Jorref data.
if (gxdp. ffFormat I · kf0irect565) {

wPixel = (WORD)

(continued)

845

Part IV Advanced Topics

Figure 14-11 (continued)

846

Programming the Pocket PC Chapter 14

}

}

}

return 0;
}

*(PWORO)(pNew + gxdp.cbxPitch) = 0xffff:
*(PWORD)(pNew + gxdp.cbyPitch) = 0xffff;
*(PWORO)(pNew + gxdp.cbxPitch +

gxdp.cbyPitch) = 0xffff;

11---
11 InitScreen_l6 - Initialtze each star position
II
int InitScreen_l6 (PVOIO lp'Suff)

inti:
PSYTE pNew = 0;
TCHAR szTxt[128]1'

for Ci = 0: i ~ MA~STfRS:: i++ > {
· II lnitia'ltie ·starr >

}··········· ptSt<rt'ii[i.1~)(o~'~11do,illAi.'& MALX"1 :,
•. · . . pt$t'ar5f{J.yi 'b<~~riifo~C}· & MAXj-f;.:

·· i:itstar~~1J:C11~!~·,,;.i0{ ;··: ·

The GAPIShow example has support to access a 16-bpp display, which is
the standard format for the Compaq iPaq and Hewlett-Packard Jornada Pocket
PCs. I'll leave it to you to extend GAPIShow to other screen formats.

847

Part IV Advanced Topics

848

The code to draw in the frame buffer is isolated to three routines:
InitScreen_16, DrawScreen_16, and ClearScreen_16. The _16 suffix indicates that
the routines assume a 16-bpp screen. You can change the code to support 8-bpp
displays by simply changing the cast of the writing of each pixel and modifying
the pixel formation routine in ClearScreen_16. Although this example supports
it, other pixel formats can be supported with very basic changes. You might notice
the writing of the pixel in the InitScreen_16 routine is enclosed in a _try block
to detect exceptions. This is a helpful technique for catching problems with the
code that computes the pixel location in the buffer pointer.

This chapter has covered a fair amount of ground. However, the Pocket PC
is more than applications. It's possible to extend the basic shell of the Pocket
PC in a number of ways. In the next chapter, we'll extend the Today screen and
create a new input method for the SIP.

Extending the Pocket PC
In Chapter 14, I talked about how to write applications for the Pocket PC. In this
chapter, I'll talk about ways to extend the basic functionality of parts of the Pocket
PC shell. Specifically, I'll demonstrate how to create custom items for the Today
screen and how to write a custom input method. The examples are simple, but
in both cases they demonstrate the functions necessary for much more complex
extensions.

Writing a Custom Today Screen Item
The Today screen is the home page of the Pocket PC. It's automatically displayed
after the system isn't used for a predetermined period of time. It contains a snap
shot of the relevant data from the applications bundled with the Pocket PC. By
using a simple DLL, you can extend the Today screen to allow other applications
to summarize their data or to allow stand-alone Today screen inserts that pro
vide data only through the Today screen. Figure 15-1 shows the Today screen
with five items: the Today title bar, the Owner Info item, the Tasks item, the Inbox
item, and the Calendar item.

Today screen items are implemented as simple Windows CE DLLs with two
predefined entry points. The system finds the extensions by looking under a
specific registry key. It then loads the DLL, asks the item its desired height, and
asks it to display its data. The Today Control Panel applet allows users to selec
tively enable and disable individual items as well as set the order of the items
on the Today screen. The user can also configure an individual item through the
Today Control Panel applet. When the user selects an item from a list of all the
Today screen items and taps the Options button, the item's DLL is loaded and a
dialog box is created by using a dialog box procedure exported from the DLL.
This dialog box is created using resources stored in the DLL.

849

Part IV Advanced Topics

[IJ I start 10:37a
I

Thursday, March 22, 2001 -~

Islay 0 '* ~:~
:r~m

~ Owner: Doug Boling

0 2 Active tasks

g-Nounreacimessagss _______ _

No unsent messages

l!!m No upcoming appointments

Figure 15-1 The Pocket PC Today screen

Creating a Today Screen Item DLL

850

The requirements for a Today screen item DLL start with an exported entry point,
InitializeCustomltem, which must be exported as ordinal 240. The DLL can also
optionally support a configuration dialog box. If it does, the DLL must export
another entry point, CustomltemOptionsDlgProc, at ordinal 241, which is used
as the dialog box procedure for the options dialog. In addition, the resource for
the options dialog must be included in the DLL's resource and have a resource
ID of ID_TODAY_CUSTOM.

The InitializeCustomltem function is prototyped as

HWND APIENTRY InitializeCustomitem CTDDAYLISTITEM *ptli, HWND hwndParent);

The first parameter is a pointer to a TODAYLISTITEM structure; the second pa
rameter is the handle of a window that will be the parent of the item window
created by the extension. Because the TODAYLISTITEM structure is used through
out the Today screen interface, this is as good a place as any to describe it. Many
of the fields in this structure might not be useful or even relevant in this call.
However, the structure tends to be passed back to the DLL on almost every call,
so most of the fields are used at some time in the life of the DLL. The structure
is defined as

typedef struct _TODAYLISTITEM {
TCHAR szName[MAX_ITEMNAME];
TODAYLISTITEMTYPE tlit;
DWORD dwOrder;
DWORD cyp;
BOOL fEnabled;
BOOL fOptions;
DWORD grfFlags;

TCHAR szDLLPath[MAX_PATHJ;
HINSTANCE hinstDLL;
HWND hwndCustom;
BOOL fSizeOnDraw;
BYTE *prgbCachedData;
DWDRD cbCachedData;

TODAYLISTITEM;

Extending the Pocket PC Chapter 15

When InitializeCustomltem is called, the szName field is filled with the
name of the registry key that identified the item. This name is handy for find
ing the item's registry key to retrieve custom data. The second field is tlit, a
TODAYLISTITEMTYPE enumeration that defines the type of extension. For
custom extensions this field will always be tlitCustom. The dwOrder field will
be set to the order index of this item. The cyp field contains the height of the
item in pixels. Items are ordered from the lowest to the highest value starting at
the top of the Today screen. The user controls the order through the Control Panel
applet. For most situations, an extension's order in the Today window shouldn't
affect the extension's behavior.

The jEnabled field indicates whether the user has enabled your Today item
in the Control Panel. This field should be queried when InitializeCustomltem is
called; if it is 0, you should return immediately with a return code of 0. The
/Options flag reflects whether the Today item has an options dialog. This flag is
taken from the registry entry for this item.

Let's skip the grjFlags field for a moment. The szDLLPath field contains the
filename of the DLL that contains the code for the item. The hinstDLL field is the
DLL's instance handle. The hwndCustom field will contain the handle of the item's
child window when this structure is passed after the item's child window has been
created. The Today screen item manager uses the .fSizeOnDraw field internally.

The last two fields, prgbCachedData and cbCachedData, along with the
grjFlags field, allow the DLL to store, or cache, custom data about the state of
its window and the data it is displaying. The goal here is to prevent the item from
having to query a file or database every time the Today screen is asked to re
paint itself. The grjFlags field can be set to anything the DLL requires. Likewise,
if the DLL needs to store additional data, a memory block can be allocated. A
pointer to the memory block is saved in prgbCachedData, and the size of the
memory block is saved in cbCachedData. Since these values are passed back to
the DLL on a regular basis, these fields free the DLL from having to store data
internally in statically defined structures.

Creating the Item Window
When InitializeCustomltem is called, the DLL should create its child window that
will display the data for that item. The window should be a child window with

851

Part IV Advanced Topics

852

its parent set to the window handle passed in the hwndParent parameter. The
function should return the handle to the child window if the initialization was
successful, or 0 otherwise.

Of course, to create a window, you will first need to register a class for
that window. The class registration can take place either during the process
ing of the InitializeCustomltem call or during the PROCESS_ATTACH notifica
tion to DllMain when the DLL is loaded. If the registration is performed during
the InitializeCustomltem call, be sure not to return failure from the function if
the call to RegisterClass fails. Because InitializeCustomltem is called more than
once, the second call to register the class will fail if the DLL attempts to repeat
the class registration. The DLL should also be designed to unregister the win
dow class when the DLL is unloaded. This design feature is quite helpful for
debugging purposes, when the DLL will change as the code develops.

The Item Window
Once the item's window is created, the Today screen will send a custom mes
sage, WM_TODAYCUSTOM_QUERYREFRESHCACHE, to the child window.
When the message is sent, the wParam parameter points to the TODAYLISTITEM
structure that was passed in the call to InitializeCustomltem. The message is sent
to ask the item if the data it is presenting to the user has changed and therefore
the window needs updating. If so, the window should set the cyp field of the
TODAYLISTITEM structure to the height in pixels for the item window. The win
dow should return TRUE for the message. If no update is necessary, the window
should respond to the message with FALSE. It is important that the item window
return TRUE only when necessary, since returning TRUE causes the Today screen
to repaint itself. Having this happen too often-especially when nothing on the
screen changes-distracts the user and wastes power.

The item shouldn't draw in its window during the handling of the
WM_TODAYCUSTOM_QUERYREFRESHCACHE message. If the data changes and
the item returns TRUE, the item's window will be invalidated by the item man
ager, causing a WM_PAINT message to be sent to the item window, which is
where the window should be redrawn.

The WM_TODAYCUSTOM_QUERYREFRESHCACHE message is sent to the
item's window every few seconds, allowing the item to check whether it needs
to modify the currently displayed data. Since the item has a chance to modify
the cyp field, this is also the place where the item can ask to be resized to a taller
or shorter window. The width of the window will be the full width of the Pocket
PC screen minus the width of the scroll bar if present.

Extending the Pocket PC Chapter 15

Interacting with the User
The custom item interacts with the user by painting its data onto its window in
response to WM_PAINT messages. Because the custom item is a window, it also
receives any mouse messages. Given that the user interface guidelines recom
mend a single click for most actions, the typical thing to do is monitor for a
WM_LBUTTONUP event and provide a default action. For example, the item
might launch the application that can edit the data the item shows.

Because the item is simply a child window of the Today screen, it can do
almost anything a window can do, with these limitations: The Today screen
controls the size and position of the item child window, so the item shouldn't
try to move or size itself. Also, the Today screen is designed to scroll if more items
are being displayed than can fit on the screen. Because of this feature, the item
manager can move your child window at any time.

Unloading the Custom Item
When the Today screen item manager needs to completely refresh the items on
the Today screen, it notifies each window by sending a WM_TODAYCUSTOM_
CLEARCACHE message. Here again, the wParam parameter points to the item's
TODAYLISTITEM structure, allowing the individual items to free the memory they
have allocated during the life of the item. Generally, this means freeing the data
block pointed to by the prgbCachedData field if the item had previously allo
cated such a block of data.

The Options Dialog
Today items must implement their options dialog in a rather strange way. The
DLL doesn't simply export a function that the Today item manager could call to
instruct the item to display an options dialog. Instead, the DLL is required to export
a specific function, the Options dialog box procedure, and provide in its resource
block a dialog box template with a specific ID number. With a pointer to a dia
log procedure and a dialog template, the item manager can call CreateDialog itself.

The dialog box procedure provided by the item should conform to Pocket
PC user interface guidelines and call SHinitDialog to make itself full screen. In
addition, the documentation suggests that the Options dialog box be written to
look like the Today screen Control Panel applet, with blue header text and a
separator line above whatever dialog controls you see fit to use. The example
program at the end of this section has an Options dialog box that conforms to
these suggestions. The configuration data should be stored in the registry so that
the item window can query it when the Today screen loads the item.

853

Part IV Advanced Topics

854

Registering the Custom Item
The Today screen locates the custom items by looking in the registry for a list
of items. The registry key that contains the list is [HKEY _LOCAL_MACHINE]\
Software\Microsoft\ Today\Items. Each custom Today screen item should cre
ate a subkey under the key listed above. This subkey name will be the name
shown to the user in the Today screen configuration dialog, so it must be local
ized for the appropriate language. Under the item's subkey, a number of values
must be set. The values are

• Name String value containing the name of the item.

• DLL String value containing the fully specified path name of the DLL
implementing the item.

• Flags User-defined DWORD value returned in the grjFlags field of
TODAYLISTITEM.

• Options DWORD value set to 1 if the item supports an Options
dialog box.

• Enabled DWORD value set to 1 if the item is enabled.

• Type Custom items must set this DWORD value to 4.

The Today screen looks at these registry entries when it loads the items on
the Today screen, which happens when the system boots and when the user
closes the Today screen Control Panel applet.

Debugging a Custom Item
One of the problems with developing a Today screen item is how to force the
Today screen to unload a custom item so that a developer can download a re
vised copy of that item. When the Today screen starts, it loads all the DLLs listed
under the Items key previously described. The DLLs remain loaded even if the
user doesn't enable them. It's difficult to update a registered Today screen item
because a DLL can't be overwritten until the Today screen unloads that DLL.

In my experience, the best way to force the Today screen to unload an item
is to open a registry editor on the Pocket PC or use the Windows CE Remote
Registry Editor and change the name of the DLL listed under the DLL value for
your item. You then open the Today screen Control Panel and enable or disable
another item and close the Control Panel. This series of actions causes the To
day screen to free all DLLs and reload the ones listed in the registry. Because
you have just changed the DLL value to some filename that doesn't exist, the
Today screen can't load that DLL, thereby allowing Microsoft eMbedded Visual
C++ to download a new copy.

Extending the Pocket PC Chapter 15

The PowerBar Custom Today Screen Item
The PowerBar example is a Today screen extension that displays the status of
the battery as a bar running across the item window. PowerBar includes an options
dialog that conforms to the look and feel of the options dialogs of the other Today
screen items. Using the options dialog, you can change the height of the Power Bar
item from a wide bar that displays an icon and a text display of the battery state
to a thin 5-pixel bar that takes up very little room on your Today screen. Tap
ping the PowerBar item launches the Power Control Panel applet.

To install Power Bar, you need to edit the Pocket PC registry to add an entry
for Power Bar under [HKEY _LOCAL_MACHINE]\Software \Microsoft\ Today\Items,
as I explained earlier. For the DLL name, use\ Windows\Powerbar.dll. Figure 15-2
shows the Today screen with the PowerBar custom item. Figure 15-3 shows the
PowerBar source code.

!2;Z) No unread messages--~
No unsent messages

~-No-LiPcoiiilnfi'Piliiintm-eiltS"--

Figure 15-2 The Today screen with the PowerBar custom item displayed

This example has an additional source code file, PowerBar.def. Def files
provide a method for defining specific ordinal values for exported functions.
In the case of Today screen items, the exported function lnitializeCustomltem
and the options dialog box procedure must be assigned ordinals 240 and 241,
respectively.

PowerBar.def
EXPORTS

InitializeCustomitem 240 NONAME
CustomltemOptionsOlgProc @ 241 NONAME

Figure 15-3 The PowerBar example (continued)

855

Part IV Advanced Topics

856

Figure 15-3 (continued)

4t1 nclude ~·wi.ndows. h"
4f1nclude ''aygshell.h"

4finc1 ude
4finc1 ade

10:....IGON IGON ''PowerBar. i co"
I .

I I Options ·dialog
11 .

1.()0:.... TO!JAV...,.CUSTOM
STYLE. DS~G()NTl{QL
CAPTION ".Settings"
BEGIN .

·~Powe.rBar
GE .. Copyright .. z0e1 .Douglas

LTEXT ''Bar Height",
A1.JTORADI0BUTTON •1.sf\ort·~'

Extending the Pocket PC Chapter 15

II Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);
} :
struct decodeCMD {

UINT Code;
LRESULT (*Fxn)(HWND, WORD, HWND. WORD);

} ;

II Helper macro
fdefine· MylsBtnChecked(a,b) \

II Structure associates
II messages
II with a function.

II Structure associates
11 lliertu IDs with a
I I fun¢tion.

',:,_,

((Sen<;IDlgltemMessage (a, b., BtLGE:TS1ATE,0,0l&3>==6STLCHECK~D)

11- - -----·- -- -- -- - - -- - -- - - - - -- -- -- ~- - - - -- - - - - -- - - - - -- -.~~~-<---• -- ---- ----

(continued)

857

Part IV Advanced Topics

Figure 15-3 (continued)

858

Extending the Pocket PC Chapter 15

ll- - - -c. - • - - : - .·. ~ .•: - - -. - - - - - - - - - : -

II MyRegisterClass - Registers the item's window class
II
int MyRegisterClass (HlNSTANCE hlnstl C

WNDCLASS we;

}

//Register the item's window cl.ass.
m~mset <&we, 0, sizeof (well;
we.style = CS_HREDRAW I CS_VREDRAW:
we.lpfnWndProe = TodayWndProe:
we.hlnstance= hlnst;
we•. 1 pszCl ass Naine··;:•• ·roDAYWND;
wc.hbrBackgrQlJ.nd = (HBFW$H) (COLOR_WINDOW+ll:
return .Regi sterClass. (&wcJ;

1·1="===========•=:=:""="===='""'======"'""====="'=========="'="="="="===========

(continued)

859

Part IV Advanced Topics

Figure 15-3 (continued)

860

Extending the Pocket PC Chapter 15

II If the battery value has changed since the last check.
II set the flag.to force a redraw of the Today screen.
if (sps.BatteryLifePercent != nBattValuel {

nBattValue = sps.BatteryLifePercent;
fNewData = TRUE:

else
fNewData = FALSE;

return fNewData;

11-------------------------·----------------------·~-'~~----------------

I I DoClearCacheMain - Process WM_TODAYCUSTOM_CLEARCACHE.message
II for window.
II
LRESULT DoClearCacheMain (flWND hWnd, UINT wMsg, WPARAM wParam.

LPARAM .lParam) {
II Nothing to do here since the example .doesn'tcache data
return 0;

}

/ / • - - - - - - - - - - - ; - : - : : c : - ': - • - -.- : - ' : - - - •• - : : ~.: - - - - - - - -

II
LRESULT

Launch ·the Control Par1el's
mems¢t<&se, 0 •• sLzeof .. (se}};
se;cbSize =.sizeof .. (seJ;
se>hwnd = hWnd;
se,lpFile = TEXT (''ctlpnl.exe''l;
se.lpVerb = TEXT("open");
se;lp.Oirectory = TEXT t"\\w.indows"); ·
se.lpParameters =TEXT ("powerg,cpl"

ll••· Se°ll•••• if. power •. cplis.·. a standa1 ()ne exe.
dwAttl" = GetFiJeAttributes (TtXl('.'.\ \ wi. ndows\\powetg; exe"l};

<dwAttr J= . .COWORD}'lJ

...
DoPaihtMain CHWND hWnd, UINT wMsg,

LPf;RAM., Pa rarn) .. {

(continued)

861

Part IV Advanced Topics

Figure 15-3 (continued)

862

Extending the Pocket PC Chapter 15

}

else
wsprintf (szText, TEXT ("%02d%%"), nPercentl;

SetBkMode (hdc, TRANSPARENT);
DrawText (hdc, szText, -1, &rect, DT_CENTER I OT_SINGLELINE

OT_VCENTERl;

EndPaint (hWnd, &ps);

I I Reset my "redraw now" flag.
fNewData FALSE;
return 0;

II========="=============================="'=============="-"-=============
II CustomitemOptionsDlgProc - Options Dialog box procedure
II
BOOL CALLBACK tustomitemOptionsOlgProc CHWND

static TODAVLISTITEM

II Create a Done button and size
shi.dLdwMask. '- SHIDIM_HAGS;
shidL .. dwFlags = SHlDIF_DONEBUTTON I SHIDILSIZEDLG;
shidLhDlg =hWnd;
SHinltDTal ogC&shidiJ;

// Jump through hoops to look like
//other·Today<options dialogs.
hdc = GetDC lhWnd):
GetrextMetr:tcs (hdc ... &tml ;
memset(&lf, 0'.·sizeof Clf));
//C.reate proper font. It's not
Tt,JiHei:ght =.

, 'o',·':_---::/,\, ':·'<

lt.l·fwe1snt

(continued)

863

Part IV Advanced Topics

Figure 15·3 (continued)

864

Extending the Pocket PC Chapter 15

case WM_CTLCOLORSTATIC:
II Modify the color and font of the header text string.
if ((HWND)lParam != GetDlgltem (hWnd, IDC_STATIC_TITLE))

break:
SelectObject ((HDC)wParam, hFontJ:
SetTextColor ((HOC)wParam, RGB (0, 0, 156)):
SetBkColor ((HDC)wParam, RGB (255, 255, 255));
return (BOOL)GetStockObject (WHITE_BRUSH);

case WM_COMMAND:
wID = LDWORD (wParam):
switch CwID) {
case IDOK:

i = 20:
if (MyisBtnChecke~ (hWnd, ID_MED))

i = 16;
else if (MyisBtnChecked (hWnd, ID_SHORT))

i = 5;
.II Save the heigfl:t vaiue.
M#~etSet'fo4aYitemRe\f (i. FALSE):

.. ptli~>gtfFlag~=i:.
case IDCANCE~:

EndOialog Ch'tlnd; 0);.
break: ·

J:.· . < .. . •

. · zf• <" _·2~ ~ ~ " - - - - - - - - - - - - - - - - - - - " - c - - - - - - - - - - - - - - - - ~ - -

h M~GetSetTodayitemReg - Writes the Flags value of theToday item's
j(r.BgJstry .entry
If••; .
irtt MY(ietSetTodayitemReg (int nHa9Da.ta. BO.OL fRead) {

... : 'J1.K.C¥>frK~y-~. hSubKey _;.;_

.,:1iitrc.l'= 0; · <
-· -, , , ;-~~\kw:g-Rdi:,.::~~Y:P~ .:··.;'~:1 ~:~:;

.. :JCl:IAff :siKeytJJiil:Jt.
' . . icHAR . szon Lt.ti\X4f>.,~.:r1:11 : .

TC~AR si.Name[!il~*;.,•PATJ.fJ;
.:~ ' ' <-· .·'

1··' .·

./1 open the:]tkd~y$~r'e~m 's i.tem key.

RegQp~ffe~el"t;i<. tH~~Y-LOCALMACHINE.
< ; .. ;.•t,(.l:E){T. ("Software\ \Microsoft\ \tod~\Y\(items"),
. : ·~;:·: ;: ~i~ [0; .&hKey):

(continued)

865

Part IV Advanced Topics

866

Figure 15-3 (continued)

The code that displays the Today screen item is not complex. In the
InitializeCustomltem call, PowerBar registers the window class and creates the
child window. In the window procedure, the code that handles the
WM_TODAYCUSTOM_QUERYREFRESHCACHE message sets the cyp field of the
TODAYLISTITEM structure to the proper height, which is configurable through
the options dialog. The routine then checks the power status of the system by
calling GetSystemPowerStatusEx. If the battery level has changed since the last
check, the routine returns TRUE, forcing the Today screen to redraw the item.
In the WM_PAINT handler, the bar is drawn across the window using the rect-

Extending the Pocket PC Chapter 15

angle function. Depending on the height of the window, the icon is drawn and
the power level is printed in the window.

The options dialog procedure, CustomltemOptionsD!gProc, goes to great
lengths to provide the proper look to the dialog box. To this end, a custom font,
8.5-point Tahoma, is used to display the top line of text in the dialog box. In
addition, this line of text is displayed in blue and a solid line is drawn 23 pixels
below the top of the dialog. These customizations match the look of the Today
items dialog.

The font is created in the WM_INITDIALOG message. To override the draw
ing of the top line of text, the dialog procedure fields the WM_CTLCOLORSTATIC
message. The following code shows how-after checking which control is be
ing drawn-the dialog box procedure sets the text color and the font so that the
text is displayed with the customized look.

case WM_CTLCOLORSTATIC:
II Modify the color and font of the header text string.
if ((HWND)lParam != GetDlgltem (hWnd, IDC_STATIC_TITLE))

break;
SelectObject ((HDC)wParam, hFont);
SetTextColor ((HDC)wParam. RGB (0. 0, 156));
SetBkColor ((HDC)wParam, RGB (255, 255, 255));
return CBOOL)GetStockObject (WHITE_BRUSH);

The Today screen is an example of the extensibility of the Pocket PC shell.
Applications that provide an additional Today screen item to summarize their data
provide that extra bit of integration that users appreciate.

Writing an Input Method
The soft input panel, or SIP, provides Pocket PC users with a method of "key
board" -style input. I put keyboard in quotes because although the application
sees keyboard messages from the SIP, the user might be entering those charac
ters using a handwriting recognizer. The Pocket PC comes bundled with two ways
of entering character data: a tiny drawing of a keyboard on which the user can
tap in characters and a handwriting recognizer that interprets strokes that the user
makes with a stylus. You can also design your own method of input rather eas
ily. A component that provides this functionality is called an input method (IM),
and it's merely a COM object that exports an IinputMethod interface, and option
ally either an IlnputMethodEx or an 1InputMethod2 interface. The IlnputMethodEx
and 1InputMethod2 interfaces are both derived from the IInputMethod interface.
IInputMethodEx is supported by Windows CE 2.11 and later versions, while
IlnputMethod2 was added with Windows CE 3.0 and the Pocket PC.

867

Part IV Advanced Topics

These new interfaces add new methods for dealing with the Input Method
Editor (IME). The IME is used to propose a series of candidate characters in
response to input in the SIP. The SIP doesn't provide enough room to allow the
user to enter thousands of discrete characters, so the IME is used when work
ing with Asian languages. Unless your SIP needs to interface with the IME, the
IlnputMethod interface should be sufficient since it is compatible with all ver
sions of Windows CE that support a SIP. No matter which interface is exposed,
the purpose of the COM object is to create an input method window in response
to requests from the input panel.

The Components of a SIP

868

A SIP is composed of two main components-the input panel and the input
method. The input panel is supplied by the system. It creates the input panel
window and provides both the message loop processing for the SIP and the
window procedure for the input panel window. The input panel cooperates with
the taskbar or another shell program to provide the user with the ability to switch
between a number of installed input methods.

The input method is the installable portion of the SIP. It's responsible for
translating pen strokes and taps into keyboard input. The input method is also
responsible for the look and feel of the SIP. In almost all cases, the input method
creates a window that is a child of the input panel window. Within that child
window, the input method draws its interface and interprets mouse messages.
The input method then calls back to the input panel when it wants to generate
a key event.

Each of these two components implements a COM interface, which then
becomes the interface between them. The input method implements one of the
IlnputMethodxx interfaces, while the input panel implements three very similar
interfaces: IIMCallback, IIMCallbackEx, and IIMCallback2. In the following para
graphs, I'll talk about the IlnputMethod, IlnputMethod2, IIMCallback, and
IIMCallback2 interfaces.

The interaction between the input panel and the input method is driven by
the input panel. For the most part, the input method simply responds to calls
made to its IlnputMethod methods. Calls are made when the input method is
loaded, when it's unloaded, and when it's shown or hidden. In response, the input
method must draw in its child window, interpret the user's actions, and call
methods in the IIMCallback interface to send keys to the system or to control
the input panel's window.

Input methods are implemented as COM in-proc servers. Because of this,
they must conform to the standard COM in-proc server specifications. This means
that an input method is implemented as a DLL that exports DllGetClassObject and

Extending the Pocket PC Chapter 15

DllCanUnloadNow functions. Input methods must also export DllRegisterServer
and DllUnregisterServer functions that perform the necessary registry registration
and deregistration for the server DLL.

Threading Issues with Input Methods
Because the input panel and input method components are so tightly interre
lated, you must follow a few rules when writing an input method. While you can
use multiple threads in an input method, the interaction between the input panel
and the input method is strictly limited to the input panel's primary thread. This
means that the input method should create any windows during calls to methods
in the IlnputMethod interface. This ensures that these windows will use the same
message loop as the input panel's window. This, in turn, allows the input panel
to directly call the input method's window procedures, as necessary. In addition,
that same thread should make all calls made back to the JJMCallback interface.

In short, try not to multithread your input method. If you must use mul
tiple threads, create all windows in your input method using the input panel's
thread. Secondary threads can be created, but they can't call the IIMCallback
interface and they shouldn't create any windows.

The llnputMethod and llnputMethod2 Interfaces
The IlnputMethod interface is the core of an IM. Using the interface's methods,
an IM should create any windows, react to any changes in the parent input panel
window, and provide any cleanup when it's released. The IlnputMethod interface
exports the following methods in addition to the standard !Unknown methods:

• IInputMetbod::Select The user has selected the IM. The IM should
create its window.

• IInputMetbod::Deselect The user has selected another IM. The IM
should destroy its window.

• IInputMetbod::Showing The IM window is about to be displayed.

• IInputMetbod·:Hiding The IM window is about to be hidden.

• IInputMetbod::Getbifo The system is querying the IM for information.

• IInputMetbod::ReceiveSipinfo The system is providing informa
tion to the IM.

• IInputMetbod·:RegisterCallback The system is providing a pointer
to the JJMCallback interface.

• IInputMetbod::GetimData The IM is queried for IM-specific data.

869

Part IV Advanced Topics

870

• llnputMethod::SetlmData The IM is provided IM-specific data.

• llnputMethod::UserOptionsDlg The IM should display an options
dialog box to support the SIP Control Panel applet.

In addition to the preceding methods, the IlnputMethod2 interface has the fol
lowing methods:

• llnputMethod2::RegisterCallback2 The system is providing a
pointer to the IIMCallback2 interface.

• llnputMethod2::SetIMMActiveContext The system is informing
the IM of the current state of the IME.

Let's now look at these methods in detail so that we can understand the
processing necessary for each. The descriptions of the methods for the IlnputMethod
interface also apply for the similarly named methods in the IlnputMethod2 interface.

llnputMethod: :Select
When the user chooses your input method, the DLL that contains your IM is loaded
and the Select method is called. This method is prototyped as

HRESULT IInputMethod::Select (HWND hwndSip);

The only parameter is the handle to the SIP window that's the parent of your
input method's main window. You should return S_OK to indicate success or
E_FAIL if you can't create and initialize your input method successfully.

When the Select method is called, the IM will have just been loaded into
memory and you'll need to perform any necessary initialization. This includes
registering any window classes and creating the input method window. The IM
should be created as a child of the SIP window because the SIP window is what
will be shown, hidden, and moved in response to user action. You can call
GetClientRect with the parent window handle to query the necessary size of your
input window.

llnputMethod: :Getlnfo
After the input panel has loaded your IM, it calls the Getlnfo method. The input
panel calls this method to query the bitmaps that represent the IM. These bitmaps
appear in the SIP button on the taskbar. In addition, the IM can provide a set of
flags and the size and location on the screen where it would like to be displayed.
This method is prototyped as

HRESULT IInputMethod::Getinfo (IMINFO *pimi);

The only parameter is a pointer to an IMINFO structure that the IM must fill out
to give information back to the SIP. The IMINFO structure is defined as

typedef struct {
DWORD cbSize;
HANDLE hlmageNarrow;
HANDLE hlmageWide;
int iNarrow;
int iWide;
DWORD fdwFl ags;
RECT rcSipRect;

IMINFO;

Extending the Pocket PC Chapter 15

The first field, cbSize, must be filled with the size of the IMINFO structure.
The next two fields, hlmageNarrow and hlmageWide, should be filled with
handles to image lists that contain the bitmaps that will appear on the taskbar
SIP button. The Pocket PC's menu bar uses the narrow image. However, for
embedded systems, the shell has the flexibility to use either the wide 32-by-16-
pixel bitmap or the narrow 16-by-16-pixel bitmap, depending on its needs. The
input method must create these image lists and pass the handles in this struc
ture. The IM is responsible for destroying the image lists when a user or an
application unloads it. You can create these image lists in the Getlnfo method
as long as you design your application to know not to create the image lists twice
if Getlnfo is called more than once. Another strategy is to create the image lists
in the Select method and store the handles as member variables of the
IlnputMethod object. Then when Getlnfo is called, you can pass the handles of
the already created image lists to the input panel.

The next two fields, iNarrow and iWide, should be set to the index in the
image lists for the bitmap you want the SIP to use. For example, you might have
two different bitmaps for the SIP button, depending on whether your IM is docked
or floating. You can then have an image list with two bitmaps, and you can specify
the index depending on the state of your IM.

The fdwFlags field should be set to a combination of the flags SIPF _ON,
SIPF _DOCKED, SIPF _LOCKED, and SIPF _DISABLECOMPLETION, all of which
define the state of the input panel. The first three flags are the same flags that I
described in Chapter 14. When the SIPF _DISABLECOMPLETION flag is set, the
auto-completion function of the SIP is disabled.

Finally, the rcSipRect field should be filled with the default rectangle for the
input method. Unless you have a specific size and location on the screen for your
IM, you can simply query the client rectangle of the parent SIP window for this
rectangle. Note that just because you request a size and location of the SIP win
dow doesn't mean that the window will have that rectangle. You should always
query the size of the parent SIP window when laying out your IM window.

871

Part IV Advanced Topics

872

llnputMethod::ReceiveSiplnfo
The ReceiveSiplnfo method is called by the input panel when the input panel is
shown and then again when an application moves or changes the state of the
input panel. The method is prototyped as

HRESULT IInputMethod: :ReceiveSipinfo CSIPINFO *psi);

The only parameter is a pointer to a SIPINFO structure that I described in Chapter
14. When this method is called, only two of the fields are valid-the fdwFlags
field and the rcSipRect field. The rcSipRect field contains the size and location
of the input panel window, while the fdwFlags field contains the SIPF _xxx flags
previously described. In response to the ReceiveSiplnfo method call, the IM should
save the new state flags and rectangle.

llnputMethod: :RegisterCallback
The input panel calls the RegisterCallback method once, after the input method
has been selected. The method is prototyped as

HRESULT IInputMethod: :RegisterCallback CIIMCallback *lpIMCallback);

This method is called to provide a pointer to the llMCallback interface. The only
action the IM must take is to save this pointer so that it can be used to provide
feedback to the input panel.

llnputMethod: :Showing and llnputMethod: :Hiding
The input panel calls the Showing and Hiding methods just before the IM is shown
or hidden. Both these methods have no parameters and you should simply re
turn S_OK to indicate success. The Showing method is also called when the panel
is moved or resized. This makes the Showing method a handy place for resizing
the IM child window to properly fit in the parent input panel window.

llnputMethod::GetlmData and llnputMethod::SetlmData
The GetlmData and SetlmData methods give you a back door into the IM for
applications that need to have a special communication path between the appli
cation and a custom IM. This arrangement allows a specially designed IM to
provide additional data to and from applications. The two methods are
prototyped as

HRESULT IlnputMethod::GetlmData (DWORD dwSize, void* pvlmData);

HRESULT IlnputMethod::SetlmData (DWORD dwSize, void* pvlmData);

For both functions, pvlmData points to a block of memory in the application.
The dwSize parameter contains the size of the memory block.

Extending the Pocket PC Chapter 15

When an application is sending data to a custom IM, it calls SHSiplnfo with
the SPI_SETSIPINFO flag. The pointer to the buffer and the size of the buffer are
specified in the pvlmData and dwlmDataSize fields of the SIPINFO structure. If
these two fields are nonzero, the input panel then calls the SetlmData method
with the pointer and the size of the buffer contained in the two parameters of
the method. The input method then accepts the data in the buffer pointed to by
pvlmData. When an application calls SHSiplnfo with the SPI_GETSIPINFO struc
ture and nonzero values in pvlmData and dwlmDataSize, the input panel then
calls the GetlmData method to retrieve data from the input method.

llnputMethod: :Deselect
When the user or a program switches to a different default IM, the input panel
calls Deselect. Your input method should save its state (its location on the screen,
for example), destroy any windows it has created, and unregister any window
classes it has registered. It should also destroy any image lists it's still maintain
ing. The prototype for this method is

HRESULT IInputMethod::Deselect (void);

After the Deselect method is called, the SIP will unload the input method DLL.

llnputMethod: :UserOptionsD/g
The UserOptionsDlg method isn't called by the input panel. Instead, the input
panel's Control Panel applet calls this method when the user taps the Options
button. The IM should display a dialog box that allows the user to configure
any settable parameters in the input method. The UserOptionsDlg method is
prototyped as

HRESULT IInputMethod::UserOptionsDlg (HWND hwndParent);

The only parameter is the handle to the window that should be the parent win
dow of the dialog box. Because the IM might be unloaded after the dialog box
is dismissed, any configuration data should be saved in a persistent place such
as the registry, where it can be recalled when the input panel is loaded again.

The following two methods are supported only in the IlnputMethod2 inter
face. The IlnputMethod2 interface is derived from IlnputMethod; all the methods
previously described are therefore implemented in IlnputMethod2.

l/nputMethod2: :RegisterCallback2
The input panel calls the RegisterCallback2 method once, after the input method
has been selected. The method is prototyped as

HRESULT IInputMethod2::RegisterCallback2 (IIMCallback2 *lpIMCallback);

873

Part IV Advanced Topics

This method is called to provide a pointer to the IIMCallback2 interface. The only
action the IM must take is to save this pointer so that it can be used to provide
feedback to the input panel.

llnputMethod2:: Set/MMActiveContext
The input panel calls Set!MMActiveContext to inform the input method of changes
in state of the IME. The method is prototyped as

HRESULT SetIMMActiveContext (HWND hwnd, BOOL bOpen, DWORD dwConversion,
DWORD dwSentence, DWORD hkl);

The hwnd parameter is the handle of window control that has changed state.
The bOpen parameter indicates whether the IME is on or off. The dwConversion
and dwSentence parameters provide status on the current mode of the IME. The
hkl parameter contains the handle to the current active keyboard layout.

The llMCallback and //MCa//back21nterfaces

874

The IIMCallback interface allows an IM to call back to the input panel for ser
vices such as sending keys to the operating system. Aside from the standard
!Unknown methods that can be ignored by the IM, IIMCallback exposes only four
methods:

• IIMCallback::Setlmlnfo Sets the bitmaps used by the input panel
as well as the location and visibility state of the input method

• IIMCallback::SendVirtualKey Sends a virtual key to the system

• IIMCallback::SendCharEvents Sends Unicode characters to the
window with the current focus

• IIMCallback::SendString Sends a string of characters to the win
dow with the current focus

It's appropriate that the JIMCallback interface devotes three of its four methods
to sending keys and characters to the system because that's the primary purpose
of the IM.

The llMCallback2 interface adds one method:

• IIMCallback2:: SendAlternatives2 Sends data from the input method
to the IME

Let's take a quick look at each of these methods.

Extending the Pocket PC Chapter 15

llMCallback:: Setlmlnfo
The Setlmlnfo method allows the IM control over its size and location on the screen.
This method can also be used to set the bitmaps representing the IM. The method
is prototyped as

HRESULT IIMCallback::Setlmlnfo (!MINFO *pimi);

The only parameter is a pointer to an IMINFO structure. This is the same struc
ture that the IM uses when it calls the Getlnfo method of the llnputMethod in
terface, but I'll repeat it here for clarity.

typedef struct {
DWORD cbSize;
HANDLE hlmageNarrow;
HANDLE hlmageWide;
int iNarrow;
int iWide;
DWORD fdwFlags;
RECT rcSipRect;

IMINFO;

This structure enables an IM to provide the input panel with the informa
tion that the IM retrieved in Getlnfo. The IM must correctly fill in all the fields in
the IMINFO structure because it has no other way to tell the input panel to look
at only one or two of the fields. You shouldn't re-create the image lists when you're
calling Setlmlnfo; instead, use the same handles you passed in Getlnjo-unless
you want to change the image lists used by the input panel. In that case, you'll
need to destroy the old image lists after you've called Setlmlnfo.

You can use Setlmlnfo to undock the input panel and move it around the
screen by clearing the SIPP _DOCKED flag infdwFlags and specifying a new size
and location for the panel in the rcSipRect field. Because Windows CE doesn't
provide system support for dragging an input panel around the screen, the IM
is responsible for providing such a method. The sample IM that I present begin
ning on page 879 supports dragging the input panel around by creating a grip
per area on the side of the panel and interpreting the stylus messages in this area
to allow the panel to be moved around the screen.

llMCallback:: SendVirtua/Key
The SendVirtualKey method is used to send virtual key codes to the system. The
difference between this method and the SendCharEvents and SendString meth
ods is that this method can be used to send noncharacter key codes, such as those

875

Part IV Advanced Topics

876

from cursor keys and shift keys, that have a global impact on the system. Also,
key codes sent by SendVirtualKey are affected by the system key state. For ex
ample, if you send an a character and the Shift key is currently down, the re
sulting WM_CHAR message contains an A character. SendVirtualKey is
prototyped as

HRESULT IIMCallback::SendVirtualKey (BYTE bVk, DWORD dwFlagsl;

The first parameter is the virtual key code of the key you want to send. The
second parameter can contain one or more flags that help define the event. The
flags can be either 0 or a combination of flags. You would use KEYEVENTF _KEYUP
to indicate that the event is a key up event as opposed to a key down event and
KEYEVENTF _SILENT, which specifies that the key event won't cause a key click
to be played for the event. If you use SendVirtualKey to send a character key,
the character will be modified by the current shift state of the system.

llMCal/back: :SendCharEvents
The SendCharEvents method can be used to send specific characters to the win
dow with the current focus. The difference between this method and the
SendVirtualKey method is that SendCharEvents gives you much more control over
the exact information provided in the WM_KEY xxx and WM_ CHAR messages
generated. Instead of simply sending a virtual key code and letting the system
determine the proper character, this method allows you to specify the virtual key
and associate a completely different character or series of characters generated
by this event. For example, in a simple case, calling this method once causes the
messages WM_KEYDOWN, WM_CHAR, and WM_KEYUP all to be sent to the
focus window. In a more complex case, this method can send a WM_KEYDOWN
and multiple WM_CHAR messages, followed by a WM_KEYUP message.

This method is prototyped as

HRESULT IIMCallback::SendCharEvents (UINT uVK, UINT uKeyFlags,
UINT uChars. UINT *pUShift, UINT *PUChars);

The first parameter is the virtual key code that will be sent with the WM_KEYDOWN
and WM_KEYUP messages. The second parameter is an unsigned integer con
taining the key flags that will be sent with the WM_KEYDOWN and WM_KEYUP
messages. The third parameter is the number of WM_ CHAR messages that will
be generated by this one event. The next parameter, puShift, should point to an
array of key state flags, while the final parameter, puChar, should point to an
array of Unicode characters. Each entry in the shift array will be joined with the
corresponding Unicode character in the character array when the WM_CHAR
messages are generated. This allows you to give one key on the IM keyboard a
unique virtual key code and to generate any number of WM_ CHAR messages,
each with its own shift state.

Extending the Pocket PC Chapter 15

llMCal/back: :SendString
You use the SendString method to send a series of characters to the focus win
dow. The advantage of this function is that an IM can easily send an entire word
or sentence, and the input panel will take care of the details such as key down
and key up events. The method is prototyped as

HRESULT IIMCallback: :SendString (LPTSTR ptszStr, DWORD dwSize);

The two parameters are the string of characters to be sent and the number of
characters in the string.

llMCallback2:: SendAlternatives2
The SendAlternatives2 method provides a mechanism for the input method to
send alternative characters to the IME. For languages with hundreds or thou
sands of characters, the input method might have to guess at the intended
character entered by the user. These guesses or alternative characters are sent
using SendAlternatives2 to the IME so that it can present the alternatives to the
active control. If the control doesn't handle the alternative suggestions, the first
character in the list is used as the correct character. The prototype of
SendAlternatives2 is

HRESULT SendAlternatives2CLMDATA * plmd);

The one parameter is a pointer to an LMDATA structure defined as

typedef struct _tagLMDATA
DWORD dwVersion;
DWORD flags;
DWORD cnt;
DWORD dwOffsetSymbols;
DWORD dwOffsetSkip;
DWORD dwOffsetScore;

}LMDATA;

The version field should be set to OxlOOOO. The flags field describes the
format of the data in the table provided. The cnt field contains the number of
entries in the table. The dwO.ffsetSymbols, dwO.ffsetSkip, and dwO.ffsetScore fields
contain the offset of the start of the respective tables containing the alternative
data. The data in the tables vary depending on how the IME and the input method
agree to share data.

The NumPanel Example Input Method
The NumPanel example code demonstrates a simple IM. NumPanel gives a user
a simple numeric keyboard including keys 0 through 9 as well as the four arithme
tic operators:+,-,*, and I and the equal sign key(=). Although it's not particularly

877

Part IV Advanced Topics

878

useful to the user, NumPanel does demonstrate all the requirements of an input
method. The NumPanel example is different from the standard IMs that come
with the Pocket PC in that it can be undocked. The NumPanel IM has a gripper
bar on the left side of the window that can be used to drag the SIP around the
screen. When a user double-taps the gripper bar, the SIP snaps back to its docked
position. Figure 15-4 shows the NumPanel IM in its docked position, while Fig
ure 15-5 shows the same panel undocked.

Figure 15-4 The NumPanel IM window in its docked position

Figure 15-5 The NumPanel IM window undocked

The source code that implements NumPanel is divided into two main files,
IMCommon.cpp and NumPanel.c. IMCommon.cpp provides the COM interfaces
necessary for the IM, including the IlnputMethod interface and the IClassFactory
interface. IMCommon.cpp also contains DllMain and the other functions necessary

Extending the Pocket PC Chapter 15

to implement a COM in-proc server. NumPanel.c contains the code that imple
ments the NumPanel window. This code comprises the NumPanel window pro
cedure and the supporting message-handling procedures. The source code for
NumPanel is shown in Figure 15-6.

NumPanel.def

;Standard COM library DEF file

LIBRARY NUMPANEL.DLL

EXPORTS
DllCanUnloadNow
DllGetClassObject
DllRegisterServer

@1 PRIVATE
@2 PRIVATE
@3 PRIV.ATE

PRIVATE

Writt;en .. for the book Programming .. Windows··.CE

/!Copyright CC)2001 Douglas Boling· .. ··. ·.· ·.. >· ... ·••·.••.··.· .. ···••<
//===========;:;=========;==
fffnclude "windows. h" I I For all that Wi rido1>is stuff
/AiJ1C:l ude ''NumPanel:h" I l Program:.s.pt;ciflc l:tllff

Figure 15-6 The NumPanel source code (continued)

879

Part IV Advanced Topics

Figure 15-6 (continued)

880

Extending the Pocket PC Chapter 15

STDMETHODIMP_CULONGl AddRef (THIS);
STDMETHODIMP _CULONG) Rel ease <THIS);

//IInputMethod
HRESULT STDMETHODCALLTYPE Select (HWND hwndSip);
HRESULT STOMETHODCALLTYPE Deselect (Vqid):
HRESULT STDMETHODCALLTYPE .Showing (void);
HRESULT STDMETHODCALLTYPE Hiding (void);
HRESULT STDMETHODCALLTYPE Getinfo CIMINFO _R~Clf,,AR *Pi mil;
HRESUL T STDMETHODCALLTYPE Recei veSi pinfo (SlPii(fti<'i...:;RPc_FAR *PS i):
HRESULT STDMETHODCALLTYPE RegisterCallback (.. ·''.//>

IIMCallback _RP~]~~R,'.:~]pIMCallback);
HRESULT STDMETHOpCALLTYPE GetimOata (DWORD dwSizeil3ft'P•voro pvimData);
HRESULT STDMETHODCALLTYPE SetlmData (DWORD dwSi~:':*~V~lD pvimbata);
H RESULT STDMETHOOCALL TYPE Use rOpt i onsDl g (HWND h~rtftP:arent}:

//IInputMethod:2
HRESUL T STDMETHOUCALL TYPE

#define

.· #d~fine
iJ:define MS
c/Jd~ine··Ms

-~"'-.'/ ' ;. -'~<~:<<:~,
(continued)

881

Part IV Advanced Topics

Figure 15-6 (continued)

882

Extending the Pocket PC Chapter 15

.. ll\IJCc;>mrno11.c'RBi2'
!!==============,;;;;,,;.;;.,;.,==================.;,========;,=====================
II IMCommon - Commqn code for a Windows CE input method
II
11 Written for the .PookProgrammi.ng. Windows CE
II Co~yti9p:t CC) 2~0r D.OuQ}~s Boling' ...
, 11 =:;=~de:::::==~=~=~~;_;;:;;:;~~==~=~~==~~==·=::='.====;:==~==~;:;:=·~~~··=====:;==========
/Hnclude <windows. h> I I stuff
#include <commctrl .h>
/fdefine

· 1/fncl ude
. Jli nci ude

(continued)

883

Part IV Advanced Topics

Figure 15-6 (continued)

884

Extending the Pocket PC Chapter 15

II Set the friendly name of the SIP.
RegSetValueEx (hKey, TEXT (""), 0, REG_SZ, CPBYTElszFriendlyName,

(lstrlen (szFriendlyName)+l) * sizeof CTCHARll:

II Create subkeys,

II Set the module name of the SIP.
re RegCreateKeyEx (hKey, TEXT ("InProcServer32''), 0, TEXT('"'),

0, 0, NULL. &hSubKey, &dwDisp);
re RegSetValueEx ChSubKey, TEXT(""), 0, REG_SZ:, (PBYTE)szName,

(lstrlen (szName)+l) • sizeof (TCHAR));

RegCloseKey (hSubKey);

II Set the default icon of the server.
RegCreateKeYEx (hKey, TEXT ("Defaul tl con"). 0, lEXTt''''),

0, 0. NULL, &hSubKey, &dwOisp);

lstrcat CszName, TEXT (",0"));
RegSetValueEx ChSubKey, TEXT (""), 0 .• REG_sz. (PBYTE)szName,

Clstrlen (szNamel+n * sizeof CTCHAR»:
RegQioseKey .. · (hSubKey) ;

RegC i·oseKey

RegCloseKey

wsprintf. ($zTITip, .TEXT C"CLSID\ \%s"). szCLS10NumPanel2l;

re =. ·RegDeleteKey. (HKEY_cLASSES_ROOT.

if (re =:" ERROR:..SUCCESS)

(continued)

885

886

Part IV Advanced Topics

}

Figure 15-6 (continued)

r~turn·•·.a• ··p~i rjj;e~ •.• to•th~ ... ohJ~ct.
if· (I~E;qq11lI rn <tjti:t. HD'"'l[)n~nownJ Li . · .• ·

ls~~uilHIQ·•·.criHl; HQ::.,lClas~factory))

Extending the Pocket PC Chapter 15

ll----------------C_---
11 LockServer - Called to tell the DLL not to unload even if use count is 0
STDMETHODIMP MyClassFactory::LockServer CBOOL flock) {

}

if (flock)
Interlockedincrement C&g_DllCnt);

else
InterlockedDecrement C&g_DllCnt);

return NOERROR;

11---
II Createlnstance - Called to have class factory object-create other
II objects
STDMETHOD IMP My Class Factory: : Create Instance (LPUNKNOW~. P9n.f<ciute r.

MyIInputMethod *pMyIM;
HRESULT hr;

if (pUnkOuterJ
. reti.lr:ii (C LA-S.S:_E_NOAGGREGATIONJ:

if ctsEqualiiD (~iJd. HIJ..;l~-nknown) 11
lsE:quaHllJ {ri id; uo_nnputMethod2 >)

l/ Create lnpuf111etho~ object.
pMyIM = new MyITnputMethod();
if (! pMyIM) _ _ _ -

return E-'-OUTOFM~MOR'h

REF! ID

' .
11 See if object exports the proper interface:.
hr = pMyIM->Oueryihterface (riid, ppv);
II This will cause an obj delete unless interface found.

();

(continued)

887

Part IV Advanced Topics

Figure 15-6 (continued)

888

Extending the Pocket PC Chapter 15

I I - - - - - - - - - - - - - - - :· ~.:~ ~ - - - - - - - - - - - - - - : - : - - - - - - - c - - - -

II Select - The l~i~as just been loaded.1rito memory.
II
HRESU LT STDMETHODCALL TYPE My II nputMethod: : Select (HWND hwndS i p)

HBITMAP hBmp, hbmpMask:

m...:hwi'ldParent "' hwndSip;

II Create image list for narrow (16xl6)
m..himlNar.row = ImageList_Create (16; 16,

l. 0):
hBmp = LoadBttmap Ch Inst, TEXT C~'NarrowBmp"
hbmpMa~k "' LoadBitmap (hinst, TEXT ("Nar-r111w""•"K
ImageList_Add cm_MmlNarrow, hBmp. hbmpMaskJ;
.DeleteObject thBmp):<.
OeleteObJect (hbinpMask);

(continued)

889

Part IV Advanced Topics

Figure 15-6 (continued)

890

Extending the Pocket PC Chapter 15

teat ion is passing IM-specific data to the IM.

HRESULT STDMETHOQCALLTYPE MyIInputMethod::G!!timData <DWORD dwSize.
LPVOID pvimData)

IM.

(continued)

891

Part IV Advanced Topics

Figure 15·6 (continued)

892

Extending the Pocket PC Chapter 15

II Register sip window class.
memset (&we, 0; ·si zeof (we)):
we.style :: CS_DBLCLKS:
wc.lpfnWndProc = NPWndProc: II Callback function
wc.h!nstance = hinst: II Owner handle
wc.hbrBackground = IHBRUSH) G~tStockObjlct (WHITE_BRUSH):
wc.lpszClassName = MYSIPCLS: ll Window class name
if (RegisterClass <&we) == 0) return 0:

II Create SIP window.
GetClientRect (hwndParent, &rectl:
hwnd"' CreateWindowEx (0, MYSIPCLS, TEXT<""),

ws_VISJBLE J ws_cHIL:D J ws_BORDER,. te.~t::·l~ft.
re ct. top, rect. right - re ct. 1 eft, .· .•:.•··.·· .. · :
rect.bottom c rect.top, hwndParent •. <HM.€NU)100,
hlnst, 0);
(hwnd))

(continued)

893

Part IV Advanced Topics

Figure 15-6 (continued)

894

Extending the Pocket PC Chapter 15

LRESULT CALLBACK OoPaintSip (HWND hWnd, UINT wMsg, WPARAM wParam.

HOC hdc:
HBRUSH hOld:
PAINTSTRUCT ps;
RECl rect,. rectBtn:

LPARAM lParam) {

INT i, j, k. x, y, ex, cy, cxBtn, cyBtn:
LPSIPWNDSTRUCT pWndData:

pWndOata "' (LPSIPWNDSTRUCTJGetWindowlong

(continued)

895

Part IV Advanced Topics

Figure i 5-6 (continued)

896

Extending the Pocket PC Chapter 15

pWndOata->ptMovBasis = pt;
ClientToScreen (hWnd, &pt);
pWndData->ptMovStart = pt:
ShowWindow (GetParent(hWnd), SW_HIDE):
break;

caseWM_MOUSEMOVE:
if (!pWndData->fMoving)

return 0:
ClientToScreen (hWnd, &pt);
ComputeFloatRect (hWnd. pWndData, pt,
II Erase old drag rectangle~
if (pWndData->rectLast.left != -ll

OrawFloatRect ChWnd, pWndData->rectlast};
11 Draw new drag rectangle.
DrawFl oatRect < hWnd, rectFloat l;
pWndData·>rectlast = rectFloat;
break;

case WM_LBUTTONUP:
if (!pWndDat~r->fMoving)

return .. 0;
Free .up dragging

Re 1 e.a seCapture C) ;
pWndData ->fMoving = FALSE:
ClienttoScreen (hWnd, &pt l;
ll Erase 1 ast drag rectangle.,
ConipqteFloatRect ChWnd, pWndData, pt, &rectFloat) .;

<i?wndDat()-}recttast. left != :1)

D.rawFloat.Rect (hWnd ..• ·.pWndData ·>rectLastJ;
PWndOata->reCtlast. l .eft· =
ShowWindow .(GetParent(hWnd), SW_SHOWl;
I I Don't move SIP if really. small move.

((abs (pWndData->ptMovStart,x - pLxl < 3) &&
(abs (pWndData~>ptMovStart.y - pLy} < 3))

break;

Tell. the···InpulManager ab?utt.he .. move,
pWn<lData:>tmi .rcSi.pRect. =· .• rectfluat;
pwnqOata->lmi, fdwFlags&=. ~SIPF ~DOCK.ED;
pWndData·)imi.fdwFlags I= SIPF..,..ON;
I lMCall back_SetimT nfo (pWndData ->pIMCa l lback; &pWndData ~>i llli) ;
brea.k>;

if .. { pt. x >>GRlPWTDTH+3)
return>0;

ReleaseCapturef):
pWndData~>fMdvtng FALSE;

(continued)

897

Part IV Advanced Topics

Figure 15·6 (continued)

898

Extending the Pocket PC Chapter 15

break;
}

II Decide how nt wnd. If only 1 btn. changed, just
II invalidate that rect. Otherwise, invalidate entire wnd.
if ((wMsg "'"' WM_MOUSEMOVO && (~tnDnflags !=pWndData->dwBtnDnFlags))

InvalidateRect ChWnd, NULC,FAlsE)j
else {

i "' 3+GRI PWIDTH; II

899

Part IV Advanced Topics

900

Although NumPanel is divided into two source files, both the IlnputMethod2
interface and the NumPanel window procedure run in the same thread. In re
sponse to a call to the Select method of IlnputMethod2, the NumPanel window
class is registered and the window is created as a child of the IM's window. The
image lists used by the IM are also created here with the handles stored in member
variables in the MyllnputMethod object. The only other work of interest performed
by the code in IMCommon.cpp is the code for the Getlnfo method. In this method,
the image list handles are provided to the IM along with the requested dimen
sions of the undocked window. The dimensions of the docked window are
provided by the system.

For four other methods, all MyIInputMethod does is post messages to the
window procedure of the NumPanel window. In NumPanel.c, these messages
are fielded in the MYMSG_METHCALL user-defined message. The four methods
make available to the window a pointer to the IIMCallback and IIMCallback2
interfaces and notify the NumPanel window that the window is about to be
displayed or that the state of the input panel is changing.

The other code in the NumPanel window draws the keys on the window
and processes the stylus taps. The DoPaintSip routine handles the painting. The
routine draws a grid of 3 rows and 5 columns of buttons. In each button, a char
acter is drawn to label it. A separate bit array contains the up or down state of
each button. If the button is down, the background of the button is drawn in
reverse colors.

Two routines-DoMouseSip and HandleGripper-handle the mouse messages.
The mouse messages all initially go to DoMouseSip, which calls HandleGripper. If
the routine determines that the mouse message is on the gripper or that the
window is currently being dragged, HandleGripper handles the message. Oth
erwise, if the DoMouseSip routine determines that a mouse tap occurs on one
of the buttons, it calis the SendCharEvent method of IIMCallback to send the
character to the focus window.

When the window is dragged to a new location on the screen, the
HandleGripper routine clears the SIPF _DOCKED flag and sets the new size and
location of the SIP by calling the Setlmlnfo method of IIMCallback. When the
user double-taps the gripper, HandleGripper sets the SIPF _DOCKED flag and sets
the SIP rectangle to the original docked rectangle that was saved when the
NumPanel window was first created.

In the next chapter, I step back from application programming and look at
system programming issues. Chapter 16 explains how the different components
of Windows CE work together while presenting a unified Win32-compatible APL

System Programming
This chapter takes a slightly different tack from the previous chapters of the book.
Instead of touring the API of a particular section of Windows CE, I'll show you
Windows CE from a systems perspective.

Windows CE presents standard Windows programmers some unique chal
lenges. First, because Windows CE supports a variety of different microproces
sors and system architectures, you can't count on the tried and true IBM/Intel
PC-<:ompatible design that can be directly traced to the IBM PC/ AT released in
1984. Windows CE runs on devices that are more different than alike. Different
CPUs use different memory layouts, and while the sets of peripherals are simi
lar, they have totally different designs.

In addition to using different hardware, Windows CE itself changes, depend
ing on how it's ported to a specific platform. While all Pocket PCs of a particu
lar version have the same set of functions, that set is slightly different from the
functions provided by Windows CE for the Handheld PC. In addition, Windows
CE is designed as a collection of components so that OEMs using Windows CE
in embedded devices can remove unnecessary small sections of the operating
system, such as the Clipboard APL

All of these conditions make programming Windows CE unique and, I might
add, fun. This chapter describes some of these cross-platform programming is
sues. I'll begin the chapter by describing how the system boots itself, from reset
to running applications.

The Boot Process
If you're a systems programmer, you might enjoy, as I do, seeing how a system
boots up. When you think about it, booting up poses some interesting problems.
How does the system load its first process when the process loader is part of that

901

Part IV Advanced Topics

process you want to load? How do you deal with 30 different CPUs, each with
its own method of initialization?

In the case of Windows CE, we have a somewhat better view of this pro
cess. Because the hardware varies radically across the different platforms,
Windows CE requires that OEMs write some of the initialization code. In each
instance, this initialization code is incorporated in the HAL (hardware abstrac
tion layer), under the kernel. When an OEM builds the system for a specific
hardware platform, the HAL is statically linked with the Windows CE kernel code
to produce NK.exe.

Actually, the OEM writes far more than the HAL when porting Windows CE
to a new platform. The OEM also writes a thin layer under the Graphics, Windowing,
and Event Subsystem (GWES or GWE) to link in some of the more basic drivers
used by GWES. In addition, the OEM must write a series of device drivers, from
a display device driver to drivers for the keyboard, touch panel, serial, and au
dio devices. The actual collection of drivers is, of course, dependent on the
hardware. This collection of the HAL layer plus the drivers is called the OEM
Adaptation Layer, or OAL.

In any case, let's get back to the boot process. This boot process is described
through the documentation and code examples provided in the Platform Builder.
Our journey starts, as with any CPU, at the occurrence of a reset.

Reset

902

When the system is reset, the CPU jumps to the entry point of NK.exe, which is
the kernel module for Windows CE. 1 The code at the entry point is actually written
by the OEM, not Microsoft. This routine, written in assembler, is traditionally
named Startup and is responsible for initializing the CPU into a known state for
the kernel. Since most CPUs supported by Windows CE are embedded CPUs, they
generally have a number of registers that must be set to configure the system
for the speed and sometimes even the base address of memory. Startup is also
responsible for initializing any caches and for ensuring that the system is in an
uncached, flat addressing mode.

NK.exe
When Startup has completed its tasks, it jumps to the entry point of the kernel,
Kerne/Start. This is the entry point for the Microsoft written code for NK. Kerne/Start
configures the virtual memory manager, initializes the interrupt vector table to a

1. The program that builds the ROM image inserts the proper jump instructions, or vector, at the reset ioca
tion, which causes the CPU to start executing code at the entry point of NK.

System Programming Chapter 16

default handler, and calls down to the OEM layer to initialize the debug serial port. 2

Kerne/Start then initializes its local heap by copying the initialized heap data from
ROM into system RAM, in a routine named Kerne/Relocate. Now that the local
heap for NK.exe has been initialized, the code can start acting less like a loader
and more like a program. The kernel then calls back down to the HAL to the
OEM/nit routine.

The job of OEM/nit, which is customarily written in C, is to initialize any
OEM-specific hardware. This includes hooking interrupts, initializing timers, and
testing memory. 3 Many systems perform some initial configuration of integrated
peripherals, if only to place them in a quiescent state until the driver for that
peripheral can be loaded. The OEM/nit routine is generally responsible for draw
ing the splash screen on the display during a boot process.

When OEM/nit returns, the kernel calls back into the HAL to ask whether
any additional RAM is available to the system. When an OEM creates a ROM image
of the Windows CE files, it makes some preliminary estimates about the size and
location of the RAM as well as defining the size and location of the ROM. This
routine, OEMGetExtensionDRAM., allows the OEM to tell the kernel about addi
tional RAM that can be used by the system. Once OEMGetExtensionDRAM. re
turns, the kernel enables interrupts and calls the scheduler to schedule the first
thread in the system.

At this point, the kernel looks for the file FileSys.exe and launches that
application. The system loader-the code that loads EXEs and DLLs into memory
looks in the object store to locate FileSys.exe. The directories that are searched
and the order of the search are the same as I described in Chapter 6. However,
if the module, in this case FileSys, isn't found, one more place is queried for
the module.

The kernel has extensions to determine whether the system is connected
to a debugging station. A debugging station is a PC running a special debugging
tool.4 The connection between the PC and the Windows CE system can be through
a serial port, a parallel port, or a dedicated Ethernet link. If such a connection is
found, the loader takes the additional step of looking on the PC for modules (EXEs
and DLLs) when the system asks it to load a file. In effect, this procedure
seamlessly extends the \Windows directory on the Windows CE system to include
any modules in a specific directory on the debugging PC. This procedure allows

2. All Windows CE systems, including all H/PCs and Pocket PCs, have a way to access a dedicated serial
port used for debugging. For consumer platforms, where controlling hardware cost is critical, this debug
serial port is typically on a separate "debug board" that can be plugged into a system.

3. It's the OEM's decision whether to run a RAM test when the system boots. Microsoft requires only that
the system boot process is complete within 5 or so seconds.

4. This tool is called EShell, for Ethernet shell. An older tool that provides the same function is CESH, for
CE Shell.

903

Part IV Advanced Topics

904

the system to load modules that aren't in the initial ROM image during the boot
process. Later, when the system is running, you can directly load modules from
the PC without having to first copy them into the object store of the Windows
CE system.

FileSys.exe
FileSys is the process that manages the file system, the database functions, and
more important at this stage, the registry. When FileSys is loaded, it looks in the
RAM to see whether it can find a file system already initialized. If one is found,
FileSys uses the already initialized file system, which allows Windows CE devices
to retain the data in their RAM-based file systems over a reboot of the system.

If FileSys doesn't find a file system, it creates one that merges an empty RAM
file system with the files on ROM. FileSys knows which files are in ROM by means
of a table that's built into the ROM image by the ROM builder program, which
merged all the disparate programs into one image. FileSys reads the default di
rectory structure from a file stored on ROM, which is composed of entries sug
gested by Microsoft for the OEM. In addition to initializing the file system, FileSys
creates default database images and a default registry. The initial images of the
default databases and default registry are also defined in files in ROM written by
the OEM and Microsoft. This file-driven initialization process allows OEMs to
customize the initial images of the file system from the directory tree to the in
dividual entries in the registry.

Launching Optional Processes
Once FileSys has initialized, the system initialization can proceed. The kernel
needs to wait because, at this point, it needs data from the registry to continue
the boot process. Specifically, the kernel looks in the registry for values under
the key [HKEY _LOCAL_MACHINE]\lnit. The values in this key provide the name,
order, and dependencies of a set of processes that should be loaded as part of
the boot process. The processes to be launched are specified by values named
Launchxx where the xx is a number defining the order of the launch. An op
tional value, Dependxx, can be used to make the launch of a process dependent
on another process specified earlier in the order. For example, the following set
of values was taken from the registry of a typical Handheld PC.

Value Data Comments
Launchl0 SHELL.EXE

Launch20 DEVICE.EXE

Launch30 GWES.EXE
Depend30 0014 Depends on Device (0xl4 == 20)

Launch50 EXPLORER.EXE
Depend50 0014 001E Depends on Device and GWE

System Programming Chapter 16

While I've listed the values in their launch order for clarity, the values don't
need to be in order in the registry. The numbers embedded in the names of the
values define the launch order.

The kernel loads each of the modules listed in its own process space. When
a process completes its initialization successfully, it signals this event to the kernel
by calling the function SignalStarted and passing the application's launch num
ber. The kernel knows from these calls to SignalStarted that any dependent
processes can now be launched.

What's interesting here is that each of these components of the operating
system functions as a standard user-level process. Just because a process appears
in this list doesn't mean that it's part of the operating system. While this launch
list is generally used only by OEMs, you can insert other processes in this list,
as long as the functions needed by that application have been loaded earlier in
the list. For example, you could write an application that's loaded after Device
and before GWES.exe as long as that application didn't make any calls to the
window manager or the graphics functions until GWE is initialized. On the other
hand, launching an application with a standard user interface before Explorer
loads can confuse Explorer. So unless you need to launch a process to support
system services, you should use Explorer to launch your applications on startup.
One additional point-you can't separately launch an application that depends
on Explorer to launch successfully because Explorer.exe doesn't call SignalStarted
during its initialization. Now let's follow this sequence and examine each of these
launched processes.

Shell.exe
Shell is an interesting process because it's not even in the ROM of most systems.
Shell.exe is the Windows CE side of CESH, the command line-based monitor.
Because Shell.exe isn't in the ROM, the only way to load it is by connecting the
system to the PC debugging station so that the file can be automatically down
loaded from the PC.

CESH uses the kernel link to the debugging PC to communicate with the
programmer. Instead of opening a file on the PC, CESH opens a console session
on the PC. The CESH debugger provides a number of useful functions to the
Windows CE OEM. First it gives the OEM developer a command line shell, run
ning on a PC that can be used to launch applications, query system status, and
read and write memory on the system.

CESH also lets the OEM developer manipulate a very handy feature of debug
builds of Windows CE named debug zones. When you're developing software,
it's often useful to insert debugging messages that print out information. On a
Windows CE system, these debugging messages are sent via the debug serial port.
The problem is that too many messages can hide a critical error behind a bliz-

905

Part IV Advanced Topics

906

zard of irrelevant informational messages. On the other hand,.Murphy says that
the day after you strip all your debugging messages from a section of code, you'll
need those messages to diagnose a newly reported bug. Debug zones allow the
developer to interactively enable and disable sets of debug messages that are built
into debug builds of Windows CE. All of the base processes bundled with Windows
CE as well as all the device drivers have these debugging messages built into them.
Every message is assigned to one of 16 defined debug zones for that process or
DLL. So, a developer can use CESH to enable or disable each of the 16 zones
for a module, which enables or disables the messages for that zone.

Shell.exe uses a Windows CE version of toolhelp.dll, so when Shell loads, it
loads ToolHelp. Shell doesn't bring any additional function to Windows CE; it's just
one place where Microsoft has added built-in debugging features for the OEM.

Device.exe
After Shell, the next module in the launch list is Device.exe. Notice that there's
no Depend20 line that makes the launch of Device.exe dependent on Shell.exe.
That's important because Shell won't launch successfully unless the system has
Shell.exe in the object store or is connected to a debug station. The job of
Device.exe is to load and manage the installable device drivers in the system.
This includes managing any PCMCIA Card drivers that must be dynamically loaded
and freed as well.

When Device.exe loads, it first loads the PCMCIA driver. It then looks in
the registry under [HKEY _LOCAL_MACHINE\Builtln for the list of the other drivers
it mustload when it initializes. This list is contained in a series of keys. The names
of the keys don't matter-it's the values contained in the keys that define which
drivers to load and the order in which to load them. Figure 16-1 shows the con
tents of the WaveDev key. The Wave driver is the audio driver.

The four values under this key are the basic four entries used by a device
driver under Windows CE. The Prefix value defines the three-letter name of the
driver. Applications that want to open this driver use the three-letter key with
the number that Windows CE appends to create the device name.

The Index value is the number that will be appended to the device name.
The Dll key specifies the name of the DLL that implements the driver. This is the
DLL that Device.exe loads.

The Order value allows the OEM to recommend the order in which the
drivers are loaded. Device.exe loads drivers with lower Order values before drivers
with higher Order values in the registry. As Device.exe reads each of the regis
try keys, it loads the DLL specified, calls RegisterDevice to register the DLL as a
device driver with the system, and then unloads the DLL. The DLL stays in memory
because RegisterDevice increments the use count of the DLL.

System Programming Chapter 16

Figure 16-1 The registry key for the Wave driver on an HP545

Although this is the standard load procedure, you can use another method.
If the driver key contains a value named Entry, Device loads the DLL, and then,
instead of calling RegisterDevice, it calls the entry point in the driver named in
Entry. The driver is then responsible for calling the RegisterDevice function on
its own so that it will be registered as a driver with the system.

The Entry value allows OEMs to fine-tune the loading process for a driver,
if necessary. If the Entry key is present, another key, Keep, can also be speci
fied. Specifying the Keep key tells Device.exe not to attempt to unload the driver
after it calls the driver's entry point. This allows the driver DLL to avoid calling
RegisterDevice and therefore avoid being a driver at all. Instead, the DLL is sim
ply loaded into the process space of Device.exe.

One of the subtle points about having Device.exe load the installable drivers
is that all these drivers will execute in the same 32-MB process space of Device.exe.
This coincidence allows related drivers to actually directly call entry points in each
other, although the preferred method would be to formally make an IOCTL call
into the other driver. You can't count on this common process arrangement in
future versions of Windows CE.

GWES.exe
Referring again to the list in the registry, we see that the next module to be loaded
is GWES.exe. GWES.exe contains the GWE subsystem. As I mentioned earlier in
the book, GWE stands for Graphics, Windowing, and Event Subsystem. Essen
tially, GWES is the graphical user interface over the top of the base operating
system composed of NK, FileSys, and Device.

907

Part IV Advanced Topics

908

Because GWE forms the user interface of a graphical version of Windows
CE, it's not too surprising that the drivers that directly access the user interface
hardware, the keyboard, the touch panel, and the display are loaded by GWES.exe
instead of Device.exe. A "pure" operating system design would isolate these
drivers with the others, down in the kernel. Given the lightweight nature of
Windows CE, however, having these drivers loaded by GWE makes a faster and
simpler interface for the operating system. These drivers also don't support the
standard stream interface required of drivers loaded by Device.exe. Instead, each
driver has a custom set of entry points called by GWES.exe.

Unlike Device.exe, GWES.exe doesn't load just any set of drivers. Instead,
GWE simply loads three predefined drivers: the keyboard driver, the touch panel
driver, and the display driver. GWES.exe looks in the registry in the following keys
to find these drivers all under the root registry key of [HKEY_LOCAL_MACHINE]:

Driver

Keyboard

Touch Panel

Display

Registry Key Name

\HARDWARE\DEVICEMAP\KEYBD

\HARDWARE\DEVICEMAP\ TOUCH

\SYSTEM\GDI\DRIVERS

Value Name

DriverName

DriverName

Display

If the registry entries aren't found for a particular driver, GWES.exe uses
default names for that driver. These drivers are written by the OEM and are called
native drivers to differentiate them from the installable form of a driver loaded
by Device.

In addition to the drivers loaded by GWE, the OEM also is charged with
writing a small amount of system adaptation code to support GWE. This code
deals with providing information about the state of the battery and an interface
to the notification LED, if one is present. Although this code can be statically linked
to GWE when the system is built, many OEMs isolate this code into one or more
DLLs and statically link only a small amount of code that loads these DLLs.

Custom Processes
At this point in the boot process, Windows CE, as an operating system, is up and
running. All that's left is to launch the shell. Some OEMs, however, launch pro
cesses at this point that manage some OEM-specific tasks. Although you can launch
other applications before you launch the Explorer, you should be careful about
that, as I mentioned before. The Explorer isn't written to handle visible top-level
windows that are created before the Explorer. You can see this by inserting the
following lines in the init key that launches the Calculator before the Explorer:

Launch45
Depend45

calc.exe
0014 001E

System Programming Chapter 16

After you insert the lines, reset your Windows CE device. Tap the desktop
button on the right end of the taskbar a couple of times and you'll see the Cale
window. Pressing on the Pop-Up button reduces the size of the Calculator win
dow so you can again see the Explorer underneath. Notice that the taskbar doesn't
have a button for the Calculator window. Nor, if you press Alt-Tab, is the Calcu
lator listed in the Active Tasks list. Figure 16-2 shows this unusual arrangement
of the Calculator and the Explorer on an H/PC.

Figure 16-2 The unusual arrangement of the Calculator and the Explorer

Because of the limitations of this arrangement, you shouldn't launch appli
cations with a user interface before the Explorer is launched. On the other hand,
if you have an application that doesn't have a user interface but that you need
to launch before the shell, this is the time to do it.

Explorer.axe
Finally the list is terminated by the launch of the Explorer.exe, or Shell32.exe if
the system is a Pocket PC. The Explorer is, of course, the shell. Although some
versions of the Explorer add some functions to the API, the trend is to move as
many functions as possible from the shell to the operating system. This allows
developers of embedded systems to use those functions even if the system doesn't
include the Explorer.

At this point, the location of the list of files launched during startup changes
from the registry to the file system. After the Explorer initializes the desktop and
the taskbar window, it looks in the \ Windows\Startup directory and launches
any executables or shortcuts contained in that directory. This is the standard, user
accessible method for launching applications when the system starts. This auto
launching is part of the Explorer, so if you're building an embedded system
without the Explorer, you'll have to perform this last task yourself.

Powering Up Doesn't Boot the System
One thing to always remember in Windows CE is that for most configurations,
including all battery-powered systems, pressing the Power button doesn't reset
the device. As I explained in Chapter 6, when the system is powered down it

909

Part IV Advanced Topics

doesn't really turn off. Instead, the system enters an extremely low power state
in which all the peripherals and the CPU power down but the state of the RAM
is maintained. When a user presses the power switch, the system restores power
and simply returns to the thread that was executing when the power button was
originally pressed.

Battery-powered Windows CE systems are reset only when power is ini
tially applied to the system-that is, when the first set of batteries is put in the
device. Other than that, resets occur only when the user presses the reset but
ton that's generally exposed through a pinhole somewhere on the case of the
device. Memory isn't erased when a user presses the reset switch, which allows
FileSys to continue to use the object store that was in RAM before the reset.

System Configuration

910

At this point, the system is up and running, but just what is running and how is
it configured? Figure 16-3 shows the system after a reset has occurred. The dia
gram separates the individual processes into their memory slots. Remember that
slot 0 is reserved for the currently active process. The list of DLLs that each pro
cess has loaded is shown below the name of the process.

First user
NK.exe FileSys.exe Device.exe GWES.exe Explorer.exe application

Coredll.dll Coredll.dll Coredll.dll Coredll.dll Coredll.dll Coredll.dll
PCMCIA.dll DDl.dll WinSock.dll
wavedev.dll touch.di! ASForm.dll
Serial.di! keybddr.dll old32.dll
AFD.dll OEMLib.dll• OleAut32.dll
arp.dll CEShell.dll
lrDAstk.dll commctrl.dll
waveapi.dll webview.dll
IRComm.dll imgdecmp.dll
WinSock.dll WinlNet.dll
Tapi.dll
Unimodem.dll

SlotO Slot 1 Slot 2 Slot3 Slot4 Slots Slot6

• OEMLib.dll - Most OEMs have a DLL to support battery and notification LED.

Figure 16-3 The system configuration after the system starts up

I

Last user
application

Coredll.dll

Slot 32

Note that Coredll.dll is loaded by every process. Coredll provides the en
try points for most APis supported by Windows CE. As a call is made into Coredll.dll,
it redirects the call to the appropriate server process-NK, FileSys, Device, GWE,
or Explorer.

Notice that Shell.exe isn't shown in Figure 16-3. It's missing because when
I captured the information for this figure, the Windows CE device I was using
wasn't connected to a debug PC, so Shell.exe wasn't loaded.

System Programming Chapter 16

Writing Cross-Platform Windows CE Applications
Over the years, Windows programmers have had to deal concurrently with dif
ferent versions of the operating system. Part of the solution to the problem this
situation posed was to call GetVersion or GetVersionEx and to act differently
depending on the version of the operating system you were working with. You
can't do that under Windows CE. Because of the flexible nature of Windows CE,
two builds of the same version of Windows CE can have different APis. The
question remains, though, how do you support multiple platforms with a com
mon code base? How does the operating system version relate to the different
platforms?

Platforms and Operating System Versions
To understand how the different platforms relate to the different versions of
Windows CE, it helps to know how the Windows CE development team is or
ganized within Microsoft. Windows CE is supported by a core OS group within
Microsoft. This team is responsible for developing the operating system, including
the file system and the various communication stacks.

Coordinating efforts with the OS team are the various platform teams,
working on the Handheld/PC, Pocket PC, and many other platforms. Each team
is responsible for defining a suggested hardware platform, defining applications
that will be bundled with the platform, and deciding which version of the oper
ating system the platform will use. Because the OS team works continually to
enhance Windows CE, planning new versions over time, each platform team
generally looks to see what version of Windows CE will be ready when that team's
platform ships.

The individual platform teams also develop the shells for their platforms.
Because each team develops its own shell, many new functions or platform
specific functions first appear as part of the shell of a specific platform. Then if
the newly introduced functions have a more general applicability, they're moved
to the base operating system in a later version. You can see this process in both
the Notification API and the SIP APL Both these sets of functions started in their
specific platform group and have now been moved out of the shell and into the
base operating system.

Following is a list of some of the different platforms that have been released
and the version of Windows CE that each platform uses.

911

Part IV Advanced Topics

Platform

Original H/PC

Japanese release of H/PC

Handheld PC 2.0

Original Palm-size PC

Handheld PC Pro 3.0

Palm-size PC 1.2

Pocket PC

Handheld PC Pro 2000

Windows CE version

1.00

1.01

2.00

2.01

2.11

2.11

3.0

3.0

You can choose from a number of ways to deal with the problem of dif
ferent platforms and different versions of Windows CE. Let's look at a few.

Compile-Time Versioning

912

The version problem can be tackled in a couple of places in the development
process of an application. At compile time, you can use the preprocessor defi
nition _ WIN32_ WCE to determine the version of the operating system you're
currently building for. By enclosing code in a #if preprocessor block, you can
cause code to be compiled for specific versions of Windows CE.

Following is an example of a routine that's tuned for both the original Palm
size PC and the new Pocket PC. For the Palm-size PC, the routine uses the old
SHSiplnfo function to raise and lower the SIP. For the new Pocket PC, the rou
tine uses the preferred function SHSipPreference.

int MyShowSip (HWND hWnd, BDOL fShow) {

#if WIN32_WCE < 300
SIPINFO si;

memset (&si, 0, sizeof (sill;
si .cbSize = sizeof (SIPINFO);
SHSiplnfo (SPI_GETSIPINFO, 0, &si, 0);
if (fShow)

si .fdwFlags I= SIPF_ON;
else

si.fdwFlags &= SIPF_ON;
SHSiplnfo(SPI_SETSIPINFO, 0, &si, 0);

11e 1 se
if (fShow)

SHSipPreference (hWnd, SIP_UP);

System Programming Chapter 16

else
SHSipPreference (hWnd, SIP_DOWN);

4tend if
return 0;

A virtue of this code is that the linker links the appropriate function for the
appropriate platform. Without this sort of compile-time code, you couldn't sim
ply put a nm-time if statement around the call to SHSiplnfo because the program
would never load on anything but a Pocket PC. The loader wouldn't be able to
find the exported function SHSiplnfo in Coredll.dll because it's present only in
Pocket PC versions of Windows CE.

As I mentioned in Chapter 14, builds for the Pocket PC have an additional
define set named WIN32_PLATFORM_PSPC. So you can block Palm-size and
Pocket PC code in the following way:

#ifdef WIN32_PLATFORM_PSPC
II Insert Palm-size or Pocket PC code here.

#end if

There are platform-specific defines for other Windows CE platforms. The
following list shows some of the defines:

• Handheld PC 2000

• Pocket PC

• Palm-size PC

• Handheld PC Professional

WIN32_PLATFORM_HPC2000

WIN32_PLATFORM_PSPC

WIN32_PLATFORM_PSPC

WIN32_PLATFORM_HPCPRO

To distinguish between the Pocket PC and earlier versions of the Palm-size
PC, you must also provide a check of the target Windows CE version using the
WIN32_ WCE definition, as in

#if defined(WIN32_PLATFORM_PSPC) && (WIN32_WCE >= 300)
II Pocket PC

#end if

The only issue with using conditional compilation is that while you still have a
common source file, the resulting executable will be different for each platform.

Explicit Linking
You can tackle the version problem other ways. Sometimes one platform requires
that you call a function different from one you need for another platform you're
working with but you want the same executable file for both platforms. A way

913

Part IV Advanced Topics

914

to accomplish this is to explicitly link to a DLL using LoadLibrary, GetProcAddress,
and FreeLibrary. You can then call the function as if it had been implicitly linked
by the loader.

LoadLibrary is prototyped as

HINSTANCE Loadlibrary (LPCTSTR lplibFileName);

The only parameter is the filename of the DLL. The system searches for Dils in
the following order:

1. The image of the DLL that has already been loaded in memory

2. The statically linked DLL in ROM for a ROM-based executable

3. The file in the path specified in lpLibFileName parameter

4. The directory of the executable loading the library (This is supported
only for Windows CE 2.1 and later.)

5. The Windows directory

6. The root directory

7. The image of the DLL in ROM

Notice in the search sequence above that if the DLL has already been loaded
into memory, the system uses that copy of the DLL even if your pathname specifies
a different file from the DLL originally loaded. Another peculiarity of LoadLibrary
is that it ignores the extension of the DLL when comparing the library name to
what's already in memory. For example, if SIMPLE.dll is already loaded in memory
and you attempt to load the control panel applet SIMPLE.cpl, which is under the
covers simply a DLL with a different extension, the system won't load SIMPLE.cpl.
Instead the system returns the handle to the previously loaded SIMPLE.dll.

LoadLibrary returns either an instance handle to the DLL that's now loaded
or 0 if for some reason the function couldn't load the library.

Once you have the DLL loaded, you get a pointer to a function exported
by that DLL by using GetProcAddress, which is prototyped as

FARPROC GetProcAddress CHMODULE hModule, LPCWSTR lpProcName);

The two parameters are the handle of the module and the name of the function
you want to get a pointer to. The function returns a pointer to the function or 0
if the function isn't found. Once you have a pointer to a function, you can sim
ply call the function as if the loader had implicitly linked it.

When you are finished with the functions from a particular library, you need
to call FreeLibrary, prototyped as

BOOL Freelibrary CHMODULE hlibModule);

System Programming Chapter 16

FreeLibrary decrements the use count on the DLL. If the use count drops to 0,
the library is removed from memory.

The following routine will run on the Pocket PC and embedded systems
that use a different function to retrieve the SIP rectangle. The routine explicitly
loads the two possible functions, calls the one found, and frees the libraries
loaded. A more efficient application would load the libraries and query the func
tion pointers when the program was initialized instead of performing this task
each time the functions were needed.

II Type definitions for the function pointers.
typedef HRESULT (CALLBACK* GETSIPINFOFUNC)(SIPINFO *);
typedef HRESULT (CALLBACK* SHSIPINFOFUNC)(INT, INT, PVOID, INT);

int MyGetSipRectl CRECT *prect) {
HINSTANCE hCoreDll, hAGYShell:
GETSIPINFOFUNC lpfnGetSipinfo:
SHSIPINFOFUNC lpfnSHSipinfo;
SIPINFO si:
INT re = 0;

//Load the DLL.
hCoreDll = Loadlibrary(TEXT("coredll .dll"));
II If we can't load Coredll, something is really strange!
if C ! hCoreDl 1 J

return -2:

II Prepare structure for call.
memset C&si, 0, sizeof (si));
si .cbSize = sizeof (SIPINFOJ:

II Attempt to get a pointer to GetSipinfo.
lpfnGetSipinfo = (GETSIPINFOFUNC)GetProcAddress(hCoreDll,

TEXTC"GetSipinfo"));
if ClpfnGetSipinfo) {

II Call GetSipinfo.
(*lpfnGetSipinfo)(&si);

} else {
II This DLL exports the Pocket PC shell APis.
hAGYShell= LoadLibrary(TEXT("aygshell .dll"J);
if ChAGYShell) {

II Attempt to get a pointer to SHSipinfo.
lpfnSHSipinfo = (SHSIPINFOFUNC)GetProcAddress

ChAGYShell, TEXTC"SHSipinfo"));
if (lpfnSHSipinfo) {

(*lpfnSHSipinfo)(SPI_GETSIPINFO, 0, &si, 0);
} else

re = -1:
(continued)

915

Part IV Advanced Topics

}

Freelibrary (hAGYShell);
} else

re= -1:

II At this point, one of the two functions has been called.
if (!rel

*prect = si .rcSipRect;

II Free the library.
Freelibrary(hCoreDl l):
return re:

This routine can be run on any platform, but will work only with those that
export one of the two get SIP information functions. On the other platforms, the
routine simply returns an error code of -1.

Windows CE also supports the LoadLibraryEx function, prototyped as

HMODULE LoadlibraryEx (LPCTSTR lplibFileName, HANDLE hFile, DWORD dwFlags);

The first parameter is the name of the DLL to load. The second parameter, hFile,
isn't supported by Windows CE and must be set to 0. The last parameter, dwFlags,
defines how the DLL is loaded. If dwFlags contains the flag DONT_RESOLVE_
DLL_REFERENCES, the DLL is loaded, but any modules the DLL requires are not
loaded. In addition, the entry point of the DLL, typically DllMain, isn't called. If
dwFlags contains LOAD_LIBRARY_AS_DATAFILE, the DLL is loaded into memory
as a data file. The DLL isn't relocated or prepared in any way to be called from
executable code. However, the handle returned can be used to load resources
from the DLL using the standard resource functions such as LoadString.

One last DLL function is handy to know about. DisableTbreadLibraryCalls
tells the operating system not to send DLL_THREAD_ATTACH and DLL_THREAD_
DETACH notifications to the DLL when threads are created and terminated in the
application. This can improve performance and reduce the working set of an
application since the DLL's LibMain isn't called when threads are created and
destroyed. The function is prototyped as

BOOL DisableThreadlibraryCalls CHMODULE hlibModule);

The only parameter is the handle of the DLL for which you want to disable the
notification of the thread events.

Run-Time Version Checking

916

When you're determining the version of the Windows CE operating system at
run time, you use the same function as under other versions of Windows
GetVersionEx, which fills in an OSVERSIONINFO structure defined as

System Programming Chapter 16

typedef struct _OSVERSIONINFO{
OWORO dwOSVersionlnfoSize:
DWORD dwMajorVersion;
DWORD dwMinorVersion:
DWORD dwBuildNumber;
DWORD dwPlatformld;
TCHAR szCSDVersion[128];

OSVERSIONINFO:

Upon return from GetVersionEx, the major and minor version fields are filled
with the Windows CE version. This means, of course, that you can't simply copy
desktop Windows code that branches on classic version numbers like 3.1or4.0.
The dwPlatformld field contains the constant VER_PLATFORM_ WJN32_CE un
der Windows CE.

Although you can differentiate platforms by means of their unique Windows
CE versions numbers, you shouldn't. For example, you can identify the current
Pocket PC by its unique Windows CE version, 3.0, but newer versions of the
Pocket PC will be using different versions of Windows CE. Instead, you should
call SystemParameterslnfo with the SPI_GETPLATFORMTYPE constant, as in

TCHAR szPlat[256J:
INT re:

re= SystemParameterslnfo (SPI_GETPLATFORMTYPE, sizeof (szPlat),
szPlat, 0):

if (lstrcmp (szPlat, TEXT ("Jupiter") == 0) {
II Running on an HIPC Pro

} else if (lstrcmp (szPlat, TEXT ("Palm PC2") == 0) {
II Running on a Pocket PC

} else if (lstrcmp (szPlat, TEXT ("Palm PC") == 0) {
II Running on an old Palm-size PC

} else if (lstrcmp (szPlat, TEXT ("HPC") == 0) {
II Running on an HIPC

}

Aside from the differences in their shells, though, the platform differences
aren't really that important. The base operating system is identical in all but
some fringe cases.5 The best strategy for writing cross-platform Windows CE
software is to avoid differentiating among the platforms at all-or at least as
little as possible.

For the most part, discrepancies among the user interfaces for the differ
ent consumer Windows CE devices can be illustrated by the issue of screen

5. For example, many of the shell functions starting with SHxx are specific to a platform. So you wouldn't
want to implicitly link to any of the platform-specific shell APis if you wanted an application that ran on
both the H/PC and the Pocket PC.

917

Part IV Advanced Topics

dimension. The Pocket PC's portrait-mode screen requires a completely differ
ent layout for most windows compared to the Handheld PC's landscape-mode
screen. The Handheld PC Pro's screen is landscape, but it can be double the height
of an H/PC screen. So, instead of looking at the platform type to determine what
screen layout to use, you'd do better to simply check the screen dimensions using
GetDeviceCaps.

Power Management

918

Windows CE is typically used in battery-powered systems, which makes power
management critical for the proper operation of the system. Applications are for
the most part blissfully unaware of the power issues of a Windows CE device,
but sometimes you might need to address these issues.

When the user powers down a Windows CE device, the power system isn't
powered off the way a PC powers off. Instead, the system is suspended. When
the user powers up the device, the device isn't rebooted like a PC-it resumes,
returning to the same state it was in before it was suspended. As a result, an
application running before the system was suspended is still running when the
system resumes. In fact, the application doesn't know that it was suspended at
all. An application can be notified (using the notification API described in Chapter
12) that the system has resumed, but typically applications don't know or care
about when the system is suspended. From an application perspective, power
management has four aspects: commanding the system to power down, prevent
ing the system from powering down, turning off the screen, and querying the
state of the battery.

Powering Down
An application can suspend the system by simulating the action of a user press
ing the Off button. You can easily enable your application to suspend the sys
tem by using the keybd_event function, as in

keybd_event (VK_OFF, 0, KEYEVENTF_SILENT, 0);
keybd_event (VK_OFF, 0, KEYEVENTF_SILENT I KEYEVENTF_KEYUP, 0);

The two calls to keybd_event simulate the press and release of the power but
ton, which has the virtual key code ofVK_OFF. Executing the preceding two lines
of code will suspend the system. Because the virtual key code has to be seen
and acted on by GWES, the two functions probably will both return and a few
more statements will be executed before the system actually suspends. If it is
important that your program stop work after calling the keybd_event functions,
add a call to Sleep to cause the application to pause for a number of millisec
onds, allowing time for GWES to truly suspend the system.

System Programming Chapter 16

Preventing the System from Powering Down
The opposite problem-preventing the system from suspending-can also be an
issue. Windows CE systems are usually configured to automatically suspend after
some period of no user input. To prevent this automatic suspension, an appli
cation can periodically call the following function:

void WINAPI SystemldleTimerReset (void);

This function resets the timer that Windows CE maintains to monitor user in
put. If the timer reaches a predefined interval without user input, the system
automatically suspends itself. Because the suspend timeout value can be
changed, an application needs to know the timeout value so that it can call
SystemldleTimerReset slightly more often. The system maintains three timeout
values, all of which can be queried using the SystemParameterslnfo function. The
different values, represented by the constant passed to SystemParameterslnfo,
are shown here:

• SPI_GETBA1TERYIDLETIMEOUT Time from the last user input
when the system is running on battery power

• SPI_GETEXTERNALIDLETIMEOUT Time from the last user input
when the system is running on AC power

• SPI_GE1WAKEUPIDLETIMEOUT Time from the system auto-pow
ering before the system suspends again

To prevent the system from suspending automatically, you need to query
these three values and call SystemldleTimerReset before the shortest time returned.
If any of the timeout values is 0, that specific timeout is disabled.

Turning Off the Screen
On systems with color backlit displays, the main power drain on the system isn't
the CPU-it's the backlight. In some situations, an application needs to run, but
doesn't need the screen. An example of this might be a music player applica
tion when the user is listening to the music, not watching the screen. In these
situations, the ability to turn off the backlight can significantly improve battery life.

Of course, any application that turns off the backlight needs to have a simple
and user-friendly way of reenabling the screen when the user wants to look at
the screen. Also, remember that users typically think the unit is off if the screen
is black, so plan accordingly. For example, a user might attempt to power on
the system when it is already running, and in doing so, accidentally turn off the
device. Also, when the system powers down the display in this fashion, it also
disables the touch screen. This means that you can't tell the user to tap the screen
to turn it back on. Instead, you need to use some other event such as a set time,
the completion of a task, or the user pressing a button.

919

Part IV Advanced Topics

920

On Windows CE, the control of the display is exposed through the ExtEscape
function, which is a back door to the display and printer device drivers. Windows
CE display drivers support a number of.device escape codes, which are docu
mented in the Platform Builder. For our purposes, only two escape codes are
needed: SETPOWERMANAGEMENT to set the power state of the display and
QUERYESCSUPPORT to query if the SETPOWERMANAGEMENT escape is sup
ported by the driver. The following routine turns the display on or off on sys
tems with display drivers that support the proper escape codes:

II
II Defines and structures taken from pwingdi .h in the Platform Builder
II
#define QUERYESCSUPPORT
#define SETPOWERMANAGEMENT
#define GETPOWERMANAGEMENT

typedef enum _VIDEO_POWER_STATE
VideoPowerOn = 1,
VideoPowerStandBy,
VideoPowerSuspend,
VideoPowerOff

8
6147
6148

VIDEO_POWER_STATE, *PVIDEO_POWER_STATE;

typedef struct _VIDEO_POWER_MANAGEMENT {
ULONG Length;
ULONG DPMSVersion;
ULONG PowerState;

VIDEO_POWER_MANAGEMENT, *PVIDEO_POWER_MANAGEMENT;

11--
11 SetVideoPower - Turns on or off the display
II
int SetVideoPower (BOOL fOn) {

VIDEO_POWER_MANAGEMENT vpm;
int re, fQueryEsc;
HOC hdc;

II Get the display de.
hdc = GetDC (NULL);
II See if supported.
fQueryEsc = SETPOWERMANAGEMENT;
re= ExtEscape (hdc, QUERYESCSUPPORT, sizeof (fQueryEsc),

(LPSTRl&fQueryEsc, 0, 0);
if (re == 0) {

I I No support, fail .
ReleaseDC (NULL, hdc);
return -1;

System Programming Chapter 16

II Fill in the power management structure.
vpm.Length = sizeof (vpm);
vpm.DPMSVersion = l;
if (fOn)

vpm.PowerState = VideoPowerDn;
else

vpm.PowerState = VideoPowerOff;

II Tell the driver to turn on or off the display.
re= ExtEscape Chdc, SETPOWERMANAGEMENT, sizeof (vpm),

(LPSTR)&vpm, 0, 0);

II Always release what you get.
ReleaseDC (NULL, hdc);
return 0;

The preceding code queries to see whether the escape is supported by
calling ExtEscape with the command QUERYESCSUPPORT. The command be
ing queried is passed in the input buffer. If the SETPOWERMANAGEMENT com
mand is supported, the routine fills in the VIDEO_POWER_MANAGEMENT structure
and calls ExtEscape again to set the power state.

Although these escape codes allow applications to turn the display on and
off, Windows CE has no uniform method to control the brightness of the back
light. Each system has its own OEM-unique method of backlight brightness con
trol. If there's a standard method of brightness control in the future, it will probably
be exposed through this same ExtEscape function.

Querying the State of the Battery
To query the current state of the battery or to determine whether the system is
currently powered by AC power, you can call

DWORD GetSystemPowerStatusEx2 (PSYSTEM_POWER_STATUS_EX2 pSystemPowerStatusEx2,
DWORD dwLen, BOOL fUpdate);

This function takes three parameters: a pointer to a SYSTEM_POWER_STATUS_EX2
structure, the length of that structure, and a Boolean value that tells the operat
ing system if it should query the battery driver during the call to get the latest
information or to return the cached battery information. The system queries the
battery approximately every 5 seconds, so if this third parameter is FALSE, the data
is still not too stale. The SYSTEM_POWER_STATUS_EX2 structure is defined as

typedef struct _SYSTEM_POWER_STATUS_EX2
BYTE ACLineStatus;
BYTE BatteryFlag;
BYTE BatteryLifePercent;

(continued)

921

Part IV Advanced Topics

922

BYTE Reserved!;
DWORD BatteryLifeTime;
DWORD BatteryFulllifeTime;
BYTE Reserved2;
BYTE BackupBatteryFlag;
BYTE BackupBatteryLifePercent;
BYTE Reserved3;
DWORD BackupBatteryLifeTime;
DWORD BackupBatteryFulllifeTime;
WORD BatteryVoltage;
DWORD BatteryCurrent;
DWORD BatteryAverageCurrent;
DWORD BatteryAverageinterval;
DWORD BatterymAHourConsumed;
DWORD BatteryTemperature;
DWORD BackupBatteryVoltage;
BYTE BatteryChemistry;

SYSTEM_POWER_STATUS_EX2;

Before I describe this rather large structure, I must warn you that the data
returned in this structure is only as accurate as the system's battery driver. This
same structure is passed to the battery driver to query its status. Windows CE
doesn't validate the data returned by the battery driver. The data returned by this
function depends on the battery driver and therefore varies across different sys
tems. For example, some systems won't report an accurate value for the battery
level when the system is on AC power; other systems will. Applications using
GetSystemPowerStatusEx2 should program defensively and test on all systems that
might run the application.

The first field, ACLineStatus, contains a flag indicating whether the system
is connected to AC power. The possible values are AC_LINE_OFFLINE, indicat
ing that the system isn't on AC power; AC_LINE_ONLINE, indicating that the
system is on AC power; AC_LINE_BACKUP _POWER; and AC_LINE_UNKNOWN.
The BatteryFlag field, which provides a gross indication of the current state of
the battery, can have one of the following values:

• BA1TERY_FLAG_HIGH The battery is fully or close to fully charged.

• BATTERY_FLAG_LOW The battery has little charge left.

• BA1TERY_FLAG_CRITICAL The battery charge is at a critical state.

• BA1TERY_FLAG_CHARGING The battery is currently being charged.

• BATTERY_FLAG_NO_BA1TERY The system has no battery.

• BA1TERY_FLAG_UNKNOWN The battery state is unknown.

System Programming Chapter 16

The BatteryLifePercent field contains the estimated percentage of charge
remaining in the battery. The value will either be between 0 and 100 or it will
be 255, indicating the percentage is unknown. The BatteryLifeTime field con
tains the estimated number of seconds remaining before the battery is exhausted.
If this value can't be estimated, the field contains BATTERY _LIFE_ UNKNOWN.
The BatteryFul!LifeTime field contains the estimated life in seconds of the battery
when it is fully charged. If this value can't be estimated, the field contains
BATTERY_LIFE_UNKNOWN. Note that on many systems, these lifetime values
are difficult if not impossible to accurately measure. Many OEMs simply fill in
BATTERY_LIFE_UNKNOWN for both fields.

The next four fields (not counting the reserved fields) replicate the fields
previously described except that they contain values for the system's backup
battery. Again, because many of these values are difficult to measure, many
systems simply return an "unknown" value for these fields.

The remaining fields describe the electrical state of the battery and backup
battery. Because many systems lack the capacity to measure these values, these
fields are simply filled with the default "unknown" values. The final field,
BatteryChemistry, contains a flag indicating the type of battery in the system. The
currently defined self-describing values are

• BAITERY_CHEMISTRY_ALKALINE

• BAITERY_CHEMISTRY_NICD

• BAITERY_CHEMISTRY_NIMH

• BAITERY_CHEMISTRY_LION

• BAITERY_CHEMISTRY_LIPOLY

• BA1TERY_CHEMISTRY_UNKNOWN

This chapter offered a brief tour of some of the system issues for Windows
CE. The configurability of Windows CE makes it the chameleon of operating
systems, able to change its API and even its size depending on the platform.
Whatever the platform differences, though, remember that underneath the cov
ers, all configurations of Windows CE share the same basic design. Keep this in
mind as you look at the wide variety of platforms developed for Windows CE.

In the final chapter, I'll continue to explore system issues with a look at
Windows CE stream device drivers. Although most application developers never
have to write device drivers, sometimes creating a driver can come in handy. Let's
take a look.

923

Device Drivers
Device drivers are modules that provide the interface between the operating
system and the hardware. Device drivers take on an air of mystery because they're
a mix of operating system-specific code and hardware customization. Most appli
cation developers are quite happy to let the real OS junkies handle writing device
drivers. This chapter shows you that while dealing with hardware can be a pain,
the basic structure of a Windows CE driver is actually quite simple. An applica
tion developer might even have reasons to write a driver every now and then.

Basic Drivers
Before I dive into how to write a device driver, we must take a brief look at how
Windows CE handles drivers in general. Windows CE separates device drivers
into two main groups: native and stream interface. Native drivers, sometimes called
built-in drivers, are those device drivers that are required for the hardware and
were created by the OEM when the Windows CE hardware was designed. Among
the devices that have native drivers are the keyboard, the touch panel, audio,
and the PCMCIA controller. These drivers might not support the generic device
driver interface I describe shortly. Instead, they might extend the interface or have
a totally custom interface to the operating system. Native drivers frequently re
quire minor changes when a new version of the operating system is released.
These drivers are designed using the Platform Builder product supplied by
Microsoft. However these drivers are developed, they're tightly bound to the
Windows CE operating system and aren't usually replaced after the device has
been sold.

925

Part IV Advanced Topics

On the other hand, stream interface device drivers (which are sometimes
referred to as installable drivers) can be supplied by third-party manufacturers
to support hardware added to the system. Since Windows CE systems generally
don't have an ISA bus or a PCI bus for extra cards, the additional hardware is
usually installed via a PCMCIA or a CompactFlash slot. In this case, the device
driver would use functions provided by the low-level PCMCIA driver to access
the card in the PCMCIA or the CompactFlash slot.

In addition, a device driver might be written to extend the functionality of
an existing driver. For example, you might write a driver to provide a compressed
or encrypted data stream over a serial link. In this case, an application would
access the encryption driver, which would in turn use the serial driver to access
the serial hardware.

Device drivers under Windows CE operate at the same protection level
as applications. They differ from applications in that they're DLLs. Most driv
ers are loaded by the device manager process (Device.exe) when the system
boots. All these drivers, therefore, share the same process address space. Some
of the built-in drivers, on the other hand, are loaded by GWES.exe. These drivers
include the display driver (DDI.dll) as well as the keyboard and touch panel
(or mouse) drivers.

Driver Names
Stream interface device drivers are identified by a three-character name followed
by a single digit. This scheme allows for 10 device drivers of one name to be
installed on a Windows CE device at any one time. Here are a few examples of
some three-character names currently in use:

• COM Serial driver

• ACM Audio compression manager

• WAV Audio wave driver

• CON Console driver

When referencing a stream interface driver, an application uses the three
character name, followed by the single digit, followed by a colon (:). The colon
is required under Windows CE for the system to recognize the driver name.

Enumerating the Active Drivers

926

On versions of Windows CE that support the FindFirstFileEx function, the most
reliable way to find a device driver is to use FindFirstFileEx an<l set the jSearchOp

Device Drivers Chapter 17

parameter to FindExSearchLimitToDevices. Using the search string* and repeat
edly calling FindNextFile results in a list of the stream drivers loaded. Unfortu
nately, FindFirstFileEx is supported only in Windows CE 3.0 and later. There's a
bug in the implementation of FindFirstFileEx in the original Pocket PCs. When you
used the FindExSearchLimitToDevices /Search Op parameter with FindFirstFileEx,
the original Pocket PCs would throw an exception. The only way to catch this
is to bracket the call to FindFirstFileEx with a __ try, __ except block. As a re
sult, a more general method to search for device drivers is to simply check
the registry.

The more general method for determining what drivers are loaded onto a
Windows CE system is to look in the registry under the key \Drivers \Active under
HKEY _LOCAL_MACHINE. The device manager dynamically updates the subkeys
contained here as drivers are loaded and unloaded from the system. Contained
in this key is a list of subkeys, one for each active driver. 1 The name of the key
is simply a placeholder; the values inside the keys are what indicate the active
drivers. Figure 17-1 shows the registry key for the COMl serial driver.

Figure 17-1 The registry's active list values for the serial device driver for COM 1 ·

In Figure 17-1, the Name value contains the official five-character name (four
characters plus a colon) of the device. The THnd and Hnd values are handles
that are used internally by Windows CE. The interesting entry is the Key value.
This value points to the registry key where the device driver stores its configu
ration information. This second key is necessary because the active list is dynamic,
changing whenever a device is installed. In the case of the serial driver, its con
figuration data is generally stored in Drivers\Builtin\Serial, although you shouldn't
hard code this value. Instead, you can look at the Key value in the active list to
determine the location of a driver's permanent configuration data. The configu
ration data for the serial driver is shown in Figure 17-2.

1. It's possible for a stream driver to be loaded but not appear under the Active key. This happens if a driver
is loaded with the obsolete function RegisterDevice but doesn't manually create an entry under the Ac
tive key. Applications should use the ActivateDevice function to correctly load a driver, which causes an
entry to be created under the Active key.

927

Part IV Advanced Topics

928

DevlceArrayindex
Prefl><
Dll
Orcilr
DeViceType
FriendlyName
Devconflt;I

Unlnodem.dll
0
COM
Serial.Oii
0
0
Serial Cable on COMl:
10 00 DO 00 05 DO 00 OD 10 01 00 00 0 ...

Figure 17-2 The registry entry for the serial driver

You can look in the serial driver registry key for such information as the
name of the DLL that actually implements the driver, the three-letter prefix de
fining the driver name, the order in which the driver wants to be loaded, and
something handy for user interfaces, the friendly name of the driver. Not all drivers
have this friendly name, but when they do, it's a much more descriptive name
than COM2 or NDSl.

Drivers for PCMCIA or CompactFlash Cards have an additional value in their
active list key. The Pnpld value contains the Plug and Play ID string that was
created from the card's ID string. Some PCMCIA and CompactFlash Cards have
their Pnpld strings registered in the system if they use a specific device driver.
If so, a registry key for the Pnpld value is located in the Drivers\FCMCIA key
under HKEY _LOCAL_MACHINE. For example, a PCMCIA Card that had a Pnpld
string This_is_a_pc_card would be registered under the key \Drivers\FCMCIA\
This_is_a_pc_card. That key may contain a FriendlyName string for the driver.
Other PCMCIA cards use generic drivers. For example, most CompactFlash storage
cards use the ATADISK driver registered under \Drivers\PCMCIA \ATADISK.

Following is a routine (and a small helper routine) that creates a list of active
drivers and, if specified, their friendly names. The routine produces a series of
Unicode strings, two for each active driver. The first string is the driver name,
followed by its friendly name. If a driver doesn't have a friendly name, a zero
length string is inserted in the list. The list ends with a zero-length string for the
driver name.

//--
// AddTolist - Helper routine
int AddTolist (LPTSTR *pPtr, INT *PnlistSize, LPTSTR pszStr) {

INT nlen = lstrlen (pszStr) + l;

if (*pnlistSize < nlen)
return -1;

lstrcpy (*pPtr, pszStr);
*pPtr += nlen;
*pnlistSize -= nlen;
return 0;

Device Drivers Chapter 17

11--
11 EnumActiveDrivers - Produces a list of active drivers
II
int EnumActiveDrivers (LPTSTR pszDrvrList, int nListSize)

I NT i = 0, re;
HKEY hKey, hSubKey, hDrvrKey;
TCHAR szKey[128], szValue[128];
LPTSTR pPtr = pszDrvrList;
DWORD dwType, dwSize;

*pPtr =TEXT ('\0');
if (RegOpenKeyEx (HKEY_LOCAL_MACHINE, TEXT ("drivers\\active"), 0,

0, &hKey) != ERROR_SUCCESS)
return 0;

while (1) {

II Enumerate active driver list.
dwSize = sizeof (szKey);
if (RegEnumKeyEx (hKey, i++, szKey, &dwSize, NULL, NULL,

NULL, NULL) != ERROR_SUCCESS)
break;

II Open active driver key.
re= RegOpenKeyEx (hKey, szKey, 0, 0, &hSubKey);
if (re != ERROR_SUCCESS)

continue;

II Get name of device.
dwSize = sizeof (szValue);
re= RegQueryValueEx (hSubKey, TEXT ("Name"), 0, &dwType,

(PBYTE)szValue, &dwSize);
if (re != ERROR_SUCCESS)

szValue[0] =TEXT ('\0');

if (AddToList (&pPtr, &nListSize, szValue)) {
re = -1:
RegCloseKey (hSubKey);
break;

II Get friendly name of device.
szValue[0] =TEXT ('\0'):
dwSize = sizeof (szKey);
re= RegQueryValueEx (hSubKey, TEXT ("Key"), 0, &dwType,

(PBYTE)szKey, &dwSize);
if (re == ERROR_SUCCESS) {

II Get driver friendly name.
(continued)

929

Part IV Advanced Topics

}

}

if (RegOpenKeyEx (HKEY_LOCAL_MACHINE, szKey, 0, 0,
&hDrvrKey) == ERROR_SUCCESS) {

dwSize = sizeof (szValue);
RegQueryValueEx (hDrvrKey, TEXT ("FriendlyName"), 0,

&dwType, (PBYTE)szValue, &dwSize);
RegCloseKey (hDrvrKey);

RegCloseKey (hSubKey);
if (AddTolist (&pPtr, &nlistSize, szValue)) {

re = -1;
break;

}

RegCloseKey (hKey);
II Add terminating zero.
if (!re)

re= AddTolist (&pPtr, &nlistSize, TEXT(""));
return re;

Reading and Writing Device Drivers

930

Your application accesses device drivers under Windows CE through the file I/0
functions, CreateFile, ReadFile, WriteFile, and CloseHandle. You open the device
using CreateFile, with the name of the device being the five-character (three
characters plus digit plus colon) name of the driver. Drivers can be opened with
all the varied access rights: read only, write only, read/write, or neither read nor
write access.

Once a device is open, you can send data to it using WriteFile and can read
from the device using ReadFile. As is the case with file operations, overlapped
1/0 isn't supported for devices under Windows CE. The driver can be sent con
trol characters using the function (not described in Chapter 7) DeviceloControl.
The function is prototyped this way:

BOOL DevieeioControl (HANDLE hDeviee, DWORD dwioControlCode,
LPVOID lpinBuffer, DWORD ninBufferSize,
LPVOID lpOutBuffer, DWORD nOutBufferSize,
LPDWORD lpBytesReturned,
LPOVERLAPPED lpOverlapped);

The first parameter is the handle to the opened device. The second parameter,
dwloControlCode, is the IOCTL (pronounced eye-OC-tal) code. This value de
fines the operation of the call to the driver. The next series of parameters are
generic input and output buffers and their sizes. The use of these buffers is

Device Drivers Chapter 17

dependent on the IOCTL code passed in dwloControlCode. The lpBytesReturned
parameter must point to a DWORD value that will receive the number of bytes
returned by the driver in the buffer pointed to by lpOutBu.ffer.

Each driver has its own set of IOCTL codes. If you look in the source code
for the example serial driver provided in the Platform Builder, you'll see that the
following IOCTL codes are defined for the COM driver. Note that these codes
aren't defined in the Windows CE SDK because an application doesn't need to
directly call DeviceloControl using these codes.

IOCTL_SERIAL_SET_BREAK_ON IOCTL_SERIAL_SET_BREAK_OFF

IOCTL_SERIAL_SET_DTR

IOCTL_SERIAL_SET_RTS

IOCTL_SERIAL_SET _XOFF

IOCTL_SERIAL_GET_ WAIT_MASK

IOCTL_SERIAL_ WAIT_ON_MASK

IOCTL_SERIAL_GET_MODEMSTATUS

IOCTL_SERIAL_SET _TIMEOUTS

IOCTL_SERIAL_PURGE

IOCTL_SERIAL_IMMEDIATE_CHAR

IOCTL_SERIAL_SET_DCB

IOCTL_SERIAL_DISABLE_IR

IOCTL_SERIAL_CLR_DTR

IOCTL_SERIAL_CLR_RTS

IOCTL_SERIAL_SET _XON

IOCTL_SERIAL_SET_ WAIT_MASK

IOCTL_SERIAL_GET_COMMSTATUS

IOCTL_SERIAL_GET_PROPERTIES

IOCTL_SERIAL_GET_TIMEOUTS

IOCTL_SERIAL_SET _ QUEUE_SIZE

IOCTL_SERIAL_GET_DCB

IOCTL_SERIAL_ENABLE_IR

As you can see from the fairly self-descriptive names, the serial driver IOCTL
functions expose significant function to the calling process. Windows uses these
IOCTL codes to control some of the specific features of a serial port, such as the
handshaking lines and timeouts. Each driver has its own set of IOCTL codes. I've
shown the preceding ones simply as an example of how the Device/oControl
function is typically used. Under most circumstances, an application has no reason
to use the Device/oControl function with the serial driver. Windows provides its
own set of functions that then call down to the serial driver using Device/oControl.

Okay, we've talked enough about generic drivers. It's time to sit down to
the meat of the chapter-writing a driver.

Writing a Windows CE Stream Device Driver
As I mentioned earlier, Windows CE device drivers are simply DLLs. So on the
surface, writing a device driver would seem to be a simple matter of writing a
Windows CE DLL with specific exported entry points. For the most part, this
is true. You have only a few issues to deal with when writing a Windows CE
device driver.

931

Part IV Advanced Topics

932

A device driver isn't loaded by the application communicating with the
driver. Instead, the device manager, Device.exe, loads most drivers, including all
stream drivers. This state of affairs affects the driver in two ways. First, an appli
cation can't simply call private entry points in a driver as it can in a DLL. The
only way an application could directly call an entry point would be if it called
LoadLibrary and GetProcAddress to get the address of the entry point so the entry
point could be called. This situation would result in the DLL that implemented
the driver (notice I'm not calling it a driver anymore) being loaded in the pro
cess space of the application, not in the process space of the device manager.
The problem is that this second copy of the DLL isn't the driver-it's the DLL that
implemented the driver. The difference is that the first copy of the DLL (the
driver)-when properly loaded by the device manager-has some state data
associated with it that isn't present in the second copy of the DLL loaded by the
application. Perversely, the calls to LoadLibrary and GetProcAddress will succeed
because the driver is a DLL. In addition, calling the entry points in the driver results
in calling the correct code. The problem is that the code will be acting on data
present only in the second copy of the DLL, not in the proper data maintained
by the driver. This situation can, and usually does, result in subtle bugs that can
confuse and even lock up the hardware the driver is managing. In short, never
interact with a driver by calling LoadLibrary and GetProcAddress.

The second effect of the driver being loaded by the device manager is that
if a driver DLL is used for more than one instance of a piece of hardware, for
example, on a serial driver being used for both COMl and COM2, the device
manager will load the DLL only once. When the driver is "loaded" a second time,
the driver's initialization entry point, COM_Init, is simply called again.

The reason for this dual use of the same DLL instance is that under Windows
CE a DLL is never loaded twice by the same process. Instead, if an application
asks to load a DLL again, the original DLL is used and a call is made to LibMain
to indicate that a second thread has attached to the DLL. So if the device man
ager, which is simply another process under the operating system, loads the same
driver for two different pieces of hardware, the same DLL is used for both in
stances of the hardware.

Drivers written to handle multiple instances of themselves must not store
data in global variables because the second instance of the driver would over
write the data from the first instance. Instead, a multi-instance driver must store
its state data in a structure allocated in memory. If multiple instances of the driver
are loaded, the driver will allocate a separate state data structure for each instance.
The driver can keep track of which instance data structure to use by passing the
pointer to the instance data structure back to the device manager as its "handle,"
which is returned by the device driver's !nit function.

Device Drivers Chapter 17

One final issue with Windows CE device drivers is that they can be reen
tered by the operating system, which means that a driver must be written in a
totally thread-safe manner. References to state data must be protected by criti
cal sections, interlock functions, or other thread-safe methods.

The Stream API
A stream driver exposes 10 external entry points-summarized in the following
list-that the device manager calls to talk to the driver. I'll describe each entry
point in detail in the following sections.

• xxx_Init Called when a driver is loaded.

• xxx_Deinit Called when a driver is unloaded.

• xxx_Open Called when a driver is opened by an application with
CreateFile.

• xxx_Close Called when a driver is closed by the application with
Closehandle.

• xxx_Read Called when the application calls ReadFile.

• xxx_ Write Called when the application calls WriteFile.

• xxx_Seek Called when the application calls SetFilePointer.

• xxx_IOControl Called when the application calls DeviceloControl.

• xxx_PowerDown Called just before the system suspends.

• xxx_PowerUp Called just before the system resumes.

The xxx preceding each function name is the three-character name of the
driver. For example, if the driver is a COM driver, the functions are named COM_Init,
COM_Deinit, and so on. Also, while the preceding list describes applications
talking to the driver, there's no reason one driver can't open another driver and
communicate with it just as an application can.

xxx_lnit
When a driver is first loaded by the device manager, the device manager calls
the driver's !nit function, prototyped as

DWORD XXX_Init (DWORD dwContext);

The single parameter, dwContext, might contain a pointer to a string identifying
the Active key created by the device manager for the driver. I say might because
an application using RegisterDevice can load the device to pass any value, in
cluding 0, in this parameter. The moral of the story is to look for a string but plan
for the dwContext value to point to anything.

933

Part IV Advanced Topics

934

The driver should respond to the !nit call by verifying that any hardware
that the driver accesses functions correctly. The driver should initialize the hard
ware, initialize its state, and return a nonzero value. If the driver detects an error
during its initialization, it should set the proper error code with SetLastError and
return 0 from the !nit function. If the device manager sees a 0 return value from
the !nit function, it unloads the driver and removes the Active key for the driver
from the registry.

The device driver can pass any nonzero value back to the device manager.
The typical use of this value, which is referred to as the device context handle,
is to pass the address of a structure that contains the driver's state data. For drivers
that can be multi-instanced (loaded more than once to support more than one
instance of a hardware device), the state data of the driver must be independently
maintained for each instance of the driver.

xxx_Deinit
The Deinit entry point is called when the driver is unloaded. This entry point
must be prototyped as

BOOL XXX_Deinit CDWORD hDeviceContext);

The single parameter is the device context value the driver returned from the !nit
call. This value allows the driver to determine which instance of the driver is being
unloaded. The driver should respond to this call by powering down any hard
ware it controls and freeing any memory and resources it owns. The driver will
be unloaded following this call.

xxx_Open
The Open entry point to the driver is called when an application or another driver
calls CreateFile to open the driver. The entry point is prototyped as

DWORD XXX_Open (DWORD hDeviceContext, DWORD AccessCode, DWORD ShareMode);

The first parameter is the device context value returned by the !nit call. The
AccessCode and ShareMode parameters are taken directly from CreateFile's
dwDesiredAccess and dwShareMode parameters and indicate how the applica
tion wants to access (read/write or read only) and share (FILE_SHARE_READ or
FILE_SHARE_ WRITE) the device. The device driver can refuse the open for any
reason by simply returning 0 from the function. If the driver accepts the open
call, it returns a nonzero value.

The return value is traditionally used, like the device context value returned
by the !nit call, as a pointer to an open context data structure. If the driver al
lows only one application to open it at a time, the return value is usually the device
context value passed in the first parameter. This allows all the functions to ac
cess the device context structure directly, since one of these two values-the

Device Drivers Chapter 17

device context or the open context value-is passed in every call to the driver.
The open context value returned by the Open function is not the handle returned
to the application when the CreateFile function returns.

Windows CE typically runs on hardware that's designed so that individual
components in the system can be separately powered. Most Windows CE driv
ers use this feature to power the hardware they control only when the device is
opened. The driver then removes power when the Close notification is made.
This means that the device will be powered on only when an application or
another driver is actually using the device.

xxx_Close
The Close entry point is called when an application or driver that has previ
ously opened the driver closes it by calling CloseHandle. The entry point is
prototyped as

BOOL XXX_Close CDWORD hOpenContext);

The single parameter is the open context value that the driver returned from the
Open call. The driver should power down any hardware and free any memory
or open context data associated with the open state.

xxx_Read
The Read entry point is called when an application or another driver calls ReadFile
on the device. This entry point is prototyped as

DWORD XXX_Read CDWORD hOpenContext, LPVOID pBuffer, DWORD Count);

The first parameter is the open context value returned by the Open call. The
second parameter is a pointer to the calling application's buffer, where the read
data is to be copied. The final parameter is the size of the buffer. The driver should
return the number of bytes read into the buffer. If an error occurs, the driver should
set the proper error code using SetLastError and return -1. A return code of 0 is
valid and indicates that the driver read no data.

A device driver should program defensively when using any passed pointer.
The following series of functions tests the validity of a pointer:

BOOL IsBadWritePtr (LPVOID lp, UINT ucb);
BOOL IsBadReadPtr (const void *lp, UINT ucb);
BOOL IsBadCodePtr CFARPROC lpfn);

The parameters are the pointer to be tested and, for the Read and Write
tests, the size of the buffer pointed to by the pointer. Each of these functions
verifies that the pointer passed is valid for the use tested. However, the access
rights of a page can change during the processing of the call. For this reason,
always couch any use of the pBu.ffer pointer in a _try _except block. This will

935

Part IV Advanced Topics

936

prevent the driver from causing an exception when the application passes a bad
pointer. For example, you could use the following code:

DWORD xxx_Read (DWORD dwOpen, LPVOID pBuffer, DWORD dwCount)
DWORD dwBytesRead;

II Test the pointer.
if (lsBadReadPtr (pBuffer. dwCount)) {

SetLastError (ERROR_INVALID_PARAMETER);
return -1;

_try {
dwBytesRead = InternalRead (pBuffer, dwCount);

_except (EXCEPTION_EXECUTE_HANDLER) {
SetlastError (ERROR_INVALID_PARAMETER);
return -1;

return dwBytesRead;

In the preceding code, the pointer is initially tested by using IsBadReadPtr
to see whether it is a valid pointer. The code that actually performs the read is
hidden in an internal routine named InternalRead. If that function throws an ex
ception, presumably because of a bad pBu.ffer pointer or an invalid dwCount
value, the function sets the error code to ERROR_INVALID_PARAMETER and
returns -1 to indicate that an error occurred.

xxx_Write
The Write entry point is called when the application that has opened the device
calls WriteFile. The entry point is prototyped as

DWORD XXX_Write (DWORD hOpenContext, LPCVOID pBuffer, DWORD Count);

As with the Read entry point, the three parameters are the open context value
returned by the Open call, the pointer to the data buffer containing the data, and
the size of the buffer. The function should return the number of bytes written
to the device or -1 to indicate an error.

xxx_Seek
The Seek entry point is called when an application or driver that has opened the
driver calls SetFilePointer on the device handle. The entry point is prototyped
as

DWORD XXX_Seek (DWORD hOpenContext, long Amount, WORD Type);

Device Drivers Chapter 17

The parameters are what you would expect: the open context value returned from
the Open call, the absolute offset value that is passed from the SetFilePointer call,
and the type of seek. There are three types of seek: FILE_BEGIN seeks from the
start of the device, FILE_ CURRENT seeks from the current position, and FILE_END
seeks from the end of the device. The Seek function has limited use in a device
driver but it is provided for completeness.

xxx_PowerDown
The PowerDown entry point is called when the system is about to suspend. The
device driver should power down any hardware it controls and save any neces
sary hardware state. The entry point is prototyped as

void XXX_PowerDown (DWORD hDeviceContext);

The single parameter is the device context handle returned by the !nit call.
The device driver must not make any Win32 API calls during the process

ing of this call. Windows CE allows only one function, SetlnterruptEvent, to be
called during the PowerDown notification. SetlnterruptEvent tells the kernel to
signal the event that the driver's interrupt service thread is waiting for.
SetlnterruptEvent is prototyped as

BOOL SetinterruptEvent (DWORD idint);

The single parameter is the interrupt ID of the associated interrupt event.

xxx_PowerUp
The PowerUp entry point is called when the system resumes. When receiving this
notification, the driver should power up and restore the state to the hardware it
controls. The PowerUp notification is prototyped as

void XXX_PowerUp (DWORD hDeviceContext);

The hDeviceContext parameter is the device context handle returned by the !nit
call. As with the PowerDown call, the device driver can make no Win32 API calls
during the processing of this notification.

Although the power up notification allows the driver to restore power to
the hardware it manages, well-written drivers restore only the minimal power
necessary for the device. Most of the hardware can be powered up only when
the device is opened.

xxx_IOControl
Since many device drivers don't use the Read, Write, Seek metaphor for their
interface, the IOControl entry point becomes the primary entry point for inter-

937

Part IV Advanced Topics

938

facing with the driver. The IOControl entry point is called when a device or
application calls the DeviceIOControl function. The entry point is prototyped as

BOOL XXX_IOControl CDWORD hOpenContext, DWORD dwCode, PBYTE pBufln,
DWORD dwlenln, PBYTE pBufOut, DWORD dwlenOut,
PDWORD pdwActualOut);

The first parameter is the open context value returned by the Open call. The
second parameter, dwCode, is a device-defined value passed by the application
to indicate why the call is being made. Unlike Windows NT/2000/XP, Windows
CE doesn't process the IOCTL code before it is passed to the driver. This means
that the device driver developer can pick any values for the codes. However, the
trend over the last few versions of Windows CE has been to create IOCTL codes
that conform to the format used by the desktop versions of Windows. Basically,
this means that the IOCTL codes are created with the CTL_CODE macro, which
is defined identically in the Windows Driver Development Kit and the Windows
CE Platform Builder. The problem with application developers creating conform
ing IOCTL code values is that the CTL_CODE macro is defined in the Platform
Builder, not in eMbedded Visual Tools. So developers are forced to choose be
tween using the Platform Builder tools to gain access to the proper include files
and creating arbitrary IOCTL codes.

The next two parameters describe the buffer that contains the data being
passed to the device. The pBujln parameter points to the input buffer that con
tains the data being passed to the driver; the dwLenln parameter contains the
length of the data. The next two parameters are pBufOut and dwLenOut. The
parameter pBufOut contains a pointer to the output buffer, and dwLenOut con
tains the length of that buffer. These parameters aren't required to point to valid
buffers. The application calling DeviceloControl might possibly pass Os for the
buffer pointer parameters. It's up to the device driver to validate the buffer pa
rameters given the IOCTL code being passed.

The final parameter is the address of a DWORD value that receives the
number of bytes written to the output buffer. The device driver should return
TRUE if the function was successful and FALSE otherwise. If an error occurs, the
device driver should return an error code using SetLastError.

The input and output buffers of DeviceloControl calls allow for any type
of data to be sent to the device and returned to the calling application. Typically,
the data is formatted using a structure with fields containing the parameters for
the specific call.

The serial driver makes extensive use of DeviceloControl calls to configure
the serial hardware. For example, one of the many IOCTL calls is one to set the
serial timeout values. To do this, an application allocates a buffer, casts the buffer
pointer to a pointer to a COMMTIMEOUTS structure, fills in the structure, and

Device Drivers Chapter 17

passes the buffer pointer as the input buffer when it calls DeviceloControl. The
driver then receives an IOControl call with the input buffer pointing to the
COMMTIMEOUTS structure. I've taken the serial driver's code for processing this
IOCTL call and shown a modified version here:

BOOL COM_IOControl (PHW_OPEN_I NFO pOpenHead, DWORD dwCode,
PBYTE pBufln, DWORD dwLenln,
PBYTE pBufOut, DWORD dwLenOut,

PDWORD pdwActualOut) {
BOOL RetVal = TRUE;
COMMTIMEOUTS *pComTO;

switch (dwCode) {

II assume success

case IOCTL_SERIAL_SET_TIMEOUTS
if ((dwLenin < sizeof(COMMTIMEOUTS)) I I (NULL== pBuf!n)) {

SetLastError (ERROR_INVALID_PARAMETER);
RetVal = FALSE;
break;

pComTO = (COMMTIMEOUTS *)pBufln;
ReadlntervalTimeout = pComTO->ReadintervalTimeout;
ReadTotalTimeoutMultiplier = pComTO->ReadTotalTimeoutMultiplier;
ReadTotalTimeoutConstant = pComTO->ReadTotalTimeoutConstant;
WriteTotalTimeoutMultiplier = pComTO->WriteTotalTimeoutMultiplier;
WriteTotalTimeoutConstant = pComTO->WriteTotalTimeoutConstant;
break;

return RetVal;

Notice how the serial driver first verifies that the input buffer is at least the
size of the timeout structure and that the input pointer is nonzero. If either of
these tests fails, the driver sets the error code to ERROR_INVALID_PARAMETER
and returns FALSE. Otherwise, the driver assumes that the input buffer points to
a COMMTIMEOUTS structure and uses the data in that structure to set the timeout
values. Although the preceding example doesn't enclose the pointer access in
_try, _except blocks, a more robust driver might.

The preceding scheme works fine as long as the data being passed to or
from the driver is all contained within the structure. However, if you pass a pointer
in the structure and the driver attempts to use the pointer, an exception will occur.
To understand why, you have to remember how Windows CE manages memory
protection across processes. (At this point, you might want to review the first part
of Chapter 6.)

As I explained in Chapter 6, when a thread in an application is running,
that application is mapped to slot 0. If that application allocates a buffer, the

939

Part IV Advanced Topics

940

returned pointer points to the buffer allocated in slot 0. The problem occurs when
the application passes that pointer to a device driver. Remember that a device
driver is loaded by Device.exe, so when the device driver receives an JOControl
call, the device driver and Device.exe are mapped into slot 0. The pointer passed
from the application is no longer valid since the buffer it pointed to is no longer
mapped into slot 0.

If the pointer is part of the parameter list of a function-for example, the
pBuftn parameter passed in the DeviceloControl-the operating system automati
cally converts, or maps, the pointer so that it points to the slot containing the
calling process. Because any buffer allocated in slot 0 is also allocated in the
application's slot, the mapped pointer now points to the buffer allocated before
the application made the DeviceloControl call.

The key is that when an application is running, slot 0 contains a clone of
the slot it was assigned when the application was launched. So any action to slot
0 is also reflected in the application's slot. This cloning process doesn't copy
memory. Instead, the operating system manipulates the page table entries of the
processor to duplicate the memory map for the application's slot in slot 0 when
that application is running.

The operating system takes care of mapping any pointers passed as parame
ters in a function. However, the operating system can't map any pointers passed
in structures during a DeviceloControl call because it has no idea what data is
being passed to the input and output buffers of a DeviceloControl call. To use
pointers passed in a structure, the device driver must manually map the pointer.

You can manually map a pointer using the following function:

LPVOID MapPtrToProcess (LPVOID lpv, HANDLE hProc);

The first parameter is the pointer to be mapped. The second parameter is the
handle of the process that contains the buffer pointed to by the first parameter.
To get the handle of the process, a driver needs to know the handle of the appli
cation calling the driver, which you can query by using the following function:

HANDLE GetCallerProcess (void);

Typically, these two functions are combined into one line of code, as in

pMapped = MapPtrToProcess (pln, GetCallerProcess());

The application can also map a pointer before it passes it to a device driver, al
though this is rarely done. To do this, an application queries its own process
handle using

HANDLE GetCurrentProcess (void);

Although both GetCurrentProcess and GetCallerProcess are defined as returning
handles, these are actually pseudohandles and therefore don't need to be closed.

Device Drivers Chapter 17

For programmers using eMbedded Visual C++ to build a driver, MapPtrToProcess
and GetCallerProcess are not prototyped in the standard include files. If you want
to use these functions without warnings, add function prototypes to the include
files for the driver.

As an example, assume a driver has an IOCTL function to checksum a series
of buffers. Since the buffers are disjoint, the pointers to the buffers are passed
to the driver in a structure. The driver must map each pointer in the structure,
checksum the data in the buffers, and return the result, as in the following code:

#define IOCTL_CHECKSUM 2
#define MAX_BUFFS 5
typedef struct {

int nSize;
PBYTE pData;

BUFDAT, *PBUFDAT;

typedef struct {
int nBuffs;
BUFDAT bd[MAX_BUFFS];

CHKSUMSTRUCT, *PCHKSUMSTRUCT;

DWORD xxx_I OContro l (DWORD dwOpen, DWORD dwCode, PBYTE pl n, DWORD dwI n,
PBYTE pOut, DWORD dwOut, DWORD *pdwBytesWrittenJ {

switch (dwCode)

case IOCTL_CHECKSUM:
{

PCHKSUMSTRUCT pchs;
DWORD dwSum = 0;
PBYTE pData;
inti, j;

II Verify the input parameters.
if (!pin I I (dwln < sizeof (CHKSUMSTRUCT)) I I

!pOut I I (dwOut < sizeof (DWORD))) {
SetlastError (ERROR_INVALID_PARAMETER);
return FALSE;

II Perform the checksum. Protect against bad pointers.
pchs = (PCHKSUMSTRUCT)pln;
_try {

for (i = 0; (i < pchs->nBuffs) && (i < MAX_BUFFS); i++)

II Map the pointer to something the driver can use.
pData = (PBYTEJMapPtrToProcess (pchs->bd[i].pData,

GetCallerProcess());
(continued)

941

Part IV Advanced Topics

II Checksum the buffer.
for (j = 0; j < pchs->bd[i].nSize; j++)

dwSum += *pData++;

II Write out the result.
*(DWORD *)pOut = dwSum;
*pdwBytesWritten = sizeof (DWORD);

~except (EXCEPTION_EXECUTE_HANDLER) {
SetLastError (ERROR_INVALID_PARAMETER);
return FALSE;

return TRUE;

default:
SetLastError (ERROR_INVALID_PARAMETER);
return FALSE;

SetLastError (err);
DEBUGMSG (ZONE_FUNC. (DTAG TEXT("GEN_!OControl--\r\n")));
return TRUE;

In the preceding code, the driver has one IOCTL command, IOCTL_
CHECKSUM. When this command is received, the driver uses the structures passed
in the input buffer to locate the data buffers, map the pointers to those buffers,
and perform a checksum on the data they contain.

The 10 entry points that I described in this section, from !nit to IOControl,
are all that a driver needs to export to support the Windows CE stream driver
interface. Now let's look at how to build a device driver.

Building a Device Driver
Building a device driver is as simple as building a DLL. Although you can use
the Platform Builder and its more extensive set of tools, you can easily build stream
drivers by using eMbedded Visual C++. All you need to do is create a Windows
CE DLL project, export the proper entry points, and write the code. The most
frequently made mistake I see is in not declaring the entry points as extern C so
that the C++ compiler doesn't mangle the exported function names.

Debug Zones

942

Debug zones allow a programmer or tester to manipulate debug messages from
any module, EXE or DLL, in a Windows CE system. Debug zones are typically

Device Drivers Chapter 17

used by developers who use Platform Builder because debug zones allow de
velopers to access the debug shell that allows them to interactively enable and
disable specific groups, or zones, of debug messages. Another feature of debug
zone messages is that the macros that are used to declare the messages insert
the messages only when compiling a debug build of the module. When a release
build is made, the macros resolve to 0 and don't insert any space-hogging Unicode
strings. The value of debug zones isn't just that developers can use them; it's that
all the modules that make up Windows CE have debug builds that are packed
full of debug messages that can be enabled.

Using debug zones in applications or DLLs is a fairly straightforward pro
cess. First, up to 16 zones can be assigned to group all the debug messages in
the module. The zones are declared using the DEBUGZONE macro, as in

#define ZONE_ERROR
#define ZONE_WARNING
#define ZONE_INIT

DEBUGZONE(0)
DEBUGZONE(1)

DEBUGZONE(2)

Then debug messages are inserted in the code. Instead of directly calling
OutputDebugString, which was the old way of sending strings to a debug port,
the messages should be enclosed in a DEBUGZONE macro, defined as

DEBUGMSG (zone, (printf expression));

The zone parameter is one of the 16 zones declared. The print/ expression can
be any prinif style string plus the parameters. Note the additional parentheses
around the prinif expression. These are needed because DEBUG MSG is a macro
and requires a fixed number of parameters. The following is an example of using
DEBUGMSG:

DEBUGMSG (ZONE_ERROR, (TEXT("Read failed. rc=%d\r\n"), GetlastError()));

In addition to inserting the debug messages, a module must declare a
DBGPARAM structure, defined as

typedef struct _DBGPARAM {
WCHAR lpszName[32];
WCHAR rglpszZones[l6][32];
ULONG ulZoneMask;

DBGPARAM, *LPDBGPARAM;

The first field is the debug name of the module. Typically, but not always,
this is the name of the file. The second field is an array of strings. Each string
identifies a particular zone. These names can be queried by the system to tell
the programmer what zones are in a module. The final field, u!ZoneMask, is a
bitmask that sets the zones that are enabled by default. While this field is a 32-bit
value, only the first 16 bits are used.

943

Part IV Advanced Topics

The only action a module must take at run time to enable debug zones is
to initialize the zones with the following macro:

DEBUGREGISTERCHANDLE hinstance);

The only parameter is the instance handle of the EXE or DLL. Typically this call
is made early in WinMain for applications and in the process attach call to LibMain
for DLLs. The GenDriver example shown in Figure 17-3 demonstrates the use
of debug zones.

Unfortunately for application developers, the debug messages produced by
debug zones are sent to the debug port, which is generally not available on
shipping systems. Some systems, however, do allow the primary serial port on
the system to be redirected so that it's used as a debug port, instead of as COMl.
Since each OEM will have a different method of enabling this redirection, you
will need to contact the specific OEM for information on how to redirect the serial
port. Nonetheless, debug zones are a powerful tool for debugging Windows CE
systems.

The Generic Driver Example

944

The following example, GenDriver, is a simple stream driver. Although it doesn't
talk to any hardware, it exports the proper 10 entry points and can be loaded
by any Windows CE system. To have a system load GenDriver, you can add an
entry under [HKEY_LOCAL_MACHINE]\Drivers\Builtin to have the driver loaded
when the system boots, or you can write an application that creates the proper
driver keys elsewhere and calls ActivateDevice.

Figure 17-3 The GenDriver example

Device Drivers Chapter 17

_declspec(dllexport) BOOL GEN_Deinit (DWORD dwContextl;
_declspec(dllexportl DWORD GEN_Open (DWORD dwContext, DWORD dwAccess,

DWORD dwShare);
_declspecCdllexport) BOOL GEN_Close (DWORD dwOpen);
_declspec(dllexportl DWORD GEN_Read CDWORD dwOpen, LPVOID pBuffer,

DWDRD dwCount);
_declspec(dllexport) DWORD GEN_Write (DWORD dwOpen, LPVOID pBuffer,

DWORD dwCount);
_declspec(dllexport) DWORD GEN_Seek (OWORD dwOpen, long lDe.lta.

WORD wType) ;
_declspec(dllexport) DWORD GEN_IOControl (DWORD dwO~e.n; .. DW:ORD dwCode,

PBYTE pin.~ DW:ORP .dwin.
PBYTE pOut •• PWORD .dwOut,
DWORD *pdwBytes.Wr'ftten);

_declspec(dllexport) void GEN_PowerOown (DWORD dwCol'ltei<B;
_declspec(dllexport) void GEN_PowerUp (DWORD dwContextJ;
#ifdef _cplusplus
} I I ex.tern "C"
/fend if //_cpl us pl us

II Suppress warnil'lgs by declaring the unde.clared.
#ifndef ~etCu~rentPermissions
DWORD GetCurrent.Permissions(voidl;
DWORD SetProcPermissions <DWORD);
DWORD GetC.a11erProcess(v.oid.);.
PVOID MapPtrToProcess CPVOID, DWORD);
//end if //Get Cur rentPermi.ss ions

DWORD GetConfigData CDWORD);
II
11 Driver i.nstance structure
II
typedef •strlict {

· DWORD.d.wSize;
·in(nNumQpeos;

} DRVCONTE.l(T; ~PDRVCONTEl<T;.

II
II
II
I I Used as a prefix stri.ng for al 1 debug zone messages.
/,!define DTAG TEXT ('!GENDrv: ")

I I Debug zone c;or1stants
ffdefine ZONCfRJWR" . DEBUGZONE(0)
lfdefi ne ZONLWA~NlNG 1)£.BUGZONE 0)
/fdefjrie ZONLFUNC ·. . •. D.EBUGZONE(2)
Jfdefine ZONE.,JNIT DEBUGZONE(3J
/fdefi ne ZONLDRV.CALL~. DEBUGZONE (4)

(continued)

945

Part IV Advanced Topics

Figure 17-3 (continued)

946

Device Drivers Chapter 17

DEBUGMSG (ZONE_FUNC, CDTAG TEXT("DllMain--\r\n"))J;
return TRUE;

II==
II GEN_Init - Driver initialization function
II
DWORD GEN_Init (DWORD dwContext)

PDRVCONTEXT pDrv;

}

DEBUGMSG (ZONE_INIT I ZONE_FUNC I ZONE_DRVCALLS,
(DTAG TEXT("GEN_Init++ dwContex:%x\r\n"), dwContextl);

II Allocate a drive instance structure.
pDrv = (PDRVCONTEXT)LocalAlloc (LPTR, sizeof (DRVCONTEXT));
if (!pDrvl {

}

DEBUGMSG (ZONE_INIT j ZONE_FUNC j ZONE_ERROR.
CDTAG TEXT("GEN_Init failure. Out of memory\~\n")));

return 0; /I Fail init

II Initialize structure.
memset ((PBYTE l pDry, 01 si z;eof CDRVCONTEXTJ l;
pDrv->dwSize. = siZeof {DRVCONTEXT);

JI R.ead registry to .determine the size of the ·disk
GetConfigData (dwContext);

DEBUGMSG CZONE_FUNC., CDTAG TEXH"GEN_Init-- pDrv: .%x\r'dr''), pDrv));
retur~ (DWORDlpDrv;

.It GEN-Deinit - Driver de-itlitialization function
II
BOOL GEN: .. Dei nit (DWORD dwContext) { .

}

Pi:JIWCotffEXT pDrv = (PDRVCONTEXT/ dwContext:

DEBuGMSG czoNcFuNc 1 zoN£~oRvtAi:Ls.
(OTAG TEXT(,;GEN_:.Deinit++ clwContex:%x\rW'>, dwContextll;

if (pDrv && (pDrv->dwSi ze == si zeof (DRVCONTEXTJ I l {

II Free the~clrive~ state buffer.
Local Free CCPBYTElpDrvJ;

DEBUGMSG .<Z1'.)!IJE.;..FUi'lC. (DTAG TEXT("GEN_Oei nit- - \r\n"). l);
return TRUE~·':~·

(continued)

947

Part IV Advanced Topics

Figure 17-3 (continued)

\i.erify.fhatJhe context hancI1¢ ;sva11·d, .··· .. · ..
CpDr\i· &~ {.porv~>dwSize !=; siZeof (DRVEONJEXJ.))}
.DE.BOGMSG (Z:ONt..ERROR, (!}JAG TEXT(i-'Gt!'LOpe.nf~i1ed\. r\rd) l;

•··· ,'•.".' ' ' . . i,· ''< ' ' • ' ' ' ' •• •

IlEoµnt the nl!mber• of .opens.
l ntef 1 ock,edlncrernent ~ &'pOrv~>:nNutnopens);
OEBUGMSG <.c ZONE;.:FUNC, (tlTAG TtXJ;(''G;EN..cOpen.c-\r\ n'.')));

:/ /~~·=~~~~;~~~::6c:ci=':o=;::i::~~,~~=='.~~~~;d~d:;=c;;;::~~.;:;;;~~i;===~~~~~=~;;.;,:;::;;;;;::~~::;;;;;;;::=;:;;i:~~~=;;;:;;;;:;
•// GEN_.EJose - .C~lT~d whe~ driver
If•
BDOl· .• GENLClose •. fPWORO dwQpenJ {

PDRVCO.NfE)(T .pDrv (PDRVCONtEXT}
. ' ' . ' ' .

OrnliGMSG.tZOf'lp~FlJNC.· 1·.zo«~-ORVCALLS,
fDTAG tEXTC"B.EN_Close++ dwOpe~:

(jjOrv && \p.orv-><lwS,z¢·· .. !"' ·stzeot (DRVCONTEXT~)) {
DEBUGMSG c.z.oNE"-'FIJ.NC .. I ZQNE1-ERROR •..

. (OTAG TEXT·\ '!G.£N_C\ ose ·.fai 1 ed\r'\n ~

948

Device Drivers Chapter 17

}

DEBUGMSG (ZONE~FUNC, CDTAG TEXT("GEN_Read--\r\n")));
return dwBytesRead;

II==
II GEN_Write - Called when driver written
II
DWORD GEN_Wri te C DWORD dwOpen, LPVOlO pBuffer, DWORD dwCount l {

DWORD dwBytesWritten = 0;
DEBUGMSG CZONE_FUNC I ZONE_DRVCALLS,

CDTAG TEXT("GEN_Write++ dwOpen: %x\r\n").,dw0pen)l;

DEBUGMSG (ZONE_FUNC, (DTAG TEXT("GEN_Wri te- -\r\n''))J;
return dwBytesWritten;

}

II GEN_Seek - Called when SetFilePtr called
II
DWORD GEN_Seek (DWORD dwOpen. long. l Delta, WORD wTypel

DEBUGMSG CZONE_FUNC I ZONE_DRVCALLS.
(DTAG TEXT<"GEN_Seek++ .dwOpen:

(continued)

949

Part IV Advanced Topics

Figure 17-3 (continued)

950

}

Device Drivers Chapter 17

II Open the Active key for the driver.
status = RegOpenKeyEx(HKEY_LOCAL_MACHINE, (LPTSTRl dwContext,

0, 0 , & h Keyl ;

if (status == ERROR_SUCCESS) {
II Read the key value.
dwlen = sizeof(szKeyNamel;
status= RegQueryValueEx (hKey, TEXT("Key"), NULL, &dwType,

(PBYTE)szKeyName, &dwlen);

RegCloseKey(hKey);
if (status == ERROR_SUCCESS)

status = RegOpenKeyEx (HKEY_LOCAL_MACHINE, (LPTSTRl
dwContext, 0, 0, &hKey);

if (status == ERROR_SUCCESS) {

} else

II This driver doesn't need any data from the key, so as
II an example, it just reads the Prefix value, which
II identifies the three-char prefix (GEN) of thts driver.
dwlen = sizeof (szPrefixl;
status= RegQuer.YValueEx (hKey, TEXT("Prefix"l, NULL,

&dwType, (PBYTE)szPrefix, &dwlen);
RegCl os.el<ey(hKey):

else
DEBUGMSG tlONE_ERROR,

(TEXT<"Error opening driver key\r\n")));

DEBUGMSG (ZONE_ERROR, CTEXT("Error opening Atttve \ey\r\n")));

DEBUGMSG CZONE_FUNC, (DTAG TEXT("GetConfigData--\r.l.n")));
return 0;

The majority of the lines of code in GenDriver are DEBUGZONE macros.
The messages are handy for learning exactly when and how the different entry
points of the driver are called. The GetConfigData routine at the end of the code
shows how to test the Context value to determine whether the value passed to
the !nit function was a pointer to a string or merely a number.

The driver template above is a good starting point for any stream driver you
want to write. Simply change the three-character name GEN to whatever your
driver is named and go from there.

951

Part IV Advanced Topics

Asynchronous Driver 1/0

952

When I described the file system functions in Chapter 7, I mentioned that the
ReadFile and WriteFile functions don't support asynchronous I/0. This limita
tion means that the Windows CE implementation of the file system API doesn't
support having the operating system provide data back to the application after
the function returns. For file reads and writes, an application can get around this
problem simply by spawning a separate thread to perform the read or write and
then signaling the primary thread when the data transfer is complete. At times,
however, it might be better to have a device driver perform the asynchronous
data transfer and notify the calling application or driver when the transfer is
complete. This tactic simplifies the application and allows the driver to tune
the secondary thread to provide the best performance when reading or writing the
data. The question is, how can a device driver perform asynchronous I/0 if
the operating system doesn't? The answer is simple: just because Windows CE
doesn't support a feature doesn't mean you can't implement it yourself. Before
I go into more detail about asynchronous drivers, I need to provide some back
ground information.

One question you might have asked when I was talking about mapping
pointers was how a device driver can write to a buffer that's in another
application's slot. And if a driver can access another slot, can any application
write into any slot? The answers to both questions lie in how Windows CE
memory protection works.

As I mentioned earlier, each application is assigned a slot when it launches.
While a thread in the application is running, its slot is cloned into slot 0. While
the application is running, it can access slot 0 and its own slot. Attempting to
read or write data in the other slots will result in a memory protection excep
tion. 2 This way, applications are protected from one another.

When an application calls an operating system function, the part of the
operating system that processes the function, NK, FileSys, Device, or GWES, is
granted access to the calling process's slot for the duration of the function. This
is also true for calls to device drivers. While the device driver is processing the
call-whether it's Read, Write, or IOControl-the driver can write to the buffers
located in the calling application's slot. As soon as the function is complete, the
driver loses access to the calling application's slot.

If we apply this knowledge to asynchronous I/0, we see that the driver has
a problem. Although it can map a pointer back to the calling application's slot,
it doesn't have access rights to that slot after the call to the driver completes.

2. This is not technically true because the operating system might enable a thread to access slots contain
ing operating system processes as needed.

Device Drivers Chapter 17

However, one Windows CE-specific function allows an application to modify the
slot protection scheme. This function is SetProcPermissions and is prototyped as

DWORD SetProcPermissions (DWORD newperms);

The single parameter is a bitmask, one bit for each slot. When a bit is set to 1,
the application will have access to the corresponding slot. For example, to en
able access to slot 1, set the least significant bit to 1. A function prototype for
SetProcPermissions isn't defined in the SDK include files, only in the Platform
Builder. The description of SetProcPermissions just might make some program
mers sit up in their chairs. Yes, this function is essentially the keys to the king
dom. A quick call to SetProcPermissions with the newperms parameter set to
OxFFFFFFFF enables an application to write to every slot in the system. One
caveat: just because you can doesn't mean you should.

Memory protection exists for the benefit of programmers. By throwing
exceptions when an errant memory access is made, the operating system catches
the mistake the programmer made. So although applications can disable the
Windows CE slot protection scheme, there is no reason they should, and plenty
of reasons they shouldn't. Instead, applications should query the permissions they
are currently granted and, if necessary, modify them for the situation. To query
an application's permissions, use the function

DWORD GetCurrentPermissions (void);

The function returns the slot permission bitmap for the current application. If this
function is called from within a driver, the permission mask will include the slot
containing the device manager and the calling process's slot. Remember, during
the life of the call, the driver has access to the caller's slot.

At this point, we have all the tools necessary for asynchronous 1/0. We can
create a secondary thread; we learned how to do that in Chapter 8. We can map
pointers back to the calling process's slot. Finally, we can query the current
permissions and set them when necessary. However, you should consider a few
more items when implementing asynchronous 1/0.

First, the rights to access other slots that can be changed with SetProc
Permissions are thread-specific, not process-specific, which means that setting
the permission mask of one thread in a process doesn't affect the other thread's
permissions. So the secondary thread must call SetProcPermissions, not the thread
processing the call to the driver.

Second, any mapping of pointers must take place in the call to the driver,
not in the secondary thread because the function GetCallerProcess, which is used
in conjunction with MapPtrToProcess, needs a calling process. The secondary
thread wasn't called; it was started-so calling GetCallerProcess in the second
ary thread will fail.

953

Part IV Advanced Topics

954

Finally, the secondary thread will need some way to signal the calling pro
cess that the I/0 is complete. You can achieve this by means as simple as the
driver posting a message to a window owned by the calling process or by sig
naling an event. The following code implements an IOCTL command that uses
asynchronous I/0 to fill a buffer:

II Structure passed by application to driver
typedef struct {

PBYTE pBuff; II Pointer to destination buffer
int nSize; II Size of buffer
HWND hWnd; II Window handle to send message when done
UINT wMsg; II Message to send to app when done

ASYNCSTRUCT, *PASYNCSTRUCT;

II Structure passed from primary driver thread to secondary thread
typedef struct {

ASYNCSTRUCT asy; II Copy of caller's data
DWORD dwCurrPermissions; II Calling thread's permissions

THREADASYNCSTRUCT, *PTHREADASYNCSTRUCT;

II SetProcPermissions is defined only in the Platform Builder include files.
#ifndef SetProcPermissions
DWORD SetProcPermissions (DWORD);
#endif llSetProcPermissions

II==
II AsyncThread - Secondary thread that performs async IIO
II
int AsyncThread (PVOID pArg) {

DWORD dwOldPerms;
PTHREADASYNCSTRUCT ptArgs;
int i, re = ERROR_SUCCESS;

if (!pArg) return -1;
ptArgs = (PTHREADASYNCSTRUCTJpArg;

II Set thread permissions.
dwOldPerms = SetProcPermissions (ptArgs->dwCurrPermissions);

II Write the "data."
_try {

for (i = 0; (i < 10) && (i < ptArgs->asy.nSize); i++)
*PtArgs->asy.pBuff++ = i;
Sleep (1000); II This makes this take a while.

_except (EXCEPTION_EXECUTE_HANDLER)
re = ERROR_BUFFER_OVERFLOW;

Device Drivers Chapter 17

II We're done; notify calling application.
if (IsWindow (ptArgs->asy.hWnd))

PostMessage (ptArgs->asy.hWnd, ptArgs->asy.wMsg, re, 0);

II We don't really need to do this since we're terminating, but
II it's better to set a good example.
SetProcPermissions (dwOldPerms);

II Clean up.
LocalFree ((PVOID)ptArgs);
return 0; II Terminate thread by returning.

II==
II IOControl - Driver IOControl entry point
II
DWORD xxx_IOControl (DWORD dwOpen, DWORD dwCode, PBYTE pln, DWORD dwin,

PBYTE pOut, DWORD dwOut, DWORD *pdwBytesWritten) {
PDRVCONTEXT pState;

pState = (PDRVCONTEXT) dwOpen;
switch (dwCode) {

case IOCTL_ASYNC:
{

PTHREADASYNCSTRUCT ptArgs;
PASYNCSTRUCT pAppAsyncin;
HANDLE hThread;

II Validate input parameters.
if (!pin I I (dwin < sizeof CASYNCSTRUCT))) {

SetLastError(ERROR_INVALID_PARAMETERl;
return FALSE;

}

II Cast input buff ptr to struct pointer we can understand.
pAppAsyncin (PASYNCSTRUCT)pin;

II Allocate a buffer to pass data to secondary thread.
ptArgs = (PTHREADASYNCSTRUCT)LocalAlloc (LPTR,

sizeof CTHREADASYNCSTRUCT));

II Copy input structure from application since some applications
II forget and put this kind of stuff on the stack.
ptArgs->asy = *pAppAsyncin;
ptArgs->dwCurrPermissions = GetCurrentPermissions();

II Map pointer to app buffer.
ptArgs->asy.pBuff = MapPtrToProcess (pAppAsyncin->pBuff,

GetCallerProcess());
II Create async thread.
hThread = CreateThread (NULL, 0, AsyncThread,(PVOID)ptArgs,

0, 0);

(continued)

955

Part IV Advanced Topics

956

if (!hThread) {
SetLastError(ERROR_NOT_ENOUGH_MEMORY); II Catchall error
LocalFree ((PVOID)ptArgs);
return FALSE;

II Always close handles.
CloseHandle (hThread);

return TRUE;

default:
DEBUGMSG (ZONE_ERROR,

CDTAG TEXTC"GEN_IOControl: unknown code\r\n")));
return FALSE;

return TRUE;

The preceding code contains a driver IOControl entry point and a routine
AsyncThread that executes the secondary thread. When the IOCTL_ASYNC com
mand is received, the driver allocates a structure for the data and copies the data
passed from the application. The driver then maps the pointer contained in the
structure and saves its current permissions mask. The secondary thread is then
created by means of a call to CreateThread. The AsyncThread routine then starts.
The routine sets its permissions mask to match the mask that was passed from
the driver's primary thread. The data is then written with a Sleep statement to kill
some time and thereby simulate the time it might take to read data from real
hardware. Once the data is written, a message is sent to the window handle passed
in the original call. AsyncThread then frees the buffer containing the informa
tion passed from the primary thread and terminates.

While most application programmers will never need to know how to imple
ment asynchronous 1/0 in a driver, understanding the fundamental concepts of
this technique is a good foundation for understanding how Windows CE works
under the covers. In its relatively short existence, Windows CE has evolved into
a fairly complex and quite robust operating system. The componentized design
of Windows CE, coupled with its Win32-standard API, provides a unique combi
nation of flexibility and familiarity that is unmatched among today's operating
systems. All in all, it's not a bad OS. Have fun programming Windows CE. I do.

Index

Note: Page numbers in italics refer to figures
or tables.

Special Characters and Numbers
16550-compatible serial interface, 540

A
accelerators, as resources, 127, 128-29
ACCELERATORS resource type, 127
accept function, 601, 628
AccessCode parameter, 934
AC_LINE_BACKUP _POWER flag, 922
AC_LINE_OFFLINE flag, 922
AC_LINE_ONLINE flag, 922
ACLineStatus field, 922
AC_LINE_UNKNOWN flag, 922
ActionFlags field, 714
ActiveSync, 635, 637, 665. See also file filters
active window, 86
Address field, 630
address space

for applications, 354-57
Windows CE overview, 350-54

Advise method, 672
AF _!NET format, 599, 600
AF_IRDA format, 599, 600
AlbumDB.c file, 438-62
AlbumDB example program, 433-63
AlbumDB.h file, 436-38
AlbumDB.rc file, 433-35
AllocationBase field, 361, 363
AllocationProtect field, 362
Alt key, 104, 112
ampersand (&), 126, 173
animation control, 345
annunciators, taskbar, 743
AppendMenu function, 123, 797

application launch keys
changing registry entries, 759-60
dynamically overriding, 761-62
overview, 757
using, 759-60

applications. See also example programs;
game API (GAPI)

command line, 752-57
cross-platform, 911-23
memory for, 354-57
multiple instances, 716-17, 760, 765

APP _RUN_TO_HANDLE_NOTIFICATION
constant, 716

AppWizard, 784
Arc function, 70
ArcTo function, 70
asterisk (*), as wildcard, 411
asynchronous driver 1/0, 952-56
auto-commit memory, 358
AutoRun feature, Pocket PCs, 818-20
Autostart key, 671
AutoStartOnConnect key, 670, 671
AutoStartOnDisonnect key, 671
aygshell.lib file, 779

B
background color, 39-40, 41, 46, 47, 205
background mode, 40, 41, 46, 47
backlit displays, 919
BaseAddress field, 361, 363
BatteryChemistry field, 923
battery drivers, 922
BatteryFlag field, 922
BatteryFlagPercent field, 923

957

Index

BatteryFullLifeTime field, 923
BatteryLifeTime field, 923
BATIERY_LIFE_UNKNOWN flag, 923
battery-powered systems, 909-10
BaudRate field, 544
BeginPaint function, 30, 31, 37, 60
beginthreadex function, 628
biBitCount parameter, 66
BI_BITFIELDS flag, 66
biClrlmportant parameter, 66
biClrUsed parameter, 66
biCompression field, 66
biHeight parameter, 66
bind function, 599, 600-601
BIOS (basic input-output system), 348
biPlanes parameter, 66
BI_RGB flag, 66
biSizelmage field, 66
BitBlt function, 68, 69
BITMAPINFOHEADER structure, 65-66, 72
BITMAPINFO structure, 65, 72
BITMAP resource type, 127
bitmaps

adding to command bar buttons, 268-69
adding to menu bars, 786-87
creating, 63
device dependent, 63-64
device independent, 64
four-color, 63
loading, 64
overview, 62-63
predefined, 268-69, 786-87
rendering, 67-69
as resources, 127, 129
selecting into device contexts, 67-69
standard, 269, 293
system-provided, 268-69, 786-87

BITPIXEL value, 40
biWidth parameter, 66
biXPelsPerMeter field, 66
biYPelsPerMeter field, 66
BLACK_PEN parameter, 71
blocked threads, 495-96
block mode, 650-55

958

BM_GETCHECK message, 169
BM_SETCHECK message, 169
BN_CLICKED notify code, 168, 169, 204
boot process

Device.exe program, 906-7
Explorer.exe program, 487, 909
FileSys.exe program, 903, 904
GWES.EXE program, 907-8
launching custom processes, 908-9
overview, 901-2
vs. powering up, 909-10
resetting system, 902-9
role of registry, 904-8
Shell.exe program, 905-6
Startup routine, 902
system configuration, 910

bOpen parameter, 87 4
brackets ((]), 126
brush array, 24
brushes

for drawing shapes, 72-73
for drawing window backgrounds, 24
in Shapes program, 83

BS_3STATE style, 169
BS_AUT03STATE style, 169, 204
BS_AUTOCHECKBOX style, 169, 204
BS_AUTORADIOBUTION style, 169, 204
BS_BITMAP style, 170
BS_BOTIOM style, 170
BS_CHECKBOX style, 169
BS_ICON style, 170
BS_LEFT style, 170
BS_MULTILINE style, 170
BS_OWNERDRAW style, 170
BS_RADIOBUTION style, 169
BS_RIGHT style, 170
BS_TOP style, 170
bTemplate parameter, 382
BtnDlg.c file, 242-47
BtnWnd.c file, 18~91
buffers, freeing, 639, 643
built-in controls, 147, 167-68. See also

dialog boxes
built-in drivers, 925, 926

burnedChild field, 297
buttons. See also application launch keys

in Ct!View program, 204
customizing appearance, 170-71
disabled, 272-73, 293
as keyboard keys, 757-62
navigation, 757, 758, 758
overview, 168
owner-draw, 170-71
Pocket PC, 826-27
push buttons, 168

BUTTON statement, 209
BY _HANDLE_FILE_INFORMATION

structure, 387
ByteSize field, 545

c
C library I/0 functions, 752, 753
cache, LView program, 343-44
Calculator applet

adding to Start menu on H/PCs, 740
launching from New menu, 788-97
sample code for launching, 490-91

calendar control, 5
callback functions, 52, 61, 149
CALLBACK type definition, 27
CAPEDIT control, 816
cascading menus, 123
Casio H/PC, 354, 355, 356
CB_ADDSTRING message, 172
cbCachedData field, 851
CB_FINDSTRING message, 172
CB_GETDROPPEDSTATE message, 173
CB_GETEDITSELECT message, 172
cb!nput parameter, 651
CB_INSERTSTRING message, 172
cBitspPerPel parameter, 63
cBmp!mages field, 781
CB_SETEDITSELECT message, 172
CBS_EX_CONSTSTRINGDATA extended

style, 173
CB_SHOWDROPDOWN message, 173
cbSize field, 871
cbWndExtra field, 150

cbxPitch field, 825, 827
cbyPitch field, 825, 827
CCS_ VERT style, 295
CeChat.c file, 559-- 74
CeChat example program, 556-74
CeChat.h file, 558-59

Index

CeChat.rc file, 557-58
CeClearUserNotification function, 715-17
CeCreateDatabaseEx function, 416-17,

419-22, 427
CeCreateDatabase function, 636
CeDatabaseSeek function, 427
CEDB_ALLOWREALLOC flag, 428
CEDBASEINFO structure, 419-20, 427, 432,

644-45
CEDB_AUTOINCREMENT flag, 422
CEDB_EXNOTIFICATION flag, 423
CEDB_FIND_DATA structure, 644
CEDB_NOCOMPRESS value, 420
CEDB_PROPDELETE flag, 430
CEDB_PROPNOTFOUND flag, 429
CEDB_SEEK_BEGINNING value, 424
CEDB_SEEK_CEOID value, 424
CEDB_SEEK_CURRENT value, 425
CEDB_SEEK_END value, 425
CEDB_SEEK_ VALUEFIRSTEQUAL value, 425
CEDB_SEEK_ VALUEGREATER value, 425
CEDB_SEEK_ VALUENEXTEQUAL value, 425
CEDB_SEEK_ VALUESMALLER value, 425
CEDB_SORT_CASEINSENSITIVE flag, 421
CEDB_SORT_DESCENDING flag, 421
CEDB_SORT_UNKNOWNFIRST flag, 422
CEDB_ VALIDCREATE value, 420
CEDB_ VALIDDBFLAGS value, 420
CEDB_ VALIDMODTIME value, 420
CEDB_ VALID NAME value, 420
CEDB_ VALIDSORTSPEC value, 420
CEDB_ VALIDTYPE value, 420
CeDeleteDatabaseEx function, 430
CeDeleteRecord function, 430
CeDidGetlnfoEx function, 431-32
CEDIRINFO structure, 432
CeEnumDBVolumes function, 418-19
CEF (Common Executable Format), 819

959

Index

CEFILEINFO structure, 432
CeFindAllDatabases function, 644, 645
CeFindAllFiles function, 641-43, 650
CEFind.c file, 754-56
CE_FIND_DATA structure, 642-43, 650
CEFind example program, 753-57
CeFindFirstDatabaseEx function, 430-31
CeFindFirstFile function, 641
CeFindNextDatabaseEx function, 430-31
CeFindNextFile function, 641
CE_FRAME flag, 550
CeFreeNotification function, 424
CeGetCallerTrust function, 516
CeGetCurrentTrust function, 516
CeGetDesktopDeviceCaps function, 640
CeGetDiskFreeSpaceEx function, 650
CeGetLastError function, 639
CeGetOidlnfoEx function, 432
CeGetOidlnfo function, 643
CeGetPassword function, 640
CeGetSpecialFolderPath function, 645
CeGetStoragelnformation function, 650
CeGetStorelnformation function, 640
CeGetTempPath function, 645
CeGetThreadPriority function, 499
CeGetUserNotification function, 733-34
CeGetUserNotificationHandles function, 732
CeGetUserNotificationPreferences function,

714-15
CeGetVersionEx function, 637
CeGetWindow function, 646
CEGUID, 417, 427, 430, 431
CeHandleAppNotifications function, 716
CeMountDBVol function, 417-18
CE_NOTIFICATION_INFO _HEADER

structure, 733
CENOTIFICATION structure, 423-24
CE_NOTIFICATION_TRIGGER structure,

713, 716, 718-19, 733
CENOTIFYREQUEST structure, 423
CEOIDINFO structure, 431-32
CeOpenDatabaseEx function, 422-24
CE_OVERRUN flag, 550

960

Ce prefix, 636
CEPROPID structure, 427-28, 429
CEPROPVAL structure, 425-26, 429, 430
CeRapiFreeBuffer function, 639, 643,

645, 650
CeRapiGetError function, 639
CeRapilnitEx function, 638, 650
CeRapilnit function, 638, 650, 665
CeRapilnvoke function, 640, 651, 652, 654,

655, 665
CeRapiUninit function, 639, 650
CeReadRecordPropsEx function, 427-29
CeReadRecordProps function, 463, 645
CERECORDINFO structure, 432
CeRunAppAtEvent function, 711, 719
CeRunAppAtTime function, 711
CE_RXPARITY flag, 550
CeSeekDatabase function, 424-27
CeSetDatabaselnfoEx function, 422, 427
CeSetThreadPriority function, 499
CeSetThreadQuantum function, 500
CeSetUserNotificationEx function, 711,

712-13, 717, 718
CeSetUserNotification function, 711
CeSHCreateShortcut function, 645
CeSHGetShortcutTarget function, 645
CeSvcClose function, 667, 668
CESVC_CUSTOM_MENUS registry key, 666
CeSvcDelete Val function, 669
CESVC_DEVICE_SELECTED registry

key, 667
CESVC_DEVICES registry key, 666, 667
CESVC_DEVICEX registry key, 666, 667
CeSvcEnumDevices function, 687
CeSvcEnumProfiles function, 668
CESVC_FILTERS registry key, 666, 667, 687
CeSvc functions, 687, 688-89
CeSvcGetBinary function, 669
CeSvcGetDword function, 669
CeSvcGetString function, 668, 669
CeSvcOpenEx function, 667
CeSvcOpen function, 666--67, 670, 671, 687
CESVC_ROOT_MACHINE registry key, 666

CESVC_ROOT_USER registry key, 666
CESVC_SERVICES_COMMON registry

key, 666
CESVC_SERVICES_USER registry key, 667
CeSvcSetBinary function, 669
CeSvcSetDword function, 669
CeSvcSetString function, 669, 671, 687
CESVC_SYNC_COMMON registry key, 666
CESVC_SYNC registry key, 667
CE_TXFULL flag, 550
CE_ USER_NOTIFICATION structure,

713-14, 733
CeUtil functions, 665-70, 687
CEVT_LPWSTR constant, 421
Ce WriteRecordProps function, 430
CFF _CONVERTINFO structure, 691
CFF _DECLARE_ERROR macro, 694
CFF _DESTINATIONFILE structure, 692
CFF _SOURCEFILE structure, 692
cFindData parameter, 644
cHandles parameter, 732
character mode API, 752
char fields, 598
char variable type, and Hungarian

notation, 15
chClsExtra field, 23
check boxes, 169, 204, 205
CheckMenultem function, 123
child windows

in CtlView program, 203-4
FontList2 program, 151-67
and input focus, 86
for input panel windows, 868
overview, 148
for Today screen items, 851-52, 853

chlnQue field, 551
Chord function, 70
chOutQue field, 551
chSize field, 166, 296, 638, 744, 781, 822
chStructure field, 580
circles, drawing, 74
ClearCommBreak function, 549, 550

ClearCommError function, 550-51
client area, 30

Index

client/server model, and stream socket
connections, 598-99

ClientWnd.c file, 157-63
clipboard, 357
clipping regions, 37
Close button, 29, 33, 277
CloseDestinationFile method, 692
xxx_Close function, 933, 935
CloseHandle function, 384, 407, 505, 511,

512, 540, 935
closesocket function, 603
CloseSourceFile method, 692
CLRBREAK flag, 550
CLRDTR flag, 550
clrFore field, 297
CLRIR flag, 550
CLRRTS flag, 550
CLSID key, 685, 687, 823
CmdBand.c file, 306-16
CmdBand example program, 303-17
CmdBand.h file, 304-6
CmdBand.rc file, 303-4
CmdBar.c file, 282-92
CmdBar example program, 278-93
CMDBAR_HELP flag, 277
CmdBar.h file, 280-82
CMDBAR_OK flag, 277
CmdBar.rc file, 278-80
CMD.EXE program, 753
CnctNote.cpp file, 678-83
CnctNote example program, 675-84
CnctNote.h file, 676- 77
CnctNote.rc file, 67~ 76
CNT_CLASSICTIME flag, 716
CNT_PERIOD flag, 713
CNT_TIME flag, 713
CoCreatelnstance function, 672, 674, 684
code wizards, 778, 780
Colnitialize function, 672
colon (:) in device driver names, 926

961

Index

color
background, 39-40, 41, 46, 47, 205
and controls, 205
creating brushes to fill shapes, 72-73
foreground, 39-40, 46, 47
four-color bitmaps, 63

Color common dialog, 222, 223, 258
COLOREF parameter, 71
COLOR_STATIC constant, 205
combo boxes, 168, 172-73, 275, 293
COMMANDBANDRESTOREINFO

structure, 316
command bands

adding to applications, 295-99
creating, 294-95
handling messages, 302-3
image lists, 294
initializing, 299-300
vs. menu bars, 775-76
overview, 293
saving band layout, 300-302
vertical, 295, 296-97

CommandBands_AddAdornments
function, 300

CommandBands_AddBands function,
295-99

CommandBands_ Create function,
294-95, 299

CommandBands_ GetCommandBar
function, 299

CommandBands_ GetRestorelnformation
function, 300-301, 317

CommandBands_Height function, 302
CommandBands_IsVisible function, 303
COMMANDBANDSRESTOREINFO

structure, 300-301, 302
CommandBands_Show function, 302-3
CommandBar _AddAdornments function,

29, 277
CommandBar _AddBitmap function,

268-69, 270, 272, 813
CommandBar _AddButtons function,

270-71

962

CommandBar _AddToolTips function,
276-77

CommandBar _AlignAdornments function,
277

CommandBar_Create function, 29, 266-67
CommandBar_Destroy function, 31-32,

277-78
CommandBar _DrawMenuBar function,

267-68
CommandBar_GetMenu function, 267
CommandBar_Height function, 30, 277
CommandBar _InsertButton function, 271
CommandBar _InsertComboBox function,

275-76
CommandBar _InsertMenubarEx function,

124, 267
CommandBar _InsertMenubar function, 267
CommandBar_IsVisible function, 277
command bars

adding buttons to, 268-69
adding menus to, 267-68
attaching menus to, 29, 124
combo boxes for, 275-76
creating, 266-67
design guidelines, 278
destroying, 31-32, 33, 277-78
disabled buttons, 272
drop-down buttons for, 273-75
example program, 278-93
handling button clicks, 272
hiding/showing, 277
vs. menu bars, 775-76
new to Windows CE, 5
overview, 266
on Pocket PCs, 33, 34
referencing images, 270-71
resizing, 277, 293
role in client area, 30
tool tips for, 276-77
visibility, 277

CommandBar _Show function, 277
command line applications, 752-57
commctrl.h file, 265

committed memory pages, 350, 356,
359, 360

COMMITTIMEOUTS structure, 938-39
common control library, 320
common controls

initializing DLL, 264-65
overview, 263-64, 266
programming, 264-65
using for menu bars, 786-87

common dialog library, 147-48
common dialogs, 222-23
Common Executable Format (CEF), 819
COMMPROP structure, 548-49
COMMTIMEOUTS structure, 545-46
CompactFlash cards, 818, 928
Compaq iPAQ Pocket PC, 353-54, 715,

715, 751, 752
compile-time versioning, 912-13
Component Object Model (COM)

file filters, 684-707
method of connection notification,

672-75
overview, 673

ComposeLine function, 404-5
COMSTAT structure, 551
CON devices, 753
conditional code compilation, 779, 913
configuration dialog box, 850
CONNDLG_RO_FATH flag, 579
CONNECTDLGSTRUCT structure, 578-79
connect function, 602, 627
connection notification

CnctNote program, 675-84
COM method, 672-75
overview, 670
registry method, 670-71

connection-oriented connections, 598-603
connections

datagram vs. stream, 598
persistent, 578
stream, 598-603

CONNECT_UPDATE_PROFILE flag, 578, 579
console applications, 752-57
console drivers, 753

CONTEXT structure, 535, 536
CONTROL_C_EXIT code, 535
control characters, 541
controls. See also common controls

built-in, 147, 167-68
and colors, 205
creating, 168
list of window classes, 168
overview, 147, 167-68
as window classes, 147, 167-68

CONTROL statement, 209
coordinate transformations, 36
CopyFile function, 409-10
Coredll.dll file, 356, 910, 913
cPlanes parameter, 63

Index

crColor parameter, 71, 72
CREATE_ALWAYS flag, 381, 382, 418
CreateBitmap function, 63
CreateCompatibleBitmap function, 63
CreateCompatibleDC function, 67-68, 69
CreateDialog function, 215, 216, 813, 853
CreateDialoglndirect function, 215
CreateDialoglndirectParam function, 215
CreateDIBPatternBrushPt function,

72-73, 83
CreateDIBSection function, 65-67
CreateDirectory function, 409, 410
CreateEvent function, 504
CreateFileForMapping function, 405, 408
CreateFile function, 380-82, 404, 540,

934, 935
CreateFileMapping function, 405-6, 408-9
CreateFontlndirect function, 48-49
CreateHatchBrush function, 73, 83
CREATE_INVALIDGUID macro, 418
CreateMutex function, 511
CREATE_NEW _CONSOLE flag, 489
CREATE_NEW flag, 381, 418
CreateNewltem method, 788
CreatePen function, 71
CreatePenlndirect function, 71-72
CreatePopupMenu function, 123
CreateProcess function, 488-91, 7 41
CreateSemaphore function, 510

963

Index

CreateSolidBrush function, 72
CREATESTRUCT structure, 122
CREATE_SUSPENDED flag, 489, 497
CREATE_SYSTEMGUID macro, 419, 431, 463
CreateTbread function, 496-98, 628, 956
CreateWindowEx function, 148, 168
CreateWindow function, 25-26, 148, 168,

204, 318, 320, 323, 776, 777
critical sections, 511-12
CRITICAL_SECTION structure, 512-13
cross-platform applications, 911-23
CS_DBLCLKS style, 23, 104
CS_GLOBALCLASS style, 23
CS_HREDRAW style, 23, 778
CSIDL_BITBUCKET constant, 737
CSIDL_DESKTOP constant, 737
CSIDL_DRIVERS constant, 737
CSIDL_FAVORITES constant, 737
CSIDL_FONTS constant, 737
CSIDL_PERSONAL constant, 737
CSIDL_PROGRAMS constant, 737, 740
CSIDL_RECENT constant, 738
CSIDL_STARTMENU constant, 738
CSIDL_STARTUP constant, 738
CS_NOCLOSE style, 23
CS_PARENTDC style, 23
cs_ VREDRAW style, 23, 778
CTL_CODE macro, 938
Ctl!D field, 170
Ct/Type field, 170
CtlView.c file, 178-85
CtlView example program, 174-205
CtlView.h file, 175- 78
CtlView.rc file, 174
Ctrl key, 103
Ctrl-Q key, 775
current directory, 378, 411, 753
current point, 70
CW _USEDEFAULT flag, 25, 776
cxWidth field, 825
cyHeight field, 825
cyp field, 852, 866

964

D
databases

deleting, 430
designing, 416-17
enumerating, 430-31
opening, 422-24
predefined data types, 420, 420
querying information, 431-32
searching, 424-27
Windows CE overview, 416-17
writing records, 430

database volumes, 417
Data field, 631
datagram connections, 598
DataSize field, 631
data types, 15-16, 416, 420, 420, 467
date and time picker control, 5, 320-22
DATETIMEPICK_CLASS class, 320
DB_CEOID_CHANGED value, 424
DB_CEOID_CREATED value, 424
DB_CEOID_DATABASE_DELETED value,

424
DB_CEOID_RECORD_DELETED value, 424
DBGPARAM structure, 943
DCBlength field, 544
DCB structure, 543-45
DDBs. See device dependent bitmaps

(DDBs)
debugging

custom Today screen items, 854
DLLs, 757

debugging stations, 903-4
DEBUGMSG macro, 943
DEBUG_ONLY_THIS_FROCESS flag, 489
DEBUG_FROCESS flag, 489
DEBUGZONE macro, 943, 951
debug zones, 905-6, 942-44
_declspec, 653-54
decommitting virtual memory, 360-61
Default/con key, 686
DEFAULT_QUALITY option, 49
xxx_Deinit function, 933, 934
DeleteCriticalSection function, 513

DeleteDC function, 69
DeleteFile function, 410
DeleteObject function, 51-52
demand paging, 354, 356
Deselect method, 869, 873
desktop, system, 6, 635. See also

ActiveSync
DestroyCommandBand function, 317
DestroyWindow function, 216
device contexts

attributes, 39-40
functions, 38
memory, 67-69
overview, 30, 37
selecting bitmaps into, 67-69
selecting fonts into, 49-50

device dependent bitmaps (DDBs), 63-64
device drivers

asynchronous, 952-56
building, 940-52
checking trust state, 516
enumerating, 926-30
friendly names, 928
GenDriver program, 944-51
installable, 926
loading, 932
multiple-instance, 932
naming conventions, 926
native vs. stream interface, 925
overview, 925-26
reading, 930-31
registry entries, 928
role in boot process, 906-7
and stream API, 933-42
writing, 931-42

Device.exe program, 487, 906-7, 926, 932
device independent bitmaps (DIBs), 64
DeviceloControl function, 930-31, 938-39,

940
DEVICELIST structure, 604
dialog boxes. See also input dialogs;

property sheets
common dialog library, 147-48
creating, 209-11

Index

dialog boxes, continued
full-screen, 813-14
modeless, 214-16
overview, 206
for Pocket PC applications, 813-23
property sheet issues, 816-18
as resources, 206-9, 210
and SIP, 814

DialogBox function, 210
DialogBoxlndirectParam function, 211
DialogBoxParam function, 210, 211, 214
dialog box procedures, 211-14
Dialog Manager, 221
DIALOG resource type, 127
dialogs. See dialog boxes
dialog templates, 206-9, 210
DIB_PAL_COLORS parameter, 73
DIB_RGB_COLORS parameter, 72
DIBs. See device independent bitmaps

(DIBs)
DIB sections, 64-67
directories

creating, 409, 410
defined, 736
vs. drives, 414-15
vs. folders, 736
moving, 410
removing, 409, 410
renaming, 410
vs. storage devices, 379, 414

disabled buttons, 272-73, 293
disabled image list, 272, 273
DISCDLGSTRUCT structure, 580
DISC_NO_FORCE flag, 580
DispatchMessage function, 21, 129, 211,

215
display, turning off, 919-21
display buffer, writing to, 827-28
DivFile.cpp file, 699-- 707
DivFile.def file, 697
Div File example program, 695-707
DivFile.h file, 697-99
DivFile.rc file, 697
DivFile.reg file, 695, 696, 696

965

Index

DlgDemo.c file, 230-42
DlgDemo example program, 224-59
DlgDemo.h file, 227-30
DlgDemo.rc file, 224-27
DLGITEMTEMPLATE structure, 210
DLGTEMPLATE structure, 210
DllCanUnloadNow function, 697, 869
DllGetClassObject function, 686, 697,

868-69
DllMain function, 852, 878
DLLs. See dynamic-link libraries (DLLs)
DoActivateMain function, 32
DOC file type vs. PWD file type, 685-87
Documents submenu, 741
domains, 583
double-slash U /), 125
double-taps, 104
double word variable type, and Hungarian

notation, 15
DRAFT_QUALITY option, 49
drag list control, 345
DrawButton function, 205
drawing

brushes for, 72-73
circles, 74
ellipses, 74
overview, 36-38, 70, 72
polygons, 75
rectangles, 73-74
round rectangles, 75
shapes, 73-75

DRAWITEMSTRUCT structure, 170
DrawMenuBar function, 268
DrawText function, 31, 34, 35, 39, 61
drive letters, 378, 414, 577
drives vs. directories, 414-15
drop-down buttons, 273-75, 293
drop-down list style combo boxes, 172
drop-down style combo boxes, 172
DS_ABSALJGN style flag, 207
DS_CENTER style flag, 207
DS_MODALFRAME style flag, 207
DS_SETFONT style flag, 207
DS_SETFOREGROUND style flag, 208

966

DT_CALCRECT flag, 39, 46
DT_CENTER flag, 39
DTM_SETFORMAT message, 321-22
DTN_FORMAT notification, 322
DTN_FORMATQUERY notification, 322
DTN_USERSTRING notification, 321
DTN_ WMKEYDOWN notification, 322
DTR_CONTROL_DISABLE value, 544
DTR_CONTROL_ENABLE value, 544
DTR_CONTROL_HANDSHAKE value, 544
DTS_APPCANPARSE style, 320, 321
DT_SINGLELINE flag, 39
DTS_LONGDATEFORMAT style, 320
DTS_SHORTDATEFORMAT style, 320
DTS_SHOWNONE style, 320
DTS_TIMEFORMAT style, 320
DTS_UPDOWN style, 320
DT_ VCENTER flag, 39
DuplicateHandle function, 517
d11)11ctive.1.0 rocessorJ,lfask field, 352
dwAdditiona!Flags parameter, 413
dwAllocationGranularity field, 353
dwAvailPageFile field, 354
dwAvailPhys field, 353
dwAvailVirtual field, 353, 354
dwBytes parameter, 366, 367
dwCode parameter, 938
dwContext parameter, 933
dwConversion parameter, 874
dwCreationDistribution parameter, 381, 382
dwCreationFlags parameter, 489, 491, 497
dwCurrentR:xQueue field, 548
dwCurrentTxQueue field, 548
dwData field, 271
dwDbaseType parameter, 430
dwDesiredAccess parameter, 380, 405
dwDevNum field, 579
dwDisplayType field, 583
dwEvent field, 718
dwFileAttributes field, 643
dwFlagsAndAttributes parameter, 540
dwFreeType parameter, 360
dwGlobalMemoryStatus field, 353
dwHeight parameter, 828

dwlmDataSize field, 823, 873
dw!ndex parameter, 468
dwlnfolevel parameter, 586, 587
dwlnitialSize parameter, 366
dwloControlCode parameter, 930-31
DWL_DLGPROC value, 151
dwlenln parameter, 938
dwlenOut parameter, 938
DWL_MSGRESULTvalue, 151, 222
DWL_USER value, 151, 258
dwMask field, 814
dwMaxBaud field, 548
dwMaximumSize parameter, 366
dwMaxRxQueue field, 548
dwMaxTxQueue field, 548
dwMemoryloaded field, 353
dwMessage parameter, 743
dwMilliseconds parameter, 501, 506
dwMoveMethod parameter, 383
dwNumberOjEytesToMap parameter, 406
dwNumberOjProcessors field, 352
dwOJfset parameter, 67
dwOID field, 387, 643
dwOptions parameter, 466
dwOrder field, 851
dwPageSize field, 352
dwParam field, 423
dwPlatformld field, 917
dwProcessorRevision field, 352
dwProcessorType field, 352
dwProvCapabilities field, 549
dwProvSubType field, 549
dwRop parameter, 68
dwScope parameter, 581
dwSeekType parameter, 424-25
dwSentence parameter, 874
dwServiceMask field, 548
dwSettableBaud field, 548
dwSettableData field, 549
dwSettableParams field, 549
dwSettableStopParity field, 549
dwSharedMode parameter, 381
dwSize field, 217, 218, 421
dwSize parameter, 358, 360, 361, 418, 872

Index

dwStackSize parameter, 497
dwState parameter, 820
dwStyle parameter, 148, 276, 294-95
dwTop parameter, 828
dwTotalPageFile field, 354
dwTotalPhys field, 353, 354
dwTotalVirtual field, 353, 354
dwType field, 713
dwType parameter, 580, 581, 583
dwUsage field, 582
dwUsage parameter, 581
dwVolumeSerialNumber field, 387
dwWakeMask parameter, 508
dynamic-link libraries (DLLs)

E

commctrl.dll file, 356
coredll.dll file, 356
game API as DLL, 824
and module-based security, 515-16

edit control
in command bands, 299
overview, 168, 171

EditDlg.c file, 248-49
EDITIEXT statement, 208, 209
EditWnd.c file, 191-93
E_FAIL constant, 638
Ellipse function, 72, 74
ellipses, drawing, 74
eMbedded Visual C++

compiling programs, 18
creating files, 17
and exception handling, 533-36
Pocket PC issues, 778, 779
starting, 17

embedded Windows CE versions, 712,
735-36

EM_SETSEL message, 171
EnableHardwareKeyboard function, 93
EnableMenultem function, 123, 144
EndDialog function, 212, 216
#endif, 15, 22
EndPaint function, 30, 31, 37
EnterCriticalSection function, 512, 513

967

Index

enumerating
databases, 430-31
device drivers, 926-30
fonts, 52, 60, 163
network resources, 581-85
registered devices, 668
registry keys, 468-69
windows, 149-50

enumeration functions, 581-85
EnumFontFamilies function, 52, 60
EnumWindows function, 149, 517
environmental variables, 488
ERROR_ACCESS_DENIED, 516
ERROR_ALREADY_EXISTS, 382, 511
ErrorChar field, 545
ERROR_INVALID_PARAMETER, 936, 939
ERROR_NO_MORE_ITEMS, 468, 469, 583,

668, 707
EscapeCommFunction function, 549-50, 554
ES_LOWERCASE style, 171
ES_MULTILINE style, 171
ES_PASSWORD style, 171
ES_READONLY style, 171
ES_UPPERCASE style, 171
EV _BREAK flag, 542
EV _CTS flag, 542
EV _DSR flag, 542
EVENPARITY constant, 545
event objects, 504-5, 531-32
EV _ERR flag, 542
EV _RLSD flag, 542
EV _RXCHAR flag, 542
EV _RXFLAG flag, 542, 545
EvtChar field, 545
EV_ TXEMPTY flag, 542
example programs

AlbumDB, 433-63
CeChat, 556-74
CEFind, 753-57
CmdBand, 303-17
CmdBar, 278-93
CnctNote, 675-84
CtlView, 174-205

968

example programs, continued
DivFile, 695-707
DlgDemo, 224-59
FontList, 52-62
FontList2, 151-67
GAPIShow, 830-48
GenDriver, 944-51
HelloCE, 17-34
HelloPPC, 764-74, 779
KeyTrac, 94-103
ListNet, 587-96
LView, 325-44
MenuBar, 797-813
MySquirt, 609-28
NewMenuX, 788-97
NoteDemo, 719-32
NumPanel, 877-900
PenTrac, 105-11
PowerBar, 855-67
RapiDir, 646-50
RapiFind, 656-65
RegView, 469-86
Shapes, 75-84
TBicons, 744-51
TextDemo, 40-47
TicTacl, 112-22
TicTac2, 130-45
XTalk, 519-33

EXCEPTION_ACCESS_ VIOLATION code,
535

EXCEPTION_CONTINUE_EXECUTION
code, 534

EXCEPTION_CONTINUE_SEARCH code,
535

EXCEPTION_EXECUTE_HANDLER code,
533

exception handling, 533-36
EXCEPTION_RECORD structure, 535
EXE files, and module-based security,

515-16
ExitProcess function, 488, 491
ExitTbread function, 491, 498
explicit linking, 913-16
Explorer.exe program, 487, 909

Explorer shell
configuring Start menu, 740-41
launching applications, 741-43
namespace concept, 736
vs. other Windows CE platform shells,

735-36
Out of Memory Error dialog box, 751-52
role of folders, 737-39
role of shortcuts, 739-40
role of taskbar, 743-44
TBicons program, 744-51
vs. Today screen, 735

extended dialog box styles, 208
extended list view styles, 323
ExtEscape function, 920, 921
ExtTextOut function, 61

F
jAbortOnError field, 545
FAD_FLAGS flag, 644
FAD_NAME flag, 644
FAD_NUM_RECORDS flag, 644
FAD_NUM_SORT_ORDER flag, 644
FAD_OID flag, 644
FAD_SORT_SPECS flag, 644
FAD_TYPE flag, 644
FAF_ATTRIB_CHILDREN flag, 641, 642
FAF _ATTRIB_NO_HIDDEN flag, 641
FAF _ATTRIBUTES flag, 642
FAF_CREATION_TIME flag, 642
FAF _FOLDERS_ONLY flag, 641
FAF_LASTACCESS_TIME flag, 642
FAF _LASTWRITE_ TIME flag, 642
FAF _NAME flag, 642
FAF _NO_HIDDEN_SYS_ROMMODULES

flag, 641
FAF _OID flag, 642
FAF _SIZE_HIGH flag, 642
FAF _SIZE_LOW flag, 642
fBinary field, 544
/Create parameter, 667, 737
jCtsHold field, 551
FD_CLR macro, 608

FD _ISSET macro, 608
FD_SET macro, 608
fDsrHold field, 551
jDsrSensitivity field, 545
jDtrControl field, 544
fdwFlags field, 822, 871, 872, 875
FD_ZERO macro, 608
/Enabled field, 851
fEor field, 551
fErase field, 31
fErrorChar field, 545
ffFormat field, 826
jForce parameter, 579

Index

fibers, 488. See also threads
FILE_ATTRIBUTE_ARCHIVE flag, 381
FILE_ATTRIBUTE_COMPRESSED flag, 384
FILE_ATTRIBUTE_DIRECTORY flag, 385
FILE_ATTRIBUTE_HAS_CHILDREN flag,

642, 643
FILE_ATTRIBUTE_HIDDEN flag, 381
FILE_ATTRIBUTE_INROM flag, 384
FILE_ATTRIBUTE_NORMAL flag, 381
FILE_ATTRIBUTE_READONLY flag, 381
FILE_ATTRIBUTE_ROMMODULE flag, 384
FILE_ATTRIBUTE_SYSTEM flag, 381
FILE_ATTRIBUTE_TEMPORARY flag, 385,

414, 643
FILE_BEGIN flag, 383, 937
FILE_CURRENT flag, 383, 937
FILE_END flag, 383, 937
file filters

as COM in-proc servers, 690
DivFile example, 695-707
interfaces, 690-95
overview, 684
registering, 684-90

FILE_FLAG_OVERLAPPED flag, 540
FILE_FLAG_RANDOM_ACCESS flag, 381
FILE_FLAG_ WRITE_ THROUGH flag, 381
file I/0 functions, 380-87
filenames, 379
File Open common dialog, 222, 223
FileRead function, 405

969

Index

files
closing, 384
copying, 409-10
creating, 380-82
deleting, 410
finding, 411-14
getting information, 384-87
managing, 409-15
memory-mapped, 405-7
moving, 409, 410
moving pointer, 383
opening, 380-82
querying size, 386-87
reading, 382-83
renaming, 410
standard I/0, 380-87
temporary, 410-11
truncating, 384
Windows CE overview, 378-79
writing, 382-83

FILE_SHARE_READ access right, 381, 934
FILE_SHARE_ WRITE access right, 381, 934
FileSys.exe program, 487, 903, 904
FILETIME structure, 385-86
FileTimeToLocalFileTime function, 386
FileView.c file, 390-96, 404
FileView.h file, 389-90
FileView.rc file, 388
FileView sample program, 387-405
File Write function, 405
FilterOptions method, 694
filters. See file filters
ftncUpdate field, 31
FindClose function, 412, 413
FindExinfoStandard function, 413
FindExSearchLimitToDevices value, 413, 927
FindExSearchLimitToDirectories value, 413
FindExSearchNameMatch value, 413
FindFirstDatabase function, 643
FindFirstFileEx function, 413-14, 926-27
FindFirstFile function, 411-12, 413, 577
finding files, 411-14

970

FindNextDatabase function, 643
FindNextFile function, 412, 577, 927
Find.srv.cpp file, 656, 657-61, 661
FindWindow function, 22, 150, 517-18, 774
ftnX field, 545
FIONBIO command, 607
FIONREAD command, 607
Flags field, 630
flAllocationType parameter, 358
Flash memory storage cards, 348
flastModified field, 421
flNewProtect parameter, 361
flOptions parameter, 366
flProtect parameter, 358-59, 406
FlushFileBu.ffers function, 384
Flush ViewO.fFile function, 406
}Mask field, 166, 167, 296, 297, 298, 742
}Maximized field, 302
fnBar parameter, 166, 167, 174
fnPenStyle parameter, 71
.[Null field, 545
focus window, 86
folders

defined, 736
vs. directories, 736
and item IDs, 736
special, 737-39

FontList2.c file, 153--'-57
FontList2 example program, 151-67
FontList2.h file, 152-53
FontList.c file, 54-60
FontList example program, 52-62
FontList.h file, 52-53
FONT resource type, 127
fonts

creating, 48-49, 60
destroying, 51-52
determining characteristics, 50-51
determining types, 51-52
enumerating, 52, 60, 163
overview, 47-48
raster, 47

fonts, continued
selecting into device context, 49-50
TrueType, 47

foreground color, 39-40, 46, 47
FORMAT_MESSAGE_FROM_HMODULE

flag, 694
FormatMessage method, 693-94
formatting flags, 39
four-color bitmaps, 63
JOutxCtsFlow field, 544
jOutxDsrFlow field, 544
jOutX field, 545
jParity field, 544
frame buffer

and game API, 823
and GAPI initialization, 825-26
in GAPIShow program, 848
indirect access, 828-29
role in drawing to screen, 827-28

frame window, 163, 204, 205
freeing virtual memory, 360-61
FreeLibrary function, 914-15
free memory pages, 350, 354
Free method, 738
}Restore field, 31
jRlsdHold field, 551
}RtsControl field, 545
JSearchOp parameter, 413, 926-27
fSizeOneDraw field, 851
fsModifiers parameter, 761
fsState field, 270-71
fsStyle field, 271
fStyle field, 296
.fFXContinueOnXoff field, 545
fFxim field, 551
fuFlags parameter, 123, 275
full-screen dialog boxes, 813-14
function keys, 87
functions, Win32 API vs. Windows CE,

35-36
JXof!Hold field, 551
jXoffSent field, 551

Index

G
game API (GAPI)

application cleanup, 829
application maintenance, 829
GAPIShow program, 830-48
initialization, 825-27
list of functions, 824, 824
Windows CE overview, 823-24

GAPIShow.c file, 832-47
GAPIShow example program, 830-48
GAPIShow.h file, 830-32
GenDriver.c file, 946-51
GenDriver example program, 944-51
GenDriver.h file, 944-45
GENERIC_READ flag, 380
GENERIC_ WRITE flag, 380
GetAsyncKeyState function, 91-92
GetCallerProcess function, 940, 941, 953
GetCapture message, 111
getc function, 752
GetClientRect function, 30
GetCommMask function, 542
GetCommModemStatus function, 551
GetCommProperties function, 544, 547-48
GetCommState function, 543, 544, 556
GetCommTimeouts function, 546
GetCurrentPermissions function, 953
GetCurrentProcess function, 940
GetDatabaseltem function, 343
GetDC function, 38, 69
GetDesktop Window function, 150
GetDeviceCaps function, 36, 40, 48, 72, 640
GetDiskFreeSpaceEx function, 415, 654
GetDlgltem function, 32, 276
GetExceptionCode function, 535
GetExitCodeProcess function, 491
GetExitCodeThread function, 498
GetFileAttributes function, 384-85
GetFilelnformationByHandle function, 387
GetFileSize function, 386-87, 404
GetFileTime function, 385-86
GetFocus function, 86

971

Index

GetlmData method, 869, 872-73
Getlnfo method, 869, 870-71, 875, 900
GetltemData function, 463
Getltemlnfo function, 463
GetKeyboardStates function, 93
GetKeyState function, 91-92, 104, 112
GetLastError function, 382, 384, 418, 422,

504, 510, 511-12, 515, 578
GetMessage function, 20-21, 211
GetModuleFileName function, 819
GetMouseMovePoints function, 104-5
GetObject function, 69
GetParent function, 149
GetProcAddress function, 637, 914, 932
GetProcessHeap function, 368
GetRapiStat method, 655
GetScrol!Jnfo function, 167, 174
getsockopt function, 604, 606, 627
GetStockObject function, 24, 71, 72, 83
GetStorelnformation function, 354, 415
GetStyleColor function, 171
GetSysColorBrush function, 205
GetSystemlnfo function, 352-53, 819
GetSystemPowerStatusEx2 function, 921-23
GetSystemPowerStatusEx function, 866
GetTempFileName function, 410-11
GetTextColor function, 39-40
GetTextMetrics function, 60
GetThreadPriority function, 499
GetVal template, 212
GetValueDlgProc dialog procedure, 211
GetValue string, 211
GetWindowDC function, 38, 69
GetWindow function, 149-50
GetWindowLong function, 150-51, 258
GetWindowRect function, 28
GetWindowThreadProcessld function, 492
GlobalAlloc function, 357
GlobalFree function, 357
global heap, 357
GlobalMemoryStatus function, 352, 353
GlobalRealloc function, 357
graphical functions, Win32 API vs.

Windows CE, 35-36

972

graphics, Pocket PC guidelines for, 781
grjFlags field, 851
gr}Flags parameter, 752
gripper, 293
group boxes, 169-70
guard pages, 368
GUIDs, 686
GW_CHILD constant, 149
GWES.exe program, 487, 907-8, 926
GW _HWNDFIRST constant, 149
GW _HWNDLAST constant, 149
GW _HWNDNEXT constant, 149
GW_HWNDPREV constant, 149
GWL_EXSTYLE value, 151
GWL_HINSTANCE value, 151
GWL_HWNDPARENT value, 151
GWL_ID value, 151
GWL_STYLE value, 151
GWL_USERDATA value, 151
GWL_ WNDPROC value, 151
GW_OWNER constant, 149
GXBeginDraw function, 824, 827-28
GXCloseDisplay function, 824, 829
GXCloselnput function, 824, 829
GXDisplayProperties structure, 825-26
GX.DLL file, 824
GXEndDraw function, 824, 828
GX_FULLSCREEN constant, 825
GXGetDefaultKeys function, 824, 826-27
GXGetDisplayProperties function, 824,

825-26, 830
gx.h file, 824
GXIsDisplayDRAMBuffer function, 824,

828-29
GXKeyList structure, 826-27
GX_LANDSCAPEKEYS option, 826
gx.lib file, 824
GX_NORMALKEYS option, 826
GXOpenDisplay function, 824, 825
GXOpenlnput function, 824, 827
GXResume function, 824, 829
GXSetViewport function, 824, 828, 829
GXSuspend function, 824, 829

H
Handheld PCs CH/PCs). See also Explorer

shell; Pocket PCs
active window, 86
low-memory strategies, 375
MySquirt program window, 610, 610
overview, 5
RAPI functions, 637
running HelloCE program, 18-19
shell differences with other platforms,

735-36
Start menu limitations, 740

handle inheritance, 488, 517
handle variable type, and Hungarian

notation, 15
hardware keys, 757-59
hatched brush, 73
hbmBack field, 297
hbrBackground field, 24
hdc field, 31, 170
hDeviceContext parameter, 937
hDlg field, 814
hDlg parameter, 212
HeapAlloc parameter, 366
HeapCreate function, 365, 366
HeapDestroy function, 367-68
HeapFree function, 367
HEAP _GENERATE_EXCEPTIONS flag, 365
HEAP _NO_SERIALIZE flag, 366, 367
HeapReAlloc function, 367
HEAP _REALLOC_IN_PLACE_ONLY flag,

367
heaps

global, 357
handling memory blocks, 363-68
local, 356, 357, 363, 364-65
overview, 357, 363
separate, 365-68
when to use, 372

HeapSize function, 367
HEAP _ZERO_MEMORY flag, 366, 367
HelloCE.c file, 10-14

Index

HelloCE example program
building, 17-34
executing from within Visual C++, 33
running on H/Pcs, 18
running on Pocket PCs, 18-19, 33, 34
source code, 9-14

HelloCE.h file, 9
HelloPPC.c file, 767- 74
HelloPPC example program, 764-74, 779
HelloPPC.h file, 766-67
HelloPPC.rc file, 766
Help button, adding to command bar, 277
hEnable flag, 93
heRapilnit field, 638
hErase parameter, 37
hHeap field, 423
hHeap parameter, 428
hibernate mode, 31-32, 373
hlcon field, 23, 217, 219, 744
Hiding method, 869, 872
hlmageNarrow field, 871
hlmageWide field, 871
h!nheritHandle parameter, 492
h!nitia!Owner parameter, 511
hlnitia!State parameter, 504
h!nstance field, 23, 25, 218
hlnstance parameter, 19, 26, 211
hlnstApp field, 7 42
hinstDLL field, 851
hlnst parameter, 124, 268-69
hlnst variable, 15, 25
Hitachi microprocessors, 352
HKEY_CLASSES_ROOT key, 464, 685. See

also registry
HKEY_CURRENT_USER key, 464, 684
HKEY _LOCAL_MACHINE key, 464, 686
hKey parameter, 466
hkl parameter, 874
hManualReset parameter, 504
hMem parameter, 365
hMenu field, 797
hMenu parameter, 148, 275

973

Index

hot key control, 345
how parameter, 603
hPrevJnstance parameter, 19-20
hProcess field, 7 42
hrRapilnit field, 638
hSection parameter, 67
hSrc parameter, 69
hTemplateFile parameter, 405
hToolBarid field, 781, 782
Hungarian notation, 15-16
hWaitAll parameter, 507-8
h WaitForMultipleObjects function, 507-8
hwndCustom field, 851
hWnd field, 423, 744
hwnd field, 742
hwndFrom field, 221
hwndMB field, 781
hwndOwner field, 579, 580
hwndOwner parameter, 737
hWnd parameter, 37, 211
hwnd parameter, 174, 275, 874
hwndParent field, 775, 781
hwndParent parameter, 852

iBitmap field, 270
iButton parameter, 124, 267, 271, 276
ICC_BAR_CLASSES flag, 264
ICC_COOL_CLASSES flag, 264
ICC_DATE_CLASSES flag, 264, 318, 320
ICC_LISTVIEW_CLASSES flag, 264, 323
ICC_PROGRESS_CLASS flag, 264
ICC_TAB_CLASSES flag, 264
ICC_ TREEVIEW _CLASSES flag, 264
ICC_UPDOWN_CLASS flag, 264
ICeFileFilter interface

FilterOptions method, 694
FormatMessage method, 693-94
NextConvertFile method, 690-93, 707
overview, 690

ICeFileFilterOptions interface
overview, 694-95
SetFilterOptions method, 694-95

974

JCeFileFilterSite interface
CloseDestinationFile method, 692
CloseSourceFile method, 692
OpenDestinationFile method, 691, 692,

693, 707
OpenSourceFile method, 691, 692
overview, 691
ReportLoss method, 692
ReportProgress method, 692

IClassFactory interface, 878
ICMPAPI.H file, 629
JcmpCloseHandle function, 631
JcmpCreateFile function, 629, 631
ICMP _ECHO_REPLY structure, 630, 633
JcmpSendEcho function, 629-30, 631, 633
ICON resource type, 127
icons, as resources, 127-28, 127
idBitmap parameter, 268, 269
IDCANCEL button, 212, 214
IDCCMan interface

A ,J.,J~n m=•h~,4 f-.7'J
.L ..LWVhJV ..L.1.1\......l..l.l\ 1'...J.' VI'-'

overview, 670, 672-73
ShowCommSettings method, 672
Unadvise method, 673

IDccMan interface, 684
IDCCManSink interface

OnLogActive method, 674
OnLogAnswered method, 674
OnLogDisconnection method, 674
OnLogError method, 67 4
OnLoglnactive method, 674
OnLogipAddr method, 674
OnLogListen method, 674, 675
OnLogTerminated method, 674
overview, 670, 672, 674-75

IDccManSink interface, 684
idComboBox parameter, 276
idFrom field, 221
ID lists, 736
idMenu parameter, 267
IDM_MENU resource, 783
IDM_NEWMENUMAX value, 797
IDM_SHAREDNEWDEFAULT menu item

ID, 784-85

IDM_SHAREDNEW menu item ID,
784-85, 788

idNewJtem parameter, 123
IDOK button, 212, 214, 277
#if def statement, 15
#if statement, 22
ilmage field, 297, 299
JJMCallback2 interface

overview, 868
SendAlternatives2 method, 870, 877
SendCharEvents method, 874, 876
SendString method, 874, 877
SendVirtualKey method, 874, 875-76
Setlmlnfo method, 874, 875, 900

JJMCallbackEx interface, 868
JJMCallback interface

overview, 868
SendCharEvents method, 874, 876
SendString method, 874, 877
SendVirtualKey method, 874, 875-76
Setlmlnfo method, 874, 875, 900
threading issues, 869

IlnputMethod2 interface
Deselect method, 869, 873
GetlmData method, 869, 872-73
Getlnfo method, 869, 870-71, 875, 900
Hiding method, 869, 872
overview, 867, 869-70
ReceiveSiplnfo method, 869, 872
RegisterCallback2 method, 870, 873-74
RegisterCallback method, 869, 872
Select method, 869, 870, 900
SetlmData method, 870, 872-73
SetMMActiveContext method, 870, 874
Showing method, 869, 872
UserOptionsDlg method, 870, 873

IlnputMethodEx interface, 867
IlnputMethod interface

Deselect method, 869, 873
GetlmData method, 869, 872-73
Getlnjo method, 869, 870-71, 875, 900
Hiding method, 869, 872
in NumPanel program, 878
overview, 867, 869-70

IInputMethod interface, continued
ReceiveSiplnfo method, 869, 872
RegisterCallback method, 869, 872
Select method, 869, 870, 900
SetlmData method, 870, 872-73
Showing method, 869, 872
UserOptionsDlg method, 870, 873

ImageList_Add function, 294
ImageList_Create function, 294
ImageList_Duplicate function, 273

Index

image lists, 272-73, 294. See also bitmaps
image memory pages, 354
JMalloc interface, 738
iMaxSockets field, 597
iMaxUdpDg field, 597
IMCommon.cpp file, 878, 883-91, 900
IMCommon.h file, 879-81
IMCommon.rc file, 879
IMINFO structure, 870-71, 875
iNarrow field, 871
include files, 629
#include statement, 125
inet_addr function, 631
INewMenultemServer interface

CreateNewltem method, 788
overview, 788

infrared port
CeChat program, 556-74
IrComm type, 555-56
overview, 552
raw IR type, 552-54

InitApp procedure, 20, 21-24
InitCommonControlsEx function, 317, 320
InitCommonControls function, 264-65, 317,

323
xxx_Init function, 933-34
InitializeCriticalSection function, 512-13
InitializeCustomltem function, 850-52
Initlnstance procedure, 20, 24-26
inking, 104-5. See also PenTrac example

program
InProcServer32 key, 686
input buffer, 651, 654, 656

975

Index

input dialogs
vs. information dialogs, 815-16
overview, 815-16

input focus
and keyboard messages, 86-67
and mouse messages, 110-11
overview, 86
and stylus messages, 103, 110-11

Input Method Editor, 868
input methods (IMs)

as COM in-proc servers, 868-69
NumPanel docked window, 878
NumPanel program, 877-900
NumPanel undocked window, 878
threading issues, 869
writing, 867-77

InsertMenu function, 123
installable device drivers, 926. See also

stream interface device drivers
installable file system (IFS), 378
InstalledFilters key, 687
integer variable type, and Hungarian

notation, 15
InterlockedDecrement function, 514-15
InterlockedExchange function, 514-15
Interlockedlncrement function, 514-15
interlocked variable access, 514-15
Internet Control Message Protocol (ICMP),

628
interprocess communication, 407-9, 491,

516-33
iNumlmages parameter, 268
InvalidateRect function, 102
INVALID_HANDLE_ VALUE, 382, 412, 413,

540, 629
INVALID_SOCKET, 600, 601
xxx_IOControl function, 933, 937-42
IOCTL_ASYNC command, 956
IOCTL_CHECKSUM command, 942
IOCTL codes, 930-31, 938, 941
IPAddr format, 629, 630
IPEXPORT.H file, 629
IP _OPTION_INFORMATION structure,

629-30, 631

976

IRAPIStream interface
in FindSrv.cpp file, 661
GetRapiStat method, 655
overview, 655-56
Read method, 656, 665
SetRapiStat method, 655
Write method, 656, 661

irdaAddressFamily field, 600
IrDA communication, 596, 599-600
IRDA_DEVICE_INFO structure, 604
irdaServiceName field, 600-601
IRLMP _9WIRE_MODE option, 606
IRLMP _ENUMDEVICES option, 606
IRLMP _IAS_QUERY option, 606
IRLMP _IAS_SET option, 606
IRLMP _IRLPT_MODE option, 606
IRLMP _SEND_PDU_LEN option, 606
IRLMP _SHARP _MODE option, 606
IrSock

and IrComm driver, 555-56
overview, 552, 603
vs. WinSock, 603-4

IsBadReadPtr function, 936
IsDialogMessage function, 215
!Storage interface, 692
!Stream interface, 655, 692
iString field, 271
ItemAction field, 170
item IDs, 736
items, defined, 736
ItemState field, 170
iUsage parameter, 67
iWide field, 871
iWidth parameter, 276

K
KBDI_KEYBOARD_ENABLED flag, 93
KBDI_KEYBOARD_PRESENT flag, 93
KernelRelocate routine, 903
KernelStart routine, 902-3
keybd_event function, 92-93, 918
keyboard accelerators, as resources, 127,

128-29

keyboards. See also hardware keys; touch
screens

input focus, 86
message processing, 86-91
overview, 85
simulating, 85
testing for presence, 93

KEYEVENTF _KEYUP flag, 92-93, 876
KEYEVENTF _SILENT flag, 92, 876
keys. See also buttons; keyboards

for launching applications, 757, 759-60
for navigation, 757, 758, 758

KeyTrac.c file, 96-102
KeyTrac example program, 94-103
KeyTrac.h file, 94-96

L
LB_ADDSTRING message, 172
LB_DIR message, 172
LB_FIND message, 172
LB_GETCURSEL message, 172
LB_GETSELCOUNT message, 172
LB_GETSELITEMS message, 172
LB_INSERTSTRING message, 172
LB_SETCURSEL message, 172
LB_SETSEL message, 172
LBS_EX_CONSTSTRINGDATA extended

style, 172, 173
lDistanceToMove parameter, 383
LeaveCriticalSection function, 512, 513
ljClipPrecision field, 49
ifEscapement field, 48
!jFaceName field, 49
ifHeight field, 48
ljOrientation field, 48
ljOutPrecision field, 49
ifPitchAndFamily field, 49
lfQuality field, 49
ljWeight field, 48-49
lfWidth field, 48
LINECAPS parameter, 72
lines

drawing, 70-72
overview, 70

Index

LineTo function, 70
llnitialCount parameter, 510
list boxes, 168, 171-72
ListDlg.c file, 250-52
listen function, 601
ListNet.c file, 590-96
ListNet example program, 587-96
ListNet.h file, 58~90
ListNet.rc file, 588
list view control, 322-25. See also LView

example program
ListWnd.c file, 193-97
lMaximumCount parameter, 510
LMEM_FIXED flag, 364
LMEM_MOVEABLE flag, 365, 367
LMEM_ZEROINIT flag, 364, 365
LoadAccelerators function, 129
LoadBitmap function, 129
Load!con function, 744
Load!mage function, 64, 127, 128, 129, 744
LoadLibraryEx function, 916
LoadLibrary function, 259, 637, 914, 932
LoadString function, 129-30, 371
LocalAlloc function, 364, 654
LocalFree function, 364, 654
local heap

allocating memory, 364
freeing memory, 364
overview, 356, 357, 363, 364
querying size, 365
resizing blocks, 364-65
when to use, 372

local names, mapping network drives to,
577-79

LocalRealloc function, 364-65
LocalSize function, 365
LOGFONT structure, 48, 49, 50, 51, 60
LOGPEN structure, 71
LOGPIXELSY field, 48
long pointer variable type, and Hungarian

notation, 15
long variable type, and Hungarian

notation, 15
low memory, 372-76

977

Index

low-power state, 496
lpAddress parameter, 358, 360, 361, 362
lpApplicationName parameter, 489
lpBuffer parameter, 129, 130, 361, 383, 582,

583, 586
lpBuff parameter, 418
lpBytesReturned parameter, 931
lpcCount parameter, 583
lpCharSet field, 49
lpchData parameter, 466
lpClass parameter, 466 .
lpCmdLine parameter, 20, 491, 628
lpCommandLine parameter, 489
lpConnRes field, 579
lpcProp!D parameter, 427, 428
lpData parameter, 466
lpDistanceToMoveHigh parameter, 383
lpdwDisposition parameter, 466
lpEnumFunc parameter, 149
lpErrors parameter, 550
lpEventAttributes parameter, 504
lpFile field, 7 42
lpFileName parameter, 413
lpfn WndProc field, 23
lpfOldProtect parameter, 361
lphEnum parameter, 582
lpLastWriteTime field, 386
lpLocalName parameter, 578, 580, 583, 586
lplpBufffer parameter, 428
lpMaximumApplicationAddress field, 352
lpMem parameter, 367
lpMinimumApplicationAddress field, 352
lpModemStat parameter, 551
lpMutexAttributes parameter, 511
lpName parameter, 406, 504, 510, 511
lpNetResource parameter, 577, 581
lpNewltem parameter, 123
lpnlength parameter, 586, 587
lpNumberOJBytesRead parameter, 382
lpOverlapped parameter, 381, 383, 542
lpParameter parameter, 497
lpParameters field, 742
lpPassword parameter, 578
lpPrefixString parameter, 410

978

lpPreviousCount parameter, 511
lpProcessFormation parameter, 490
lppt parameter, 73
lpRect parameter, 37
lpRemoteName field, 578, 579, 582
lpRemoteName parameter, 580, 586
lpSearchFilter parameter, 413
lpSecurityAttributes parameter, 381, 466
lpSemaphoreAttributes parameter, 510
lpStartAddress parameter, 497
lpszApplication field, 713
lpszArguments field, 713, 716, 717
lpszClassName parameter, 24
lpszMenuName field, 24
lpszName parameter, 422
lpszNewltem parameter, 123
lpszPath parameter, 737
lpszValueName parameter, 466
lpText field, 297
lpTbreadAttributes parameter, 497
lpToo!Tips parameter, 276
LPTR flag, 364
lpType parameter, 466
lpUserName parameter, 578, 587
lp Vendorlnfo field, 597
lpVerb field, 742
lReleaseCount parameter, 510
LRESULT return type, 27
LR_LOADFROMFILE flag, 64
L TEXT statement, 208, 209
LView.c file, 328-43
LView example program, 325-44
LView.h file, 326-28
LView.rc file, 325-26
LVM_GETEXTENDEDLISTVIEWSTYLE

message, 323
LVM_INSERTITEM message, 265
LVM_SETEXTENDEDLISTVIEWSTYLE

message, 323
LVM_SETITEMPOSITION message, 324
LVN_GETDISPINFO notification, 324,

343, 463
L VN_ ODCACHEHINT notification,

324-25, 344

LVN_ODFINDITEM notification, 324, 325
LVS_AUTOARRANGE style, 324
LVS_EX_CHECKBOXES extended style, 323
LVS_EX_FULLROWSELECT extended

style, 323
LVS_EX_GRIDLINES extended style, 323
LVS_EX_HEADERDRAGDROP extended

style, 323
LVS_EX_SUBITEMIMAGES extended

style, 323
LVS_OWNERDATA style, 323, 324
LVS_SORTASCENDING style, 324
LVS_SORTDESCENDING style, 324
lWhichEvent parameter, 719

M
macros

CFF _DECLARE_ERROR macro, 694
for common controls, 265
CREATE_INVALIDGUID macro, 418
CREATE_SYSTEMGUID macro, 419, 431,

463
CTL_CODE macro, 938
DEBUGMSG macro, 943
DEBUGZONE macro, 943, 951
FD_CLR macro, 608
FD_ISSET macro, 608
FD_SET macro, 608
FD_ZERO macro, 608
MAKEINTRESOURCE macro, 127-28, 210
MAKELONG macro, 421
MAKEWORD macro, 597
vs. messages, 265
RGB macro, 71, 72
TEXT macro, 39, 641

MainMessages table, 27
MainWndProc procedure, 26-28
MAKEINTRESOURCE macro, 127-28, 210
MAKELONG macro, 421
MAKEWORD macro, 597
map file, 369, 369- 70, 370
mapping modes, 35-36
mapping network drives, 577-79
mapping of pointers, 952, 953

Index

MapPtrToProcess function, 940-41, 953
Map ViewO.fFile function, 406
Map VirtualKey function, 93
MapWindowPoints function, 275
MARKPARITY constant, 545
MaskBlt function, 69
MAX_PATH, 411, 737, 819
MCM_GETMINREQRECT message, 318
MCM_SETCOLOR message, 318
MCM_SETFIRSTDAYOFWEEK message, 318
MCM_SETMAXSELCOUNT message, 318
MCM_STRANGE message, 318
MCN_GETDAYSTATE notification, 319
MCN_SELCHANGE notification, 319
MCN_SELECT notification, 319
MCS_DAYSTATE style flag, 318
MCS_MULTISELECT style flag, 318
MCS_NOTODAYCIRCLE style flag, 318
MCS_NOTODAY style flag, 318
MCS_ WEEKNUMBERS style flag, 318
MEM_AUTO_COMMIT flag, 358
MEM_COMMIT flag, 358
MEM_DECOMMIT flag, 360
MEM_IMAGE flag, 362
MEM_MAPPED flag, 362
memory. See also virtual memory

for applications, 354-57
auto-commit, 358
best uses by type, 371-72
critical state, 373, 3 74, 375
diagram, 350, 351
global address space, 350-54
limited state, 373, 3 74
low state, 373, 3 74, 375
managing when low, 372-76
methods for allocating, 357-76
normal state, 373, 374
RAM, 347, 348
ROM, 347, 348
virtual, 349-50
Windows CE overview, 4, 347-57

MEMORY _BASIC_INFORMATION structure,
361-62

memory device contexts, 67-69
memory leaks, 491

979

Index

memory-mapped files, 405-7
memory maps

Windows CE application example, 354,
355, 356

Windows CE global address space, 350,
351

memory protection, 952, 953
memory states, 373-76
MEM_PRIVATE flag, 362
MEM_RELEASE flag, 360
MEM_RESERVE flag, 358
MEM_TOP _DOWN flag, 358
MenuBar.c file, 803-12
MenuBar example program, 797-813
MenuBar.h file, 801-3
MenuBar.rc file, 798-801, 812
menu bars

vs. command bars, 775-76, 780
configuring, 786--88
creating, 775-76, 780-81
managing menus, 788
MenuBar program, 797-813
NewMenuX program, 788-97
as Pocket PC issue, 144, 266
Pocket PC overview, 779-80
and resources, 782-86
showing/hiding SIP button on Pocket PC,

820
vs. toolbars, 780
using common control bitmaps, 786-87
working with menus, 787

MENU resource type, 127
menus

adding items to, 123
adding to command bar, 267-68
attaching to command bars, 124
cascading, 123
creating, 122-23, 124
handling commands, 124-25
on menu bars, 787
nested, 123
overview, 122
as resources, 126, 127
shared vs. non-shared mode, 788

980

MessageBox function, 145
messages

keyboard message processing, 86-91
overview, 7
scroll bar message processing, 164--65
steps in process, 7-8
stylus message processing, 103-12

MF _BYCOMMAND flag, 123
MF _BYPOSITION flag, 123
MF _CHECKED flag, 123
MF _GRAYED flag, 123
MF_POPUP flag, 123
MF _STRING flag, 123
MK_AL T flag, 112
MM_TEXT mapping mode, 36
Mobile Devices folder, 635, 684
MOD_ALT flag, 761
MOD_CONTROL flag, 761
modeless dialog boxes, 214-16
MOD_KEYUP flag, 761
MOD_SHIFT flag, 761
MOD_ WIN flag, 761
MONTHCAL_CLASS flag, 318
month calendar, 317-19
mounting database volumes, 417-18
mouse

right-button clicks, 111-12
vs. stylus, 103, 110

MOVEABLE flag, 783
MoveFile function, 409, 410
MoveTo function, 70
MS_CTS_ON flag, 551
MS_DSR_ON flag, 551
MSG_PEEK flag, 602
Msg WaitForMultipleObjectsEx function, 505,

506, 508-9
Msg WaitForMultipleObjects function, 505,

508
MS_RING_ON flag, 551
MS_RLSD_ON flag, 551
MultiByteTo WideChar function, 598, 641
multiple threads, and asynchronous serial

I/0, 542
mutexes, 511-12, 530

MySquirt.c file, 613-27
MySquirt example program, 609-28
MySquirt.h file, 611-13
MySquirt.rc file, 611

N
named memory-mapped objects

creating, 530-31
and interprocess communication, 518
and XTalk program, 519

named pipes, 517
Name registry value, 759
namespace, shell, 736
naming

device drivers, 926
memory-mapped objects, 408-9
synchronization objects, 503-4

native drivers, 925
navigation bar, showing/hiding on Pocket

PC, 820
navigation buttons, 757, 758, 758
nBmp!d field, 781
nBufferMax parameter, 129
nCmdShow parameter, 20, 24, 26
nested menus, 123
NETRESOURCE structure, 577-78, 579,

581-82, 583
network drives, mapping to local names,

577-79
\network folder, 577
networking APls, 575. See also WinSock;

WNet API
network resources

enumerating, 581-85
querying, 586-87

NewMenuX.cpp file, 791-96
NewMenuX.def file, 789
NewMenuX example program, 788-97
NewMenuX.h file, 789-90
newperms parameter, 953
NextConvertFile method, 690-93, 707
nFile!ndexHigh field, 387
nFilelndexLow field, 387
nFolder parameter, 737

nHeight parameter, 63
NIP _ICON flag, 744
NIP _MESSAGE flag, 744
NIM_ADD value, 743
NIM_DELETE value, 743
NIM_MODIFY value, 743
NK.exe program, 487, 902-4
nMax field, 166
nMaxSound field, 714
nmbhdir field, 319
NMDAYSTATE structure, 319
NMHDR structure, 221, 319
nMin field, 166

Index

NMNEWMENU structure, 797
NMN_GETAPPREGKEY notification, 796-97
NMN_INVOKECOMMAND notification,

788, 797
NMSELCHANGE structure, 319
nNumberOflinks field, 387
NO_ERROR, 578, 583
NOPARITY constant, 545
NoteDemo.c file, 723-32
NoteDemo example program, 719-32
NoteDemo.h file, 721-23
NoteDemo.rc file, 720-21
Notepad, 171
notification API, 711-34
NOTIFICATION_EVENT_DEVICE_CHANGE

flag, 718
NOTIFICATION_EVENT_NONE flag, 719
NOTIFICATION_EVENT_RESTORE_END

flag, 718
NOTIFICATION_EVENT_RS232_DETECTED

flag, 718
NOTIFICATION_EVENT_SYNC_END

flag, 718
NOTIFICATION_EVENT_TIME_CHANGE

flag, 718
NOTIFICATION_EVENT_TZ_CHANGE

flag, 718
NOTIFICATION_EVENT_ WAKEUP flag, 718
notifications

NoteDemo program, 719-32
querying, 732-34

981

Index

notifications, continued
system event, 718--19
timer event, 717-18
user, 711-17

NOTIFY.H file, 719
NOTIFYICONDATA structure, 743-44, 745
nPage field, 166
nPages field, 217
nPos field, 166, 167
nResult parameter, 212
nStartPage, 217
nToolBarld field, 781, 782
nTrackPos field, 167
NULL_PEN parameter, 71
NUMCOLORS value, 40
NumPanel.c file, 878, 892-99
NumPanel.def file, 879
NumPanel example program, 877-900
NumPanel.h file, 881-82
n Width parameter, 63, 71
nXOrg parameter, 73
nYOrg parameter, 73

0
object IDs, 387, 432
objects, file-mapping, 405-9
object store

as database volume, 419
determining size, 415
\network folder, 577
vs. other storage media, 379, 414
overview, 348, 378
volume serial numbers, 387

OBJTYPE_DATABASE flag, 432
OBJTYPE_DIRECTORY flag, 432
OBJTYPE_FILE flag, 432
OBJTYPE_RECORD flag, 432
ODDPARITY constant, 545
OEM_CERTIFY_RUN value, 516
OEM_CERTIFY_TRUST value, 516
OEMGetExtensionDRAM routine, 903
OEM!nit routine, 903
OK button, adding to command bar, 277
OnCreateMain function, 60

982

ONE5STOPBITS constant, 545
ONESTOPBIT constant, 545
OnLogActive method, 67 4
OnLogAnswered method, 674
OnLogDisconnection method, 674
OnLogError method, 674
OnLogfnactive method, 674
OnLog!pAddr method, 67 4
OnLogListen method, 674, 675
OnLogTerminated method, 674
OnPaintMain function, 46, 83
opaque mode, 46
OPEN_ALWAYS flag, 381, 382, 418
OpenCreateDB function, 433
OpenDestinationFile method, 691, 692,

693, 707
OPEN_EXISTING flag, 381, 418
xxx_Open function, 933, 934-35
opening

databases, 422-24
files, 380-82
registry keys, 465-66
serial ports, 540

OpenProcess function, 492
OpenSemaphore function, 511
OpenSourceFile method, 691, 692
OptionsData field, 630
options dialog, 853, 867
Options field, 631
OptionsSize field, 630
optname parameter, 604
Out Of Memory Error dialog box, 751-52,

752
OutputDebugString function, 943
OUT_TT_ONLY_PRECIS flag, 49
owned windows, 148
owner-draw buttons, 170-71, 205
owner-draw static controls, 174
owner windows, 148

p
packed format, 72
paged memory

committed, 350, 356, 359, 360

paged memory, continued
free, 350, 354
image, 354
overview, 349
private, 354
reserved, 350, 354, 356, 359, 360

PAGE_EXECUTE flag, 358
PAGE_EXECUTE_READ flag, 359
PAGE_EXECUTE_READWRITE flag, 359
PAGE_GUARD flag, 359
PAGE_NOACCESS flag, 359
PAGE_NOCACHE flag, 359
PAGE_READONLY flag, 358
PAGE_READWRITE flag, 358
PageSetupDialog function, 259
pages vs. regions, 359-60
page translation tables, 350
paging files, 354
PAINTFONTINFO structure, 60
painting, 36-38
PaintSingleFontFamily callback procedure,

60
PAINTSTRUCT structure, 30-31
palettes, 66
parent window, 204. See also child

windows; top-level windows
Parity field, 545
PatBlt function, 69
pbkResult parameter, 466
pBu.ffer parameter, 733, 935, 936
pBuftn parameter, 938, 940
pBufOut parameter, 938
pcbOutput parameter, 651
pcBytesNeeded parameter, 733
PCEGUID parameter, 430
pceun parameter, 717
pcHandlesNeeded parameter, 732
pCharacterBuffer parameter, 93
PCMCIA cards, 818, 928
PegasusFilter key, 686
pens, 70-71
PenTrac.c file, 106-10
PenTrac example program, 105-11
PenTrac.h file, 105-6
persistent connections, 578

Index

pfnCallBack field, 218, 219
pfnDlgProc field, 219
pguid parameter, 418, 419
phSvc parameter, 667
pidls, 736, 738
Pie function, 70
PingAddress, 631
pinging, 628-33
p!nput parameter, 651
p!RAP!Stream pointer, 655
Platform Builder, 543
platforms

differences among shells, 735-36
Windows CE vs. other Windows

platforms, 3-6, 263, 487-88
writing cross-platform applications,

911-23
Pocket PCs

alert dialog, 712, 712
application project template, 779
AutoRun feature, 818-20
closing applications, 775
command bar, 33, 34
and common print dialog, 259
console application support, 752
dialog boxes for applications, 813-23
displaying property sheets, 816-18, 817
as example of handheld devices, 5
guidelines for graphics, 781
HelloPPC program, 764-74
vs. H/PCs, 18-19, 715, 735
low-memory strategies, 375
menu bar, 34, 775-76
MySquirt program window, 610, 610
programming, 763-848
RAPI functions, 637
running HelloCE program, 18-19, 33, 34
screen overview, 764
shell differences with other platforms,

735-36
shell overview, 763
vs. standard Windows CE, 774-78
Start menu, 740-41
Today screen, 764
unique application support functions, 820

983

Index

Pocket Word
and PWD file type, 685-87
registry data, 464-65

paid parameter, 422
pointer variable type, and Hungarian

notation, 15
POINT structure, 70
PolyBezierTo function, 70
Polygon function, 72, 75
polygons, 75
Polyline function, 70
pop-up menus, and drop-down buttons,

274, 275
PostKeybdMessage function, 93
PostQuitMessage function, 21, 33, 144
PowerBar.c file, 857-66
PowerBar.def file, 855
PowerBar example program, 855-67
PowerBar.rc file, 856-57
xxx_PowerDown function, 933, 937
power management

overview, 918
powering down, 918
powering up, 909-10
power-off feature, 711
preventing powering down, 919
querying battery state, 921-23
turning off screen, 919-21

xxx_PowerUp function, 933, 937
ppFindDataArray parameter, 642
ppFindData parameter, 644
ppIRAPIStream pointer, 655
ppOutput parameter, 651
ppvBits parameter, 67
preemptive multitasking, 514
pResource, 218
prgbCachedData field, 851, 853
Print common dialog, 222, 223, 258
printers, defining connection, 580
print/ function, 752, 753, 757
priority classes, 494
priority inversion, 495
private memory pages, 354
PROCESS_ATTACH notification, 852

984

processes
creating, 488-91
defined, 487
finding, 517-19
system limitation, 487
terminating, 491-92
and thread priority, 493-95
Windows CE overview, 487-88

process ID, 492
PROCESS_INFORMATION structure,

490, 507
PROCESSOR_ARCHITECTURE_ARM

constant, 352
PROCESSOR_ARCHITECTURE_INTEL

constant, 352
PROCESSOR_ARCHITECTURE_SHx

constant, 352
PROCESSOR_HITACHI_SH3 constant, 352
PROCESSOR_HITACHI_SH4 constant, 352
program memory, 348. See also system

heap
programs. See applications; example

programs
Programs folder, 737, 741
Programs submenu, 740
progress bars, 345
properties, database record, 416, 417
property IDs
property pages. See property sheets
PropertySheet function, 216, 217
PROPERTYSHEETHEADER structure, 817
PROPERTYSHEETPAGE structure, 817
property sheets

adding pages, 218-20
creating, 216-18, 817
overview, 147, 216
page procedures, 220-21
Pocket PC issues, 816-18
removing pages, 219
Tab control, 816, 818

propid field, 426
propid parameter, 422
PROPSHEETHEADER structure, 216-17, 218
PropSheetPageProc function, 817-18

PROPSHEETPAGE structure, 217, 218,
220-21, 258

Protect field, 362, 363
PSCB_GETLINKTEXT notification, 818
PSCB_INITIALIZED notification, 817, 818
PS_DASH flag, 71
pShiftStateBu.ffer parameter, 93
PSH_MAXIMIZE flag, 817
PSH_MODELESS flag, 217
PSH_PROPSHEETPAGE flag, 217
PSH_PROPTITLE flag, 217
PSH_USECALLBACK flag, 817
PSH_USEPSTARTPAGE flag, 217
PS_INSIDEFRAME flag, 74
PSM_ADDPAGE message, 219
PSM_REMOVEPAGE message, 219
PSN_APPLY code, 222, 258
PSN_KILLACTIVE code, 221, 222
PSN_QUERYCANCEL code, 222
PSN_RESET code, 222
PSNRET_INVALID_NOCHANGEPAGE

field, 222
PSNRET_NOERROR, 222
PSN_SETACTIVE code, 222
PS_NULL flag, 71
PSP _DLGINDIRECT flag, 218
PSP _PREMATURE flag, 219, 220
PSP _USECALLBACK flag, 218, 219
PSP _USEREFPARENT flag, 219
PSP _USETITLE flag, 219
PS_SOLID flag, 71
pStartPage, 217
pszCaption field, 217
pszlcon field, 217, 219
pszMenu parameter, 267
pszNewApp parameter, 759
pszPath parameter, 667
pszTemplate, 218
pszTitle field, 219
puChar parameter, 876
pull-style programming, 6
PulseEvent function, 505
PUN_DIALOG flag, 714
PUN_LED flag, 714

PUN_REPEAT flag, 714
PUN_SOUND flag, 714
PUN_ VIBRATE flag, 714
PURE flag, 783
PurgeComm function, 549
PURGE_RXABORT flag, 549
PURGE_RXCLEAR flag, 549
PURGE_TXABORT flag, 549
PURGE_TXCLEAR flag, 549

Index

push buttons, 168. See also radio buttons
puShift parameter, 876
push-style programming, 6
pvlmData field, 823, 872, 873
PVOID data type, 503
PWD files, 685-87
pwszDialogText field, 714
pwszDialogTitle field, 714
pwszSound field, 714

Q
QS_ALLINPUT flag, 508
QS_INPUT flag, 508
QS_KEY flag, 508
QS_MOUSEBUTTON flag, 509
QS_MOUSE flag, 508
QS_MOUSEMOVE flag, 509
QS_PAINT flag, 509
QS_POSTMESSAGE flag, 509
QS_SENDMESSAGE flag, 509
QS_TIMER flag, 509
quantum. See time quantum
QUERYESCSUPPORT command, 920, 921
question mark, as wildcard, 411

R
radio buttons, 169, 205
RAM (random-access memory), 347, 348
RAPI. See remote API (RAPI)
RapiDir example program, 646-50
RAPI.DLL file, 637, 643, 670
RapiFind.cpp file, 662, 662-65, 665
RapiFind example program, 656-65
RAPI.H file, 647
RAPIINIT structure, 638

985

Index

RAPI.LIB file, 647
RapiServ.c file, 652, 652-53, 654
RAPISRV.EXE program, 487
raster fonts, 47
raw IR, 552-54
RBBIM_CHILD flag, 297
RBBIM_CHILDSIZE flag, 297
RBBIM_COLORS flag, 297
RBBIM_IDEALSIZE flag, 297
RBBIM_ID flag, 297
RBBIM_LPARAM flag, 298
RBBIM_STYLE flag, 296
RBBS_BREAK style flag, 296
RBBS_CHILDEDGE style flag, 296
RBBS_FIXEDBMP style flag, 296
RBBS_FIXEDSIZE style flag, 296
RBBS_GRIPPERALWAYS style flag, 296
RBBS_HIDDEN style flag, 296
RBBS_NOGRIPPER style flag, 296, 299, 317
RBBS_NOVERT style flag, 296-97
RB_IDTOINDEX message, 299, 300, 301
RBN_HEIGHTCHANGE notification, 302
RBS_AUTOSIZE flag, 294
RBS_BANDBORDERS flag, 294
RBS_FIXEDORDER flag, 295
RBS_FIXEDORDER style, 302
RBS_SMARTLABELS flag, 295
RBS_SMARTLABELS style, 297, 299, 316
RBS_ VARHEIGHT flag, 295
RBS_ VARHEIGHT style, 299
RBS_ VERTICALGRIPPER flag, 295
RCDATA resource type, 127
RC files, 125, 206
rcPaint field, 31
rcSipRect field, 822, 871, 872, 875
rcVisibleDesktop field, 822
ReadFile function, 382-83, 541, 930
xxx_Read function, 933, 935-36
reading database records, 427-29
ReadlntervalTimeout field, 546, 547
read-only memory (ROM), 347, 348
ReadProcessMemory function, 492
ReadTotalTimeoutConstant field, 546, 547

986

ReadTotalTimeoutMultiplier field, 546, 547
REBARBANDINFO structure, 295-99, 316
rebar control, 266, 294, 298. See also

command bands
ReceiveSiplnfo method, 869, 872
records, database

deleting, 430
deleting properties, 430
designing structure, 416-17
reading, 427-29
writing, 430

Rectangle function, 72, 73-74
rectangles

drawing, 73-74
in TextDemo program, 46

rect parameter, 61
RECT structure, 30, 39
recvfrom function, 603
recv function, 602
recycle bin, 737
redirector DLLs, 576
REG_BINARY data type, 467
RegClassKey function, 468
RegCreateKeyEx function, 466
RegDeleteKey function, 467
RegDeleteValue function, 467
REG_DWORD_BIG_ENDIAN data type, 467
REG_DWORD data type, 467
REG_DWORD_LITTLE_ENDIAN data type,

467
RegEnumKeyEx function, 468
RegEnum Value function, 468-69
REG_EXPAND_SZ data type, 467
RegExtensionforDevice routine, 688, 689
REG file, 689
RegFileExtension routine, 688-89
RegionSize field, 362, 363
regions vs. pages, 359-60
RegisterCallback2 method, 870, 873-74
RegisterCallback method, 869, 872
RegisterClassEx function, 127
RegisterClass function, 22, 24, 104, 150, 852
RegisterDevice function, 906-7, 933

RegisterHotKey function, 761-62
registry

and ActiveSync, 665-70
API, 465-69
associating file extensions, 743
in boot process, 904-8
closing keys, 468
creating keys, 465-66
deleting keys, 467-68
deleting values, 467-68
entries for application launch keys,

759-60
entries for custom Today screen items, 854
entries for device drivers, 927-28
entries for file filters, 684-90
entries for new menu items, 788
enumerating devices, 668
enumerating keys, 468-69
opening keys, 465-66
RAPI functions for managing, 645
reading values, 466, 669-70
Windows CE overview, 463-65
writing values, 467, 669-70

registry editors, 854
REG_LINK data type, 467
REG_MULTI_SZ data type, 467
REG_NONE data type, 467
RegOpenKeyEx function, 465-66
RegQuerylnjoKey function, 468
RegQueryValueEx function, 466
REG_RESOURCE_LIST data type, 467
RegSetValueEx function, 467
REG_SZ data type, 467
RegView.c file, 472-86
RegView example program, 469-86
RegView.h file, 470- 71
RegView.rc file, 46~ 70
ReleaseCapture message, 111
ReleaseDC function, 38, 69
ReleaseMutex function, 511, 512
ReleaseSemaphore function, 510
remote API (RAPI)

database functions, 640, 643-45
ending sessions, 639

remote API (RAPI), continued
error handling, 639
file management functions, 640-43
function prototype, 651-52
initializing, 638
overview, 636-39
predefined functions, 640-46
registry management functions, 645
shell management functions, 645-46
user-defined functions, 650-56
using to call custom functions, 651
version differences, 637
window management functions, 646
writing server functions, 651-55

REMOTE_NAME_INFO structure, 587
RemoveDirectory function, 409, 410
renaming files, 410
REPLLOG .EXE program, 487
ReportLoss method, 692
ReportProgress method, 692
RequestData parameter, 629
RequestOptions parameter, 629
RequestSize parameter, 629

Index

reserved memory pages, 350, 354, 356,
359, 360

Reserved parameter, 466
ResetCmd registry value, 759
ResetEvent function, 505
resetting system, 902-4
RESOURCE_CONNECTED flag, 581
RESOURCEDISPLAYTYPE_DOMAIN flag,

583
RESOURCEDISPLAYTYPE_GENERIC flag,

583
RESOURCEDISPLAYTYPE_SERVER flag, 583
RESOURCEDISPLAYTYPE_SHARE flag, 583
RESOURCE_GLOBALNET flag, 581
resource leaks, 51
RESOURCE_REMEMBERED flag, 581
resources. See also network resources

bitmaps as, 127, 129
creating scripts, 125-27
dialog box templates as, 206-9, 210
disconnecting, 579-80

987

Index

resources, continued
icons as, 127-28, 127
keyboard accelerators as, 127, 128-29
list of types allowed, 127
menu bar, 782-86
menus as, 126, 127
overview, 125
script example, 126
shortcut keys as, 128-29
strings as, 129-30

RESOURCETYPE_ANY flag, 581
RESOURCETYPE_CONTAINER flag, 582
RESOURCETYPE_DISK flag, 580, 581, 583
RESOURCETYPE_PRINT flag, 580, 581, 583
RESOURCEUSAGE_CONNECTABLE flag, 581
RESOURCEUSAGE_CONTAINER flag, 581
Resume Thread function, 497, 500
RGB macro, 71, 72
RGBQUAD structure, 65, 66-67, 72, 73
rghNotifications parameter, 732
rghReserved field, 31
rgProplD parameter, 427
rgSortSpecs field, 421
rich edit control, 345, 346
right-button clicks, 111-12
ROM (read-only memory), 347, 348
root directory, 411, 577
root keys, 464
ROP codes, 68, 69
round rectangles, drawing, 75
RoundRect function, 72, 75
RoundTripTime field, 631
RTS_CONTROL_DISABLE flag, 545
RTS_CONTROL_ENABLE flag, 545
RTS_CONTROL_HANDSHAKE flag, 545
RTS_CONTROL_TOGGLE flag, 545
run-time version checking, 916-18

s
samDesired parameter, 466
sample programs. See example programs
Save As common dialog, 222, 223
SB_BOTTOM code, 165
SB_CTL flag, 166, 174

988

SB_ENDSCROLL code, 165
SB_HORZ flag, 166
SB_LINEDOWN code, 164, 165
SB_LINELEFT code, 164, 165
SB_LINERIGHT code, 164, 165
SB_LINEUP code, 164, 165
SB_PAGEDOWN code, 164, 165
SB_PAGELEFT code, 164, 165
SB_PAGERIGHT code, 164, 165
SB_PAGEUP code, 164, 165
SB_THUMBPOSITION code, 164, 165
SB_THUMBTRACK code, 164, 165
SB_TOP code, 165
SB_ VERT flag, 166
scaling, font, 47
screen, turning off, 919-21
screen, writing to, 827-28
scroll bars

configuring, 166
and FontList2 program, 151-67
list of codes, 165
message processing, 164-65
overview, 168, 174
Windows CE window, 62

ScrollDC function, 102
ScrollDlg.c file, 254-58
SCROLLINFO structure, 166, 167
ScrollWnd.c file, 199-203
SD_BOTH option, 603
SD _RECEIVE option, 603
SD_SEND option, 603
searching databases, 424-27
security

module-based, 515-16
Windows CE, 515-16

xxx_Seek function, 933, 936-37
SEE_MASK_FLAG_NO_UI flag, 742
SEE_MASK_NOCLOSEPROCESS flag, 742
select function, 607-9
Select method, 869, 870, 900
SelectObject function, 49-50, 51, 61, 68
semaphores, 509-11
SendAlternatives2 method, 870, 877
SendCharEvents method, 874, 876

SendEndOJFile function, 384
send function, 602
SendMessage function, 127, 265, 272,

299-300
SendString method, 874, 877
sendto function, 602-3
SendVirtualKey method, 874, 875-76
separate heaps

allocating memory, 366
creating, 366
destroying, 367-68
freeing completely, 367-68
freeing memory, 367
overview, 365-66
querying memory size, 367
resizing memory, 367
when to use, 372

serial ports
asynchronous I/0, 542-43
clearing errors, 550-51
closing, 540
communications overview, 539-40
configuring, 543-45
controlling stream, 549-50
infrared, 552-56
opening, 540
programming, 539-51
querying driver capabilities, 547-49
querying status, 551
reading from, 541
setting timeout values, 546-47
writing to, 541

servers, 583
SETBREAK flag, 550
SetCapture message, 111
SetCommBreak function, 549, 550
SetCommMask function, 542
SetCommState function, 543, 544, 546
SetCommTimeouts function, 546
SETDTR flag, 550
SetEvent function, 504-5
SetFileAttributes function, 385
SetFilePointer function, 383, 936-37
SetFileTime function, 386

Index

SetFilterOptions method, 694-95
SetFocus function, 86
SetForegroundWindow function, 22, 774
SetlmData method, 870, 872-73
Setlmlnfo method, 874, 875, 900
SetlnterruptEvent function, 937
SetlastError function, 934
SetMMActiveContext method, 870, 874
SETPOWERMANAGEMENT command,

920, 921
SetProcPermissions function, 953
SetRapiStat method, 655
SETRTS flag, 550
SetScroll!nfo function, 166, 167, 174
setsockopt function, 606
SetTextColor function, 39-40
SetTextMetrics function, 50-51
SetThreadPriority function, 498-99
SETTIR flag, 550
SetupComm function, 547
SetWindowlong function, 150-51
SETXOFF flag, 550
SETXON flag, 550
SHACTIVATEINFO structure, 777-78
SHAddToRecentDocs function, 741
SHA_INPUTDIALOG flag, 778
shapes

brushes for drawing, 72-73
circles, 74
drawing, 73-75
ellipses, 74
overview, 70, 72
polygons, 75
rectangles, 73-74
round rectangles, 75

Shapes.c file, 77-82
Shapes example program, 75-84
Shapes.h file, 76- 77
SHARD_PATH flag, 741
shared disks and printers, 583
shared memory blocks, 530-31
ShareMode parameter, 934
SHCloseApps function, 820
SHCMBF _EMPTYBAR flag, 775, 781

989

Index

SHCMBP _HIDDEN flag, 781
SHCMBP _HIDESIPBUTION flag, 781
SHCMBM_GETMENU message, 787
SHCMBM_GETSUBMENU message, 787
SHCMBM_SETSUBMENU message, 787
SHCreateMenuBar function, 775, 776, 779,

780-81, 783
SHCreateShortcut function, 739-40
Shel!ExecuteEx function, 741-43
SHELLEXECUTEINPO structure, 741-43
Shell.exe program, 905-6
shell namespace, 736
Shell_Notifylcon function, 743-44, 745
shells, differences among Windows CE

platforms, 735-36. See also Explorer
shell

SHPS_HIDESIPBUTION flag, 820
SHPS_HIDESTARTICON flag, 820
SHPS_HIDETASKBAR flag, 820
SHPS_SHOWSIPBUTION flag, 820
SHPS_SHOWSTARTICON flag, 820
SHPS_SHOWTASKBAR flag, 820
SHFul!Screen function, 820
SHGetAppKeyAssoc function, 760, 762
SHGetAutoRunPath function, 819
SHGetMalloc function, 738
SHGetPathFromDList function, 738, 739
SHGetShortcutTarget function, 740
SHGetSpecia!Folderlocation function, 738,

739, 740
SHGetSpecia!FolderPath function, 737-38,

739, 740
SHHandle WMActivate function, 778,

779, 815
SHHandle WMSettingChange function,

777-78, 779
SHIDIP _DONEBUTION flag, 814
SHIDIP _PULLSCREENNOMENUBAR

flag, 814
SHIDIP _SIPDOWN flag, 814
SHIDIF _SIZED LG flag, 814
SHIDIF_SIZEDLGPULLSCREEN flag, 814
SHIDIM_PLAGS flag, 814
Shift key, 103

990

SHinitDialog function, 813-14, 815, 816, 853
SHINITDLGINPO structure, 814
SHinitExtraControls function, 816
SHLoadDIBitmap function, 128
SHMENUBARINPO structure, 775-76,

780-81, 783
SHMENUBAR resource, 783-85, 812
shortcut keys, as resources, 128-29
shortcuts, 739-40
ShowCommSettings method, 672
Showing method, 869, 872
ShowWindow function, 26
SHSetAppKeyWndAssoc function, 761
SHShowOutO.fMemory function, 752
SHSiplnfo function, 776, 821-23, 873, 912
SHSipPreference function, 815, 821, 912-13
shutdown function, 603
SIP _DISABLENOSCROLL flag, 167
SIP_pAGE flag, 167
SIF _POS flag, 166
SIP _RANGE flag, 166
SIP _TRACKPOS flag, 167
Signa!Started function, 905
sinJamily field, 600
SIP (soft input panel)

controlling with SHSiplnfo function,
821-23

defined, 763
and dialog boxes, 814, 815-16
elements of, 868-69
input method component, 868
input panel component, 868
monitoring, 777-78
querying state, 821-23
setting preferred state, 815
showing/hiding, 776, 777, 815-16, 822
and top-level Pocket PC window, 776--77
writing input methods, 867-77

SIP _DOWN flag, 815
SIPP _DISABLECOMPLETION flag, 871
SIPP _DOCKED flag, 822, 871, 875, 900
SIPP _LOCKED flag, 822, 871
SIPP _ON flag, 822, 871
SIP _PORCEDOWN flag, 815

SIPINFO structure, 821-23, 872
SIPPREF control, 816
SIP _UNCHANGED flag, 815
SIP _UP flag, 815
Sleep statement, 500-501, 918, 956
SOCKADDR_IN structure, 600-601, 602
SOCKADDR_IRDA structure, 600-601, 602
SOCK_DGRAM type parameter, 599
SOCKET_ERROR, 602
socket function, 599-600
sockets

binding to addresses, 600-601
blocking vs. non-blocking, 607-9
closing, 603
connecting to servers, 602
creating, 599-600
placing in listen mode, 601
receiving data from, 602-3
writing data to, 602-3

SOCK_STREAM type parameter, 599
SO_LINGER option, 606
SOL_IRLMP socket level, 606
SOL_SOCKET socket level, 606
SOMAXCONN value, 601
sort indices, 416
sort order, 427
SORTORDERSPEC structure, 421
source code

AlbumDB program, 43~62
CeChat program, 557- 74
CEFind program, 754-56
CmdBand program, 30~ 16
CmdBar program, 278-92
CnctNote program, 675-83
CtlView program, 174-203
DivFile program, 697- 707
DlgDemo program, 224-58
FileView program, 388-404
FontList2 program, 152-63
GAPIShow program, 830-47
GenDriver program, 944-51
HelloCE program, 9-14
HelloPPC program, 766- 74
KeyTrac program, 94-102

source code, continued
ListNet program, 588-96
LView program, 325-43
MenuBar program, 798-812
MySquirt program, 611-27
NewMenuX program, 789-96
NoteDemo program, 720-32
NumPanel program, 879-99
PenTrac program, 105-10
PowerBar program, 855-67
RAPI client application, 662-65
RapiDir program, 647-50
RAPI stream server DLL, 657-61
RegView program, 469-86
Shapes program, 76-82
TBicons program, 745-51
TextDemo program, 41-4 7
TicTacl program, 112-21
TicTac2 program, 130-43
XTalk program, 520-29

SPACEPARITY constant, 545

Index

special folders, 737-39, 740
SPI_GETBATTERYIDLETIMEOUT timeout

value, 919
SPI_GETCURRENTIM flag, 821, 823
SPI_GETEXTERNALIDLETIMEOUT timeout

value, 919
SPI_GETPLATFORMTYPE constant, 917
SPI_GETSIPINFO flag, 821, 873
SPI_GETWAKEUPIDLETIMEOUT timeout

value, 919
SPI_SETCURRENTIM flag, 821, 823
SPI_SETSIPINFO flag, 821, 873
SRCCOPY ROP code, 68
SRCINVERT ROP code, 68
SRCPAINT ROP code, 68
SS_BITMAP style, 173
SS_BLACKRECT style, 174
SS_CENTERIMAGE style, 173
SS_CENTER style, 173
SS_ICON style, 173
SS_LEFTNOWORDWRAP style, 173
SS_LEFT style, 173
SS_NOPREFIX style, 173

991

Index

SS_NOTIFY style, 173
SS_RIGHT style, 173
SS_ WHITEFRAME style, 174
stacks

mapping, 356
overview, 368, 372
relationship to threads, 368

standard bitmap, 269, 293
Start button, 735, 740
Start menu

configuring, 7 40-41
Documents submenu, 741
Programs submenu, 740

Startup routine, 902
StarWnd.c file, 197-99
State field, 362, 363
static controls, 168, 173-74
static data

defined, 357
overview, 369
read-only, 356
read/write, 356
when to use, 372

StaticDlg.c file, 252-54
static variables, 501, 502
status bars, 344
Status field, 630
stdio C library 1/0 functions, 752, 753
stEndTime field, 713
STILL_ACTIVE constant, 491
stock GDI objects, 70-71
StopBits field, 545
Storage Cards, 379
storage devices, 379, 414
STORE_INFORMATION structure, 415
stream API, 933-42
stream connections, 598-603
stream interface device drivers, 925, 926
stream mode, 655-56
StretchBlt function, 68, 69
string fields, 598
string resources, 371

992

strings
in date and time picker display format,

321-22
as resources, 127, 129-30

STRINGTABLE resource type, 127
string variable type, and Hungarian

notation, 15
struct size variable type, and Hungarian

notation, 16
stStart field, 319
stStartTime field, 713
style field, 22-23
style flags, defined, 25
stylus

and input focus, 103, 110-11
message processing, 103-12
vs. mouse, 103, 110
overview, 103

SuspendThread function, 500
sVPos global variable, 164
SW _HIDE state, 20
switch statement, 16
SW _SHOWNOACTIVATE state, 20
SW _SHOW state, 20
synchronization objects, 490, 503-4, 530.

See also event objects; mutexes;
semaphores

system configuration, 910
system desktop, 6
system event notifications, 718--19
system heap, 348
SystemldleTimeReset function, 919
SYSTEM_INFO structure, 352
SystemParameterslnfo function, 917, 919
SYSTEM_POWER_STATUS_EX2 structure,

921-23
SYSTEMTIME structure, 386
szAppName Unicode string, 14, 24, 25
szDbaseName field, 420
szDbaseType field, 420
szDescription field, 597
szDLLPath field, 851

szName field, 851
szSystemStatus field, 597
szTip field, 7 44

T
TabbedTextOut function, 61
tab control, 344-45
taps vs. double-taps, 104
target devices. See also Handheld PCs

(H/PCs); Pocket PCs
microprocessors, 3
resources available, 4
running compiled programs, 18-19

task bar
annunciators, 743
overview, 743-44
showing/hiding on Pocket PC, 820
and Start button, 740
TBicons program, 744-51

TB_AUTOSIZE message, 277
TBBUTTON structure, 270-71
TB_CHECKBUTTON message, 272
TB_GETBUTTONINFO message, 271
TB_GETIMAGELIST message, 273
TB_GETRECT message, 275
TBicons.c file, 747-51
TBicons example program, 744-51
TBicons.h file, 746-47
TBicons.rc file, 74~46
TB_ISBUTTONCHECKED message, 272
TB_LOADIMAGES message, 272
TBN_DROPDOWN notification, 273, 274
TB_SETBUTTONINFO message, 271
TBSTATE_CHECKED flag, 271, 785
TBSTATE_ENABLED flag, 270, 785
TBSTATE_HIDDEN flag, 270
TBSTATE_INDETERMINATE flag, 271
TBSTATE_PRESSED flag, 270
TBSTATE_ WRAP flag, 271
TBSTYLE_AUTOSIZE flag, 271, 785
TBSTYLE_BUTTON flag, 271, 785
TBSTYLE_CHECK flag, 271

Index

TBSTYLE_CHECKGROUP flag, 271
TBSTYLE_DROPDOWN flag, 271, 785
TBSTYLE_GROUP flag, 271
TBSTYLE_SEP flag, 271
TBSTYLE_TRANSPARENT flag, 317
TCP /IP communication

creating sockets, 599-600
pinging, 628-33

TCS_BOTTOM style flag, 818
templates, dialog, 206-9, 210
templates, project, 779
temporary files, creating, 410-11
TerminateProcess function, 492
Termlnstance function, 21, 33
text attributes, 39-40
TextDemo.c file, 42-46
TextDemo example program, 40-47
TextDemo.h file, 41
TEXT macro, 39, 641
TEXTMETRIC structure, 50, 61
TextOut function, 61
thread local storage, 501-3
THREAD_pRIORITY _ABOVE_IDLE priority

level, 494
THREAD_PRIORITY_ABOVE_NORMAL

priority level, 494, 499
THREAD _PRIORITY _BELOW _NORMAL

priority level, 494
THREAD_PRIORITY_HIGHEST priority

level, 494
THREAD_PRIORITY _IDLE priority level,

494, 498
THREAD_PRIORITY_LOWEST priority

level, 494
THREAD_PRIORITY _NORMAL priority

level, 494, 495, 498, 499
THREAD_PRIORITY _ TIME_CRITICAL

priority level, 494, 498, 499
threads

and asynchronous drivers, 952-56
blocked, 495-96
creating, 496-98

993

Index

threads, continued
defined, 487
and input methods, 869
multiple, 542
overview, 493
relationship to stacks, 368
resuming, 500-501
scheduling, 493-95
setting priority, 498-500
suspending, 500-501
and synchronization objects, 503-4
terminating, 498
and waiting, 505-11

TicTacl.c file, 11~21
TicTacl example program, 112-22
TicTacl.h file, 112-13
TicTac2.c file, 13~43
TicTac2 example program, 130-45
TicTac2.h file, 131-33
TicTac2.rc file, 130-31
time fields, 386
Timeout parameter, 630
time quantum, 493, 499-500
timer event notifications, 717-18, 719
time slices, 493. See also time quantum
TIMEVAL structure, 608
title bar, 30
tlitCustom field, 851
tlit field, 851
TLS (thread local storage), 501-3
17sAlloc function, 502, 503
17sFree function, 503
17sGetValue function, 503
TLS_MINIMUM_AVAILABLE constant, 502
TlsSetValue function, 502-3
tmE:xterna!Leading field, 51, 61
tmHeight field, 50-51, 61
TODAYLISTITEM structure, 850-51, 852, 853
TODAYLISTITEMTYPE enumeration, 851
Today screen

vs. Explorer shell, 735
illustrated, 764, 850
overview, 764
writing custom items, 849-54

994

toolbars, 345
ToolHelp DLL, 517
tooltips, 276-77, 743, 785
top-level windows

defined, 148
and SIP, 776-77
sizing in Pocket PCs, 776-78

Tos field, 630
touch screens, 103, 104
TPMPARAMS structure, 275
TPM_ VERTICAL flag, 275
trackbars, 345
TrackPopupMenuE:x function, 275
TranslateAccelerator function, 129
TranslateMessage function, 21, 129, 215
TransmitCommChar function, 541
TransparentBlt function, 69
Transparentlmage function, 69
transparent mode, 46
tree view control, 345, 486
TR_SETDISABLEDIMAGELIST message, 273
TrueType fonts, 47
TRUNCATE_EXISTING flag, 381, 418
trusted modules, 515-16
TryEnterCritica!Section function, 513
_try,_except block, 533-36, 927, 935, 939
_try,_finally block, 533, 536
Ttl field, 630
turning off screen, 919-21
TWOSTOPBITS constant, 545
Type field, 362, 363

u
uBand parameter, 299
uBytes parameter, 365
uCallbackMessage field, 744
uEnable parameter, 123
uFlag parameter, 365
uFlags field, 7 44
uFlags parameter, 364, 741
uiAction parameter, 821
uIDNewltem parameter, 123
ULARGE_INTEGER structure, 415
u!Options parameter, 466

uMapType parameter, 93
Unadvise method, 673
UNC (Universal Naming Convention), 576,

584, 586, 587
Unicode, 4-5, 598, 631, 641, 943
UNIVERSAL_NAME_INFO structure, 586-87
Universal Naming Convention (UNC), 576,

584, 586, 587
Un map ViewO}File function, 406-7
unmounting database volumes, 417, 419
untrusted modules, 515-16
uNumToolTips parameter, 276
Update Window function, 26
up-down control, 345
user notifications

acknowledging, 715-17
clearing, 715-17
configuring, 714-15
NoteDemo program, 719-32
overview, 711-12
rescheduling, 715
setting, 712-17

UserOptionsDlg method, 870, 873
uSvc flag, 667
uType field, 423
uType parameter, 145
uUnique parameter, 410-11
uZoneMask field, 943

v
val field, 426
ValidateRect function, 37
variables

interlocked access, 514-15
using Hungarian notation, 15-16

VER_PLATFORM_ WIN32_CE constant, 917
VERSIONINFO resource type, 127
versions

compile-time versioning, 912-13
and explicit linking, 913-16
run-time checking, 916-18

VIDEO_POWER_MANAGEMENT structure,
921

Viewer.c file, 397-404, 404

Viewer.h file, 397
VirtualAlloc function, 357-58
VirtualFree function, 360-61
virtual key codes, 757-59, 758
virtual list view, 324-25, 463
virtual memory

allocating, 357-59
changing access rights, 361-63
decommitting, 360-61
freeing, 360-61
overview, 349, 357
paged, 349-50
querying access rights, 361-63
regions vs. pages, 359-60
reserving, 357-59
when to use, 371-72
Windows CE address space, 350-54

VirtualProtect function, 361
VirtualQuery function, 361-63

Index

virtual RAM disk, 348. See also object store
VK_O-VK_9 value, 88
VK_ADD value, 89
VK_APOSTROPHE value, 89
vkAppKey parameter, 759
VK_APPS value, 89
VK_ATTN value, 90
VK_A-VK_Z value, 88
VK_BACKQUOTE value, 89
VK_BACKSLASH value, 89
VK_BACK value, 87
VK_CANCEL value, 87
VK_CAPITAL value, 88
VK_ CLEAR value, 88
VK_COMMA value, 89
VK_CONTROL value, 88
VK_CRSEL value, 90
VK_DECIMAL value, 89
VK_DELETE value, 88
VK_DIVIDE value, 89
VK_DOWN value, 88, 758
VK_END value, 88
VK_EQUAL value, 89
VK_EREOF value, 90
VK_ESCAPE value, 88

995

Index

VK_EXECUTE value, 88
VK_EXSEL value, 90
VK_Fl-VK_F24 value, 89
VK_HELP value, 88
VK_HOME value, 88
VK_HYPHEN value, 89
VK_INSERT value, 88
VK_LBRACKET value, 89
VK_LBUTTON value, 87, 92
VK_LCONTROL value, 89
VK_LEFT value, 88, 758
VK_LMENU value, 89
VK_LSHIFT value, 89
VK_LWIN value, 88
VK_MENU value, 88, 92, 112
VK_MULTIPLY value, 89
VK_NEXT value, 88
VK_NONAME value, 90
VK_NUMLOCK value, 89
VK_NUMPAD0-9 value, 89
VK_OEM_CLEAR value, 90
VK_OFF value, 90
VK:_FAl value, 90
VK_PERIOD value, 89
VK_PLAY value, 90
VK_PRIOR value, 88
VK_RBRACKET value, 89
VK_RBUTTON value, 87
VK_RCONTROL value, 89
VK_RETURN value, 88, 758, 758
VK_RIGHT value, 88, 758
VK_RMENU value, 89
VK_RSHIFT value, 89
VK_RWIN value, 88
VK_SCROLL value, 89
VK_SELECT value, 88
VK_SEMICOLON value, 89
VK_SEPARATOR value, 89
VK_SHIFT value, 88
VK_SLASH value, 89
VK_SNAPSHOT value, 88
VK_SPACE value, 88
VK_SUBTRACT value, 89
VK_TAB value, 87

996

VK_UP value, 88, 758
VK_ZOOM value, 90
volumes, database, 387, 417-18

w
WA_ACTIVE flag, 32
WA_CLICKACTIVE flag, 32
WA_INACTIVE flag, 32
WAIT_ABANDONED value, 506, 508
WaitCommEvent function, 542
WAIT_FAILED value, 506, 508
WaitForMultipleObjects function, 505,

507-8, 510
WaitForSingleObject function, 505, 506,

510, 512
WAIT_OBJECT value, 506, 508, 509
WAIT_TIMEOUT value, 506, 508
WC_LISTVIEW control, 323
WC_SIPPREF control, 816
wDay field, 319
wFlags field, 426, 430
wFlags parameter, 644
WHITE_PEN parameter, 71
WideCharToMultiByte function, 598, 641
w/D field, 297
wildcards, 411
WIN32_FIND_DATA structure, 411-12, 413
WIN32_PLATFORM_PSPC constant, 22, 913
WIN32_ WCE preprocessor definition, 912
WINBASE.H file, 513, 535, 548
window class. See also controls

class styles, 22-23
overview, 6-8
registering, 22-24

Window handle variable type, and
Hungarian notation, 16

window procedure, 7-8. See also
Main WndProc procedure

windows
editing structure values, 150-51
enumerating, 149-50
finding, 150
as instances of window classes, 6
overview, 6

windows, continued
owner/owned relationships, 148
parent/child relationships, 6, 32, 33, 148
relationships, 147
valid vs. invalid regions, 31, 36-37
visibility, 148

Windows 95 and 98 shells, 735, 737
Windows CE

console applications, 752-57
differences among shells, 735-36
memory overview, 347-57
namespace concept, 736
new Windows controls, 5-6
vs. other Windows platforms, 3-6, 263,

487-88
Pocket PC differences, 774-78
registry overview, 463-65
security issues, 515-16
special shell folders, 737-39
unique characteristics, 3-6
writing cross-platform applications,

911-23
Windows CE Remote Registry Editor, 854
Windows icon, showing/hiding on Pocket

PC, 820
Windows NT/2000/XP shells, 737
Windows registry. See registry
window text, 25
WinMain procedure

defined, 19-20
vs. MainWndProc procedure, 26
message loop, 20-34
programming style, 16
under Windows CE, 19-20

WinSock. See also IrSock
initializing DLL, 597-98
vs. IrSock, 603-4
overview, 596

WINSOCK.H. file, 608
WLenData field, 426
WM_ACTIVATE message, 32, 777, 778, 815
WM_CAPTURECHANGED message, 111
WM_CHAR message, 87, 90, 757, 758, 876
WM_CLOSE message, 33, 144, 492, 762

Index

WM_COPYDATA message, 518
WM_CREATE message, 26, 29, 60, 122, 163,

204, 211, 775-76, 777
WM_CTLCOLORBUTTON message, 205
WM_CTLCOLORSTATIC message, 205, 867
WM_DBNOTIFICATION message, 423, 424
WM_DEADCHAR message, 91
WM_DESTROY messsage, 33, 144
WM_DRAWITEM message, 170, 205
WM_ENTERIDLE message, 211
WM_ERASEBACKGROUND message, 37
WM_ERASEBKGND message, 24
WM_GETTEXT message, 171
WM_HELP message, 208, 277
WM_HIBERNATE message, 31, 32, 148,

373, 374, 375
WM_HOTKEY message, 761, 762
WM_HSCROLL message, 164, 165, 167,

174, 205
WM_INITDIALOG message, 211, 214, 220,

258, 813, 815, 867
WM_INITMENUPOPUP message, 144
WM_KEYDOWN message, 87, 90, 757,

758, 876
WM_KEYUP message, 87, 90, 757, 758, 876
WM_KILLFOCUS message, 86, 829
WM_LBUTTONDBLCLK message, 104
WM_LBUTTONDOWN message, 103,

104, 744
WM_LBUTTONUP message, 103, 104, 121,

744, 853
WM_MOUSEMOVE message, 103, 104, 111
WM_NC.xxx messages, 30
WM_NOTIFY message, 221, 258, 265, 273,

302, 463, 486, 796-97
wMonth field, 319
WM_QUIT message, 21, 33
WM_RBUTTONDOWN message, 112
WM_RBUTTONUP message, 112
WM_SETFOCUS message, 86, 829
WM_SETTEXT message, 171
WM_SETTINGCHANGE message, 321,

777, 778
wMsg parameter, 27

997

Index

WM_SIZE message, 122, 277, 293, 684
WM_SYSCHAR message, 87, 90
WM_SYSKEYDOWN message, 87
WM_SYSKEYUP message, 87
WM_TODAYCUSTOM_CLEARCACHE

message
WM_TODAYCUSTOM_QUERYREFRESHCACHE

message, 852, 866
WM_USER message, 423, 744, 745
WM_ VSCROLL message, 163, 164, 165, 167,

174, 205
WNDCLASS structure, 22-23, 150
WNetAddConnection functions, 576,

577-80, 582
WNet API

functions, 576-87
overview, 575-76

WNetCloseEnum function, 581, 583-84
WNetDisconnectDialog 1 function, 580
WNetDisconnectDialog function, 580
WNetEnumResource function, 581, 582-83
WNetGetConnection function, 586
WNetGetLastError function, 578
WNetGetUniversa!Name function, 586-87
WNetGetUser function, 587
WNetOpenEnum function, 581-82
wNumRecords field, 421
wNumSortOrder field, 421
word variable type, and Hungarian

notation, 15
wPacketLengtb field, 548
wPacketVersion field, 548
wProcessorArcbitecture field, 352
wProcessorLevel field, 352
WriteFile function, 382, 383, 541, 574, 930
xxx_ Write function, 933, 936
WriteProcessMemory function, 492
WriteTota!TimeoutConstant field, 546, 547

998

WriteTota!TimeoutMultiplier field, 546, 547
writing database records, 430
WSAAsync function, 607
WSAC!eanup function, 598
WSACONNRESET error, 609
WSAData structure, 597
WSAEWOULDBLOCK error, 601, 607
WSAGetLastError function, 597, 600,

601, 602
WSAStartup function, 597
WS_CAPTION style flag, 208
WS_CHILD style flag, 148, 163, 276, 373
WS_EX_CAPTIONOKBTN extended style

flag, 208
WS_EX_CONTEXTHELP extended style

flag, 208
WS_GROUP style flag, 209
WS_OVERLAPPED style flag, 148, 373
WS_POPUP style flag, 208, 373
WS_SYSMENU style flag, 208
WS_TABSTOP style flag, 209
WS_ VISIBLE style flag, 25, 148, 163,

276, 373
wYear field, 319

x
XIP (Execute in Place) programs, 348, 377
XoffCbar field, 545
Xof/Lim field, 545
XonCbar field, 545
XonLim field, 545
XTalk.c file, 522-29
XTalk example program, 519-33
XTalk.h file, 520-21
XTalk.rc file, 520

z
Z-order, 86, 373

Douglas Boling
A contributing editor to Microsoft's MSDN Maga

zine, Douglas Boling is known as an astute observer
of the computer industry. He's an electrical engi
neer by training and a writer and a consultant in
practice. Doug has widely recognized expertise in
Windows CE and other programming topics, and he
speaks at leading professional developer confer
ences. Doug teaches seminars on Windows CE for
Wintellect LLC, www.wintellect.com.

Paintbrushes

Sticks and tufts of grass were used as paintbrushes by early man. Stone Age artists also used
brushes made of feathers, bristles, leaves, pieces of fur, or frayed pieces of wood. These sub
stances were later replaced by bundles of hog bristles, which lasted as the primary paintbrush
material until 1939, when manufacturers introduced synthetic nylon bristles.

When nylon bristles were introduced, the durability and stiffness of the material appeared to be
perfect for paintbrushes. Unfortunately, people soon discovered that paint wouldn't stick to the
smooth ends of nylon bristles as it did to the naturally split, or flagged, ends of hog bristles. So
manufacturers subjected the ends of nylon bristles to sanding machines, which roughened the
bristles sufficiently to make them capable of holding paint on the brush.

Today there are four popular types of utility (as opposed to artist-quality) paintbrushes: wall
brushes, sash and trim brushes, varnish and enameling brushes, and specialty brushes for such
tasks as painting stucco, shingles, and the like.

Tools are central to the progress of the human race. People are adept at building and using tools
to accomplish important (and unimportant) tasks. Software is among the most powerful of tools
moving us forward, and Microsoft is proud to create tools used by millions worldwide and to
contribute to continuing innovation.

The manuscript for this book was prepared and galleyed using Microsoft Word 2000. Pages were
composed by Microsoft Press using Adobe PageMaker 6.52 for Windows, with text in Garamond
and display type in Helvetica Condensed. Composed pages were delivered to the printer as
electronic prepress files.

Cover Designer:
Interior Graphic Designer:
Principal Compositor:
Interior Artist:
Technical Copy Editor:
Indexer:

Methodologie, Inc.
James D. Kramer
Dan Latimer
Rob Nance/Michael Victor
Shawn Peck
Julie Kawabata

direct from Microsoft and MSDN!
Get a vital first look under the hood at key Microsoft initiatives, languages, tools, and products with in

depth technical information direct from the authorities: Microsoft Press and the Microsoft Developer

Network (MSDN"). The unique MSDN series gives you advance details that no other publisher can offer,

with information in easy-to-use reference format consolidated from MSDN Library, MSDN Magazine,

microsoft.com, and Microsoft product groups. MSDN titles give you the most accurate, complete picture

you can find on evolving technologies to help you update your skills and prepare for the future.

•The Microsoft .NET Framework
ISBN: 0-7356-1444-X

• The Microsoft Visual Studio .NET
ISBN: 0-7356-1446-6

• Microsoft C# Language Specifications
ISBN: 0-7356-1448-2

•Web Applications in the Microsoft .NET Framework
ISBN: 0-7356-1445-8

• Microsoft .NET Framework Developer Specifications
ISBN: 0-7356-1447-4

U.S.A. $29.99
Canada $43.99

Microsoft Press• products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit
our Web site at mspress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the
United States (in Canada, call 1-800-268-2222).

Prices and availability dates are subject to change.

Micl'OSoft®
mspress.mlcrosoft.com

--st ~ry with this

succinct yet entertaining overview!

Introducing Microsoff .Net

An41rdlltectural and d8alg,, ovelvlew of the Microsoft .NET
Platform for software developers and IT manageis alike

David S. Platt

U.S.A. $29.99
Canada $43.99
ISBN: 0-7356-1377-X

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit
our Web site at mspress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the
United States (in Canada, call 1-800-268-2222).

Prices and availability dates are subject to change.

What problems does Microsoft" .NET solve? What

architectural approaches does it take to solve them?

How do you start using .NET-and how do you profit

from it? Get the answers to these questions and

more in this entertaining, no-nonsense book. David

S. Platt covers a single topic in each chapter,

introducing simpler, conceptual material first, and

then progressing into greater technical detail, so you

can choose how deep you want to go. He makes his

points with a minimum of jargon, a maximum of wit,

a multitude of detailed diagrams, and a wealth of

meaningful analogies and clear explanations. The

accompanying code samples are included on the

book's Web site. By the end of this illuminating .NET

walkthrough, you'll know enough about this exciting

development platform to plan for the future of

software as a service.

Microsoft®
mspress.microsoft.com

amming

the easy way
with this practical,

step-by-step guide!

U.S.A. $49.99
Canada $72.99
ISBN: 0-7356-1142-4

Whether you're new to databases or familiar with

Microsoft Access, Oracle, and other relational data

bases, MICROSOFT" SQL SERVER'" 2000 PROGRAMMING

STEP BY STEP is the ideal way to learn how SQL Server

can work for you. Written by an experienced database

developer and author and replete with examples and

exercises, this book will help you quickly get up to

speed on creating and maintaining databases with

the interactive tools provided by SQL Server 2000

Personal, Standard, and Enterprise Editions. This book

is a must-have resource for anyone who wants to

create and maintain databases and program with

Transact-SQL. Included on CD-ROM with the book are

sample database files and sample script code in

Transact-SQL.

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit
our Web site at mspress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the
United States (in Canada, call 1-800-268-2222).

Microsoft®
mspress.mlcrosoft.com

Prices and availability dates are subject to change.

Get devejf)per-to-deve/,pper

for building
and customizing Office XP solutions!

Microsoft-

Office xp
Developer's Guide

U.S.A. $49.99
Canada $72.99
ISBN: 0-7356-1242-0

Exploit the powerful programmability in Microsoft•

Office XP with authoritative information straight from

the Office XP development team. This hard-core

programming reference comes packed with practical

resources to help you maximize your productivity with

Microsoft Office Developer. You get both design and

coding examples that take advantage of the COM

interfaces exposed by Office XP. Use this incisive

coverage to build on what you know and to accomplish

everything from automating simple tasks to creating

complex vertical-market applications. And the compan

ion CD-ROM contains procedure code you can use right

now-helping you to focus your creativity on designing

solutions, rather than on building rudimentary code.

It's everything you need to create better business

solutions, faster!

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit
our Web site at mspress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the
United States (in Canada, call 1-800-268-2222).

MicTOSoft®

Prices and availability dates are subject to change. mspress.microsoft.com

Practical strategies and
a proven model for developing

~reatteams
and world-class software

U.S.A. $29.99
Canada $43.99
ISBN: 0-7356-1184-X

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft® Sales Office, or visit
our Web site at mspress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the
United States (in Canada, call 1-800-268-2222).

Prices and availability dates are subject to change.

How do you hire-and keep-the best software engi

neers in the business? What real-world practices will

motivate a team to produce excellent results? From

startups to major corporations, virtually every develop

ment organization struggles with these questions as

they attempt to ship great software on time. In UNDER

PRESSURE AND ON TIME, respected industry veteran Ed

Sullivan shares the critical insights and hard-learned

lessons gained from his award-winning, 17-year career

in software development. He describes a proven model

for creating, directing, and growing a successful

development team, and he reveals key secrets and

essential "how-to" techniques, about which frustrat

ingly little has been written-until now. This book digs

deeper than other project management books to

deliver the fire-tested practices and gritty details

direct from the trenches-that will help you assemble a

great development team and lead it to ship world-class

software.

Microsoft®

mspress.mlcrosoft.com

The definitive guide to programming the
Windows CE API

Design sleek, high-performance appl ications for the newest generation of smart

devices with this practical , authoritative reference. It fully expla ins how to extend

your Windows or embedded programming skills to the Windows CE handheld and

Pocket PC environments. You'll review the basics of event-driven development and

then tackle the intricacies of this modular, compact architecture. lnve~gate

platform-specific programming considerations, and use specialized techniques for

handling memory, storage, and power constraints: Dive into serial , network, and

RAPI communications. Advance your skill with modules, processes, and threads,

and build or modify code to meet the requirements of new devices such as the

Pocket PC.

Coverage In this guide Includes:

> Introduction to Windows CE programming

> Memory management

> Input-keyboard, touch screen , and

menus

> Processes and threads

> Files, databases, and the registry

> Windows networking and lrSock

> The Remote API (RAPI }

> Notifications
I

> The Explorer shell

> Programming and ~xtend i ng the

Pocket PC

> Power management

> Pocket PC Today screen extensions

> Output-basic drawing and text support

> The Game API (GAPI}

> Windows, controls, and dialog boxes

> Windows CE device drivers

11111

ISBN 0-7356-1443-1

111111 rn1
U.S.A. $59.99
Canada $86.99
(Recommended]

